1d4586f2c8778c4289a8be1b37f329798a7528e6
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
112 The structures form a non-overlapping list that is sorted by increasing
113 MIN_ADDEND. */
114 struct mips_got_page_range
115 {
116 struct mips_got_page_range *next;
117 bfd_signed_vma min_addend;
118 bfd_signed_vma max_addend;
119 };
120
121 /* This structure describes the range of addends that are applied to page
122 relocations against a given symbol. */
123 struct mips_got_page_entry
124 {
125 /* The input bfd in which the symbol is defined. */
126 bfd *abfd;
127 /* The index of the symbol, as stored in the relocation r_info. */
128 long symndx;
129 /* The ranges for this page entry. */
130 struct mips_got_page_range *ranges;
131 /* The maximum number of page entries needed for RANGES. */
132 bfd_vma num_pages;
133 };
134
135 /* This structure is used to hold .got information when linking. */
136
137 struct mips_got_info
138 {
139 /* The number of global .got entries. */
140 unsigned int global_gotno;
141 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
142 unsigned int reloc_only_gotno;
143 /* The number of .got slots used for TLS. */
144 unsigned int tls_gotno;
145 /* The first unused TLS .got entry. Used only during
146 mips_elf_initialize_tls_index. */
147 unsigned int tls_assigned_gotno;
148 /* The number of local .got entries, eventually including page entries. */
149 unsigned int local_gotno;
150 /* The maximum number of page entries needed. */
151 unsigned int page_gotno;
152 /* The number of relocations needed for the GOT entries. */
153 unsigned int relocs;
154 /* The number of local .got entries we have used. */
155 unsigned int assigned_gotno;
156 /* A hash table holding members of the got. */
157 struct htab *got_entries;
158 /* A hash table of mips_got_page_entry structures. */
159 struct htab *got_page_entries;
160 /* In multi-got links, a pointer to the next got (err, rather, most
161 of the time, it points to the previous got). */
162 struct mips_got_info *next;
163 };
164
165 /* Structure passed when merging bfds' gots. */
166
167 struct mips_elf_got_per_bfd_arg
168 {
169 /* The output bfd. */
170 bfd *obfd;
171 /* The link information. */
172 struct bfd_link_info *info;
173 /* A pointer to the primary got, i.e., the one that's going to get
174 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
175 DT_MIPS_GOTSYM. */
176 struct mips_got_info *primary;
177 /* A non-primary got we're trying to merge with other input bfd's
178 gots. */
179 struct mips_got_info *current;
180 /* The maximum number of got entries that can be addressed with a
181 16-bit offset. */
182 unsigned int max_count;
183 /* The maximum number of page entries needed by each got. */
184 unsigned int max_pages;
185 /* The total number of global entries which will live in the
186 primary got and be automatically relocated. This includes
187 those not referenced by the primary GOT but included in
188 the "master" GOT. */
189 unsigned int global_count;
190 };
191
192 /* A structure used to pass information to htab_traverse callbacks
193 when laying out the GOT. */
194
195 struct mips_elf_traverse_got_arg
196 {
197 struct bfd_link_info *info;
198 struct mips_got_info *g;
199 int value;
200 };
201
202 struct _mips_elf_section_data
203 {
204 struct bfd_elf_section_data elf;
205 union
206 {
207 bfd_byte *tdata;
208 } u;
209 };
210
211 #define mips_elf_section_data(sec) \
212 ((struct _mips_elf_section_data *) elf_section_data (sec))
213
214 #define is_mips_elf(bfd) \
215 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
216 && elf_tdata (bfd) != NULL \
217 && elf_object_id (bfd) == MIPS_ELF_DATA)
218
219 /* The ABI says that every symbol used by dynamic relocations must have
220 a global GOT entry. Among other things, this provides the dynamic
221 linker with a free, directly-indexed cache. The GOT can therefore
222 contain symbols that are not referenced by GOT relocations themselves
223 (in other words, it may have symbols that are not referenced by things
224 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
225
226 GOT relocations are less likely to overflow if we put the associated
227 GOT entries towards the beginning. We therefore divide the global
228 GOT entries into two areas: "normal" and "reloc-only". Entries in
229 the first area can be used for both dynamic relocations and GP-relative
230 accesses, while those in the "reloc-only" area are for dynamic
231 relocations only.
232
233 These GGA_* ("Global GOT Area") values are organised so that lower
234 values are more general than higher values. Also, non-GGA_NONE
235 values are ordered by the position of the area in the GOT. */
236 #define GGA_NORMAL 0
237 #define GGA_RELOC_ONLY 1
238 #define GGA_NONE 2
239
240 /* Information about a non-PIC interface to a PIC function. There are
241 two ways of creating these interfaces. The first is to add:
242
243 lui $25,%hi(func)
244 addiu $25,$25,%lo(func)
245
246 immediately before a PIC function "func". The second is to add:
247
248 lui $25,%hi(func)
249 j func
250 addiu $25,$25,%lo(func)
251
252 to a separate trampoline section.
253
254 Stubs of the first kind go in a new section immediately before the
255 target function. Stubs of the second kind go in a single section
256 pointed to by the hash table's "strampoline" field. */
257 struct mips_elf_la25_stub {
258 /* The generated section that contains this stub. */
259 asection *stub_section;
260
261 /* The offset of the stub from the start of STUB_SECTION. */
262 bfd_vma offset;
263
264 /* One symbol for the original function. Its location is available
265 in H->root.root.u.def. */
266 struct mips_elf_link_hash_entry *h;
267 };
268
269 /* Macros for populating a mips_elf_la25_stub. */
270
271 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
272 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
273 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
274 #define LA25_LUI_MICROMIPS(VAL) \
275 (0x41b90000 | (VAL)) /* lui t9,VAL */
276 #define LA25_J_MICROMIPS(VAL) \
277 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
278 #define LA25_ADDIU_MICROMIPS(VAL) \
279 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
280
281 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
282 the dynamic symbols. */
283
284 struct mips_elf_hash_sort_data
285 {
286 /* The symbol in the global GOT with the lowest dynamic symbol table
287 index. */
288 struct elf_link_hash_entry *low;
289 /* The least dynamic symbol table index corresponding to a non-TLS
290 symbol with a GOT entry. */
291 long min_got_dynindx;
292 /* The greatest dynamic symbol table index corresponding to a symbol
293 with a GOT entry that is not referenced (e.g., a dynamic symbol
294 with dynamic relocations pointing to it from non-primary GOTs). */
295 long max_unref_got_dynindx;
296 /* The greatest dynamic symbol table index not corresponding to a
297 symbol without a GOT entry. */
298 long max_non_got_dynindx;
299 };
300
301 /* The MIPS ELF linker needs additional information for each symbol in
302 the global hash table. */
303
304 struct mips_elf_link_hash_entry
305 {
306 struct elf_link_hash_entry root;
307
308 /* External symbol information. */
309 EXTR esym;
310
311 /* The la25 stub we have created for ths symbol, if any. */
312 struct mips_elf_la25_stub *la25_stub;
313
314 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
315 this symbol. */
316 unsigned int possibly_dynamic_relocs;
317
318 /* If there is a stub that 32 bit functions should use to call this
319 16 bit function, this points to the section containing the stub. */
320 asection *fn_stub;
321
322 /* If there is a stub that 16 bit functions should use to call this
323 32 bit function, this points to the section containing the stub. */
324 asection *call_stub;
325
326 /* This is like the call_stub field, but it is used if the function
327 being called returns a floating point value. */
328 asection *call_fp_stub;
329
330 /* The highest GGA_* value that satisfies all references to this symbol. */
331 unsigned int global_got_area : 2;
332
333 /* True if all GOT relocations against this symbol are for calls. This is
334 a looser condition than no_fn_stub below, because there may be other
335 non-call non-GOT relocations against the symbol. */
336 unsigned int got_only_for_calls : 1;
337
338 /* True if one of the relocations described by possibly_dynamic_relocs
339 is against a readonly section. */
340 unsigned int readonly_reloc : 1;
341
342 /* True if there is a relocation against this symbol that must be
343 resolved by the static linker (in other words, if the relocation
344 cannot possibly be made dynamic). */
345 unsigned int has_static_relocs : 1;
346
347 /* True if we must not create a .MIPS.stubs entry for this symbol.
348 This is set, for example, if there are relocations related to
349 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
350 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
351 unsigned int no_fn_stub : 1;
352
353 /* Whether we need the fn_stub; this is true if this symbol appears
354 in any relocs other than a 16 bit call. */
355 unsigned int need_fn_stub : 1;
356
357 /* True if this symbol is referenced by branch relocations from
358 any non-PIC input file. This is used to determine whether an
359 la25 stub is required. */
360 unsigned int has_nonpic_branches : 1;
361
362 /* Does this symbol need a traditional MIPS lazy-binding stub
363 (as opposed to a PLT entry)? */
364 unsigned int needs_lazy_stub : 1;
365 };
366
367 /* MIPS ELF linker hash table. */
368
369 struct mips_elf_link_hash_table
370 {
371 struct elf_link_hash_table root;
372
373 /* The number of .rtproc entries. */
374 bfd_size_type procedure_count;
375
376 /* The size of the .compact_rel section (if SGI_COMPAT). */
377 bfd_size_type compact_rel_size;
378
379 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
380 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
381 bfd_boolean use_rld_obj_head;
382
383 /* The __rld_map or __rld_obj_head symbol. */
384 struct elf_link_hash_entry *rld_symbol;
385
386 /* This is set if we see any mips16 stub sections. */
387 bfd_boolean mips16_stubs_seen;
388
389 /* True if we can generate copy relocs and PLTs. */
390 bfd_boolean use_plts_and_copy_relocs;
391
392 /* True if we're generating code for VxWorks. */
393 bfd_boolean is_vxworks;
394
395 /* True if we already reported the small-data section overflow. */
396 bfd_boolean small_data_overflow_reported;
397
398 /* Shortcuts to some dynamic sections, or NULL if they are not
399 being used. */
400 asection *srelbss;
401 asection *sdynbss;
402 asection *srelplt;
403 asection *srelplt2;
404 asection *sgotplt;
405 asection *splt;
406 asection *sstubs;
407 asection *sgot;
408
409 /* The master GOT information. */
410 struct mips_got_info *got_info;
411
412 /* The global symbol in the GOT with the lowest index in the dynamic
413 symbol table. */
414 struct elf_link_hash_entry *global_gotsym;
415
416 /* The size of the PLT header in bytes. */
417 bfd_vma plt_header_size;
418
419 /* The size of a PLT entry in bytes. */
420 bfd_vma plt_entry_size;
421
422 /* The number of functions that need a lazy-binding stub. */
423 bfd_vma lazy_stub_count;
424
425 /* The size of a function stub entry in bytes. */
426 bfd_vma function_stub_size;
427
428 /* The number of reserved entries at the beginning of the GOT. */
429 unsigned int reserved_gotno;
430
431 /* The section used for mips_elf_la25_stub trampolines.
432 See the comment above that structure for details. */
433 asection *strampoline;
434
435 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
436 pairs. */
437 htab_t la25_stubs;
438
439 /* A function FN (NAME, IS, OS) that creates a new input section
440 called NAME and links it to output section OS. If IS is nonnull,
441 the new section should go immediately before it, otherwise it
442 should go at the (current) beginning of OS.
443
444 The function returns the new section on success, otherwise it
445 returns null. */
446 asection *(*add_stub_section) (const char *, asection *, asection *);
447 };
448
449 /* Get the MIPS ELF linker hash table from a link_info structure. */
450
451 #define mips_elf_hash_table(p) \
452 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
453 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
454
455 /* A structure used to communicate with htab_traverse callbacks. */
456 struct mips_htab_traverse_info
457 {
458 /* The usual link-wide information. */
459 struct bfd_link_info *info;
460 bfd *output_bfd;
461
462 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
463 bfd_boolean error;
464 };
465
466 /* MIPS ELF private object data. */
467
468 struct mips_elf_obj_tdata
469 {
470 /* Generic ELF private object data. */
471 struct elf_obj_tdata root;
472
473 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
474 bfd *abi_fp_bfd;
475
476 /* The GOT requirements of input bfds. */
477 struct mips_got_info *got;
478 };
479
480 /* Get MIPS ELF private object data from BFD's tdata. */
481
482 #define mips_elf_tdata(bfd) \
483 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
484
485 #define TLS_RELOC_P(r_type) \
486 (r_type == R_MIPS_TLS_DTPMOD32 \
487 || r_type == R_MIPS_TLS_DTPMOD64 \
488 || r_type == R_MIPS_TLS_DTPREL32 \
489 || r_type == R_MIPS_TLS_DTPREL64 \
490 || r_type == R_MIPS_TLS_GD \
491 || r_type == R_MIPS_TLS_LDM \
492 || r_type == R_MIPS_TLS_DTPREL_HI16 \
493 || r_type == R_MIPS_TLS_DTPREL_LO16 \
494 || r_type == R_MIPS_TLS_GOTTPREL \
495 || r_type == R_MIPS_TLS_TPREL32 \
496 || r_type == R_MIPS_TLS_TPREL64 \
497 || r_type == R_MIPS_TLS_TPREL_HI16 \
498 || r_type == R_MIPS_TLS_TPREL_LO16 \
499 || r_type == R_MIPS16_TLS_GD \
500 || r_type == R_MIPS16_TLS_LDM \
501 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
502 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
503 || r_type == R_MIPS16_TLS_GOTTPREL \
504 || r_type == R_MIPS16_TLS_TPREL_HI16 \
505 || r_type == R_MIPS16_TLS_TPREL_LO16 \
506 || r_type == R_MICROMIPS_TLS_GD \
507 || r_type == R_MICROMIPS_TLS_LDM \
508 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
509 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
510 || r_type == R_MICROMIPS_TLS_GOTTPREL \
511 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
512 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
513
514 /* Structure used to pass information to mips_elf_output_extsym. */
515
516 struct extsym_info
517 {
518 bfd *abfd;
519 struct bfd_link_info *info;
520 struct ecoff_debug_info *debug;
521 const struct ecoff_debug_swap *swap;
522 bfd_boolean failed;
523 };
524
525 /* The names of the runtime procedure table symbols used on IRIX5. */
526
527 static const char * const mips_elf_dynsym_rtproc_names[] =
528 {
529 "_procedure_table",
530 "_procedure_string_table",
531 "_procedure_table_size",
532 NULL
533 };
534
535 /* These structures are used to generate the .compact_rel section on
536 IRIX5. */
537
538 typedef struct
539 {
540 unsigned long id1; /* Always one? */
541 unsigned long num; /* Number of compact relocation entries. */
542 unsigned long id2; /* Always two? */
543 unsigned long offset; /* The file offset of the first relocation. */
544 unsigned long reserved0; /* Zero? */
545 unsigned long reserved1; /* Zero? */
546 } Elf32_compact_rel;
547
548 typedef struct
549 {
550 bfd_byte id1[4];
551 bfd_byte num[4];
552 bfd_byte id2[4];
553 bfd_byte offset[4];
554 bfd_byte reserved0[4];
555 bfd_byte reserved1[4];
556 } Elf32_External_compact_rel;
557
558 typedef struct
559 {
560 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
561 unsigned int rtype : 4; /* Relocation types. See below. */
562 unsigned int dist2to : 8;
563 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
564 unsigned long konst; /* KONST field. See below. */
565 unsigned long vaddr; /* VADDR to be relocated. */
566 } Elf32_crinfo;
567
568 typedef struct
569 {
570 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
571 unsigned int rtype : 4; /* Relocation types. See below. */
572 unsigned int dist2to : 8;
573 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
574 unsigned long konst; /* KONST field. See below. */
575 } Elf32_crinfo2;
576
577 typedef struct
578 {
579 bfd_byte info[4];
580 bfd_byte konst[4];
581 bfd_byte vaddr[4];
582 } Elf32_External_crinfo;
583
584 typedef struct
585 {
586 bfd_byte info[4];
587 bfd_byte konst[4];
588 } Elf32_External_crinfo2;
589
590 /* These are the constants used to swap the bitfields in a crinfo. */
591
592 #define CRINFO_CTYPE (0x1)
593 #define CRINFO_CTYPE_SH (31)
594 #define CRINFO_RTYPE (0xf)
595 #define CRINFO_RTYPE_SH (27)
596 #define CRINFO_DIST2TO (0xff)
597 #define CRINFO_DIST2TO_SH (19)
598 #define CRINFO_RELVADDR (0x7ffff)
599 #define CRINFO_RELVADDR_SH (0)
600
601 /* A compact relocation info has long (3 words) or short (2 words)
602 formats. A short format doesn't have VADDR field and relvaddr
603 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
604 #define CRF_MIPS_LONG 1
605 #define CRF_MIPS_SHORT 0
606
607 /* There are 4 types of compact relocation at least. The value KONST
608 has different meaning for each type:
609
610 (type) (konst)
611 CT_MIPS_REL32 Address in data
612 CT_MIPS_WORD Address in word (XXX)
613 CT_MIPS_GPHI_LO GP - vaddr
614 CT_MIPS_JMPAD Address to jump
615 */
616
617 #define CRT_MIPS_REL32 0xa
618 #define CRT_MIPS_WORD 0xb
619 #define CRT_MIPS_GPHI_LO 0xc
620 #define CRT_MIPS_JMPAD 0xd
621
622 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
623 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
624 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
625 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
626 \f
627 /* The structure of the runtime procedure descriptor created by the
628 loader for use by the static exception system. */
629
630 typedef struct runtime_pdr {
631 bfd_vma adr; /* Memory address of start of procedure. */
632 long regmask; /* Save register mask. */
633 long regoffset; /* Save register offset. */
634 long fregmask; /* Save floating point register mask. */
635 long fregoffset; /* Save floating point register offset. */
636 long frameoffset; /* Frame size. */
637 short framereg; /* Frame pointer register. */
638 short pcreg; /* Offset or reg of return pc. */
639 long irpss; /* Index into the runtime string table. */
640 long reserved;
641 struct exception_info *exception_info;/* Pointer to exception array. */
642 } RPDR, *pRPDR;
643 #define cbRPDR sizeof (RPDR)
644 #define rpdNil ((pRPDR) 0)
645 \f
646 static struct mips_got_entry *mips_elf_create_local_got_entry
647 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
648 struct mips_elf_link_hash_entry *, int);
649 static bfd_boolean mips_elf_sort_hash_table_f
650 (struct mips_elf_link_hash_entry *, void *);
651 static bfd_vma mips_elf_high
652 (bfd_vma);
653 static bfd_boolean mips_elf_create_dynamic_relocation
654 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
655 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
656 bfd_vma *, asection *);
657 static bfd_vma mips_elf_adjust_gp
658 (bfd *, struct mips_got_info *, bfd *);
659
660 /* This will be used when we sort the dynamic relocation records. */
661 static bfd *reldyn_sorting_bfd;
662
663 /* True if ABFD is for CPUs with load interlocking that include
664 non-MIPS1 CPUs and R3900. */
665 #define LOAD_INTERLOCKS_P(abfd) \
666 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
667 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
668
669 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
670 This should be safe for all architectures. We enable this predicate
671 for RM9000 for now. */
672 #define JAL_TO_BAL_P(abfd) \
673 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
674
675 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
676 This should be safe for all architectures. We enable this predicate for
677 all CPUs. */
678 #define JALR_TO_BAL_P(abfd) 1
679
680 /* True if ABFD is for CPUs that are faster if JR is converted to B.
681 This should be safe for all architectures. We enable this predicate for
682 all CPUs. */
683 #define JR_TO_B_P(abfd) 1
684
685 /* True if ABFD is a PIC object. */
686 #define PIC_OBJECT_P(abfd) \
687 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
688
689 /* Nonzero if ABFD is using the N32 ABI. */
690 #define ABI_N32_P(abfd) \
691 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
692
693 /* Nonzero if ABFD is using the N64 ABI. */
694 #define ABI_64_P(abfd) \
695 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
696
697 /* Nonzero if ABFD is using NewABI conventions. */
698 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
699
700 /* The IRIX compatibility level we are striving for. */
701 #define IRIX_COMPAT(abfd) \
702 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
703
704 /* Whether we are trying to be compatible with IRIX at all. */
705 #define SGI_COMPAT(abfd) \
706 (IRIX_COMPAT (abfd) != ict_none)
707
708 /* The name of the options section. */
709 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
710 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
711
712 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
713 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
714 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
715 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
716
717 /* Whether the section is readonly. */
718 #define MIPS_ELF_READONLY_SECTION(sec) \
719 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
720 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
721
722 /* The name of the stub section. */
723 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
724
725 /* The size of an external REL relocation. */
726 #define MIPS_ELF_REL_SIZE(abfd) \
727 (get_elf_backend_data (abfd)->s->sizeof_rel)
728
729 /* The size of an external RELA relocation. */
730 #define MIPS_ELF_RELA_SIZE(abfd) \
731 (get_elf_backend_data (abfd)->s->sizeof_rela)
732
733 /* The size of an external dynamic table entry. */
734 #define MIPS_ELF_DYN_SIZE(abfd) \
735 (get_elf_backend_data (abfd)->s->sizeof_dyn)
736
737 /* The size of a GOT entry. */
738 #define MIPS_ELF_GOT_SIZE(abfd) \
739 (get_elf_backend_data (abfd)->s->arch_size / 8)
740
741 /* The size of the .rld_map section. */
742 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
743 (get_elf_backend_data (abfd)->s->arch_size / 8)
744
745 /* The size of a symbol-table entry. */
746 #define MIPS_ELF_SYM_SIZE(abfd) \
747 (get_elf_backend_data (abfd)->s->sizeof_sym)
748
749 /* The default alignment for sections, as a power of two. */
750 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
751 (get_elf_backend_data (abfd)->s->log_file_align)
752
753 /* Get word-sized data. */
754 #define MIPS_ELF_GET_WORD(abfd, ptr) \
755 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
756
757 /* Put out word-sized data. */
758 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
759 (ABI_64_P (abfd) \
760 ? bfd_put_64 (abfd, val, ptr) \
761 : bfd_put_32 (abfd, val, ptr))
762
763 /* The opcode for word-sized loads (LW or LD). */
764 #define MIPS_ELF_LOAD_WORD(abfd) \
765 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
766
767 /* Add a dynamic symbol table-entry. */
768 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
769 _bfd_elf_add_dynamic_entry (info, tag, val)
770
771 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
772 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
773
774 /* The name of the dynamic relocation section. */
775 #define MIPS_ELF_REL_DYN_NAME(INFO) \
776 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
777
778 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
779 from smaller values. Start with zero, widen, *then* decrement. */
780 #define MINUS_ONE (((bfd_vma)0) - 1)
781 #define MINUS_TWO (((bfd_vma)0) - 2)
782
783 /* The value to write into got[1] for SVR4 targets, to identify it is
784 a GNU object. The dynamic linker can then use got[1] to store the
785 module pointer. */
786 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
787 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
788
789 /* The offset of $gp from the beginning of the .got section. */
790 #define ELF_MIPS_GP_OFFSET(INFO) \
791 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
792
793 /* The maximum size of the GOT for it to be addressable using 16-bit
794 offsets from $gp. */
795 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
796
797 /* Instructions which appear in a stub. */
798 #define STUB_LW(abfd) \
799 ((ABI_64_P (abfd) \
800 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
801 : 0x8f998010)) /* lw t9,0x8010(gp) */
802 #define STUB_MOVE(abfd) \
803 ((ABI_64_P (abfd) \
804 ? 0x03e0782d /* daddu t7,ra */ \
805 : 0x03e07821)) /* addu t7,ra */
806 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
807 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
808 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
809 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
810 #define STUB_LI16S(abfd, VAL) \
811 ((ABI_64_P (abfd) \
812 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
813 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
814
815 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
816 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
817
818 /* The name of the dynamic interpreter. This is put in the .interp
819 section. */
820
821 #define ELF_DYNAMIC_INTERPRETER(abfd) \
822 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
823 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
824 : "/usr/lib/libc.so.1")
825
826 #ifdef BFD64
827 #define MNAME(bfd,pre,pos) \
828 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
829 #define ELF_R_SYM(bfd, i) \
830 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
831 #define ELF_R_TYPE(bfd, i) \
832 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
833 #define ELF_R_INFO(bfd, s, t) \
834 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
835 #else
836 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
837 #define ELF_R_SYM(bfd, i) \
838 (ELF32_R_SYM (i))
839 #define ELF_R_TYPE(bfd, i) \
840 (ELF32_R_TYPE (i))
841 #define ELF_R_INFO(bfd, s, t) \
842 (ELF32_R_INFO (s, t))
843 #endif
844 \f
845 /* The mips16 compiler uses a couple of special sections to handle
846 floating point arguments.
847
848 Section names that look like .mips16.fn.FNNAME contain stubs that
849 copy floating point arguments from the fp regs to the gp regs and
850 then jump to FNNAME. If any 32 bit function calls FNNAME, the
851 call should be redirected to the stub instead. If no 32 bit
852 function calls FNNAME, the stub should be discarded. We need to
853 consider any reference to the function, not just a call, because
854 if the address of the function is taken we will need the stub,
855 since the address might be passed to a 32 bit function.
856
857 Section names that look like .mips16.call.FNNAME contain stubs
858 that copy floating point arguments from the gp regs to the fp
859 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
860 then any 16 bit function that calls FNNAME should be redirected
861 to the stub instead. If FNNAME is not a 32 bit function, the
862 stub should be discarded.
863
864 .mips16.call.fp.FNNAME sections are similar, but contain stubs
865 which call FNNAME and then copy the return value from the fp regs
866 to the gp regs. These stubs store the return value in $18 while
867 calling FNNAME; any function which might call one of these stubs
868 must arrange to save $18 around the call. (This case is not
869 needed for 32 bit functions that call 16 bit functions, because
870 16 bit functions always return floating point values in both
871 $f0/$f1 and $2/$3.)
872
873 Note that in all cases FNNAME might be defined statically.
874 Therefore, FNNAME is not used literally. Instead, the relocation
875 information will indicate which symbol the section is for.
876
877 We record any stubs that we find in the symbol table. */
878
879 #define FN_STUB ".mips16.fn."
880 #define CALL_STUB ".mips16.call."
881 #define CALL_FP_STUB ".mips16.call.fp."
882
883 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
884 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
885 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
886 \f
887 /* The format of the first PLT entry in an O32 executable. */
888 static const bfd_vma mips_o32_exec_plt0_entry[] =
889 {
890 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
891 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
892 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
893 0x031cc023, /* subu $24, $24, $28 */
894 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
895 0x0018c082, /* srl $24, $24, 2 */
896 0x0320f809, /* jalr $25 */
897 0x2718fffe /* subu $24, $24, 2 */
898 };
899
900 /* The format of the first PLT entry in an N32 executable. Different
901 because gp ($28) is not available; we use t2 ($14) instead. */
902 static const bfd_vma mips_n32_exec_plt0_entry[] =
903 {
904 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
905 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
906 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
907 0x030ec023, /* subu $24, $24, $14 */
908 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
909 0x0018c082, /* srl $24, $24, 2 */
910 0x0320f809, /* jalr $25 */
911 0x2718fffe /* subu $24, $24, 2 */
912 };
913
914 /* The format of the first PLT entry in an N64 executable. Different
915 from N32 because of the increased size of GOT entries. */
916 static const bfd_vma mips_n64_exec_plt0_entry[] =
917 {
918 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
919 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
920 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
921 0x030ec023, /* subu $24, $24, $14 */
922 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
923 0x0018c0c2, /* srl $24, $24, 3 */
924 0x0320f809, /* jalr $25 */
925 0x2718fffe /* subu $24, $24, 2 */
926 };
927
928 /* The format of subsequent PLT entries. */
929 static const bfd_vma mips_exec_plt_entry[] =
930 {
931 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
932 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
933 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
934 0x03200008 /* jr $25 */
935 };
936
937 /* The format of the first PLT entry in a VxWorks executable. */
938 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
939 {
940 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
941 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
942 0x8f390008, /* lw t9, 8(t9) */
943 0x00000000, /* nop */
944 0x03200008, /* jr t9 */
945 0x00000000 /* nop */
946 };
947
948 /* The format of subsequent PLT entries. */
949 static const bfd_vma mips_vxworks_exec_plt_entry[] =
950 {
951 0x10000000, /* b .PLT_resolver */
952 0x24180000, /* li t8, <pltindex> */
953 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
954 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
955 0x8f390000, /* lw t9, 0(t9) */
956 0x00000000, /* nop */
957 0x03200008, /* jr t9 */
958 0x00000000 /* nop */
959 };
960
961 /* The format of the first PLT entry in a VxWorks shared object. */
962 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
963 {
964 0x8f990008, /* lw t9, 8(gp) */
965 0x00000000, /* nop */
966 0x03200008, /* jr t9 */
967 0x00000000, /* nop */
968 0x00000000, /* nop */
969 0x00000000 /* nop */
970 };
971
972 /* The format of subsequent PLT entries. */
973 static const bfd_vma mips_vxworks_shared_plt_entry[] =
974 {
975 0x10000000, /* b .PLT_resolver */
976 0x24180000 /* li t8, <pltindex> */
977 };
978 \f
979 /* microMIPS 32-bit opcode helper installer. */
980
981 static void
982 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
983 {
984 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
985 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
986 }
987
988 /* microMIPS 32-bit opcode helper retriever. */
989
990 static bfd_vma
991 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
992 {
993 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
994 }
995 \f
996 /* Look up an entry in a MIPS ELF linker hash table. */
997
998 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
999 ((struct mips_elf_link_hash_entry *) \
1000 elf_link_hash_lookup (&(table)->root, (string), (create), \
1001 (copy), (follow)))
1002
1003 /* Traverse a MIPS ELF linker hash table. */
1004
1005 #define mips_elf_link_hash_traverse(table, func, info) \
1006 (elf_link_hash_traverse \
1007 (&(table)->root, \
1008 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1009 (info)))
1010
1011 /* Find the base offsets for thread-local storage in this object,
1012 for GD/LD and IE/LE respectively. */
1013
1014 #define TP_OFFSET 0x7000
1015 #define DTP_OFFSET 0x8000
1016
1017 static bfd_vma
1018 dtprel_base (struct bfd_link_info *info)
1019 {
1020 /* If tls_sec is NULL, we should have signalled an error already. */
1021 if (elf_hash_table (info)->tls_sec == NULL)
1022 return 0;
1023 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1024 }
1025
1026 static bfd_vma
1027 tprel_base (struct bfd_link_info *info)
1028 {
1029 /* If tls_sec is NULL, we should have signalled an error already. */
1030 if (elf_hash_table (info)->tls_sec == NULL)
1031 return 0;
1032 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1033 }
1034
1035 /* Create an entry in a MIPS ELF linker hash table. */
1036
1037 static struct bfd_hash_entry *
1038 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1039 struct bfd_hash_table *table, const char *string)
1040 {
1041 struct mips_elf_link_hash_entry *ret =
1042 (struct mips_elf_link_hash_entry *) entry;
1043
1044 /* Allocate the structure if it has not already been allocated by a
1045 subclass. */
1046 if (ret == NULL)
1047 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1048 if (ret == NULL)
1049 return (struct bfd_hash_entry *) ret;
1050
1051 /* Call the allocation method of the superclass. */
1052 ret = ((struct mips_elf_link_hash_entry *)
1053 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1054 table, string));
1055 if (ret != NULL)
1056 {
1057 /* Set local fields. */
1058 memset (&ret->esym, 0, sizeof (EXTR));
1059 /* We use -2 as a marker to indicate that the information has
1060 not been set. -1 means there is no associated ifd. */
1061 ret->esym.ifd = -2;
1062 ret->la25_stub = 0;
1063 ret->possibly_dynamic_relocs = 0;
1064 ret->fn_stub = NULL;
1065 ret->call_stub = NULL;
1066 ret->call_fp_stub = NULL;
1067 ret->global_got_area = GGA_NONE;
1068 ret->got_only_for_calls = TRUE;
1069 ret->readonly_reloc = FALSE;
1070 ret->has_static_relocs = FALSE;
1071 ret->no_fn_stub = FALSE;
1072 ret->need_fn_stub = FALSE;
1073 ret->has_nonpic_branches = FALSE;
1074 ret->needs_lazy_stub = FALSE;
1075 }
1076
1077 return (struct bfd_hash_entry *) ret;
1078 }
1079
1080 /* Allocate MIPS ELF private object data. */
1081
1082 bfd_boolean
1083 _bfd_mips_elf_mkobject (bfd *abfd)
1084 {
1085 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1086 MIPS_ELF_DATA);
1087 }
1088
1089 bfd_boolean
1090 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1091 {
1092 if (!sec->used_by_bfd)
1093 {
1094 struct _mips_elf_section_data *sdata;
1095 bfd_size_type amt = sizeof (*sdata);
1096
1097 sdata = bfd_zalloc (abfd, amt);
1098 if (sdata == NULL)
1099 return FALSE;
1100 sec->used_by_bfd = sdata;
1101 }
1102
1103 return _bfd_elf_new_section_hook (abfd, sec);
1104 }
1105 \f
1106 /* Read ECOFF debugging information from a .mdebug section into a
1107 ecoff_debug_info structure. */
1108
1109 bfd_boolean
1110 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1111 struct ecoff_debug_info *debug)
1112 {
1113 HDRR *symhdr;
1114 const struct ecoff_debug_swap *swap;
1115 char *ext_hdr;
1116
1117 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1118 memset (debug, 0, sizeof (*debug));
1119
1120 ext_hdr = bfd_malloc (swap->external_hdr_size);
1121 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1122 goto error_return;
1123
1124 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1125 swap->external_hdr_size))
1126 goto error_return;
1127
1128 symhdr = &debug->symbolic_header;
1129 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1130
1131 /* The symbolic header contains absolute file offsets and sizes to
1132 read. */
1133 #define READ(ptr, offset, count, size, type) \
1134 if (symhdr->count == 0) \
1135 debug->ptr = NULL; \
1136 else \
1137 { \
1138 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1139 debug->ptr = bfd_malloc (amt); \
1140 if (debug->ptr == NULL) \
1141 goto error_return; \
1142 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1143 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1144 goto error_return; \
1145 }
1146
1147 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1148 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1149 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1150 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1151 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1152 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1153 union aux_ext *);
1154 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1155 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1156 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1157 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1158 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1159 #undef READ
1160
1161 debug->fdr = NULL;
1162
1163 return TRUE;
1164
1165 error_return:
1166 if (ext_hdr != NULL)
1167 free (ext_hdr);
1168 if (debug->line != NULL)
1169 free (debug->line);
1170 if (debug->external_dnr != NULL)
1171 free (debug->external_dnr);
1172 if (debug->external_pdr != NULL)
1173 free (debug->external_pdr);
1174 if (debug->external_sym != NULL)
1175 free (debug->external_sym);
1176 if (debug->external_opt != NULL)
1177 free (debug->external_opt);
1178 if (debug->external_aux != NULL)
1179 free (debug->external_aux);
1180 if (debug->ss != NULL)
1181 free (debug->ss);
1182 if (debug->ssext != NULL)
1183 free (debug->ssext);
1184 if (debug->external_fdr != NULL)
1185 free (debug->external_fdr);
1186 if (debug->external_rfd != NULL)
1187 free (debug->external_rfd);
1188 if (debug->external_ext != NULL)
1189 free (debug->external_ext);
1190 return FALSE;
1191 }
1192 \f
1193 /* Swap RPDR (runtime procedure table entry) for output. */
1194
1195 static void
1196 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1197 {
1198 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1199 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1200 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1201 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1202 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1203 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1204
1205 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1206 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1207
1208 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1209 }
1210
1211 /* Create a runtime procedure table from the .mdebug section. */
1212
1213 static bfd_boolean
1214 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1215 struct bfd_link_info *info, asection *s,
1216 struct ecoff_debug_info *debug)
1217 {
1218 const struct ecoff_debug_swap *swap;
1219 HDRR *hdr = &debug->symbolic_header;
1220 RPDR *rpdr, *rp;
1221 struct rpdr_ext *erp;
1222 void *rtproc;
1223 struct pdr_ext *epdr;
1224 struct sym_ext *esym;
1225 char *ss, **sv;
1226 char *str;
1227 bfd_size_type size;
1228 bfd_size_type count;
1229 unsigned long sindex;
1230 unsigned long i;
1231 PDR pdr;
1232 SYMR sym;
1233 const char *no_name_func = _("static procedure (no name)");
1234
1235 epdr = NULL;
1236 rpdr = NULL;
1237 esym = NULL;
1238 ss = NULL;
1239 sv = NULL;
1240
1241 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1242
1243 sindex = strlen (no_name_func) + 1;
1244 count = hdr->ipdMax;
1245 if (count > 0)
1246 {
1247 size = swap->external_pdr_size;
1248
1249 epdr = bfd_malloc (size * count);
1250 if (epdr == NULL)
1251 goto error_return;
1252
1253 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1254 goto error_return;
1255
1256 size = sizeof (RPDR);
1257 rp = rpdr = bfd_malloc (size * count);
1258 if (rpdr == NULL)
1259 goto error_return;
1260
1261 size = sizeof (char *);
1262 sv = bfd_malloc (size * count);
1263 if (sv == NULL)
1264 goto error_return;
1265
1266 count = hdr->isymMax;
1267 size = swap->external_sym_size;
1268 esym = bfd_malloc (size * count);
1269 if (esym == NULL)
1270 goto error_return;
1271
1272 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1273 goto error_return;
1274
1275 count = hdr->issMax;
1276 ss = bfd_malloc (count);
1277 if (ss == NULL)
1278 goto error_return;
1279 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1280 goto error_return;
1281
1282 count = hdr->ipdMax;
1283 for (i = 0; i < (unsigned long) count; i++, rp++)
1284 {
1285 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1286 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1287 rp->adr = sym.value;
1288 rp->regmask = pdr.regmask;
1289 rp->regoffset = pdr.regoffset;
1290 rp->fregmask = pdr.fregmask;
1291 rp->fregoffset = pdr.fregoffset;
1292 rp->frameoffset = pdr.frameoffset;
1293 rp->framereg = pdr.framereg;
1294 rp->pcreg = pdr.pcreg;
1295 rp->irpss = sindex;
1296 sv[i] = ss + sym.iss;
1297 sindex += strlen (sv[i]) + 1;
1298 }
1299 }
1300
1301 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1302 size = BFD_ALIGN (size, 16);
1303 rtproc = bfd_alloc (abfd, size);
1304 if (rtproc == NULL)
1305 {
1306 mips_elf_hash_table (info)->procedure_count = 0;
1307 goto error_return;
1308 }
1309
1310 mips_elf_hash_table (info)->procedure_count = count + 2;
1311
1312 erp = rtproc;
1313 memset (erp, 0, sizeof (struct rpdr_ext));
1314 erp++;
1315 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1316 strcpy (str, no_name_func);
1317 str += strlen (no_name_func) + 1;
1318 for (i = 0; i < count; i++)
1319 {
1320 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1321 strcpy (str, sv[i]);
1322 str += strlen (sv[i]) + 1;
1323 }
1324 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1325
1326 /* Set the size and contents of .rtproc section. */
1327 s->size = size;
1328 s->contents = rtproc;
1329
1330 /* Skip this section later on (I don't think this currently
1331 matters, but someday it might). */
1332 s->map_head.link_order = NULL;
1333
1334 if (epdr != NULL)
1335 free (epdr);
1336 if (rpdr != NULL)
1337 free (rpdr);
1338 if (esym != NULL)
1339 free (esym);
1340 if (ss != NULL)
1341 free (ss);
1342 if (sv != NULL)
1343 free (sv);
1344
1345 return TRUE;
1346
1347 error_return:
1348 if (epdr != NULL)
1349 free (epdr);
1350 if (rpdr != NULL)
1351 free (rpdr);
1352 if (esym != NULL)
1353 free (esym);
1354 if (ss != NULL)
1355 free (ss);
1356 if (sv != NULL)
1357 free (sv);
1358 return FALSE;
1359 }
1360 \f
1361 /* We're going to create a stub for H. Create a symbol for the stub's
1362 value and size, to help make the disassembly easier to read. */
1363
1364 static bfd_boolean
1365 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1366 struct mips_elf_link_hash_entry *h,
1367 const char *prefix, asection *s, bfd_vma value,
1368 bfd_vma size)
1369 {
1370 struct bfd_link_hash_entry *bh;
1371 struct elf_link_hash_entry *elfh;
1372 const char *name;
1373
1374 if (ELF_ST_IS_MICROMIPS (h->root.other))
1375 value |= 1;
1376
1377 /* Create a new symbol. */
1378 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1379 bh = NULL;
1380 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1381 BSF_LOCAL, s, value, NULL,
1382 TRUE, FALSE, &bh))
1383 return FALSE;
1384
1385 /* Make it a local function. */
1386 elfh = (struct elf_link_hash_entry *) bh;
1387 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1388 elfh->size = size;
1389 elfh->forced_local = 1;
1390 return TRUE;
1391 }
1392
1393 /* We're about to redefine H. Create a symbol to represent H's
1394 current value and size, to help make the disassembly easier
1395 to read. */
1396
1397 static bfd_boolean
1398 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1399 struct mips_elf_link_hash_entry *h,
1400 const char *prefix)
1401 {
1402 struct bfd_link_hash_entry *bh;
1403 struct elf_link_hash_entry *elfh;
1404 const char *name;
1405 asection *s;
1406 bfd_vma value;
1407
1408 /* Read the symbol's value. */
1409 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1410 || h->root.root.type == bfd_link_hash_defweak);
1411 s = h->root.root.u.def.section;
1412 value = h->root.root.u.def.value;
1413
1414 /* Create a new symbol. */
1415 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1416 bh = NULL;
1417 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1418 BSF_LOCAL, s, value, NULL,
1419 TRUE, FALSE, &bh))
1420 return FALSE;
1421
1422 /* Make it local and copy the other attributes from H. */
1423 elfh = (struct elf_link_hash_entry *) bh;
1424 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1425 elfh->other = h->root.other;
1426 elfh->size = h->root.size;
1427 elfh->forced_local = 1;
1428 return TRUE;
1429 }
1430
1431 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1432 function rather than to a hard-float stub. */
1433
1434 static bfd_boolean
1435 section_allows_mips16_refs_p (asection *section)
1436 {
1437 const char *name;
1438
1439 name = bfd_get_section_name (section->owner, section);
1440 return (FN_STUB_P (name)
1441 || CALL_STUB_P (name)
1442 || CALL_FP_STUB_P (name)
1443 || strcmp (name, ".pdr") == 0);
1444 }
1445
1446 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1447 stub section of some kind. Return the R_SYMNDX of the target
1448 function, or 0 if we can't decide which function that is. */
1449
1450 static unsigned long
1451 mips16_stub_symndx (const struct elf_backend_data *bed,
1452 asection *sec ATTRIBUTE_UNUSED,
1453 const Elf_Internal_Rela *relocs,
1454 const Elf_Internal_Rela *relend)
1455 {
1456 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1457 const Elf_Internal_Rela *rel;
1458
1459 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1460 one in a compound relocation. */
1461 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1462 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1463 return ELF_R_SYM (sec->owner, rel->r_info);
1464
1465 /* Otherwise trust the first relocation, whatever its kind. This is
1466 the traditional behavior. */
1467 if (relocs < relend)
1468 return ELF_R_SYM (sec->owner, relocs->r_info);
1469
1470 return 0;
1471 }
1472
1473 /* Check the mips16 stubs for a particular symbol, and see if we can
1474 discard them. */
1475
1476 static void
1477 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1478 struct mips_elf_link_hash_entry *h)
1479 {
1480 /* Dynamic symbols must use the standard call interface, in case other
1481 objects try to call them. */
1482 if (h->fn_stub != NULL
1483 && h->root.dynindx != -1)
1484 {
1485 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1486 h->need_fn_stub = TRUE;
1487 }
1488
1489 if (h->fn_stub != NULL
1490 && ! h->need_fn_stub)
1491 {
1492 /* We don't need the fn_stub; the only references to this symbol
1493 are 16 bit calls. Clobber the size to 0 to prevent it from
1494 being included in the link. */
1495 h->fn_stub->size = 0;
1496 h->fn_stub->flags &= ~SEC_RELOC;
1497 h->fn_stub->reloc_count = 0;
1498 h->fn_stub->flags |= SEC_EXCLUDE;
1499 }
1500
1501 if (h->call_stub != NULL
1502 && ELF_ST_IS_MIPS16 (h->root.other))
1503 {
1504 /* We don't need the call_stub; this is a 16 bit function, so
1505 calls from other 16 bit functions are OK. Clobber the size
1506 to 0 to prevent it from being included in the link. */
1507 h->call_stub->size = 0;
1508 h->call_stub->flags &= ~SEC_RELOC;
1509 h->call_stub->reloc_count = 0;
1510 h->call_stub->flags |= SEC_EXCLUDE;
1511 }
1512
1513 if (h->call_fp_stub != NULL
1514 && ELF_ST_IS_MIPS16 (h->root.other))
1515 {
1516 /* We don't need the call_stub; this is a 16 bit function, so
1517 calls from other 16 bit functions are OK. Clobber the size
1518 to 0 to prevent it from being included in the link. */
1519 h->call_fp_stub->size = 0;
1520 h->call_fp_stub->flags &= ~SEC_RELOC;
1521 h->call_fp_stub->reloc_count = 0;
1522 h->call_fp_stub->flags |= SEC_EXCLUDE;
1523 }
1524 }
1525
1526 /* Hashtable callbacks for mips_elf_la25_stubs. */
1527
1528 static hashval_t
1529 mips_elf_la25_stub_hash (const void *entry_)
1530 {
1531 const struct mips_elf_la25_stub *entry;
1532
1533 entry = (struct mips_elf_la25_stub *) entry_;
1534 return entry->h->root.root.u.def.section->id
1535 + entry->h->root.root.u.def.value;
1536 }
1537
1538 static int
1539 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1540 {
1541 const struct mips_elf_la25_stub *entry1, *entry2;
1542
1543 entry1 = (struct mips_elf_la25_stub *) entry1_;
1544 entry2 = (struct mips_elf_la25_stub *) entry2_;
1545 return ((entry1->h->root.root.u.def.section
1546 == entry2->h->root.root.u.def.section)
1547 && (entry1->h->root.root.u.def.value
1548 == entry2->h->root.root.u.def.value));
1549 }
1550
1551 /* Called by the linker to set up the la25 stub-creation code. FN is
1552 the linker's implementation of add_stub_function. Return true on
1553 success. */
1554
1555 bfd_boolean
1556 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1557 asection *(*fn) (const char *, asection *,
1558 asection *))
1559 {
1560 struct mips_elf_link_hash_table *htab;
1561
1562 htab = mips_elf_hash_table (info);
1563 if (htab == NULL)
1564 return FALSE;
1565
1566 htab->add_stub_section = fn;
1567 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1568 mips_elf_la25_stub_eq, NULL);
1569 if (htab->la25_stubs == NULL)
1570 return FALSE;
1571
1572 return TRUE;
1573 }
1574
1575 /* Return true if H is a locally-defined PIC function, in the sense
1576 that it or its fn_stub might need $25 to be valid on entry.
1577 Note that MIPS16 functions set up $gp using PC-relative instructions,
1578 so they themselves never need $25 to be valid. Only non-MIPS16
1579 entry points are of interest here. */
1580
1581 static bfd_boolean
1582 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1583 {
1584 return ((h->root.root.type == bfd_link_hash_defined
1585 || h->root.root.type == bfd_link_hash_defweak)
1586 && h->root.def_regular
1587 && !bfd_is_abs_section (h->root.root.u.def.section)
1588 && (!ELF_ST_IS_MIPS16 (h->root.other)
1589 || (h->fn_stub && h->need_fn_stub))
1590 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1591 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1592 }
1593
1594 /* Set *SEC to the input section that contains the target of STUB.
1595 Return the offset of the target from the start of that section. */
1596
1597 static bfd_vma
1598 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1599 asection **sec)
1600 {
1601 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1602 {
1603 BFD_ASSERT (stub->h->need_fn_stub);
1604 *sec = stub->h->fn_stub;
1605 return 0;
1606 }
1607 else
1608 {
1609 *sec = stub->h->root.root.u.def.section;
1610 return stub->h->root.root.u.def.value;
1611 }
1612 }
1613
1614 /* STUB describes an la25 stub that we have decided to implement
1615 by inserting an LUI/ADDIU pair before the target function.
1616 Create the section and redirect the function symbol to it. */
1617
1618 static bfd_boolean
1619 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1620 struct bfd_link_info *info)
1621 {
1622 struct mips_elf_link_hash_table *htab;
1623 char *name;
1624 asection *s, *input_section;
1625 unsigned int align;
1626
1627 htab = mips_elf_hash_table (info);
1628 if (htab == NULL)
1629 return FALSE;
1630
1631 /* Create a unique name for the new section. */
1632 name = bfd_malloc (11 + sizeof (".text.stub."));
1633 if (name == NULL)
1634 return FALSE;
1635 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1636
1637 /* Create the section. */
1638 mips_elf_get_la25_target (stub, &input_section);
1639 s = htab->add_stub_section (name, input_section,
1640 input_section->output_section);
1641 if (s == NULL)
1642 return FALSE;
1643
1644 /* Make sure that any padding goes before the stub. */
1645 align = input_section->alignment_power;
1646 if (!bfd_set_section_alignment (s->owner, s, align))
1647 return FALSE;
1648 if (align > 3)
1649 s->size = (1 << align) - 8;
1650
1651 /* Create a symbol for the stub. */
1652 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1653 stub->stub_section = s;
1654 stub->offset = s->size;
1655
1656 /* Allocate room for it. */
1657 s->size += 8;
1658 return TRUE;
1659 }
1660
1661 /* STUB describes an la25 stub that we have decided to implement
1662 with a separate trampoline. Allocate room for it and redirect
1663 the function symbol to it. */
1664
1665 static bfd_boolean
1666 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1667 struct bfd_link_info *info)
1668 {
1669 struct mips_elf_link_hash_table *htab;
1670 asection *s;
1671
1672 htab = mips_elf_hash_table (info);
1673 if (htab == NULL)
1674 return FALSE;
1675
1676 /* Create a trampoline section, if we haven't already. */
1677 s = htab->strampoline;
1678 if (s == NULL)
1679 {
1680 asection *input_section = stub->h->root.root.u.def.section;
1681 s = htab->add_stub_section (".text", NULL,
1682 input_section->output_section);
1683 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1684 return FALSE;
1685 htab->strampoline = s;
1686 }
1687
1688 /* Create a symbol for the stub. */
1689 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1690 stub->stub_section = s;
1691 stub->offset = s->size;
1692
1693 /* Allocate room for it. */
1694 s->size += 16;
1695 return TRUE;
1696 }
1697
1698 /* H describes a symbol that needs an la25 stub. Make sure that an
1699 appropriate stub exists and point H at it. */
1700
1701 static bfd_boolean
1702 mips_elf_add_la25_stub (struct bfd_link_info *info,
1703 struct mips_elf_link_hash_entry *h)
1704 {
1705 struct mips_elf_link_hash_table *htab;
1706 struct mips_elf_la25_stub search, *stub;
1707 bfd_boolean use_trampoline_p;
1708 asection *s;
1709 bfd_vma value;
1710 void **slot;
1711
1712 /* Describe the stub we want. */
1713 search.stub_section = NULL;
1714 search.offset = 0;
1715 search.h = h;
1716
1717 /* See if we've already created an equivalent stub. */
1718 htab = mips_elf_hash_table (info);
1719 if (htab == NULL)
1720 return FALSE;
1721
1722 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1723 if (slot == NULL)
1724 return FALSE;
1725
1726 stub = (struct mips_elf_la25_stub *) *slot;
1727 if (stub != NULL)
1728 {
1729 /* We can reuse the existing stub. */
1730 h->la25_stub = stub;
1731 return TRUE;
1732 }
1733
1734 /* Create a permanent copy of ENTRY and add it to the hash table. */
1735 stub = bfd_malloc (sizeof (search));
1736 if (stub == NULL)
1737 return FALSE;
1738 *stub = search;
1739 *slot = stub;
1740
1741 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1742 of the section and if we would need no more than 2 nops. */
1743 value = mips_elf_get_la25_target (stub, &s);
1744 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1745
1746 h->la25_stub = stub;
1747 return (use_trampoline_p
1748 ? mips_elf_add_la25_trampoline (stub, info)
1749 : mips_elf_add_la25_intro (stub, info));
1750 }
1751
1752 /* A mips_elf_link_hash_traverse callback that is called before sizing
1753 sections. DATA points to a mips_htab_traverse_info structure. */
1754
1755 static bfd_boolean
1756 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1757 {
1758 struct mips_htab_traverse_info *hti;
1759
1760 hti = (struct mips_htab_traverse_info *) data;
1761 if (!hti->info->relocatable)
1762 mips_elf_check_mips16_stubs (hti->info, h);
1763
1764 if (mips_elf_local_pic_function_p (h))
1765 {
1766 /* PR 12845: If H is in a section that has been garbage
1767 collected it will have its output section set to *ABS*. */
1768 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1769 return TRUE;
1770
1771 /* H is a function that might need $25 to be valid on entry.
1772 If we're creating a non-PIC relocatable object, mark H as
1773 being PIC. If we're creating a non-relocatable object with
1774 non-PIC branches and jumps to H, make sure that H has an la25
1775 stub. */
1776 if (hti->info->relocatable)
1777 {
1778 if (!PIC_OBJECT_P (hti->output_bfd))
1779 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1780 }
1781 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1782 {
1783 hti->error = TRUE;
1784 return FALSE;
1785 }
1786 }
1787 return TRUE;
1788 }
1789 \f
1790 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1791 Most mips16 instructions are 16 bits, but these instructions
1792 are 32 bits.
1793
1794 The format of these instructions is:
1795
1796 +--------------+--------------------------------+
1797 | JALX | X| Imm 20:16 | Imm 25:21 |
1798 +--------------+--------------------------------+
1799 | Immediate 15:0 |
1800 +-----------------------------------------------+
1801
1802 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1803 Note that the immediate value in the first word is swapped.
1804
1805 When producing a relocatable object file, R_MIPS16_26 is
1806 handled mostly like R_MIPS_26. In particular, the addend is
1807 stored as a straight 26-bit value in a 32-bit instruction.
1808 (gas makes life simpler for itself by never adjusting a
1809 R_MIPS16_26 reloc to be against a section, so the addend is
1810 always zero). However, the 32 bit instruction is stored as 2
1811 16-bit values, rather than a single 32-bit value. In a
1812 big-endian file, the result is the same; in a little-endian
1813 file, the two 16-bit halves of the 32 bit value are swapped.
1814 This is so that a disassembler can recognize the jal
1815 instruction.
1816
1817 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1818 instruction stored as two 16-bit values. The addend A is the
1819 contents of the targ26 field. The calculation is the same as
1820 R_MIPS_26. When storing the calculated value, reorder the
1821 immediate value as shown above, and don't forget to store the
1822 value as two 16-bit values.
1823
1824 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1825 defined as
1826
1827 big-endian:
1828 +--------+----------------------+
1829 | | |
1830 | | targ26-16 |
1831 |31 26|25 0|
1832 +--------+----------------------+
1833
1834 little-endian:
1835 +----------+------+-------------+
1836 | | | |
1837 | sub1 | | sub2 |
1838 |0 9|10 15|16 31|
1839 +----------+--------------------+
1840 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1841 ((sub1 << 16) | sub2)).
1842
1843 When producing a relocatable object file, the calculation is
1844 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1845 When producing a fully linked file, the calculation is
1846 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1847 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1848
1849 The table below lists the other MIPS16 instruction relocations.
1850 Each one is calculated in the same way as the non-MIPS16 relocation
1851 given on the right, but using the extended MIPS16 layout of 16-bit
1852 immediate fields:
1853
1854 R_MIPS16_GPREL R_MIPS_GPREL16
1855 R_MIPS16_GOT16 R_MIPS_GOT16
1856 R_MIPS16_CALL16 R_MIPS_CALL16
1857 R_MIPS16_HI16 R_MIPS_HI16
1858 R_MIPS16_LO16 R_MIPS_LO16
1859
1860 A typical instruction will have a format like this:
1861
1862 +--------------+--------------------------------+
1863 | EXTEND | Imm 10:5 | Imm 15:11 |
1864 +--------------+--------------------------------+
1865 | Major | rx | ry | Imm 4:0 |
1866 +--------------+--------------------------------+
1867
1868 EXTEND is the five bit value 11110. Major is the instruction
1869 opcode.
1870
1871 All we need to do here is shuffle the bits appropriately.
1872 As above, the two 16-bit halves must be swapped on a
1873 little-endian system. */
1874
1875 static inline bfd_boolean
1876 mips16_reloc_p (int r_type)
1877 {
1878 switch (r_type)
1879 {
1880 case R_MIPS16_26:
1881 case R_MIPS16_GPREL:
1882 case R_MIPS16_GOT16:
1883 case R_MIPS16_CALL16:
1884 case R_MIPS16_HI16:
1885 case R_MIPS16_LO16:
1886 case R_MIPS16_TLS_GD:
1887 case R_MIPS16_TLS_LDM:
1888 case R_MIPS16_TLS_DTPREL_HI16:
1889 case R_MIPS16_TLS_DTPREL_LO16:
1890 case R_MIPS16_TLS_GOTTPREL:
1891 case R_MIPS16_TLS_TPREL_HI16:
1892 case R_MIPS16_TLS_TPREL_LO16:
1893 return TRUE;
1894
1895 default:
1896 return FALSE;
1897 }
1898 }
1899
1900 /* Check if a microMIPS reloc. */
1901
1902 static inline bfd_boolean
1903 micromips_reloc_p (unsigned int r_type)
1904 {
1905 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1906 }
1907
1908 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1909 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1910 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1911
1912 static inline bfd_boolean
1913 micromips_reloc_shuffle_p (unsigned int r_type)
1914 {
1915 return (micromips_reloc_p (r_type)
1916 && r_type != R_MICROMIPS_PC7_S1
1917 && r_type != R_MICROMIPS_PC10_S1);
1918 }
1919
1920 static inline bfd_boolean
1921 got16_reloc_p (int r_type)
1922 {
1923 return (r_type == R_MIPS_GOT16
1924 || r_type == R_MIPS16_GOT16
1925 || r_type == R_MICROMIPS_GOT16);
1926 }
1927
1928 static inline bfd_boolean
1929 call16_reloc_p (int r_type)
1930 {
1931 return (r_type == R_MIPS_CALL16
1932 || r_type == R_MIPS16_CALL16
1933 || r_type == R_MICROMIPS_CALL16);
1934 }
1935
1936 static inline bfd_boolean
1937 got_disp_reloc_p (unsigned int r_type)
1938 {
1939 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1940 }
1941
1942 static inline bfd_boolean
1943 got_page_reloc_p (unsigned int r_type)
1944 {
1945 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1946 }
1947
1948 static inline bfd_boolean
1949 got_ofst_reloc_p (unsigned int r_type)
1950 {
1951 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1952 }
1953
1954 static inline bfd_boolean
1955 got_hi16_reloc_p (unsigned int r_type)
1956 {
1957 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1958 }
1959
1960 static inline bfd_boolean
1961 got_lo16_reloc_p (unsigned int r_type)
1962 {
1963 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1964 }
1965
1966 static inline bfd_boolean
1967 call_hi16_reloc_p (unsigned int r_type)
1968 {
1969 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1970 }
1971
1972 static inline bfd_boolean
1973 call_lo16_reloc_p (unsigned int r_type)
1974 {
1975 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1976 }
1977
1978 static inline bfd_boolean
1979 hi16_reloc_p (int r_type)
1980 {
1981 return (r_type == R_MIPS_HI16
1982 || r_type == R_MIPS16_HI16
1983 || r_type == R_MICROMIPS_HI16);
1984 }
1985
1986 static inline bfd_boolean
1987 lo16_reloc_p (int r_type)
1988 {
1989 return (r_type == R_MIPS_LO16
1990 || r_type == R_MIPS16_LO16
1991 || r_type == R_MICROMIPS_LO16);
1992 }
1993
1994 static inline bfd_boolean
1995 mips16_call_reloc_p (int r_type)
1996 {
1997 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1998 }
1999
2000 static inline bfd_boolean
2001 jal_reloc_p (int r_type)
2002 {
2003 return (r_type == R_MIPS_26
2004 || r_type == R_MIPS16_26
2005 || r_type == R_MICROMIPS_26_S1);
2006 }
2007
2008 static inline bfd_boolean
2009 micromips_branch_reloc_p (int r_type)
2010 {
2011 return (r_type == R_MICROMIPS_26_S1
2012 || r_type == R_MICROMIPS_PC16_S1
2013 || r_type == R_MICROMIPS_PC10_S1
2014 || r_type == R_MICROMIPS_PC7_S1);
2015 }
2016
2017 static inline bfd_boolean
2018 tls_gd_reloc_p (unsigned int r_type)
2019 {
2020 return (r_type == R_MIPS_TLS_GD
2021 || r_type == R_MIPS16_TLS_GD
2022 || r_type == R_MICROMIPS_TLS_GD);
2023 }
2024
2025 static inline bfd_boolean
2026 tls_ldm_reloc_p (unsigned int r_type)
2027 {
2028 return (r_type == R_MIPS_TLS_LDM
2029 || r_type == R_MIPS16_TLS_LDM
2030 || r_type == R_MICROMIPS_TLS_LDM);
2031 }
2032
2033 static inline bfd_boolean
2034 tls_gottprel_reloc_p (unsigned int r_type)
2035 {
2036 return (r_type == R_MIPS_TLS_GOTTPREL
2037 || r_type == R_MIPS16_TLS_GOTTPREL
2038 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2039 }
2040
2041 void
2042 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2043 bfd_boolean jal_shuffle, bfd_byte *data)
2044 {
2045 bfd_vma first, second, val;
2046
2047 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2048 return;
2049
2050 /* Pick up the first and second halfwords of the instruction. */
2051 first = bfd_get_16 (abfd, data);
2052 second = bfd_get_16 (abfd, data + 2);
2053 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2054 val = first << 16 | second;
2055 else if (r_type != R_MIPS16_26)
2056 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2057 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2058 else
2059 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2060 | ((first & 0x1f) << 21) | second);
2061 bfd_put_32 (abfd, val, data);
2062 }
2063
2064 void
2065 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2066 bfd_boolean jal_shuffle, bfd_byte *data)
2067 {
2068 bfd_vma first, second, val;
2069
2070 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2071 return;
2072
2073 val = bfd_get_32 (abfd, data);
2074 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2075 {
2076 second = val & 0xffff;
2077 first = val >> 16;
2078 }
2079 else if (r_type != R_MIPS16_26)
2080 {
2081 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2082 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2083 }
2084 else
2085 {
2086 second = val & 0xffff;
2087 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2088 | ((val >> 21) & 0x1f);
2089 }
2090 bfd_put_16 (abfd, second, data + 2);
2091 bfd_put_16 (abfd, first, data);
2092 }
2093
2094 bfd_reloc_status_type
2095 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2096 arelent *reloc_entry, asection *input_section,
2097 bfd_boolean relocatable, void *data, bfd_vma gp)
2098 {
2099 bfd_vma relocation;
2100 bfd_signed_vma val;
2101 bfd_reloc_status_type status;
2102
2103 if (bfd_is_com_section (symbol->section))
2104 relocation = 0;
2105 else
2106 relocation = symbol->value;
2107
2108 relocation += symbol->section->output_section->vma;
2109 relocation += symbol->section->output_offset;
2110
2111 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2112 return bfd_reloc_outofrange;
2113
2114 /* Set val to the offset into the section or symbol. */
2115 val = reloc_entry->addend;
2116
2117 _bfd_mips_elf_sign_extend (val, 16);
2118
2119 /* Adjust val for the final section location and GP value. If we
2120 are producing relocatable output, we don't want to do this for
2121 an external symbol. */
2122 if (! relocatable
2123 || (symbol->flags & BSF_SECTION_SYM) != 0)
2124 val += relocation - gp;
2125
2126 if (reloc_entry->howto->partial_inplace)
2127 {
2128 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2129 (bfd_byte *) data
2130 + reloc_entry->address);
2131 if (status != bfd_reloc_ok)
2132 return status;
2133 }
2134 else
2135 reloc_entry->addend = val;
2136
2137 if (relocatable)
2138 reloc_entry->address += input_section->output_offset;
2139
2140 return bfd_reloc_ok;
2141 }
2142
2143 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2144 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2145 that contains the relocation field and DATA points to the start of
2146 INPUT_SECTION. */
2147
2148 struct mips_hi16
2149 {
2150 struct mips_hi16 *next;
2151 bfd_byte *data;
2152 asection *input_section;
2153 arelent rel;
2154 };
2155
2156 /* FIXME: This should not be a static variable. */
2157
2158 static struct mips_hi16 *mips_hi16_list;
2159
2160 /* A howto special_function for REL *HI16 relocations. We can only
2161 calculate the correct value once we've seen the partnering
2162 *LO16 relocation, so just save the information for later.
2163
2164 The ABI requires that the *LO16 immediately follow the *HI16.
2165 However, as a GNU extension, we permit an arbitrary number of
2166 *HI16s to be associated with a single *LO16. This significantly
2167 simplies the relocation handling in gcc. */
2168
2169 bfd_reloc_status_type
2170 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2171 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2172 asection *input_section, bfd *output_bfd,
2173 char **error_message ATTRIBUTE_UNUSED)
2174 {
2175 struct mips_hi16 *n;
2176
2177 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2178 return bfd_reloc_outofrange;
2179
2180 n = bfd_malloc (sizeof *n);
2181 if (n == NULL)
2182 return bfd_reloc_outofrange;
2183
2184 n->next = mips_hi16_list;
2185 n->data = data;
2186 n->input_section = input_section;
2187 n->rel = *reloc_entry;
2188 mips_hi16_list = n;
2189
2190 if (output_bfd != NULL)
2191 reloc_entry->address += input_section->output_offset;
2192
2193 return bfd_reloc_ok;
2194 }
2195
2196 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2197 like any other 16-bit relocation when applied to global symbols, but is
2198 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2199
2200 bfd_reloc_status_type
2201 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2202 void *data, asection *input_section,
2203 bfd *output_bfd, char **error_message)
2204 {
2205 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2206 || bfd_is_und_section (bfd_get_section (symbol))
2207 || bfd_is_com_section (bfd_get_section (symbol)))
2208 /* The relocation is against a global symbol. */
2209 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2210 input_section, output_bfd,
2211 error_message);
2212
2213 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2214 input_section, output_bfd, error_message);
2215 }
2216
2217 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2218 is a straightforward 16 bit inplace relocation, but we must deal with
2219 any partnering high-part relocations as well. */
2220
2221 bfd_reloc_status_type
2222 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2223 void *data, asection *input_section,
2224 bfd *output_bfd, char **error_message)
2225 {
2226 bfd_vma vallo;
2227 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2228
2229 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2230 return bfd_reloc_outofrange;
2231
2232 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2233 location);
2234 vallo = bfd_get_32 (abfd, location);
2235 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2236 location);
2237
2238 while (mips_hi16_list != NULL)
2239 {
2240 bfd_reloc_status_type ret;
2241 struct mips_hi16 *hi;
2242
2243 hi = mips_hi16_list;
2244
2245 /* R_MIPS*_GOT16 relocations are something of a special case. We
2246 want to install the addend in the same way as for a R_MIPS*_HI16
2247 relocation (with a rightshift of 16). However, since GOT16
2248 relocations can also be used with global symbols, their howto
2249 has a rightshift of 0. */
2250 if (hi->rel.howto->type == R_MIPS_GOT16)
2251 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2252 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2253 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2254 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2255 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2256
2257 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2258 carry or borrow will induce a change of +1 or -1 in the high part. */
2259 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2260
2261 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2262 hi->input_section, output_bfd,
2263 error_message);
2264 if (ret != bfd_reloc_ok)
2265 return ret;
2266
2267 mips_hi16_list = hi->next;
2268 free (hi);
2269 }
2270
2271 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2272 input_section, output_bfd,
2273 error_message);
2274 }
2275
2276 /* A generic howto special_function. This calculates and installs the
2277 relocation itself, thus avoiding the oft-discussed problems in
2278 bfd_perform_relocation and bfd_install_relocation. */
2279
2280 bfd_reloc_status_type
2281 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2282 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2283 asection *input_section, bfd *output_bfd,
2284 char **error_message ATTRIBUTE_UNUSED)
2285 {
2286 bfd_signed_vma val;
2287 bfd_reloc_status_type status;
2288 bfd_boolean relocatable;
2289
2290 relocatable = (output_bfd != NULL);
2291
2292 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2293 return bfd_reloc_outofrange;
2294
2295 /* Build up the field adjustment in VAL. */
2296 val = 0;
2297 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2298 {
2299 /* Either we're calculating the final field value or we have a
2300 relocation against a section symbol. Add in the section's
2301 offset or address. */
2302 val += symbol->section->output_section->vma;
2303 val += symbol->section->output_offset;
2304 }
2305
2306 if (!relocatable)
2307 {
2308 /* We're calculating the final field value. Add in the symbol's value
2309 and, if pc-relative, subtract the address of the field itself. */
2310 val += symbol->value;
2311 if (reloc_entry->howto->pc_relative)
2312 {
2313 val -= input_section->output_section->vma;
2314 val -= input_section->output_offset;
2315 val -= reloc_entry->address;
2316 }
2317 }
2318
2319 /* VAL is now the final adjustment. If we're keeping this relocation
2320 in the output file, and if the relocation uses a separate addend,
2321 we just need to add VAL to that addend. Otherwise we need to add
2322 VAL to the relocation field itself. */
2323 if (relocatable && !reloc_entry->howto->partial_inplace)
2324 reloc_entry->addend += val;
2325 else
2326 {
2327 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2328
2329 /* Add in the separate addend, if any. */
2330 val += reloc_entry->addend;
2331
2332 /* Add VAL to the relocation field. */
2333 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2334 location);
2335 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2336 location);
2337 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2338 location);
2339
2340 if (status != bfd_reloc_ok)
2341 return status;
2342 }
2343
2344 if (relocatable)
2345 reloc_entry->address += input_section->output_offset;
2346
2347 return bfd_reloc_ok;
2348 }
2349 \f
2350 /* Swap an entry in a .gptab section. Note that these routines rely
2351 on the equivalence of the two elements of the union. */
2352
2353 static void
2354 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2355 Elf32_gptab *in)
2356 {
2357 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2358 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2359 }
2360
2361 static void
2362 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2363 Elf32_External_gptab *ex)
2364 {
2365 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2366 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2367 }
2368
2369 static void
2370 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2371 Elf32_External_compact_rel *ex)
2372 {
2373 H_PUT_32 (abfd, in->id1, ex->id1);
2374 H_PUT_32 (abfd, in->num, ex->num);
2375 H_PUT_32 (abfd, in->id2, ex->id2);
2376 H_PUT_32 (abfd, in->offset, ex->offset);
2377 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2378 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2379 }
2380
2381 static void
2382 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2383 Elf32_External_crinfo *ex)
2384 {
2385 unsigned long l;
2386
2387 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2388 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2389 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2390 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2391 H_PUT_32 (abfd, l, ex->info);
2392 H_PUT_32 (abfd, in->konst, ex->konst);
2393 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2394 }
2395 \f
2396 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2397 routines swap this structure in and out. They are used outside of
2398 BFD, so they are globally visible. */
2399
2400 void
2401 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2402 Elf32_RegInfo *in)
2403 {
2404 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2405 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2406 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2407 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2408 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2409 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2410 }
2411
2412 void
2413 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2414 Elf32_External_RegInfo *ex)
2415 {
2416 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2417 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2418 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2419 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2420 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2421 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2422 }
2423
2424 /* In the 64 bit ABI, the .MIPS.options section holds register
2425 information in an Elf64_Reginfo structure. These routines swap
2426 them in and out. They are globally visible because they are used
2427 outside of BFD. These routines are here so that gas can call them
2428 without worrying about whether the 64 bit ABI has been included. */
2429
2430 void
2431 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2432 Elf64_Internal_RegInfo *in)
2433 {
2434 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2435 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2436 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2437 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2438 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2439 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2440 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2441 }
2442
2443 void
2444 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2445 Elf64_External_RegInfo *ex)
2446 {
2447 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2448 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2449 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2450 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2451 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2452 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2453 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2454 }
2455
2456 /* Swap in an options header. */
2457
2458 void
2459 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2460 Elf_Internal_Options *in)
2461 {
2462 in->kind = H_GET_8 (abfd, ex->kind);
2463 in->size = H_GET_8 (abfd, ex->size);
2464 in->section = H_GET_16 (abfd, ex->section);
2465 in->info = H_GET_32 (abfd, ex->info);
2466 }
2467
2468 /* Swap out an options header. */
2469
2470 void
2471 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2472 Elf_External_Options *ex)
2473 {
2474 H_PUT_8 (abfd, in->kind, ex->kind);
2475 H_PUT_8 (abfd, in->size, ex->size);
2476 H_PUT_16 (abfd, in->section, ex->section);
2477 H_PUT_32 (abfd, in->info, ex->info);
2478 }
2479 \f
2480 /* This function is called via qsort() to sort the dynamic relocation
2481 entries by increasing r_symndx value. */
2482
2483 static int
2484 sort_dynamic_relocs (const void *arg1, const void *arg2)
2485 {
2486 Elf_Internal_Rela int_reloc1;
2487 Elf_Internal_Rela int_reloc2;
2488 int diff;
2489
2490 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2491 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2492
2493 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2494 if (diff != 0)
2495 return diff;
2496
2497 if (int_reloc1.r_offset < int_reloc2.r_offset)
2498 return -1;
2499 if (int_reloc1.r_offset > int_reloc2.r_offset)
2500 return 1;
2501 return 0;
2502 }
2503
2504 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2505
2506 static int
2507 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2508 const void *arg2 ATTRIBUTE_UNUSED)
2509 {
2510 #ifdef BFD64
2511 Elf_Internal_Rela int_reloc1[3];
2512 Elf_Internal_Rela int_reloc2[3];
2513
2514 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2515 (reldyn_sorting_bfd, arg1, int_reloc1);
2516 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2517 (reldyn_sorting_bfd, arg2, int_reloc2);
2518
2519 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2520 return -1;
2521 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2522 return 1;
2523
2524 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2525 return -1;
2526 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2527 return 1;
2528 return 0;
2529 #else
2530 abort ();
2531 #endif
2532 }
2533
2534
2535 /* This routine is used to write out ECOFF debugging external symbol
2536 information. It is called via mips_elf_link_hash_traverse. The
2537 ECOFF external symbol information must match the ELF external
2538 symbol information. Unfortunately, at this point we don't know
2539 whether a symbol is required by reloc information, so the two
2540 tables may wind up being different. We must sort out the external
2541 symbol information before we can set the final size of the .mdebug
2542 section, and we must set the size of the .mdebug section before we
2543 can relocate any sections, and we can't know which symbols are
2544 required by relocation until we relocate the sections.
2545 Fortunately, it is relatively unlikely that any symbol will be
2546 stripped but required by a reloc. In particular, it can not happen
2547 when generating a final executable. */
2548
2549 static bfd_boolean
2550 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2551 {
2552 struct extsym_info *einfo = data;
2553 bfd_boolean strip;
2554 asection *sec, *output_section;
2555
2556 if (h->root.indx == -2)
2557 strip = FALSE;
2558 else if ((h->root.def_dynamic
2559 || h->root.ref_dynamic
2560 || h->root.type == bfd_link_hash_new)
2561 && !h->root.def_regular
2562 && !h->root.ref_regular)
2563 strip = TRUE;
2564 else if (einfo->info->strip == strip_all
2565 || (einfo->info->strip == strip_some
2566 && bfd_hash_lookup (einfo->info->keep_hash,
2567 h->root.root.root.string,
2568 FALSE, FALSE) == NULL))
2569 strip = TRUE;
2570 else
2571 strip = FALSE;
2572
2573 if (strip)
2574 return TRUE;
2575
2576 if (h->esym.ifd == -2)
2577 {
2578 h->esym.jmptbl = 0;
2579 h->esym.cobol_main = 0;
2580 h->esym.weakext = 0;
2581 h->esym.reserved = 0;
2582 h->esym.ifd = ifdNil;
2583 h->esym.asym.value = 0;
2584 h->esym.asym.st = stGlobal;
2585
2586 if (h->root.root.type == bfd_link_hash_undefined
2587 || h->root.root.type == bfd_link_hash_undefweak)
2588 {
2589 const char *name;
2590
2591 /* Use undefined class. Also, set class and type for some
2592 special symbols. */
2593 name = h->root.root.root.string;
2594 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2595 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2596 {
2597 h->esym.asym.sc = scData;
2598 h->esym.asym.st = stLabel;
2599 h->esym.asym.value = 0;
2600 }
2601 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2602 {
2603 h->esym.asym.sc = scAbs;
2604 h->esym.asym.st = stLabel;
2605 h->esym.asym.value =
2606 mips_elf_hash_table (einfo->info)->procedure_count;
2607 }
2608 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2609 {
2610 h->esym.asym.sc = scAbs;
2611 h->esym.asym.st = stLabel;
2612 h->esym.asym.value = elf_gp (einfo->abfd);
2613 }
2614 else
2615 h->esym.asym.sc = scUndefined;
2616 }
2617 else if (h->root.root.type != bfd_link_hash_defined
2618 && h->root.root.type != bfd_link_hash_defweak)
2619 h->esym.asym.sc = scAbs;
2620 else
2621 {
2622 const char *name;
2623
2624 sec = h->root.root.u.def.section;
2625 output_section = sec->output_section;
2626
2627 /* When making a shared library and symbol h is the one from
2628 the another shared library, OUTPUT_SECTION may be null. */
2629 if (output_section == NULL)
2630 h->esym.asym.sc = scUndefined;
2631 else
2632 {
2633 name = bfd_section_name (output_section->owner, output_section);
2634
2635 if (strcmp (name, ".text") == 0)
2636 h->esym.asym.sc = scText;
2637 else if (strcmp (name, ".data") == 0)
2638 h->esym.asym.sc = scData;
2639 else if (strcmp (name, ".sdata") == 0)
2640 h->esym.asym.sc = scSData;
2641 else if (strcmp (name, ".rodata") == 0
2642 || strcmp (name, ".rdata") == 0)
2643 h->esym.asym.sc = scRData;
2644 else if (strcmp (name, ".bss") == 0)
2645 h->esym.asym.sc = scBss;
2646 else if (strcmp (name, ".sbss") == 0)
2647 h->esym.asym.sc = scSBss;
2648 else if (strcmp (name, ".init") == 0)
2649 h->esym.asym.sc = scInit;
2650 else if (strcmp (name, ".fini") == 0)
2651 h->esym.asym.sc = scFini;
2652 else
2653 h->esym.asym.sc = scAbs;
2654 }
2655 }
2656
2657 h->esym.asym.reserved = 0;
2658 h->esym.asym.index = indexNil;
2659 }
2660
2661 if (h->root.root.type == bfd_link_hash_common)
2662 h->esym.asym.value = h->root.root.u.c.size;
2663 else if (h->root.root.type == bfd_link_hash_defined
2664 || h->root.root.type == bfd_link_hash_defweak)
2665 {
2666 if (h->esym.asym.sc == scCommon)
2667 h->esym.asym.sc = scBss;
2668 else if (h->esym.asym.sc == scSCommon)
2669 h->esym.asym.sc = scSBss;
2670
2671 sec = h->root.root.u.def.section;
2672 output_section = sec->output_section;
2673 if (output_section != NULL)
2674 h->esym.asym.value = (h->root.root.u.def.value
2675 + sec->output_offset
2676 + output_section->vma);
2677 else
2678 h->esym.asym.value = 0;
2679 }
2680 else
2681 {
2682 struct mips_elf_link_hash_entry *hd = h;
2683
2684 while (hd->root.root.type == bfd_link_hash_indirect)
2685 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2686
2687 if (hd->needs_lazy_stub)
2688 {
2689 /* Set type and value for a symbol with a function stub. */
2690 h->esym.asym.st = stProc;
2691 sec = hd->root.root.u.def.section;
2692 if (sec == NULL)
2693 h->esym.asym.value = 0;
2694 else
2695 {
2696 output_section = sec->output_section;
2697 if (output_section != NULL)
2698 h->esym.asym.value = (hd->root.plt.offset
2699 + sec->output_offset
2700 + output_section->vma);
2701 else
2702 h->esym.asym.value = 0;
2703 }
2704 }
2705 }
2706
2707 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2708 h->root.root.root.string,
2709 &h->esym))
2710 {
2711 einfo->failed = TRUE;
2712 return FALSE;
2713 }
2714
2715 return TRUE;
2716 }
2717
2718 /* A comparison routine used to sort .gptab entries. */
2719
2720 static int
2721 gptab_compare (const void *p1, const void *p2)
2722 {
2723 const Elf32_gptab *a1 = p1;
2724 const Elf32_gptab *a2 = p2;
2725
2726 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2727 }
2728 \f
2729 /* Functions to manage the got entry hash table. */
2730
2731 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2732 hash number. */
2733
2734 static INLINE hashval_t
2735 mips_elf_hash_bfd_vma (bfd_vma addr)
2736 {
2737 #ifdef BFD64
2738 return addr + (addr >> 32);
2739 #else
2740 return addr;
2741 #endif
2742 }
2743
2744 static hashval_t
2745 mips_elf_got_entry_hash (const void *entry_)
2746 {
2747 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2748
2749 return (entry->symndx
2750 + ((entry->tls_type == GOT_TLS_LDM) << 18)
2751 + (entry->tls_type == GOT_TLS_LDM ? 0
2752 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2753 : entry->symndx >= 0 ? (entry->abfd->id
2754 + mips_elf_hash_bfd_vma (entry->d.addend))
2755 : entry->d.h->root.root.root.hash));
2756 }
2757
2758 static int
2759 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2760 {
2761 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2762 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2763
2764 return (e1->symndx == e2->symndx
2765 && e1->tls_type == e2->tls_type
2766 && (e1->tls_type == GOT_TLS_LDM ? TRUE
2767 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2768 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2769 && e1->d.addend == e2->d.addend)
2770 : e2->abfd && e1->d.h == e2->d.h));
2771 }
2772
2773 static hashval_t
2774 mips_got_page_entry_hash (const void *entry_)
2775 {
2776 const struct mips_got_page_entry *entry;
2777
2778 entry = (const struct mips_got_page_entry *) entry_;
2779 return entry->abfd->id + entry->symndx;
2780 }
2781
2782 static int
2783 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2784 {
2785 const struct mips_got_page_entry *entry1, *entry2;
2786
2787 entry1 = (const struct mips_got_page_entry *) entry1_;
2788 entry2 = (const struct mips_got_page_entry *) entry2_;
2789 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2790 }
2791 \f
2792 /* Create and return a new mips_got_info structure. */
2793
2794 static struct mips_got_info *
2795 mips_elf_create_got_info (bfd *abfd)
2796 {
2797 struct mips_got_info *g;
2798
2799 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2800 if (g == NULL)
2801 return NULL;
2802
2803 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2804 mips_elf_got_entry_eq, NULL);
2805 if (g->got_entries == NULL)
2806 return NULL;
2807
2808 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
2809 mips_got_page_entry_eq, NULL);
2810 if (g->got_page_entries == NULL)
2811 return NULL;
2812
2813 return g;
2814 }
2815
2816 /* Return the GOT info for input bfd ABFD, trying to create a new one if
2817 CREATE_P and if ABFD doesn't already have a GOT. */
2818
2819 static struct mips_got_info *
2820 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
2821 {
2822 struct mips_elf_obj_tdata *tdata;
2823
2824 if (!is_mips_elf (abfd))
2825 return NULL;
2826
2827 tdata = mips_elf_tdata (abfd);
2828 if (!tdata->got && create_p)
2829 tdata->got = mips_elf_create_got_info (abfd);
2830 return tdata->got;
2831 }
2832
2833 /* Record that ABFD should use output GOT G. */
2834
2835 static void
2836 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
2837 {
2838 struct mips_elf_obj_tdata *tdata;
2839
2840 BFD_ASSERT (is_mips_elf (abfd));
2841 tdata = mips_elf_tdata (abfd);
2842 if (tdata->got)
2843 {
2844 /* The GOT structure itself and the hash table entries are
2845 allocated to a bfd, but the hash tables aren't. */
2846 htab_delete (tdata->got->got_entries);
2847 htab_delete (tdata->got->got_page_entries);
2848 }
2849 tdata->got = g;
2850 }
2851
2852 /* Return the dynamic relocation section. If it doesn't exist, try to
2853 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2854 if creation fails. */
2855
2856 static asection *
2857 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2858 {
2859 const char *dname;
2860 asection *sreloc;
2861 bfd *dynobj;
2862
2863 dname = MIPS_ELF_REL_DYN_NAME (info);
2864 dynobj = elf_hash_table (info)->dynobj;
2865 sreloc = bfd_get_linker_section (dynobj, dname);
2866 if (sreloc == NULL && create_p)
2867 {
2868 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2869 (SEC_ALLOC
2870 | SEC_LOAD
2871 | SEC_HAS_CONTENTS
2872 | SEC_IN_MEMORY
2873 | SEC_LINKER_CREATED
2874 | SEC_READONLY));
2875 if (sreloc == NULL
2876 || ! bfd_set_section_alignment (dynobj, sreloc,
2877 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2878 return NULL;
2879 }
2880 return sreloc;
2881 }
2882
2883 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2884
2885 static int
2886 mips_elf_reloc_tls_type (unsigned int r_type)
2887 {
2888 if (tls_gd_reloc_p (r_type))
2889 return GOT_TLS_GD;
2890
2891 if (tls_ldm_reloc_p (r_type))
2892 return GOT_TLS_LDM;
2893
2894 if (tls_gottprel_reloc_p (r_type))
2895 return GOT_TLS_IE;
2896
2897 return GOT_TLS_NONE;
2898 }
2899
2900 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
2901
2902 static int
2903 mips_tls_got_entries (unsigned int type)
2904 {
2905 switch (type)
2906 {
2907 case GOT_TLS_GD:
2908 case GOT_TLS_LDM:
2909 return 2;
2910
2911 case GOT_TLS_IE:
2912 return 1;
2913
2914 case GOT_TLS_NONE:
2915 return 0;
2916 }
2917 abort ();
2918 }
2919
2920 /* Count the number of relocations needed for a TLS GOT entry, with
2921 access types from TLS_TYPE, and symbol H (or a local symbol if H
2922 is NULL). */
2923
2924 static int
2925 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2926 struct elf_link_hash_entry *h)
2927 {
2928 int indx = 0;
2929 bfd_boolean need_relocs = FALSE;
2930 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2931
2932 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2933 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2934 indx = h->dynindx;
2935
2936 if ((info->shared || indx != 0)
2937 && (h == NULL
2938 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2939 || h->root.type != bfd_link_hash_undefweak))
2940 need_relocs = TRUE;
2941
2942 if (!need_relocs)
2943 return 0;
2944
2945 switch (tls_type)
2946 {
2947 case GOT_TLS_GD:
2948 return indx != 0 ? 2 : 1;
2949
2950 case GOT_TLS_IE:
2951 return 1;
2952
2953 case GOT_TLS_LDM:
2954 return info->shared ? 1 : 0;
2955
2956 default:
2957 return 0;
2958 }
2959 }
2960
2961 /* Add the number of GOT entries and TLS relocations required by ENTRY
2962 to G. */
2963
2964 static void
2965 mips_elf_count_got_entry (struct bfd_link_info *info,
2966 struct mips_got_info *g,
2967 struct mips_got_entry *entry)
2968 {
2969 if (entry->tls_type)
2970 {
2971 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
2972 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
2973 entry->symndx < 0
2974 ? &entry->d.h->root : NULL);
2975 }
2976 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
2977 g->local_gotno += 1;
2978 else
2979 g->global_gotno += 1;
2980 }
2981
2982 /* Output a simple dynamic relocation into SRELOC. */
2983
2984 static void
2985 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2986 asection *sreloc,
2987 unsigned long reloc_index,
2988 unsigned long indx,
2989 int r_type,
2990 bfd_vma offset)
2991 {
2992 Elf_Internal_Rela rel[3];
2993
2994 memset (rel, 0, sizeof (rel));
2995
2996 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2997 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2998
2999 if (ABI_64_P (output_bfd))
3000 {
3001 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3002 (output_bfd, &rel[0],
3003 (sreloc->contents
3004 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3005 }
3006 else
3007 bfd_elf32_swap_reloc_out
3008 (output_bfd, &rel[0],
3009 (sreloc->contents
3010 + reloc_index * sizeof (Elf32_External_Rel)));
3011 }
3012
3013 /* Initialize a set of TLS GOT entries for one symbol. */
3014
3015 static void
3016 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3017 struct mips_got_entry *entry,
3018 struct mips_elf_link_hash_entry *h,
3019 bfd_vma value)
3020 {
3021 struct mips_elf_link_hash_table *htab;
3022 int indx;
3023 asection *sreloc, *sgot;
3024 bfd_vma got_offset, got_offset2;
3025 bfd_boolean need_relocs = FALSE;
3026
3027 htab = mips_elf_hash_table (info);
3028 if (htab == NULL)
3029 return;
3030
3031 sgot = htab->sgot;
3032
3033 indx = 0;
3034 if (h != NULL)
3035 {
3036 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3037
3038 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3039 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3040 indx = h->root.dynindx;
3041 }
3042
3043 if (entry->tls_initialized)
3044 return;
3045
3046 if ((info->shared || indx != 0)
3047 && (h == NULL
3048 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3049 || h->root.type != bfd_link_hash_undefweak))
3050 need_relocs = TRUE;
3051
3052 /* MINUS_ONE means the symbol is not defined in this object. It may not
3053 be defined at all; assume that the value doesn't matter in that
3054 case. Otherwise complain if we would use the value. */
3055 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3056 || h->root.root.type == bfd_link_hash_undefweak);
3057
3058 /* Emit necessary relocations. */
3059 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3060 got_offset = entry->gotidx;
3061
3062 switch (entry->tls_type)
3063 {
3064 case GOT_TLS_GD:
3065 /* General Dynamic. */
3066 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3067
3068 if (need_relocs)
3069 {
3070 mips_elf_output_dynamic_relocation
3071 (abfd, sreloc, sreloc->reloc_count++, indx,
3072 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3073 sgot->output_offset + sgot->output_section->vma + got_offset);
3074
3075 if (indx)
3076 mips_elf_output_dynamic_relocation
3077 (abfd, sreloc, sreloc->reloc_count++, indx,
3078 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3079 sgot->output_offset + sgot->output_section->vma + got_offset2);
3080 else
3081 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3082 sgot->contents + got_offset2);
3083 }
3084 else
3085 {
3086 MIPS_ELF_PUT_WORD (abfd, 1,
3087 sgot->contents + got_offset);
3088 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3089 sgot->contents + got_offset2);
3090 }
3091 break;
3092
3093 case GOT_TLS_IE:
3094 /* Initial Exec model. */
3095 if (need_relocs)
3096 {
3097 if (indx == 0)
3098 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3099 sgot->contents + got_offset);
3100 else
3101 MIPS_ELF_PUT_WORD (abfd, 0,
3102 sgot->contents + got_offset);
3103
3104 mips_elf_output_dynamic_relocation
3105 (abfd, sreloc, sreloc->reloc_count++, indx,
3106 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3107 sgot->output_offset + sgot->output_section->vma + got_offset);
3108 }
3109 else
3110 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3111 sgot->contents + got_offset);
3112 break;
3113
3114 case GOT_TLS_LDM:
3115 /* The initial offset is zero, and the LD offsets will include the
3116 bias by DTP_OFFSET. */
3117 MIPS_ELF_PUT_WORD (abfd, 0,
3118 sgot->contents + got_offset
3119 + MIPS_ELF_GOT_SIZE (abfd));
3120
3121 if (!info->shared)
3122 MIPS_ELF_PUT_WORD (abfd, 1,
3123 sgot->contents + got_offset);
3124 else
3125 mips_elf_output_dynamic_relocation
3126 (abfd, sreloc, sreloc->reloc_count++, indx,
3127 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3128 sgot->output_offset + sgot->output_section->vma + got_offset);
3129 break;
3130
3131 default:
3132 abort ();
3133 }
3134
3135 entry->tls_initialized = TRUE;
3136 }
3137
3138 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3139 for global symbol H. .got.plt comes before the GOT, so the offset
3140 will be negative. */
3141
3142 static bfd_vma
3143 mips_elf_gotplt_index (struct bfd_link_info *info,
3144 struct elf_link_hash_entry *h)
3145 {
3146 bfd_vma plt_index, got_address, got_value;
3147 struct mips_elf_link_hash_table *htab;
3148
3149 htab = mips_elf_hash_table (info);
3150 BFD_ASSERT (htab != NULL);
3151
3152 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3153
3154 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3155 section starts with reserved entries. */
3156 BFD_ASSERT (htab->is_vxworks);
3157
3158 /* Calculate the index of the symbol's PLT entry. */
3159 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3160
3161 /* Calculate the address of the associated .got.plt entry. */
3162 got_address = (htab->sgotplt->output_section->vma
3163 + htab->sgotplt->output_offset
3164 + plt_index * 4);
3165
3166 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3167 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3168 + htab->root.hgot->root.u.def.section->output_offset
3169 + htab->root.hgot->root.u.def.value);
3170
3171 return got_address - got_value;
3172 }
3173
3174 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3175 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3176 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3177 offset can be found. */
3178
3179 static bfd_vma
3180 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3181 bfd_vma value, unsigned long r_symndx,
3182 struct mips_elf_link_hash_entry *h, int r_type)
3183 {
3184 struct mips_elf_link_hash_table *htab;
3185 struct mips_got_entry *entry;
3186
3187 htab = mips_elf_hash_table (info);
3188 BFD_ASSERT (htab != NULL);
3189
3190 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3191 r_symndx, h, r_type);
3192 if (!entry)
3193 return MINUS_ONE;
3194
3195 if (entry->tls_type)
3196 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3197 return entry->gotidx;
3198 }
3199
3200 /* Return the GOT index of global symbol H in the primary GOT. */
3201
3202 static bfd_vma
3203 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3204 struct elf_link_hash_entry *h)
3205 {
3206 struct mips_elf_link_hash_table *htab;
3207 long global_got_dynindx;
3208 struct mips_got_info *g;
3209 bfd_vma got_index;
3210
3211 htab = mips_elf_hash_table (info);
3212 BFD_ASSERT (htab != NULL);
3213
3214 global_got_dynindx = 0;
3215 if (htab->global_gotsym != NULL)
3216 global_got_dynindx = htab->global_gotsym->dynindx;
3217
3218 /* Once we determine the global GOT entry with the lowest dynamic
3219 symbol table index, we must put all dynamic symbols with greater
3220 indices into the primary GOT. That makes it easy to calculate the
3221 GOT offset. */
3222 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3223 g = mips_elf_bfd_got (obfd, FALSE);
3224 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3225 * MIPS_ELF_GOT_SIZE (obfd));
3226 BFD_ASSERT (got_index < htab->sgot->size);
3227
3228 return got_index;
3229 }
3230
3231 /* Return the GOT index for the global symbol indicated by H, which is
3232 referenced by a relocation of type R_TYPE in IBFD. */
3233
3234 static bfd_vma
3235 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3236 struct elf_link_hash_entry *h, int r_type)
3237 {
3238 struct mips_elf_link_hash_table *htab;
3239 struct mips_got_info *g;
3240 struct mips_got_entry lookup, *entry;
3241 bfd_vma gotidx;
3242
3243 htab = mips_elf_hash_table (info);
3244 BFD_ASSERT (htab != NULL);
3245
3246 g = mips_elf_bfd_got (ibfd, FALSE);
3247 BFD_ASSERT (g);
3248
3249 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3250 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3251 return mips_elf_primary_global_got_index (obfd, info, h);
3252
3253 lookup.abfd = ibfd;
3254 lookup.symndx = -1;
3255 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3256 entry = htab_find (g->got_entries, &lookup);
3257 BFD_ASSERT (entry);
3258
3259 gotidx = entry->gotidx;
3260 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3261
3262 if (lookup.tls_type)
3263 {
3264 bfd_vma value = MINUS_ONE;
3265
3266 if ((h->root.type == bfd_link_hash_defined
3267 || h->root.type == bfd_link_hash_defweak)
3268 && h->root.u.def.section->output_section)
3269 value = (h->root.u.def.value
3270 + h->root.u.def.section->output_offset
3271 + h->root.u.def.section->output_section->vma);
3272
3273 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3274 }
3275 return gotidx;
3276 }
3277
3278 /* Find a GOT page entry that points to within 32KB of VALUE. These
3279 entries are supposed to be placed at small offsets in the GOT, i.e.,
3280 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3281 entry could be created. If OFFSETP is nonnull, use it to return the
3282 offset of the GOT entry from VALUE. */
3283
3284 static bfd_vma
3285 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3286 bfd_vma value, bfd_vma *offsetp)
3287 {
3288 bfd_vma page, got_index;
3289 struct mips_got_entry *entry;
3290
3291 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3292 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3293 NULL, R_MIPS_GOT_PAGE);
3294
3295 if (!entry)
3296 return MINUS_ONE;
3297
3298 got_index = entry->gotidx;
3299
3300 if (offsetp)
3301 *offsetp = value - entry->d.address;
3302
3303 return got_index;
3304 }
3305
3306 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3307 EXTERNAL is true if the relocation was originally against a global
3308 symbol that binds locally. */
3309
3310 static bfd_vma
3311 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3312 bfd_vma value, bfd_boolean external)
3313 {
3314 struct mips_got_entry *entry;
3315
3316 /* GOT16 relocations against local symbols are followed by a LO16
3317 relocation; those against global symbols are not. Thus if the
3318 symbol was originally local, the GOT16 relocation should load the
3319 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3320 if (! external)
3321 value = mips_elf_high (value) << 16;
3322
3323 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3324 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3325 same in all cases. */
3326 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3327 NULL, R_MIPS_GOT16);
3328 if (entry)
3329 return entry->gotidx;
3330 else
3331 return MINUS_ONE;
3332 }
3333
3334 /* Returns the offset for the entry at the INDEXth position
3335 in the GOT. */
3336
3337 static bfd_vma
3338 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3339 bfd *input_bfd, bfd_vma got_index)
3340 {
3341 struct mips_elf_link_hash_table *htab;
3342 asection *sgot;
3343 bfd_vma gp;
3344
3345 htab = mips_elf_hash_table (info);
3346 BFD_ASSERT (htab != NULL);
3347
3348 sgot = htab->sgot;
3349 gp = _bfd_get_gp_value (output_bfd)
3350 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3351
3352 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3353 }
3354
3355 /* Create and return a local GOT entry for VALUE, which was calculated
3356 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3357 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3358 instead. */
3359
3360 static struct mips_got_entry *
3361 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3362 bfd *ibfd, bfd_vma value,
3363 unsigned long r_symndx,
3364 struct mips_elf_link_hash_entry *h,
3365 int r_type)
3366 {
3367 struct mips_got_entry lookup, *entry;
3368 void **loc;
3369 struct mips_got_info *g;
3370 struct mips_elf_link_hash_table *htab;
3371 bfd_vma gotidx;
3372
3373 htab = mips_elf_hash_table (info);
3374 BFD_ASSERT (htab != NULL);
3375
3376 g = mips_elf_bfd_got (ibfd, FALSE);
3377 if (g == NULL)
3378 {
3379 g = mips_elf_bfd_got (abfd, FALSE);
3380 BFD_ASSERT (g != NULL);
3381 }
3382
3383 /* This function shouldn't be called for symbols that live in the global
3384 area of the GOT. */
3385 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3386
3387 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3388 if (lookup.tls_type)
3389 {
3390 lookup.abfd = ibfd;
3391 if (tls_ldm_reloc_p (r_type))
3392 {
3393 lookup.symndx = 0;
3394 lookup.d.addend = 0;
3395 }
3396 else if (h == NULL)
3397 {
3398 lookup.symndx = r_symndx;
3399 lookup.d.addend = 0;
3400 }
3401 else
3402 {
3403 lookup.symndx = -1;
3404 lookup.d.h = h;
3405 }
3406
3407 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3408 BFD_ASSERT (entry);
3409
3410 gotidx = entry->gotidx;
3411 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3412
3413 return entry;
3414 }
3415
3416 lookup.abfd = NULL;
3417 lookup.symndx = -1;
3418 lookup.d.address = value;
3419 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3420 if (!loc)
3421 return NULL;
3422
3423 entry = (struct mips_got_entry *) *loc;
3424 if (entry)
3425 return entry;
3426
3427 if (g->assigned_gotno >= g->local_gotno)
3428 {
3429 /* We didn't allocate enough space in the GOT. */
3430 (*_bfd_error_handler)
3431 (_("not enough GOT space for local GOT entries"));
3432 bfd_set_error (bfd_error_bad_value);
3433 return NULL;
3434 }
3435
3436 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3437 if (!entry)
3438 return NULL;
3439
3440 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3441 *entry = lookup;
3442 *loc = entry;
3443
3444 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3445
3446 /* These GOT entries need a dynamic relocation on VxWorks. */
3447 if (htab->is_vxworks)
3448 {
3449 Elf_Internal_Rela outrel;
3450 asection *s;
3451 bfd_byte *rloc;
3452 bfd_vma got_address;
3453
3454 s = mips_elf_rel_dyn_section (info, FALSE);
3455 got_address = (htab->sgot->output_section->vma
3456 + htab->sgot->output_offset
3457 + entry->gotidx);
3458
3459 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3460 outrel.r_offset = got_address;
3461 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3462 outrel.r_addend = value;
3463 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3464 }
3465
3466 return entry;
3467 }
3468
3469 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3470 The number might be exact or a worst-case estimate, depending on how
3471 much information is available to elf_backend_omit_section_dynsym at
3472 the current linking stage. */
3473
3474 static bfd_size_type
3475 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3476 {
3477 bfd_size_type count;
3478
3479 count = 0;
3480 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3481 {
3482 asection *p;
3483 const struct elf_backend_data *bed;
3484
3485 bed = get_elf_backend_data (output_bfd);
3486 for (p = output_bfd->sections; p ; p = p->next)
3487 if ((p->flags & SEC_EXCLUDE) == 0
3488 && (p->flags & SEC_ALLOC) != 0
3489 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3490 ++count;
3491 }
3492 return count;
3493 }
3494
3495 /* Sort the dynamic symbol table so that symbols that need GOT entries
3496 appear towards the end. */
3497
3498 static bfd_boolean
3499 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3500 {
3501 struct mips_elf_link_hash_table *htab;
3502 struct mips_elf_hash_sort_data hsd;
3503 struct mips_got_info *g;
3504
3505 if (elf_hash_table (info)->dynsymcount == 0)
3506 return TRUE;
3507
3508 htab = mips_elf_hash_table (info);
3509 BFD_ASSERT (htab != NULL);
3510
3511 g = htab->got_info;
3512 if (g == NULL)
3513 return TRUE;
3514
3515 hsd.low = NULL;
3516 hsd.max_unref_got_dynindx
3517 = hsd.min_got_dynindx
3518 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3519 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3520 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3521 elf_hash_table (info)),
3522 mips_elf_sort_hash_table_f,
3523 &hsd);
3524
3525 /* There should have been enough room in the symbol table to
3526 accommodate both the GOT and non-GOT symbols. */
3527 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3528 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3529 == elf_hash_table (info)->dynsymcount);
3530 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3531 == g->global_gotno);
3532
3533 /* Now we know which dynamic symbol has the lowest dynamic symbol
3534 table index in the GOT. */
3535 htab->global_gotsym = hsd.low;
3536
3537 return TRUE;
3538 }
3539
3540 /* If H needs a GOT entry, assign it the highest available dynamic
3541 index. Otherwise, assign it the lowest available dynamic
3542 index. */
3543
3544 static bfd_boolean
3545 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3546 {
3547 struct mips_elf_hash_sort_data *hsd = data;
3548
3549 /* Symbols without dynamic symbol table entries aren't interesting
3550 at all. */
3551 if (h->root.dynindx == -1)
3552 return TRUE;
3553
3554 switch (h->global_got_area)
3555 {
3556 case GGA_NONE:
3557 h->root.dynindx = hsd->max_non_got_dynindx++;
3558 break;
3559
3560 case GGA_NORMAL:
3561 h->root.dynindx = --hsd->min_got_dynindx;
3562 hsd->low = (struct elf_link_hash_entry *) h;
3563 break;
3564
3565 case GGA_RELOC_ONLY:
3566 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3567 hsd->low = (struct elf_link_hash_entry *) h;
3568 h->root.dynindx = hsd->max_unref_got_dynindx++;
3569 break;
3570 }
3571
3572 return TRUE;
3573 }
3574
3575 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3576 (which is owned by the caller and shouldn't be added to the
3577 hash table directly). */
3578
3579 static bfd_boolean
3580 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3581 struct mips_got_entry *lookup)
3582 {
3583 struct mips_elf_link_hash_table *htab;
3584 struct mips_got_entry *entry;
3585 struct mips_got_info *g;
3586 void **loc, **bfd_loc;
3587
3588 /* Make sure there's a slot for this entry in the master GOT. */
3589 htab = mips_elf_hash_table (info);
3590 g = htab->got_info;
3591 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3592 if (!loc)
3593 return FALSE;
3594
3595 /* Populate the entry if it isn't already. */
3596 entry = (struct mips_got_entry *) *loc;
3597 if (!entry)
3598 {
3599 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3600 if (!entry)
3601 return FALSE;
3602
3603 lookup->tls_initialized = FALSE;
3604 lookup->gotidx = -1;
3605 *entry = *lookup;
3606 *loc = entry;
3607 }
3608
3609 /* Reuse the same GOT entry for the BFD's GOT. */
3610 g = mips_elf_bfd_got (abfd, TRUE);
3611 if (!g)
3612 return FALSE;
3613
3614 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3615 if (!bfd_loc)
3616 return FALSE;
3617
3618 if (!*bfd_loc)
3619 *bfd_loc = entry;
3620 return TRUE;
3621 }
3622
3623 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3624 entry for it. FOR_CALL is true if the caller is only interested in
3625 using the GOT entry for calls. */
3626
3627 static bfd_boolean
3628 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3629 bfd *abfd, struct bfd_link_info *info,
3630 bfd_boolean for_call, int r_type)
3631 {
3632 struct mips_elf_link_hash_table *htab;
3633 struct mips_elf_link_hash_entry *hmips;
3634 struct mips_got_entry entry;
3635 unsigned char tls_type;
3636
3637 htab = mips_elf_hash_table (info);
3638 BFD_ASSERT (htab != NULL);
3639
3640 hmips = (struct mips_elf_link_hash_entry *) h;
3641 if (!for_call)
3642 hmips->got_only_for_calls = FALSE;
3643
3644 /* A global symbol in the GOT must also be in the dynamic symbol
3645 table. */
3646 if (h->dynindx == -1)
3647 {
3648 switch (ELF_ST_VISIBILITY (h->other))
3649 {
3650 case STV_INTERNAL:
3651 case STV_HIDDEN:
3652 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3653 break;
3654 }
3655 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3656 return FALSE;
3657 }
3658
3659 tls_type = mips_elf_reloc_tls_type (r_type);
3660 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3661 hmips->global_got_area = GGA_NORMAL;
3662
3663 entry.abfd = abfd;
3664 entry.symndx = -1;
3665 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3666 entry.tls_type = tls_type;
3667 return mips_elf_record_got_entry (info, abfd, &entry);
3668 }
3669
3670 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3671 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3672
3673 static bfd_boolean
3674 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3675 struct bfd_link_info *info, int r_type)
3676 {
3677 struct mips_elf_link_hash_table *htab;
3678 struct mips_got_info *g;
3679 struct mips_got_entry entry;
3680
3681 htab = mips_elf_hash_table (info);
3682 BFD_ASSERT (htab != NULL);
3683
3684 g = htab->got_info;
3685 BFD_ASSERT (g != NULL);
3686
3687 entry.abfd = abfd;
3688 entry.symndx = symndx;
3689 entry.d.addend = addend;
3690 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3691 return mips_elf_record_got_entry (info, abfd, &entry);
3692 }
3693
3694 /* Return the maximum number of GOT page entries required for RANGE. */
3695
3696 static bfd_vma
3697 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3698 {
3699 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3700 }
3701
3702 /* Record that ABFD has a page relocation against symbol SYMNDX and
3703 that ADDEND is the addend for that relocation.
3704
3705 This function creates an upper bound on the number of GOT slots
3706 required; no attempt is made to combine references to non-overridable
3707 global symbols across multiple input files. */
3708
3709 static bfd_boolean
3710 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3711 long symndx, bfd_signed_vma addend)
3712 {
3713 struct mips_elf_link_hash_table *htab;
3714 struct mips_got_info *g1, *g2;
3715 struct mips_got_page_entry lookup, *entry;
3716 struct mips_got_page_range **range_ptr, *range;
3717 bfd_vma old_pages, new_pages;
3718 void **loc, **bfd_loc;
3719
3720 htab = mips_elf_hash_table (info);
3721 BFD_ASSERT (htab != NULL);
3722
3723 g1 = htab->got_info;
3724 BFD_ASSERT (g1 != NULL);
3725
3726 /* Find the mips_got_page_entry hash table entry for this symbol. */
3727 lookup.abfd = abfd;
3728 lookup.symndx = symndx;
3729 loc = htab_find_slot (g1->got_page_entries, &lookup, INSERT);
3730 if (loc == NULL)
3731 return FALSE;
3732
3733 /* Create a mips_got_page_entry if this is the first time we've
3734 seen the symbol. */
3735 entry = (struct mips_got_page_entry *) *loc;
3736 if (!entry)
3737 {
3738 entry = bfd_alloc (abfd, sizeof (*entry));
3739 if (!entry)
3740 return FALSE;
3741
3742 entry->abfd = abfd;
3743 entry->symndx = symndx;
3744 entry->ranges = NULL;
3745 entry->num_pages = 0;
3746 *loc = entry;
3747 }
3748
3749 /* Add the same entry to the BFD's GOT. */
3750 g2 = mips_elf_bfd_got (abfd, TRUE);
3751 if (!g2)
3752 return FALSE;
3753
3754 bfd_loc = htab_find_slot (g2->got_page_entries, &lookup, INSERT);
3755 if (!bfd_loc)
3756 return FALSE;
3757
3758 if (!*bfd_loc)
3759 *bfd_loc = entry;
3760
3761 /* Skip over ranges whose maximum extent cannot share a page entry
3762 with ADDEND. */
3763 range_ptr = &entry->ranges;
3764 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3765 range_ptr = &(*range_ptr)->next;
3766
3767 /* If we scanned to the end of the list, or found a range whose
3768 minimum extent cannot share a page entry with ADDEND, create
3769 a new singleton range. */
3770 range = *range_ptr;
3771 if (!range || addend < range->min_addend - 0xffff)
3772 {
3773 range = bfd_alloc (abfd, sizeof (*range));
3774 if (!range)
3775 return FALSE;
3776
3777 range->next = *range_ptr;
3778 range->min_addend = addend;
3779 range->max_addend = addend;
3780
3781 *range_ptr = range;
3782 entry->num_pages++;
3783 g1->page_gotno++;
3784 g2->page_gotno++;
3785 return TRUE;
3786 }
3787
3788 /* Remember how many pages the old range contributed. */
3789 old_pages = mips_elf_pages_for_range (range);
3790
3791 /* Update the ranges. */
3792 if (addend < range->min_addend)
3793 range->min_addend = addend;
3794 else if (addend > range->max_addend)
3795 {
3796 if (range->next && addend >= range->next->min_addend - 0xffff)
3797 {
3798 old_pages += mips_elf_pages_for_range (range->next);
3799 range->max_addend = range->next->max_addend;
3800 range->next = range->next->next;
3801 }
3802 else
3803 range->max_addend = addend;
3804 }
3805
3806 /* Record any change in the total estimate. */
3807 new_pages = mips_elf_pages_for_range (range);
3808 if (old_pages != new_pages)
3809 {
3810 entry->num_pages += new_pages - old_pages;
3811 g1->page_gotno += new_pages - old_pages;
3812 g2->page_gotno += new_pages - old_pages;
3813 }
3814
3815 return TRUE;
3816 }
3817
3818 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3819
3820 static void
3821 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3822 unsigned int n)
3823 {
3824 asection *s;
3825 struct mips_elf_link_hash_table *htab;
3826
3827 htab = mips_elf_hash_table (info);
3828 BFD_ASSERT (htab != NULL);
3829
3830 s = mips_elf_rel_dyn_section (info, FALSE);
3831 BFD_ASSERT (s != NULL);
3832
3833 if (htab->is_vxworks)
3834 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3835 else
3836 {
3837 if (s->size == 0)
3838 {
3839 /* Make room for a null element. */
3840 s->size += MIPS_ELF_REL_SIZE (abfd);
3841 ++s->reloc_count;
3842 }
3843 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3844 }
3845 }
3846 \f
3847 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3848 mips_elf_traverse_got_arg structure. Count the number of GOT
3849 entries and TLS relocs. Set DATA->value to true if we need
3850 to resolve indirect or warning symbols and then recreate the GOT. */
3851
3852 static int
3853 mips_elf_check_recreate_got (void **entryp, void *data)
3854 {
3855 struct mips_got_entry *entry;
3856 struct mips_elf_traverse_got_arg *arg;
3857
3858 entry = (struct mips_got_entry *) *entryp;
3859 arg = (struct mips_elf_traverse_got_arg *) data;
3860 if (entry->abfd != NULL && entry->symndx == -1)
3861 {
3862 struct mips_elf_link_hash_entry *h;
3863
3864 h = entry->d.h;
3865 if (h->root.root.type == bfd_link_hash_indirect
3866 || h->root.root.type == bfd_link_hash_warning)
3867 {
3868 arg->value = TRUE;
3869 return 0;
3870 }
3871 }
3872 mips_elf_count_got_entry (arg->info, arg->g, entry);
3873 return 1;
3874 }
3875
3876 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3877 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
3878 converting entries for indirect and warning symbols into entries
3879 for the target symbol. Set DATA->g to null on error. */
3880
3881 static int
3882 mips_elf_recreate_got (void **entryp, void *data)
3883 {
3884 struct mips_got_entry new_entry, *entry;
3885 struct mips_elf_traverse_got_arg *arg;
3886 void **slot;
3887
3888 entry = (struct mips_got_entry *) *entryp;
3889 arg = (struct mips_elf_traverse_got_arg *) data;
3890 if (entry->abfd != NULL
3891 && entry->symndx == -1
3892 && (entry->d.h->root.root.type == bfd_link_hash_indirect
3893 || entry->d.h->root.root.type == bfd_link_hash_warning))
3894 {
3895 struct mips_elf_link_hash_entry *h;
3896
3897 new_entry = *entry;
3898 entry = &new_entry;
3899 h = entry->d.h;
3900 do
3901 {
3902 BFD_ASSERT (h->global_got_area == GGA_NONE);
3903 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3904 }
3905 while (h->root.root.type == bfd_link_hash_indirect
3906 || h->root.root.type == bfd_link_hash_warning);
3907 entry->d.h = h;
3908 }
3909 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
3910 if (slot == NULL)
3911 {
3912 arg->g = NULL;
3913 return 0;
3914 }
3915 if (*slot == NULL)
3916 {
3917 if (entry == &new_entry)
3918 {
3919 entry = bfd_alloc (entry->abfd, sizeof (*entry));
3920 if (!entry)
3921 {
3922 arg->g = NULL;
3923 return 0;
3924 }
3925 *entry = new_entry;
3926 }
3927 *slot = entry;
3928 mips_elf_count_got_entry (arg->info, arg->g, entry);
3929 }
3930 return 1;
3931 }
3932
3933 /* If any entries in G->got_entries are for indirect or warning symbols,
3934 replace them with entries for the target symbol. */
3935
3936 static bfd_boolean
3937 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
3938 struct mips_got_info *g)
3939 {
3940 struct mips_elf_traverse_got_arg tga;
3941 struct mips_got_info oldg;
3942
3943 oldg = *g;
3944
3945 tga.info = info;
3946 tga.g = g;
3947 tga.value = FALSE;
3948 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
3949 if (tga.value)
3950 {
3951 *g = oldg;
3952 g->got_entries = htab_create (htab_size (oldg.got_entries),
3953 mips_elf_got_entry_hash,
3954 mips_elf_got_entry_eq, NULL);
3955 if (!g->got_entries)
3956 return FALSE;
3957
3958 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
3959 if (!tga.g)
3960 return FALSE;
3961
3962 htab_delete (oldg.got_entries);
3963 }
3964 return TRUE;
3965 }
3966
3967 /* A mips_elf_link_hash_traverse callback for which DATA points to the
3968 link_info structure. Decide whether the hash entry needs an entry in
3969 the global part of the primary GOT, setting global_got_area accordingly.
3970 Count the number of global symbols that are in the primary GOT only
3971 because they have relocations against them (reloc_only_gotno). */
3972
3973 static int
3974 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3975 {
3976 struct bfd_link_info *info;
3977 struct mips_elf_link_hash_table *htab;
3978 struct mips_got_info *g;
3979
3980 info = (struct bfd_link_info *) data;
3981 htab = mips_elf_hash_table (info);
3982 g = htab->got_info;
3983 if (h->global_got_area != GGA_NONE)
3984 {
3985 /* Make a final decision about whether the symbol belongs in the
3986 local or global GOT. Symbols that bind locally can (and in the
3987 case of forced-local symbols, must) live in the local GOT.
3988 Those that are aren't in the dynamic symbol table must also
3989 live in the local GOT.
3990
3991 Note that the former condition does not always imply the
3992 latter: symbols do not bind locally if they are completely
3993 undefined. We'll report undefined symbols later if appropriate. */
3994 if (h->root.dynindx == -1
3995 || (h->got_only_for_calls
3996 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3997 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3998 /* The symbol belongs in the local GOT. We no longer need this
3999 entry if it was only used for relocations; those relocations
4000 will be against the null or section symbol instead of H. */
4001 h->global_got_area = GGA_NONE;
4002 else if (htab->is_vxworks
4003 && h->got_only_for_calls
4004 && h->root.plt.offset != MINUS_ONE)
4005 /* On VxWorks, calls can refer directly to the .got.plt entry;
4006 they don't need entries in the regular GOT. .got.plt entries
4007 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4008 h->global_got_area = GGA_NONE;
4009 else if (h->global_got_area == GGA_RELOC_ONLY)
4010 {
4011 g->reloc_only_gotno++;
4012 g->global_gotno++;
4013 }
4014 }
4015 return 1;
4016 }
4017 \f
4018 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4019 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4020
4021 static int
4022 mips_elf_add_got_entry (void **entryp, void *data)
4023 {
4024 struct mips_got_entry *entry;
4025 struct mips_elf_traverse_got_arg *arg;
4026 void **slot;
4027
4028 entry = (struct mips_got_entry *) *entryp;
4029 arg = (struct mips_elf_traverse_got_arg *) data;
4030 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4031 if (!slot)
4032 {
4033 arg->g = NULL;
4034 return 0;
4035 }
4036 if (!*slot)
4037 {
4038 *slot = entry;
4039 mips_elf_count_got_entry (arg->info, arg->g, entry);
4040 }
4041 return 1;
4042 }
4043
4044 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4045 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4046
4047 static int
4048 mips_elf_add_got_page_entry (void **entryp, void *data)
4049 {
4050 struct mips_got_page_entry *entry;
4051 struct mips_elf_traverse_got_arg *arg;
4052 void **slot;
4053
4054 entry = (struct mips_got_page_entry *) *entryp;
4055 arg = (struct mips_elf_traverse_got_arg *) data;
4056 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4057 if (!slot)
4058 {
4059 arg->g = NULL;
4060 return 0;
4061 }
4062 if (!*slot)
4063 {
4064 *slot = entry;
4065 arg->g->page_gotno += entry->num_pages;
4066 }
4067 return 1;
4068 }
4069
4070 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4071 this would lead to overflow, 1 if they were merged successfully,
4072 and 0 if a merge failed due to lack of memory. (These values are chosen
4073 so that nonnegative return values can be returned by a htab_traverse
4074 callback.) */
4075
4076 static int
4077 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4078 struct mips_got_info *to,
4079 struct mips_elf_got_per_bfd_arg *arg)
4080 {
4081 struct mips_elf_traverse_got_arg tga;
4082 unsigned int estimate;
4083
4084 /* Work out how many page entries we would need for the combined GOT. */
4085 estimate = arg->max_pages;
4086 if (estimate >= from->page_gotno + to->page_gotno)
4087 estimate = from->page_gotno + to->page_gotno;
4088
4089 /* And conservatively estimate how many local and TLS entries
4090 would be needed. */
4091 estimate += from->local_gotno + to->local_gotno;
4092 estimate += from->tls_gotno + to->tls_gotno;
4093
4094 /* If we're merging with the primary got, any TLS relocations will
4095 come after the full set of global entries. Otherwise estimate those
4096 conservatively as well. */
4097 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4098 estimate += arg->global_count;
4099 else
4100 estimate += from->global_gotno + to->global_gotno;
4101
4102 /* Bail out if the combined GOT might be too big. */
4103 if (estimate > arg->max_count)
4104 return -1;
4105
4106 /* Transfer the bfd's got information from FROM to TO. */
4107 tga.info = arg->info;
4108 tga.g = to;
4109 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4110 if (!tga.g)
4111 return 0;
4112
4113 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4114 if (!tga.g)
4115 return 0;
4116
4117 mips_elf_replace_bfd_got (abfd, to);
4118 return 1;
4119 }
4120
4121 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4122 as possible of the primary got, since it doesn't require explicit
4123 dynamic relocations, but don't use bfds that would reference global
4124 symbols out of the addressable range. Failing the primary got,
4125 attempt to merge with the current got, or finish the current got
4126 and then make make the new got current. */
4127
4128 static bfd_boolean
4129 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4130 struct mips_elf_got_per_bfd_arg *arg)
4131 {
4132 unsigned int estimate;
4133 int result;
4134
4135 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4136 return FALSE;
4137
4138 /* Work out the number of page, local and TLS entries. */
4139 estimate = arg->max_pages;
4140 if (estimate > g->page_gotno)
4141 estimate = g->page_gotno;
4142 estimate += g->local_gotno + g->tls_gotno;
4143
4144 /* We place TLS GOT entries after both locals and globals. The globals
4145 for the primary GOT may overflow the normal GOT size limit, so be
4146 sure not to merge a GOT which requires TLS with the primary GOT in that
4147 case. This doesn't affect non-primary GOTs. */
4148 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4149
4150 if (estimate <= arg->max_count)
4151 {
4152 /* If we don't have a primary GOT, use it as
4153 a starting point for the primary GOT. */
4154 if (!arg->primary)
4155 {
4156 arg->primary = g;
4157 return TRUE;
4158 }
4159
4160 /* Try merging with the primary GOT. */
4161 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4162 if (result >= 0)
4163 return result;
4164 }
4165
4166 /* If we can merge with the last-created got, do it. */
4167 if (arg->current)
4168 {
4169 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4170 if (result >= 0)
4171 return result;
4172 }
4173
4174 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4175 fits; if it turns out that it doesn't, we'll get relocation
4176 overflows anyway. */
4177 g->next = arg->current;
4178 arg->current = g;
4179
4180 return TRUE;
4181 }
4182
4183 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4184 to GOTIDX, duplicating the entry if it has already been assigned
4185 an index in a different GOT. */
4186
4187 static bfd_boolean
4188 mips_elf_set_gotidx (void **entryp, long gotidx)
4189 {
4190 struct mips_got_entry *entry;
4191
4192 entry = (struct mips_got_entry *) *entryp;
4193 if (entry->gotidx > 0)
4194 {
4195 struct mips_got_entry *new_entry;
4196
4197 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4198 if (!new_entry)
4199 return FALSE;
4200
4201 *new_entry = *entry;
4202 *entryp = new_entry;
4203 entry = new_entry;
4204 }
4205 entry->gotidx = gotidx;
4206 return TRUE;
4207 }
4208
4209 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4210 mips_elf_traverse_got_arg in which DATA->value is the size of one
4211 GOT entry. Set DATA->g to null on failure. */
4212
4213 static int
4214 mips_elf_initialize_tls_index (void **entryp, void *data)
4215 {
4216 struct mips_got_entry *entry;
4217 struct mips_elf_traverse_got_arg *arg;
4218
4219 /* We're only interested in TLS symbols. */
4220 entry = (struct mips_got_entry *) *entryp;
4221 if (entry->tls_type == GOT_TLS_NONE)
4222 return 1;
4223
4224 arg = (struct mips_elf_traverse_got_arg *) data;
4225 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4226 {
4227 arg->g = NULL;
4228 return 0;
4229 }
4230
4231 /* Account for the entries we've just allocated. */
4232 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4233 return 1;
4234 }
4235
4236 /* A htab_traverse callback for GOT entries, where DATA points to a
4237 mips_elf_traverse_got_arg. Set the global_got_area of each global
4238 symbol to DATA->value. */
4239
4240 static int
4241 mips_elf_set_global_got_area (void **entryp, void *data)
4242 {
4243 struct mips_got_entry *entry;
4244 struct mips_elf_traverse_got_arg *arg;
4245
4246 entry = (struct mips_got_entry *) *entryp;
4247 arg = (struct mips_elf_traverse_got_arg *) data;
4248 if (entry->abfd != NULL
4249 && entry->symndx == -1
4250 && entry->d.h->global_got_area != GGA_NONE)
4251 entry->d.h->global_got_area = arg->value;
4252 return 1;
4253 }
4254
4255 /* A htab_traverse callback for secondary GOT entries, where DATA points
4256 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4257 and record the number of relocations they require. DATA->value is
4258 the size of one GOT entry. Set DATA->g to null on failure. */
4259
4260 static int
4261 mips_elf_set_global_gotidx (void **entryp, void *data)
4262 {
4263 struct mips_got_entry *entry;
4264 struct mips_elf_traverse_got_arg *arg;
4265
4266 entry = (struct mips_got_entry *) *entryp;
4267 arg = (struct mips_elf_traverse_got_arg *) data;
4268 if (entry->abfd != NULL
4269 && entry->symndx == -1
4270 && entry->d.h->global_got_area != GGA_NONE)
4271 {
4272 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4273 {
4274 arg->g = NULL;
4275 return 0;
4276 }
4277 arg->g->assigned_gotno += 1;
4278
4279 if (arg->info->shared
4280 || (elf_hash_table (arg->info)->dynamic_sections_created
4281 && entry->d.h->root.def_dynamic
4282 && !entry->d.h->root.def_regular))
4283 arg->g->relocs += 1;
4284 }
4285
4286 return 1;
4287 }
4288
4289 /* A htab_traverse callback for GOT entries for which DATA is the
4290 bfd_link_info. Forbid any global symbols from having traditional
4291 lazy-binding stubs. */
4292
4293 static int
4294 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4295 {
4296 struct bfd_link_info *info;
4297 struct mips_elf_link_hash_table *htab;
4298 struct mips_got_entry *entry;
4299
4300 entry = (struct mips_got_entry *) *entryp;
4301 info = (struct bfd_link_info *) data;
4302 htab = mips_elf_hash_table (info);
4303 BFD_ASSERT (htab != NULL);
4304
4305 if (entry->abfd != NULL
4306 && entry->symndx == -1
4307 && entry->d.h->needs_lazy_stub)
4308 {
4309 entry->d.h->needs_lazy_stub = FALSE;
4310 htab->lazy_stub_count--;
4311 }
4312
4313 return 1;
4314 }
4315
4316 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4317 the primary GOT. */
4318 static bfd_vma
4319 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4320 {
4321 if (!g->next)
4322 return 0;
4323
4324 g = mips_elf_bfd_got (ibfd, FALSE);
4325 if (! g)
4326 return 0;
4327
4328 BFD_ASSERT (g->next);
4329
4330 g = g->next;
4331
4332 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4333 * MIPS_ELF_GOT_SIZE (abfd);
4334 }
4335
4336 /* Turn a single GOT that is too big for 16-bit addressing into
4337 a sequence of GOTs, each one 16-bit addressable. */
4338
4339 static bfd_boolean
4340 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4341 asection *got, bfd_size_type pages)
4342 {
4343 struct mips_elf_link_hash_table *htab;
4344 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4345 struct mips_elf_traverse_got_arg tga;
4346 struct mips_got_info *g, *gg;
4347 unsigned int assign, needed_relocs;
4348 bfd *dynobj, *ibfd;
4349
4350 dynobj = elf_hash_table (info)->dynobj;
4351 htab = mips_elf_hash_table (info);
4352 BFD_ASSERT (htab != NULL);
4353
4354 g = htab->got_info;
4355
4356 got_per_bfd_arg.obfd = abfd;
4357 got_per_bfd_arg.info = info;
4358 got_per_bfd_arg.current = NULL;
4359 got_per_bfd_arg.primary = NULL;
4360 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4361 / MIPS_ELF_GOT_SIZE (abfd))
4362 - htab->reserved_gotno);
4363 got_per_bfd_arg.max_pages = pages;
4364 /* The number of globals that will be included in the primary GOT.
4365 See the calls to mips_elf_set_global_got_area below for more
4366 information. */
4367 got_per_bfd_arg.global_count = g->global_gotno;
4368
4369 /* Try to merge the GOTs of input bfds together, as long as they
4370 don't seem to exceed the maximum GOT size, choosing one of them
4371 to be the primary GOT. */
4372 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4373 {
4374 gg = mips_elf_bfd_got (ibfd, FALSE);
4375 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4376 return FALSE;
4377 }
4378
4379 /* If we do not find any suitable primary GOT, create an empty one. */
4380 if (got_per_bfd_arg.primary == NULL)
4381 g->next = mips_elf_create_got_info (abfd);
4382 else
4383 g->next = got_per_bfd_arg.primary;
4384 g->next->next = got_per_bfd_arg.current;
4385
4386 /* GG is now the master GOT, and G is the primary GOT. */
4387 gg = g;
4388 g = g->next;
4389
4390 /* Map the output bfd to the primary got. That's what we're going
4391 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4392 didn't mark in check_relocs, and we want a quick way to find it.
4393 We can't just use gg->next because we're going to reverse the
4394 list. */
4395 mips_elf_replace_bfd_got (abfd, g);
4396
4397 /* Every symbol that is referenced in a dynamic relocation must be
4398 present in the primary GOT, so arrange for them to appear after
4399 those that are actually referenced. */
4400 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4401 g->global_gotno = gg->global_gotno;
4402
4403 tga.info = info;
4404 tga.value = GGA_RELOC_ONLY;
4405 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4406 tga.value = GGA_NORMAL;
4407 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4408
4409 /* Now go through the GOTs assigning them offset ranges.
4410 [assigned_gotno, local_gotno[ will be set to the range of local
4411 entries in each GOT. We can then compute the end of a GOT by
4412 adding local_gotno to global_gotno. We reverse the list and make
4413 it circular since then we'll be able to quickly compute the
4414 beginning of a GOT, by computing the end of its predecessor. To
4415 avoid special cases for the primary GOT, while still preserving
4416 assertions that are valid for both single- and multi-got links,
4417 we arrange for the main got struct to have the right number of
4418 global entries, but set its local_gotno such that the initial
4419 offset of the primary GOT is zero. Remember that the primary GOT
4420 will become the last item in the circular linked list, so it
4421 points back to the master GOT. */
4422 gg->local_gotno = -g->global_gotno;
4423 gg->global_gotno = g->global_gotno;
4424 gg->tls_gotno = 0;
4425 assign = 0;
4426 gg->next = gg;
4427
4428 do
4429 {
4430 struct mips_got_info *gn;
4431
4432 assign += htab->reserved_gotno;
4433 g->assigned_gotno = assign;
4434 g->local_gotno += assign;
4435 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4436 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4437
4438 /* Take g out of the direct list, and push it onto the reversed
4439 list that gg points to. g->next is guaranteed to be nonnull after
4440 this operation, as required by mips_elf_initialize_tls_index. */
4441 gn = g->next;
4442 g->next = gg->next;
4443 gg->next = g;
4444
4445 /* Set up any TLS entries. We always place the TLS entries after
4446 all non-TLS entries. */
4447 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4448 tga.g = g;
4449 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4450 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4451 if (!tga.g)
4452 return FALSE;
4453 BFD_ASSERT (g->tls_assigned_gotno == assign);
4454
4455 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4456 g = gn;
4457
4458 /* Forbid global symbols in every non-primary GOT from having
4459 lazy-binding stubs. */
4460 if (g)
4461 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4462 }
4463 while (g);
4464
4465 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4466
4467 needed_relocs = 0;
4468 for (g = gg->next; g && g->next != gg; g = g->next)
4469 {
4470 unsigned int save_assign;
4471
4472 /* Assign offsets to global GOT entries and count how many
4473 relocations they need. */
4474 save_assign = g->assigned_gotno;
4475 g->assigned_gotno = g->local_gotno;
4476 tga.info = info;
4477 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4478 tga.g = g;
4479 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4480 if (!tga.g)
4481 return FALSE;
4482 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
4483 g->assigned_gotno = save_assign;
4484
4485 if (info->shared)
4486 {
4487 g->relocs += g->local_gotno - g->assigned_gotno;
4488 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4489 + g->next->global_gotno
4490 + g->next->tls_gotno
4491 + htab->reserved_gotno);
4492 }
4493 needed_relocs += g->relocs;
4494 }
4495 needed_relocs += g->relocs;
4496
4497 if (needed_relocs)
4498 mips_elf_allocate_dynamic_relocations (dynobj, info,
4499 needed_relocs);
4500
4501 return TRUE;
4502 }
4503
4504 \f
4505 /* Returns the first relocation of type r_type found, beginning with
4506 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4507
4508 static const Elf_Internal_Rela *
4509 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4510 const Elf_Internal_Rela *relocation,
4511 const Elf_Internal_Rela *relend)
4512 {
4513 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4514
4515 while (relocation < relend)
4516 {
4517 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4518 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4519 return relocation;
4520
4521 ++relocation;
4522 }
4523
4524 /* We didn't find it. */
4525 return NULL;
4526 }
4527
4528 /* Return whether an input relocation is against a local symbol. */
4529
4530 static bfd_boolean
4531 mips_elf_local_relocation_p (bfd *input_bfd,
4532 const Elf_Internal_Rela *relocation,
4533 asection **local_sections)
4534 {
4535 unsigned long r_symndx;
4536 Elf_Internal_Shdr *symtab_hdr;
4537 size_t extsymoff;
4538
4539 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4540 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4541 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4542
4543 if (r_symndx < extsymoff)
4544 return TRUE;
4545 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4546 return TRUE;
4547
4548 return FALSE;
4549 }
4550 \f
4551 /* Sign-extend VALUE, which has the indicated number of BITS. */
4552
4553 bfd_vma
4554 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4555 {
4556 if (value & ((bfd_vma) 1 << (bits - 1)))
4557 /* VALUE is negative. */
4558 value |= ((bfd_vma) - 1) << bits;
4559
4560 return value;
4561 }
4562
4563 /* Return non-zero if the indicated VALUE has overflowed the maximum
4564 range expressible by a signed number with the indicated number of
4565 BITS. */
4566
4567 static bfd_boolean
4568 mips_elf_overflow_p (bfd_vma value, int bits)
4569 {
4570 bfd_signed_vma svalue = (bfd_signed_vma) value;
4571
4572 if (svalue > (1 << (bits - 1)) - 1)
4573 /* The value is too big. */
4574 return TRUE;
4575 else if (svalue < -(1 << (bits - 1)))
4576 /* The value is too small. */
4577 return TRUE;
4578
4579 /* All is well. */
4580 return FALSE;
4581 }
4582
4583 /* Calculate the %high function. */
4584
4585 static bfd_vma
4586 mips_elf_high (bfd_vma value)
4587 {
4588 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4589 }
4590
4591 /* Calculate the %higher function. */
4592
4593 static bfd_vma
4594 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4595 {
4596 #ifdef BFD64
4597 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4598 #else
4599 abort ();
4600 return MINUS_ONE;
4601 #endif
4602 }
4603
4604 /* Calculate the %highest function. */
4605
4606 static bfd_vma
4607 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4608 {
4609 #ifdef BFD64
4610 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4611 #else
4612 abort ();
4613 return MINUS_ONE;
4614 #endif
4615 }
4616 \f
4617 /* Create the .compact_rel section. */
4618
4619 static bfd_boolean
4620 mips_elf_create_compact_rel_section
4621 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4622 {
4623 flagword flags;
4624 register asection *s;
4625
4626 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4627 {
4628 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4629 | SEC_READONLY);
4630
4631 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4632 if (s == NULL
4633 || ! bfd_set_section_alignment (abfd, s,
4634 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4635 return FALSE;
4636
4637 s->size = sizeof (Elf32_External_compact_rel);
4638 }
4639
4640 return TRUE;
4641 }
4642
4643 /* Create the .got section to hold the global offset table. */
4644
4645 static bfd_boolean
4646 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4647 {
4648 flagword flags;
4649 register asection *s;
4650 struct elf_link_hash_entry *h;
4651 struct bfd_link_hash_entry *bh;
4652 struct mips_elf_link_hash_table *htab;
4653
4654 htab = mips_elf_hash_table (info);
4655 BFD_ASSERT (htab != NULL);
4656
4657 /* This function may be called more than once. */
4658 if (htab->sgot)
4659 return TRUE;
4660
4661 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4662 | SEC_LINKER_CREATED);
4663
4664 /* We have to use an alignment of 2**4 here because this is hardcoded
4665 in the function stub generation and in the linker script. */
4666 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4667 if (s == NULL
4668 || ! bfd_set_section_alignment (abfd, s, 4))
4669 return FALSE;
4670 htab->sgot = s;
4671
4672 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4673 linker script because we don't want to define the symbol if we
4674 are not creating a global offset table. */
4675 bh = NULL;
4676 if (! (_bfd_generic_link_add_one_symbol
4677 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4678 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4679 return FALSE;
4680
4681 h = (struct elf_link_hash_entry *) bh;
4682 h->non_elf = 0;
4683 h->def_regular = 1;
4684 h->type = STT_OBJECT;
4685 elf_hash_table (info)->hgot = h;
4686
4687 if (info->shared
4688 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4689 return FALSE;
4690
4691 htab->got_info = mips_elf_create_got_info (abfd);
4692 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4693 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4694
4695 /* We also need a .got.plt section when generating PLTs. */
4696 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4697 SEC_ALLOC | SEC_LOAD
4698 | SEC_HAS_CONTENTS
4699 | SEC_IN_MEMORY
4700 | SEC_LINKER_CREATED);
4701 if (s == NULL)
4702 return FALSE;
4703 htab->sgotplt = s;
4704
4705 return TRUE;
4706 }
4707 \f
4708 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4709 __GOTT_INDEX__ symbols. These symbols are only special for
4710 shared objects; they are not used in executables. */
4711
4712 static bfd_boolean
4713 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4714 {
4715 return (mips_elf_hash_table (info)->is_vxworks
4716 && info->shared
4717 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4718 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4719 }
4720
4721 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4722 require an la25 stub. See also mips_elf_local_pic_function_p,
4723 which determines whether the destination function ever requires a
4724 stub. */
4725
4726 static bfd_boolean
4727 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4728 bfd_boolean target_is_16_bit_code_p)
4729 {
4730 /* We specifically ignore branches and jumps from EF_PIC objects,
4731 where the onus is on the compiler or programmer to perform any
4732 necessary initialization of $25. Sometimes such initialization
4733 is unnecessary; for example, -mno-shared functions do not use
4734 the incoming value of $25, and may therefore be called directly. */
4735 if (PIC_OBJECT_P (input_bfd))
4736 return FALSE;
4737
4738 switch (r_type)
4739 {
4740 case R_MIPS_26:
4741 case R_MIPS_PC16:
4742 case R_MICROMIPS_26_S1:
4743 case R_MICROMIPS_PC7_S1:
4744 case R_MICROMIPS_PC10_S1:
4745 case R_MICROMIPS_PC16_S1:
4746 case R_MICROMIPS_PC23_S2:
4747 return TRUE;
4748
4749 case R_MIPS16_26:
4750 return !target_is_16_bit_code_p;
4751
4752 default:
4753 return FALSE;
4754 }
4755 }
4756 \f
4757 /* Calculate the value produced by the RELOCATION (which comes from
4758 the INPUT_BFD). The ADDEND is the addend to use for this
4759 RELOCATION; RELOCATION->R_ADDEND is ignored.
4760
4761 The result of the relocation calculation is stored in VALUEP.
4762 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4763 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4764
4765 This function returns bfd_reloc_continue if the caller need take no
4766 further action regarding this relocation, bfd_reloc_notsupported if
4767 something goes dramatically wrong, bfd_reloc_overflow if an
4768 overflow occurs, and bfd_reloc_ok to indicate success. */
4769
4770 static bfd_reloc_status_type
4771 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4772 asection *input_section,
4773 struct bfd_link_info *info,
4774 const Elf_Internal_Rela *relocation,
4775 bfd_vma addend, reloc_howto_type *howto,
4776 Elf_Internal_Sym *local_syms,
4777 asection **local_sections, bfd_vma *valuep,
4778 const char **namep,
4779 bfd_boolean *cross_mode_jump_p,
4780 bfd_boolean save_addend)
4781 {
4782 /* The eventual value we will return. */
4783 bfd_vma value;
4784 /* The address of the symbol against which the relocation is
4785 occurring. */
4786 bfd_vma symbol = 0;
4787 /* The final GP value to be used for the relocatable, executable, or
4788 shared object file being produced. */
4789 bfd_vma gp;
4790 /* The place (section offset or address) of the storage unit being
4791 relocated. */
4792 bfd_vma p;
4793 /* The value of GP used to create the relocatable object. */
4794 bfd_vma gp0;
4795 /* The offset into the global offset table at which the address of
4796 the relocation entry symbol, adjusted by the addend, resides
4797 during execution. */
4798 bfd_vma g = MINUS_ONE;
4799 /* The section in which the symbol referenced by the relocation is
4800 located. */
4801 asection *sec = NULL;
4802 struct mips_elf_link_hash_entry *h = NULL;
4803 /* TRUE if the symbol referred to by this relocation is a local
4804 symbol. */
4805 bfd_boolean local_p, was_local_p;
4806 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4807 bfd_boolean gp_disp_p = FALSE;
4808 /* TRUE if the symbol referred to by this relocation is
4809 "__gnu_local_gp". */
4810 bfd_boolean gnu_local_gp_p = FALSE;
4811 Elf_Internal_Shdr *symtab_hdr;
4812 size_t extsymoff;
4813 unsigned long r_symndx;
4814 int r_type;
4815 /* TRUE if overflow occurred during the calculation of the
4816 relocation value. */
4817 bfd_boolean overflowed_p;
4818 /* TRUE if this relocation refers to a MIPS16 function. */
4819 bfd_boolean target_is_16_bit_code_p = FALSE;
4820 bfd_boolean target_is_micromips_code_p = FALSE;
4821 struct mips_elf_link_hash_table *htab;
4822 bfd *dynobj;
4823
4824 dynobj = elf_hash_table (info)->dynobj;
4825 htab = mips_elf_hash_table (info);
4826 BFD_ASSERT (htab != NULL);
4827
4828 /* Parse the relocation. */
4829 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4830 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4831 p = (input_section->output_section->vma
4832 + input_section->output_offset
4833 + relocation->r_offset);
4834
4835 /* Assume that there will be no overflow. */
4836 overflowed_p = FALSE;
4837
4838 /* Figure out whether or not the symbol is local, and get the offset
4839 used in the array of hash table entries. */
4840 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4841 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4842 local_sections);
4843 was_local_p = local_p;
4844 if (! elf_bad_symtab (input_bfd))
4845 extsymoff = symtab_hdr->sh_info;
4846 else
4847 {
4848 /* The symbol table does not follow the rule that local symbols
4849 must come before globals. */
4850 extsymoff = 0;
4851 }
4852
4853 /* Figure out the value of the symbol. */
4854 if (local_p)
4855 {
4856 Elf_Internal_Sym *sym;
4857
4858 sym = local_syms + r_symndx;
4859 sec = local_sections[r_symndx];
4860
4861 symbol = sec->output_section->vma + sec->output_offset;
4862 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4863 || (sec->flags & SEC_MERGE))
4864 symbol += sym->st_value;
4865 if ((sec->flags & SEC_MERGE)
4866 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4867 {
4868 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4869 addend -= symbol;
4870 addend += sec->output_section->vma + sec->output_offset;
4871 }
4872
4873 /* MIPS16/microMIPS text labels should be treated as odd. */
4874 if (ELF_ST_IS_COMPRESSED (sym->st_other))
4875 ++symbol;
4876
4877 /* Record the name of this symbol, for our caller. */
4878 *namep = bfd_elf_string_from_elf_section (input_bfd,
4879 symtab_hdr->sh_link,
4880 sym->st_name);
4881 if (*namep == '\0')
4882 *namep = bfd_section_name (input_bfd, sec);
4883
4884 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4885 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
4886 }
4887 else
4888 {
4889 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4890
4891 /* For global symbols we look up the symbol in the hash-table. */
4892 h = ((struct mips_elf_link_hash_entry *)
4893 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4894 /* Find the real hash-table entry for this symbol. */
4895 while (h->root.root.type == bfd_link_hash_indirect
4896 || h->root.root.type == bfd_link_hash_warning)
4897 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4898
4899 /* Record the name of this symbol, for our caller. */
4900 *namep = h->root.root.root.string;
4901
4902 /* See if this is the special _gp_disp symbol. Note that such a
4903 symbol must always be a global symbol. */
4904 if (strcmp (*namep, "_gp_disp") == 0
4905 && ! NEWABI_P (input_bfd))
4906 {
4907 /* Relocations against _gp_disp are permitted only with
4908 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4909 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4910 return bfd_reloc_notsupported;
4911
4912 gp_disp_p = TRUE;
4913 }
4914 /* See if this is the special _gp symbol. Note that such a
4915 symbol must always be a global symbol. */
4916 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4917 gnu_local_gp_p = TRUE;
4918
4919
4920 /* If this symbol is defined, calculate its address. Note that
4921 _gp_disp is a magic symbol, always implicitly defined by the
4922 linker, so it's inappropriate to check to see whether or not
4923 its defined. */
4924 else if ((h->root.root.type == bfd_link_hash_defined
4925 || h->root.root.type == bfd_link_hash_defweak)
4926 && h->root.root.u.def.section)
4927 {
4928 sec = h->root.root.u.def.section;
4929 if (sec->output_section)
4930 symbol = (h->root.root.u.def.value
4931 + sec->output_section->vma
4932 + sec->output_offset);
4933 else
4934 symbol = h->root.root.u.def.value;
4935 }
4936 else if (h->root.root.type == bfd_link_hash_undefweak)
4937 /* We allow relocations against undefined weak symbols, giving
4938 it the value zero, so that you can undefined weak functions
4939 and check to see if they exist by looking at their
4940 addresses. */
4941 symbol = 0;
4942 else if (info->unresolved_syms_in_objects == RM_IGNORE
4943 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4944 symbol = 0;
4945 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4946 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4947 {
4948 /* If this is a dynamic link, we should have created a
4949 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4950 in in _bfd_mips_elf_create_dynamic_sections.
4951 Otherwise, we should define the symbol with a value of 0.
4952 FIXME: It should probably get into the symbol table
4953 somehow as well. */
4954 BFD_ASSERT (! info->shared);
4955 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4956 symbol = 0;
4957 }
4958 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4959 {
4960 /* This is an optional symbol - an Irix specific extension to the
4961 ELF spec. Ignore it for now.
4962 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4963 than simply ignoring them, but we do not handle this for now.
4964 For information see the "64-bit ELF Object File Specification"
4965 which is available from here:
4966 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4967 symbol = 0;
4968 }
4969 else if ((*info->callbacks->undefined_symbol)
4970 (info, h->root.root.root.string, input_bfd,
4971 input_section, relocation->r_offset,
4972 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4973 || ELF_ST_VISIBILITY (h->root.other)))
4974 {
4975 return bfd_reloc_undefined;
4976 }
4977 else
4978 {
4979 return bfd_reloc_notsupported;
4980 }
4981
4982 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
4983 /* If the output section is the PLT section,
4984 then the target is not microMIPS. */
4985 target_is_micromips_code_p = (htab->splt != sec
4986 && ELF_ST_IS_MICROMIPS (h->root.other));
4987 }
4988
4989 /* If this is a reference to a 16-bit function with a stub, we need
4990 to redirect the relocation to the stub unless:
4991
4992 (a) the relocation is for a MIPS16 JAL;
4993
4994 (b) the relocation is for a MIPS16 PIC call, and there are no
4995 non-MIPS16 uses of the GOT slot; or
4996
4997 (c) the section allows direct references to MIPS16 functions. */
4998 if (r_type != R_MIPS16_26
4999 && !info->relocatable
5000 && ((h != NULL
5001 && h->fn_stub != NULL
5002 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5003 || (local_p
5004 && elf_tdata (input_bfd)->local_stubs != NULL
5005 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5006 && !section_allows_mips16_refs_p (input_section))
5007 {
5008 /* This is a 32- or 64-bit call to a 16-bit function. We should
5009 have already noticed that we were going to need the
5010 stub. */
5011 if (local_p)
5012 {
5013 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5014 value = 0;
5015 }
5016 else
5017 {
5018 BFD_ASSERT (h->need_fn_stub);
5019 if (h->la25_stub)
5020 {
5021 /* If a LA25 header for the stub itself exists, point to the
5022 prepended LUI/ADDIU sequence. */
5023 sec = h->la25_stub->stub_section;
5024 value = h->la25_stub->offset;
5025 }
5026 else
5027 {
5028 sec = h->fn_stub;
5029 value = 0;
5030 }
5031 }
5032
5033 symbol = sec->output_section->vma + sec->output_offset + value;
5034 /* The target is 16-bit, but the stub isn't. */
5035 target_is_16_bit_code_p = FALSE;
5036 }
5037 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5038 need to redirect the call to the stub. Note that we specifically
5039 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5040 use an indirect stub instead. */
5041 else if (r_type == R_MIPS16_26 && !info->relocatable
5042 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5043 || (local_p
5044 && elf_tdata (input_bfd)->local_call_stubs != NULL
5045 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5046 && !target_is_16_bit_code_p)
5047 {
5048 if (local_p)
5049 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5050 else
5051 {
5052 /* If both call_stub and call_fp_stub are defined, we can figure
5053 out which one to use by checking which one appears in the input
5054 file. */
5055 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5056 {
5057 asection *o;
5058
5059 sec = NULL;
5060 for (o = input_bfd->sections; o != NULL; o = o->next)
5061 {
5062 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5063 {
5064 sec = h->call_fp_stub;
5065 break;
5066 }
5067 }
5068 if (sec == NULL)
5069 sec = h->call_stub;
5070 }
5071 else if (h->call_stub != NULL)
5072 sec = h->call_stub;
5073 else
5074 sec = h->call_fp_stub;
5075 }
5076
5077 BFD_ASSERT (sec->size > 0);
5078 symbol = sec->output_section->vma + sec->output_offset;
5079 }
5080 /* If this is a direct call to a PIC function, redirect to the
5081 non-PIC stub. */
5082 else if (h != NULL && h->la25_stub
5083 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5084 target_is_16_bit_code_p))
5085 symbol = (h->la25_stub->stub_section->output_section->vma
5086 + h->la25_stub->stub_section->output_offset
5087 + h->la25_stub->offset);
5088
5089 /* Make sure MIPS16 and microMIPS are not used together. */
5090 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5091 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5092 {
5093 (*_bfd_error_handler)
5094 (_("MIPS16 and microMIPS functions cannot call each other"));
5095 return bfd_reloc_notsupported;
5096 }
5097
5098 /* Calls from 16-bit code to 32-bit code and vice versa require the
5099 mode change. However, we can ignore calls to undefined weak symbols,
5100 which should never be executed at runtime. This exception is important
5101 because the assembly writer may have "known" that any definition of the
5102 symbol would be 16-bit code, and that direct jumps were therefore
5103 acceptable. */
5104 *cross_mode_jump_p = (!info->relocatable
5105 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5106 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5107 || (r_type == R_MICROMIPS_26_S1
5108 && !target_is_micromips_code_p)
5109 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5110 && (target_is_16_bit_code_p
5111 || target_is_micromips_code_p))));
5112
5113 local_p = (h == NULL
5114 || (h->got_only_for_calls
5115 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5116 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5117
5118 gp0 = _bfd_get_gp_value (input_bfd);
5119 gp = _bfd_get_gp_value (abfd);
5120 if (htab->got_info)
5121 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5122
5123 if (gnu_local_gp_p)
5124 symbol = gp;
5125
5126 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5127 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5128 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5129 if (got_page_reloc_p (r_type) && !local_p)
5130 {
5131 r_type = (micromips_reloc_p (r_type)
5132 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5133 addend = 0;
5134 }
5135
5136 /* If we haven't already determined the GOT offset, and we're going
5137 to need it, get it now. */
5138 switch (r_type)
5139 {
5140 case R_MIPS16_CALL16:
5141 case R_MIPS16_GOT16:
5142 case R_MIPS_CALL16:
5143 case R_MIPS_GOT16:
5144 case R_MIPS_GOT_DISP:
5145 case R_MIPS_GOT_HI16:
5146 case R_MIPS_CALL_HI16:
5147 case R_MIPS_GOT_LO16:
5148 case R_MIPS_CALL_LO16:
5149 case R_MICROMIPS_CALL16:
5150 case R_MICROMIPS_GOT16:
5151 case R_MICROMIPS_GOT_DISP:
5152 case R_MICROMIPS_GOT_HI16:
5153 case R_MICROMIPS_CALL_HI16:
5154 case R_MICROMIPS_GOT_LO16:
5155 case R_MICROMIPS_CALL_LO16:
5156 case R_MIPS_TLS_GD:
5157 case R_MIPS_TLS_GOTTPREL:
5158 case R_MIPS_TLS_LDM:
5159 case R_MIPS16_TLS_GD:
5160 case R_MIPS16_TLS_GOTTPREL:
5161 case R_MIPS16_TLS_LDM:
5162 case R_MICROMIPS_TLS_GD:
5163 case R_MICROMIPS_TLS_GOTTPREL:
5164 case R_MICROMIPS_TLS_LDM:
5165 /* Find the index into the GOT where this value is located. */
5166 if (tls_ldm_reloc_p (r_type))
5167 {
5168 g = mips_elf_local_got_index (abfd, input_bfd, info,
5169 0, 0, NULL, r_type);
5170 if (g == MINUS_ONE)
5171 return bfd_reloc_outofrange;
5172 }
5173 else if (!local_p)
5174 {
5175 /* On VxWorks, CALL relocations should refer to the .got.plt
5176 entry, which is initialized to point at the PLT stub. */
5177 if (htab->is_vxworks
5178 && (call_hi16_reloc_p (r_type)
5179 || call_lo16_reloc_p (r_type)
5180 || call16_reloc_p (r_type)))
5181 {
5182 BFD_ASSERT (addend == 0);
5183 BFD_ASSERT (h->root.needs_plt);
5184 g = mips_elf_gotplt_index (info, &h->root);
5185 }
5186 else
5187 {
5188 BFD_ASSERT (addend == 0);
5189 g = mips_elf_global_got_index (abfd, info, input_bfd,
5190 &h->root, r_type);
5191 if (!TLS_RELOC_P (r_type)
5192 && !elf_hash_table (info)->dynamic_sections_created)
5193 /* This is a static link. We must initialize the GOT entry. */
5194 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5195 }
5196 }
5197 else if (!htab->is_vxworks
5198 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5199 /* The calculation below does not involve "g". */
5200 break;
5201 else
5202 {
5203 g = mips_elf_local_got_index (abfd, input_bfd, info,
5204 symbol + addend, r_symndx, h, r_type);
5205 if (g == MINUS_ONE)
5206 return bfd_reloc_outofrange;
5207 }
5208
5209 /* Convert GOT indices to actual offsets. */
5210 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5211 break;
5212 }
5213
5214 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5215 symbols are resolved by the loader. Add them to .rela.dyn. */
5216 if (h != NULL && is_gott_symbol (info, &h->root))
5217 {
5218 Elf_Internal_Rela outrel;
5219 bfd_byte *loc;
5220 asection *s;
5221
5222 s = mips_elf_rel_dyn_section (info, FALSE);
5223 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5224
5225 outrel.r_offset = (input_section->output_section->vma
5226 + input_section->output_offset
5227 + relocation->r_offset);
5228 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5229 outrel.r_addend = addend;
5230 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5231
5232 /* If we've written this relocation for a readonly section,
5233 we need to set DF_TEXTREL again, so that we do not delete the
5234 DT_TEXTREL tag. */
5235 if (MIPS_ELF_READONLY_SECTION (input_section))
5236 info->flags |= DF_TEXTREL;
5237
5238 *valuep = 0;
5239 return bfd_reloc_ok;
5240 }
5241
5242 /* Figure out what kind of relocation is being performed. */
5243 switch (r_type)
5244 {
5245 case R_MIPS_NONE:
5246 return bfd_reloc_continue;
5247
5248 case R_MIPS_16:
5249 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5250 overflowed_p = mips_elf_overflow_p (value, 16);
5251 break;
5252
5253 case R_MIPS_32:
5254 case R_MIPS_REL32:
5255 case R_MIPS_64:
5256 if ((info->shared
5257 || (htab->root.dynamic_sections_created
5258 && h != NULL
5259 && h->root.def_dynamic
5260 && !h->root.def_regular
5261 && !h->has_static_relocs))
5262 && r_symndx != STN_UNDEF
5263 && (h == NULL
5264 || h->root.root.type != bfd_link_hash_undefweak
5265 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5266 && (input_section->flags & SEC_ALLOC) != 0)
5267 {
5268 /* If we're creating a shared library, then we can't know
5269 where the symbol will end up. So, we create a relocation
5270 record in the output, and leave the job up to the dynamic
5271 linker. We must do the same for executable references to
5272 shared library symbols, unless we've decided to use copy
5273 relocs or PLTs instead. */
5274 value = addend;
5275 if (!mips_elf_create_dynamic_relocation (abfd,
5276 info,
5277 relocation,
5278 h,
5279 sec,
5280 symbol,
5281 &value,
5282 input_section))
5283 return bfd_reloc_undefined;
5284 }
5285 else
5286 {
5287 if (r_type != R_MIPS_REL32)
5288 value = symbol + addend;
5289 else
5290 value = addend;
5291 }
5292 value &= howto->dst_mask;
5293 break;
5294
5295 case R_MIPS_PC32:
5296 value = symbol + addend - p;
5297 value &= howto->dst_mask;
5298 break;
5299
5300 case R_MIPS16_26:
5301 /* The calculation for R_MIPS16_26 is just the same as for an
5302 R_MIPS_26. It's only the storage of the relocated field into
5303 the output file that's different. That's handled in
5304 mips_elf_perform_relocation. So, we just fall through to the
5305 R_MIPS_26 case here. */
5306 case R_MIPS_26:
5307 case R_MICROMIPS_26_S1:
5308 {
5309 unsigned int shift;
5310
5311 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5312 the correct ISA mode selector and bit 1 must be 0. */
5313 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5314 return bfd_reloc_outofrange;
5315
5316 /* Shift is 2, unusually, for microMIPS JALX. */
5317 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5318
5319 if (was_local_p)
5320 value = addend | ((p + 4) & (0xfc000000 << shift));
5321 else
5322 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5323 value = (value + symbol) >> shift;
5324 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5325 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5326 value &= howto->dst_mask;
5327 }
5328 break;
5329
5330 case R_MIPS_TLS_DTPREL_HI16:
5331 case R_MIPS16_TLS_DTPREL_HI16:
5332 case R_MICROMIPS_TLS_DTPREL_HI16:
5333 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5334 & howto->dst_mask);
5335 break;
5336
5337 case R_MIPS_TLS_DTPREL_LO16:
5338 case R_MIPS_TLS_DTPREL32:
5339 case R_MIPS_TLS_DTPREL64:
5340 case R_MIPS16_TLS_DTPREL_LO16:
5341 case R_MICROMIPS_TLS_DTPREL_LO16:
5342 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5343 break;
5344
5345 case R_MIPS_TLS_TPREL_HI16:
5346 case R_MIPS16_TLS_TPREL_HI16:
5347 case R_MICROMIPS_TLS_TPREL_HI16:
5348 value = (mips_elf_high (addend + symbol - tprel_base (info))
5349 & howto->dst_mask);
5350 break;
5351
5352 case R_MIPS_TLS_TPREL_LO16:
5353 case R_MIPS_TLS_TPREL32:
5354 case R_MIPS_TLS_TPREL64:
5355 case R_MIPS16_TLS_TPREL_LO16:
5356 case R_MICROMIPS_TLS_TPREL_LO16:
5357 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5358 break;
5359
5360 case R_MIPS_HI16:
5361 case R_MIPS16_HI16:
5362 case R_MICROMIPS_HI16:
5363 if (!gp_disp_p)
5364 {
5365 value = mips_elf_high (addend + symbol);
5366 value &= howto->dst_mask;
5367 }
5368 else
5369 {
5370 /* For MIPS16 ABI code we generate this sequence
5371 0: li $v0,%hi(_gp_disp)
5372 4: addiupc $v1,%lo(_gp_disp)
5373 8: sll $v0,16
5374 12: addu $v0,$v1
5375 14: move $gp,$v0
5376 So the offsets of hi and lo relocs are the same, but the
5377 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5378 ADDIUPC clears the low two bits of the instruction address,
5379 so the base is ($t9 + 4) & ~3. */
5380 if (r_type == R_MIPS16_HI16)
5381 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5382 /* The microMIPS .cpload sequence uses the same assembly
5383 instructions as the traditional psABI version, but the
5384 incoming $t9 has the low bit set. */
5385 else if (r_type == R_MICROMIPS_HI16)
5386 value = mips_elf_high (addend + gp - p - 1);
5387 else
5388 value = mips_elf_high (addend + gp - p);
5389 overflowed_p = mips_elf_overflow_p (value, 16);
5390 }
5391 break;
5392
5393 case R_MIPS_LO16:
5394 case R_MIPS16_LO16:
5395 case R_MICROMIPS_LO16:
5396 case R_MICROMIPS_HI0_LO16:
5397 if (!gp_disp_p)
5398 value = (symbol + addend) & howto->dst_mask;
5399 else
5400 {
5401 /* See the comment for R_MIPS16_HI16 above for the reason
5402 for this conditional. */
5403 if (r_type == R_MIPS16_LO16)
5404 value = addend + gp - (p & ~(bfd_vma) 0x3);
5405 else if (r_type == R_MICROMIPS_LO16
5406 || r_type == R_MICROMIPS_HI0_LO16)
5407 value = addend + gp - p + 3;
5408 else
5409 value = addend + gp - p + 4;
5410 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5411 for overflow. But, on, say, IRIX5, relocations against
5412 _gp_disp are normally generated from the .cpload
5413 pseudo-op. It generates code that normally looks like
5414 this:
5415
5416 lui $gp,%hi(_gp_disp)
5417 addiu $gp,$gp,%lo(_gp_disp)
5418 addu $gp,$gp,$t9
5419
5420 Here $t9 holds the address of the function being called,
5421 as required by the MIPS ELF ABI. The R_MIPS_LO16
5422 relocation can easily overflow in this situation, but the
5423 R_MIPS_HI16 relocation will handle the overflow.
5424 Therefore, we consider this a bug in the MIPS ABI, and do
5425 not check for overflow here. */
5426 }
5427 break;
5428
5429 case R_MIPS_LITERAL:
5430 case R_MICROMIPS_LITERAL:
5431 /* Because we don't merge literal sections, we can handle this
5432 just like R_MIPS_GPREL16. In the long run, we should merge
5433 shared literals, and then we will need to additional work
5434 here. */
5435
5436 /* Fall through. */
5437
5438 case R_MIPS16_GPREL:
5439 /* The R_MIPS16_GPREL performs the same calculation as
5440 R_MIPS_GPREL16, but stores the relocated bits in a different
5441 order. We don't need to do anything special here; the
5442 differences are handled in mips_elf_perform_relocation. */
5443 case R_MIPS_GPREL16:
5444 case R_MICROMIPS_GPREL7_S2:
5445 case R_MICROMIPS_GPREL16:
5446 /* Only sign-extend the addend if it was extracted from the
5447 instruction. If the addend was separate, leave it alone,
5448 otherwise we may lose significant bits. */
5449 if (howto->partial_inplace)
5450 addend = _bfd_mips_elf_sign_extend (addend, 16);
5451 value = symbol + addend - gp;
5452 /* If the symbol was local, any earlier relocatable links will
5453 have adjusted its addend with the gp offset, so compensate
5454 for that now. Don't do it for symbols forced local in this
5455 link, though, since they won't have had the gp offset applied
5456 to them before. */
5457 if (was_local_p)
5458 value += gp0;
5459 overflowed_p = mips_elf_overflow_p (value, 16);
5460 break;
5461
5462 case R_MIPS16_GOT16:
5463 case R_MIPS16_CALL16:
5464 case R_MIPS_GOT16:
5465 case R_MIPS_CALL16:
5466 case R_MICROMIPS_GOT16:
5467 case R_MICROMIPS_CALL16:
5468 /* VxWorks does not have separate local and global semantics for
5469 R_MIPS*_GOT16; every relocation evaluates to "G". */
5470 if (!htab->is_vxworks && local_p)
5471 {
5472 value = mips_elf_got16_entry (abfd, input_bfd, info,
5473 symbol + addend, !was_local_p);
5474 if (value == MINUS_ONE)
5475 return bfd_reloc_outofrange;
5476 value
5477 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5478 overflowed_p = mips_elf_overflow_p (value, 16);
5479 break;
5480 }
5481
5482 /* Fall through. */
5483
5484 case R_MIPS_TLS_GD:
5485 case R_MIPS_TLS_GOTTPREL:
5486 case R_MIPS_TLS_LDM:
5487 case R_MIPS_GOT_DISP:
5488 case R_MIPS16_TLS_GD:
5489 case R_MIPS16_TLS_GOTTPREL:
5490 case R_MIPS16_TLS_LDM:
5491 case R_MICROMIPS_TLS_GD:
5492 case R_MICROMIPS_TLS_GOTTPREL:
5493 case R_MICROMIPS_TLS_LDM:
5494 case R_MICROMIPS_GOT_DISP:
5495 value = g;
5496 overflowed_p = mips_elf_overflow_p (value, 16);
5497 break;
5498
5499 case R_MIPS_GPREL32:
5500 value = (addend + symbol + gp0 - gp);
5501 if (!save_addend)
5502 value &= howto->dst_mask;
5503 break;
5504
5505 case R_MIPS_PC16:
5506 case R_MIPS_GNU_REL16_S2:
5507 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5508 overflowed_p = mips_elf_overflow_p (value, 18);
5509 value >>= howto->rightshift;
5510 value &= howto->dst_mask;
5511 break;
5512
5513 case R_MICROMIPS_PC7_S1:
5514 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5515 overflowed_p = mips_elf_overflow_p (value, 8);
5516 value >>= howto->rightshift;
5517 value &= howto->dst_mask;
5518 break;
5519
5520 case R_MICROMIPS_PC10_S1:
5521 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5522 overflowed_p = mips_elf_overflow_p (value, 11);
5523 value >>= howto->rightshift;
5524 value &= howto->dst_mask;
5525 break;
5526
5527 case R_MICROMIPS_PC16_S1:
5528 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5529 overflowed_p = mips_elf_overflow_p (value, 17);
5530 value >>= howto->rightshift;
5531 value &= howto->dst_mask;
5532 break;
5533
5534 case R_MICROMIPS_PC23_S2:
5535 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5536 overflowed_p = mips_elf_overflow_p (value, 25);
5537 value >>= howto->rightshift;
5538 value &= howto->dst_mask;
5539 break;
5540
5541 case R_MIPS_GOT_HI16:
5542 case R_MIPS_CALL_HI16:
5543 case R_MICROMIPS_GOT_HI16:
5544 case R_MICROMIPS_CALL_HI16:
5545 /* We're allowed to handle these two relocations identically.
5546 The dynamic linker is allowed to handle the CALL relocations
5547 differently by creating a lazy evaluation stub. */
5548 value = g;
5549 value = mips_elf_high (value);
5550 value &= howto->dst_mask;
5551 break;
5552
5553 case R_MIPS_GOT_LO16:
5554 case R_MIPS_CALL_LO16:
5555 case R_MICROMIPS_GOT_LO16:
5556 case R_MICROMIPS_CALL_LO16:
5557 value = g & howto->dst_mask;
5558 break;
5559
5560 case R_MIPS_GOT_PAGE:
5561 case R_MICROMIPS_GOT_PAGE:
5562 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5563 if (value == MINUS_ONE)
5564 return bfd_reloc_outofrange;
5565 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5566 overflowed_p = mips_elf_overflow_p (value, 16);
5567 break;
5568
5569 case R_MIPS_GOT_OFST:
5570 case R_MICROMIPS_GOT_OFST:
5571 if (local_p)
5572 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5573 else
5574 value = addend;
5575 overflowed_p = mips_elf_overflow_p (value, 16);
5576 break;
5577
5578 case R_MIPS_SUB:
5579 case R_MICROMIPS_SUB:
5580 value = symbol - addend;
5581 value &= howto->dst_mask;
5582 break;
5583
5584 case R_MIPS_HIGHER:
5585 case R_MICROMIPS_HIGHER:
5586 value = mips_elf_higher (addend + symbol);
5587 value &= howto->dst_mask;
5588 break;
5589
5590 case R_MIPS_HIGHEST:
5591 case R_MICROMIPS_HIGHEST:
5592 value = mips_elf_highest (addend + symbol);
5593 value &= howto->dst_mask;
5594 break;
5595
5596 case R_MIPS_SCN_DISP:
5597 case R_MICROMIPS_SCN_DISP:
5598 value = symbol + addend - sec->output_offset;
5599 value &= howto->dst_mask;
5600 break;
5601
5602 case R_MIPS_JALR:
5603 case R_MICROMIPS_JALR:
5604 /* This relocation is only a hint. In some cases, we optimize
5605 it into a bal instruction. But we don't try to optimize
5606 when the symbol does not resolve locally. */
5607 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5608 return bfd_reloc_continue;
5609 value = symbol + addend;
5610 break;
5611
5612 case R_MIPS_PJUMP:
5613 case R_MIPS_GNU_VTINHERIT:
5614 case R_MIPS_GNU_VTENTRY:
5615 /* We don't do anything with these at present. */
5616 return bfd_reloc_continue;
5617
5618 default:
5619 /* An unrecognized relocation type. */
5620 return bfd_reloc_notsupported;
5621 }
5622
5623 /* Store the VALUE for our caller. */
5624 *valuep = value;
5625 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5626 }
5627
5628 /* Obtain the field relocated by RELOCATION. */
5629
5630 static bfd_vma
5631 mips_elf_obtain_contents (reloc_howto_type *howto,
5632 const Elf_Internal_Rela *relocation,
5633 bfd *input_bfd, bfd_byte *contents)
5634 {
5635 bfd_vma x;
5636 bfd_byte *location = contents + relocation->r_offset;
5637
5638 /* Obtain the bytes. */
5639 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5640
5641 return x;
5642 }
5643
5644 /* It has been determined that the result of the RELOCATION is the
5645 VALUE. Use HOWTO to place VALUE into the output file at the
5646 appropriate position. The SECTION is the section to which the
5647 relocation applies.
5648 CROSS_MODE_JUMP_P is true if the relocation field
5649 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5650
5651 Returns FALSE if anything goes wrong. */
5652
5653 static bfd_boolean
5654 mips_elf_perform_relocation (struct bfd_link_info *info,
5655 reloc_howto_type *howto,
5656 const Elf_Internal_Rela *relocation,
5657 bfd_vma value, bfd *input_bfd,
5658 asection *input_section, bfd_byte *contents,
5659 bfd_boolean cross_mode_jump_p)
5660 {
5661 bfd_vma x;
5662 bfd_byte *location;
5663 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5664
5665 /* Figure out where the relocation is occurring. */
5666 location = contents + relocation->r_offset;
5667
5668 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5669
5670 /* Obtain the current value. */
5671 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5672
5673 /* Clear the field we are setting. */
5674 x &= ~howto->dst_mask;
5675
5676 /* Set the field. */
5677 x |= (value & howto->dst_mask);
5678
5679 /* If required, turn JAL into JALX. */
5680 if (cross_mode_jump_p && jal_reloc_p (r_type))
5681 {
5682 bfd_boolean ok;
5683 bfd_vma opcode = x >> 26;
5684 bfd_vma jalx_opcode;
5685
5686 /* Check to see if the opcode is already JAL or JALX. */
5687 if (r_type == R_MIPS16_26)
5688 {
5689 ok = ((opcode == 0x6) || (opcode == 0x7));
5690 jalx_opcode = 0x7;
5691 }
5692 else if (r_type == R_MICROMIPS_26_S1)
5693 {
5694 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5695 jalx_opcode = 0x3c;
5696 }
5697 else
5698 {
5699 ok = ((opcode == 0x3) || (opcode == 0x1d));
5700 jalx_opcode = 0x1d;
5701 }
5702
5703 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5704 convert J or JALS to JALX. */
5705 if (!ok)
5706 {
5707 (*_bfd_error_handler)
5708 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5709 input_bfd,
5710 input_section,
5711 (unsigned long) relocation->r_offset);
5712 bfd_set_error (bfd_error_bad_value);
5713 return FALSE;
5714 }
5715
5716 /* Make this the JALX opcode. */
5717 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5718 }
5719
5720 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5721 range. */
5722 if (!info->relocatable
5723 && !cross_mode_jump_p
5724 && ((JAL_TO_BAL_P (input_bfd)
5725 && r_type == R_MIPS_26
5726 && (x >> 26) == 0x3) /* jal addr */
5727 || (JALR_TO_BAL_P (input_bfd)
5728 && r_type == R_MIPS_JALR
5729 && x == 0x0320f809) /* jalr t9 */
5730 || (JR_TO_B_P (input_bfd)
5731 && r_type == R_MIPS_JALR
5732 && x == 0x03200008))) /* jr t9 */
5733 {
5734 bfd_vma addr;
5735 bfd_vma dest;
5736 bfd_signed_vma off;
5737
5738 addr = (input_section->output_section->vma
5739 + input_section->output_offset
5740 + relocation->r_offset
5741 + 4);
5742 if (r_type == R_MIPS_26)
5743 dest = (value << 2) | ((addr >> 28) << 28);
5744 else
5745 dest = value;
5746 off = dest - addr;
5747 if (off <= 0x1ffff && off >= -0x20000)
5748 {
5749 if (x == 0x03200008) /* jr t9 */
5750 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5751 else
5752 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5753 }
5754 }
5755
5756 /* Put the value into the output. */
5757 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5758
5759 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5760 location);
5761
5762 return TRUE;
5763 }
5764 \f
5765 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5766 is the original relocation, which is now being transformed into a
5767 dynamic relocation. The ADDENDP is adjusted if necessary; the
5768 caller should store the result in place of the original addend. */
5769
5770 static bfd_boolean
5771 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5772 struct bfd_link_info *info,
5773 const Elf_Internal_Rela *rel,
5774 struct mips_elf_link_hash_entry *h,
5775 asection *sec, bfd_vma symbol,
5776 bfd_vma *addendp, asection *input_section)
5777 {
5778 Elf_Internal_Rela outrel[3];
5779 asection *sreloc;
5780 bfd *dynobj;
5781 int r_type;
5782 long indx;
5783 bfd_boolean defined_p;
5784 struct mips_elf_link_hash_table *htab;
5785
5786 htab = mips_elf_hash_table (info);
5787 BFD_ASSERT (htab != NULL);
5788
5789 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5790 dynobj = elf_hash_table (info)->dynobj;
5791 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5792 BFD_ASSERT (sreloc != NULL);
5793 BFD_ASSERT (sreloc->contents != NULL);
5794 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5795 < sreloc->size);
5796
5797 outrel[0].r_offset =
5798 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5799 if (ABI_64_P (output_bfd))
5800 {
5801 outrel[1].r_offset =
5802 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5803 outrel[2].r_offset =
5804 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5805 }
5806
5807 if (outrel[0].r_offset == MINUS_ONE)
5808 /* The relocation field has been deleted. */
5809 return TRUE;
5810
5811 if (outrel[0].r_offset == MINUS_TWO)
5812 {
5813 /* The relocation field has been converted into a relative value of
5814 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5815 the field to be fully relocated, so add in the symbol's value. */
5816 *addendp += symbol;
5817 return TRUE;
5818 }
5819
5820 /* We must now calculate the dynamic symbol table index to use
5821 in the relocation. */
5822 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5823 {
5824 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5825 indx = h->root.dynindx;
5826 if (SGI_COMPAT (output_bfd))
5827 defined_p = h->root.def_regular;
5828 else
5829 /* ??? glibc's ld.so just adds the final GOT entry to the
5830 relocation field. It therefore treats relocs against
5831 defined symbols in the same way as relocs against
5832 undefined symbols. */
5833 defined_p = FALSE;
5834 }
5835 else
5836 {
5837 if (sec != NULL && bfd_is_abs_section (sec))
5838 indx = 0;
5839 else if (sec == NULL || sec->owner == NULL)
5840 {
5841 bfd_set_error (bfd_error_bad_value);
5842 return FALSE;
5843 }
5844 else
5845 {
5846 indx = elf_section_data (sec->output_section)->dynindx;
5847 if (indx == 0)
5848 {
5849 asection *osec = htab->root.text_index_section;
5850 indx = elf_section_data (osec)->dynindx;
5851 }
5852 if (indx == 0)
5853 abort ();
5854 }
5855
5856 /* Instead of generating a relocation using the section
5857 symbol, we may as well make it a fully relative
5858 relocation. We want to avoid generating relocations to
5859 local symbols because we used to generate them
5860 incorrectly, without adding the original symbol value,
5861 which is mandated by the ABI for section symbols. In
5862 order to give dynamic loaders and applications time to
5863 phase out the incorrect use, we refrain from emitting
5864 section-relative relocations. It's not like they're
5865 useful, after all. This should be a bit more efficient
5866 as well. */
5867 /* ??? Although this behavior is compatible with glibc's ld.so,
5868 the ABI says that relocations against STN_UNDEF should have
5869 a symbol value of 0. Irix rld honors this, so relocations
5870 against STN_UNDEF have no effect. */
5871 if (!SGI_COMPAT (output_bfd))
5872 indx = 0;
5873 defined_p = TRUE;
5874 }
5875
5876 /* If the relocation was previously an absolute relocation and
5877 this symbol will not be referred to by the relocation, we must
5878 adjust it by the value we give it in the dynamic symbol table.
5879 Otherwise leave the job up to the dynamic linker. */
5880 if (defined_p && r_type != R_MIPS_REL32)
5881 *addendp += symbol;
5882
5883 if (htab->is_vxworks)
5884 /* VxWorks uses non-relative relocations for this. */
5885 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5886 else
5887 /* The relocation is always an REL32 relocation because we don't
5888 know where the shared library will wind up at load-time. */
5889 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5890 R_MIPS_REL32);
5891
5892 /* For strict adherence to the ABI specification, we should
5893 generate a R_MIPS_64 relocation record by itself before the
5894 _REL32/_64 record as well, such that the addend is read in as
5895 a 64-bit value (REL32 is a 32-bit relocation, after all).
5896 However, since none of the existing ELF64 MIPS dynamic
5897 loaders seems to care, we don't waste space with these
5898 artificial relocations. If this turns out to not be true,
5899 mips_elf_allocate_dynamic_relocation() should be tweaked so
5900 as to make room for a pair of dynamic relocations per
5901 invocation if ABI_64_P, and here we should generate an
5902 additional relocation record with R_MIPS_64 by itself for a
5903 NULL symbol before this relocation record. */
5904 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5905 ABI_64_P (output_bfd)
5906 ? R_MIPS_64
5907 : R_MIPS_NONE);
5908 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5909
5910 /* Adjust the output offset of the relocation to reference the
5911 correct location in the output file. */
5912 outrel[0].r_offset += (input_section->output_section->vma
5913 + input_section->output_offset);
5914 outrel[1].r_offset += (input_section->output_section->vma
5915 + input_section->output_offset);
5916 outrel[2].r_offset += (input_section->output_section->vma
5917 + input_section->output_offset);
5918
5919 /* Put the relocation back out. We have to use the special
5920 relocation outputter in the 64-bit case since the 64-bit
5921 relocation format is non-standard. */
5922 if (ABI_64_P (output_bfd))
5923 {
5924 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5925 (output_bfd, &outrel[0],
5926 (sreloc->contents
5927 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5928 }
5929 else if (htab->is_vxworks)
5930 {
5931 /* VxWorks uses RELA rather than REL dynamic relocations. */
5932 outrel[0].r_addend = *addendp;
5933 bfd_elf32_swap_reloca_out
5934 (output_bfd, &outrel[0],
5935 (sreloc->contents
5936 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5937 }
5938 else
5939 bfd_elf32_swap_reloc_out
5940 (output_bfd, &outrel[0],
5941 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5942
5943 /* We've now added another relocation. */
5944 ++sreloc->reloc_count;
5945
5946 /* Make sure the output section is writable. The dynamic linker
5947 will be writing to it. */
5948 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5949 |= SHF_WRITE;
5950
5951 /* On IRIX5, make an entry of compact relocation info. */
5952 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5953 {
5954 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
5955 bfd_byte *cr;
5956
5957 if (scpt)
5958 {
5959 Elf32_crinfo cptrel;
5960
5961 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5962 cptrel.vaddr = (rel->r_offset
5963 + input_section->output_section->vma
5964 + input_section->output_offset);
5965 if (r_type == R_MIPS_REL32)
5966 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5967 else
5968 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5969 mips_elf_set_cr_dist2to (cptrel, 0);
5970 cptrel.konst = *addendp;
5971
5972 cr = (scpt->contents
5973 + sizeof (Elf32_External_compact_rel));
5974 mips_elf_set_cr_relvaddr (cptrel, 0);
5975 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5976 ((Elf32_External_crinfo *) cr
5977 + scpt->reloc_count));
5978 ++scpt->reloc_count;
5979 }
5980 }
5981
5982 /* If we've written this relocation for a readonly section,
5983 we need to set DF_TEXTREL again, so that we do not delete the
5984 DT_TEXTREL tag. */
5985 if (MIPS_ELF_READONLY_SECTION (input_section))
5986 info->flags |= DF_TEXTREL;
5987
5988 return TRUE;
5989 }
5990 \f
5991 /* Return the MACH for a MIPS e_flags value. */
5992
5993 unsigned long
5994 _bfd_elf_mips_mach (flagword flags)
5995 {
5996 switch (flags & EF_MIPS_MACH)
5997 {
5998 case E_MIPS_MACH_3900:
5999 return bfd_mach_mips3900;
6000
6001 case E_MIPS_MACH_4010:
6002 return bfd_mach_mips4010;
6003
6004 case E_MIPS_MACH_4100:
6005 return bfd_mach_mips4100;
6006
6007 case E_MIPS_MACH_4111:
6008 return bfd_mach_mips4111;
6009
6010 case E_MIPS_MACH_4120:
6011 return bfd_mach_mips4120;
6012
6013 case E_MIPS_MACH_4650:
6014 return bfd_mach_mips4650;
6015
6016 case E_MIPS_MACH_5400:
6017 return bfd_mach_mips5400;
6018
6019 case E_MIPS_MACH_5500:
6020 return bfd_mach_mips5500;
6021
6022 case E_MIPS_MACH_5900:
6023 return bfd_mach_mips5900;
6024
6025 case E_MIPS_MACH_9000:
6026 return bfd_mach_mips9000;
6027
6028 case E_MIPS_MACH_SB1:
6029 return bfd_mach_mips_sb1;
6030
6031 case E_MIPS_MACH_LS2E:
6032 return bfd_mach_mips_loongson_2e;
6033
6034 case E_MIPS_MACH_LS2F:
6035 return bfd_mach_mips_loongson_2f;
6036
6037 case E_MIPS_MACH_LS3A:
6038 return bfd_mach_mips_loongson_3a;
6039
6040 case E_MIPS_MACH_OCTEON2:
6041 return bfd_mach_mips_octeon2;
6042
6043 case E_MIPS_MACH_OCTEON:
6044 return bfd_mach_mips_octeon;
6045
6046 case E_MIPS_MACH_XLR:
6047 return bfd_mach_mips_xlr;
6048
6049 default:
6050 switch (flags & EF_MIPS_ARCH)
6051 {
6052 default:
6053 case E_MIPS_ARCH_1:
6054 return bfd_mach_mips3000;
6055
6056 case E_MIPS_ARCH_2:
6057 return bfd_mach_mips6000;
6058
6059 case E_MIPS_ARCH_3:
6060 return bfd_mach_mips4000;
6061
6062 case E_MIPS_ARCH_4:
6063 return bfd_mach_mips8000;
6064
6065 case E_MIPS_ARCH_5:
6066 return bfd_mach_mips5;
6067
6068 case E_MIPS_ARCH_32:
6069 return bfd_mach_mipsisa32;
6070
6071 case E_MIPS_ARCH_64:
6072 return bfd_mach_mipsisa64;
6073
6074 case E_MIPS_ARCH_32R2:
6075 return bfd_mach_mipsisa32r2;
6076
6077 case E_MIPS_ARCH_64R2:
6078 return bfd_mach_mipsisa64r2;
6079 }
6080 }
6081
6082 return 0;
6083 }
6084
6085 /* Return printable name for ABI. */
6086
6087 static INLINE char *
6088 elf_mips_abi_name (bfd *abfd)
6089 {
6090 flagword flags;
6091
6092 flags = elf_elfheader (abfd)->e_flags;
6093 switch (flags & EF_MIPS_ABI)
6094 {
6095 case 0:
6096 if (ABI_N32_P (abfd))
6097 return "N32";
6098 else if (ABI_64_P (abfd))
6099 return "64";
6100 else
6101 return "none";
6102 case E_MIPS_ABI_O32:
6103 return "O32";
6104 case E_MIPS_ABI_O64:
6105 return "O64";
6106 case E_MIPS_ABI_EABI32:
6107 return "EABI32";
6108 case E_MIPS_ABI_EABI64:
6109 return "EABI64";
6110 default:
6111 return "unknown abi";
6112 }
6113 }
6114 \f
6115 /* MIPS ELF uses two common sections. One is the usual one, and the
6116 other is for small objects. All the small objects are kept
6117 together, and then referenced via the gp pointer, which yields
6118 faster assembler code. This is what we use for the small common
6119 section. This approach is copied from ecoff.c. */
6120 static asection mips_elf_scom_section;
6121 static asymbol mips_elf_scom_symbol;
6122 static asymbol *mips_elf_scom_symbol_ptr;
6123
6124 /* MIPS ELF also uses an acommon section, which represents an
6125 allocated common symbol which may be overridden by a
6126 definition in a shared library. */
6127 static asection mips_elf_acom_section;
6128 static asymbol mips_elf_acom_symbol;
6129 static asymbol *mips_elf_acom_symbol_ptr;
6130
6131 /* This is used for both the 32-bit and the 64-bit ABI. */
6132
6133 void
6134 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6135 {
6136 elf_symbol_type *elfsym;
6137
6138 /* Handle the special MIPS section numbers that a symbol may use. */
6139 elfsym = (elf_symbol_type *) asym;
6140 switch (elfsym->internal_elf_sym.st_shndx)
6141 {
6142 case SHN_MIPS_ACOMMON:
6143 /* This section is used in a dynamically linked executable file.
6144 It is an allocated common section. The dynamic linker can
6145 either resolve these symbols to something in a shared
6146 library, or it can just leave them here. For our purposes,
6147 we can consider these symbols to be in a new section. */
6148 if (mips_elf_acom_section.name == NULL)
6149 {
6150 /* Initialize the acommon section. */
6151 mips_elf_acom_section.name = ".acommon";
6152 mips_elf_acom_section.flags = SEC_ALLOC;
6153 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6154 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6155 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6156 mips_elf_acom_symbol.name = ".acommon";
6157 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6158 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6159 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6160 }
6161 asym->section = &mips_elf_acom_section;
6162 break;
6163
6164 case SHN_COMMON:
6165 /* Common symbols less than the GP size are automatically
6166 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6167 if (asym->value > elf_gp_size (abfd)
6168 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6169 || IRIX_COMPAT (abfd) == ict_irix6)
6170 break;
6171 /* Fall through. */
6172 case SHN_MIPS_SCOMMON:
6173 if (mips_elf_scom_section.name == NULL)
6174 {
6175 /* Initialize the small common section. */
6176 mips_elf_scom_section.name = ".scommon";
6177 mips_elf_scom_section.flags = SEC_IS_COMMON;
6178 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6179 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6180 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6181 mips_elf_scom_symbol.name = ".scommon";
6182 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6183 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6184 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6185 }
6186 asym->section = &mips_elf_scom_section;
6187 asym->value = elfsym->internal_elf_sym.st_size;
6188 break;
6189
6190 case SHN_MIPS_SUNDEFINED:
6191 asym->section = bfd_und_section_ptr;
6192 break;
6193
6194 case SHN_MIPS_TEXT:
6195 {
6196 asection *section = bfd_get_section_by_name (abfd, ".text");
6197
6198 if (section != NULL)
6199 {
6200 asym->section = section;
6201 /* MIPS_TEXT is a bit special, the address is not an offset
6202 to the base of the .text section. So substract the section
6203 base address to make it an offset. */
6204 asym->value -= section->vma;
6205 }
6206 }
6207 break;
6208
6209 case SHN_MIPS_DATA:
6210 {
6211 asection *section = bfd_get_section_by_name (abfd, ".data");
6212
6213 if (section != NULL)
6214 {
6215 asym->section = section;
6216 /* MIPS_DATA is a bit special, the address is not an offset
6217 to the base of the .data section. So substract the section
6218 base address to make it an offset. */
6219 asym->value -= section->vma;
6220 }
6221 }
6222 break;
6223 }
6224
6225 /* If this is an odd-valued function symbol, assume it's a MIPS16
6226 or microMIPS one. */
6227 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6228 && (asym->value & 1) != 0)
6229 {
6230 asym->value--;
6231 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6232 elfsym->internal_elf_sym.st_other
6233 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6234 else
6235 elfsym->internal_elf_sym.st_other
6236 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6237 }
6238 }
6239 \f
6240 /* Implement elf_backend_eh_frame_address_size. This differs from
6241 the default in the way it handles EABI64.
6242
6243 EABI64 was originally specified as an LP64 ABI, and that is what
6244 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6245 historically accepted the combination of -mabi=eabi and -mlong32,
6246 and this ILP32 variation has become semi-official over time.
6247 Both forms use elf32 and have pointer-sized FDE addresses.
6248
6249 If an EABI object was generated by GCC 4.0 or above, it will have
6250 an empty .gcc_compiled_longXX section, where XX is the size of longs
6251 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6252 have no special marking to distinguish them from LP64 objects.
6253
6254 We don't want users of the official LP64 ABI to be punished for the
6255 existence of the ILP32 variant, but at the same time, we don't want
6256 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6257 We therefore take the following approach:
6258
6259 - If ABFD contains a .gcc_compiled_longXX section, use it to
6260 determine the pointer size.
6261
6262 - Otherwise check the type of the first relocation. Assume that
6263 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6264
6265 - Otherwise punt.
6266
6267 The second check is enough to detect LP64 objects generated by pre-4.0
6268 compilers because, in the kind of output generated by those compilers,
6269 the first relocation will be associated with either a CIE personality
6270 routine or an FDE start address. Furthermore, the compilers never
6271 used a special (non-pointer) encoding for this ABI.
6272
6273 Checking the relocation type should also be safe because there is no
6274 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6275 did so. */
6276
6277 unsigned int
6278 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6279 {
6280 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6281 return 8;
6282 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6283 {
6284 bfd_boolean long32_p, long64_p;
6285
6286 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6287 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6288 if (long32_p && long64_p)
6289 return 0;
6290 if (long32_p)
6291 return 4;
6292 if (long64_p)
6293 return 8;
6294
6295 if (sec->reloc_count > 0
6296 && elf_section_data (sec)->relocs != NULL
6297 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6298 == R_MIPS_64))
6299 return 8;
6300
6301 return 0;
6302 }
6303 return 4;
6304 }
6305 \f
6306 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6307 relocations against two unnamed section symbols to resolve to the
6308 same address. For example, if we have code like:
6309
6310 lw $4,%got_disp(.data)($gp)
6311 lw $25,%got_disp(.text)($gp)
6312 jalr $25
6313
6314 then the linker will resolve both relocations to .data and the program
6315 will jump there rather than to .text.
6316
6317 We can work around this problem by giving names to local section symbols.
6318 This is also what the MIPSpro tools do. */
6319
6320 bfd_boolean
6321 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6322 {
6323 return SGI_COMPAT (abfd);
6324 }
6325 \f
6326 /* Work over a section just before writing it out. This routine is
6327 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6328 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6329 a better way. */
6330
6331 bfd_boolean
6332 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6333 {
6334 if (hdr->sh_type == SHT_MIPS_REGINFO
6335 && hdr->sh_size > 0)
6336 {
6337 bfd_byte buf[4];
6338
6339 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6340 BFD_ASSERT (hdr->contents == NULL);
6341
6342 if (bfd_seek (abfd,
6343 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6344 SEEK_SET) != 0)
6345 return FALSE;
6346 H_PUT_32 (abfd, elf_gp (abfd), buf);
6347 if (bfd_bwrite (buf, 4, abfd) != 4)
6348 return FALSE;
6349 }
6350
6351 if (hdr->sh_type == SHT_MIPS_OPTIONS
6352 && hdr->bfd_section != NULL
6353 && mips_elf_section_data (hdr->bfd_section) != NULL
6354 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6355 {
6356 bfd_byte *contents, *l, *lend;
6357
6358 /* We stored the section contents in the tdata field in the
6359 set_section_contents routine. We save the section contents
6360 so that we don't have to read them again.
6361 At this point we know that elf_gp is set, so we can look
6362 through the section contents to see if there is an
6363 ODK_REGINFO structure. */
6364
6365 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6366 l = contents;
6367 lend = contents + hdr->sh_size;
6368 while (l + sizeof (Elf_External_Options) <= lend)
6369 {
6370 Elf_Internal_Options intopt;
6371
6372 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6373 &intopt);
6374 if (intopt.size < sizeof (Elf_External_Options))
6375 {
6376 (*_bfd_error_handler)
6377 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6378 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6379 break;
6380 }
6381 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6382 {
6383 bfd_byte buf[8];
6384
6385 if (bfd_seek (abfd,
6386 (hdr->sh_offset
6387 + (l - contents)
6388 + sizeof (Elf_External_Options)
6389 + (sizeof (Elf64_External_RegInfo) - 8)),
6390 SEEK_SET) != 0)
6391 return FALSE;
6392 H_PUT_64 (abfd, elf_gp (abfd), buf);
6393 if (bfd_bwrite (buf, 8, abfd) != 8)
6394 return FALSE;
6395 }
6396 else if (intopt.kind == ODK_REGINFO)
6397 {
6398 bfd_byte buf[4];
6399
6400 if (bfd_seek (abfd,
6401 (hdr->sh_offset
6402 + (l - contents)
6403 + sizeof (Elf_External_Options)
6404 + (sizeof (Elf32_External_RegInfo) - 4)),
6405 SEEK_SET) != 0)
6406 return FALSE;
6407 H_PUT_32 (abfd, elf_gp (abfd), buf);
6408 if (bfd_bwrite (buf, 4, abfd) != 4)
6409 return FALSE;
6410 }
6411 l += intopt.size;
6412 }
6413 }
6414
6415 if (hdr->bfd_section != NULL)
6416 {
6417 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6418
6419 /* .sbss is not handled specially here because the GNU/Linux
6420 prelinker can convert .sbss from NOBITS to PROGBITS and
6421 changing it back to NOBITS breaks the binary. The entry in
6422 _bfd_mips_elf_special_sections will ensure the correct flags
6423 are set on .sbss if BFD creates it without reading it from an
6424 input file, and without special handling here the flags set
6425 on it in an input file will be followed. */
6426 if (strcmp (name, ".sdata") == 0
6427 || strcmp (name, ".lit8") == 0
6428 || strcmp (name, ".lit4") == 0)
6429 {
6430 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6431 hdr->sh_type = SHT_PROGBITS;
6432 }
6433 else if (strcmp (name, ".srdata") == 0)
6434 {
6435 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6436 hdr->sh_type = SHT_PROGBITS;
6437 }
6438 else if (strcmp (name, ".compact_rel") == 0)
6439 {
6440 hdr->sh_flags = 0;
6441 hdr->sh_type = SHT_PROGBITS;
6442 }
6443 else if (strcmp (name, ".rtproc") == 0)
6444 {
6445 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6446 {
6447 unsigned int adjust;
6448
6449 adjust = hdr->sh_size % hdr->sh_addralign;
6450 if (adjust != 0)
6451 hdr->sh_size += hdr->sh_addralign - adjust;
6452 }
6453 }
6454 }
6455
6456 return TRUE;
6457 }
6458
6459 /* Handle a MIPS specific section when reading an object file. This
6460 is called when elfcode.h finds a section with an unknown type.
6461 This routine supports both the 32-bit and 64-bit ELF ABI.
6462
6463 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6464 how to. */
6465
6466 bfd_boolean
6467 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6468 Elf_Internal_Shdr *hdr,
6469 const char *name,
6470 int shindex)
6471 {
6472 flagword flags = 0;
6473
6474 /* There ought to be a place to keep ELF backend specific flags, but
6475 at the moment there isn't one. We just keep track of the
6476 sections by their name, instead. Fortunately, the ABI gives
6477 suggested names for all the MIPS specific sections, so we will
6478 probably get away with this. */
6479 switch (hdr->sh_type)
6480 {
6481 case SHT_MIPS_LIBLIST:
6482 if (strcmp (name, ".liblist") != 0)
6483 return FALSE;
6484 break;
6485 case SHT_MIPS_MSYM:
6486 if (strcmp (name, ".msym") != 0)
6487 return FALSE;
6488 break;
6489 case SHT_MIPS_CONFLICT:
6490 if (strcmp (name, ".conflict") != 0)
6491 return FALSE;
6492 break;
6493 case SHT_MIPS_GPTAB:
6494 if (! CONST_STRNEQ (name, ".gptab."))
6495 return FALSE;
6496 break;
6497 case SHT_MIPS_UCODE:
6498 if (strcmp (name, ".ucode") != 0)
6499 return FALSE;
6500 break;
6501 case SHT_MIPS_DEBUG:
6502 if (strcmp (name, ".mdebug") != 0)
6503 return FALSE;
6504 flags = SEC_DEBUGGING;
6505 break;
6506 case SHT_MIPS_REGINFO:
6507 if (strcmp (name, ".reginfo") != 0
6508 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6509 return FALSE;
6510 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6511 break;
6512 case SHT_MIPS_IFACE:
6513 if (strcmp (name, ".MIPS.interfaces") != 0)
6514 return FALSE;
6515 break;
6516 case SHT_MIPS_CONTENT:
6517 if (! CONST_STRNEQ (name, ".MIPS.content"))
6518 return FALSE;
6519 break;
6520 case SHT_MIPS_OPTIONS:
6521 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6522 return FALSE;
6523 break;
6524 case SHT_MIPS_DWARF:
6525 if (! CONST_STRNEQ (name, ".debug_")
6526 && ! CONST_STRNEQ (name, ".zdebug_"))
6527 return FALSE;
6528 break;
6529 case SHT_MIPS_SYMBOL_LIB:
6530 if (strcmp (name, ".MIPS.symlib") != 0)
6531 return FALSE;
6532 break;
6533 case SHT_MIPS_EVENTS:
6534 if (! CONST_STRNEQ (name, ".MIPS.events")
6535 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6536 return FALSE;
6537 break;
6538 default:
6539 break;
6540 }
6541
6542 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6543 return FALSE;
6544
6545 if (flags)
6546 {
6547 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6548 (bfd_get_section_flags (abfd,
6549 hdr->bfd_section)
6550 | flags)))
6551 return FALSE;
6552 }
6553
6554 /* FIXME: We should record sh_info for a .gptab section. */
6555
6556 /* For a .reginfo section, set the gp value in the tdata information
6557 from the contents of this section. We need the gp value while
6558 processing relocs, so we just get it now. The .reginfo section
6559 is not used in the 64-bit MIPS ELF ABI. */
6560 if (hdr->sh_type == SHT_MIPS_REGINFO)
6561 {
6562 Elf32_External_RegInfo ext;
6563 Elf32_RegInfo s;
6564
6565 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6566 &ext, 0, sizeof ext))
6567 return FALSE;
6568 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6569 elf_gp (abfd) = s.ri_gp_value;
6570 }
6571
6572 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6573 set the gp value based on what we find. We may see both
6574 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6575 they should agree. */
6576 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6577 {
6578 bfd_byte *contents, *l, *lend;
6579
6580 contents = bfd_malloc (hdr->sh_size);
6581 if (contents == NULL)
6582 return FALSE;
6583 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6584 0, hdr->sh_size))
6585 {
6586 free (contents);
6587 return FALSE;
6588 }
6589 l = contents;
6590 lend = contents + hdr->sh_size;
6591 while (l + sizeof (Elf_External_Options) <= lend)
6592 {
6593 Elf_Internal_Options intopt;
6594
6595 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6596 &intopt);
6597 if (intopt.size < sizeof (Elf_External_Options))
6598 {
6599 (*_bfd_error_handler)
6600 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6601 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6602 break;
6603 }
6604 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6605 {
6606 Elf64_Internal_RegInfo intreg;
6607
6608 bfd_mips_elf64_swap_reginfo_in
6609 (abfd,
6610 ((Elf64_External_RegInfo *)
6611 (l + sizeof (Elf_External_Options))),
6612 &intreg);
6613 elf_gp (abfd) = intreg.ri_gp_value;
6614 }
6615 else if (intopt.kind == ODK_REGINFO)
6616 {
6617 Elf32_RegInfo intreg;
6618
6619 bfd_mips_elf32_swap_reginfo_in
6620 (abfd,
6621 ((Elf32_External_RegInfo *)
6622 (l + sizeof (Elf_External_Options))),
6623 &intreg);
6624 elf_gp (abfd) = intreg.ri_gp_value;
6625 }
6626 l += intopt.size;
6627 }
6628 free (contents);
6629 }
6630
6631 return TRUE;
6632 }
6633
6634 /* Set the correct type for a MIPS ELF section. We do this by the
6635 section name, which is a hack, but ought to work. This routine is
6636 used by both the 32-bit and the 64-bit ABI. */
6637
6638 bfd_boolean
6639 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6640 {
6641 const char *name = bfd_get_section_name (abfd, sec);
6642
6643 if (strcmp (name, ".liblist") == 0)
6644 {
6645 hdr->sh_type = SHT_MIPS_LIBLIST;
6646 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6647 /* The sh_link field is set in final_write_processing. */
6648 }
6649 else if (strcmp (name, ".conflict") == 0)
6650 hdr->sh_type = SHT_MIPS_CONFLICT;
6651 else if (CONST_STRNEQ (name, ".gptab."))
6652 {
6653 hdr->sh_type = SHT_MIPS_GPTAB;
6654 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6655 /* The sh_info field is set in final_write_processing. */
6656 }
6657 else if (strcmp (name, ".ucode") == 0)
6658 hdr->sh_type = SHT_MIPS_UCODE;
6659 else if (strcmp (name, ".mdebug") == 0)
6660 {
6661 hdr->sh_type = SHT_MIPS_DEBUG;
6662 /* In a shared object on IRIX 5.3, the .mdebug section has an
6663 entsize of 0. FIXME: Does this matter? */
6664 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6665 hdr->sh_entsize = 0;
6666 else
6667 hdr->sh_entsize = 1;
6668 }
6669 else if (strcmp (name, ".reginfo") == 0)
6670 {
6671 hdr->sh_type = SHT_MIPS_REGINFO;
6672 /* In a shared object on IRIX 5.3, the .reginfo section has an
6673 entsize of 0x18. FIXME: Does this matter? */
6674 if (SGI_COMPAT (abfd))
6675 {
6676 if ((abfd->flags & DYNAMIC) != 0)
6677 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6678 else
6679 hdr->sh_entsize = 1;
6680 }
6681 else
6682 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6683 }
6684 else if (SGI_COMPAT (abfd)
6685 && (strcmp (name, ".hash") == 0
6686 || strcmp (name, ".dynamic") == 0
6687 || strcmp (name, ".dynstr") == 0))
6688 {
6689 if (SGI_COMPAT (abfd))
6690 hdr->sh_entsize = 0;
6691 #if 0
6692 /* This isn't how the IRIX6 linker behaves. */
6693 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6694 #endif
6695 }
6696 else if (strcmp (name, ".got") == 0
6697 || strcmp (name, ".srdata") == 0
6698 || strcmp (name, ".sdata") == 0
6699 || strcmp (name, ".sbss") == 0
6700 || strcmp (name, ".lit4") == 0
6701 || strcmp (name, ".lit8") == 0)
6702 hdr->sh_flags |= SHF_MIPS_GPREL;
6703 else if (strcmp (name, ".MIPS.interfaces") == 0)
6704 {
6705 hdr->sh_type = SHT_MIPS_IFACE;
6706 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6707 }
6708 else if (CONST_STRNEQ (name, ".MIPS.content"))
6709 {
6710 hdr->sh_type = SHT_MIPS_CONTENT;
6711 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6712 /* The sh_info field is set in final_write_processing. */
6713 }
6714 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6715 {
6716 hdr->sh_type = SHT_MIPS_OPTIONS;
6717 hdr->sh_entsize = 1;
6718 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6719 }
6720 else if (CONST_STRNEQ (name, ".debug_")
6721 || CONST_STRNEQ (name, ".zdebug_"))
6722 {
6723 hdr->sh_type = SHT_MIPS_DWARF;
6724
6725 /* Irix facilities such as libexc expect a single .debug_frame
6726 per executable, the system ones have NOSTRIP set and the linker
6727 doesn't merge sections with different flags so ... */
6728 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6729 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6730 }
6731 else if (strcmp (name, ".MIPS.symlib") == 0)
6732 {
6733 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6734 /* The sh_link and sh_info fields are set in
6735 final_write_processing. */
6736 }
6737 else if (CONST_STRNEQ (name, ".MIPS.events")
6738 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6739 {
6740 hdr->sh_type = SHT_MIPS_EVENTS;
6741 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6742 /* The sh_link field is set in final_write_processing. */
6743 }
6744 else if (strcmp (name, ".msym") == 0)
6745 {
6746 hdr->sh_type = SHT_MIPS_MSYM;
6747 hdr->sh_flags |= SHF_ALLOC;
6748 hdr->sh_entsize = 8;
6749 }
6750
6751 /* The generic elf_fake_sections will set up REL_HDR using the default
6752 kind of relocations. We used to set up a second header for the
6753 non-default kind of relocations here, but only NewABI would use
6754 these, and the IRIX ld doesn't like resulting empty RELA sections.
6755 Thus we create those header only on demand now. */
6756
6757 return TRUE;
6758 }
6759
6760 /* Given a BFD section, try to locate the corresponding ELF section
6761 index. This is used by both the 32-bit and the 64-bit ABI.
6762 Actually, it's not clear to me that the 64-bit ABI supports these,
6763 but for non-PIC objects we will certainly want support for at least
6764 the .scommon section. */
6765
6766 bfd_boolean
6767 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6768 asection *sec, int *retval)
6769 {
6770 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6771 {
6772 *retval = SHN_MIPS_SCOMMON;
6773 return TRUE;
6774 }
6775 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6776 {
6777 *retval = SHN_MIPS_ACOMMON;
6778 return TRUE;
6779 }
6780 return FALSE;
6781 }
6782 \f
6783 /* Hook called by the linker routine which adds symbols from an object
6784 file. We must handle the special MIPS section numbers here. */
6785
6786 bfd_boolean
6787 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6788 Elf_Internal_Sym *sym, const char **namep,
6789 flagword *flagsp ATTRIBUTE_UNUSED,
6790 asection **secp, bfd_vma *valp)
6791 {
6792 if (SGI_COMPAT (abfd)
6793 && (abfd->flags & DYNAMIC) != 0
6794 && strcmp (*namep, "_rld_new_interface") == 0)
6795 {
6796 /* Skip IRIX5 rld entry name. */
6797 *namep = NULL;
6798 return TRUE;
6799 }
6800
6801 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6802 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6803 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6804 a magic symbol resolved by the linker, we ignore this bogus definition
6805 of _gp_disp. New ABI objects do not suffer from this problem so this
6806 is not done for them. */
6807 if (!NEWABI_P(abfd)
6808 && (sym->st_shndx == SHN_ABS)
6809 && (strcmp (*namep, "_gp_disp") == 0))
6810 {
6811 *namep = NULL;
6812 return TRUE;
6813 }
6814
6815 switch (sym->st_shndx)
6816 {
6817 case SHN_COMMON:
6818 /* Common symbols less than the GP size are automatically
6819 treated as SHN_MIPS_SCOMMON symbols. */
6820 if (sym->st_size > elf_gp_size (abfd)
6821 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6822 || IRIX_COMPAT (abfd) == ict_irix6)
6823 break;
6824 /* Fall through. */
6825 case SHN_MIPS_SCOMMON:
6826 *secp = bfd_make_section_old_way (abfd, ".scommon");
6827 (*secp)->flags |= SEC_IS_COMMON;
6828 *valp = sym->st_size;
6829 break;
6830
6831 case SHN_MIPS_TEXT:
6832 /* This section is used in a shared object. */
6833 if (elf_tdata (abfd)->elf_text_section == NULL)
6834 {
6835 asymbol *elf_text_symbol;
6836 asection *elf_text_section;
6837 bfd_size_type amt = sizeof (asection);
6838
6839 elf_text_section = bfd_zalloc (abfd, amt);
6840 if (elf_text_section == NULL)
6841 return FALSE;
6842
6843 amt = sizeof (asymbol);
6844 elf_text_symbol = bfd_zalloc (abfd, amt);
6845 if (elf_text_symbol == NULL)
6846 return FALSE;
6847
6848 /* Initialize the section. */
6849
6850 elf_tdata (abfd)->elf_text_section = elf_text_section;
6851 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6852
6853 elf_text_section->symbol = elf_text_symbol;
6854 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6855
6856 elf_text_section->name = ".text";
6857 elf_text_section->flags = SEC_NO_FLAGS;
6858 elf_text_section->output_section = NULL;
6859 elf_text_section->owner = abfd;
6860 elf_text_symbol->name = ".text";
6861 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6862 elf_text_symbol->section = elf_text_section;
6863 }
6864 /* This code used to do *secp = bfd_und_section_ptr if
6865 info->shared. I don't know why, and that doesn't make sense,
6866 so I took it out. */
6867 *secp = elf_tdata (abfd)->elf_text_section;
6868 break;
6869
6870 case SHN_MIPS_ACOMMON:
6871 /* Fall through. XXX Can we treat this as allocated data? */
6872 case SHN_MIPS_DATA:
6873 /* This section is used in a shared object. */
6874 if (elf_tdata (abfd)->elf_data_section == NULL)
6875 {
6876 asymbol *elf_data_symbol;
6877 asection *elf_data_section;
6878 bfd_size_type amt = sizeof (asection);
6879
6880 elf_data_section = bfd_zalloc (abfd, amt);
6881 if (elf_data_section == NULL)
6882 return FALSE;
6883
6884 amt = sizeof (asymbol);
6885 elf_data_symbol = bfd_zalloc (abfd, amt);
6886 if (elf_data_symbol == NULL)
6887 return FALSE;
6888
6889 /* Initialize the section. */
6890
6891 elf_tdata (abfd)->elf_data_section = elf_data_section;
6892 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6893
6894 elf_data_section->symbol = elf_data_symbol;
6895 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6896
6897 elf_data_section->name = ".data";
6898 elf_data_section->flags = SEC_NO_FLAGS;
6899 elf_data_section->output_section = NULL;
6900 elf_data_section->owner = abfd;
6901 elf_data_symbol->name = ".data";
6902 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6903 elf_data_symbol->section = elf_data_section;
6904 }
6905 /* This code used to do *secp = bfd_und_section_ptr if
6906 info->shared. I don't know why, and that doesn't make sense,
6907 so I took it out. */
6908 *secp = elf_tdata (abfd)->elf_data_section;
6909 break;
6910
6911 case SHN_MIPS_SUNDEFINED:
6912 *secp = bfd_und_section_ptr;
6913 break;
6914 }
6915
6916 if (SGI_COMPAT (abfd)
6917 && ! info->shared
6918 && info->output_bfd->xvec == abfd->xvec
6919 && strcmp (*namep, "__rld_obj_head") == 0)
6920 {
6921 struct elf_link_hash_entry *h;
6922 struct bfd_link_hash_entry *bh;
6923
6924 /* Mark __rld_obj_head as dynamic. */
6925 bh = NULL;
6926 if (! (_bfd_generic_link_add_one_symbol
6927 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6928 get_elf_backend_data (abfd)->collect, &bh)))
6929 return FALSE;
6930
6931 h = (struct elf_link_hash_entry *) bh;
6932 h->non_elf = 0;
6933 h->def_regular = 1;
6934 h->type = STT_OBJECT;
6935
6936 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6937 return FALSE;
6938
6939 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6940 mips_elf_hash_table (info)->rld_symbol = h;
6941 }
6942
6943 /* If this is a mips16 text symbol, add 1 to the value to make it
6944 odd. This will cause something like .word SYM to come up with
6945 the right value when it is loaded into the PC. */
6946 if (ELF_ST_IS_COMPRESSED (sym->st_other))
6947 ++*valp;
6948
6949 return TRUE;
6950 }
6951
6952 /* This hook function is called before the linker writes out a global
6953 symbol. We mark symbols as small common if appropriate. This is
6954 also where we undo the increment of the value for a mips16 symbol. */
6955
6956 int
6957 _bfd_mips_elf_link_output_symbol_hook
6958 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6959 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6960 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6961 {
6962 /* If we see a common symbol, which implies a relocatable link, then
6963 if a symbol was small common in an input file, mark it as small
6964 common in the output file. */
6965 if (sym->st_shndx == SHN_COMMON
6966 && strcmp (input_sec->name, ".scommon") == 0)
6967 sym->st_shndx = SHN_MIPS_SCOMMON;
6968
6969 if (ELF_ST_IS_COMPRESSED (sym->st_other))
6970 sym->st_value &= ~1;
6971
6972 return 1;
6973 }
6974 \f
6975 /* Functions for the dynamic linker. */
6976
6977 /* Create dynamic sections when linking against a dynamic object. */
6978
6979 bfd_boolean
6980 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6981 {
6982 struct elf_link_hash_entry *h;
6983 struct bfd_link_hash_entry *bh;
6984 flagword flags;
6985 register asection *s;
6986 const char * const *namep;
6987 struct mips_elf_link_hash_table *htab;
6988
6989 htab = mips_elf_hash_table (info);
6990 BFD_ASSERT (htab != NULL);
6991
6992 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6993 | SEC_LINKER_CREATED | SEC_READONLY);
6994
6995 /* The psABI requires a read-only .dynamic section, but the VxWorks
6996 EABI doesn't. */
6997 if (!htab->is_vxworks)
6998 {
6999 s = bfd_get_linker_section (abfd, ".dynamic");
7000 if (s != NULL)
7001 {
7002 if (! bfd_set_section_flags (abfd, s, flags))
7003 return FALSE;
7004 }
7005 }
7006
7007 /* We need to create .got section. */
7008 if (!mips_elf_create_got_section (abfd, info))
7009 return FALSE;
7010
7011 if (! mips_elf_rel_dyn_section (info, TRUE))
7012 return FALSE;
7013
7014 /* Create .stub section. */
7015 s = bfd_make_section_anyway_with_flags (abfd,
7016 MIPS_ELF_STUB_SECTION_NAME (abfd),
7017 flags | SEC_CODE);
7018 if (s == NULL
7019 || ! bfd_set_section_alignment (abfd, s,
7020 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7021 return FALSE;
7022 htab->sstubs = s;
7023
7024 if (!mips_elf_hash_table (info)->use_rld_obj_head
7025 && !info->shared
7026 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7027 {
7028 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7029 flags &~ (flagword) SEC_READONLY);
7030 if (s == NULL
7031 || ! bfd_set_section_alignment (abfd, s,
7032 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7033 return FALSE;
7034 }
7035
7036 /* On IRIX5, we adjust add some additional symbols and change the
7037 alignments of several sections. There is no ABI documentation
7038 indicating that this is necessary on IRIX6, nor any evidence that
7039 the linker takes such action. */
7040 if (IRIX_COMPAT (abfd) == ict_irix5)
7041 {
7042 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7043 {
7044 bh = NULL;
7045 if (! (_bfd_generic_link_add_one_symbol
7046 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7047 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7048 return FALSE;
7049
7050 h = (struct elf_link_hash_entry *) bh;
7051 h->non_elf = 0;
7052 h->def_regular = 1;
7053 h->type = STT_SECTION;
7054
7055 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7056 return FALSE;
7057 }
7058
7059 /* We need to create a .compact_rel section. */
7060 if (SGI_COMPAT (abfd))
7061 {
7062 if (!mips_elf_create_compact_rel_section (abfd, info))
7063 return FALSE;
7064 }
7065
7066 /* Change alignments of some sections. */
7067 s = bfd_get_linker_section (abfd, ".hash");
7068 if (s != NULL)
7069 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7070 s = bfd_get_linker_section (abfd, ".dynsym");
7071 if (s != NULL)
7072 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7073 s = bfd_get_linker_section (abfd, ".dynstr");
7074 if (s != NULL)
7075 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7076 /* ??? */
7077 s = bfd_get_section_by_name (abfd, ".reginfo");
7078 if (s != NULL)
7079 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7080 s = bfd_get_linker_section (abfd, ".dynamic");
7081 if (s != NULL)
7082 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7083 }
7084
7085 if (!info->shared)
7086 {
7087 const char *name;
7088
7089 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7090 bh = NULL;
7091 if (!(_bfd_generic_link_add_one_symbol
7092 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7093 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7094 return FALSE;
7095
7096 h = (struct elf_link_hash_entry *) bh;
7097 h->non_elf = 0;
7098 h->def_regular = 1;
7099 h->type = STT_SECTION;
7100
7101 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7102 return FALSE;
7103
7104 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7105 {
7106 /* __rld_map is a four byte word located in the .data section
7107 and is filled in by the rtld to contain a pointer to
7108 the _r_debug structure. Its symbol value will be set in
7109 _bfd_mips_elf_finish_dynamic_symbol. */
7110 s = bfd_get_linker_section (abfd, ".rld_map");
7111 BFD_ASSERT (s != NULL);
7112
7113 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7114 bh = NULL;
7115 if (!(_bfd_generic_link_add_one_symbol
7116 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7117 get_elf_backend_data (abfd)->collect, &bh)))
7118 return FALSE;
7119
7120 h = (struct elf_link_hash_entry *) bh;
7121 h->non_elf = 0;
7122 h->def_regular = 1;
7123 h->type = STT_OBJECT;
7124
7125 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7126 return FALSE;
7127 mips_elf_hash_table (info)->rld_symbol = h;
7128 }
7129 }
7130
7131 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7132 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7133 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7134 return FALSE;
7135
7136 /* Cache the sections created above. */
7137 htab->splt = bfd_get_linker_section (abfd, ".plt");
7138 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7139 if (htab->is_vxworks)
7140 {
7141 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7142 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7143 }
7144 else
7145 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7146 if (!htab->sdynbss
7147 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7148 || !htab->srelplt
7149 || !htab->splt)
7150 abort ();
7151
7152 if (htab->is_vxworks)
7153 {
7154 /* Do the usual VxWorks handling. */
7155 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7156 return FALSE;
7157
7158 /* Work out the PLT sizes. */
7159 if (info->shared)
7160 {
7161 htab->plt_header_size
7162 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7163 htab->plt_entry_size
7164 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7165 }
7166 else
7167 {
7168 htab->plt_header_size
7169 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7170 htab->plt_entry_size
7171 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7172 }
7173 }
7174 else if (!info->shared)
7175 {
7176 /* All variants of the plt0 entry are the same size. */
7177 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7178 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7179 }
7180
7181 return TRUE;
7182 }
7183 \f
7184 /* Return true if relocation REL against section SEC is a REL rather than
7185 RELA relocation. RELOCS is the first relocation in the section and
7186 ABFD is the bfd that contains SEC. */
7187
7188 static bfd_boolean
7189 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7190 const Elf_Internal_Rela *relocs,
7191 const Elf_Internal_Rela *rel)
7192 {
7193 Elf_Internal_Shdr *rel_hdr;
7194 const struct elf_backend_data *bed;
7195
7196 /* To determine which flavor of relocation this is, we depend on the
7197 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7198 rel_hdr = elf_section_data (sec)->rel.hdr;
7199 if (rel_hdr == NULL)
7200 return FALSE;
7201 bed = get_elf_backend_data (abfd);
7202 return ((size_t) (rel - relocs)
7203 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7204 }
7205
7206 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7207 HOWTO is the relocation's howto and CONTENTS points to the contents
7208 of the section that REL is against. */
7209
7210 static bfd_vma
7211 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7212 reloc_howto_type *howto, bfd_byte *contents)
7213 {
7214 bfd_byte *location;
7215 unsigned int r_type;
7216 bfd_vma addend;
7217
7218 r_type = ELF_R_TYPE (abfd, rel->r_info);
7219 location = contents + rel->r_offset;
7220
7221 /* Get the addend, which is stored in the input file. */
7222 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7223 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7224 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7225
7226 return addend & howto->src_mask;
7227 }
7228
7229 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7230 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7231 and update *ADDEND with the final addend. Return true on success
7232 or false if the LO16 could not be found. RELEND is the exclusive
7233 upper bound on the relocations for REL's section. */
7234
7235 static bfd_boolean
7236 mips_elf_add_lo16_rel_addend (bfd *abfd,
7237 const Elf_Internal_Rela *rel,
7238 const Elf_Internal_Rela *relend,
7239 bfd_byte *contents, bfd_vma *addend)
7240 {
7241 unsigned int r_type, lo16_type;
7242 const Elf_Internal_Rela *lo16_relocation;
7243 reloc_howto_type *lo16_howto;
7244 bfd_vma l;
7245
7246 r_type = ELF_R_TYPE (abfd, rel->r_info);
7247 if (mips16_reloc_p (r_type))
7248 lo16_type = R_MIPS16_LO16;
7249 else if (micromips_reloc_p (r_type))
7250 lo16_type = R_MICROMIPS_LO16;
7251 else
7252 lo16_type = R_MIPS_LO16;
7253
7254 /* The combined value is the sum of the HI16 addend, left-shifted by
7255 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7256 code does a `lui' of the HI16 value, and then an `addiu' of the
7257 LO16 value.)
7258
7259 Scan ahead to find a matching LO16 relocation.
7260
7261 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7262 be immediately following. However, for the IRIX6 ABI, the next
7263 relocation may be a composed relocation consisting of several
7264 relocations for the same address. In that case, the R_MIPS_LO16
7265 relocation may occur as one of these. We permit a similar
7266 extension in general, as that is useful for GCC.
7267
7268 In some cases GCC dead code elimination removes the LO16 but keeps
7269 the corresponding HI16. This is strictly speaking a violation of
7270 the ABI but not immediately harmful. */
7271 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7272 if (lo16_relocation == NULL)
7273 return FALSE;
7274
7275 /* Obtain the addend kept there. */
7276 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7277 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7278
7279 l <<= lo16_howto->rightshift;
7280 l = _bfd_mips_elf_sign_extend (l, 16);
7281
7282 *addend <<= 16;
7283 *addend += l;
7284 return TRUE;
7285 }
7286
7287 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7288 store the contents in *CONTENTS on success. Assume that *CONTENTS
7289 already holds the contents if it is nonull on entry. */
7290
7291 static bfd_boolean
7292 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7293 {
7294 if (*contents)
7295 return TRUE;
7296
7297 /* Get cached copy if it exists. */
7298 if (elf_section_data (sec)->this_hdr.contents != NULL)
7299 {
7300 *contents = elf_section_data (sec)->this_hdr.contents;
7301 return TRUE;
7302 }
7303
7304 return bfd_malloc_and_get_section (abfd, sec, contents);
7305 }
7306
7307 /* Look through the relocs for a section during the first phase, and
7308 allocate space in the global offset table. */
7309
7310 bfd_boolean
7311 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7312 asection *sec, const Elf_Internal_Rela *relocs)
7313 {
7314 const char *name;
7315 bfd *dynobj;
7316 Elf_Internal_Shdr *symtab_hdr;
7317 struct elf_link_hash_entry **sym_hashes;
7318 size_t extsymoff;
7319 const Elf_Internal_Rela *rel;
7320 const Elf_Internal_Rela *rel_end;
7321 asection *sreloc;
7322 const struct elf_backend_data *bed;
7323 struct mips_elf_link_hash_table *htab;
7324 bfd_byte *contents;
7325 bfd_vma addend;
7326 reloc_howto_type *howto;
7327
7328 if (info->relocatable)
7329 return TRUE;
7330
7331 htab = mips_elf_hash_table (info);
7332 BFD_ASSERT (htab != NULL);
7333
7334 dynobj = elf_hash_table (info)->dynobj;
7335 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7336 sym_hashes = elf_sym_hashes (abfd);
7337 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7338
7339 bed = get_elf_backend_data (abfd);
7340 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7341
7342 /* Check for the mips16 stub sections. */
7343
7344 name = bfd_get_section_name (abfd, sec);
7345 if (FN_STUB_P (name))
7346 {
7347 unsigned long r_symndx;
7348
7349 /* Look at the relocation information to figure out which symbol
7350 this is for. */
7351
7352 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7353 if (r_symndx == 0)
7354 {
7355 (*_bfd_error_handler)
7356 (_("%B: Warning: cannot determine the target function for"
7357 " stub section `%s'"),
7358 abfd, name);
7359 bfd_set_error (bfd_error_bad_value);
7360 return FALSE;
7361 }
7362
7363 if (r_symndx < extsymoff
7364 || sym_hashes[r_symndx - extsymoff] == NULL)
7365 {
7366 asection *o;
7367
7368 /* This stub is for a local symbol. This stub will only be
7369 needed if there is some relocation in this BFD, other
7370 than a 16 bit function call, which refers to this symbol. */
7371 for (o = abfd->sections; o != NULL; o = o->next)
7372 {
7373 Elf_Internal_Rela *sec_relocs;
7374 const Elf_Internal_Rela *r, *rend;
7375
7376 /* We can ignore stub sections when looking for relocs. */
7377 if ((o->flags & SEC_RELOC) == 0
7378 || o->reloc_count == 0
7379 || section_allows_mips16_refs_p (o))
7380 continue;
7381
7382 sec_relocs
7383 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7384 info->keep_memory);
7385 if (sec_relocs == NULL)
7386 return FALSE;
7387
7388 rend = sec_relocs + o->reloc_count;
7389 for (r = sec_relocs; r < rend; r++)
7390 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7391 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7392 break;
7393
7394 if (elf_section_data (o)->relocs != sec_relocs)
7395 free (sec_relocs);
7396
7397 if (r < rend)
7398 break;
7399 }
7400
7401 if (o == NULL)
7402 {
7403 /* There is no non-call reloc for this stub, so we do
7404 not need it. Since this function is called before
7405 the linker maps input sections to output sections, we
7406 can easily discard it by setting the SEC_EXCLUDE
7407 flag. */
7408 sec->flags |= SEC_EXCLUDE;
7409 return TRUE;
7410 }
7411
7412 /* Record this stub in an array of local symbol stubs for
7413 this BFD. */
7414 if (elf_tdata (abfd)->local_stubs == NULL)
7415 {
7416 unsigned long symcount;
7417 asection **n;
7418 bfd_size_type amt;
7419
7420 if (elf_bad_symtab (abfd))
7421 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7422 else
7423 symcount = symtab_hdr->sh_info;
7424 amt = symcount * sizeof (asection *);
7425 n = bfd_zalloc (abfd, amt);
7426 if (n == NULL)
7427 return FALSE;
7428 elf_tdata (abfd)->local_stubs = n;
7429 }
7430
7431 sec->flags |= SEC_KEEP;
7432 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7433
7434 /* We don't need to set mips16_stubs_seen in this case.
7435 That flag is used to see whether we need to look through
7436 the global symbol table for stubs. We don't need to set
7437 it here, because we just have a local stub. */
7438 }
7439 else
7440 {
7441 struct mips_elf_link_hash_entry *h;
7442
7443 h = ((struct mips_elf_link_hash_entry *)
7444 sym_hashes[r_symndx - extsymoff]);
7445
7446 while (h->root.root.type == bfd_link_hash_indirect
7447 || h->root.root.type == bfd_link_hash_warning)
7448 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7449
7450 /* H is the symbol this stub is for. */
7451
7452 /* If we already have an appropriate stub for this function, we
7453 don't need another one, so we can discard this one. Since
7454 this function is called before the linker maps input sections
7455 to output sections, we can easily discard it by setting the
7456 SEC_EXCLUDE flag. */
7457 if (h->fn_stub != NULL)
7458 {
7459 sec->flags |= SEC_EXCLUDE;
7460 return TRUE;
7461 }
7462
7463 sec->flags |= SEC_KEEP;
7464 h->fn_stub = sec;
7465 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7466 }
7467 }
7468 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7469 {
7470 unsigned long r_symndx;
7471 struct mips_elf_link_hash_entry *h;
7472 asection **loc;
7473
7474 /* Look at the relocation information to figure out which symbol
7475 this is for. */
7476
7477 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7478 if (r_symndx == 0)
7479 {
7480 (*_bfd_error_handler)
7481 (_("%B: Warning: cannot determine the target function for"
7482 " stub section `%s'"),
7483 abfd, name);
7484 bfd_set_error (bfd_error_bad_value);
7485 return FALSE;
7486 }
7487
7488 if (r_symndx < extsymoff
7489 || sym_hashes[r_symndx - extsymoff] == NULL)
7490 {
7491 asection *o;
7492
7493 /* This stub is for a local symbol. This stub will only be
7494 needed if there is some relocation (R_MIPS16_26) in this BFD
7495 that refers to this symbol. */
7496 for (o = abfd->sections; o != NULL; o = o->next)
7497 {
7498 Elf_Internal_Rela *sec_relocs;
7499 const Elf_Internal_Rela *r, *rend;
7500
7501 /* We can ignore stub sections when looking for relocs. */
7502 if ((o->flags & SEC_RELOC) == 0
7503 || o->reloc_count == 0
7504 || section_allows_mips16_refs_p (o))
7505 continue;
7506
7507 sec_relocs
7508 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7509 info->keep_memory);
7510 if (sec_relocs == NULL)
7511 return FALSE;
7512
7513 rend = sec_relocs + o->reloc_count;
7514 for (r = sec_relocs; r < rend; r++)
7515 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7516 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7517 break;
7518
7519 if (elf_section_data (o)->relocs != sec_relocs)
7520 free (sec_relocs);
7521
7522 if (r < rend)
7523 break;
7524 }
7525
7526 if (o == NULL)
7527 {
7528 /* There is no non-call reloc for this stub, so we do
7529 not need it. Since this function is called before
7530 the linker maps input sections to output sections, we
7531 can easily discard it by setting the SEC_EXCLUDE
7532 flag. */
7533 sec->flags |= SEC_EXCLUDE;
7534 return TRUE;
7535 }
7536
7537 /* Record this stub in an array of local symbol call_stubs for
7538 this BFD. */
7539 if (elf_tdata (abfd)->local_call_stubs == NULL)
7540 {
7541 unsigned long symcount;
7542 asection **n;
7543 bfd_size_type amt;
7544
7545 if (elf_bad_symtab (abfd))
7546 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7547 else
7548 symcount = symtab_hdr->sh_info;
7549 amt = symcount * sizeof (asection *);
7550 n = bfd_zalloc (abfd, amt);
7551 if (n == NULL)
7552 return FALSE;
7553 elf_tdata (abfd)->local_call_stubs = n;
7554 }
7555
7556 sec->flags |= SEC_KEEP;
7557 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7558
7559 /* We don't need to set mips16_stubs_seen in this case.
7560 That flag is used to see whether we need to look through
7561 the global symbol table for stubs. We don't need to set
7562 it here, because we just have a local stub. */
7563 }
7564 else
7565 {
7566 h = ((struct mips_elf_link_hash_entry *)
7567 sym_hashes[r_symndx - extsymoff]);
7568
7569 /* H is the symbol this stub is for. */
7570
7571 if (CALL_FP_STUB_P (name))
7572 loc = &h->call_fp_stub;
7573 else
7574 loc = &h->call_stub;
7575
7576 /* If we already have an appropriate stub for this function, we
7577 don't need another one, so we can discard this one. Since
7578 this function is called before the linker maps input sections
7579 to output sections, we can easily discard it by setting the
7580 SEC_EXCLUDE flag. */
7581 if (*loc != NULL)
7582 {
7583 sec->flags |= SEC_EXCLUDE;
7584 return TRUE;
7585 }
7586
7587 sec->flags |= SEC_KEEP;
7588 *loc = sec;
7589 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7590 }
7591 }
7592
7593 sreloc = NULL;
7594 contents = NULL;
7595 for (rel = relocs; rel < rel_end; ++rel)
7596 {
7597 unsigned long r_symndx;
7598 unsigned int r_type;
7599 struct elf_link_hash_entry *h;
7600 bfd_boolean can_make_dynamic_p;
7601
7602 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7603 r_type = ELF_R_TYPE (abfd, rel->r_info);
7604
7605 if (r_symndx < extsymoff)
7606 h = NULL;
7607 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7608 {
7609 (*_bfd_error_handler)
7610 (_("%B: Malformed reloc detected for section %s"),
7611 abfd, name);
7612 bfd_set_error (bfd_error_bad_value);
7613 return FALSE;
7614 }
7615 else
7616 {
7617 h = sym_hashes[r_symndx - extsymoff];
7618 while (h != NULL
7619 && (h->root.type == bfd_link_hash_indirect
7620 || h->root.type == bfd_link_hash_warning))
7621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7622 }
7623
7624 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7625 relocation into a dynamic one. */
7626 can_make_dynamic_p = FALSE;
7627 switch (r_type)
7628 {
7629 case R_MIPS_GOT16:
7630 case R_MIPS_CALL16:
7631 case R_MIPS_CALL_HI16:
7632 case R_MIPS_CALL_LO16:
7633 case R_MIPS_GOT_HI16:
7634 case R_MIPS_GOT_LO16:
7635 case R_MIPS_GOT_PAGE:
7636 case R_MIPS_GOT_OFST:
7637 case R_MIPS_GOT_DISP:
7638 case R_MIPS_TLS_GOTTPREL:
7639 case R_MIPS_TLS_GD:
7640 case R_MIPS_TLS_LDM:
7641 case R_MIPS16_GOT16:
7642 case R_MIPS16_CALL16:
7643 case R_MIPS16_TLS_GOTTPREL:
7644 case R_MIPS16_TLS_GD:
7645 case R_MIPS16_TLS_LDM:
7646 case R_MICROMIPS_GOT16:
7647 case R_MICROMIPS_CALL16:
7648 case R_MICROMIPS_CALL_HI16:
7649 case R_MICROMIPS_CALL_LO16:
7650 case R_MICROMIPS_GOT_HI16:
7651 case R_MICROMIPS_GOT_LO16:
7652 case R_MICROMIPS_GOT_PAGE:
7653 case R_MICROMIPS_GOT_OFST:
7654 case R_MICROMIPS_GOT_DISP:
7655 case R_MICROMIPS_TLS_GOTTPREL:
7656 case R_MICROMIPS_TLS_GD:
7657 case R_MICROMIPS_TLS_LDM:
7658 if (dynobj == NULL)
7659 elf_hash_table (info)->dynobj = dynobj = abfd;
7660 if (!mips_elf_create_got_section (dynobj, info))
7661 return FALSE;
7662 if (htab->is_vxworks && !info->shared)
7663 {
7664 (*_bfd_error_handler)
7665 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7666 abfd, (unsigned long) rel->r_offset);
7667 bfd_set_error (bfd_error_bad_value);
7668 return FALSE;
7669 }
7670 break;
7671
7672 /* This is just a hint; it can safely be ignored. Don't set
7673 has_static_relocs for the corresponding symbol. */
7674 case R_MIPS_JALR:
7675 case R_MICROMIPS_JALR:
7676 break;
7677
7678 case R_MIPS_32:
7679 case R_MIPS_REL32:
7680 case R_MIPS_64:
7681 /* In VxWorks executables, references to external symbols
7682 must be handled using copy relocs or PLT entries; it is not
7683 possible to convert this relocation into a dynamic one.
7684
7685 For executables that use PLTs and copy-relocs, we have a
7686 choice between converting the relocation into a dynamic
7687 one or using copy relocations or PLT entries. It is
7688 usually better to do the former, unless the relocation is
7689 against a read-only section. */
7690 if ((info->shared
7691 || (h != NULL
7692 && !htab->is_vxworks
7693 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7694 && !(!info->nocopyreloc
7695 && !PIC_OBJECT_P (abfd)
7696 && MIPS_ELF_READONLY_SECTION (sec))))
7697 && (sec->flags & SEC_ALLOC) != 0)
7698 {
7699 can_make_dynamic_p = TRUE;
7700 if (dynobj == NULL)
7701 elf_hash_table (info)->dynobj = dynobj = abfd;
7702 break;
7703 }
7704 /* For sections that are not SEC_ALLOC a copy reloc would be
7705 output if possible (implying questionable semantics for
7706 read-only data objects) or otherwise the final link would
7707 fail as ld.so will not process them and could not therefore
7708 handle any outstanding dynamic relocations.
7709
7710 For such sections that are also SEC_DEBUGGING, we can avoid
7711 these problems by simply ignoring any relocs as these
7712 sections have a predefined use and we know it is safe to do
7713 so.
7714
7715 This is needed in cases such as a global symbol definition
7716 in a shared library causing a common symbol from an object
7717 file to be converted to an undefined reference. If that
7718 happens, then all the relocations against this symbol from
7719 SEC_DEBUGGING sections in the object file will resolve to
7720 nil. */
7721 if ((sec->flags & SEC_DEBUGGING) != 0)
7722 break;
7723 /* Fall through. */
7724
7725 default:
7726 /* Most static relocations require pointer equality, except
7727 for branches. */
7728 if (h)
7729 h->pointer_equality_needed = TRUE;
7730 /* Fall through. */
7731
7732 case R_MIPS_26:
7733 case R_MIPS_PC16:
7734 case R_MIPS16_26:
7735 case R_MICROMIPS_26_S1:
7736 case R_MICROMIPS_PC7_S1:
7737 case R_MICROMIPS_PC10_S1:
7738 case R_MICROMIPS_PC16_S1:
7739 case R_MICROMIPS_PC23_S2:
7740 if (h)
7741 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7742 break;
7743 }
7744
7745 if (h)
7746 {
7747 /* Relocations against the special VxWorks __GOTT_BASE__ and
7748 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7749 room for them in .rela.dyn. */
7750 if (is_gott_symbol (info, h))
7751 {
7752 if (sreloc == NULL)
7753 {
7754 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7755 if (sreloc == NULL)
7756 return FALSE;
7757 }
7758 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7759 if (MIPS_ELF_READONLY_SECTION (sec))
7760 /* We tell the dynamic linker that there are
7761 relocations against the text segment. */
7762 info->flags |= DF_TEXTREL;
7763 }
7764 }
7765 else if (call_lo16_reloc_p (r_type)
7766 || got_lo16_reloc_p (r_type)
7767 || got_disp_reloc_p (r_type)
7768 || (got16_reloc_p (r_type) && htab->is_vxworks))
7769 {
7770 /* We may need a local GOT entry for this relocation. We
7771 don't count R_MIPS_GOT_PAGE because we can estimate the
7772 maximum number of pages needed by looking at the size of
7773 the segment. Similar comments apply to R_MIPS*_GOT16 and
7774 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7775 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7776 R_MIPS_CALL_HI16 because these are always followed by an
7777 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7778 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7779 rel->r_addend, info, r_type))
7780 return FALSE;
7781 }
7782
7783 if (h != NULL
7784 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7785 ELF_ST_IS_MIPS16 (h->other)))
7786 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7787
7788 switch (r_type)
7789 {
7790 case R_MIPS_CALL16:
7791 case R_MIPS16_CALL16:
7792 case R_MICROMIPS_CALL16:
7793 if (h == NULL)
7794 {
7795 (*_bfd_error_handler)
7796 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7797 abfd, (unsigned long) rel->r_offset);
7798 bfd_set_error (bfd_error_bad_value);
7799 return FALSE;
7800 }
7801 /* Fall through. */
7802
7803 case R_MIPS_CALL_HI16:
7804 case R_MIPS_CALL_LO16:
7805 case R_MICROMIPS_CALL_HI16:
7806 case R_MICROMIPS_CALL_LO16:
7807 if (h != NULL)
7808 {
7809 /* Make sure there is room in the regular GOT to hold the
7810 function's address. We may eliminate it in favour of
7811 a .got.plt entry later; see mips_elf_count_got_symbols. */
7812 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
7813 r_type))
7814 return FALSE;
7815
7816 /* We need a stub, not a plt entry for the undefined
7817 function. But we record it as if it needs plt. See
7818 _bfd_elf_adjust_dynamic_symbol. */
7819 h->needs_plt = 1;
7820 h->type = STT_FUNC;
7821 }
7822 break;
7823
7824 case R_MIPS_GOT_PAGE:
7825 case R_MICROMIPS_GOT_PAGE:
7826 /* If this is a global, overridable symbol, GOT_PAGE will
7827 decay to GOT_DISP, so we'll need a GOT entry for it. */
7828 if (h)
7829 {
7830 struct mips_elf_link_hash_entry *hmips =
7831 (struct mips_elf_link_hash_entry *) h;
7832
7833 /* This symbol is definitely not overridable. */
7834 if (hmips->root.def_regular
7835 && ! (info->shared && ! info->symbolic
7836 && ! hmips->root.forced_local))
7837 h = NULL;
7838 }
7839 /* Fall through. */
7840
7841 case R_MIPS16_GOT16:
7842 case R_MIPS_GOT16:
7843 case R_MIPS_GOT_HI16:
7844 case R_MIPS_GOT_LO16:
7845 case R_MICROMIPS_GOT16:
7846 case R_MICROMIPS_GOT_HI16:
7847 case R_MICROMIPS_GOT_LO16:
7848 if (!h || got_page_reloc_p (r_type))
7849 {
7850 /* This relocation needs (or may need, if h != NULL) a
7851 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7852 know for sure until we know whether the symbol is
7853 preemptible. */
7854 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7855 {
7856 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7857 return FALSE;
7858 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7859 addend = mips_elf_read_rel_addend (abfd, rel,
7860 howto, contents);
7861 if (got16_reloc_p (r_type))
7862 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7863 contents, &addend);
7864 else
7865 addend <<= howto->rightshift;
7866 }
7867 else
7868 addend = rel->r_addend;
7869 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7870 addend))
7871 return FALSE;
7872 }
7873 /* Fall through. */
7874
7875 case R_MIPS_GOT_DISP:
7876 case R_MICROMIPS_GOT_DISP:
7877 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7878 FALSE, r_type))
7879 return FALSE;
7880 break;
7881
7882 case R_MIPS_TLS_GOTTPREL:
7883 case R_MIPS16_TLS_GOTTPREL:
7884 case R_MICROMIPS_TLS_GOTTPREL:
7885 if (info->shared)
7886 info->flags |= DF_STATIC_TLS;
7887 /* Fall through */
7888
7889 case R_MIPS_TLS_LDM:
7890 case R_MIPS16_TLS_LDM:
7891 case R_MICROMIPS_TLS_LDM:
7892 if (tls_ldm_reloc_p (r_type))
7893 {
7894 r_symndx = STN_UNDEF;
7895 h = NULL;
7896 }
7897 /* Fall through */
7898
7899 case R_MIPS_TLS_GD:
7900 case R_MIPS16_TLS_GD:
7901 case R_MICROMIPS_TLS_GD:
7902 /* This symbol requires a global offset table entry, or two
7903 for TLS GD relocations. */
7904 if (h != NULL)
7905 {
7906 if (!mips_elf_record_global_got_symbol (h, abfd, info,
7907 FALSE, r_type))
7908 return FALSE;
7909 }
7910 else
7911 {
7912 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7913 rel->r_addend,
7914 info, r_type))
7915 return FALSE;
7916 }
7917 break;
7918
7919 case R_MIPS_32:
7920 case R_MIPS_REL32:
7921 case R_MIPS_64:
7922 /* In VxWorks executables, references to external symbols
7923 are handled using copy relocs or PLT stubs, so there's
7924 no need to add a .rela.dyn entry for this relocation. */
7925 if (can_make_dynamic_p)
7926 {
7927 if (sreloc == NULL)
7928 {
7929 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7930 if (sreloc == NULL)
7931 return FALSE;
7932 }
7933 if (info->shared && h == NULL)
7934 {
7935 /* When creating a shared object, we must copy these
7936 reloc types into the output file as R_MIPS_REL32
7937 relocs. Make room for this reloc in .rel(a).dyn. */
7938 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7939 if (MIPS_ELF_READONLY_SECTION (sec))
7940 /* We tell the dynamic linker that there are
7941 relocations against the text segment. */
7942 info->flags |= DF_TEXTREL;
7943 }
7944 else
7945 {
7946 struct mips_elf_link_hash_entry *hmips;
7947
7948 /* For a shared object, we must copy this relocation
7949 unless the symbol turns out to be undefined and
7950 weak with non-default visibility, in which case
7951 it will be left as zero.
7952
7953 We could elide R_MIPS_REL32 for locally binding symbols
7954 in shared libraries, but do not yet do so.
7955
7956 For an executable, we only need to copy this
7957 reloc if the symbol is defined in a dynamic
7958 object. */
7959 hmips = (struct mips_elf_link_hash_entry *) h;
7960 ++hmips->possibly_dynamic_relocs;
7961 if (MIPS_ELF_READONLY_SECTION (sec))
7962 /* We need it to tell the dynamic linker if there
7963 are relocations against the text segment. */
7964 hmips->readonly_reloc = TRUE;
7965 }
7966 }
7967
7968 if (SGI_COMPAT (abfd))
7969 mips_elf_hash_table (info)->compact_rel_size +=
7970 sizeof (Elf32_External_crinfo);
7971 break;
7972
7973 case R_MIPS_26:
7974 case R_MIPS_GPREL16:
7975 case R_MIPS_LITERAL:
7976 case R_MIPS_GPREL32:
7977 case R_MICROMIPS_26_S1:
7978 case R_MICROMIPS_GPREL16:
7979 case R_MICROMIPS_LITERAL:
7980 case R_MICROMIPS_GPREL7_S2:
7981 if (SGI_COMPAT (abfd))
7982 mips_elf_hash_table (info)->compact_rel_size +=
7983 sizeof (Elf32_External_crinfo);
7984 break;
7985
7986 /* This relocation describes the C++ object vtable hierarchy.
7987 Reconstruct it for later use during GC. */
7988 case R_MIPS_GNU_VTINHERIT:
7989 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7990 return FALSE;
7991 break;
7992
7993 /* This relocation describes which C++ vtable entries are actually
7994 used. Record for later use during GC. */
7995 case R_MIPS_GNU_VTENTRY:
7996 BFD_ASSERT (h != NULL);
7997 if (h != NULL
7998 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7999 return FALSE;
8000 break;
8001
8002 default:
8003 break;
8004 }
8005
8006 /* We must not create a stub for a symbol that has relocations
8007 related to taking the function's address. This doesn't apply to
8008 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8009 a normal .got entry. */
8010 if (!htab->is_vxworks && h != NULL)
8011 switch (r_type)
8012 {
8013 default:
8014 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8015 break;
8016 case R_MIPS16_CALL16:
8017 case R_MIPS_CALL16:
8018 case R_MIPS_CALL_HI16:
8019 case R_MIPS_CALL_LO16:
8020 case R_MIPS_JALR:
8021 case R_MICROMIPS_CALL16:
8022 case R_MICROMIPS_CALL_HI16:
8023 case R_MICROMIPS_CALL_LO16:
8024 case R_MICROMIPS_JALR:
8025 break;
8026 }
8027
8028 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8029 if there is one. We only need to handle global symbols here;
8030 we decide whether to keep or delete stubs for local symbols
8031 when processing the stub's relocations. */
8032 if (h != NULL
8033 && !mips16_call_reloc_p (r_type)
8034 && !section_allows_mips16_refs_p (sec))
8035 {
8036 struct mips_elf_link_hash_entry *mh;
8037
8038 mh = (struct mips_elf_link_hash_entry *) h;
8039 mh->need_fn_stub = TRUE;
8040 }
8041
8042 /* Refuse some position-dependent relocations when creating a
8043 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8044 not PIC, but we can create dynamic relocations and the result
8045 will be fine. Also do not refuse R_MIPS_LO16, which can be
8046 combined with R_MIPS_GOT16. */
8047 if (info->shared)
8048 {
8049 switch (r_type)
8050 {
8051 case R_MIPS16_HI16:
8052 case R_MIPS_HI16:
8053 case R_MIPS_HIGHER:
8054 case R_MIPS_HIGHEST:
8055 case R_MICROMIPS_HI16:
8056 case R_MICROMIPS_HIGHER:
8057 case R_MICROMIPS_HIGHEST:
8058 /* Don't refuse a high part relocation if it's against
8059 no symbol (e.g. part of a compound relocation). */
8060 if (r_symndx == STN_UNDEF)
8061 break;
8062
8063 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8064 and has a special meaning. */
8065 if (!NEWABI_P (abfd) && h != NULL
8066 && strcmp (h->root.root.string, "_gp_disp") == 0)
8067 break;
8068
8069 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8070 if (is_gott_symbol (info, h))
8071 break;
8072
8073 /* FALLTHROUGH */
8074
8075 case R_MIPS16_26:
8076 case R_MIPS_26:
8077 case R_MICROMIPS_26_S1:
8078 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8079 (*_bfd_error_handler)
8080 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8081 abfd, howto->name,
8082 (h) ? h->root.root.string : "a local symbol");
8083 bfd_set_error (bfd_error_bad_value);
8084 return FALSE;
8085 default:
8086 break;
8087 }
8088 }
8089 }
8090
8091 return TRUE;
8092 }
8093 \f
8094 bfd_boolean
8095 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8096 struct bfd_link_info *link_info,
8097 bfd_boolean *again)
8098 {
8099 Elf_Internal_Rela *internal_relocs;
8100 Elf_Internal_Rela *irel, *irelend;
8101 Elf_Internal_Shdr *symtab_hdr;
8102 bfd_byte *contents = NULL;
8103 size_t extsymoff;
8104 bfd_boolean changed_contents = FALSE;
8105 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8106 Elf_Internal_Sym *isymbuf = NULL;
8107
8108 /* We are not currently changing any sizes, so only one pass. */
8109 *again = FALSE;
8110
8111 if (link_info->relocatable)
8112 return TRUE;
8113
8114 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8115 link_info->keep_memory);
8116 if (internal_relocs == NULL)
8117 return TRUE;
8118
8119 irelend = internal_relocs + sec->reloc_count
8120 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8121 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8122 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8123
8124 for (irel = internal_relocs; irel < irelend; irel++)
8125 {
8126 bfd_vma symval;
8127 bfd_signed_vma sym_offset;
8128 unsigned int r_type;
8129 unsigned long r_symndx;
8130 asection *sym_sec;
8131 unsigned long instruction;
8132
8133 /* Turn jalr into bgezal, and jr into beq, if they're marked
8134 with a JALR relocation, that indicate where they jump to.
8135 This saves some pipeline bubbles. */
8136 r_type = ELF_R_TYPE (abfd, irel->r_info);
8137 if (r_type != R_MIPS_JALR)
8138 continue;
8139
8140 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8141 /* Compute the address of the jump target. */
8142 if (r_symndx >= extsymoff)
8143 {
8144 struct mips_elf_link_hash_entry *h
8145 = ((struct mips_elf_link_hash_entry *)
8146 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8147
8148 while (h->root.root.type == bfd_link_hash_indirect
8149 || h->root.root.type == bfd_link_hash_warning)
8150 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8151
8152 /* If a symbol is undefined, or if it may be overridden,
8153 skip it. */
8154 if (! ((h->root.root.type == bfd_link_hash_defined
8155 || h->root.root.type == bfd_link_hash_defweak)
8156 && h->root.root.u.def.section)
8157 || (link_info->shared && ! link_info->symbolic
8158 && !h->root.forced_local))
8159 continue;
8160
8161 sym_sec = h->root.root.u.def.section;
8162 if (sym_sec->output_section)
8163 symval = (h->root.root.u.def.value
8164 + sym_sec->output_section->vma
8165 + sym_sec->output_offset);
8166 else
8167 symval = h->root.root.u.def.value;
8168 }
8169 else
8170 {
8171 Elf_Internal_Sym *isym;
8172
8173 /* Read this BFD's symbols if we haven't done so already. */
8174 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8175 {
8176 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8177 if (isymbuf == NULL)
8178 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8179 symtab_hdr->sh_info, 0,
8180 NULL, NULL, NULL);
8181 if (isymbuf == NULL)
8182 goto relax_return;
8183 }
8184
8185 isym = isymbuf + r_symndx;
8186 if (isym->st_shndx == SHN_UNDEF)
8187 continue;
8188 else if (isym->st_shndx == SHN_ABS)
8189 sym_sec = bfd_abs_section_ptr;
8190 else if (isym->st_shndx == SHN_COMMON)
8191 sym_sec = bfd_com_section_ptr;
8192 else
8193 sym_sec
8194 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8195 symval = isym->st_value
8196 + sym_sec->output_section->vma
8197 + sym_sec->output_offset;
8198 }
8199
8200 /* Compute branch offset, from delay slot of the jump to the
8201 branch target. */
8202 sym_offset = (symval + irel->r_addend)
8203 - (sec_start + irel->r_offset + 4);
8204
8205 /* Branch offset must be properly aligned. */
8206 if ((sym_offset & 3) != 0)
8207 continue;
8208
8209 sym_offset >>= 2;
8210
8211 /* Check that it's in range. */
8212 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8213 continue;
8214
8215 /* Get the section contents if we haven't done so already. */
8216 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8217 goto relax_return;
8218
8219 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8220
8221 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8222 if ((instruction & 0xfc1fffff) == 0x0000f809)
8223 instruction = 0x04110000;
8224 /* If it was jr <reg>, turn it into b <target>. */
8225 else if ((instruction & 0xfc1fffff) == 0x00000008)
8226 instruction = 0x10000000;
8227 else
8228 continue;
8229
8230 instruction |= (sym_offset & 0xffff);
8231 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8232 changed_contents = TRUE;
8233 }
8234
8235 if (contents != NULL
8236 && elf_section_data (sec)->this_hdr.contents != contents)
8237 {
8238 if (!changed_contents && !link_info->keep_memory)
8239 free (contents);
8240 else
8241 {
8242 /* Cache the section contents for elf_link_input_bfd. */
8243 elf_section_data (sec)->this_hdr.contents = contents;
8244 }
8245 }
8246 return TRUE;
8247
8248 relax_return:
8249 if (contents != NULL
8250 && elf_section_data (sec)->this_hdr.contents != contents)
8251 free (contents);
8252 return FALSE;
8253 }
8254 \f
8255 /* Allocate space for global sym dynamic relocs. */
8256
8257 static bfd_boolean
8258 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8259 {
8260 struct bfd_link_info *info = inf;
8261 bfd *dynobj;
8262 struct mips_elf_link_hash_entry *hmips;
8263 struct mips_elf_link_hash_table *htab;
8264
8265 htab = mips_elf_hash_table (info);
8266 BFD_ASSERT (htab != NULL);
8267
8268 dynobj = elf_hash_table (info)->dynobj;
8269 hmips = (struct mips_elf_link_hash_entry *) h;
8270
8271 /* VxWorks executables are handled elsewhere; we only need to
8272 allocate relocations in shared objects. */
8273 if (htab->is_vxworks && !info->shared)
8274 return TRUE;
8275
8276 /* Ignore indirect symbols. All relocations against such symbols
8277 will be redirected to the target symbol. */
8278 if (h->root.type == bfd_link_hash_indirect)
8279 return TRUE;
8280
8281 /* If this symbol is defined in a dynamic object, or we are creating
8282 a shared library, we will need to copy any R_MIPS_32 or
8283 R_MIPS_REL32 relocs against it into the output file. */
8284 if (! info->relocatable
8285 && hmips->possibly_dynamic_relocs != 0
8286 && (h->root.type == bfd_link_hash_defweak
8287 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8288 || info->shared))
8289 {
8290 bfd_boolean do_copy = TRUE;
8291
8292 if (h->root.type == bfd_link_hash_undefweak)
8293 {
8294 /* Do not copy relocations for undefined weak symbols with
8295 non-default visibility. */
8296 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8297 do_copy = FALSE;
8298
8299 /* Make sure undefined weak symbols are output as a dynamic
8300 symbol in PIEs. */
8301 else if (h->dynindx == -1 && !h->forced_local)
8302 {
8303 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8304 return FALSE;
8305 }
8306 }
8307
8308 if (do_copy)
8309 {
8310 /* Even though we don't directly need a GOT entry for this symbol,
8311 the SVR4 psABI requires it to have a dynamic symbol table
8312 index greater that DT_MIPS_GOTSYM if there are dynamic
8313 relocations against it.
8314
8315 VxWorks does not enforce the same mapping between the GOT
8316 and the symbol table, so the same requirement does not
8317 apply there. */
8318 if (!htab->is_vxworks)
8319 {
8320 if (hmips->global_got_area > GGA_RELOC_ONLY)
8321 hmips->global_got_area = GGA_RELOC_ONLY;
8322 hmips->got_only_for_calls = FALSE;
8323 }
8324
8325 mips_elf_allocate_dynamic_relocations
8326 (dynobj, info, hmips->possibly_dynamic_relocs);
8327 if (hmips->readonly_reloc)
8328 /* We tell the dynamic linker that there are relocations
8329 against the text segment. */
8330 info->flags |= DF_TEXTREL;
8331 }
8332 }
8333
8334 return TRUE;
8335 }
8336
8337 /* Adjust a symbol defined by a dynamic object and referenced by a
8338 regular object. The current definition is in some section of the
8339 dynamic object, but we're not including those sections. We have to
8340 change the definition to something the rest of the link can
8341 understand. */
8342
8343 bfd_boolean
8344 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8345 struct elf_link_hash_entry *h)
8346 {
8347 bfd *dynobj;
8348 struct mips_elf_link_hash_entry *hmips;
8349 struct mips_elf_link_hash_table *htab;
8350
8351 htab = mips_elf_hash_table (info);
8352 BFD_ASSERT (htab != NULL);
8353
8354 dynobj = elf_hash_table (info)->dynobj;
8355 hmips = (struct mips_elf_link_hash_entry *) h;
8356
8357 /* Make sure we know what is going on here. */
8358 BFD_ASSERT (dynobj != NULL
8359 && (h->needs_plt
8360 || h->u.weakdef != NULL
8361 || (h->def_dynamic
8362 && h->ref_regular
8363 && !h->def_regular)));
8364
8365 hmips = (struct mips_elf_link_hash_entry *) h;
8366
8367 /* If there are call relocations against an externally-defined symbol,
8368 see whether we can create a MIPS lazy-binding stub for it. We can
8369 only do this if all references to the function are through call
8370 relocations, and in that case, the traditional lazy-binding stubs
8371 are much more efficient than PLT entries.
8372
8373 Traditional stubs are only available on SVR4 psABI-based systems;
8374 VxWorks always uses PLTs instead. */
8375 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8376 {
8377 if (! elf_hash_table (info)->dynamic_sections_created)
8378 return TRUE;
8379
8380 /* If this symbol is not defined in a regular file, then set
8381 the symbol to the stub location. This is required to make
8382 function pointers compare as equal between the normal
8383 executable and the shared library. */
8384 if (!h->def_regular)
8385 {
8386 hmips->needs_lazy_stub = TRUE;
8387 htab->lazy_stub_count++;
8388 return TRUE;
8389 }
8390 }
8391 /* As above, VxWorks requires PLT entries for externally-defined
8392 functions that are only accessed through call relocations.
8393
8394 Both VxWorks and non-VxWorks targets also need PLT entries if there
8395 are static-only relocations against an externally-defined function.
8396 This can technically occur for shared libraries if there are
8397 branches to the symbol, although it is unlikely that this will be
8398 used in practice due to the short ranges involved. It can occur
8399 for any relative or absolute relocation in executables; in that
8400 case, the PLT entry becomes the function's canonical address. */
8401 else if (((h->needs_plt && !hmips->no_fn_stub)
8402 || (h->type == STT_FUNC && hmips->has_static_relocs))
8403 && htab->use_plts_and_copy_relocs
8404 && !SYMBOL_CALLS_LOCAL (info, h)
8405 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8406 && h->root.type == bfd_link_hash_undefweak))
8407 {
8408 /* If this is the first symbol to need a PLT entry, allocate room
8409 for the header. */
8410 if (htab->splt->size == 0)
8411 {
8412 BFD_ASSERT (htab->sgotplt->size == 0);
8413
8414 /* If we're using the PLT additions to the psABI, each PLT
8415 entry is 16 bytes and the PLT0 entry is 32 bytes.
8416 Encourage better cache usage by aligning. We do this
8417 lazily to avoid pessimizing traditional objects. */
8418 if (!htab->is_vxworks
8419 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8420 return FALSE;
8421
8422 /* Make sure that .got.plt is word-aligned. We do this lazily
8423 for the same reason as above. */
8424 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8425 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8426 return FALSE;
8427
8428 htab->splt->size += htab->plt_header_size;
8429
8430 /* On non-VxWorks targets, the first two entries in .got.plt
8431 are reserved. */
8432 if (!htab->is_vxworks)
8433 htab->sgotplt->size
8434 += get_elf_backend_data (dynobj)->got_header_size;
8435
8436 /* On VxWorks, also allocate room for the header's
8437 .rela.plt.unloaded entries. */
8438 if (htab->is_vxworks && !info->shared)
8439 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8440 }
8441
8442 /* Assign the next .plt entry to this symbol. */
8443 h->plt.offset = htab->splt->size;
8444 htab->splt->size += htab->plt_entry_size;
8445
8446 /* If the output file has no definition of the symbol, set the
8447 symbol's value to the address of the stub. */
8448 if (!info->shared && !h->def_regular)
8449 {
8450 h->root.u.def.section = htab->splt;
8451 h->root.u.def.value = h->plt.offset;
8452 /* For VxWorks, point at the PLT load stub rather than the
8453 lazy resolution stub; this stub will become the canonical
8454 function address. */
8455 if (htab->is_vxworks)
8456 h->root.u.def.value += 8;
8457 }
8458
8459 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8460 relocation. */
8461 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8462 htab->srelplt->size += (htab->is_vxworks
8463 ? MIPS_ELF_RELA_SIZE (dynobj)
8464 : MIPS_ELF_REL_SIZE (dynobj));
8465
8466 /* Make room for the .rela.plt.unloaded relocations. */
8467 if (htab->is_vxworks && !info->shared)
8468 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8469
8470 /* All relocations against this symbol that could have been made
8471 dynamic will now refer to the PLT entry instead. */
8472 hmips->possibly_dynamic_relocs = 0;
8473
8474 return TRUE;
8475 }
8476
8477 /* If this is a weak symbol, and there is a real definition, the
8478 processor independent code will have arranged for us to see the
8479 real definition first, and we can just use the same value. */
8480 if (h->u.weakdef != NULL)
8481 {
8482 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8483 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8484 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8485 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8486 return TRUE;
8487 }
8488
8489 /* Otherwise, there is nothing further to do for symbols defined
8490 in regular objects. */
8491 if (h->def_regular)
8492 return TRUE;
8493
8494 /* There's also nothing more to do if we'll convert all relocations
8495 against this symbol into dynamic relocations. */
8496 if (!hmips->has_static_relocs)
8497 return TRUE;
8498
8499 /* We're now relying on copy relocations. Complain if we have
8500 some that we can't convert. */
8501 if (!htab->use_plts_and_copy_relocs || info->shared)
8502 {
8503 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8504 "dynamic symbol %s"),
8505 h->root.root.string);
8506 bfd_set_error (bfd_error_bad_value);
8507 return FALSE;
8508 }
8509
8510 /* We must allocate the symbol in our .dynbss section, which will
8511 become part of the .bss section of the executable. There will be
8512 an entry for this symbol in the .dynsym section. The dynamic
8513 object will contain position independent code, so all references
8514 from the dynamic object to this symbol will go through the global
8515 offset table. The dynamic linker will use the .dynsym entry to
8516 determine the address it must put in the global offset table, so
8517 both the dynamic object and the regular object will refer to the
8518 same memory location for the variable. */
8519
8520 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8521 {
8522 if (htab->is_vxworks)
8523 htab->srelbss->size += sizeof (Elf32_External_Rela);
8524 else
8525 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8526 h->needs_copy = 1;
8527 }
8528
8529 /* All relocations against this symbol that could have been made
8530 dynamic will now refer to the local copy instead. */
8531 hmips->possibly_dynamic_relocs = 0;
8532
8533 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8534 }
8535 \f
8536 /* This function is called after all the input files have been read,
8537 and the input sections have been assigned to output sections. We
8538 check for any mips16 stub sections that we can discard. */
8539
8540 bfd_boolean
8541 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8542 struct bfd_link_info *info)
8543 {
8544 asection *ri;
8545 struct mips_elf_link_hash_table *htab;
8546 struct mips_htab_traverse_info hti;
8547
8548 htab = mips_elf_hash_table (info);
8549 BFD_ASSERT (htab != NULL);
8550
8551 /* The .reginfo section has a fixed size. */
8552 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8553 if (ri != NULL)
8554 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8555
8556 hti.info = info;
8557 hti.output_bfd = output_bfd;
8558 hti.error = FALSE;
8559 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8560 mips_elf_check_symbols, &hti);
8561 if (hti.error)
8562 return FALSE;
8563
8564 return TRUE;
8565 }
8566
8567 /* If the link uses a GOT, lay it out and work out its size. */
8568
8569 static bfd_boolean
8570 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8571 {
8572 bfd *dynobj;
8573 asection *s;
8574 struct mips_got_info *g;
8575 bfd_size_type loadable_size = 0;
8576 bfd_size_type page_gotno;
8577 bfd *ibfd;
8578 struct mips_elf_traverse_got_arg tga;
8579 struct mips_elf_link_hash_table *htab;
8580
8581 htab = mips_elf_hash_table (info);
8582 BFD_ASSERT (htab != NULL);
8583
8584 s = htab->sgot;
8585 if (s == NULL)
8586 return TRUE;
8587
8588 dynobj = elf_hash_table (info)->dynobj;
8589 g = htab->got_info;
8590
8591 /* Allocate room for the reserved entries. VxWorks always reserves
8592 3 entries; other objects only reserve 2 entries. */
8593 BFD_ASSERT (g->assigned_gotno == 0);
8594 if (htab->is_vxworks)
8595 htab->reserved_gotno = 3;
8596 else
8597 htab->reserved_gotno = 2;
8598 g->local_gotno += htab->reserved_gotno;
8599 g->assigned_gotno = htab->reserved_gotno;
8600
8601 /* Decide which symbols need to go in the global part of the GOT and
8602 count the number of reloc-only GOT symbols. */
8603 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8604
8605 /* Calculate the total loadable size of the output. That
8606 will give us the maximum number of GOT_PAGE entries
8607 required. */
8608 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8609 {
8610 asection *subsection;
8611
8612 for (subsection = ibfd->sections;
8613 subsection;
8614 subsection = subsection->next)
8615 {
8616 if ((subsection->flags & SEC_ALLOC) == 0)
8617 continue;
8618 loadable_size += ((subsection->size + 0xf)
8619 &~ (bfd_size_type) 0xf);
8620 }
8621 }
8622
8623 if (htab->is_vxworks)
8624 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8625 relocations against local symbols evaluate to "G", and the EABI does
8626 not include R_MIPS_GOT_PAGE. */
8627 page_gotno = 0;
8628 else
8629 /* Assume there are two loadable segments consisting of contiguous
8630 sections. Is 5 enough? */
8631 page_gotno = (loadable_size >> 16) + 5;
8632
8633 /* Choose the smaller of the two estimates; both are intended to be
8634 conservative. */
8635 if (page_gotno > g->page_gotno)
8636 page_gotno = g->page_gotno;
8637
8638 g->local_gotno += page_gotno;
8639
8640 /* Replace entries for indirect and warning symbols with entries for
8641 the target symbol. Count the number of GOT entries and TLS relocs. */
8642 if (!mips_elf_resolve_final_got_entries (info, g))
8643 return FALSE;
8644
8645 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8646 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8647 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8648
8649 /* VxWorks does not support multiple GOTs. It initializes $gp to
8650 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8651 dynamic loader. */
8652 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8653 {
8654 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8655 return FALSE;
8656 }
8657 else
8658 {
8659 /* Record that all bfds use G. This also has the effect of freeing
8660 the per-bfd GOTs, which we no longer need. */
8661 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8662 if (mips_elf_bfd_got (ibfd, FALSE))
8663 mips_elf_replace_bfd_got (ibfd, g);
8664 mips_elf_replace_bfd_got (output_bfd, g);
8665
8666 /* Set up TLS entries. */
8667 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8668 tga.info = info;
8669 tga.g = g;
8670 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
8671 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
8672 if (!tga.g)
8673 return FALSE;
8674 BFD_ASSERT (g->tls_assigned_gotno
8675 == g->global_gotno + g->local_gotno + g->tls_gotno);
8676
8677 /* Each VxWorks GOT entry needs an explicit relocation. */
8678 if (htab->is_vxworks && info->shared)
8679 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
8680
8681 /* Allocate room for the TLS relocations. */
8682 if (g->relocs)
8683 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
8684 }
8685
8686 return TRUE;
8687 }
8688
8689 /* Estimate the size of the .MIPS.stubs section. */
8690
8691 static void
8692 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8693 {
8694 struct mips_elf_link_hash_table *htab;
8695 bfd_size_type dynsymcount;
8696
8697 htab = mips_elf_hash_table (info);
8698 BFD_ASSERT (htab != NULL);
8699
8700 if (htab->lazy_stub_count == 0)
8701 return;
8702
8703 /* IRIX rld assumes that a function stub isn't at the end of the .text
8704 section, so add a dummy entry to the end. */
8705 htab->lazy_stub_count++;
8706
8707 /* Get a worst-case estimate of the number of dynamic symbols needed.
8708 At this point, dynsymcount does not account for section symbols
8709 and count_section_dynsyms may overestimate the number that will
8710 be needed. */
8711 dynsymcount = (elf_hash_table (info)->dynsymcount
8712 + count_section_dynsyms (output_bfd, info));
8713
8714 /* Determine the size of one stub entry. */
8715 htab->function_stub_size = (dynsymcount > 0x10000
8716 ? MIPS_FUNCTION_STUB_BIG_SIZE
8717 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8718
8719 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8720 }
8721
8722 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8723 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8724 allocate an entry in the stubs section. */
8725
8726 static bfd_boolean
8727 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8728 {
8729 struct mips_elf_link_hash_table *htab;
8730
8731 htab = (struct mips_elf_link_hash_table *) data;
8732 if (h->needs_lazy_stub)
8733 {
8734 h->root.root.u.def.section = htab->sstubs;
8735 h->root.root.u.def.value = htab->sstubs->size;
8736 h->root.plt.offset = htab->sstubs->size;
8737 htab->sstubs->size += htab->function_stub_size;
8738 }
8739 return TRUE;
8740 }
8741
8742 /* Allocate offsets in the stubs section to each symbol that needs one.
8743 Set the final size of the .MIPS.stub section. */
8744
8745 static void
8746 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8747 {
8748 struct mips_elf_link_hash_table *htab;
8749
8750 htab = mips_elf_hash_table (info);
8751 BFD_ASSERT (htab != NULL);
8752
8753 if (htab->lazy_stub_count == 0)
8754 return;
8755
8756 htab->sstubs->size = 0;
8757 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8758 htab->sstubs->size += htab->function_stub_size;
8759 BFD_ASSERT (htab->sstubs->size
8760 == htab->lazy_stub_count * htab->function_stub_size);
8761 }
8762
8763 /* Set the sizes of the dynamic sections. */
8764
8765 bfd_boolean
8766 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8767 struct bfd_link_info *info)
8768 {
8769 bfd *dynobj;
8770 asection *s, *sreldyn;
8771 bfd_boolean reltext;
8772 struct mips_elf_link_hash_table *htab;
8773
8774 htab = mips_elf_hash_table (info);
8775 BFD_ASSERT (htab != NULL);
8776 dynobj = elf_hash_table (info)->dynobj;
8777 BFD_ASSERT (dynobj != NULL);
8778
8779 if (elf_hash_table (info)->dynamic_sections_created)
8780 {
8781 /* Set the contents of the .interp section to the interpreter. */
8782 if (info->executable)
8783 {
8784 s = bfd_get_linker_section (dynobj, ".interp");
8785 BFD_ASSERT (s != NULL);
8786 s->size
8787 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8788 s->contents
8789 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8790 }
8791
8792 /* Create a symbol for the PLT, if we know that we are using it. */
8793 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8794 {
8795 struct elf_link_hash_entry *h;
8796
8797 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8798
8799 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8800 "_PROCEDURE_LINKAGE_TABLE_");
8801 htab->root.hplt = h;
8802 if (h == NULL)
8803 return FALSE;
8804 h->type = STT_FUNC;
8805 }
8806 }
8807
8808 /* Allocate space for global sym dynamic relocs. */
8809 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
8810
8811 mips_elf_estimate_stub_size (output_bfd, info);
8812
8813 if (!mips_elf_lay_out_got (output_bfd, info))
8814 return FALSE;
8815
8816 mips_elf_lay_out_lazy_stubs (info);
8817
8818 /* The check_relocs and adjust_dynamic_symbol entry points have
8819 determined the sizes of the various dynamic sections. Allocate
8820 memory for them. */
8821 reltext = FALSE;
8822 for (s = dynobj->sections; s != NULL; s = s->next)
8823 {
8824 const char *name;
8825
8826 /* It's OK to base decisions on the section name, because none
8827 of the dynobj section names depend upon the input files. */
8828 name = bfd_get_section_name (dynobj, s);
8829
8830 if ((s->flags & SEC_LINKER_CREATED) == 0)
8831 continue;
8832
8833 if (CONST_STRNEQ (name, ".rel"))
8834 {
8835 if (s->size != 0)
8836 {
8837 const char *outname;
8838 asection *target;
8839
8840 /* If this relocation section applies to a read only
8841 section, then we probably need a DT_TEXTREL entry.
8842 If the relocation section is .rel(a).dyn, we always
8843 assert a DT_TEXTREL entry rather than testing whether
8844 there exists a relocation to a read only section or
8845 not. */
8846 outname = bfd_get_section_name (output_bfd,
8847 s->output_section);
8848 target = bfd_get_section_by_name (output_bfd, outname + 4);
8849 if ((target != NULL
8850 && (target->flags & SEC_READONLY) != 0
8851 && (target->flags & SEC_ALLOC) != 0)
8852 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8853 reltext = TRUE;
8854
8855 /* We use the reloc_count field as a counter if we need
8856 to copy relocs into the output file. */
8857 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8858 s->reloc_count = 0;
8859
8860 /* If combreloc is enabled, elf_link_sort_relocs() will
8861 sort relocations, but in a different way than we do,
8862 and before we're done creating relocations. Also, it
8863 will move them around between input sections'
8864 relocation's contents, so our sorting would be
8865 broken, so don't let it run. */
8866 info->combreloc = 0;
8867 }
8868 }
8869 else if (! info->shared
8870 && ! mips_elf_hash_table (info)->use_rld_obj_head
8871 && CONST_STRNEQ (name, ".rld_map"))
8872 {
8873 /* We add a room for __rld_map. It will be filled in by the
8874 rtld to contain a pointer to the _r_debug structure. */
8875 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
8876 }
8877 else if (SGI_COMPAT (output_bfd)
8878 && CONST_STRNEQ (name, ".compact_rel"))
8879 s->size += mips_elf_hash_table (info)->compact_rel_size;
8880 else if (s == htab->splt)
8881 {
8882 /* If the last PLT entry has a branch delay slot, allocate
8883 room for an extra nop to fill the delay slot. This is
8884 for CPUs without load interlocking. */
8885 if (! LOAD_INTERLOCKS_P (output_bfd)
8886 && ! htab->is_vxworks && s->size > 0)
8887 s->size += 4;
8888 }
8889 else if (! CONST_STRNEQ (name, ".init")
8890 && s != htab->sgot
8891 && s != htab->sgotplt
8892 && s != htab->sstubs
8893 && s != htab->sdynbss)
8894 {
8895 /* It's not one of our sections, so don't allocate space. */
8896 continue;
8897 }
8898
8899 if (s->size == 0)
8900 {
8901 s->flags |= SEC_EXCLUDE;
8902 continue;
8903 }
8904
8905 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8906 continue;
8907
8908 /* Allocate memory for the section contents. */
8909 s->contents = bfd_zalloc (dynobj, s->size);
8910 if (s->contents == NULL)
8911 {
8912 bfd_set_error (bfd_error_no_memory);
8913 return FALSE;
8914 }
8915 }
8916
8917 if (elf_hash_table (info)->dynamic_sections_created)
8918 {
8919 /* Add some entries to the .dynamic section. We fill in the
8920 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8921 must add the entries now so that we get the correct size for
8922 the .dynamic section. */
8923
8924 /* SGI object has the equivalence of DT_DEBUG in the
8925 DT_MIPS_RLD_MAP entry. This must come first because glibc
8926 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
8927 may only look at the first one they see. */
8928 if (!info->shared
8929 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8930 return FALSE;
8931
8932 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8933 used by the debugger. */
8934 if (info->executable
8935 && !SGI_COMPAT (output_bfd)
8936 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8937 return FALSE;
8938
8939 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8940 info->flags |= DF_TEXTREL;
8941
8942 if ((info->flags & DF_TEXTREL) != 0)
8943 {
8944 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8945 return FALSE;
8946
8947 /* Clear the DF_TEXTREL flag. It will be set again if we
8948 write out an actual text relocation; we may not, because
8949 at this point we do not know whether e.g. any .eh_frame
8950 absolute relocations have been converted to PC-relative. */
8951 info->flags &= ~DF_TEXTREL;
8952 }
8953
8954 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8955 return FALSE;
8956
8957 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8958 if (htab->is_vxworks)
8959 {
8960 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8961 use any of the DT_MIPS_* tags. */
8962 if (sreldyn && sreldyn->size > 0)
8963 {
8964 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8965 return FALSE;
8966
8967 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8968 return FALSE;
8969
8970 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8971 return FALSE;
8972 }
8973 }
8974 else
8975 {
8976 if (sreldyn && sreldyn->size > 0)
8977 {
8978 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8979 return FALSE;
8980
8981 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8982 return FALSE;
8983
8984 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8985 return FALSE;
8986 }
8987
8988 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8989 return FALSE;
8990
8991 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8992 return FALSE;
8993
8994 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8995 return FALSE;
8996
8997 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8998 return FALSE;
8999
9000 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9001 return FALSE;
9002
9003 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9004 return FALSE;
9005
9006 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9007 return FALSE;
9008
9009 if (IRIX_COMPAT (dynobj) == ict_irix5
9010 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9011 return FALSE;
9012
9013 if (IRIX_COMPAT (dynobj) == ict_irix6
9014 && (bfd_get_section_by_name
9015 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9016 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9017 return FALSE;
9018 }
9019 if (htab->splt->size > 0)
9020 {
9021 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9022 return FALSE;
9023
9024 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9025 return FALSE;
9026
9027 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9028 return FALSE;
9029
9030 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9031 return FALSE;
9032 }
9033 if (htab->is_vxworks
9034 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9035 return FALSE;
9036 }
9037
9038 return TRUE;
9039 }
9040 \f
9041 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9042 Adjust its R_ADDEND field so that it is correct for the output file.
9043 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9044 and sections respectively; both use symbol indexes. */
9045
9046 static void
9047 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9048 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9049 asection **local_sections, Elf_Internal_Rela *rel)
9050 {
9051 unsigned int r_type, r_symndx;
9052 Elf_Internal_Sym *sym;
9053 asection *sec;
9054
9055 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9056 {
9057 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9058 if (gprel16_reloc_p (r_type)
9059 || r_type == R_MIPS_GPREL32
9060 || literal_reloc_p (r_type))
9061 {
9062 rel->r_addend += _bfd_get_gp_value (input_bfd);
9063 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9064 }
9065
9066 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9067 sym = local_syms + r_symndx;
9068
9069 /* Adjust REL's addend to account for section merging. */
9070 if (!info->relocatable)
9071 {
9072 sec = local_sections[r_symndx];
9073 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9074 }
9075
9076 /* This would normally be done by the rela_normal code in elflink.c. */
9077 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9078 rel->r_addend += local_sections[r_symndx]->output_offset;
9079 }
9080 }
9081
9082 /* Handle relocations against symbols from removed linkonce sections,
9083 or sections discarded by a linker script. We use this wrapper around
9084 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9085 on 64-bit ELF targets. In this case for any relocation handled, which
9086 always be the first in a triplet, the remaining two have to be processed
9087 together with the first, even if they are R_MIPS_NONE. It is the symbol
9088 index referred by the first reloc that applies to all the three and the
9089 remaining two never refer to an object symbol. And it is the final
9090 relocation (the last non-null one) that determines the output field of
9091 the whole relocation so retrieve the corresponding howto structure for
9092 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9093
9094 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9095 and therefore requires to be pasted in a loop. It also defines a block
9096 and does not protect any of its arguments, hence the extra brackets. */
9097
9098 static void
9099 mips_reloc_against_discarded_section (bfd *output_bfd,
9100 struct bfd_link_info *info,
9101 bfd *input_bfd, asection *input_section,
9102 Elf_Internal_Rela **rel,
9103 const Elf_Internal_Rela **relend,
9104 bfd_boolean rel_reloc,
9105 reloc_howto_type *howto,
9106 bfd_byte *contents)
9107 {
9108 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9109 int count = bed->s->int_rels_per_ext_rel;
9110 unsigned int r_type;
9111 int i;
9112
9113 for (i = count - 1; i > 0; i--)
9114 {
9115 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9116 if (r_type != R_MIPS_NONE)
9117 {
9118 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9119 break;
9120 }
9121 }
9122 do
9123 {
9124 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9125 (*rel), count, (*relend),
9126 howto, i, contents);
9127 }
9128 while (0);
9129 }
9130
9131 /* Relocate a MIPS ELF section. */
9132
9133 bfd_boolean
9134 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9135 bfd *input_bfd, asection *input_section,
9136 bfd_byte *contents, Elf_Internal_Rela *relocs,
9137 Elf_Internal_Sym *local_syms,
9138 asection **local_sections)
9139 {
9140 Elf_Internal_Rela *rel;
9141 const Elf_Internal_Rela *relend;
9142 bfd_vma addend = 0;
9143 bfd_boolean use_saved_addend_p = FALSE;
9144 const struct elf_backend_data *bed;
9145
9146 bed = get_elf_backend_data (output_bfd);
9147 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9148 for (rel = relocs; rel < relend; ++rel)
9149 {
9150 const char *name;
9151 bfd_vma value = 0;
9152 reloc_howto_type *howto;
9153 bfd_boolean cross_mode_jump_p;
9154 /* TRUE if the relocation is a RELA relocation, rather than a
9155 REL relocation. */
9156 bfd_boolean rela_relocation_p = TRUE;
9157 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9158 const char *msg;
9159 unsigned long r_symndx;
9160 asection *sec;
9161 Elf_Internal_Shdr *symtab_hdr;
9162 struct elf_link_hash_entry *h;
9163 bfd_boolean rel_reloc;
9164
9165 rel_reloc = (NEWABI_P (input_bfd)
9166 && mips_elf_rel_relocation_p (input_bfd, input_section,
9167 relocs, rel));
9168 /* Find the relocation howto for this relocation. */
9169 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9170
9171 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9172 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9173 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9174 {
9175 sec = local_sections[r_symndx];
9176 h = NULL;
9177 }
9178 else
9179 {
9180 unsigned long extsymoff;
9181
9182 extsymoff = 0;
9183 if (!elf_bad_symtab (input_bfd))
9184 extsymoff = symtab_hdr->sh_info;
9185 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9186 while (h->root.type == bfd_link_hash_indirect
9187 || h->root.type == bfd_link_hash_warning)
9188 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9189
9190 sec = NULL;
9191 if (h->root.type == bfd_link_hash_defined
9192 || h->root.type == bfd_link_hash_defweak)
9193 sec = h->root.u.def.section;
9194 }
9195
9196 if (sec != NULL && discarded_section (sec))
9197 {
9198 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9199 input_section, &rel, &relend,
9200 rel_reloc, howto, contents);
9201 continue;
9202 }
9203
9204 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9205 {
9206 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9207 64-bit code, but make sure all their addresses are in the
9208 lowermost or uppermost 32-bit section of the 64-bit address
9209 space. Thus, when they use an R_MIPS_64 they mean what is
9210 usually meant by R_MIPS_32, with the exception that the
9211 stored value is sign-extended to 64 bits. */
9212 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9213
9214 /* On big-endian systems, we need to lie about the position
9215 of the reloc. */
9216 if (bfd_big_endian (input_bfd))
9217 rel->r_offset += 4;
9218 }
9219
9220 if (!use_saved_addend_p)
9221 {
9222 /* If these relocations were originally of the REL variety,
9223 we must pull the addend out of the field that will be
9224 relocated. Otherwise, we simply use the contents of the
9225 RELA relocation. */
9226 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9227 relocs, rel))
9228 {
9229 rela_relocation_p = FALSE;
9230 addend = mips_elf_read_rel_addend (input_bfd, rel,
9231 howto, contents);
9232 if (hi16_reloc_p (r_type)
9233 || (got16_reloc_p (r_type)
9234 && mips_elf_local_relocation_p (input_bfd, rel,
9235 local_sections)))
9236 {
9237 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9238 contents, &addend))
9239 {
9240 if (h)
9241 name = h->root.root.string;
9242 else
9243 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9244 local_syms + r_symndx,
9245 sec);
9246 (*_bfd_error_handler)
9247 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9248 input_bfd, input_section, name, howto->name,
9249 rel->r_offset);
9250 }
9251 }
9252 else
9253 addend <<= howto->rightshift;
9254 }
9255 else
9256 addend = rel->r_addend;
9257 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9258 local_syms, local_sections, rel);
9259 }
9260
9261 if (info->relocatable)
9262 {
9263 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9264 && bfd_big_endian (input_bfd))
9265 rel->r_offset -= 4;
9266
9267 if (!rela_relocation_p && rel->r_addend)
9268 {
9269 addend += rel->r_addend;
9270 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9271 addend = mips_elf_high (addend);
9272 else if (r_type == R_MIPS_HIGHER)
9273 addend = mips_elf_higher (addend);
9274 else if (r_type == R_MIPS_HIGHEST)
9275 addend = mips_elf_highest (addend);
9276 else
9277 addend >>= howto->rightshift;
9278
9279 /* We use the source mask, rather than the destination
9280 mask because the place to which we are writing will be
9281 source of the addend in the final link. */
9282 addend &= howto->src_mask;
9283
9284 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9285 /* See the comment above about using R_MIPS_64 in the 32-bit
9286 ABI. Here, we need to update the addend. It would be
9287 possible to get away with just using the R_MIPS_32 reloc
9288 but for endianness. */
9289 {
9290 bfd_vma sign_bits;
9291 bfd_vma low_bits;
9292 bfd_vma high_bits;
9293
9294 if (addend & ((bfd_vma) 1 << 31))
9295 #ifdef BFD64
9296 sign_bits = ((bfd_vma) 1 << 32) - 1;
9297 #else
9298 sign_bits = -1;
9299 #endif
9300 else
9301 sign_bits = 0;
9302
9303 /* If we don't know that we have a 64-bit type,
9304 do two separate stores. */
9305 if (bfd_big_endian (input_bfd))
9306 {
9307 /* Store the sign-bits (which are most significant)
9308 first. */
9309 low_bits = sign_bits;
9310 high_bits = addend;
9311 }
9312 else
9313 {
9314 low_bits = addend;
9315 high_bits = sign_bits;
9316 }
9317 bfd_put_32 (input_bfd, low_bits,
9318 contents + rel->r_offset);
9319 bfd_put_32 (input_bfd, high_bits,
9320 contents + rel->r_offset + 4);
9321 continue;
9322 }
9323
9324 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9325 input_bfd, input_section,
9326 contents, FALSE))
9327 return FALSE;
9328 }
9329
9330 /* Go on to the next relocation. */
9331 continue;
9332 }
9333
9334 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9335 relocations for the same offset. In that case we are
9336 supposed to treat the output of each relocation as the addend
9337 for the next. */
9338 if (rel + 1 < relend
9339 && rel->r_offset == rel[1].r_offset
9340 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9341 use_saved_addend_p = TRUE;
9342 else
9343 use_saved_addend_p = FALSE;
9344
9345 /* Figure out what value we are supposed to relocate. */
9346 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9347 input_section, info, rel,
9348 addend, howto, local_syms,
9349 local_sections, &value,
9350 &name, &cross_mode_jump_p,
9351 use_saved_addend_p))
9352 {
9353 case bfd_reloc_continue:
9354 /* There's nothing to do. */
9355 continue;
9356
9357 case bfd_reloc_undefined:
9358 /* mips_elf_calculate_relocation already called the
9359 undefined_symbol callback. There's no real point in
9360 trying to perform the relocation at this point, so we
9361 just skip ahead to the next relocation. */
9362 continue;
9363
9364 case bfd_reloc_notsupported:
9365 msg = _("internal error: unsupported relocation error");
9366 info->callbacks->warning
9367 (info, msg, name, input_bfd, input_section, rel->r_offset);
9368 return FALSE;
9369
9370 case bfd_reloc_overflow:
9371 if (use_saved_addend_p)
9372 /* Ignore overflow until we reach the last relocation for
9373 a given location. */
9374 ;
9375 else
9376 {
9377 struct mips_elf_link_hash_table *htab;
9378
9379 htab = mips_elf_hash_table (info);
9380 BFD_ASSERT (htab != NULL);
9381 BFD_ASSERT (name != NULL);
9382 if (!htab->small_data_overflow_reported
9383 && (gprel16_reloc_p (howto->type)
9384 || literal_reloc_p (howto->type)))
9385 {
9386 msg = _("small-data section exceeds 64KB;"
9387 " lower small-data size limit (see option -G)");
9388
9389 htab->small_data_overflow_reported = TRUE;
9390 (*info->callbacks->einfo) ("%P: %s\n", msg);
9391 }
9392 if (! ((*info->callbacks->reloc_overflow)
9393 (info, NULL, name, howto->name, (bfd_vma) 0,
9394 input_bfd, input_section, rel->r_offset)))
9395 return FALSE;
9396 }
9397 break;
9398
9399 case bfd_reloc_ok:
9400 break;
9401
9402 case bfd_reloc_outofrange:
9403 if (jal_reloc_p (howto->type))
9404 {
9405 msg = _("JALX to a non-word-aligned address");
9406 info->callbacks->warning
9407 (info, msg, name, input_bfd, input_section, rel->r_offset);
9408 return FALSE;
9409 }
9410 /* Fall through. */
9411
9412 default:
9413 abort ();
9414 break;
9415 }
9416
9417 /* If we've got another relocation for the address, keep going
9418 until we reach the last one. */
9419 if (use_saved_addend_p)
9420 {
9421 addend = value;
9422 continue;
9423 }
9424
9425 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9426 /* See the comment above about using R_MIPS_64 in the 32-bit
9427 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9428 that calculated the right value. Now, however, we
9429 sign-extend the 32-bit result to 64-bits, and store it as a
9430 64-bit value. We are especially generous here in that we
9431 go to extreme lengths to support this usage on systems with
9432 only a 32-bit VMA. */
9433 {
9434 bfd_vma sign_bits;
9435 bfd_vma low_bits;
9436 bfd_vma high_bits;
9437
9438 if (value & ((bfd_vma) 1 << 31))
9439 #ifdef BFD64
9440 sign_bits = ((bfd_vma) 1 << 32) - 1;
9441 #else
9442 sign_bits = -1;
9443 #endif
9444 else
9445 sign_bits = 0;
9446
9447 /* If we don't know that we have a 64-bit type,
9448 do two separate stores. */
9449 if (bfd_big_endian (input_bfd))
9450 {
9451 /* Undo what we did above. */
9452 rel->r_offset -= 4;
9453 /* Store the sign-bits (which are most significant)
9454 first. */
9455 low_bits = sign_bits;
9456 high_bits = value;
9457 }
9458 else
9459 {
9460 low_bits = value;
9461 high_bits = sign_bits;
9462 }
9463 bfd_put_32 (input_bfd, low_bits,
9464 contents + rel->r_offset);
9465 bfd_put_32 (input_bfd, high_bits,
9466 contents + rel->r_offset + 4);
9467 continue;
9468 }
9469
9470 /* Actually perform the relocation. */
9471 if (! mips_elf_perform_relocation (info, howto, rel, value,
9472 input_bfd, input_section,
9473 contents, cross_mode_jump_p))
9474 return FALSE;
9475 }
9476
9477 return TRUE;
9478 }
9479 \f
9480 /* A function that iterates over each entry in la25_stubs and fills
9481 in the code for each one. DATA points to a mips_htab_traverse_info. */
9482
9483 static int
9484 mips_elf_create_la25_stub (void **slot, void *data)
9485 {
9486 struct mips_htab_traverse_info *hti;
9487 struct mips_elf_link_hash_table *htab;
9488 struct mips_elf_la25_stub *stub;
9489 asection *s;
9490 bfd_byte *loc;
9491 bfd_vma offset, target, target_high, target_low;
9492
9493 stub = (struct mips_elf_la25_stub *) *slot;
9494 hti = (struct mips_htab_traverse_info *) data;
9495 htab = mips_elf_hash_table (hti->info);
9496 BFD_ASSERT (htab != NULL);
9497
9498 /* Create the section contents, if we haven't already. */
9499 s = stub->stub_section;
9500 loc = s->contents;
9501 if (loc == NULL)
9502 {
9503 loc = bfd_malloc (s->size);
9504 if (loc == NULL)
9505 {
9506 hti->error = TRUE;
9507 return FALSE;
9508 }
9509 s->contents = loc;
9510 }
9511
9512 /* Work out where in the section this stub should go. */
9513 offset = stub->offset;
9514
9515 /* Work out the target address. */
9516 target = mips_elf_get_la25_target (stub, &s);
9517 target += s->output_section->vma + s->output_offset;
9518
9519 target_high = ((target + 0x8000) >> 16) & 0xffff;
9520 target_low = (target & 0xffff);
9521
9522 if (stub->stub_section != htab->strampoline)
9523 {
9524 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9525 of the section and write the two instructions at the end. */
9526 memset (loc, 0, offset);
9527 loc += offset;
9528 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9529 {
9530 bfd_put_micromips_32 (hti->output_bfd,
9531 LA25_LUI_MICROMIPS (target_high),
9532 loc);
9533 bfd_put_micromips_32 (hti->output_bfd,
9534 LA25_ADDIU_MICROMIPS (target_low),
9535 loc + 4);
9536 }
9537 else
9538 {
9539 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9540 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9541 }
9542 }
9543 else
9544 {
9545 /* This is trampoline. */
9546 loc += offset;
9547 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9548 {
9549 bfd_put_micromips_32 (hti->output_bfd,
9550 LA25_LUI_MICROMIPS (target_high), loc);
9551 bfd_put_micromips_32 (hti->output_bfd,
9552 LA25_J_MICROMIPS (target), loc + 4);
9553 bfd_put_micromips_32 (hti->output_bfd,
9554 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9555 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9556 }
9557 else
9558 {
9559 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9560 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9561 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9562 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9563 }
9564 }
9565 return TRUE;
9566 }
9567
9568 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9569 adjust it appropriately now. */
9570
9571 static void
9572 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9573 const char *name, Elf_Internal_Sym *sym)
9574 {
9575 /* The linker script takes care of providing names and values for
9576 these, but we must place them into the right sections. */
9577 static const char* const text_section_symbols[] = {
9578 "_ftext",
9579 "_etext",
9580 "__dso_displacement",
9581 "__elf_header",
9582 "__program_header_table",
9583 NULL
9584 };
9585
9586 static const char* const data_section_symbols[] = {
9587 "_fdata",
9588 "_edata",
9589 "_end",
9590 "_fbss",
9591 NULL
9592 };
9593
9594 const char* const *p;
9595 int i;
9596
9597 for (i = 0; i < 2; ++i)
9598 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9599 *p;
9600 ++p)
9601 if (strcmp (*p, name) == 0)
9602 {
9603 /* All of these symbols are given type STT_SECTION by the
9604 IRIX6 linker. */
9605 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9606 sym->st_other = STO_PROTECTED;
9607
9608 /* The IRIX linker puts these symbols in special sections. */
9609 if (i == 0)
9610 sym->st_shndx = SHN_MIPS_TEXT;
9611 else
9612 sym->st_shndx = SHN_MIPS_DATA;
9613
9614 break;
9615 }
9616 }
9617
9618 /* Finish up dynamic symbol handling. We set the contents of various
9619 dynamic sections here. */
9620
9621 bfd_boolean
9622 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9623 struct bfd_link_info *info,
9624 struct elf_link_hash_entry *h,
9625 Elf_Internal_Sym *sym)
9626 {
9627 bfd *dynobj;
9628 asection *sgot;
9629 struct mips_got_info *g, *gg;
9630 const char *name;
9631 int idx;
9632 struct mips_elf_link_hash_table *htab;
9633 struct mips_elf_link_hash_entry *hmips;
9634
9635 htab = mips_elf_hash_table (info);
9636 BFD_ASSERT (htab != NULL);
9637 dynobj = elf_hash_table (info)->dynobj;
9638 hmips = (struct mips_elf_link_hash_entry *) h;
9639
9640 BFD_ASSERT (!htab->is_vxworks);
9641
9642 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9643 {
9644 /* We've decided to create a PLT entry for this symbol. */
9645 bfd_byte *loc;
9646 bfd_vma header_address, plt_index, got_address;
9647 bfd_vma got_address_high, got_address_low, load;
9648 const bfd_vma *plt_entry;
9649
9650 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9651 BFD_ASSERT (h->dynindx != -1);
9652 BFD_ASSERT (htab->splt != NULL);
9653 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9654 BFD_ASSERT (!h->def_regular);
9655
9656 /* Calculate the address of the PLT header. */
9657 header_address = (htab->splt->output_section->vma
9658 + htab->splt->output_offset);
9659
9660 /* Calculate the index of the entry. */
9661 plt_index = ((h->plt.offset - htab->plt_header_size)
9662 / htab->plt_entry_size);
9663
9664 /* Calculate the address of the .got.plt entry. */
9665 got_address = (htab->sgotplt->output_section->vma
9666 + htab->sgotplt->output_offset
9667 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9668 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9669 got_address_low = got_address & 0xffff;
9670
9671 /* Initially point the .got.plt entry at the PLT header. */
9672 loc = (htab->sgotplt->contents
9673 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9674 if (ABI_64_P (output_bfd))
9675 bfd_put_64 (output_bfd, header_address, loc);
9676 else
9677 bfd_put_32 (output_bfd, header_address, loc);
9678
9679 /* Find out where the .plt entry should go. */
9680 loc = htab->splt->contents + h->plt.offset;
9681
9682 /* Pick the load opcode. */
9683 load = MIPS_ELF_LOAD_WORD (output_bfd);
9684
9685 /* Fill in the PLT entry itself. */
9686 plt_entry = mips_exec_plt_entry;
9687 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9688 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9689
9690 if (! LOAD_INTERLOCKS_P (output_bfd))
9691 {
9692 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9693 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9694 }
9695 else
9696 {
9697 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9698 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9699 }
9700
9701 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9702 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9703 plt_index, h->dynindx,
9704 R_MIPS_JUMP_SLOT, got_address);
9705
9706 /* We distinguish between PLT entries and lazy-binding stubs by
9707 giving the former an st_other value of STO_MIPS_PLT. Set the
9708 flag and leave the value if there are any relocations in the
9709 binary where pointer equality matters. */
9710 sym->st_shndx = SHN_UNDEF;
9711 if (h->pointer_equality_needed)
9712 sym->st_other = STO_MIPS_PLT;
9713 else
9714 sym->st_value = 0;
9715 }
9716 else if (h->plt.offset != MINUS_ONE)
9717 {
9718 /* We've decided to create a lazy-binding stub. */
9719 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9720
9721 /* This symbol has a stub. Set it up. */
9722
9723 BFD_ASSERT (h->dynindx != -1);
9724
9725 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9726 || (h->dynindx <= 0xffff));
9727
9728 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9729 sign extension at runtime in the stub, resulting in a negative
9730 index value. */
9731 if (h->dynindx & ~0x7fffffff)
9732 return FALSE;
9733
9734 /* Fill the stub. */
9735 idx = 0;
9736 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9737 idx += 4;
9738 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9739 idx += 4;
9740 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9741 {
9742 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9743 stub + idx);
9744 idx += 4;
9745 }
9746 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9747 idx += 4;
9748
9749 /* If a large stub is not required and sign extension is not a
9750 problem, then use legacy code in the stub. */
9751 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9752 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9753 else if (h->dynindx & ~0x7fff)
9754 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9755 else
9756 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9757 stub + idx);
9758
9759 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9760 memcpy (htab->sstubs->contents + h->plt.offset,
9761 stub, htab->function_stub_size);
9762
9763 /* Mark the symbol as undefined. plt.offset != -1 occurs
9764 only for the referenced symbol. */
9765 sym->st_shndx = SHN_UNDEF;
9766
9767 /* The run-time linker uses the st_value field of the symbol
9768 to reset the global offset table entry for this external
9769 to its stub address when unlinking a shared object. */
9770 sym->st_value = (htab->sstubs->output_section->vma
9771 + htab->sstubs->output_offset
9772 + h->plt.offset);
9773 }
9774
9775 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9776 refer to the stub, since only the stub uses the standard calling
9777 conventions. */
9778 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9779 {
9780 BFD_ASSERT (hmips->need_fn_stub);
9781 sym->st_value = (hmips->fn_stub->output_section->vma
9782 + hmips->fn_stub->output_offset);
9783 sym->st_size = hmips->fn_stub->size;
9784 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9785 }
9786
9787 BFD_ASSERT (h->dynindx != -1
9788 || h->forced_local);
9789
9790 sgot = htab->sgot;
9791 g = htab->got_info;
9792 BFD_ASSERT (g != NULL);
9793
9794 /* Run through the global symbol table, creating GOT entries for all
9795 the symbols that need them. */
9796 if (hmips->global_got_area != GGA_NONE)
9797 {
9798 bfd_vma offset;
9799 bfd_vma value;
9800
9801 value = sym->st_value;
9802 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
9803 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9804 }
9805
9806 if (hmips->global_got_area != GGA_NONE && g->next)
9807 {
9808 struct mips_got_entry e, *p;
9809 bfd_vma entry;
9810 bfd_vma offset;
9811
9812 gg = g;
9813
9814 e.abfd = output_bfd;
9815 e.symndx = -1;
9816 e.d.h = hmips;
9817 e.tls_type = GOT_TLS_NONE;
9818
9819 for (g = g->next; g->next != gg; g = g->next)
9820 {
9821 if (g->got_entries
9822 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9823 &e)))
9824 {
9825 offset = p->gotidx;
9826 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
9827 if (info->shared
9828 || (elf_hash_table (info)->dynamic_sections_created
9829 && p->d.h != NULL
9830 && p->d.h->root.def_dynamic
9831 && !p->d.h->root.def_regular))
9832 {
9833 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9834 the various compatibility problems, it's easier to mock
9835 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9836 mips_elf_create_dynamic_relocation to calculate the
9837 appropriate addend. */
9838 Elf_Internal_Rela rel[3];
9839
9840 memset (rel, 0, sizeof (rel));
9841 if (ABI_64_P (output_bfd))
9842 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9843 else
9844 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9845 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9846
9847 entry = 0;
9848 if (! (mips_elf_create_dynamic_relocation
9849 (output_bfd, info, rel,
9850 e.d.h, NULL, sym->st_value, &entry, sgot)))
9851 return FALSE;
9852 }
9853 else
9854 entry = sym->st_value;
9855 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9856 }
9857 }
9858 }
9859
9860 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9861 name = h->root.root.string;
9862 if (h == elf_hash_table (info)->hdynamic
9863 || h == elf_hash_table (info)->hgot)
9864 sym->st_shndx = SHN_ABS;
9865 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9866 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9867 {
9868 sym->st_shndx = SHN_ABS;
9869 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9870 sym->st_value = 1;
9871 }
9872 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9873 {
9874 sym->st_shndx = SHN_ABS;
9875 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9876 sym->st_value = elf_gp (output_bfd);
9877 }
9878 else if (SGI_COMPAT (output_bfd))
9879 {
9880 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9881 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9882 {
9883 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9884 sym->st_other = STO_PROTECTED;
9885 sym->st_value = 0;
9886 sym->st_shndx = SHN_MIPS_DATA;
9887 }
9888 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9889 {
9890 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9891 sym->st_other = STO_PROTECTED;
9892 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9893 sym->st_shndx = SHN_ABS;
9894 }
9895 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9896 {
9897 if (h->type == STT_FUNC)
9898 sym->st_shndx = SHN_MIPS_TEXT;
9899 else if (h->type == STT_OBJECT)
9900 sym->st_shndx = SHN_MIPS_DATA;
9901 }
9902 }
9903
9904 /* Emit a copy reloc, if needed. */
9905 if (h->needs_copy)
9906 {
9907 asection *s;
9908 bfd_vma symval;
9909
9910 BFD_ASSERT (h->dynindx != -1);
9911 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9912
9913 s = mips_elf_rel_dyn_section (info, FALSE);
9914 symval = (h->root.u.def.section->output_section->vma
9915 + h->root.u.def.section->output_offset
9916 + h->root.u.def.value);
9917 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9918 h->dynindx, R_MIPS_COPY, symval);
9919 }
9920
9921 /* Handle the IRIX6-specific symbols. */
9922 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9923 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9924
9925 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9926 treat MIPS16 symbols like any other. */
9927 if (ELF_ST_IS_MIPS16 (sym->st_other))
9928 {
9929 BFD_ASSERT (sym->st_value & 1);
9930 sym->st_other -= STO_MIPS16;
9931 }
9932
9933 return TRUE;
9934 }
9935
9936 /* Likewise, for VxWorks. */
9937
9938 bfd_boolean
9939 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9940 struct bfd_link_info *info,
9941 struct elf_link_hash_entry *h,
9942 Elf_Internal_Sym *sym)
9943 {
9944 bfd *dynobj;
9945 asection *sgot;
9946 struct mips_got_info *g;
9947 struct mips_elf_link_hash_table *htab;
9948 struct mips_elf_link_hash_entry *hmips;
9949
9950 htab = mips_elf_hash_table (info);
9951 BFD_ASSERT (htab != NULL);
9952 dynobj = elf_hash_table (info)->dynobj;
9953 hmips = (struct mips_elf_link_hash_entry *) h;
9954
9955 if (h->plt.offset != (bfd_vma) -1)
9956 {
9957 bfd_byte *loc;
9958 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9959 Elf_Internal_Rela rel;
9960 static const bfd_vma *plt_entry;
9961
9962 BFD_ASSERT (h->dynindx != -1);
9963 BFD_ASSERT (htab->splt != NULL);
9964 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9965
9966 /* Calculate the address of the .plt entry. */
9967 plt_address = (htab->splt->output_section->vma
9968 + htab->splt->output_offset
9969 + h->plt.offset);
9970
9971 /* Calculate the index of the entry. */
9972 plt_index = ((h->plt.offset - htab->plt_header_size)
9973 / htab->plt_entry_size);
9974
9975 /* Calculate the address of the .got.plt entry. */
9976 got_address = (htab->sgotplt->output_section->vma
9977 + htab->sgotplt->output_offset
9978 + plt_index * 4);
9979
9980 /* Calculate the offset of the .got.plt entry from
9981 _GLOBAL_OFFSET_TABLE_. */
9982 got_offset = mips_elf_gotplt_index (info, h);
9983
9984 /* Calculate the offset for the branch at the start of the PLT
9985 entry. The branch jumps to the beginning of .plt. */
9986 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9987
9988 /* Fill in the initial value of the .got.plt entry. */
9989 bfd_put_32 (output_bfd, plt_address,
9990 htab->sgotplt->contents + plt_index * 4);
9991
9992 /* Find out where the .plt entry should go. */
9993 loc = htab->splt->contents + h->plt.offset;
9994
9995 if (info->shared)
9996 {
9997 plt_entry = mips_vxworks_shared_plt_entry;
9998 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9999 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10000 }
10001 else
10002 {
10003 bfd_vma got_address_high, got_address_low;
10004
10005 plt_entry = mips_vxworks_exec_plt_entry;
10006 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10007 got_address_low = got_address & 0xffff;
10008
10009 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10010 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10011 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10012 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10013 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10014 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10015 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10016 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10017
10018 loc = (htab->srelplt2->contents
10019 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10020
10021 /* Emit a relocation for the .got.plt entry. */
10022 rel.r_offset = got_address;
10023 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10024 rel.r_addend = h->plt.offset;
10025 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10026
10027 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10028 loc += sizeof (Elf32_External_Rela);
10029 rel.r_offset = plt_address + 8;
10030 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10031 rel.r_addend = got_offset;
10032 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10033
10034 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10035 loc += sizeof (Elf32_External_Rela);
10036 rel.r_offset += 4;
10037 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10038 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10039 }
10040
10041 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10042 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10043 rel.r_offset = got_address;
10044 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10045 rel.r_addend = 0;
10046 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10047
10048 if (!h->def_regular)
10049 sym->st_shndx = SHN_UNDEF;
10050 }
10051
10052 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10053
10054 sgot = htab->sgot;
10055 g = htab->got_info;
10056 BFD_ASSERT (g != NULL);
10057
10058 /* See if this symbol has an entry in the GOT. */
10059 if (hmips->global_got_area != GGA_NONE)
10060 {
10061 bfd_vma offset;
10062 Elf_Internal_Rela outrel;
10063 bfd_byte *loc;
10064 asection *s;
10065
10066 /* Install the symbol value in the GOT. */
10067 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10068 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10069
10070 /* Add a dynamic relocation for it. */
10071 s = mips_elf_rel_dyn_section (info, FALSE);
10072 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10073 outrel.r_offset = (sgot->output_section->vma
10074 + sgot->output_offset
10075 + offset);
10076 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10077 outrel.r_addend = 0;
10078 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10079 }
10080
10081 /* Emit a copy reloc, if needed. */
10082 if (h->needs_copy)
10083 {
10084 Elf_Internal_Rela rel;
10085
10086 BFD_ASSERT (h->dynindx != -1);
10087
10088 rel.r_offset = (h->root.u.def.section->output_section->vma
10089 + h->root.u.def.section->output_offset
10090 + h->root.u.def.value);
10091 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10092 rel.r_addend = 0;
10093 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10094 htab->srelbss->contents
10095 + (htab->srelbss->reloc_count
10096 * sizeof (Elf32_External_Rela)));
10097 ++htab->srelbss->reloc_count;
10098 }
10099
10100 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10101 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10102 sym->st_value &= ~1;
10103
10104 return TRUE;
10105 }
10106
10107 /* Write out a plt0 entry to the beginning of .plt. */
10108
10109 static void
10110 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10111 {
10112 bfd_byte *loc;
10113 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10114 static const bfd_vma *plt_entry;
10115 struct mips_elf_link_hash_table *htab;
10116
10117 htab = mips_elf_hash_table (info);
10118 BFD_ASSERT (htab != NULL);
10119
10120 if (ABI_64_P (output_bfd))
10121 plt_entry = mips_n64_exec_plt0_entry;
10122 else if (ABI_N32_P (output_bfd))
10123 plt_entry = mips_n32_exec_plt0_entry;
10124 else
10125 plt_entry = mips_o32_exec_plt0_entry;
10126
10127 /* Calculate the value of .got.plt. */
10128 gotplt_value = (htab->sgotplt->output_section->vma
10129 + htab->sgotplt->output_offset);
10130 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10131 gotplt_value_low = gotplt_value & 0xffff;
10132
10133 /* The PLT sequence is not safe for N64 if .got.plt's address can
10134 not be loaded in two instructions. */
10135 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10136 || ~(gotplt_value | 0x7fffffff) == 0);
10137
10138 /* Install the PLT header. */
10139 loc = htab->splt->contents;
10140 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10141 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10142 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10143 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10144 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10145 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10146 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10147 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10148 }
10149
10150 /* Install the PLT header for a VxWorks executable and finalize the
10151 contents of .rela.plt.unloaded. */
10152
10153 static void
10154 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10155 {
10156 Elf_Internal_Rela rela;
10157 bfd_byte *loc;
10158 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10159 static const bfd_vma *plt_entry;
10160 struct mips_elf_link_hash_table *htab;
10161
10162 htab = mips_elf_hash_table (info);
10163 BFD_ASSERT (htab != NULL);
10164
10165 plt_entry = mips_vxworks_exec_plt0_entry;
10166
10167 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10168 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10169 + htab->root.hgot->root.u.def.section->output_offset
10170 + htab->root.hgot->root.u.def.value);
10171
10172 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10173 got_value_low = got_value & 0xffff;
10174
10175 /* Calculate the address of the PLT header. */
10176 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10177
10178 /* Install the PLT header. */
10179 loc = htab->splt->contents;
10180 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10181 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10182 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10183 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10184 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10185 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10186
10187 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10188 loc = htab->srelplt2->contents;
10189 rela.r_offset = plt_address;
10190 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10191 rela.r_addend = 0;
10192 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10193 loc += sizeof (Elf32_External_Rela);
10194
10195 /* Output the relocation for the following addiu of
10196 %lo(_GLOBAL_OFFSET_TABLE_). */
10197 rela.r_offset += 4;
10198 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10199 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10200 loc += sizeof (Elf32_External_Rela);
10201
10202 /* Fix up the remaining relocations. They may have the wrong
10203 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10204 in which symbols were output. */
10205 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10206 {
10207 Elf_Internal_Rela rel;
10208
10209 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10210 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10211 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10212 loc += sizeof (Elf32_External_Rela);
10213
10214 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10215 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10216 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10217 loc += sizeof (Elf32_External_Rela);
10218
10219 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10220 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10221 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10222 loc += sizeof (Elf32_External_Rela);
10223 }
10224 }
10225
10226 /* Install the PLT header for a VxWorks shared library. */
10227
10228 static void
10229 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10230 {
10231 unsigned int i;
10232 struct mips_elf_link_hash_table *htab;
10233
10234 htab = mips_elf_hash_table (info);
10235 BFD_ASSERT (htab != NULL);
10236
10237 /* We just need to copy the entry byte-by-byte. */
10238 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10239 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10240 htab->splt->contents + i * 4);
10241 }
10242
10243 /* Finish up the dynamic sections. */
10244
10245 bfd_boolean
10246 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10247 struct bfd_link_info *info)
10248 {
10249 bfd *dynobj;
10250 asection *sdyn;
10251 asection *sgot;
10252 struct mips_got_info *gg, *g;
10253 struct mips_elf_link_hash_table *htab;
10254
10255 htab = mips_elf_hash_table (info);
10256 BFD_ASSERT (htab != NULL);
10257
10258 dynobj = elf_hash_table (info)->dynobj;
10259
10260 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10261
10262 sgot = htab->sgot;
10263 gg = htab->got_info;
10264
10265 if (elf_hash_table (info)->dynamic_sections_created)
10266 {
10267 bfd_byte *b;
10268 int dyn_to_skip = 0, dyn_skipped = 0;
10269
10270 BFD_ASSERT (sdyn != NULL);
10271 BFD_ASSERT (gg != NULL);
10272
10273 g = mips_elf_bfd_got (output_bfd, FALSE);
10274 BFD_ASSERT (g != NULL);
10275
10276 for (b = sdyn->contents;
10277 b < sdyn->contents + sdyn->size;
10278 b += MIPS_ELF_DYN_SIZE (dynobj))
10279 {
10280 Elf_Internal_Dyn dyn;
10281 const char *name;
10282 size_t elemsize;
10283 asection *s;
10284 bfd_boolean swap_out_p;
10285
10286 /* Read in the current dynamic entry. */
10287 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10288
10289 /* Assume that we're going to modify it and write it out. */
10290 swap_out_p = TRUE;
10291
10292 switch (dyn.d_tag)
10293 {
10294 case DT_RELENT:
10295 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10296 break;
10297
10298 case DT_RELAENT:
10299 BFD_ASSERT (htab->is_vxworks);
10300 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10301 break;
10302
10303 case DT_STRSZ:
10304 /* Rewrite DT_STRSZ. */
10305 dyn.d_un.d_val =
10306 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10307 break;
10308
10309 case DT_PLTGOT:
10310 s = htab->sgot;
10311 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10312 break;
10313
10314 case DT_MIPS_PLTGOT:
10315 s = htab->sgotplt;
10316 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10317 break;
10318
10319 case DT_MIPS_RLD_VERSION:
10320 dyn.d_un.d_val = 1; /* XXX */
10321 break;
10322
10323 case DT_MIPS_FLAGS:
10324 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10325 break;
10326
10327 case DT_MIPS_TIME_STAMP:
10328 {
10329 time_t t;
10330 time (&t);
10331 dyn.d_un.d_val = t;
10332 }
10333 break;
10334
10335 case DT_MIPS_ICHECKSUM:
10336 /* XXX FIXME: */
10337 swap_out_p = FALSE;
10338 break;
10339
10340 case DT_MIPS_IVERSION:
10341 /* XXX FIXME: */
10342 swap_out_p = FALSE;
10343 break;
10344
10345 case DT_MIPS_BASE_ADDRESS:
10346 s = output_bfd->sections;
10347 BFD_ASSERT (s != NULL);
10348 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10349 break;
10350
10351 case DT_MIPS_LOCAL_GOTNO:
10352 dyn.d_un.d_val = g->local_gotno;
10353 break;
10354
10355 case DT_MIPS_UNREFEXTNO:
10356 /* The index into the dynamic symbol table which is the
10357 entry of the first external symbol that is not
10358 referenced within the same object. */
10359 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10360 break;
10361
10362 case DT_MIPS_GOTSYM:
10363 if (htab->global_gotsym)
10364 {
10365 dyn.d_un.d_val = htab->global_gotsym->dynindx;
10366 break;
10367 }
10368 /* In case if we don't have global got symbols we default
10369 to setting DT_MIPS_GOTSYM to the same value as
10370 DT_MIPS_SYMTABNO, so we just fall through. */
10371
10372 case DT_MIPS_SYMTABNO:
10373 name = ".dynsym";
10374 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10375 s = bfd_get_section_by_name (output_bfd, name);
10376 BFD_ASSERT (s != NULL);
10377
10378 dyn.d_un.d_val = s->size / elemsize;
10379 break;
10380
10381 case DT_MIPS_HIPAGENO:
10382 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10383 break;
10384
10385 case DT_MIPS_RLD_MAP:
10386 {
10387 struct elf_link_hash_entry *h;
10388 h = mips_elf_hash_table (info)->rld_symbol;
10389 if (!h)
10390 {
10391 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10392 swap_out_p = FALSE;
10393 break;
10394 }
10395 s = h->root.u.def.section;
10396 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10397 + h->root.u.def.value);
10398 }
10399 break;
10400
10401 case DT_MIPS_OPTIONS:
10402 s = (bfd_get_section_by_name
10403 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10404 dyn.d_un.d_ptr = s->vma;
10405 break;
10406
10407 case DT_RELASZ:
10408 BFD_ASSERT (htab->is_vxworks);
10409 /* The count does not include the JUMP_SLOT relocations. */
10410 if (htab->srelplt)
10411 dyn.d_un.d_val -= htab->srelplt->size;
10412 break;
10413
10414 case DT_PLTREL:
10415 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10416 if (htab->is_vxworks)
10417 dyn.d_un.d_val = DT_RELA;
10418 else
10419 dyn.d_un.d_val = DT_REL;
10420 break;
10421
10422 case DT_PLTRELSZ:
10423 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10424 dyn.d_un.d_val = htab->srelplt->size;
10425 break;
10426
10427 case DT_JMPREL:
10428 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10429 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10430 + htab->srelplt->output_offset);
10431 break;
10432
10433 case DT_TEXTREL:
10434 /* If we didn't need any text relocations after all, delete
10435 the dynamic tag. */
10436 if (!(info->flags & DF_TEXTREL))
10437 {
10438 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10439 swap_out_p = FALSE;
10440 }
10441 break;
10442
10443 case DT_FLAGS:
10444 /* If we didn't need any text relocations after all, clear
10445 DF_TEXTREL from DT_FLAGS. */
10446 if (!(info->flags & DF_TEXTREL))
10447 dyn.d_un.d_val &= ~DF_TEXTREL;
10448 else
10449 swap_out_p = FALSE;
10450 break;
10451
10452 default:
10453 swap_out_p = FALSE;
10454 if (htab->is_vxworks
10455 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10456 swap_out_p = TRUE;
10457 break;
10458 }
10459
10460 if (swap_out_p || dyn_skipped)
10461 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10462 (dynobj, &dyn, b - dyn_skipped);
10463
10464 if (dyn_to_skip)
10465 {
10466 dyn_skipped += dyn_to_skip;
10467 dyn_to_skip = 0;
10468 }
10469 }
10470
10471 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10472 if (dyn_skipped > 0)
10473 memset (b - dyn_skipped, 0, dyn_skipped);
10474 }
10475
10476 if (sgot != NULL && sgot->size > 0
10477 && !bfd_is_abs_section (sgot->output_section))
10478 {
10479 if (htab->is_vxworks)
10480 {
10481 /* The first entry of the global offset table points to the
10482 ".dynamic" section. The second is initialized by the
10483 loader and contains the shared library identifier.
10484 The third is also initialized by the loader and points
10485 to the lazy resolution stub. */
10486 MIPS_ELF_PUT_WORD (output_bfd,
10487 sdyn->output_offset + sdyn->output_section->vma,
10488 sgot->contents);
10489 MIPS_ELF_PUT_WORD (output_bfd, 0,
10490 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10491 MIPS_ELF_PUT_WORD (output_bfd, 0,
10492 sgot->contents
10493 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10494 }
10495 else
10496 {
10497 /* The first entry of the global offset table will be filled at
10498 runtime. The second entry will be used by some runtime loaders.
10499 This isn't the case of IRIX rld. */
10500 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10501 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10502 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10503 }
10504
10505 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10506 = MIPS_ELF_GOT_SIZE (output_bfd);
10507 }
10508
10509 /* Generate dynamic relocations for the non-primary gots. */
10510 if (gg != NULL && gg->next)
10511 {
10512 Elf_Internal_Rela rel[3];
10513 bfd_vma addend = 0;
10514
10515 memset (rel, 0, sizeof (rel));
10516 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10517
10518 for (g = gg->next; g->next != gg; g = g->next)
10519 {
10520 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10521 + g->next->tls_gotno;
10522
10523 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10524 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10525 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10526 sgot->contents
10527 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10528
10529 if (! info->shared)
10530 continue;
10531
10532 while (got_index < g->assigned_gotno)
10533 {
10534 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10535 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10536 if (!(mips_elf_create_dynamic_relocation
10537 (output_bfd, info, rel, NULL,
10538 bfd_abs_section_ptr,
10539 0, &addend, sgot)))
10540 return FALSE;
10541 BFD_ASSERT (addend == 0);
10542 }
10543 }
10544 }
10545
10546 /* The generation of dynamic relocations for the non-primary gots
10547 adds more dynamic relocations. We cannot count them until
10548 here. */
10549
10550 if (elf_hash_table (info)->dynamic_sections_created)
10551 {
10552 bfd_byte *b;
10553 bfd_boolean swap_out_p;
10554
10555 BFD_ASSERT (sdyn != NULL);
10556
10557 for (b = sdyn->contents;
10558 b < sdyn->contents + sdyn->size;
10559 b += MIPS_ELF_DYN_SIZE (dynobj))
10560 {
10561 Elf_Internal_Dyn dyn;
10562 asection *s;
10563
10564 /* Read in the current dynamic entry. */
10565 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10566
10567 /* Assume that we're going to modify it and write it out. */
10568 swap_out_p = TRUE;
10569
10570 switch (dyn.d_tag)
10571 {
10572 case DT_RELSZ:
10573 /* Reduce DT_RELSZ to account for any relocations we
10574 decided not to make. This is for the n64 irix rld,
10575 which doesn't seem to apply any relocations if there
10576 are trailing null entries. */
10577 s = mips_elf_rel_dyn_section (info, FALSE);
10578 dyn.d_un.d_val = (s->reloc_count
10579 * (ABI_64_P (output_bfd)
10580 ? sizeof (Elf64_Mips_External_Rel)
10581 : sizeof (Elf32_External_Rel)));
10582 /* Adjust the section size too. Tools like the prelinker
10583 can reasonably expect the values to the same. */
10584 elf_section_data (s->output_section)->this_hdr.sh_size
10585 = dyn.d_un.d_val;
10586 break;
10587
10588 default:
10589 swap_out_p = FALSE;
10590 break;
10591 }
10592
10593 if (swap_out_p)
10594 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10595 (dynobj, &dyn, b);
10596 }
10597 }
10598
10599 {
10600 asection *s;
10601 Elf32_compact_rel cpt;
10602
10603 if (SGI_COMPAT (output_bfd))
10604 {
10605 /* Write .compact_rel section out. */
10606 s = bfd_get_linker_section (dynobj, ".compact_rel");
10607 if (s != NULL)
10608 {
10609 cpt.id1 = 1;
10610 cpt.num = s->reloc_count;
10611 cpt.id2 = 2;
10612 cpt.offset = (s->output_section->filepos
10613 + sizeof (Elf32_External_compact_rel));
10614 cpt.reserved0 = 0;
10615 cpt.reserved1 = 0;
10616 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10617 ((Elf32_External_compact_rel *)
10618 s->contents));
10619
10620 /* Clean up a dummy stub function entry in .text. */
10621 if (htab->sstubs != NULL)
10622 {
10623 file_ptr dummy_offset;
10624
10625 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10626 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10627 memset (htab->sstubs->contents + dummy_offset, 0,
10628 htab->function_stub_size);
10629 }
10630 }
10631 }
10632
10633 /* The psABI says that the dynamic relocations must be sorted in
10634 increasing order of r_symndx. The VxWorks EABI doesn't require
10635 this, and because the code below handles REL rather than RELA
10636 relocations, using it for VxWorks would be outright harmful. */
10637 if (!htab->is_vxworks)
10638 {
10639 s = mips_elf_rel_dyn_section (info, FALSE);
10640 if (s != NULL
10641 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10642 {
10643 reldyn_sorting_bfd = output_bfd;
10644
10645 if (ABI_64_P (output_bfd))
10646 qsort ((Elf64_External_Rel *) s->contents + 1,
10647 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10648 sort_dynamic_relocs_64);
10649 else
10650 qsort ((Elf32_External_Rel *) s->contents + 1,
10651 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10652 sort_dynamic_relocs);
10653 }
10654 }
10655 }
10656
10657 if (htab->splt && htab->splt->size > 0)
10658 {
10659 if (htab->is_vxworks)
10660 {
10661 if (info->shared)
10662 mips_vxworks_finish_shared_plt (output_bfd, info);
10663 else
10664 mips_vxworks_finish_exec_plt (output_bfd, info);
10665 }
10666 else
10667 {
10668 BFD_ASSERT (!info->shared);
10669 mips_finish_exec_plt (output_bfd, info);
10670 }
10671 }
10672 return TRUE;
10673 }
10674
10675
10676 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10677
10678 static void
10679 mips_set_isa_flags (bfd *abfd)
10680 {
10681 flagword val;
10682
10683 switch (bfd_get_mach (abfd))
10684 {
10685 default:
10686 case bfd_mach_mips3000:
10687 val = E_MIPS_ARCH_1;
10688 break;
10689
10690 case bfd_mach_mips3900:
10691 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10692 break;
10693
10694 case bfd_mach_mips6000:
10695 val = E_MIPS_ARCH_2;
10696 break;
10697
10698 case bfd_mach_mips4000:
10699 case bfd_mach_mips4300:
10700 case bfd_mach_mips4400:
10701 case bfd_mach_mips4600:
10702 val = E_MIPS_ARCH_3;
10703 break;
10704
10705 case bfd_mach_mips4010:
10706 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10707 break;
10708
10709 case bfd_mach_mips4100:
10710 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10711 break;
10712
10713 case bfd_mach_mips4111:
10714 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10715 break;
10716
10717 case bfd_mach_mips4120:
10718 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10719 break;
10720
10721 case bfd_mach_mips4650:
10722 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10723 break;
10724
10725 case bfd_mach_mips5400:
10726 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10727 break;
10728
10729 case bfd_mach_mips5500:
10730 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10731 break;
10732
10733 case bfd_mach_mips5900:
10734 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10735 break;
10736
10737 case bfd_mach_mips9000:
10738 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10739 break;
10740
10741 case bfd_mach_mips5000:
10742 case bfd_mach_mips7000:
10743 case bfd_mach_mips8000:
10744 case bfd_mach_mips10000:
10745 case bfd_mach_mips12000:
10746 case bfd_mach_mips14000:
10747 case bfd_mach_mips16000:
10748 val = E_MIPS_ARCH_4;
10749 break;
10750
10751 case bfd_mach_mips5:
10752 val = E_MIPS_ARCH_5;
10753 break;
10754
10755 case bfd_mach_mips_loongson_2e:
10756 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10757 break;
10758
10759 case bfd_mach_mips_loongson_2f:
10760 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10761 break;
10762
10763 case bfd_mach_mips_sb1:
10764 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10765 break;
10766
10767 case bfd_mach_mips_loongson_3a:
10768 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10769 break;
10770
10771 case bfd_mach_mips_octeon:
10772 case bfd_mach_mips_octeonp:
10773 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10774 break;
10775
10776 case bfd_mach_mips_xlr:
10777 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10778 break;
10779
10780 case bfd_mach_mips_octeon2:
10781 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10782 break;
10783
10784 case bfd_mach_mipsisa32:
10785 val = E_MIPS_ARCH_32;
10786 break;
10787
10788 case bfd_mach_mipsisa64:
10789 val = E_MIPS_ARCH_64;
10790 break;
10791
10792 case bfd_mach_mipsisa32r2:
10793 val = E_MIPS_ARCH_32R2;
10794 break;
10795
10796 case bfd_mach_mipsisa64r2:
10797 val = E_MIPS_ARCH_64R2;
10798 break;
10799 }
10800 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10801 elf_elfheader (abfd)->e_flags |= val;
10802
10803 }
10804
10805
10806 /* The final processing done just before writing out a MIPS ELF object
10807 file. This gets the MIPS architecture right based on the machine
10808 number. This is used by both the 32-bit and the 64-bit ABI. */
10809
10810 void
10811 _bfd_mips_elf_final_write_processing (bfd *abfd,
10812 bfd_boolean linker ATTRIBUTE_UNUSED)
10813 {
10814 unsigned int i;
10815 Elf_Internal_Shdr **hdrpp;
10816 const char *name;
10817 asection *sec;
10818
10819 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10820 is nonzero. This is for compatibility with old objects, which used
10821 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10822 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10823 mips_set_isa_flags (abfd);
10824
10825 /* Set the sh_info field for .gptab sections and other appropriate
10826 info for each special section. */
10827 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10828 i < elf_numsections (abfd);
10829 i++, hdrpp++)
10830 {
10831 switch ((*hdrpp)->sh_type)
10832 {
10833 case SHT_MIPS_MSYM:
10834 case SHT_MIPS_LIBLIST:
10835 sec = bfd_get_section_by_name (abfd, ".dynstr");
10836 if (sec != NULL)
10837 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10838 break;
10839
10840 case SHT_MIPS_GPTAB:
10841 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10842 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10843 BFD_ASSERT (name != NULL
10844 && CONST_STRNEQ (name, ".gptab."));
10845 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10846 BFD_ASSERT (sec != NULL);
10847 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10848 break;
10849
10850 case SHT_MIPS_CONTENT:
10851 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10852 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10853 BFD_ASSERT (name != NULL
10854 && CONST_STRNEQ (name, ".MIPS.content"));
10855 sec = bfd_get_section_by_name (abfd,
10856 name + sizeof ".MIPS.content" - 1);
10857 BFD_ASSERT (sec != NULL);
10858 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10859 break;
10860
10861 case SHT_MIPS_SYMBOL_LIB:
10862 sec = bfd_get_section_by_name (abfd, ".dynsym");
10863 if (sec != NULL)
10864 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10865 sec = bfd_get_section_by_name (abfd, ".liblist");
10866 if (sec != NULL)
10867 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10868 break;
10869
10870 case SHT_MIPS_EVENTS:
10871 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10872 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10873 BFD_ASSERT (name != NULL);
10874 if (CONST_STRNEQ (name, ".MIPS.events"))
10875 sec = bfd_get_section_by_name (abfd,
10876 name + sizeof ".MIPS.events" - 1);
10877 else
10878 {
10879 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10880 sec = bfd_get_section_by_name (abfd,
10881 (name
10882 + sizeof ".MIPS.post_rel" - 1));
10883 }
10884 BFD_ASSERT (sec != NULL);
10885 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10886 break;
10887
10888 }
10889 }
10890 }
10891 \f
10892 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10893 segments. */
10894
10895 int
10896 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10897 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10898 {
10899 asection *s;
10900 int ret = 0;
10901
10902 /* See if we need a PT_MIPS_REGINFO segment. */
10903 s = bfd_get_section_by_name (abfd, ".reginfo");
10904 if (s && (s->flags & SEC_LOAD))
10905 ++ret;
10906
10907 /* See if we need a PT_MIPS_OPTIONS segment. */
10908 if (IRIX_COMPAT (abfd) == ict_irix6
10909 && bfd_get_section_by_name (abfd,
10910 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10911 ++ret;
10912
10913 /* See if we need a PT_MIPS_RTPROC segment. */
10914 if (IRIX_COMPAT (abfd) == ict_irix5
10915 && bfd_get_section_by_name (abfd, ".dynamic")
10916 && bfd_get_section_by_name (abfd, ".mdebug"))
10917 ++ret;
10918
10919 /* Allocate a PT_NULL header in dynamic objects. See
10920 _bfd_mips_elf_modify_segment_map for details. */
10921 if (!SGI_COMPAT (abfd)
10922 && bfd_get_section_by_name (abfd, ".dynamic"))
10923 ++ret;
10924
10925 return ret;
10926 }
10927
10928 /* Modify the segment map for an IRIX5 executable. */
10929
10930 bfd_boolean
10931 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10932 struct bfd_link_info *info)
10933 {
10934 asection *s;
10935 struct elf_segment_map *m, **pm;
10936 bfd_size_type amt;
10937
10938 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10939 segment. */
10940 s = bfd_get_section_by_name (abfd, ".reginfo");
10941 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10942 {
10943 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10944 if (m->p_type == PT_MIPS_REGINFO)
10945 break;
10946 if (m == NULL)
10947 {
10948 amt = sizeof *m;
10949 m = bfd_zalloc (abfd, amt);
10950 if (m == NULL)
10951 return FALSE;
10952
10953 m->p_type = PT_MIPS_REGINFO;
10954 m->count = 1;
10955 m->sections[0] = s;
10956
10957 /* We want to put it after the PHDR and INTERP segments. */
10958 pm = &elf_tdata (abfd)->segment_map;
10959 while (*pm != NULL
10960 && ((*pm)->p_type == PT_PHDR
10961 || (*pm)->p_type == PT_INTERP))
10962 pm = &(*pm)->next;
10963
10964 m->next = *pm;
10965 *pm = m;
10966 }
10967 }
10968
10969 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10970 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10971 PT_MIPS_OPTIONS segment immediately following the program header
10972 table. */
10973 if (NEWABI_P (abfd)
10974 /* On non-IRIX6 new abi, we'll have already created a segment
10975 for this section, so don't create another. I'm not sure this
10976 is not also the case for IRIX 6, but I can't test it right
10977 now. */
10978 && IRIX_COMPAT (abfd) == ict_irix6)
10979 {
10980 for (s = abfd->sections; s; s = s->next)
10981 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10982 break;
10983
10984 if (s)
10985 {
10986 struct elf_segment_map *options_segment;
10987
10988 pm = &elf_tdata (abfd)->segment_map;
10989 while (*pm != NULL
10990 && ((*pm)->p_type == PT_PHDR
10991 || (*pm)->p_type == PT_INTERP))
10992 pm = &(*pm)->next;
10993
10994 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10995 {
10996 amt = sizeof (struct elf_segment_map);
10997 options_segment = bfd_zalloc (abfd, amt);
10998 options_segment->next = *pm;
10999 options_segment->p_type = PT_MIPS_OPTIONS;
11000 options_segment->p_flags = PF_R;
11001 options_segment->p_flags_valid = TRUE;
11002 options_segment->count = 1;
11003 options_segment->sections[0] = s;
11004 *pm = options_segment;
11005 }
11006 }
11007 }
11008 else
11009 {
11010 if (IRIX_COMPAT (abfd) == ict_irix5)
11011 {
11012 /* If there are .dynamic and .mdebug sections, we make a room
11013 for the RTPROC header. FIXME: Rewrite without section names. */
11014 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11015 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11016 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11017 {
11018 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11019 if (m->p_type == PT_MIPS_RTPROC)
11020 break;
11021 if (m == NULL)
11022 {
11023 amt = sizeof *m;
11024 m = bfd_zalloc (abfd, amt);
11025 if (m == NULL)
11026 return FALSE;
11027
11028 m->p_type = PT_MIPS_RTPROC;
11029
11030 s = bfd_get_section_by_name (abfd, ".rtproc");
11031 if (s == NULL)
11032 {
11033 m->count = 0;
11034 m->p_flags = 0;
11035 m->p_flags_valid = 1;
11036 }
11037 else
11038 {
11039 m->count = 1;
11040 m->sections[0] = s;
11041 }
11042
11043 /* We want to put it after the DYNAMIC segment. */
11044 pm = &elf_tdata (abfd)->segment_map;
11045 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11046 pm = &(*pm)->next;
11047 if (*pm != NULL)
11048 pm = &(*pm)->next;
11049
11050 m->next = *pm;
11051 *pm = m;
11052 }
11053 }
11054 }
11055 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11056 .dynstr, .dynsym, and .hash sections, and everything in
11057 between. */
11058 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11059 pm = &(*pm)->next)
11060 if ((*pm)->p_type == PT_DYNAMIC)
11061 break;
11062 m = *pm;
11063 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11064 {
11065 /* For a normal mips executable the permissions for the PT_DYNAMIC
11066 segment are read, write and execute. We do that here since
11067 the code in elf.c sets only the read permission. This matters
11068 sometimes for the dynamic linker. */
11069 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11070 {
11071 m->p_flags = PF_R | PF_W | PF_X;
11072 m->p_flags_valid = 1;
11073 }
11074 }
11075 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11076 glibc's dynamic linker has traditionally derived the number of
11077 tags from the p_filesz field, and sometimes allocates stack
11078 arrays of that size. An overly-big PT_DYNAMIC segment can
11079 be actively harmful in such cases. Making PT_DYNAMIC contain
11080 other sections can also make life hard for the prelinker,
11081 which might move one of the other sections to a different
11082 PT_LOAD segment. */
11083 if (SGI_COMPAT (abfd)
11084 && m != NULL
11085 && m->count == 1
11086 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11087 {
11088 static const char *sec_names[] =
11089 {
11090 ".dynamic", ".dynstr", ".dynsym", ".hash"
11091 };
11092 bfd_vma low, high;
11093 unsigned int i, c;
11094 struct elf_segment_map *n;
11095
11096 low = ~(bfd_vma) 0;
11097 high = 0;
11098 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11099 {
11100 s = bfd_get_section_by_name (abfd, sec_names[i]);
11101 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11102 {
11103 bfd_size_type sz;
11104
11105 if (low > s->vma)
11106 low = s->vma;
11107 sz = s->size;
11108 if (high < s->vma + sz)
11109 high = s->vma + sz;
11110 }
11111 }
11112
11113 c = 0;
11114 for (s = abfd->sections; s != NULL; s = s->next)
11115 if ((s->flags & SEC_LOAD) != 0
11116 && s->vma >= low
11117 && s->vma + s->size <= high)
11118 ++c;
11119
11120 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11121 n = bfd_zalloc (abfd, amt);
11122 if (n == NULL)
11123 return FALSE;
11124 *n = *m;
11125 n->count = c;
11126
11127 i = 0;
11128 for (s = abfd->sections; s != NULL; s = s->next)
11129 {
11130 if ((s->flags & SEC_LOAD) != 0
11131 && s->vma >= low
11132 && s->vma + s->size <= high)
11133 {
11134 n->sections[i] = s;
11135 ++i;
11136 }
11137 }
11138
11139 *pm = n;
11140 }
11141 }
11142
11143 /* Allocate a spare program header in dynamic objects so that tools
11144 like the prelinker can add an extra PT_LOAD entry.
11145
11146 If the prelinker needs to make room for a new PT_LOAD entry, its
11147 standard procedure is to move the first (read-only) sections into
11148 the new (writable) segment. However, the MIPS ABI requires
11149 .dynamic to be in a read-only segment, and the section will often
11150 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11151
11152 Although the prelinker could in principle move .dynamic to a
11153 writable segment, it seems better to allocate a spare program
11154 header instead, and avoid the need to move any sections.
11155 There is a long tradition of allocating spare dynamic tags,
11156 so allocating a spare program header seems like a natural
11157 extension.
11158
11159 If INFO is NULL, we may be copying an already prelinked binary
11160 with objcopy or strip, so do not add this header. */
11161 if (info != NULL
11162 && !SGI_COMPAT (abfd)
11163 && bfd_get_section_by_name (abfd, ".dynamic"))
11164 {
11165 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11166 if ((*pm)->p_type == PT_NULL)
11167 break;
11168 if (*pm == NULL)
11169 {
11170 m = bfd_zalloc (abfd, sizeof (*m));
11171 if (m == NULL)
11172 return FALSE;
11173
11174 m->p_type = PT_NULL;
11175 *pm = m;
11176 }
11177 }
11178
11179 return TRUE;
11180 }
11181 \f
11182 /* Return the section that should be marked against GC for a given
11183 relocation. */
11184
11185 asection *
11186 _bfd_mips_elf_gc_mark_hook (asection *sec,
11187 struct bfd_link_info *info,
11188 Elf_Internal_Rela *rel,
11189 struct elf_link_hash_entry *h,
11190 Elf_Internal_Sym *sym)
11191 {
11192 /* ??? Do mips16 stub sections need to be handled special? */
11193
11194 if (h != NULL)
11195 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11196 {
11197 case R_MIPS_GNU_VTINHERIT:
11198 case R_MIPS_GNU_VTENTRY:
11199 return NULL;
11200 }
11201
11202 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11203 }
11204
11205 /* Update the got entry reference counts for the section being removed. */
11206
11207 bfd_boolean
11208 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11209 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11210 asection *sec ATTRIBUTE_UNUSED,
11211 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11212 {
11213 #if 0
11214 Elf_Internal_Shdr *symtab_hdr;
11215 struct elf_link_hash_entry **sym_hashes;
11216 bfd_signed_vma *local_got_refcounts;
11217 const Elf_Internal_Rela *rel, *relend;
11218 unsigned long r_symndx;
11219 struct elf_link_hash_entry *h;
11220
11221 if (info->relocatable)
11222 return TRUE;
11223
11224 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11225 sym_hashes = elf_sym_hashes (abfd);
11226 local_got_refcounts = elf_local_got_refcounts (abfd);
11227
11228 relend = relocs + sec->reloc_count;
11229 for (rel = relocs; rel < relend; rel++)
11230 switch (ELF_R_TYPE (abfd, rel->r_info))
11231 {
11232 case R_MIPS16_GOT16:
11233 case R_MIPS16_CALL16:
11234 case R_MIPS_GOT16:
11235 case R_MIPS_CALL16:
11236 case R_MIPS_CALL_HI16:
11237 case R_MIPS_CALL_LO16:
11238 case R_MIPS_GOT_HI16:
11239 case R_MIPS_GOT_LO16:
11240 case R_MIPS_GOT_DISP:
11241 case R_MIPS_GOT_PAGE:
11242 case R_MIPS_GOT_OFST:
11243 case R_MICROMIPS_GOT16:
11244 case R_MICROMIPS_CALL16:
11245 case R_MICROMIPS_CALL_HI16:
11246 case R_MICROMIPS_CALL_LO16:
11247 case R_MICROMIPS_GOT_HI16:
11248 case R_MICROMIPS_GOT_LO16:
11249 case R_MICROMIPS_GOT_DISP:
11250 case R_MICROMIPS_GOT_PAGE:
11251 case R_MICROMIPS_GOT_OFST:
11252 /* ??? It would seem that the existing MIPS code does no sort
11253 of reference counting or whatnot on its GOT and PLT entries,
11254 so it is not possible to garbage collect them at this time. */
11255 break;
11256
11257 default:
11258 break;
11259 }
11260 #endif
11261
11262 return TRUE;
11263 }
11264 \f
11265 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11266 hiding the old indirect symbol. Process additional relocation
11267 information. Also called for weakdefs, in which case we just let
11268 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11269
11270 void
11271 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11272 struct elf_link_hash_entry *dir,
11273 struct elf_link_hash_entry *ind)
11274 {
11275 struct mips_elf_link_hash_entry *dirmips, *indmips;
11276
11277 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11278
11279 dirmips = (struct mips_elf_link_hash_entry *) dir;
11280 indmips = (struct mips_elf_link_hash_entry *) ind;
11281 /* Any absolute non-dynamic relocations against an indirect or weak
11282 definition will be against the target symbol. */
11283 if (indmips->has_static_relocs)
11284 dirmips->has_static_relocs = TRUE;
11285
11286 if (ind->root.type != bfd_link_hash_indirect)
11287 return;
11288
11289 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11290 if (indmips->readonly_reloc)
11291 dirmips->readonly_reloc = TRUE;
11292 if (indmips->no_fn_stub)
11293 dirmips->no_fn_stub = TRUE;
11294 if (indmips->fn_stub)
11295 {
11296 dirmips->fn_stub = indmips->fn_stub;
11297 indmips->fn_stub = NULL;
11298 }
11299 if (indmips->need_fn_stub)
11300 {
11301 dirmips->need_fn_stub = TRUE;
11302 indmips->need_fn_stub = FALSE;
11303 }
11304 if (indmips->call_stub)
11305 {
11306 dirmips->call_stub = indmips->call_stub;
11307 indmips->call_stub = NULL;
11308 }
11309 if (indmips->call_fp_stub)
11310 {
11311 dirmips->call_fp_stub = indmips->call_fp_stub;
11312 indmips->call_fp_stub = NULL;
11313 }
11314 if (indmips->global_got_area < dirmips->global_got_area)
11315 dirmips->global_got_area = indmips->global_got_area;
11316 if (indmips->global_got_area < GGA_NONE)
11317 indmips->global_got_area = GGA_NONE;
11318 if (indmips->has_nonpic_branches)
11319 dirmips->has_nonpic_branches = TRUE;
11320 }
11321 \f
11322 #define PDR_SIZE 32
11323
11324 bfd_boolean
11325 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11326 struct bfd_link_info *info)
11327 {
11328 asection *o;
11329 bfd_boolean ret = FALSE;
11330 unsigned char *tdata;
11331 size_t i, skip;
11332
11333 o = bfd_get_section_by_name (abfd, ".pdr");
11334 if (! o)
11335 return FALSE;
11336 if (o->size == 0)
11337 return FALSE;
11338 if (o->size % PDR_SIZE != 0)
11339 return FALSE;
11340 if (o->output_section != NULL
11341 && bfd_is_abs_section (o->output_section))
11342 return FALSE;
11343
11344 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11345 if (! tdata)
11346 return FALSE;
11347
11348 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11349 info->keep_memory);
11350 if (!cookie->rels)
11351 {
11352 free (tdata);
11353 return FALSE;
11354 }
11355
11356 cookie->rel = cookie->rels;
11357 cookie->relend = cookie->rels + o->reloc_count;
11358
11359 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11360 {
11361 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11362 {
11363 tdata[i] = 1;
11364 skip ++;
11365 }
11366 }
11367
11368 if (skip != 0)
11369 {
11370 mips_elf_section_data (o)->u.tdata = tdata;
11371 o->size -= skip * PDR_SIZE;
11372 ret = TRUE;
11373 }
11374 else
11375 free (tdata);
11376
11377 if (! info->keep_memory)
11378 free (cookie->rels);
11379
11380 return ret;
11381 }
11382
11383 bfd_boolean
11384 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11385 {
11386 if (strcmp (sec->name, ".pdr") == 0)
11387 return TRUE;
11388 return FALSE;
11389 }
11390
11391 bfd_boolean
11392 _bfd_mips_elf_write_section (bfd *output_bfd,
11393 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11394 asection *sec, bfd_byte *contents)
11395 {
11396 bfd_byte *to, *from, *end;
11397 int i;
11398
11399 if (strcmp (sec->name, ".pdr") != 0)
11400 return FALSE;
11401
11402 if (mips_elf_section_data (sec)->u.tdata == NULL)
11403 return FALSE;
11404
11405 to = contents;
11406 end = contents + sec->size;
11407 for (from = contents, i = 0;
11408 from < end;
11409 from += PDR_SIZE, i++)
11410 {
11411 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11412 continue;
11413 if (to != from)
11414 memcpy (to, from, PDR_SIZE);
11415 to += PDR_SIZE;
11416 }
11417 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11418 sec->output_offset, sec->size);
11419 return TRUE;
11420 }
11421 \f
11422 /* microMIPS code retains local labels for linker relaxation. Omit them
11423 from output by default for clarity. */
11424
11425 bfd_boolean
11426 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11427 {
11428 return _bfd_elf_is_local_label_name (abfd, sym->name);
11429 }
11430
11431 /* MIPS ELF uses a special find_nearest_line routine in order the
11432 handle the ECOFF debugging information. */
11433
11434 struct mips_elf_find_line
11435 {
11436 struct ecoff_debug_info d;
11437 struct ecoff_find_line i;
11438 };
11439
11440 bfd_boolean
11441 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11442 asymbol **symbols, bfd_vma offset,
11443 const char **filename_ptr,
11444 const char **functionname_ptr,
11445 unsigned int *line_ptr)
11446 {
11447 asection *msec;
11448
11449 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11450 filename_ptr, functionname_ptr,
11451 line_ptr))
11452 return TRUE;
11453
11454 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11455 section, symbols, offset,
11456 filename_ptr, functionname_ptr,
11457 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11458 &elf_tdata (abfd)->dwarf2_find_line_info))
11459 return TRUE;
11460
11461 msec = bfd_get_section_by_name (abfd, ".mdebug");
11462 if (msec != NULL)
11463 {
11464 flagword origflags;
11465 struct mips_elf_find_line *fi;
11466 const struct ecoff_debug_swap * const swap =
11467 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11468
11469 /* If we are called during a link, mips_elf_final_link may have
11470 cleared the SEC_HAS_CONTENTS field. We force it back on here
11471 if appropriate (which it normally will be). */
11472 origflags = msec->flags;
11473 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11474 msec->flags |= SEC_HAS_CONTENTS;
11475
11476 fi = elf_tdata (abfd)->find_line_info;
11477 if (fi == NULL)
11478 {
11479 bfd_size_type external_fdr_size;
11480 char *fraw_src;
11481 char *fraw_end;
11482 struct fdr *fdr_ptr;
11483 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11484
11485 fi = bfd_zalloc (abfd, amt);
11486 if (fi == NULL)
11487 {
11488 msec->flags = origflags;
11489 return FALSE;
11490 }
11491
11492 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11493 {
11494 msec->flags = origflags;
11495 return FALSE;
11496 }
11497
11498 /* Swap in the FDR information. */
11499 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11500 fi->d.fdr = bfd_alloc (abfd, amt);
11501 if (fi->d.fdr == NULL)
11502 {
11503 msec->flags = origflags;
11504 return FALSE;
11505 }
11506 external_fdr_size = swap->external_fdr_size;
11507 fdr_ptr = fi->d.fdr;
11508 fraw_src = (char *) fi->d.external_fdr;
11509 fraw_end = (fraw_src
11510 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11511 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11512 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11513
11514 elf_tdata (abfd)->find_line_info = fi;
11515
11516 /* Note that we don't bother to ever free this information.
11517 find_nearest_line is either called all the time, as in
11518 objdump -l, so the information should be saved, or it is
11519 rarely called, as in ld error messages, so the memory
11520 wasted is unimportant. Still, it would probably be a
11521 good idea for free_cached_info to throw it away. */
11522 }
11523
11524 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11525 &fi->i, filename_ptr, functionname_ptr,
11526 line_ptr))
11527 {
11528 msec->flags = origflags;
11529 return TRUE;
11530 }
11531
11532 msec->flags = origflags;
11533 }
11534
11535 /* Fall back on the generic ELF find_nearest_line routine. */
11536
11537 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11538 filename_ptr, functionname_ptr,
11539 line_ptr);
11540 }
11541
11542 bfd_boolean
11543 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11544 const char **filename_ptr,
11545 const char **functionname_ptr,
11546 unsigned int *line_ptr)
11547 {
11548 bfd_boolean found;
11549 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11550 functionname_ptr, line_ptr,
11551 & elf_tdata (abfd)->dwarf2_find_line_info);
11552 return found;
11553 }
11554
11555 \f
11556 /* When are writing out the .options or .MIPS.options section,
11557 remember the bytes we are writing out, so that we can install the
11558 GP value in the section_processing routine. */
11559
11560 bfd_boolean
11561 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11562 const void *location,
11563 file_ptr offset, bfd_size_type count)
11564 {
11565 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11566 {
11567 bfd_byte *c;
11568
11569 if (elf_section_data (section) == NULL)
11570 {
11571 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11572 section->used_by_bfd = bfd_zalloc (abfd, amt);
11573 if (elf_section_data (section) == NULL)
11574 return FALSE;
11575 }
11576 c = mips_elf_section_data (section)->u.tdata;
11577 if (c == NULL)
11578 {
11579 c = bfd_zalloc (abfd, section->size);
11580 if (c == NULL)
11581 return FALSE;
11582 mips_elf_section_data (section)->u.tdata = c;
11583 }
11584
11585 memcpy (c + offset, location, count);
11586 }
11587
11588 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11589 count);
11590 }
11591
11592 /* This is almost identical to bfd_generic_get_... except that some
11593 MIPS relocations need to be handled specially. Sigh. */
11594
11595 bfd_byte *
11596 _bfd_elf_mips_get_relocated_section_contents
11597 (bfd *abfd,
11598 struct bfd_link_info *link_info,
11599 struct bfd_link_order *link_order,
11600 bfd_byte *data,
11601 bfd_boolean relocatable,
11602 asymbol **symbols)
11603 {
11604 /* Get enough memory to hold the stuff */
11605 bfd *input_bfd = link_order->u.indirect.section->owner;
11606 asection *input_section = link_order->u.indirect.section;
11607 bfd_size_type sz;
11608
11609 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11610 arelent **reloc_vector = NULL;
11611 long reloc_count;
11612
11613 if (reloc_size < 0)
11614 goto error_return;
11615
11616 reloc_vector = bfd_malloc (reloc_size);
11617 if (reloc_vector == NULL && reloc_size != 0)
11618 goto error_return;
11619
11620 /* read in the section */
11621 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11622 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11623 goto error_return;
11624
11625 reloc_count = bfd_canonicalize_reloc (input_bfd,
11626 input_section,
11627 reloc_vector,
11628 symbols);
11629 if (reloc_count < 0)
11630 goto error_return;
11631
11632 if (reloc_count > 0)
11633 {
11634 arelent **parent;
11635 /* for mips */
11636 int gp_found;
11637 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11638
11639 {
11640 struct bfd_hash_entry *h;
11641 struct bfd_link_hash_entry *lh;
11642 /* Skip all this stuff if we aren't mixing formats. */
11643 if (abfd && input_bfd
11644 && abfd->xvec == input_bfd->xvec)
11645 lh = 0;
11646 else
11647 {
11648 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11649 lh = (struct bfd_link_hash_entry *) h;
11650 }
11651 lookup:
11652 if (lh)
11653 {
11654 switch (lh->type)
11655 {
11656 case bfd_link_hash_undefined:
11657 case bfd_link_hash_undefweak:
11658 case bfd_link_hash_common:
11659 gp_found = 0;
11660 break;
11661 case bfd_link_hash_defined:
11662 case bfd_link_hash_defweak:
11663 gp_found = 1;
11664 gp = lh->u.def.value;
11665 break;
11666 case bfd_link_hash_indirect:
11667 case bfd_link_hash_warning:
11668 lh = lh->u.i.link;
11669 /* @@FIXME ignoring warning for now */
11670 goto lookup;
11671 case bfd_link_hash_new:
11672 default:
11673 abort ();
11674 }
11675 }
11676 else
11677 gp_found = 0;
11678 }
11679 /* end mips */
11680 for (parent = reloc_vector; *parent != NULL; parent++)
11681 {
11682 char *error_message = NULL;
11683 bfd_reloc_status_type r;
11684
11685 /* Specific to MIPS: Deal with relocation types that require
11686 knowing the gp of the output bfd. */
11687 asymbol *sym = *(*parent)->sym_ptr_ptr;
11688
11689 /* If we've managed to find the gp and have a special
11690 function for the relocation then go ahead, else default
11691 to the generic handling. */
11692 if (gp_found
11693 && (*parent)->howto->special_function
11694 == _bfd_mips_elf32_gprel16_reloc)
11695 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11696 input_section, relocatable,
11697 data, gp);
11698 else
11699 r = bfd_perform_relocation (input_bfd, *parent, data,
11700 input_section,
11701 relocatable ? abfd : NULL,
11702 &error_message);
11703
11704 if (relocatable)
11705 {
11706 asection *os = input_section->output_section;
11707
11708 /* A partial link, so keep the relocs */
11709 os->orelocation[os->reloc_count] = *parent;
11710 os->reloc_count++;
11711 }
11712
11713 if (r != bfd_reloc_ok)
11714 {
11715 switch (r)
11716 {
11717 case bfd_reloc_undefined:
11718 if (!((*link_info->callbacks->undefined_symbol)
11719 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11720 input_bfd, input_section, (*parent)->address, TRUE)))
11721 goto error_return;
11722 break;
11723 case bfd_reloc_dangerous:
11724 BFD_ASSERT (error_message != NULL);
11725 if (!((*link_info->callbacks->reloc_dangerous)
11726 (link_info, error_message, input_bfd, input_section,
11727 (*parent)->address)))
11728 goto error_return;
11729 break;
11730 case bfd_reloc_overflow:
11731 if (!((*link_info->callbacks->reloc_overflow)
11732 (link_info, NULL,
11733 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11734 (*parent)->howto->name, (*parent)->addend,
11735 input_bfd, input_section, (*parent)->address)))
11736 goto error_return;
11737 break;
11738 case bfd_reloc_outofrange:
11739 default:
11740 abort ();
11741 break;
11742 }
11743
11744 }
11745 }
11746 }
11747 if (reloc_vector != NULL)
11748 free (reloc_vector);
11749 return data;
11750
11751 error_return:
11752 if (reloc_vector != NULL)
11753 free (reloc_vector);
11754 return NULL;
11755 }
11756 \f
11757 static bfd_boolean
11758 mips_elf_relax_delete_bytes (bfd *abfd,
11759 asection *sec, bfd_vma addr, int count)
11760 {
11761 Elf_Internal_Shdr *symtab_hdr;
11762 unsigned int sec_shndx;
11763 bfd_byte *contents;
11764 Elf_Internal_Rela *irel, *irelend;
11765 Elf_Internal_Sym *isym;
11766 Elf_Internal_Sym *isymend;
11767 struct elf_link_hash_entry **sym_hashes;
11768 struct elf_link_hash_entry **end_hashes;
11769 struct elf_link_hash_entry **start_hashes;
11770 unsigned int symcount;
11771
11772 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11773 contents = elf_section_data (sec)->this_hdr.contents;
11774
11775 irel = elf_section_data (sec)->relocs;
11776 irelend = irel + sec->reloc_count;
11777
11778 /* Actually delete the bytes. */
11779 memmove (contents + addr, contents + addr + count,
11780 (size_t) (sec->size - addr - count));
11781 sec->size -= count;
11782
11783 /* Adjust all the relocs. */
11784 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11785 {
11786 /* Get the new reloc address. */
11787 if (irel->r_offset > addr)
11788 irel->r_offset -= count;
11789 }
11790
11791 BFD_ASSERT (addr % 2 == 0);
11792 BFD_ASSERT (count % 2 == 0);
11793
11794 /* Adjust the local symbols defined in this section. */
11795 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11796 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11797 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11798 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11799 isym->st_value -= count;
11800
11801 /* Now adjust the global symbols defined in this section. */
11802 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11803 - symtab_hdr->sh_info);
11804 sym_hashes = start_hashes = elf_sym_hashes (abfd);
11805 end_hashes = sym_hashes + symcount;
11806
11807 for (; sym_hashes < end_hashes; sym_hashes++)
11808 {
11809 struct elf_link_hash_entry *sym_hash = *sym_hashes;
11810
11811 if ((sym_hash->root.type == bfd_link_hash_defined
11812 || sym_hash->root.type == bfd_link_hash_defweak)
11813 && sym_hash->root.u.def.section == sec)
11814 {
11815 bfd_vma value = sym_hash->root.u.def.value;
11816
11817 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
11818 value &= MINUS_TWO;
11819 if (value > addr)
11820 sym_hash->root.u.def.value -= count;
11821 }
11822 }
11823
11824 return TRUE;
11825 }
11826
11827
11828 /* Opcodes needed for microMIPS relaxation as found in
11829 opcodes/micromips-opc.c. */
11830
11831 struct opcode_descriptor {
11832 unsigned long match;
11833 unsigned long mask;
11834 };
11835
11836 /* The $ra register aka $31. */
11837
11838 #define RA 31
11839
11840 /* 32-bit instruction format register fields. */
11841
11842 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
11843 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
11844
11845 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
11846
11847 #define OP16_VALID_REG(r) \
11848 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
11849
11850
11851 /* 32-bit and 16-bit branches. */
11852
11853 static const struct opcode_descriptor b_insns_32[] = {
11854 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
11855 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
11856 { 0, 0 } /* End marker for find_match(). */
11857 };
11858
11859 static const struct opcode_descriptor bc_insn_32 =
11860 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
11861
11862 static const struct opcode_descriptor bz_insn_32 =
11863 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
11864
11865 static const struct opcode_descriptor bzal_insn_32 =
11866 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
11867
11868 static const struct opcode_descriptor beq_insn_32 =
11869 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
11870
11871 static const struct opcode_descriptor b_insn_16 =
11872 { /* "b", "mD", */ 0xcc00, 0xfc00 };
11873
11874 static const struct opcode_descriptor bz_insn_16 =
11875 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
11876
11877
11878 /* 32-bit and 16-bit branch EQ and NE zero. */
11879
11880 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
11881 eq and second the ne. This convention is used when replacing a
11882 32-bit BEQ/BNE with the 16-bit version. */
11883
11884 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
11885
11886 static const struct opcode_descriptor bz_rs_insns_32[] = {
11887 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
11888 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
11889 { 0, 0 } /* End marker for find_match(). */
11890 };
11891
11892 static const struct opcode_descriptor bz_rt_insns_32[] = {
11893 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
11894 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
11895 { 0, 0 } /* End marker for find_match(). */
11896 };
11897
11898 static const struct opcode_descriptor bzc_insns_32[] = {
11899 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
11900 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
11901 { 0, 0 } /* End marker for find_match(). */
11902 };
11903
11904 static const struct opcode_descriptor bz_insns_16[] = {
11905 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
11906 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
11907 { 0, 0 } /* End marker for find_match(). */
11908 };
11909
11910 /* Switch between a 5-bit register index and its 3-bit shorthand. */
11911
11912 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
11913 #define BZ16_REG_FIELD(r) \
11914 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
11915
11916
11917 /* 32-bit instructions with a delay slot. */
11918
11919 static const struct opcode_descriptor jal_insn_32_bd16 =
11920 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
11921
11922 static const struct opcode_descriptor jal_insn_32_bd32 =
11923 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
11924
11925 static const struct opcode_descriptor jal_x_insn_32_bd32 =
11926 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
11927
11928 static const struct opcode_descriptor j_insn_32 =
11929 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
11930
11931 static const struct opcode_descriptor jalr_insn_32 =
11932 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
11933
11934 /* This table can be compacted, because no opcode replacement is made. */
11935
11936 static const struct opcode_descriptor ds_insns_32_bd16[] = {
11937 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
11938
11939 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
11940 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
11941
11942 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
11943 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
11944 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
11945 { 0, 0 } /* End marker for find_match(). */
11946 };
11947
11948 /* This table can be compacted, because no opcode replacement is made. */
11949
11950 static const struct opcode_descriptor ds_insns_32_bd32[] = {
11951 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
11952
11953 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
11954 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
11955 { 0, 0 } /* End marker for find_match(). */
11956 };
11957
11958
11959 /* 16-bit instructions with a delay slot. */
11960
11961 static const struct opcode_descriptor jalr_insn_16_bd16 =
11962 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
11963
11964 static const struct opcode_descriptor jalr_insn_16_bd32 =
11965 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
11966
11967 static const struct opcode_descriptor jr_insn_16 =
11968 { /* "jr", "mj", */ 0x4580, 0xffe0 };
11969
11970 #define JR16_REG(opcode) ((opcode) & 0x1f)
11971
11972 /* This table can be compacted, because no opcode replacement is made. */
11973
11974 static const struct opcode_descriptor ds_insns_16_bd16[] = {
11975 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
11976
11977 { /* "b", "mD", */ 0xcc00, 0xfc00 },
11978 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
11979 { /* "jr", "mj", */ 0x4580, 0xffe0 },
11980 { 0, 0 } /* End marker for find_match(). */
11981 };
11982
11983
11984 /* LUI instruction. */
11985
11986 static const struct opcode_descriptor lui_insn =
11987 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
11988
11989
11990 /* ADDIU instruction. */
11991
11992 static const struct opcode_descriptor addiu_insn =
11993 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
11994
11995 static const struct opcode_descriptor addiupc_insn =
11996 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
11997
11998 #define ADDIUPC_REG_FIELD(r) \
11999 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12000
12001
12002 /* Relaxable instructions in a JAL delay slot: MOVE. */
12003
12004 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12005 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12006 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12007 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12008
12009 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12010 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12011
12012 static const struct opcode_descriptor move_insns_32[] = {
12013 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12014 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12015 { 0, 0 } /* End marker for find_match(). */
12016 };
12017
12018 static const struct opcode_descriptor move_insn_16 =
12019 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12020
12021
12022 /* NOP instructions. */
12023
12024 static const struct opcode_descriptor nop_insn_32 =
12025 { /* "nop", "", */ 0x00000000, 0xffffffff };
12026
12027 static const struct opcode_descriptor nop_insn_16 =
12028 { /* "nop", "", */ 0x0c00, 0xffff };
12029
12030
12031 /* Instruction match support. */
12032
12033 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12034
12035 static int
12036 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12037 {
12038 unsigned long indx;
12039
12040 for (indx = 0; insn[indx].mask != 0; indx++)
12041 if (MATCH (opcode, insn[indx]))
12042 return indx;
12043
12044 return -1;
12045 }
12046
12047
12048 /* Branch and delay slot decoding support. */
12049
12050 /* If PTR points to what *might* be a 16-bit branch or jump, then
12051 return the minimum length of its delay slot, otherwise return 0.
12052 Non-zero results are not definitive as we might be checking against
12053 the second half of another instruction. */
12054
12055 static int
12056 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12057 {
12058 unsigned long opcode;
12059 int bdsize;
12060
12061 opcode = bfd_get_16 (abfd, ptr);
12062 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12063 /* 16-bit branch/jump with a 32-bit delay slot. */
12064 bdsize = 4;
12065 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12066 || find_match (opcode, ds_insns_16_bd16) >= 0)
12067 /* 16-bit branch/jump with a 16-bit delay slot. */
12068 bdsize = 2;
12069 else
12070 /* No delay slot. */
12071 bdsize = 0;
12072
12073 return bdsize;
12074 }
12075
12076 /* If PTR points to what *might* be a 32-bit branch or jump, then
12077 return the minimum length of its delay slot, otherwise return 0.
12078 Non-zero results are not definitive as we might be checking against
12079 the second half of another instruction. */
12080
12081 static int
12082 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12083 {
12084 unsigned long opcode;
12085 int bdsize;
12086
12087 opcode = bfd_get_micromips_32 (abfd, ptr);
12088 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12089 /* 32-bit branch/jump with a 32-bit delay slot. */
12090 bdsize = 4;
12091 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12092 /* 32-bit branch/jump with a 16-bit delay slot. */
12093 bdsize = 2;
12094 else
12095 /* No delay slot. */
12096 bdsize = 0;
12097
12098 return bdsize;
12099 }
12100
12101 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12102 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12103
12104 static bfd_boolean
12105 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12106 {
12107 unsigned long opcode;
12108
12109 opcode = bfd_get_16 (abfd, ptr);
12110 if (MATCH (opcode, b_insn_16)
12111 /* B16 */
12112 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12113 /* JR16 */
12114 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12115 /* BEQZ16, BNEZ16 */
12116 || (MATCH (opcode, jalr_insn_16_bd32)
12117 /* JALR16 */
12118 && reg != JR16_REG (opcode) && reg != RA))
12119 return TRUE;
12120
12121 return FALSE;
12122 }
12123
12124 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12125 then return TRUE, otherwise FALSE. */
12126
12127 static bfd_boolean
12128 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12129 {
12130 unsigned long opcode;
12131
12132 opcode = bfd_get_micromips_32 (abfd, ptr);
12133 if (MATCH (opcode, j_insn_32)
12134 /* J */
12135 || MATCH (opcode, bc_insn_32)
12136 /* BC1F, BC1T, BC2F, BC2T */
12137 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12138 /* JAL, JALX */
12139 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12140 /* BGEZ, BGTZ, BLEZ, BLTZ */
12141 || (MATCH (opcode, bzal_insn_32)
12142 /* BGEZAL, BLTZAL */
12143 && reg != OP32_SREG (opcode) && reg != RA)
12144 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12145 /* JALR, JALR.HB, BEQ, BNE */
12146 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12147 return TRUE;
12148
12149 return FALSE;
12150 }
12151
12152 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12153 IRELEND) at OFFSET indicate that there must be a compact branch there,
12154 then return TRUE, otherwise FALSE. */
12155
12156 static bfd_boolean
12157 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12158 const Elf_Internal_Rela *internal_relocs,
12159 const Elf_Internal_Rela *irelend)
12160 {
12161 const Elf_Internal_Rela *irel;
12162 unsigned long opcode;
12163
12164 opcode = bfd_get_micromips_32 (abfd, ptr);
12165 if (find_match (opcode, bzc_insns_32) < 0)
12166 return FALSE;
12167
12168 for (irel = internal_relocs; irel < irelend; irel++)
12169 if (irel->r_offset == offset
12170 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12171 return TRUE;
12172
12173 return FALSE;
12174 }
12175
12176 /* Bitsize checking. */
12177 #define IS_BITSIZE(val, N) \
12178 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12179 - (1ULL << ((N) - 1))) == (val))
12180
12181 \f
12182 bfd_boolean
12183 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12184 struct bfd_link_info *link_info,
12185 bfd_boolean *again)
12186 {
12187 Elf_Internal_Shdr *symtab_hdr;
12188 Elf_Internal_Rela *internal_relocs;
12189 Elf_Internal_Rela *irel, *irelend;
12190 bfd_byte *contents = NULL;
12191 Elf_Internal_Sym *isymbuf = NULL;
12192
12193 /* Assume nothing changes. */
12194 *again = FALSE;
12195
12196 /* We don't have to do anything for a relocatable link, if
12197 this section does not have relocs, or if this is not a
12198 code section. */
12199
12200 if (link_info->relocatable
12201 || (sec->flags & SEC_RELOC) == 0
12202 || sec->reloc_count == 0
12203 || (sec->flags & SEC_CODE) == 0)
12204 return TRUE;
12205
12206 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12207
12208 /* Get a copy of the native relocations. */
12209 internal_relocs = (_bfd_elf_link_read_relocs
12210 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12211 link_info->keep_memory));
12212 if (internal_relocs == NULL)
12213 goto error_return;
12214
12215 /* Walk through them looking for relaxing opportunities. */
12216 irelend = internal_relocs + sec->reloc_count;
12217 for (irel = internal_relocs; irel < irelend; irel++)
12218 {
12219 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12220 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12221 bfd_boolean target_is_micromips_code_p;
12222 unsigned long opcode;
12223 bfd_vma symval;
12224 bfd_vma pcrval;
12225 bfd_byte *ptr;
12226 int fndopc;
12227
12228 /* The number of bytes to delete for relaxation and from where
12229 to delete these bytes starting at irel->r_offset. */
12230 int delcnt = 0;
12231 int deloff = 0;
12232
12233 /* If this isn't something that can be relaxed, then ignore
12234 this reloc. */
12235 if (r_type != R_MICROMIPS_HI16
12236 && r_type != R_MICROMIPS_PC16_S1
12237 && r_type != R_MICROMIPS_26_S1)
12238 continue;
12239
12240 /* Get the section contents if we haven't done so already. */
12241 if (contents == NULL)
12242 {
12243 /* Get cached copy if it exists. */
12244 if (elf_section_data (sec)->this_hdr.contents != NULL)
12245 contents = elf_section_data (sec)->this_hdr.contents;
12246 /* Go get them off disk. */
12247 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12248 goto error_return;
12249 }
12250 ptr = contents + irel->r_offset;
12251
12252 /* Read this BFD's local symbols if we haven't done so already. */
12253 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12254 {
12255 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12256 if (isymbuf == NULL)
12257 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12258 symtab_hdr->sh_info, 0,
12259 NULL, NULL, NULL);
12260 if (isymbuf == NULL)
12261 goto error_return;
12262 }
12263
12264 /* Get the value of the symbol referred to by the reloc. */
12265 if (r_symndx < symtab_hdr->sh_info)
12266 {
12267 /* A local symbol. */
12268 Elf_Internal_Sym *isym;
12269 asection *sym_sec;
12270
12271 isym = isymbuf + r_symndx;
12272 if (isym->st_shndx == SHN_UNDEF)
12273 sym_sec = bfd_und_section_ptr;
12274 else if (isym->st_shndx == SHN_ABS)
12275 sym_sec = bfd_abs_section_ptr;
12276 else if (isym->st_shndx == SHN_COMMON)
12277 sym_sec = bfd_com_section_ptr;
12278 else
12279 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12280 symval = (isym->st_value
12281 + sym_sec->output_section->vma
12282 + sym_sec->output_offset);
12283 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12284 }
12285 else
12286 {
12287 unsigned long indx;
12288 struct elf_link_hash_entry *h;
12289
12290 /* An external symbol. */
12291 indx = r_symndx - symtab_hdr->sh_info;
12292 h = elf_sym_hashes (abfd)[indx];
12293 BFD_ASSERT (h != NULL);
12294
12295 if (h->root.type != bfd_link_hash_defined
12296 && h->root.type != bfd_link_hash_defweak)
12297 /* This appears to be a reference to an undefined
12298 symbol. Just ignore it -- it will be caught by the
12299 regular reloc processing. */
12300 continue;
12301
12302 symval = (h->root.u.def.value
12303 + h->root.u.def.section->output_section->vma
12304 + h->root.u.def.section->output_offset);
12305 target_is_micromips_code_p = (!h->needs_plt
12306 && ELF_ST_IS_MICROMIPS (h->other));
12307 }
12308
12309
12310 /* For simplicity of coding, we are going to modify the
12311 section contents, the section relocs, and the BFD symbol
12312 table. We must tell the rest of the code not to free up this
12313 information. It would be possible to instead create a table
12314 of changes which have to be made, as is done in coff-mips.c;
12315 that would be more work, but would require less memory when
12316 the linker is run. */
12317
12318 /* Only 32-bit instructions relaxed. */
12319 if (irel->r_offset + 4 > sec->size)
12320 continue;
12321
12322 opcode = bfd_get_micromips_32 (abfd, ptr);
12323
12324 /* This is the pc-relative distance from the instruction the
12325 relocation is applied to, to the symbol referred. */
12326 pcrval = (symval
12327 - (sec->output_section->vma + sec->output_offset)
12328 - irel->r_offset);
12329
12330 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12331 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12332 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12333
12334 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12335
12336 where pcrval has first to be adjusted to apply against the LO16
12337 location (we make the adjustment later on, when we have figured
12338 out the offset). */
12339 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12340 {
12341 bfd_boolean bzc = FALSE;
12342 unsigned long nextopc;
12343 unsigned long reg;
12344 bfd_vma offset;
12345
12346 /* Give up if the previous reloc was a HI16 against this symbol
12347 too. */
12348 if (irel > internal_relocs
12349 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12350 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12351 continue;
12352
12353 /* Or if the next reloc is not a LO16 against this symbol. */
12354 if (irel + 1 >= irelend
12355 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12356 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12357 continue;
12358
12359 /* Or if the second next reloc is a LO16 against this symbol too. */
12360 if (irel + 2 >= irelend
12361 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12362 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12363 continue;
12364
12365 /* See if the LUI instruction *might* be in a branch delay slot.
12366 We check whether what looks like a 16-bit branch or jump is
12367 actually an immediate argument to a compact branch, and let
12368 it through if so. */
12369 if (irel->r_offset >= 2
12370 && check_br16_dslot (abfd, ptr - 2)
12371 && !(irel->r_offset >= 4
12372 && (bzc = check_relocated_bzc (abfd,
12373 ptr - 4, irel->r_offset - 4,
12374 internal_relocs, irelend))))
12375 continue;
12376 if (irel->r_offset >= 4
12377 && !bzc
12378 && check_br32_dslot (abfd, ptr - 4))
12379 continue;
12380
12381 reg = OP32_SREG (opcode);
12382
12383 /* We only relax adjacent instructions or ones separated with
12384 a branch or jump that has a delay slot. The branch or jump
12385 must not fiddle with the register used to hold the address.
12386 Subtract 4 for the LUI itself. */
12387 offset = irel[1].r_offset - irel[0].r_offset;
12388 switch (offset - 4)
12389 {
12390 case 0:
12391 break;
12392 case 2:
12393 if (check_br16 (abfd, ptr + 4, reg))
12394 break;
12395 continue;
12396 case 4:
12397 if (check_br32 (abfd, ptr + 4, reg))
12398 break;
12399 continue;
12400 default:
12401 continue;
12402 }
12403
12404 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12405
12406 /* Give up unless the same register is used with both
12407 relocations. */
12408 if (OP32_SREG (nextopc) != reg)
12409 continue;
12410
12411 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12412 and rounding up to take masking of the two LSBs into account. */
12413 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12414
12415 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12416 if (IS_BITSIZE (symval, 16))
12417 {
12418 /* Fix the relocation's type. */
12419 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12420
12421 /* Instructions using R_MICROMIPS_LO16 have the base or
12422 source register in bits 20:16. This register becomes $0
12423 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12424 nextopc &= ~0x001f0000;
12425 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12426 contents + irel[1].r_offset);
12427 }
12428
12429 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12430 We add 4 to take LUI deletion into account while checking
12431 the PC-relative distance. */
12432 else if (symval % 4 == 0
12433 && IS_BITSIZE (pcrval + 4, 25)
12434 && MATCH (nextopc, addiu_insn)
12435 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12436 && OP16_VALID_REG (OP32_TREG (nextopc)))
12437 {
12438 /* Fix the relocation's type. */
12439 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12440
12441 /* Replace ADDIU with the ADDIUPC version. */
12442 nextopc = (addiupc_insn.match
12443 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12444
12445 bfd_put_micromips_32 (abfd, nextopc,
12446 contents + irel[1].r_offset);
12447 }
12448
12449 /* Can't do anything, give up, sigh... */
12450 else
12451 continue;
12452
12453 /* Fix the relocation's type. */
12454 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12455
12456 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12457 delcnt = 4;
12458 deloff = 0;
12459 }
12460
12461 /* Compact branch relaxation -- due to the multitude of macros
12462 employed by the compiler/assembler, compact branches are not
12463 always generated. Obviously, this can/will be fixed elsewhere,
12464 but there is no drawback in double checking it here. */
12465 else if (r_type == R_MICROMIPS_PC16_S1
12466 && irel->r_offset + 5 < sec->size
12467 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12468 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12469 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12470 {
12471 unsigned long reg;
12472
12473 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12474
12475 /* Replace BEQZ/BNEZ with the compact version. */
12476 opcode = (bzc_insns_32[fndopc].match
12477 | BZC32_REG_FIELD (reg)
12478 | (opcode & 0xffff)); /* Addend value. */
12479
12480 bfd_put_micromips_32 (abfd, opcode, ptr);
12481
12482 /* Delete the 16-bit delay slot NOP: two bytes from
12483 irel->offset + 4. */
12484 delcnt = 2;
12485 deloff = 4;
12486 }
12487
12488 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12489 to check the distance from the next instruction, so subtract 2. */
12490 else if (r_type == R_MICROMIPS_PC16_S1
12491 && IS_BITSIZE (pcrval - 2, 11)
12492 && find_match (opcode, b_insns_32) >= 0)
12493 {
12494 /* Fix the relocation's type. */
12495 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12496
12497 /* Replace the 32-bit opcode with a 16-bit opcode. */
12498 bfd_put_16 (abfd,
12499 (b_insn_16.match
12500 | (opcode & 0x3ff)), /* Addend value. */
12501 ptr);
12502
12503 /* Delete 2 bytes from irel->r_offset + 2. */
12504 delcnt = 2;
12505 deloff = 2;
12506 }
12507
12508 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12509 to check the distance from the next instruction, so subtract 2. */
12510 else if (r_type == R_MICROMIPS_PC16_S1
12511 && IS_BITSIZE (pcrval - 2, 8)
12512 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12513 && OP16_VALID_REG (OP32_SREG (opcode)))
12514 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12515 && OP16_VALID_REG (OP32_TREG (opcode)))))
12516 {
12517 unsigned long reg;
12518
12519 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12520
12521 /* Fix the relocation's type. */
12522 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12523
12524 /* Replace the 32-bit opcode with a 16-bit opcode. */
12525 bfd_put_16 (abfd,
12526 (bz_insns_16[fndopc].match
12527 | BZ16_REG_FIELD (reg)
12528 | (opcode & 0x7f)), /* Addend value. */
12529 ptr);
12530
12531 /* Delete 2 bytes from irel->r_offset + 2. */
12532 delcnt = 2;
12533 deloff = 2;
12534 }
12535
12536 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12537 else if (r_type == R_MICROMIPS_26_S1
12538 && target_is_micromips_code_p
12539 && irel->r_offset + 7 < sec->size
12540 && MATCH (opcode, jal_insn_32_bd32))
12541 {
12542 unsigned long n32opc;
12543 bfd_boolean relaxed = FALSE;
12544
12545 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12546
12547 if (MATCH (n32opc, nop_insn_32))
12548 {
12549 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12550 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12551
12552 relaxed = TRUE;
12553 }
12554 else if (find_match (n32opc, move_insns_32) >= 0)
12555 {
12556 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12557 bfd_put_16 (abfd,
12558 (move_insn_16.match
12559 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12560 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12561 ptr + 4);
12562
12563 relaxed = TRUE;
12564 }
12565 /* Other 32-bit instructions relaxable to 16-bit
12566 instructions will be handled here later. */
12567
12568 if (relaxed)
12569 {
12570 /* JAL with 32-bit delay slot that is changed to a JALS
12571 with 16-bit delay slot. */
12572 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12573
12574 /* Delete 2 bytes from irel->r_offset + 6. */
12575 delcnt = 2;
12576 deloff = 6;
12577 }
12578 }
12579
12580 if (delcnt != 0)
12581 {
12582 /* Note that we've changed the relocs, section contents, etc. */
12583 elf_section_data (sec)->relocs = internal_relocs;
12584 elf_section_data (sec)->this_hdr.contents = contents;
12585 symtab_hdr->contents = (unsigned char *) isymbuf;
12586
12587 /* Delete bytes depending on the delcnt and deloff. */
12588 if (!mips_elf_relax_delete_bytes (abfd, sec,
12589 irel->r_offset + deloff, delcnt))
12590 goto error_return;
12591
12592 /* That will change things, so we should relax again.
12593 Note that this is not required, and it may be slow. */
12594 *again = TRUE;
12595 }
12596 }
12597
12598 if (isymbuf != NULL
12599 && symtab_hdr->contents != (unsigned char *) isymbuf)
12600 {
12601 if (! link_info->keep_memory)
12602 free (isymbuf);
12603 else
12604 {
12605 /* Cache the symbols for elf_link_input_bfd. */
12606 symtab_hdr->contents = (unsigned char *) isymbuf;
12607 }
12608 }
12609
12610 if (contents != NULL
12611 && elf_section_data (sec)->this_hdr.contents != contents)
12612 {
12613 if (! link_info->keep_memory)
12614 free (contents);
12615 else
12616 {
12617 /* Cache the section contents for elf_link_input_bfd. */
12618 elf_section_data (sec)->this_hdr.contents = contents;
12619 }
12620 }
12621
12622 if (internal_relocs != NULL
12623 && elf_section_data (sec)->relocs != internal_relocs)
12624 free (internal_relocs);
12625
12626 return TRUE;
12627
12628 error_return:
12629 if (isymbuf != NULL
12630 && symtab_hdr->contents != (unsigned char *) isymbuf)
12631 free (isymbuf);
12632 if (contents != NULL
12633 && elf_section_data (sec)->this_hdr.contents != contents)
12634 free (contents);
12635 if (internal_relocs != NULL
12636 && elf_section_data (sec)->relocs != internal_relocs)
12637 free (internal_relocs);
12638
12639 return FALSE;
12640 }
12641 \f
12642 /* Create a MIPS ELF linker hash table. */
12643
12644 struct bfd_link_hash_table *
12645 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12646 {
12647 struct mips_elf_link_hash_table *ret;
12648 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12649
12650 ret = bfd_zmalloc (amt);
12651 if (ret == NULL)
12652 return NULL;
12653
12654 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12655 mips_elf_link_hash_newfunc,
12656 sizeof (struct mips_elf_link_hash_entry),
12657 MIPS_ELF_DATA))
12658 {
12659 free (ret);
12660 return NULL;
12661 }
12662
12663 return &ret->root.root;
12664 }
12665
12666 /* Likewise, but indicate that the target is VxWorks. */
12667
12668 struct bfd_link_hash_table *
12669 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12670 {
12671 struct bfd_link_hash_table *ret;
12672
12673 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12674 if (ret)
12675 {
12676 struct mips_elf_link_hash_table *htab;
12677
12678 htab = (struct mips_elf_link_hash_table *) ret;
12679 htab->use_plts_and_copy_relocs = TRUE;
12680 htab->is_vxworks = TRUE;
12681 }
12682 return ret;
12683 }
12684
12685 /* A function that the linker calls if we are allowed to use PLTs
12686 and copy relocs. */
12687
12688 void
12689 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12690 {
12691 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12692 }
12693 \f
12694 /* We need to use a special link routine to handle the .reginfo and
12695 the .mdebug sections. We need to merge all instances of these
12696 sections together, not write them all out sequentially. */
12697
12698 bfd_boolean
12699 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12700 {
12701 asection *o;
12702 struct bfd_link_order *p;
12703 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12704 asection *rtproc_sec;
12705 Elf32_RegInfo reginfo;
12706 struct ecoff_debug_info debug;
12707 struct mips_htab_traverse_info hti;
12708 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12709 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12710 HDRR *symhdr = &debug.symbolic_header;
12711 void *mdebug_handle = NULL;
12712 asection *s;
12713 EXTR esym;
12714 unsigned int i;
12715 bfd_size_type amt;
12716 struct mips_elf_link_hash_table *htab;
12717
12718 static const char * const secname[] =
12719 {
12720 ".text", ".init", ".fini", ".data",
12721 ".rodata", ".sdata", ".sbss", ".bss"
12722 };
12723 static const int sc[] =
12724 {
12725 scText, scInit, scFini, scData,
12726 scRData, scSData, scSBss, scBss
12727 };
12728
12729 /* Sort the dynamic symbols so that those with GOT entries come after
12730 those without. */
12731 htab = mips_elf_hash_table (info);
12732 BFD_ASSERT (htab != NULL);
12733
12734 if (!mips_elf_sort_hash_table (abfd, info))
12735 return FALSE;
12736
12737 /* Create any scheduled LA25 stubs. */
12738 hti.info = info;
12739 hti.output_bfd = abfd;
12740 hti.error = FALSE;
12741 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12742 if (hti.error)
12743 return FALSE;
12744
12745 /* Get a value for the GP register. */
12746 if (elf_gp (abfd) == 0)
12747 {
12748 struct bfd_link_hash_entry *h;
12749
12750 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12751 if (h != NULL && h->type == bfd_link_hash_defined)
12752 elf_gp (abfd) = (h->u.def.value
12753 + h->u.def.section->output_section->vma
12754 + h->u.def.section->output_offset);
12755 else if (htab->is_vxworks
12756 && (h = bfd_link_hash_lookup (info->hash,
12757 "_GLOBAL_OFFSET_TABLE_",
12758 FALSE, FALSE, TRUE))
12759 && h->type == bfd_link_hash_defined)
12760 elf_gp (abfd) = (h->u.def.section->output_section->vma
12761 + h->u.def.section->output_offset
12762 + h->u.def.value);
12763 else if (info->relocatable)
12764 {
12765 bfd_vma lo = MINUS_ONE;
12766
12767 /* Find the GP-relative section with the lowest offset. */
12768 for (o = abfd->sections; o != NULL; o = o->next)
12769 if (o->vma < lo
12770 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12771 lo = o->vma;
12772
12773 /* And calculate GP relative to that. */
12774 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12775 }
12776 else
12777 {
12778 /* If the relocate_section function needs to do a reloc
12779 involving the GP value, it should make a reloc_dangerous
12780 callback to warn that GP is not defined. */
12781 }
12782 }
12783
12784 /* Go through the sections and collect the .reginfo and .mdebug
12785 information. */
12786 reginfo_sec = NULL;
12787 mdebug_sec = NULL;
12788 gptab_data_sec = NULL;
12789 gptab_bss_sec = NULL;
12790 for (o = abfd->sections; o != NULL; o = o->next)
12791 {
12792 if (strcmp (o->name, ".reginfo") == 0)
12793 {
12794 memset (&reginfo, 0, sizeof reginfo);
12795
12796 /* We have found the .reginfo section in the output file.
12797 Look through all the link_orders comprising it and merge
12798 the information together. */
12799 for (p = o->map_head.link_order; p != NULL; p = p->next)
12800 {
12801 asection *input_section;
12802 bfd *input_bfd;
12803 Elf32_External_RegInfo ext;
12804 Elf32_RegInfo sub;
12805
12806 if (p->type != bfd_indirect_link_order)
12807 {
12808 if (p->type == bfd_data_link_order)
12809 continue;
12810 abort ();
12811 }
12812
12813 input_section = p->u.indirect.section;
12814 input_bfd = input_section->owner;
12815
12816 if (! bfd_get_section_contents (input_bfd, input_section,
12817 &ext, 0, sizeof ext))
12818 return FALSE;
12819
12820 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
12821
12822 reginfo.ri_gprmask |= sub.ri_gprmask;
12823 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
12824 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
12825 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
12826 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
12827
12828 /* ri_gp_value is set by the function
12829 mips_elf32_section_processing when the section is
12830 finally written out. */
12831
12832 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12833 elf_link_input_bfd ignores this section. */
12834 input_section->flags &= ~SEC_HAS_CONTENTS;
12835 }
12836
12837 /* Size has been set in _bfd_mips_elf_always_size_sections. */
12838 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
12839
12840 /* Skip this section later on (I don't think this currently
12841 matters, but someday it might). */
12842 o->map_head.link_order = NULL;
12843
12844 reginfo_sec = o;
12845 }
12846
12847 if (strcmp (o->name, ".mdebug") == 0)
12848 {
12849 struct extsym_info einfo;
12850 bfd_vma last;
12851
12852 /* We have found the .mdebug section in the output file.
12853 Look through all the link_orders comprising it and merge
12854 the information together. */
12855 symhdr->magic = swap->sym_magic;
12856 /* FIXME: What should the version stamp be? */
12857 symhdr->vstamp = 0;
12858 symhdr->ilineMax = 0;
12859 symhdr->cbLine = 0;
12860 symhdr->idnMax = 0;
12861 symhdr->ipdMax = 0;
12862 symhdr->isymMax = 0;
12863 symhdr->ioptMax = 0;
12864 symhdr->iauxMax = 0;
12865 symhdr->issMax = 0;
12866 symhdr->issExtMax = 0;
12867 symhdr->ifdMax = 0;
12868 symhdr->crfd = 0;
12869 symhdr->iextMax = 0;
12870
12871 /* We accumulate the debugging information itself in the
12872 debug_info structure. */
12873 debug.line = NULL;
12874 debug.external_dnr = NULL;
12875 debug.external_pdr = NULL;
12876 debug.external_sym = NULL;
12877 debug.external_opt = NULL;
12878 debug.external_aux = NULL;
12879 debug.ss = NULL;
12880 debug.ssext = debug.ssext_end = NULL;
12881 debug.external_fdr = NULL;
12882 debug.external_rfd = NULL;
12883 debug.external_ext = debug.external_ext_end = NULL;
12884
12885 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
12886 if (mdebug_handle == NULL)
12887 return FALSE;
12888
12889 esym.jmptbl = 0;
12890 esym.cobol_main = 0;
12891 esym.weakext = 0;
12892 esym.reserved = 0;
12893 esym.ifd = ifdNil;
12894 esym.asym.iss = issNil;
12895 esym.asym.st = stLocal;
12896 esym.asym.reserved = 0;
12897 esym.asym.index = indexNil;
12898 last = 0;
12899 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
12900 {
12901 esym.asym.sc = sc[i];
12902 s = bfd_get_section_by_name (abfd, secname[i]);
12903 if (s != NULL)
12904 {
12905 esym.asym.value = s->vma;
12906 last = s->vma + s->size;
12907 }
12908 else
12909 esym.asym.value = last;
12910 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
12911 secname[i], &esym))
12912 return FALSE;
12913 }
12914
12915 for (p = o->map_head.link_order; p != NULL; p = p->next)
12916 {
12917 asection *input_section;
12918 bfd *input_bfd;
12919 const struct ecoff_debug_swap *input_swap;
12920 struct ecoff_debug_info input_debug;
12921 char *eraw_src;
12922 char *eraw_end;
12923
12924 if (p->type != bfd_indirect_link_order)
12925 {
12926 if (p->type == bfd_data_link_order)
12927 continue;
12928 abort ();
12929 }
12930
12931 input_section = p->u.indirect.section;
12932 input_bfd = input_section->owner;
12933
12934 if (!is_mips_elf (input_bfd))
12935 {
12936 /* I don't know what a non MIPS ELF bfd would be
12937 doing with a .mdebug section, but I don't really
12938 want to deal with it. */
12939 continue;
12940 }
12941
12942 input_swap = (get_elf_backend_data (input_bfd)
12943 ->elf_backend_ecoff_debug_swap);
12944
12945 BFD_ASSERT (p->size == input_section->size);
12946
12947 /* The ECOFF linking code expects that we have already
12948 read in the debugging information and set up an
12949 ecoff_debug_info structure, so we do that now. */
12950 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
12951 &input_debug))
12952 return FALSE;
12953
12954 if (! (bfd_ecoff_debug_accumulate
12955 (mdebug_handle, abfd, &debug, swap, input_bfd,
12956 &input_debug, input_swap, info)))
12957 return FALSE;
12958
12959 /* Loop through the external symbols. For each one with
12960 interesting information, try to find the symbol in
12961 the linker global hash table and save the information
12962 for the output external symbols. */
12963 eraw_src = input_debug.external_ext;
12964 eraw_end = (eraw_src
12965 + (input_debug.symbolic_header.iextMax
12966 * input_swap->external_ext_size));
12967 for (;
12968 eraw_src < eraw_end;
12969 eraw_src += input_swap->external_ext_size)
12970 {
12971 EXTR ext;
12972 const char *name;
12973 struct mips_elf_link_hash_entry *h;
12974
12975 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
12976 if (ext.asym.sc == scNil
12977 || ext.asym.sc == scUndefined
12978 || ext.asym.sc == scSUndefined)
12979 continue;
12980
12981 name = input_debug.ssext + ext.asym.iss;
12982 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
12983 name, FALSE, FALSE, TRUE);
12984 if (h == NULL || h->esym.ifd != -2)
12985 continue;
12986
12987 if (ext.ifd != -1)
12988 {
12989 BFD_ASSERT (ext.ifd
12990 < input_debug.symbolic_header.ifdMax);
12991 ext.ifd = input_debug.ifdmap[ext.ifd];
12992 }
12993
12994 h->esym = ext;
12995 }
12996
12997 /* Free up the information we just read. */
12998 free (input_debug.line);
12999 free (input_debug.external_dnr);
13000 free (input_debug.external_pdr);
13001 free (input_debug.external_sym);
13002 free (input_debug.external_opt);
13003 free (input_debug.external_aux);
13004 free (input_debug.ss);
13005 free (input_debug.ssext);
13006 free (input_debug.external_fdr);
13007 free (input_debug.external_rfd);
13008 free (input_debug.external_ext);
13009
13010 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13011 elf_link_input_bfd ignores this section. */
13012 input_section->flags &= ~SEC_HAS_CONTENTS;
13013 }
13014
13015 if (SGI_COMPAT (abfd) && info->shared)
13016 {
13017 /* Create .rtproc section. */
13018 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13019 if (rtproc_sec == NULL)
13020 {
13021 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13022 | SEC_LINKER_CREATED | SEC_READONLY);
13023
13024 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13025 ".rtproc",
13026 flags);
13027 if (rtproc_sec == NULL
13028 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13029 return FALSE;
13030 }
13031
13032 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13033 info, rtproc_sec,
13034 &debug))
13035 return FALSE;
13036 }
13037
13038 /* Build the external symbol information. */
13039 einfo.abfd = abfd;
13040 einfo.info = info;
13041 einfo.debug = &debug;
13042 einfo.swap = swap;
13043 einfo.failed = FALSE;
13044 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13045 mips_elf_output_extsym, &einfo);
13046 if (einfo.failed)
13047 return FALSE;
13048
13049 /* Set the size of the .mdebug section. */
13050 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13051
13052 /* Skip this section later on (I don't think this currently
13053 matters, but someday it might). */
13054 o->map_head.link_order = NULL;
13055
13056 mdebug_sec = o;
13057 }
13058
13059 if (CONST_STRNEQ (o->name, ".gptab."))
13060 {
13061 const char *subname;
13062 unsigned int c;
13063 Elf32_gptab *tab;
13064 Elf32_External_gptab *ext_tab;
13065 unsigned int j;
13066
13067 /* The .gptab.sdata and .gptab.sbss sections hold
13068 information describing how the small data area would
13069 change depending upon the -G switch. These sections
13070 not used in executables files. */
13071 if (! info->relocatable)
13072 {
13073 for (p = o->map_head.link_order; p != NULL; p = p->next)
13074 {
13075 asection *input_section;
13076
13077 if (p->type != bfd_indirect_link_order)
13078 {
13079 if (p->type == bfd_data_link_order)
13080 continue;
13081 abort ();
13082 }
13083
13084 input_section = p->u.indirect.section;
13085
13086 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13087 elf_link_input_bfd ignores this section. */
13088 input_section->flags &= ~SEC_HAS_CONTENTS;
13089 }
13090
13091 /* Skip this section later on (I don't think this
13092 currently matters, but someday it might). */
13093 o->map_head.link_order = NULL;
13094
13095 /* Really remove the section. */
13096 bfd_section_list_remove (abfd, o);
13097 --abfd->section_count;
13098
13099 continue;
13100 }
13101
13102 /* There is one gptab for initialized data, and one for
13103 uninitialized data. */
13104 if (strcmp (o->name, ".gptab.sdata") == 0)
13105 gptab_data_sec = o;
13106 else if (strcmp (o->name, ".gptab.sbss") == 0)
13107 gptab_bss_sec = o;
13108 else
13109 {
13110 (*_bfd_error_handler)
13111 (_("%s: illegal section name `%s'"),
13112 bfd_get_filename (abfd), o->name);
13113 bfd_set_error (bfd_error_nonrepresentable_section);
13114 return FALSE;
13115 }
13116
13117 /* The linker script always combines .gptab.data and
13118 .gptab.sdata into .gptab.sdata, and likewise for
13119 .gptab.bss and .gptab.sbss. It is possible that there is
13120 no .sdata or .sbss section in the output file, in which
13121 case we must change the name of the output section. */
13122 subname = o->name + sizeof ".gptab" - 1;
13123 if (bfd_get_section_by_name (abfd, subname) == NULL)
13124 {
13125 if (o == gptab_data_sec)
13126 o->name = ".gptab.data";
13127 else
13128 o->name = ".gptab.bss";
13129 subname = o->name + sizeof ".gptab" - 1;
13130 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13131 }
13132
13133 /* Set up the first entry. */
13134 c = 1;
13135 amt = c * sizeof (Elf32_gptab);
13136 tab = bfd_malloc (amt);
13137 if (tab == NULL)
13138 return FALSE;
13139 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13140 tab[0].gt_header.gt_unused = 0;
13141
13142 /* Combine the input sections. */
13143 for (p = o->map_head.link_order; p != NULL; p = p->next)
13144 {
13145 asection *input_section;
13146 bfd *input_bfd;
13147 bfd_size_type size;
13148 unsigned long last;
13149 bfd_size_type gpentry;
13150
13151 if (p->type != bfd_indirect_link_order)
13152 {
13153 if (p->type == bfd_data_link_order)
13154 continue;
13155 abort ();
13156 }
13157
13158 input_section = p->u.indirect.section;
13159 input_bfd = input_section->owner;
13160
13161 /* Combine the gptab entries for this input section one
13162 by one. We know that the input gptab entries are
13163 sorted by ascending -G value. */
13164 size = input_section->size;
13165 last = 0;
13166 for (gpentry = sizeof (Elf32_External_gptab);
13167 gpentry < size;
13168 gpentry += sizeof (Elf32_External_gptab))
13169 {
13170 Elf32_External_gptab ext_gptab;
13171 Elf32_gptab int_gptab;
13172 unsigned long val;
13173 unsigned long add;
13174 bfd_boolean exact;
13175 unsigned int look;
13176
13177 if (! (bfd_get_section_contents
13178 (input_bfd, input_section, &ext_gptab, gpentry,
13179 sizeof (Elf32_External_gptab))))
13180 {
13181 free (tab);
13182 return FALSE;
13183 }
13184
13185 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13186 &int_gptab);
13187 val = int_gptab.gt_entry.gt_g_value;
13188 add = int_gptab.gt_entry.gt_bytes - last;
13189
13190 exact = FALSE;
13191 for (look = 1; look < c; look++)
13192 {
13193 if (tab[look].gt_entry.gt_g_value >= val)
13194 tab[look].gt_entry.gt_bytes += add;
13195
13196 if (tab[look].gt_entry.gt_g_value == val)
13197 exact = TRUE;
13198 }
13199
13200 if (! exact)
13201 {
13202 Elf32_gptab *new_tab;
13203 unsigned int max;
13204
13205 /* We need a new table entry. */
13206 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13207 new_tab = bfd_realloc (tab, amt);
13208 if (new_tab == NULL)
13209 {
13210 free (tab);
13211 return FALSE;
13212 }
13213 tab = new_tab;
13214 tab[c].gt_entry.gt_g_value = val;
13215 tab[c].gt_entry.gt_bytes = add;
13216
13217 /* Merge in the size for the next smallest -G
13218 value, since that will be implied by this new
13219 value. */
13220 max = 0;
13221 for (look = 1; look < c; look++)
13222 {
13223 if (tab[look].gt_entry.gt_g_value < val
13224 && (max == 0
13225 || (tab[look].gt_entry.gt_g_value
13226 > tab[max].gt_entry.gt_g_value)))
13227 max = look;
13228 }
13229 if (max != 0)
13230 tab[c].gt_entry.gt_bytes +=
13231 tab[max].gt_entry.gt_bytes;
13232
13233 ++c;
13234 }
13235
13236 last = int_gptab.gt_entry.gt_bytes;
13237 }
13238
13239 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13240 elf_link_input_bfd ignores this section. */
13241 input_section->flags &= ~SEC_HAS_CONTENTS;
13242 }
13243
13244 /* The table must be sorted by -G value. */
13245 if (c > 2)
13246 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13247
13248 /* Swap out the table. */
13249 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13250 ext_tab = bfd_alloc (abfd, amt);
13251 if (ext_tab == NULL)
13252 {
13253 free (tab);
13254 return FALSE;
13255 }
13256
13257 for (j = 0; j < c; j++)
13258 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13259 free (tab);
13260
13261 o->size = c * sizeof (Elf32_External_gptab);
13262 o->contents = (bfd_byte *) ext_tab;
13263
13264 /* Skip this section later on (I don't think this currently
13265 matters, but someday it might). */
13266 o->map_head.link_order = NULL;
13267 }
13268 }
13269
13270 /* Invoke the regular ELF backend linker to do all the work. */
13271 if (!bfd_elf_final_link (abfd, info))
13272 return FALSE;
13273
13274 /* Now write out the computed sections. */
13275
13276 if (reginfo_sec != NULL)
13277 {
13278 Elf32_External_RegInfo ext;
13279
13280 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13281 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13282 return FALSE;
13283 }
13284
13285 if (mdebug_sec != NULL)
13286 {
13287 BFD_ASSERT (abfd->output_has_begun);
13288 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13289 swap, info,
13290 mdebug_sec->filepos))
13291 return FALSE;
13292
13293 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13294 }
13295
13296 if (gptab_data_sec != NULL)
13297 {
13298 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13299 gptab_data_sec->contents,
13300 0, gptab_data_sec->size))
13301 return FALSE;
13302 }
13303
13304 if (gptab_bss_sec != NULL)
13305 {
13306 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13307 gptab_bss_sec->contents,
13308 0, gptab_bss_sec->size))
13309 return FALSE;
13310 }
13311
13312 if (SGI_COMPAT (abfd))
13313 {
13314 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13315 if (rtproc_sec != NULL)
13316 {
13317 if (! bfd_set_section_contents (abfd, rtproc_sec,
13318 rtproc_sec->contents,
13319 0, rtproc_sec->size))
13320 return FALSE;
13321 }
13322 }
13323
13324 return TRUE;
13325 }
13326 \f
13327 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13328
13329 struct mips_mach_extension {
13330 unsigned long extension, base;
13331 };
13332
13333
13334 /* An array describing how BFD machines relate to one another. The entries
13335 are ordered topologically with MIPS I extensions listed last. */
13336
13337 static const struct mips_mach_extension mips_mach_extensions[] = {
13338 /* MIPS64r2 extensions. */
13339 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13340 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13341 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13342
13343 /* MIPS64 extensions. */
13344 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13345 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13346 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13347 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13348
13349 /* MIPS V extensions. */
13350 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13351
13352 /* R10000 extensions. */
13353 { bfd_mach_mips12000, bfd_mach_mips10000 },
13354 { bfd_mach_mips14000, bfd_mach_mips10000 },
13355 { bfd_mach_mips16000, bfd_mach_mips10000 },
13356
13357 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13358 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13359 better to allow vr5400 and vr5500 code to be merged anyway, since
13360 many libraries will just use the core ISA. Perhaps we could add
13361 some sort of ASE flag if this ever proves a problem. */
13362 { bfd_mach_mips5500, bfd_mach_mips5400 },
13363 { bfd_mach_mips5400, bfd_mach_mips5000 },
13364
13365 /* MIPS IV extensions. */
13366 { bfd_mach_mips5, bfd_mach_mips8000 },
13367 { bfd_mach_mips10000, bfd_mach_mips8000 },
13368 { bfd_mach_mips5000, bfd_mach_mips8000 },
13369 { bfd_mach_mips7000, bfd_mach_mips8000 },
13370 { bfd_mach_mips9000, bfd_mach_mips8000 },
13371
13372 /* VR4100 extensions. */
13373 { bfd_mach_mips4120, bfd_mach_mips4100 },
13374 { bfd_mach_mips4111, bfd_mach_mips4100 },
13375
13376 /* MIPS III extensions. */
13377 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13378 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13379 { bfd_mach_mips8000, bfd_mach_mips4000 },
13380 { bfd_mach_mips4650, bfd_mach_mips4000 },
13381 { bfd_mach_mips4600, bfd_mach_mips4000 },
13382 { bfd_mach_mips4400, bfd_mach_mips4000 },
13383 { bfd_mach_mips4300, bfd_mach_mips4000 },
13384 { bfd_mach_mips4100, bfd_mach_mips4000 },
13385 { bfd_mach_mips4010, bfd_mach_mips4000 },
13386 { bfd_mach_mips5900, bfd_mach_mips4000 },
13387
13388 /* MIPS32 extensions. */
13389 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13390
13391 /* MIPS II extensions. */
13392 { bfd_mach_mips4000, bfd_mach_mips6000 },
13393 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13394
13395 /* MIPS I extensions. */
13396 { bfd_mach_mips6000, bfd_mach_mips3000 },
13397 { bfd_mach_mips3900, bfd_mach_mips3000 }
13398 };
13399
13400
13401 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13402
13403 static bfd_boolean
13404 mips_mach_extends_p (unsigned long base, unsigned long extension)
13405 {
13406 size_t i;
13407
13408 if (extension == base)
13409 return TRUE;
13410
13411 if (base == bfd_mach_mipsisa32
13412 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13413 return TRUE;
13414
13415 if (base == bfd_mach_mipsisa32r2
13416 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13417 return TRUE;
13418
13419 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13420 if (extension == mips_mach_extensions[i].extension)
13421 {
13422 extension = mips_mach_extensions[i].base;
13423 if (extension == base)
13424 return TRUE;
13425 }
13426
13427 return FALSE;
13428 }
13429
13430
13431 /* Return true if the given ELF header flags describe a 32-bit binary. */
13432
13433 static bfd_boolean
13434 mips_32bit_flags_p (flagword flags)
13435 {
13436 return ((flags & EF_MIPS_32BITMODE) != 0
13437 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13438 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13439 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13440 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13441 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13442 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13443 }
13444
13445
13446 /* Merge object attributes from IBFD into OBFD. Raise an error if
13447 there are conflicting attributes. */
13448 static bfd_boolean
13449 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13450 {
13451 obj_attribute *in_attr;
13452 obj_attribute *out_attr;
13453 bfd *abi_fp_bfd;
13454
13455 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13456 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13457 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13458 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13459
13460 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13461 {
13462 /* This is the first object. Copy the attributes. */
13463 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13464
13465 /* Use the Tag_null value to indicate the attributes have been
13466 initialized. */
13467 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13468
13469 return TRUE;
13470 }
13471
13472 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13473 non-conflicting ones. */
13474 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13475 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13476 {
13477 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13478 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13479 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13480 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13481 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13482 {
13483 case 1:
13484 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13485 {
13486 case 2:
13487 _bfd_error_handler
13488 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13489 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13490 break;
13491
13492 case 3:
13493 _bfd_error_handler
13494 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13495 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13496 break;
13497
13498 case 4:
13499 _bfd_error_handler
13500 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13501 obfd, abi_fp_bfd, ibfd,
13502 "-mdouble-float", "-mips32r2 -mfp64");
13503 break;
13504
13505 default:
13506 _bfd_error_handler
13507 (_("Warning: %B uses %s (set by %B), "
13508 "%B uses unknown floating point ABI %d"),
13509 obfd, abi_fp_bfd, ibfd,
13510 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13511 break;
13512 }
13513 break;
13514
13515 case 2:
13516 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13517 {
13518 case 1:
13519 _bfd_error_handler
13520 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13521 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13522 break;
13523
13524 case 3:
13525 _bfd_error_handler
13526 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13527 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13528 break;
13529
13530 case 4:
13531 _bfd_error_handler
13532 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13533 obfd, abi_fp_bfd, ibfd,
13534 "-msingle-float", "-mips32r2 -mfp64");
13535 break;
13536
13537 default:
13538 _bfd_error_handler
13539 (_("Warning: %B uses %s (set by %B), "
13540 "%B uses unknown floating point ABI %d"),
13541 obfd, abi_fp_bfd, ibfd,
13542 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13543 break;
13544 }
13545 break;
13546
13547 case 3:
13548 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13549 {
13550 case 1:
13551 case 2:
13552 case 4:
13553 _bfd_error_handler
13554 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13555 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13556 break;
13557
13558 default:
13559 _bfd_error_handler
13560 (_("Warning: %B uses %s (set by %B), "
13561 "%B uses unknown floating point ABI %d"),
13562 obfd, abi_fp_bfd, ibfd,
13563 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13564 break;
13565 }
13566 break;
13567
13568 case 4:
13569 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13570 {
13571 case 1:
13572 _bfd_error_handler
13573 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13574 obfd, abi_fp_bfd, ibfd,
13575 "-mips32r2 -mfp64", "-mdouble-float");
13576 break;
13577
13578 case 2:
13579 _bfd_error_handler
13580 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13581 obfd, abi_fp_bfd, ibfd,
13582 "-mips32r2 -mfp64", "-msingle-float");
13583 break;
13584
13585 case 3:
13586 _bfd_error_handler
13587 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13588 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13589 break;
13590
13591 default:
13592 _bfd_error_handler
13593 (_("Warning: %B uses %s (set by %B), "
13594 "%B uses unknown floating point ABI %d"),
13595 obfd, abi_fp_bfd, ibfd,
13596 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13597 break;
13598 }
13599 break;
13600
13601 default:
13602 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13603 {
13604 case 1:
13605 _bfd_error_handler
13606 (_("Warning: %B uses unknown floating point ABI %d "
13607 "(set by %B), %B uses %s"),
13608 obfd, abi_fp_bfd, ibfd,
13609 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13610 break;
13611
13612 case 2:
13613 _bfd_error_handler
13614 (_("Warning: %B uses unknown floating point ABI %d "
13615 "(set by %B), %B uses %s"),
13616 obfd, abi_fp_bfd, ibfd,
13617 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13618 break;
13619
13620 case 3:
13621 _bfd_error_handler
13622 (_("Warning: %B uses unknown floating point ABI %d "
13623 "(set by %B), %B uses %s"),
13624 obfd, abi_fp_bfd, ibfd,
13625 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13626 break;
13627
13628 case 4:
13629 _bfd_error_handler
13630 (_("Warning: %B uses unknown floating point ABI %d "
13631 "(set by %B), %B uses %s"),
13632 obfd, abi_fp_bfd, ibfd,
13633 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13634 break;
13635
13636 default:
13637 _bfd_error_handler
13638 (_("Warning: %B uses unknown floating point ABI %d "
13639 "(set by %B), %B uses unknown floating point ABI %d"),
13640 obfd, abi_fp_bfd, ibfd,
13641 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13642 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13643 break;
13644 }
13645 break;
13646 }
13647 }
13648
13649 /* Merge Tag_compatibility attributes and any common GNU ones. */
13650 _bfd_elf_merge_object_attributes (ibfd, obfd);
13651
13652 return TRUE;
13653 }
13654
13655 /* Merge backend specific data from an object file to the output
13656 object file when linking. */
13657
13658 bfd_boolean
13659 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13660 {
13661 flagword old_flags;
13662 flagword new_flags;
13663 bfd_boolean ok;
13664 bfd_boolean null_input_bfd = TRUE;
13665 asection *sec;
13666
13667 /* Check if we have the same endianness. */
13668 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13669 {
13670 (*_bfd_error_handler)
13671 (_("%B: endianness incompatible with that of the selected emulation"),
13672 ibfd);
13673 return FALSE;
13674 }
13675
13676 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13677 return TRUE;
13678
13679 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13680 {
13681 (*_bfd_error_handler)
13682 (_("%B: ABI is incompatible with that of the selected emulation"),
13683 ibfd);
13684 return FALSE;
13685 }
13686
13687 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13688 return FALSE;
13689
13690 new_flags = elf_elfheader (ibfd)->e_flags;
13691 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13692 old_flags = elf_elfheader (obfd)->e_flags;
13693
13694 if (! elf_flags_init (obfd))
13695 {
13696 elf_flags_init (obfd) = TRUE;
13697 elf_elfheader (obfd)->e_flags = new_flags;
13698 elf_elfheader (obfd)->e_ident[EI_CLASS]
13699 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13700
13701 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13702 && (bfd_get_arch_info (obfd)->the_default
13703 || mips_mach_extends_p (bfd_get_mach (obfd),
13704 bfd_get_mach (ibfd))))
13705 {
13706 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13707 bfd_get_mach (ibfd)))
13708 return FALSE;
13709 }
13710
13711 return TRUE;
13712 }
13713
13714 /* Check flag compatibility. */
13715
13716 new_flags &= ~EF_MIPS_NOREORDER;
13717 old_flags &= ~EF_MIPS_NOREORDER;
13718
13719 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13720 doesn't seem to matter. */
13721 new_flags &= ~EF_MIPS_XGOT;
13722 old_flags &= ~EF_MIPS_XGOT;
13723
13724 /* MIPSpro generates ucode info in n64 objects. Again, we should
13725 just be able to ignore this. */
13726 new_flags &= ~EF_MIPS_UCODE;
13727 old_flags &= ~EF_MIPS_UCODE;
13728
13729 /* DSOs should only be linked with CPIC code. */
13730 if ((ibfd->flags & DYNAMIC) != 0)
13731 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13732
13733 if (new_flags == old_flags)
13734 return TRUE;
13735
13736 /* Check to see if the input BFD actually contains any sections.
13737 If not, its flags may not have been initialised either, but it cannot
13738 actually cause any incompatibility. */
13739 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13740 {
13741 /* Ignore synthetic sections and empty .text, .data and .bss sections
13742 which are automatically generated by gas. Also ignore fake
13743 (s)common sections, since merely defining a common symbol does
13744 not affect compatibility. */
13745 if ((sec->flags & SEC_IS_COMMON) == 0
13746 && strcmp (sec->name, ".reginfo")
13747 && strcmp (sec->name, ".mdebug")
13748 && (sec->size != 0
13749 || (strcmp (sec->name, ".text")
13750 && strcmp (sec->name, ".data")
13751 && strcmp (sec->name, ".bss"))))
13752 {
13753 null_input_bfd = FALSE;
13754 break;
13755 }
13756 }
13757 if (null_input_bfd)
13758 return TRUE;
13759
13760 ok = TRUE;
13761
13762 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13763 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13764 {
13765 (*_bfd_error_handler)
13766 (_("%B: warning: linking abicalls files with non-abicalls files"),
13767 ibfd);
13768 ok = TRUE;
13769 }
13770
13771 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13772 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13773 if (! (new_flags & EF_MIPS_PIC))
13774 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13775
13776 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13777 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13778
13779 /* Compare the ISAs. */
13780 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13781 {
13782 (*_bfd_error_handler)
13783 (_("%B: linking 32-bit code with 64-bit code"),
13784 ibfd);
13785 ok = FALSE;
13786 }
13787 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13788 {
13789 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13790 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13791 {
13792 /* Copy the architecture info from IBFD to OBFD. Also copy
13793 the 32-bit flag (if set) so that we continue to recognise
13794 OBFD as a 32-bit binary. */
13795 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13796 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13797 elf_elfheader (obfd)->e_flags
13798 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13799
13800 /* Copy across the ABI flags if OBFD doesn't use them
13801 and if that was what caused us to treat IBFD as 32-bit. */
13802 if ((old_flags & EF_MIPS_ABI) == 0
13803 && mips_32bit_flags_p (new_flags)
13804 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13805 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13806 }
13807 else
13808 {
13809 /* The ISAs aren't compatible. */
13810 (*_bfd_error_handler)
13811 (_("%B: linking %s module with previous %s modules"),
13812 ibfd,
13813 bfd_printable_name (ibfd),
13814 bfd_printable_name (obfd));
13815 ok = FALSE;
13816 }
13817 }
13818
13819 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13820 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13821
13822 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
13823 does set EI_CLASS differently from any 32-bit ABI. */
13824 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
13825 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13826 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13827 {
13828 /* Only error if both are set (to different values). */
13829 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
13830 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13831 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13832 {
13833 (*_bfd_error_handler)
13834 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
13835 ibfd,
13836 elf_mips_abi_name (ibfd),
13837 elf_mips_abi_name (obfd));
13838 ok = FALSE;
13839 }
13840 new_flags &= ~EF_MIPS_ABI;
13841 old_flags &= ~EF_MIPS_ABI;
13842 }
13843
13844 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
13845 and allow arbitrary mixing of the remaining ASEs (retain the union). */
13846 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
13847 {
13848 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13849 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13850 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
13851 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
13852 int micro_mis = old_m16 && new_micro;
13853 int m16_mis = old_micro && new_m16;
13854
13855 if (m16_mis || micro_mis)
13856 {
13857 (*_bfd_error_handler)
13858 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
13859 ibfd,
13860 m16_mis ? "MIPS16" : "microMIPS",
13861 m16_mis ? "microMIPS" : "MIPS16");
13862 ok = FALSE;
13863 }
13864
13865 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
13866
13867 new_flags &= ~ EF_MIPS_ARCH_ASE;
13868 old_flags &= ~ EF_MIPS_ARCH_ASE;
13869 }
13870
13871 /* Warn about any other mismatches */
13872 if (new_flags != old_flags)
13873 {
13874 (*_bfd_error_handler)
13875 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
13876 ibfd, (unsigned long) new_flags,
13877 (unsigned long) old_flags);
13878 ok = FALSE;
13879 }
13880
13881 if (! ok)
13882 {
13883 bfd_set_error (bfd_error_bad_value);
13884 return FALSE;
13885 }
13886
13887 return TRUE;
13888 }
13889
13890 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
13891
13892 bfd_boolean
13893 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
13894 {
13895 BFD_ASSERT (!elf_flags_init (abfd)
13896 || elf_elfheader (abfd)->e_flags == flags);
13897
13898 elf_elfheader (abfd)->e_flags = flags;
13899 elf_flags_init (abfd) = TRUE;
13900 return TRUE;
13901 }
13902
13903 char *
13904 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
13905 {
13906 switch (dtag)
13907 {
13908 default: return "";
13909 case DT_MIPS_RLD_VERSION:
13910 return "MIPS_RLD_VERSION";
13911 case DT_MIPS_TIME_STAMP:
13912 return "MIPS_TIME_STAMP";
13913 case DT_MIPS_ICHECKSUM:
13914 return "MIPS_ICHECKSUM";
13915 case DT_MIPS_IVERSION:
13916 return "MIPS_IVERSION";
13917 case DT_MIPS_FLAGS:
13918 return "MIPS_FLAGS";
13919 case DT_MIPS_BASE_ADDRESS:
13920 return "MIPS_BASE_ADDRESS";
13921 case DT_MIPS_MSYM:
13922 return "MIPS_MSYM";
13923 case DT_MIPS_CONFLICT:
13924 return "MIPS_CONFLICT";
13925 case DT_MIPS_LIBLIST:
13926 return "MIPS_LIBLIST";
13927 case DT_MIPS_LOCAL_GOTNO:
13928 return "MIPS_LOCAL_GOTNO";
13929 case DT_MIPS_CONFLICTNO:
13930 return "MIPS_CONFLICTNO";
13931 case DT_MIPS_LIBLISTNO:
13932 return "MIPS_LIBLISTNO";
13933 case DT_MIPS_SYMTABNO:
13934 return "MIPS_SYMTABNO";
13935 case DT_MIPS_UNREFEXTNO:
13936 return "MIPS_UNREFEXTNO";
13937 case DT_MIPS_GOTSYM:
13938 return "MIPS_GOTSYM";
13939 case DT_MIPS_HIPAGENO:
13940 return "MIPS_HIPAGENO";
13941 case DT_MIPS_RLD_MAP:
13942 return "MIPS_RLD_MAP";
13943 case DT_MIPS_DELTA_CLASS:
13944 return "MIPS_DELTA_CLASS";
13945 case DT_MIPS_DELTA_CLASS_NO:
13946 return "MIPS_DELTA_CLASS_NO";
13947 case DT_MIPS_DELTA_INSTANCE:
13948 return "MIPS_DELTA_INSTANCE";
13949 case DT_MIPS_DELTA_INSTANCE_NO:
13950 return "MIPS_DELTA_INSTANCE_NO";
13951 case DT_MIPS_DELTA_RELOC:
13952 return "MIPS_DELTA_RELOC";
13953 case DT_MIPS_DELTA_RELOC_NO:
13954 return "MIPS_DELTA_RELOC_NO";
13955 case DT_MIPS_DELTA_SYM:
13956 return "MIPS_DELTA_SYM";
13957 case DT_MIPS_DELTA_SYM_NO:
13958 return "MIPS_DELTA_SYM_NO";
13959 case DT_MIPS_DELTA_CLASSSYM:
13960 return "MIPS_DELTA_CLASSSYM";
13961 case DT_MIPS_DELTA_CLASSSYM_NO:
13962 return "MIPS_DELTA_CLASSSYM_NO";
13963 case DT_MIPS_CXX_FLAGS:
13964 return "MIPS_CXX_FLAGS";
13965 case DT_MIPS_PIXIE_INIT:
13966 return "MIPS_PIXIE_INIT";
13967 case DT_MIPS_SYMBOL_LIB:
13968 return "MIPS_SYMBOL_LIB";
13969 case DT_MIPS_LOCALPAGE_GOTIDX:
13970 return "MIPS_LOCALPAGE_GOTIDX";
13971 case DT_MIPS_LOCAL_GOTIDX:
13972 return "MIPS_LOCAL_GOTIDX";
13973 case DT_MIPS_HIDDEN_GOTIDX:
13974 return "MIPS_HIDDEN_GOTIDX";
13975 case DT_MIPS_PROTECTED_GOTIDX:
13976 return "MIPS_PROTECTED_GOT_IDX";
13977 case DT_MIPS_OPTIONS:
13978 return "MIPS_OPTIONS";
13979 case DT_MIPS_INTERFACE:
13980 return "MIPS_INTERFACE";
13981 case DT_MIPS_DYNSTR_ALIGN:
13982 return "DT_MIPS_DYNSTR_ALIGN";
13983 case DT_MIPS_INTERFACE_SIZE:
13984 return "DT_MIPS_INTERFACE_SIZE";
13985 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
13986 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
13987 case DT_MIPS_PERF_SUFFIX:
13988 return "DT_MIPS_PERF_SUFFIX";
13989 case DT_MIPS_COMPACT_SIZE:
13990 return "DT_MIPS_COMPACT_SIZE";
13991 case DT_MIPS_GP_VALUE:
13992 return "DT_MIPS_GP_VALUE";
13993 case DT_MIPS_AUX_DYNAMIC:
13994 return "DT_MIPS_AUX_DYNAMIC";
13995 case DT_MIPS_PLTGOT:
13996 return "DT_MIPS_PLTGOT";
13997 case DT_MIPS_RWPLT:
13998 return "DT_MIPS_RWPLT";
13999 }
14000 }
14001
14002 bfd_boolean
14003 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14004 {
14005 FILE *file = ptr;
14006
14007 BFD_ASSERT (abfd != NULL && ptr != NULL);
14008
14009 /* Print normal ELF private data. */
14010 _bfd_elf_print_private_bfd_data (abfd, ptr);
14011
14012 /* xgettext:c-format */
14013 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14014
14015 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14016 fprintf (file, _(" [abi=O32]"));
14017 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14018 fprintf (file, _(" [abi=O64]"));
14019 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14020 fprintf (file, _(" [abi=EABI32]"));
14021 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14022 fprintf (file, _(" [abi=EABI64]"));
14023 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14024 fprintf (file, _(" [abi unknown]"));
14025 else if (ABI_N32_P (abfd))
14026 fprintf (file, _(" [abi=N32]"));
14027 else if (ABI_64_P (abfd))
14028 fprintf (file, _(" [abi=64]"));
14029 else
14030 fprintf (file, _(" [no abi set]"));
14031
14032 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14033 fprintf (file, " [mips1]");
14034 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14035 fprintf (file, " [mips2]");
14036 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14037 fprintf (file, " [mips3]");
14038 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14039 fprintf (file, " [mips4]");
14040 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14041 fprintf (file, " [mips5]");
14042 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14043 fprintf (file, " [mips32]");
14044 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14045 fprintf (file, " [mips64]");
14046 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14047 fprintf (file, " [mips32r2]");
14048 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14049 fprintf (file, " [mips64r2]");
14050 else
14051 fprintf (file, _(" [unknown ISA]"));
14052
14053 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14054 fprintf (file, " [mdmx]");
14055
14056 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14057 fprintf (file, " [mips16]");
14058
14059 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14060 fprintf (file, " [micromips]");
14061
14062 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14063 fprintf (file, " [32bitmode]");
14064 else
14065 fprintf (file, _(" [not 32bitmode]"));
14066
14067 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14068 fprintf (file, " [noreorder]");
14069
14070 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14071 fprintf (file, " [PIC]");
14072
14073 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14074 fprintf (file, " [CPIC]");
14075
14076 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14077 fprintf (file, " [XGOT]");
14078
14079 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14080 fprintf (file, " [UCODE]");
14081
14082 fputc ('\n', file);
14083
14084 return TRUE;
14085 }
14086
14087 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14088 {
14089 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14090 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14091 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14092 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14093 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14094 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14095 { NULL, 0, 0, 0, 0 }
14096 };
14097
14098 /* Merge non visibility st_other attributes. Ensure that the
14099 STO_OPTIONAL flag is copied into h->other, even if this is not a
14100 definiton of the symbol. */
14101 void
14102 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14103 const Elf_Internal_Sym *isym,
14104 bfd_boolean definition,
14105 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14106 {
14107 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14108 {
14109 unsigned char other;
14110
14111 other = (definition ? isym->st_other : h->other);
14112 other &= ~ELF_ST_VISIBILITY (-1);
14113 h->other = other | ELF_ST_VISIBILITY (h->other);
14114 }
14115
14116 if (!definition
14117 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14118 h->other |= STO_OPTIONAL;
14119 }
14120
14121 /* Decide whether an undefined symbol is special and can be ignored.
14122 This is the case for OPTIONAL symbols on IRIX. */
14123 bfd_boolean
14124 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14125 {
14126 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14127 }
14128
14129 bfd_boolean
14130 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14131 {
14132 return (sym->st_shndx == SHN_COMMON
14133 || sym->st_shndx == SHN_MIPS_ACOMMON
14134 || sym->st_shndx == SHN_MIPS_SCOMMON);
14135 }
14136
14137 /* Return address for Ith PLT stub in section PLT, for relocation REL
14138 or (bfd_vma) -1 if it should not be included. */
14139
14140 bfd_vma
14141 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14142 const arelent *rel ATTRIBUTE_UNUSED)
14143 {
14144 return (plt->vma
14145 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14146 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14147 }
14148
14149 void
14150 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14151 {
14152 struct mips_elf_link_hash_table *htab;
14153 Elf_Internal_Ehdr *i_ehdrp;
14154
14155 i_ehdrp = elf_elfheader (abfd);
14156 if (link_info)
14157 {
14158 htab = mips_elf_hash_table (link_info);
14159 BFD_ASSERT (htab != NULL);
14160
14161 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14162 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14163 }
14164 }
This page took 0.343474 seconds and 4 git commands to generate.