daily update
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29
30 /* This file handles functionality common to the different MIPS ABI's. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
83 {
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
113 };
114
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118 struct mips_got_page_range
119 {
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123 };
124
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
128 {
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137 };
138
139 /* This structure is used to hold .got information when linking. */
140
141 struct mips_got_info
142 {
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
148 /* The number of .got slots used for TLS. */
149 unsigned int tls_gotno;
150 /* The first unused TLS .got entry. Used only during
151 mips_elf_initialize_tls_index. */
152 unsigned int tls_assigned_gotno;
153 /* The number of local .got entries, eventually including page entries. */
154 unsigned int local_gotno;
155 /* The maximum number of page entries needed. */
156 unsigned int page_gotno;
157 /* The number of local .got entries we have used. */
158 unsigned int assigned_gotno;
159 /* A hash table holding members of the got. */
160 struct htab *got_entries;
161 /* A hash table of mips_got_page_entry structures. */
162 struct htab *got_page_entries;
163 /* A hash table mapping input bfds to other mips_got_info. NULL
164 unless multi-got was necessary. */
165 struct htab *bfd2got;
166 /* In multi-got links, a pointer to the next got (err, rather, most
167 of the time, it points to the previous got). */
168 struct mips_got_info *next;
169 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
170 for none, or MINUS_TWO for not yet assigned. This is needed
171 because a single-GOT link may have multiple hash table entries
172 for the LDM. It does not get initialized in multi-GOT mode. */
173 bfd_vma tls_ldm_offset;
174 };
175
176 /* Map an input bfd to a got in a multi-got link. */
177
178 struct mips_elf_bfd2got_hash {
179 bfd *bfd;
180 struct mips_got_info *g;
181 };
182
183 /* Structure passed when traversing the bfd2got hash table, used to
184 create and merge bfd's gots. */
185
186 struct mips_elf_got_per_bfd_arg
187 {
188 /* A hashtable that maps bfds to gots. */
189 htab_t bfd2got;
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* Another structure used to pass arguments for got entries traversal. */
214
215 struct mips_elf_set_global_got_offset_arg
216 {
217 struct mips_got_info *g;
218 int value;
219 unsigned int needed_relocs;
220 struct bfd_link_info *info;
221 };
222
223 /* A structure used to count TLS relocations or GOT entries, for GOT
224 entry or ELF symbol table traversal. */
225
226 struct mips_elf_count_tls_arg
227 {
228 struct bfd_link_info *info;
229 unsigned int needed;
230 };
231
232 struct _mips_elf_section_data
233 {
234 struct bfd_elf_section_data elf;
235 union
236 {
237 struct mips_got_info *got_info;
238 bfd_byte *tdata;
239 } u;
240 };
241
242 #define mips_elf_section_data(sec) \
243 ((struct _mips_elf_section_data *) elf_section_data (sec))
244
245 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
246 the dynamic symbols. */
247
248 struct mips_elf_hash_sort_data
249 {
250 /* The symbol in the global GOT with the lowest dynamic symbol table
251 index. */
252 struct elf_link_hash_entry *low;
253 /* The least dynamic symbol table index corresponding to a non-TLS
254 symbol with a GOT entry. */
255 long min_got_dynindx;
256 /* The greatest dynamic symbol table index corresponding to a symbol
257 with a GOT entry that is not referenced (e.g., a dynamic symbol
258 with dynamic relocations pointing to it from non-primary GOTs). */
259 long max_unref_got_dynindx;
260 /* The greatest dynamic symbol table index not corresponding to a
261 symbol without a GOT entry. */
262 long max_non_got_dynindx;
263 };
264
265 /* The MIPS ELF linker needs additional information for each symbol in
266 the global hash table. */
267
268 struct mips_elf_link_hash_entry
269 {
270 struct elf_link_hash_entry root;
271
272 /* External symbol information. */
273 EXTR esym;
274
275 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
276 this symbol. */
277 unsigned int possibly_dynamic_relocs;
278
279 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
280 a readonly section. */
281 bfd_boolean readonly_reloc;
282
283 /* We must not create a stub for a symbol that has relocations
284 related to taking the function's address, i.e. any but
285 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
286 p. 4-20. */
287 bfd_boolean no_fn_stub;
288
289 /* If there is a stub that 32 bit functions should use to call this
290 16 bit function, this points to the section containing the stub. */
291 asection *fn_stub;
292
293 /* Whether we need the fn_stub; this is set if this symbol appears
294 in any relocs other than a 16 bit call. */
295 bfd_boolean need_fn_stub;
296
297 /* If there is a stub that 16 bit functions should use to call this
298 32 bit function, this points to the section containing the stub. */
299 asection *call_stub;
300
301 /* This is like the call_stub field, but it is used if the function
302 being called returns a floating point value. */
303 asection *call_fp_stub;
304
305 /* Are we forced local? This will only be set if we have converted
306 the initial global GOT entry to a local GOT entry. */
307 bfd_boolean forced_local;
308
309 /* Are we referenced by some kind of relocation? */
310 bfd_boolean is_relocation_target;
311
312 /* Are we referenced by branch relocations? */
313 bfd_boolean is_branch_target;
314
315 #define GOT_NORMAL 0
316 #define GOT_TLS_GD 1
317 #define GOT_TLS_LDM 2
318 #define GOT_TLS_IE 4
319 #define GOT_TLS_OFFSET_DONE 0x40
320 #define GOT_TLS_DONE 0x80
321 unsigned char tls_type;
322 /* This is only used in single-GOT mode; in multi-GOT mode there
323 is one mips_got_entry per GOT entry, so the offset is stored
324 there. In single-GOT mode there may be many mips_got_entry
325 structures all referring to the same GOT slot. It might be
326 possible to use root.got.offset instead, but that field is
327 overloaded already. */
328 bfd_vma tls_got_offset;
329 };
330
331 /* MIPS ELF linker hash table. */
332
333 struct mips_elf_link_hash_table
334 {
335 struct elf_link_hash_table root;
336 #if 0
337 /* We no longer use this. */
338 /* String section indices for the dynamic section symbols. */
339 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
340 #endif
341 /* The number of .rtproc entries. */
342 bfd_size_type procedure_count;
343 /* The size of the .compact_rel section (if SGI_COMPAT). */
344 bfd_size_type compact_rel_size;
345 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
346 entry is set to the address of __rld_obj_head as in IRIX5. */
347 bfd_boolean use_rld_obj_head;
348 /* This is the value of the __rld_map or __rld_obj_head symbol. */
349 bfd_vma rld_value;
350 /* This is set if we see any mips16 stub sections. */
351 bfd_boolean mips16_stubs_seen;
352 /* True if we've computed the size of the GOT. */
353 bfd_boolean computed_got_sizes;
354 /* True if we're generating code for VxWorks. */
355 bfd_boolean is_vxworks;
356 /* True if we already reported the small-data section overflow. */
357 bfd_boolean small_data_overflow_reported;
358 /* Shortcuts to some dynamic sections, or NULL if they are not
359 being used. */
360 asection *srelbss;
361 asection *sdynbss;
362 asection *srelplt;
363 asection *srelplt2;
364 asection *sgotplt;
365 asection *splt;
366 /* The size of the PLT header in bytes (VxWorks only). */
367 bfd_vma plt_header_size;
368 /* The size of a PLT entry in bytes (VxWorks only). */
369 bfd_vma plt_entry_size;
370 /* The size of a function stub entry in bytes. */
371 bfd_vma function_stub_size;
372 };
373
374 #define TLS_RELOC_P(r_type) \
375 (r_type == R_MIPS_TLS_DTPMOD32 \
376 || r_type == R_MIPS_TLS_DTPMOD64 \
377 || r_type == R_MIPS_TLS_DTPREL32 \
378 || r_type == R_MIPS_TLS_DTPREL64 \
379 || r_type == R_MIPS_TLS_GD \
380 || r_type == R_MIPS_TLS_LDM \
381 || r_type == R_MIPS_TLS_DTPREL_HI16 \
382 || r_type == R_MIPS_TLS_DTPREL_LO16 \
383 || r_type == R_MIPS_TLS_GOTTPREL \
384 || r_type == R_MIPS_TLS_TPREL32 \
385 || r_type == R_MIPS_TLS_TPREL64 \
386 || r_type == R_MIPS_TLS_TPREL_HI16 \
387 || r_type == R_MIPS_TLS_TPREL_LO16)
388
389 /* Structure used to pass information to mips_elf_output_extsym. */
390
391 struct extsym_info
392 {
393 bfd *abfd;
394 struct bfd_link_info *info;
395 struct ecoff_debug_info *debug;
396 const struct ecoff_debug_swap *swap;
397 bfd_boolean failed;
398 };
399
400 /* The names of the runtime procedure table symbols used on IRIX5. */
401
402 static const char * const mips_elf_dynsym_rtproc_names[] =
403 {
404 "_procedure_table",
405 "_procedure_string_table",
406 "_procedure_table_size",
407 NULL
408 };
409
410 /* These structures are used to generate the .compact_rel section on
411 IRIX5. */
412
413 typedef struct
414 {
415 unsigned long id1; /* Always one? */
416 unsigned long num; /* Number of compact relocation entries. */
417 unsigned long id2; /* Always two? */
418 unsigned long offset; /* The file offset of the first relocation. */
419 unsigned long reserved0; /* Zero? */
420 unsigned long reserved1; /* Zero? */
421 } Elf32_compact_rel;
422
423 typedef struct
424 {
425 bfd_byte id1[4];
426 bfd_byte num[4];
427 bfd_byte id2[4];
428 bfd_byte offset[4];
429 bfd_byte reserved0[4];
430 bfd_byte reserved1[4];
431 } Elf32_External_compact_rel;
432
433 typedef struct
434 {
435 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
436 unsigned int rtype : 4; /* Relocation types. See below. */
437 unsigned int dist2to : 8;
438 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
439 unsigned long konst; /* KONST field. See below. */
440 unsigned long vaddr; /* VADDR to be relocated. */
441 } Elf32_crinfo;
442
443 typedef struct
444 {
445 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
446 unsigned int rtype : 4; /* Relocation types. See below. */
447 unsigned int dist2to : 8;
448 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
449 unsigned long konst; /* KONST field. See below. */
450 } Elf32_crinfo2;
451
452 typedef struct
453 {
454 bfd_byte info[4];
455 bfd_byte konst[4];
456 bfd_byte vaddr[4];
457 } Elf32_External_crinfo;
458
459 typedef struct
460 {
461 bfd_byte info[4];
462 bfd_byte konst[4];
463 } Elf32_External_crinfo2;
464
465 /* These are the constants used to swap the bitfields in a crinfo. */
466
467 #define CRINFO_CTYPE (0x1)
468 #define CRINFO_CTYPE_SH (31)
469 #define CRINFO_RTYPE (0xf)
470 #define CRINFO_RTYPE_SH (27)
471 #define CRINFO_DIST2TO (0xff)
472 #define CRINFO_DIST2TO_SH (19)
473 #define CRINFO_RELVADDR (0x7ffff)
474 #define CRINFO_RELVADDR_SH (0)
475
476 /* A compact relocation info has long (3 words) or short (2 words)
477 formats. A short format doesn't have VADDR field and relvaddr
478 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
479 #define CRF_MIPS_LONG 1
480 #define CRF_MIPS_SHORT 0
481
482 /* There are 4 types of compact relocation at least. The value KONST
483 has different meaning for each type:
484
485 (type) (konst)
486 CT_MIPS_REL32 Address in data
487 CT_MIPS_WORD Address in word (XXX)
488 CT_MIPS_GPHI_LO GP - vaddr
489 CT_MIPS_JMPAD Address to jump
490 */
491
492 #define CRT_MIPS_REL32 0xa
493 #define CRT_MIPS_WORD 0xb
494 #define CRT_MIPS_GPHI_LO 0xc
495 #define CRT_MIPS_JMPAD 0xd
496
497 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
498 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
499 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
500 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
501 \f
502 /* The structure of the runtime procedure descriptor created by the
503 loader for use by the static exception system. */
504
505 typedef struct runtime_pdr {
506 bfd_vma adr; /* Memory address of start of procedure. */
507 long regmask; /* Save register mask. */
508 long regoffset; /* Save register offset. */
509 long fregmask; /* Save floating point register mask. */
510 long fregoffset; /* Save floating point register offset. */
511 long frameoffset; /* Frame size. */
512 short framereg; /* Frame pointer register. */
513 short pcreg; /* Offset or reg of return pc. */
514 long irpss; /* Index into the runtime string table. */
515 long reserved;
516 struct exception_info *exception_info;/* Pointer to exception array. */
517 } RPDR, *pRPDR;
518 #define cbRPDR sizeof (RPDR)
519 #define rpdNil ((pRPDR) 0)
520 \f
521 static struct mips_got_entry *mips_elf_create_local_got_entry
522 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
523 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
524 static bfd_boolean mips_elf_sort_hash_table_f
525 (struct mips_elf_link_hash_entry *, void *);
526 static bfd_vma mips_elf_high
527 (bfd_vma);
528 static bfd_boolean mips16_stub_section_p
529 (bfd *, asection *);
530 static bfd_boolean mips_elf_create_dynamic_relocation
531 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
532 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
533 bfd_vma *, asection *);
534 static hashval_t mips_elf_got_entry_hash
535 (const void *);
536 static bfd_vma mips_elf_adjust_gp
537 (bfd *, struct mips_got_info *, bfd *);
538 static struct mips_got_info *mips_elf_got_for_ibfd
539 (struct mips_got_info *, bfd *);
540
541 /* This will be used when we sort the dynamic relocation records. */
542 static bfd *reldyn_sorting_bfd;
543
544 /* Nonzero if ABFD is using the N32 ABI. */
545 #define ABI_N32_P(abfd) \
546 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
547
548 /* Nonzero if ABFD is using the N64 ABI. */
549 #define ABI_64_P(abfd) \
550 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
551
552 /* Nonzero if ABFD is using NewABI conventions. */
553 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
554
555 /* The IRIX compatibility level we are striving for. */
556 #define IRIX_COMPAT(abfd) \
557 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
558
559 /* Whether we are trying to be compatible with IRIX at all. */
560 #define SGI_COMPAT(abfd) \
561 (IRIX_COMPAT (abfd) != ict_none)
562
563 /* The name of the options section. */
564 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
565 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
566
567 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
568 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
569 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
570 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
571
572 /* Whether the section is readonly. */
573 #define MIPS_ELF_READONLY_SECTION(sec) \
574 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
575 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
576
577 /* The name of the stub section. */
578 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
579
580 /* The size of an external REL relocation. */
581 #define MIPS_ELF_REL_SIZE(abfd) \
582 (get_elf_backend_data (abfd)->s->sizeof_rel)
583
584 /* The size of an external RELA relocation. */
585 #define MIPS_ELF_RELA_SIZE(abfd) \
586 (get_elf_backend_data (abfd)->s->sizeof_rela)
587
588 /* The size of an external dynamic table entry. */
589 #define MIPS_ELF_DYN_SIZE(abfd) \
590 (get_elf_backend_data (abfd)->s->sizeof_dyn)
591
592 /* The size of a GOT entry. */
593 #define MIPS_ELF_GOT_SIZE(abfd) \
594 (get_elf_backend_data (abfd)->s->arch_size / 8)
595
596 /* The size of a symbol-table entry. */
597 #define MIPS_ELF_SYM_SIZE(abfd) \
598 (get_elf_backend_data (abfd)->s->sizeof_sym)
599
600 /* The default alignment for sections, as a power of two. */
601 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
602 (get_elf_backend_data (abfd)->s->log_file_align)
603
604 /* Get word-sized data. */
605 #define MIPS_ELF_GET_WORD(abfd, ptr) \
606 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
607
608 /* Put out word-sized data. */
609 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
610 (ABI_64_P (abfd) \
611 ? bfd_put_64 (abfd, val, ptr) \
612 : bfd_put_32 (abfd, val, ptr))
613
614 /* Add a dynamic symbol table-entry. */
615 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
616 _bfd_elf_add_dynamic_entry (info, tag, val)
617
618 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
619 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
620
621 /* Determine whether the internal relocation of index REL_IDX is REL
622 (zero) or RELA (non-zero). The assumption is that, if there are
623 two relocation sections for this section, one of them is REL and
624 the other is RELA. If the index of the relocation we're testing is
625 in range for the first relocation section, check that the external
626 relocation size is that for RELA. It is also assumed that, if
627 rel_idx is not in range for the first section, and this first
628 section contains REL relocs, then the relocation is in the second
629 section, that is RELA. */
630 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
631 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
632 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
633 > (bfd_vma)(rel_idx)) \
634 == (elf_section_data (sec)->rel_hdr.sh_entsize \
635 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
636 : sizeof (Elf32_External_Rela))))
637
638 /* The name of the dynamic relocation section. */
639 #define MIPS_ELF_REL_DYN_NAME(INFO) \
640 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
641
642 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
643 from smaller values. Start with zero, widen, *then* decrement. */
644 #define MINUS_ONE (((bfd_vma)0) - 1)
645 #define MINUS_TWO (((bfd_vma)0) - 2)
646
647 /* The number of local .got entries we reserve. */
648 #define MIPS_RESERVED_GOTNO(INFO) \
649 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
650
651 /* The value to write into got[1] for SVR4 targets, to identify it is
652 a GNU object. The dynamic linker can then use got[1] to store the
653 module pointer. */
654 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
655 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
656
657 /* The offset of $gp from the beginning of the .got section. */
658 #define ELF_MIPS_GP_OFFSET(INFO) \
659 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
660
661 /* The maximum size of the GOT for it to be addressable using 16-bit
662 offsets from $gp. */
663 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
664
665 /* Instructions which appear in a stub. */
666 #define STUB_LW(abfd) \
667 ((ABI_64_P (abfd) \
668 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
669 : 0x8f998010)) /* lw t9,0x8010(gp) */
670 #define STUB_MOVE(abfd) \
671 ((ABI_64_P (abfd) \
672 ? 0x03e0782d /* daddu t7,ra */ \
673 : 0x03e07821)) /* addu t7,ra */
674 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
675 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
676 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
677 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
678 #define STUB_LI16S(abfd, VAL) \
679 ((ABI_64_P (abfd) \
680 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
681 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
682
683 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
684 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
685
686 /* The name of the dynamic interpreter. This is put in the .interp
687 section. */
688
689 #define ELF_DYNAMIC_INTERPRETER(abfd) \
690 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
691 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
692 : "/usr/lib/libc.so.1")
693
694 #ifdef BFD64
695 #define MNAME(bfd,pre,pos) \
696 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
697 #define ELF_R_SYM(bfd, i) \
698 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
699 #define ELF_R_TYPE(bfd, i) \
700 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
701 #define ELF_R_INFO(bfd, s, t) \
702 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
703 #else
704 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
705 #define ELF_R_SYM(bfd, i) \
706 (ELF32_R_SYM (i))
707 #define ELF_R_TYPE(bfd, i) \
708 (ELF32_R_TYPE (i))
709 #define ELF_R_INFO(bfd, s, t) \
710 (ELF32_R_INFO (s, t))
711 #endif
712 \f
713 /* The mips16 compiler uses a couple of special sections to handle
714 floating point arguments.
715
716 Section names that look like .mips16.fn.FNNAME contain stubs that
717 copy floating point arguments from the fp regs to the gp regs and
718 then jump to FNNAME. If any 32 bit function calls FNNAME, the
719 call should be redirected to the stub instead. If no 32 bit
720 function calls FNNAME, the stub should be discarded. We need to
721 consider any reference to the function, not just a call, because
722 if the address of the function is taken we will need the stub,
723 since the address might be passed to a 32 bit function.
724
725 Section names that look like .mips16.call.FNNAME contain stubs
726 that copy floating point arguments from the gp regs to the fp
727 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
728 then any 16 bit function that calls FNNAME should be redirected
729 to the stub instead. If FNNAME is not a 32 bit function, the
730 stub should be discarded.
731
732 .mips16.call.fp.FNNAME sections are similar, but contain stubs
733 which call FNNAME and then copy the return value from the fp regs
734 to the gp regs. These stubs store the return value in $18 while
735 calling FNNAME; any function which might call one of these stubs
736 must arrange to save $18 around the call. (This case is not
737 needed for 32 bit functions that call 16 bit functions, because
738 16 bit functions always return floating point values in both
739 $f0/$f1 and $2/$3.)
740
741 Note that in all cases FNNAME might be defined statically.
742 Therefore, FNNAME is not used literally. Instead, the relocation
743 information will indicate which symbol the section is for.
744
745 We record any stubs that we find in the symbol table. */
746
747 #define FN_STUB ".mips16.fn."
748 #define CALL_STUB ".mips16.call."
749 #define CALL_FP_STUB ".mips16.call.fp."
750
751 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
752 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
753 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
754 \f
755 /* The format of the first PLT entry in a VxWorks executable. */
756 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
757 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
758 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
759 0x8f390008, /* lw t9, 8(t9) */
760 0x00000000, /* nop */
761 0x03200008, /* jr t9 */
762 0x00000000 /* nop */
763 };
764
765 /* The format of subsequent PLT entries. */
766 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
767 0x10000000, /* b .PLT_resolver */
768 0x24180000, /* li t8, <pltindex> */
769 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
770 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
771 0x8f390000, /* lw t9, 0(t9) */
772 0x00000000, /* nop */
773 0x03200008, /* jr t9 */
774 0x00000000 /* nop */
775 };
776
777 /* The format of the first PLT entry in a VxWorks shared object. */
778 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
779 0x8f990008, /* lw t9, 8(gp) */
780 0x00000000, /* nop */
781 0x03200008, /* jr t9 */
782 0x00000000, /* nop */
783 0x00000000, /* nop */
784 0x00000000 /* nop */
785 };
786
787 /* The format of subsequent PLT entries. */
788 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
789 0x10000000, /* b .PLT_resolver */
790 0x24180000 /* li t8, <pltindex> */
791 };
792 \f
793 /* Look up an entry in a MIPS ELF linker hash table. */
794
795 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
796 ((struct mips_elf_link_hash_entry *) \
797 elf_link_hash_lookup (&(table)->root, (string), (create), \
798 (copy), (follow)))
799
800 /* Traverse a MIPS ELF linker hash table. */
801
802 #define mips_elf_link_hash_traverse(table, func, info) \
803 (elf_link_hash_traverse \
804 (&(table)->root, \
805 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
806 (info)))
807
808 /* Get the MIPS ELF linker hash table from a link_info structure. */
809
810 #define mips_elf_hash_table(p) \
811 ((struct mips_elf_link_hash_table *) ((p)->hash))
812
813 /* Find the base offsets for thread-local storage in this object,
814 for GD/LD and IE/LE respectively. */
815
816 #define TP_OFFSET 0x7000
817 #define DTP_OFFSET 0x8000
818
819 static bfd_vma
820 dtprel_base (struct bfd_link_info *info)
821 {
822 /* If tls_sec is NULL, we should have signalled an error already. */
823 if (elf_hash_table (info)->tls_sec == NULL)
824 return 0;
825 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
826 }
827
828 static bfd_vma
829 tprel_base (struct bfd_link_info *info)
830 {
831 /* If tls_sec is NULL, we should have signalled an error already. */
832 if (elf_hash_table (info)->tls_sec == NULL)
833 return 0;
834 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
835 }
836
837 /* Create an entry in a MIPS ELF linker hash table. */
838
839 static struct bfd_hash_entry *
840 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
841 struct bfd_hash_table *table, const char *string)
842 {
843 struct mips_elf_link_hash_entry *ret =
844 (struct mips_elf_link_hash_entry *) entry;
845
846 /* Allocate the structure if it has not already been allocated by a
847 subclass. */
848 if (ret == NULL)
849 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
850 if (ret == NULL)
851 return (struct bfd_hash_entry *) ret;
852
853 /* Call the allocation method of the superclass. */
854 ret = ((struct mips_elf_link_hash_entry *)
855 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
856 table, string));
857 if (ret != NULL)
858 {
859 /* Set local fields. */
860 memset (&ret->esym, 0, sizeof (EXTR));
861 /* We use -2 as a marker to indicate that the information has
862 not been set. -1 means there is no associated ifd. */
863 ret->esym.ifd = -2;
864 ret->possibly_dynamic_relocs = 0;
865 ret->readonly_reloc = FALSE;
866 ret->no_fn_stub = FALSE;
867 ret->fn_stub = NULL;
868 ret->need_fn_stub = FALSE;
869 ret->call_stub = NULL;
870 ret->call_fp_stub = NULL;
871 ret->forced_local = FALSE;
872 ret->is_branch_target = FALSE;
873 ret->is_relocation_target = FALSE;
874 ret->tls_type = GOT_NORMAL;
875 }
876
877 return (struct bfd_hash_entry *) ret;
878 }
879
880 bfd_boolean
881 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
882 {
883 if (!sec->used_by_bfd)
884 {
885 struct _mips_elf_section_data *sdata;
886 bfd_size_type amt = sizeof (*sdata);
887
888 sdata = bfd_zalloc (abfd, amt);
889 if (sdata == NULL)
890 return FALSE;
891 sec->used_by_bfd = sdata;
892 }
893
894 return _bfd_elf_new_section_hook (abfd, sec);
895 }
896 \f
897 /* Read ECOFF debugging information from a .mdebug section into a
898 ecoff_debug_info structure. */
899
900 bfd_boolean
901 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
902 struct ecoff_debug_info *debug)
903 {
904 HDRR *symhdr;
905 const struct ecoff_debug_swap *swap;
906 char *ext_hdr;
907
908 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
909 memset (debug, 0, sizeof (*debug));
910
911 ext_hdr = bfd_malloc (swap->external_hdr_size);
912 if (ext_hdr == NULL && swap->external_hdr_size != 0)
913 goto error_return;
914
915 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
916 swap->external_hdr_size))
917 goto error_return;
918
919 symhdr = &debug->symbolic_header;
920 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
921
922 /* The symbolic header contains absolute file offsets and sizes to
923 read. */
924 #define READ(ptr, offset, count, size, type) \
925 if (symhdr->count == 0) \
926 debug->ptr = NULL; \
927 else \
928 { \
929 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
930 debug->ptr = bfd_malloc (amt); \
931 if (debug->ptr == NULL) \
932 goto error_return; \
933 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
934 || bfd_bread (debug->ptr, amt, abfd) != amt) \
935 goto error_return; \
936 }
937
938 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
939 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
940 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
941 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
942 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
943 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
944 union aux_ext *);
945 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
946 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
947 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
948 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
949 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
950 #undef READ
951
952 debug->fdr = NULL;
953
954 return TRUE;
955
956 error_return:
957 if (ext_hdr != NULL)
958 free (ext_hdr);
959 if (debug->line != NULL)
960 free (debug->line);
961 if (debug->external_dnr != NULL)
962 free (debug->external_dnr);
963 if (debug->external_pdr != NULL)
964 free (debug->external_pdr);
965 if (debug->external_sym != NULL)
966 free (debug->external_sym);
967 if (debug->external_opt != NULL)
968 free (debug->external_opt);
969 if (debug->external_aux != NULL)
970 free (debug->external_aux);
971 if (debug->ss != NULL)
972 free (debug->ss);
973 if (debug->ssext != NULL)
974 free (debug->ssext);
975 if (debug->external_fdr != NULL)
976 free (debug->external_fdr);
977 if (debug->external_rfd != NULL)
978 free (debug->external_rfd);
979 if (debug->external_ext != NULL)
980 free (debug->external_ext);
981 return FALSE;
982 }
983 \f
984 /* Swap RPDR (runtime procedure table entry) for output. */
985
986 static void
987 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
988 {
989 H_PUT_S32 (abfd, in->adr, ex->p_adr);
990 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
991 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
992 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
993 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
994 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
995
996 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
997 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
998
999 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1000 }
1001
1002 /* Create a runtime procedure table from the .mdebug section. */
1003
1004 static bfd_boolean
1005 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1006 struct bfd_link_info *info, asection *s,
1007 struct ecoff_debug_info *debug)
1008 {
1009 const struct ecoff_debug_swap *swap;
1010 HDRR *hdr = &debug->symbolic_header;
1011 RPDR *rpdr, *rp;
1012 struct rpdr_ext *erp;
1013 void *rtproc;
1014 struct pdr_ext *epdr;
1015 struct sym_ext *esym;
1016 char *ss, **sv;
1017 char *str;
1018 bfd_size_type size;
1019 bfd_size_type count;
1020 unsigned long sindex;
1021 unsigned long i;
1022 PDR pdr;
1023 SYMR sym;
1024 const char *no_name_func = _("static procedure (no name)");
1025
1026 epdr = NULL;
1027 rpdr = NULL;
1028 esym = NULL;
1029 ss = NULL;
1030 sv = NULL;
1031
1032 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1033
1034 sindex = strlen (no_name_func) + 1;
1035 count = hdr->ipdMax;
1036 if (count > 0)
1037 {
1038 size = swap->external_pdr_size;
1039
1040 epdr = bfd_malloc (size * count);
1041 if (epdr == NULL)
1042 goto error_return;
1043
1044 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1045 goto error_return;
1046
1047 size = sizeof (RPDR);
1048 rp = rpdr = bfd_malloc (size * count);
1049 if (rpdr == NULL)
1050 goto error_return;
1051
1052 size = sizeof (char *);
1053 sv = bfd_malloc (size * count);
1054 if (sv == NULL)
1055 goto error_return;
1056
1057 count = hdr->isymMax;
1058 size = swap->external_sym_size;
1059 esym = bfd_malloc (size * count);
1060 if (esym == NULL)
1061 goto error_return;
1062
1063 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1064 goto error_return;
1065
1066 count = hdr->issMax;
1067 ss = bfd_malloc (count);
1068 if (ss == NULL)
1069 goto error_return;
1070 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1071 goto error_return;
1072
1073 count = hdr->ipdMax;
1074 for (i = 0; i < (unsigned long) count; i++, rp++)
1075 {
1076 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1077 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1078 rp->adr = sym.value;
1079 rp->regmask = pdr.regmask;
1080 rp->regoffset = pdr.regoffset;
1081 rp->fregmask = pdr.fregmask;
1082 rp->fregoffset = pdr.fregoffset;
1083 rp->frameoffset = pdr.frameoffset;
1084 rp->framereg = pdr.framereg;
1085 rp->pcreg = pdr.pcreg;
1086 rp->irpss = sindex;
1087 sv[i] = ss + sym.iss;
1088 sindex += strlen (sv[i]) + 1;
1089 }
1090 }
1091
1092 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1093 size = BFD_ALIGN (size, 16);
1094 rtproc = bfd_alloc (abfd, size);
1095 if (rtproc == NULL)
1096 {
1097 mips_elf_hash_table (info)->procedure_count = 0;
1098 goto error_return;
1099 }
1100
1101 mips_elf_hash_table (info)->procedure_count = count + 2;
1102
1103 erp = rtproc;
1104 memset (erp, 0, sizeof (struct rpdr_ext));
1105 erp++;
1106 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1107 strcpy (str, no_name_func);
1108 str += strlen (no_name_func) + 1;
1109 for (i = 0; i < count; i++)
1110 {
1111 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1112 strcpy (str, sv[i]);
1113 str += strlen (sv[i]) + 1;
1114 }
1115 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1116
1117 /* Set the size and contents of .rtproc section. */
1118 s->size = size;
1119 s->contents = rtproc;
1120
1121 /* Skip this section later on (I don't think this currently
1122 matters, but someday it might). */
1123 s->map_head.link_order = NULL;
1124
1125 if (epdr != NULL)
1126 free (epdr);
1127 if (rpdr != NULL)
1128 free (rpdr);
1129 if (esym != NULL)
1130 free (esym);
1131 if (ss != NULL)
1132 free (ss);
1133 if (sv != NULL)
1134 free (sv);
1135
1136 return TRUE;
1137
1138 error_return:
1139 if (epdr != NULL)
1140 free (epdr);
1141 if (rpdr != NULL)
1142 free (rpdr);
1143 if (esym != NULL)
1144 free (esym);
1145 if (ss != NULL)
1146 free (ss);
1147 if (sv != NULL)
1148 free (sv);
1149 return FALSE;
1150 }
1151
1152 /* Check the mips16 stubs for a particular symbol, and see if we can
1153 discard them. */
1154
1155 static bfd_boolean
1156 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1157 void *data ATTRIBUTE_UNUSED)
1158 {
1159 if (h->root.root.type == bfd_link_hash_warning)
1160 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1161
1162 if (h->fn_stub != NULL
1163 && ! h->need_fn_stub)
1164 {
1165 /* We don't need the fn_stub; the only references to this symbol
1166 are 16 bit calls. Clobber the size to 0 to prevent it from
1167 being included in the link. */
1168 h->fn_stub->size = 0;
1169 h->fn_stub->flags &= ~SEC_RELOC;
1170 h->fn_stub->reloc_count = 0;
1171 h->fn_stub->flags |= SEC_EXCLUDE;
1172 }
1173
1174 if (h->call_stub != NULL
1175 && h->root.other == STO_MIPS16)
1176 {
1177 /* We don't need the call_stub; this is a 16 bit function, so
1178 calls from other 16 bit functions are OK. Clobber the size
1179 to 0 to prevent it from being included in the link. */
1180 h->call_stub->size = 0;
1181 h->call_stub->flags &= ~SEC_RELOC;
1182 h->call_stub->reloc_count = 0;
1183 h->call_stub->flags |= SEC_EXCLUDE;
1184 }
1185
1186 if (h->call_fp_stub != NULL
1187 && h->root.other == STO_MIPS16)
1188 {
1189 /* We don't need the call_stub; this is a 16 bit function, so
1190 calls from other 16 bit functions are OK. Clobber the size
1191 to 0 to prevent it from being included in the link. */
1192 h->call_fp_stub->size = 0;
1193 h->call_fp_stub->flags &= ~SEC_RELOC;
1194 h->call_fp_stub->reloc_count = 0;
1195 h->call_fp_stub->flags |= SEC_EXCLUDE;
1196 }
1197
1198 return TRUE;
1199 }
1200 \f
1201 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1202 Most mips16 instructions are 16 bits, but these instructions
1203 are 32 bits.
1204
1205 The format of these instructions is:
1206
1207 +--------------+--------------------------------+
1208 | JALX | X| Imm 20:16 | Imm 25:21 |
1209 +--------------+--------------------------------+
1210 | Immediate 15:0 |
1211 +-----------------------------------------------+
1212
1213 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1214 Note that the immediate value in the first word is swapped.
1215
1216 When producing a relocatable object file, R_MIPS16_26 is
1217 handled mostly like R_MIPS_26. In particular, the addend is
1218 stored as a straight 26-bit value in a 32-bit instruction.
1219 (gas makes life simpler for itself by never adjusting a
1220 R_MIPS16_26 reloc to be against a section, so the addend is
1221 always zero). However, the 32 bit instruction is stored as 2
1222 16-bit values, rather than a single 32-bit value. In a
1223 big-endian file, the result is the same; in a little-endian
1224 file, the two 16-bit halves of the 32 bit value are swapped.
1225 This is so that a disassembler can recognize the jal
1226 instruction.
1227
1228 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1229 instruction stored as two 16-bit values. The addend A is the
1230 contents of the targ26 field. The calculation is the same as
1231 R_MIPS_26. When storing the calculated value, reorder the
1232 immediate value as shown above, and don't forget to store the
1233 value as two 16-bit values.
1234
1235 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1236 defined as
1237
1238 big-endian:
1239 +--------+----------------------+
1240 | | |
1241 | | targ26-16 |
1242 |31 26|25 0|
1243 +--------+----------------------+
1244
1245 little-endian:
1246 +----------+------+-------------+
1247 | | | |
1248 | sub1 | | sub2 |
1249 |0 9|10 15|16 31|
1250 +----------+--------------------+
1251 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1252 ((sub1 << 16) | sub2)).
1253
1254 When producing a relocatable object file, the calculation is
1255 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1256 When producing a fully linked file, the calculation is
1257 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1258 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1259
1260 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1261 mode. A typical instruction will have a format like this:
1262
1263 +--------------+--------------------------------+
1264 | EXTEND | Imm 10:5 | Imm 15:11 |
1265 +--------------+--------------------------------+
1266 | Major | rx | ry | Imm 4:0 |
1267 +--------------+--------------------------------+
1268
1269 EXTEND is the five bit value 11110. Major is the instruction
1270 opcode.
1271
1272 This is handled exactly like R_MIPS_GPREL16, except that the
1273 addend is retrieved and stored as shown in this diagram; that
1274 is, the Imm fields above replace the V-rel16 field.
1275
1276 All we need to do here is shuffle the bits appropriately. As
1277 above, the two 16-bit halves must be swapped on a
1278 little-endian system.
1279
1280 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1281 access data when neither GP-relative nor PC-relative addressing
1282 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1283 except that the addend is retrieved and stored as shown above
1284 for R_MIPS16_GPREL.
1285 */
1286 void
1287 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1288 bfd_boolean jal_shuffle, bfd_byte *data)
1289 {
1290 bfd_vma extend, insn, val;
1291
1292 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1293 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1294 return;
1295
1296 /* Pick up the mips16 extend instruction and the real instruction. */
1297 extend = bfd_get_16 (abfd, data);
1298 insn = bfd_get_16 (abfd, data + 2);
1299 if (r_type == R_MIPS16_26)
1300 {
1301 if (jal_shuffle)
1302 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1303 | ((extend & 0x1f) << 21) | insn;
1304 else
1305 val = extend << 16 | insn;
1306 }
1307 else
1308 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1309 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1310 bfd_put_32 (abfd, val, data);
1311 }
1312
1313 void
1314 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1315 bfd_boolean jal_shuffle, bfd_byte *data)
1316 {
1317 bfd_vma extend, insn, val;
1318
1319 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1320 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1321 return;
1322
1323 val = bfd_get_32 (abfd, data);
1324 if (r_type == R_MIPS16_26)
1325 {
1326 if (jal_shuffle)
1327 {
1328 insn = val & 0xffff;
1329 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1330 | ((val >> 21) & 0x1f);
1331 }
1332 else
1333 {
1334 insn = val & 0xffff;
1335 extend = val >> 16;
1336 }
1337 }
1338 else
1339 {
1340 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1341 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1342 }
1343 bfd_put_16 (abfd, insn, data + 2);
1344 bfd_put_16 (abfd, extend, data);
1345 }
1346
1347 bfd_reloc_status_type
1348 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1349 arelent *reloc_entry, asection *input_section,
1350 bfd_boolean relocatable, void *data, bfd_vma gp)
1351 {
1352 bfd_vma relocation;
1353 bfd_signed_vma val;
1354 bfd_reloc_status_type status;
1355
1356 if (bfd_is_com_section (symbol->section))
1357 relocation = 0;
1358 else
1359 relocation = symbol->value;
1360
1361 relocation += symbol->section->output_section->vma;
1362 relocation += symbol->section->output_offset;
1363
1364 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1365 return bfd_reloc_outofrange;
1366
1367 /* Set val to the offset into the section or symbol. */
1368 val = reloc_entry->addend;
1369
1370 _bfd_mips_elf_sign_extend (val, 16);
1371
1372 /* Adjust val for the final section location and GP value. If we
1373 are producing relocatable output, we don't want to do this for
1374 an external symbol. */
1375 if (! relocatable
1376 || (symbol->flags & BSF_SECTION_SYM) != 0)
1377 val += relocation - gp;
1378
1379 if (reloc_entry->howto->partial_inplace)
1380 {
1381 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1382 (bfd_byte *) data
1383 + reloc_entry->address);
1384 if (status != bfd_reloc_ok)
1385 return status;
1386 }
1387 else
1388 reloc_entry->addend = val;
1389
1390 if (relocatable)
1391 reloc_entry->address += input_section->output_offset;
1392
1393 return bfd_reloc_ok;
1394 }
1395
1396 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1397 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1398 that contains the relocation field and DATA points to the start of
1399 INPUT_SECTION. */
1400
1401 struct mips_hi16
1402 {
1403 struct mips_hi16 *next;
1404 bfd_byte *data;
1405 asection *input_section;
1406 arelent rel;
1407 };
1408
1409 /* FIXME: This should not be a static variable. */
1410
1411 static struct mips_hi16 *mips_hi16_list;
1412
1413 /* A howto special_function for REL *HI16 relocations. We can only
1414 calculate the correct value once we've seen the partnering
1415 *LO16 relocation, so just save the information for later.
1416
1417 The ABI requires that the *LO16 immediately follow the *HI16.
1418 However, as a GNU extension, we permit an arbitrary number of
1419 *HI16s to be associated with a single *LO16. This significantly
1420 simplies the relocation handling in gcc. */
1421
1422 bfd_reloc_status_type
1423 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1424 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1425 asection *input_section, bfd *output_bfd,
1426 char **error_message ATTRIBUTE_UNUSED)
1427 {
1428 struct mips_hi16 *n;
1429
1430 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1431 return bfd_reloc_outofrange;
1432
1433 n = bfd_malloc (sizeof *n);
1434 if (n == NULL)
1435 return bfd_reloc_outofrange;
1436
1437 n->next = mips_hi16_list;
1438 n->data = data;
1439 n->input_section = input_section;
1440 n->rel = *reloc_entry;
1441 mips_hi16_list = n;
1442
1443 if (output_bfd != NULL)
1444 reloc_entry->address += input_section->output_offset;
1445
1446 return bfd_reloc_ok;
1447 }
1448
1449 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1450 like any other 16-bit relocation when applied to global symbols, but is
1451 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1452
1453 bfd_reloc_status_type
1454 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1455 void *data, asection *input_section,
1456 bfd *output_bfd, char **error_message)
1457 {
1458 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1459 || bfd_is_und_section (bfd_get_section (symbol))
1460 || bfd_is_com_section (bfd_get_section (symbol)))
1461 /* The relocation is against a global symbol. */
1462 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1463 input_section, output_bfd,
1464 error_message);
1465
1466 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1467 input_section, output_bfd, error_message);
1468 }
1469
1470 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1471 is a straightforward 16 bit inplace relocation, but we must deal with
1472 any partnering high-part relocations as well. */
1473
1474 bfd_reloc_status_type
1475 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1476 void *data, asection *input_section,
1477 bfd *output_bfd, char **error_message)
1478 {
1479 bfd_vma vallo;
1480 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1481
1482 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1483 return bfd_reloc_outofrange;
1484
1485 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1486 location);
1487 vallo = bfd_get_32 (abfd, location);
1488 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1489 location);
1490
1491 while (mips_hi16_list != NULL)
1492 {
1493 bfd_reloc_status_type ret;
1494 struct mips_hi16 *hi;
1495
1496 hi = mips_hi16_list;
1497
1498 /* R_MIPS_GOT16 relocations are something of a special case. We
1499 want to install the addend in the same way as for a R_MIPS_HI16
1500 relocation (with a rightshift of 16). However, since GOT16
1501 relocations can also be used with global symbols, their howto
1502 has a rightshift of 0. */
1503 if (hi->rel.howto->type == R_MIPS_GOT16)
1504 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1505
1506 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1507 carry or borrow will induce a change of +1 or -1 in the high part. */
1508 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1509
1510 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1511 hi->input_section, output_bfd,
1512 error_message);
1513 if (ret != bfd_reloc_ok)
1514 return ret;
1515
1516 mips_hi16_list = hi->next;
1517 free (hi);
1518 }
1519
1520 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1521 input_section, output_bfd,
1522 error_message);
1523 }
1524
1525 /* A generic howto special_function. This calculates and installs the
1526 relocation itself, thus avoiding the oft-discussed problems in
1527 bfd_perform_relocation and bfd_install_relocation. */
1528
1529 bfd_reloc_status_type
1530 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1531 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1532 asection *input_section, bfd *output_bfd,
1533 char **error_message ATTRIBUTE_UNUSED)
1534 {
1535 bfd_signed_vma val;
1536 bfd_reloc_status_type status;
1537 bfd_boolean relocatable;
1538
1539 relocatable = (output_bfd != NULL);
1540
1541 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1542 return bfd_reloc_outofrange;
1543
1544 /* Build up the field adjustment in VAL. */
1545 val = 0;
1546 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1547 {
1548 /* Either we're calculating the final field value or we have a
1549 relocation against a section symbol. Add in the section's
1550 offset or address. */
1551 val += symbol->section->output_section->vma;
1552 val += symbol->section->output_offset;
1553 }
1554
1555 if (!relocatable)
1556 {
1557 /* We're calculating the final field value. Add in the symbol's value
1558 and, if pc-relative, subtract the address of the field itself. */
1559 val += symbol->value;
1560 if (reloc_entry->howto->pc_relative)
1561 {
1562 val -= input_section->output_section->vma;
1563 val -= input_section->output_offset;
1564 val -= reloc_entry->address;
1565 }
1566 }
1567
1568 /* VAL is now the final adjustment. If we're keeping this relocation
1569 in the output file, and if the relocation uses a separate addend,
1570 we just need to add VAL to that addend. Otherwise we need to add
1571 VAL to the relocation field itself. */
1572 if (relocatable && !reloc_entry->howto->partial_inplace)
1573 reloc_entry->addend += val;
1574 else
1575 {
1576 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1577
1578 /* Add in the separate addend, if any. */
1579 val += reloc_entry->addend;
1580
1581 /* Add VAL to the relocation field. */
1582 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1583 location);
1584 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1585 location);
1586 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1587 location);
1588
1589 if (status != bfd_reloc_ok)
1590 return status;
1591 }
1592
1593 if (relocatable)
1594 reloc_entry->address += input_section->output_offset;
1595
1596 return bfd_reloc_ok;
1597 }
1598 \f
1599 /* Swap an entry in a .gptab section. Note that these routines rely
1600 on the equivalence of the two elements of the union. */
1601
1602 static void
1603 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1604 Elf32_gptab *in)
1605 {
1606 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1607 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1608 }
1609
1610 static void
1611 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1612 Elf32_External_gptab *ex)
1613 {
1614 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1615 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1616 }
1617
1618 static void
1619 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1620 Elf32_External_compact_rel *ex)
1621 {
1622 H_PUT_32 (abfd, in->id1, ex->id1);
1623 H_PUT_32 (abfd, in->num, ex->num);
1624 H_PUT_32 (abfd, in->id2, ex->id2);
1625 H_PUT_32 (abfd, in->offset, ex->offset);
1626 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1627 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1628 }
1629
1630 static void
1631 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1632 Elf32_External_crinfo *ex)
1633 {
1634 unsigned long l;
1635
1636 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1637 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1638 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1639 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1640 H_PUT_32 (abfd, l, ex->info);
1641 H_PUT_32 (abfd, in->konst, ex->konst);
1642 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1643 }
1644 \f
1645 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1646 routines swap this structure in and out. They are used outside of
1647 BFD, so they are globally visible. */
1648
1649 void
1650 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1651 Elf32_RegInfo *in)
1652 {
1653 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1654 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1655 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1656 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1657 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1658 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1659 }
1660
1661 void
1662 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1663 Elf32_External_RegInfo *ex)
1664 {
1665 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1666 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1667 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1668 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1669 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1670 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1671 }
1672
1673 /* In the 64 bit ABI, the .MIPS.options section holds register
1674 information in an Elf64_Reginfo structure. These routines swap
1675 them in and out. They are globally visible because they are used
1676 outside of BFD. These routines are here so that gas can call them
1677 without worrying about whether the 64 bit ABI has been included. */
1678
1679 void
1680 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1681 Elf64_Internal_RegInfo *in)
1682 {
1683 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1684 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1685 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1686 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1687 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1688 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1689 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1690 }
1691
1692 void
1693 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1694 Elf64_External_RegInfo *ex)
1695 {
1696 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1697 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1698 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1699 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1700 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1701 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1702 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1703 }
1704
1705 /* Swap in an options header. */
1706
1707 void
1708 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1709 Elf_Internal_Options *in)
1710 {
1711 in->kind = H_GET_8 (abfd, ex->kind);
1712 in->size = H_GET_8 (abfd, ex->size);
1713 in->section = H_GET_16 (abfd, ex->section);
1714 in->info = H_GET_32 (abfd, ex->info);
1715 }
1716
1717 /* Swap out an options header. */
1718
1719 void
1720 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1721 Elf_External_Options *ex)
1722 {
1723 H_PUT_8 (abfd, in->kind, ex->kind);
1724 H_PUT_8 (abfd, in->size, ex->size);
1725 H_PUT_16 (abfd, in->section, ex->section);
1726 H_PUT_32 (abfd, in->info, ex->info);
1727 }
1728 \f
1729 /* This function is called via qsort() to sort the dynamic relocation
1730 entries by increasing r_symndx value. */
1731
1732 static int
1733 sort_dynamic_relocs (const void *arg1, const void *arg2)
1734 {
1735 Elf_Internal_Rela int_reloc1;
1736 Elf_Internal_Rela int_reloc2;
1737 int diff;
1738
1739 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1740 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1741
1742 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1743 if (diff != 0)
1744 return diff;
1745
1746 if (int_reloc1.r_offset < int_reloc2.r_offset)
1747 return -1;
1748 if (int_reloc1.r_offset > int_reloc2.r_offset)
1749 return 1;
1750 return 0;
1751 }
1752
1753 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1754
1755 static int
1756 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1757 const void *arg2 ATTRIBUTE_UNUSED)
1758 {
1759 #ifdef BFD64
1760 Elf_Internal_Rela int_reloc1[3];
1761 Elf_Internal_Rela int_reloc2[3];
1762
1763 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1764 (reldyn_sorting_bfd, arg1, int_reloc1);
1765 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1766 (reldyn_sorting_bfd, arg2, int_reloc2);
1767
1768 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1769 return -1;
1770 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1771 return 1;
1772
1773 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1774 return -1;
1775 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1776 return 1;
1777 return 0;
1778 #else
1779 abort ();
1780 #endif
1781 }
1782
1783
1784 /* This routine is used to write out ECOFF debugging external symbol
1785 information. It is called via mips_elf_link_hash_traverse. The
1786 ECOFF external symbol information must match the ELF external
1787 symbol information. Unfortunately, at this point we don't know
1788 whether a symbol is required by reloc information, so the two
1789 tables may wind up being different. We must sort out the external
1790 symbol information before we can set the final size of the .mdebug
1791 section, and we must set the size of the .mdebug section before we
1792 can relocate any sections, and we can't know which symbols are
1793 required by relocation until we relocate the sections.
1794 Fortunately, it is relatively unlikely that any symbol will be
1795 stripped but required by a reloc. In particular, it can not happen
1796 when generating a final executable. */
1797
1798 static bfd_boolean
1799 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1800 {
1801 struct extsym_info *einfo = data;
1802 bfd_boolean strip;
1803 asection *sec, *output_section;
1804
1805 if (h->root.root.type == bfd_link_hash_warning)
1806 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1807
1808 if (h->root.indx == -2)
1809 strip = FALSE;
1810 else if ((h->root.def_dynamic
1811 || h->root.ref_dynamic
1812 || h->root.type == bfd_link_hash_new)
1813 && !h->root.def_regular
1814 && !h->root.ref_regular)
1815 strip = TRUE;
1816 else if (einfo->info->strip == strip_all
1817 || (einfo->info->strip == strip_some
1818 && bfd_hash_lookup (einfo->info->keep_hash,
1819 h->root.root.root.string,
1820 FALSE, FALSE) == NULL))
1821 strip = TRUE;
1822 else
1823 strip = FALSE;
1824
1825 if (strip)
1826 return TRUE;
1827
1828 if (h->esym.ifd == -2)
1829 {
1830 h->esym.jmptbl = 0;
1831 h->esym.cobol_main = 0;
1832 h->esym.weakext = 0;
1833 h->esym.reserved = 0;
1834 h->esym.ifd = ifdNil;
1835 h->esym.asym.value = 0;
1836 h->esym.asym.st = stGlobal;
1837
1838 if (h->root.root.type == bfd_link_hash_undefined
1839 || h->root.root.type == bfd_link_hash_undefweak)
1840 {
1841 const char *name;
1842
1843 /* Use undefined class. Also, set class and type for some
1844 special symbols. */
1845 name = h->root.root.root.string;
1846 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1847 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1848 {
1849 h->esym.asym.sc = scData;
1850 h->esym.asym.st = stLabel;
1851 h->esym.asym.value = 0;
1852 }
1853 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1854 {
1855 h->esym.asym.sc = scAbs;
1856 h->esym.asym.st = stLabel;
1857 h->esym.asym.value =
1858 mips_elf_hash_table (einfo->info)->procedure_count;
1859 }
1860 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1861 {
1862 h->esym.asym.sc = scAbs;
1863 h->esym.asym.st = stLabel;
1864 h->esym.asym.value = elf_gp (einfo->abfd);
1865 }
1866 else
1867 h->esym.asym.sc = scUndefined;
1868 }
1869 else if (h->root.root.type != bfd_link_hash_defined
1870 && h->root.root.type != bfd_link_hash_defweak)
1871 h->esym.asym.sc = scAbs;
1872 else
1873 {
1874 const char *name;
1875
1876 sec = h->root.root.u.def.section;
1877 output_section = sec->output_section;
1878
1879 /* When making a shared library and symbol h is the one from
1880 the another shared library, OUTPUT_SECTION may be null. */
1881 if (output_section == NULL)
1882 h->esym.asym.sc = scUndefined;
1883 else
1884 {
1885 name = bfd_section_name (output_section->owner, output_section);
1886
1887 if (strcmp (name, ".text") == 0)
1888 h->esym.asym.sc = scText;
1889 else if (strcmp (name, ".data") == 0)
1890 h->esym.asym.sc = scData;
1891 else if (strcmp (name, ".sdata") == 0)
1892 h->esym.asym.sc = scSData;
1893 else if (strcmp (name, ".rodata") == 0
1894 || strcmp (name, ".rdata") == 0)
1895 h->esym.asym.sc = scRData;
1896 else if (strcmp (name, ".bss") == 0)
1897 h->esym.asym.sc = scBss;
1898 else if (strcmp (name, ".sbss") == 0)
1899 h->esym.asym.sc = scSBss;
1900 else if (strcmp (name, ".init") == 0)
1901 h->esym.asym.sc = scInit;
1902 else if (strcmp (name, ".fini") == 0)
1903 h->esym.asym.sc = scFini;
1904 else
1905 h->esym.asym.sc = scAbs;
1906 }
1907 }
1908
1909 h->esym.asym.reserved = 0;
1910 h->esym.asym.index = indexNil;
1911 }
1912
1913 if (h->root.root.type == bfd_link_hash_common)
1914 h->esym.asym.value = h->root.root.u.c.size;
1915 else if (h->root.root.type == bfd_link_hash_defined
1916 || h->root.root.type == bfd_link_hash_defweak)
1917 {
1918 if (h->esym.asym.sc == scCommon)
1919 h->esym.asym.sc = scBss;
1920 else if (h->esym.asym.sc == scSCommon)
1921 h->esym.asym.sc = scSBss;
1922
1923 sec = h->root.root.u.def.section;
1924 output_section = sec->output_section;
1925 if (output_section != NULL)
1926 h->esym.asym.value = (h->root.root.u.def.value
1927 + sec->output_offset
1928 + output_section->vma);
1929 else
1930 h->esym.asym.value = 0;
1931 }
1932 else if (h->root.needs_plt)
1933 {
1934 struct mips_elf_link_hash_entry *hd = h;
1935 bfd_boolean no_fn_stub = h->no_fn_stub;
1936
1937 while (hd->root.root.type == bfd_link_hash_indirect)
1938 {
1939 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1940 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1941 }
1942
1943 if (!no_fn_stub)
1944 {
1945 /* Set type and value for a symbol with a function stub. */
1946 h->esym.asym.st = stProc;
1947 sec = hd->root.root.u.def.section;
1948 if (sec == NULL)
1949 h->esym.asym.value = 0;
1950 else
1951 {
1952 output_section = sec->output_section;
1953 if (output_section != NULL)
1954 h->esym.asym.value = (hd->root.plt.offset
1955 + sec->output_offset
1956 + output_section->vma);
1957 else
1958 h->esym.asym.value = 0;
1959 }
1960 }
1961 }
1962
1963 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1964 h->root.root.root.string,
1965 &h->esym))
1966 {
1967 einfo->failed = TRUE;
1968 return FALSE;
1969 }
1970
1971 return TRUE;
1972 }
1973
1974 /* A comparison routine used to sort .gptab entries. */
1975
1976 static int
1977 gptab_compare (const void *p1, const void *p2)
1978 {
1979 const Elf32_gptab *a1 = p1;
1980 const Elf32_gptab *a2 = p2;
1981
1982 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1983 }
1984 \f
1985 /* Functions to manage the got entry hash table. */
1986
1987 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1988 hash number. */
1989
1990 static INLINE hashval_t
1991 mips_elf_hash_bfd_vma (bfd_vma addr)
1992 {
1993 #ifdef BFD64
1994 return addr + (addr >> 32);
1995 #else
1996 return addr;
1997 #endif
1998 }
1999
2000 /* got_entries only match if they're identical, except for gotidx, so
2001 use all fields to compute the hash, and compare the appropriate
2002 union members. */
2003
2004 static hashval_t
2005 mips_elf_got_entry_hash (const void *entry_)
2006 {
2007 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2008
2009 return entry->symndx
2010 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2011 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2012 : entry->abfd->id
2013 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2014 : entry->d.h->root.root.root.hash));
2015 }
2016
2017 static int
2018 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2019 {
2020 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2021 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2022
2023 /* An LDM entry can only match another LDM entry. */
2024 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2025 return 0;
2026
2027 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2028 && (! e1->abfd ? e1->d.address == e2->d.address
2029 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2030 : e1->d.h == e2->d.h);
2031 }
2032
2033 /* multi_got_entries are still a match in the case of global objects,
2034 even if the input bfd in which they're referenced differs, so the
2035 hash computation and compare functions are adjusted
2036 accordingly. */
2037
2038 static hashval_t
2039 mips_elf_multi_got_entry_hash (const void *entry_)
2040 {
2041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2042
2043 return entry->symndx
2044 + (! entry->abfd
2045 ? mips_elf_hash_bfd_vma (entry->d.address)
2046 : entry->symndx >= 0
2047 ? ((entry->tls_type & GOT_TLS_LDM)
2048 ? (GOT_TLS_LDM << 17)
2049 : (entry->abfd->id
2050 + mips_elf_hash_bfd_vma (entry->d.addend)))
2051 : entry->d.h->root.root.root.hash);
2052 }
2053
2054 static int
2055 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2056 {
2057 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2058 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2059
2060 /* Any two LDM entries match. */
2061 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2062 return 1;
2063
2064 /* Nothing else matches an LDM entry. */
2065 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2066 return 0;
2067
2068 return e1->symndx == e2->symndx
2069 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2070 : e1->abfd == NULL || e2->abfd == NULL
2071 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2072 : e1->d.h == e2->d.h);
2073 }
2074
2075 static hashval_t
2076 mips_got_page_entry_hash (const void *entry_)
2077 {
2078 const struct mips_got_page_entry *entry;
2079
2080 entry = (const struct mips_got_page_entry *) entry_;
2081 return entry->abfd->id + entry->symndx;
2082 }
2083
2084 static int
2085 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2086 {
2087 const struct mips_got_page_entry *entry1, *entry2;
2088
2089 entry1 = (const struct mips_got_page_entry *) entry1_;
2090 entry2 = (const struct mips_got_page_entry *) entry2_;
2091 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2092 }
2093 \f
2094 /* Return the dynamic relocation section. If it doesn't exist, try to
2095 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2096 if creation fails. */
2097
2098 static asection *
2099 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2100 {
2101 const char *dname;
2102 asection *sreloc;
2103 bfd *dynobj;
2104
2105 dname = MIPS_ELF_REL_DYN_NAME (info);
2106 dynobj = elf_hash_table (info)->dynobj;
2107 sreloc = bfd_get_section_by_name (dynobj, dname);
2108 if (sreloc == NULL && create_p)
2109 {
2110 sreloc = bfd_make_section_with_flags (dynobj, dname,
2111 (SEC_ALLOC
2112 | SEC_LOAD
2113 | SEC_HAS_CONTENTS
2114 | SEC_IN_MEMORY
2115 | SEC_LINKER_CREATED
2116 | SEC_READONLY));
2117 if (sreloc == NULL
2118 || ! bfd_set_section_alignment (dynobj, sreloc,
2119 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2120 return NULL;
2121 }
2122 return sreloc;
2123 }
2124
2125 /* Returns the GOT section for ABFD. */
2126
2127 static asection *
2128 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2129 {
2130 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2131 if (sgot == NULL
2132 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2133 return NULL;
2134 return sgot;
2135 }
2136
2137 /* Returns the GOT information associated with the link indicated by
2138 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2139 section. */
2140
2141 static struct mips_got_info *
2142 mips_elf_got_info (bfd *abfd, asection **sgotp)
2143 {
2144 asection *sgot;
2145 struct mips_got_info *g;
2146
2147 sgot = mips_elf_got_section (abfd, TRUE);
2148 BFD_ASSERT (sgot != NULL);
2149 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2150 g = mips_elf_section_data (sgot)->u.got_info;
2151 BFD_ASSERT (g != NULL);
2152
2153 if (sgotp)
2154 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2155
2156 return g;
2157 }
2158
2159 /* Count the number of relocations needed for a TLS GOT entry, with
2160 access types from TLS_TYPE, and symbol H (or a local symbol if H
2161 is NULL). */
2162
2163 static int
2164 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2165 struct elf_link_hash_entry *h)
2166 {
2167 int indx = 0;
2168 int ret = 0;
2169 bfd_boolean need_relocs = FALSE;
2170 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2171
2172 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2173 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2174 indx = h->dynindx;
2175
2176 if ((info->shared || indx != 0)
2177 && (h == NULL
2178 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2179 || h->root.type != bfd_link_hash_undefweak))
2180 need_relocs = TRUE;
2181
2182 if (!need_relocs)
2183 return FALSE;
2184
2185 if (tls_type & GOT_TLS_GD)
2186 {
2187 ret++;
2188 if (indx != 0)
2189 ret++;
2190 }
2191
2192 if (tls_type & GOT_TLS_IE)
2193 ret++;
2194
2195 if ((tls_type & GOT_TLS_LDM) && info->shared)
2196 ret++;
2197
2198 return ret;
2199 }
2200
2201 /* Count the number of TLS relocations required for the GOT entry in
2202 ARG1, if it describes a local symbol. */
2203
2204 static int
2205 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2206 {
2207 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2208 struct mips_elf_count_tls_arg *arg = arg2;
2209
2210 if (entry->abfd != NULL && entry->symndx != -1)
2211 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2212
2213 return 1;
2214 }
2215
2216 /* Count the number of TLS GOT entries required for the global (or
2217 forced-local) symbol in ARG1. */
2218
2219 static int
2220 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2221 {
2222 struct mips_elf_link_hash_entry *hm
2223 = (struct mips_elf_link_hash_entry *) arg1;
2224 struct mips_elf_count_tls_arg *arg = arg2;
2225
2226 if (hm->tls_type & GOT_TLS_GD)
2227 arg->needed += 2;
2228 if (hm->tls_type & GOT_TLS_IE)
2229 arg->needed += 1;
2230
2231 return 1;
2232 }
2233
2234 /* Count the number of TLS relocations required for the global (or
2235 forced-local) symbol in ARG1. */
2236
2237 static int
2238 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2239 {
2240 struct mips_elf_link_hash_entry *hm
2241 = (struct mips_elf_link_hash_entry *) arg1;
2242 struct mips_elf_count_tls_arg *arg = arg2;
2243
2244 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2245
2246 return 1;
2247 }
2248
2249 /* Output a simple dynamic relocation into SRELOC. */
2250
2251 static void
2252 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2253 asection *sreloc,
2254 unsigned long indx,
2255 int r_type,
2256 bfd_vma offset)
2257 {
2258 Elf_Internal_Rela rel[3];
2259
2260 memset (rel, 0, sizeof (rel));
2261
2262 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2263 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2264
2265 if (ABI_64_P (output_bfd))
2266 {
2267 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2268 (output_bfd, &rel[0],
2269 (sreloc->contents
2270 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2271 }
2272 else
2273 bfd_elf32_swap_reloc_out
2274 (output_bfd, &rel[0],
2275 (sreloc->contents
2276 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2277 ++sreloc->reloc_count;
2278 }
2279
2280 /* Initialize a set of TLS GOT entries for one symbol. */
2281
2282 static void
2283 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2284 unsigned char *tls_type_p,
2285 struct bfd_link_info *info,
2286 struct mips_elf_link_hash_entry *h,
2287 bfd_vma value)
2288 {
2289 int indx;
2290 asection *sreloc, *sgot;
2291 bfd_vma offset, offset2;
2292 bfd *dynobj;
2293 bfd_boolean need_relocs = FALSE;
2294
2295 dynobj = elf_hash_table (info)->dynobj;
2296 sgot = mips_elf_got_section (dynobj, FALSE);
2297
2298 indx = 0;
2299 if (h != NULL)
2300 {
2301 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2302
2303 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2304 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2305 indx = h->root.dynindx;
2306 }
2307
2308 if (*tls_type_p & GOT_TLS_DONE)
2309 return;
2310
2311 if ((info->shared || indx != 0)
2312 && (h == NULL
2313 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2314 || h->root.type != bfd_link_hash_undefweak))
2315 need_relocs = TRUE;
2316
2317 /* MINUS_ONE means the symbol is not defined in this object. It may not
2318 be defined at all; assume that the value doesn't matter in that
2319 case. Otherwise complain if we would use the value. */
2320 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2321 || h->root.root.type == bfd_link_hash_undefweak);
2322
2323 /* Emit necessary relocations. */
2324 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2325
2326 /* General Dynamic. */
2327 if (*tls_type_p & GOT_TLS_GD)
2328 {
2329 offset = got_offset;
2330 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2331
2332 if (need_relocs)
2333 {
2334 mips_elf_output_dynamic_relocation
2335 (abfd, sreloc, indx,
2336 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2337 sgot->output_offset + sgot->output_section->vma + offset);
2338
2339 if (indx)
2340 mips_elf_output_dynamic_relocation
2341 (abfd, sreloc, indx,
2342 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2343 sgot->output_offset + sgot->output_section->vma + offset2);
2344 else
2345 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2346 sgot->contents + offset2);
2347 }
2348 else
2349 {
2350 MIPS_ELF_PUT_WORD (abfd, 1,
2351 sgot->contents + offset);
2352 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2353 sgot->contents + offset2);
2354 }
2355
2356 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2357 }
2358
2359 /* Initial Exec model. */
2360 if (*tls_type_p & GOT_TLS_IE)
2361 {
2362 offset = got_offset;
2363
2364 if (need_relocs)
2365 {
2366 if (indx == 0)
2367 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2368 sgot->contents + offset);
2369 else
2370 MIPS_ELF_PUT_WORD (abfd, 0,
2371 sgot->contents + offset);
2372
2373 mips_elf_output_dynamic_relocation
2374 (abfd, sreloc, indx,
2375 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2376 sgot->output_offset + sgot->output_section->vma + offset);
2377 }
2378 else
2379 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2380 sgot->contents + offset);
2381 }
2382
2383 if (*tls_type_p & GOT_TLS_LDM)
2384 {
2385 /* The initial offset is zero, and the LD offsets will include the
2386 bias by DTP_OFFSET. */
2387 MIPS_ELF_PUT_WORD (abfd, 0,
2388 sgot->contents + got_offset
2389 + MIPS_ELF_GOT_SIZE (abfd));
2390
2391 if (!info->shared)
2392 MIPS_ELF_PUT_WORD (abfd, 1,
2393 sgot->contents + got_offset);
2394 else
2395 mips_elf_output_dynamic_relocation
2396 (abfd, sreloc, indx,
2397 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2398 sgot->output_offset + sgot->output_section->vma + got_offset);
2399 }
2400
2401 *tls_type_p |= GOT_TLS_DONE;
2402 }
2403
2404 /* Return the GOT index to use for a relocation of type R_TYPE against
2405 a symbol accessed using TLS_TYPE models. The GOT entries for this
2406 symbol in this GOT start at GOT_INDEX. This function initializes the
2407 GOT entries and corresponding relocations. */
2408
2409 static bfd_vma
2410 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2411 int r_type, struct bfd_link_info *info,
2412 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2413 {
2414 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2415 || r_type == R_MIPS_TLS_LDM);
2416
2417 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2418
2419 if (r_type == R_MIPS_TLS_GOTTPREL)
2420 {
2421 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2422 if (*tls_type & GOT_TLS_GD)
2423 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2424 else
2425 return got_index;
2426 }
2427
2428 if (r_type == R_MIPS_TLS_GD)
2429 {
2430 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2431 return got_index;
2432 }
2433
2434 if (r_type == R_MIPS_TLS_LDM)
2435 {
2436 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2437 return got_index;
2438 }
2439
2440 return got_index;
2441 }
2442
2443 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2444 for global symbol H. .got.plt comes before the GOT, so the offset
2445 will be negative. */
2446
2447 static bfd_vma
2448 mips_elf_gotplt_index (struct bfd_link_info *info,
2449 struct elf_link_hash_entry *h)
2450 {
2451 bfd_vma plt_index, got_address, got_value;
2452 struct mips_elf_link_hash_table *htab;
2453
2454 htab = mips_elf_hash_table (info);
2455 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2456
2457 /* Calculate the index of the symbol's PLT entry. */
2458 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2459
2460 /* Calculate the address of the associated .got.plt entry. */
2461 got_address = (htab->sgotplt->output_section->vma
2462 + htab->sgotplt->output_offset
2463 + plt_index * 4);
2464
2465 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2466 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2467 + htab->root.hgot->root.u.def.section->output_offset
2468 + htab->root.hgot->root.u.def.value);
2469
2470 return got_address - got_value;
2471 }
2472
2473 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2474 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2475 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2476 offset can be found. */
2477
2478 static bfd_vma
2479 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2480 bfd_vma value, unsigned long r_symndx,
2481 struct mips_elf_link_hash_entry *h, int r_type)
2482 {
2483 asection *sgot;
2484 struct mips_got_info *g;
2485 struct mips_got_entry *entry;
2486
2487 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2488
2489 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2490 value, r_symndx, h, r_type);
2491 if (!entry)
2492 return MINUS_ONE;
2493
2494 if (TLS_RELOC_P (r_type))
2495 {
2496 if (entry->symndx == -1 && g->next == NULL)
2497 /* A type (3) entry in the single-GOT case. We use the symbol's
2498 hash table entry to track the index. */
2499 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2500 r_type, info, h, value);
2501 else
2502 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2503 r_type, info, h, value);
2504 }
2505 else
2506 return entry->gotidx;
2507 }
2508
2509 /* Returns the GOT index for the global symbol indicated by H. */
2510
2511 static bfd_vma
2512 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2513 int r_type, struct bfd_link_info *info)
2514 {
2515 bfd_vma index;
2516 asection *sgot;
2517 struct mips_got_info *g, *gg;
2518 long global_got_dynindx = 0;
2519
2520 gg = g = mips_elf_got_info (abfd, &sgot);
2521 if (g->bfd2got && ibfd)
2522 {
2523 struct mips_got_entry e, *p;
2524
2525 BFD_ASSERT (h->dynindx >= 0);
2526
2527 g = mips_elf_got_for_ibfd (g, ibfd);
2528 if (g->next != gg || TLS_RELOC_P (r_type))
2529 {
2530 e.abfd = ibfd;
2531 e.symndx = -1;
2532 e.d.h = (struct mips_elf_link_hash_entry *)h;
2533 e.tls_type = 0;
2534
2535 p = htab_find (g->got_entries, &e);
2536
2537 BFD_ASSERT (p->gotidx > 0);
2538
2539 if (TLS_RELOC_P (r_type))
2540 {
2541 bfd_vma value = MINUS_ONE;
2542 if ((h->root.type == bfd_link_hash_defined
2543 || h->root.type == bfd_link_hash_defweak)
2544 && h->root.u.def.section->output_section)
2545 value = (h->root.u.def.value
2546 + h->root.u.def.section->output_offset
2547 + h->root.u.def.section->output_section->vma);
2548
2549 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2550 info, e.d.h, value);
2551 }
2552 else
2553 return p->gotidx;
2554 }
2555 }
2556
2557 if (gg->global_gotsym != NULL)
2558 global_got_dynindx = gg->global_gotsym->dynindx;
2559
2560 if (TLS_RELOC_P (r_type))
2561 {
2562 struct mips_elf_link_hash_entry *hm
2563 = (struct mips_elf_link_hash_entry *) h;
2564 bfd_vma value = MINUS_ONE;
2565
2566 if ((h->root.type == bfd_link_hash_defined
2567 || h->root.type == bfd_link_hash_defweak)
2568 && h->root.u.def.section->output_section)
2569 value = (h->root.u.def.value
2570 + h->root.u.def.section->output_offset
2571 + h->root.u.def.section->output_section->vma);
2572
2573 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2574 r_type, info, hm, value);
2575 }
2576 else
2577 {
2578 /* Once we determine the global GOT entry with the lowest dynamic
2579 symbol table index, we must put all dynamic symbols with greater
2580 indices into the GOT. That makes it easy to calculate the GOT
2581 offset. */
2582 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2583 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2584 * MIPS_ELF_GOT_SIZE (abfd));
2585 }
2586 BFD_ASSERT (index < sgot->size);
2587
2588 return index;
2589 }
2590
2591 /* Find a GOT page entry that points to within 32KB of VALUE. These
2592 entries are supposed to be placed at small offsets in the GOT, i.e.,
2593 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2594 entry could be created. If OFFSETP is nonnull, use it to return the
2595 offset of the GOT entry from VALUE. */
2596
2597 static bfd_vma
2598 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2599 bfd_vma value, bfd_vma *offsetp)
2600 {
2601 asection *sgot;
2602 struct mips_got_info *g;
2603 bfd_vma page, index;
2604 struct mips_got_entry *entry;
2605
2606 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2607
2608 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2609 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2610 page, 0, NULL, R_MIPS_GOT_PAGE);
2611
2612 if (!entry)
2613 return MINUS_ONE;
2614
2615 index = entry->gotidx;
2616
2617 if (offsetp)
2618 *offsetp = value - entry->d.address;
2619
2620 return index;
2621 }
2622
2623 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2624 EXTERNAL is true if the relocation was against a global symbol
2625 that has been forced local. */
2626
2627 static bfd_vma
2628 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2629 bfd_vma value, bfd_boolean external)
2630 {
2631 asection *sgot;
2632 struct mips_got_info *g;
2633 struct mips_got_entry *entry;
2634
2635 /* GOT16 relocations against local symbols are followed by a LO16
2636 relocation; those against global symbols are not. Thus if the
2637 symbol was originally local, the GOT16 relocation should load the
2638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2639 if (! external)
2640 value = mips_elf_high (value) << 16;
2641
2642 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2643
2644 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2645 value, 0, NULL, R_MIPS_GOT16);
2646 if (entry)
2647 return entry->gotidx;
2648 else
2649 return MINUS_ONE;
2650 }
2651
2652 /* Returns the offset for the entry at the INDEXth position
2653 in the GOT. */
2654
2655 static bfd_vma
2656 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2657 bfd *input_bfd, bfd_vma index)
2658 {
2659 asection *sgot;
2660 bfd_vma gp;
2661 struct mips_got_info *g;
2662
2663 g = mips_elf_got_info (dynobj, &sgot);
2664 gp = _bfd_get_gp_value (output_bfd)
2665 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2666
2667 return sgot->output_section->vma + sgot->output_offset + index - gp;
2668 }
2669
2670 /* Create and return a local GOT entry for VALUE, which was calculated
2671 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2672 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2673 instead. */
2674
2675 static struct mips_got_entry *
2676 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2677 bfd *ibfd, struct mips_got_info *gg,
2678 asection *sgot, bfd_vma value,
2679 unsigned long r_symndx,
2680 struct mips_elf_link_hash_entry *h,
2681 int r_type)
2682 {
2683 struct mips_got_entry entry, **loc;
2684 struct mips_got_info *g;
2685 struct mips_elf_link_hash_table *htab;
2686
2687 htab = mips_elf_hash_table (info);
2688
2689 entry.abfd = NULL;
2690 entry.symndx = -1;
2691 entry.d.address = value;
2692 entry.tls_type = 0;
2693
2694 g = mips_elf_got_for_ibfd (gg, ibfd);
2695 if (g == NULL)
2696 {
2697 g = mips_elf_got_for_ibfd (gg, abfd);
2698 BFD_ASSERT (g != NULL);
2699 }
2700
2701 /* We might have a symbol, H, if it has been forced local. Use the
2702 global entry then. It doesn't matter whether an entry is local
2703 or global for TLS, since the dynamic linker does not
2704 automatically relocate TLS GOT entries. */
2705 BFD_ASSERT (h == NULL || h->root.forced_local);
2706 if (TLS_RELOC_P (r_type))
2707 {
2708 struct mips_got_entry *p;
2709
2710 entry.abfd = ibfd;
2711 if (r_type == R_MIPS_TLS_LDM)
2712 {
2713 entry.tls_type = GOT_TLS_LDM;
2714 entry.symndx = 0;
2715 entry.d.addend = 0;
2716 }
2717 else if (h == NULL)
2718 {
2719 entry.symndx = r_symndx;
2720 entry.d.addend = 0;
2721 }
2722 else
2723 entry.d.h = h;
2724
2725 p = (struct mips_got_entry *)
2726 htab_find (g->got_entries, &entry);
2727
2728 BFD_ASSERT (p);
2729 return p;
2730 }
2731
2732 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2733 INSERT);
2734 if (*loc)
2735 return *loc;
2736
2737 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2738 entry.tls_type = 0;
2739
2740 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2741
2742 if (! *loc)
2743 return NULL;
2744
2745 memcpy (*loc, &entry, sizeof entry);
2746
2747 if (g->assigned_gotno > g->local_gotno)
2748 {
2749 (*loc)->gotidx = -1;
2750 /* We didn't allocate enough space in the GOT. */
2751 (*_bfd_error_handler)
2752 (_("not enough GOT space for local GOT entries"));
2753 bfd_set_error (bfd_error_bad_value);
2754 return NULL;
2755 }
2756
2757 MIPS_ELF_PUT_WORD (abfd, value,
2758 (sgot->contents + entry.gotidx));
2759
2760 /* These GOT entries need a dynamic relocation on VxWorks. */
2761 if (htab->is_vxworks)
2762 {
2763 Elf_Internal_Rela outrel;
2764 asection *s;
2765 bfd_byte *loc;
2766 bfd_vma got_address;
2767
2768 s = mips_elf_rel_dyn_section (info, FALSE);
2769 got_address = (sgot->output_section->vma
2770 + sgot->output_offset
2771 + entry.gotidx);
2772
2773 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2774 outrel.r_offset = got_address;
2775 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2776 outrel.r_addend = value;
2777 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2778 }
2779
2780 return *loc;
2781 }
2782
2783 /* Sort the dynamic symbol table so that symbols that need GOT entries
2784 appear towards the end. This reduces the amount of GOT space
2785 required. MAX_LOCAL is used to set the number of local symbols
2786 known to be in the dynamic symbol table. During
2787 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2788 section symbols are added and the count is higher. */
2789
2790 static bfd_boolean
2791 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2792 {
2793 struct mips_elf_hash_sort_data hsd;
2794 struct mips_got_info *g;
2795 bfd *dynobj;
2796
2797 dynobj = elf_hash_table (info)->dynobj;
2798
2799 g = mips_elf_got_info (dynobj, NULL);
2800
2801 hsd.low = NULL;
2802 hsd.max_unref_got_dynindx =
2803 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2804 /* In the multi-got case, assigned_gotno of the master got_info
2805 indicate the number of entries that aren't referenced in the
2806 primary GOT, but that must have entries because there are
2807 dynamic relocations that reference it. Since they aren't
2808 referenced, we move them to the end of the GOT, so that they
2809 don't prevent other entries that are referenced from getting
2810 too large offsets. */
2811 - (g->next ? g->assigned_gotno : 0);
2812 hsd.max_non_got_dynindx = max_local;
2813 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2814 elf_hash_table (info)),
2815 mips_elf_sort_hash_table_f,
2816 &hsd);
2817
2818 /* There should have been enough room in the symbol table to
2819 accommodate both the GOT and non-GOT symbols. */
2820 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2821 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2822 <= elf_hash_table (info)->dynsymcount);
2823
2824 /* Now we know which dynamic symbol has the lowest dynamic symbol
2825 table index in the GOT. */
2826 g->global_gotsym = hsd.low;
2827
2828 return TRUE;
2829 }
2830
2831 /* If H needs a GOT entry, assign it the highest available dynamic
2832 index. Otherwise, assign it the lowest available dynamic
2833 index. */
2834
2835 static bfd_boolean
2836 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2837 {
2838 struct mips_elf_hash_sort_data *hsd = data;
2839
2840 if (h->root.root.type == bfd_link_hash_warning)
2841 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2842
2843 /* Symbols without dynamic symbol table entries aren't interesting
2844 at all. */
2845 if (h->root.dynindx == -1)
2846 return TRUE;
2847
2848 /* Global symbols that need GOT entries that are not explicitly
2849 referenced are marked with got offset 2. Those that are
2850 referenced get a 1, and those that don't need GOT entries get
2851 -1. Forced local symbols may also be marked with got offset 1,
2852 but are never given global GOT entries. */
2853 if (h->root.got.offset == 2)
2854 {
2855 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2856
2857 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2858 hsd->low = (struct elf_link_hash_entry *) h;
2859 h->root.dynindx = hsd->max_unref_got_dynindx++;
2860 }
2861 else if (h->root.got.offset != 1 || h->forced_local)
2862 h->root.dynindx = hsd->max_non_got_dynindx++;
2863 else
2864 {
2865 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2866
2867 h->root.dynindx = --hsd->min_got_dynindx;
2868 hsd->low = (struct elf_link_hash_entry *) h;
2869 }
2870
2871 return TRUE;
2872 }
2873
2874 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2875 symbol table index lower than any we've seen to date, record it for
2876 posterity. */
2877
2878 static bfd_boolean
2879 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2880 bfd *abfd, struct bfd_link_info *info,
2881 struct mips_got_info *g,
2882 unsigned char tls_flag)
2883 {
2884 struct mips_got_entry entry, **loc;
2885
2886 /* A global symbol in the GOT must also be in the dynamic symbol
2887 table. */
2888 if (h->dynindx == -1)
2889 {
2890 switch (ELF_ST_VISIBILITY (h->other))
2891 {
2892 case STV_INTERNAL:
2893 case STV_HIDDEN:
2894 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2895 break;
2896 }
2897 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2898 return FALSE;
2899 }
2900
2901 /* Make sure we have a GOT to put this entry into. */
2902 BFD_ASSERT (g != NULL);
2903
2904 entry.abfd = abfd;
2905 entry.symndx = -1;
2906 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2907 entry.tls_type = 0;
2908
2909 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2910 INSERT);
2911
2912 /* If we've already marked this entry as needing GOT space, we don't
2913 need to do it again. */
2914 if (*loc)
2915 {
2916 (*loc)->tls_type |= tls_flag;
2917 return TRUE;
2918 }
2919
2920 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2921
2922 if (! *loc)
2923 return FALSE;
2924
2925 entry.gotidx = -1;
2926 entry.tls_type = tls_flag;
2927
2928 memcpy (*loc, &entry, sizeof entry);
2929
2930 if (h->got.offset != MINUS_ONE)
2931 return TRUE;
2932
2933 if (tls_flag == 0)
2934 {
2935 /* By setting this to a value other than -1, we are indicating that
2936 there needs to be a GOT entry for H. Avoid using zero, as the
2937 generic ELF copy_indirect_symbol tests for <= 0. */
2938 h->got.offset = 1;
2939 if (h->forced_local)
2940 g->local_gotno++;
2941 }
2942
2943 return TRUE;
2944 }
2945
2946 /* Reserve space in G for a GOT entry containing the value of symbol
2947 SYMNDX in input bfd ABDF, plus ADDEND. */
2948
2949 static bfd_boolean
2950 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2951 struct mips_got_info *g,
2952 unsigned char tls_flag)
2953 {
2954 struct mips_got_entry entry, **loc;
2955
2956 entry.abfd = abfd;
2957 entry.symndx = symndx;
2958 entry.d.addend = addend;
2959 entry.tls_type = tls_flag;
2960 loc = (struct mips_got_entry **)
2961 htab_find_slot (g->got_entries, &entry, INSERT);
2962
2963 if (*loc)
2964 {
2965 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2966 {
2967 g->tls_gotno += 2;
2968 (*loc)->tls_type |= tls_flag;
2969 }
2970 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2971 {
2972 g->tls_gotno += 1;
2973 (*loc)->tls_type |= tls_flag;
2974 }
2975 return TRUE;
2976 }
2977
2978 if (tls_flag != 0)
2979 {
2980 entry.gotidx = -1;
2981 entry.tls_type = tls_flag;
2982 if (tls_flag == GOT_TLS_IE)
2983 g->tls_gotno += 1;
2984 else if (tls_flag == GOT_TLS_GD)
2985 g->tls_gotno += 2;
2986 else if (g->tls_ldm_offset == MINUS_ONE)
2987 {
2988 g->tls_ldm_offset = MINUS_TWO;
2989 g->tls_gotno += 2;
2990 }
2991 }
2992 else
2993 {
2994 entry.gotidx = g->local_gotno++;
2995 entry.tls_type = 0;
2996 }
2997
2998 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2999
3000 if (! *loc)
3001 return FALSE;
3002
3003 memcpy (*loc, &entry, sizeof entry);
3004
3005 return TRUE;
3006 }
3007
3008 /* Return the maximum number of GOT page entries required for RANGE. */
3009
3010 static bfd_vma
3011 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3012 {
3013 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3014 }
3015
3016 /* Record that ABFD has a page relocation against symbol SYMNDX and
3017 that ADDEND is the addend for that relocation. G is the GOT
3018 information. This function creates an upper bound on the number of
3019 GOT slots required; no attempt is made to combine references to
3020 non-overridable global symbols across multiple input files. */
3021
3022 static bfd_boolean
3023 mips_elf_record_got_page_entry (bfd *abfd, long symndx, bfd_signed_vma addend,
3024 struct mips_got_info *g)
3025 {
3026 struct mips_got_page_entry lookup, *entry;
3027 struct mips_got_page_range **range_ptr, *range;
3028 bfd_vma old_pages, new_pages;
3029 void **loc;
3030
3031 /* Find the mips_got_page_entry hash table entry for this symbol. */
3032 lookup.abfd = abfd;
3033 lookup.symndx = symndx;
3034 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3035 if (loc == NULL)
3036 return FALSE;
3037
3038 /* Create a mips_got_page_entry if this is the first time we've
3039 seen the symbol. */
3040 entry = (struct mips_got_page_entry *) *loc;
3041 if (!entry)
3042 {
3043 entry = bfd_alloc (abfd, sizeof (*entry));
3044 if (!entry)
3045 return FALSE;
3046
3047 entry->abfd = abfd;
3048 entry->symndx = symndx;
3049 entry->ranges = NULL;
3050 entry->num_pages = 0;
3051 *loc = entry;
3052 }
3053
3054 /* Skip over ranges whose maximum extent cannot share a page entry
3055 with ADDEND. */
3056 range_ptr = &entry->ranges;
3057 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3058 range_ptr = &(*range_ptr)->next;
3059
3060 /* If we scanned to the end of the list, or found a range whose
3061 minimum extent cannot share a page entry with ADDEND, create
3062 a new singleton range. */
3063 range = *range_ptr;
3064 if (!range || addend < range->min_addend - 0xffff)
3065 {
3066 range = bfd_alloc (abfd, sizeof (*range));
3067 if (!range)
3068 return FALSE;
3069
3070 range->next = *range_ptr;
3071 range->min_addend = addend;
3072 range->max_addend = addend;
3073
3074 *range_ptr = range;
3075 entry->num_pages++;
3076 g->page_gotno++;
3077 return TRUE;
3078 }
3079
3080 /* Remember how many pages the old range contributed. */
3081 old_pages = mips_elf_pages_for_range (range);
3082
3083 /* Update the ranges. */
3084 if (addend < range->min_addend)
3085 range->min_addend = addend;
3086 else if (addend > range->max_addend)
3087 {
3088 if (range->next && addend >= range->next->min_addend - 0xffff)
3089 {
3090 old_pages += mips_elf_pages_for_range (range->next);
3091 range->max_addend = range->next->max_addend;
3092 range->next = range->next->next;
3093 }
3094 else
3095 range->max_addend = addend;
3096 }
3097
3098 /* Record any change in the total estimate. */
3099 new_pages = mips_elf_pages_for_range (range);
3100 if (old_pages != new_pages)
3101 {
3102 entry->num_pages += new_pages - old_pages;
3103 g->page_gotno += new_pages - old_pages;
3104 }
3105
3106 return TRUE;
3107 }
3108 \f
3109 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3110
3111 static hashval_t
3112 mips_elf_bfd2got_entry_hash (const void *entry_)
3113 {
3114 const struct mips_elf_bfd2got_hash *entry
3115 = (struct mips_elf_bfd2got_hash *)entry_;
3116
3117 return entry->bfd->id;
3118 }
3119
3120 /* Check whether two hash entries have the same bfd. */
3121
3122 static int
3123 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3124 {
3125 const struct mips_elf_bfd2got_hash *e1
3126 = (const struct mips_elf_bfd2got_hash *)entry1;
3127 const struct mips_elf_bfd2got_hash *e2
3128 = (const struct mips_elf_bfd2got_hash *)entry2;
3129
3130 return e1->bfd == e2->bfd;
3131 }
3132
3133 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3134 be the master GOT data. */
3135
3136 static struct mips_got_info *
3137 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3138 {
3139 struct mips_elf_bfd2got_hash e, *p;
3140
3141 if (! g->bfd2got)
3142 return g;
3143
3144 e.bfd = ibfd;
3145 p = htab_find (g->bfd2got, &e);
3146 return p ? p->g : NULL;
3147 }
3148
3149 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3150 Return NULL if an error occured. */
3151
3152 static struct mips_got_info *
3153 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3154 bfd *input_bfd)
3155 {
3156 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3157 struct mips_got_info *g;
3158 void **bfdgotp;
3159
3160 bfdgot_entry.bfd = input_bfd;
3161 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3162 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3163
3164 if (bfdgot == NULL)
3165 {
3166 bfdgot = ((struct mips_elf_bfd2got_hash *)
3167 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3168 if (bfdgot == NULL)
3169 return NULL;
3170
3171 *bfdgotp = bfdgot;
3172
3173 g = ((struct mips_got_info *)
3174 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3175 if (g == NULL)
3176 return NULL;
3177
3178 bfdgot->bfd = input_bfd;
3179 bfdgot->g = g;
3180
3181 g->global_gotsym = NULL;
3182 g->global_gotno = 0;
3183 g->local_gotno = 0;
3184 g->page_gotno = 0;
3185 g->assigned_gotno = -1;
3186 g->tls_gotno = 0;
3187 g->tls_assigned_gotno = 0;
3188 g->tls_ldm_offset = MINUS_ONE;
3189 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3190 mips_elf_multi_got_entry_eq, NULL);
3191 if (g->got_entries == NULL)
3192 return NULL;
3193
3194 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3195 mips_got_page_entry_eq, NULL);
3196 if (g->got_page_entries == NULL)
3197 return NULL;
3198
3199 g->bfd2got = NULL;
3200 g->next = NULL;
3201 }
3202
3203 return bfdgot->g;
3204 }
3205
3206 /* A htab_traverse callback for the entries in the master got.
3207 Create one separate got for each bfd that has entries in the global
3208 got, such that we can tell how many local and global entries each
3209 bfd requires. */
3210
3211 static int
3212 mips_elf_make_got_per_bfd (void **entryp, void *p)
3213 {
3214 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3215 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3216 struct mips_got_info *g;
3217
3218 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3219 if (g == NULL)
3220 {
3221 arg->obfd = NULL;
3222 return 0;
3223 }
3224
3225 /* Insert the GOT entry in the bfd's got entry hash table. */
3226 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3227 if (*entryp != NULL)
3228 return 1;
3229
3230 *entryp = entry;
3231
3232 if (entry->tls_type)
3233 {
3234 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3235 g->tls_gotno += 2;
3236 if (entry->tls_type & GOT_TLS_IE)
3237 g->tls_gotno += 1;
3238 }
3239 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3240 ++g->local_gotno;
3241 else
3242 ++g->global_gotno;
3243
3244 return 1;
3245 }
3246
3247 /* A htab_traverse callback for the page entries in the master got.
3248 Associate each page entry with the bfd's got. */
3249
3250 static int
3251 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3252 {
3253 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3254 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3255 struct mips_got_info *g;
3256
3257 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3258 if (g == NULL)
3259 {
3260 arg->obfd = NULL;
3261 return 0;
3262 }
3263
3264 /* Insert the GOT entry in the bfd's got entry hash table. */
3265 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3266 if (*entryp != NULL)
3267 return 1;
3268
3269 *entryp = entry;
3270 g->page_gotno += entry->num_pages;
3271 return 1;
3272 }
3273
3274 /* Consider merging the got described by BFD2GOT with TO, using the
3275 information given by ARG. Return -1 if this would lead to overflow,
3276 1 if they were merged successfully, and 0 if a merge failed due to
3277 lack of memory. (These values are chosen so that nonnegative return
3278 values can be returned by a htab_traverse callback.) */
3279
3280 static int
3281 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
3282 struct mips_got_info *to,
3283 struct mips_elf_got_per_bfd_arg *arg)
3284 {
3285 struct mips_got_info *from = bfd2got->g;
3286 unsigned int estimate;
3287
3288 /* Work out how many page entries we would need for the combined GOT. */
3289 estimate = arg->max_pages;
3290 if (estimate >= from->page_gotno + to->page_gotno)
3291 estimate = from->page_gotno + to->page_gotno;
3292
3293 /* And conservatively estimate how many local, global and TLS entries
3294 would be needed. */
3295 estimate += (from->local_gotno
3296 + from->global_gotno
3297 + from->tls_gotno
3298 + to->local_gotno
3299 + to->global_gotno
3300 + to->tls_gotno);
3301
3302 /* Bail out if the combined GOT might be too big. */
3303 if (estimate > arg->max_count)
3304 return -1;
3305
3306 /* Commit to the merge. Record that TO is now the bfd for this got. */
3307 bfd2got->g = to;
3308
3309 /* Transfer the bfd's got information from FROM to TO. */
3310 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
3311 if (arg->obfd == NULL)
3312 return 0;
3313
3314 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
3315 if (arg->obfd == NULL)
3316 return 0;
3317
3318 /* We don't have to worry about releasing memory of the actual
3319 got entries, since they're all in the master got_entries hash
3320 table anyway. */
3321 htab_delete (from->got_entries);
3322 htab_delete (from->got_page_entries);
3323 return 1;
3324 }
3325
3326 /* Attempt to merge gots of different input bfds. Try to use as much
3327 as possible of the primary got, since it doesn't require explicit
3328 dynamic relocations, but don't use bfds that would reference global
3329 symbols out of the addressable range. Failing the primary got,
3330 attempt to merge with the current got, or finish the current got
3331 and then make make the new got current. */
3332
3333 static int
3334 mips_elf_merge_gots (void **bfd2got_, void *p)
3335 {
3336 struct mips_elf_bfd2got_hash *bfd2got
3337 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3338 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3339 struct mips_got_info *g;
3340 unsigned int estimate;
3341 int result;
3342
3343 g = bfd2got->g;
3344
3345 /* Work out the number of page, local and TLS entries. */
3346 estimate = arg->max_pages;
3347 if (estimate > g->page_gotno)
3348 estimate = g->page_gotno;
3349 estimate += g->local_gotno + g->tls_gotno;
3350
3351 /* We place TLS GOT entries after both locals and globals. The globals
3352 for the primary GOT may overflow the normal GOT size limit, so be
3353 sure not to merge a GOT which requires TLS with the primary GOT in that
3354 case. This doesn't affect non-primary GOTs. */
3355 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
3356
3357 if (estimate <= arg->max_count)
3358 {
3359 /* If we don't have a primary GOT, use it as
3360 a starting point for the primary GOT. */
3361 if (!arg->primary)
3362 {
3363 arg->primary = bfd2got->g;
3364 return 1;
3365 }
3366
3367 /* Try merging with the primary GOT. */
3368 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
3369 if (result >= 0)
3370 return result;
3371 }
3372
3373 /* If we can merge with the last-created got, do it. */
3374 if (arg->current)
3375 {
3376 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
3377 if (result >= 0)
3378 return result;
3379 }
3380
3381 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3382 fits; if it turns out that it doesn't, we'll get relocation
3383 overflows anyway. */
3384 g->next = arg->current;
3385 arg->current = g;
3386
3387 return 1;
3388 }
3389
3390 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3391 is null iff there is just a single GOT. */
3392
3393 static int
3394 mips_elf_initialize_tls_index (void **entryp, void *p)
3395 {
3396 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3397 struct mips_got_info *g = p;
3398 bfd_vma next_index;
3399 unsigned char tls_type;
3400
3401 /* We're only interested in TLS symbols. */
3402 if (entry->tls_type == 0)
3403 return 1;
3404
3405 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3406
3407 if (entry->symndx == -1 && g->next == NULL)
3408 {
3409 /* A type (3) got entry in the single-GOT case. We use the symbol's
3410 hash table entry to track its index. */
3411 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3412 return 1;
3413 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3414 entry->d.h->tls_got_offset = next_index;
3415 tls_type = entry->d.h->tls_type;
3416 }
3417 else
3418 {
3419 if (entry->tls_type & GOT_TLS_LDM)
3420 {
3421 /* There are separate mips_got_entry objects for each input bfd
3422 that requires an LDM entry. Make sure that all LDM entries in
3423 a GOT resolve to the same index. */
3424 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3425 {
3426 entry->gotidx = g->tls_ldm_offset;
3427 return 1;
3428 }
3429 g->tls_ldm_offset = next_index;
3430 }
3431 entry->gotidx = next_index;
3432 tls_type = entry->tls_type;
3433 }
3434
3435 /* Account for the entries we've just allocated. */
3436 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3437 g->tls_assigned_gotno += 2;
3438 if (tls_type & GOT_TLS_IE)
3439 g->tls_assigned_gotno += 1;
3440
3441 return 1;
3442 }
3443
3444 /* If passed a NULL mips_got_info in the argument, set the marker used
3445 to tell whether a global symbol needs a got entry (in the primary
3446 got) to the given VALUE.
3447
3448 If passed a pointer G to a mips_got_info in the argument (it must
3449 not be the primary GOT), compute the offset from the beginning of
3450 the (primary) GOT section to the entry in G corresponding to the
3451 global symbol. G's assigned_gotno must contain the index of the
3452 first available global GOT entry in G. VALUE must contain the size
3453 of a GOT entry in bytes. For each global GOT entry that requires a
3454 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3455 marked as not eligible for lazy resolution through a function
3456 stub. */
3457 static int
3458 mips_elf_set_global_got_offset (void **entryp, void *p)
3459 {
3460 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3461 struct mips_elf_set_global_got_offset_arg *arg
3462 = (struct mips_elf_set_global_got_offset_arg *)p;
3463 struct mips_got_info *g = arg->g;
3464
3465 if (g && entry->tls_type != GOT_NORMAL)
3466 arg->needed_relocs +=
3467 mips_tls_got_relocs (arg->info, entry->tls_type,
3468 entry->symndx == -1 ? &entry->d.h->root : NULL);
3469
3470 if (entry->abfd != NULL && entry->symndx == -1
3471 && entry->d.h->root.dynindx != -1
3472 && !entry->d.h->forced_local
3473 && entry->d.h->tls_type == GOT_NORMAL)
3474 {
3475 if (g)
3476 {
3477 BFD_ASSERT (g->global_gotsym == NULL);
3478
3479 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3480 if (arg->info->shared
3481 || (elf_hash_table (arg->info)->dynamic_sections_created
3482 && entry->d.h->root.def_dynamic
3483 && !entry->d.h->root.def_regular))
3484 ++arg->needed_relocs;
3485 }
3486 else
3487 entry->d.h->root.got.offset = arg->value;
3488 }
3489
3490 return 1;
3491 }
3492
3493 /* Mark any global symbols referenced in the GOT we are iterating over
3494 as inelligible for lazy resolution stubs. */
3495 static int
3496 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3497 {
3498 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3499
3500 if (entry->abfd != NULL
3501 && entry->symndx == -1
3502 && entry->d.h->root.dynindx != -1)
3503 entry->d.h->no_fn_stub = TRUE;
3504
3505 return 1;
3506 }
3507
3508 /* Follow indirect and warning hash entries so that each got entry
3509 points to the final symbol definition. P must point to a pointer
3510 to the hash table we're traversing. Since this traversal may
3511 modify the hash table, we set this pointer to NULL to indicate
3512 we've made a potentially-destructive change to the hash table, so
3513 the traversal must be restarted. */
3514 static int
3515 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3516 {
3517 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3518 htab_t got_entries = *(htab_t *)p;
3519
3520 if (entry->abfd != NULL && entry->symndx == -1)
3521 {
3522 struct mips_elf_link_hash_entry *h = entry->d.h;
3523
3524 while (h->root.root.type == bfd_link_hash_indirect
3525 || h->root.root.type == bfd_link_hash_warning)
3526 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3527
3528 if (entry->d.h == h)
3529 return 1;
3530
3531 entry->d.h = h;
3532
3533 /* If we can't find this entry with the new bfd hash, re-insert
3534 it, and get the traversal restarted. */
3535 if (! htab_find (got_entries, entry))
3536 {
3537 htab_clear_slot (got_entries, entryp);
3538 entryp = htab_find_slot (got_entries, entry, INSERT);
3539 if (! *entryp)
3540 *entryp = entry;
3541 /* Abort the traversal, since the whole table may have
3542 moved, and leave it up to the parent to restart the
3543 process. */
3544 *(htab_t *)p = NULL;
3545 return 0;
3546 }
3547 /* We might want to decrement the global_gotno count, but it's
3548 either too early or too late for that at this point. */
3549 }
3550
3551 return 1;
3552 }
3553
3554 /* Turn indirect got entries in a got_entries table into their final
3555 locations. */
3556 static void
3557 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3558 {
3559 htab_t got_entries;
3560
3561 do
3562 {
3563 got_entries = g->got_entries;
3564
3565 htab_traverse (got_entries,
3566 mips_elf_resolve_final_got_entry,
3567 &got_entries);
3568 }
3569 while (got_entries == NULL);
3570 }
3571
3572 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3573 the primary GOT. */
3574 static bfd_vma
3575 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3576 {
3577 if (g->bfd2got == NULL)
3578 return 0;
3579
3580 g = mips_elf_got_for_ibfd (g, ibfd);
3581 if (! g)
3582 return 0;
3583
3584 BFD_ASSERT (g->next);
3585
3586 g = g->next;
3587
3588 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3589 * MIPS_ELF_GOT_SIZE (abfd);
3590 }
3591
3592 /* Turn a single GOT that is too big for 16-bit addressing into
3593 a sequence of GOTs, each one 16-bit addressable. */
3594
3595 static bfd_boolean
3596 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3597 struct mips_got_info *g, asection *got,
3598 bfd_size_type pages)
3599 {
3600 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3601 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3602 struct mips_got_info *gg;
3603 unsigned int assign;
3604
3605 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3606 mips_elf_bfd2got_entry_eq, NULL);
3607 if (g->bfd2got == NULL)
3608 return FALSE;
3609
3610 got_per_bfd_arg.bfd2got = g->bfd2got;
3611 got_per_bfd_arg.obfd = abfd;
3612 got_per_bfd_arg.info = info;
3613
3614 /* Count how many GOT entries each input bfd requires, creating a
3615 map from bfd to got info while at that. */
3616 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3617 if (got_per_bfd_arg.obfd == NULL)
3618 return FALSE;
3619
3620 /* Also count how many page entries each input bfd requires. */
3621 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
3622 &got_per_bfd_arg);
3623 if (got_per_bfd_arg.obfd == NULL)
3624 return FALSE;
3625
3626 got_per_bfd_arg.current = NULL;
3627 got_per_bfd_arg.primary = NULL;
3628 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3629 / MIPS_ELF_GOT_SIZE (abfd))
3630 - MIPS_RESERVED_GOTNO (info));
3631 got_per_bfd_arg.max_pages = pages;
3632 /* The number of globals that will be included in the primary GOT.
3633 See the calls to mips_elf_set_global_got_offset below for more
3634 information. */
3635 got_per_bfd_arg.global_count = g->global_gotno;
3636
3637 /* Try to merge the GOTs of input bfds together, as long as they
3638 don't seem to exceed the maximum GOT size, choosing one of them
3639 to be the primary GOT. */
3640 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3641 if (got_per_bfd_arg.obfd == NULL)
3642 return FALSE;
3643
3644 /* If we do not find any suitable primary GOT, create an empty one. */
3645 if (got_per_bfd_arg.primary == NULL)
3646 {
3647 g->next = (struct mips_got_info *)
3648 bfd_alloc (abfd, sizeof (struct mips_got_info));
3649 if (g->next == NULL)
3650 return FALSE;
3651
3652 g->next->global_gotsym = NULL;
3653 g->next->global_gotno = 0;
3654 g->next->local_gotno = 0;
3655 g->next->page_gotno = 0;
3656 g->next->tls_gotno = 0;
3657 g->next->assigned_gotno = 0;
3658 g->next->tls_assigned_gotno = 0;
3659 g->next->tls_ldm_offset = MINUS_ONE;
3660 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3661 mips_elf_multi_got_entry_eq,
3662 NULL);
3663 if (g->next->got_entries == NULL)
3664 return FALSE;
3665 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3666 mips_got_page_entry_eq,
3667 NULL);
3668 if (g->next->got_page_entries == NULL)
3669 return FALSE;
3670 g->next->bfd2got = NULL;
3671 }
3672 else
3673 g->next = got_per_bfd_arg.primary;
3674 g->next->next = got_per_bfd_arg.current;
3675
3676 /* GG is now the master GOT, and G is the primary GOT. */
3677 gg = g;
3678 g = g->next;
3679
3680 /* Map the output bfd to the primary got. That's what we're going
3681 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3682 didn't mark in check_relocs, and we want a quick way to find it.
3683 We can't just use gg->next because we're going to reverse the
3684 list. */
3685 {
3686 struct mips_elf_bfd2got_hash *bfdgot;
3687 void **bfdgotp;
3688
3689 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3690 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3691
3692 if (bfdgot == NULL)
3693 return FALSE;
3694
3695 bfdgot->bfd = abfd;
3696 bfdgot->g = g;
3697 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3698
3699 BFD_ASSERT (*bfdgotp == NULL);
3700 *bfdgotp = bfdgot;
3701 }
3702
3703 /* The IRIX dynamic linker requires every symbol that is referenced
3704 in a dynamic relocation to be present in the primary GOT, so
3705 arrange for them to appear after those that are actually
3706 referenced.
3707
3708 GNU/Linux could very well do without it, but it would slow down
3709 the dynamic linker, since it would have to resolve every dynamic
3710 symbol referenced in other GOTs more than once, without help from
3711 the cache. Also, knowing that every external symbol has a GOT
3712 helps speed up the resolution of local symbols too, so GNU/Linux
3713 follows IRIX's practice.
3714
3715 The number 2 is used by mips_elf_sort_hash_table_f to count
3716 global GOT symbols that are unreferenced in the primary GOT, with
3717 an initial dynamic index computed from gg->assigned_gotno, where
3718 the number of unreferenced global entries in the primary GOT is
3719 preserved. */
3720 if (1)
3721 {
3722 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3723 g->global_gotno = gg->global_gotno;
3724 set_got_offset_arg.value = 2;
3725 }
3726 else
3727 {
3728 /* This could be used for dynamic linkers that don't optimize
3729 symbol resolution while applying relocations so as to use
3730 primary GOT entries or assuming the symbol is locally-defined.
3731 With this code, we assign lower dynamic indices to global
3732 symbols that are not referenced in the primary GOT, so that
3733 their entries can be omitted. */
3734 gg->assigned_gotno = 0;
3735 set_got_offset_arg.value = -1;
3736 }
3737
3738 /* Reorder dynamic symbols as described above (which behavior
3739 depends on the setting of VALUE). */
3740 set_got_offset_arg.g = NULL;
3741 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3742 &set_got_offset_arg);
3743 set_got_offset_arg.value = 1;
3744 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3745 &set_got_offset_arg);
3746 if (! mips_elf_sort_hash_table (info, 1))
3747 return FALSE;
3748
3749 /* Now go through the GOTs assigning them offset ranges.
3750 [assigned_gotno, local_gotno[ will be set to the range of local
3751 entries in each GOT. We can then compute the end of a GOT by
3752 adding local_gotno to global_gotno. We reverse the list and make
3753 it circular since then we'll be able to quickly compute the
3754 beginning of a GOT, by computing the end of its predecessor. To
3755 avoid special cases for the primary GOT, while still preserving
3756 assertions that are valid for both single- and multi-got links,
3757 we arrange for the main got struct to have the right number of
3758 global entries, but set its local_gotno such that the initial
3759 offset of the primary GOT is zero. Remember that the primary GOT
3760 will become the last item in the circular linked list, so it
3761 points back to the master GOT. */
3762 gg->local_gotno = -g->global_gotno;
3763 gg->global_gotno = g->global_gotno;
3764 gg->tls_gotno = 0;
3765 assign = 0;
3766 gg->next = gg;
3767
3768 do
3769 {
3770 struct mips_got_info *gn;
3771
3772 assign += MIPS_RESERVED_GOTNO (info);
3773 g->assigned_gotno = assign;
3774 g->local_gotno += assign;
3775 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
3776 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3777
3778 /* Take g out of the direct list, and push it onto the reversed
3779 list that gg points to. g->next is guaranteed to be nonnull after
3780 this operation, as required by mips_elf_initialize_tls_index. */
3781 gn = g->next;
3782 g->next = gg->next;
3783 gg->next = g;
3784
3785 /* Set up any TLS entries. We always place the TLS entries after
3786 all non-TLS entries. */
3787 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3788 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3789
3790 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3791 g = gn;
3792
3793 /* Mark global symbols in every non-primary GOT as ineligible for
3794 stubs. */
3795 if (g)
3796 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3797 }
3798 while (g);
3799
3800 got->size = (gg->next->local_gotno
3801 + gg->next->global_gotno
3802 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3803
3804 return TRUE;
3805 }
3806
3807 \f
3808 /* Returns the first relocation of type r_type found, beginning with
3809 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3810
3811 static const Elf_Internal_Rela *
3812 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3813 const Elf_Internal_Rela *relocation,
3814 const Elf_Internal_Rela *relend)
3815 {
3816 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3817
3818 while (relocation < relend)
3819 {
3820 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3821 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3822 return relocation;
3823
3824 ++relocation;
3825 }
3826
3827 /* We didn't find it. */
3828 return NULL;
3829 }
3830
3831 /* Return whether a relocation is against a local symbol. */
3832
3833 static bfd_boolean
3834 mips_elf_local_relocation_p (bfd *input_bfd,
3835 const Elf_Internal_Rela *relocation,
3836 asection **local_sections,
3837 bfd_boolean check_forced)
3838 {
3839 unsigned long r_symndx;
3840 Elf_Internal_Shdr *symtab_hdr;
3841 struct mips_elf_link_hash_entry *h;
3842 size_t extsymoff;
3843
3844 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3845 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3846 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3847
3848 if (r_symndx < extsymoff)
3849 return TRUE;
3850 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3851 return TRUE;
3852
3853 if (check_forced)
3854 {
3855 /* Look up the hash table to check whether the symbol
3856 was forced local. */
3857 h = (struct mips_elf_link_hash_entry *)
3858 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3859 /* Find the real hash-table entry for this symbol. */
3860 while (h->root.root.type == bfd_link_hash_indirect
3861 || h->root.root.type == bfd_link_hash_warning)
3862 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3863 if (h->root.forced_local)
3864 return TRUE;
3865 }
3866
3867 return FALSE;
3868 }
3869 \f
3870 /* Sign-extend VALUE, which has the indicated number of BITS. */
3871
3872 bfd_vma
3873 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3874 {
3875 if (value & ((bfd_vma) 1 << (bits - 1)))
3876 /* VALUE is negative. */
3877 value |= ((bfd_vma) - 1) << bits;
3878
3879 return value;
3880 }
3881
3882 /* Return non-zero if the indicated VALUE has overflowed the maximum
3883 range expressible by a signed number with the indicated number of
3884 BITS. */
3885
3886 static bfd_boolean
3887 mips_elf_overflow_p (bfd_vma value, int bits)
3888 {
3889 bfd_signed_vma svalue = (bfd_signed_vma) value;
3890
3891 if (svalue > (1 << (bits - 1)) - 1)
3892 /* The value is too big. */
3893 return TRUE;
3894 else if (svalue < -(1 << (bits - 1)))
3895 /* The value is too small. */
3896 return TRUE;
3897
3898 /* All is well. */
3899 return FALSE;
3900 }
3901
3902 /* Calculate the %high function. */
3903
3904 static bfd_vma
3905 mips_elf_high (bfd_vma value)
3906 {
3907 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3908 }
3909
3910 /* Calculate the %higher function. */
3911
3912 static bfd_vma
3913 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3914 {
3915 #ifdef BFD64
3916 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3917 #else
3918 abort ();
3919 return MINUS_ONE;
3920 #endif
3921 }
3922
3923 /* Calculate the %highest function. */
3924
3925 static bfd_vma
3926 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3927 {
3928 #ifdef BFD64
3929 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3930 #else
3931 abort ();
3932 return MINUS_ONE;
3933 #endif
3934 }
3935 \f
3936 /* Create the .compact_rel section. */
3937
3938 static bfd_boolean
3939 mips_elf_create_compact_rel_section
3940 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3941 {
3942 flagword flags;
3943 register asection *s;
3944
3945 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3946 {
3947 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3948 | SEC_READONLY);
3949
3950 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3951 if (s == NULL
3952 || ! bfd_set_section_alignment (abfd, s,
3953 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3954 return FALSE;
3955
3956 s->size = sizeof (Elf32_External_compact_rel);
3957 }
3958
3959 return TRUE;
3960 }
3961
3962 /* Create the .got section to hold the global offset table. */
3963
3964 static bfd_boolean
3965 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3966 bfd_boolean maybe_exclude)
3967 {
3968 flagword flags;
3969 register asection *s;
3970 struct elf_link_hash_entry *h;
3971 struct bfd_link_hash_entry *bh;
3972 struct mips_got_info *g;
3973 bfd_size_type amt;
3974 struct mips_elf_link_hash_table *htab;
3975
3976 htab = mips_elf_hash_table (info);
3977
3978 /* This function may be called more than once. */
3979 s = mips_elf_got_section (abfd, TRUE);
3980 if (s)
3981 {
3982 if (! maybe_exclude)
3983 s->flags &= ~SEC_EXCLUDE;
3984 return TRUE;
3985 }
3986
3987 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3988 | SEC_LINKER_CREATED);
3989
3990 if (maybe_exclude)
3991 flags |= SEC_EXCLUDE;
3992
3993 /* We have to use an alignment of 2**4 here because this is hardcoded
3994 in the function stub generation and in the linker script. */
3995 s = bfd_make_section_with_flags (abfd, ".got", flags);
3996 if (s == NULL
3997 || ! bfd_set_section_alignment (abfd, s, 4))
3998 return FALSE;
3999
4000 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4001 linker script because we don't want to define the symbol if we
4002 are not creating a global offset table. */
4003 bh = NULL;
4004 if (! (_bfd_generic_link_add_one_symbol
4005 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4006 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4007 return FALSE;
4008
4009 h = (struct elf_link_hash_entry *) bh;
4010 h->non_elf = 0;
4011 h->def_regular = 1;
4012 h->type = STT_OBJECT;
4013 elf_hash_table (info)->hgot = h;
4014
4015 if (info->shared
4016 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4017 return FALSE;
4018
4019 amt = sizeof (struct mips_got_info);
4020 g = bfd_alloc (abfd, amt);
4021 if (g == NULL)
4022 return FALSE;
4023 g->global_gotsym = NULL;
4024 g->global_gotno = 0;
4025 g->tls_gotno = 0;
4026 g->local_gotno = MIPS_RESERVED_GOTNO (info);
4027 g->page_gotno = 0;
4028 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
4029 g->bfd2got = NULL;
4030 g->next = NULL;
4031 g->tls_ldm_offset = MINUS_ONE;
4032 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4033 mips_elf_got_entry_eq, NULL);
4034 if (g->got_entries == NULL)
4035 return FALSE;
4036 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4037 mips_got_page_entry_eq, NULL);
4038 if (g->got_page_entries == NULL)
4039 return FALSE;
4040 mips_elf_section_data (s)->u.got_info = g;
4041 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4042 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4043
4044 /* VxWorks also needs a .got.plt section. */
4045 if (htab->is_vxworks)
4046 {
4047 s = bfd_make_section_with_flags (abfd, ".got.plt",
4048 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4049 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4050 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
4051 return FALSE;
4052
4053 htab->sgotplt = s;
4054 }
4055 return TRUE;
4056 }
4057 \f
4058 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4059 __GOTT_INDEX__ symbols. These symbols are only special for
4060 shared objects; they are not used in executables. */
4061
4062 static bfd_boolean
4063 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4064 {
4065 return (mips_elf_hash_table (info)->is_vxworks
4066 && info->shared
4067 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4068 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4069 }
4070 \f
4071 /* Calculate the value produced by the RELOCATION (which comes from
4072 the INPUT_BFD). The ADDEND is the addend to use for this
4073 RELOCATION; RELOCATION->R_ADDEND is ignored.
4074
4075 The result of the relocation calculation is stored in VALUEP.
4076 REQUIRE_JALXP indicates whether or not the opcode used with this
4077 relocation must be JALX.
4078
4079 This function returns bfd_reloc_continue if the caller need take no
4080 further action regarding this relocation, bfd_reloc_notsupported if
4081 something goes dramatically wrong, bfd_reloc_overflow if an
4082 overflow occurs, and bfd_reloc_ok to indicate success. */
4083
4084 static bfd_reloc_status_type
4085 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4086 asection *input_section,
4087 struct bfd_link_info *info,
4088 const Elf_Internal_Rela *relocation,
4089 bfd_vma addend, reloc_howto_type *howto,
4090 Elf_Internal_Sym *local_syms,
4091 asection **local_sections, bfd_vma *valuep,
4092 const char **namep, bfd_boolean *require_jalxp,
4093 bfd_boolean save_addend)
4094 {
4095 /* The eventual value we will return. */
4096 bfd_vma value;
4097 /* The address of the symbol against which the relocation is
4098 occurring. */
4099 bfd_vma symbol = 0;
4100 /* The final GP value to be used for the relocatable, executable, or
4101 shared object file being produced. */
4102 bfd_vma gp = MINUS_ONE;
4103 /* The place (section offset or address) of the storage unit being
4104 relocated. */
4105 bfd_vma p;
4106 /* The value of GP used to create the relocatable object. */
4107 bfd_vma gp0 = MINUS_ONE;
4108 /* The offset into the global offset table at which the address of
4109 the relocation entry symbol, adjusted by the addend, resides
4110 during execution. */
4111 bfd_vma g = MINUS_ONE;
4112 /* The section in which the symbol referenced by the relocation is
4113 located. */
4114 asection *sec = NULL;
4115 struct mips_elf_link_hash_entry *h = NULL;
4116 /* TRUE if the symbol referred to by this relocation is a local
4117 symbol. */
4118 bfd_boolean local_p, was_local_p;
4119 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4120 bfd_boolean gp_disp_p = FALSE;
4121 /* TRUE if the symbol referred to by this relocation is
4122 "__gnu_local_gp". */
4123 bfd_boolean gnu_local_gp_p = FALSE;
4124 Elf_Internal_Shdr *symtab_hdr;
4125 size_t extsymoff;
4126 unsigned long r_symndx;
4127 int r_type;
4128 /* TRUE if overflow occurred during the calculation of the
4129 relocation value. */
4130 bfd_boolean overflowed_p;
4131 /* TRUE if this relocation refers to a MIPS16 function. */
4132 bfd_boolean target_is_16_bit_code_p = FALSE;
4133 struct mips_elf_link_hash_table *htab;
4134 bfd *dynobj;
4135
4136 dynobj = elf_hash_table (info)->dynobj;
4137 htab = mips_elf_hash_table (info);
4138
4139 /* Parse the relocation. */
4140 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4141 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4142 p = (input_section->output_section->vma
4143 + input_section->output_offset
4144 + relocation->r_offset);
4145
4146 /* Assume that there will be no overflow. */
4147 overflowed_p = FALSE;
4148
4149 /* Figure out whether or not the symbol is local, and get the offset
4150 used in the array of hash table entries. */
4151 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4152 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4153 local_sections, FALSE);
4154 was_local_p = local_p;
4155 if (! elf_bad_symtab (input_bfd))
4156 extsymoff = symtab_hdr->sh_info;
4157 else
4158 {
4159 /* The symbol table does not follow the rule that local symbols
4160 must come before globals. */
4161 extsymoff = 0;
4162 }
4163
4164 /* Figure out the value of the symbol. */
4165 if (local_p)
4166 {
4167 Elf_Internal_Sym *sym;
4168
4169 sym = local_syms + r_symndx;
4170 sec = local_sections[r_symndx];
4171
4172 symbol = sec->output_section->vma + sec->output_offset;
4173 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4174 || (sec->flags & SEC_MERGE))
4175 symbol += sym->st_value;
4176 if ((sec->flags & SEC_MERGE)
4177 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4178 {
4179 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4180 addend -= symbol;
4181 addend += sec->output_section->vma + sec->output_offset;
4182 }
4183
4184 /* MIPS16 text labels should be treated as odd. */
4185 if (sym->st_other == STO_MIPS16)
4186 ++symbol;
4187
4188 /* Record the name of this symbol, for our caller. */
4189 *namep = bfd_elf_string_from_elf_section (input_bfd,
4190 symtab_hdr->sh_link,
4191 sym->st_name);
4192 if (*namep == '\0')
4193 *namep = bfd_section_name (input_bfd, sec);
4194
4195 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
4196 }
4197 else
4198 {
4199 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4200
4201 /* For global symbols we look up the symbol in the hash-table. */
4202 h = ((struct mips_elf_link_hash_entry *)
4203 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4204 /* Find the real hash-table entry for this symbol. */
4205 while (h->root.root.type == bfd_link_hash_indirect
4206 || h->root.root.type == bfd_link_hash_warning)
4207 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4208
4209 /* Record the name of this symbol, for our caller. */
4210 *namep = h->root.root.root.string;
4211
4212 /* See if this is the special _gp_disp symbol. Note that such a
4213 symbol must always be a global symbol. */
4214 if (strcmp (*namep, "_gp_disp") == 0
4215 && ! NEWABI_P (input_bfd))
4216 {
4217 /* Relocations against _gp_disp are permitted only with
4218 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4219 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4220 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
4221 return bfd_reloc_notsupported;
4222
4223 gp_disp_p = TRUE;
4224 }
4225 /* See if this is the special _gp symbol. Note that such a
4226 symbol must always be a global symbol. */
4227 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4228 gnu_local_gp_p = TRUE;
4229
4230
4231 /* If this symbol is defined, calculate its address. Note that
4232 _gp_disp is a magic symbol, always implicitly defined by the
4233 linker, so it's inappropriate to check to see whether or not
4234 its defined. */
4235 else if ((h->root.root.type == bfd_link_hash_defined
4236 || h->root.root.type == bfd_link_hash_defweak)
4237 && h->root.root.u.def.section)
4238 {
4239 sec = h->root.root.u.def.section;
4240 if (sec->output_section)
4241 symbol = (h->root.root.u.def.value
4242 + sec->output_section->vma
4243 + sec->output_offset);
4244 else
4245 symbol = h->root.root.u.def.value;
4246 }
4247 else if (h->root.root.type == bfd_link_hash_undefweak)
4248 /* We allow relocations against undefined weak symbols, giving
4249 it the value zero, so that you can undefined weak functions
4250 and check to see if they exist by looking at their
4251 addresses. */
4252 symbol = 0;
4253 else if (info->unresolved_syms_in_objects == RM_IGNORE
4254 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4255 symbol = 0;
4256 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4257 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4258 {
4259 /* If this is a dynamic link, we should have created a
4260 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4261 in in _bfd_mips_elf_create_dynamic_sections.
4262 Otherwise, we should define the symbol with a value of 0.
4263 FIXME: It should probably get into the symbol table
4264 somehow as well. */
4265 BFD_ASSERT (! info->shared);
4266 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4267 symbol = 0;
4268 }
4269 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4270 {
4271 /* This is an optional symbol - an Irix specific extension to the
4272 ELF spec. Ignore it for now.
4273 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4274 than simply ignoring them, but we do not handle this for now.
4275 For information see the "64-bit ELF Object File Specification"
4276 which is available from here:
4277 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4278 symbol = 0;
4279 }
4280 else
4281 {
4282 if (! ((*info->callbacks->undefined_symbol)
4283 (info, h->root.root.root.string, input_bfd,
4284 input_section, relocation->r_offset,
4285 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4286 || ELF_ST_VISIBILITY (h->root.other))))
4287 return bfd_reloc_undefined;
4288 symbol = 0;
4289 }
4290
4291 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4292 }
4293
4294 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4295 need to redirect the call to the stub, unless we're already *in*
4296 a stub. */
4297 if (r_type != R_MIPS16_26 && !info->relocatable
4298 && ((h != NULL && h->fn_stub != NULL)
4299 || (local_p
4300 && elf_tdata (input_bfd)->local_stubs != NULL
4301 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4302 && !mips16_stub_section_p (input_bfd, input_section))
4303 {
4304 /* This is a 32- or 64-bit call to a 16-bit function. We should
4305 have already noticed that we were going to need the
4306 stub. */
4307 if (local_p)
4308 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4309 else
4310 {
4311 BFD_ASSERT (h->need_fn_stub);
4312 sec = h->fn_stub;
4313 }
4314
4315 symbol = sec->output_section->vma + sec->output_offset;
4316 /* The target is 16-bit, but the stub isn't. */
4317 target_is_16_bit_code_p = FALSE;
4318 }
4319 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4320 need to redirect the call to the stub. */
4321 else if (r_type == R_MIPS16_26 && !info->relocatable
4322 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
4323 || (local_p
4324 && elf_tdata (input_bfd)->local_call_stubs != NULL
4325 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4326 && !target_is_16_bit_code_p)
4327 {
4328 if (local_p)
4329 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4330 else
4331 {
4332 /* If both call_stub and call_fp_stub are defined, we can figure
4333 out which one to use by checking which one appears in the input
4334 file. */
4335 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4336 {
4337 asection *o;
4338
4339 sec = NULL;
4340 for (o = input_bfd->sections; o != NULL; o = o->next)
4341 {
4342 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4343 {
4344 sec = h->call_fp_stub;
4345 break;
4346 }
4347 }
4348 if (sec == NULL)
4349 sec = h->call_stub;
4350 }
4351 else if (h->call_stub != NULL)
4352 sec = h->call_stub;
4353 else
4354 sec = h->call_fp_stub;
4355 }
4356
4357 BFD_ASSERT (sec->size > 0);
4358 symbol = sec->output_section->vma + sec->output_offset;
4359 }
4360
4361 /* Calls from 16-bit code to 32-bit code and vice versa require the
4362 special jalx instruction. */
4363 *require_jalxp = (!info->relocatable
4364 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4365 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4366
4367 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4368 local_sections, TRUE);
4369
4370 /* If we haven't already determined the GOT offset, or the GP value,
4371 and we're going to need it, get it now. */
4372 switch (r_type)
4373 {
4374 case R_MIPS_GOT_PAGE:
4375 case R_MIPS_GOT_OFST:
4376 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4377 bind locally. */
4378 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4379 if (local_p || r_type == R_MIPS_GOT_OFST)
4380 break;
4381 /* Fall through. */
4382
4383 case R_MIPS_CALL16:
4384 case R_MIPS_GOT16:
4385 case R_MIPS_GOT_DISP:
4386 case R_MIPS_GOT_HI16:
4387 case R_MIPS_CALL_HI16:
4388 case R_MIPS_GOT_LO16:
4389 case R_MIPS_CALL_LO16:
4390 case R_MIPS_TLS_GD:
4391 case R_MIPS_TLS_GOTTPREL:
4392 case R_MIPS_TLS_LDM:
4393 /* Find the index into the GOT where this value is located. */
4394 if (r_type == R_MIPS_TLS_LDM)
4395 {
4396 g = mips_elf_local_got_index (abfd, input_bfd, info,
4397 0, 0, NULL, r_type);
4398 if (g == MINUS_ONE)
4399 return bfd_reloc_outofrange;
4400 }
4401 else if (!local_p)
4402 {
4403 /* On VxWorks, CALL relocations should refer to the .got.plt
4404 entry, which is initialized to point at the PLT stub. */
4405 if (htab->is_vxworks
4406 && (r_type == R_MIPS_CALL_HI16
4407 || r_type == R_MIPS_CALL_LO16
4408 || r_type == R_MIPS_CALL16))
4409 {
4410 BFD_ASSERT (addend == 0);
4411 BFD_ASSERT (h->root.needs_plt);
4412 g = mips_elf_gotplt_index (info, &h->root);
4413 }
4414 else
4415 {
4416 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4417 GOT_PAGE relocation that decays to GOT_DISP because the
4418 symbol turns out to be global. The addend is then added
4419 as GOT_OFST. */
4420 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4421 g = mips_elf_global_got_index (dynobj, input_bfd,
4422 &h->root, r_type, info);
4423 if (h->tls_type == GOT_NORMAL
4424 && (! elf_hash_table(info)->dynamic_sections_created
4425 || (info->shared
4426 && (info->symbolic || h->root.forced_local)
4427 && h->root.def_regular)))
4428 {
4429 /* This is a static link or a -Bsymbolic link. The
4430 symbol is defined locally, or was forced to be local.
4431 We must initialize this entry in the GOT. */
4432 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4433 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4434 }
4435 }
4436 }
4437 else if (!htab->is_vxworks
4438 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4439 /* The calculation below does not involve "g". */
4440 break;
4441 else
4442 {
4443 g = mips_elf_local_got_index (abfd, input_bfd, info,
4444 symbol + addend, r_symndx, h, r_type);
4445 if (g == MINUS_ONE)
4446 return bfd_reloc_outofrange;
4447 }
4448
4449 /* Convert GOT indices to actual offsets. */
4450 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4451 break;
4452
4453 case R_MIPS_HI16:
4454 case R_MIPS_LO16:
4455 case R_MIPS_GPREL16:
4456 case R_MIPS_GPREL32:
4457 case R_MIPS_LITERAL:
4458 case R_MIPS16_HI16:
4459 case R_MIPS16_LO16:
4460 case R_MIPS16_GPREL:
4461 gp0 = _bfd_get_gp_value (input_bfd);
4462 gp = _bfd_get_gp_value (abfd);
4463 if (dynobj)
4464 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4465 input_bfd);
4466 break;
4467
4468 default:
4469 break;
4470 }
4471
4472 if (gnu_local_gp_p)
4473 symbol = gp;
4474
4475 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4476 symbols are resolved by the loader. Add them to .rela.dyn. */
4477 if (h != NULL && is_gott_symbol (info, &h->root))
4478 {
4479 Elf_Internal_Rela outrel;
4480 bfd_byte *loc;
4481 asection *s;
4482
4483 s = mips_elf_rel_dyn_section (info, FALSE);
4484 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4485
4486 outrel.r_offset = (input_section->output_section->vma
4487 + input_section->output_offset
4488 + relocation->r_offset);
4489 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4490 outrel.r_addend = addend;
4491 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4492
4493 /* If we've written this relocation for a readonly section,
4494 we need to set DF_TEXTREL again, so that we do not delete the
4495 DT_TEXTREL tag. */
4496 if (MIPS_ELF_READONLY_SECTION (input_section))
4497 info->flags |= DF_TEXTREL;
4498
4499 *valuep = 0;
4500 return bfd_reloc_ok;
4501 }
4502
4503 /* Figure out what kind of relocation is being performed. */
4504 switch (r_type)
4505 {
4506 case R_MIPS_NONE:
4507 return bfd_reloc_continue;
4508
4509 case R_MIPS_16:
4510 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4511 overflowed_p = mips_elf_overflow_p (value, 16);
4512 break;
4513
4514 case R_MIPS_32:
4515 case R_MIPS_REL32:
4516 case R_MIPS_64:
4517 if ((info->shared
4518 || (!htab->is_vxworks
4519 && htab->root.dynamic_sections_created
4520 && h != NULL
4521 && h->root.def_dynamic
4522 && !h->root.def_regular))
4523 && r_symndx != 0
4524 && (input_section->flags & SEC_ALLOC) != 0)
4525 {
4526 /* If we're creating a shared library, or this relocation is
4527 against a symbol in a shared library, then we can't know
4528 where the symbol will end up. So, we create a relocation
4529 record in the output, and leave the job up to the dynamic
4530 linker.
4531
4532 In VxWorks executables, references to external symbols
4533 are handled using copy relocs or PLT stubs, so there's
4534 no need to add a dynamic relocation here. */
4535 value = addend;
4536 if (!mips_elf_create_dynamic_relocation (abfd,
4537 info,
4538 relocation,
4539 h,
4540 sec,
4541 symbol,
4542 &value,
4543 input_section))
4544 return bfd_reloc_undefined;
4545 }
4546 else
4547 {
4548 if (r_type != R_MIPS_REL32)
4549 value = symbol + addend;
4550 else
4551 value = addend;
4552 }
4553 value &= howto->dst_mask;
4554 break;
4555
4556 case R_MIPS_PC32:
4557 value = symbol + addend - p;
4558 value &= howto->dst_mask;
4559 break;
4560
4561 case R_MIPS16_26:
4562 /* The calculation for R_MIPS16_26 is just the same as for an
4563 R_MIPS_26. It's only the storage of the relocated field into
4564 the output file that's different. That's handled in
4565 mips_elf_perform_relocation. So, we just fall through to the
4566 R_MIPS_26 case here. */
4567 case R_MIPS_26:
4568 if (local_p)
4569 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4570 else
4571 {
4572 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4573 if (h->root.root.type != bfd_link_hash_undefweak)
4574 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4575 }
4576 value &= howto->dst_mask;
4577 break;
4578
4579 case R_MIPS_TLS_DTPREL_HI16:
4580 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4581 & howto->dst_mask);
4582 break;
4583
4584 case R_MIPS_TLS_DTPREL_LO16:
4585 case R_MIPS_TLS_DTPREL32:
4586 case R_MIPS_TLS_DTPREL64:
4587 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4588 break;
4589
4590 case R_MIPS_TLS_TPREL_HI16:
4591 value = (mips_elf_high (addend + symbol - tprel_base (info))
4592 & howto->dst_mask);
4593 break;
4594
4595 case R_MIPS_TLS_TPREL_LO16:
4596 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4597 break;
4598
4599 case R_MIPS_HI16:
4600 case R_MIPS16_HI16:
4601 if (!gp_disp_p)
4602 {
4603 value = mips_elf_high (addend + symbol);
4604 value &= howto->dst_mask;
4605 }
4606 else
4607 {
4608 /* For MIPS16 ABI code we generate this sequence
4609 0: li $v0,%hi(_gp_disp)
4610 4: addiupc $v1,%lo(_gp_disp)
4611 8: sll $v0,16
4612 12: addu $v0,$v1
4613 14: move $gp,$v0
4614 So the offsets of hi and lo relocs are the same, but the
4615 $pc is four higher than $t9 would be, so reduce
4616 both reloc addends by 4. */
4617 if (r_type == R_MIPS16_HI16)
4618 value = mips_elf_high (addend + gp - p - 4);
4619 else
4620 value = mips_elf_high (addend + gp - p);
4621 overflowed_p = mips_elf_overflow_p (value, 16);
4622 }
4623 break;
4624
4625 case R_MIPS_LO16:
4626 case R_MIPS16_LO16:
4627 if (!gp_disp_p)
4628 value = (symbol + addend) & howto->dst_mask;
4629 else
4630 {
4631 /* See the comment for R_MIPS16_HI16 above for the reason
4632 for this conditional. */
4633 if (r_type == R_MIPS16_LO16)
4634 value = addend + gp - p;
4635 else
4636 value = addend + gp - p + 4;
4637 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4638 for overflow. But, on, say, IRIX5, relocations against
4639 _gp_disp are normally generated from the .cpload
4640 pseudo-op. It generates code that normally looks like
4641 this:
4642
4643 lui $gp,%hi(_gp_disp)
4644 addiu $gp,$gp,%lo(_gp_disp)
4645 addu $gp,$gp,$t9
4646
4647 Here $t9 holds the address of the function being called,
4648 as required by the MIPS ELF ABI. The R_MIPS_LO16
4649 relocation can easily overflow in this situation, but the
4650 R_MIPS_HI16 relocation will handle the overflow.
4651 Therefore, we consider this a bug in the MIPS ABI, and do
4652 not check for overflow here. */
4653 }
4654 break;
4655
4656 case R_MIPS_LITERAL:
4657 /* Because we don't merge literal sections, we can handle this
4658 just like R_MIPS_GPREL16. In the long run, we should merge
4659 shared literals, and then we will need to additional work
4660 here. */
4661
4662 /* Fall through. */
4663
4664 case R_MIPS16_GPREL:
4665 /* The R_MIPS16_GPREL performs the same calculation as
4666 R_MIPS_GPREL16, but stores the relocated bits in a different
4667 order. We don't need to do anything special here; the
4668 differences are handled in mips_elf_perform_relocation. */
4669 case R_MIPS_GPREL16:
4670 /* Only sign-extend the addend if it was extracted from the
4671 instruction. If the addend was separate, leave it alone,
4672 otherwise we may lose significant bits. */
4673 if (howto->partial_inplace)
4674 addend = _bfd_mips_elf_sign_extend (addend, 16);
4675 value = symbol + addend - gp;
4676 /* If the symbol was local, any earlier relocatable links will
4677 have adjusted its addend with the gp offset, so compensate
4678 for that now. Don't do it for symbols forced local in this
4679 link, though, since they won't have had the gp offset applied
4680 to them before. */
4681 if (was_local_p)
4682 value += gp0;
4683 overflowed_p = mips_elf_overflow_p (value, 16);
4684 break;
4685
4686 case R_MIPS_GOT16:
4687 case R_MIPS_CALL16:
4688 /* VxWorks does not have separate local and global semantics for
4689 R_MIPS_GOT16; every relocation evaluates to "G". */
4690 if (!htab->is_vxworks && local_p)
4691 {
4692 bfd_boolean forced;
4693
4694 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4695 local_sections, FALSE);
4696 value = mips_elf_got16_entry (abfd, input_bfd, info,
4697 symbol + addend, forced);
4698 if (value == MINUS_ONE)
4699 return bfd_reloc_outofrange;
4700 value
4701 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4702 overflowed_p = mips_elf_overflow_p (value, 16);
4703 break;
4704 }
4705
4706 /* Fall through. */
4707
4708 case R_MIPS_TLS_GD:
4709 case R_MIPS_TLS_GOTTPREL:
4710 case R_MIPS_TLS_LDM:
4711 case R_MIPS_GOT_DISP:
4712 got_disp:
4713 value = g;
4714 overflowed_p = mips_elf_overflow_p (value, 16);
4715 break;
4716
4717 case R_MIPS_GPREL32:
4718 value = (addend + symbol + gp0 - gp);
4719 if (!save_addend)
4720 value &= howto->dst_mask;
4721 break;
4722
4723 case R_MIPS_PC16:
4724 case R_MIPS_GNU_REL16_S2:
4725 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4726 overflowed_p = mips_elf_overflow_p (value, 18);
4727 value >>= howto->rightshift;
4728 value &= howto->dst_mask;
4729 break;
4730
4731 case R_MIPS_GOT_HI16:
4732 case R_MIPS_CALL_HI16:
4733 /* We're allowed to handle these two relocations identically.
4734 The dynamic linker is allowed to handle the CALL relocations
4735 differently by creating a lazy evaluation stub. */
4736 value = g;
4737 value = mips_elf_high (value);
4738 value &= howto->dst_mask;
4739 break;
4740
4741 case R_MIPS_GOT_LO16:
4742 case R_MIPS_CALL_LO16:
4743 value = g & howto->dst_mask;
4744 break;
4745
4746 case R_MIPS_GOT_PAGE:
4747 /* GOT_PAGE relocations that reference non-local symbols decay
4748 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4749 0. */
4750 if (! local_p)
4751 goto got_disp;
4752 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4753 if (value == MINUS_ONE)
4754 return bfd_reloc_outofrange;
4755 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4756 overflowed_p = mips_elf_overflow_p (value, 16);
4757 break;
4758
4759 case R_MIPS_GOT_OFST:
4760 if (local_p)
4761 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4762 else
4763 value = addend;
4764 overflowed_p = mips_elf_overflow_p (value, 16);
4765 break;
4766
4767 case R_MIPS_SUB:
4768 value = symbol - addend;
4769 value &= howto->dst_mask;
4770 break;
4771
4772 case R_MIPS_HIGHER:
4773 value = mips_elf_higher (addend + symbol);
4774 value &= howto->dst_mask;
4775 break;
4776
4777 case R_MIPS_HIGHEST:
4778 value = mips_elf_highest (addend + symbol);
4779 value &= howto->dst_mask;
4780 break;
4781
4782 case R_MIPS_SCN_DISP:
4783 value = symbol + addend - sec->output_offset;
4784 value &= howto->dst_mask;
4785 break;
4786
4787 case R_MIPS_JALR:
4788 /* This relocation is only a hint. In some cases, we optimize
4789 it into a bal instruction. But we don't try to optimize
4790 branches to the PLT; that will wind up wasting time. */
4791 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4792 return bfd_reloc_continue;
4793 value = symbol + addend;
4794 break;
4795
4796 case R_MIPS_PJUMP:
4797 case R_MIPS_GNU_VTINHERIT:
4798 case R_MIPS_GNU_VTENTRY:
4799 /* We don't do anything with these at present. */
4800 return bfd_reloc_continue;
4801
4802 default:
4803 /* An unrecognized relocation type. */
4804 return bfd_reloc_notsupported;
4805 }
4806
4807 /* Store the VALUE for our caller. */
4808 *valuep = value;
4809 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4810 }
4811
4812 /* Obtain the field relocated by RELOCATION. */
4813
4814 static bfd_vma
4815 mips_elf_obtain_contents (reloc_howto_type *howto,
4816 const Elf_Internal_Rela *relocation,
4817 bfd *input_bfd, bfd_byte *contents)
4818 {
4819 bfd_vma x;
4820 bfd_byte *location = contents + relocation->r_offset;
4821
4822 /* Obtain the bytes. */
4823 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4824
4825 return x;
4826 }
4827
4828 /* It has been determined that the result of the RELOCATION is the
4829 VALUE. Use HOWTO to place VALUE into the output file at the
4830 appropriate position. The SECTION is the section to which the
4831 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4832 for the relocation must be either JAL or JALX, and it is
4833 unconditionally converted to JALX.
4834
4835 Returns FALSE if anything goes wrong. */
4836
4837 static bfd_boolean
4838 mips_elf_perform_relocation (struct bfd_link_info *info,
4839 reloc_howto_type *howto,
4840 const Elf_Internal_Rela *relocation,
4841 bfd_vma value, bfd *input_bfd,
4842 asection *input_section, bfd_byte *contents,
4843 bfd_boolean require_jalx)
4844 {
4845 bfd_vma x;
4846 bfd_byte *location;
4847 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4848
4849 /* Figure out where the relocation is occurring. */
4850 location = contents + relocation->r_offset;
4851
4852 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4853
4854 /* Obtain the current value. */
4855 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4856
4857 /* Clear the field we are setting. */
4858 x &= ~howto->dst_mask;
4859
4860 /* Set the field. */
4861 x |= (value & howto->dst_mask);
4862
4863 /* If required, turn JAL into JALX. */
4864 if (require_jalx)
4865 {
4866 bfd_boolean ok;
4867 bfd_vma opcode = x >> 26;
4868 bfd_vma jalx_opcode;
4869
4870 /* Check to see if the opcode is already JAL or JALX. */
4871 if (r_type == R_MIPS16_26)
4872 {
4873 ok = ((opcode == 0x6) || (opcode == 0x7));
4874 jalx_opcode = 0x7;
4875 }
4876 else
4877 {
4878 ok = ((opcode == 0x3) || (opcode == 0x1d));
4879 jalx_opcode = 0x1d;
4880 }
4881
4882 /* If the opcode is not JAL or JALX, there's a problem. */
4883 if (!ok)
4884 {
4885 (*_bfd_error_handler)
4886 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4887 input_bfd,
4888 input_section,
4889 (unsigned long) relocation->r_offset);
4890 bfd_set_error (bfd_error_bad_value);
4891 return FALSE;
4892 }
4893
4894 /* Make this the JALX opcode. */
4895 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4896 }
4897
4898 /* On the RM9000, bal is faster than jal, because bal uses branch
4899 prediction hardware. If we are linking for the RM9000, and we
4900 see jal, and bal fits, use it instead. Note that this
4901 transformation should be safe for all architectures. */
4902 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4903 && !info->relocatable
4904 && !require_jalx
4905 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4906 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4907 {
4908 bfd_vma addr;
4909 bfd_vma dest;
4910 bfd_signed_vma off;
4911
4912 addr = (input_section->output_section->vma
4913 + input_section->output_offset
4914 + relocation->r_offset
4915 + 4);
4916 if (r_type == R_MIPS_26)
4917 dest = (value << 2) | ((addr >> 28) << 28);
4918 else
4919 dest = value;
4920 off = dest - addr;
4921 if (off <= 0x1ffff && off >= -0x20000)
4922 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4923 }
4924
4925 /* Put the value into the output. */
4926 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4927
4928 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4929 location);
4930
4931 return TRUE;
4932 }
4933
4934 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4935
4936 static bfd_boolean
4937 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4938 {
4939 const char *name = bfd_get_section_name (abfd, section);
4940
4941 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4942 }
4943 \f
4944 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4945
4946 static void
4947 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4948 unsigned int n)
4949 {
4950 asection *s;
4951 struct mips_elf_link_hash_table *htab;
4952
4953 htab = mips_elf_hash_table (info);
4954 s = mips_elf_rel_dyn_section (info, FALSE);
4955 BFD_ASSERT (s != NULL);
4956
4957 if (htab->is_vxworks)
4958 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4959 else
4960 {
4961 if (s->size == 0)
4962 {
4963 /* Make room for a null element. */
4964 s->size += MIPS_ELF_REL_SIZE (abfd);
4965 ++s->reloc_count;
4966 }
4967 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4968 }
4969 }
4970
4971 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4972 is the original relocation, which is now being transformed into a
4973 dynamic relocation. The ADDENDP is adjusted if necessary; the
4974 caller should store the result in place of the original addend. */
4975
4976 static bfd_boolean
4977 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4978 struct bfd_link_info *info,
4979 const Elf_Internal_Rela *rel,
4980 struct mips_elf_link_hash_entry *h,
4981 asection *sec, bfd_vma symbol,
4982 bfd_vma *addendp, asection *input_section)
4983 {
4984 Elf_Internal_Rela outrel[3];
4985 asection *sreloc;
4986 bfd *dynobj;
4987 int r_type;
4988 long indx;
4989 bfd_boolean defined_p;
4990 struct mips_elf_link_hash_table *htab;
4991
4992 htab = mips_elf_hash_table (info);
4993 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4994 dynobj = elf_hash_table (info)->dynobj;
4995 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4996 BFD_ASSERT (sreloc != NULL);
4997 BFD_ASSERT (sreloc->contents != NULL);
4998 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4999 < sreloc->size);
5000
5001 outrel[0].r_offset =
5002 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5003 if (ABI_64_P (output_bfd))
5004 {
5005 outrel[1].r_offset =
5006 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5007 outrel[2].r_offset =
5008 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5009 }
5010
5011 if (outrel[0].r_offset == MINUS_ONE)
5012 /* The relocation field has been deleted. */
5013 return TRUE;
5014
5015 if (outrel[0].r_offset == MINUS_TWO)
5016 {
5017 /* The relocation field has been converted into a relative value of
5018 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5019 the field to be fully relocated, so add in the symbol's value. */
5020 *addendp += symbol;
5021 return TRUE;
5022 }
5023
5024 /* We must now calculate the dynamic symbol table index to use
5025 in the relocation. */
5026 if (h != NULL
5027 && (!h->root.def_regular
5028 || (info->shared && !info->symbolic && !h->root.forced_local)))
5029 {
5030 indx = h->root.dynindx;
5031 if (SGI_COMPAT (output_bfd))
5032 defined_p = h->root.def_regular;
5033 else
5034 /* ??? glibc's ld.so just adds the final GOT entry to the
5035 relocation field. It therefore treats relocs against
5036 defined symbols in the same way as relocs against
5037 undefined symbols. */
5038 defined_p = FALSE;
5039 }
5040 else
5041 {
5042 if (sec != NULL && bfd_is_abs_section (sec))
5043 indx = 0;
5044 else if (sec == NULL || sec->owner == NULL)
5045 {
5046 bfd_set_error (bfd_error_bad_value);
5047 return FALSE;
5048 }
5049 else
5050 {
5051 indx = elf_section_data (sec->output_section)->dynindx;
5052 if (indx == 0)
5053 {
5054 asection *osec = htab->root.text_index_section;
5055 indx = elf_section_data (osec)->dynindx;
5056 }
5057 if (indx == 0)
5058 abort ();
5059 }
5060
5061 /* Instead of generating a relocation using the section
5062 symbol, we may as well make it a fully relative
5063 relocation. We want to avoid generating relocations to
5064 local symbols because we used to generate them
5065 incorrectly, without adding the original symbol value,
5066 which is mandated by the ABI for section symbols. In
5067 order to give dynamic loaders and applications time to
5068 phase out the incorrect use, we refrain from emitting
5069 section-relative relocations. It's not like they're
5070 useful, after all. This should be a bit more efficient
5071 as well. */
5072 /* ??? Although this behavior is compatible with glibc's ld.so,
5073 the ABI says that relocations against STN_UNDEF should have
5074 a symbol value of 0. Irix rld honors this, so relocations
5075 against STN_UNDEF have no effect. */
5076 if (!SGI_COMPAT (output_bfd))
5077 indx = 0;
5078 defined_p = TRUE;
5079 }
5080
5081 /* If the relocation was previously an absolute relocation and
5082 this symbol will not be referred to by the relocation, we must
5083 adjust it by the value we give it in the dynamic symbol table.
5084 Otherwise leave the job up to the dynamic linker. */
5085 if (defined_p && r_type != R_MIPS_REL32)
5086 *addendp += symbol;
5087
5088 if (htab->is_vxworks)
5089 /* VxWorks uses non-relative relocations for this. */
5090 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5091 else
5092 /* The relocation is always an REL32 relocation because we don't
5093 know where the shared library will wind up at load-time. */
5094 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5095 R_MIPS_REL32);
5096
5097 /* For strict adherence to the ABI specification, we should
5098 generate a R_MIPS_64 relocation record by itself before the
5099 _REL32/_64 record as well, such that the addend is read in as
5100 a 64-bit value (REL32 is a 32-bit relocation, after all).
5101 However, since none of the existing ELF64 MIPS dynamic
5102 loaders seems to care, we don't waste space with these
5103 artificial relocations. If this turns out to not be true,
5104 mips_elf_allocate_dynamic_relocation() should be tweaked so
5105 as to make room for a pair of dynamic relocations per
5106 invocation if ABI_64_P, and here we should generate an
5107 additional relocation record with R_MIPS_64 by itself for a
5108 NULL symbol before this relocation record. */
5109 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5110 ABI_64_P (output_bfd)
5111 ? R_MIPS_64
5112 : R_MIPS_NONE);
5113 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5114
5115 /* Adjust the output offset of the relocation to reference the
5116 correct location in the output file. */
5117 outrel[0].r_offset += (input_section->output_section->vma
5118 + input_section->output_offset);
5119 outrel[1].r_offset += (input_section->output_section->vma
5120 + input_section->output_offset);
5121 outrel[2].r_offset += (input_section->output_section->vma
5122 + input_section->output_offset);
5123
5124 /* Put the relocation back out. We have to use the special
5125 relocation outputter in the 64-bit case since the 64-bit
5126 relocation format is non-standard. */
5127 if (ABI_64_P (output_bfd))
5128 {
5129 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5130 (output_bfd, &outrel[0],
5131 (sreloc->contents
5132 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5133 }
5134 else if (htab->is_vxworks)
5135 {
5136 /* VxWorks uses RELA rather than REL dynamic relocations. */
5137 outrel[0].r_addend = *addendp;
5138 bfd_elf32_swap_reloca_out
5139 (output_bfd, &outrel[0],
5140 (sreloc->contents
5141 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5142 }
5143 else
5144 bfd_elf32_swap_reloc_out
5145 (output_bfd, &outrel[0],
5146 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5147
5148 /* We've now added another relocation. */
5149 ++sreloc->reloc_count;
5150
5151 /* Make sure the output section is writable. The dynamic linker
5152 will be writing to it. */
5153 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5154 |= SHF_WRITE;
5155
5156 /* On IRIX5, make an entry of compact relocation info. */
5157 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5158 {
5159 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5160 bfd_byte *cr;
5161
5162 if (scpt)
5163 {
5164 Elf32_crinfo cptrel;
5165
5166 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5167 cptrel.vaddr = (rel->r_offset
5168 + input_section->output_section->vma
5169 + input_section->output_offset);
5170 if (r_type == R_MIPS_REL32)
5171 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5172 else
5173 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5174 mips_elf_set_cr_dist2to (cptrel, 0);
5175 cptrel.konst = *addendp;
5176
5177 cr = (scpt->contents
5178 + sizeof (Elf32_External_compact_rel));
5179 mips_elf_set_cr_relvaddr (cptrel, 0);
5180 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5181 ((Elf32_External_crinfo *) cr
5182 + scpt->reloc_count));
5183 ++scpt->reloc_count;
5184 }
5185 }
5186
5187 /* If we've written this relocation for a readonly section,
5188 we need to set DF_TEXTREL again, so that we do not delete the
5189 DT_TEXTREL tag. */
5190 if (MIPS_ELF_READONLY_SECTION (input_section))
5191 info->flags |= DF_TEXTREL;
5192
5193 return TRUE;
5194 }
5195 \f
5196 /* Return the MACH for a MIPS e_flags value. */
5197
5198 unsigned long
5199 _bfd_elf_mips_mach (flagword flags)
5200 {
5201 switch (flags & EF_MIPS_MACH)
5202 {
5203 case E_MIPS_MACH_3900:
5204 return bfd_mach_mips3900;
5205
5206 case E_MIPS_MACH_4010:
5207 return bfd_mach_mips4010;
5208
5209 case E_MIPS_MACH_4100:
5210 return bfd_mach_mips4100;
5211
5212 case E_MIPS_MACH_4111:
5213 return bfd_mach_mips4111;
5214
5215 case E_MIPS_MACH_4120:
5216 return bfd_mach_mips4120;
5217
5218 case E_MIPS_MACH_4650:
5219 return bfd_mach_mips4650;
5220
5221 case E_MIPS_MACH_5400:
5222 return bfd_mach_mips5400;
5223
5224 case E_MIPS_MACH_5500:
5225 return bfd_mach_mips5500;
5226
5227 case E_MIPS_MACH_9000:
5228 return bfd_mach_mips9000;
5229
5230 case E_MIPS_MACH_SB1:
5231 return bfd_mach_mips_sb1;
5232
5233 case E_MIPS_MACH_LS2E:
5234 return bfd_mach_mips_loongson_2e;
5235
5236 case E_MIPS_MACH_LS2F:
5237 return bfd_mach_mips_loongson_2f;
5238
5239 case E_MIPS_MACH_OCTEON:
5240 return bfd_mach_mips_octeon;
5241
5242 default:
5243 switch (flags & EF_MIPS_ARCH)
5244 {
5245 default:
5246 case E_MIPS_ARCH_1:
5247 return bfd_mach_mips3000;
5248
5249 case E_MIPS_ARCH_2:
5250 return bfd_mach_mips6000;
5251
5252 case E_MIPS_ARCH_3:
5253 return bfd_mach_mips4000;
5254
5255 case E_MIPS_ARCH_4:
5256 return bfd_mach_mips8000;
5257
5258 case E_MIPS_ARCH_5:
5259 return bfd_mach_mips5;
5260
5261 case E_MIPS_ARCH_32:
5262 return bfd_mach_mipsisa32;
5263
5264 case E_MIPS_ARCH_64:
5265 return bfd_mach_mipsisa64;
5266
5267 case E_MIPS_ARCH_32R2:
5268 return bfd_mach_mipsisa32r2;
5269
5270 case E_MIPS_ARCH_64R2:
5271 return bfd_mach_mipsisa64r2;
5272 }
5273 }
5274
5275 return 0;
5276 }
5277
5278 /* Return printable name for ABI. */
5279
5280 static INLINE char *
5281 elf_mips_abi_name (bfd *abfd)
5282 {
5283 flagword flags;
5284
5285 flags = elf_elfheader (abfd)->e_flags;
5286 switch (flags & EF_MIPS_ABI)
5287 {
5288 case 0:
5289 if (ABI_N32_P (abfd))
5290 return "N32";
5291 else if (ABI_64_P (abfd))
5292 return "64";
5293 else
5294 return "none";
5295 case E_MIPS_ABI_O32:
5296 return "O32";
5297 case E_MIPS_ABI_O64:
5298 return "O64";
5299 case E_MIPS_ABI_EABI32:
5300 return "EABI32";
5301 case E_MIPS_ABI_EABI64:
5302 return "EABI64";
5303 default:
5304 return "unknown abi";
5305 }
5306 }
5307 \f
5308 /* MIPS ELF uses two common sections. One is the usual one, and the
5309 other is for small objects. All the small objects are kept
5310 together, and then referenced via the gp pointer, which yields
5311 faster assembler code. This is what we use for the small common
5312 section. This approach is copied from ecoff.c. */
5313 static asection mips_elf_scom_section;
5314 static asymbol mips_elf_scom_symbol;
5315 static asymbol *mips_elf_scom_symbol_ptr;
5316
5317 /* MIPS ELF also uses an acommon section, which represents an
5318 allocated common symbol which may be overridden by a
5319 definition in a shared library. */
5320 static asection mips_elf_acom_section;
5321 static asymbol mips_elf_acom_symbol;
5322 static asymbol *mips_elf_acom_symbol_ptr;
5323
5324 /* Handle the special MIPS section numbers that a symbol may use.
5325 This is used for both the 32-bit and the 64-bit ABI. */
5326
5327 void
5328 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5329 {
5330 elf_symbol_type *elfsym;
5331
5332 elfsym = (elf_symbol_type *) asym;
5333 switch (elfsym->internal_elf_sym.st_shndx)
5334 {
5335 case SHN_MIPS_ACOMMON:
5336 /* This section is used in a dynamically linked executable file.
5337 It is an allocated common section. The dynamic linker can
5338 either resolve these symbols to something in a shared
5339 library, or it can just leave them here. For our purposes,
5340 we can consider these symbols to be in a new section. */
5341 if (mips_elf_acom_section.name == NULL)
5342 {
5343 /* Initialize the acommon section. */
5344 mips_elf_acom_section.name = ".acommon";
5345 mips_elf_acom_section.flags = SEC_ALLOC;
5346 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5347 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5348 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5349 mips_elf_acom_symbol.name = ".acommon";
5350 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5351 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5352 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5353 }
5354 asym->section = &mips_elf_acom_section;
5355 break;
5356
5357 case SHN_COMMON:
5358 /* Common symbols less than the GP size are automatically
5359 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5360 if (asym->value > elf_gp_size (abfd)
5361 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5362 || IRIX_COMPAT (abfd) == ict_irix6)
5363 break;
5364 /* Fall through. */
5365 case SHN_MIPS_SCOMMON:
5366 if (mips_elf_scom_section.name == NULL)
5367 {
5368 /* Initialize the small common section. */
5369 mips_elf_scom_section.name = ".scommon";
5370 mips_elf_scom_section.flags = SEC_IS_COMMON;
5371 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5372 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5373 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5374 mips_elf_scom_symbol.name = ".scommon";
5375 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5376 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5377 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5378 }
5379 asym->section = &mips_elf_scom_section;
5380 asym->value = elfsym->internal_elf_sym.st_size;
5381 break;
5382
5383 case SHN_MIPS_SUNDEFINED:
5384 asym->section = bfd_und_section_ptr;
5385 break;
5386
5387 case SHN_MIPS_TEXT:
5388 {
5389 asection *section = bfd_get_section_by_name (abfd, ".text");
5390
5391 BFD_ASSERT (SGI_COMPAT (abfd));
5392 if (section != NULL)
5393 {
5394 asym->section = section;
5395 /* MIPS_TEXT is a bit special, the address is not an offset
5396 to the base of the .text section. So substract the section
5397 base address to make it an offset. */
5398 asym->value -= section->vma;
5399 }
5400 }
5401 break;
5402
5403 case SHN_MIPS_DATA:
5404 {
5405 asection *section = bfd_get_section_by_name (abfd, ".data");
5406
5407 BFD_ASSERT (SGI_COMPAT (abfd));
5408 if (section != NULL)
5409 {
5410 asym->section = section;
5411 /* MIPS_DATA is a bit special, the address is not an offset
5412 to the base of the .data section. So substract the section
5413 base address to make it an offset. */
5414 asym->value -= section->vma;
5415 }
5416 }
5417 break;
5418 }
5419 }
5420 \f
5421 /* Implement elf_backend_eh_frame_address_size. This differs from
5422 the default in the way it handles EABI64.
5423
5424 EABI64 was originally specified as an LP64 ABI, and that is what
5425 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5426 historically accepted the combination of -mabi=eabi and -mlong32,
5427 and this ILP32 variation has become semi-official over time.
5428 Both forms use elf32 and have pointer-sized FDE addresses.
5429
5430 If an EABI object was generated by GCC 4.0 or above, it will have
5431 an empty .gcc_compiled_longXX section, where XX is the size of longs
5432 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5433 have no special marking to distinguish them from LP64 objects.
5434
5435 We don't want users of the official LP64 ABI to be punished for the
5436 existence of the ILP32 variant, but at the same time, we don't want
5437 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5438 We therefore take the following approach:
5439
5440 - If ABFD contains a .gcc_compiled_longXX section, use it to
5441 determine the pointer size.
5442
5443 - Otherwise check the type of the first relocation. Assume that
5444 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5445
5446 - Otherwise punt.
5447
5448 The second check is enough to detect LP64 objects generated by pre-4.0
5449 compilers because, in the kind of output generated by those compilers,
5450 the first relocation will be associated with either a CIE personality
5451 routine or an FDE start address. Furthermore, the compilers never
5452 used a special (non-pointer) encoding for this ABI.
5453
5454 Checking the relocation type should also be safe because there is no
5455 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5456 did so. */
5457
5458 unsigned int
5459 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5460 {
5461 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5462 return 8;
5463 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5464 {
5465 bfd_boolean long32_p, long64_p;
5466
5467 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5468 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5469 if (long32_p && long64_p)
5470 return 0;
5471 if (long32_p)
5472 return 4;
5473 if (long64_p)
5474 return 8;
5475
5476 if (sec->reloc_count > 0
5477 && elf_section_data (sec)->relocs != NULL
5478 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5479 == R_MIPS_64))
5480 return 8;
5481
5482 return 0;
5483 }
5484 return 4;
5485 }
5486 \f
5487 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5488 relocations against two unnamed section symbols to resolve to the
5489 same address. For example, if we have code like:
5490
5491 lw $4,%got_disp(.data)($gp)
5492 lw $25,%got_disp(.text)($gp)
5493 jalr $25
5494
5495 then the linker will resolve both relocations to .data and the program
5496 will jump there rather than to .text.
5497
5498 We can work around this problem by giving names to local section symbols.
5499 This is also what the MIPSpro tools do. */
5500
5501 bfd_boolean
5502 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5503 {
5504 return SGI_COMPAT (abfd);
5505 }
5506 \f
5507 /* Work over a section just before writing it out. This routine is
5508 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5509 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5510 a better way. */
5511
5512 bfd_boolean
5513 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5514 {
5515 if (hdr->sh_type == SHT_MIPS_REGINFO
5516 && hdr->sh_size > 0)
5517 {
5518 bfd_byte buf[4];
5519
5520 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5521 BFD_ASSERT (hdr->contents == NULL);
5522
5523 if (bfd_seek (abfd,
5524 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5525 SEEK_SET) != 0)
5526 return FALSE;
5527 H_PUT_32 (abfd, elf_gp (abfd), buf);
5528 if (bfd_bwrite (buf, 4, abfd) != 4)
5529 return FALSE;
5530 }
5531
5532 if (hdr->sh_type == SHT_MIPS_OPTIONS
5533 && hdr->bfd_section != NULL
5534 && mips_elf_section_data (hdr->bfd_section) != NULL
5535 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5536 {
5537 bfd_byte *contents, *l, *lend;
5538
5539 /* We stored the section contents in the tdata field in the
5540 set_section_contents routine. We save the section contents
5541 so that we don't have to read them again.
5542 At this point we know that elf_gp is set, so we can look
5543 through the section contents to see if there is an
5544 ODK_REGINFO structure. */
5545
5546 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5547 l = contents;
5548 lend = contents + hdr->sh_size;
5549 while (l + sizeof (Elf_External_Options) <= lend)
5550 {
5551 Elf_Internal_Options intopt;
5552
5553 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5554 &intopt);
5555 if (intopt.size < sizeof (Elf_External_Options))
5556 {
5557 (*_bfd_error_handler)
5558 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5559 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5560 break;
5561 }
5562 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5563 {
5564 bfd_byte buf[8];
5565
5566 if (bfd_seek (abfd,
5567 (hdr->sh_offset
5568 + (l - contents)
5569 + sizeof (Elf_External_Options)
5570 + (sizeof (Elf64_External_RegInfo) - 8)),
5571 SEEK_SET) != 0)
5572 return FALSE;
5573 H_PUT_64 (abfd, elf_gp (abfd), buf);
5574 if (bfd_bwrite (buf, 8, abfd) != 8)
5575 return FALSE;
5576 }
5577 else if (intopt.kind == ODK_REGINFO)
5578 {
5579 bfd_byte buf[4];
5580
5581 if (bfd_seek (abfd,
5582 (hdr->sh_offset
5583 + (l - contents)
5584 + sizeof (Elf_External_Options)
5585 + (sizeof (Elf32_External_RegInfo) - 4)),
5586 SEEK_SET) != 0)
5587 return FALSE;
5588 H_PUT_32 (abfd, elf_gp (abfd), buf);
5589 if (bfd_bwrite (buf, 4, abfd) != 4)
5590 return FALSE;
5591 }
5592 l += intopt.size;
5593 }
5594 }
5595
5596 if (hdr->bfd_section != NULL)
5597 {
5598 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5599
5600 if (strcmp (name, ".sdata") == 0
5601 || strcmp (name, ".lit8") == 0
5602 || strcmp (name, ".lit4") == 0)
5603 {
5604 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5605 hdr->sh_type = SHT_PROGBITS;
5606 }
5607 else if (strcmp (name, ".sbss") == 0)
5608 {
5609 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5610 hdr->sh_type = SHT_NOBITS;
5611 }
5612 else if (strcmp (name, ".srdata") == 0)
5613 {
5614 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5615 hdr->sh_type = SHT_PROGBITS;
5616 }
5617 else if (strcmp (name, ".compact_rel") == 0)
5618 {
5619 hdr->sh_flags = 0;
5620 hdr->sh_type = SHT_PROGBITS;
5621 }
5622 else if (strcmp (name, ".rtproc") == 0)
5623 {
5624 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5625 {
5626 unsigned int adjust;
5627
5628 adjust = hdr->sh_size % hdr->sh_addralign;
5629 if (adjust != 0)
5630 hdr->sh_size += hdr->sh_addralign - adjust;
5631 }
5632 }
5633 }
5634
5635 return TRUE;
5636 }
5637
5638 /* Handle a MIPS specific section when reading an object file. This
5639 is called when elfcode.h finds a section with an unknown type.
5640 This routine supports both the 32-bit and 64-bit ELF ABI.
5641
5642 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5643 how to. */
5644
5645 bfd_boolean
5646 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5647 Elf_Internal_Shdr *hdr,
5648 const char *name,
5649 int shindex)
5650 {
5651 flagword flags = 0;
5652
5653 /* There ought to be a place to keep ELF backend specific flags, but
5654 at the moment there isn't one. We just keep track of the
5655 sections by their name, instead. Fortunately, the ABI gives
5656 suggested names for all the MIPS specific sections, so we will
5657 probably get away with this. */
5658 switch (hdr->sh_type)
5659 {
5660 case SHT_MIPS_LIBLIST:
5661 if (strcmp (name, ".liblist") != 0)
5662 return FALSE;
5663 break;
5664 case SHT_MIPS_MSYM:
5665 if (strcmp (name, ".msym") != 0)
5666 return FALSE;
5667 break;
5668 case SHT_MIPS_CONFLICT:
5669 if (strcmp (name, ".conflict") != 0)
5670 return FALSE;
5671 break;
5672 case SHT_MIPS_GPTAB:
5673 if (! CONST_STRNEQ (name, ".gptab."))
5674 return FALSE;
5675 break;
5676 case SHT_MIPS_UCODE:
5677 if (strcmp (name, ".ucode") != 0)
5678 return FALSE;
5679 break;
5680 case SHT_MIPS_DEBUG:
5681 if (strcmp (name, ".mdebug") != 0)
5682 return FALSE;
5683 flags = SEC_DEBUGGING;
5684 break;
5685 case SHT_MIPS_REGINFO:
5686 if (strcmp (name, ".reginfo") != 0
5687 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5688 return FALSE;
5689 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5690 break;
5691 case SHT_MIPS_IFACE:
5692 if (strcmp (name, ".MIPS.interfaces") != 0)
5693 return FALSE;
5694 break;
5695 case SHT_MIPS_CONTENT:
5696 if (! CONST_STRNEQ (name, ".MIPS.content"))
5697 return FALSE;
5698 break;
5699 case SHT_MIPS_OPTIONS:
5700 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5701 return FALSE;
5702 break;
5703 case SHT_MIPS_DWARF:
5704 if (! CONST_STRNEQ (name, ".debug_"))
5705 return FALSE;
5706 break;
5707 case SHT_MIPS_SYMBOL_LIB:
5708 if (strcmp (name, ".MIPS.symlib") != 0)
5709 return FALSE;
5710 break;
5711 case SHT_MIPS_EVENTS:
5712 if (! CONST_STRNEQ (name, ".MIPS.events")
5713 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5714 return FALSE;
5715 break;
5716 default:
5717 break;
5718 }
5719
5720 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5721 return FALSE;
5722
5723 if (flags)
5724 {
5725 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5726 (bfd_get_section_flags (abfd,
5727 hdr->bfd_section)
5728 | flags)))
5729 return FALSE;
5730 }
5731
5732 /* FIXME: We should record sh_info for a .gptab section. */
5733
5734 /* For a .reginfo section, set the gp value in the tdata information
5735 from the contents of this section. We need the gp value while
5736 processing relocs, so we just get it now. The .reginfo section
5737 is not used in the 64-bit MIPS ELF ABI. */
5738 if (hdr->sh_type == SHT_MIPS_REGINFO)
5739 {
5740 Elf32_External_RegInfo ext;
5741 Elf32_RegInfo s;
5742
5743 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5744 &ext, 0, sizeof ext))
5745 return FALSE;
5746 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5747 elf_gp (abfd) = s.ri_gp_value;
5748 }
5749
5750 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5751 set the gp value based on what we find. We may see both
5752 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5753 they should agree. */
5754 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5755 {
5756 bfd_byte *contents, *l, *lend;
5757
5758 contents = bfd_malloc (hdr->sh_size);
5759 if (contents == NULL)
5760 return FALSE;
5761 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5762 0, hdr->sh_size))
5763 {
5764 free (contents);
5765 return FALSE;
5766 }
5767 l = contents;
5768 lend = contents + hdr->sh_size;
5769 while (l + sizeof (Elf_External_Options) <= lend)
5770 {
5771 Elf_Internal_Options intopt;
5772
5773 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5774 &intopt);
5775 if (intopt.size < sizeof (Elf_External_Options))
5776 {
5777 (*_bfd_error_handler)
5778 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5779 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5780 break;
5781 }
5782 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5783 {
5784 Elf64_Internal_RegInfo intreg;
5785
5786 bfd_mips_elf64_swap_reginfo_in
5787 (abfd,
5788 ((Elf64_External_RegInfo *)
5789 (l + sizeof (Elf_External_Options))),
5790 &intreg);
5791 elf_gp (abfd) = intreg.ri_gp_value;
5792 }
5793 else if (intopt.kind == ODK_REGINFO)
5794 {
5795 Elf32_RegInfo intreg;
5796
5797 bfd_mips_elf32_swap_reginfo_in
5798 (abfd,
5799 ((Elf32_External_RegInfo *)
5800 (l + sizeof (Elf_External_Options))),
5801 &intreg);
5802 elf_gp (abfd) = intreg.ri_gp_value;
5803 }
5804 l += intopt.size;
5805 }
5806 free (contents);
5807 }
5808
5809 return TRUE;
5810 }
5811
5812 /* Set the correct type for a MIPS ELF section. We do this by the
5813 section name, which is a hack, but ought to work. This routine is
5814 used by both the 32-bit and the 64-bit ABI. */
5815
5816 bfd_boolean
5817 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5818 {
5819 const char *name = bfd_get_section_name (abfd, sec);
5820
5821 if (strcmp (name, ".liblist") == 0)
5822 {
5823 hdr->sh_type = SHT_MIPS_LIBLIST;
5824 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5825 /* The sh_link field is set in final_write_processing. */
5826 }
5827 else if (strcmp (name, ".conflict") == 0)
5828 hdr->sh_type = SHT_MIPS_CONFLICT;
5829 else if (CONST_STRNEQ (name, ".gptab."))
5830 {
5831 hdr->sh_type = SHT_MIPS_GPTAB;
5832 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5833 /* The sh_info field is set in final_write_processing. */
5834 }
5835 else if (strcmp (name, ".ucode") == 0)
5836 hdr->sh_type = SHT_MIPS_UCODE;
5837 else if (strcmp (name, ".mdebug") == 0)
5838 {
5839 hdr->sh_type = SHT_MIPS_DEBUG;
5840 /* In a shared object on IRIX 5.3, the .mdebug section has an
5841 entsize of 0. FIXME: Does this matter? */
5842 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5843 hdr->sh_entsize = 0;
5844 else
5845 hdr->sh_entsize = 1;
5846 }
5847 else if (strcmp (name, ".reginfo") == 0)
5848 {
5849 hdr->sh_type = SHT_MIPS_REGINFO;
5850 /* In a shared object on IRIX 5.3, the .reginfo section has an
5851 entsize of 0x18. FIXME: Does this matter? */
5852 if (SGI_COMPAT (abfd))
5853 {
5854 if ((abfd->flags & DYNAMIC) != 0)
5855 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5856 else
5857 hdr->sh_entsize = 1;
5858 }
5859 else
5860 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5861 }
5862 else if (SGI_COMPAT (abfd)
5863 && (strcmp (name, ".hash") == 0
5864 || strcmp (name, ".dynamic") == 0
5865 || strcmp (name, ".dynstr") == 0))
5866 {
5867 if (SGI_COMPAT (abfd))
5868 hdr->sh_entsize = 0;
5869 #if 0
5870 /* This isn't how the IRIX6 linker behaves. */
5871 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5872 #endif
5873 }
5874 else if (strcmp (name, ".got") == 0
5875 || strcmp (name, ".srdata") == 0
5876 || strcmp (name, ".sdata") == 0
5877 || strcmp (name, ".sbss") == 0
5878 || strcmp (name, ".lit4") == 0
5879 || strcmp (name, ".lit8") == 0)
5880 hdr->sh_flags |= SHF_MIPS_GPREL;
5881 else if (strcmp (name, ".MIPS.interfaces") == 0)
5882 {
5883 hdr->sh_type = SHT_MIPS_IFACE;
5884 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5885 }
5886 else if (CONST_STRNEQ (name, ".MIPS.content"))
5887 {
5888 hdr->sh_type = SHT_MIPS_CONTENT;
5889 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5890 /* The sh_info field is set in final_write_processing. */
5891 }
5892 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5893 {
5894 hdr->sh_type = SHT_MIPS_OPTIONS;
5895 hdr->sh_entsize = 1;
5896 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5897 }
5898 else if (CONST_STRNEQ (name, ".debug_"))
5899 {
5900 hdr->sh_type = SHT_MIPS_DWARF;
5901
5902 /* Irix facilities such as libexc expect a single .debug_frame
5903 per executable, the system ones have NOSTRIP set and the linker
5904 doesn't merge sections with different flags so ... */
5905 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
5906 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5907 }
5908 else if (strcmp (name, ".MIPS.symlib") == 0)
5909 {
5910 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5911 /* The sh_link and sh_info fields are set in
5912 final_write_processing. */
5913 }
5914 else if (CONST_STRNEQ (name, ".MIPS.events")
5915 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5916 {
5917 hdr->sh_type = SHT_MIPS_EVENTS;
5918 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5919 /* The sh_link field is set in final_write_processing. */
5920 }
5921 else if (strcmp (name, ".msym") == 0)
5922 {
5923 hdr->sh_type = SHT_MIPS_MSYM;
5924 hdr->sh_flags |= SHF_ALLOC;
5925 hdr->sh_entsize = 8;
5926 }
5927
5928 /* The generic elf_fake_sections will set up REL_HDR using the default
5929 kind of relocations. We used to set up a second header for the
5930 non-default kind of relocations here, but only NewABI would use
5931 these, and the IRIX ld doesn't like resulting empty RELA sections.
5932 Thus we create those header only on demand now. */
5933
5934 return TRUE;
5935 }
5936
5937 /* Given a BFD section, try to locate the corresponding ELF section
5938 index. This is used by both the 32-bit and the 64-bit ABI.
5939 Actually, it's not clear to me that the 64-bit ABI supports these,
5940 but for non-PIC objects we will certainly want support for at least
5941 the .scommon section. */
5942
5943 bfd_boolean
5944 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5945 asection *sec, int *retval)
5946 {
5947 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5948 {
5949 *retval = SHN_MIPS_SCOMMON;
5950 return TRUE;
5951 }
5952 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5953 {
5954 *retval = SHN_MIPS_ACOMMON;
5955 return TRUE;
5956 }
5957 return FALSE;
5958 }
5959 \f
5960 /* Hook called by the linker routine which adds symbols from an object
5961 file. We must handle the special MIPS section numbers here. */
5962
5963 bfd_boolean
5964 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5965 Elf_Internal_Sym *sym, const char **namep,
5966 flagword *flagsp ATTRIBUTE_UNUSED,
5967 asection **secp, bfd_vma *valp)
5968 {
5969 if (SGI_COMPAT (abfd)
5970 && (abfd->flags & DYNAMIC) != 0
5971 && strcmp (*namep, "_rld_new_interface") == 0)
5972 {
5973 /* Skip IRIX5 rld entry name. */
5974 *namep = NULL;
5975 return TRUE;
5976 }
5977
5978 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5979 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5980 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5981 a magic symbol resolved by the linker, we ignore this bogus definition
5982 of _gp_disp. New ABI objects do not suffer from this problem so this
5983 is not done for them. */
5984 if (!NEWABI_P(abfd)
5985 && (sym->st_shndx == SHN_ABS)
5986 && (strcmp (*namep, "_gp_disp") == 0))
5987 {
5988 *namep = NULL;
5989 return TRUE;
5990 }
5991
5992 switch (sym->st_shndx)
5993 {
5994 case SHN_COMMON:
5995 /* Common symbols less than the GP size are automatically
5996 treated as SHN_MIPS_SCOMMON symbols. */
5997 if (sym->st_size > elf_gp_size (abfd)
5998 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5999 || IRIX_COMPAT (abfd) == ict_irix6)
6000 break;
6001 /* Fall through. */
6002 case SHN_MIPS_SCOMMON:
6003 *secp = bfd_make_section_old_way (abfd, ".scommon");
6004 (*secp)->flags |= SEC_IS_COMMON;
6005 *valp = sym->st_size;
6006 break;
6007
6008 case SHN_MIPS_TEXT:
6009 /* This section is used in a shared object. */
6010 if (elf_tdata (abfd)->elf_text_section == NULL)
6011 {
6012 asymbol *elf_text_symbol;
6013 asection *elf_text_section;
6014 bfd_size_type amt = sizeof (asection);
6015
6016 elf_text_section = bfd_zalloc (abfd, amt);
6017 if (elf_text_section == NULL)
6018 return FALSE;
6019
6020 amt = sizeof (asymbol);
6021 elf_text_symbol = bfd_zalloc (abfd, amt);
6022 if (elf_text_symbol == NULL)
6023 return FALSE;
6024
6025 /* Initialize the section. */
6026
6027 elf_tdata (abfd)->elf_text_section = elf_text_section;
6028 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6029
6030 elf_text_section->symbol = elf_text_symbol;
6031 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6032
6033 elf_text_section->name = ".text";
6034 elf_text_section->flags = SEC_NO_FLAGS;
6035 elf_text_section->output_section = NULL;
6036 elf_text_section->owner = abfd;
6037 elf_text_symbol->name = ".text";
6038 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6039 elf_text_symbol->section = elf_text_section;
6040 }
6041 /* This code used to do *secp = bfd_und_section_ptr if
6042 info->shared. I don't know why, and that doesn't make sense,
6043 so I took it out. */
6044 *secp = elf_tdata (abfd)->elf_text_section;
6045 break;
6046
6047 case SHN_MIPS_ACOMMON:
6048 /* Fall through. XXX Can we treat this as allocated data? */
6049 case SHN_MIPS_DATA:
6050 /* This section is used in a shared object. */
6051 if (elf_tdata (abfd)->elf_data_section == NULL)
6052 {
6053 asymbol *elf_data_symbol;
6054 asection *elf_data_section;
6055 bfd_size_type amt = sizeof (asection);
6056
6057 elf_data_section = bfd_zalloc (abfd, amt);
6058 if (elf_data_section == NULL)
6059 return FALSE;
6060
6061 amt = sizeof (asymbol);
6062 elf_data_symbol = bfd_zalloc (abfd, amt);
6063 if (elf_data_symbol == NULL)
6064 return FALSE;
6065
6066 /* Initialize the section. */
6067
6068 elf_tdata (abfd)->elf_data_section = elf_data_section;
6069 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6070
6071 elf_data_section->symbol = elf_data_symbol;
6072 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6073
6074 elf_data_section->name = ".data";
6075 elf_data_section->flags = SEC_NO_FLAGS;
6076 elf_data_section->output_section = NULL;
6077 elf_data_section->owner = abfd;
6078 elf_data_symbol->name = ".data";
6079 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6080 elf_data_symbol->section = elf_data_section;
6081 }
6082 /* This code used to do *secp = bfd_und_section_ptr if
6083 info->shared. I don't know why, and that doesn't make sense,
6084 so I took it out. */
6085 *secp = elf_tdata (abfd)->elf_data_section;
6086 break;
6087
6088 case SHN_MIPS_SUNDEFINED:
6089 *secp = bfd_und_section_ptr;
6090 break;
6091 }
6092
6093 if (SGI_COMPAT (abfd)
6094 && ! info->shared
6095 && info->output_bfd->xvec == abfd->xvec
6096 && strcmp (*namep, "__rld_obj_head") == 0)
6097 {
6098 struct elf_link_hash_entry *h;
6099 struct bfd_link_hash_entry *bh;
6100
6101 /* Mark __rld_obj_head as dynamic. */
6102 bh = NULL;
6103 if (! (_bfd_generic_link_add_one_symbol
6104 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6105 get_elf_backend_data (abfd)->collect, &bh)))
6106 return FALSE;
6107
6108 h = (struct elf_link_hash_entry *) bh;
6109 h->non_elf = 0;
6110 h->def_regular = 1;
6111 h->type = STT_OBJECT;
6112
6113 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6114 return FALSE;
6115
6116 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6117 }
6118
6119 /* If this is a mips16 text symbol, add 1 to the value to make it
6120 odd. This will cause something like .word SYM to come up with
6121 the right value when it is loaded into the PC. */
6122 if (sym->st_other == STO_MIPS16)
6123 ++*valp;
6124
6125 return TRUE;
6126 }
6127
6128 /* This hook function is called before the linker writes out a global
6129 symbol. We mark symbols as small common if appropriate. This is
6130 also where we undo the increment of the value for a mips16 symbol. */
6131
6132 bfd_boolean
6133 _bfd_mips_elf_link_output_symbol_hook
6134 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6135 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6136 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6137 {
6138 /* If we see a common symbol, which implies a relocatable link, then
6139 if a symbol was small common in an input file, mark it as small
6140 common in the output file. */
6141 if (sym->st_shndx == SHN_COMMON
6142 && strcmp (input_sec->name, ".scommon") == 0)
6143 sym->st_shndx = SHN_MIPS_SCOMMON;
6144
6145 if (sym->st_other == STO_MIPS16)
6146 sym->st_value &= ~1;
6147
6148 return TRUE;
6149 }
6150 \f
6151 /* Functions for the dynamic linker. */
6152
6153 /* Create dynamic sections when linking against a dynamic object. */
6154
6155 bfd_boolean
6156 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6157 {
6158 struct elf_link_hash_entry *h;
6159 struct bfd_link_hash_entry *bh;
6160 flagword flags;
6161 register asection *s;
6162 const char * const *namep;
6163 struct mips_elf_link_hash_table *htab;
6164
6165 htab = mips_elf_hash_table (info);
6166 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6167 | SEC_LINKER_CREATED | SEC_READONLY);
6168
6169 /* The psABI requires a read-only .dynamic section, but the VxWorks
6170 EABI doesn't. */
6171 if (!htab->is_vxworks)
6172 {
6173 s = bfd_get_section_by_name (abfd, ".dynamic");
6174 if (s != NULL)
6175 {
6176 if (! bfd_set_section_flags (abfd, s, flags))
6177 return FALSE;
6178 }
6179 }
6180
6181 /* We need to create .got section. */
6182 if (! mips_elf_create_got_section (abfd, info, FALSE))
6183 return FALSE;
6184
6185 if (! mips_elf_rel_dyn_section (info, TRUE))
6186 return FALSE;
6187
6188 /* Create .stub section. */
6189 if (bfd_get_section_by_name (abfd,
6190 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
6191 {
6192 s = bfd_make_section_with_flags (abfd,
6193 MIPS_ELF_STUB_SECTION_NAME (abfd),
6194 flags | SEC_CODE);
6195 if (s == NULL
6196 || ! bfd_set_section_alignment (abfd, s,
6197 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6198 return FALSE;
6199 }
6200
6201 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6202 && !info->shared
6203 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6204 {
6205 s = bfd_make_section_with_flags (abfd, ".rld_map",
6206 flags &~ (flagword) SEC_READONLY);
6207 if (s == NULL
6208 || ! bfd_set_section_alignment (abfd, s,
6209 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6210 return FALSE;
6211 }
6212
6213 /* On IRIX5, we adjust add some additional symbols and change the
6214 alignments of several sections. There is no ABI documentation
6215 indicating that this is necessary on IRIX6, nor any evidence that
6216 the linker takes such action. */
6217 if (IRIX_COMPAT (abfd) == ict_irix5)
6218 {
6219 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6220 {
6221 bh = NULL;
6222 if (! (_bfd_generic_link_add_one_symbol
6223 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6224 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6225 return FALSE;
6226
6227 h = (struct elf_link_hash_entry *) bh;
6228 h->non_elf = 0;
6229 h->def_regular = 1;
6230 h->type = STT_SECTION;
6231
6232 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6233 return FALSE;
6234 }
6235
6236 /* We need to create a .compact_rel section. */
6237 if (SGI_COMPAT (abfd))
6238 {
6239 if (!mips_elf_create_compact_rel_section (abfd, info))
6240 return FALSE;
6241 }
6242
6243 /* Change alignments of some sections. */
6244 s = bfd_get_section_by_name (abfd, ".hash");
6245 if (s != NULL)
6246 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6247 s = bfd_get_section_by_name (abfd, ".dynsym");
6248 if (s != NULL)
6249 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6250 s = bfd_get_section_by_name (abfd, ".dynstr");
6251 if (s != NULL)
6252 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6253 s = bfd_get_section_by_name (abfd, ".reginfo");
6254 if (s != NULL)
6255 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6256 s = bfd_get_section_by_name (abfd, ".dynamic");
6257 if (s != NULL)
6258 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6259 }
6260
6261 if (!info->shared)
6262 {
6263 const char *name;
6264
6265 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6266 bh = NULL;
6267 if (!(_bfd_generic_link_add_one_symbol
6268 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6269 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6270 return FALSE;
6271
6272 h = (struct elf_link_hash_entry *) bh;
6273 h->non_elf = 0;
6274 h->def_regular = 1;
6275 h->type = STT_SECTION;
6276
6277 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6278 return FALSE;
6279
6280 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6281 {
6282 /* __rld_map is a four byte word located in the .data section
6283 and is filled in by the rtld to contain a pointer to
6284 the _r_debug structure. Its symbol value will be set in
6285 _bfd_mips_elf_finish_dynamic_symbol. */
6286 s = bfd_get_section_by_name (abfd, ".rld_map");
6287 BFD_ASSERT (s != NULL);
6288
6289 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6290 bh = NULL;
6291 if (!(_bfd_generic_link_add_one_symbol
6292 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6293 get_elf_backend_data (abfd)->collect, &bh)))
6294 return FALSE;
6295
6296 h = (struct elf_link_hash_entry *) bh;
6297 h->non_elf = 0;
6298 h->def_regular = 1;
6299 h->type = STT_OBJECT;
6300
6301 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6302 return FALSE;
6303 }
6304 }
6305
6306 if (htab->is_vxworks)
6307 {
6308 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6309 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6310 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6311 return FALSE;
6312
6313 /* Cache the sections created above. */
6314 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6315 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6316 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6317 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6318 if (!htab->sdynbss
6319 || (!htab->srelbss && !info->shared)
6320 || !htab->srelplt
6321 || !htab->splt)
6322 abort ();
6323
6324 /* Do the usual VxWorks handling. */
6325 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6326 return FALSE;
6327
6328 /* Work out the PLT sizes. */
6329 if (info->shared)
6330 {
6331 htab->plt_header_size
6332 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6333 htab->plt_entry_size
6334 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6335 }
6336 else
6337 {
6338 htab->plt_header_size
6339 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6340 htab->plt_entry_size
6341 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6342 }
6343 }
6344
6345 return TRUE;
6346 }
6347 \f
6348 /* Return true if relocation REL against section SEC is a REL rather than
6349 RELA relocation. RELOCS is the first relocation in the section and
6350 ABFD is the bfd that contains SEC. */
6351
6352 static bfd_boolean
6353 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
6354 const Elf_Internal_Rela *relocs,
6355 const Elf_Internal_Rela *rel)
6356 {
6357 Elf_Internal_Shdr *rel_hdr;
6358 const struct elf_backend_data *bed;
6359
6360 /* To determine which flavor or relocation this is, we depend on the
6361 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
6362 rel_hdr = &elf_section_data (sec)->rel_hdr;
6363 bed = get_elf_backend_data (abfd);
6364 if ((size_t) (rel - relocs)
6365 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6366 rel_hdr = elf_section_data (sec)->rel_hdr2;
6367 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
6368 }
6369
6370 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
6371 HOWTO is the relocation's howto and CONTENTS points to the contents
6372 of the section that REL is against. */
6373
6374 static bfd_vma
6375 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
6376 reloc_howto_type *howto, bfd_byte *contents)
6377 {
6378 bfd_byte *location;
6379 unsigned int r_type;
6380 bfd_vma addend;
6381
6382 r_type = ELF_R_TYPE (abfd, rel->r_info);
6383 location = contents + rel->r_offset;
6384
6385 /* Get the addend, which is stored in the input file. */
6386 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
6387 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
6388 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
6389
6390 return addend & howto->src_mask;
6391 }
6392
6393 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
6394 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
6395 and update *ADDEND with the final addend. Return true on success
6396 or false if the LO16 could not be found. RELEND is the exclusive
6397 upper bound on the relocations for REL's section. */
6398
6399 static bfd_boolean
6400 mips_elf_add_lo16_rel_addend (bfd *abfd,
6401 const Elf_Internal_Rela *rel,
6402 const Elf_Internal_Rela *relend,
6403 bfd_byte *contents, bfd_vma *addend)
6404 {
6405 unsigned int r_type, lo16_type;
6406 const Elf_Internal_Rela *lo16_relocation;
6407 reloc_howto_type *lo16_howto;
6408 bfd_vma l;
6409
6410 r_type = ELF_R_TYPE (abfd, rel->r_info);
6411 if (r_type == R_MIPS16_HI16)
6412 lo16_type = R_MIPS16_LO16;
6413 else
6414 lo16_type = R_MIPS_LO16;
6415
6416 /* The combined value is the sum of the HI16 addend, left-shifted by
6417 sixteen bits, and the LO16 addend, sign extended. (Usually, the
6418 code does a `lui' of the HI16 value, and then an `addiu' of the
6419 LO16 value.)
6420
6421 Scan ahead to find a matching LO16 relocation.
6422
6423 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
6424 be immediately following. However, for the IRIX6 ABI, the next
6425 relocation may be a composed relocation consisting of several
6426 relocations for the same address. In that case, the R_MIPS_LO16
6427 relocation may occur as one of these. We permit a similar
6428 extension in general, as that is useful for GCC.
6429
6430 In some cases GCC dead code elimination removes the LO16 but keeps
6431 the corresponding HI16. This is strictly speaking a violation of
6432 the ABI but not immediately harmful. */
6433 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
6434 if (lo16_relocation == NULL)
6435 return FALSE;
6436
6437 /* Obtain the addend kept there. */
6438 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
6439 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
6440
6441 l <<= lo16_howto->rightshift;
6442 l = _bfd_mips_elf_sign_extend (l, 16);
6443
6444 *addend <<= 16;
6445 *addend += l;
6446 return TRUE;
6447 }
6448
6449 /* Try to read the contents of section SEC in bfd ABFD. Return true and
6450 store the contents in *CONTENTS on success. Assume that *CONTENTS
6451 already holds the contents if it is nonull on entry. */
6452
6453 static bfd_boolean
6454 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
6455 {
6456 if (*contents)
6457 return TRUE;
6458
6459 /* Get cached copy if it exists. */
6460 if (elf_section_data (sec)->this_hdr.contents != NULL)
6461 {
6462 *contents = elf_section_data (sec)->this_hdr.contents;
6463 return TRUE;
6464 }
6465
6466 return bfd_malloc_and_get_section (abfd, sec, contents);
6467 }
6468
6469 /* Look through the relocs for a section during the first phase, and
6470 allocate space in the global offset table. */
6471
6472 bfd_boolean
6473 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6474 asection *sec, const Elf_Internal_Rela *relocs)
6475 {
6476 const char *name;
6477 bfd *dynobj;
6478 Elf_Internal_Shdr *symtab_hdr;
6479 struct elf_link_hash_entry **sym_hashes;
6480 struct mips_got_info *g;
6481 size_t extsymoff;
6482 const Elf_Internal_Rela *rel;
6483 const Elf_Internal_Rela *rel_end;
6484 asection *sgot;
6485 asection *sreloc;
6486 const struct elf_backend_data *bed;
6487 struct mips_elf_link_hash_table *htab;
6488 bfd_byte *contents;
6489 bfd_vma addend;
6490 reloc_howto_type *howto;
6491
6492 if (info->relocatable)
6493 return TRUE;
6494
6495 htab = mips_elf_hash_table (info);
6496 dynobj = elf_hash_table (info)->dynobj;
6497 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6498 sym_hashes = elf_sym_hashes (abfd);
6499 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6500
6501 /* Check for the mips16 stub sections. */
6502
6503 name = bfd_get_section_name (abfd, sec);
6504 if (FN_STUB_P (name))
6505 {
6506 unsigned long r_symndx;
6507
6508 /* Look at the relocation information to figure out which symbol
6509 this is for. */
6510
6511 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6512
6513 if (r_symndx < extsymoff
6514 || sym_hashes[r_symndx - extsymoff] == NULL)
6515 {
6516 asection *o;
6517
6518 /* This stub is for a local symbol. This stub will only be
6519 needed if there is some relocation in this BFD, other
6520 than a 16 bit function call, which refers to this symbol. */
6521 for (o = abfd->sections; o != NULL; o = o->next)
6522 {
6523 Elf_Internal_Rela *sec_relocs;
6524 const Elf_Internal_Rela *r, *rend;
6525
6526 /* We can ignore stub sections when looking for relocs. */
6527 if ((o->flags & SEC_RELOC) == 0
6528 || o->reloc_count == 0
6529 || mips16_stub_section_p (abfd, o))
6530 continue;
6531
6532 sec_relocs
6533 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6534 info->keep_memory);
6535 if (sec_relocs == NULL)
6536 return FALSE;
6537
6538 rend = sec_relocs + o->reloc_count;
6539 for (r = sec_relocs; r < rend; r++)
6540 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6541 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6542 break;
6543
6544 if (elf_section_data (o)->relocs != sec_relocs)
6545 free (sec_relocs);
6546
6547 if (r < rend)
6548 break;
6549 }
6550
6551 if (o == NULL)
6552 {
6553 /* There is no non-call reloc for this stub, so we do
6554 not need it. Since this function is called before
6555 the linker maps input sections to output sections, we
6556 can easily discard it by setting the SEC_EXCLUDE
6557 flag. */
6558 sec->flags |= SEC_EXCLUDE;
6559 return TRUE;
6560 }
6561
6562 /* Record this stub in an array of local symbol stubs for
6563 this BFD. */
6564 if (elf_tdata (abfd)->local_stubs == NULL)
6565 {
6566 unsigned long symcount;
6567 asection **n;
6568 bfd_size_type amt;
6569
6570 if (elf_bad_symtab (abfd))
6571 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6572 else
6573 symcount = symtab_hdr->sh_info;
6574 amt = symcount * sizeof (asection *);
6575 n = bfd_zalloc (abfd, amt);
6576 if (n == NULL)
6577 return FALSE;
6578 elf_tdata (abfd)->local_stubs = n;
6579 }
6580
6581 sec->flags |= SEC_KEEP;
6582 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6583
6584 /* We don't need to set mips16_stubs_seen in this case.
6585 That flag is used to see whether we need to look through
6586 the global symbol table for stubs. We don't need to set
6587 it here, because we just have a local stub. */
6588 }
6589 else
6590 {
6591 struct mips_elf_link_hash_entry *h;
6592
6593 h = ((struct mips_elf_link_hash_entry *)
6594 sym_hashes[r_symndx - extsymoff]);
6595
6596 while (h->root.root.type == bfd_link_hash_indirect
6597 || h->root.root.type == bfd_link_hash_warning)
6598 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6599
6600 /* H is the symbol this stub is for. */
6601
6602 /* If we already have an appropriate stub for this function, we
6603 don't need another one, so we can discard this one. Since
6604 this function is called before the linker maps input sections
6605 to output sections, we can easily discard it by setting the
6606 SEC_EXCLUDE flag. */
6607 if (h->fn_stub != NULL)
6608 {
6609 sec->flags |= SEC_EXCLUDE;
6610 return TRUE;
6611 }
6612
6613 sec->flags |= SEC_KEEP;
6614 h->fn_stub = sec;
6615 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6616 }
6617 }
6618 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6619 {
6620 unsigned long r_symndx;
6621 struct mips_elf_link_hash_entry *h;
6622 asection **loc;
6623
6624 /* Look at the relocation information to figure out which symbol
6625 this is for. */
6626
6627 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6628
6629 if (r_symndx < extsymoff
6630 || sym_hashes[r_symndx - extsymoff] == NULL)
6631 {
6632 asection *o;
6633
6634 /* This stub is for a local symbol. This stub will only be
6635 needed if there is some relocation (R_MIPS16_26) in this BFD
6636 that refers to this symbol. */
6637 for (o = abfd->sections; o != NULL; o = o->next)
6638 {
6639 Elf_Internal_Rela *sec_relocs;
6640 const Elf_Internal_Rela *r, *rend;
6641
6642 /* We can ignore stub sections when looking for relocs. */
6643 if ((o->flags & SEC_RELOC) == 0
6644 || o->reloc_count == 0
6645 || mips16_stub_section_p (abfd, o))
6646 continue;
6647
6648 sec_relocs
6649 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6650 info->keep_memory);
6651 if (sec_relocs == NULL)
6652 return FALSE;
6653
6654 rend = sec_relocs + o->reloc_count;
6655 for (r = sec_relocs; r < rend; r++)
6656 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6657 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6658 break;
6659
6660 if (elf_section_data (o)->relocs != sec_relocs)
6661 free (sec_relocs);
6662
6663 if (r < rend)
6664 break;
6665 }
6666
6667 if (o == NULL)
6668 {
6669 /* There is no non-call reloc for this stub, so we do
6670 not need it. Since this function is called before
6671 the linker maps input sections to output sections, we
6672 can easily discard it by setting the SEC_EXCLUDE
6673 flag. */
6674 sec->flags |= SEC_EXCLUDE;
6675 return TRUE;
6676 }
6677
6678 /* Record this stub in an array of local symbol call_stubs for
6679 this BFD. */
6680 if (elf_tdata (abfd)->local_call_stubs == NULL)
6681 {
6682 unsigned long symcount;
6683 asection **n;
6684 bfd_size_type amt;
6685
6686 if (elf_bad_symtab (abfd))
6687 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6688 else
6689 symcount = symtab_hdr->sh_info;
6690 amt = symcount * sizeof (asection *);
6691 n = bfd_zalloc (abfd, amt);
6692 if (n == NULL)
6693 return FALSE;
6694 elf_tdata (abfd)->local_call_stubs = n;
6695 }
6696
6697 sec->flags |= SEC_KEEP;
6698 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6699
6700 /* We don't need to set mips16_stubs_seen in this case.
6701 That flag is used to see whether we need to look through
6702 the global symbol table for stubs. We don't need to set
6703 it here, because we just have a local stub. */
6704 }
6705 else
6706 {
6707 h = ((struct mips_elf_link_hash_entry *)
6708 sym_hashes[r_symndx - extsymoff]);
6709
6710 /* H is the symbol this stub is for. */
6711
6712 if (CALL_FP_STUB_P (name))
6713 loc = &h->call_fp_stub;
6714 else
6715 loc = &h->call_stub;
6716
6717 /* If we already have an appropriate stub for this function, we
6718 don't need another one, so we can discard this one. Since
6719 this function is called before the linker maps input sections
6720 to output sections, we can easily discard it by setting the
6721 SEC_EXCLUDE flag. */
6722 if (*loc != NULL)
6723 {
6724 sec->flags |= SEC_EXCLUDE;
6725 return TRUE;
6726 }
6727
6728 sec->flags |= SEC_KEEP;
6729 *loc = sec;
6730 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6731 }
6732 }
6733
6734 if (dynobj == NULL)
6735 {
6736 sgot = NULL;
6737 g = NULL;
6738 }
6739 else
6740 {
6741 sgot = mips_elf_got_section (dynobj, FALSE);
6742 if (sgot == NULL)
6743 g = NULL;
6744 else
6745 {
6746 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6747 g = mips_elf_section_data (sgot)->u.got_info;
6748 BFD_ASSERT (g != NULL);
6749 }
6750 }
6751
6752 sreloc = NULL;
6753 bed = get_elf_backend_data (abfd);
6754 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6755 contents = NULL;
6756 for (rel = relocs; rel < rel_end; ++rel)
6757 {
6758 unsigned long r_symndx;
6759 unsigned int r_type;
6760 struct elf_link_hash_entry *h;
6761
6762 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6763 r_type = ELF_R_TYPE (abfd, rel->r_info);
6764
6765 if (r_symndx < extsymoff)
6766 h = NULL;
6767 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6768 {
6769 (*_bfd_error_handler)
6770 (_("%B: Malformed reloc detected for section %s"),
6771 abfd, name);
6772 bfd_set_error (bfd_error_bad_value);
6773 return FALSE;
6774 }
6775 else
6776 {
6777 h = sym_hashes[r_symndx - extsymoff];
6778
6779 /* This may be an indirect symbol created because of a version. */
6780 if (h != NULL)
6781 {
6782 while (h->root.type == bfd_link_hash_indirect)
6783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6784 }
6785 }
6786
6787 /* Some relocs require a global offset table. */
6788 if (dynobj == NULL || sgot == NULL)
6789 {
6790 switch (r_type)
6791 {
6792 case R_MIPS_GOT16:
6793 case R_MIPS_CALL16:
6794 case R_MIPS_CALL_HI16:
6795 case R_MIPS_CALL_LO16:
6796 case R_MIPS_GOT_HI16:
6797 case R_MIPS_GOT_LO16:
6798 case R_MIPS_GOT_PAGE:
6799 case R_MIPS_GOT_OFST:
6800 case R_MIPS_GOT_DISP:
6801 case R_MIPS_TLS_GOTTPREL:
6802 case R_MIPS_TLS_GD:
6803 case R_MIPS_TLS_LDM:
6804 if (dynobj == NULL)
6805 elf_hash_table (info)->dynobj = dynobj = abfd;
6806 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6807 return FALSE;
6808 g = mips_elf_got_info (dynobj, &sgot);
6809 if (htab->is_vxworks && !info->shared)
6810 {
6811 (*_bfd_error_handler)
6812 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6813 abfd, (unsigned long) rel->r_offset);
6814 bfd_set_error (bfd_error_bad_value);
6815 return FALSE;
6816 }
6817 break;
6818
6819 case R_MIPS_32:
6820 case R_MIPS_REL32:
6821 case R_MIPS_64:
6822 /* In VxWorks executables, references to external symbols
6823 are handled using copy relocs or PLT stubs, so there's
6824 no need to add a dynamic relocation here. */
6825 if (dynobj == NULL
6826 && (info->shared || (h != NULL && !htab->is_vxworks))
6827 && (sec->flags & SEC_ALLOC) != 0)
6828 elf_hash_table (info)->dynobj = dynobj = abfd;
6829 break;
6830
6831 default:
6832 break;
6833 }
6834 }
6835
6836 if (h)
6837 {
6838 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6839
6840 /* Relocations against the special VxWorks __GOTT_BASE__ and
6841 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6842 room for them in .rela.dyn. */
6843 if (is_gott_symbol (info, h))
6844 {
6845 if (sreloc == NULL)
6846 {
6847 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6848 if (sreloc == NULL)
6849 return FALSE;
6850 }
6851 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6852 if (MIPS_ELF_READONLY_SECTION (sec))
6853 /* We tell the dynamic linker that there are
6854 relocations against the text segment. */
6855 info->flags |= DF_TEXTREL;
6856 }
6857 }
6858 else if (r_type == R_MIPS_CALL_LO16
6859 || r_type == R_MIPS_GOT_LO16
6860 || r_type == R_MIPS_GOT_DISP
6861 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6862 {
6863 /* We may need a local GOT entry for this relocation. We
6864 don't count R_MIPS_GOT_PAGE because we can estimate the
6865 maximum number of pages needed by looking at the size of
6866 the segment. Similar comments apply to R_MIPS_GOT16 and
6867 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6868 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6869 R_MIPS_CALL_HI16 because these are always followed by an
6870 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6871 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6872 rel->r_addend, g, 0))
6873 return FALSE;
6874 }
6875
6876 switch (r_type)
6877 {
6878 case R_MIPS_CALL16:
6879 if (h == NULL)
6880 {
6881 (*_bfd_error_handler)
6882 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6883 abfd, (unsigned long) rel->r_offset);
6884 bfd_set_error (bfd_error_bad_value);
6885 return FALSE;
6886 }
6887 /* Fall through. */
6888
6889 case R_MIPS_CALL_HI16:
6890 case R_MIPS_CALL_LO16:
6891 if (h != NULL)
6892 {
6893 /* VxWorks call relocations point the function's .got.plt
6894 entry, which will be allocated by adjust_dynamic_symbol.
6895 Otherwise, this symbol requires a global GOT entry. */
6896 if ((!htab->is_vxworks || h->forced_local)
6897 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6898 return FALSE;
6899
6900 /* We need a stub, not a plt entry for the undefined
6901 function. But we record it as if it needs plt. See
6902 _bfd_elf_adjust_dynamic_symbol. */
6903 h->needs_plt = 1;
6904 h->type = STT_FUNC;
6905 }
6906 break;
6907
6908 case R_MIPS_GOT_PAGE:
6909 /* If this is a global, overridable symbol, GOT_PAGE will
6910 decay to GOT_DISP, so we'll need a GOT entry for it. */
6911 if (h)
6912 {
6913 struct mips_elf_link_hash_entry *hmips =
6914 (struct mips_elf_link_hash_entry *) h;
6915
6916 while (hmips->root.root.type == bfd_link_hash_indirect
6917 || hmips->root.root.type == bfd_link_hash_warning)
6918 hmips = (struct mips_elf_link_hash_entry *)
6919 hmips->root.root.u.i.link;
6920
6921 /* This symbol is definitely not overridable. */
6922 if (hmips->root.def_regular
6923 && ! (info->shared && ! info->symbolic
6924 && ! hmips->root.forced_local))
6925 h = NULL;
6926 }
6927 /* Fall through. */
6928
6929 case R_MIPS_GOT16:
6930 case R_MIPS_GOT_HI16:
6931 case R_MIPS_GOT_LO16:
6932 if (!h || r_type == R_MIPS_GOT_PAGE)
6933 {
6934 /* This relocation needs (or may need, if h != NULL) a
6935 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
6936 know for sure until we know whether the symbol is
6937 preemptible. */
6938 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
6939 {
6940 if (!mips_elf_get_section_contents (abfd, sec, &contents))
6941 return FALSE;
6942 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
6943 addend = mips_elf_read_rel_addend (abfd, rel,
6944 howto, contents);
6945 if (r_type == R_MIPS_GOT16)
6946 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
6947 contents, &addend);
6948 else
6949 addend <<= howto->rightshift;
6950 }
6951 else
6952 addend = rel->r_addend;
6953 if (!mips_elf_record_got_page_entry (abfd, r_symndx, addend, g))
6954 return FALSE;
6955 break;
6956 }
6957 /* Fall through. */
6958
6959 case R_MIPS_GOT_DISP:
6960 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6961 return FALSE;
6962 break;
6963
6964 case R_MIPS_TLS_GOTTPREL:
6965 if (info->shared)
6966 info->flags |= DF_STATIC_TLS;
6967 /* Fall through */
6968
6969 case R_MIPS_TLS_LDM:
6970 if (r_type == R_MIPS_TLS_LDM)
6971 {
6972 r_symndx = 0;
6973 h = NULL;
6974 }
6975 /* Fall through */
6976
6977 case R_MIPS_TLS_GD:
6978 /* This symbol requires a global offset table entry, or two
6979 for TLS GD relocations. */
6980 {
6981 unsigned char flag = (r_type == R_MIPS_TLS_GD
6982 ? GOT_TLS_GD
6983 : r_type == R_MIPS_TLS_LDM
6984 ? GOT_TLS_LDM
6985 : GOT_TLS_IE);
6986 if (h != NULL)
6987 {
6988 struct mips_elf_link_hash_entry *hmips =
6989 (struct mips_elf_link_hash_entry *) h;
6990 hmips->tls_type |= flag;
6991
6992 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6993 return FALSE;
6994 }
6995 else
6996 {
6997 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6998
6999 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
7000 rel->r_addend, g, flag))
7001 return FALSE;
7002 }
7003 }
7004 break;
7005
7006 case R_MIPS_32:
7007 case R_MIPS_REL32:
7008 case R_MIPS_64:
7009 /* In VxWorks executables, references to external symbols
7010 are handled using copy relocs or PLT stubs, so there's
7011 no need to add a .rela.dyn entry for this relocation. */
7012 if ((info->shared || (h != NULL && !htab->is_vxworks))
7013 && (sec->flags & SEC_ALLOC) != 0)
7014 {
7015 if (sreloc == NULL)
7016 {
7017 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7018 if (sreloc == NULL)
7019 return FALSE;
7020 }
7021 if (info->shared)
7022 {
7023 /* When creating a shared object, we must copy these
7024 reloc types into the output file as R_MIPS_REL32
7025 relocs. Make room for this reloc in .rel(a).dyn. */
7026 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7027 if (MIPS_ELF_READONLY_SECTION (sec))
7028 /* We tell the dynamic linker that there are
7029 relocations against the text segment. */
7030 info->flags |= DF_TEXTREL;
7031 }
7032 else
7033 {
7034 struct mips_elf_link_hash_entry *hmips;
7035
7036 /* We only need to copy this reloc if the symbol is
7037 defined in a dynamic object. */
7038 hmips = (struct mips_elf_link_hash_entry *) h;
7039 ++hmips->possibly_dynamic_relocs;
7040 if (MIPS_ELF_READONLY_SECTION (sec))
7041 /* We need it to tell the dynamic linker if there
7042 are relocations against the text segment. */
7043 hmips->readonly_reloc = TRUE;
7044 }
7045
7046 /* Even though we don't directly need a GOT entry for
7047 this symbol, a symbol must have a dynamic symbol
7048 table index greater that DT_MIPS_GOTSYM if there are
7049 dynamic relocations against it. This does not apply
7050 to VxWorks, which does not have the usual coupling
7051 between global GOT entries and .dynsym entries. */
7052 if (h != NULL && !htab->is_vxworks)
7053 {
7054 if (dynobj == NULL)
7055 elf_hash_table (info)->dynobj = dynobj = abfd;
7056 if (! mips_elf_create_got_section (dynobj, info, TRUE))
7057 return FALSE;
7058 g = mips_elf_got_info (dynobj, &sgot);
7059 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
7060 return FALSE;
7061 }
7062 }
7063
7064 if (SGI_COMPAT (abfd))
7065 mips_elf_hash_table (info)->compact_rel_size +=
7066 sizeof (Elf32_External_crinfo);
7067 break;
7068
7069 case R_MIPS_PC16:
7070 if (h)
7071 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7072 break;
7073
7074 case R_MIPS_26:
7075 if (h)
7076 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7077 /* Fall through. */
7078
7079 case R_MIPS_GPREL16:
7080 case R_MIPS_LITERAL:
7081 case R_MIPS_GPREL32:
7082 if (SGI_COMPAT (abfd))
7083 mips_elf_hash_table (info)->compact_rel_size +=
7084 sizeof (Elf32_External_crinfo);
7085 break;
7086
7087 /* This relocation describes the C++ object vtable hierarchy.
7088 Reconstruct it for later use during GC. */
7089 case R_MIPS_GNU_VTINHERIT:
7090 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7091 return FALSE;
7092 break;
7093
7094 /* This relocation describes which C++ vtable entries are actually
7095 used. Record for later use during GC. */
7096 case R_MIPS_GNU_VTENTRY:
7097 BFD_ASSERT (h != NULL);
7098 if (h != NULL
7099 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7100 return FALSE;
7101 break;
7102
7103 default:
7104 break;
7105 }
7106
7107 /* We must not create a stub for a symbol that has relocations
7108 related to taking the function's address. This doesn't apply to
7109 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7110 a normal .got entry. */
7111 if (!htab->is_vxworks && h != NULL)
7112 switch (r_type)
7113 {
7114 default:
7115 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7116 break;
7117 case R_MIPS_CALL16:
7118 case R_MIPS_CALL_HI16:
7119 case R_MIPS_CALL_LO16:
7120 case R_MIPS_JALR:
7121 break;
7122 }
7123
7124 /* If this reloc is not a 16 bit call, and it has a global
7125 symbol, then we will need the fn_stub if there is one.
7126 References from a stub section do not count. */
7127 if (h != NULL
7128 && r_type != R_MIPS16_26
7129 && !mips16_stub_section_p (abfd, sec))
7130 {
7131 struct mips_elf_link_hash_entry *mh;
7132
7133 mh = (struct mips_elf_link_hash_entry *) h;
7134 mh->need_fn_stub = TRUE;
7135 }
7136 }
7137
7138 return TRUE;
7139 }
7140 \f
7141 bfd_boolean
7142 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7143 struct bfd_link_info *link_info,
7144 bfd_boolean *again)
7145 {
7146 Elf_Internal_Rela *internal_relocs;
7147 Elf_Internal_Rela *irel, *irelend;
7148 Elf_Internal_Shdr *symtab_hdr;
7149 bfd_byte *contents = NULL;
7150 size_t extsymoff;
7151 bfd_boolean changed_contents = FALSE;
7152 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7153 Elf_Internal_Sym *isymbuf = NULL;
7154
7155 /* We are not currently changing any sizes, so only one pass. */
7156 *again = FALSE;
7157
7158 if (link_info->relocatable)
7159 return TRUE;
7160
7161 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7162 link_info->keep_memory);
7163 if (internal_relocs == NULL)
7164 return TRUE;
7165
7166 irelend = internal_relocs + sec->reloc_count
7167 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7168 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7169 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7170
7171 for (irel = internal_relocs; irel < irelend; irel++)
7172 {
7173 bfd_vma symval;
7174 bfd_signed_vma sym_offset;
7175 unsigned int r_type;
7176 unsigned long r_symndx;
7177 asection *sym_sec;
7178 unsigned long instruction;
7179
7180 /* Turn jalr into bgezal, and jr into beq, if they're marked
7181 with a JALR relocation, that indicate where they jump to.
7182 This saves some pipeline bubbles. */
7183 r_type = ELF_R_TYPE (abfd, irel->r_info);
7184 if (r_type != R_MIPS_JALR)
7185 continue;
7186
7187 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7188 /* Compute the address of the jump target. */
7189 if (r_symndx >= extsymoff)
7190 {
7191 struct mips_elf_link_hash_entry *h
7192 = ((struct mips_elf_link_hash_entry *)
7193 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7194
7195 while (h->root.root.type == bfd_link_hash_indirect
7196 || h->root.root.type == bfd_link_hash_warning)
7197 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7198
7199 /* If a symbol is undefined, or if it may be overridden,
7200 skip it. */
7201 if (! ((h->root.root.type == bfd_link_hash_defined
7202 || h->root.root.type == bfd_link_hash_defweak)
7203 && h->root.root.u.def.section)
7204 || (link_info->shared && ! link_info->symbolic
7205 && !h->root.forced_local))
7206 continue;
7207
7208 sym_sec = h->root.root.u.def.section;
7209 if (sym_sec->output_section)
7210 symval = (h->root.root.u.def.value
7211 + sym_sec->output_section->vma
7212 + sym_sec->output_offset);
7213 else
7214 symval = h->root.root.u.def.value;
7215 }
7216 else
7217 {
7218 Elf_Internal_Sym *isym;
7219
7220 /* Read this BFD's symbols if we haven't done so already. */
7221 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7222 {
7223 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7224 if (isymbuf == NULL)
7225 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7226 symtab_hdr->sh_info, 0,
7227 NULL, NULL, NULL);
7228 if (isymbuf == NULL)
7229 goto relax_return;
7230 }
7231
7232 isym = isymbuf + r_symndx;
7233 if (isym->st_shndx == SHN_UNDEF)
7234 continue;
7235 else if (isym->st_shndx == SHN_ABS)
7236 sym_sec = bfd_abs_section_ptr;
7237 else if (isym->st_shndx == SHN_COMMON)
7238 sym_sec = bfd_com_section_ptr;
7239 else
7240 sym_sec
7241 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7242 symval = isym->st_value
7243 + sym_sec->output_section->vma
7244 + sym_sec->output_offset;
7245 }
7246
7247 /* Compute branch offset, from delay slot of the jump to the
7248 branch target. */
7249 sym_offset = (symval + irel->r_addend)
7250 - (sec_start + irel->r_offset + 4);
7251
7252 /* Branch offset must be properly aligned. */
7253 if ((sym_offset & 3) != 0)
7254 continue;
7255
7256 sym_offset >>= 2;
7257
7258 /* Check that it's in range. */
7259 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
7260 continue;
7261
7262 /* Get the section contents if we haven't done so already. */
7263 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7264 goto relax_return;
7265
7266 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
7267
7268 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7269 if ((instruction & 0xfc1fffff) == 0x0000f809)
7270 instruction = 0x04110000;
7271 /* If it was jr <reg>, turn it into b <target>. */
7272 else if ((instruction & 0xfc1fffff) == 0x00000008)
7273 instruction = 0x10000000;
7274 else
7275 continue;
7276
7277 instruction |= (sym_offset & 0xffff);
7278 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
7279 changed_contents = TRUE;
7280 }
7281
7282 if (contents != NULL
7283 && elf_section_data (sec)->this_hdr.contents != contents)
7284 {
7285 if (!changed_contents && !link_info->keep_memory)
7286 free (contents);
7287 else
7288 {
7289 /* Cache the section contents for elf_link_input_bfd. */
7290 elf_section_data (sec)->this_hdr.contents = contents;
7291 }
7292 }
7293 return TRUE;
7294
7295 relax_return:
7296 if (contents != NULL
7297 && elf_section_data (sec)->this_hdr.contents != contents)
7298 free (contents);
7299 return FALSE;
7300 }
7301 \f
7302 /* Adjust a symbol defined by a dynamic object and referenced by a
7303 regular object. The current definition is in some section of the
7304 dynamic object, but we're not including those sections. We have to
7305 change the definition to something the rest of the link can
7306 understand. */
7307
7308 bfd_boolean
7309 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
7310 struct elf_link_hash_entry *h)
7311 {
7312 bfd *dynobj;
7313 struct mips_elf_link_hash_entry *hmips;
7314 asection *s;
7315 struct mips_elf_link_hash_table *htab;
7316
7317 htab = mips_elf_hash_table (info);
7318 dynobj = elf_hash_table (info)->dynobj;
7319
7320 /* Make sure we know what is going on here. */
7321 BFD_ASSERT (dynobj != NULL
7322 && (h->needs_plt
7323 || h->u.weakdef != NULL
7324 || (h->def_dynamic
7325 && h->ref_regular
7326 && !h->def_regular)));
7327
7328 /* If this symbol is defined in a dynamic object, we need to copy
7329 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7330 file. */
7331 hmips = (struct mips_elf_link_hash_entry *) h;
7332 if (! info->relocatable
7333 && hmips->possibly_dynamic_relocs != 0
7334 && (h->root.type == bfd_link_hash_defweak
7335 || !h->def_regular))
7336 {
7337 mips_elf_allocate_dynamic_relocations
7338 (dynobj, info, hmips->possibly_dynamic_relocs);
7339 if (hmips->readonly_reloc)
7340 /* We tell the dynamic linker that there are relocations
7341 against the text segment. */
7342 info->flags |= DF_TEXTREL;
7343 }
7344
7345 /* For a function, create a stub, if allowed. */
7346 if (! hmips->no_fn_stub
7347 && h->needs_plt)
7348 {
7349 if (! elf_hash_table (info)->dynamic_sections_created)
7350 return TRUE;
7351
7352 /* If this symbol is not defined in a regular file, then set
7353 the symbol to the stub location. This is required to make
7354 function pointers compare as equal between the normal
7355 executable and the shared library. */
7356 if (!h->def_regular)
7357 {
7358 /* We need .stub section. */
7359 s = bfd_get_section_by_name (dynobj,
7360 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7361 BFD_ASSERT (s != NULL);
7362
7363 h->root.u.def.section = s;
7364 h->root.u.def.value = s->size;
7365
7366 /* XXX Write this stub address somewhere. */
7367 h->plt.offset = s->size;
7368
7369 /* Make room for this stub code. */
7370 s->size += htab->function_stub_size;
7371
7372 /* The last half word of the stub will be filled with the index
7373 of this symbol in .dynsym section. */
7374 return TRUE;
7375 }
7376 }
7377 else if ((h->type == STT_FUNC)
7378 && !h->needs_plt)
7379 {
7380 /* This will set the entry for this symbol in the GOT to 0, and
7381 the dynamic linker will take care of this. */
7382 h->root.u.def.value = 0;
7383 return TRUE;
7384 }
7385
7386 /* If this is a weak symbol, and there is a real definition, the
7387 processor independent code will have arranged for us to see the
7388 real definition first, and we can just use the same value. */
7389 if (h->u.weakdef != NULL)
7390 {
7391 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7392 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7393 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7394 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7395 return TRUE;
7396 }
7397
7398 /* This is a reference to a symbol defined by a dynamic object which
7399 is not a function. */
7400
7401 return TRUE;
7402 }
7403
7404 /* Likewise, for VxWorks. */
7405
7406 bfd_boolean
7407 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7408 struct elf_link_hash_entry *h)
7409 {
7410 bfd *dynobj;
7411 struct mips_elf_link_hash_entry *hmips;
7412 struct mips_elf_link_hash_table *htab;
7413
7414 htab = mips_elf_hash_table (info);
7415 dynobj = elf_hash_table (info)->dynobj;
7416 hmips = (struct mips_elf_link_hash_entry *) h;
7417
7418 /* Make sure we know what is going on here. */
7419 BFD_ASSERT (dynobj != NULL
7420 && (h->needs_plt
7421 || h->needs_copy
7422 || h->u.weakdef != NULL
7423 || (h->def_dynamic
7424 && h->ref_regular
7425 && !h->def_regular)));
7426
7427 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7428 either (a) we want to branch to the symbol or (b) we're linking an
7429 executable that needs a canonical function address. In the latter
7430 case, the canonical address will be the address of the executable's
7431 load stub. */
7432 if ((hmips->is_branch_target
7433 || (!info->shared
7434 && h->type == STT_FUNC
7435 && hmips->is_relocation_target))
7436 && h->def_dynamic
7437 && h->ref_regular
7438 && !h->def_regular
7439 && !h->forced_local)
7440 h->needs_plt = 1;
7441
7442 /* Locally-binding symbols do not need a PLT stub; we can refer to
7443 the functions directly. */
7444 else if (h->needs_plt
7445 && (SYMBOL_CALLS_LOCAL (info, h)
7446 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7447 && h->root.type == bfd_link_hash_undefweak)))
7448 {
7449 h->needs_plt = 0;
7450 return TRUE;
7451 }
7452
7453 if (h->needs_plt)
7454 {
7455 /* If this is the first symbol to need a PLT entry, allocate room
7456 for the header, and for the header's .rela.plt.unloaded entries. */
7457 if (htab->splt->size == 0)
7458 {
7459 htab->splt->size += htab->plt_header_size;
7460 if (!info->shared)
7461 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7462 }
7463
7464 /* Assign the next .plt entry to this symbol. */
7465 h->plt.offset = htab->splt->size;
7466 htab->splt->size += htab->plt_entry_size;
7467
7468 /* If the output file has no definition of the symbol, set the
7469 symbol's value to the address of the stub. Point at the PLT
7470 load stub rather than the lazy resolution stub; this stub
7471 will become the canonical function address. */
7472 if (!info->shared && !h->def_regular)
7473 {
7474 h->root.u.def.section = htab->splt;
7475 h->root.u.def.value = h->plt.offset;
7476 h->root.u.def.value += 8;
7477 }
7478
7479 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7480 htab->sgotplt->size += 4;
7481 htab->srelplt->size += sizeof (Elf32_External_Rela);
7482
7483 /* Make room for the .rela.plt.unloaded relocations. */
7484 if (!info->shared)
7485 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7486
7487 return TRUE;
7488 }
7489
7490 /* If a function symbol is defined by a dynamic object, and we do not
7491 need a PLT stub for it, the symbol's value should be zero. */
7492 if (h->type == STT_FUNC
7493 && h->def_dynamic
7494 && h->ref_regular
7495 && !h->def_regular)
7496 {
7497 h->root.u.def.value = 0;
7498 return TRUE;
7499 }
7500
7501 /* If this is a weak symbol, and there is a real definition, the
7502 processor independent code will have arranged for us to see the
7503 real definition first, and we can just use the same value. */
7504 if (h->u.weakdef != NULL)
7505 {
7506 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7507 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7508 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7509 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7510 return TRUE;
7511 }
7512
7513 /* This is a reference to a symbol defined by a dynamic object which
7514 is not a function. */
7515 if (info->shared)
7516 return TRUE;
7517
7518 /* We must allocate the symbol in our .dynbss section, which will
7519 become part of the .bss section of the executable. There will be
7520 an entry for this symbol in the .dynsym section. The dynamic
7521 object will contain position independent code, so all references
7522 from the dynamic object to this symbol will go through the global
7523 offset table. The dynamic linker will use the .dynsym entry to
7524 determine the address it must put in the global offset table, so
7525 both the dynamic object and the regular object will refer to the
7526 same memory location for the variable. */
7527
7528 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7529 {
7530 htab->srelbss->size += sizeof (Elf32_External_Rela);
7531 h->needs_copy = 1;
7532 }
7533
7534 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7535 }
7536 \f
7537 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7538 The number might be exact or a worst-case estimate, depending on how
7539 much information is available to elf_backend_omit_section_dynsym at
7540 the current linking stage. */
7541
7542 static bfd_size_type
7543 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7544 {
7545 bfd_size_type count;
7546
7547 count = 0;
7548 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7549 {
7550 asection *p;
7551 const struct elf_backend_data *bed;
7552
7553 bed = get_elf_backend_data (output_bfd);
7554 for (p = output_bfd->sections; p ; p = p->next)
7555 if ((p->flags & SEC_EXCLUDE) == 0
7556 && (p->flags & SEC_ALLOC) != 0
7557 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7558 ++count;
7559 }
7560 return count;
7561 }
7562
7563 /* This function is called after all the input files have been read,
7564 and the input sections have been assigned to output sections. We
7565 check for any mips16 stub sections that we can discard. */
7566
7567 bfd_boolean
7568 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7569 struct bfd_link_info *info)
7570 {
7571 asection *ri;
7572
7573 bfd *dynobj;
7574 asection *s;
7575 struct mips_got_info *g;
7576 int i;
7577 bfd_size_type loadable_size = 0;
7578 bfd_size_type page_gotno;
7579 bfd_size_type dynsymcount;
7580 bfd *sub;
7581 struct mips_elf_count_tls_arg count_tls_arg;
7582 struct mips_elf_link_hash_table *htab;
7583
7584 htab = mips_elf_hash_table (info);
7585
7586 /* The .reginfo section has a fixed size. */
7587 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7588 if (ri != NULL)
7589 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7590
7591 if (! (info->relocatable
7592 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7593 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7594 mips_elf_check_mips16_stubs, NULL);
7595
7596 dynobj = elf_hash_table (info)->dynobj;
7597 if (dynobj == NULL)
7598 /* Relocatable links don't have it. */
7599 return TRUE;
7600
7601 g = mips_elf_got_info (dynobj, &s);
7602 if (s == NULL)
7603 return TRUE;
7604
7605 /* Calculate the total loadable size of the output. That
7606 will give us the maximum number of GOT_PAGE entries
7607 required. */
7608 for (sub = info->input_bfds; sub; sub = sub->link_next)
7609 {
7610 asection *subsection;
7611
7612 for (subsection = sub->sections;
7613 subsection;
7614 subsection = subsection->next)
7615 {
7616 if ((subsection->flags & SEC_ALLOC) == 0)
7617 continue;
7618 loadable_size += ((subsection->size + 0xf)
7619 &~ (bfd_size_type) 0xf);
7620 }
7621 }
7622
7623 /* There has to be a global GOT entry for every symbol with
7624 a dynamic symbol table index of DT_MIPS_GOTSYM or
7625 higher. Therefore, it make sense to put those symbols
7626 that need GOT entries at the end of the symbol table. We
7627 do that here. */
7628 if (! mips_elf_sort_hash_table (info, 1))
7629 return FALSE;
7630
7631 if (g->global_gotsym != NULL)
7632 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7633 else
7634 /* If there are no global symbols, or none requiring
7635 relocations, then GLOBAL_GOTSYM will be NULL. */
7636 i = 0;
7637
7638 /* Get a worst-case estimate of the number of dynamic symbols needed.
7639 At this point, dynsymcount does not account for section symbols
7640 and count_section_dynsyms may overestimate the number that will
7641 be needed. */
7642 dynsymcount = (elf_hash_table (info)->dynsymcount
7643 + count_section_dynsyms (output_bfd, info));
7644
7645 /* Determine the size of one stub entry. */
7646 htab->function_stub_size = (dynsymcount > 0x10000
7647 ? MIPS_FUNCTION_STUB_BIG_SIZE
7648 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7649
7650 /* In the worst case, we'll get one stub per dynamic symbol, plus
7651 one to account for the dummy entry at the end required by IRIX
7652 rld. */
7653 loadable_size += htab->function_stub_size * (i + 1);
7654
7655 if (htab->is_vxworks)
7656 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7657 relocations against local symbols evaluate to "G", and the EABI does
7658 not include R_MIPS_GOT_PAGE. */
7659 page_gotno = 0;
7660 else
7661 /* Assume there are two loadable segments consisting of contiguous
7662 sections. Is 5 enough? */
7663 page_gotno = (loadable_size >> 16) + 5;
7664
7665 /* Choose the smaller of the two estimates; both are intended to be
7666 conservative. */
7667 if (page_gotno > g->page_gotno)
7668 page_gotno = g->page_gotno;
7669
7670 g->local_gotno += page_gotno;
7671 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7672
7673 g->global_gotno = i;
7674 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7675
7676 /* We need to calculate tls_gotno for global symbols at this point
7677 instead of building it up earlier, to avoid doublecounting
7678 entries for one global symbol from multiple input files. */
7679 count_tls_arg.info = info;
7680 count_tls_arg.needed = 0;
7681 elf_link_hash_traverse (elf_hash_table (info),
7682 mips_elf_count_global_tls_entries,
7683 &count_tls_arg);
7684 g->tls_gotno += count_tls_arg.needed;
7685 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7686
7687 mips_elf_resolve_final_got_entries (g);
7688
7689 /* VxWorks does not support multiple GOTs. It initializes $gp to
7690 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7691 dynamic loader. */
7692 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7693 {
7694 if (! mips_elf_multi_got (output_bfd, info, g, s, page_gotno))
7695 return FALSE;
7696 }
7697 else
7698 {
7699 /* Set up TLS entries for the first GOT. */
7700 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7701 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7702 }
7703 htab->computed_got_sizes = TRUE;
7704
7705 return TRUE;
7706 }
7707
7708 /* Set the sizes of the dynamic sections. */
7709
7710 bfd_boolean
7711 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7712 struct bfd_link_info *info)
7713 {
7714 bfd *dynobj;
7715 asection *s, *sreldyn;
7716 bfd_boolean reltext;
7717 struct mips_elf_link_hash_table *htab;
7718
7719 htab = mips_elf_hash_table (info);
7720 dynobj = elf_hash_table (info)->dynobj;
7721 BFD_ASSERT (dynobj != NULL);
7722
7723 if (elf_hash_table (info)->dynamic_sections_created)
7724 {
7725 /* Set the contents of the .interp section to the interpreter. */
7726 if (info->executable)
7727 {
7728 s = bfd_get_section_by_name (dynobj, ".interp");
7729 BFD_ASSERT (s != NULL);
7730 s->size
7731 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7732 s->contents
7733 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7734 }
7735 }
7736
7737 /* The check_relocs and adjust_dynamic_symbol entry points have
7738 determined the sizes of the various dynamic sections. Allocate
7739 memory for them. */
7740 reltext = FALSE;
7741 sreldyn = NULL;
7742 for (s = dynobj->sections; s != NULL; s = s->next)
7743 {
7744 const char *name;
7745
7746 /* It's OK to base decisions on the section name, because none
7747 of the dynobj section names depend upon the input files. */
7748 name = bfd_get_section_name (dynobj, s);
7749
7750 if ((s->flags & SEC_LINKER_CREATED) == 0)
7751 continue;
7752
7753 if (CONST_STRNEQ (name, ".rel"))
7754 {
7755 if (s->size != 0)
7756 {
7757 const char *outname;
7758 asection *target;
7759
7760 /* If this relocation section applies to a read only
7761 section, then we probably need a DT_TEXTREL entry.
7762 If the relocation section is .rel(a).dyn, we always
7763 assert a DT_TEXTREL entry rather than testing whether
7764 there exists a relocation to a read only section or
7765 not. */
7766 outname = bfd_get_section_name (output_bfd,
7767 s->output_section);
7768 target = bfd_get_section_by_name (output_bfd, outname + 4);
7769 if ((target != NULL
7770 && (target->flags & SEC_READONLY) != 0
7771 && (target->flags & SEC_ALLOC) != 0)
7772 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7773 reltext = TRUE;
7774
7775 /* We use the reloc_count field as a counter if we need
7776 to copy relocs into the output file. */
7777 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7778 s->reloc_count = 0;
7779
7780 /* If combreloc is enabled, elf_link_sort_relocs() will
7781 sort relocations, but in a different way than we do,
7782 and before we're done creating relocations. Also, it
7783 will move them around between input sections'
7784 relocation's contents, so our sorting would be
7785 broken, so don't let it run. */
7786 info->combreloc = 0;
7787 }
7788 }
7789 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7790 {
7791 /* Executables do not need a GOT. */
7792 if (info->shared)
7793 {
7794 /* Allocate relocations for all but the reserved entries. */
7795 struct mips_got_info *g;
7796 unsigned int count;
7797
7798 g = mips_elf_got_info (dynobj, NULL);
7799 count = (g->global_gotno
7800 + g->local_gotno
7801 - MIPS_RESERVED_GOTNO (info));
7802 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7803 }
7804 }
7805 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7806 {
7807 /* _bfd_mips_elf_always_size_sections() has already done
7808 most of the work, but some symbols may have been mapped
7809 to versions that we must now resolve in the got_entries
7810 hash tables. */
7811 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7812 struct mips_got_info *g = gg;
7813 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7814 unsigned int needed_relocs = 0;
7815
7816 if (gg->next)
7817 {
7818 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7819 set_got_offset_arg.info = info;
7820
7821 /* NOTE 2005-02-03: How can this call, or the next, ever
7822 find any indirect entries to resolve? They were all
7823 resolved in mips_elf_multi_got. */
7824 mips_elf_resolve_final_got_entries (gg);
7825 for (g = gg->next; g && g->next != gg; g = g->next)
7826 {
7827 unsigned int save_assign;
7828
7829 mips_elf_resolve_final_got_entries (g);
7830
7831 /* Assign offsets to global GOT entries. */
7832 save_assign = g->assigned_gotno;
7833 g->assigned_gotno = g->local_gotno;
7834 set_got_offset_arg.g = g;
7835 set_got_offset_arg.needed_relocs = 0;
7836 htab_traverse (g->got_entries,
7837 mips_elf_set_global_got_offset,
7838 &set_got_offset_arg);
7839 needed_relocs += set_got_offset_arg.needed_relocs;
7840 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7841 <= g->global_gotno);
7842
7843 g->assigned_gotno = save_assign;
7844 if (info->shared)
7845 {
7846 needed_relocs += g->local_gotno - g->assigned_gotno;
7847 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7848 + g->next->global_gotno
7849 + g->next->tls_gotno
7850 + MIPS_RESERVED_GOTNO (info));
7851 }
7852 }
7853 }
7854 else
7855 {
7856 struct mips_elf_count_tls_arg arg;
7857 arg.info = info;
7858 arg.needed = 0;
7859
7860 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7861 &arg);
7862 elf_link_hash_traverse (elf_hash_table (info),
7863 mips_elf_count_global_tls_relocs,
7864 &arg);
7865
7866 needed_relocs += arg.needed;
7867 }
7868
7869 if (needed_relocs)
7870 mips_elf_allocate_dynamic_relocations (dynobj, info,
7871 needed_relocs);
7872 }
7873 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7874 {
7875 /* IRIX rld assumes that the function stub isn't at the end
7876 of .text section. So put a dummy. XXX */
7877 s->size += htab->function_stub_size;
7878 }
7879 else if (! info->shared
7880 && ! mips_elf_hash_table (info)->use_rld_obj_head
7881 && CONST_STRNEQ (name, ".rld_map"))
7882 {
7883 /* We add a room for __rld_map. It will be filled in by the
7884 rtld to contain a pointer to the _r_debug structure. */
7885 s->size += 4;
7886 }
7887 else if (SGI_COMPAT (output_bfd)
7888 && CONST_STRNEQ (name, ".compact_rel"))
7889 s->size += mips_elf_hash_table (info)->compact_rel_size;
7890 else if (! CONST_STRNEQ (name, ".init")
7891 && s != htab->sgotplt
7892 && s != htab->splt)
7893 {
7894 /* It's not one of our sections, so don't allocate space. */
7895 continue;
7896 }
7897
7898 if (s->size == 0)
7899 {
7900 s->flags |= SEC_EXCLUDE;
7901 continue;
7902 }
7903
7904 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7905 continue;
7906
7907 /* Allocate memory for this section last, since we may increase its
7908 size above. */
7909 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7910 {
7911 sreldyn = s;
7912 continue;
7913 }
7914
7915 /* Allocate memory for the section contents. */
7916 s->contents = bfd_zalloc (dynobj, s->size);
7917 if (s->contents == NULL)
7918 {
7919 bfd_set_error (bfd_error_no_memory);
7920 return FALSE;
7921 }
7922 }
7923
7924 /* Allocate memory for the .rel(a).dyn section. */
7925 if (sreldyn != NULL)
7926 {
7927 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7928 if (sreldyn->contents == NULL)
7929 {
7930 bfd_set_error (bfd_error_no_memory);
7931 return FALSE;
7932 }
7933 }
7934
7935 if (elf_hash_table (info)->dynamic_sections_created)
7936 {
7937 /* Add some entries to the .dynamic section. We fill in the
7938 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7939 must add the entries now so that we get the correct size for
7940 the .dynamic section. */
7941
7942 /* SGI object has the equivalence of DT_DEBUG in the
7943 DT_MIPS_RLD_MAP entry. This must come first because glibc
7944 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7945 looks at the first one it sees. */
7946 if (!info->shared
7947 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7948 return FALSE;
7949
7950 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7951 used by the debugger. */
7952 if (info->executable
7953 && !SGI_COMPAT (output_bfd)
7954 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7955 return FALSE;
7956
7957 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7958 info->flags |= DF_TEXTREL;
7959
7960 if ((info->flags & DF_TEXTREL) != 0)
7961 {
7962 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7963 return FALSE;
7964
7965 /* Clear the DF_TEXTREL flag. It will be set again if we
7966 write out an actual text relocation; we may not, because
7967 at this point we do not know whether e.g. any .eh_frame
7968 absolute relocations have been converted to PC-relative. */
7969 info->flags &= ~DF_TEXTREL;
7970 }
7971
7972 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7973 return FALSE;
7974
7975 if (htab->is_vxworks)
7976 {
7977 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7978 use any of the DT_MIPS_* tags. */
7979 if (mips_elf_rel_dyn_section (info, FALSE))
7980 {
7981 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7982 return FALSE;
7983
7984 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7985 return FALSE;
7986
7987 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7988 return FALSE;
7989 }
7990 if (htab->splt->size > 0)
7991 {
7992 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7993 return FALSE;
7994
7995 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7996 return FALSE;
7997
7998 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7999 return FALSE;
8000 }
8001 }
8002 else
8003 {
8004 if (mips_elf_rel_dyn_section (info, FALSE))
8005 {
8006 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8007 return FALSE;
8008
8009 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8010 return FALSE;
8011
8012 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8013 return FALSE;
8014 }
8015
8016 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8017 return FALSE;
8018
8019 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8020 return FALSE;
8021
8022 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8023 return FALSE;
8024
8025 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8026 return FALSE;
8027
8028 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8029 return FALSE;
8030
8031 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8032 return FALSE;
8033
8034 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8035 return FALSE;
8036
8037 if (IRIX_COMPAT (dynobj) == ict_irix5
8038 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8039 return FALSE;
8040
8041 if (IRIX_COMPAT (dynobj) == ict_irix6
8042 && (bfd_get_section_by_name
8043 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8044 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8045 return FALSE;
8046 }
8047 if (htab->is_vxworks
8048 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8049 return FALSE;
8050 }
8051
8052 return TRUE;
8053 }
8054 \f
8055 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8056 Adjust its R_ADDEND field so that it is correct for the output file.
8057 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8058 and sections respectively; both use symbol indexes. */
8059
8060 static void
8061 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8062 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8063 asection **local_sections, Elf_Internal_Rela *rel)
8064 {
8065 unsigned int r_type, r_symndx;
8066 Elf_Internal_Sym *sym;
8067 asection *sec;
8068
8069 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8070 {
8071 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8072 if (r_type == R_MIPS16_GPREL
8073 || r_type == R_MIPS_GPREL16
8074 || r_type == R_MIPS_GPREL32
8075 || r_type == R_MIPS_LITERAL)
8076 {
8077 rel->r_addend += _bfd_get_gp_value (input_bfd);
8078 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8079 }
8080
8081 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8082 sym = local_syms + r_symndx;
8083
8084 /* Adjust REL's addend to account for section merging. */
8085 if (!info->relocatable)
8086 {
8087 sec = local_sections[r_symndx];
8088 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8089 }
8090
8091 /* This would normally be done by the rela_normal code in elflink.c. */
8092 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8093 rel->r_addend += local_sections[r_symndx]->output_offset;
8094 }
8095 }
8096
8097 /* Relocate a MIPS ELF section. */
8098
8099 bfd_boolean
8100 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8101 bfd *input_bfd, asection *input_section,
8102 bfd_byte *contents, Elf_Internal_Rela *relocs,
8103 Elf_Internal_Sym *local_syms,
8104 asection **local_sections)
8105 {
8106 Elf_Internal_Rela *rel;
8107 const Elf_Internal_Rela *relend;
8108 bfd_vma addend = 0;
8109 bfd_boolean use_saved_addend_p = FALSE;
8110 const struct elf_backend_data *bed;
8111
8112 bed = get_elf_backend_data (output_bfd);
8113 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8114 for (rel = relocs; rel < relend; ++rel)
8115 {
8116 const char *name;
8117 bfd_vma value = 0;
8118 reloc_howto_type *howto;
8119 bfd_boolean require_jalx;
8120 /* TRUE if the relocation is a RELA relocation, rather than a
8121 REL relocation. */
8122 bfd_boolean rela_relocation_p = TRUE;
8123 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8124 const char *msg;
8125 unsigned long r_symndx;
8126 asection *sec;
8127 Elf_Internal_Shdr *symtab_hdr;
8128 struct elf_link_hash_entry *h;
8129
8130 /* Find the relocation howto for this relocation. */
8131 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8132 NEWABI_P (input_bfd)
8133 && (MIPS_RELOC_RELA_P
8134 (input_bfd, input_section,
8135 rel - relocs)));
8136
8137 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8138 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8139 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8140 {
8141 sec = local_sections[r_symndx];
8142 h = NULL;
8143 }
8144 else
8145 {
8146 unsigned long extsymoff;
8147
8148 extsymoff = 0;
8149 if (!elf_bad_symtab (input_bfd))
8150 extsymoff = symtab_hdr->sh_info;
8151 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8152 while (h->root.type == bfd_link_hash_indirect
8153 || h->root.type == bfd_link_hash_warning)
8154 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8155
8156 sec = NULL;
8157 if (h->root.type == bfd_link_hash_defined
8158 || h->root.type == bfd_link_hash_defweak)
8159 sec = h->root.u.def.section;
8160 }
8161
8162 if (sec != NULL && elf_discarded_section (sec))
8163 {
8164 /* For relocs against symbols from removed linkonce sections,
8165 or sections discarded by a linker script, we just want the
8166 section contents zeroed. Avoid any special processing. */
8167 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8168 rel->r_info = 0;
8169 rel->r_addend = 0;
8170 continue;
8171 }
8172
8173 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
8174 {
8175 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8176 64-bit code, but make sure all their addresses are in the
8177 lowermost or uppermost 32-bit section of the 64-bit address
8178 space. Thus, when they use an R_MIPS_64 they mean what is
8179 usually meant by R_MIPS_32, with the exception that the
8180 stored value is sign-extended to 64 bits. */
8181 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
8182
8183 /* On big-endian systems, we need to lie about the position
8184 of the reloc. */
8185 if (bfd_big_endian (input_bfd))
8186 rel->r_offset += 4;
8187 }
8188
8189 if (!use_saved_addend_p)
8190 {
8191 /* If these relocations were originally of the REL variety,
8192 we must pull the addend out of the field that will be
8193 relocated. Otherwise, we simply use the contents of the
8194 RELA relocation. */
8195 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8196 relocs, rel))
8197 {
8198 rela_relocation_p = FALSE;
8199 addend = mips_elf_read_rel_addend (input_bfd, rel,
8200 howto, contents);
8201 if (r_type == R_MIPS_HI16
8202 || r_type == R_MIPS16_HI16
8203 || (r_type == R_MIPS_GOT16
8204 && mips_elf_local_relocation_p (input_bfd, rel,
8205 local_sections, FALSE)))
8206 {
8207 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8208 contents, &addend))
8209 {
8210 const char *name;
8211
8212 if (h)
8213 name = h->root.root.string;
8214 else
8215 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8216 local_syms + r_symndx,
8217 sec);
8218 (*_bfd_error_handler)
8219 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8220 input_bfd, input_section, name, howto->name,
8221 rel->r_offset);
8222 }
8223 }
8224 else
8225 addend <<= howto->rightshift;
8226 }
8227 else
8228 addend = rel->r_addend;
8229 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8230 local_syms, local_sections, rel);
8231 }
8232
8233 if (info->relocatable)
8234 {
8235 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
8236 && bfd_big_endian (input_bfd))
8237 rel->r_offset -= 4;
8238
8239 if (!rela_relocation_p && rel->r_addend)
8240 {
8241 addend += rel->r_addend;
8242 if (r_type == R_MIPS_HI16
8243 || r_type == R_MIPS_GOT16)
8244 addend = mips_elf_high (addend);
8245 else if (r_type == R_MIPS_HIGHER)
8246 addend = mips_elf_higher (addend);
8247 else if (r_type == R_MIPS_HIGHEST)
8248 addend = mips_elf_highest (addend);
8249 else
8250 addend >>= howto->rightshift;
8251
8252 /* We use the source mask, rather than the destination
8253 mask because the place to which we are writing will be
8254 source of the addend in the final link. */
8255 addend &= howto->src_mask;
8256
8257 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8258 /* See the comment above about using R_MIPS_64 in the 32-bit
8259 ABI. Here, we need to update the addend. It would be
8260 possible to get away with just using the R_MIPS_32 reloc
8261 but for endianness. */
8262 {
8263 bfd_vma sign_bits;
8264 bfd_vma low_bits;
8265 bfd_vma high_bits;
8266
8267 if (addend & ((bfd_vma) 1 << 31))
8268 #ifdef BFD64
8269 sign_bits = ((bfd_vma) 1 << 32) - 1;
8270 #else
8271 sign_bits = -1;
8272 #endif
8273 else
8274 sign_bits = 0;
8275
8276 /* If we don't know that we have a 64-bit type,
8277 do two separate stores. */
8278 if (bfd_big_endian (input_bfd))
8279 {
8280 /* Store the sign-bits (which are most significant)
8281 first. */
8282 low_bits = sign_bits;
8283 high_bits = addend;
8284 }
8285 else
8286 {
8287 low_bits = addend;
8288 high_bits = sign_bits;
8289 }
8290 bfd_put_32 (input_bfd, low_bits,
8291 contents + rel->r_offset);
8292 bfd_put_32 (input_bfd, high_bits,
8293 contents + rel->r_offset + 4);
8294 continue;
8295 }
8296
8297 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8298 input_bfd, input_section,
8299 contents, FALSE))
8300 return FALSE;
8301 }
8302
8303 /* Go on to the next relocation. */
8304 continue;
8305 }
8306
8307 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8308 relocations for the same offset. In that case we are
8309 supposed to treat the output of each relocation as the addend
8310 for the next. */
8311 if (rel + 1 < relend
8312 && rel->r_offset == rel[1].r_offset
8313 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8314 use_saved_addend_p = TRUE;
8315 else
8316 use_saved_addend_p = FALSE;
8317
8318 /* Figure out what value we are supposed to relocate. */
8319 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8320 input_section, info, rel,
8321 addend, howto, local_syms,
8322 local_sections, &value,
8323 &name, &require_jalx,
8324 use_saved_addend_p))
8325 {
8326 case bfd_reloc_continue:
8327 /* There's nothing to do. */
8328 continue;
8329
8330 case bfd_reloc_undefined:
8331 /* mips_elf_calculate_relocation already called the
8332 undefined_symbol callback. There's no real point in
8333 trying to perform the relocation at this point, so we
8334 just skip ahead to the next relocation. */
8335 continue;
8336
8337 case bfd_reloc_notsupported:
8338 msg = _("internal error: unsupported relocation error");
8339 info->callbacks->warning
8340 (info, msg, name, input_bfd, input_section, rel->r_offset);
8341 return FALSE;
8342
8343 case bfd_reloc_overflow:
8344 if (use_saved_addend_p)
8345 /* Ignore overflow until we reach the last relocation for
8346 a given location. */
8347 ;
8348 else
8349 {
8350 struct mips_elf_link_hash_table *htab;
8351
8352 htab = mips_elf_hash_table (info);
8353 BFD_ASSERT (name != NULL);
8354 if (!htab->small_data_overflow_reported
8355 && (howto->type == R_MIPS_GPREL16
8356 || howto->type == R_MIPS_LITERAL))
8357 {
8358 const char *msg =
8359 _("small-data section exceeds 64KB;"
8360 " lower small-data size limit (see option -G)");
8361
8362 htab->small_data_overflow_reported = TRUE;
8363 (*info->callbacks->einfo) ("%P: %s\n", msg);
8364 }
8365 if (! ((*info->callbacks->reloc_overflow)
8366 (info, NULL, name, howto->name, (bfd_vma) 0,
8367 input_bfd, input_section, rel->r_offset)))
8368 return FALSE;
8369 }
8370 break;
8371
8372 case bfd_reloc_ok:
8373 break;
8374
8375 default:
8376 abort ();
8377 break;
8378 }
8379
8380 /* If we've got another relocation for the address, keep going
8381 until we reach the last one. */
8382 if (use_saved_addend_p)
8383 {
8384 addend = value;
8385 continue;
8386 }
8387
8388 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8389 /* See the comment above about using R_MIPS_64 in the 32-bit
8390 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8391 that calculated the right value. Now, however, we
8392 sign-extend the 32-bit result to 64-bits, and store it as a
8393 64-bit value. We are especially generous here in that we
8394 go to extreme lengths to support this usage on systems with
8395 only a 32-bit VMA. */
8396 {
8397 bfd_vma sign_bits;
8398 bfd_vma low_bits;
8399 bfd_vma high_bits;
8400
8401 if (value & ((bfd_vma) 1 << 31))
8402 #ifdef BFD64
8403 sign_bits = ((bfd_vma) 1 << 32) - 1;
8404 #else
8405 sign_bits = -1;
8406 #endif
8407 else
8408 sign_bits = 0;
8409
8410 /* If we don't know that we have a 64-bit type,
8411 do two separate stores. */
8412 if (bfd_big_endian (input_bfd))
8413 {
8414 /* Undo what we did above. */
8415 rel->r_offset -= 4;
8416 /* Store the sign-bits (which are most significant)
8417 first. */
8418 low_bits = sign_bits;
8419 high_bits = value;
8420 }
8421 else
8422 {
8423 low_bits = value;
8424 high_bits = sign_bits;
8425 }
8426 bfd_put_32 (input_bfd, low_bits,
8427 contents + rel->r_offset);
8428 bfd_put_32 (input_bfd, high_bits,
8429 contents + rel->r_offset + 4);
8430 continue;
8431 }
8432
8433 /* Actually perform the relocation. */
8434 if (! mips_elf_perform_relocation (info, howto, rel, value,
8435 input_bfd, input_section,
8436 contents, require_jalx))
8437 return FALSE;
8438 }
8439
8440 return TRUE;
8441 }
8442 \f
8443 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8444 adjust it appropriately now. */
8445
8446 static void
8447 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8448 const char *name, Elf_Internal_Sym *sym)
8449 {
8450 /* The linker script takes care of providing names and values for
8451 these, but we must place them into the right sections. */
8452 static const char* const text_section_symbols[] = {
8453 "_ftext",
8454 "_etext",
8455 "__dso_displacement",
8456 "__elf_header",
8457 "__program_header_table",
8458 NULL
8459 };
8460
8461 static const char* const data_section_symbols[] = {
8462 "_fdata",
8463 "_edata",
8464 "_end",
8465 "_fbss",
8466 NULL
8467 };
8468
8469 const char* const *p;
8470 int i;
8471
8472 for (i = 0; i < 2; ++i)
8473 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8474 *p;
8475 ++p)
8476 if (strcmp (*p, name) == 0)
8477 {
8478 /* All of these symbols are given type STT_SECTION by the
8479 IRIX6 linker. */
8480 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8481 sym->st_other = STO_PROTECTED;
8482
8483 /* The IRIX linker puts these symbols in special sections. */
8484 if (i == 0)
8485 sym->st_shndx = SHN_MIPS_TEXT;
8486 else
8487 sym->st_shndx = SHN_MIPS_DATA;
8488
8489 break;
8490 }
8491 }
8492
8493 /* Finish up dynamic symbol handling. We set the contents of various
8494 dynamic sections here. */
8495
8496 bfd_boolean
8497 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8498 struct bfd_link_info *info,
8499 struct elf_link_hash_entry *h,
8500 Elf_Internal_Sym *sym)
8501 {
8502 bfd *dynobj;
8503 asection *sgot;
8504 struct mips_got_info *g, *gg;
8505 const char *name;
8506 int idx;
8507 struct mips_elf_link_hash_table *htab;
8508
8509 htab = mips_elf_hash_table (info);
8510 dynobj = elf_hash_table (info)->dynobj;
8511
8512 if (h->plt.offset != MINUS_ONE)
8513 {
8514 asection *s;
8515 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8516
8517 /* This symbol has a stub. Set it up. */
8518
8519 BFD_ASSERT (h->dynindx != -1);
8520
8521 s = bfd_get_section_by_name (dynobj,
8522 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8523 BFD_ASSERT (s != NULL);
8524
8525 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8526 || (h->dynindx <= 0xffff));
8527
8528 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8529 sign extension at runtime in the stub, resulting in a negative
8530 index value. */
8531 if (h->dynindx & ~0x7fffffff)
8532 return FALSE;
8533
8534 /* Fill the stub. */
8535 idx = 0;
8536 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8537 idx += 4;
8538 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8539 idx += 4;
8540 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8541 {
8542 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8543 stub + idx);
8544 idx += 4;
8545 }
8546 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8547 idx += 4;
8548
8549 /* If a large stub is not required and sign extension is not a
8550 problem, then use legacy code in the stub. */
8551 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8552 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8553 else if (h->dynindx & ~0x7fff)
8554 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8555 else
8556 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8557 stub + idx);
8558
8559 BFD_ASSERT (h->plt.offset <= s->size);
8560 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8561
8562 /* Mark the symbol as undefined. plt.offset != -1 occurs
8563 only for the referenced symbol. */
8564 sym->st_shndx = SHN_UNDEF;
8565
8566 /* The run-time linker uses the st_value field of the symbol
8567 to reset the global offset table entry for this external
8568 to its stub address when unlinking a shared object. */
8569 sym->st_value = (s->output_section->vma + s->output_offset
8570 + h->plt.offset);
8571 }
8572
8573 BFD_ASSERT (h->dynindx != -1
8574 || h->forced_local);
8575
8576 sgot = mips_elf_got_section (dynobj, FALSE);
8577 BFD_ASSERT (sgot != NULL);
8578 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8579 g = mips_elf_section_data (sgot)->u.got_info;
8580 BFD_ASSERT (g != NULL);
8581
8582 /* Run through the global symbol table, creating GOT entries for all
8583 the symbols that need them. */
8584 if (g->global_gotsym != NULL
8585 && h->dynindx >= g->global_gotsym->dynindx)
8586 {
8587 bfd_vma offset;
8588 bfd_vma value;
8589
8590 value = sym->st_value;
8591 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8592 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8593 }
8594
8595 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8596 {
8597 struct mips_got_entry e, *p;
8598 bfd_vma entry;
8599 bfd_vma offset;
8600
8601 gg = g;
8602
8603 e.abfd = output_bfd;
8604 e.symndx = -1;
8605 e.d.h = (struct mips_elf_link_hash_entry *)h;
8606 e.tls_type = 0;
8607
8608 for (g = g->next; g->next != gg; g = g->next)
8609 {
8610 if (g->got_entries
8611 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8612 &e)))
8613 {
8614 offset = p->gotidx;
8615 if (info->shared
8616 || (elf_hash_table (info)->dynamic_sections_created
8617 && p->d.h != NULL
8618 && p->d.h->root.def_dynamic
8619 && !p->d.h->root.def_regular))
8620 {
8621 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8622 the various compatibility problems, it's easier to mock
8623 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8624 mips_elf_create_dynamic_relocation to calculate the
8625 appropriate addend. */
8626 Elf_Internal_Rela rel[3];
8627
8628 memset (rel, 0, sizeof (rel));
8629 if (ABI_64_P (output_bfd))
8630 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8631 else
8632 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8633 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8634
8635 entry = 0;
8636 if (! (mips_elf_create_dynamic_relocation
8637 (output_bfd, info, rel,
8638 e.d.h, NULL, sym->st_value, &entry, sgot)))
8639 return FALSE;
8640 }
8641 else
8642 entry = sym->st_value;
8643 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8644 }
8645 }
8646 }
8647
8648 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8649 name = h->root.root.string;
8650 if (strcmp (name, "_DYNAMIC") == 0
8651 || h == elf_hash_table (info)->hgot)
8652 sym->st_shndx = SHN_ABS;
8653 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8654 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8655 {
8656 sym->st_shndx = SHN_ABS;
8657 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8658 sym->st_value = 1;
8659 }
8660 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8661 {
8662 sym->st_shndx = SHN_ABS;
8663 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8664 sym->st_value = elf_gp (output_bfd);
8665 }
8666 else if (SGI_COMPAT (output_bfd))
8667 {
8668 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8669 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8670 {
8671 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8672 sym->st_other = STO_PROTECTED;
8673 sym->st_value = 0;
8674 sym->st_shndx = SHN_MIPS_DATA;
8675 }
8676 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8677 {
8678 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8679 sym->st_other = STO_PROTECTED;
8680 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8681 sym->st_shndx = SHN_ABS;
8682 }
8683 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8684 {
8685 if (h->type == STT_FUNC)
8686 sym->st_shndx = SHN_MIPS_TEXT;
8687 else if (h->type == STT_OBJECT)
8688 sym->st_shndx = SHN_MIPS_DATA;
8689 }
8690 }
8691
8692 /* Handle the IRIX6-specific symbols. */
8693 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8694 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8695
8696 if (! info->shared)
8697 {
8698 if (! mips_elf_hash_table (info)->use_rld_obj_head
8699 && (strcmp (name, "__rld_map") == 0
8700 || strcmp (name, "__RLD_MAP") == 0))
8701 {
8702 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8703 BFD_ASSERT (s != NULL);
8704 sym->st_value = s->output_section->vma + s->output_offset;
8705 bfd_put_32 (output_bfd, 0, s->contents);
8706 if (mips_elf_hash_table (info)->rld_value == 0)
8707 mips_elf_hash_table (info)->rld_value = sym->st_value;
8708 }
8709 else if (mips_elf_hash_table (info)->use_rld_obj_head
8710 && strcmp (name, "__rld_obj_head") == 0)
8711 {
8712 /* IRIX6 does not use a .rld_map section. */
8713 if (IRIX_COMPAT (output_bfd) == ict_irix5
8714 || IRIX_COMPAT (output_bfd) == ict_none)
8715 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8716 != NULL);
8717 mips_elf_hash_table (info)->rld_value = sym->st_value;
8718 }
8719 }
8720
8721 /* If this is a mips16 symbol, force the value to be even. */
8722 if (sym->st_other == STO_MIPS16)
8723 sym->st_value &= ~1;
8724
8725 return TRUE;
8726 }
8727
8728 /* Likewise, for VxWorks. */
8729
8730 bfd_boolean
8731 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8732 struct bfd_link_info *info,
8733 struct elf_link_hash_entry *h,
8734 Elf_Internal_Sym *sym)
8735 {
8736 bfd *dynobj;
8737 asection *sgot;
8738 struct mips_got_info *g;
8739 struct mips_elf_link_hash_table *htab;
8740
8741 htab = mips_elf_hash_table (info);
8742 dynobj = elf_hash_table (info)->dynobj;
8743
8744 if (h->plt.offset != (bfd_vma) -1)
8745 {
8746 bfd_byte *loc;
8747 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8748 Elf_Internal_Rela rel;
8749 static const bfd_vma *plt_entry;
8750
8751 BFD_ASSERT (h->dynindx != -1);
8752 BFD_ASSERT (htab->splt != NULL);
8753 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8754
8755 /* Calculate the address of the .plt entry. */
8756 plt_address = (htab->splt->output_section->vma
8757 + htab->splt->output_offset
8758 + h->plt.offset);
8759
8760 /* Calculate the index of the entry. */
8761 plt_index = ((h->plt.offset - htab->plt_header_size)
8762 / htab->plt_entry_size);
8763
8764 /* Calculate the address of the .got.plt entry. */
8765 got_address = (htab->sgotplt->output_section->vma
8766 + htab->sgotplt->output_offset
8767 + plt_index * 4);
8768
8769 /* Calculate the offset of the .got.plt entry from
8770 _GLOBAL_OFFSET_TABLE_. */
8771 got_offset = mips_elf_gotplt_index (info, h);
8772
8773 /* Calculate the offset for the branch at the start of the PLT
8774 entry. The branch jumps to the beginning of .plt. */
8775 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8776
8777 /* Fill in the initial value of the .got.plt entry. */
8778 bfd_put_32 (output_bfd, plt_address,
8779 htab->sgotplt->contents + plt_index * 4);
8780
8781 /* Find out where the .plt entry should go. */
8782 loc = htab->splt->contents + h->plt.offset;
8783
8784 if (info->shared)
8785 {
8786 plt_entry = mips_vxworks_shared_plt_entry;
8787 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8788 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8789 }
8790 else
8791 {
8792 bfd_vma got_address_high, got_address_low;
8793
8794 plt_entry = mips_vxworks_exec_plt_entry;
8795 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8796 got_address_low = got_address & 0xffff;
8797
8798 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8799 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8800 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8801 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8802 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8803 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8804 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8805 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8806
8807 loc = (htab->srelplt2->contents
8808 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8809
8810 /* Emit a relocation for the .got.plt entry. */
8811 rel.r_offset = got_address;
8812 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8813 rel.r_addend = h->plt.offset;
8814 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8815
8816 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8817 loc += sizeof (Elf32_External_Rela);
8818 rel.r_offset = plt_address + 8;
8819 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8820 rel.r_addend = got_offset;
8821 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8822
8823 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8824 loc += sizeof (Elf32_External_Rela);
8825 rel.r_offset += 4;
8826 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8827 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8828 }
8829
8830 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8831 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8832 rel.r_offset = got_address;
8833 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8834 rel.r_addend = 0;
8835 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8836
8837 if (!h->def_regular)
8838 sym->st_shndx = SHN_UNDEF;
8839 }
8840
8841 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8842
8843 sgot = mips_elf_got_section (dynobj, FALSE);
8844 BFD_ASSERT (sgot != NULL);
8845 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8846 g = mips_elf_section_data (sgot)->u.got_info;
8847 BFD_ASSERT (g != NULL);
8848
8849 /* See if this symbol has an entry in the GOT. */
8850 if (g->global_gotsym != NULL
8851 && h->dynindx >= g->global_gotsym->dynindx)
8852 {
8853 bfd_vma offset;
8854 Elf_Internal_Rela outrel;
8855 bfd_byte *loc;
8856 asection *s;
8857
8858 /* Install the symbol value in the GOT. */
8859 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8860 R_MIPS_GOT16, info);
8861 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8862
8863 /* Add a dynamic relocation for it. */
8864 s = mips_elf_rel_dyn_section (info, FALSE);
8865 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8866 outrel.r_offset = (sgot->output_section->vma
8867 + sgot->output_offset
8868 + offset);
8869 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8870 outrel.r_addend = 0;
8871 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8872 }
8873
8874 /* Emit a copy reloc, if needed. */
8875 if (h->needs_copy)
8876 {
8877 Elf_Internal_Rela rel;
8878
8879 BFD_ASSERT (h->dynindx != -1);
8880
8881 rel.r_offset = (h->root.u.def.section->output_section->vma
8882 + h->root.u.def.section->output_offset
8883 + h->root.u.def.value);
8884 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8885 rel.r_addend = 0;
8886 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8887 htab->srelbss->contents
8888 + (htab->srelbss->reloc_count
8889 * sizeof (Elf32_External_Rela)));
8890 ++htab->srelbss->reloc_count;
8891 }
8892
8893 /* If this is a mips16 symbol, force the value to be even. */
8894 if (sym->st_other == STO_MIPS16)
8895 sym->st_value &= ~1;
8896
8897 return TRUE;
8898 }
8899
8900 /* Install the PLT header for a VxWorks executable and finalize the
8901 contents of .rela.plt.unloaded. */
8902
8903 static void
8904 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8905 {
8906 Elf_Internal_Rela rela;
8907 bfd_byte *loc;
8908 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8909 static const bfd_vma *plt_entry;
8910 struct mips_elf_link_hash_table *htab;
8911
8912 htab = mips_elf_hash_table (info);
8913 plt_entry = mips_vxworks_exec_plt0_entry;
8914
8915 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8916 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8917 + htab->root.hgot->root.u.def.section->output_offset
8918 + htab->root.hgot->root.u.def.value);
8919
8920 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8921 got_value_low = got_value & 0xffff;
8922
8923 /* Calculate the address of the PLT header. */
8924 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8925
8926 /* Install the PLT header. */
8927 loc = htab->splt->contents;
8928 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8929 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8930 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8931 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8932 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8933 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8934
8935 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8936 loc = htab->srelplt2->contents;
8937 rela.r_offset = plt_address;
8938 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8939 rela.r_addend = 0;
8940 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8941 loc += sizeof (Elf32_External_Rela);
8942
8943 /* Output the relocation for the following addiu of
8944 %lo(_GLOBAL_OFFSET_TABLE_). */
8945 rela.r_offset += 4;
8946 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8947 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8948 loc += sizeof (Elf32_External_Rela);
8949
8950 /* Fix up the remaining relocations. They may have the wrong
8951 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8952 in which symbols were output. */
8953 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8954 {
8955 Elf_Internal_Rela rel;
8956
8957 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8958 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8959 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8960 loc += sizeof (Elf32_External_Rela);
8961
8962 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8963 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8964 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8965 loc += sizeof (Elf32_External_Rela);
8966
8967 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8968 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8969 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8970 loc += sizeof (Elf32_External_Rela);
8971 }
8972 }
8973
8974 /* Install the PLT header for a VxWorks shared library. */
8975
8976 static void
8977 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8978 {
8979 unsigned int i;
8980 struct mips_elf_link_hash_table *htab;
8981
8982 htab = mips_elf_hash_table (info);
8983
8984 /* We just need to copy the entry byte-by-byte. */
8985 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8986 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8987 htab->splt->contents + i * 4);
8988 }
8989
8990 /* Finish up the dynamic sections. */
8991
8992 bfd_boolean
8993 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8994 struct bfd_link_info *info)
8995 {
8996 bfd *dynobj;
8997 asection *sdyn;
8998 asection *sgot;
8999 struct mips_got_info *gg, *g;
9000 struct mips_elf_link_hash_table *htab;
9001
9002 htab = mips_elf_hash_table (info);
9003 dynobj = elf_hash_table (info)->dynobj;
9004
9005 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9006
9007 sgot = mips_elf_got_section (dynobj, FALSE);
9008 if (sgot == NULL)
9009 gg = g = NULL;
9010 else
9011 {
9012 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
9013 gg = mips_elf_section_data (sgot)->u.got_info;
9014 BFD_ASSERT (gg != NULL);
9015 g = mips_elf_got_for_ibfd (gg, output_bfd);
9016 BFD_ASSERT (g != NULL);
9017 }
9018
9019 if (elf_hash_table (info)->dynamic_sections_created)
9020 {
9021 bfd_byte *b;
9022 int dyn_to_skip = 0, dyn_skipped = 0;
9023
9024 BFD_ASSERT (sdyn != NULL);
9025 BFD_ASSERT (g != NULL);
9026
9027 for (b = sdyn->contents;
9028 b < sdyn->contents + sdyn->size;
9029 b += MIPS_ELF_DYN_SIZE (dynobj))
9030 {
9031 Elf_Internal_Dyn dyn;
9032 const char *name;
9033 size_t elemsize;
9034 asection *s;
9035 bfd_boolean swap_out_p;
9036
9037 /* Read in the current dynamic entry. */
9038 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9039
9040 /* Assume that we're going to modify it and write it out. */
9041 swap_out_p = TRUE;
9042
9043 switch (dyn.d_tag)
9044 {
9045 case DT_RELENT:
9046 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9047 break;
9048
9049 case DT_RELAENT:
9050 BFD_ASSERT (htab->is_vxworks);
9051 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
9052 break;
9053
9054 case DT_STRSZ:
9055 /* Rewrite DT_STRSZ. */
9056 dyn.d_un.d_val =
9057 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9058 break;
9059
9060 case DT_PLTGOT:
9061 name = ".got";
9062 if (htab->is_vxworks)
9063 {
9064 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
9065 of the ".got" section in DYNOBJ. */
9066 s = bfd_get_section_by_name (dynobj, name);
9067 BFD_ASSERT (s != NULL);
9068 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9069 }
9070 else
9071 {
9072 s = bfd_get_section_by_name (output_bfd, name);
9073 BFD_ASSERT (s != NULL);
9074 dyn.d_un.d_ptr = s->vma;
9075 }
9076 break;
9077
9078 case DT_MIPS_RLD_VERSION:
9079 dyn.d_un.d_val = 1; /* XXX */
9080 break;
9081
9082 case DT_MIPS_FLAGS:
9083 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9084 break;
9085
9086 case DT_MIPS_TIME_STAMP:
9087 {
9088 time_t t;
9089 time (&t);
9090 dyn.d_un.d_val = t;
9091 }
9092 break;
9093
9094 case DT_MIPS_ICHECKSUM:
9095 /* XXX FIXME: */
9096 swap_out_p = FALSE;
9097 break;
9098
9099 case DT_MIPS_IVERSION:
9100 /* XXX FIXME: */
9101 swap_out_p = FALSE;
9102 break;
9103
9104 case DT_MIPS_BASE_ADDRESS:
9105 s = output_bfd->sections;
9106 BFD_ASSERT (s != NULL);
9107 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
9108 break;
9109
9110 case DT_MIPS_LOCAL_GOTNO:
9111 dyn.d_un.d_val = g->local_gotno;
9112 break;
9113
9114 case DT_MIPS_UNREFEXTNO:
9115 /* The index into the dynamic symbol table which is the
9116 entry of the first external symbol that is not
9117 referenced within the same object. */
9118 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
9119 break;
9120
9121 case DT_MIPS_GOTSYM:
9122 if (gg->global_gotsym)
9123 {
9124 dyn.d_un.d_val = gg->global_gotsym->dynindx;
9125 break;
9126 }
9127 /* In case if we don't have global got symbols we default
9128 to setting DT_MIPS_GOTSYM to the same value as
9129 DT_MIPS_SYMTABNO, so we just fall through. */
9130
9131 case DT_MIPS_SYMTABNO:
9132 name = ".dynsym";
9133 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
9134 s = bfd_get_section_by_name (output_bfd, name);
9135 BFD_ASSERT (s != NULL);
9136
9137 dyn.d_un.d_val = s->size / elemsize;
9138 break;
9139
9140 case DT_MIPS_HIPAGENO:
9141 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
9142 break;
9143
9144 case DT_MIPS_RLD_MAP:
9145 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9146 break;
9147
9148 case DT_MIPS_OPTIONS:
9149 s = (bfd_get_section_by_name
9150 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9151 dyn.d_un.d_ptr = s->vma;
9152 break;
9153
9154 case DT_RELASZ:
9155 BFD_ASSERT (htab->is_vxworks);
9156 /* The count does not include the JUMP_SLOT relocations. */
9157 if (htab->srelplt)
9158 dyn.d_un.d_val -= htab->srelplt->size;
9159 break;
9160
9161 case DT_PLTREL:
9162 BFD_ASSERT (htab->is_vxworks);
9163 dyn.d_un.d_val = DT_RELA;
9164 break;
9165
9166 case DT_PLTRELSZ:
9167 BFD_ASSERT (htab->is_vxworks);
9168 dyn.d_un.d_val = htab->srelplt->size;
9169 break;
9170
9171 case DT_JMPREL:
9172 BFD_ASSERT (htab->is_vxworks);
9173 dyn.d_un.d_val = (htab->srelplt->output_section->vma
9174 + htab->srelplt->output_offset);
9175 break;
9176
9177 case DT_TEXTREL:
9178 /* If we didn't need any text relocations after all, delete
9179 the dynamic tag. */
9180 if (!(info->flags & DF_TEXTREL))
9181 {
9182 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
9183 swap_out_p = FALSE;
9184 }
9185 break;
9186
9187 case DT_FLAGS:
9188 /* If we didn't need any text relocations after all, clear
9189 DF_TEXTREL from DT_FLAGS. */
9190 if (!(info->flags & DF_TEXTREL))
9191 dyn.d_un.d_val &= ~DF_TEXTREL;
9192 else
9193 swap_out_p = FALSE;
9194 break;
9195
9196 default:
9197 swap_out_p = FALSE;
9198 if (htab->is_vxworks
9199 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
9200 swap_out_p = TRUE;
9201 break;
9202 }
9203
9204 if (swap_out_p || dyn_skipped)
9205 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9206 (dynobj, &dyn, b - dyn_skipped);
9207
9208 if (dyn_to_skip)
9209 {
9210 dyn_skipped += dyn_to_skip;
9211 dyn_to_skip = 0;
9212 }
9213 }
9214
9215 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
9216 if (dyn_skipped > 0)
9217 memset (b - dyn_skipped, 0, dyn_skipped);
9218 }
9219
9220 if (sgot != NULL && sgot->size > 0
9221 && !bfd_is_abs_section (sgot->output_section))
9222 {
9223 if (htab->is_vxworks)
9224 {
9225 /* The first entry of the global offset table points to the
9226 ".dynamic" section. The second is initialized by the
9227 loader and contains the shared library identifier.
9228 The third is also initialized by the loader and points
9229 to the lazy resolution stub. */
9230 MIPS_ELF_PUT_WORD (output_bfd,
9231 sdyn->output_offset + sdyn->output_section->vma,
9232 sgot->contents);
9233 MIPS_ELF_PUT_WORD (output_bfd, 0,
9234 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9235 MIPS_ELF_PUT_WORD (output_bfd, 0,
9236 sgot->contents
9237 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
9238 }
9239 else
9240 {
9241 /* The first entry of the global offset table will be filled at
9242 runtime. The second entry will be used by some runtime loaders.
9243 This isn't the case of IRIX rld. */
9244 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9245 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
9246 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9247 }
9248
9249 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9250 = MIPS_ELF_GOT_SIZE (output_bfd);
9251 }
9252
9253 /* Generate dynamic relocations for the non-primary gots. */
9254 if (gg != NULL && gg->next)
9255 {
9256 Elf_Internal_Rela rel[3];
9257 bfd_vma addend = 0;
9258
9259 memset (rel, 0, sizeof (rel));
9260 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
9261
9262 for (g = gg->next; g->next != gg; g = g->next)
9263 {
9264 bfd_vma index = g->next->local_gotno + g->next->global_gotno
9265 + g->next->tls_gotno;
9266
9267 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
9268 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9269 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
9270 sgot->contents
9271 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9272
9273 if (! info->shared)
9274 continue;
9275
9276 while (index < g->assigned_gotno)
9277 {
9278 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
9279 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
9280 if (!(mips_elf_create_dynamic_relocation
9281 (output_bfd, info, rel, NULL,
9282 bfd_abs_section_ptr,
9283 0, &addend, sgot)))
9284 return FALSE;
9285 BFD_ASSERT (addend == 0);
9286 }
9287 }
9288 }
9289
9290 /* The generation of dynamic relocations for the non-primary gots
9291 adds more dynamic relocations. We cannot count them until
9292 here. */
9293
9294 if (elf_hash_table (info)->dynamic_sections_created)
9295 {
9296 bfd_byte *b;
9297 bfd_boolean swap_out_p;
9298
9299 BFD_ASSERT (sdyn != NULL);
9300
9301 for (b = sdyn->contents;
9302 b < sdyn->contents + sdyn->size;
9303 b += MIPS_ELF_DYN_SIZE (dynobj))
9304 {
9305 Elf_Internal_Dyn dyn;
9306 asection *s;
9307
9308 /* Read in the current dynamic entry. */
9309 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9310
9311 /* Assume that we're going to modify it and write it out. */
9312 swap_out_p = TRUE;
9313
9314 switch (dyn.d_tag)
9315 {
9316 case DT_RELSZ:
9317 /* Reduce DT_RELSZ to account for any relocations we
9318 decided not to make. This is for the n64 irix rld,
9319 which doesn't seem to apply any relocations if there
9320 are trailing null entries. */
9321 s = mips_elf_rel_dyn_section (info, FALSE);
9322 dyn.d_un.d_val = (s->reloc_count
9323 * (ABI_64_P (output_bfd)
9324 ? sizeof (Elf64_Mips_External_Rel)
9325 : sizeof (Elf32_External_Rel)));
9326 /* Adjust the section size too. Tools like the prelinker
9327 can reasonably expect the values to the same. */
9328 elf_section_data (s->output_section)->this_hdr.sh_size
9329 = dyn.d_un.d_val;
9330 break;
9331
9332 default:
9333 swap_out_p = FALSE;
9334 break;
9335 }
9336
9337 if (swap_out_p)
9338 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9339 (dynobj, &dyn, b);
9340 }
9341 }
9342
9343 {
9344 asection *s;
9345 Elf32_compact_rel cpt;
9346
9347 if (SGI_COMPAT (output_bfd))
9348 {
9349 /* Write .compact_rel section out. */
9350 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9351 if (s != NULL)
9352 {
9353 cpt.id1 = 1;
9354 cpt.num = s->reloc_count;
9355 cpt.id2 = 2;
9356 cpt.offset = (s->output_section->filepos
9357 + sizeof (Elf32_External_compact_rel));
9358 cpt.reserved0 = 0;
9359 cpt.reserved1 = 0;
9360 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9361 ((Elf32_External_compact_rel *)
9362 s->contents));
9363
9364 /* Clean up a dummy stub function entry in .text. */
9365 s = bfd_get_section_by_name (dynobj,
9366 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9367 if (s != NULL)
9368 {
9369 file_ptr dummy_offset;
9370
9371 BFD_ASSERT (s->size >= htab->function_stub_size);
9372 dummy_offset = s->size - htab->function_stub_size;
9373 memset (s->contents + dummy_offset, 0,
9374 htab->function_stub_size);
9375 }
9376 }
9377 }
9378
9379 /* The psABI says that the dynamic relocations must be sorted in
9380 increasing order of r_symndx. The VxWorks EABI doesn't require
9381 this, and because the code below handles REL rather than RELA
9382 relocations, using it for VxWorks would be outright harmful. */
9383 if (!htab->is_vxworks)
9384 {
9385 s = mips_elf_rel_dyn_section (info, FALSE);
9386 if (s != NULL
9387 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9388 {
9389 reldyn_sorting_bfd = output_bfd;
9390
9391 if (ABI_64_P (output_bfd))
9392 qsort ((Elf64_External_Rel *) s->contents + 1,
9393 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9394 sort_dynamic_relocs_64);
9395 else
9396 qsort ((Elf32_External_Rel *) s->contents + 1,
9397 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9398 sort_dynamic_relocs);
9399 }
9400 }
9401 }
9402
9403 if (htab->is_vxworks && htab->splt->size > 0)
9404 {
9405 if (info->shared)
9406 mips_vxworks_finish_shared_plt (output_bfd, info);
9407 else
9408 mips_vxworks_finish_exec_plt (output_bfd, info);
9409 }
9410 return TRUE;
9411 }
9412
9413
9414 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9415
9416 static void
9417 mips_set_isa_flags (bfd *abfd)
9418 {
9419 flagword val;
9420
9421 switch (bfd_get_mach (abfd))
9422 {
9423 default:
9424 case bfd_mach_mips3000:
9425 val = E_MIPS_ARCH_1;
9426 break;
9427
9428 case bfd_mach_mips3900:
9429 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9430 break;
9431
9432 case bfd_mach_mips6000:
9433 val = E_MIPS_ARCH_2;
9434 break;
9435
9436 case bfd_mach_mips4000:
9437 case bfd_mach_mips4300:
9438 case bfd_mach_mips4400:
9439 case bfd_mach_mips4600:
9440 val = E_MIPS_ARCH_3;
9441 break;
9442
9443 case bfd_mach_mips4010:
9444 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9445 break;
9446
9447 case bfd_mach_mips4100:
9448 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9449 break;
9450
9451 case bfd_mach_mips4111:
9452 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9453 break;
9454
9455 case bfd_mach_mips4120:
9456 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9457 break;
9458
9459 case bfd_mach_mips4650:
9460 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9461 break;
9462
9463 case bfd_mach_mips5400:
9464 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9465 break;
9466
9467 case bfd_mach_mips5500:
9468 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9469 break;
9470
9471 case bfd_mach_mips9000:
9472 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9473 break;
9474
9475 case bfd_mach_mips5000:
9476 case bfd_mach_mips7000:
9477 case bfd_mach_mips8000:
9478 case bfd_mach_mips10000:
9479 case bfd_mach_mips12000:
9480 val = E_MIPS_ARCH_4;
9481 break;
9482
9483 case bfd_mach_mips5:
9484 val = E_MIPS_ARCH_5;
9485 break;
9486
9487 case bfd_mach_mips_loongson_2e:
9488 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
9489 break;
9490
9491 case bfd_mach_mips_loongson_2f:
9492 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
9493 break;
9494
9495 case bfd_mach_mips_sb1:
9496 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9497 break;
9498
9499 case bfd_mach_mips_octeon:
9500 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
9501 break;
9502
9503 case bfd_mach_mipsisa32:
9504 val = E_MIPS_ARCH_32;
9505 break;
9506
9507 case bfd_mach_mipsisa64:
9508 val = E_MIPS_ARCH_64;
9509 break;
9510
9511 case bfd_mach_mipsisa32r2:
9512 val = E_MIPS_ARCH_32R2;
9513 break;
9514
9515 case bfd_mach_mipsisa64r2:
9516 val = E_MIPS_ARCH_64R2;
9517 break;
9518 }
9519 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9520 elf_elfheader (abfd)->e_flags |= val;
9521
9522 }
9523
9524
9525 /* The final processing done just before writing out a MIPS ELF object
9526 file. This gets the MIPS architecture right based on the machine
9527 number. This is used by both the 32-bit and the 64-bit ABI. */
9528
9529 void
9530 _bfd_mips_elf_final_write_processing (bfd *abfd,
9531 bfd_boolean linker ATTRIBUTE_UNUSED)
9532 {
9533 unsigned int i;
9534 Elf_Internal_Shdr **hdrpp;
9535 const char *name;
9536 asection *sec;
9537
9538 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9539 is nonzero. This is for compatibility with old objects, which used
9540 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9541 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9542 mips_set_isa_flags (abfd);
9543
9544 /* Set the sh_info field for .gptab sections and other appropriate
9545 info for each special section. */
9546 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9547 i < elf_numsections (abfd);
9548 i++, hdrpp++)
9549 {
9550 switch ((*hdrpp)->sh_type)
9551 {
9552 case SHT_MIPS_MSYM:
9553 case SHT_MIPS_LIBLIST:
9554 sec = bfd_get_section_by_name (abfd, ".dynstr");
9555 if (sec != NULL)
9556 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9557 break;
9558
9559 case SHT_MIPS_GPTAB:
9560 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9561 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9562 BFD_ASSERT (name != NULL
9563 && CONST_STRNEQ (name, ".gptab."));
9564 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9565 BFD_ASSERT (sec != NULL);
9566 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9567 break;
9568
9569 case SHT_MIPS_CONTENT:
9570 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9571 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9572 BFD_ASSERT (name != NULL
9573 && CONST_STRNEQ (name, ".MIPS.content"));
9574 sec = bfd_get_section_by_name (abfd,
9575 name + sizeof ".MIPS.content" - 1);
9576 BFD_ASSERT (sec != NULL);
9577 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9578 break;
9579
9580 case SHT_MIPS_SYMBOL_LIB:
9581 sec = bfd_get_section_by_name (abfd, ".dynsym");
9582 if (sec != NULL)
9583 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9584 sec = bfd_get_section_by_name (abfd, ".liblist");
9585 if (sec != NULL)
9586 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9587 break;
9588
9589 case SHT_MIPS_EVENTS:
9590 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9591 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9592 BFD_ASSERT (name != NULL);
9593 if (CONST_STRNEQ (name, ".MIPS.events"))
9594 sec = bfd_get_section_by_name (abfd,
9595 name + sizeof ".MIPS.events" - 1);
9596 else
9597 {
9598 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9599 sec = bfd_get_section_by_name (abfd,
9600 (name
9601 + sizeof ".MIPS.post_rel" - 1));
9602 }
9603 BFD_ASSERT (sec != NULL);
9604 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9605 break;
9606
9607 }
9608 }
9609 }
9610 \f
9611 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9612 segments. */
9613
9614 int
9615 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9616 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9617 {
9618 asection *s;
9619 int ret = 0;
9620
9621 /* See if we need a PT_MIPS_REGINFO segment. */
9622 s = bfd_get_section_by_name (abfd, ".reginfo");
9623 if (s && (s->flags & SEC_LOAD))
9624 ++ret;
9625
9626 /* See if we need a PT_MIPS_OPTIONS segment. */
9627 if (IRIX_COMPAT (abfd) == ict_irix6
9628 && bfd_get_section_by_name (abfd,
9629 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9630 ++ret;
9631
9632 /* See if we need a PT_MIPS_RTPROC segment. */
9633 if (IRIX_COMPAT (abfd) == ict_irix5
9634 && bfd_get_section_by_name (abfd, ".dynamic")
9635 && bfd_get_section_by_name (abfd, ".mdebug"))
9636 ++ret;
9637
9638 /* Allocate a PT_NULL header in dynamic objects. See
9639 _bfd_mips_elf_modify_segment_map for details. */
9640 if (!SGI_COMPAT (abfd)
9641 && bfd_get_section_by_name (abfd, ".dynamic"))
9642 ++ret;
9643
9644 return ret;
9645 }
9646
9647 /* Modify the segment map for an IRIX5 executable. */
9648
9649 bfd_boolean
9650 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9651 struct bfd_link_info *info)
9652 {
9653 asection *s;
9654 struct elf_segment_map *m, **pm;
9655 bfd_size_type amt;
9656
9657 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9658 segment. */
9659 s = bfd_get_section_by_name (abfd, ".reginfo");
9660 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9661 {
9662 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9663 if (m->p_type == PT_MIPS_REGINFO)
9664 break;
9665 if (m == NULL)
9666 {
9667 amt = sizeof *m;
9668 m = bfd_zalloc (abfd, amt);
9669 if (m == NULL)
9670 return FALSE;
9671
9672 m->p_type = PT_MIPS_REGINFO;
9673 m->count = 1;
9674 m->sections[0] = s;
9675
9676 /* We want to put it after the PHDR and INTERP segments. */
9677 pm = &elf_tdata (abfd)->segment_map;
9678 while (*pm != NULL
9679 && ((*pm)->p_type == PT_PHDR
9680 || (*pm)->p_type == PT_INTERP))
9681 pm = &(*pm)->next;
9682
9683 m->next = *pm;
9684 *pm = m;
9685 }
9686 }
9687
9688 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9689 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9690 PT_MIPS_OPTIONS segment immediately following the program header
9691 table. */
9692 if (NEWABI_P (abfd)
9693 /* On non-IRIX6 new abi, we'll have already created a segment
9694 for this section, so don't create another. I'm not sure this
9695 is not also the case for IRIX 6, but I can't test it right
9696 now. */
9697 && IRIX_COMPAT (abfd) == ict_irix6)
9698 {
9699 for (s = abfd->sections; s; s = s->next)
9700 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9701 break;
9702
9703 if (s)
9704 {
9705 struct elf_segment_map *options_segment;
9706
9707 pm = &elf_tdata (abfd)->segment_map;
9708 while (*pm != NULL
9709 && ((*pm)->p_type == PT_PHDR
9710 || (*pm)->p_type == PT_INTERP))
9711 pm = &(*pm)->next;
9712
9713 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9714 {
9715 amt = sizeof (struct elf_segment_map);
9716 options_segment = bfd_zalloc (abfd, amt);
9717 options_segment->next = *pm;
9718 options_segment->p_type = PT_MIPS_OPTIONS;
9719 options_segment->p_flags = PF_R;
9720 options_segment->p_flags_valid = TRUE;
9721 options_segment->count = 1;
9722 options_segment->sections[0] = s;
9723 *pm = options_segment;
9724 }
9725 }
9726 }
9727 else
9728 {
9729 if (IRIX_COMPAT (abfd) == ict_irix5)
9730 {
9731 /* If there are .dynamic and .mdebug sections, we make a room
9732 for the RTPROC header. FIXME: Rewrite without section names. */
9733 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9734 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9735 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9736 {
9737 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9738 if (m->p_type == PT_MIPS_RTPROC)
9739 break;
9740 if (m == NULL)
9741 {
9742 amt = sizeof *m;
9743 m = bfd_zalloc (abfd, amt);
9744 if (m == NULL)
9745 return FALSE;
9746
9747 m->p_type = PT_MIPS_RTPROC;
9748
9749 s = bfd_get_section_by_name (abfd, ".rtproc");
9750 if (s == NULL)
9751 {
9752 m->count = 0;
9753 m->p_flags = 0;
9754 m->p_flags_valid = 1;
9755 }
9756 else
9757 {
9758 m->count = 1;
9759 m->sections[0] = s;
9760 }
9761
9762 /* We want to put it after the DYNAMIC segment. */
9763 pm = &elf_tdata (abfd)->segment_map;
9764 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9765 pm = &(*pm)->next;
9766 if (*pm != NULL)
9767 pm = &(*pm)->next;
9768
9769 m->next = *pm;
9770 *pm = m;
9771 }
9772 }
9773 }
9774 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9775 .dynstr, .dynsym, and .hash sections, and everything in
9776 between. */
9777 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9778 pm = &(*pm)->next)
9779 if ((*pm)->p_type == PT_DYNAMIC)
9780 break;
9781 m = *pm;
9782 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9783 {
9784 /* For a normal mips executable the permissions for the PT_DYNAMIC
9785 segment are read, write and execute. We do that here since
9786 the code in elf.c sets only the read permission. This matters
9787 sometimes for the dynamic linker. */
9788 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9789 {
9790 m->p_flags = PF_R | PF_W | PF_X;
9791 m->p_flags_valid = 1;
9792 }
9793 }
9794 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9795 glibc's dynamic linker has traditionally derived the number of
9796 tags from the p_filesz field, and sometimes allocates stack
9797 arrays of that size. An overly-big PT_DYNAMIC segment can
9798 be actively harmful in such cases. Making PT_DYNAMIC contain
9799 other sections can also make life hard for the prelinker,
9800 which might move one of the other sections to a different
9801 PT_LOAD segment. */
9802 if (SGI_COMPAT (abfd)
9803 && m != NULL
9804 && m->count == 1
9805 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9806 {
9807 static const char *sec_names[] =
9808 {
9809 ".dynamic", ".dynstr", ".dynsym", ".hash"
9810 };
9811 bfd_vma low, high;
9812 unsigned int i, c;
9813 struct elf_segment_map *n;
9814
9815 low = ~(bfd_vma) 0;
9816 high = 0;
9817 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9818 {
9819 s = bfd_get_section_by_name (abfd, sec_names[i]);
9820 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9821 {
9822 bfd_size_type sz;
9823
9824 if (low > s->vma)
9825 low = s->vma;
9826 sz = s->size;
9827 if (high < s->vma + sz)
9828 high = s->vma + sz;
9829 }
9830 }
9831
9832 c = 0;
9833 for (s = abfd->sections; s != NULL; s = s->next)
9834 if ((s->flags & SEC_LOAD) != 0
9835 && s->vma >= low
9836 && s->vma + s->size <= high)
9837 ++c;
9838
9839 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9840 n = bfd_zalloc (abfd, amt);
9841 if (n == NULL)
9842 return FALSE;
9843 *n = *m;
9844 n->count = c;
9845
9846 i = 0;
9847 for (s = abfd->sections; s != NULL; s = s->next)
9848 {
9849 if ((s->flags & SEC_LOAD) != 0
9850 && s->vma >= low
9851 && s->vma + s->size <= high)
9852 {
9853 n->sections[i] = s;
9854 ++i;
9855 }
9856 }
9857
9858 *pm = n;
9859 }
9860 }
9861
9862 /* Allocate a spare program header in dynamic objects so that tools
9863 like the prelinker can add an extra PT_LOAD entry.
9864
9865 If the prelinker needs to make room for a new PT_LOAD entry, its
9866 standard procedure is to move the first (read-only) sections into
9867 the new (writable) segment. However, the MIPS ABI requires
9868 .dynamic to be in a read-only segment, and the section will often
9869 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9870
9871 Although the prelinker could in principle move .dynamic to a
9872 writable segment, it seems better to allocate a spare program
9873 header instead, and avoid the need to move any sections.
9874 There is a long tradition of allocating spare dynamic tags,
9875 so allocating a spare program header seems like a natural
9876 extension.
9877
9878 If INFO is NULL, we may be copying an already prelinked binary
9879 with objcopy or strip, so do not add this header. */
9880 if (info != NULL
9881 && !SGI_COMPAT (abfd)
9882 && bfd_get_section_by_name (abfd, ".dynamic"))
9883 {
9884 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9885 if ((*pm)->p_type == PT_NULL)
9886 break;
9887 if (*pm == NULL)
9888 {
9889 m = bfd_zalloc (abfd, sizeof (*m));
9890 if (m == NULL)
9891 return FALSE;
9892
9893 m->p_type = PT_NULL;
9894 *pm = m;
9895 }
9896 }
9897
9898 return TRUE;
9899 }
9900 \f
9901 /* Return the section that should be marked against GC for a given
9902 relocation. */
9903
9904 asection *
9905 _bfd_mips_elf_gc_mark_hook (asection *sec,
9906 struct bfd_link_info *info,
9907 Elf_Internal_Rela *rel,
9908 struct elf_link_hash_entry *h,
9909 Elf_Internal_Sym *sym)
9910 {
9911 /* ??? Do mips16 stub sections need to be handled special? */
9912
9913 if (h != NULL)
9914 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9915 {
9916 case R_MIPS_GNU_VTINHERIT:
9917 case R_MIPS_GNU_VTENTRY:
9918 return NULL;
9919 }
9920
9921 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9922 }
9923
9924 /* Update the got entry reference counts for the section being removed. */
9925
9926 bfd_boolean
9927 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9928 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9929 asection *sec ATTRIBUTE_UNUSED,
9930 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9931 {
9932 #if 0
9933 Elf_Internal_Shdr *symtab_hdr;
9934 struct elf_link_hash_entry **sym_hashes;
9935 bfd_signed_vma *local_got_refcounts;
9936 const Elf_Internal_Rela *rel, *relend;
9937 unsigned long r_symndx;
9938 struct elf_link_hash_entry *h;
9939
9940 if (info->relocatable)
9941 return TRUE;
9942
9943 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9944 sym_hashes = elf_sym_hashes (abfd);
9945 local_got_refcounts = elf_local_got_refcounts (abfd);
9946
9947 relend = relocs + sec->reloc_count;
9948 for (rel = relocs; rel < relend; rel++)
9949 switch (ELF_R_TYPE (abfd, rel->r_info))
9950 {
9951 case R_MIPS_GOT16:
9952 case R_MIPS_CALL16:
9953 case R_MIPS_CALL_HI16:
9954 case R_MIPS_CALL_LO16:
9955 case R_MIPS_GOT_HI16:
9956 case R_MIPS_GOT_LO16:
9957 case R_MIPS_GOT_DISP:
9958 case R_MIPS_GOT_PAGE:
9959 case R_MIPS_GOT_OFST:
9960 /* ??? It would seem that the existing MIPS code does no sort
9961 of reference counting or whatnot on its GOT and PLT entries,
9962 so it is not possible to garbage collect them at this time. */
9963 break;
9964
9965 default:
9966 break;
9967 }
9968 #endif
9969
9970 return TRUE;
9971 }
9972 \f
9973 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9974 hiding the old indirect symbol. Process additional relocation
9975 information. Also called for weakdefs, in which case we just let
9976 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9977
9978 void
9979 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9980 struct elf_link_hash_entry *dir,
9981 struct elf_link_hash_entry *ind)
9982 {
9983 struct mips_elf_link_hash_entry *dirmips, *indmips;
9984
9985 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9986
9987 if (ind->root.type != bfd_link_hash_indirect)
9988 return;
9989
9990 dirmips = (struct mips_elf_link_hash_entry *) dir;
9991 indmips = (struct mips_elf_link_hash_entry *) ind;
9992 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9993 if (indmips->readonly_reloc)
9994 dirmips->readonly_reloc = TRUE;
9995 if (indmips->no_fn_stub)
9996 dirmips->no_fn_stub = TRUE;
9997
9998 if (dirmips->tls_type == 0)
9999 dirmips->tls_type = indmips->tls_type;
10000 }
10001
10002 void
10003 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
10004 struct elf_link_hash_entry *entry,
10005 bfd_boolean force_local)
10006 {
10007 bfd *dynobj;
10008 asection *got;
10009 struct mips_got_info *g;
10010 struct mips_elf_link_hash_entry *h;
10011 struct mips_elf_link_hash_table *htab;
10012
10013 h = (struct mips_elf_link_hash_entry *) entry;
10014 if (h->forced_local)
10015 return;
10016 h->forced_local = force_local;
10017
10018 dynobj = elf_hash_table (info)->dynobj;
10019 htab = mips_elf_hash_table (info);
10020 if (dynobj != NULL && force_local && h->root.type != STT_TLS
10021 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
10022 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
10023 {
10024 if (g->next)
10025 {
10026 struct mips_got_entry e;
10027 struct mips_got_info *gg = g;
10028
10029 /* Since we're turning what used to be a global symbol into a
10030 local one, bump up the number of local entries of each GOT
10031 that had an entry for it. This will automatically decrease
10032 the number of global entries, since global_gotno is actually
10033 the upper limit of global entries. */
10034 e.abfd = dynobj;
10035 e.symndx = -1;
10036 e.d.h = h;
10037 e.tls_type = 0;
10038
10039 for (g = g->next; g != gg; g = g->next)
10040 if (htab_find (g->got_entries, &e))
10041 {
10042 BFD_ASSERT (g->global_gotno > 0);
10043 g->local_gotno++;
10044 g->global_gotno--;
10045 }
10046
10047 /* If this was a global symbol forced into the primary GOT, we
10048 no longer need an entry for it. We can't release the entry
10049 at this point, but we must at least stop counting it as one
10050 of the symbols that required a forced got entry. */
10051 if (h->root.got.offset == 2)
10052 {
10053 BFD_ASSERT (gg->assigned_gotno > 0);
10054 gg->assigned_gotno--;
10055 }
10056 }
10057 else if (h->root.got.offset == 1)
10058 {
10059 /* check_relocs didn't know that this symbol would be
10060 forced-local, so add an extra local got entry. */
10061 g->local_gotno++;
10062 if (htab->computed_got_sizes)
10063 {
10064 /* We'll have treated this symbol as global rather
10065 than local. */
10066 BFD_ASSERT (g->global_gotno > 0);
10067 g->global_gotno--;
10068 }
10069 }
10070 else if (htab->is_vxworks && h->root.needs_plt)
10071 {
10072 /* check_relocs didn't know that this symbol would be
10073 forced-local, so add an extra local got entry. */
10074 g->local_gotno++;
10075 if (htab->computed_got_sizes)
10076 /* The symbol is only used in call relocations, so we'll
10077 have assumed it only needs a .got.plt entry. Increase
10078 the size of .got accordingly. */
10079 got->size += MIPS_ELF_GOT_SIZE (dynobj);
10080 }
10081 }
10082
10083 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
10084 }
10085 \f
10086 #define PDR_SIZE 32
10087
10088 bfd_boolean
10089 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
10090 struct bfd_link_info *info)
10091 {
10092 asection *o;
10093 bfd_boolean ret = FALSE;
10094 unsigned char *tdata;
10095 size_t i, skip;
10096
10097 o = bfd_get_section_by_name (abfd, ".pdr");
10098 if (! o)
10099 return FALSE;
10100 if (o->size == 0)
10101 return FALSE;
10102 if (o->size % PDR_SIZE != 0)
10103 return FALSE;
10104 if (o->output_section != NULL
10105 && bfd_is_abs_section (o->output_section))
10106 return FALSE;
10107
10108 tdata = bfd_zmalloc (o->size / PDR_SIZE);
10109 if (! tdata)
10110 return FALSE;
10111
10112 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
10113 info->keep_memory);
10114 if (!cookie->rels)
10115 {
10116 free (tdata);
10117 return FALSE;
10118 }
10119
10120 cookie->rel = cookie->rels;
10121 cookie->relend = cookie->rels + o->reloc_count;
10122
10123 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
10124 {
10125 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
10126 {
10127 tdata[i] = 1;
10128 skip ++;
10129 }
10130 }
10131
10132 if (skip != 0)
10133 {
10134 mips_elf_section_data (o)->u.tdata = tdata;
10135 o->size -= skip * PDR_SIZE;
10136 ret = TRUE;
10137 }
10138 else
10139 free (tdata);
10140
10141 if (! info->keep_memory)
10142 free (cookie->rels);
10143
10144 return ret;
10145 }
10146
10147 bfd_boolean
10148 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
10149 {
10150 if (strcmp (sec->name, ".pdr") == 0)
10151 return TRUE;
10152 return FALSE;
10153 }
10154
10155 bfd_boolean
10156 _bfd_mips_elf_write_section (bfd *output_bfd,
10157 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
10158 asection *sec, bfd_byte *contents)
10159 {
10160 bfd_byte *to, *from, *end;
10161 int i;
10162
10163 if (strcmp (sec->name, ".pdr") != 0)
10164 return FALSE;
10165
10166 if (mips_elf_section_data (sec)->u.tdata == NULL)
10167 return FALSE;
10168
10169 to = contents;
10170 end = contents + sec->size;
10171 for (from = contents, i = 0;
10172 from < end;
10173 from += PDR_SIZE, i++)
10174 {
10175 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
10176 continue;
10177 if (to != from)
10178 memcpy (to, from, PDR_SIZE);
10179 to += PDR_SIZE;
10180 }
10181 bfd_set_section_contents (output_bfd, sec->output_section, contents,
10182 sec->output_offset, sec->size);
10183 return TRUE;
10184 }
10185 \f
10186 /* MIPS ELF uses a special find_nearest_line routine in order the
10187 handle the ECOFF debugging information. */
10188
10189 struct mips_elf_find_line
10190 {
10191 struct ecoff_debug_info d;
10192 struct ecoff_find_line i;
10193 };
10194
10195 bfd_boolean
10196 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
10197 asymbol **symbols, bfd_vma offset,
10198 const char **filename_ptr,
10199 const char **functionname_ptr,
10200 unsigned int *line_ptr)
10201 {
10202 asection *msec;
10203
10204 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
10205 filename_ptr, functionname_ptr,
10206 line_ptr))
10207 return TRUE;
10208
10209 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10210 filename_ptr, functionname_ptr,
10211 line_ptr, ABI_64_P (abfd) ? 8 : 0,
10212 &elf_tdata (abfd)->dwarf2_find_line_info))
10213 return TRUE;
10214
10215 msec = bfd_get_section_by_name (abfd, ".mdebug");
10216 if (msec != NULL)
10217 {
10218 flagword origflags;
10219 struct mips_elf_find_line *fi;
10220 const struct ecoff_debug_swap * const swap =
10221 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
10222
10223 /* If we are called during a link, mips_elf_final_link may have
10224 cleared the SEC_HAS_CONTENTS field. We force it back on here
10225 if appropriate (which it normally will be). */
10226 origflags = msec->flags;
10227 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
10228 msec->flags |= SEC_HAS_CONTENTS;
10229
10230 fi = elf_tdata (abfd)->find_line_info;
10231 if (fi == NULL)
10232 {
10233 bfd_size_type external_fdr_size;
10234 char *fraw_src;
10235 char *fraw_end;
10236 struct fdr *fdr_ptr;
10237 bfd_size_type amt = sizeof (struct mips_elf_find_line);
10238
10239 fi = bfd_zalloc (abfd, amt);
10240 if (fi == NULL)
10241 {
10242 msec->flags = origflags;
10243 return FALSE;
10244 }
10245
10246 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
10247 {
10248 msec->flags = origflags;
10249 return FALSE;
10250 }
10251
10252 /* Swap in the FDR information. */
10253 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
10254 fi->d.fdr = bfd_alloc (abfd, amt);
10255 if (fi->d.fdr == NULL)
10256 {
10257 msec->flags = origflags;
10258 return FALSE;
10259 }
10260 external_fdr_size = swap->external_fdr_size;
10261 fdr_ptr = fi->d.fdr;
10262 fraw_src = (char *) fi->d.external_fdr;
10263 fraw_end = (fraw_src
10264 + fi->d.symbolic_header.ifdMax * external_fdr_size);
10265 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
10266 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
10267
10268 elf_tdata (abfd)->find_line_info = fi;
10269
10270 /* Note that we don't bother to ever free this information.
10271 find_nearest_line is either called all the time, as in
10272 objdump -l, so the information should be saved, or it is
10273 rarely called, as in ld error messages, so the memory
10274 wasted is unimportant. Still, it would probably be a
10275 good idea for free_cached_info to throw it away. */
10276 }
10277
10278 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
10279 &fi->i, filename_ptr, functionname_ptr,
10280 line_ptr))
10281 {
10282 msec->flags = origflags;
10283 return TRUE;
10284 }
10285
10286 msec->flags = origflags;
10287 }
10288
10289 /* Fall back on the generic ELF find_nearest_line routine. */
10290
10291 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
10292 filename_ptr, functionname_ptr,
10293 line_ptr);
10294 }
10295
10296 bfd_boolean
10297 _bfd_mips_elf_find_inliner_info (bfd *abfd,
10298 const char **filename_ptr,
10299 const char **functionname_ptr,
10300 unsigned int *line_ptr)
10301 {
10302 bfd_boolean found;
10303 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10304 functionname_ptr, line_ptr,
10305 & elf_tdata (abfd)->dwarf2_find_line_info);
10306 return found;
10307 }
10308
10309 \f
10310 /* When are writing out the .options or .MIPS.options section,
10311 remember the bytes we are writing out, so that we can install the
10312 GP value in the section_processing routine. */
10313
10314 bfd_boolean
10315 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
10316 const void *location,
10317 file_ptr offset, bfd_size_type count)
10318 {
10319 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
10320 {
10321 bfd_byte *c;
10322
10323 if (elf_section_data (section) == NULL)
10324 {
10325 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
10326 section->used_by_bfd = bfd_zalloc (abfd, amt);
10327 if (elf_section_data (section) == NULL)
10328 return FALSE;
10329 }
10330 c = mips_elf_section_data (section)->u.tdata;
10331 if (c == NULL)
10332 {
10333 c = bfd_zalloc (abfd, section->size);
10334 if (c == NULL)
10335 return FALSE;
10336 mips_elf_section_data (section)->u.tdata = c;
10337 }
10338
10339 memcpy (c + offset, location, count);
10340 }
10341
10342 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10343 count);
10344 }
10345
10346 /* This is almost identical to bfd_generic_get_... except that some
10347 MIPS relocations need to be handled specially. Sigh. */
10348
10349 bfd_byte *
10350 _bfd_elf_mips_get_relocated_section_contents
10351 (bfd *abfd,
10352 struct bfd_link_info *link_info,
10353 struct bfd_link_order *link_order,
10354 bfd_byte *data,
10355 bfd_boolean relocatable,
10356 asymbol **symbols)
10357 {
10358 /* Get enough memory to hold the stuff */
10359 bfd *input_bfd = link_order->u.indirect.section->owner;
10360 asection *input_section = link_order->u.indirect.section;
10361 bfd_size_type sz;
10362
10363 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10364 arelent **reloc_vector = NULL;
10365 long reloc_count;
10366
10367 if (reloc_size < 0)
10368 goto error_return;
10369
10370 reloc_vector = bfd_malloc (reloc_size);
10371 if (reloc_vector == NULL && reloc_size != 0)
10372 goto error_return;
10373
10374 /* read in the section */
10375 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10376 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10377 goto error_return;
10378
10379 reloc_count = bfd_canonicalize_reloc (input_bfd,
10380 input_section,
10381 reloc_vector,
10382 symbols);
10383 if (reloc_count < 0)
10384 goto error_return;
10385
10386 if (reloc_count > 0)
10387 {
10388 arelent **parent;
10389 /* for mips */
10390 int gp_found;
10391 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10392
10393 {
10394 struct bfd_hash_entry *h;
10395 struct bfd_link_hash_entry *lh;
10396 /* Skip all this stuff if we aren't mixing formats. */
10397 if (abfd && input_bfd
10398 && abfd->xvec == input_bfd->xvec)
10399 lh = 0;
10400 else
10401 {
10402 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10403 lh = (struct bfd_link_hash_entry *) h;
10404 }
10405 lookup:
10406 if (lh)
10407 {
10408 switch (lh->type)
10409 {
10410 case bfd_link_hash_undefined:
10411 case bfd_link_hash_undefweak:
10412 case bfd_link_hash_common:
10413 gp_found = 0;
10414 break;
10415 case bfd_link_hash_defined:
10416 case bfd_link_hash_defweak:
10417 gp_found = 1;
10418 gp = lh->u.def.value;
10419 break;
10420 case bfd_link_hash_indirect:
10421 case bfd_link_hash_warning:
10422 lh = lh->u.i.link;
10423 /* @@FIXME ignoring warning for now */
10424 goto lookup;
10425 case bfd_link_hash_new:
10426 default:
10427 abort ();
10428 }
10429 }
10430 else
10431 gp_found = 0;
10432 }
10433 /* end mips */
10434 for (parent = reloc_vector; *parent != NULL; parent++)
10435 {
10436 char *error_message = NULL;
10437 bfd_reloc_status_type r;
10438
10439 /* Specific to MIPS: Deal with relocation types that require
10440 knowing the gp of the output bfd. */
10441 asymbol *sym = *(*parent)->sym_ptr_ptr;
10442
10443 /* If we've managed to find the gp and have a special
10444 function for the relocation then go ahead, else default
10445 to the generic handling. */
10446 if (gp_found
10447 && (*parent)->howto->special_function
10448 == _bfd_mips_elf32_gprel16_reloc)
10449 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10450 input_section, relocatable,
10451 data, gp);
10452 else
10453 r = bfd_perform_relocation (input_bfd, *parent, data,
10454 input_section,
10455 relocatable ? abfd : NULL,
10456 &error_message);
10457
10458 if (relocatable)
10459 {
10460 asection *os = input_section->output_section;
10461
10462 /* A partial link, so keep the relocs */
10463 os->orelocation[os->reloc_count] = *parent;
10464 os->reloc_count++;
10465 }
10466
10467 if (r != bfd_reloc_ok)
10468 {
10469 switch (r)
10470 {
10471 case bfd_reloc_undefined:
10472 if (!((*link_info->callbacks->undefined_symbol)
10473 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10474 input_bfd, input_section, (*parent)->address, TRUE)))
10475 goto error_return;
10476 break;
10477 case bfd_reloc_dangerous:
10478 BFD_ASSERT (error_message != NULL);
10479 if (!((*link_info->callbacks->reloc_dangerous)
10480 (link_info, error_message, input_bfd, input_section,
10481 (*parent)->address)))
10482 goto error_return;
10483 break;
10484 case bfd_reloc_overflow:
10485 if (!((*link_info->callbacks->reloc_overflow)
10486 (link_info, NULL,
10487 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10488 (*parent)->howto->name, (*parent)->addend,
10489 input_bfd, input_section, (*parent)->address)))
10490 goto error_return;
10491 break;
10492 case bfd_reloc_outofrange:
10493 default:
10494 abort ();
10495 break;
10496 }
10497
10498 }
10499 }
10500 }
10501 if (reloc_vector != NULL)
10502 free (reloc_vector);
10503 return data;
10504
10505 error_return:
10506 if (reloc_vector != NULL)
10507 free (reloc_vector);
10508 return NULL;
10509 }
10510 \f
10511 /* Create a MIPS ELF linker hash table. */
10512
10513 struct bfd_link_hash_table *
10514 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10515 {
10516 struct mips_elf_link_hash_table *ret;
10517 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10518
10519 ret = bfd_malloc (amt);
10520 if (ret == NULL)
10521 return NULL;
10522
10523 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10524 mips_elf_link_hash_newfunc,
10525 sizeof (struct mips_elf_link_hash_entry)))
10526 {
10527 free (ret);
10528 return NULL;
10529 }
10530
10531 #if 0
10532 /* We no longer use this. */
10533 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10534 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10535 #endif
10536 ret->procedure_count = 0;
10537 ret->compact_rel_size = 0;
10538 ret->use_rld_obj_head = FALSE;
10539 ret->rld_value = 0;
10540 ret->mips16_stubs_seen = FALSE;
10541 ret->computed_got_sizes = FALSE;
10542 ret->is_vxworks = FALSE;
10543 ret->small_data_overflow_reported = FALSE;
10544 ret->srelbss = NULL;
10545 ret->sdynbss = NULL;
10546 ret->srelplt = NULL;
10547 ret->srelplt2 = NULL;
10548 ret->sgotplt = NULL;
10549 ret->splt = NULL;
10550 ret->plt_header_size = 0;
10551 ret->plt_entry_size = 0;
10552 ret->function_stub_size = 0;
10553
10554 return &ret->root.root;
10555 }
10556
10557 /* Likewise, but indicate that the target is VxWorks. */
10558
10559 struct bfd_link_hash_table *
10560 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10561 {
10562 struct bfd_link_hash_table *ret;
10563
10564 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10565 if (ret)
10566 {
10567 struct mips_elf_link_hash_table *htab;
10568
10569 htab = (struct mips_elf_link_hash_table *) ret;
10570 htab->is_vxworks = 1;
10571 }
10572 return ret;
10573 }
10574 \f
10575 /* We need to use a special link routine to handle the .reginfo and
10576 the .mdebug sections. We need to merge all instances of these
10577 sections together, not write them all out sequentially. */
10578
10579 bfd_boolean
10580 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10581 {
10582 asection *o;
10583 struct bfd_link_order *p;
10584 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10585 asection *rtproc_sec;
10586 Elf32_RegInfo reginfo;
10587 struct ecoff_debug_info debug;
10588 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10589 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10590 HDRR *symhdr = &debug.symbolic_header;
10591 void *mdebug_handle = NULL;
10592 asection *s;
10593 EXTR esym;
10594 unsigned int i;
10595 bfd_size_type amt;
10596 struct mips_elf_link_hash_table *htab;
10597
10598 static const char * const secname[] =
10599 {
10600 ".text", ".init", ".fini", ".data",
10601 ".rodata", ".sdata", ".sbss", ".bss"
10602 };
10603 static const int sc[] =
10604 {
10605 scText, scInit, scFini, scData,
10606 scRData, scSData, scSBss, scBss
10607 };
10608
10609 /* We'd carefully arranged the dynamic symbol indices, and then the
10610 generic size_dynamic_sections renumbered them out from under us.
10611 Rather than trying somehow to prevent the renumbering, just do
10612 the sort again. */
10613 htab = mips_elf_hash_table (info);
10614 if (elf_hash_table (info)->dynamic_sections_created)
10615 {
10616 bfd *dynobj;
10617 asection *got;
10618 struct mips_got_info *g;
10619 bfd_size_type dynsecsymcount;
10620
10621 /* When we resort, we must tell mips_elf_sort_hash_table what
10622 the lowest index it may use is. That's the number of section
10623 symbols we're going to add. The generic ELF linker only
10624 adds these symbols when building a shared object. Note that
10625 we count the sections after (possibly) removing the .options
10626 section above. */
10627
10628 dynsecsymcount = count_section_dynsyms (abfd, info);
10629 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10630 return FALSE;
10631
10632 /* Make sure we didn't grow the global .got region. */
10633 dynobj = elf_hash_table (info)->dynobj;
10634 got = mips_elf_got_section (dynobj, FALSE);
10635 g = mips_elf_section_data (got)->u.got_info;
10636
10637 if (g->global_gotsym != NULL)
10638 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10639 - g->global_gotsym->dynindx)
10640 <= g->global_gotno);
10641 }
10642
10643 /* Get a value for the GP register. */
10644 if (elf_gp (abfd) == 0)
10645 {
10646 struct bfd_link_hash_entry *h;
10647
10648 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10649 if (h != NULL && h->type == bfd_link_hash_defined)
10650 elf_gp (abfd) = (h->u.def.value
10651 + h->u.def.section->output_section->vma
10652 + h->u.def.section->output_offset);
10653 else if (htab->is_vxworks
10654 && (h = bfd_link_hash_lookup (info->hash,
10655 "_GLOBAL_OFFSET_TABLE_",
10656 FALSE, FALSE, TRUE))
10657 && h->type == bfd_link_hash_defined)
10658 elf_gp (abfd) = (h->u.def.section->output_section->vma
10659 + h->u.def.section->output_offset
10660 + h->u.def.value);
10661 else if (info->relocatable)
10662 {
10663 bfd_vma lo = MINUS_ONE;
10664
10665 /* Find the GP-relative section with the lowest offset. */
10666 for (o = abfd->sections; o != NULL; o = o->next)
10667 if (o->vma < lo
10668 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10669 lo = o->vma;
10670
10671 /* And calculate GP relative to that. */
10672 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10673 }
10674 else
10675 {
10676 /* If the relocate_section function needs to do a reloc
10677 involving the GP value, it should make a reloc_dangerous
10678 callback to warn that GP is not defined. */
10679 }
10680 }
10681
10682 /* Go through the sections and collect the .reginfo and .mdebug
10683 information. */
10684 reginfo_sec = NULL;
10685 mdebug_sec = NULL;
10686 gptab_data_sec = NULL;
10687 gptab_bss_sec = NULL;
10688 for (o = abfd->sections; o != NULL; o = o->next)
10689 {
10690 if (strcmp (o->name, ".reginfo") == 0)
10691 {
10692 memset (&reginfo, 0, sizeof reginfo);
10693
10694 /* We have found the .reginfo section in the output file.
10695 Look through all the link_orders comprising it and merge
10696 the information together. */
10697 for (p = o->map_head.link_order; p != NULL; p = p->next)
10698 {
10699 asection *input_section;
10700 bfd *input_bfd;
10701 Elf32_External_RegInfo ext;
10702 Elf32_RegInfo sub;
10703
10704 if (p->type != bfd_indirect_link_order)
10705 {
10706 if (p->type == bfd_data_link_order)
10707 continue;
10708 abort ();
10709 }
10710
10711 input_section = p->u.indirect.section;
10712 input_bfd = input_section->owner;
10713
10714 if (! bfd_get_section_contents (input_bfd, input_section,
10715 &ext, 0, sizeof ext))
10716 return FALSE;
10717
10718 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10719
10720 reginfo.ri_gprmask |= sub.ri_gprmask;
10721 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10722 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10723 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10724 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10725
10726 /* ri_gp_value is set by the function
10727 mips_elf32_section_processing when the section is
10728 finally written out. */
10729
10730 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10731 elf_link_input_bfd ignores this section. */
10732 input_section->flags &= ~SEC_HAS_CONTENTS;
10733 }
10734
10735 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10736 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10737
10738 /* Skip this section later on (I don't think this currently
10739 matters, but someday it might). */
10740 o->map_head.link_order = NULL;
10741
10742 reginfo_sec = o;
10743 }
10744
10745 if (strcmp (o->name, ".mdebug") == 0)
10746 {
10747 struct extsym_info einfo;
10748 bfd_vma last;
10749
10750 /* We have found the .mdebug section in the output file.
10751 Look through all the link_orders comprising it and merge
10752 the information together. */
10753 symhdr->magic = swap->sym_magic;
10754 /* FIXME: What should the version stamp be? */
10755 symhdr->vstamp = 0;
10756 symhdr->ilineMax = 0;
10757 symhdr->cbLine = 0;
10758 symhdr->idnMax = 0;
10759 symhdr->ipdMax = 0;
10760 symhdr->isymMax = 0;
10761 symhdr->ioptMax = 0;
10762 symhdr->iauxMax = 0;
10763 symhdr->issMax = 0;
10764 symhdr->issExtMax = 0;
10765 symhdr->ifdMax = 0;
10766 symhdr->crfd = 0;
10767 symhdr->iextMax = 0;
10768
10769 /* We accumulate the debugging information itself in the
10770 debug_info structure. */
10771 debug.line = NULL;
10772 debug.external_dnr = NULL;
10773 debug.external_pdr = NULL;
10774 debug.external_sym = NULL;
10775 debug.external_opt = NULL;
10776 debug.external_aux = NULL;
10777 debug.ss = NULL;
10778 debug.ssext = debug.ssext_end = NULL;
10779 debug.external_fdr = NULL;
10780 debug.external_rfd = NULL;
10781 debug.external_ext = debug.external_ext_end = NULL;
10782
10783 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10784 if (mdebug_handle == NULL)
10785 return FALSE;
10786
10787 esym.jmptbl = 0;
10788 esym.cobol_main = 0;
10789 esym.weakext = 0;
10790 esym.reserved = 0;
10791 esym.ifd = ifdNil;
10792 esym.asym.iss = issNil;
10793 esym.asym.st = stLocal;
10794 esym.asym.reserved = 0;
10795 esym.asym.index = indexNil;
10796 last = 0;
10797 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10798 {
10799 esym.asym.sc = sc[i];
10800 s = bfd_get_section_by_name (abfd, secname[i]);
10801 if (s != NULL)
10802 {
10803 esym.asym.value = s->vma;
10804 last = s->vma + s->size;
10805 }
10806 else
10807 esym.asym.value = last;
10808 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10809 secname[i], &esym))
10810 return FALSE;
10811 }
10812
10813 for (p = o->map_head.link_order; p != NULL; p = p->next)
10814 {
10815 asection *input_section;
10816 bfd *input_bfd;
10817 const struct ecoff_debug_swap *input_swap;
10818 struct ecoff_debug_info input_debug;
10819 char *eraw_src;
10820 char *eraw_end;
10821
10822 if (p->type != bfd_indirect_link_order)
10823 {
10824 if (p->type == bfd_data_link_order)
10825 continue;
10826 abort ();
10827 }
10828
10829 input_section = p->u.indirect.section;
10830 input_bfd = input_section->owner;
10831
10832 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10833 || (get_elf_backend_data (input_bfd)
10834 ->elf_backend_ecoff_debug_swap) == NULL)
10835 {
10836 /* I don't know what a non MIPS ELF bfd would be
10837 doing with a .mdebug section, but I don't really
10838 want to deal with it. */
10839 continue;
10840 }
10841
10842 input_swap = (get_elf_backend_data (input_bfd)
10843 ->elf_backend_ecoff_debug_swap);
10844
10845 BFD_ASSERT (p->size == input_section->size);
10846
10847 /* The ECOFF linking code expects that we have already
10848 read in the debugging information and set up an
10849 ecoff_debug_info structure, so we do that now. */
10850 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10851 &input_debug))
10852 return FALSE;
10853
10854 if (! (bfd_ecoff_debug_accumulate
10855 (mdebug_handle, abfd, &debug, swap, input_bfd,
10856 &input_debug, input_swap, info)))
10857 return FALSE;
10858
10859 /* Loop through the external symbols. For each one with
10860 interesting information, try to find the symbol in
10861 the linker global hash table and save the information
10862 for the output external symbols. */
10863 eraw_src = input_debug.external_ext;
10864 eraw_end = (eraw_src
10865 + (input_debug.symbolic_header.iextMax
10866 * input_swap->external_ext_size));
10867 for (;
10868 eraw_src < eraw_end;
10869 eraw_src += input_swap->external_ext_size)
10870 {
10871 EXTR ext;
10872 const char *name;
10873 struct mips_elf_link_hash_entry *h;
10874
10875 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10876 if (ext.asym.sc == scNil
10877 || ext.asym.sc == scUndefined
10878 || ext.asym.sc == scSUndefined)
10879 continue;
10880
10881 name = input_debug.ssext + ext.asym.iss;
10882 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10883 name, FALSE, FALSE, TRUE);
10884 if (h == NULL || h->esym.ifd != -2)
10885 continue;
10886
10887 if (ext.ifd != -1)
10888 {
10889 BFD_ASSERT (ext.ifd
10890 < input_debug.symbolic_header.ifdMax);
10891 ext.ifd = input_debug.ifdmap[ext.ifd];
10892 }
10893
10894 h->esym = ext;
10895 }
10896
10897 /* Free up the information we just read. */
10898 free (input_debug.line);
10899 free (input_debug.external_dnr);
10900 free (input_debug.external_pdr);
10901 free (input_debug.external_sym);
10902 free (input_debug.external_opt);
10903 free (input_debug.external_aux);
10904 free (input_debug.ss);
10905 free (input_debug.ssext);
10906 free (input_debug.external_fdr);
10907 free (input_debug.external_rfd);
10908 free (input_debug.external_ext);
10909
10910 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10911 elf_link_input_bfd ignores this section. */
10912 input_section->flags &= ~SEC_HAS_CONTENTS;
10913 }
10914
10915 if (SGI_COMPAT (abfd) && info->shared)
10916 {
10917 /* Create .rtproc section. */
10918 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10919 if (rtproc_sec == NULL)
10920 {
10921 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10922 | SEC_LINKER_CREATED | SEC_READONLY);
10923
10924 rtproc_sec = bfd_make_section_with_flags (abfd,
10925 ".rtproc",
10926 flags);
10927 if (rtproc_sec == NULL
10928 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10929 return FALSE;
10930 }
10931
10932 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10933 info, rtproc_sec,
10934 &debug))
10935 return FALSE;
10936 }
10937
10938 /* Build the external symbol information. */
10939 einfo.abfd = abfd;
10940 einfo.info = info;
10941 einfo.debug = &debug;
10942 einfo.swap = swap;
10943 einfo.failed = FALSE;
10944 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10945 mips_elf_output_extsym, &einfo);
10946 if (einfo.failed)
10947 return FALSE;
10948
10949 /* Set the size of the .mdebug section. */
10950 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10951
10952 /* Skip this section later on (I don't think this currently
10953 matters, but someday it might). */
10954 o->map_head.link_order = NULL;
10955
10956 mdebug_sec = o;
10957 }
10958
10959 if (CONST_STRNEQ (o->name, ".gptab."))
10960 {
10961 const char *subname;
10962 unsigned int c;
10963 Elf32_gptab *tab;
10964 Elf32_External_gptab *ext_tab;
10965 unsigned int j;
10966
10967 /* The .gptab.sdata and .gptab.sbss sections hold
10968 information describing how the small data area would
10969 change depending upon the -G switch. These sections
10970 not used in executables files. */
10971 if (! info->relocatable)
10972 {
10973 for (p = o->map_head.link_order; p != NULL; p = p->next)
10974 {
10975 asection *input_section;
10976
10977 if (p->type != bfd_indirect_link_order)
10978 {
10979 if (p->type == bfd_data_link_order)
10980 continue;
10981 abort ();
10982 }
10983
10984 input_section = p->u.indirect.section;
10985
10986 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10987 elf_link_input_bfd ignores this section. */
10988 input_section->flags &= ~SEC_HAS_CONTENTS;
10989 }
10990
10991 /* Skip this section later on (I don't think this
10992 currently matters, but someday it might). */
10993 o->map_head.link_order = NULL;
10994
10995 /* Really remove the section. */
10996 bfd_section_list_remove (abfd, o);
10997 --abfd->section_count;
10998
10999 continue;
11000 }
11001
11002 /* There is one gptab for initialized data, and one for
11003 uninitialized data. */
11004 if (strcmp (o->name, ".gptab.sdata") == 0)
11005 gptab_data_sec = o;
11006 else if (strcmp (o->name, ".gptab.sbss") == 0)
11007 gptab_bss_sec = o;
11008 else
11009 {
11010 (*_bfd_error_handler)
11011 (_("%s: illegal section name `%s'"),
11012 bfd_get_filename (abfd), o->name);
11013 bfd_set_error (bfd_error_nonrepresentable_section);
11014 return FALSE;
11015 }
11016
11017 /* The linker script always combines .gptab.data and
11018 .gptab.sdata into .gptab.sdata, and likewise for
11019 .gptab.bss and .gptab.sbss. It is possible that there is
11020 no .sdata or .sbss section in the output file, in which
11021 case we must change the name of the output section. */
11022 subname = o->name + sizeof ".gptab" - 1;
11023 if (bfd_get_section_by_name (abfd, subname) == NULL)
11024 {
11025 if (o == gptab_data_sec)
11026 o->name = ".gptab.data";
11027 else
11028 o->name = ".gptab.bss";
11029 subname = o->name + sizeof ".gptab" - 1;
11030 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11031 }
11032
11033 /* Set up the first entry. */
11034 c = 1;
11035 amt = c * sizeof (Elf32_gptab);
11036 tab = bfd_malloc (amt);
11037 if (tab == NULL)
11038 return FALSE;
11039 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11040 tab[0].gt_header.gt_unused = 0;
11041
11042 /* Combine the input sections. */
11043 for (p = o->map_head.link_order; p != NULL; p = p->next)
11044 {
11045 asection *input_section;
11046 bfd *input_bfd;
11047 bfd_size_type size;
11048 unsigned long last;
11049 bfd_size_type gpentry;
11050
11051 if (p->type != bfd_indirect_link_order)
11052 {
11053 if (p->type == bfd_data_link_order)
11054 continue;
11055 abort ();
11056 }
11057
11058 input_section = p->u.indirect.section;
11059 input_bfd = input_section->owner;
11060
11061 /* Combine the gptab entries for this input section one
11062 by one. We know that the input gptab entries are
11063 sorted by ascending -G value. */
11064 size = input_section->size;
11065 last = 0;
11066 for (gpentry = sizeof (Elf32_External_gptab);
11067 gpentry < size;
11068 gpentry += sizeof (Elf32_External_gptab))
11069 {
11070 Elf32_External_gptab ext_gptab;
11071 Elf32_gptab int_gptab;
11072 unsigned long val;
11073 unsigned long add;
11074 bfd_boolean exact;
11075 unsigned int look;
11076
11077 if (! (bfd_get_section_contents
11078 (input_bfd, input_section, &ext_gptab, gpentry,
11079 sizeof (Elf32_External_gptab))))
11080 {
11081 free (tab);
11082 return FALSE;
11083 }
11084
11085 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
11086 &int_gptab);
11087 val = int_gptab.gt_entry.gt_g_value;
11088 add = int_gptab.gt_entry.gt_bytes - last;
11089
11090 exact = FALSE;
11091 for (look = 1; look < c; look++)
11092 {
11093 if (tab[look].gt_entry.gt_g_value >= val)
11094 tab[look].gt_entry.gt_bytes += add;
11095
11096 if (tab[look].gt_entry.gt_g_value == val)
11097 exact = TRUE;
11098 }
11099
11100 if (! exact)
11101 {
11102 Elf32_gptab *new_tab;
11103 unsigned int max;
11104
11105 /* We need a new table entry. */
11106 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
11107 new_tab = bfd_realloc (tab, amt);
11108 if (new_tab == NULL)
11109 {
11110 free (tab);
11111 return FALSE;
11112 }
11113 tab = new_tab;
11114 tab[c].gt_entry.gt_g_value = val;
11115 tab[c].gt_entry.gt_bytes = add;
11116
11117 /* Merge in the size for the next smallest -G
11118 value, since that will be implied by this new
11119 value. */
11120 max = 0;
11121 for (look = 1; look < c; look++)
11122 {
11123 if (tab[look].gt_entry.gt_g_value < val
11124 && (max == 0
11125 || (tab[look].gt_entry.gt_g_value
11126 > tab[max].gt_entry.gt_g_value)))
11127 max = look;
11128 }
11129 if (max != 0)
11130 tab[c].gt_entry.gt_bytes +=
11131 tab[max].gt_entry.gt_bytes;
11132
11133 ++c;
11134 }
11135
11136 last = int_gptab.gt_entry.gt_bytes;
11137 }
11138
11139 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11140 elf_link_input_bfd ignores this section. */
11141 input_section->flags &= ~SEC_HAS_CONTENTS;
11142 }
11143
11144 /* The table must be sorted by -G value. */
11145 if (c > 2)
11146 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
11147
11148 /* Swap out the table. */
11149 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
11150 ext_tab = bfd_alloc (abfd, amt);
11151 if (ext_tab == NULL)
11152 {
11153 free (tab);
11154 return FALSE;
11155 }
11156
11157 for (j = 0; j < c; j++)
11158 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
11159 free (tab);
11160
11161 o->size = c * sizeof (Elf32_External_gptab);
11162 o->contents = (bfd_byte *) ext_tab;
11163
11164 /* Skip this section later on (I don't think this currently
11165 matters, but someday it might). */
11166 o->map_head.link_order = NULL;
11167 }
11168 }
11169
11170 /* Invoke the regular ELF backend linker to do all the work. */
11171 if (!bfd_elf_final_link (abfd, info))
11172 return FALSE;
11173
11174 /* Now write out the computed sections. */
11175
11176 if (reginfo_sec != NULL)
11177 {
11178 Elf32_External_RegInfo ext;
11179
11180 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
11181 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
11182 return FALSE;
11183 }
11184
11185 if (mdebug_sec != NULL)
11186 {
11187 BFD_ASSERT (abfd->output_has_begun);
11188 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
11189 swap, info,
11190 mdebug_sec->filepos))
11191 return FALSE;
11192
11193 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
11194 }
11195
11196 if (gptab_data_sec != NULL)
11197 {
11198 if (! bfd_set_section_contents (abfd, gptab_data_sec,
11199 gptab_data_sec->contents,
11200 0, gptab_data_sec->size))
11201 return FALSE;
11202 }
11203
11204 if (gptab_bss_sec != NULL)
11205 {
11206 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
11207 gptab_bss_sec->contents,
11208 0, gptab_bss_sec->size))
11209 return FALSE;
11210 }
11211
11212 if (SGI_COMPAT (abfd))
11213 {
11214 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11215 if (rtproc_sec != NULL)
11216 {
11217 if (! bfd_set_section_contents (abfd, rtproc_sec,
11218 rtproc_sec->contents,
11219 0, rtproc_sec->size))
11220 return FALSE;
11221 }
11222 }
11223
11224 return TRUE;
11225 }
11226 \f
11227 /* Structure for saying that BFD machine EXTENSION extends BASE. */
11228
11229 struct mips_mach_extension {
11230 unsigned long extension, base;
11231 };
11232
11233
11234 /* An array describing how BFD machines relate to one another. The entries
11235 are ordered topologically with MIPS I extensions listed last. */
11236
11237 static const struct mips_mach_extension mips_mach_extensions[] = {
11238 /* MIPS64r2 extensions. */
11239 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
11240
11241 /* MIPS64 extensions. */
11242 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
11243 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
11244
11245 /* MIPS V extensions. */
11246 { bfd_mach_mipsisa64, bfd_mach_mips5 },
11247
11248 /* R10000 extensions. */
11249 { bfd_mach_mips12000, bfd_mach_mips10000 },
11250
11251 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
11252 vr5400 ISA, but doesn't include the multimedia stuff. It seems
11253 better to allow vr5400 and vr5500 code to be merged anyway, since
11254 many libraries will just use the core ISA. Perhaps we could add
11255 some sort of ASE flag if this ever proves a problem. */
11256 { bfd_mach_mips5500, bfd_mach_mips5400 },
11257 { bfd_mach_mips5400, bfd_mach_mips5000 },
11258
11259 /* MIPS IV extensions. */
11260 { bfd_mach_mips5, bfd_mach_mips8000 },
11261 { bfd_mach_mips10000, bfd_mach_mips8000 },
11262 { bfd_mach_mips5000, bfd_mach_mips8000 },
11263 { bfd_mach_mips7000, bfd_mach_mips8000 },
11264 { bfd_mach_mips9000, bfd_mach_mips8000 },
11265
11266 /* VR4100 extensions. */
11267 { bfd_mach_mips4120, bfd_mach_mips4100 },
11268 { bfd_mach_mips4111, bfd_mach_mips4100 },
11269
11270 /* MIPS III extensions. */
11271 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
11272 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
11273 { bfd_mach_mips8000, bfd_mach_mips4000 },
11274 { bfd_mach_mips4650, bfd_mach_mips4000 },
11275 { bfd_mach_mips4600, bfd_mach_mips4000 },
11276 { bfd_mach_mips4400, bfd_mach_mips4000 },
11277 { bfd_mach_mips4300, bfd_mach_mips4000 },
11278 { bfd_mach_mips4100, bfd_mach_mips4000 },
11279 { bfd_mach_mips4010, bfd_mach_mips4000 },
11280
11281 /* MIPS32 extensions. */
11282 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
11283
11284 /* MIPS II extensions. */
11285 { bfd_mach_mips4000, bfd_mach_mips6000 },
11286 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
11287
11288 /* MIPS I extensions. */
11289 { bfd_mach_mips6000, bfd_mach_mips3000 },
11290 { bfd_mach_mips3900, bfd_mach_mips3000 }
11291 };
11292
11293
11294 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
11295
11296 static bfd_boolean
11297 mips_mach_extends_p (unsigned long base, unsigned long extension)
11298 {
11299 size_t i;
11300
11301 if (extension == base)
11302 return TRUE;
11303
11304 if (base == bfd_mach_mipsisa32
11305 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
11306 return TRUE;
11307
11308 if (base == bfd_mach_mipsisa32r2
11309 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
11310 return TRUE;
11311
11312 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
11313 if (extension == mips_mach_extensions[i].extension)
11314 {
11315 extension = mips_mach_extensions[i].base;
11316 if (extension == base)
11317 return TRUE;
11318 }
11319
11320 return FALSE;
11321 }
11322
11323
11324 /* Return true if the given ELF header flags describe a 32-bit binary. */
11325
11326 static bfd_boolean
11327 mips_32bit_flags_p (flagword flags)
11328 {
11329 return ((flags & EF_MIPS_32BITMODE) != 0
11330 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
11331 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11332 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11333 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11334 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11335 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
11336 }
11337
11338
11339 /* Merge object attributes from IBFD into OBFD. Raise an error if
11340 there are conflicting attributes. */
11341 static bfd_boolean
11342 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
11343 {
11344 obj_attribute *in_attr;
11345 obj_attribute *out_attr;
11346
11347 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11348 {
11349 /* This is the first object. Copy the attributes. */
11350 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11351
11352 /* Use the Tag_null value to indicate the attributes have been
11353 initialized. */
11354 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11355
11356 return TRUE;
11357 }
11358
11359 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11360 non-conflicting ones. */
11361 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11362 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11363 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11364 {
11365 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11366 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11367 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11368 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11369 ;
11370 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
11371 _bfd_error_handler
11372 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11373 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11374 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
11375 _bfd_error_handler
11376 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11377 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11378 else
11379 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11380 {
11381 case 1:
11382 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11383 {
11384 case 2:
11385 _bfd_error_handler
11386 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11387 obfd, ibfd);
11388 break;
11389
11390 case 3:
11391 _bfd_error_handler
11392 (_("Warning: %B uses hard float, %B uses soft float"),
11393 obfd, ibfd);
11394 break;
11395
11396 case 4:
11397 _bfd_error_handler
11398 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11399 obfd, ibfd);
11400 break;
11401
11402 default:
11403 abort ();
11404 }
11405 break;
11406
11407 case 2:
11408 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11409 {
11410 case 1:
11411 _bfd_error_handler
11412 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11413 ibfd, obfd);
11414 break;
11415
11416 case 3:
11417 _bfd_error_handler
11418 (_("Warning: %B uses hard float, %B uses soft float"),
11419 obfd, ibfd);
11420 break;
11421
11422 case 4:
11423 _bfd_error_handler
11424 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11425 obfd, ibfd);
11426 break;
11427
11428 default:
11429 abort ();
11430 }
11431 break;
11432
11433 case 3:
11434 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11435 {
11436 case 1:
11437 case 2:
11438 case 4:
11439 _bfd_error_handler
11440 (_("Warning: %B uses hard float, %B uses soft float"),
11441 ibfd, obfd);
11442 break;
11443
11444 default:
11445 abort ();
11446 }
11447 break;
11448
11449 case 4:
11450 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11451 {
11452 case 1:
11453 _bfd_error_handler
11454 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11455 ibfd, obfd);
11456 break;
11457
11458 case 2:
11459 _bfd_error_handler
11460 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11461 ibfd, obfd);
11462 break;
11463
11464 case 3:
11465 _bfd_error_handler
11466 (_("Warning: %B uses hard float, %B uses soft float"),
11467 obfd, ibfd);
11468 break;
11469
11470 default:
11471 abort ();
11472 }
11473 break;
11474
11475 default:
11476 abort ();
11477 }
11478 }
11479
11480 /* Merge Tag_compatibility attributes and any common GNU ones. */
11481 _bfd_elf_merge_object_attributes (ibfd, obfd);
11482
11483 return TRUE;
11484 }
11485
11486 /* Merge backend specific data from an object file to the output
11487 object file when linking. */
11488
11489 bfd_boolean
11490 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11491 {
11492 flagword old_flags;
11493 flagword new_flags;
11494 bfd_boolean ok;
11495 bfd_boolean null_input_bfd = TRUE;
11496 asection *sec;
11497
11498 /* Check if we have the same endianess */
11499 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11500 {
11501 (*_bfd_error_handler)
11502 (_("%B: endianness incompatible with that of the selected emulation"),
11503 ibfd);
11504 return FALSE;
11505 }
11506
11507 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11508 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11509 return TRUE;
11510
11511 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11512 {
11513 (*_bfd_error_handler)
11514 (_("%B: ABI is incompatible with that of the selected emulation"),
11515 ibfd);
11516 return FALSE;
11517 }
11518
11519 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11520 return FALSE;
11521
11522 new_flags = elf_elfheader (ibfd)->e_flags;
11523 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11524 old_flags = elf_elfheader (obfd)->e_flags;
11525
11526 if (! elf_flags_init (obfd))
11527 {
11528 elf_flags_init (obfd) = TRUE;
11529 elf_elfheader (obfd)->e_flags = new_flags;
11530 elf_elfheader (obfd)->e_ident[EI_CLASS]
11531 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11532
11533 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11534 && (bfd_get_arch_info (obfd)->the_default
11535 || mips_mach_extends_p (bfd_get_mach (obfd),
11536 bfd_get_mach (ibfd))))
11537 {
11538 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11539 bfd_get_mach (ibfd)))
11540 return FALSE;
11541 }
11542
11543 return TRUE;
11544 }
11545
11546 /* Check flag compatibility. */
11547
11548 new_flags &= ~EF_MIPS_NOREORDER;
11549 old_flags &= ~EF_MIPS_NOREORDER;
11550
11551 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11552 doesn't seem to matter. */
11553 new_flags &= ~EF_MIPS_XGOT;
11554 old_flags &= ~EF_MIPS_XGOT;
11555
11556 /* MIPSpro generates ucode info in n64 objects. Again, we should
11557 just be able to ignore this. */
11558 new_flags &= ~EF_MIPS_UCODE;
11559 old_flags &= ~EF_MIPS_UCODE;
11560
11561 /* Don't care about the PIC flags from dynamic objects; they are
11562 PIC by design. */
11563 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11564 && (ibfd->flags & DYNAMIC) != 0)
11565 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11566
11567 if (new_flags == old_flags)
11568 return TRUE;
11569
11570 /* Check to see if the input BFD actually contains any sections.
11571 If not, its flags may not have been initialised either, but it cannot
11572 actually cause any incompatibility. */
11573 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11574 {
11575 /* Ignore synthetic sections and empty .text, .data and .bss sections
11576 which are automatically generated by gas. */
11577 if (strcmp (sec->name, ".reginfo")
11578 && strcmp (sec->name, ".mdebug")
11579 && (sec->size != 0
11580 || (strcmp (sec->name, ".text")
11581 && strcmp (sec->name, ".data")
11582 && strcmp (sec->name, ".bss"))))
11583 {
11584 null_input_bfd = FALSE;
11585 break;
11586 }
11587 }
11588 if (null_input_bfd)
11589 return TRUE;
11590
11591 ok = TRUE;
11592
11593 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11594 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11595 {
11596 (*_bfd_error_handler)
11597 (_("%B: warning: linking PIC files with non-PIC files"),
11598 ibfd);
11599 ok = TRUE;
11600 }
11601
11602 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11603 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11604 if (! (new_flags & EF_MIPS_PIC))
11605 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11606
11607 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11608 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11609
11610 /* Compare the ISAs. */
11611 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11612 {
11613 (*_bfd_error_handler)
11614 (_("%B: linking 32-bit code with 64-bit code"),
11615 ibfd);
11616 ok = FALSE;
11617 }
11618 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11619 {
11620 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11621 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11622 {
11623 /* Copy the architecture info from IBFD to OBFD. Also copy
11624 the 32-bit flag (if set) so that we continue to recognise
11625 OBFD as a 32-bit binary. */
11626 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11627 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11628 elf_elfheader (obfd)->e_flags
11629 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11630
11631 /* Copy across the ABI flags if OBFD doesn't use them
11632 and if that was what caused us to treat IBFD as 32-bit. */
11633 if ((old_flags & EF_MIPS_ABI) == 0
11634 && mips_32bit_flags_p (new_flags)
11635 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11636 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11637 }
11638 else
11639 {
11640 /* The ISAs aren't compatible. */
11641 (*_bfd_error_handler)
11642 (_("%B: linking %s module with previous %s modules"),
11643 ibfd,
11644 bfd_printable_name (ibfd),
11645 bfd_printable_name (obfd));
11646 ok = FALSE;
11647 }
11648 }
11649
11650 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11651 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11652
11653 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11654 does set EI_CLASS differently from any 32-bit ABI. */
11655 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11656 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11657 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11658 {
11659 /* Only error if both are set (to different values). */
11660 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11661 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11662 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11663 {
11664 (*_bfd_error_handler)
11665 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11666 ibfd,
11667 elf_mips_abi_name (ibfd),
11668 elf_mips_abi_name (obfd));
11669 ok = FALSE;
11670 }
11671 new_flags &= ~EF_MIPS_ABI;
11672 old_flags &= ~EF_MIPS_ABI;
11673 }
11674
11675 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11676 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11677 {
11678 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11679
11680 new_flags &= ~ EF_MIPS_ARCH_ASE;
11681 old_flags &= ~ EF_MIPS_ARCH_ASE;
11682 }
11683
11684 /* Warn about any other mismatches */
11685 if (new_flags != old_flags)
11686 {
11687 (*_bfd_error_handler)
11688 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11689 ibfd, (unsigned long) new_flags,
11690 (unsigned long) old_flags);
11691 ok = FALSE;
11692 }
11693
11694 if (! ok)
11695 {
11696 bfd_set_error (bfd_error_bad_value);
11697 return FALSE;
11698 }
11699
11700 return TRUE;
11701 }
11702
11703 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11704
11705 bfd_boolean
11706 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11707 {
11708 BFD_ASSERT (!elf_flags_init (abfd)
11709 || elf_elfheader (abfd)->e_flags == flags);
11710
11711 elf_elfheader (abfd)->e_flags = flags;
11712 elf_flags_init (abfd) = TRUE;
11713 return TRUE;
11714 }
11715
11716 char *
11717 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
11718 {
11719 switch (dtag)
11720 {
11721 default: return "";
11722 case DT_MIPS_RLD_VERSION:
11723 return "MIPS_RLD_VERSION";
11724 case DT_MIPS_TIME_STAMP:
11725 return "MIPS_TIME_STAMP";
11726 case DT_MIPS_ICHECKSUM:
11727 return "MIPS_ICHECKSUM";
11728 case DT_MIPS_IVERSION:
11729 return "MIPS_IVERSION";
11730 case DT_MIPS_FLAGS:
11731 return "MIPS_FLAGS";
11732 case DT_MIPS_BASE_ADDRESS:
11733 return "MIPS_BASE_ADDRESS";
11734 case DT_MIPS_MSYM:
11735 return "MIPS_MSYM";
11736 case DT_MIPS_CONFLICT:
11737 return "MIPS_CONFLICT";
11738 case DT_MIPS_LIBLIST:
11739 return "MIPS_LIBLIST";
11740 case DT_MIPS_LOCAL_GOTNO:
11741 return "MIPS_LOCAL_GOTNO";
11742 case DT_MIPS_CONFLICTNO:
11743 return "MIPS_CONFLICTNO";
11744 case DT_MIPS_LIBLISTNO:
11745 return "MIPS_LIBLISTNO";
11746 case DT_MIPS_SYMTABNO:
11747 return "MIPS_SYMTABNO";
11748 case DT_MIPS_UNREFEXTNO:
11749 return "MIPS_UNREFEXTNO";
11750 case DT_MIPS_GOTSYM:
11751 return "MIPS_GOTSYM";
11752 case DT_MIPS_HIPAGENO:
11753 return "MIPS_HIPAGENO";
11754 case DT_MIPS_RLD_MAP:
11755 return "MIPS_RLD_MAP";
11756 case DT_MIPS_DELTA_CLASS:
11757 return "MIPS_DELTA_CLASS";
11758 case DT_MIPS_DELTA_CLASS_NO:
11759 return "MIPS_DELTA_CLASS_NO";
11760 case DT_MIPS_DELTA_INSTANCE:
11761 return "MIPS_DELTA_INSTANCE";
11762 case DT_MIPS_DELTA_INSTANCE_NO:
11763 return "MIPS_DELTA_INSTANCE_NO";
11764 case DT_MIPS_DELTA_RELOC:
11765 return "MIPS_DELTA_RELOC";
11766 case DT_MIPS_DELTA_RELOC_NO:
11767 return "MIPS_DELTA_RELOC_NO";
11768 case DT_MIPS_DELTA_SYM:
11769 return "MIPS_DELTA_SYM";
11770 case DT_MIPS_DELTA_SYM_NO:
11771 return "MIPS_DELTA_SYM_NO";
11772 case DT_MIPS_DELTA_CLASSSYM:
11773 return "MIPS_DELTA_CLASSSYM";
11774 case DT_MIPS_DELTA_CLASSSYM_NO:
11775 return "MIPS_DELTA_CLASSSYM_NO";
11776 case DT_MIPS_CXX_FLAGS:
11777 return "MIPS_CXX_FLAGS";
11778 case DT_MIPS_PIXIE_INIT:
11779 return "MIPS_PIXIE_INIT";
11780 case DT_MIPS_SYMBOL_LIB:
11781 return "MIPS_SYMBOL_LIB";
11782 case DT_MIPS_LOCALPAGE_GOTIDX:
11783 return "MIPS_LOCALPAGE_GOTIDX";
11784 case DT_MIPS_LOCAL_GOTIDX:
11785 return "MIPS_LOCAL_GOTIDX";
11786 case DT_MIPS_HIDDEN_GOTIDX:
11787 return "MIPS_HIDDEN_GOTIDX";
11788 case DT_MIPS_PROTECTED_GOTIDX:
11789 return "MIPS_PROTECTED_GOT_IDX";
11790 case DT_MIPS_OPTIONS:
11791 return "MIPS_OPTIONS";
11792 case DT_MIPS_INTERFACE:
11793 return "MIPS_INTERFACE";
11794 case DT_MIPS_DYNSTR_ALIGN:
11795 return "DT_MIPS_DYNSTR_ALIGN";
11796 case DT_MIPS_INTERFACE_SIZE:
11797 return "DT_MIPS_INTERFACE_SIZE";
11798 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
11799 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
11800 case DT_MIPS_PERF_SUFFIX:
11801 return "DT_MIPS_PERF_SUFFIX";
11802 case DT_MIPS_COMPACT_SIZE:
11803 return "DT_MIPS_COMPACT_SIZE";
11804 case DT_MIPS_GP_VALUE:
11805 return "DT_MIPS_GP_VALUE";
11806 case DT_MIPS_AUX_DYNAMIC:
11807 return "DT_MIPS_AUX_DYNAMIC";
11808 }
11809 }
11810
11811 bfd_boolean
11812 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11813 {
11814 FILE *file = ptr;
11815
11816 BFD_ASSERT (abfd != NULL && ptr != NULL);
11817
11818 /* Print normal ELF private data. */
11819 _bfd_elf_print_private_bfd_data (abfd, ptr);
11820
11821 /* xgettext:c-format */
11822 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11823
11824 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11825 fprintf (file, _(" [abi=O32]"));
11826 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11827 fprintf (file, _(" [abi=O64]"));
11828 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11829 fprintf (file, _(" [abi=EABI32]"));
11830 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11831 fprintf (file, _(" [abi=EABI64]"));
11832 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11833 fprintf (file, _(" [abi unknown]"));
11834 else if (ABI_N32_P (abfd))
11835 fprintf (file, _(" [abi=N32]"));
11836 else if (ABI_64_P (abfd))
11837 fprintf (file, _(" [abi=64]"));
11838 else
11839 fprintf (file, _(" [no abi set]"));
11840
11841 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11842 fprintf (file, " [mips1]");
11843 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11844 fprintf (file, " [mips2]");
11845 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11846 fprintf (file, " [mips3]");
11847 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11848 fprintf (file, " [mips4]");
11849 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11850 fprintf (file, " [mips5]");
11851 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11852 fprintf (file, " [mips32]");
11853 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11854 fprintf (file, " [mips64]");
11855 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11856 fprintf (file, " [mips32r2]");
11857 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11858 fprintf (file, " [mips64r2]");
11859 else
11860 fprintf (file, _(" [unknown ISA]"));
11861
11862 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11863 fprintf (file, " [mdmx]");
11864
11865 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11866 fprintf (file, " [mips16]");
11867
11868 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11869 fprintf (file, " [32bitmode]");
11870 else
11871 fprintf (file, _(" [not 32bitmode]"));
11872
11873 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11874 fprintf (file, " [noreorder]");
11875
11876 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11877 fprintf (file, " [PIC]");
11878
11879 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11880 fprintf (file, " [CPIC]");
11881
11882 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11883 fprintf (file, " [XGOT]");
11884
11885 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11886 fprintf (file, " [UCODE]");
11887
11888 fputc ('\n', file);
11889
11890 return TRUE;
11891 }
11892
11893 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11894 {
11895 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11896 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11897 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11898 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11899 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11900 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11901 { NULL, 0, 0, 0, 0 }
11902 };
11903
11904 /* Merge non visibility st_other attributes. Ensure that the
11905 STO_OPTIONAL flag is copied into h->other, even if this is not a
11906 definiton of the symbol. */
11907 void
11908 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11909 const Elf_Internal_Sym *isym,
11910 bfd_boolean definition,
11911 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11912 {
11913 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11914 {
11915 unsigned char other;
11916
11917 other = (definition ? isym->st_other : h->other);
11918 other &= ~ELF_ST_VISIBILITY (-1);
11919 h->other = other | ELF_ST_VISIBILITY (h->other);
11920 }
11921
11922 if (!definition
11923 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11924 h->other |= STO_OPTIONAL;
11925 }
11926
11927 /* Decide whether an undefined symbol is special and can be ignored.
11928 This is the case for OPTIONAL symbols on IRIX. */
11929 bfd_boolean
11930 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11931 {
11932 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11933 }
11934
11935 bfd_boolean
11936 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11937 {
11938 return (sym->st_shndx == SHN_COMMON
11939 || sym->st_shndx == SHN_MIPS_ACOMMON
11940 || sym->st_shndx == SHN_MIPS_SCOMMON);
11941 }
This page took 0.319133 seconds and 4 git commands to generate.