* elfxx-mips.c: Revert .got alignment to 2**4.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* The index of the first dynamic relocation (in the .rel.dyn
192 section) against this symbol. */
193 unsigned int min_dyn_reloc_index;
194
195 /* We must not create a stub for a symbol that has relocations
196 related to taking the function's address, i.e. any but
197 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
198 p. 4-20. */
199 bfd_boolean no_fn_stub;
200
201 /* If there is a stub that 32 bit functions should use to call this
202 16 bit function, this points to the section containing the stub. */
203 asection *fn_stub;
204
205 /* Whether we need the fn_stub; this is set if this symbol appears
206 in any relocs other than a 16 bit call. */
207 bfd_boolean need_fn_stub;
208
209 /* If there is a stub that 16 bit functions should use to call this
210 32 bit function, this points to the section containing the stub. */
211 asection *call_stub;
212
213 /* This is like the call_stub field, but it is used if the function
214 being called returns a floating point value. */
215 asection *call_fp_stub;
216
217 /* Are we forced local? .*/
218 bfd_boolean forced_local;
219 };
220
221 /* MIPS ELF linker hash table. */
222
223 struct mips_elf_link_hash_table
224 {
225 struct elf_link_hash_table root;
226 #if 0
227 /* We no longer use this. */
228 /* String section indices for the dynamic section symbols. */
229 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
230 #endif
231 /* The number of .rtproc entries. */
232 bfd_size_type procedure_count;
233 /* The size of the .compact_rel section (if SGI_COMPAT). */
234 bfd_size_type compact_rel_size;
235 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
236 entry is set to the address of __rld_obj_head as in IRIX5. */
237 bfd_boolean use_rld_obj_head;
238 /* This is the value of the __rld_map or __rld_obj_head symbol. */
239 bfd_vma rld_value;
240 /* This is set if we see any mips16 stub sections. */
241 bfd_boolean mips16_stubs_seen;
242 };
243
244 /* Structure used to pass information to mips_elf_output_extsym. */
245
246 struct extsym_info
247 {
248 bfd *abfd;
249 struct bfd_link_info *info;
250 struct ecoff_debug_info *debug;
251 const struct ecoff_debug_swap *swap;
252 bfd_boolean failed;
253 };
254
255 /* The names of the runtime procedure table symbols used on IRIX5. */
256
257 static const char * const mips_elf_dynsym_rtproc_names[] =
258 {
259 "_procedure_table",
260 "_procedure_string_table",
261 "_procedure_table_size",
262 NULL
263 };
264
265 /* These structures are used to generate the .compact_rel section on
266 IRIX5. */
267
268 typedef struct
269 {
270 unsigned long id1; /* Always one? */
271 unsigned long num; /* Number of compact relocation entries. */
272 unsigned long id2; /* Always two? */
273 unsigned long offset; /* The file offset of the first relocation. */
274 unsigned long reserved0; /* Zero? */
275 unsigned long reserved1; /* Zero? */
276 } Elf32_compact_rel;
277
278 typedef struct
279 {
280 bfd_byte id1[4];
281 bfd_byte num[4];
282 bfd_byte id2[4];
283 bfd_byte offset[4];
284 bfd_byte reserved0[4];
285 bfd_byte reserved1[4];
286 } Elf32_External_compact_rel;
287
288 typedef struct
289 {
290 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
291 unsigned int rtype : 4; /* Relocation types. See below. */
292 unsigned int dist2to : 8;
293 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
294 unsigned long konst; /* KONST field. See below. */
295 unsigned long vaddr; /* VADDR to be relocated. */
296 } Elf32_crinfo;
297
298 typedef struct
299 {
300 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
301 unsigned int rtype : 4; /* Relocation types. See below. */
302 unsigned int dist2to : 8;
303 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
304 unsigned long konst; /* KONST field. See below. */
305 } Elf32_crinfo2;
306
307 typedef struct
308 {
309 bfd_byte info[4];
310 bfd_byte konst[4];
311 bfd_byte vaddr[4];
312 } Elf32_External_crinfo;
313
314 typedef struct
315 {
316 bfd_byte info[4];
317 bfd_byte konst[4];
318 } Elf32_External_crinfo2;
319
320 /* These are the constants used to swap the bitfields in a crinfo. */
321
322 #define CRINFO_CTYPE (0x1)
323 #define CRINFO_CTYPE_SH (31)
324 #define CRINFO_RTYPE (0xf)
325 #define CRINFO_RTYPE_SH (27)
326 #define CRINFO_DIST2TO (0xff)
327 #define CRINFO_DIST2TO_SH (19)
328 #define CRINFO_RELVADDR (0x7ffff)
329 #define CRINFO_RELVADDR_SH (0)
330
331 /* A compact relocation info has long (3 words) or short (2 words)
332 formats. A short format doesn't have VADDR field and relvaddr
333 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
334 #define CRF_MIPS_LONG 1
335 #define CRF_MIPS_SHORT 0
336
337 /* There are 4 types of compact relocation at least. The value KONST
338 has different meaning for each type:
339
340 (type) (konst)
341 CT_MIPS_REL32 Address in data
342 CT_MIPS_WORD Address in word (XXX)
343 CT_MIPS_GPHI_LO GP - vaddr
344 CT_MIPS_JMPAD Address to jump
345 */
346
347 #define CRT_MIPS_REL32 0xa
348 #define CRT_MIPS_WORD 0xb
349 #define CRT_MIPS_GPHI_LO 0xc
350 #define CRT_MIPS_JMPAD 0xd
351
352 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
353 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
354 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
355 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
356 \f
357 /* The structure of the runtime procedure descriptor created by the
358 loader for use by the static exception system. */
359
360 typedef struct runtime_pdr {
361 bfd_vma adr; /* Memory address of start of procedure. */
362 long regmask; /* Save register mask. */
363 long regoffset; /* Save register offset. */
364 long fregmask; /* Save floating point register mask. */
365 long fregoffset; /* Save floating point register offset. */
366 long frameoffset; /* Frame size. */
367 short framereg; /* Frame pointer register. */
368 short pcreg; /* Offset or reg of return pc. */
369 long irpss; /* Index into the runtime string table. */
370 long reserved;
371 struct exception_info *exception_info;/* Pointer to exception array. */
372 } RPDR, *pRPDR;
373 #define cbRPDR sizeof (RPDR)
374 #define rpdNil ((pRPDR) 0)
375 \f
376 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
377 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
378 static void ecoff_swap_rpdr_out
379 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
380 static bfd_boolean mips_elf_create_procedure_table
381 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
382 struct ecoff_debug_info *));
383 static bfd_boolean mips_elf_check_mips16_stubs
384 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
385 static void bfd_mips_elf32_swap_gptab_in
386 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
387 static void bfd_mips_elf32_swap_gptab_out
388 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
389 static void bfd_elf32_swap_compact_rel_out
390 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
391 static void bfd_elf32_swap_crinfo_out
392 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
393 #if 0
394 static void bfd_mips_elf_swap_msym_in
395 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
396 #endif
397 static void bfd_mips_elf_swap_msym_out
398 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
399 static int sort_dynamic_relocs
400 PARAMS ((const void *, const void *));
401 static int sort_dynamic_relocs_64
402 PARAMS ((const void *, const void *));
403 static bfd_boolean mips_elf_output_extsym
404 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
405 static int gptab_compare PARAMS ((const void *, const void *));
406 static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
407 static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
408 static struct mips_got_info *mips_elf_got_info
409 PARAMS ((bfd *, asection **));
410 static long mips_elf_get_global_gotsym_index PARAMS ((bfd *abfd));
411 static bfd_vma mips_elf_local_got_index
412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
413 static bfd_vma mips_elf_global_got_index
414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
415 static bfd_vma mips_elf_got_page
416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
417 static bfd_vma mips_elf_got16_entry
418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
419 static bfd_vma mips_elf_got_offset_from_index
420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
421 static struct mips_got_entry *mips_elf_create_local_got_entry
422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
423 static bfd_boolean mips_elf_sort_hash_table
424 PARAMS ((struct bfd_link_info *, unsigned long));
425 static bfd_boolean mips_elf_sort_hash_table_f
426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
427 static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
429 static bfd_boolean mips_elf_record_global_got_symbol
430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
431 struct mips_got_info *));
432 static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
435 static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
437 static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
438 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
439 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
440 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
441 static bfd_boolean mips_elf_create_compact_rel_section
442 PARAMS ((bfd *, struct bfd_link_info *));
443 static bfd_boolean mips_elf_create_got_section
444 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
445 static asection *mips_elf_create_msym_section
446 PARAMS ((bfd *));
447 static bfd_reloc_status_type mips_elf_calculate_relocation
448 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
449 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
450 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
451 bfd_boolean *, bfd_boolean));
452 static bfd_vma mips_elf_obtain_contents
453 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
454 static bfd_boolean mips_elf_perform_relocation
455 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
456 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
457 bfd_boolean));
458 static bfd_boolean mips_elf_stub_section_p
459 PARAMS ((bfd *, asection *));
460 static void mips_elf_allocate_dynamic_relocations
461 PARAMS ((bfd *, unsigned int));
462 static bfd_boolean mips_elf_create_dynamic_relocation
463 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
464 struct mips_elf_link_hash_entry *, asection *,
465 bfd_vma, bfd_vma *, asection *));
466 static void mips_set_isa_flags PARAMS ((bfd *));
467 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
468 static void mips_elf_irix6_finish_dynamic_symbol
469 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
470 static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
471 static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
472 static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
473 static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
474 static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
475
476 static bfd_boolean mips_elf_multi_got
477 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
478 asection *, bfd_size_type));
479 static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
480 static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
481 static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
482 static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
483 static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
484 static int mips_elf_merge_gots PARAMS ((void **, void *));
485 static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
486 static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
487 static void mips_elf_resolve_final_got_entries
488 PARAMS ((struct mips_got_info *));
489 static bfd_vma mips_elf_adjust_gp
490 PARAMS ((bfd *, struct mips_got_info *, bfd *));
491 static struct mips_got_info *mips_elf_got_for_ibfd
492 PARAMS ((struct mips_got_info *, bfd *));
493
494 /* This will be used when we sort the dynamic relocation records. */
495 static bfd *reldyn_sorting_bfd;
496
497 /* Nonzero if ABFD is using the N32 ABI. */
498
499 #define ABI_N32_P(abfd) \
500 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
501
502 /* Nonzero if ABFD is using the N64 ABI. */
503 #define ABI_64_P(abfd) \
504 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
505
506 /* Nonzero if ABFD is using NewABI conventions. */
507 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
508
509 /* The IRIX compatibility level we are striving for. */
510 #define IRIX_COMPAT(abfd) \
511 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
512
513 /* Whether we are trying to be compatible with IRIX at all. */
514 #define SGI_COMPAT(abfd) \
515 (IRIX_COMPAT (abfd) != ict_none)
516
517 /* The name of the options section. */
518 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
519 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
520
521 /* The name of the stub section. */
522 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
523 (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub")
524
525 /* The size of an external REL relocation. */
526 #define MIPS_ELF_REL_SIZE(abfd) \
527 (get_elf_backend_data (abfd)->s->sizeof_rel)
528
529 /* The size of an external dynamic table entry. */
530 #define MIPS_ELF_DYN_SIZE(abfd) \
531 (get_elf_backend_data (abfd)->s->sizeof_dyn)
532
533 /* The size of a GOT entry. */
534 #define MIPS_ELF_GOT_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->arch_size / 8)
536
537 /* The size of a symbol-table entry. */
538 #define MIPS_ELF_SYM_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_sym)
540
541 /* The default alignment for sections, as a power of two. */
542 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
543 (get_elf_backend_data (abfd)->s->log_file_align)
544
545 /* Get word-sized data. */
546 #define MIPS_ELF_GET_WORD(abfd, ptr) \
547 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
548
549 /* Put out word-sized data. */
550 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
551 (ABI_64_P (abfd) \
552 ? bfd_put_64 (abfd, val, ptr) \
553 : bfd_put_32 (abfd, val, ptr))
554
555 /* Add a dynamic symbol table-entry. */
556 #ifdef BFD64
557 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
558 (ABI_64_P (elf_hash_table (info)->dynobj) \
559 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
560 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
561 #else
562 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
563 (ABI_64_P (elf_hash_table (info)->dynobj) \
564 ? (abort (), FALSE) \
565 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
566 #endif
567
568 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
569 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
570
571 /* Determine whether the internal relocation of index REL_IDX is REL
572 (zero) or RELA (non-zero). The assumption is that, if there are
573 two relocation sections for this section, one of them is REL and
574 the other is RELA. If the index of the relocation we're testing is
575 in range for the first relocation section, check that the external
576 relocation size is that for RELA. It is also assumed that, if
577 rel_idx is not in range for the first section, and this first
578 section contains REL relocs, then the relocation is in the second
579 section, that is RELA. */
580 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
581 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
582 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
583 > (bfd_vma)(rel_idx)) \
584 == (elf_section_data (sec)->rel_hdr.sh_entsize \
585 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
586 : sizeof (Elf32_External_Rela))))
587
588 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
589 from smaller values. Start with zero, widen, *then* decrement. */
590 #define MINUS_ONE (((bfd_vma)0) - 1)
591
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
594
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598 /* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602 /* Instructions which appear in a stub. For some reason the stub is
603 slightly different on an SGI system. */
604 #define STUB_LW(abfd) \
605 ((ABI_64_P (abfd) \
606 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
607 : 0x8f998010)) /* lw t9,0x8010(gp) */
608 #define STUB_MOVE(abfd) \
609 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
610 #define STUB_JALR 0x0320f809 /* jal t9 */
611 #define STUB_LI16(abfd) \
612 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
613 #define MIPS_FUNCTION_STUB_SIZE (16)
614
615 /* The name of the dynamic interpreter. This is put in the .interp
616 section. */
617
618 #define ELF_DYNAMIC_INTERPRETER(abfd) \
619 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
620 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
621 : "/usr/lib/libc.so.1")
622
623 #ifdef BFD64
624 #define MNAME(bfd,pre,pos) \
625 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
626 #define ELF_R_SYM(bfd, i) \
627 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
628 #define ELF_R_TYPE(bfd, i) \
629 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
630 #define ELF_R_INFO(bfd, s, t) \
631 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
632 #else
633 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
634 #define ELF_R_SYM(bfd, i) \
635 (ELF32_R_SYM (i))
636 #define ELF_R_TYPE(bfd, i) \
637 (ELF32_R_TYPE (i))
638 #define ELF_R_INFO(bfd, s, t) \
639 (ELF32_R_INFO (s, t))
640 #endif
641 \f
642 /* The mips16 compiler uses a couple of special sections to handle
643 floating point arguments.
644
645 Section names that look like .mips16.fn.FNNAME contain stubs that
646 copy floating point arguments from the fp regs to the gp regs and
647 then jump to FNNAME. If any 32 bit function calls FNNAME, the
648 call should be redirected to the stub instead. If no 32 bit
649 function calls FNNAME, the stub should be discarded. We need to
650 consider any reference to the function, not just a call, because
651 if the address of the function is taken we will need the stub,
652 since the address might be passed to a 32 bit function.
653
654 Section names that look like .mips16.call.FNNAME contain stubs
655 that copy floating point arguments from the gp regs to the fp
656 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
657 then any 16 bit function that calls FNNAME should be redirected
658 to the stub instead. If FNNAME is not a 32 bit function, the
659 stub should be discarded.
660
661 .mips16.call.fp.FNNAME sections are similar, but contain stubs
662 which call FNNAME and then copy the return value from the fp regs
663 to the gp regs. These stubs store the return value in $18 while
664 calling FNNAME; any function which might call one of these stubs
665 must arrange to save $18 around the call. (This case is not
666 needed for 32 bit functions that call 16 bit functions, because
667 16 bit functions always return floating point values in both
668 $f0/$f1 and $2/$3.)
669
670 Note that in all cases FNNAME might be defined statically.
671 Therefore, FNNAME is not used literally. Instead, the relocation
672 information will indicate which symbol the section is for.
673
674 We record any stubs that we find in the symbol table. */
675
676 #define FN_STUB ".mips16.fn."
677 #define CALL_STUB ".mips16.call."
678 #define CALL_FP_STUB ".mips16.call.fp."
679 \f
680 /* Look up an entry in a MIPS ELF linker hash table. */
681
682 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
683 ((struct mips_elf_link_hash_entry *) \
684 elf_link_hash_lookup (&(table)->root, (string), (create), \
685 (copy), (follow)))
686
687 /* Traverse a MIPS ELF linker hash table. */
688
689 #define mips_elf_link_hash_traverse(table, func, info) \
690 (elf_link_hash_traverse \
691 (&(table)->root, \
692 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
693 (info)))
694
695 /* Get the MIPS ELF linker hash table from a link_info structure. */
696
697 #define mips_elf_hash_table(p) \
698 ((struct mips_elf_link_hash_table *) ((p)->hash))
699
700 /* Create an entry in a MIPS ELF linker hash table. */
701
702 static struct bfd_hash_entry *
703 mips_elf_link_hash_newfunc (entry, table, string)
704 struct bfd_hash_entry *entry;
705 struct bfd_hash_table *table;
706 const char *string;
707 {
708 struct mips_elf_link_hash_entry *ret =
709 (struct mips_elf_link_hash_entry *) entry;
710
711 /* Allocate the structure if it has not already been allocated by a
712 subclass. */
713 if (ret == (struct mips_elf_link_hash_entry *) NULL)
714 ret = ((struct mips_elf_link_hash_entry *)
715 bfd_hash_allocate (table,
716 sizeof (struct mips_elf_link_hash_entry)));
717 if (ret == (struct mips_elf_link_hash_entry *) NULL)
718 return (struct bfd_hash_entry *) ret;
719
720 /* Call the allocation method of the superclass. */
721 ret = ((struct mips_elf_link_hash_entry *)
722 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
723 table, string));
724 if (ret != (struct mips_elf_link_hash_entry *) NULL)
725 {
726 /* Set local fields. */
727 memset (&ret->esym, 0, sizeof (EXTR));
728 /* We use -2 as a marker to indicate that the information has
729 not been set. -1 means there is no associated ifd. */
730 ret->esym.ifd = -2;
731 ret->possibly_dynamic_relocs = 0;
732 ret->readonly_reloc = FALSE;
733 ret->min_dyn_reloc_index = 0;
734 ret->no_fn_stub = FALSE;
735 ret->fn_stub = NULL;
736 ret->need_fn_stub = FALSE;
737 ret->call_stub = NULL;
738 ret->call_fp_stub = NULL;
739 ret->forced_local = FALSE;
740 }
741
742 return (struct bfd_hash_entry *) ret;
743 }
744
745 bfd_boolean
746 _bfd_mips_elf_new_section_hook (abfd, sec)
747 bfd *abfd;
748 asection *sec;
749 {
750 struct _mips_elf_section_data *sdata;
751 bfd_size_type amt = sizeof (*sdata);
752
753 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
754 if (sdata == NULL)
755 return FALSE;
756 sec->used_by_bfd = (PTR) sdata;
757
758 return _bfd_elf_new_section_hook (abfd, sec);
759 }
760 \f
761 /* Read ECOFF debugging information from a .mdebug section into a
762 ecoff_debug_info structure. */
763
764 bfd_boolean
765 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
766 bfd *abfd;
767 asection *section;
768 struct ecoff_debug_info *debug;
769 {
770 HDRR *symhdr;
771 const struct ecoff_debug_swap *swap;
772 char *ext_hdr = NULL;
773
774 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
775 memset (debug, 0, sizeof (*debug));
776
777 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
778 if (ext_hdr == NULL && swap->external_hdr_size != 0)
779 goto error_return;
780
781 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
782 swap->external_hdr_size))
783 goto error_return;
784
785 symhdr = &debug->symbolic_header;
786 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
787
788 /* The symbolic header contains absolute file offsets and sizes to
789 read. */
790 #define READ(ptr, offset, count, size, type) \
791 if (symhdr->count == 0) \
792 debug->ptr = NULL; \
793 else \
794 { \
795 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
796 debug->ptr = (type) bfd_malloc (amt); \
797 if (debug->ptr == NULL) \
798 goto error_return; \
799 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
800 || bfd_bread (debug->ptr, amt, abfd) != amt) \
801 goto error_return; \
802 }
803
804 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
805 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
806 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
807 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
808 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
809 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
810 union aux_ext *);
811 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
812 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
813 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
814 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
815 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
816 #undef READ
817
818 debug->fdr = NULL;
819 debug->adjust = NULL;
820
821 return TRUE;
822
823 error_return:
824 if (ext_hdr != NULL)
825 free (ext_hdr);
826 if (debug->line != NULL)
827 free (debug->line);
828 if (debug->external_dnr != NULL)
829 free (debug->external_dnr);
830 if (debug->external_pdr != NULL)
831 free (debug->external_pdr);
832 if (debug->external_sym != NULL)
833 free (debug->external_sym);
834 if (debug->external_opt != NULL)
835 free (debug->external_opt);
836 if (debug->external_aux != NULL)
837 free (debug->external_aux);
838 if (debug->ss != NULL)
839 free (debug->ss);
840 if (debug->ssext != NULL)
841 free (debug->ssext);
842 if (debug->external_fdr != NULL)
843 free (debug->external_fdr);
844 if (debug->external_rfd != NULL)
845 free (debug->external_rfd);
846 if (debug->external_ext != NULL)
847 free (debug->external_ext);
848 return FALSE;
849 }
850 \f
851 /* Swap RPDR (runtime procedure table entry) for output. */
852
853 static void
854 ecoff_swap_rpdr_out (abfd, in, ex)
855 bfd *abfd;
856 const RPDR *in;
857 struct rpdr_ext *ex;
858 {
859 H_PUT_S32 (abfd, in->adr, ex->p_adr);
860 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
861 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
862 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
863 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
864 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
865
866 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
867 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
868
869 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
870 #if 0 /* FIXME */
871 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
872 #endif
873 }
874
875 /* Create a runtime procedure table from the .mdebug section. */
876
877 static bfd_boolean
878 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
879 PTR handle;
880 bfd *abfd;
881 struct bfd_link_info *info;
882 asection *s;
883 struct ecoff_debug_info *debug;
884 {
885 const struct ecoff_debug_swap *swap;
886 HDRR *hdr = &debug->symbolic_header;
887 RPDR *rpdr, *rp;
888 struct rpdr_ext *erp;
889 PTR rtproc;
890 struct pdr_ext *epdr;
891 struct sym_ext *esym;
892 char *ss, **sv;
893 char *str;
894 bfd_size_type size;
895 bfd_size_type count;
896 unsigned long sindex;
897 unsigned long i;
898 PDR pdr;
899 SYMR sym;
900 const char *no_name_func = _("static procedure (no name)");
901
902 epdr = NULL;
903 rpdr = NULL;
904 esym = NULL;
905 ss = NULL;
906 sv = NULL;
907
908 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
909
910 sindex = strlen (no_name_func) + 1;
911 count = hdr->ipdMax;
912 if (count > 0)
913 {
914 size = swap->external_pdr_size;
915
916 epdr = (struct pdr_ext *) bfd_malloc (size * count);
917 if (epdr == NULL)
918 goto error_return;
919
920 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
921 goto error_return;
922
923 size = sizeof (RPDR);
924 rp = rpdr = (RPDR *) bfd_malloc (size * count);
925 if (rpdr == NULL)
926 goto error_return;
927
928 size = sizeof (char *);
929 sv = (char **) bfd_malloc (size * count);
930 if (sv == NULL)
931 goto error_return;
932
933 count = hdr->isymMax;
934 size = swap->external_sym_size;
935 esym = (struct sym_ext *) bfd_malloc (size * count);
936 if (esym == NULL)
937 goto error_return;
938
939 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
940 goto error_return;
941
942 count = hdr->issMax;
943 ss = (char *) bfd_malloc (count);
944 if (ss == NULL)
945 goto error_return;
946 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
947 goto error_return;
948
949 count = hdr->ipdMax;
950 for (i = 0; i < (unsigned long) count; i++, rp++)
951 {
952 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
953 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
954 rp->adr = sym.value;
955 rp->regmask = pdr.regmask;
956 rp->regoffset = pdr.regoffset;
957 rp->fregmask = pdr.fregmask;
958 rp->fregoffset = pdr.fregoffset;
959 rp->frameoffset = pdr.frameoffset;
960 rp->framereg = pdr.framereg;
961 rp->pcreg = pdr.pcreg;
962 rp->irpss = sindex;
963 sv[i] = ss + sym.iss;
964 sindex += strlen (sv[i]) + 1;
965 }
966 }
967
968 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
969 size = BFD_ALIGN (size, 16);
970 rtproc = (PTR) bfd_alloc (abfd, size);
971 if (rtproc == NULL)
972 {
973 mips_elf_hash_table (info)->procedure_count = 0;
974 goto error_return;
975 }
976
977 mips_elf_hash_table (info)->procedure_count = count + 2;
978
979 erp = (struct rpdr_ext *) rtproc;
980 memset (erp, 0, sizeof (struct rpdr_ext));
981 erp++;
982 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
983 strcpy (str, no_name_func);
984 str += strlen (no_name_func) + 1;
985 for (i = 0; i < count; i++)
986 {
987 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
988 strcpy (str, sv[i]);
989 str += strlen (sv[i]) + 1;
990 }
991 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
992
993 /* Set the size and contents of .rtproc section. */
994 s->_raw_size = size;
995 s->contents = (bfd_byte *) rtproc;
996
997 /* Skip this section later on (I don't think this currently
998 matters, but someday it might). */
999 s->link_order_head = (struct bfd_link_order *) NULL;
1000
1001 if (epdr != NULL)
1002 free (epdr);
1003 if (rpdr != NULL)
1004 free (rpdr);
1005 if (esym != NULL)
1006 free (esym);
1007 if (ss != NULL)
1008 free (ss);
1009 if (sv != NULL)
1010 free (sv);
1011
1012 return TRUE;
1013
1014 error_return:
1015 if (epdr != NULL)
1016 free (epdr);
1017 if (rpdr != NULL)
1018 free (rpdr);
1019 if (esym != NULL)
1020 free (esym);
1021 if (ss != NULL)
1022 free (ss);
1023 if (sv != NULL)
1024 free (sv);
1025 return FALSE;
1026 }
1027
1028 /* Check the mips16 stubs for a particular symbol, and see if we can
1029 discard them. */
1030
1031 static bfd_boolean
1032 mips_elf_check_mips16_stubs (h, data)
1033 struct mips_elf_link_hash_entry *h;
1034 PTR data ATTRIBUTE_UNUSED;
1035 {
1036 if (h->root.root.type == bfd_link_hash_warning)
1037 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1038
1039 if (h->fn_stub != NULL
1040 && ! h->need_fn_stub)
1041 {
1042 /* We don't need the fn_stub; the only references to this symbol
1043 are 16 bit calls. Clobber the size to 0 to prevent it from
1044 being included in the link. */
1045 h->fn_stub->_raw_size = 0;
1046 h->fn_stub->_cooked_size = 0;
1047 h->fn_stub->flags &= ~SEC_RELOC;
1048 h->fn_stub->reloc_count = 0;
1049 h->fn_stub->flags |= SEC_EXCLUDE;
1050 }
1051
1052 if (h->call_stub != NULL
1053 && h->root.other == STO_MIPS16)
1054 {
1055 /* We don't need the call_stub; this is a 16 bit function, so
1056 calls from other 16 bit functions are OK. Clobber the size
1057 to 0 to prevent it from being included in the link. */
1058 h->call_stub->_raw_size = 0;
1059 h->call_stub->_cooked_size = 0;
1060 h->call_stub->flags &= ~SEC_RELOC;
1061 h->call_stub->reloc_count = 0;
1062 h->call_stub->flags |= SEC_EXCLUDE;
1063 }
1064
1065 if (h->call_fp_stub != NULL
1066 && h->root.other == STO_MIPS16)
1067 {
1068 /* We don't need the call_stub; this is a 16 bit function, so
1069 calls from other 16 bit functions are OK. Clobber the size
1070 to 0 to prevent it from being included in the link. */
1071 h->call_fp_stub->_raw_size = 0;
1072 h->call_fp_stub->_cooked_size = 0;
1073 h->call_fp_stub->flags &= ~SEC_RELOC;
1074 h->call_fp_stub->reloc_count = 0;
1075 h->call_fp_stub->flags |= SEC_EXCLUDE;
1076 }
1077
1078 return TRUE;
1079 }
1080 \f
1081 bfd_reloc_status_type
1082 _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1083 relocatable, data, gp)
1084 bfd *abfd;
1085 asymbol *symbol;
1086 arelent *reloc_entry;
1087 asection *input_section;
1088 bfd_boolean relocatable;
1089 PTR data;
1090 bfd_vma gp;
1091 {
1092 bfd_vma relocation;
1093 unsigned long insn = 0;
1094 bfd_signed_vma val;
1095
1096 if (bfd_is_com_section (symbol->section))
1097 relocation = 0;
1098 else
1099 relocation = symbol->value;
1100
1101 relocation += symbol->section->output_section->vma;
1102 relocation += symbol->section->output_offset;
1103
1104 if (reloc_entry->address > input_section->_cooked_size)
1105 return bfd_reloc_outofrange;
1106
1107 /* Set val to the offset into the section or symbol. */
1108 val = reloc_entry->addend;
1109
1110 if (reloc_entry->howto->partial_inplace)
1111 {
1112 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1113 val += insn & 0xffff;
1114 }
1115
1116 _bfd_mips_elf_sign_extend(val, 16);
1117
1118 /* Adjust val for the final section location and GP value. If we
1119 are producing relocatable output, we don't want to do this for
1120 an external symbol. */
1121 if (! relocatable
1122 || (symbol->flags & BSF_SECTION_SYM) != 0)
1123 val += relocation - gp;
1124
1125 if (reloc_entry->howto->partial_inplace)
1126 {
1127 insn = (insn & ~0xffff) | (val & 0xffff);
1128 bfd_put_32 (abfd, (bfd_vma) insn,
1129 (bfd_byte *) data + reloc_entry->address);
1130 }
1131 else
1132 reloc_entry->addend = val;
1133
1134 if (relocatable)
1135 reloc_entry->address += input_section->output_offset;
1136 else if (((val & ~0xffff) != ~0xffff) && ((val & ~0xffff) != 0))
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140 }
1141 \f
1142 /* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145 static void
1146 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150 {
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153 }
1154
1155 static void
1156 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160 {
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163 }
1164
1165 static void
1166 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170 {
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177 }
1178
1179 static void
1180 bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184 {
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194 }
1195
1196 #if 0
1197 /* Swap in an MSYM entry. */
1198
1199 static void
1200 bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204 {
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207 }
1208 #endif
1209 /* Swap out an MSYM entry. */
1210
1211 static void
1212 bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216 {
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219 }
1220 \f
1221 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225 void
1226 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230 {
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237 }
1238
1239 void
1240 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244 {
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251 }
1252
1253 /* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259 void
1260 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264 {
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272 }
1273
1274 void
1275 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279 {
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287 }
1288
1289 /* Swap in an options header. */
1290
1291 void
1292 bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296 {
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301 }
1302
1303 /* Swap out an options header. */
1304
1305 void
1306 bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310 {
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315 }
1316 \f
1317 /* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320 static int
1321 sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324 {
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
1327
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1330
1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1332 }
1333
1334 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336 static int
1337 sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340 {
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351 }
1352
1353
1354 /* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
1368 static bfd_boolean
1369 mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372 {
1373 struct extsym_info *einfo = (struct extsym_info *) data;
1374 bfd_boolean strip;
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
1381 strip = FALSE;
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1386 strip = TRUE;
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
1393 else
1394 strip = FALSE;
1395
1396 if (strip)
1397 return TRUE;
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
1506 bfd_boolean no_fn_stub = h->no_fn_stub;
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531 #if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533 #endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
1541 einfo->failed = TRUE;
1542 return FALSE;
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* A comparison routine used to sort .gptab entries. */
1549
1550 static int
1551 gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554 {
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559 }
1560 \f
1561 /* Functions to manage the got entry hash table. */
1562
1563 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566 static INLINE hashval_t
1567 mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569 {
1570 #ifdef BFD64
1571 return addr + (addr >> 32);
1572 #else
1573 return addr;
1574 #endif
1575 }
1576
1577 /* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
1581 static hashval_t
1582 mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584 {
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
1587 return entry->symndx
1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1589 : entry->abfd->id
1590 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1591 : entry->d.h->root.root.root.hash));
1592 }
1593
1594 static int
1595 mips_elf_got_entry_eq (entry1, entry2)
1596 const PTR entry1;
1597 const PTR entry2;
1598 {
1599 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1600 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1601
1602 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1603 && (! e1->abfd ? e1->d.address == e2->d.address
1604 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1605 : e1->d.h == e2->d.h);
1606 }
1607
1608 /* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1611 accordingly. */
1612
1613 static hashval_t
1614 mips_elf_multi_got_entry_hash (entry_)
1615 const PTR entry_;
1616 {
1617 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1618
1619 return entry->symndx
1620 + (! entry->abfd
1621 ? mips_elf_hash_bfd_vma (entry->d.address)
1622 : entry->symndx >= 0
1623 ? (entry->abfd->id
1624 + mips_elf_hash_bfd_vma (entry->d.addend))
1625 : entry->d.h->root.root.root.hash);
1626 }
1627
1628 static int
1629 mips_elf_multi_got_entry_eq (entry1, entry2)
1630 const PTR entry1;
1631 const PTR entry2;
1632 {
1633 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1634 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1635
1636 return e1->symndx == e2->symndx
1637 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1638 : e1->abfd == NULL || e2->abfd == NULL
1639 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1640 : e1->d.h == e2->d.h);
1641 }
1642 \f
1643 /* Returns the dynamic relocation section for DYNOBJ. */
1644
1645 static asection *
1646 mips_elf_rel_dyn_section (dynobj, create_p)
1647 bfd *dynobj;
1648 bfd_boolean create_p;
1649 {
1650 static const char dname[] = ".rel.dyn";
1651 asection *sreloc;
1652
1653 sreloc = bfd_get_section_by_name (dynobj, dname);
1654 if (sreloc == NULL && create_p)
1655 {
1656 sreloc = bfd_make_section (dynobj, dname);
1657 if (sreloc == NULL
1658 || ! bfd_set_section_flags (dynobj, sreloc,
1659 (SEC_ALLOC
1660 | SEC_LOAD
1661 | SEC_HAS_CONTENTS
1662 | SEC_IN_MEMORY
1663 | SEC_LINKER_CREATED
1664 | SEC_READONLY))
1665 || ! bfd_set_section_alignment (dynobj, sreloc,
1666 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1667 return NULL;
1668 }
1669 return sreloc;
1670 }
1671
1672 /* Returns the GOT section for ABFD. */
1673
1674 static asection *
1675 mips_elf_got_section (abfd, maybe_excluded)
1676 bfd *abfd;
1677 bfd_boolean maybe_excluded;
1678 {
1679 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1680 if (sgot == NULL
1681 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1682 return NULL;
1683 return sgot;
1684 }
1685
1686 /* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1688 section. */
1689
1690 static struct mips_got_info *
1691 mips_elf_got_info (abfd, sgotp)
1692 bfd *abfd;
1693 asection **sgotp;
1694 {
1695 asection *sgot;
1696 struct mips_got_info *g;
1697
1698 sgot = mips_elf_got_section (abfd, TRUE);
1699 BFD_ASSERT (sgot != NULL);
1700 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1701 g = mips_elf_section_data (sgot)->u.got_info;
1702 BFD_ASSERT (g != NULL);
1703
1704 if (sgotp)
1705 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1706
1707 return g;
1708 }
1709
1710 /* Obtain the lowest dynamic index of a symbol that was assigned a
1711 global GOT entry. */
1712 static long
1713 mips_elf_get_global_gotsym_index (abfd)
1714 bfd *abfd;
1715 {
1716 asection *sgot;
1717 struct mips_got_info *g;
1718
1719 if (abfd == NULL)
1720 return 0;
1721
1722 sgot = mips_elf_got_section (abfd, TRUE);
1723 if (sgot == NULL || mips_elf_section_data (sgot) == NULL)
1724 return 0;
1725
1726 g = mips_elf_section_data (sgot)->u.got_info;
1727 if (g == NULL || g->global_gotsym == NULL)
1728 return 0;
1729
1730 return g->global_gotsym->dynindx;
1731 }
1732
1733 /* Returns the GOT offset at which the indicated address can be found.
1734 If there is not yet a GOT entry for this value, create one. Returns
1735 -1 if no satisfactory GOT offset can be found. */
1736
1737 static bfd_vma
1738 mips_elf_local_got_index (abfd, ibfd, info, value)
1739 bfd *abfd, *ibfd;
1740 struct bfd_link_info *info;
1741 bfd_vma value;
1742 {
1743 asection *sgot;
1744 struct mips_got_info *g;
1745 struct mips_got_entry *entry;
1746
1747 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1748
1749 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1750 if (entry)
1751 return entry->gotidx;
1752 else
1753 return MINUS_ONE;
1754 }
1755
1756 /* Returns the GOT index for the global symbol indicated by H. */
1757
1758 static bfd_vma
1759 mips_elf_global_got_index (abfd, ibfd, h)
1760 bfd *abfd, *ibfd;
1761 struct elf_link_hash_entry *h;
1762 {
1763 bfd_vma index;
1764 asection *sgot;
1765 struct mips_got_info *g, *gg;
1766 long global_got_dynindx = 0;
1767
1768 gg = g = mips_elf_got_info (abfd, &sgot);
1769 if (g->bfd2got && ibfd)
1770 {
1771 struct mips_got_entry e, *p;
1772
1773 BFD_ASSERT (h->dynindx >= 0);
1774
1775 g = mips_elf_got_for_ibfd (g, ibfd);
1776 if (g->next != gg)
1777 {
1778 e.abfd = ibfd;
1779 e.symndx = -1;
1780 e.d.h = (struct mips_elf_link_hash_entry *)h;
1781
1782 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1783
1784 BFD_ASSERT (p->gotidx > 0);
1785 return p->gotidx;
1786 }
1787 }
1788
1789 if (gg->global_gotsym != NULL)
1790 global_got_dynindx = gg->global_gotsym->dynindx;
1791
1792 /* Once we determine the global GOT entry with the lowest dynamic
1793 symbol table index, we must put all dynamic symbols with greater
1794 indices into the GOT. That makes it easy to calculate the GOT
1795 offset. */
1796 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1797 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1798 * MIPS_ELF_GOT_SIZE (abfd));
1799 BFD_ASSERT (index < sgot->_raw_size);
1800
1801 return index;
1802 }
1803
1804 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1805 are supposed to be placed at small offsets in the GOT, i.e.,
1806 within 32KB of GP. Return the index into the GOT for this page,
1807 and store the offset from this entry to the desired address in
1808 OFFSETP, if it is non-NULL. */
1809
1810 static bfd_vma
1811 mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1812 bfd *abfd, *ibfd;
1813 struct bfd_link_info *info;
1814 bfd_vma value;
1815 bfd_vma *offsetp;
1816 {
1817 asection *sgot;
1818 struct mips_got_info *g;
1819 bfd_vma index;
1820 struct mips_got_entry *entry;
1821
1822 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1823
1824 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1825 (value + 0x8000)
1826 & (~(bfd_vma)0xffff));
1827
1828 if (!entry)
1829 return MINUS_ONE;
1830
1831 index = entry->gotidx;
1832
1833 if (offsetp)
1834 *offsetp = value - entry->d.address;
1835
1836 return index;
1837 }
1838
1839 /* Find a GOT entry whose higher-order 16 bits are the same as those
1840 for value. Return the index into the GOT for this entry. */
1841
1842 static bfd_vma
1843 mips_elf_got16_entry (abfd, ibfd, info, value, external)
1844 bfd *abfd, *ibfd;
1845 struct bfd_link_info *info;
1846 bfd_vma value;
1847 bfd_boolean external;
1848 {
1849 asection *sgot;
1850 struct mips_got_info *g;
1851 struct mips_got_entry *entry;
1852
1853 if (! external)
1854 {
1855 /* Although the ABI says that it is "the high-order 16 bits" that we
1856 want, it is really the %high value. The complete value is
1857 calculated with a `addiu' of a LO16 relocation, just as with a
1858 HI16/LO16 pair. */
1859 value = mips_elf_high (value) << 16;
1860 }
1861
1862 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1863
1864 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1865 if (entry)
1866 return entry->gotidx;
1867 else
1868 return MINUS_ONE;
1869 }
1870
1871 /* Returns the offset for the entry at the INDEXth position
1872 in the GOT. */
1873
1874 static bfd_vma
1875 mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
1876 bfd *dynobj;
1877 bfd *output_bfd;
1878 bfd *input_bfd;
1879 bfd_vma index;
1880 {
1881 asection *sgot;
1882 bfd_vma gp;
1883 struct mips_got_info *g;
1884
1885 g = mips_elf_got_info (dynobj, &sgot);
1886 gp = _bfd_get_gp_value (output_bfd)
1887 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1888
1889 return sgot->output_section->vma + sgot->output_offset + index - gp;
1890 }
1891
1892 /* Create a local GOT entry for VALUE. Return the index of the entry,
1893 or -1 if it could not be created. */
1894
1895 static struct mips_got_entry *
1896 mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1897 bfd *abfd, *ibfd;
1898 struct mips_got_info *gg;
1899 asection *sgot;
1900 bfd_vma value;
1901 {
1902 struct mips_got_entry entry, **loc;
1903 struct mips_got_info *g;
1904
1905 entry.abfd = NULL;
1906 entry.symndx = -1;
1907 entry.d.address = value;
1908
1909 g = mips_elf_got_for_ibfd (gg, ibfd);
1910 if (g == NULL)
1911 {
1912 g = mips_elf_got_for_ibfd (gg, abfd);
1913 BFD_ASSERT (g != NULL);
1914 }
1915
1916 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1917 INSERT);
1918 if (*loc)
1919 return *loc;
1920
1921 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1922
1923 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1924
1925 if (! *loc)
1926 return NULL;
1927
1928 memcpy (*loc, &entry, sizeof entry);
1929
1930 if (g->assigned_gotno >= g->local_gotno)
1931 {
1932 (*loc)->gotidx = -1;
1933 /* We didn't allocate enough space in the GOT. */
1934 (*_bfd_error_handler)
1935 (_("not enough GOT space for local GOT entries"));
1936 bfd_set_error (bfd_error_bad_value);
1937 return NULL;
1938 }
1939
1940 MIPS_ELF_PUT_WORD (abfd, value,
1941 (sgot->contents + entry.gotidx));
1942
1943 return *loc;
1944 }
1945
1946 /* Sort the dynamic symbol table so that symbols that need GOT entries
1947 appear towards the end. This reduces the amount of GOT space
1948 required. MAX_LOCAL is used to set the number of local symbols
1949 known to be in the dynamic symbol table. During
1950 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1951 section symbols are added and the count is higher. */
1952
1953 static bfd_boolean
1954 mips_elf_sort_hash_table (info, max_local)
1955 struct bfd_link_info *info;
1956 unsigned long max_local;
1957 {
1958 struct mips_elf_hash_sort_data hsd;
1959 struct mips_got_info *g;
1960 bfd *dynobj;
1961
1962 dynobj = elf_hash_table (info)->dynobj;
1963
1964 g = mips_elf_got_info (dynobj, NULL);
1965
1966 hsd.low = NULL;
1967 hsd.max_unref_got_dynindx =
1968 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1969 /* In the multi-got case, assigned_gotno of the master got_info
1970 indicate the number of entries that aren't referenced in the
1971 primary GOT, but that must have entries because there are
1972 dynamic relocations that reference it. Since they aren't
1973 referenced, we move them to the end of the GOT, so that they
1974 don't prevent other entries that are referenced from getting
1975 too large offsets. */
1976 - (g->next ? g->assigned_gotno : 0);
1977 hsd.max_non_got_dynindx = max_local;
1978 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1979 elf_hash_table (info)),
1980 mips_elf_sort_hash_table_f,
1981 &hsd);
1982
1983 /* There should have been enough room in the symbol table to
1984 accommodate both the GOT and non-GOT symbols. */
1985 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
1986 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1987 <= elf_hash_table (info)->dynsymcount);
1988
1989 /* Now we know which dynamic symbol has the lowest dynamic symbol
1990 table index in the GOT. */
1991 g->global_gotsym = hsd.low;
1992
1993 return TRUE;
1994 }
1995
1996 /* If H needs a GOT entry, assign it the highest available dynamic
1997 index. Otherwise, assign it the lowest available dynamic
1998 index. */
1999
2000 static bfd_boolean
2001 mips_elf_sort_hash_table_f (h, data)
2002 struct mips_elf_link_hash_entry *h;
2003 PTR data;
2004 {
2005 struct mips_elf_hash_sort_data *hsd
2006 = (struct mips_elf_hash_sort_data *) data;
2007
2008 if (h->root.root.type == bfd_link_hash_warning)
2009 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2010
2011 /* Symbols without dynamic symbol table entries aren't interesting
2012 at all. */
2013 if (h->root.dynindx == -1)
2014 return TRUE;
2015
2016 /* Global symbols that need GOT entries that are not explicitly
2017 referenced are marked with got offset 2. Those that are
2018 referenced get a 1, and those that don't need GOT entries get
2019 -1. */
2020 if (h->root.got.offset == 2)
2021 {
2022 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2023 hsd->low = (struct elf_link_hash_entry *) h;
2024 h->root.dynindx = hsd->max_unref_got_dynindx++;
2025 }
2026 else if (h->root.got.offset != 1)
2027 h->root.dynindx = hsd->max_non_got_dynindx++;
2028 else
2029 {
2030 h->root.dynindx = --hsd->min_got_dynindx;
2031 hsd->low = (struct elf_link_hash_entry *) h;
2032 }
2033
2034 return TRUE;
2035 }
2036
2037 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2038 symbol table index lower than any we've seen to date, record it for
2039 posterity. */
2040
2041 static bfd_boolean
2042 mips_elf_record_global_got_symbol (h, abfd, info, g)
2043 struct elf_link_hash_entry *h;
2044 bfd *abfd;
2045 struct bfd_link_info *info;
2046 struct mips_got_info *g;
2047 {
2048 struct mips_got_entry entry, **loc;
2049
2050 /* A global symbol in the GOT must also be in the dynamic symbol
2051 table. */
2052 if (h->dynindx == -1)
2053 {
2054 switch (ELF_ST_VISIBILITY (h->other))
2055 {
2056 case STV_INTERNAL:
2057 case STV_HIDDEN:
2058 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2059 break;
2060 }
2061 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
2062 return FALSE;
2063 }
2064
2065 entry.abfd = abfd;
2066 entry.symndx = -1;
2067 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2068
2069 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2070 INSERT);
2071
2072 /* If we've already marked this entry as needing GOT space, we don't
2073 need to do it again. */
2074 if (*loc)
2075 return TRUE;
2076
2077 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2078
2079 if (! *loc)
2080 return FALSE;
2081
2082 entry.gotidx = -1;
2083 memcpy (*loc, &entry, sizeof entry);
2084
2085 if (h->got.offset != MINUS_ONE)
2086 return TRUE;
2087
2088 /* By setting this to a value other than -1, we are indicating that
2089 there needs to be a GOT entry for H. Avoid using zero, as the
2090 generic ELF copy_indirect_symbol tests for <= 0. */
2091 h->got.offset = 1;
2092
2093 return TRUE;
2094 }
2095
2096 /* Reserve space in G for a GOT entry containing the value of symbol
2097 SYMNDX in input bfd ABDF, plus ADDEND. */
2098
2099 static bfd_boolean
2100 mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2101 bfd *abfd;
2102 long symndx;
2103 bfd_vma addend;
2104 struct mips_got_info *g;
2105 {
2106 struct mips_got_entry entry, **loc;
2107
2108 entry.abfd = abfd;
2109 entry.symndx = symndx;
2110 entry.d.addend = addend;
2111 loc = (struct mips_got_entry **)
2112 htab_find_slot (g->got_entries, &entry, INSERT);
2113
2114 if (*loc)
2115 return TRUE;
2116
2117 entry.gotidx = g->local_gotno++;
2118
2119 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2120
2121 if (! *loc)
2122 return FALSE;
2123
2124 memcpy (*loc, &entry, sizeof entry);
2125
2126 return TRUE;
2127 }
2128 \f
2129 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2130
2131 static hashval_t
2132 mips_elf_bfd2got_entry_hash (entry_)
2133 const PTR entry_;
2134 {
2135 const struct mips_elf_bfd2got_hash *entry
2136 = (struct mips_elf_bfd2got_hash *)entry_;
2137
2138 return entry->bfd->id;
2139 }
2140
2141 /* Check whether two hash entries have the same bfd. */
2142
2143 static int
2144 mips_elf_bfd2got_entry_eq (entry1, entry2)
2145 const PTR entry1;
2146 const PTR entry2;
2147 {
2148 const struct mips_elf_bfd2got_hash *e1
2149 = (const struct mips_elf_bfd2got_hash *)entry1;
2150 const struct mips_elf_bfd2got_hash *e2
2151 = (const struct mips_elf_bfd2got_hash *)entry2;
2152
2153 return e1->bfd == e2->bfd;
2154 }
2155
2156 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2157 be the master GOT data. */
2158
2159 static struct mips_got_info *
2160 mips_elf_got_for_ibfd (g, ibfd)
2161 struct mips_got_info *g;
2162 bfd *ibfd;
2163 {
2164 struct mips_elf_bfd2got_hash e, *p;
2165
2166 if (! g->bfd2got)
2167 return g;
2168
2169 e.bfd = ibfd;
2170 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2171 return p ? p->g : NULL;
2172 }
2173
2174 /* Create one separate got for each bfd that has entries in the global
2175 got, such that we can tell how many local and global entries each
2176 bfd requires. */
2177
2178 static int
2179 mips_elf_make_got_per_bfd (entryp, p)
2180 void **entryp;
2181 void *p;
2182 {
2183 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2184 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2185 htab_t bfd2got = arg->bfd2got;
2186 struct mips_got_info *g;
2187 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2188 void **bfdgotp;
2189
2190 /* Find the got_info for this GOT entry's input bfd. Create one if
2191 none exists. */
2192 bfdgot_entry.bfd = entry->abfd;
2193 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2194 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2195
2196 if (bfdgot != NULL)
2197 g = bfdgot->g;
2198 else
2199 {
2200 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2201 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2202
2203 if (bfdgot == NULL)
2204 {
2205 arg->obfd = 0;
2206 return 0;
2207 }
2208
2209 *bfdgotp = bfdgot;
2210
2211 bfdgot->bfd = entry->abfd;
2212 bfdgot->g = g = (struct mips_got_info *)
2213 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2214 if (g == NULL)
2215 {
2216 arg->obfd = 0;
2217 return 0;
2218 }
2219
2220 g->global_gotsym = NULL;
2221 g->global_gotno = 0;
2222 g->local_gotno = 0;
2223 g->assigned_gotno = -1;
2224 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2225 mips_elf_multi_got_entry_eq,
2226 (htab_del) NULL);
2227 if (g->got_entries == NULL)
2228 {
2229 arg->obfd = 0;
2230 return 0;
2231 }
2232
2233 g->bfd2got = NULL;
2234 g->next = NULL;
2235 }
2236
2237 /* Insert the GOT entry in the bfd's got entry hash table. */
2238 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2239 if (*entryp != NULL)
2240 return 1;
2241
2242 *entryp = entry;
2243
2244 if (entry->symndx >= 0 || entry->d.h->forced_local)
2245 ++g->local_gotno;
2246 else
2247 ++g->global_gotno;
2248
2249 return 1;
2250 }
2251
2252 /* Attempt to merge gots of different input bfds. Try to use as much
2253 as possible of the primary got, since it doesn't require explicit
2254 dynamic relocations, but don't use bfds that would reference global
2255 symbols out of the addressable range. Failing the primary got,
2256 attempt to merge with the current got, or finish the current got
2257 and then make make the new got current. */
2258
2259 static int
2260 mips_elf_merge_gots (bfd2got_, p)
2261 void **bfd2got_;
2262 void *p;
2263 {
2264 struct mips_elf_bfd2got_hash *bfd2got
2265 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2266 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2267 unsigned int lcount = bfd2got->g->local_gotno;
2268 unsigned int gcount = bfd2got->g->global_gotno;
2269 unsigned int maxcnt = arg->max_count;
2270
2271 /* If we don't have a primary GOT and this is not too big, use it as
2272 a starting point for the primary GOT. */
2273 if (! arg->primary && lcount + gcount <= maxcnt)
2274 {
2275 arg->primary = bfd2got->g;
2276 arg->primary_count = lcount + gcount;
2277 }
2278 /* If it looks like we can merge this bfd's entries with those of
2279 the primary, merge them. The heuristics is conservative, but we
2280 don't have to squeeze it too hard. */
2281 else if (arg->primary
2282 && (arg->primary_count + lcount + gcount) <= maxcnt)
2283 {
2284 struct mips_got_info *g = bfd2got->g;
2285 int old_lcount = arg->primary->local_gotno;
2286 int old_gcount = arg->primary->global_gotno;
2287
2288 bfd2got->g = arg->primary;
2289
2290 htab_traverse (g->got_entries,
2291 mips_elf_make_got_per_bfd,
2292 arg);
2293 if (arg->obfd == NULL)
2294 return 0;
2295
2296 htab_delete (g->got_entries);
2297 /* We don't have to worry about releasing memory of the actual
2298 got entries, since they're all in the master got_entries hash
2299 table anyway. */
2300
2301 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2302 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2303
2304 arg->primary_count = arg->primary->local_gotno
2305 + arg->primary->global_gotno;
2306 }
2307 /* If we can merge with the last-created got, do it. */
2308 else if (arg->current
2309 && arg->current_count + lcount + gcount <= maxcnt)
2310 {
2311 struct mips_got_info *g = bfd2got->g;
2312 int old_lcount = arg->current->local_gotno;
2313 int old_gcount = arg->current->global_gotno;
2314
2315 bfd2got->g = arg->current;
2316
2317 htab_traverse (g->got_entries,
2318 mips_elf_make_got_per_bfd,
2319 arg);
2320 if (arg->obfd == NULL)
2321 return 0;
2322
2323 htab_delete (g->got_entries);
2324
2325 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2326 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2327
2328 arg->current_count = arg->current->local_gotno
2329 + arg->current->global_gotno;
2330 }
2331 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2332 fits; if it turns out that it doesn't, we'll get relocation
2333 overflows anyway. */
2334 else
2335 {
2336 bfd2got->g->next = arg->current;
2337 arg->current = bfd2got->g;
2338
2339 arg->current_count = lcount + gcount;
2340 }
2341
2342 return 1;
2343 }
2344
2345 /* If passed a NULL mips_got_info in the argument, set the marker used
2346 to tell whether a global symbol needs a got entry (in the primary
2347 got) to the given VALUE.
2348
2349 If passed a pointer G to a mips_got_info in the argument (it must
2350 not be the primary GOT), compute the offset from the beginning of
2351 the (primary) GOT section to the entry in G corresponding to the
2352 global symbol. G's assigned_gotno must contain the index of the
2353 first available global GOT entry in G. VALUE must contain the size
2354 of a GOT entry in bytes. For each global GOT entry that requires a
2355 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2356 marked as not elligible for lazy resolution through a function
2357 stub. */
2358 static int
2359 mips_elf_set_global_got_offset (entryp, p)
2360 void **entryp;
2361 void *p;
2362 {
2363 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2364 struct mips_elf_set_global_got_offset_arg *arg
2365 = (struct mips_elf_set_global_got_offset_arg *)p;
2366 struct mips_got_info *g = arg->g;
2367
2368 if (entry->abfd != NULL && entry->symndx == -1
2369 && entry->d.h->root.dynindx != -1)
2370 {
2371 if (g)
2372 {
2373 BFD_ASSERT (g->global_gotsym == NULL);
2374
2375 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2376 /* We can't do lazy update of GOT entries for
2377 non-primary GOTs since the PLT entries don't use the
2378 right offsets, so punt at it for now. */
2379 entry->d.h->no_fn_stub = TRUE;
2380 if (arg->info->shared
2381 || (elf_hash_table (arg->info)->dynamic_sections_created
2382 && ((entry->d.h->root.elf_link_hash_flags
2383 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2384 && ((entry->d.h->root.elf_link_hash_flags
2385 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2386 ++arg->needed_relocs;
2387 }
2388 else
2389 entry->d.h->root.got.offset = arg->value;
2390 }
2391
2392 return 1;
2393 }
2394
2395 /* Follow indirect and warning hash entries so that each got entry
2396 points to the final symbol definition. P must point to a pointer
2397 to the hash table we're traversing. Since this traversal may
2398 modify the hash table, we set this pointer to NULL to indicate
2399 we've made a potentially-destructive change to the hash table, so
2400 the traversal must be restarted. */
2401 static int
2402 mips_elf_resolve_final_got_entry (entryp, p)
2403 void **entryp;
2404 void *p;
2405 {
2406 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2407 htab_t got_entries = *(htab_t *)p;
2408
2409 if (entry->abfd != NULL && entry->symndx == -1)
2410 {
2411 struct mips_elf_link_hash_entry *h = entry->d.h;
2412
2413 while (h->root.root.type == bfd_link_hash_indirect
2414 || h->root.root.type == bfd_link_hash_warning)
2415 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2416
2417 if (entry->d.h == h)
2418 return 1;
2419
2420 entry->d.h = h;
2421
2422 /* If we can't find this entry with the new bfd hash, re-insert
2423 it, and get the traversal restarted. */
2424 if (! htab_find (got_entries, entry))
2425 {
2426 htab_clear_slot (got_entries, entryp);
2427 entryp = htab_find_slot (got_entries, entry, INSERT);
2428 if (! *entryp)
2429 *entryp = entry;
2430 /* Abort the traversal, since the whole table may have
2431 moved, and leave it up to the parent to restart the
2432 process. */
2433 *(htab_t *)p = NULL;
2434 return 0;
2435 }
2436 /* We might want to decrement the global_gotno count, but it's
2437 either too early or too late for that at this point. */
2438 }
2439
2440 return 1;
2441 }
2442
2443 /* Turn indirect got entries in a got_entries table into their final
2444 locations. */
2445 static void
2446 mips_elf_resolve_final_got_entries (g)
2447 struct mips_got_info *g;
2448 {
2449 htab_t got_entries;
2450
2451 do
2452 {
2453 got_entries = g->got_entries;
2454
2455 htab_traverse (got_entries,
2456 mips_elf_resolve_final_got_entry,
2457 &got_entries);
2458 }
2459 while (got_entries == NULL);
2460 }
2461
2462 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2463 the primary GOT. */
2464 static bfd_vma
2465 mips_elf_adjust_gp (abfd, g, ibfd)
2466 bfd *abfd;
2467 struct mips_got_info *g;
2468 bfd *ibfd;
2469 {
2470 if (g->bfd2got == NULL)
2471 return 0;
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
2474 if (! g)
2475 return 0;
2476
2477 BFD_ASSERT (g->next);
2478
2479 g = g->next;
2480
2481 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2482 }
2483
2484 /* Turn a single GOT that is too big for 16-bit addressing into
2485 a sequence of GOTs, each one 16-bit addressable. */
2486
2487 static bfd_boolean
2488 mips_elf_multi_got (abfd, info, g, got, pages)
2489 bfd *abfd;
2490 struct bfd_link_info *info;
2491 struct mips_got_info *g;
2492 asection *got;
2493 bfd_size_type pages;
2494 {
2495 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2496 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2497 struct mips_got_info *gg;
2498 unsigned int assign;
2499
2500 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2501 mips_elf_bfd2got_entry_eq,
2502 (htab_del) NULL);
2503 if (g->bfd2got == NULL)
2504 return FALSE;
2505
2506 got_per_bfd_arg.bfd2got = g->bfd2got;
2507 got_per_bfd_arg.obfd = abfd;
2508 got_per_bfd_arg.info = info;
2509
2510 /* Count how many GOT entries each input bfd requires, creating a
2511 map from bfd to got info while at that. */
2512 mips_elf_resolve_final_got_entries (g);
2513 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2514 if (got_per_bfd_arg.obfd == NULL)
2515 return FALSE;
2516
2517 got_per_bfd_arg.current = NULL;
2518 got_per_bfd_arg.primary = NULL;
2519 /* Taking out PAGES entries is a worst-case estimate. We could
2520 compute the maximum number of pages that each separate input bfd
2521 uses, but it's probably not worth it. */
2522 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2523 / MIPS_ELF_GOT_SIZE (abfd))
2524 - MIPS_RESERVED_GOTNO - pages);
2525
2526 /* Try to merge the GOTs of input bfds together, as long as they
2527 don't seem to exceed the maximum GOT size, choosing one of them
2528 to be the primary GOT. */
2529 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2530 if (got_per_bfd_arg.obfd == NULL)
2531 return FALSE;
2532
2533 /* If we find any suitable primary GOT, create an empty one. */
2534 if (got_per_bfd_arg.primary == NULL)
2535 {
2536 g->next = (struct mips_got_info *)
2537 bfd_alloc (abfd, sizeof (struct mips_got_info));
2538 if (g->next == NULL)
2539 return FALSE;
2540
2541 g->next->global_gotsym = NULL;
2542 g->next->global_gotno = 0;
2543 g->next->local_gotno = 0;
2544 g->next->assigned_gotno = 0;
2545 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2546 mips_elf_multi_got_entry_eq,
2547 (htab_del) NULL);
2548 if (g->next->got_entries == NULL)
2549 return FALSE;
2550 g->next->bfd2got = NULL;
2551 }
2552 else
2553 g->next = got_per_bfd_arg.primary;
2554 g->next->next = got_per_bfd_arg.current;
2555
2556 /* GG is now the master GOT, and G is the primary GOT. */
2557 gg = g;
2558 g = g->next;
2559
2560 /* Map the output bfd to the primary got. That's what we're going
2561 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2562 didn't mark in check_relocs, and we want a quick way to find it.
2563 We can't just use gg->next because we're going to reverse the
2564 list. */
2565 {
2566 struct mips_elf_bfd2got_hash *bfdgot;
2567 void **bfdgotp;
2568
2569 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2570 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2571
2572 if (bfdgot == NULL)
2573 return FALSE;
2574
2575 bfdgot->bfd = abfd;
2576 bfdgot->g = g;
2577 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2578
2579 BFD_ASSERT (*bfdgotp == NULL);
2580 *bfdgotp = bfdgot;
2581 }
2582
2583 /* The IRIX dynamic linker requires every symbol that is referenced
2584 in a dynamic relocation to be present in the primary GOT, so
2585 arrange for them to appear after those that are actually
2586 referenced.
2587
2588 GNU/Linux could very well do without it, but it would slow down
2589 the dynamic linker, since it would have to resolve every dynamic
2590 symbol referenced in other GOTs more than once, without help from
2591 the cache. Also, knowing that every external symbol has a GOT
2592 helps speed up the resolution of local symbols too, so GNU/Linux
2593 follows IRIX's practice.
2594
2595 The number 2 is used by mips_elf_sort_hash_table_f to count
2596 global GOT symbols that are unreferenced in the primary GOT, with
2597 an initial dynamic index computed from gg->assigned_gotno, where
2598 the number of unreferenced global entries in the primary GOT is
2599 preserved. */
2600 if (1)
2601 {
2602 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2603 g->global_gotno = gg->global_gotno;
2604 set_got_offset_arg.value = 2;
2605 }
2606 else
2607 {
2608 /* This could be used for dynamic linkers that don't optimize
2609 symbol resolution while applying relocations so as to use
2610 primary GOT entries or assuming the symbol is locally-defined.
2611 With this code, we assign lower dynamic indices to global
2612 symbols that are not referenced in the primary GOT, so that
2613 their entries can be omitted. */
2614 gg->assigned_gotno = 0;
2615 set_got_offset_arg.value = -1;
2616 }
2617
2618 /* Reorder dynamic symbols as described above (which behavior
2619 depends on the setting of VALUE). */
2620 set_got_offset_arg.g = NULL;
2621 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2622 &set_got_offset_arg);
2623 set_got_offset_arg.value = 1;
2624 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2625 &set_got_offset_arg);
2626 if (! mips_elf_sort_hash_table (info, 1))
2627 return FALSE;
2628
2629 /* Now go through the GOTs assigning them offset ranges.
2630 [assigned_gotno, local_gotno[ will be set to the range of local
2631 entries in each GOT. We can then compute the end of a GOT by
2632 adding local_gotno to global_gotno. We reverse the list and make
2633 it circular since then we'll be able to quickly compute the
2634 beginning of a GOT, by computing the end of its predecessor. To
2635 avoid special cases for the primary GOT, while still preserving
2636 assertions that are valid for both single- and multi-got links,
2637 we arrange for the main got struct to have the right number of
2638 global entries, but set its local_gotno such that the initial
2639 offset of the primary GOT is zero. Remember that the primary GOT
2640 will become the last item in the circular linked list, so it
2641 points back to the master GOT. */
2642 gg->local_gotno = -g->global_gotno;
2643 gg->global_gotno = g->global_gotno;
2644 assign = 0;
2645 gg->next = gg;
2646
2647 do
2648 {
2649 struct mips_got_info *gn;
2650
2651 assign += MIPS_RESERVED_GOTNO;
2652 g->assigned_gotno = assign;
2653 g->local_gotno += assign + pages;
2654 assign = g->local_gotno + g->global_gotno;
2655
2656 /* Take g out of the direct list, and push it onto the reversed
2657 list that gg points to. */
2658 gn = g->next;
2659 g->next = gg->next;
2660 gg->next = g;
2661 g = gn;
2662 }
2663 while (g);
2664
2665 got->_raw_size = (gg->next->local_gotno
2666 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2667
2668 return TRUE;
2669 }
2670
2671 \f
2672 /* Returns the first relocation of type r_type found, beginning with
2673 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2674
2675 static const Elf_Internal_Rela *
2676 mips_elf_next_relocation (abfd, r_type, relocation, relend)
2677 bfd *abfd ATTRIBUTE_UNUSED;
2678 unsigned int r_type;
2679 const Elf_Internal_Rela *relocation;
2680 const Elf_Internal_Rela *relend;
2681 {
2682 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2683 immediately following. However, for the IRIX6 ABI, the next
2684 relocation may be a composed relocation consisting of several
2685 relocations for the same address. In that case, the R_MIPS_LO16
2686 relocation may occur as one of these. We permit a similar
2687 extension in general, as that is useful for GCC. */
2688 while (relocation < relend)
2689 {
2690 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2691 return relocation;
2692
2693 ++relocation;
2694 }
2695
2696 /* We didn't find it. */
2697 bfd_set_error (bfd_error_bad_value);
2698 return NULL;
2699 }
2700
2701 /* Return whether a relocation is against a local symbol. */
2702
2703 static bfd_boolean
2704 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2705 check_forced)
2706 bfd *input_bfd;
2707 const Elf_Internal_Rela *relocation;
2708 asection **local_sections;
2709 bfd_boolean check_forced;
2710 {
2711 unsigned long r_symndx;
2712 Elf_Internal_Shdr *symtab_hdr;
2713 struct mips_elf_link_hash_entry *h;
2714 size_t extsymoff;
2715
2716 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2717 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2718 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2719
2720 if (r_symndx < extsymoff)
2721 return TRUE;
2722 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2723 return TRUE;
2724
2725 if (check_forced)
2726 {
2727 /* Look up the hash table to check whether the symbol
2728 was forced local. */
2729 h = (struct mips_elf_link_hash_entry *)
2730 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2731 /* Find the real hash-table entry for this symbol. */
2732 while (h->root.root.type == bfd_link_hash_indirect
2733 || h->root.root.type == bfd_link_hash_warning)
2734 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2735 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2736 return TRUE;
2737 }
2738
2739 return FALSE;
2740 }
2741 \f
2742 /* Sign-extend VALUE, which has the indicated number of BITS. */
2743
2744 bfd_vma
2745 _bfd_mips_elf_sign_extend (value, bits)
2746 bfd_vma value;
2747 int bits;
2748 {
2749 if (value & ((bfd_vma) 1 << (bits - 1)))
2750 /* VALUE is negative. */
2751 value |= ((bfd_vma) - 1) << bits;
2752
2753 return value;
2754 }
2755
2756 /* Return non-zero if the indicated VALUE has overflowed the maximum
2757 range expressable by a signed number with the indicated number of
2758 BITS. */
2759
2760 static bfd_boolean
2761 mips_elf_overflow_p (value, bits)
2762 bfd_vma value;
2763 int bits;
2764 {
2765 bfd_signed_vma svalue = (bfd_signed_vma) value;
2766
2767 if (svalue > (1 << (bits - 1)) - 1)
2768 /* The value is too big. */
2769 return TRUE;
2770 else if (svalue < -(1 << (bits - 1)))
2771 /* The value is too small. */
2772 return TRUE;
2773
2774 /* All is well. */
2775 return FALSE;
2776 }
2777
2778 /* Calculate the %high function. */
2779
2780 static bfd_vma
2781 mips_elf_high (value)
2782 bfd_vma value;
2783 {
2784 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2785 }
2786
2787 /* Calculate the %higher function. */
2788
2789 static bfd_vma
2790 mips_elf_higher (value)
2791 bfd_vma value ATTRIBUTE_UNUSED;
2792 {
2793 #ifdef BFD64
2794 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2795 #else
2796 abort ();
2797 return (bfd_vma) -1;
2798 #endif
2799 }
2800
2801 /* Calculate the %highest function. */
2802
2803 static bfd_vma
2804 mips_elf_highest (value)
2805 bfd_vma value ATTRIBUTE_UNUSED;
2806 {
2807 #ifdef BFD64
2808 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2809 #else
2810 abort ();
2811 return (bfd_vma) -1;
2812 #endif
2813 }
2814 \f
2815 /* Create the .compact_rel section. */
2816
2817 static bfd_boolean
2818 mips_elf_create_compact_rel_section (abfd, info)
2819 bfd *abfd;
2820 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2821 {
2822 flagword flags;
2823 register asection *s;
2824
2825 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2826 {
2827 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2828 | SEC_READONLY);
2829
2830 s = bfd_make_section (abfd, ".compact_rel");
2831 if (s == NULL
2832 || ! bfd_set_section_flags (abfd, s, flags)
2833 || ! bfd_set_section_alignment (abfd, s,
2834 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2835 return FALSE;
2836
2837 s->_raw_size = sizeof (Elf32_External_compact_rel);
2838 }
2839
2840 return TRUE;
2841 }
2842
2843 /* Create the .got section to hold the global offset table. */
2844
2845 static bfd_boolean
2846 mips_elf_create_got_section (abfd, info, maybe_exclude)
2847 bfd *abfd;
2848 struct bfd_link_info *info;
2849 bfd_boolean maybe_exclude;
2850 {
2851 flagword flags;
2852 register asection *s;
2853 struct elf_link_hash_entry *h;
2854 struct bfd_link_hash_entry *bh;
2855 struct mips_got_info *g;
2856 bfd_size_type amt;
2857
2858 /* This function may be called more than once. */
2859 s = mips_elf_got_section (abfd, TRUE);
2860 if (s)
2861 {
2862 if (! maybe_exclude)
2863 s->flags &= ~SEC_EXCLUDE;
2864 return TRUE;
2865 }
2866
2867 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2868 | SEC_LINKER_CREATED);
2869
2870 if (maybe_exclude)
2871 flags |= SEC_EXCLUDE;
2872
2873 /* We have to use an alignment of 2**4 here because this is hardcoded
2874 in the function stub generation and in the linker script. */
2875 s = bfd_make_section (abfd, ".got");
2876 if (s == NULL
2877 || ! bfd_set_section_flags (abfd, s, flags)
2878 || ! bfd_set_section_alignment (abfd, s, 4))
2879 return FALSE;
2880
2881 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2882 linker script because we don't want to define the symbol if we
2883 are not creating a global offset table. */
2884 bh = NULL;
2885 if (! (_bfd_generic_link_add_one_symbol
2886 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2887 (bfd_vma) 0, (const char *) NULL, FALSE,
2888 get_elf_backend_data (abfd)->collect, &bh)))
2889 return FALSE;
2890
2891 h = (struct elf_link_hash_entry *) bh;
2892 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2893 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2894 h->type = STT_OBJECT;
2895
2896 if (info->shared
2897 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
2898 return FALSE;
2899
2900 amt = sizeof (struct mips_got_info);
2901 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2902 if (g == NULL)
2903 return FALSE;
2904 g->global_gotsym = NULL;
2905 g->local_gotno = MIPS_RESERVED_GOTNO;
2906 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2907 g->bfd2got = NULL;
2908 g->next = NULL;
2909 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2910 mips_elf_got_entry_eq,
2911 (htab_del) NULL);
2912 if (g->got_entries == NULL)
2913 return FALSE;
2914 mips_elf_section_data (s)->u.got_info = g;
2915 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2916 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2917
2918 return TRUE;
2919 }
2920
2921 /* Returns the .msym section for ABFD, creating it if it does not
2922 already exist. Returns NULL to indicate error. */
2923
2924 static asection *
2925 mips_elf_create_msym_section (abfd)
2926 bfd *abfd;
2927 {
2928 asection *s;
2929
2930 s = bfd_get_section_by_name (abfd, ".msym");
2931 if (!s)
2932 {
2933 s = bfd_make_section (abfd, ".msym");
2934 if (!s
2935 || !bfd_set_section_flags (abfd, s,
2936 SEC_ALLOC
2937 | SEC_LOAD
2938 | SEC_HAS_CONTENTS
2939 | SEC_LINKER_CREATED
2940 | SEC_READONLY)
2941 || !bfd_set_section_alignment (abfd, s,
2942 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2943 return NULL;
2944 }
2945
2946 return s;
2947 }
2948 \f
2949 /* Calculate the value produced by the RELOCATION (which comes from
2950 the INPUT_BFD). The ADDEND is the addend to use for this
2951 RELOCATION; RELOCATION->R_ADDEND is ignored.
2952
2953 The result of the relocation calculation is stored in VALUEP.
2954 REQUIRE_JALXP indicates whether or not the opcode used with this
2955 relocation must be JALX.
2956
2957 This function returns bfd_reloc_continue if the caller need take no
2958 further action regarding this relocation, bfd_reloc_notsupported if
2959 something goes dramatically wrong, bfd_reloc_overflow if an
2960 overflow occurs, and bfd_reloc_ok to indicate success. */
2961
2962 static bfd_reloc_status_type
2963 mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2964 relocation, addend, howto, local_syms,
2965 local_sections, valuep, namep,
2966 require_jalxp, save_addend)
2967 bfd *abfd;
2968 bfd *input_bfd;
2969 asection *input_section;
2970 struct bfd_link_info *info;
2971 const Elf_Internal_Rela *relocation;
2972 bfd_vma addend;
2973 reloc_howto_type *howto;
2974 Elf_Internal_Sym *local_syms;
2975 asection **local_sections;
2976 bfd_vma *valuep;
2977 const char **namep;
2978 bfd_boolean *require_jalxp;
2979 bfd_boolean save_addend;
2980 {
2981 /* The eventual value we will return. */
2982 bfd_vma value;
2983 /* The address of the symbol against which the relocation is
2984 occurring. */
2985 bfd_vma symbol = 0;
2986 /* The final GP value to be used for the relocatable, executable, or
2987 shared object file being produced. */
2988 bfd_vma gp = MINUS_ONE;
2989 /* The place (section offset or address) of the storage unit being
2990 relocated. */
2991 bfd_vma p;
2992 /* The value of GP used to create the relocatable object. */
2993 bfd_vma gp0 = MINUS_ONE;
2994 /* The offset into the global offset table at which the address of
2995 the relocation entry symbol, adjusted by the addend, resides
2996 during execution. */
2997 bfd_vma g = MINUS_ONE;
2998 /* The section in which the symbol referenced by the relocation is
2999 located. */
3000 asection *sec = NULL;
3001 struct mips_elf_link_hash_entry *h = NULL;
3002 /* TRUE if the symbol referred to by this relocation is a local
3003 symbol. */
3004 bfd_boolean local_p, was_local_p;
3005 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3006 bfd_boolean gp_disp_p = FALSE;
3007 Elf_Internal_Shdr *symtab_hdr;
3008 size_t extsymoff;
3009 unsigned long r_symndx;
3010 int r_type;
3011 /* TRUE if overflow occurred during the calculation of the
3012 relocation value. */
3013 bfd_boolean overflowed_p;
3014 /* TRUE if this relocation refers to a MIPS16 function. */
3015 bfd_boolean target_is_16_bit_code_p = FALSE;
3016
3017 /* Parse the relocation. */
3018 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3019 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3020 p = (input_section->output_section->vma
3021 + input_section->output_offset
3022 + relocation->r_offset);
3023
3024 /* Assume that there will be no overflow. */
3025 overflowed_p = FALSE;
3026
3027 /* Figure out whether or not the symbol is local, and get the offset
3028 used in the array of hash table entries. */
3029 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3030 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3031 local_sections, FALSE);
3032 was_local_p = local_p;
3033 if (! elf_bad_symtab (input_bfd))
3034 extsymoff = symtab_hdr->sh_info;
3035 else
3036 {
3037 /* The symbol table does not follow the rule that local symbols
3038 must come before globals. */
3039 extsymoff = 0;
3040 }
3041
3042 /* Figure out the value of the symbol. */
3043 if (local_p)
3044 {
3045 Elf_Internal_Sym *sym;
3046
3047 sym = local_syms + r_symndx;
3048 sec = local_sections[r_symndx];
3049
3050 symbol = sec->output_section->vma + sec->output_offset;
3051 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3052 || (sec->flags & SEC_MERGE))
3053 symbol += sym->st_value;
3054 if ((sec->flags & SEC_MERGE)
3055 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3056 {
3057 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3058 addend -= symbol;
3059 addend += sec->output_section->vma + sec->output_offset;
3060 }
3061
3062 /* MIPS16 text labels should be treated as odd. */
3063 if (sym->st_other == STO_MIPS16)
3064 ++symbol;
3065
3066 /* Record the name of this symbol, for our caller. */
3067 *namep = bfd_elf_string_from_elf_section (input_bfd,
3068 symtab_hdr->sh_link,
3069 sym->st_name);
3070 if (*namep == '\0')
3071 *namep = bfd_section_name (input_bfd, sec);
3072
3073 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3074 }
3075 else
3076 {
3077 /* For global symbols we look up the symbol in the hash-table. */
3078 h = ((struct mips_elf_link_hash_entry *)
3079 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3080 /* Find the real hash-table entry for this symbol. */
3081 while (h->root.root.type == bfd_link_hash_indirect
3082 || h->root.root.type == bfd_link_hash_warning)
3083 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3084
3085 /* Record the name of this symbol, for our caller. */
3086 *namep = h->root.root.root.string;
3087
3088 /* See if this is the special _gp_disp symbol. Note that such a
3089 symbol must always be a global symbol. */
3090 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3091 && ! NEWABI_P (input_bfd))
3092 {
3093 /* Relocations against _gp_disp are permitted only with
3094 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3095 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3096 return bfd_reloc_notsupported;
3097
3098 gp_disp_p = TRUE;
3099 }
3100 /* If this symbol is defined, calculate its address. Note that
3101 _gp_disp is a magic symbol, always implicitly defined by the
3102 linker, so it's inappropriate to check to see whether or not
3103 its defined. */
3104 else if ((h->root.root.type == bfd_link_hash_defined
3105 || h->root.root.type == bfd_link_hash_defweak)
3106 && h->root.root.u.def.section)
3107 {
3108 sec = h->root.root.u.def.section;
3109 if (sec->output_section)
3110 symbol = (h->root.root.u.def.value
3111 + sec->output_section->vma
3112 + sec->output_offset);
3113 else
3114 symbol = h->root.root.u.def.value;
3115 }
3116 else if (h->root.root.type == bfd_link_hash_undefweak)
3117 /* We allow relocations against undefined weak symbols, giving
3118 it the value zero, so that you can undefined weak functions
3119 and check to see if they exist by looking at their
3120 addresses. */
3121 symbol = 0;
3122 else if (info->shared
3123 && !info->no_undefined
3124 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3125 symbol = 0;
3126 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3127 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3128 {
3129 /* If this is a dynamic link, we should have created a
3130 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3131 in in _bfd_mips_elf_create_dynamic_sections.
3132 Otherwise, we should define the symbol with a value of 0.
3133 FIXME: It should probably get into the symbol table
3134 somehow as well. */
3135 BFD_ASSERT (! info->shared);
3136 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3137 symbol = 0;
3138 }
3139 else
3140 {
3141 if (! ((*info->callbacks->undefined_symbol)
3142 (info, h->root.root.root.string, input_bfd,
3143 input_section, relocation->r_offset,
3144 (!info->shared || info->no_undefined
3145 || ELF_ST_VISIBILITY (h->root.other)))))
3146 return bfd_reloc_undefined;
3147 symbol = 0;
3148 }
3149
3150 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3151 }
3152
3153 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3154 need to redirect the call to the stub, unless we're already *in*
3155 a stub. */
3156 if (r_type != R_MIPS16_26 && !info->relocatable
3157 && ((h != NULL && h->fn_stub != NULL)
3158 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3159 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3160 && !mips_elf_stub_section_p (input_bfd, input_section))
3161 {
3162 /* This is a 32- or 64-bit call to a 16-bit function. We should
3163 have already noticed that we were going to need the
3164 stub. */
3165 if (local_p)
3166 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3167 else
3168 {
3169 BFD_ASSERT (h->need_fn_stub);
3170 sec = h->fn_stub;
3171 }
3172
3173 symbol = sec->output_section->vma + sec->output_offset;
3174 }
3175 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3176 need to redirect the call to the stub. */
3177 else if (r_type == R_MIPS16_26 && !info->relocatable
3178 && h != NULL
3179 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3180 && !target_is_16_bit_code_p)
3181 {
3182 /* If both call_stub and call_fp_stub are defined, we can figure
3183 out which one to use by seeing which one appears in the input
3184 file. */
3185 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3186 {
3187 asection *o;
3188
3189 sec = NULL;
3190 for (o = input_bfd->sections; o != NULL; o = o->next)
3191 {
3192 if (strncmp (bfd_get_section_name (input_bfd, o),
3193 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3194 {
3195 sec = h->call_fp_stub;
3196 break;
3197 }
3198 }
3199 if (sec == NULL)
3200 sec = h->call_stub;
3201 }
3202 else if (h->call_stub != NULL)
3203 sec = h->call_stub;
3204 else
3205 sec = h->call_fp_stub;
3206
3207 BFD_ASSERT (sec->_raw_size > 0);
3208 symbol = sec->output_section->vma + sec->output_offset;
3209 }
3210
3211 /* Calls from 16-bit code to 32-bit code and vice versa require the
3212 special jalx instruction. */
3213 *require_jalxp = (!info->relocatable
3214 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3215 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3216
3217 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3218 local_sections, TRUE);
3219
3220 /* If we haven't already determined the GOT offset, or the GP value,
3221 and we're going to need it, get it now. */
3222 switch (r_type)
3223 {
3224 case R_MIPS_GOT_PAGE:
3225 case R_MIPS_GOT_OFST:
3226 /* If this symbol got a global GOT entry, we have to decay
3227 GOT_PAGE/GOT_OFST to GOT_DISP/addend. */
3228 local_p = local_p || ! h
3229 || (h->root.dynindx
3230 < mips_elf_get_global_gotsym_index (elf_hash_table (info)
3231 ->dynobj));
3232 if (local_p || r_type == R_MIPS_GOT_OFST)
3233 break;
3234 /* Fall through. */
3235
3236 case R_MIPS_CALL16:
3237 case R_MIPS_GOT16:
3238 case R_MIPS_GOT_DISP:
3239 case R_MIPS_GOT_HI16:
3240 case R_MIPS_CALL_HI16:
3241 case R_MIPS_GOT_LO16:
3242 case R_MIPS_CALL_LO16:
3243 /* Find the index into the GOT where this value is located. */
3244 if (!local_p)
3245 {
3246 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3247 GOT_PAGE relocation that decays to GOT_DISP because the
3248 symbol turns out to be global. The addend is then added
3249 as GOT_OFST. */
3250 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3251 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3252 input_bfd,
3253 (struct elf_link_hash_entry *) h);
3254 if (! elf_hash_table(info)->dynamic_sections_created
3255 || (info->shared
3256 && (info->symbolic || h->root.dynindx == -1)
3257 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3258 {
3259 /* This is a static link or a -Bsymbolic link. The
3260 symbol is defined locally, or was forced to be local.
3261 We must initialize this entry in the GOT. */
3262 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3263 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3264 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3265 }
3266 }
3267 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3268 /* There's no need to create a local GOT entry here; the
3269 calculation for a local GOT16 entry does not involve G. */
3270 break;
3271 else
3272 {
3273 g = mips_elf_local_got_index (abfd, input_bfd,
3274 info, symbol + addend);
3275 if (g == MINUS_ONE)
3276 return bfd_reloc_outofrange;
3277 }
3278
3279 /* Convert GOT indices to actual offsets. */
3280 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3281 abfd, input_bfd, g);
3282 break;
3283
3284 case R_MIPS_HI16:
3285 case R_MIPS_LO16:
3286 case R_MIPS16_GPREL:
3287 case R_MIPS_GPREL16:
3288 case R_MIPS_GPREL32:
3289 case R_MIPS_LITERAL:
3290 gp0 = _bfd_get_gp_value (input_bfd);
3291 gp = _bfd_get_gp_value (abfd);
3292 if (elf_hash_table (info)->dynobj)
3293 gp += mips_elf_adjust_gp (abfd,
3294 mips_elf_got_info
3295 (elf_hash_table (info)->dynobj, NULL),
3296 input_bfd);
3297 break;
3298
3299 default:
3300 break;
3301 }
3302
3303 /* Figure out what kind of relocation is being performed. */
3304 switch (r_type)
3305 {
3306 case R_MIPS_NONE:
3307 return bfd_reloc_continue;
3308
3309 case R_MIPS_16:
3310 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3311 overflowed_p = mips_elf_overflow_p (value, 16);
3312 break;
3313
3314 case R_MIPS_32:
3315 case R_MIPS_REL32:
3316 case R_MIPS_64:
3317 if ((info->shared
3318 || (elf_hash_table (info)->dynamic_sections_created
3319 && h != NULL
3320 && ((h->root.elf_link_hash_flags
3321 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3322 && ((h->root.elf_link_hash_flags
3323 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3324 && r_symndx != 0
3325 && (input_section->flags & SEC_ALLOC) != 0)
3326 {
3327 /* If we're creating a shared library, or this relocation is
3328 against a symbol in a shared library, then we can't know
3329 where the symbol will end up. So, we create a relocation
3330 record in the output, and leave the job up to the dynamic
3331 linker. */
3332 value = addend;
3333 if (!mips_elf_create_dynamic_relocation (abfd,
3334 info,
3335 relocation,
3336 h,
3337 sec,
3338 symbol,
3339 &value,
3340 input_section))
3341 return bfd_reloc_undefined;
3342 }
3343 else
3344 {
3345 if (r_type != R_MIPS_REL32)
3346 value = symbol + addend;
3347 else
3348 value = addend;
3349 }
3350 value &= howto->dst_mask;
3351 break;
3352
3353 case R_MIPS_PC32:
3354 case R_MIPS_PC64:
3355 case R_MIPS_GNU_REL_LO16:
3356 value = symbol + addend - p;
3357 value &= howto->dst_mask;
3358 break;
3359
3360 case R_MIPS_GNU_REL16_S2:
3361 value = symbol + _bfd_mips_elf_sign_extend (addend << 2, 18) - p;
3362 overflowed_p = mips_elf_overflow_p (value, 18);
3363 value = (value >> 2) & howto->dst_mask;
3364 break;
3365
3366 case R_MIPS_GNU_REL_HI16:
3367 /* Instead of subtracting 'p' here, we should be subtracting the
3368 equivalent value for the LO part of the reloc, since the value
3369 here is relative to that address. Because that's not easy to do,
3370 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3371 the comment there for more information. */
3372 value = mips_elf_high (addend + symbol - p);
3373 value &= howto->dst_mask;
3374 break;
3375
3376 case R_MIPS16_26:
3377 /* The calculation for R_MIPS16_26 is just the same as for an
3378 R_MIPS_26. It's only the storage of the relocated field into
3379 the output file that's different. That's handled in
3380 mips_elf_perform_relocation. So, we just fall through to the
3381 R_MIPS_26 case here. */
3382 case R_MIPS_26:
3383 if (local_p)
3384 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3385 else
3386 value = (_bfd_mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3387 value &= howto->dst_mask;
3388 break;
3389
3390 case R_MIPS_HI16:
3391 if (!gp_disp_p)
3392 {
3393 value = mips_elf_high (addend + symbol);
3394 value &= howto->dst_mask;
3395 }
3396 else
3397 {
3398 value = mips_elf_high (addend + gp - p);
3399 overflowed_p = mips_elf_overflow_p (value, 16);
3400 }
3401 break;
3402
3403 case R_MIPS_LO16:
3404 if (!gp_disp_p)
3405 value = (symbol + addend) & howto->dst_mask;
3406 else
3407 {
3408 value = addend + gp - p + 4;
3409 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3410 for overflow. But, on, say, IRIX5, relocations against
3411 _gp_disp are normally generated from the .cpload
3412 pseudo-op. It generates code that normally looks like
3413 this:
3414
3415 lui $gp,%hi(_gp_disp)
3416 addiu $gp,$gp,%lo(_gp_disp)
3417 addu $gp,$gp,$t9
3418
3419 Here $t9 holds the address of the function being called,
3420 as required by the MIPS ELF ABI. The R_MIPS_LO16
3421 relocation can easily overflow in this situation, but the
3422 R_MIPS_HI16 relocation will handle the overflow.
3423 Therefore, we consider this a bug in the MIPS ABI, and do
3424 not check for overflow here. */
3425 }
3426 break;
3427
3428 case R_MIPS_LITERAL:
3429 /* Because we don't merge literal sections, we can handle this
3430 just like R_MIPS_GPREL16. In the long run, we should merge
3431 shared literals, and then we will need to additional work
3432 here. */
3433
3434 /* Fall through. */
3435
3436 case R_MIPS16_GPREL:
3437 /* The R_MIPS16_GPREL performs the same calculation as
3438 R_MIPS_GPREL16, but stores the relocated bits in a different
3439 order. We don't need to do anything special here; the
3440 differences are handled in mips_elf_perform_relocation. */
3441 case R_MIPS_GPREL16:
3442 /* Only sign-extend the addend if it was extracted from the
3443 instruction. If the addend was separate, leave it alone,
3444 otherwise we may lose significant bits. */
3445 if (howto->partial_inplace)
3446 addend = _bfd_mips_elf_sign_extend (addend, 16);
3447 value = symbol + addend - gp;
3448 /* If the symbol was local, any earlier relocatable links will
3449 have adjusted its addend with the gp offset, so compensate
3450 for that now. Don't do it for symbols forced local in this
3451 link, though, since they won't have had the gp offset applied
3452 to them before. */
3453 if (was_local_p)
3454 value += gp0;
3455 overflowed_p = mips_elf_overflow_p (value, 16);
3456 break;
3457
3458 case R_MIPS_GOT16:
3459 case R_MIPS_CALL16:
3460 if (local_p)
3461 {
3462 bfd_boolean forced;
3463
3464 /* The special case is when the symbol is forced to be local. We
3465 need the full address in the GOT since no R_MIPS_LO16 relocation
3466 follows. */
3467 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3468 local_sections, FALSE);
3469 value = mips_elf_got16_entry (abfd, input_bfd, info,
3470 symbol + addend, forced);
3471 if (value == MINUS_ONE)
3472 return bfd_reloc_outofrange;
3473 value
3474 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3475 abfd, input_bfd, value);
3476 overflowed_p = mips_elf_overflow_p (value, 16);
3477 break;
3478 }
3479
3480 /* Fall through. */
3481
3482 case R_MIPS_GOT_DISP:
3483 got_disp:
3484 value = g;
3485 overflowed_p = mips_elf_overflow_p (value, 16);
3486 break;
3487
3488 case R_MIPS_GPREL32:
3489 value = (addend + symbol + gp0 - gp);
3490 if (!save_addend)
3491 value &= howto->dst_mask;
3492 break;
3493
3494 case R_MIPS_PC16:
3495 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3496 overflowed_p = mips_elf_overflow_p (value, 16);
3497 break;
3498
3499 case R_MIPS_GOT_HI16:
3500 case R_MIPS_CALL_HI16:
3501 /* We're allowed to handle these two relocations identically.
3502 The dynamic linker is allowed to handle the CALL relocations
3503 differently by creating a lazy evaluation stub. */
3504 value = g;
3505 value = mips_elf_high (value);
3506 value &= howto->dst_mask;
3507 break;
3508
3509 case R_MIPS_GOT_LO16:
3510 case R_MIPS_CALL_LO16:
3511 value = g & howto->dst_mask;
3512 break;
3513
3514 case R_MIPS_GOT_PAGE:
3515 /* GOT_PAGE relocations that reference non-local symbols decay
3516 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3517 0. */
3518 if (! local_p)
3519 goto got_disp;
3520 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3521 if (value == MINUS_ONE)
3522 return bfd_reloc_outofrange;
3523 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3524 abfd, input_bfd, value);
3525 overflowed_p = mips_elf_overflow_p (value, 16);
3526 break;
3527
3528 case R_MIPS_GOT_OFST:
3529 if (local_p)
3530 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3531 else
3532 value = addend;
3533 overflowed_p = mips_elf_overflow_p (value, 16);
3534 break;
3535
3536 case R_MIPS_SUB:
3537 value = symbol - addend;
3538 value &= howto->dst_mask;
3539 break;
3540
3541 case R_MIPS_HIGHER:
3542 value = mips_elf_higher (addend + symbol);
3543 value &= howto->dst_mask;
3544 break;
3545
3546 case R_MIPS_HIGHEST:
3547 value = mips_elf_highest (addend + symbol);
3548 value &= howto->dst_mask;
3549 break;
3550
3551 case R_MIPS_SCN_DISP:
3552 value = symbol + addend - sec->output_offset;
3553 value &= howto->dst_mask;
3554 break;
3555
3556 case R_MIPS_PJUMP:
3557 case R_MIPS_JALR:
3558 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3559 hint; we could improve performance by honoring that hint. */
3560 return bfd_reloc_continue;
3561
3562 case R_MIPS_GNU_VTINHERIT:
3563 case R_MIPS_GNU_VTENTRY:
3564 /* We don't do anything with these at present. */
3565 return bfd_reloc_continue;
3566
3567 default:
3568 /* An unrecognized relocation type. */
3569 return bfd_reloc_notsupported;
3570 }
3571
3572 /* Store the VALUE for our caller. */
3573 *valuep = value;
3574 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3575 }
3576
3577 /* Obtain the field relocated by RELOCATION. */
3578
3579 static bfd_vma
3580 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3581 reloc_howto_type *howto;
3582 const Elf_Internal_Rela *relocation;
3583 bfd *input_bfd;
3584 bfd_byte *contents;
3585 {
3586 bfd_vma x;
3587 bfd_byte *location = contents + relocation->r_offset;
3588
3589 /* Obtain the bytes. */
3590 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3591
3592 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3593 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3594 && bfd_little_endian (input_bfd))
3595 /* The two 16-bit words will be reversed on a little-endian system.
3596 See mips_elf_perform_relocation for more details. */
3597 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3598
3599 return x;
3600 }
3601
3602 /* It has been determined that the result of the RELOCATION is the
3603 VALUE. Use HOWTO to place VALUE into the output file at the
3604 appropriate position. The SECTION is the section to which the
3605 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3606 for the relocation must be either JAL or JALX, and it is
3607 unconditionally converted to JALX.
3608
3609 Returns FALSE if anything goes wrong. */
3610
3611 static bfd_boolean
3612 mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3613 input_section, contents, require_jalx)
3614 struct bfd_link_info *info;
3615 reloc_howto_type *howto;
3616 const Elf_Internal_Rela *relocation;
3617 bfd_vma value;
3618 bfd *input_bfd;
3619 asection *input_section;
3620 bfd_byte *contents;
3621 bfd_boolean require_jalx;
3622 {
3623 bfd_vma x;
3624 bfd_byte *location;
3625 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3626
3627 /* Figure out where the relocation is occurring. */
3628 location = contents + relocation->r_offset;
3629
3630 /* Obtain the current value. */
3631 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3632
3633 /* Clear the field we are setting. */
3634 x &= ~howto->dst_mask;
3635
3636 /* If this is the R_MIPS16_26 relocation, we must store the
3637 value in a funny way. */
3638 if (r_type == R_MIPS16_26)
3639 {
3640 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3641 Most mips16 instructions are 16 bits, but these instructions
3642 are 32 bits.
3643
3644 The format of these instructions is:
3645
3646 +--------------+--------------------------------+
3647 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3648 +--------------+--------------------------------+
3649 ! Immediate 15:0 !
3650 +-----------------------------------------------+
3651
3652 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3653 Note that the immediate value in the first word is swapped.
3654
3655 When producing a relocatable object file, R_MIPS16_26 is
3656 handled mostly like R_MIPS_26. In particular, the addend is
3657 stored as a straight 26-bit value in a 32-bit instruction.
3658 (gas makes life simpler for itself by never adjusting a
3659 R_MIPS16_26 reloc to be against a section, so the addend is
3660 always zero). However, the 32 bit instruction is stored as 2
3661 16-bit values, rather than a single 32-bit value. In a
3662 big-endian file, the result is the same; in a little-endian
3663 file, the two 16-bit halves of the 32 bit value are swapped.
3664 This is so that a disassembler can recognize the jal
3665 instruction.
3666
3667 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3668 instruction stored as two 16-bit values. The addend A is the
3669 contents of the targ26 field. The calculation is the same as
3670 R_MIPS_26. When storing the calculated value, reorder the
3671 immediate value as shown above, and don't forget to store the
3672 value as two 16-bit values.
3673
3674 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3675 defined as
3676
3677 big-endian:
3678 +--------+----------------------+
3679 | | |
3680 | | targ26-16 |
3681 |31 26|25 0|
3682 +--------+----------------------+
3683
3684 little-endian:
3685 +----------+------+-------------+
3686 | | | |
3687 | sub1 | | sub2 |
3688 |0 9|10 15|16 31|
3689 +----------+--------------------+
3690 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3691 ((sub1 << 16) | sub2)).
3692
3693 When producing a relocatable object file, the calculation is
3694 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3695 When producing a fully linked file, the calculation is
3696 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3697 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3698
3699 if (!info->relocatable)
3700 /* Shuffle the bits according to the formula above. */
3701 value = (((value & 0x1f0000) << 5)
3702 | ((value & 0x3e00000) >> 5)
3703 | (value & 0xffff));
3704 }
3705 else if (r_type == R_MIPS16_GPREL)
3706 {
3707 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3708 mode. A typical instruction will have a format like this:
3709
3710 +--------------+--------------------------------+
3711 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3712 +--------------+--------------------------------+
3713 ! Major ! rx ! ry ! Imm 4:0 !
3714 +--------------+--------------------------------+
3715
3716 EXTEND is the five bit value 11110. Major is the instruction
3717 opcode.
3718
3719 This is handled exactly like R_MIPS_GPREL16, except that the
3720 addend is retrieved and stored as shown in this diagram; that
3721 is, the Imm fields above replace the V-rel16 field.
3722
3723 All we need to do here is shuffle the bits appropriately. As
3724 above, the two 16-bit halves must be swapped on a
3725 little-endian system. */
3726 value = (((value & 0x7e0) << 16)
3727 | ((value & 0xf800) << 5)
3728 | (value & 0x1f));
3729 }
3730
3731 /* Set the field. */
3732 x |= (value & howto->dst_mask);
3733
3734 /* If required, turn JAL into JALX. */
3735 if (require_jalx)
3736 {
3737 bfd_boolean ok;
3738 bfd_vma opcode = x >> 26;
3739 bfd_vma jalx_opcode;
3740
3741 /* Check to see if the opcode is already JAL or JALX. */
3742 if (r_type == R_MIPS16_26)
3743 {
3744 ok = ((opcode == 0x6) || (opcode == 0x7));
3745 jalx_opcode = 0x7;
3746 }
3747 else
3748 {
3749 ok = ((opcode == 0x3) || (opcode == 0x1d));
3750 jalx_opcode = 0x1d;
3751 }
3752
3753 /* If the opcode is not JAL or JALX, there's a problem. */
3754 if (!ok)
3755 {
3756 (*_bfd_error_handler)
3757 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3758 bfd_archive_filename (input_bfd),
3759 input_section->name,
3760 (unsigned long) relocation->r_offset);
3761 bfd_set_error (bfd_error_bad_value);
3762 return FALSE;
3763 }
3764
3765 /* Make this the JALX opcode. */
3766 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3767 }
3768
3769 /* Swap the high- and low-order 16 bits on little-endian systems
3770 when doing a MIPS16 relocation. */
3771 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3772 && bfd_little_endian (input_bfd))
3773 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3774
3775 /* Put the value into the output. */
3776 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3777 return TRUE;
3778 }
3779
3780 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3781
3782 static bfd_boolean
3783 mips_elf_stub_section_p (abfd, section)
3784 bfd *abfd ATTRIBUTE_UNUSED;
3785 asection *section;
3786 {
3787 const char *name = bfd_get_section_name (abfd, section);
3788
3789 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3790 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3791 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3792 }
3793 \f
3794 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3795
3796 static void
3797 mips_elf_allocate_dynamic_relocations (abfd, n)
3798 bfd *abfd;
3799 unsigned int n;
3800 {
3801 asection *s;
3802
3803 s = mips_elf_rel_dyn_section (abfd, FALSE);
3804 BFD_ASSERT (s != NULL);
3805
3806 if (s->_raw_size == 0)
3807 {
3808 /* Make room for a null element. */
3809 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3810 ++s->reloc_count;
3811 }
3812 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3813 }
3814
3815 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3816 is the original relocation, which is now being transformed into a
3817 dynamic relocation. The ADDENDP is adjusted if necessary; the
3818 caller should store the result in place of the original addend. */
3819
3820 static bfd_boolean
3821 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3822 symbol, addendp, input_section)
3823 bfd *output_bfd;
3824 struct bfd_link_info *info;
3825 const Elf_Internal_Rela *rel;
3826 struct mips_elf_link_hash_entry *h;
3827 asection *sec;
3828 bfd_vma symbol;
3829 bfd_vma *addendp;
3830 asection *input_section;
3831 {
3832 Elf_Internal_Rela outrel[3];
3833 bfd_boolean skip;
3834 asection *sreloc;
3835 bfd *dynobj;
3836 int r_type;
3837
3838 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3839 dynobj = elf_hash_table (info)->dynobj;
3840 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3841 BFD_ASSERT (sreloc != NULL);
3842 BFD_ASSERT (sreloc->contents != NULL);
3843 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3844 < sreloc->_raw_size);
3845
3846 skip = FALSE;
3847 outrel[0].r_offset =
3848 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3849 outrel[1].r_offset =
3850 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3851 outrel[2].r_offset =
3852 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3853
3854 #if 0
3855 /* We begin by assuming that the offset for the dynamic relocation
3856 is the same as for the original relocation. We'll adjust this
3857 later to reflect the correct output offsets. */
3858 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3859 {
3860 outrel[1].r_offset = rel[1].r_offset;
3861 outrel[2].r_offset = rel[2].r_offset;
3862 }
3863 else
3864 {
3865 /* Except that in a stab section things are more complex.
3866 Because we compress stab information, the offset given in the
3867 relocation may not be the one we want; we must let the stabs
3868 machinery tell us the offset. */
3869 outrel[1].r_offset = outrel[0].r_offset;
3870 outrel[2].r_offset = outrel[0].r_offset;
3871 /* If we didn't need the relocation at all, this value will be
3872 -1. */
3873 if (outrel[0].r_offset == (bfd_vma) -1)
3874 skip = TRUE;
3875 }
3876 #endif
3877
3878 if (outrel[0].r_offset == (bfd_vma) -1
3879 || outrel[0].r_offset == (bfd_vma) -2)
3880 skip = TRUE;
3881
3882 /* If we've decided to skip this relocation, just output an empty
3883 record. Note that R_MIPS_NONE == 0, so that this call to memset
3884 is a way of setting R_TYPE to R_MIPS_NONE. */
3885 if (skip)
3886 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3887 else
3888 {
3889 long indx;
3890
3891 /* We must now calculate the dynamic symbol table index to use
3892 in the relocation. */
3893 if (h != NULL
3894 && (! info->symbolic || (h->root.elf_link_hash_flags
3895 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3896 {
3897 indx = h->root.dynindx;
3898 /* h->root.dynindx may be -1 if this symbol was marked to
3899 become local. */
3900 if (indx == -1)
3901 indx = 0;
3902 }
3903 else
3904 {
3905 if (sec != NULL && bfd_is_abs_section (sec))
3906 indx = 0;
3907 else if (sec == NULL || sec->owner == NULL)
3908 {
3909 bfd_set_error (bfd_error_bad_value);
3910 return FALSE;
3911 }
3912 else
3913 {
3914 indx = elf_section_data (sec->output_section)->dynindx;
3915 if (indx == 0)
3916 abort ();
3917 }
3918
3919 /* Instead of generating a relocation using the section
3920 symbol, we may as well make it a fully relative
3921 relocation. We want to avoid generating relocations to
3922 local symbols because we used to generate them
3923 incorrectly, without adding the original symbol value,
3924 which is mandated by the ABI for section symbols. In
3925 order to give dynamic loaders and applications time to
3926 phase out the incorrect use, we refrain from emitting
3927 section-relative relocations. It's not like they're
3928 useful, after all. This should be a bit more efficient
3929 as well. */
3930 indx = 0;
3931 }
3932
3933 /* If the relocation was previously an absolute relocation and
3934 this symbol will not be referred to by the relocation, we must
3935 adjust it by the value we give it in the dynamic symbol table.
3936 Otherwise leave the job up to the dynamic linker. */
3937 if (!indx && r_type != R_MIPS_REL32)
3938 *addendp += symbol;
3939
3940 /* The relocation is always an REL32 relocation because we don't
3941 know where the shared library will wind up at load-time. */
3942 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3943 R_MIPS_REL32);
3944 /* For strict adherence to the ABI specification, we should
3945 generate a R_MIPS_64 relocation record by itself before the
3946 _REL32/_64 record as well, such that the addend is read in as
3947 a 64-bit value (REL32 is a 32-bit relocation, after all).
3948 However, since none of the existing ELF64 MIPS dynamic
3949 loaders seems to care, we don't waste space with these
3950 artificial relocations. If this turns out to not be true,
3951 mips_elf_allocate_dynamic_relocation() should be tweaked so
3952 as to make room for a pair of dynamic relocations per
3953 invocation if ABI_64_P, and here we should generate an
3954 additional relocation record with R_MIPS_64 by itself for a
3955 NULL symbol before this relocation record. */
3956 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3957 ABI_64_P (output_bfd)
3958 ? R_MIPS_64
3959 : R_MIPS_NONE);
3960 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3961 R_MIPS_NONE);
3962
3963 /* Adjust the output offset of the relocation to reference the
3964 correct location in the output file. */
3965 outrel[0].r_offset += (input_section->output_section->vma
3966 + input_section->output_offset);
3967 outrel[1].r_offset += (input_section->output_section->vma
3968 + input_section->output_offset);
3969 outrel[2].r_offset += (input_section->output_section->vma
3970 + input_section->output_offset);
3971 }
3972
3973 /* Put the relocation back out. We have to use the special
3974 relocation outputter in the 64-bit case since the 64-bit
3975 relocation format is non-standard. */
3976 if (ABI_64_P (output_bfd))
3977 {
3978 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3979 (output_bfd, &outrel[0],
3980 (sreloc->contents
3981 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3982 }
3983 else
3984 bfd_elf32_swap_reloc_out
3985 (output_bfd, &outrel[0],
3986 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3987
3988 /* Record the index of the first relocation referencing H. This
3989 information is later emitted in the .msym section. */
3990 if (h != NULL
3991 && (h->min_dyn_reloc_index == 0
3992 || sreloc->reloc_count < h->min_dyn_reloc_index))
3993 h->min_dyn_reloc_index = sreloc->reloc_count;
3994
3995 /* We've now added another relocation. */
3996 ++sreloc->reloc_count;
3997
3998 /* Make sure the output section is writable. The dynamic linker
3999 will be writing to it. */
4000 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4001 |= SHF_WRITE;
4002
4003 /* On IRIX5, make an entry of compact relocation info. */
4004 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
4005 {
4006 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4007 bfd_byte *cr;
4008
4009 if (scpt)
4010 {
4011 Elf32_crinfo cptrel;
4012
4013 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4014 cptrel.vaddr = (rel->r_offset
4015 + input_section->output_section->vma
4016 + input_section->output_offset);
4017 if (r_type == R_MIPS_REL32)
4018 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4019 else
4020 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4021 mips_elf_set_cr_dist2to (cptrel, 0);
4022 cptrel.konst = *addendp;
4023
4024 cr = (scpt->contents
4025 + sizeof (Elf32_External_compact_rel));
4026 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4027 ((Elf32_External_crinfo *) cr
4028 + scpt->reloc_count));
4029 ++scpt->reloc_count;
4030 }
4031 }
4032
4033 return TRUE;
4034 }
4035 \f
4036 /* Return the MACH for a MIPS e_flags value. */
4037
4038 unsigned long
4039 _bfd_elf_mips_mach (flags)
4040 flagword flags;
4041 {
4042 switch (flags & EF_MIPS_MACH)
4043 {
4044 case E_MIPS_MACH_3900:
4045 return bfd_mach_mips3900;
4046
4047 case E_MIPS_MACH_4010:
4048 return bfd_mach_mips4010;
4049
4050 case E_MIPS_MACH_4100:
4051 return bfd_mach_mips4100;
4052
4053 case E_MIPS_MACH_4111:
4054 return bfd_mach_mips4111;
4055
4056 case E_MIPS_MACH_4120:
4057 return bfd_mach_mips4120;
4058
4059 case E_MIPS_MACH_4650:
4060 return bfd_mach_mips4650;
4061
4062 case E_MIPS_MACH_5400:
4063 return bfd_mach_mips5400;
4064
4065 case E_MIPS_MACH_5500:
4066 return bfd_mach_mips5500;
4067
4068 case E_MIPS_MACH_SB1:
4069 return bfd_mach_mips_sb1;
4070
4071 default:
4072 switch (flags & EF_MIPS_ARCH)
4073 {
4074 default:
4075 case E_MIPS_ARCH_1:
4076 return bfd_mach_mips3000;
4077 break;
4078
4079 case E_MIPS_ARCH_2:
4080 return bfd_mach_mips6000;
4081 break;
4082
4083 case E_MIPS_ARCH_3:
4084 return bfd_mach_mips4000;
4085 break;
4086
4087 case E_MIPS_ARCH_4:
4088 return bfd_mach_mips8000;
4089 break;
4090
4091 case E_MIPS_ARCH_5:
4092 return bfd_mach_mips5;
4093 break;
4094
4095 case E_MIPS_ARCH_32:
4096 return bfd_mach_mipsisa32;
4097 break;
4098
4099 case E_MIPS_ARCH_64:
4100 return bfd_mach_mipsisa64;
4101 break;
4102
4103 case E_MIPS_ARCH_32R2:
4104 return bfd_mach_mipsisa32r2;
4105 break;
4106 }
4107 }
4108
4109 return 0;
4110 }
4111
4112 /* Return printable name for ABI. */
4113
4114 static INLINE char *
4115 elf_mips_abi_name (abfd)
4116 bfd *abfd;
4117 {
4118 flagword flags;
4119
4120 flags = elf_elfheader (abfd)->e_flags;
4121 switch (flags & EF_MIPS_ABI)
4122 {
4123 case 0:
4124 if (ABI_N32_P (abfd))
4125 return "N32";
4126 else if (ABI_64_P (abfd))
4127 return "64";
4128 else
4129 return "none";
4130 case E_MIPS_ABI_O32:
4131 return "O32";
4132 case E_MIPS_ABI_O64:
4133 return "O64";
4134 case E_MIPS_ABI_EABI32:
4135 return "EABI32";
4136 case E_MIPS_ABI_EABI64:
4137 return "EABI64";
4138 default:
4139 return "unknown abi";
4140 }
4141 }
4142 \f
4143 /* MIPS ELF uses two common sections. One is the usual one, and the
4144 other is for small objects. All the small objects are kept
4145 together, and then referenced via the gp pointer, which yields
4146 faster assembler code. This is what we use for the small common
4147 section. This approach is copied from ecoff.c. */
4148 static asection mips_elf_scom_section;
4149 static asymbol mips_elf_scom_symbol;
4150 static asymbol *mips_elf_scom_symbol_ptr;
4151
4152 /* MIPS ELF also uses an acommon section, which represents an
4153 allocated common symbol which may be overridden by a
4154 definition in a shared library. */
4155 static asection mips_elf_acom_section;
4156 static asymbol mips_elf_acom_symbol;
4157 static asymbol *mips_elf_acom_symbol_ptr;
4158
4159 /* Handle the special MIPS section numbers that a symbol may use.
4160 This is used for both the 32-bit and the 64-bit ABI. */
4161
4162 void
4163 _bfd_mips_elf_symbol_processing (abfd, asym)
4164 bfd *abfd;
4165 asymbol *asym;
4166 {
4167 elf_symbol_type *elfsym;
4168
4169 elfsym = (elf_symbol_type *) asym;
4170 switch (elfsym->internal_elf_sym.st_shndx)
4171 {
4172 case SHN_MIPS_ACOMMON:
4173 /* This section is used in a dynamically linked executable file.
4174 It is an allocated common section. The dynamic linker can
4175 either resolve these symbols to something in a shared
4176 library, or it can just leave them here. For our purposes,
4177 we can consider these symbols to be in a new section. */
4178 if (mips_elf_acom_section.name == NULL)
4179 {
4180 /* Initialize the acommon section. */
4181 mips_elf_acom_section.name = ".acommon";
4182 mips_elf_acom_section.flags = SEC_ALLOC;
4183 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4184 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4185 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4186 mips_elf_acom_symbol.name = ".acommon";
4187 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4188 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4189 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4190 }
4191 asym->section = &mips_elf_acom_section;
4192 break;
4193
4194 case SHN_COMMON:
4195 /* Common symbols less than the GP size are automatically
4196 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4197 if (asym->value > elf_gp_size (abfd)
4198 || IRIX_COMPAT (abfd) == ict_irix6)
4199 break;
4200 /* Fall through. */
4201 case SHN_MIPS_SCOMMON:
4202 if (mips_elf_scom_section.name == NULL)
4203 {
4204 /* Initialize the small common section. */
4205 mips_elf_scom_section.name = ".scommon";
4206 mips_elf_scom_section.flags = SEC_IS_COMMON;
4207 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4208 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4209 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4210 mips_elf_scom_symbol.name = ".scommon";
4211 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4212 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4213 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4214 }
4215 asym->section = &mips_elf_scom_section;
4216 asym->value = elfsym->internal_elf_sym.st_size;
4217 break;
4218
4219 case SHN_MIPS_SUNDEFINED:
4220 asym->section = bfd_und_section_ptr;
4221 break;
4222
4223 #if 0 /* for SGI_COMPAT */
4224 case SHN_MIPS_TEXT:
4225 asym->section = mips_elf_text_section_ptr;
4226 break;
4227
4228 case SHN_MIPS_DATA:
4229 asym->section = mips_elf_data_section_ptr;
4230 break;
4231 #endif
4232 }
4233 }
4234 \f
4235 /* Work over a section just before writing it out. This routine is
4236 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4237 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4238 a better way. */
4239
4240 bfd_boolean
4241 _bfd_mips_elf_section_processing (abfd, hdr)
4242 bfd *abfd;
4243 Elf_Internal_Shdr *hdr;
4244 {
4245 if (hdr->sh_type == SHT_MIPS_REGINFO
4246 && hdr->sh_size > 0)
4247 {
4248 bfd_byte buf[4];
4249
4250 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4251 BFD_ASSERT (hdr->contents == NULL);
4252
4253 if (bfd_seek (abfd,
4254 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4255 SEEK_SET) != 0)
4256 return FALSE;
4257 H_PUT_32 (abfd, elf_gp (abfd), buf);
4258 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4259 return FALSE;
4260 }
4261
4262 if (hdr->sh_type == SHT_MIPS_OPTIONS
4263 && hdr->bfd_section != NULL
4264 && mips_elf_section_data (hdr->bfd_section) != NULL
4265 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4266 {
4267 bfd_byte *contents, *l, *lend;
4268
4269 /* We stored the section contents in the tdata field in the
4270 set_section_contents routine. We save the section contents
4271 so that we don't have to read them again.
4272 At this point we know that elf_gp is set, so we can look
4273 through the section contents to see if there is an
4274 ODK_REGINFO structure. */
4275
4276 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4277 l = contents;
4278 lend = contents + hdr->sh_size;
4279 while (l + sizeof (Elf_External_Options) <= lend)
4280 {
4281 Elf_Internal_Options intopt;
4282
4283 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4284 &intopt);
4285 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4286 {
4287 bfd_byte buf[8];
4288
4289 if (bfd_seek (abfd,
4290 (hdr->sh_offset
4291 + (l - contents)
4292 + sizeof (Elf_External_Options)
4293 + (sizeof (Elf64_External_RegInfo) - 8)),
4294 SEEK_SET) != 0)
4295 return FALSE;
4296 H_PUT_64 (abfd, elf_gp (abfd), buf);
4297 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
4298 return FALSE;
4299 }
4300 else if (intopt.kind == ODK_REGINFO)
4301 {
4302 bfd_byte buf[4];
4303
4304 if (bfd_seek (abfd,
4305 (hdr->sh_offset
4306 + (l - contents)
4307 + sizeof (Elf_External_Options)
4308 + (sizeof (Elf32_External_RegInfo) - 4)),
4309 SEEK_SET) != 0)
4310 return FALSE;
4311 H_PUT_32 (abfd, elf_gp (abfd), buf);
4312 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4313 return FALSE;
4314 }
4315 l += intopt.size;
4316 }
4317 }
4318
4319 if (hdr->bfd_section != NULL)
4320 {
4321 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4322
4323 if (strcmp (name, ".sdata") == 0
4324 || strcmp (name, ".lit8") == 0
4325 || strcmp (name, ".lit4") == 0)
4326 {
4327 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4328 hdr->sh_type = SHT_PROGBITS;
4329 }
4330 else if (strcmp (name, ".sbss") == 0)
4331 {
4332 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4333 hdr->sh_type = SHT_NOBITS;
4334 }
4335 else if (strcmp (name, ".srdata") == 0)
4336 {
4337 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4338 hdr->sh_type = SHT_PROGBITS;
4339 }
4340 else if (strcmp (name, ".compact_rel") == 0)
4341 {
4342 hdr->sh_flags = 0;
4343 hdr->sh_type = SHT_PROGBITS;
4344 }
4345 else if (strcmp (name, ".rtproc") == 0)
4346 {
4347 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4348 {
4349 unsigned int adjust;
4350
4351 adjust = hdr->sh_size % hdr->sh_addralign;
4352 if (adjust != 0)
4353 hdr->sh_size += hdr->sh_addralign - adjust;
4354 }
4355 }
4356 }
4357
4358 return TRUE;
4359 }
4360
4361 /* Handle a MIPS specific section when reading an object file. This
4362 is called when elfcode.h finds a section with an unknown type.
4363 This routine supports both the 32-bit and 64-bit ELF ABI.
4364
4365 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4366 how to. */
4367
4368 bfd_boolean
4369 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4370 bfd *abfd;
4371 Elf_Internal_Shdr *hdr;
4372 const char *name;
4373 {
4374 flagword flags = 0;
4375
4376 /* There ought to be a place to keep ELF backend specific flags, but
4377 at the moment there isn't one. We just keep track of the
4378 sections by their name, instead. Fortunately, the ABI gives
4379 suggested names for all the MIPS specific sections, so we will
4380 probably get away with this. */
4381 switch (hdr->sh_type)
4382 {
4383 case SHT_MIPS_LIBLIST:
4384 if (strcmp (name, ".liblist") != 0)
4385 return FALSE;
4386 break;
4387 case SHT_MIPS_MSYM:
4388 if (strcmp (name, ".msym") != 0)
4389 return FALSE;
4390 break;
4391 case SHT_MIPS_CONFLICT:
4392 if (strcmp (name, ".conflict") != 0)
4393 return FALSE;
4394 break;
4395 case SHT_MIPS_GPTAB:
4396 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4397 return FALSE;
4398 break;
4399 case SHT_MIPS_UCODE:
4400 if (strcmp (name, ".ucode") != 0)
4401 return FALSE;
4402 break;
4403 case SHT_MIPS_DEBUG:
4404 if (strcmp (name, ".mdebug") != 0)
4405 return FALSE;
4406 flags = SEC_DEBUGGING;
4407 break;
4408 case SHT_MIPS_REGINFO:
4409 if (strcmp (name, ".reginfo") != 0
4410 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4411 return FALSE;
4412 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4413 break;
4414 case SHT_MIPS_IFACE:
4415 if (strcmp (name, ".MIPS.interfaces") != 0)
4416 return FALSE;
4417 break;
4418 case SHT_MIPS_CONTENT:
4419 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4420 return FALSE;
4421 break;
4422 case SHT_MIPS_OPTIONS:
4423 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4424 return FALSE;
4425 break;
4426 case SHT_MIPS_DWARF:
4427 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4428 return FALSE;
4429 break;
4430 case SHT_MIPS_SYMBOL_LIB:
4431 if (strcmp (name, ".MIPS.symlib") != 0)
4432 return FALSE;
4433 break;
4434 case SHT_MIPS_EVENTS:
4435 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4436 && strncmp (name, ".MIPS.post_rel",
4437 sizeof ".MIPS.post_rel" - 1) != 0)
4438 return FALSE;
4439 break;
4440 default:
4441 return FALSE;
4442 }
4443
4444 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4445 return FALSE;
4446
4447 if (flags)
4448 {
4449 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4450 (bfd_get_section_flags (abfd,
4451 hdr->bfd_section)
4452 | flags)))
4453 return FALSE;
4454 }
4455
4456 /* FIXME: We should record sh_info for a .gptab section. */
4457
4458 /* For a .reginfo section, set the gp value in the tdata information
4459 from the contents of this section. We need the gp value while
4460 processing relocs, so we just get it now. The .reginfo section
4461 is not used in the 64-bit MIPS ELF ABI. */
4462 if (hdr->sh_type == SHT_MIPS_REGINFO)
4463 {
4464 Elf32_External_RegInfo ext;
4465 Elf32_RegInfo s;
4466
4467 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4468 (file_ptr) 0,
4469 (bfd_size_type) sizeof ext))
4470 return FALSE;
4471 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4472 elf_gp (abfd) = s.ri_gp_value;
4473 }
4474
4475 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4476 set the gp value based on what we find. We may see both
4477 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4478 they should agree. */
4479 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4480 {
4481 bfd_byte *contents, *l, *lend;
4482
4483 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4484 if (contents == NULL)
4485 return FALSE;
4486 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4487 (file_ptr) 0, hdr->sh_size))
4488 {
4489 free (contents);
4490 return FALSE;
4491 }
4492 l = contents;
4493 lend = contents + hdr->sh_size;
4494 while (l + sizeof (Elf_External_Options) <= lend)
4495 {
4496 Elf_Internal_Options intopt;
4497
4498 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4499 &intopt);
4500 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4501 {
4502 Elf64_Internal_RegInfo intreg;
4503
4504 bfd_mips_elf64_swap_reginfo_in
4505 (abfd,
4506 ((Elf64_External_RegInfo *)
4507 (l + sizeof (Elf_External_Options))),
4508 &intreg);
4509 elf_gp (abfd) = intreg.ri_gp_value;
4510 }
4511 else if (intopt.kind == ODK_REGINFO)
4512 {
4513 Elf32_RegInfo intreg;
4514
4515 bfd_mips_elf32_swap_reginfo_in
4516 (abfd,
4517 ((Elf32_External_RegInfo *)
4518 (l + sizeof (Elf_External_Options))),
4519 &intreg);
4520 elf_gp (abfd) = intreg.ri_gp_value;
4521 }
4522 l += intopt.size;
4523 }
4524 free (contents);
4525 }
4526
4527 return TRUE;
4528 }
4529
4530 /* Set the correct type for a MIPS ELF section. We do this by the
4531 section name, which is a hack, but ought to work. This routine is
4532 used by both the 32-bit and the 64-bit ABI. */
4533
4534 bfd_boolean
4535 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
4536 bfd *abfd;
4537 Elf_Internal_Shdr *hdr;
4538 asection *sec;
4539 {
4540 register const char *name;
4541
4542 name = bfd_get_section_name (abfd, sec);
4543
4544 if (strcmp (name, ".liblist") == 0)
4545 {
4546 hdr->sh_type = SHT_MIPS_LIBLIST;
4547 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4548 /* The sh_link field is set in final_write_processing. */
4549 }
4550 else if (strcmp (name, ".conflict") == 0)
4551 hdr->sh_type = SHT_MIPS_CONFLICT;
4552 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4553 {
4554 hdr->sh_type = SHT_MIPS_GPTAB;
4555 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4556 /* The sh_info field is set in final_write_processing. */
4557 }
4558 else if (strcmp (name, ".ucode") == 0)
4559 hdr->sh_type = SHT_MIPS_UCODE;
4560 else if (strcmp (name, ".mdebug") == 0)
4561 {
4562 hdr->sh_type = SHT_MIPS_DEBUG;
4563 /* In a shared object on IRIX 5.3, the .mdebug section has an
4564 entsize of 0. FIXME: Does this matter? */
4565 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4566 hdr->sh_entsize = 0;
4567 else
4568 hdr->sh_entsize = 1;
4569 }
4570 else if (strcmp (name, ".reginfo") == 0)
4571 {
4572 hdr->sh_type = SHT_MIPS_REGINFO;
4573 /* In a shared object on IRIX 5.3, the .reginfo section has an
4574 entsize of 0x18. FIXME: Does this matter? */
4575 if (SGI_COMPAT (abfd))
4576 {
4577 if ((abfd->flags & DYNAMIC) != 0)
4578 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4579 else
4580 hdr->sh_entsize = 1;
4581 }
4582 else
4583 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4584 }
4585 else if (SGI_COMPAT (abfd)
4586 && (strcmp (name, ".hash") == 0
4587 || strcmp (name, ".dynamic") == 0
4588 || strcmp (name, ".dynstr") == 0))
4589 {
4590 if (SGI_COMPAT (abfd))
4591 hdr->sh_entsize = 0;
4592 #if 0
4593 /* This isn't how the IRIX6 linker behaves. */
4594 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4595 #endif
4596 }
4597 else if (strcmp (name, ".got") == 0
4598 || strcmp (name, ".srdata") == 0
4599 || strcmp (name, ".sdata") == 0
4600 || strcmp (name, ".sbss") == 0
4601 || strcmp (name, ".lit4") == 0
4602 || strcmp (name, ".lit8") == 0)
4603 hdr->sh_flags |= SHF_MIPS_GPREL;
4604 else if (strcmp (name, ".MIPS.interfaces") == 0)
4605 {
4606 hdr->sh_type = SHT_MIPS_IFACE;
4607 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4608 }
4609 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4610 {
4611 hdr->sh_type = SHT_MIPS_CONTENT;
4612 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4613 /* The sh_info field is set in final_write_processing. */
4614 }
4615 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4616 {
4617 hdr->sh_type = SHT_MIPS_OPTIONS;
4618 hdr->sh_entsize = 1;
4619 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4620 }
4621 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4622 hdr->sh_type = SHT_MIPS_DWARF;
4623 else if (strcmp (name, ".MIPS.symlib") == 0)
4624 {
4625 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4626 /* The sh_link and sh_info fields are set in
4627 final_write_processing. */
4628 }
4629 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4630 || strncmp (name, ".MIPS.post_rel",
4631 sizeof ".MIPS.post_rel" - 1) == 0)
4632 {
4633 hdr->sh_type = SHT_MIPS_EVENTS;
4634 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4635 /* The sh_link field is set in final_write_processing. */
4636 }
4637 else if (strcmp (name, ".msym") == 0)
4638 {
4639 hdr->sh_type = SHT_MIPS_MSYM;
4640 hdr->sh_flags |= SHF_ALLOC;
4641 hdr->sh_entsize = 8;
4642 }
4643
4644 /* The generic elf_fake_sections will set up REL_HDR using the default
4645 kind of relocations. We used to set up a second header for the
4646 non-default kind of relocations here, but only NewABI would use
4647 these, and the IRIX ld doesn't like resulting empty RELA sections.
4648 Thus we create those header only on demand now. */
4649
4650 return TRUE;
4651 }
4652
4653 /* Given a BFD section, try to locate the corresponding ELF section
4654 index. This is used by both the 32-bit and the 64-bit ABI.
4655 Actually, it's not clear to me that the 64-bit ABI supports these,
4656 but for non-PIC objects we will certainly want support for at least
4657 the .scommon section. */
4658
4659 bfd_boolean
4660 _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4661 bfd *abfd ATTRIBUTE_UNUSED;
4662 asection *sec;
4663 int *retval;
4664 {
4665 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4666 {
4667 *retval = SHN_MIPS_SCOMMON;
4668 return TRUE;
4669 }
4670 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4671 {
4672 *retval = SHN_MIPS_ACOMMON;
4673 return TRUE;
4674 }
4675 return FALSE;
4676 }
4677 \f
4678 /* Hook called by the linker routine which adds symbols from an object
4679 file. We must handle the special MIPS section numbers here. */
4680
4681 bfd_boolean
4682 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4683 bfd *abfd;
4684 struct bfd_link_info *info;
4685 const Elf_Internal_Sym *sym;
4686 const char **namep;
4687 flagword *flagsp ATTRIBUTE_UNUSED;
4688 asection **secp;
4689 bfd_vma *valp;
4690 {
4691 if (SGI_COMPAT (abfd)
4692 && (abfd->flags & DYNAMIC) != 0
4693 && strcmp (*namep, "_rld_new_interface") == 0)
4694 {
4695 /* Skip IRIX5 rld entry name. */
4696 *namep = NULL;
4697 return TRUE;
4698 }
4699
4700 switch (sym->st_shndx)
4701 {
4702 case SHN_COMMON:
4703 /* Common symbols less than the GP size are automatically
4704 treated as SHN_MIPS_SCOMMON symbols. */
4705 if (sym->st_size > elf_gp_size (abfd)
4706 || IRIX_COMPAT (abfd) == ict_irix6)
4707 break;
4708 /* Fall through. */
4709 case SHN_MIPS_SCOMMON:
4710 *secp = bfd_make_section_old_way (abfd, ".scommon");
4711 (*secp)->flags |= SEC_IS_COMMON;
4712 *valp = sym->st_size;
4713 break;
4714
4715 case SHN_MIPS_TEXT:
4716 /* This section is used in a shared object. */
4717 if (elf_tdata (abfd)->elf_text_section == NULL)
4718 {
4719 asymbol *elf_text_symbol;
4720 asection *elf_text_section;
4721 bfd_size_type amt = sizeof (asection);
4722
4723 elf_text_section = bfd_zalloc (abfd, amt);
4724 if (elf_text_section == NULL)
4725 return FALSE;
4726
4727 amt = sizeof (asymbol);
4728 elf_text_symbol = bfd_zalloc (abfd, amt);
4729 if (elf_text_symbol == NULL)
4730 return FALSE;
4731
4732 /* Initialize the section. */
4733
4734 elf_tdata (abfd)->elf_text_section = elf_text_section;
4735 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4736
4737 elf_text_section->symbol = elf_text_symbol;
4738 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4739
4740 elf_text_section->name = ".text";
4741 elf_text_section->flags = SEC_NO_FLAGS;
4742 elf_text_section->output_section = NULL;
4743 elf_text_section->owner = abfd;
4744 elf_text_symbol->name = ".text";
4745 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4746 elf_text_symbol->section = elf_text_section;
4747 }
4748 /* This code used to do *secp = bfd_und_section_ptr if
4749 info->shared. I don't know why, and that doesn't make sense,
4750 so I took it out. */
4751 *secp = elf_tdata (abfd)->elf_text_section;
4752 break;
4753
4754 case SHN_MIPS_ACOMMON:
4755 /* Fall through. XXX Can we treat this as allocated data? */
4756 case SHN_MIPS_DATA:
4757 /* This section is used in a shared object. */
4758 if (elf_tdata (abfd)->elf_data_section == NULL)
4759 {
4760 asymbol *elf_data_symbol;
4761 asection *elf_data_section;
4762 bfd_size_type amt = sizeof (asection);
4763
4764 elf_data_section = bfd_zalloc (abfd, amt);
4765 if (elf_data_section == NULL)
4766 return FALSE;
4767
4768 amt = sizeof (asymbol);
4769 elf_data_symbol = bfd_zalloc (abfd, amt);
4770 if (elf_data_symbol == NULL)
4771 return FALSE;
4772
4773 /* Initialize the section. */
4774
4775 elf_tdata (abfd)->elf_data_section = elf_data_section;
4776 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4777
4778 elf_data_section->symbol = elf_data_symbol;
4779 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4780
4781 elf_data_section->name = ".data";
4782 elf_data_section->flags = SEC_NO_FLAGS;
4783 elf_data_section->output_section = NULL;
4784 elf_data_section->owner = abfd;
4785 elf_data_symbol->name = ".data";
4786 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4787 elf_data_symbol->section = elf_data_section;
4788 }
4789 /* This code used to do *secp = bfd_und_section_ptr if
4790 info->shared. I don't know why, and that doesn't make sense,
4791 so I took it out. */
4792 *secp = elf_tdata (abfd)->elf_data_section;
4793 break;
4794
4795 case SHN_MIPS_SUNDEFINED:
4796 *secp = bfd_und_section_ptr;
4797 break;
4798 }
4799
4800 if (SGI_COMPAT (abfd)
4801 && ! info->shared
4802 && info->hash->creator == abfd->xvec
4803 && strcmp (*namep, "__rld_obj_head") == 0)
4804 {
4805 struct elf_link_hash_entry *h;
4806 struct bfd_link_hash_entry *bh;
4807
4808 /* Mark __rld_obj_head as dynamic. */
4809 bh = NULL;
4810 if (! (_bfd_generic_link_add_one_symbol
4811 (info, abfd, *namep, BSF_GLOBAL, *secp,
4812 (bfd_vma) *valp, (const char *) NULL, FALSE,
4813 get_elf_backend_data (abfd)->collect, &bh)))
4814 return FALSE;
4815
4816 h = (struct elf_link_hash_entry *) bh;
4817 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4818 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4819 h->type = STT_OBJECT;
4820
4821 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4822 return FALSE;
4823
4824 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4825 }
4826
4827 /* If this is a mips16 text symbol, add 1 to the value to make it
4828 odd. This will cause something like .word SYM to come up with
4829 the right value when it is loaded into the PC. */
4830 if (sym->st_other == STO_MIPS16)
4831 ++*valp;
4832
4833 return TRUE;
4834 }
4835
4836 /* This hook function is called before the linker writes out a global
4837 symbol. We mark symbols as small common if appropriate. This is
4838 also where we undo the increment of the value for a mips16 symbol. */
4839
4840 bfd_boolean
4841 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4842 bfd *abfd ATTRIBUTE_UNUSED;
4843 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4844 const char *name ATTRIBUTE_UNUSED;
4845 Elf_Internal_Sym *sym;
4846 asection *input_sec;
4847 {
4848 /* If we see a common symbol, which implies a relocatable link, then
4849 if a symbol was small common in an input file, mark it as small
4850 common in the output file. */
4851 if (sym->st_shndx == SHN_COMMON
4852 && strcmp (input_sec->name, ".scommon") == 0)
4853 sym->st_shndx = SHN_MIPS_SCOMMON;
4854
4855 if (sym->st_other == STO_MIPS16
4856 && (sym->st_value & 1) != 0)
4857 --sym->st_value;
4858
4859 return TRUE;
4860 }
4861 \f
4862 /* Functions for the dynamic linker. */
4863
4864 /* Create dynamic sections when linking against a dynamic object. */
4865
4866 bfd_boolean
4867 _bfd_mips_elf_create_dynamic_sections (abfd, info)
4868 bfd *abfd;
4869 struct bfd_link_info *info;
4870 {
4871 struct elf_link_hash_entry *h;
4872 struct bfd_link_hash_entry *bh;
4873 flagword flags;
4874 register asection *s;
4875 const char * const *namep;
4876
4877 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4878 | SEC_LINKER_CREATED | SEC_READONLY);
4879
4880 /* Mips ABI requests the .dynamic section to be read only. */
4881 s = bfd_get_section_by_name (abfd, ".dynamic");
4882 if (s != NULL)
4883 {
4884 if (! bfd_set_section_flags (abfd, s, flags))
4885 return FALSE;
4886 }
4887
4888 /* We need to create .got section. */
4889 if (! mips_elf_create_got_section (abfd, info, FALSE))
4890 return FALSE;
4891
4892 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4893 return FALSE;
4894
4895 /* Create the .msym section on IRIX6. It is used by the dynamic
4896 linker to speed up dynamic relocations, and to avoid computing
4897 the ELF hash for symbols. */
4898 if (IRIX_COMPAT (abfd) == ict_irix6
4899 && !mips_elf_create_msym_section (abfd))
4900 return FALSE;
4901
4902 /* Create .stub section. */
4903 if (bfd_get_section_by_name (abfd,
4904 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4905 {
4906 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4907 if (s == NULL
4908 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4909 || ! bfd_set_section_alignment (abfd, s,
4910 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4911 return FALSE;
4912 }
4913
4914 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4915 && !info->shared
4916 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4917 {
4918 s = bfd_make_section (abfd, ".rld_map");
4919 if (s == NULL
4920 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4921 || ! bfd_set_section_alignment (abfd, s,
4922 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4923 return FALSE;
4924 }
4925
4926 /* On IRIX5, we adjust add some additional symbols and change the
4927 alignments of several sections. There is no ABI documentation
4928 indicating that this is necessary on IRIX6, nor any evidence that
4929 the linker takes such action. */
4930 if (IRIX_COMPAT (abfd) == ict_irix5)
4931 {
4932 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4933 {
4934 bh = NULL;
4935 if (! (_bfd_generic_link_add_one_symbol
4936 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
4937 (bfd_vma) 0, (const char *) NULL, FALSE,
4938 get_elf_backend_data (abfd)->collect, &bh)))
4939 return FALSE;
4940
4941 h = (struct elf_link_hash_entry *) bh;
4942 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4943 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4944 h->type = STT_SECTION;
4945
4946 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4947 return FALSE;
4948 }
4949
4950 /* We need to create a .compact_rel section. */
4951 if (SGI_COMPAT (abfd))
4952 {
4953 if (!mips_elf_create_compact_rel_section (abfd, info))
4954 return FALSE;
4955 }
4956
4957 /* Change alignments of some sections. */
4958 s = bfd_get_section_by_name (abfd, ".hash");
4959 if (s != NULL)
4960 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4961 s = bfd_get_section_by_name (abfd, ".dynsym");
4962 if (s != NULL)
4963 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4964 s = bfd_get_section_by_name (abfd, ".dynstr");
4965 if (s != NULL)
4966 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4967 s = bfd_get_section_by_name (abfd, ".reginfo");
4968 if (s != NULL)
4969 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4970 s = bfd_get_section_by_name (abfd, ".dynamic");
4971 if (s != NULL)
4972 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4973 }
4974
4975 if (!info->shared)
4976 {
4977 const char *name;
4978
4979 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4980 bh = NULL;
4981 if (!(_bfd_generic_link_add_one_symbol
4982 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
4983 (bfd_vma) 0, (const char *) NULL, FALSE,
4984 get_elf_backend_data (abfd)->collect, &bh)))
4985 return FALSE;
4986
4987 h = (struct elf_link_hash_entry *) bh;
4988 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4989 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4990 h->type = STT_SECTION;
4991
4992 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4993 return FALSE;
4994
4995 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4996 {
4997 /* __rld_map is a four byte word located in the .data section
4998 and is filled in by the rtld to contain a pointer to
4999 the _r_debug structure. Its symbol value will be set in
5000 _bfd_mips_elf_finish_dynamic_symbol. */
5001 s = bfd_get_section_by_name (abfd, ".rld_map");
5002 BFD_ASSERT (s != NULL);
5003
5004 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5005 bh = NULL;
5006 if (!(_bfd_generic_link_add_one_symbol
5007 (info, abfd, name, BSF_GLOBAL, s,
5008 (bfd_vma) 0, (const char *) NULL, FALSE,
5009 get_elf_backend_data (abfd)->collect, &bh)))
5010 return FALSE;
5011
5012 h = (struct elf_link_hash_entry *) bh;
5013 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5014 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5015 h->type = STT_OBJECT;
5016
5017 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5018 return FALSE;
5019 }
5020 }
5021
5022 return TRUE;
5023 }
5024 \f
5025 /* Look through the relocs for a section during the first phase, and
5026 allocate space in the global offset table. */
5027
5028 bfd_boolean
5029 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
5030 bfd *abfd;
5031 struct bfd_link_info *info;
5032 asection *sec;
5033 const Elf_Internal_Rela *relocs;
5034 {
5035 const char *name;
5036 bfd *dynobj;
5037 Elf_Internal_Shdr *symtab_hdr;
5038 struct elf_link_hash_entry **sym_hashes;
5039 struct mips_got_info *g;
5040 size_t extsymoff;
5041 const Elf_Internal_Rela *rel;
5042 const Elf_Internal_Rela *rel_end;
5043 asection *sgot;
5044 asection *sreloc;
5045 struct elf_backend_data *bed;
5046
5047 if (info->relocatable)
5048 return TRUE;
5049
5050 dynobj = elf_hash_table (info)->dynobj;
5051 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5052 sym_hashes = elf_sym_hashes (abfd);
5053 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5054
5055 /* Check for the mips16 stub sections. */
5056
5057 name = bfd_get_section_name (abfd, sec);
5058 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5059 {
5060 unsigned long r_symndx;
5061
5062 /* Look at the relocation information to figure out which symbol
5063 this is for. */
5064
5065 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5066
5067 if (r_symndx < extsymoff
5068 || sym_hashes[r_symndx - extsymoff] == NULL)
5069 {
5070 asection *o;
5071
5072 /* This stub is for a local symbol. This stub will only be
5073 needed if there is some relocation in this BFD, other
5074 than a 16 bit function call, which refers to this symbol. */
5075 for (o = abfd->sections; o != NULL; o = o->next)
5076 {
5077 Elf_Internal_Rela *sec_relocs;
5078 const Elf_Internal_Rela *r, *rend;
5079
5080 /* We can ignore stub sections when looking for relocs. */
5081 if ((o->flags & SEC_RELOC) == 0
5082 || o->reloc_count == 0
5083 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5084 sizeof FN_STUB - 1) == 0
5085 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5086 sizeof CALL_STUB - 1) == 0
5087 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5088 sizeof CALL_FP_STUB - 1) == 0)
5089 continue;
5090
5091 sec_relocs
5092 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
5093 (Elf_Internal_Rela *) NULL,
5094 info->keep_memory);
5095 if (sec_relocs == NULL)
5096 return FALSE;
5097
5098 rend = sec_relocs + o->reloc_count;
5099 for (r = sec_relocs; r < rend; r++)
5100 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5101 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5102 break;
5103
5104 if (elf_section_data (o)->relocs != sec_relocs)
5105 free (sec_relocs);
5106
5107 if (r < rend)
5108 break;
5109 }
5110
5111 if (o == NULL)
5112 {
5113 /* There is no non-call reloc for this stub, so we do
5114 not need it. Since this function is called before
5115 the linker maps input sections to output sections, we
5116 can easily discard it by setting the SEC_EXCLUDE
5117 flag. */
5118 sec->flags |= SEC_EXCLUDE;
5119 return TRUE;
5120 }
5121
5122 /* Record this stub in an array of local symbol stubs for
5123 this BFD. */
5124 if (elf_tdata (abfd)->local_stubs == NULL)
5125 {
5126 unsigned long symcount;
5127 asection **n;
5128 bfd_size_type amt;
5129
5130 if (elf_bad_symtab (abfd))
5131 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5132 else
5133 symcount = symtab_hdr->sh_info;
5134 amt = symcount * sizeof (asection *);
5135 n = (asection **) bfd_zalloc (abfd, amt);
5136 if (n == NULL)
5137 return FALSE;
5138 elf_tdata (abfd)->local_stubs = n;
5139 }
5140
5141 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5142
5143 /* We don't need to set mips16_stubs_seen in this case.
5144 That flag is used to see whether we need to look through
5145 the global symbol table for stubs. We don't need to set
5146 it here, because we just have a local stub. */
5147 }
5148 else
5149 {
5150 struct mips_elf_link_hash_entry *h;
5151
5152 h = ((struct mips_elf_link_hash_entry *)
5153 sym_hashes[r_symndx - extsymoff]);
5154
5155 /* H is the symbol this stub is for. */
5156
5157 h->fn_stub = sec;
5158 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5159 }
5160 }
5161 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5162 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5163 {
5164 unsigned long r_symndx;
5165 struct mips_elf_link_hash_entry *h;
5166 asection **loc;
5167
5168 /* Look at the relocation information to figure out which symbol
5169 this is for. */
5170
5171 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5172
5173 if (r_symndx < extsymoff
5174 || sym_hashes[r_symndx - extsymoff] == NULL)
5175 {
5176 /* This stub was actually built for a static symbol defined
5177 in the same file. We assume that all static symbols in
5178 mips16 code are themselves mips16, so we can simply
5179 discard this stub. Since this function is called before
5180 the linker maps input sections to output sections, we can
5181 easily discard it by setting the SEC_EXCLUDE flag. */
5182 sec->flags |= SEC_EXCLUDE;
5183 return TRUE;
5184 }
5185
5186 h = ((struct mips_elf_link_hash_entry *)
5187 sym_hashes[r_symndx - extsymoff]);
5188
5189 /* H is the symbol this stub is for. */
5190
5191 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5192 loc = &h->call_fp_stub;
5193 else
5194 loc = &h->call_stub;
5195
5196 /* If we already have an appropriate stub for this function, we
5197 don't need another one, so we can discard this one. Since
5198 this function is called before the linker maps input sections
5199 to output sections, we can easily discard it by setting the
5200 SEC_EXCLUDE flag. We can also discard this section if we
5201 happen to already know that this is a mips16 function; it is
5202 not necessary to check this here, as it is checked later, but
5203 it is slightly faster to check now. */
5204 if (*loc != NULL || h->root.other == STO_MIPS16)
5205 {
5206 sec->flags |= SEC_EXCLUDE;
5207 return TRUE;
5208 }
5209
5210 *loc = sec;
5211 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5212 }
5213
5214 if (dynobj == NULL)
5215 {
5216 sgot = NULL;
5217 g = NULL;
5218 }
5219 else
5220 {
5221 sgot = mips_elf_got_section (dynobj, FALSE);
5222 if (sgot == NULL)
5223 g = NULL;
5224 else
5225 {
5226 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5227 g = mips_elf_section_data (sgot)->u.got_info;
5228 BFD_ASSERT (g != NULL);
5229 }
5230 }
5231
5232 sreloc = NULL;
5233 bed = get_elf_backend_data (abfd);
5234 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5235 for (rel = relocs; rel < rel_end; ++rel)
5236 {
5237 unsigned long r_symndx;
5238 unsigned int r_type;
5239 struct elf_link_hash_entry *h;
5240
5241 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5242 r_type = ELF_R_TYPE (abfd, rel->r_info);
5243
5244 if (r_symndx < extsymoff)
5245 h = NULL;
5246 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5247 {
5248 (*_bfd_error_handler)
5249 (_("%s: Malformed reloc detected for section %s"),
5250 bfd_archive_filename (abfd), name);
5251 bfd_set_error (bfd_error_bad_value);
5252 return FALSE;
5253 }
5254 else
5255 {
5256 h = sym_hashes[r_symndx - extsymoff];
5257
5258 /* This may be an indirect symbol created because of a version. */
5259 if (h != NULL)
5260 {
5261 while (h->root.type == bfd_link_hash_indirect)
5262 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5263 }
5264 }
5265
5266 /* Some relocs require a global offset table. */
5267 if (dynobj == NULL || sgot == NULL)
5268 {
5269 switch (r_type)
5270 {
5271 case R_MIPS_GOT16:
5272 case R_MIPS_CALL16:
5273 case R_MIPS_CALL_HI16:
5274 case R_MIPS_CALL_LO16:
5275 case R_MIPS_GOT_HI16:
5276 case R_MIPS_GOT_LO16:
5277 case R_MIPS_GOT_PAGE:
5278 case R_MIPS_GOT_OFST:
5279 case R_MIPS_GOT_DISP:
5280 if (dynobj == NULL)
5281 elf_hash_table (info)->dynobj = dynobj = abfd;
5282 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5283 return FALSE;
5284 g = mips_elf_got_info (dynobj, &sgot);
5285 break;
5286
5287 case R_MIPS_32:
5288 case R_MIPS_REL32:
5289 case R_MIPS_64:
5290 if (dynobj == NULL
5291 && (info->shared || h != NULL)
5292 && (sec->flags & SEC_ALLOC) != 0)
5293 elf_hash_table (info)->dynobj = dynobj = abfd;
5294 break;
5295
5296 default:
5297 break;
5298 }
5299 }
5300
5301 if (!h && (r_type == R_MIPS_CALL_LO16
5302 || r_type == R_MIPS_GOT_LO16
5303 || r_type == R_MIPS_GOT_DISP))
5304 {
5305 /* We may need a local GOT entry for this relocation. We
5306 don't count R_MIPS_GOT_PAGE because we can estimate the
5307 maximum number of pages needed by looking at the size of
5308 the segment. Similar comments apply to R_MIPS_GOT16 and
5309 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5310 R_MIPS_CALL_HI16 because these are always followed by an
5311 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5312 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5313 rel->r_addend, g))
5314 return FALSE;
5315 }
5316
5317 switch (r_type)
5318 {
5319 case R_MIPS_CALL16:
5320 if (h == NULL)
5321 {
5322 (*_bfd_error_handler)
5323 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5324 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5325 bfd_set_error (bfd_error_bad_value);
5326 return FALSE;
5327 }
5328 /* Fall through. */
5329
5330 case R_MIPS_CALL_HI16:
5331 case R_MIPS_CALL_LO16:
5332 if (h != NULL)
5333 {
5334 /* This symbol requires a global offset table entry. */
5335 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5336 return FALSE;
5337
5338 /* We need a stub, not a plt entry for the undefined
5339 function. But we record it as if it needs plt. See
5340 elf_adjust_dynamic_symbol in elflink.h. */
5341 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5342 h->type = STT_FUNC;
5343 }
5344 break;
5345
5346 case R_MIPS_GOT_PAGE:
5347 /* If this is a global, overridable symbol, GOT_PAGE will
5348 decay to GOT_DISP, so we'll need a GOT entry for it. */
5349 if (h == NULL)
5350 break;
5351 else
5352 {
5353 struct mips_elf_link_hash_entry *hmips =
5354 (struct mips_elf_link_hash_entry *) h;
5355
5356 while (hmips->root.root.type == bfd_link_hash_indirect
5357 || hmips->root.root.type == bfd_link_hash_warning)
5358 hmips = (struct mips_elf_link_hash_entry *)
5359 hmips->root.root.u.i.link;
5360
5361 if ((hmips->root.root.type == bfd_link_hash_defined
5362 || hmips->root.root.type == bfd_link_hash_defweak)
5363 && hmips->root.root.u.def.section
5364 && ! (info->shared && ! info->symbolic
5365 && ! (hmips->root.elf_link_hash_flags
5366 & ELF_LINK_FORCED_LOCAL))
5367 /* If we've encountered any other relocation
5368 referencing the symbol, we'll have marked it as
5369 dynamic, and, even though we might be able to get
5370 rid of the GOT entry should we know for sure all
5371 previous relocations were GOT_PAGE ones, at this
5372 point we can't tell, so just keep using the
5373 symbol as dynamic. This is very important in the
5374 multi-got case, since we don't decide whether to
5375 decay GOT_PAGE to GOT_DISP on a per-GOT basis: if
5376 the symbol is dynamic, we'll need a GOT entry for
5377 every GOT in which the symbol is referenced with
5378 a GOT_PAGE relocation. */
5379 && hmips->root.dynindx == -1)
5380 break;
5381 }
5382 /* Fall through. */
5383
5384 case R_MIPS_GOT16:
5385 case R_MIPS_GOT_HI16:
5386 case R_MIPS_GOT_LO16:
5387 case R_MIPS_GOT_DISP:
5388 /* This symbol requires a global offset table entry. */
5389 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5390 return FALSE;
5391 break;
5392
5393 case R_MIPS_32:
5394 case R_MIPS_REL32:
5395 case R_MIPS_64:
5396 if ((info->shared || h != NULL)
5397 && (sec->flags & SEC_ALLOC) != 0)
5398 {
5399 if (sreloc == NULL)
5400 {
5401 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5402 if (sreloc == NULL)
5403 return FALSE;
5404 }
5405 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5406 if (info->shared)
5407 {
5408 /* When creating a shared object, we must copy these
5409 reloc types into the output file as R_MIPS_REL32
5410 relocs. We make room for this reloc in the
5411 .rel.dyn reloc section. */
5412 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5413 if ((sec->flags & MIPS_READONLY_SECTION)
5414 == MIPS_READONLY_SECTION)
5415 /* We tell the dynamic linker that there are
5416 relocations against the text segment. */
5417 info->flags |= DF_TEXTREL;
5418 }
5419 else
5420 {
5421 struct mips_elf_link_hash_entry *hmips;
5422
5423 /* We only need to copy this reloc if the symbol is
5424 defined in a dynamic object. */
5425 hmips = (struct mips_elf_link_hash_entry *) h;
5426 ++hmips->possibly_dynamic_relocs;
5427 if ((sec->flags & MIPS_READONLY_SECTION)
5428 == MIPS_READONLY_SECTION)
5429 /* We need it to tell the dynamic linker if there
5430 are relocations against the text segment. */
5431 hmips->readonly_reloc = TRUE;
5432 }
5433
5434 /* Even though we don't directly need a GOT entry for
5435 this symbol, a symbol must have a dynamic symbol
5436 table index greater that DT_MIPS_GOTSYM if there are
5437 dynamic relocations against it. */
5438 if (h != NULL)
5439 {
5440 if (dynobj == NULL)
5441 elf_hash_table (info)->dynobj = dynobj = abfd;
5442 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5443 return FALSE;
5444 g = mips_elf_got_info (dynobj, &sgot);
5445 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5446 return FALSE;
5447 }
5448 }
5449
5450 if (SGI_COMPAT (abfd))
5451 mips_elf_hash_table (info)->compact_rel_size +=
5452 sizeof (Elf32_External_crinfo);
5453 break;
5454
5455 case R_MIPS_26:
5456 case R_MIPS_GPREL16:
5457 case R_MIPS_LITERAL:
5458 case R_MIPS_GPREL32:
5459 if (SGI_COMPAT (abfd))
5460 mips_elf_hash_table (info)->compact_rel_size +=
5461 sizeof (Elf32_External_crinfo);
5462 break;
5463
5464 /* This relocation describes the C++ object vtable hierarchy.
5465 Reconstruct it for later use during GC. */
5466 case R_MIPS_GNU_VTINHERIT:
5467 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5468 return FALSE;
5469 break;
5470
5471 /* This relocation describes which C++ vtable entries are actually
5472 used. Record for later use during GC. */
5473 case R_MIPS_GNU_VTENTRY:
5474 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5475 return FALSE;
5476 break;
5477
5478 default:
5479 break;
5480 }
5481
5482 /* We must not create a stub for a symbol that has relocations
5483 related to taking the function's address. */
5484 switch (r_type)
5485 {
5486 default:
5487 if (h != NULL)
5488 {
5489 struct mips_elf_link_hash_entry *mh;
5490
5491 mh = (struct mips_elf_link_hash_entry *) h;
5492 mh->no_fn_stub = TRUE;
5493 }
5494 break;
5495 case R_MIPS_CALL16:
5496 case R_MIPS_CALL_HI16:
5497 case R_MIPS_CALL_LO16:
5498 break;
5499 }
5500
5501 /* If this reloc is not a 16 bit call, and it has a global
5502 symbol, then we will need the fn_stub if there is one.
5503 References from a stub section do not count. */
5504 if (h != NULL
5505 && r_type != R_MIPS16_26
5506 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5507 sizeof FN_STUB - 1) != 0
5508 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5509 sizeof CALL_STUB - 1) != 0
5510 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5511 sizeof CALL_FP_STUB - 1) != 0)
5512 {
5513 struct mips_elf_link_hash_entry *mh;
5514
5515 mh = (struct mips_elf_link_hash_entry *) h;
5516 mh->need_fn_stub = TRUE;
5517 }
5518 }
5519
5520 return TRUE;
5521 }
5522 \f
5523 bfd_boolean
5524 _bfd_mips_relax_section (abfd, sec, link_info, again)
5525 bfd *abfd;
5526 asection *sec;
5527 struct bfd_link_info *link_info;
5528 bfd_boolean *again;
5529 {
5530 Elf_Internal_Rela *internal_relocs;
5531 Elf_Internal_Rela *irel, *irelend;
5532 Elf_Internal_Shdr *symtab_hdr;
5533 bfd_byte *contents = NULL;
5534 bfd_byte *free_contents = NULL;
5535 size_t extsymoff;
5536 bfd_boolean changed_contents = FALSE;
5537 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5538 Elf_Internal_Sym *isymbuf = NULL;
5539
5540 /* We are not currently changing any sizes, so only one pass. */
5541 *again = FALSE;
5542
5543 if (link_info->relocatable)
5544 return TRUE;
5545
5546 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
5547 (Elf_Internal_Rela *) NULL,
5548 link_info->keep_memory);
5549 if (internal_relocs == NULL)
5550 return TRUE;
5551
5552 irelend = internal_relocs + sec->reloc_count
5553 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5554 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5555 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5556
5557 for (irel = internal_relocs; irel < irelend; irel++)
5558 {
5559 bfd_vma symval;
5560 bfd_signed_vma sym_offset;
5561 unsigned int r_type;
5562 unsigned long r_symndx;
5563 asection *sym_sec;
5564 unsigned long instruction;
5565
5566 /* Turn jalr into bgezal, and jr into beq, if they're marked
5567 with a JALR relocation, that indicate where they jump to.
5568 This saves some pipeline bubbles. */
5569 r_type = ELF_R_TYPE (abfd, irel->r_info);
5570 if (r_type != R_MIPS_JALR)
5571 continue;
5572
5573 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5574 /* Compute the address of the jump target. */
5575 if (r_symndx >= extsymoff)
5576 {
5577 struct mips_elf_link_hash_entry *h
5578 = ((struct mips_elf_link_hash_entry *)
5579 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5580
5581 while (h->root.root.type == bfd_link_hash_indirect
5582 || h->root.root.type == bfd_link_hash_warning)
5583 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5584
5585 /* If a symbol is undefined, or if it may be overridden,
5586 skip it. */
5587 if (! ((h->root.root.type == bfd_link_hash_defined
5588 || h->root.root.type == bfd_link_hash_defweak)
5589 && h->root.root.u.def.section)
5590 || (link_info->shared && ! link_info->symbolic
5591 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5592 continue;
5593
5594 sym_sec = h->root.root.u.def.section;
5595 if (sym_sec->output_section)
5596 symval = (h->root.root.u.def.value
5597 + sym_sec->output_section->vma
5598 + sym_sec->output_offset);
5599 else
5600 symval = h->root.root.u.def.value;
5601 }
5602 else
5603 {
5604 Elf_Internal_Sym *isym;
5605
5606 /* Read this BFD's symbols if we haven't done so already. */
5607 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5608 {
5609 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5610 if (isymbuf == NULL)
5611 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5612 symtab_hdr->sh_info, 0,
5613 NULL, NULL, NULL);
5614 if (isymbuf == NULL)
5615 goto relax_return;
5616 }
5617
5618 isym = isymbuf + r_symndx;
5619 if (isym->st_shndx == SHN_UNDEF)
5620 continue;
5621 else if (isym->st_shndx == SHN_ABS)
5622 sym_sec = bfd_abs_section_ptr;
5623 else if (isym->st_shndx == SHN_COMMON)
5624 sym_sec = bfd_com_section_ptr;
5625 else
5626 sym_sec
5627 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5628 symval = isym->st_value
5629 + sym_sec->output_section->vma
5630 + sym_sec->output_offset;
5631 }
5632
5633 /* Compute branch offset, from delay slot of the jump to the
5634 branch target. */
5635 sym_offset = (symval + irel->r_addend)
5636 - (sec_start + irel->r_offset + 4);
5637
5638 /* Branch offset must be properly aligned. */
5639 if ((sym_offset & 3) != 0)
5640 continue;
5641
5642 sym_offset >>= 2;
5643
5644 /* Check that it's in range. */
5645 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5646 continue;
5647
5648 /* Get the section contents if we haven't done so already. */
5649 if (contents == NULL)
5650 {
5651 /* Get cached copy if it exists. */
5652 if (elf_section_data (sec)->this_hdr.contents != NULL)
5653 contents = elf_section_data (sec)->this_hdr.contents;
5654 else
5655 {
5656 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
5657 if (contents == NULL)
5658 goto relax_return;
5659
5660 free_contents = contents;
5661 if (! bfd_get_section_contents (abfd, sec, contents,
5662 (file_ptr) 0, sec->_raw_size))
5663 goto relax_return;
5664 }
5665 }
5666
5667 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5668
5669 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5670 if ((instruction & 0xfc1fffff) == 0x0000f809)
5671 instruction = 0x04110000;
5672 /* If it was jr <reg>, turn it into b <target>. */
5673 else if ((instruction & 0xfc1fffff) == 0x00000008)
5674 instruction = 0x10000000;
5675 else
5676 continue;
5677
5678 instruction |= (sym_offset & 0xffff);
5679 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5680 changed_contents = TRUE;
5681 }
5682
5683 if (contents != NULL
5684 && elf_section_data (sec)->this_hdr.contents != contents)
5685 {
5686 if (!changed_contents && !link_info->keep_memory)
5687 free (contents);
5688 else
5689 {
5690 /* Cache the section contents for elf_link_input_bfd. */
5691 elf_section_data (sec)->this_hdr.contents = contents;
5692 }
5693 }
5694 return TRUE;
5695
5696 relax_return:
5697 if (free_contents != NULL)
5698 free (free_contents);
5699 return FALSE;
5700 }
5701 \f
5702 /* Adjust a symbol defined by a dynamic object and referenced by a
5703 regular object. The current definition is in some section of the
5704 dynamic object, but we're not including those sections. We have to
5705 change the definition to something the rest of the link can
5706 understand. */
5707
5708 bfd_boolean
5709 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
5710 struct bfd_link_info *info;
5711 struct elf_link_hash_entry *h;
5712 {
5713 bfd *dynobj;
5714 struct mips_elf_link_hash_entry *hmips;
5715 asection *s;
5716
5717 dynobj = elf_hash_table (info)->dynobj;
5718
5719 /* Make sure we know what is going on here. */
5720 BFD_ASSERT (dynobj != NULL
5721 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5722 || h->weakdef != NULL
5723 || ((h->elf_link_hash_flags
5724 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5725 && (h->elf_link_hash_flags
5726 & ELF_LINK_HASH_REF_REGULAR) != 0
5727 && (h->elf_link_hash_flags
5728 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5729
5730 /* If this symbol is defined in a dynamic object, we need to copy
5731 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5732 file. */
5733 hmips = (struct mips_elf_link_hash_entry *) h;
5734 if (! info->relocatable
5735 && hmips->possibly_dynamic_relocs != 0
5736 && (h->root.type == bfd_link_hash_defweak
5737 || (h->elf_link_hash_flags
5738 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5739 {
5740 mips_elf_allocate_dynamic_relocations (dynobj,
5741 hmips->possibly_dynamic_relocs);
5742 if (hmips->readonly_reloc)
5743 /* We tell the dynamic linker that there are relocations
5744 against the text segment. */
5745 info->flags |= DF_TEXTREL;
5746 }
5747
5748 /* For a function, create a stub, if allowed. */
5749 if (! hmips->no_fn_stub
5750 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5751 {
5752 if (! elf_hash_table (info)->dynamic_sections_created)
5753 return TRUE;
5754
5755 /* If this symbol is not defined in a regular file, then set
5756 the symbol to the stub location. This is required to make
5757 function pointers compare as equal between the normal
5758 executable and the shared library. */
5759 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5760 {
5761 /* We need .stub section. */
5762 s = bfd_get_section_by_name (dynobj,
5763 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5764 BFD_ASSERT (s != NULL);
5765
5766 h->root.u.def.section = s;
5767 h->root.u.def.value = s->_raw_size;
5768
5769 /* XXX Write this stub address somewhere. */
5770 h->plt.offset = s->_raw_size;
5771
5772 /* Make room for this stub code. */
5773 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5774
5775 /* The last half word of the stub will be filled with the index
5776 of this symbol in .dynsym section. */
5777 return TRUE;
5778 }
5779 }
5780 else if ((h->type == STT_FUNC)
5781 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5782 {
5783 /* This will set the entry for this symbol in the GOT to 0, and
5784 the dynamic linker will take care of this. */
5785 h->root.u.def.value = 0;
5786 return TRUE;
5787 }
5788
5789 /* If this is a weak symbol, and there is a real definition, the
5790 processor independent code will have arranged for us to see the
5791 real definition first, and we can just use the same value. */
5792 if (h->weakdef != NULL)
5793 {
5794 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5795 || h->weakdef->root.type == bfd_link_hash_defweak);
5796 h->root.u.def.section = h->weakdef->root.u.def.section;
5797 h->root.u.def.value = h->weakdef->root.u.def.value;
5798 return TRUE;
5799 }
5800
5801 /* This is a reference to a symbol defined by a dynamic object which
5802 is not a function. */
5803
5804 return TRUE;
5805 }
5806 \f
5807 /* This function is called after all the input files have been read,
5808 and the input sections have been assigned to output sections. We
5809 check for any mips16 stub sections that we can discard. */
5810
5811 bfd_boolean
5812 _bfd_mips_elf_always_size_sections (output_bfd, info)
5813 bfd *output_bfd;
5814 struct bfd_link_info *info;
5815 {
5816 asection *ri;
5817
5818 bfd *dynobj;
5819 asection *s;
5820 struct mips_got_info *g;
5821 int i;
5822 bfd_size_type loadable_size = 0;
5823 bfd_size_type local_gotno;
5824 bfd *sub;
5825
5826 /* The .reginfo section has a fixed size. */
5827 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5828 if (ri != NULL)
5829 bfd_set_section_size (output_bfd, ri,
5830 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5831
5832 if (! (info->relocatable
5833 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5834 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5835 mips_elf_check_mips16_stubs,
5836 (PTR) NULL);
5837
5838 dynobj = elf_hash_table (info)->dynobj;
5839 if (dynobj == NULL)
5840 /* Relocatable links don't have it. */
5841 return TRUE;
5842
5843 g = mips_elf_got_info (dynobj, &s);
5844 if (s == NULL)
5845 return TRUE;
5846
5847 /* Calculate the total loadable size of the output. That
5848 will give us the maximum number of GOT_PAGE entries
5849 required. */
5850 for (sub = info->input_bfds; sub; sub = sub->link_next)
5851 {
5852 asection *subsection;
5853
5854 for (subsection = sub->sections;
5855 subsection;
5856 subsection = subsection->next)
5857 {
5858 if ((subsection->flags & SEC_ALLOC) == 0)
5859 continue;
5860 loadable_size += ((subsection->_raw_size + 0xf)
5861 &~ (bfd_size_type) 0xf);
5862 }
5863 }
5864
5865 /* There has to be a global GOT entry for every symbol with
5866 a dynamic symbol table index of DT_MIPS_GOTSYM or
5867 higher. Therefore, it make sense to put those symbols
5868 that need GOT entries at the end of the symbol table. We
5869 do that here. */
5870 if (! mips_elf_sort_hash_table (info, 1))
5871 return FALSE;
5872
5873 if (g->global_gotsym != NULL)
5874 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5875 else
5876 /* If there are no global symbols, or none requiring
5877 relocations, then GLOBAL_GOTSYM will be NULL. */
5878 i = 0;
5879
5880 /* In the worst case, we'll get one stub per dynamic symbol, plus
5881 one to account for the dummy entry at the end required by IRIX
5882 rld. */
5883 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5884
5885 /* Assume there are two loadable segments consisting of
5886 contiguous sections. Is 5 enough? */
5887 local_gotno = (loadable_size >> 16) + 5;
5888
5889 g->local_gotno += local_gotno;
5890 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5891
5892 g->global_gotno = i;
5893 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5894
5895 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5896 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5897 return FALSE;
5898
5899 return TRUE;
5900 }
5901
5902 /* Set the sizes of the dynamic sections. */
5903
5904 bfd_boolean
5905 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5906 bfd *output_bfd;
5907 struct bfd_link_info *info;
5908 {
5909 bfd *dynobj;
5910 asection *s;
5911 bfd_boolean reltext;
5912
5913 dynobj = elf_hash_table (info)->dynobj;
5914 BFD_ASSERT (dynobj != NULL);
5915
5916 if (elf_hash_table (info)->dynamic_sections_created)
5917 {
5918 /* Set the contents of the .interp section to the interpreter. */
5919 if (! info->shared)
5920 {
5921 s = bfd_get_section_by_name (dynobj, ".interp");
5922 BFD_ASSERT (s != NULL);
5923 s->_raw_size
5924 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5925 s->contents
5926 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5927 }
5928 }
5929
5930 /* The check_relocs and adjust_dynamic_symbol entry points have
5931 determined the sizes of the various dynamic sections. Allocate
5932 memory for them. */
5933 reltext = FALSE;
5934 for (s = dynobj->sections; s != NULL; s = s->next)
5935 {
5936 const char *name;
5937 bfd_boolean strip;
5938
5939 /* It's OK to base decisions on the section name, because none
5940 of the dynobj section names depend upon the input files. */
5941 name = bfd_get_section_name (dynobj, s);
5942
5943 if ((s->flags & SEC_LINKER_CREATED) == 0)
5944 continue;
5945
5946 strip = FALSE;
5947
5948 if (strncmp (name, ".rel", 4) == 0)
5949 {
5950 if (s->_raw_size == 0)
5951 {
5952 /* We only strip the section if the output section name
5953 has the same name. Otherwise, there might be several
5954 input sections for this output section. FIXME: This
5955 code is probably not needed these days anyhow, since
5956 the linker now does not create empty output sections. */
5957 if (s->output_section != NULL
5958 && strcmp (name,
5959 bfd_get_section_name (s->output_section->owner,
5960 s->output_section)) == 0)
5961 strip = TRUE;
5962 }
5963 else
5964 {
5965 const char *outname;
5966 asection *target;
5967
5968 /* If this relocation section applies to a read only
5969 section, then we probably need a DT_TEXTREL entry.
5970 If the relocation section is .rel.dyn, we always
5971 assert a DT_TEXTREL entry rather than testing whether
5972 there exists a relocation to a read only section or
5973 not. */
5974 outname = bfd_get_section_name (output_bfd,
5975 s->output_section);
5976 target = bfd_get_section_by_name (output_bfd, outname + 4);
5977 if ((target != NULL
5978 && (target->flags & SEC_READONLY) != 0
5979 && (target->flags & SEC_ALLOC) != 0)
5980 || strcmp (outname, ".rel.dyn") == 0)
5981 reltext = TRUE;
5982
5983 /* We use the reloc_count field as a counter if we need
5984 to copy relocs into the output file. */
5985 if (strcmp (name, ".rel.dyn") != 0)
5986 s->reloc_count = 0;
5987
5988 /* If combreloc is enabled, elf_link_sort_relocs() will
5989 sort relocations, but in a different way than we do,
5990 and before we're done creating relocations. Also, it
5991 will move them around between input sections'
5992 relocation's contents, so our sorting would be
5993 broken, so don't let it run. */
5994 info->combreloc = 0;
5995 }
5996 }
5997 else if (strncmp (name, ".got", 4) == 0)
5998 {
5999 /* _bfd_mips_elf_always_size_sections() has already done
6000 most of the work, but some symbols may have been mapped
6001 to versions that we must now resolve in the got_entries
6002 hash tables. */
6003 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6004 struct mips_got_info *g = gg;
6005 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6006 unsigned int needed_relocs = 0;
6007
6008 if (gg->next)
6009 {
6010 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6011 set_got_offset_arg.info = info;
6012
6013 mips_elf_resolve_final_got_entries (gg);
6014 for (g = gg->next; g && g->next != gg; g = g->next)
6015 {
6016 unsigned int save_assign;
6017
6018 mips_elf_resolve_final_got_entries (g);
6019
6020 /* Assign offsets to global GOT entries. */
6021 save_assign = g->assigned_gotno;
6022 g->assigned_gotno = g->local_gotno;
6023 set_got_offset_arg.g = g;
6024 set_got_offset_arg.needed_relocs = 0;
6025 htab_traverse (g->got_entries,
6026 mips_elf_set_global_got_offset,
6027 &set_got_offset_arg);
6028 needed_relocs += set_got_offset_arg.needed_relocs;
6029 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6030 <= g->global_gotno);
6031
6032 g->assigned_gotno = save_assign;
6033 if (info->shared)
6034 {
6035 needed_relocs += g->local_gotno - g->assigned_gotno;
6036 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6037 + g->next->global_gotno
6038 + MIPS_RESERVED_GOTNO);
6039 }
6040 }
6041
6042 if (needed_relocs)
6043 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6044 }
6045 }
6046 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6047 {
6048 /* IRIX rld assumes that the function stub isn't at the end
6049 of .text section. So put a dummy. XXX */
6050 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
6051 }
6052 else if (! info->shared
6053 && ! mips_elf_hash_table (info)->use_rld_obj_head
6054 && strncmp (name, ".rld_map", 8) == 0)
6055 {
6056 /* We add a room for __rld_map. It will be filled in by the
6057 rtld to contain a pointer to the _r_debug structure. */
6058 s->_raw_size += 4;
6059 }
6060 else if (SGI_COMPAT (output_bfd)
6061 && strncmp (name, ".compact_rel", 12) == 0)
6062 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
6063 else if (strcmp (name, ".msym") == 0)
6064 s->_raw_size = (sizeof (Elf32_External_Msym)
6065 * (elf_hash_table (info)->dynsymcount
6066 + bfd_count_sections (output_bfd)));
6067 else if (strncmp (name, ".init", 5) != 0)
6068 {
6069 /* It's not one of our sections, so don't allocate space. */
6070 continue;
6071 }
6072
6073 if (strip)
6074 {
6075 _bfd_strip_section_from_output (info, s);
6076 continue;
6077 }
6078
6079 /* Allocate memory for the section contents. */
6080 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
6081 if (s->contents == NULL && s->_raw_size != 0)
6082 {
6083 bfd_set_error (bfd_error_no_memory);
6084 return FALSE;
6085 }
6086 }
6087
6088 if (elf_hash_table (info)->dynamic_sections_created)
6089 {
6090 /* Add some entries to the .dynamic section. We fill in the
6091 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6092 must add the entries now so that we get the correct size for
6093 the .dynamic section. The DT_DEBUG entry is filled in by the
6094 dynamic linker and used by the debugger. */
6095 if (! info->shared)
6096 {
6097 /* SGI object has the equivalence of DT_DEBUG in the
6098 DT_MIPS_RLD_MAP entry. */
6099 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6100 return FALSE;
6101 if (!SGI_COMPAT (output_bfd))
6102 {
6103 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6104 return FALSE;
6105 }
6106 }
6107 else
6108 {
6109 /* Shared libraries on traditional mips have DT_DEBUG. */
6110 if (!SGI_COMPAT (output_bfd))
6111 {
6112 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6113 return FALSE;
6114 }
6115 }
6116
6117 if (reltext && SGI_COMPAT (output_bfd))
6118 info->flags |= DF_TEXTREL;
6119
6120 if ((info->flags & DF_TEXTREL) != 0)
6121 {
6122 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6123 return FALSE;
6124 }
6125
6126 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6127 return FALSE;
6128
6129 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6130 {
6131 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6132 return FALSE;
6133
6134 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6135 return FALSE;
6136
6137 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6138 return FALSE;
6139 }
6140
6141 if (SGI_COMPAT (output_bfd))
6142 {
6143 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
6144 return FALSE;
6145 }
6146
6147 if (SGI_COMPAT (output_bfd))
6148 {
6149 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
6150 return FALSE;
6151 }
6152
6153 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
6154 {
6155 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
6156 return FALSE;
6157
6158 s = bfd_get_section_by_name (dynobj, ".liblist");
6159 BFD_ASSERT (s != NULL);
6160
6161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
6162 return FALSE;
6163 }
6164
6165 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6166 return FALSE;
6167
6168 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6169 return FALSE;
6170
6171 #if 0
6172 /* Time stamps in executable files are a bad idea. */
6173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6174 return FALSE;
6175 #endif
6176
6177 #if 0 /* FIXME */
6178 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6179 return FALSE;
6180 #endif
6181
6182 #if 0 /* FIXME */
6183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6184 return FALSE;
6185 #endif
6186
6187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6188 return FALSE;
6189
6190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6191 return FALSE;
6192
6193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6194 return FALSE;
6195
6196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6197 return FALSE;
6198
6199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6200 return FALSE;
6201
6202 if (IRIX_COMPAT (dynobj) == ict_irix5
6203 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6204 return FALSE;
6205
6206 if (IRIX_COMPAT (dynobj) == ict_irix6
6207 && (bfd_get_section_by_name
6208 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6209 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6210 return FALSE;
6211
6212 if (bfd_get_section_by_name (dynobj, ".msym")
6213 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
6214 return FALSE;
6215 }
6216
6217 return TRUE;
6218 }
6219 \f
6220 /* Relocate a MIPS ELF section. */
6221
6222 bfd_boolean
6223 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6224 contents, relocs, local_syms, local_sections)
6225 bfd *output_bfd;
6226 struct bfd_link_info *info;
6227 bfd *input_bfd;
6228 asection *input_section;
6229 bfd_byte *contents;
6230 Elf_Internal_Rela *relocs;
6231 Elf_Internal_Sym *local_syms;
6232 asection **local_sections;
6233 {
6234 Elf_Internal_Rela *rel;
6235 const Elf_Internal_Rela *relend;
6236 bfd_vma addend = 0;
6237 bfd_boolean use_saved_addend_p = FALSE;
6238 struct elf_backend_data *bed;
6239
6240 bed = get_elf_backend_data (output_bfd);
6241 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6242 for (rel = relocs; rel < relend; ++rel)
6243 {
6244 const char *name;
6245 bfd_vma value;
6246 reloc_howto_type *howto;
6247 bfd_boolean require_jalx;
6248 /* TRUE if the relocation is a RELA relocation, rather than a
6249 REL relocation. */
6250 bfd_boolean rela_relocation_p = TRUE;
6251 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6252 const char * msg = (const char *) NULL;
6253
6254 /* Find the relocation howto for this relocation. */
6255 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6256 {
6257 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6258 64-bit code, but make sure all their addresses are in the
6259 lowermost or uppermost 32-bit section of the 64-bit address
6260 space. Thus, when they use an R_MIPS_64 they mean what is
6261 usually meant by R_MIPS_32, with the exception that the
6262 stored value is sign-extended to 64 bits. */
6263 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6264
6265 /* On big-endian systems, we need to lie about the position
6266 of the reloc. */
6267 if (bfd_big_endian (input_bfd))
6268 rel->r_offset += 4;
6269 }
6270 else
6271 /* NewABI defaults to RELA relocations. */
6272 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6273 NEWABI_P (input_bfd)
6274 && (MIPS_RELOC_RELA_P
6275 (input_bfd, input_section,
6276 rel - relocs)));
6277
6278 if (!use_saved_addend_p)
6279 {
6280 Elf_Internal_Shdr *rel_hdr;
6281
6282 /* If these relocations were originally of the REL variety,
6283 we must pull the addend out of the field that will be
6284 relocated. Otherwise, we simply use the contents of the
6285 RELA relocation. To determine which flavor or relocation
6286 this is, we depend on the fact that the INPUT_SECTION's
6287 REL_HDR is read before its REL_HDR2. */
6288 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6289 if ((size_t) (rel - relocs)
6290 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6291 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6292 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6293 {
6294 /* Note that this is a REL relocation. */
6295 rela_relocation_p = FALSE;
6296
6297 /* Get the addend, which is stored in the input file. */
6298 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6299 contents);
6300 addend &= howto->src_mask;
6301 addend <<= howto->rightshift;
6302
6303 /* For some kinds of relocations, the ADDEND is a
6304 combination of the addend stored in two different
6305 relocations. */
6306 if (r_type == R_MIPS_HI16
6307 || r_type == R_MIPS_GNU_REL_HI16
6308 || (r_type == R_MIPS_GOT16
6309 && mips_elf_local_relocation_p (input_bfd, rel,
6310 local_sections, FALSE)))
6311 {
6312 bfd_vma l;
6313 const Elf_Internal_Rela *lo16_relocation;
6314 reloc_howto_type *lo16_howto;
6315 unsigned int lo;
6316
6317 /* The combined value is the sum of the HI16 addend,
6318 left-shifted by sixteen bits, and the LO16
6319 addend, sign extended. (Usually, the code does
6320 a `lui' of the HI16 value, and then an `addiu' of
6321 the LO16 value.)
6322
6323 Scan ahead to find a matching LO16 relocation. */
6324 if (r_type == R_MIPS_GNU_REL_HI16)
6325 lo = R_MIPS_GNU_REL_LO16;
6326 else
6327 lo = R_MIPS_LO16;
6328 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6329 rel, relend);
6330 if (lo16_relocation == NULL)
6331 return FALSE;
6332
6333 /* Obtain the addend kept there. */
6334 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
6335 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6336 input_bfd, contents);
6337 l &= lo16_howto->src_mask;
6338 l <<= lo16_howto->rightshift;
6339 l = _bfd_mips_elf_sign_extend (l, 16);
6340
6341 addend <<= 16;
6342
6343 /* Compute the combined addend. */
6344 addend += l;
6345
6346 /* If PC-relative, subtract the difference between the
6347 address of the LO part of the reloc and the address of
6348 the HI part. The relocation is relative to the LO
6349 part, but mips_elf_calculate_relocation() doesn't
6350 know its address or the difference from the HI part, so
6351 we subtract that difference here. See also the
6352 comment in mips_elf_calculate_relocation(). */
6353 if (r_type == R_MIPS_GNU_REL_HI16)
6354 addend -= (lo16_relocation->r_offset - rel->r_offset);
6355 }
6356 else if (r_type == R_MIPS16_GPREL)
6357 {
6358 /* The addend is scrambled in the object file. See
6359 mips_elf_perform_relocation for details on the
6360 format. */
6361 addend = (((addend & 0x1f0000) >> 5)
6362 | ((addend & 0x7e00000) >> 16)
6363 | (addend & 0x1f));
6364 }
6365 }
6366 else
6367 addend = rel->r_addend;
6368 }
6369
6370 if (info->relocatable)
6371 {
6372 Elf_Internal_Sym *sym;
6373 unsigned long r_symndx;
6374
6375 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6376 && bfd_big_endian (input_bfd))
6377 rel->r_offset -= 4;
6378
6379 /* Since we're just relocating, all we need to do is copy
6380 the relocations back out to the object file, unless
6381 they're against a section symbol, in which case we need
6382 to adjust by the section offset, or unless they're GP
6383 relative in which case we need to adjust by the amount
6384 that we're adjusting GP in this relocatable object. */
6385
6386 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6387 FALSE))
6388 /* There's nothing to do for non-local relocations. */
6389 continue;
6390
6391 if (r_type == R_MIPS16_GPREL
6392 || r_type == R_MIPS_GPREL16
6393 || r_type == R_MIPS_GPREL32
6394 || r_type == R_MIPS_LITERAL)
6395 addend -= (_bfd_get_gp_value (output_bfd)
6396 - _bfd_get_gp_value (input_bfd));
6397
6398 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6399 sym = local_syms + r_symndx;
6400 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6401 /* Adjust the addend appropriately. */
6402 addend += local_sections[r_symndx]->output_offset;
6403
6404 if (howto->partial_inplace)
6405 {
6406 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6407 then we only want to write out the high-order 16 bits.
6408 The subsequent R_MIPS_LO16 will handle the low-order bits.
6409 */
6410 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6411 || r_type == R_MIPS_GNU_REL_HI16)
6412 addend = mips_elf_high (addend);
6413 else if (r_type == R_MIPS_HIGHER)
6414 addend = mips_elf_higher (addend);
6415 else if (r_type == R_MIPS_HIGHEST)
6416 addend = mips_elf_highest (addend);
6417 }
6418
6419 if (rela_relocation_p)
6420 /* If this is a RELA relocation, just update the addend.
6421 We have to cast away constness for REL. */
6422 rel->r_addend = addend;
6423 else
6424 {
6425 /* Otherwise, we have to write the value back out. Note
6426 that we use the source mask, rather than the
6427 destination mask because the place to which we are
6428 writing will be source of the addend in the final
6429 link. */
6430 addend >>= howto->rightshift;
6431 addend &= howto->src_mask;
6432
6433 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6434 /* See the comment above about using R_MIPS_64 in the 32-bit
6435 ABI. Here, we need to update the addend. It would be
6436 possible to get away with just using the R_MIPS_32 reloc
6437 but for endianness. */
6438 {
6439 bfd_vma sign_bits;
6440 bfd_vma low_bits;
6441 bfd_vma high_bits;
6442
6443 if (addend & ((bfd_vma) 1 << 31))
6444 #ifdef BFD64
6445 sign_bits = ((bfd_vma) 1 << 32) - 1;
6446 #else
6447 sign_bits = -1;
6448 #endif
6449 else
6450 sign_bits = 0;
6451
6452 /* If we don't know that we have a 64-bit type,
6453 do two separate stores. */
6454 if (bfd_big_endian (input_bfd))
6455 {
6456 /* Store the sign-bits (which are most significant)
6457 first. */
6458 low_bits = sign_bits;
6459 high_bits = addend;
6460 }
6461 else
6462 {
6463 low_bits = addend;
6464 high_bits = sign_bits;
6465 }
6466 bfd_put_32 (input_bfd, low_bits,
6467 contents + rel->r_offset);
6468 bfd_put_32 (input_bfd, high_bits,
6469 contents + rel->r_offset + 4);
6470 continue;
6471 }
6472
6473 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6474 input_bfd, input_section,
6475 contents, FALSE))
6476 return FALSE;
6477 }
6478
6479 /* Go on to the next relocation. */
6480 continue;
6481 }
6482
6483 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6484 relocations for the same offset. In that case we are
6485 supposed to treat the output of each relocation as the addend
6486 for the next. */
6487 if (rel + 1 < relend
6488 && rel->r_offset == rel[1].r_offset
6489 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6490 use_saved_addend_p = TRUE;
6491 else
6492 use_saved_addend_p = FALSE;
6493
6494 addend >>= howto->rightshift;
6495
6496 /* Figure out what value we are supposed to relocate. */
6497 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6498 input_section, info, rel,
6499 addend, howto, local_syms,
6500 local_sections, &value,
6501 &name, &require_jalx,
6502 use_saved_addend_p))
6503 {
6504 case bfd_reloc_continue:
6505 /* There's nothing to do. */
6506 continue;
6507
6508 case bfd_reloc_undefined:
6509 /* mips_elf_calculate_relocation already called the
6510 undefined_symbol callback. There's no real point in
6511 trying to perform the relocation at this point, so we
6512 just skip ahead to the next relocation. */
6513 continue;
6514
6515 case bfd_reloc_notsupported:
6516 msg = _("internal error: unsupported relocation error");
6517 info->callbacks->warning
6518 (info, msg, name, input_bfd, input_section, rel->r_offset);
6519 return FALSE;
6520
6521 case bfd_reloc_overflow:
6522 if (use_saved_addend_p)
6523 /* Ignore overflow until we reach the last relocation for
6524 a given location. */
6525 ;
6526 else
6527 {
6528 BFD_ASSERT (name != NULL);
6529 if (! ((*info->callbacks->reloc_overflow)
6530 (info, name, howto->name, (bfd_vma) 0,
6531 input_bfd, input_section, rel->r_offset)))
6532 return FALSE;
6533 }
6534 break;
6535
6536 case bfd_reloc_ok:
6537 break;
6538
6539 default:
6540 abort ();
6541 break;
6542 }
6543
6544 /* If we've got another relocation for the address, keep going
6545 until we reach the last one. */
6546 if (use_saved_addend_p)
6547 {
6548 addend = value;
6549 continue;
6550 }
6551
6552 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6553 /* See the comment above about using R_MIPS_64 in the 32-bit
6554 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6555 that calculated the right value. Now, however, we
6556 sign-extend the 32-bit result to 64-bits, and store it as a
6557 64-bit value. We are especially generous here in that we
6558 go to extreme lengths to support this usage on systems with
6559 only a 32-bit VMA. */
6560 {
6561 bfd_vma sign_bits;
6562 bfd_vma low_bits;
6563 bfd_vma high_bits;
6564
6565 if (value & ((bfd_vma) 1 << 31))
6566 #ifdef BFD64
6567 sign_bits = ((bfd_vma) 1 << 32) - 1;
6568 #else
6569 sign_bits = -1;
6570 #endif
6571 else
6572 sign_bits = 0;
6573
6574 /* If we don't know that we have a 64-bit type,
6575 do two separate stores. */
6576 if (bfd_big_endian (input_bfd))
6577 {
6578 /* Undo what we did above. */
6579 rel->r_offset -= 4;
6580 /* Store the sign-bits (which are most significant)
6581 first. */
6582 low_bits = sign_bits;
6583 high_bits = value;
6584 }
6585 else
6586 {
6587 low_bits = value;
6588 high_bits = sign_bits;
6589 }
6590 bfd_put_32 (input_bfd, low_bits,
6591 contents + rel->r_offset);
6592 bfd_put_32 (input_bfd, high_bits,
6593 contents + rel->r_offset + 4);
6594 continue;
6595 }
6596
6597 /* Actually perform the relocation. */
6598 if (! mips_elf_perform_relocation (info, howto, rel, value,
6599 input_bfd, input_section,
6600 contents, require_jalx))
6601 return FALSE;
6602 }
6603
6604 return TRUE;
6605 }
6606 \f
6607 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6608 adjust it appropriately now. */
6609
6610 static void
6611 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6612 bfd *abfd ATTRIBUTE_UNUSED;
6613 const char *name;
6614 Elf_Internal_Sym *sym;
6615 {
6616 /* The linker script takes care of providing names and values for
6617 these, but we must place them into the right sections. */
6618 static const char* const text_section_symbols[] = {
6619 "_ftext",
6620 "_etext",
6621 "__dso_displacement",
6622 "__elf_header",
6623 "__program_header_table",
6624 NULL
6625 };
6626
6627 static const char* const data_section_symbols[] = {
6628 "_fdata",
6629 "_edata",
6630 "_end",
6631 "_fbss",
6632 NULL
6633 };
6634
6635 const char* const *p;
6636 int i;
6637
6638 for (i = 0; i < 2; ++i)
6639 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6640 *p;
6641 ++p)
6642 if (strcmp (*p, name) == 0)
6643 {
6644 /* All of these symbols are given type STT_SECTION by the
6645 IRIX6 linker. */
6646 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6647
6648 /* The IRIX linker puts these symbols in special sections. */
6649 if (i == 0)
6650 sym->st_shndx = SHN_MIPS_TEXT;
6651 else
6652 sym->st_shndx = SHN_MIPS_DATA;
6653
6654 break;
6655 }
6656 }
6657
6658 /* Finish up dynamic symbol handling. We set the contents of various
6659 dynamic sections here. */
6660
6661 bfd_boolean
6662 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6663 bfd *output_bfd;
6664 struct bfd_link_info *info;
6665 struct elf_link_hash_entry *h;
6666 Elf_Internal_Sym *sym;
6667 {
6668 bfd *dynobj;
6669 bfd_vma gval;
6670 asection *sgot;
6671 asection *smsym;
6672 struct mips_got_info *g, *gg;
6673 const char *name;
6674 struct mips_elf_link_hash_entry *mh;
6675
6676 dynobj = elf_hash_table (info)->dynobj;
6677 gval = sym->st_value;
6678 mh = (struct mips_elf_link_hash_entry *) h;
6679
6680 if (h->plt.offset != (bfd_vma) -1)
6681 {
6682 asection *s;
6683 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6684
6685 /* This symbol has a stub. Set it up. */
6686
6687 BFD_ASSERT (h->dynindx != -1);
6688
6689 s = bfd_get_section_by_name (dynobj,
6690 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6691 BFD_ASSERT (s != NULL);
6692
6693 /* FIXME: Can h->dynindex be more than 64K? */
6694 if (h->dynindx & 0xffff0000)
6695 return FALSE;
6696
6697 /* Fill the stub. */
6698 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6699 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6700 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6701 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6702
6703 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6704 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6705
6706 /* Mark the symbol as undefined. plt.offset != -1 occurs
6707 only for the referenced symbol. */
6708 sym->st_shndx = SHN_UNDEF;
6709
6710 /* The run-time linker uses the st_value field of the symbol
6711 to reset the global offset table entry for this external
6712 to its stub address when unlinking a shared object. */
6713 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6714 sym->st_value = gval;
6715 }
6716
6717 BFD_ASSERT (h->dynindx != -1
6718 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6719
6720 sgot = mips_elf_got_section (dynobj, FALSE);
6721 BFD_ASSERT (sgot != NULL);
6722 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6723 g = mips_elf_section_data (sgot)->u.got_info;
6724 BFD_ASSERT (g != NULL);
6725
6726 /* Run through the global symbol table, creating GOT entries for all
6727 the symbols that need them. */
6728 if (g->global_gotsym != NULL
6729 && h->dynindx >= g->global_gotsym->dynindx)
6730 {
6731 bfd_vma offset;
6732 bfd_vma value;
6733
6734 if (sym->st_value)
6735 value = sym->st_value;
6736 else
6737 {
6738 /* For an entity defined in a shared object, this will be
6739 NULL. (For functions in shared objects for
6740 which we have created stubs, ST_VALUE will be non-NULL.
6741 That's because such the functions are now no longer defined
6742 in a shared object.) */
6743
6744 if ((info->shared && h->root.type == bfd_link_hash_undefined)
6745 || h->root.type == bfd_link_hash_undefweak)
6746 value = 0;
6747 else
6748 value = h->root.u.def.value;
6749 }
6750 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6751 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6752 }
6753
6754 if (g->next && h->dynindx != -1)
6755 {
6756 struct mips_got_entry e, *p;
6757 bfd_vma offset;
6758 bfd_vma value;
6759 Elf_Internal_Rela rel[3];
6760 bfd_vma addend = 0;
6761
6762 gg = g;
6763
6764 e.abfd = output_bfd;
6765 e.symndx = -1;
6766 e.d.h = (struct mips_elf_link_hash_entry *)h;
6767
6768 if (info->shared
6769 || h->root.type == bfd_link_hash_undefined
6770 || h->root.type == bfd_link_hash_undefweak)
6771 value = 0;
6772 else if (sym->st_value)
6773 value = sym->st_value;
6774 else
6775 value = h->root.u.def.value;
6776
6777 memset (rel, 0, sizeof (rel));
6778 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6779
6780 for (g = g->next; g->next != gg; g = g->next)
6781 {
6782 if (g->got_entries
6783 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6784 &e)))
6785 {
6786 offset = p->gotidx;
6787 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6788
6789 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6790
6791 if ((info->shared
6792 || (elf_hash_table (info)->dynamic_sections_created
6793 && p->d.h != NULL
6794 && ((p->d.h->root.elf_link_hash_flags
6795 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6796 && ((p->d.h->root.elf_link_hash_flags
6797 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6798 && ! (mips_elf_create_dynamic_relocation
6799 (output_bfd, info, rel,
6800 e.d.h, NULL, value, &addend, sgot)))
6801 return FALSE;
6802 BFD_ASSERT (addend == 0);
6803 }
6804 }
6805 }
6806
6807 /* Create a .msym entry, if appropriate. */
6808 smsym = bfd_get_section_by_name (dynobj, ".msym");
6809 if (smsym)
6810 {
6811 Elf32_Internal_Msym msym;
6812
6813 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6814 /* It is undocumented what the `1' indicates, but IRIX6 uses
6815 this value. */
6816 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6817 bfd_mips_elf_swap_msym_out
6818 (dynobj, &msym,
6819 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6820 }
6821
6822 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6823 name = h->root.root.string;
6824 if (strcmp (name, "_DYNAMIC") == 0
6825 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6826 sym->st_shndx = SHN_ABS;
6827 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6828 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6829 {
6830 sym->st_shndx = SHN_ABS;
6831 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6832 sym->st_value = 1;
6833 }
6834 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6835 {
6836 sym->st_shndx = SHN_ABS;
6837 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6838 sym->st_value = elf_gp (output_bfd);
6839 }
6840 else if (SGI_COMPAT (output_bfd))
6841 {
6842 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6843 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6844 {
6845 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6846 sym->st_other = STO_PROTECTED;
6847 sym->st_value = 0;
6848 sym->st_shndx = SHN_MIPS_DATA;
6849 }
6850 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6851 {
6852 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6853 sym->st_other = STO_PROTECTED;
6854 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6855 sym->st_shndx = SHN_ABS;
6856 }
6857 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6858 {
6859 if (h->type == STT_FUNC)
6860 sym->st_shndx = SHN_MIPS_TEXT;
6861 else if (h->type == STT_OBJECT)
6862 sym->st_shndx = SHN_MIPS_DATA;
6863 }
6864 }
6865
6866 /* Handle the IRIX6-specific symbols. */
6867 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6868 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6869
6870 if (! info->shared)
6871 {
6872 if (! mips_elf_hash_table (info)->use_rld_obj_head
6873 && (strcmp (name, "__rld_map") == 0
6874 || strcmp (name, "__RLD_MAP") == 0))
6875 {
6876 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6877 BFD_ASSERT (s != NULL);
6878 sym->st_value = s->output_section->vma + s->output_offset;
6879 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6880 if (mips_elf_hash_table (info)->rld_value == 0)
6881 mips_elf_hash_table (info)->rld_value = sym->st_value;
6882 }
6883 else if (mips_elf_hash_table (info)->use_rld_obj_head
6884 && strcmp (name, "__rld_obj_head") == 0)
6885 {
6886 /* IRIX6 does not use a .rld_map section. */
6887 if (IRIX_COMPAT (output_bfd) == ict_irix5
6888 || IRIX_COMPAT (output_bfd) == ict_none)
6889 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6890 != NULL);
6891 mips_elf_hash_table (info)->rld_value = sym->st_value;
6892 }
6893 }
6894
6895 /* If this is a mips16 symbol, force the value to be even. */
6896 if (sym->st_other == STO_MIPS16
6897 && (sym->st_value & 1) != 0)
6898 --sym->st_value;
6899
6900 return TRUE;
6901 }
6902
6903 /* Finish up the dynamic sections. */
6904
6905 bfd_boolean
6906 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6907 bfd *output_bfd;
6908 struct bfd_link_info *info;
6909 {
6910 bfd *dynobj;
6911 asection *sdyn;
6912 asection *sgot;
6913 struct mips_got_info *gg, *g;
6914
6915 dynobj = elf_hash_table (info)->dynobj;
6916
6917 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6918
6919 sgot = mips_elf_got_section (dynobj, FALSE);
6920 if (sgot == NULL)
6921 gg = g = NULL;
6922 else
6923 {
6924 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6925 gg = mips_elf_section_data (sgot)->u.got_info;
6926 BFD_ASSERT (gg != NULL);
6927 g = mips_elf_got_for_ibfd (gg, output_bfd);
6928 BFD_ASSERT (g != NULL);
6929 }
6930
6931 if (elf_hash_table (info)->dynamic_sections_created)
6932 {
6933 bfd_byte *b;
6934
6935 BFD_ASSERT (sdyn != NULL);
6936 BFD_ASSERT (g != NULL);
6937
6938 for (b = sdyn->contents;
6939 b < sdyn->contents + sdyn->_raw_size;
6940 b += MIPS_ELF_DYN_SIZE (dynobj))
6941 {
6942 Elf_Internal_Dyn dyn;
6943 const char *name;
6944 size_t elemsize;
6945 asection *s;
6946 bfd_boolean swap_out_p;
6947
6948 /* Read in the current dynamic entry. */
6949 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6950
6951 /* Assume that we're going to modify it and write it out. */
6952 swap_out_p = TRUE;
6953
6954 switch (dyn.d_tag)
6955 {
6956 case DT_RELENT:
6957 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6958 BFD_ASSERT (s != NULL);
6959 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6960 break;
6961
6962 case DT_STRSZ:
6963 /* Rewrite DT_STRSZ. */
6964 dyn.d_un.d_val =
6965 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6966 break;
6967
6968 case DT_PLTGOT:
6969 name = ".got";
6970 goto get_vma;
6971 case DT_MIPS_CONFLICT:
6972 name = ".conflict";
6973 goto get_vma;
6974 case DT_MIPS_LIBLIST:
6975 name = ".liblist";
6976 get_vma:
6977 s = bfd_get_section_by_name (output_bfd, name);
6978 BFD_ASSERT (s != NULL);
6979 dyn.d_un.d_ptr = s->vma;
6980 break;
6981
6982 case DT_MIPS_RLD_VERSION:
6983 dyn.d_un.d_val = 1; /* XXX */
6984 break;
6985
6986 case DT_MIPS_FLAGS:
6987 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6988 break;
6989
6990 case DT_MIPS_CONFLICTNO:
6991 name = ".conflict";
6992 elemsize = sizeof (Elf32_Conflict);
6993 goto set_elemno;
6994
6995 case DT_MIPS_LIBLISTNO:
6996 name = ".liblist";
6997 elemsize = sizeof (Elf32_Lib);
6998 set_elemno:
6999 s = bfd_get_section_by_name (output_bfd, name);
7000 if (s != NULL)
7001 {
7002 if (s->_cooked_size != 0)
7003 dyn.d_un.d_val = s->_cooked_size / elemsize;
7004 else
7005 dyn.d_un.d_val = s->_raw_size / elemsize;
7006 }
7007 else
7008 dyn.d_un.d_val = 0;
7009 break;
7010
7011 case DT_MIPS_TIME_STAMP:
7012 time ((time_t *) &dyn.d_un.d_val);
7013 break;
7014
7015 case DT_MIPS_ICHECKSUM:
7016 /* XXX FIXME: */
7017 swap_out_p = FALSE;
7018 break;
7019
7020 case DT_MIPS_IVERSION:
7021 /* XXX FIXME: */
7022 swap_out_p = FALSE;
7023 break;
7024
7025 case DT_MIPS_BASE_ADDRESS:
7026 s = output_bfd->sections;
7027 BFD_ASSERT (s != NULL);
7028 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7029 break;
7030
7031 case DT_MIPS_LOCAL_GOTNO:
7032 dyn.d_un.d_val = g->local_gotno;
7033 break;
7034
7035 case DT_MIPS_UNREFEXTNO:
7036 /* The index into the dynamic symbol table which is the
7037 entry of the first external symbol that is not
7038 referenced within the same object. */
7039 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7040 break;
7041
7042 case DT_MIPS_GOTSYM:
7043 if (gg->global_gotsym)
7044 {
7045 dyn.d_un.d_val = gg->global_gotsym->dynindx;
7046 break;
7047 }
7048 /* In case if we don't have global got symbols we default
7049 to setting DT_MIPS_GOTSYM to the same value as
7050 DT_MIPS_SYMTABNO, so we just fall through. */
7051
7052 case DT_MIPS_SYMTABNO:
7053 name = ".dynsym";
7054 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7055 s = bfd_get_section_by_name (output_bfd, name);
7056 BFD_ASSERT (s != NULL);
7057
7058 if (s->_cooked_size != 0)
7059 dyn.d_un.d_val = s->_cooked_size / elemsize;
7060 else
7061 dyn.d_un.d_val = s->_raw_size / elemsize;
7062 break;
7063
7064 case DT_MIPS_HIPAGENO:
7065 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7066 break;
7067
7068 case DT_MIPS_RLD_MAP:
7069 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7070 break;
7071
7072 case DT_MIPS_OPTIONS:
7073 s = (bfd_get_section_by_name
7074 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7075 dyn.d_un.d_ptr = s->vma;
7076 break;
7077
7078 case DT_MIPS_MSYM:
7079 s = (bfd_get_section_by_name (output_bfd, ".msym"));
7080 dyn.d_un.d_ptr = s->vma;
7081 break;
7082
7083 default:
7084 swap_out_p = FALSE;
7085 break;
7086 }
7087
7088 if (swap_out_p)
7089 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7090 (dynobj, &dyn, b);
7091 }
7092 }
7093
7094 /* The first entry of the global offset table will be filled at
7095 runtime. The second entry will be used by some runtime loaders.
7096 This isn't the case of IRIX rld. */
7097 if (sgot != NULL && sgot->_raw_size > 0)
7098 {
7099 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
7100 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
7101 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7102 }
7103
7104 if (sgot != NULL)
7105 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7106 = MIPS_ELF_GOT_SIZE (output_bfd);
7107
7108 /* Generate dynamic relocations for the non-primary gots. */
7109 if (gg != NULL && gg->next)
7110 {
7111 Elf_Internal_Rela rel[3];
7112 bfd_vma addend = 0;
7113
7114 memset (rel, 0, sizeof (rel));
7115 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7116
7117 for (g = gg->next; g->next != gg; g = g->next)
7118 {
7119 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7120
7121 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
7122 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7123 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
7124 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7125
7126 if (! info->shared)
7127 continue;
7128
7129 while (index < g->assigned_gotno)
7130 {
7131 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7132 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7133 if (!(mips_elf_create_dynamic_relocation
7134 (output_bfd, info, rel, NULL,
7135 bfd_abs_section_ptr,
7136 0, &addend, sgot)))
7137 return FALSE;
7138 BFD_ASSERT (addend == 0);
7139 }
7140 }
7141 }
7142
7143 {
7144 asection *smsym;
7145 asection *s;
7146 Elf32_compact_rel cpt;
7147
7148 /* ??? The section symbols for the output sections were set up in
7149 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
7150 symbols. Should we do so? */
7151
7152 smsym = bfd_get_section_by_name (dynobj, ".msym");
7153 if (smsym != NULL)
7154 {
7155 Elf32_Internal_Msym msym;
7156
7157 msym.ms_hash_value = 0;
7158 msym.ms_info = ELF32_MS_INFO (0, 1);
7159
7160 for (s = output_bfd->sections; s != NULL; s = s->next)
7161 {
7162 long dynindx = elf_section_data (s)->dynindx;
7163
7164 bfd_mips_elf_swap_msym_out
7165 (output_bfd, &msym,
7166 (((Elf32_External_Msym *) smsym->contents)
7167 + dynindx));
7168 }
7169 }
7170
7171 if (SGI_COMPAT (output_bfd))
7172 {
7173 /* Write .compact_rel section out. */
7174 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7175 if (s != NULL)
7176 {
7177 cpt.id1 = 1;
7178 cpt.num = s->reloc_count;
7179 cpt.id2 = 2;
7180 cpt.offset = (s->output_section->filepos
7181 + sizeof (Elf32_External_compact_rel));
7182 cpt.reserved0 = 0;
7183 cpt.reserved1 = 0;
7184 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7185 ((Elf32_External_compact_rel *)
7186 s->contents));
7187
7188 /* Clean up a dummy stub function entry in .text. */
7189 s = bfd_get_section_by_name (dynobj,
7190 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7191 if (s != NULL)
7192 {
7193 file_ptr dummy_offset;
7194
7195 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7196 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7197 memset (s->contents + dummy_offset, 0,
7198 MIPS_FUNCTION_STUB_SIZE);
7199 }
7200 }
7201 }
7202
7203 /* We need to sort the entries of the dynamic relocation section. */
7204
7205 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7206
7207 if (s != NULL
7208 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7209 {
7210 reldyn_sorting_bfd = output_bfd;
7211
7212 if (ABI_64_P (output_bfd))
7213 qsort ((Elf64_External_Rel *) s->contents + 1,
7214 (size_t) s->reloc_count - 1,
7215 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7216 else
7217 qsort ((Elf32_External_Rel *) s->contents + 1,
7218 (size_t) s->reloc_count - 1,
7219 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7220 }
7221 }
7222
7223 return TRUE;
7224 }
7225
7226
7227 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7228
7229 static void
7230 mips_set_isa_flags (abfd)
7231 bfd *abfd;
7232 {
7233 flagword val;
7234
7235 switch (bfd_get_mach (abfd))
7236 {
7237 default:
7238 case bfd_mach_mips3000:
7239 val = E_MIPS_ARCH_1;
7240 break;
7241
7242 case bfd_mach_mips3900:
7243 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7244 break;
7245
7246 case bfd_mach_mips6000:
7247 val = E_MIPS_ARCH_2;
7248 break;
7249
7250 case bfd_mach_mips4000:
7251 case bfd_mach_mips4300:
7252 case bfd_mach_mips4400:
7253 case bfd_mach_mips4600:
7254 val = E_MIPS_ARCH_3;
7255 break;
7256
7257 case bfd_mach_mips4010:
7258 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7259 break;
7260
7261 case bfd_mach_mips4100:
7262 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7263 break;
7264
7265 case bfd_mach_mips4111:
7266 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7267 break;
7268
7269 case bfd_mach_mips4120:
7270 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7271 break;
7272
7273 case bfd_mach_mips4650:
7274 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7275 break;
7276
7277 case bfd_mach_mips5400:
7278 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7279 break;
7280
7281 case bfd_mach_mips5500:
7282 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7283 break;
7284
7285 case bfd_mach_mips5000:
7286 case bfd_mach_mips8000:
7287 case bfd_mach_mips10000:
7288 case bfd_mach_mips12000:
7289 val = E_MIPS_ARCH_4;
7290 break;
7291
7292 case bfd_mach_mips5:
7293 val = E_MIPS_ARCH_5;
7294 break;
7295
7296 case bfd_mach_mips_sb1:
7297 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7298 break;
7299
7300 case bfd_mach_mipsisa32:
7301 val = E_MIPS_ARCH_32;
7302 break;
7303
7304 case bfd_mach_mipsisa64:
7305 val = E_MIPS_ARCH_64;
7306 break;
7307
7308 case bfd_mach_mipsisa32r2:
7309 val = E_MIPS_ARCH_32R2;
7310 break;
7311 }
7312 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7313 elf_elfheader (abfd)->e_flags |= val;
7314
7315 }
7316
7317
7318 /* The final processing done just before writing out a MIPS ELF object
7319 file. This gets the MIPS architecture right based on the machine
7320 number. This is used by both the 32-bit and the 64-bit ABI. */
7321
7322 void
7323 _bfd_mips_elf_final_write_processing (abfd, linker)
7324 bfd *abfd;
7325 bfd_boolean linker ATTRIBUTE_UNUSED;
7326 {
7327 unsigned int i;
7328 Elf_Internal_Shdr **hdrpp;
7329 const char *name;
7330 asection *sec;
7331
7332 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7333 is nonzero. This is for compatibility with old objects, which used
7334 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7335 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7336 mips_set_isa_flags (abfd);
7337
7338 /* Set the sh_info field for .gptab sections and other appropriate
7339 info for each special section. */
7340 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7341 i < elf_numsections (abfd);
7342 i++, hdrpp++)
7343 {
7344 switch ((*hdrpp)->sh_type)
7345 {
7346 case SHT_MIPS_MSYM:
7347 case SHT_MIPS_LIBLIST:
7348 sec = bfd_get_section_by_name (abfd, ".dynstr");
7349 if (sec != NULL)
7350 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7351 break;
7352
7353 case SHT_MIPS_GPTAB:
7354 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7355 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7356 BFD_ASSERT (name != NULL
7357 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7358 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7359 BFD_ASSERT (sec != NULL);
7360 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7361 break;
7362
7363 case SHT_MIPS_CONTENT:
7364 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7365 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7366 BFD_ASSERT (name != NULL
7367 && strncmp (name, ".MIPS.content",
7368 sizeof ".MIPS.content" - 1) == 0);
7369 sec = bfd_get_section_by_name (abfd,
7370 name + sizeof ".MIPS.content" - 1);
7371 BFD_ASSERT (sec != NULL);
7372 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7373 break;
7374
7375 case SHT_MIPS_SYMBOL_LIB:
7376 sec = bfd_get_section_by_name (abfd, ".dynsym");
7377 if (sec != NULL)
7378 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7379 sec = bfd_get_section_by_name (abfd, ".liblist");
7380 if (sec != NULL)
7381 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7382 break;
7383
7384 case SHT_MIPS_EVENTS:
7385 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7386 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7387 BFD_ASSERT (name != NULL);
7388 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7389 sec = bfd_get_section_by_name (abfd,
7390 name + sizeof ".MIPS.events" - 1);
7391 else
7392 {
7393 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7394 sizeof ".MIPS.post_rel" - 1) == 0);
7395 sec = bfd_get_section_by_name (abfd,
7396 (name
7397 + sizeof ".MIPS.post_rel" - 1));
7398 }
7399 BFD_ASSERT (sec != NULL);
7400 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7401 break;
7402
7403 }
7404 }
7405 }
7406 \f
7407 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7408 segments. */
7409
7410 int
7411 _bfd_mips_elf_additional_program_headers (abfd)
7412 bfd *abfd;
7413 {
7414 asection *s;
7415 int ret = 0;
7416
7417 /* See if we need a PT_MIPS_REGINFO segment. */
7418 s = bfd_get_section_by_name (abfd, ".reginfo");
7419 if (s && (s->flags & SEC_LOAD))
7420 ++ret;
7421
7422 /* See if we need a PT_MIPS_OPTIONS segment. */
7423 if (IRIX_COMPAT (abfd) == ict_irix6
7424 && bfd_get_section_by_name (abfd,
7425 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7426 ++ret;
7427
7428 /* See if we need a PT_MIPS_RTPROC segment. */
7429 if (IRIX_COMPAT (abfd) == ict_irix5
7430 && bfd_get_section_by_name (abfd, ".dynamic")
7431 && bfd_get_section_by_name (abfd, ".mdebug"))
7432 ++ret;
7433
7434 return ret;
7435 }
7436
7437 /* Modify the segment map for an IRIX5 executable. */
7438
7439 bfd_boolean
7440 _bfd_mips_elf_modify_segment_map (abfd)
7441 bfd *abfd;
7442 {
7443 asection *s;
7444 struct elf_segment_map *m, **pm;
7445 bfd_size_type amt;
7446
7447 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7448 segment. */
7449 s = bfd_get_section_by_name (abfd, ".reginfo");
7450 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7451 {
7452 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7453 if (m->p_type == PT_MIPS_REGINFO)
7454 break;
7455 if (m == NULL)
7456 {
7457 amt = sizeof *m;
7458 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7459 if (m == NULL)
7460 return FALSE;
7461
7462 m->p_type = PT_MIPS_REGINFO;
7463 m->count = 1;
7464 m->sections[0] = s;
7465
7466 /* We want to put it after the PHDR and INTERP segments. */
7467 pm = &elf_tdata (abfd)->segment_map;
7468 while (*pm != NULL
7469 && ((*pm)->p_type == PT_PHDR
7470 || (*pm)->p_type == PT_INTERP))
7471 pm = &(*pm)->next;
7472
7473 m->next = *pm;
7474 *pm = m;
7475 }
7476 }
7477
7478 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7479 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7480 PT_OPTIONS segment immediately following the program header
7481 table. */
7482 if (NEWABI_P (abfd)
7483 /* On non-IRIX6 new abi, we'll have already created a segment
7484 for this section, so don't create another. I'm not sure this
7485 is not also the case for IRIX 6, but I can't test it right
7486 now. */
7487 && IRIX_COMPAT (abfd) == ict_irix6)
7488 {
7489 for (s = abfd->sections; s; s = s->next)
7490 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7491 break;
7492
7493 if (s)
7494 {
7495 struct elf_segment_map *options_segment;
7496
7497 /* Usually, there's a program header table. But, sometimes
7498 there's not (like when running the `ld' testsuite). So,
7499 if there's no program header table, we just put the
7500 options segment at the end. */
7501 for (pm = &elf_tdata (abfd)->segment_map;
7502 *pm != NULL;
7503 pm = &(*pm)->next)
7504 if ((*pm)->p_type == PT_PHDR)
7505 break;
7506
7507 amt = sizeof (struct elf_segment_map);
7508 options_segment = bfd_zalloc (abfd, amt);
7509 options_segment->next = *pm;
7510 options_segment->p_type = PT_MIPS_OPTIONS;
7511 options_segment->p_flags = PF_R;
7512 options_segment->p_flags_valid = TRUE;
7513 options_segment->count = 1;
7514 options_segment->sections[0] = s;
7515 *pm = options_segment;
7516 }
7517 }
7518 else
7519 {
7520 if (IRIX_COMPAT (abfd) == ict_irix5)
7521 {
7522 /* If there are .dynamic and .mdebug sections, we make a room
7523 for the RTPROC header. FIXME: Rewrite without section names. */
7524 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7525 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7526 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7527 {
7528 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7529 if (m->p_type == PT_MIPS_RTPROC)
7530 break;
7531 if (m == NULL)
7532 {
7533 amt = sizeof *m;
7534 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7535 if (m == NULL)
7536 return FALSE;
7537
7538 m->p_type = PT_MIPS_RTPROC;
7539
7540 s = bfd_get_section_by_name (abfd, ".rtproc");
7541 if (s == NULL)
7542 {
7543 m->count = 0;
7544 m->p_flags = 0;
7545 m->p_flags_valid = 1;
7546 }
7547 else
7548 {
7549 m->count = 1;
7550 m->sections[0] = s;
7551 }
7552
7553 /* We want to put it after the DYNAMIC segment. */
7554 pm = &elf_tdata (abfd)->segment_map;
7555 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7556 pm = &(*pm)->next;
7557 if (*pm != NULL)
7558 pm = &(*pm)->next;
7559
7560 m->next = *pm;
7561 *pm = m;
7562 }
7563 }
7564 }
7565 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7566 .dynstr, .dynsym, and .hash sections, and everything in
7567 between. */
7568 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7569 pm = &(*pm)->next)
7570 if ((*pm)->p_type == PT_DYNAMIC)
7571 break;
7572 m = *pm;
7573 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7574 {
7575 /* For a normal mips executable the permissions for the PT_DYNAMIC
7576 segment are read, write and execute. We do that here since
7577 the code in elf.c sets only the read permission. This matters
7578 sometimes for the dynamic linker. */
7579 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7580 {
7581 m->p_flags = PF_R | PF_W | PF_X;
7582 m->p_flags_valid = 1;
7583 }
7584 }
7585 if (m != NULL
7586 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7587 {
7588 static const char *sec_names[] =
7589 {
7590 ".dynamic", ".dynstr", ".dynsym", ".hash"
7591 };
7592 bfd_vma low, high;
7593 unsigned int i, c;
7594 struct elf_segment_map *n;
7595
7596 low = 0xffffffff;
7597 high = 0;
7598 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7599 {
7600 s = bfd_get_section_by_name (abfd, sec_names[i]);
7601 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7602 {
7603 bfd_size_type sz;
7604
7605 if (low > s->vma)
7606 low = s->vma;
7607 sz = s->_cooked_size;
7608 if (sz == 0)
7609 sz = s->_raw_size;
7610 if (high < s->vma + sz)
7611 high = s->vma + sz;
7612 }
7613 }
7614
7615 c = 0;
7616 for (s = abfd->sections; s != NULL; s = s->next)
7617 if ((s->flags & SEC_LOAD) != 0
7618 && s->vma >= low
7619 && ((s->vma
7620 + (s->_cooked_size !=
7621 0 ? s->_cooked_size : s->_raw_size)) <= high))
7622 ++c;
7623
7624 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7625 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7626 if (n == NULL)
7627 return FALSE;
7628 *n = *m;
7629 n->count = c;
7630
7631 i = 0;
7632 for (s = abfd->sections; s != NULL; s = s->next)
7633 {
7634 if ((s->flags & SEC_LOAD) != 0
7635 && s->vma >= low
7636 && ((s->vma
7637 + (s->_cooked_size != 0 ?
7638 s->_cooked_size : s->_raw_size)) <= high))
7639 {
7640 n->sections[i] = s;
7641 ++i;
7642 }
7643 }
7644
7645 *pm = n;
7646 }
7647 }
7648
7649 return TRUE;
7650 }
7651 \f
7652 /* Return the section that should be marked against GC for a given
7653 relocation. */
7654
7655 asection *
7656 _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7657 asection *sec;
7658 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7659 Elf_Internal_Rela *rel;
7660 struct elf_link_hash_entry *h;
7661 Elf_Internal_Sym *sym;
7662 {
7663 /* ??? Do mips16 stub sections need to be handled special? */
7664
7665 if (h != NULL)
7666 {
7667 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7668 {
7669 case R_MIPS_GNU_VTINHERIT:
7670 case R_MIPS_GNU_VTENTRY:
7671 break;
7672
7673 default:
7674 switch (h->root.type)
7675 {
7676 case bfd_link_hash_defined:
7677 case bfd_link_hash_defweak:
7678 return h->root.u.def.section;
7679
7680 case bfd_link_hash_common:
7681 return h->root.u.c.p->section;
7682
7683 default:
7684 break;
7685 }
7686 }
7687 }
7688 else
7689 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7690
7691 return NULL;
7692 }
7693
7694 /* Update the got entry reference counts for the section being removed. */
7695
7696 bfd_boolean
7697 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7698 bfd *abfd ATTRIBUTE_UNUSED;
7699 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7700 asection *sec ATTRIBUTE_UNUSED;
7701 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7702 {
7703 #if 0
7704 Elf_Internal_Shdr *symtab_hdr;
7705 struct elf_link_hash_entry **sym_hashes;
7706 bfd_signed_vma *local_got_refcounts;
7707 const Elf_Internal_Rela *rel, *relend;
7708 unsigned long r_symndx;
7709 struct elf_link_hash_entry *h;
7710
7711 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7712 sym_hashes = elf_sym_hashes (abfd);
7713 local_got_refcounts = elf_local_got_refcounts (abfd);
7714
7715 relend = relocs + sec->reloc_count;
7716 for (rel = relocs; rel < relend; rel++)
7717 switch (ELF_R_TYPE (abfd, rel->r_info))
7718 {
7719 case R_MIPS_GOT16:
7720 case R_MIPS_CALL16:
7721 case R_MIPS_CALL_HI16:
7722 case R_MIPS_CALL_LO16:
7723 case R_MIPS_GOT_HI16:
7724 case R_MIPS_GOT_LO16:
7725 case R_MIPS_GOT_DISP:
7726 case R_MIPS_GOT_PAGE:
7727 case R_MIPS_GOT_OFST:
7728 /* ??? It would seem that the existing MIPS code does no sort
7729 of reference counting or whatnot on its GOT and PLT entries,
7730 so it is not possible to garbage collect them at this time. */
7731 break;
7732
7733 default:
7734 break;
7735 }
7736 #endif
7737
7738 return TRUE;
7739 }
7740 \f
7741 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7742 hiding the old indirect symbol. Process additional relocation
7743 information. Also called for weakdefs, in which case we just let
7744 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7745
7746 void
7747 _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7748 struct elf_backend_data *bed;
7749 struct elf_link_hash_entry *dir, *ind;
7750 {
7751 struct mips_elf_link_hash_entry *dirmips, *indmips;
7752
7753 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7754
7755 if (ind->root.type != bfd_link_hash_indirect)
7756 return;
7757
7758 dirmips = (struct mips_elf_link_hash_entry *) dir;
7759 indmips = (struct mips_elf_link_hash_entry *) ind;
7760 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7761 if (indmips->readonly_reloc)
7762 dirmips->readonly_reloc = TRUE;
7763 if (dirmips->min_dyn_reloc_index == 0
7764 || (indmips->min_dyn_reloc_index != 0
7765 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7766 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7767 if (indmips->no_fn_stub)
7768 dirmips->no_fn_stub = TRUE;
7769 }
7770
7771 void
7772 _bfd_mips_elf_hide_symbol (info, entry, force_local)
7773 struct bfd_link_info *info;
7774 struct elf_link_hash_entry *entry;
7775 bfd_boolean force_local;
7776 {
7777 bfd *dynobj;
7778 asection *got;
7779 struct mips_got_info *g;
7780 struct mips_elf_link_hash_entry *h;
7781
7782 h = (struct mips_elf_link_hash_entry *) entry;
7783 if (h->forced_local)
7784 return;
7785 h->forced_local = force_local;
7786
7787 dynobj = elf_hash_table (info)->dynobj;
7788 if (dynobj != NULL && force_local)
7789 {
7790 got = mips_elf_got_section (dynobj, FALSE);
7791 g = mips_elf_section_data (got)->u.got_info;
7792
7793 if (g->next)
7794 {
7795 struct mips_got_entry e;
7796 struct mips_got_info *gg = g;
7797
7798 /* Since we're turning what used to be a global symbol into a
7799 local one, bump up the number of local entries of each GOT
7800 that had an entry for it. This will automatically decrease
7801 the number of global entries, since global_gotno is actually
7802 the upper limit of global entries. */
7803 e.abfd = dynobj;
7804 e.symndx = -1;
7805 e.d.h = h;
7806
7807 for (g = g->next; g != gg; g = g->next)
7808 if (htab_find (g->got_entries, &e))
7809 {
7810 BFD_ASSERT (g->global_gotno > 0);
7811 g->local_gotno++;
7812 g->global_gotno--;
7813 }
7814
7815 /* If this was a global symbol forced into the primary GOT, we
7816 no longer need an entry for it. We can't release the entry
7817 at this point, but we must at least stop counting it as one
7818 of the symbols that required a forced got entry. */
7819 if (h->root.got.offset == 2)
7820 {
7821 BFD_ASSERT (gg->assigned_gotno > 0);
7822 gg->assigned_gotno--;
7823 }
7824 }
7825 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7826 /* If we haven't got through GOT allocation yet, just bump up the
7827 number of local entries, as this symbol won't be counted as
7828 global. */
7829 g->local_gotno++;
7830 else if (h->root.got.offset == 1)
7831 {
7832 /* If we're past non-multi-GOT allocation and this symbol had
7833 been marked for a global got entry, give it a local entry
7834 instead. */
7835 BFD_ASSERT (g->global_gotno > 0);
7836 g->local_gotno++;
7837 g->global_gotno--;
7838 }
7839 }
7840
7841 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7842 }
7843 \f
7844 #define PDR_SIZE 32
7845
7846 bfd_boolean
7847 _bfd_mips_elf_discard_info (abfd, cookie, info)
7848 bfd *abfd;
7849 struct elf_reloc_cookie *cookie;
7850 struct bfd_link_info *info;
7851 {
7852 asection *o;
7853 bfd_boolean ret = FALSE;
7854 unsigned char *tdata;
7855 size_t i, skip;
7856
7857 o = bfd_get_section_by_name (abfd, ".pdr");
7858 if (! o)
7859 return FALSE;
7860 if (o->_raw_size == 0)
7861 return FALSE;
7862 if (o->_raw_size % PDR_SIZE != 0)
7863 return FALSE;
7864 if (o->output_section != NULL
7865 && bfd_is_abs_section (o->output_section))
7866 return FALSE;
7867
7868 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7869 if (! tdata)
7870 return FALSE;
7871
7872 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
7873 (Elf_Internal_Rela *) NULL,
7874 info->keep_memory);
7875 if (!cookie->rels)
7876 {
7877 free (tdata);
7878 return FALSE;
7879 }
7880
7881 cookie->rel = cookie->rels;
7882 cookie->relend = cookie->rels + o->reloc_count;
7883
7884 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
7885 {
7886 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
7887 {
7888 tdata[i] = 1;
7889 skip ++;
7890 }
7891 }
7892
7893 if (skip != 0)
7894 {
7895 mips_elf_section_data (o)->u.tdata = tdata;
7896 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7897 ret = TRUE;
7898 }
7899 else
7900 free (tdata);
7901
7902 if (! info->keep_memory)
7903 free (cookie->rels);
7904
7905 return ret;
7906 }
7907
7908 bfd_boolean
7909 _bfd_mips_elf_ignore_discarded_relocs (sec)
7910 asection *sec;
7911 {
7912 if (strcmp (sec->name, ".pdr") == 0)
7913 return TRUE;
7914 return FALSE;
7915 }
7916
7917 bfd_boolean
7918 _bfd_mips_elf_write_section (output_bfd, sec, contents)
7919 bfd *output_bfd;
7920 asection *sec;
7921 bfd_byte *contents;
7922 {
7923 bfd_byte *to, *from, *end;
7924 int i;
7925
7926 if (strcmp (sec->name, ".pdr") != 0)
7927 return FALSE;
7928
7929 if (mips_elf_section_data (sec)->u.tdata == NULL)
7930 return FALSE;
7931
7932 to = contents;
7933 end = contents + sec->_raw_size;
7934 for (from = contents, i = 0;
7935 from < end;
7936 from += PDR_SIZE, i++)
7937 {
7938 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7939 continue;
7940 if (to != from)
7941 memcpy (to, from, PDR_SIZE);
7942 to += PDR_SIZE;
7943 }
7944 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7945 (file_ptr) sec->output_offset,
7946 sec->_cooked_size);
7947 return TRUE;
7948 }
7949 \f
7950 /* MIPS ELF uses a special find_nearest_line routine in order the
7951 handle the ECOFF debugging information. */
7952
7953 struct mips_elf_find_line
7954 {
7955 struct ecoff_debug_info d;
7956 struct ecoff_find_line i;
7957 };
7958
7959 bfd_boolean
7960 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7961 functionname_ptr, line_ptr)
7962 bfd *abfd;
7963 asection *section;
7964 asymbol **symbols;
7965 bfd_vma offset;
7966 const char **filename_ptr;
7967 const char **functionname_ptr;
7968 unsigned int *line_ptr;
7969 {
7970 asection *msec;
7971
7972 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7973 filename_ptr, functionname_ptr,
7974 line_ptr))
7975 return TRUE;
7976
7977 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7978 filename_ptr, functionname_ptr,
7979 line_ptr,
7980 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7981 &elf_tdata (abfd)->dwarf2_find_line_info))
7982 return TRUE;
7983
7984 msec = bfd_get_section_by_name (abfd, ".mdebug");
7985 if (msec != NULL)
7986 {
7987 flagword origflags;
7988 struct mips_elf_find_line *fi;
7989 const struct ecoff_debug_swap * const swap =
7990 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7991
7992 /* If we are called during a link, mips_elf_final_link may have
7993 cleared the SEC_HAS_CONTENTS field. We force it back on here
7994 if appropriate (which it normally will be). */
7995 origflags = msec->flags;
7996 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7997 msec->flags |= SEC_HAS_CONTENTS;
7998
7999 fi = elf_tdata (abfd)->find_line_info;
8000 if (fi == NULL)
8001 {
8002 bfd_size_type external_fdr_size;
8003 char *fraw_src;
8004 char *fraw_end;
8005 struct fdr *fdr_ptr;
8006 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8007
8008 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
8009 if (fi == NULL)
8010 {
8011 msec->flags = origflags;
8012 return FALSE;
8013 }
8014
8015 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8016 {
8017 msec->flags = origflags;
8018 return FALSE;
8019 }
8020
8021 /* Swap in the FDR information. */
8022 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
8023 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
8024 if (fi->d.fdr == NULL)
8025 {
8026 msec->flags = origflags;
8027 return FALSE;
8028 }
8029 external_fdr_size = swap->external_fdr_size;
8030 fdr_ptr = fi->d.fdr;
8031 fraw_src = (char *) fi->d.external_fdr;
8032 fraw_end = (fraw_src
8033 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8034 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
8035 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
8036
8037 elf_tdata (abfd)->find_line_info = fi;
8038
8039 /* Note that we don't bother to ever free this information.
8040 find_nearest_line is either called all the time, as in
8041 objdump -l, so the information should be saved, or it is
8042 rarely called, as in ld error messages, so the memory
8043 wasted is unimportant. Still, it would probably be a
8044 good idea for free_cached_info to throw it away. */
8045 }
8046
8047 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8048 &fi->i, filename_ptr, functionname_ptr,
8049 line_ptr))
8050 {
8051 msec->flags = origflags;
8052 return TRUE;
8053 }
8054
8055 msec->flags = origflags;
8056 }
8057
8058 /* Fall back on the generic ELF find_nearest_line routine. */
8059
8060 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8061 filename_ptr, functionname_ptr,
8062 line_ptr);
8063 }
8064 \f
8065 /* When are writing out the .options or .MIPS.options section,
8066 remember the bytes we are writing out, so that we can install the
8067 GP value in the section_processing routine. */
8068
8069 bfd_boolean
8070 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
8071 bfd *abfd;
8072 sec_ptr section;
8073 PTR location;
8074 file_ptr offset;
8075 bfd_size_type count;
8076 {
8077 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8078 {
8079 bfd_byte *c;
8080
8081 if (elf_section_data (section) == NULL)
8082 {
8083 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8084 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
8085 if (elf_section_data (section) == NULL)
8086 return FALSE;
8087 }
8088 c = mips_elf_section_data (section)->u.tdata;
8089 if (c == NULL)
8090 {
8091 bfd_size_type size;
8092
8093 if (section->_cooked_size != 0)
8094 size = section->_cooked_size;
8095 else
8096 size = section->_raw_size;
8097 c = (bfd_byte *) bfd_zalloc (abfd, size);
8098 if (c == NULL)
8099 return FALSE;
8100 mips_elf_section_data (section)->u.tdata = c;
8101 }
8102
8103 memcpy (c + offset, location, (size_t) count);
8104 }
8105
8106 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8107 count);
8108 }
8109
8110 /* This is almost identical to bfd_generic_get_... except that some
8111 MIPS relocations need to be handled specially. Sigh. */
8112
8113 bfd_byte *
8114 _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
8115 data, relocatable, symbols)
8116 bfd *abfd;
8117 struct bfd_link_info *link_info;
8118 struct bfd_link_order *link_order;
8119 bfd_byte *data;
8120 bfd_boolean relocatable;
8121 asymbol **symbols;
8122 {
8123 /* Get enough memory to hold the stuff */
8124 bfd *input_bfd = link_order->u.indirect.section->owner;
8125 asection *input_section = link_order->u.indirect.section;
8126
8127 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8128 arelent **reloc_vector = NULL;
8129 long reloc_count;
8130
8131 if (reloc_size < 0)
8132 goto error_return;
8133
8134 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
8135 if (reloc_vector == NULL && reloc_size != 0)
8136 goto error_return;
8137
8138 /* read in the section */
8139 if (!bfd_get_section_contents (input_bfd,
8140 input_section,
8141 (PTR) data,
8142 (file_ptr) 0,
8143 input_section->_raw_size))
8144 goto error_return;
8145
8146 /* We're not relaxing the section, so just copy the size info */
8147 input_section->_cooked_size = input_section->_raw_size;
8148 input_section->reloc_done = TRUE;
8149
8150 reloc_count = bfd_canonicalize_reloc (input_bfd,
8151 input_section,
8152 reloc_vector,
8153 symbols);
8154 if (reloc_count < 0)
8155 goto error_return;
8156
8157 if (reloc_count > 0)
8158 {
8159 arelent **parent;
8160 /* for mips */
8161 int gp_found;
8162 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8163
8164 {
8165 struct bfd_hash_entry *h;
8166 struct bfd_link_hash_entry *lh;
8167 /* Skip all this stuff if we aren't mixing formats. */
8168 if (abfd && input_bfd
8169 && abfd->xvec == input_bfd->xvec)
8170 lh = 0;
8171 else
8172 {
8173 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
8174 lh = (struct bfd_link_hash_entry *) h;
8175 }
8176 lookup:
8177 if (lh)
8178 {
8179 switch (lh->type)
8180 {
8181 case bfd_link_hash_undefined:
8182 case bfd_link_hash_undefweak:
8183 case bfd_link_hash_common:
8184 gp_found = 0;
8185 break;
8186 case bfd_link_hash_defined:
8187 case bfd_link_hash_defweak:
8188 gp_found = 1;
8189 gp = lh->u.def.value;
8190 break;
8191 case bfd_link_hash_indirect:
8192 case bfd_link_hash_warning:
8193 lh = lh->u.i.link;
8194 /* @@FIXME ignoring warning for now */
8195 goto lookup;
8196 case bfd_link_hash_new:
8197 default:
8198 abort ();
8199 }
8200 }
8201 else
8202 gp_found = 0;
8203 }
8204 /* end mips */
8205 for (parent = reloc_vector; *parent != (arelent *) NULL;
8206 parent++)
8207 {
8208 char *error_message = (char *) NULL;
8209 bfd_reloc_status_type r;
8210
8211 /* Specific to MIPS: Deal with relocation types that require
8212 knowing the gp of the output bfd. */
8213 asymbol *sym = *(*parent)->sym_ptr_ptr;
8214 if (bfd_is_abs_section (sym->section) && abfd)
8215 {
8216 /* The special_function wouldn't get called anyway. */
8217 }
8218 else if (!gp_found)
8219 {
8220 /* The gp isn't there; let the special function code
8221 fall over on its own. */
8222 }
8223 else if ((*parent)->howto->special_function
8224 == _bfd_mips_elf32_gprel16_reloc)
8225 {
8226 /* bypass special_function call */
8227 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8228 input_section, relocatable,
8229 (PTR) data, gp);
8230 goto skip_bfd_perform_relocation;
8231 }
8232 /* end mips specific stuff */
8233
8234 r = bfd_perform_relocation (input_bfd,
8235 *parent,
8236 (PTR) data,
8237 input_section,
8238 relocatable ? abfd : (bfd *) NULL,
8239 &error_message);
8240 skip_bfd_perform_relocation:
8241
8242 if (relocatable)
8243 {
8244 asection *os = input_section->output_section;
8245
8246 /* A partial link, so keep the relocs */
8247 os->orelocation[os->reloc_count] = *parent;
8248 os->reloc_count++;
8249 }
8250
8251 if (r != bfd_reloc_ok)
8252 {
8253 switch (r)
8254 {
8255 case bfd_reloc_undefined:
8256 if (!((*link_info->callbacks->undefined_symbol)
8257 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8258 input_bfd, input_section, (*parent)->address,
8259 TRUE)))
8260 goto error_return;
8261 break;
8262 case bfd_reloc_dangerous:
8263 BFD_ASSERT (error_message != (char *) NULL);
8264 if (!((*link_info->callbacks->reloc_dangerous)
8265 (link_info, error_message, input_bfd, input_section,
8266 (*parent)->address)))
8267 goto error_return;
8268 break;
8269 case bfd_reloc_overflow:
8270 if (!((*link_info->callbacks->reloc_overflow)
8271 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8272 (*parent)->howto->name, (*parent)->addend,
8273 input_bfd, input_section, (*parent)->address)))
8274 goto error_return;
8275 break;
8276 case bfd_reloc_outofrange:
8277 default:
8278 abort ();
8279 break;
8280 }
8281
8282 }
8283 }
8284 }
8285 if (reloc_vector != NULL)
8286 free (reloc_vector);
8287 return data;
8288
8289 error_return:
8290 if (reloc_vector != NULL)
8291 free (reloc_vector);
8292 return NULL;
8293 }
8294 \f
8295 /* Create a MIPS ELF linker hash table. */
8296
8297 struct bfd_link_hash_table *
8298 _bfd_mips_elf_link_hash_table_create (abfd)
8299 bfd *abfd;
8300 {
8301 struct mips_elf_link_hash_table *ret;
8302 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8303
8304 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
8305 if (ret == (struct mips_elf_link_hash_table *) NULL)
8306 return NULL;
8307
8308 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8309 mips_elf_link_hash_newfunc))
8310 {
8311 free (ret);
8312 return NULL;
8313 }
8314
8315 #if 0
8316 /* We no longer use this. */
8317 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8318 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8319 #endif
8320 ret->procedure_count = 0;
8321 ret->compact_rel_size = 0;
8322 ret->use_rld_obj_head = FALSE;
8323 ret->rld_value = 0;
8324 ret->mips16_stubs_seen = FALSE;
8325
8326 return &ret->root.root;
8327 }
8328 \f
8329 /* We need to use a special link routine to handle the .reginfo and
8330 the .mdebug sections. We need to merge all instances of these
8331 sections together, not write them all out sequentially. */
8332
8333 bfd_boolean
8334 _bfd_mips_elf_final_link (abfd, info)
8335 bfd *abfd;
8336 struct bfd_link_info *info;
8337 {
8338 asection **secpp;
8339 asection *o;
8340 struct bfd_link_order *p;
8341 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8342 asection *rtproc_sec;
8343 Elf32_RegInfo reginfo;
8344 struct ecoff_debug_info debug;
8345 const struct ecoff_debug_swap *swap
8346 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8347 HDRR *symhdr = &debug.symbolic_header;
8348 PTR mdebug_handle = NULL;
8349 asection *s;
8350 EXTR esym;
8351 unsigned int i;
8352 bfd_size_type amt;
8353
8354 static const char * const secname[] =
8355 {
8356 ".text", ".init", ".fini", ".data",
8357 ".rodata", ".sdata", ".sbss", ".bss"
8358 };
8359 static const int sc[] =
8360 {
8361 scText, scInit, scFini, scData,
8362 scRData, scSData, scSBss, scBss
8363 };
8364
8365 /* We'd carefully arranged the dynamic symbol indices, and then the
8366 generic size_dynamic_sections renumbered them out from under us.
8367 Rather than trying somehow to prevent the renumbering, just do
8368 the sort again. */
8369 if (elf_hash_table (info)->dynamic_sections_created)
8370 {
8371 bfd *dynobj;
8372 asection *got;
8373 struct mips_got_info *g;
8374
8375 /* When we resort, we must tell mips_elf_sort_hash_table what
8376 the lowest index it may use is. That's the number of section
8377 symbols we're going to add. The generic ELF linker only
8378 adds these symbols when building a shared object. Note that
8379 we count the sections after (possibly) removing the .options
8380 section above. */
8381 if (! mips_elf_sort_hash_table (info, (info->shared
8382 ? bfd_count_sections (abfd) + 1
8383 : 1)))
8384 return FALSE;
8385
8386 /* Make sure we didn't grow the global .got region. */
8387 dynobj = elf_hash_table (info)->dynobj;
8388 got = mips_elf_got_section (dynobj, FALSE);
8389 g = mips_elf_section_data (got)->u.got_info;
8390
8391 if (g->global_gotsym != NULL)
8392 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8393 - g->global_gotsym->dynindx)
8394 <= g->global_gotno);
8395 }
8396
8397 #if 0
8398 /* We want to set the GP value for ld -r. */
8399 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8400 include it, even though we don't process it quite right. (Some
8401 entries are supposed to be merged.) Empirically, we seem to be
8402 better off including it then not. */
8403 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8404 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8405 {
8406 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8407 {
8408 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8409 if (p->type == bfd_indirect_link_order)
8410 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8411 (*secpp)->link_order_head = NULL;
8412 bfd_section_list_remove (abfd, secpp);
8413 --abfd->section_count;
8414
8415 break;
8416 }
8417 }
8418
8419 /* We include .MIPS.options, even though we don't process it quite right.
8420 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8421 to be better off including it than not. */
8422 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8423 {
8424 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8425 {
8426 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8427 if (p->type == bfd_indirect_link_order)
8428 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8429 (*secpp)->link_order_head = NULL;
8430 bfd_section_list_remove (abfd, secpp);
8431 --abfd->section_count;
8432
8433 break;
8434 }
8435 }
8436 #endif
8437
8438 /* Get a value for the GP register. */
8439 if (elf_gp (abfd) == 0)
8440 {
8441 struct bfd_link_hash_entry *h;
8442
8443 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8444 if (h != (struct bfd_link_hash_entry *) NULL
8445 && h->type == bfd_link_hash_defined)
8446 elf_gp (abfd) = (h->u.def.value
8447 + h->u.def.section->output_section->vma
8448 + h->u.def.section->output_offset);
8449 else if (info->relocatable)
8450 {
8451 bfd_vma lo = MINUS_ONE;
8452
8453 /* Find the GP-relative section with the lowest offset. */
8454 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8455 if (o->vma < lo
8456 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8457 lo = o->vma;
8458
8459 /* And calculate GP relative to that. */
8460 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8461 }
8462 else
8463 {
8464 /* If the relocate_section function needs to do a reloc
8465 involving the GP value, it should make a reloc_dangerous
8466 callback to warn that GP is not defined. */
8467 }
8468 }
8469
8470 /* Go through the sections and collect the .reginfo and .mdebug
8471 information. */
8472 reginfo_sec = NULL;
8473 mdebug_sec = NULL;
8474 gptab_data_sec = NULL;
8475 gptab_bss_sec = NULL;
8476 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8477 {
8478 if (strcmp (o->name, ".reginfo") == 0)
8479 {
8480 memset (&reginfo, 0, sizeof reginfo);
8481
8482 /* We have found the .reginfo section in the output file.
8483 Look through all the link_orders comprising it and merge
8484 the information together. */
8485 for (p = o->link_order_head;
8486 p != (struct bfd_link_order *) NULL;
8487 p = p->next)
8488 {
8489 asection *input_section;
8490 bfd *input_bfd;
8491 Elf32_External_RegInfo ext;
8492 Elf32_RegInfo sub;
8493
8494 if (p->type != bfd_indirect_link_order)
8495 {
8496 if (p->type == bfd_data_link_order)
8497 continue;
8498 abort ();
8499 }
8500
8501 input_section = p->u.indirect.section;
8502 input_bfd = input_section->owner;
8503
8504 /* The linker emulation code has probably clobbered the
8505 size to be zero bytes. */
8506 if (input_section->_raw_size == 0)
8507 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8508
8509 if (! bfd_get_section_contents (input_bfd, input_section,
8510 (PTR) &ext,
8511 (file_ptr) 0,
8512 (bfd_size_type) sizeof ext))
8513 return FALSE;
8514
8515 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8516
8517 reginfo.ri_gprmask |= sub.ri_gprmask;
8518 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8519 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8520 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8521 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8522
8523 /* ri_gp_value is set by the function
8524 mips_elf32_section_processing when the section is
8525 finally written out. */
8526
8527 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8528 elf_link_input_bfd ignores this section. */
8529 input_section->flags &= ~SEC_HAS_CONTENTS;
8530 }
8531
8532 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8533 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8534
8535 /* Skip this section later on (I don't think this currently
8536 matters, but someday it might). */
8537 o->link_order_head = (struct bfd_link_order *) NULL;
8538
8539 reginfo_sec = o;
8540 }
8541
8542 if (strcmp (o->name, ".mdebug") == 0)
8543 {
8544 struct extsym_info einfo;
8545 bfd_vma last;
8546
8547 /* We have found the .mdebug section in the output file.
8548 Look through all the link_orders comprising it and merge
8549 the information together. */
8550 symhdr->magic = swap->sym_magic;
8551 /* FIXME: What should the version stamp be? */
8552 symhdr->vstamp = 0;
8553 symhdr->ilineMax = 0;
8554 symhdr->cbLine = 0;
8555 symhdr->idnMax = 0;
8556 symhdr->ipdMax = 0;
8557 symhdr->isymMax = 0;
8558 symhdr->ioptMax = 0;
8559 symhdr->iauxMax = 0;
8560 symhdr->issMax = 0;
8561 symhdr->issExtMax = 0;
8562 symhdr->ifdMax = 0;
8563 symhdr->crfd = 0;
8564 symhdr->iextMax = 0;
8565
8566 /* We accumulate the debugging information itself in the
8567 debug_info structure. */
8568 debug.line = NULL;
8569 debug.external_dnr = NULL;
8570 debug.external_pdr = NULL;
8571 debug.external_sym = NULL;
8572 debug.external_opt = NULL;
8573 debug.external_aux = NULL;
8574 debug.ss = NULL;
8575 debug.ssext = debug.ssext_end = NULL;
8576 debug.external_fdr = NULL;
8577 debug.external_rfd = NULL;
8578 debug.external_ext = debug.external_ext_end = NULL;
8579
8580 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8581 if (mdebug_handle == (PTR) NULL)
8582 return FALSE;
8583
8584 esym.jmptbl = 0;
8585 esym.cobol_main = 0;
8586 esym.weakext = 0;
8587 esym.reserved = 0;
8588 esym.ifd = ifdNil;
8589 esym.asym.iss = issNil;
8590 esym.asym.st = stLocal;
8591 esym.asym.reserved = 0;
8592 esym.asym.index = indexNil;
8593 last = 0;
8594 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8595 {
8596 esym.asym.sc = sc[i];
8597 s = bfd_get_section_by_name (abfd, secname[i]);
8598 if (s != NULL)
8599 {
8600 esym.asym.value = s->vma;
8601 last = s->vma + s->_raw_size;
8602 }
8603 else
8604 esym.asym.value = last;
8605 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8606 secname[i], &esym))
8607 return FALSE;
8608 }
8609
8610 for (p = o->link_order_head;
8611 p != (struct bfd_link_order *) NULL;
8612 p = p->next)
8613 {
8614 asection *input_section;
8615 bfd *input_bfd;
8616 const struct ecoff_debug_swap *input_swap;
8617 struct ecoff_debug_info input_debug;
8618 char *eraw_src;
8619 char *eraw_end;
8620
8621 if (p->type != bfd_indirect_link_order)
8622 {
8623 if (p->type == bfd_data_link_order)
8624 continue;
8625 abort ();
8626 }
8627
8628 input_section = p->u.indirect.section;
8629 input_bfd = input_section->owner;
8630
8631 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8632 || (get_elf_backend_data (input_bfd)
8633 ->elf_backend_ecoff_debug_swap) == NULL)
8634 {
8635 /* I don't know what a non MIPS ELF bfd would be
8636 doing with a .mdebug section, but I don't really
8637 want to deal with it. */
8638 continue;
8639 }
8640
8641 input_swap = (get_elf_backend_data (input_bfd)
8642 ->elf_backend_ecoff_debug_swap);
8643
8644 BFD_ASSERT (p->size == input_section->_raw_size);
8645
8646 /* The ECOFF linking code expects that we have already
8647 read in the debugging information and set up an
8648 ecoff_debug_info structure, so we do that now. */
8649 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8650 &input_debug))
8651 return FALSE;
8652
8653 if (! (bfd_ecoff_debug_accumulate
8654 (mdebug_handle, abfd, &debug, swap, input_bfd,
8655 &input_debug, input_swap, info)))
8656 return FALSE;
8657
8658 /* Loop through the external symbols. For each one with
8659 interesting information, try to find the symbol in
8660 the linker global hash table and save the information
8661 for the output external symbols. */
8662 eraw_src = input_debug.external_ext;
8663 eraw_end = (eraw_src
8664 + (input_debug.symbolic_header.iextMax
8665 * input_swap->external_ext_size));
8666 for (;
8667 eraw_src < eraw_end;
8668 eraw_src += input_swap->external_ext_size)
8669 {
8670 EXTR ext;
8671 const char *name;
8672 struct mips_elf_link_hash_entry *h;
8673
8674 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8675 if (ext.asym.sc == scNil
8676 || ext.asym.sc == scUndefined
8677 || ext.asym.sc == scSUndefined)
8678 continue;
8679
8680 name = input_debug.ssext + ext.asym.iss;
8681 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8682 name, FALSE, FALSE, TRUE);
8683 if (h == NULL || h->esym.ifd != -2)
8684 continue;
8685
8686 if (ext.ifd != -1)
8687 {
8688 BFD_ASSERT (ext.ifd
8689 < input_debug.symbolic_header.ifdMax);
8690 ext.ifd = input_debug.ifdmap[ext.ifd];
8691 }
8692
8693 h->esym = ext;
8694 }
8695
8696 /* Free up the information we just read. */
8697 free (input_debug.line);
8698 free (input_debug.external_dnr);
8699 free (input_debug.external_pdr);
8700 free (input_debug.external_sym);
8701 free (input_debug.external_opt);
8702 free (input_debug.external_aux);
8703 free (input_debug.ss);
8704 free (input_debug.ssext);
8705 free (input_debug.external_fdr);
8706 free (input_debug.external_rfd);
8707 free (input_debug.external_ext);
8708
8709 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8710 elf_link_input_bfd ignores this section. */
8711 input_section->flags &= ~SEC_HAS_CONTENTS;
8712 }
8713
8714 if (SGI_COMPAT (abfd) && info->shared)
8715 {
8716 /* Create .rtproc section. */
8717 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8718 if (rtproc_sec == NULL)
8719 {
8720 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8721 | SEC_LINKER_CREATED | SEC_READONLY);
8722
8723 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8724 if (rtproc_sec == NULL
8725 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8726 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8727 return FALSE;
8728 }
8729
8730 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8731 info, rtproc_sec,
8732 &debug))
8733 return FALSE;
8734 }
8735
8736 /* Build the external symbol information. */
8737 einfo.abfd = abfd;
8738 einfo.info = info;
8739 einfo.debug = &debug;
8740 einfo.swap = swap;
8741 einfo.failed = FALSE;
8742 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8743 mips_elf_output_extsym,
8744 (PTR) &einfo);
8745 if (einfo.failed)
8746 return FALSE;
8747
8748 /* Set the size of the .mdebug section. */
8749 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8750
8751 /* Skip this section later on (I don't think this currently
8752 matters, but someday it might). */
8753 o->link_order_head = (struct bfd_link_order *) NULL;
8754
8755 mdebug_sec = o;
8756 }
8757
8758 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8759 {
8760 const char *subname;
8761 unsigned int c;
8762 Elf32_gptab *tab;
8763 Elf32_External_gptab *ext_tab;
8764 unsigned int j;
8765
8766 /* The .gptab.sdata and .gptab.sbss sections hold
8767 information describing how the small data area would
8768 change depending upon the -G switch. These sections
8769 not used in executables files. */
8770 if (! info->relocatable)
8771 {
8772 for (p = o->link_order_head;
8773 p != (struct bfd_link_order *) NULL;
8774 p = p->next)
8775 {
8776 asection *input_section;
8777
8778 if (p->type != bfd_indirect_link_order)
8779 {
8780 if (p->type == bfd_data_link_order)
8781 continue;
8782 abort ();
8783 }
8784
8785 input_section = p->u.indirect.section;
8786
8787 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8788 elf_link_input_bfd ignores this section. */
8789 input_section->flags &= ~SEC_HAS_CONTENTS;
8790 }
8791
8792 /* Skip this section later on (I don't think this
8793 currently matters, but someday it might). */
8794 o->link_order_head = (struct bfd_link_order *) NULL;
8795
8796 /* Really remove the section. */
8797 for (secpp = &abfd->sections;
8798 *secpp != o;
8799 secpp = &(*secpp)->next)
8800 ;
8801 bfd_section_list_remove (abfd, secpp);
8802 --abfd->section_count;
8803
8804 continue;
8805 }
8806
8807 /* There is one gptab for initialized data, and one for
8808 uninitialized data. */
8809 if (strcmp (o->name, ".gptab.sdata") == 0)
8810 gptab_data_sec = o;
8811 else if (strcmp (o->name, ".gptab.sbss") == 0)
8812 gptab_bss_sec = o;
8813 else
8814 {
8815 (*_bfd_error_handler)
8816 (_("%s: illegal section name `%s'"),
8817 bfd_get_filename (abfd), o->name);
8818 bfd_set_error (bfd_error_nonrepresentable_section);
8819 return FALSE;
8820 }
8821
8822 /* The linker script always combines .gptab.data and
8823 .gptab.sdata into .gptab.sdata, and likewise for
8824 .gptab.bss and .gptab.sbss. It is possible that there is
8825 no .sdata or .sbss section in the output file, in which
8826 case we must change the name of the output section. */
8827 subname = o->name + sizeof ".gptab" - 1;
8828 if (bfd_get_section_by_name (abfd, subname) == NULL)
8829 {
8830 if (o == gptab_data_sec)
8831 o->name = ".gptab.data";
8832 else
8833 o->name = ".gptab.bss";
8834 subname = o->name + sizeof ".gptab" - 1;
8835 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8836 }
8837
8838 /* Set up the first entry. */
8839 c = 1;
8840 amt = c * sizeof (Elf32_gptab);
8841 tab = (Elf32_gptab *) bfd_malloc (amt);
8842 if (tab == NULL)
8843 return FALSE;
8844 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8845 tab[0].gt_header.gt_unused = 0;
8846
8847 /* Combine the input sections. */
8848 for (p = o->link_order_head;
8849 p != (struct bfd_link_order *) NULL;
8850 p = p->next)
8851 {
8852 asection *input_section;
8853 bfd *input_bfd;
8854 bfd_size_type size;
8855 unsigned long last;
8856 bfd_size_type gpentry;
8857
8858 if (p->type != bfd_indirect_link_order)
8859 {
8860 if (p->type == bfd_data_link_order)
8861 continue;
8862 abort ();
8863 }
8864
8865 input_section = p->u.indirect.section;
8866 input_bfd = input_section->owner;
8867
8868 /* Combine the gptab entries for this input section one
8869 by one. We know that the input gptab entries are
8870 sorted by ascending -G value. */
8871 size = bfd_section_size (input_bfd, input_section);
8872 last = 0;
8873 for (gpentry = sizeof (Elf32_External_gptab);
8874 gpentry < size;
8875 gpentry += sizeof (Elf32_External_gptab))
8876 {
8877 Elf32_External_gptab ext_gptab;
8878 Elf32_gptab int_gptab;
8879 unsigned long val;
8880 unsigned long add;
8881 bfd_boolean exact;
8882 unsigned int look;
8883
8884 if (! (bfd_get_section_contents
8885 (input_bfd, input_section, (PTR) &ext_gptab,
8886 (file_ptr) gpentry,
8887 (bfd_size_type) sizeof (Elf32_External_gptab))))
8888 {
8889 free (tab);
8890 return FALSE;
8891 }
8892
8893 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8894 &int_gptab);
8895 val = int_gptab.gt_entry.gt_g_value;
8896 add = int_gptab.gt_entry.gt_bytes - last;
8897
8898 exact = FALSE;
8899 for (look = 1; look < c; look++)
8900 {
8901 if (tab[look].gt_entry.gt_g_value >= val)
8902 tab[look].gt_entry.gt_bytes += add;
8903
8904 if (tab[look].gt_entry.gt_g_value == val)
8905 exact = TRUE;
8906 }
8907
8908 if (! exact)
8909 {
8910 Elf32_gptab *new_tab;
8911 unsigned int max;
8912
8913 /* We need a new table entry. */
8914 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8915 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8916 if (new_tab == NULL)
8917 {
8918 free (tab);
8919 return FALSE;
8920 }
8921 tab = new_tab;
8922 tab[c].gt_entry.gt_g_value = val;
8923 tab[c].gt_entry.gt_bytes = add;
8924
8925 /* Merge in the size for the next smallest -G
8926 value, since that will be implied by this new
8927 value. */
8928 max = 0;
8929 for (look = 1; look < c; look++)
8930 {
8931 if (tab[look].gt_entry.gt_g_value < val
8932 && (max == 0
8933 || (tab[look].gt_entry.gt_g_value
8934 > tab[max].gt_entry.gt_g_value)))
8935 max = look;
8936 }
8937 if (max != 0)
8938 tab[c].gt_entry.gt_bytes +=
8939 tab[max].gt_entry.gt_bytes;
8940
8941 ++c;
8942 }
8943
8944 last = int_gptab.gt_entry.gt_bytes;
8945 }
8946
8947 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8948 elf_link_input_bfd ignores this section. */
8949 input_section->flags &= ~SEC_HAS_CONTENTS;
8950 }
8951
8952 /* The table must be sorted by -G value. */
8953 if (c > 2)
8954 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8955
8956 /* Swap out the table. */
8957 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8958 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8959 if (ext_tab == NULL)
8960 {
8961 free (tab);
8962 return FALSE;
8963 }
8964
8965 for (j = 0; j < c; j++)
8966 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8967 free (tab);
8968
8969 o->_raw_size = c * sizeof (Elf32_External_gptab);
8970 o->contents = (bfd_byte *) ext_tab;
8971
8972 /* Skip this section later on (I don't think this currently
8973 matters, but someday it might). */
8974 o->link_order_head = (struct bfd_link_order *) NULL;
8975 }
8976 }
8977
8978 /* Invoke the regular ELF backend linker to do all the work. */
8979 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
8980 return FALSE;
8981
8982 /* Now write out the computed sections. */
8983
8984 if (reginfo_sec != (asection *) NULL)
8985 {
8986 Elf32_External_RegInfo ext;
8987
8988 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8989 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
8990 (file_ptr) 0,
8991 (bfd_size_type) sizeof ext))
8992 return FALSE;
8993 }
8994
8995 if (mdebug_sec != (asection *) NULL)
8996 {
8997 BFD_ASSERT (abfd->output_has_begun);
8998 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8999 swap, info,
9000 mdebug_sec->filepos))
9001 return FALSE;
9002
9003 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9004 }
9005
9006 if (gptab_data_sec != (asection *) NULL)
9007 {
9008 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9009 gptab_data_sec->contents,
9010 (file_ptr) 0,
9011 gptab_data_sec->_raw_size))
9012 return FALSE;
9013 }
9014
9015 if (gptab_bss_sec != (asection *) NULL)
9016 {
9017 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9018 gptab_bss_sec->contents,
9019 (file_ptr) 0,
9020 gptab_bss_sec->_raw_size))
9021 return FALSE;
9022 }
9023
9024 if (SGI_COMPAT (abfd))
9025 {
9026 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9027 if (rtproc_sec != NULL)
9028 {
9029 if (! bfd_set_section_contents (abfd, rtproc_sec,
9030 rtproc_sec->contents,
9031 (file_ptr) 0,
9032 rtproc_sec->_raw_size))
9033 return FALSE;
9034 }
9035 }
9036
9037 return TRUE;
9038 }
9039 \f
9040 /* Structure for saying that BFD machine EXTENSION extends BASE. */
9041
9042 struct mips_mach_extension {
9043 unsigned long extension, base;
9044 };
9045
9046
9047 /* An array describing how BFD machines relate to one another. The entries
9048 are ordered topologically with MIPS I extensions listed last. */
9049
9050 static const struct mips_mach_extension mips_mach_extensions[] = {
9051 /* MIPS64 extensions. */
9052 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9053
9054 /* MIPS V extensions. */
9055 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9056
9057 /* R10000 extensions. */
9058 { bfd_mach_mips12000, bfd_mach_mips10000 },
9059
9060 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9061 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9062 better to allow vr5400 and vr5500 code to be merged anyway, since
9063 many libraries will just use the core ISA. Perhaps we could add
9064 some sort of ASE flag if this ever proves a problem. */
9065 { bfd_mach_mips5500, bfd_mach_mips5400 },
9066 { bfd_mach_mips5400, bfd_mach_mips5000 },
9067
9068 /* MIPS IV extensions. */
9069 { bfd_mach_mips5, bfd_mach_mips8000 },
9070 { bfd_mach_mips10000, bfd_mach_mips8000 },
9071 { bfd_mach_mips5000, bfd_mach_mips8000 },
9072
9073 /* VR4100 extensions. */
9074 { bfd_mach_mips4120, bfd_mach_mips4100 },
9075 { bfd_mach_mips4111, bfd_mach_mips4100 },
9076
9077 /* MIPS III extensions. */
9078 { bfd_mach_mips8000, bfd_mach_mips4000 },
9079 { bfd_mach_mips4650, bfd_mach_mips4000 },
9080 { bfd_mach_mips4600, bfd_mach_mips4000 },
9081 { bfd_mach_mips4400, bfd_mach_mips4000 },
9082 { bfd_mach_mips4300, bfd_mach_mips4000 },
9083 { bfd_mach_mips4100, bfd_mach_mips4000 },
9084 { bfd_mach_mips4010, bfd_mach_mips4000 },
9085
9086 /* MIPS32 extensions. */
9087 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9088
9089 /* MIPS II extensions. */
9090 { bfd_mach_mips4000, bfd_mach_mips6000 },
9091 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9092
9093 /* MIPS I extensions. */
9094 { bfd_mach_mips6000, bfd_mach_mips3000 },
9095 { bfd_mach_mips3900, bfd_mach_mips3000 }
9096 };
9097
9098
9099 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9100
9101 static bfd_boolean
9102 mips_mach_extends_p (base, extension)
9103 unsigned long base, extension;
9104 {
9105 size_t i;
9106
9107 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9108 if (extension == mips_mach_extensions[i].extension)
9109 extension = mips_mach_extensions[i].base;
9110
9111 return extension == base;
9112 }
9113
9114
9115 /* Return true if the given ELF header flags describe a 32-bit binary. */
9116
9117 static bfd_boolean
9118 mips_32bit_flags_p (flags)
9119 flagword flags;
9120 {
9121 return ((flags & EF_MIPS_32BITMODE) != 0
9122 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9123 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9124 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9125 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9126 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9127 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
9128 }
9129
9130
9131 /* Merge backend specific data from an object file to the output
9132 object file when linking. */
9133
9134 bfd_boolean
9135 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
9136 bfd *ibfd;
9137 bfd *obfd;
9138 {
9139 flagword old_flags;
9140 flagword new_flags;
9141 bfd_boolean ok;
9142 bfd_boolean null_input_bfd = TRUE;
9143 asection *sec;
9144
9145 /* Check if we have the same endianess */
9146 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9147 {
9148 (*_bfd_error_handler)
9149 (_("%s: endianness incompatible with that of the selected emulation"),
9150 bfd_archive_filename (ibfd));
9151 return FALSE;
9152 }
9153
9154 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9155 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
9156 return TRUE;
9157
9158 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9159 {
9160 (*_bfd_error_handler)
9161 (_("%s: ABI is incompatible with that of the selected emulation"),
9162 bfd_archive_filename (ibfd));
9163 return FALSE;
9164 }
9165
9166 new_flags = elf_elfheader (ibfd)->e_flags;
9167 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9168 old_flags = elf_elfheader (obfd)->e_flags;
9169
9170 if (! elf_flags_init (obfd))
9171 {
9172 elf_flags_init (obfd) = TRUE;
9173 elf_elfheader (obfd)->e_flags = new_flags;
9174 elf_elfheader (obfd)->e_ident[EI_CLASS]
9175 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9176
9177 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9178 && bfd_get_arch_info (obfd)->the_default)
9179 {
9180 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9181 bfd_get_mach (ibfd)))
9182 return FALSE;
9183 }
9184
9185 return TRUE;
9186 }
9187
9188 /* Check flag compatibility. */
9189
9190 new_flags &= ~EF_MIPS_NOREORDER;
9191 old_flags &= ~EF_MIPS_NOREORDER;
9192
9193 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9194 doesn't seem to matter. */
9195 new_flags &= ~EF_MIPS_XGOT;
9196 old_flags &= ~EF_MIPS_XGOT;
9197
9198 if (new_flags == old_flags)
9199 return TRUE;
9200
9201 /* Check to see if the input BFD actually contains any sections.
9202 If not, its flags may not have been initialised either, but it cannot
9203 actually cause any incompatibility. */
9204 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9205 {
9206 /* Ignore synthetic sections and empty .text, .data and .bss sections
9207 which are automatically generated by gas. */
9208 if (strcmp (sec->name, ".reginfo")
9209 && strcmp (sec->name, ".mdebug")
9210 && ((!strcmp (sec->name, ".text")
9211 || !strcmp (sec->name, ".data")
9212 || !strcmp (sec->name, ".bss"))
9213 && sec->_raw_size != 0))
9214 {
9215 null_input_bfd = FALSE;
9216 break;
9217 }
9218 }
9219 if (null_input_bfd)
9220 return TRUE;
9221
9222 ok = TRUE;
9223
9224 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9225 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
9226 {
9227 (*_bfd_error_handler)
9228 (_("%s: warning: linking PIC files with non-PIC files"),
9229 bfd_archive_filename (ibfd));
9230 ok = TRUE;
9231 }
9232
9233 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9234 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9235 if (! (new_flags & EF_MIPS_PIC))
9236 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9237
9238 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9239 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9240
9241 /* Compare the ISAs. */
9242 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9243 {
9244 (*_bfd_error_handler)
9245 (_("%s: linking 32-bit code with 64-bit code"),
9246 bfd_archive_filename (ibfd));
9247 ok = FALSE;
9248 }
9249 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9250 {
9251 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9252 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9253 {
9254 /* Copy the architecture info from IBFD to OBFD. Also copy
9255 the 32-bit flag (if set) so that we continue to recognise
9256 OBFD as a 32-bit binary. */
9257 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9258 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9259 elf_elfheader (obfd)->e_flags
9260 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9261
9262 /* Copy across the ABI flags if OBFD doesn't use them
9263 and if that was what caused us to treat IBFD as 32-bit. */
9264 if ((old_flags & EF_MIPS_ABI) == 0
9265 && mips_32bit_flags_p (new_flags)
9266 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9267 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9268 }
9269 else
9270 {
9271 /* The ISAs aren't compatible. */
9272 (*_bfd_error_handler)
9273 (_("%s: linking %s module with previous %s modules"),
9274 bfd_archive_filename (ibfd),
9275 bfd_printable_name (ibfd),
9276 bfd_printable_name (obfd));
9277 ok = FALSE;
9278 }
9279 }
9280
9281 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9282 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9283
9284 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9285 does set EI_CLASS differently from any 32-bit ABI. */
9286 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9287 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9288 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9289 {
9290 /* Only error if both are set (to different values). */
9291 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9292 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9293 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9294 {
9295 (*_bfd_error_handler)
9296 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9297 bfd_archive_filename (ibfd),
9298 elf_mips_abi_name (ibfd),
9299 elf_mips_abi_name (obfd));
9300 ok = FALSE;
9301 }
9302 new_flags &= ~EF_MIPS_ABI;
9303 old_flags &= ~EF_MIPS_ABI;
9304 }
9305
9306 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9307 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9308 {
9309 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9310
9311 new_flags &= ~ EF_MIPS_ARCH_ASE;
9312 old_flags &= ~ EF_MIPS_ARCH_ASE;
9313 }
9314
9315 /* Warn about any other mismatches */
9316 if (new_flags != old_flags)
9317 {
9318 (*_bfd_error_handler)
9319 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9320 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9321 (unsigned long) old_flags);
9322 ok = FALSE;
9323 }
9324
9325 if (! ok)
9326 {
9327 bfd_set_error (bfd_error_bad_value);
9328 return FALSE;
9329 }
9330
9331 return TRUE;
9332 }
9333
9334 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9335
9336 bfd_boolean
9337 _bfd_mips_elf_set_private_flags (abfd, flags)
9338 bfd *abfd;
9339 flagword flags;
9340 {
9341 BFD_ASSERT (!elf_flags_init (abfd)
9342 || elf_elfheader (abfd)->e_flags == flags);
9343
9344 elf_elfheader (abfd)->e_flags = flags;
9345 elf_flags_init (abfd) = TRUE;
9346 return TRUE;
9347 }
9348
9349 bfd_boolean
9350 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9351 bfd *abfd;
9352 PTR ptr;
9353 {
9354 FILE *file = (FILE *) ptr;
9355
9356 BFD_ASSERT (abfd != NULL && ptr != NULL);
9357
9358 /* Print normal ELF private data. */
9359 _bfd_elf_print_private_bfd_data (abfd, ptr);
9360
9361 /* xgettext:c-format */
9362 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9363
9364 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9365 fprintf (file, _(" [abi=O32]"));
9366 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9367 fprintf (file, _(" [abi=O64]"));
9368 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9369 fprintf (file, _(" [abi=EABI32]"));
9370 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9371 fprintf (file, _(" [abi=EABI64]"));
9372 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9373 fprintf (file, _(" [abi unknown]"));
9374 else if (ABI_N32_P (abfd))
9375 fprintf (file, _(" [abi=N32]"));
9376 else if (ABI_64_P (abfd))
9377 fprintf (file, _(" [abi=64]"));
9378 else
9379 fprintf (file, _(" [no abi set]"));
9380
9381 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9382 fprintf (file, _(" [mips1]"));
9383 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9384 fprintf (file, _(" [mips2]"));
9385 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9386 fprintf (file, _(" [mips3]"));
9387 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9388 fprintf (file, _(" [mips4]"));
9389 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9390 fprintf (file, _(" [mips5]"));
9391 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9392 fprintf (file, _(" [mips32]"));
9393 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9394 fprintf (file, _(" [mips64]"));
9395 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9396 fprintf (file, _(" [mips32r2]"));
9397 else
9398 fprintf (file, _(" [unknown ISA]"));
9399
9400 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9401 fprintf (file, _(" [mdmx]"));
9402
9403 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9404 fprintf (file, _(" [mips16]"));
9405
9406 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9407 fprintf (file, _(" [32bitmode]"));
9408 else
9409 fprintf (file, _(" [not 32bitmode]"));
9410
9411 fputc ('\n', file);
9412
9413 return TRUE;
9414 }
This page took 0.224816 seconds and 4 git commands to generate.