63a17ccd5d709fa9402fb0adccb34d8160ea135c
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
122 {
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130 };
131
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
136 {
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140 };
141
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
145 {
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152 };
153
154 /* This structure is used to hold .got information when linking. */
155
156 struct mips_got_info
157 {
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The number of local .got entries we have used. */
174 unsigned int assigned_gotno;
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184 };
185
186 /* Structure passed when merging bfds' gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
215
216 struct mips_elf_traverse_got_arg
217 {
218 struct bfd_link_info *info;
219 struct mips_got_info *g;
220 int value;
221 };
222
223 struct _mips_elf_section_data
224 {
225 struct bfd_elf_section_data elf;
226 union
227 {
228 bfd_byte *tdata;
229 } u;
230 };
231
232 #define mips_elf_section_data(sec) \
233 ((struct _mips_elf_section_data *) elf_section_data (sec))
234
235 #define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
238 && elf_object_id (bfd) == MIPS_ELF_DATA)
239
240 /* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257 #define GGA_NORMAL 0
258 #define GGA_RELOC_ONLY 1
259 #define GGA_NONE 2
260
261 /* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278 struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288 };
289
290 /* Macros for populating a mips_elf_la25_stub. */
291
292 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
295 #define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297 #define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299 #define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
301
302 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305 struct mips_elf_hash_sort_data
306 {
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
312 long min_got_dynindx;
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
315 with dynamic relocations pointing to it from non-primary GOTs). */
316 long max_unref_got_dynindx;
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320 };
321
322 /* The MIPS ELF linker needs additional information for each symbol in
323 the global hash table. */
324
325 struct mips_elf_link_hash_entry
326 {
327 struct elf_link_hash_entry root;
328
329 /* External symbol information. */
330 EXTR esym;
331
332 /* The la25 stub we have created for ths symbol, if any. */
333 struct mips_elf_la25_stub *la25_stub;
334
335 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
336 this symbol. */
337 unsigned int possibly_dynamic_relocs;
338
339 /* If there is a stub that 32 bit functions should use to call this
340 16 bit function, this points to the section containing the stub. */
341 asection *fn_stub;
342
343 /* If there is a stub that 16 bit functions should use to call this
344 32 bit function, this points to the section containing the stub. */
345 asection *call_stub;
346
347 /* This is like the call_stub field, but it is used if the function
348 being called returns a floating point value. */
349 asection *call_fp_stub;
350
351 /* The highest GGA_* value that satisfies all references to this symbol. */
352 unsigned int global_got_area : 2;
353
354 /* True if all GOT relocations against this symbol are for calls. This is
355 a looser condition than no_fn_stub below, because there may be other
356 non-call non-GOT relocations against the symbol. */
357 unsigned int got_only_for_calls : 1;
358
359 /* True if one of the relocations described by possibly_dynamic_relocs
360 is against a readonly section. */
361 unsigned int readonly_reloc : 1;
362
363 /* True if there is a relocation against this symbol that must be
364 resolved by the static linker (in other words, if the relocation
365 cannot possibly be made dynamic). */
366 unsigned int has_static_relocs : 1;
367
368 /* True if we must not create a .MIPS.stubs entry for this symbol.
369 This is set, for example, if there are relocations related to
370 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
371 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
372 unsigned int no_fn_stub : 1;
373
374 /* Whether we need the fn_stub; this is true if this symbol appears
375 in any relocs other than a 16 bit call. */
376 unsigned int need_fn_stub : 1;
377
378 /* True if this symbol is referenced by branch relocations from
379 any non-PIC input file. This is used to determine whether an
380 la25 stub is required. */
381 unsigned int has_nonpic_branches : 1;
382
383 /* Does this symbol need a traditional MIPS lazy-binding stub
384 (as opposed to a PLT entry)? */
385 unsigned int needs_lazy_stub : 1;
386 };
387
388 /* MIPS ELF linker hash table. */
389
390 struct mips_elf_link_hash_table
391 {
392 struct elf_link_hash_table root;
393
394 /* The number of .rtproc entries. */
395 bfd_size_type procedure_count;
396
397 /* The size of the .compact_rel section (if SGI_COMPAT). */
398 bfd_size_type compact_rel_size;
399
400 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
401 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
402 bfd_boolean use_rld_obj_head;
403
404 /* The __rld_map or __rld_obj_head symbol. */
405 struct elf_link_hash_entry *rld_symbol;
406
407 /* This is set if we see any mips16 stub sections. */
408 bfd_boolean mips16_stubs_seen;
409
410 /* True if we can generate copy relocs and PLTs. */
411 bfd_boolean use_plts_and_copy_relocs;
412
413 /* True if we're generating code for VxWorks. */
414 bfd_boolean is_vxworks;
415
416 /* True if we already reported the small-data section overflow. */
417 bfd_boolean small_data_overflow_reported;
418
419 /* Shortcuts to some dynamic sections, or NULL if they are not
420 being used. */
421 asection *srelbss;
422 asection *sdynbss;
423 asection *srelplt;
424 asection *srelplt2;
425 asection *sgotplt;
426 asection *splt;
427 asection *sstubs;
428 asection *sgot;
429
430 /* The master GOT information. */
431 struct mips_got_info *got_info;
432
433 /* The global symbol in the GOT with the lowest index in the dynamic
434 symbol table. */
435 struct elf_link_hash_entry *global_gotsym;
436
437 /* The size of the PLT header in bytes. */
438 bfd_vma plt_header_size;
439
440 /* The size of a PLT entry in bytes. */
441 bfd_vma plt_entry_size;
442
443 /* The number of functions that need a lazy-binding stub. */
444 bfd_vma lazy_stub_count;
445
446 /* The size of a function stub entry in bytes. */
447 bfd_vma function_stub_size;
448
449 /* The number of reserved entries at the beginning of the GOT. */
450 unsigned int reserved_gotno;
451
452 /* The section used for mips_elf_la25_stub trampolines.
453 See the comment above that structure for details. */
454 asection *strampoline;
455
456 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
457 pairs. */
458 htab_t la25_stubs;
459
460 /* A function FN (NAME, IS, OS) that creates a new input section
461 called NAME and links it to output section OS. If IS is nonnull,
462 the new section should go immediately before it, otherwise it
463 should go at the (current) beginning of OS.
464
465 The function returns the new section on success, otherwise it
466 returns null. */
467 asection *(*add_stub_section) (const char *, asection *, asection *);
468
469 /* Small local sym cache. */
470 struct sym_cache sym_cache;
471 };
472
473 /* Get the MIPS ELF linker hash table from a link_info structure. */
474
475 #define mips_elf_hash_table(p) \
476 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
477 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
478
479 /* A structure used to communicate with htab_traverse callbacks. */
480 struct mips_htab_traverse_info
481 {
482 /* The usual link-wide information. */
483 struct bfd_link_info *info;
484 bfd *output_bfd;
485
486 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
487 bfd_boolean error;
488 };
489
490 /* MIPS ELF private object data. */
491
492 struct mips_elf_obj_tdata
493 {
494 /* Generic ELF private object data. */
495 struct elf_obj_tdata root;
496
497 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
498 bfd *abi_fp_bfd;
499
500 /* The GOT requirements of input bfds. */
501 struct mips_got_info *got;
502
503 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
504 included directly in this one, but there's no point to wasting
505 the memory just for the infrequently called find_nearest_line. */
506 struct mips_elf_find_line *find_line_info;
507
508 /* An array of stub sections indexed by symbol number. */
509 asection **local_stubs;
510 asection **local_call_stubs;
511
512 /* The Irix 5 support uses two virtual sections, which represent
513 text/data symbols defined in dynamic objects. */
514 asymbol *elf_data_symbol;
515 asymbol *elf_text_symbol;
516 asection *elf_data_section;
517 asection *elf_text_section;
518 };
519
520 /* Get MIPS ELF private object data from BFD's tdata. */
521
522 #define mips_elf_tdata(bfd) \
523 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
524
525 #define TLS_RELOC_P(r_type) \
526 (r_type == R_MIPS_TLS_DTPMOD32 \
527 || r_type == R_MIPS_TLS_DTPMOD64 \
528 || r_type == R_MIPS_TLS_DTPREL32 \
529 || r_type == R_MIPS_TLS_DTPREL64 \
530 || r_type == R_MIPS_TLS_GD \
531 || r_type == R_MIPS_TLS_LDM \
532 || r_type == R_MIPS_TLS_DTPREL_HI16 \
533 || r_type == R_MIPS_TLS_DTPREL_LO16 \
534 || r_type == R_MIPS_TLS_GOTTPREL \
535 || r_type == R_MIPS_TLS_TPREL32 \
536 || r_type == R_MIPS_TLS_TPREL64 \
537 || r_type == R_MIPS_TLS_TPREL_HI16 \
538 || r_type == R_MIPS_TLS_TPREL_LO16 \
539 || r_type == R_MIPS16_TLS_GD \
540 || r_type == R_MIPS16_TLS_LDM \
541 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
542 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
543 || r_type == R_MIPS16_TLS_GOTTPREL \
544 || r_type == R_MIPS16_TLS_TPREL_HI16 \
545 || r_type == R_MIPS16_TLS_TPREL_LO16 \
546 || r_type == R_MICROMIPS_TLS_GD \
547 || r_type == R_MICROMIPS_TLS_LDM \
548 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
549 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
550 || r_type == R_MICROMIPS_TLS_GOTTPREL \
551 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
552 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
553
554 /* Structure used to pass information to mips_elf_output_extsym. */
555
556 struct extsym_info
557 {
558 bfd *abfd;
559 struct bfd_link_info *info;
560 struct ecoff_debug_info *debug;
561 const struct ecoff_debug_swap *swap;
562 bfd_boolean failed;
563 };
564
565 /* The names of the runtime procedure table symbols used on IRIX5. */
566
567 static const char * const mips_elf_dynsym_rtproc_names[] =
568 {
569 "_procedure_table",
570 "_procedure_string_table",
571 "_procedure_table_size",
572 NULL
573 };
574
575 /* These structures are used to generate the .compact_rel section on
576 IRIX5. */
577
578 typedef struct
579 {
580 unsigned long id1; /* Always one? */
581 unsigned long num; /* Number of compact relocation entries. */
582 unsigned long id2; /* Always two? */
583 unsigned long offset; /* The file offset of the first relocation. */
584 unsigned long reserved0; /* Zero? */
585 unsigned long reserved1; /* Zero? */
586 } Elf32_compact_rel;
587
588 typedef struct
589 {
590 bfd_byte id1[4];
591 bfd_byte num[4];
592 bfd_byte id2[4];
593 bfd_byte offset[4];
594 bfd_byte reserved0[4];
595 bfd_byte reserved1[4];
596 } Elf32_External_compact_rel;
597
598 typedef struct
599 {
600 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
601 unsigned int rtype : 4; /* Relocation types. See below. */
602 unsigned int dist2to : 8;
603 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
604 unsigned long konst; /* KONST field. See below. */
605 unsigned long vaddr; /* VADDR to be relocated. */
606 } Elf32_crinfo;
607
608 typedef struct
609 {
610 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
611 unsigned int rtype : 4; /* Relocation types. See below. */
612 unsigned int dist2to : 8;
613 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
614 unsigned long konst; /* KONST field. See below. */
615 } Elf32_crinfo2;
616
617 typedef struct
618 {
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 bfd_byte vaddr[4];
622 } Elf32_External_crinfo;
623
624 typedef struct
625 {
626 bfd_byte info[4];
627 bfd_byte konst[4];
628 } Elf32_External_crinfo2;
629
630 /* These are the constants used to swap the bitfields in a crinfo. */
631
632 #define CRINFO_CTYPE (0x1)
633 #define CRINFO_CTYPE_SH (31)
634 #define CRINFO_RTYPE (0xf)
635 #define CRINFO_RTYPE_SH (27)
636 #define CRINFO_DIST2TO (0xff)
637 #define CRINFO_DIST2TO_SH (19)
638 #define CRINFO_RELVADDR (0x7ffff)
639 #define CRINFO_RELVADDR_SH (0)
640
641 /* A compact relocation info has long (3 words) or short (2 words)
642 formats. A short format doesn't have VADDR field and relvaddr
643 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
644 #define CRF_MIPS_LONG 1
645 #define CRF_MIPS_SHORT 0
646
647 /* There are 4 types of compact relocation at least. The value KONST
648 has different meaning for each type:
649
650 (type) (konst)
651 CT_MIPS_REL32 Address in data
652 CT_MIPS_WORD Address in word (XXX)
653 CT_MIPS_GPHI_LO GP - vaddr
654 CT_MIPS_JMPAD Address to jump
655 */
656
657 #define CRT_MIPS_REL32 0xa
658 #define CRT_MIPS_WORD 0xb
659 #define CRT_MIPS_GPHI_LO 0xc
660 #define CRT_MIPS_JMPAD 0xd
661
662 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
663 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
664 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
665 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
666 \f
667 /* The structure of the runtime procedure descriptor created by the
668 loader for use by the static exception system. */
669
670 typedef struct runtime_pdr {
671 bfd_vma adr; /* Memory address of start of procedure. */
672 long regmask; /* Save register mask. */
673 long regoffset; /* Save register offset. */
674 long fregmask; /* Save floating point register mask. */
675 long fregoffset; /* Save floating point register offset. */
676 long frameoffset; /* Frame size. */
677 short framereg; /* Frame pointer register. */
678 short pcreg; /* Offset or reg of return pc. */
679 long irpss; /* Index into the runtime string table. */
680 long reserved;
681 struct exception_info *exception_info;/* Pointer to exception array. */
682 } RPDR, *pRPDR;
683 #define cbRPDR sizeof (RPDR)
684 #define rpdNil ((pRPDR) 0)
685 \f
686 static struct mips_got_entry *mips_elf_create_local_got_entry
687 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
688 struct mips_elf_link_hash_entry *, int);
689 static bfd_boolean mips_elf_sort_hash_table_f
690 (struct mips_elf_link_hash_entry *, void *);
691 static bfd_vma mips_elf_high
692 (bfd_vma);
693 static bfd_boolean mips_elf_create_dynamic_relocation
694 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
695 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
696 bfd_vma *, asection *);
697 static bfd_vma mips_elf_adjust_gp
698 (bfd *, struct mips_got_info *, bfd *);
699
700 /* This will be used when we sort the dynamic relocation records. */
701 static bfd *reldyn_sorting_bfd;
702
703 /* True if ABFD is for CPUs with load interlocking that include
704 non-MIPS1 CPUs and R3900. */
705 #define LOAD_INTERLOCKS_P(abfd) \
706 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
707 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
708
709 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
710 This should be safe for all architectures. We enable this predicate
711 for RM9000 for now. */
712 #define JAL_TO_BAL_P(abfd) \
713 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
714
715 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
716 This should be safe for all architectures. We enable this predicate for
717 all CPUs. */
718 #define JALR_TO_BAL_P(abfd) 1
719
720 /* True if ABFD is for CPUs that are faster if JR is converted to B.
721 This should be safe for all architectures. We enable this predicate for
722 all CPUs. */
723 #define JR_TO_B_P(abfd) 1
724
725 /* True if ABFD is a PIC object. */
726 #define PIC_OBJECT_P(abfd) \
727 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
728
729 /* Nonzero if ABFD is using the N32 ABI. */
730 #define ABI_N32_P(abfd) \
731 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
732
733 /* Nonzero if ABFD is using the N64 ABI. */
734 #define ABI_64_P(abfd) \
735 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
736
737 /* Nonzero if ABFD is using NewABI conventions. */
738 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
739
740 /* The IRIX compatibility level we are striving for. */
741 #define IRIX_COMPAT(abfd) \
742 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
743
744 /* Whether we are trying to be compatible with IRIX at all. */
745 #define SGI_COMPAT(abfd) \
746 (IRIX_COMPAT (abfd) != ict_none)
747
748 /* The name of the options section. */
749 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
750 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
751
752 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
753 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
754 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
755 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
756
757 /* Whether the section is readonly. */
758 #define MIPS_ELF_READONLY_SECTION(sec) \
759 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
760 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
761
762 /* The name of the stub section. */
763 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
764
765 /* The size of an external REL relocation. */
766 #define MIPS_ELF_REL_SIZE(abfd) \
767 (get_elf_backend_data (abfd)->s->sizeof_rel)
768
769 /* The size of an external RELA relocation. */
770 #define MIPS_ELF_RELA_SIZE(abfd) \
771 (get_elf_backend_data (abfd)->s->sizeof_rela)
772
773 /* The size of an external dynamic table entry. */
774 #define MIPS_ELF_DYN_SIZE(abfd) \
775 (get_elf_backend_data (abfd)->s->sizeof_dyn)
776
777 /* The size of a GOT entry. */
778 #define MIPS_ELF_GOT_SIZE(abfd) \
779 (get_elf_backend_data (abfd)->s->arch_size / 8)
780
781 /* The size of the .rld_map section. */
782 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
783 (get_elf_backend_data (abfd)->s->arch_size / 8)
784
785 /* The size of a symbol-table entry. */
786 #define MIPS_ELF_SYM_SIZE(abfd) \
787 (get_elf_backend_data (abfd)->s->sizeof_sym)
788
789 /* The default alignment for sections, as a power of two. */
790 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
791 (get_elf_backend_data (abfd)->s->log_file_align)
792
793 /* Get word-sized data. */
794 #define MIPS_ELF_GET_WORD(abfd, ptr) \
795 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
796
797 /* Put out word-sized data. */
798 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
799 (ABI_64_P (abfd) \
800 ? bfd_put_64 (abfd, val, ptr) \
801 : bfd_put_32 (abfd, val, ptr))
802
803 /* The opcode for word-sized loads (LW or LD). */
804 #define MIPS_ELF_LOAD_WORD(abfd) \
805 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
806
807 /* Add a dynamic symbol table-entry. */
808 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
809 _bfd_elf_add_dynamic_entry (info, tag, val)
810
811 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
812 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
813
814 /* The name of the dynamic relocation section. */
815 #define MIPS_ELF_REL_DYN_NAME(INFO) \
816 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
817
818 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
819 from smaller values. Start with zero, widen, *then* decrement. */
820 #define MINUS_ONE (((bfd_vma)0) - 1)
821 #define MINUS_TWO (((bfd_vma)0) - 2)
822
823 /* The value to write into got[1] for SVR4 targets, to identify it is
824 a GNU object. The dynamic linker can then use got[1] to store the
825 module pointer. */
826 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
827 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
828
829 /* The offset of $gp from the beginning of the .got section. */
830 #define ELF_MIPS_GP_OFFSET(INFO) \
831 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
832
833 /* The maximum size of the GOT for it to be addressable using 16-bit
834 offsets from $gp. */
835 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
836
837 /* Instructions which appear in a stub. */
838 #define STUB_LW(abfd) \
839 ((ABI_64_P (abfd) \
840 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
841 : 0x8f998010)) /* lw t9,0x8010(gp) */
842 #define STUB_MOVE(abfd) \
843 ((ABI_64_P (abfd) \
844 ? 0x03e0782d /* daddu t7,ra */ \
845 : 0x03e07821)) /* addu t7,ra */
846 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
847 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
848 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
849 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
850 #define STUB_LI16S(abfd, VAL) \
851 ((ABI_64_P (abfd) \
852 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
853 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
854
855 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
856 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
857
858 /* The name of the dynamic interpreter. This is put in the .interp
859 section. */
860
861 #define ELF_DYNAMIC_INTERPRETER(abfd) \
862 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
863 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
864 : "/usr/lib/libc.so.1")
865
866 #ifdef BFD64
867 #define MNAME(bfd,pre,pos) \
868 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
869 #define ELF_R_SYM(bfd, i) \
870 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
871 #define ELF_R_TYPE(bfd, i) \
872 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
873 #define ELF_R_INFO(bfd, s, t) \
874 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
875 #else
876 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
877 #define ELF_R_SYM(bfd, i) \
878 (ELF32_R_SYM (i))
879 #define ELF_R_TYPE(bfd, i) \
880 (ELF32_R_TYPE (i))
881 #define ELF_R_INFO(bfd, s, t) \
882 (ELF32_R_INFO (s, t))
883 #endif
884 \f
885 /* The mips16 compiler uses a couple of special sections to handle
886 floating point arguments.
887
888 Section names that look like .mips16.fn.FNNAME contain stubs that
889 copy floating point arguments from the fp regs to the gp regs and
890 then jump to FNNAME. If any 32 bit function calls FNNAME, the
891 call should be redirected to the stub instead. If no 32 bit
892 function calls FNNAME, the stub should be discarded. We need to
893 consider any reference to the function, not just a call, because
894 if the address of the function is taken we will need the stub,
895 since the address might be passed to a 32 bit function.
896
897 Section names that look like .mips16.call.FNNAME contain stubs
898 that copy floating point arguments from the gp regs to the fp
899 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
900 then any 16 bit function that calls FNNAME should be redirected
901 to the stub instead. If FNNAME is not a 32 bit function, the
902 stub should be discarded.
903
904 .mips16.call.fp.FNNAME sections are similar, but contain stubs
905 which call FNNAME and then copy the return value from the fp regs
906 to the gp regs. These stubs store the return value in $18 while
907 calling FNNAME; any function which might call one of these stubs
908 must arrange to save $18 around the call. (This case is not
909 needed for 32 bit functions that call 16 bit functions, because
910 16 bit functions always return floating point values in both
911 $f0/$f1 and $2/$3.)
912
913 Note that in all cases FNNAME might be defined statically.
914 Therefore, FNNAME is not used literally. Instead, the relocation
915 information will indicate which symbol the section is for.
916
917 We record any stubs that we find in the symbol table. */
918
919 #define FN_STUB ".mips16.fn."
920 #define CALL_STUB ".mips16.call."
921 #define CALL_FP_STUB ".mips16.call.fp."
922
923 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
924 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
925 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
926 \f
927 /* The format of the first PLT entry in an O32 executable. */
928 static const bfd_vma mips_o32_exec_plt0_entry[] =
929 {
930 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
931 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
932 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
933 0x031cc023, /* subu $24, $24, $28 */
934 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
935 0x0018c082, /* srl $24, $24, 2 */
936 0x0320f809, /* jalr $25 */
937 0x2718fffe /* subu $24, $24, 2 */
938 };
939
940 /* The format of the first PLT entry in an N32 executable. Different
941 because gp ($28) is not available; we use t2 ($14) instead. */
942 static const bfd_vma mips_n32_exec_plt0_entry[] =
943 {
944 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
945 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
946 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
947 0x030ec023, /* subu $24, $24, $14 */
948 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
949 0x0018c082, /* srl $24, $24, 2 */
950 0x0320f809, /* jalr $25 */
951 0x2718fffe /* subu $24, $24, 2 */
952 };
953
954 /* The format of the first PLT entry in an N64 executable. Different
955 from N32 because of the increased size of GOT entries. */
956 static const bfd_vma mips_n64_exec_plt0_entry[] =
957 {
958 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
959 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
960 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
961 0x030ec023, /* subu $24, $24, $14 */
962 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
963 0x0018c0c2, /* srl $24, $24, 3 */
964 0x0320f809, /* jalr $25 */
965 0x2718fffe /* subu $24, $24, 2 */
966 };
967
968 /* The format of subsequent PLT entries. */
969 static const bfd_vma mips_exec_plt_entry[] =
970 {
971 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
972 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
973 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
974 0x03200008 /* jr $25 */
975 };
976
977 /* The format of the first PLT entry in a VxWorks executable. */
978 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
979 {
980 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
981 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
982 0x8f390008, /* lw t9, 8(t9) */
983 0x00000000, /* nop */
984 0x03200008, /* jr t9 */
985 0x00000000 /* nop */
986 };
987
988 /* The format of subsequent PLT entries. */
989 static const bfd_vma mips_vxworks_exec_plt_entry[] =
990 {
991 0x10000000, /* b .PLT_resolver */
992 0x24180000, /* li t8, <pltindex> */
993 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
994 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
995 0x8f390000, /* lw t9, 0(t9) */
996 0x00000000, /* nop */
997 0x03200008, /* jr t9 */
998 0x00000000 /* nop */
999 };
1000
1001 /* The format of the first PLT entry in a VxWorks shared object. */
1002 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1003 {
1004 0x8f990008, /* lw t9, 8(gp) */
1005 0x00000000, /* nop */
1006 0x03200008, /* jr t9 */
1007 0x00000000, /* nop */
1008 0x00000000, /* nop */
1009 0x00000000 /* nop */
1010 };
1011
1012 /* The format of subsequent PLT entries. */
1013 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1014 {
1015 0x10000000, /* b .PLT_resolver */
1016 0x24180000 /* li t8, <pltindex> */
1017 };
1018 \f
1019 /* microMIPS 32-bit opcode helper installer. */
1020
1021 static void
1022 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1023 {
1024 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1025 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1026 }
1027
1028 /* microMIPS 32-bit opcode helper retriever. */
1029
1030 static bfd_vma
1031 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1032 {
1033 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1034 }
1035 \f
1036 /* Look up an entry in a MIPS ELF linker hash table. */
1037
1038 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1039 ((struct mips_elf_link_hash_entry *) \
1040 elf_link_hash_lookup (&(table)->root, (string), (create), \
1041 (copy), (follow)))
1042
1043 /* Traverse a MIPS ELF linker hash table. */
1044
1045 #define mips_elf_link_hash_traverse(table, func, info) \
1046 (elf_link_hash_traverse \
1047 (&(table)->root, \
1048 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1049 (info)))
1050
1051 /* Find the base offsets for thread-local storage in this object,
1052 for GD/LD and IE/LE respectively. */
1053
1054 #define TP_OFFSET 0x7000
1055 #define DTP_OFFSET 0x8000
1056
1057 static bfd_vma
1058 dtprel_base (struct bfd_link_info *info)
1059 {
1060 /* If tls_sec is NULL, we should have signalled an error already. */
1061 if (elf_hash_table (info)->tls_sec == NULL)
1062 return 0;
1063 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1064 }
1065
1066 static bfd_vma
1067 tprel_base (struct bfd_link_info *info)
1068 {
1069 /* If tls_sec is NULL, we should have signalled an error already. */
1070 if (elf_hash_table (info)->tls_sec == NULL)
1071 return 0;
1072 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1073 }
1074
1075 /* Create an entry in a MIPS ELF linker hash table. */
1076
1077 static struct bfd_hash_entry *
1078 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1079 struct bfd_hash_table *table, const char *string)
1080 {
1081 struct mips_elf_link_hash_entry *ret =
1082 (struct mips_elf_link_hash_entry *) entry;
1083
1084 /* Allocate the structure if it has not already been allocated by a
1085 subclass. */
1086 if (ret == NULL)
1087 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1088 if (ret == NULL)
1089 return (struct bfd_hash_entry *) ret;
1090
1091 /* Call the allocation method of the superclass. */
1092 ret = ((struct mips_elf_link_hash_entry *)
1093 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1094 table, string));
1095 if (ret != NULL)
1096 {
1097 /* Set local fields. */
1098 memset (&ret->esym, 0, sizeof (EXTR));
1099 /* We use -2 as a marker to indicate that the information has
1100 not been set. -1 means there is no associated ifd. */
1101 ret->esym.ifd = -2;
1102 ret->la25_stub = 0;
1103 ret->possibly_dynamic_relocs = 0;
1104 ret->fn_stub = NULL;
1105 ret->call_stub = NULL;
1106 ret->call_fp_stub = NULL;
1107 ret->global_got_area = GGA_NONE;
1108 ret->got_only_for_calls = TRUE;
1109 ret->readonly_reloc = FALSE;
1110 ret->has_static_relocs = FALSE;
1111 ret->no_fn_stub = FALSE;
1112 ret->need_fn_stub = FALSE;
1113 ret->has_nonpic_branches = FALSE;
1114 ret->needs_lazy_stub = FALSE;
1115 }
1116
1117 return (struct bfd_hash_entry *) ret;
1118 }
1119
1120 /* Allocate MIPS ELF private object data. */
1121
1122 bfd_boolean
1123 _bfd_mips_elf_mkobject (bfd *abfd)
1124 {
1125 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1126 MIPS_ELF_DATA);
1127 }
1128
1129 bfd_boolean
1130 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1131 {
1132 if (!sec->used_by_bfd)
1133 {
1134 struct _mips_elf_section_data *sdata;
1135 bfd_size_type amt = sizeof (*sdata);
1136
1137 sdata = bfd_zalloc (abfd, amt);
1138 if (sdata == NULL)
1139 return FALSE;
1140 sec->used_by_bfd = sdata;
1141 }
1142
1143 return _bfd_elf_new_section_hook (abfd, sec);
1144 }
1145 \f
1146 /* Read ECOFF debugging information from a .mdebug section into a
1147 ecoff_debug_info structure. */
1148
1149 bfd_boolean
1150 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1151 struct ecoff_debug_info *debug)
1152 {
1153 HDRR *symhdr;
1154 const struct ecoff_debug_swap *swap;
1155 char *ext_hdr;
1156
1157 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1158 memset (debug, 0, sizeof (*debug));
1159
1160 ext_hdr = bfd_malloc (swap->external_hdr_size);
1161 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1162 goto error_return;
1163
1164 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1165 swap->external_hdr_size))
1166 goto error_return;
1167
1168 symhdr = &debug->symbolic_header;
1169 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1170
1171 /* The symbolic header contains absolute file offsets and sizes to
1172 read. */
1173 #define READ(ptr, offset, count, size, type) \
1174 if (symhdr->count == 0) \
1175 debug->ptr = NULL; \
1176 else \
1177 { \
1178 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1179 debug->ptr = bfd_malloc (amt); \
1180 if (debug->ptr == NULL) \
1181 goto error_return; \
1182 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1183 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1184 goto error_return; \
1185 }
1186
1187 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1188 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1189 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1190 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1191 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1192 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1193 union aux_ext *);
1194 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1195 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1196 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1197 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1198 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1199 #undef READ
1200
1201 debug->fdr = NULL;
1202
1203 return TRUE;
1204
1205 error_return:
1206 if (ext_hdr != NULL)
1207 free (ext_hdr);
1208 if (debug->line != NULL)
1209 free (debug->line);
1210 if (debug->external_dnr != NULL)
1211 free (debug->external_dnr);
1212 if (debug->external_pdr != NULL)
1213 free (debug->external_pdr);
1214 if (debug->external_sym != NULL)
1215 free (debug->external_sym);
1216 if (debug->external_opt != NULL)
1217 free (debug->external_opt);
1218 if (debug->external_aux != NULL)
1219 free (debug->external_aux);
1220 if (debug->ss != NULL)
1221 free (debug->ss);
1222 if (debug->ssext != NULL)
1223 free (debug->ssext);
1224 if (debug->external_fdr != NULL)
1225 free (debug->external_fdr);
1226 if (debug->external_rfd != NULL)
1227 free (debug->external_rfd);
1228 if (debug->external_ext != NULL)
1229 free (debug->external_ext);
1230 return FALSE;
1231 }
1232 \f
1233 /* Swap RPDR (runtime procedure table entry) for output. */
1234
1235 static void
1236 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1237 {
1238 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1239 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1240 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1241 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1242 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1243 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1244
1245 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1246 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1247
1248 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1249 }
1250
1251 /* Create a runtime procedure table from the .mdebug section. */
1252
1253 static bfd_boolean
1254 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1255 struct bfd_link_info *info, asection *s,
1256 struct ecoff_debug_info *debug)
1257 {
1258 const struct ecoff_debug_swap *swap;
1259 HDRR *hdr = &debug->symbolic_header;
1260 RPDR *rpdr, *rp;
1261 struct rpdr_ext *erp;
1262 void *rtproc;
1263 struct pdr_ext *epdr;
1264 struct sym_ext *esym;
1265 char *ss, **sv;
1266 char *str;
1267 bfd_size_type size;
1268 bfd_size_type count;
1269 unsigned long sindex;
1270 unsigned long i;
1271 PDR pdr;
1272 SYMR sym;
1273 const char *no_name_func = _("static procedure (no name)");
1274
1275 epdr = NULL;
1276 rpdr = NULL;
1277 esym = NULL;
1278 ss = NULL;
1279 sv = NULL;
1280
1281 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1282
1283 sindex = strlen (no_name_func) + 1;
1284 count = hdr->ipdMax;
1285 if (count > 0)
1286 {
1287 size = swap->external_pdr_size;
1288
1289 epdr = bfd_malloc (size * count);
1290 if (epdr == NULL)
1291 goto error_return;
1292
1293 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1294 goto error_return;
1295
1296 size = sizeof (RPDR);
1297 rp = rpdr = bfd_malloc (size * count);
1298 if (rpdr == NULL)
1299 goto error_return;
1300
1301 size = sizeof (char *);
1302 sv = bfd_malloc (size * count);
1303 if (sv == NULL)
1304 goto error_return;
1305
1306 count = hdr->isymMax;
1307 size = swap->external_sym_size;
1308 esym = bfd_malloc (size * count);
1309 if (esym == NULL)
1310 goto error_return;
1311
1312 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1313 goto error_return;
1314
1315 count = hdr->issMax;
1316 ss = bfd_malloc (count);
1317 if (ss == NULL)
1318 goto error_return;
1319 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1320 goto error_return;
1321
1322 count = hdr->ipdMax;
1323 for (i = 0; i < (unsigned long) count; i++, rp++)
1324 {
1325 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1326 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1327 rp->adr = sym.value;
1328 rp->regmask = pdr.regmask;
1329 rp->regoffset = pdr.regoffset;
1330 rp->fregmask = pdr.fregmask;
1331 rp->fregoffset = pdr.fregoffset;
1332 rp->frameoffset = pdr.frameoffset;
1333 rp->framereg = pdr.framereg;
1334 rp->pcreg = pdr.pcreg;
1335 rp->irpss = sindex;
1336 sv[i] = ss + sym.iss;
1337 sindex += strlen (sv[i]) + 1;
1338 }
1339 }
1340
1341 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1342 size = BFD_ALIGN (size, 16);
1343 rtproc = bfd_alloc (abfd, size);
1344 if (rtproc == NULL)
1345 {
1346 mips_elf_hash_table (info)->procedure_count = 0;
1347 goto error_return;
1348 }
1349
1350 mips_elf_hash_table (info)->procedure_count = count + 2;
1351
1352 erp = rtproc;
1353 memset (erp, 0, sizeof (struct rpdr_ext));
1354 erp++;
1355 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1356 strcpy (str, no_name_func);
1357 str += strlen (no_name_func) + 1;
1358 for (i = 0; i < count; i++)
1359 {
1360 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1361 strcpy (str, sv[i]);
1362 str += strlen (sv[i]) + 1;
1363 }
1364 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1365
1366 /* Set the size and contents of .rtproc section. */
1367 s->size = size;
1368 s->contents = rtproc;
1369
1370 /* Skip this section later on (I don't think this currently
1371 matters, but someday it might). */
1372 s->map_head.link_order = NULL;
1373
1374 if (epdr != NULL)
1375 free (epdr);
1376 if (rpdr != NULL)
1377 free (rpdr);
1378 if (esym != NULL)
1379 free (esym);
1380 if (ss != NULL)
1381 free (ss);
1382 if (sv != NULL)
1383 free (sv);
1384
1385 return TRUE;
1386
1387 error_return:
1388 if (epdr != NULL)
1389 free (epdr);
1390 if (rpdr != NULL)
1391 free (rpdr);
1392 if (esym != NULL)
1393 free (esym);
1394 if (ss != NULL)
1395 free (ss);
1396 if (sv != NULL)
1397 free (sv);
1398 return FALSE;
1399 }
1400 \f
1401 /* We're going to create a stub for H. Create a symbol for the stub's
1402 value and size, to help make the disassembly easier to read. */
1403
1404 static bfd_boolean
1405 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1406 struct mips_elf_link_hash_entry *h,
1407 const char *prefix, asection *s, bfd_vma value,
1408 bfd_vma size)
1409 {
1410 struct bfd_link_hash_entry *bh;
1411 struct elf_link_hash_entry *elfh;
1412 const char *name;
1413
1414 if (ELF_ST_IS_MICROMIPS (h->root.other))
1415 value |= 1;
1416
1417 /* Create a new symbol. */
1418 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1419 bh = NULL;
1420 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1421 BSF_LOCAL, s, value, NULL,
1422 TRUE, FALSE, &bh))
1423 return FALSE;
1424
1425 /* Make it a local function. */
1426 elfh = (struct elf_link_hash_entry *) bh;
1427 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1428 elfh->size = size;
1429 elfh->forced_local = 1;
1430 return TRUE;
1431 }
1432
1433 /* We're about to redefine H. Create a symbol to represent H's
1434 current value and size, to help make the disassembly easier
1435 to read. */
1436
1437 static bfd_boolean
1438 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1439 struct mips_elf_link_hash_entry *h,
1440 const char *prefix)
1441 {
1442 struct bfd_link_hash_entry *bh;
1443 struct elf_link_hash_entry *elfh;
1444 const char *name;
1445 asection *s;
1446 bfd_vma value;
1447
1448 /* Read the symbol's value. */
1449 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1450 || h->root.root.type == bfd_link_hash_defweak);
1451 s = h->root.root.u.def.section;
1452 value = h->root.root.u.def.value;
1453
1454 /* Create a new symbol. */
1455 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1456 bh = NULL;
1457 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1458 BSF_LOCAL, s, value, NULL,
1459 TRUE, FALSE, &bh))
1460 return FALSE;
1461
1462 /* Make it local and copy the other attributes from H. */
1463 elfh = (struct elf_link_hash_entry *) bh;
1464 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1465 elfh->other = h->root.other;
1466 elfh->size = h->root.size;
1467 elfh->forced_local = 1;
1468 return TRUE;
1469 }
1470
1471 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1472 function rather than to a hard-float stub. */
1473
1474 static bfd_boolean
1475 section_allows_mips16_refs_p (asection *section)
1476 {
1477 const char *name;
1478
1479 name = bfd_get_section_name (section->owner, section);
1480 return (FN_STUB_P (name)
1481 || CALL_STUB_P (name)
1482 || CALL_FP_STUB_P (name)
1483 || strcmp (name, ".pdr") == 0);
1484 }
1485
1486 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1487 stub section of some kind. Return the R_SYMNDX of the target
1488 function, or 0 if we can't decide which function that is. */
1489
1490 static unsigned long
1491 mips16_stub_symndx (const struct elf_backend_data *bed,
1492 asection *sec ATTRIBUTE_UNUSED,
1493 const Elf_Internal_Rela *relocs,
1494 const Elf_Internal_Rela *relend)
1495 {
1496 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1497 const Elf_Internal_Rela *rel;
1498
1499 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1500 one in a compound relocation. */
1501 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1502 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1503 return ELF_R_SYM (sec->owner, rel->r_info);
1504
1505 /* Otherwise trust the first relocation, whatever its kind. This is
1506 the traditional behavior. */
1507 if (relocs < relend)
1508 return ELF_R_SYM (sec->owner, relocs->r_info);
1509
1510 return 0;
1511 }
1512
1513 /* Check the mips16 stubs for a particular symbol, and see if we can
1514 discard them. */
1515
1516 static void
1517 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1518 struct mips_elf_link_hash_entry *h)
1519 {
1520 /* Dynamic symbols must use the standard call interface, in case other
1521 objects try to call them. */
1522 if (h->fn_stub != NULL
1523 && h->root.dynindx != -1)
1524 {
1525 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1526 h->need_fn_stub = TRUE;
1527 }
1528
1529 if (h->fn_stub != NULL
1530 && ! h->need_fn_stub)
1531 {
1532 /* We don't need the fn_stub; the only references to this symbol
1533 are 16 bit calls. Clobber the size to 0 to prevent it from
1534 being included in the link. */
1535 h->fn_stub->size = 0;
1536 h->fn_stub->flags &= ~SEC_RELOC;
1537 h->fn_stub->reloc_count = 0;
1538 h->fn_stub->flags |= SEC_EXCLUDE;
1539 }
1540
1541 if (h->call_stub != NULL
1542 && ELF_ST_IS_MIPS16 (h->root.other))
1543 {
1544 /* We don't need the call_stub; this is a 16 bit function, so
1545 calls from other 16 bit functions are OK. Clobber the size
1546 to 0 to prevent it from being included in the link. */
1547 h->call_stub->size = 0;
1548 h->call_stub->flags &= ~SEC_RELOC;
1549 h->call_stub->reloc_count = 0;
1550 h->call_stub->flags |= SEC_EXCLUDE;
1551 }
1552
1553 if (h->call_fp_stub != NULL
1554 && ELF_ST_IS_MIPS16 (h->root.other))
1555 {
1556 /* We don't need the call_stub; this is a 16 bit function, so
1557 calls from other 16 bit functions are OK. Clobber the size
1558 to 0 to prevent it from being included in the link. */
1559 h->call_fp_stub->size = 0;
1560 h->call_fp_stub->flags &= ~SEC_RELOC;
1561 h->call_fp_stub->reloc_count = 0;
1562 h->call_fp_stub->flags |= SEC_EXCLUDE;
1563 }
1564 }
1565
1566 /* Hashtable callbacks for mips_elf_la25_stubs. */
1567
1568 static hashval_t
1569 mips_elf_la25_stub_hash (const void *entry_)
1570 {
1571 const struct mips_elf_la25_stub *entry;
1572
1573 entry = (struct mips_elf_la25_stub *) entry_;
1574 return entry->h->root.root.u.def.section->id
1575 + entry->h->root.root.u.def.value;
1576 }
1577
1578 static int
1579 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1580 {
1581 const struct mips_elf_la25_stub *entry1, *entry2;
1582
1583 entry1 = (struct mips_elf_la25_stub *) entry1_;
1584 entry2 = (struct mips_elf_la25_stub *) entry2_;
1585 return ((entry1->h->root.root.u.def.section
1586 == entry2->h->root.root.u.def.section)
1587 && (entry1->h->root.root.u.def.value
1588 == entry2->h->root.root.u.def.value));
1589 }
1590
1591 /* Called by the linker to set up the la25 stub-creation code. FN is
1592 the linker's implementation of add_stub_function. Return true on
1593 success. */
1594
1595 bfd_boolean
1596 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1597 asection *(*fn) (const char *, asection *,
1598 asection *))
1599 {
1600 struct mips_elf_link_hash_table *htab;
1601
1602 htab = mips_elf_hash_table (info);
1603 if (htab == NULL)
1604 return FALSE;
1605
1606 htab->add_stub_section = fn;
1607 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1608 mips_elf_la25_stub_eq, NULL);
1609 if (htab->la25_stubs == NULL)
1610 return FALSE;
1611
1612 return TRUE;
1613 }
1614
1615 /* Return true if H is a locally-defined PIC function, in the sense
1616 that it or its fn_stub might need $25 to be valid on entry.
1617 Note that MIPS16 functions set up $gp using PC-relative instructions,
1618 so they themselves never need $25 to be valid. Only non-MIPS16
1619 entry points are of interest here. */
1620
1621 static bfd_boolean
1622 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1623 {
1624 return ((h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak)
1626 && h->root.def_regular
1627 && !bfd_is_abs_section (h->root.root.u.def.section)
1628 && (!ELF_ST_IS_MIPS16 (h->root.other)
1629 || (h->fn_stub && h->need_fn_stub))
1630 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1631 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1632 }
1633
1634 /* Set *SEC to the input section that contains the target of STUB.
1635 Return the offset of the target from the start of that section. */
1636
1637 static bfd_vma
1638 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1639 asection **sec)
1640 {
1641 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1642 {
1643 BFD_ASSERT (stub->h->need_fn_stub);
1644 *sec = stub->h->fn_stub;
1645 return 0;
1646 }
1647 else
1648 {
1649 *sec = stub->h->root.root.u.def.section;
1650 return stub->h->root.root.u.def.value;
1651 }
1652 }
1653
1654 /* STUB describes an la25 stub that we have decided to implement
1655 by inserting an LUI/ADDIU pair before the target function.
1656 Create the section and redirect the function symbol to it. */
1657
1658 static bfd_boolean
1659 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1660 struct bfd_link_info *info)
1661 {
1662 struct mips_elf_link_hash_table *htab;
1663 char *name;
1664 asection *s, *input_section;
1665 unsigned int align;
1666
1667 htab = mips_elf_hash_table (info);
1668 if (htab == NULL)
1669 return FALSE;
1670
1671 /* Create a unique name for the new section. */
1672 name = bfd_malloc (11 + sizeof (".text.stub."));
1673 if (name == NULL)
1674 return FALSE;
1675 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1676
1677 /* Create the section. */
1678 mips_elf_get_la25_target (stub, &input_section);
1679 s = htab->add_stub_section (name, input_section,
1680 input_section->output_section);
1681 if (s == NULL)
1682 return FALSE;
1683
1684 /* Make sure that any padding goes before the stub. */
1685 align = input_section->alignment_power;
1686 if (!bfd_set_section_alignment (s->owner, s, align))
1687 return FALSE;
1688 if (align > 3)
1689 s->size = (1 << align) - 8;
1690
1691 /* Create a symbol for the stub. */
1692 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1693 stub->stub_section = s;
1694 stub->offset = s->size;
1695
1696 /* Allocate room for it. */
1697 s->size += 8;
1698 return TRUE;
1699 }
1700
1701 /* STUB describes an la25 stub that we have decided to implement
1702 with a separate trampoline. Allocate room for it and redirect
1703 the function symbol to it. */
1704
1705 static bfd_boolean
1706 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1707 struct bfd_link_info *info)
1708 {
1709 struct mips_elf_link_hash_table *htab;
1710 asection *s;
1711
1712 htab = mips_elf_hash_table (info);
1713 if (htab == NULL)
1714 return FALSE;
1715
1716 /* Create a trampoline section, if we haven't already. */
1717 s = htab->strampoline;
1718 if (s == NULL)
1719 {
1720 asection *input_section = stub->h->root.root.u.def.section;
1721 s = htab->add_stub_section (".text", NULL,
1722 input_section->output_section);
1723 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1724 return FALSE;
1725 htab->strampoline = s;
1726 }
1727
1728 /* Create a symbol for the stub. */
1729 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1730 stub->stub_section = s;
1731 stub->offset = s->size;
1732
1733 /* Allocate room for it. */
1734 s->size += 16;
1735 return TRUE;
1736 }
1737
1738 /* H describes a symbol that needs an la25 stub. Make sure that an
1739 appropriate stub exists and point H at it. */
1740
1741 static bfd_boolean
1742 mips_elf_add_la25_stub (struct bfd_link_info *info,
1743 struct mips_elf_link_hash_entry *h)
1744 {
1745 struct mips_elf_link_hash_table *htab;
1746 struct mips_elf_la25_stub search, *stub;
1747 bfd_boolean use_trampoline_p;
1748 asection *s;
1749 bfd_vma value;
1750 void **slot;
1751
1752 /* Describe the stub we want. */
1753 search.stub_section = NULL;
1754 search.offset = 0;
1755 search.h = h;
1756
1757 /* See if we've already created an equivalent stub. */
1758 htab = mips_elf_hash_table (info);
1759 if (htab == NULL)
1760 return FALSE;
1761
1762 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1763 if (slot == NULL)
1764 return FALSE;
1765
1766 stub = (struct mips_elf_la25_stub *) *slot;
1767 if (stub != NULL)
1768 {
1769 /* We can reuse the existing stub. */
1770 h->la25_stub = stub;
1771 return TRUE;
1772 }
1773
1774 /* Create a permanent copy of ENTRY and add it to the hash table. */
1775 stub = bfd_malloc (sizeof (search));
1776 if (stub == NULL)
1777 return FALSE;
1778 *stub = search;
1779 *slot = stub;
1780
1781 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1782 of the section and if we would need no more than 2 nops. */
1783 value = mips_elf_get_la25_target (stub, &s);
1784 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1785
1786 h->la25_stub = stub;
1787 return (use_trampoline_p
1788 ? mips_elf_add_la25_trampoline (stub, info)
1789 : mips_elf_add_la25_intro (stub, info));
1790 }
1791
1792 /* A mips_elf_link_hash_traverse callback that is called before sizing
1793 sections. DATA points to a mips_htab_traverse_info structure. */
1794
1795 static bfd_boolean
1796 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1797 {
1798 struct mips_htab_traverse_info *hti;
1799
1800 hti = (struct mips_htab_traverse_info *) data;
1801 if (!hti->info->relocatable)
1802 mips_elf_check_mips16_stubs (hti->info, h);
1803
1804 if (mips_elf_local_pic_function_p (h))
1805 {
1806 /* PR 12845: If H is in a section that has been garbage
1807 collected it will have its output section set to *ABS*. */
1808 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1809 return TRUE;
1810
1811 /* H is a function that might need $25 to be valid on entry.
1812 If we're creating a non-PIC relocatable object, mark H as
1813 being PIC. If we're creating a non-relocatable object with
1814 non-PIC branches and jumps to H, make sure that H has an la25
1815 stub. */
1816 if (hti->info->relocatable)
1817 {
1818 if (!PIC_OBJECT_P (hti->output_bfd))
1819 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1820 }
1821 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1822 {
1823 hti->error = TRUE;
1824 return FALSE;
1825 }
1826 }
1827 return TRUE;
1828 }
1829 \f
1830 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1831 Most mips16 instructions are 16 bits, but these instructions
1832 are 32 bits.
1833
1834 The format of these instructions is:
1835
1836 +--------------+--------------------------------+
1837 | JALX | X| Imm 20:16 | Imm 25:21 |
1838 +--------------+--------------------------------+
1839 | Immediate 15:0 |
1840 +-----------------------------------------------+
1841
1842 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1843 Note that the immediate value in the first word is swapped.
1844
1845 When producing a relocatable object file, R_MIPS16_26 is
1846 handled mostly like R_MIPS_26. In particular, the addend is
1847 stored as a straight 26-bit value in a 32-bit instruction.
1848 (gas makes life simpler for itself by never adjusting a
1849 R_MIPS16_26 reloc to be against a section, so the addend is
1850 always zero). However, the 32 bit instruction is stored as 2
1851 16-bit values, rather than a single 32-bit value. In a
1852 big-endian file, the result is the same; in a little-endian
1853 file, the two 16-bit halves of the 32 bit value are swapped.
1854 This is so that a disassembler can recognize the jal
1855 instruction.
1856
1857 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1858 instruction stored as two 16-bit values. The addend A is the
1859 contents of the targ26 field. The calculation is the same as
1860 R_MIPS_26. When storing the calculated value, reorder the
1861 immediate value as shown above, and don't forget to store the
1862 value as two 16-bit values.
1863
1864 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1865 defined as
1866
1867 big-endian:
1868 +--------+----------------------+
1869 | | |
1870 | | targ26-16 |
1871 |31 26|25 0|
1872 +--------+----------------------+
1873
1874 little-endian:
1875 +----------+------+-------------+
1876 | | | |
1877 | sub1 | | sub2 |
1878 |0 9|10 15|16 31|
1879 +----------+--------------------+
1880 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1881 ((sub1 << 16) | sub2)).
1882
1883 When producing a relocatable object file, the calculation is
1884 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1885 When producing a fully linked file, the calculation is
1886 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1887 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1888
1889 The table below lists the other MIPS16 instruction relocations.
1890 Each one is calculated in the same way as the non-MIPS16 relocation
1891 given on the right, but using the extended MIPS16 layout of 16-bit
1892 immediate fields:
1893
1894 R_MIPS16_GPREL R_MIPS_GPREL16
1895 R_MIPS16_GOT16 R_MIPS_GOT16
1896 R_MIPS16_CALL16 R_MIPS_CALL16
1897 R_MIPS16_HI16 R_MIPS_HI16
1898 R_MIPS16_LO16 R_MIPS_LO16
1899
1900 A typical instruction will have a format like this:
1901
1902 +--------------+--------------------------------+
1903 | EXTEND | Imm 10:5 | Imm 15:11 |
1904 +--------------+--------------------------------+
1905 | Major | rx | ry | Imm 4:0 |
1906 +--------------+--------------------------------+
1907
1908 EXTEND is the five bit value 11110. Major is the instruction
1909 opcode.
1910
1911 All we need to do here is shuffle the bits appropriately.
1912 As above, the two 16-bit halves must be swapped on a
1913 little-endian system. */
1914
1915 static inline bfd_boolean
1916 mips16_reloc_p (int r_type)
1917 {
1918 switch (r_type)
1919 {
1920 case R_MIPS16_26:
1921 case R_MIPS16_GPREL:
1922 case R_MIPS16_GOT16:
1923 case R_MIPS16_CALL16:
1924 case R_MIPS16_HI16:
1925 case R_MIPS16_LO16:
1926 case R_MIPS16_TLS_GD:
1927 case R_MIPS16_TLS_LDM:
1928 case R_MIPS16_TLS_DTPREL_HI16:
1929 case R_MIPS16_TLS_DTPREL_LO16:
1930 case R_MIPS16_TLS_GOTTPREL:
1931 case R_MIPS16_TLS_TPREL_HI16:
1932 case R_MIPS16_TLS_TPREL_LO16:
1933 return TRUE;
1934
1935 default:
1936 return FALSE;
1937 }
1938 }
1939
1940 /* Check if a microMIPS reloc. */
1941
1942 static inline bfd_boolean
1943 micromips_reloc_p (unsigned int r_type)
1944 {
1945 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1946 }
1947
1948 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1949 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1950 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1951
1952 static inline bfd_boolean
1953 micromips_reloc_shuffle_p (unsigned int r_type)
1954 {
1955 return (micromips_reloc_p (r_type)
1956 && r_type != R_MICROMIPS_PC7_S1
1957 && r_type != R_MICROMIPS_PC10_S1);
1958 }
1959
1960 static inline bfd_boolean
1961 got16_reloc_p (int r_type)
1962 {
1963 return (r_type == R_MIPS_GOT16
1964 || r_type == R_MIPS16_GOT16
1965 || r_type == R_MICROMIPS_GOT16);
1966 }
1967
1968 static inline bfd_boolean
1969 call16_reloc_p (int r_type)
1970 {
1971 return (r_type == R_MIPS_CALL16
1972 || r_type == R_MIPS16_CALL16
1973 || r_type == R_MICROMIPS_CALL16);
1974 }
1975
1976 static inline bfd_boolean
1977 got_disp_reloc_p (unsigned int r_type)
1978 {
1979 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1980 }
1981
1982 static inline bfd_boolean
1983 got_page_reloc_p (unsigned int r_type)
1984 {
1985 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1986 }
1987
1988 static inline bfd_boolean
1989 got_ofst_reloc_p (unsigned int r_type)
1990 {
1991 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1992 }
1993
1994 static inline bfd_boolean
1995 got_hi16_reloc_p (unsigned int r_type)
1996 {
1997 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1998 }
1999
2000 static inline bfd_boolean
2001 got_lo16_reloc_p (unsigned int r_type)
2002 {
2003 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2004 }
2005
2006 static inline bfd_boolean
2007 call_hi16_reloc_p (unsigned int r_type)
2008 {
2009 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2010 }
2011
2012 static inline bfd_boolean
2013 call_lo16_reloc_p (unsigned int r_type)
2014 {
2015 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2016 }
2017
2018 static inline bfd_boolean
2019 hi16_reloc_p (int r_type)
2020 {
2021 return (r_type == R_MIPS_HI16
2022 || r_type == R_MIPS16_HI16
2023 || r_type == R_MICROMIPS_HI16);
2024 }
2025
2026 static inline bfd_boolean
2027 lo16_reloc_p (int r_type)
2028 {
2029 return (r_type == R_MIPS_LO16
2030 || r_type == R_MIPS16_LO16
2031 || r_type == R_MICROMIPS_LO16);
2032 }
2033
2034 static inline bfd_boolean
2035 mips16_call_reloc_p (int r_type)
2036 {
2037 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2038 }
2039
2040 static inline bfd_boolean
2041 jal_reloc_p (int r_type)
2042 {
2043 return (r_type == R_MIPS_26
2044 || r_type == R_MIPS16_26
2045 || r_type == R_MICROMIPS_26_S1);
2046 }
2047
2048 static inline bfd_boolean
2049 micromips_branch_reloc_p (int r_type)
2050 {
2051 return (r_type == R_MICROMIPS_26_S1
2052 || r_type == R_MICROMIPS_PC16_S1
2053 || r_type == R_MICROMIPS_PC10_S1
2054 || r_type == R_MICROMIPS_PC7_S1);
2055 }
2056
2057 static inline bfd_boolean
2058 tls_gd_reloc_p (unsigned int r_type)
2059 {
2060 return (r_type == R_MIPS_TLS_GD
2061 || r_type == R_MIPS16_TLS_GD
2062 || r_type == R_MICROMIPS_TLS_GD);
2063 }
2064
2065 static inline bfd_boolean
2066 tls_ldm_reloc_p (unsigned int r_type)
2067 {
2068 return (r_type == R_MIPS_TLS_LDM
2069 || r_type == R_MIPS16_TLS_LDM
2070 || r_type == R_MICROMIPS_TLS_LDM);
2071 }
2072
2073 static inline bfd_boolean
2074 tls_gottprel_reloc_p (unsigned int r_type)
2075 {
2076 return (r_type == R_MIPS_TLS_GOTTPREL
2077 || r_type == R_MIPS16_TLS_GOTTPREL
2078 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2079 }
2080
2081 void
2082 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2083 bfd_boolean jal_shuffle, bfd_byte *data)
2084 {
2085 bfd_vma first, second, val;
2086
2087 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2088 return;
2089
2090 /* Pick up the first and second halfwords of the instruction. */
2091 first = bfd_get_16 (abfd, data);
2092 second = bfd_get_16 (abfd, data + 2);
2093 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2094 val = first << 16 | second;
2095 else if (r_type != R_MIPS16_26)
2096 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2097 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2098 else
2099 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2100 | ((first & 0x1f) << 21) | second);
2101 bfd_put_32 (abfd, val, data);
2102 }
2103
2104 void
2105 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2106 bfd_boolean jal_shuffle, bfd_byte *data)
2107 {
2108 bfd_vma first, second, val;
2109
2110 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2111 return;
2112
2113 val = bfd_get_32 (abfd, data);
2114 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2115 {
2116 second = val & 0xffff;
2117 first = val >> 16;
2118 }
2119 else if (r_type != R_MIPS16_26)
2120 {
2121 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2122 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2123 }
2124 else
2125 {
2126 second = val & 0xffff;
2127 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2128 | ((val >> 21) & 0x1f);
2129 }
2130 bfd_put_16 (abfd, second, data + 2);
2131 bfd_put_16 (abfd, first, data);
2132 }
2133
2134 bfd_reloc_status_type
2135 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2136 arelent *reloc_entry, asection *input_section,
2137 bfd_boolean relocatable, void *data, bfd_vma gp)
2138 {
2139 bfd_vma relocation;
2140 bfd_signed_vma val;
2141 bfd_reloc_status_type status;
2142
2143 if (bfd_is_com_section (symbol->section))
2144 relocation = 0;
2145 else
2146 relocation = symbol->value;
2147
2148 relocation += symbol->section->output_section->vma;
2149 relocation += symbol->section->output_offset;
2150
2151 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2152 return bfd_reloc_outofrange;
2153
2154 /* Set val to the offset into the section or symbol. */
2155 val = reloc_entry->addend;
2156
2157 _bfd_mips_elf_sign_extend (val, 16);
2158
2159 /* Adjust val for the final section location and GP value. If we
2160 are producing relocatable output, we don't want to do this for
2161 an external symbol. */
2162 if (! relocatable
2163 || (symbol->flags & BSF_SECTION_SYM) != 0)
2164 val += relocation - gp;
2165
2166 if (reloc_entry->howto->partial_inplace)
2167 {
2168 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2169 (bfd_byte *) data
2170 + reloc_entry->address);
2171 if (status != bfd_reloc_ok)
2172 return status;
2173 }
2174 else
2175 reloc_entry->addend = val;
2176
2177 if (relocatable)
2178 reloc_entry->address += input_section->output_offset;
2179
2180 return bfd_reloc_ok;
2181 }
2182
2183 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2184 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2185 that contains the relocation field and DATA points to the start of
2186 INPUT_SECTION. */
2187
2188 struct mips_hi16
2189 {
2190 struct mips_hi16 *next;
2191 bfd_byte *data;
2192 asection *input_section;
2193 arelent rel;
2194 };
2195
2196 /* FIXME: This should not be a static variable. */
2197
2198 static struct mips_hi16 *mips_hi16_list;
2199
2200 /* A howto special_function for REL *HI16 relocations. We can only
2201 calculate the correct value once we've seen the partnering
2202 *LO16 relocation, so just save the information for later.
2203
2204 The ABI requires that the *LO16 immediately follow the *HI16.
2205 However, as a GNU extension, we permit an arbitrary number of
2206 *HI16s to be associated with a single *LO16. This significantly
2207 simplies the relocation handling in gcc. */
2208
2209 bfd_reloc_status_type
2210 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2211 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2212 asection *input_section, bfd *output_bfd,
2213 char **error_message ATTRIBUTE_UNUSED)
2214 {
2215 struct mips_hi16 *n;
2216
2217 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2218 return bfd_reloc_outofrange;
2219
2220 n = bfd_malloc (sizeof *n);
2221 if (n == NULL)
2222 return bfd_reloc_outofrange;
2223
2224 n->next = mips_hi16_list;
2225 n->data = data;
2226 n->input_section = input_section;
2227 n->rel = *reloc_entry;
2228 mips_hi16_list = n;
2229
2230 if (output_bfd != NULL)
2231 reloc_entry->address += input_section->output_offset;
2232
2233 return bfd_reloc_ok;
2234 }
2235
2236 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2237 like any other 16-bit relocation when applied to global symbols, but is
2238 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2239
2240 bfd_reloc_status_type
2241 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2242 void *data, asection *input_section,
2243 bfd *output_bfd, char **error_message)
2244 {
2245 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2246 || bfd_is_und_section (bfd_get_section (symbol))
2247 || bfd_is_com_section (bfd_get_section (symbol)))
2248 /* The relocation is against a global symbol. */
2249 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2250 input_section, output_bfd,
2251 error_message);
2252
2253 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2254 input_section, output_bfd, error_message);
2255 }
2256
2257 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2258 is a straightforward 16 bit inplace relocation, but we must deal with
2259 any partnering high-part relocations as well. */
2260
2261 bfd_reloc_status_type
2262 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2263 void *data, asection *input_section,
2264 bfd *output_bfd, char **error_message)
2265 {
2266 bfd_vma vallo;
2267 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2268
2269 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2270 return bfd_reloc_outofrange;
2271
2272 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2273 location);
2274 vallo = bfd_get_32 (abfd, location);
2275 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2276 location);
2277
2278 while (mips_hi16_list != NULL)
2279 {
2280 bfd_reloc_status_type ret;
2281 struct mips_hi16 *hi;
2282
2283 hi = mips_hi16_list;
2284
2285 /* R_MIPS*_GOT16 relocations are something of a special case. We
2286 want to install the addend in the same way as for a R_MIPS*_HI16
2287 relocation (with a rightshift of 16). However, since GOT16
2288 relocations can also be used with global symbols, their howto
2289 has a rightshift of 0. */
2290 if (hi->rel.howto->type == R_MIPS_GOT16)
2291 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2292 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2293 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2294 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2295 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2296
2297 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2298 carry or borrow will induce a change of +1 or -1 in the high part. */
2299 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2300
2301 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2302 hi->input_section, output_bfd,
2303 error_message);
2304 if (ret != bfd_reloc_ok)
2305 return ret;
2306
2307 mips_hi16_list = hi->next;
2308 free (hi);
2309 }
2310
2311 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2312 input_section, output_bfd,
2313 error_message);
2314 }
2315
2316 /* A generic howto special_function. This calculates and installs the
2317 relocation itself, thus avoiding the oft-discussed problems in
2318 bfd_perform_relocation and bfd_install_relocation. */
2319
2320 bfd_reloc_status_type
2321 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2322 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2323 asection *input_section, bfd *output_bfd,
2324 char **error_message ATTRIBUTE_UNUSED)
2325 {
2326 bfd_signed_vma val;
2327 bfd_reloc_status_type status;
2328 bfd_boolean relocatable;
2329
2330 relocatable = (output_bfd != NULL);
2331
2332 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2333 return bfd_reloc_outofrange;
2334
2335 /* Build up the field adjustment in VAL. */
2336 val = 0;
2337 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2338 {
2339 /* Either we're calculating the final field value or we have a
2340 relocation against a section symbol. Add in the section's
2341 offset or address. */
2342 val += symbol->section->output_section->vma;
2343 val += symbol->section->output_offset;
2344 }
2345
2346 if (!relocatable)
2347 {
2348 /* We're calculating the final field value. Add in the symbol's value
2349 and, if pc-relative, subtract the address of the field itself. */
2350 val += symbol->value;
2351 if (reloc_entry->howto->pc_relative)
2352 {
2353 val -= input_section->output_section->vma;
2354 val -= input_section->output_offset;
2355 val -= reloc_entry->address;
2356 }
2357 }
2358
2359 /* VAL is now the final adjustment. If we're keeping this relocation
2360 in the output file, and if the relocation uses a separate addend,
2361 we just need to add VAL to that addend. Otherwise we need to add
2362 VAL to the relocation field itself. */
2363 if (relocatable && !reloc_entry->howto->partial_inplace)
2364 reloc_entry->addend += val;
2365 else
2366 {
2367 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2368
2369 /* Add in the separate addend, if any. */
2370 val += reloc_entry->addend;
2371
2372 /* Add VAL to the relocation field. */
2373 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2374 location);
2375 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2376 location);
2377 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2378 location);
2379
2380 if (status != bfd_reloc_ok)
2381 return status;
2382 }
2383
2384 if (relocatable)
2385 reloc_entry->address += input_section->output_offset;
2386
2387 return bfd_reloc_ok;
2388 }
2389 \f
2390 /* Swap an entry in a .gptab section. Note that these routines rely
2391 on the equivalence of the two elements of the union. */
2392
2393 static void
2394 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2395 Elf32_gptab *in)
2396 {
2397 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2398 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2399 }
2400
2401 static void
2402 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2403 Elf32_External_gptab *ex)
2404 {
2405 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2406 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2407 }
2408
2409 static void
2410 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2411 Elf32_External_compact_rel *ex)
2412 {
2413 H_PUT_32 (abfd, in->id1, ex->id1);
2414 H_PUT_32 (abfd, in->num, ex->num);
2415 H_PUT_32 (abfd, in->id2, ex->id2);
2416 H_PUT_32 (abfd, in->offset, ex->offset);
2417 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2418 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2419 }
2420
2421 static void
2422 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2423 Elf32_External_crinfo *ex)
2424 {
2425 unsigned long l;
2426
2427 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2428 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2429 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2430 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2431 H_PUT_32 (abfd, l, ex->info);
2432 H_PUT_32 (abfd, in->konst, ex->konst);
2433 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2434 }
2435 \f
2436 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2437 routines swap this structure in and out. They are used outside of
2438 BFD, so they are globally visible. */
2439
2440 void
2441 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2442 Elf32_RegInfo *in)
2443 {
2444 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2445 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2446 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2447 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2448 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2449 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2450 }
2451
2452 void
2453 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2454 Elf32_External_RegInfo *ex)
2455 {
2456 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2457 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2458 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2459 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2460 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2461 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2462 }
2463
2464 /* In the 64 bit ABI, the .MIPS.options section holds register
2465 information in an Elf64_Reginfo structure. These routines swap
2466 them in and out. They are globally visible because they are used
2467 outside of BFD. These routines are here so that gas can call them
2468 without worrying about whether the 64 bit ABI has been included. */
2469
2470 void
2471 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2472 Elf64_Internal_RegInfo *in)
2473 {
2474 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2475 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2476 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2477 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2478 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2479 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2480 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2481 }
2482
2483 void
2484 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2485 Elf64_External_RegInfo *ex)
2486 {
2487 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2488 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2489 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2490 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2491 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2492 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2493 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2494 }
2495
2496 /* Swap in an options header. */
2497
2498 void
2499 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2500 Elf_Internal_Options *in)
2501 {
2502 in->kind = H_GET_8 (abfd, ex->kind);
2503 in->size = H_GET_8 (abfd, ex->size);
2504 in->section = H_GET_16 (abfd, ex->section);
2505 in->info = H_GET_32 (abfd, ex->info);
2506 }
2507
2508 /* Swap out an options header. */
2509
2510 void
2511 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2512 Elf_External_Options *ex)
2513 {
2514 H_PUT_8 (abfd, in->kind, ex->kind);
2515 H_PUT_8 (abfd, in->size, ex->size);
2516 H_PUT_16 (abfd, in->section, ex->section);
2517 H_PUT_32 (abfd, in->info, ex->info);
2518 }
2519 \f
2520 /* This function is called via qsort() to sort the dynamic relocation
2521 entries by increasing r_symndx value. */
2522
2523 static int
2524 sort_dynamic_relocs (const void *arg1, const void *arg2)
2525 {
2526 Elf_Internal_Rela int_reloc1;
2527 Elf_Internal_Rela int_reloc2;
2528 int diff;
2529
2530 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2531 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2532
2533 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2534 if (diff != 0)
2535 return diff;
2536
2537 if (int_reloc1.r_offset < int_reloc2.r_offset)
2538 return -1;
2539 if (int_reloc1.r_offset > int_reloc2.r_offset)
2540 return 1;
2541 return 0;
2542 }
2543
2544 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2545
2546 static int
2547 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2548 const void *arg2 ATTRIBUTE_UNUSED)
2549 {
2550 #ifdef BFD64
2551 Elf_Internal_Rela int_reloc1[3];
2552 Elf_Internal_Rela int_reloc2[3];
2553
2554 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2555 (reldyn_sorting_bfd, arg1, int_reloc1);
2556 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2557 (reldyn_sorting_bfd, arg2, int_reloc2);
2558
2559 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2560 return -1;
2561 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2562 return 1;
2563
2564 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2565 return -1;
2566 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2567 return 1;
2568 return 0;
2569 #else
2570 abort ();
2571 #endif
2572 }
2573
2574
2575 /* This routine is used to write out ECOFF debugging external symbol
2576 information. It is called via mips_elf_link_hash_traverse. The
2577 ECOFF external symbol information must match the ELF external
2578 symbol information. Unfortunately, at this point we don't know
2579 whether a symbol is required by reloc information, so the two
2580 tables may wind up being different. We must sort out the external
2581 symbol information before we can set the final size of the .mdebug
2582 section, and we must set the size of the .mdebug section before we
2583 can relocate any sections, and we can't know which symbols are
2584 required by relocation until we relocate the sections.
2585 Fortunately, it is relatively unlikely that any symbol will be
2586 stripped but required by a reloc. In particular, it can not happen
2587 when generating a final executable. */
2588
2589 static bfd_boolean
2590 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2591 {
2592 struct extsym_info *einfo = data;
2593 bfd_boolean strip;
2594 asection *sec, *output_section;
2595
2596 if (h->root.indx == -2)
2597 strip = FALSE;
2598 else if ((h->root.def_dynamic
2599 || h->root.ref_dynamic
2600 || h->root.type == bfd_link_hash_new)
2601 && !h->root.def_regular
2602 && !h->root.ref_regular)
2603 strip = TRUE;
2604 else if (einfo->info->strip == strip_all
2605 || (einfo->info->strip == strip_some
2606 && bfd_hash_lookup (einfo->info->keep_hash,
2607 h->root.root.root.string,
2608 FALSE, FALSE) == NULL))
2609 strip = TRUE;
2610 else
2611 strip = FALSE;
2612
2613 if (strip)
2614 return TRUE;
2615
2616 if (h->esym.ifd == -2)
2617 {
2618 h->esym.jmptbl = 0;
2619 h->esym.cobol_main = 0;
2620 h->esym.weakext = 0;
2621 h->esym.reserved = 0;
2622 h->esym.ifd = ifdNil;
2623 h->esym.asym.value = 0;
2624 h->esym.asym.st = stGlobal;
2625
2626 if (h->root.root.type == bfd_link_hash_undefined
2627 || h->root.root.type == bfd_link_hash_undefweak)
2628 {
2629 const char *name;
2630
2631 /* Use undefined class. Also, set class and type for some
2632 special symbols. */
2633 name = h->root.root.root.string;
2634 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2635 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2636 {
2637 h->esym.asym.sc = scData;
2638 h->esym.asym.st = stLabel;
2639 h->esym.asym.value = 0;
2640 }
2641 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2642 {
2643 h->esym.asym.sc = scAbs;
2644 h->esym.asym.st = stLabel;
2645 h->esym.asym.value =
2646 mips_elf_hash_table (einfo->info)->procedure_count;
2647 }
2648 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2649 {
2650 h->esym.asym.sc = scAbs;
2651 h->esym.asym.st = stLabel;
2652 h->esym.asym.value = elf_gp (einfo->abfd);
2653 }
2654 else
2655 h->esym.asym.sc = scUndefined;
2656 }
2657 else if (h->root.root.type != bfd_link_hash_defined
2658 && h->root.root.type != bfd_link_hash_defweak)
2659 h->esym.asym.sc = scAbs;
2660 else
2661 {
2662 const char *name;
2663
2664 sec = h->root.root.u.def.section;
2665 output_section = sec->output_section;
2666
2667 /* When making a shared library and symbol h is the one from
2668 the another shared library, OUTPUT_SECTION may be null. */
2669 if (output_section == NULL)
2670 h->esym.asym.sc = scUndefined;
2671 else
2672 {
2673 name = bfd_section_name (output_section->owner, output_section);
2674
2675 if (strcmp (name, ".text") == 0)
2676 h->esym.asym.sc = scText;
2677 else if (strcmp (name, ".data") == 0)
2678 h->esym.asym.sc = scData;
2679 else if (strcmp (name, ".sdata") == 0)
2680 h->esym.asym.sc = scSData;
2681 else if (strcmp (name, ".rodata") == 0
2682 || strcmp (name, ".rdata") == 0)
2683 h->esym.asym.sc = scRData;
2684 else if (strcmp (name, ".bss") == 0)
2685 h->esym.asym.sc = scBss;
2686 else if (strcmp (name, ".sbss") == 0)
2687 h->esym.asym.sc = scSBss;
2688 else if (strcmp (name, ".init") == 0)
2689 h->esym.asym.sc = scInit;
2690 else if (strcmp (name, ".fini") == 0)
2691 h->esym.asym.sc = scFini;
2692 else
2693 h->esym.asym.sc = scAbs;
2694 }
2695 }
2696
2697 h->esym.asym.reserved = 0;
2698 h->esym.asym.index = indexNil;
2699 }
2700
2701 if (h->root.root.type == bfd_link_hash_common)
2702 h->esym.asym.value = h->root.root.u.c.size;
2703 else if (h->root.root.type == bfd_link_hash_defined
2704 || h->root.root.type == bfd_link_hash_defweak)
2705 {
2706 if (h->esym.asym.sc == scCommon)
2707 h->esym.asym.sc = scBss;
2708 else if (h->esym.asym.sc == scSCommon)
2709 h->esym.asym.sc = scSBss;
2710
2711 sec = h->root.root.u.def.section;
2712 output_section = sec->output_section;
2713 if (output_section != NULL)
2714 h->esym.asym.value = (h->root.root.u.def.value
2715 + sec->output_offset
2716 + output_section->vma);
2717 else
2718 h->esym.asym.value = 0;
2719 }
2720 else
2721 {
2722 struct mips_elf_link_hash_entry *hd = h;
2723
2724 while (hd->root.root.type == bfd_link_hash_indirect)
2725 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2726
2727 if (hd->needs_lazy_stub)
2728 {
2729 /* Set type and value for a symbol with a function stub. */
2730 h->esym.asym.st = stProc;
2731 sec = hd->root.root.u.def.section;
2732 if (sec == NULL)
2733 h->esym.asym.value = 0;
2734 else
2735 {
2736 output_section = sec->output_section;
2737 if (output_section != NULL)
2738 h->esym.asym.value = (hd->root.plt.offset
2739 + sec->output_offset
2740 + output_section->vma);
2741 else
2742 h->esym.asym.value = 0;
2743 }
2744 }
2745 }
2746
2747 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2748 h->root.root.root.string,
2749 &h->esym))
2750 {
2751 einfo->failed = TRUE;
2752 return FALSE;
2753 }
2754
2755 return TRUE;
2756 }
2757
2758 /* A comparison routine used to sort .gptab entries. */
2759
2760 static int
2761 gptab_compare (const void *p1, const void *p2)
2762 {
2763 const Elf32_gptab *a1 = p1;
2764 const Elf32_gptab *a2 = p2;
2765
2766 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2767 }
2768 \f
2769 /* Functions to manage the got entry hash table. */
2770
2771 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2772 hash number. */
2773
2774 static INLINE hashval_t
2775 mips_elf_hash_bfd_vma (bfd_vma addr)
2776 {
2777 #ifdef BFD64
2778 return addr + (addr >> 32);
2779 #else
2780 return addr;
2781 #endif
2782 }
2783
2784 static hashval_t
2785 mips_elf_got_entry_hash (const void *entry_)
2786 {
2787 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2788
2789 return (entry->symndx
2790 + ((entry->tls_type == GOT_TLS_LDM) << 18)
2791 + (entry->tls_type == GOT_TLS_LDM ? 0
2792 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2793 : entry->symndx >= 0 ? (entry->abfd->id
2794 + mips_elf_hash_bfd_vma (entry->d.addend))
2795 : entry->d.h->root.root.root.hash));
2796 }
2797
2798 static int
2799 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2800 {
2801 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2802 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2803
2804 return (e1->symndx == e2->symndx
2805 && e1->tls_type == e2->tls_type
2806 && (e1->tls_type == GOT_TLS_LDM ? TRUE
2807 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2808 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2809 && e1->d.addend == e2->d.addend)
2810 : e2->abfd && e1->d.h == e2->d.h));
2811 }
2812
2813 static hashval_t
2814 mips_got_page_ref_hash (const void *ref_)
2815 {
2816 const struct mips_got_page_ref *ref;
2817
2818 ref = (const struct mips_got_page_ref *) ref_;
2819 return ((ref->symndx >= 0
2820 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
2821 : ref->u.h->root.root.root.hash)
2822 + mips_elf_hash_bfd_vma (ref->addend));
2823 }
2824
2825 static int
2826 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
2827 {
2828 const struct mips_got_page_ref *ref1, *ref2;
2829
2830 ref1 = (const struct mips_got_page_ref *) ref1_;
2831 ref2 = (const struct mips_got_page_ref *) ref2_;
2832 return (ref1->symndx == ref2->symndx
2833 && (ref1->symndx < 0
2834 ? ref1->u.h == ref2->u.h
2835 : ref1->u.abfd == ref2->u.abfd)
2836 && ref1->addend == ref2->addend);
2837 }
2838
2839 static hashval_t
2840 mips_got_page_entry_hash (const void *entry_)
2841 {
2842 const struct mips_got_page_entry *entry;
2843
2844 entry = (const struct mips_got_page_entry *) entry_;
2845 return entry->sec->id;
2846 }
2847
2848 static int
2849 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2850 {
2851 const struct mips_got_page_entry *entry1, *entry2;
2852
2853 entry1 = (const struct mips_got_page_entry *) entry1_;
2854 entry2 = (const struct mips_got_page_entry *) entry2_;
2855 return entry1->sec == entry2->sec;
2856 }
2857 \f
2858 /* Create and return a new mips_got_info structure. */
2859
2860 static struct mips_got_info *
2861 mips_elf_create_got_info (bfd *abfd)
2862 {
2863 struct mips_got_info *g;
2864
2865 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2866 if (g == NULL)
2867 return NULL;
2868
2869 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2870 mips_elf_got_entry_eq, NULL);
2871 if (g->got_entries == NULL)
2872 return NULL;
2873
2874 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
2875 mips_got_page_ref_eq, NULL);
2876 if (g->got_page_refs == NULL)
2877 return NULL;
2878
2879 return g;
2880 }
2881
2882 /* Return the GOT info for input bfd ABFD, trying to create a new one if
2883 CREATE_P and if ABFD doesn't already have a GOT. */
2884
2885 static struct mips_got_info *
2886 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
2887 {
2888 struct mips_elf_obj_tdata *tdata;
2889
2890 if (!is_mips_elf (abfd))
2891 return NULL;
2892
2893 tdata = mips_elf_tdata (abfd);
2894 if (!tdata->got && create_p)
2895 tdata->got = mips_elf_create_got_info (abfd);
2896 return tdata->got;
2897 }
2898
2899 /* Record that ABFD should use output GOT G. */
2900
2901 static void
2902 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
2903 {
2904 struct mips_elf_obj_tdata *tdata;
2905
2906 BFD_ASSERT (is_mips_elf (abfd));
2907 tdata = mips_elf_tdata (abfd);
2908 if (tdata->got)
2909 {
2910 /* The GOT structure itself and the hash table entries are
2911 allocated to a bfd, but the hash tables aren't. */
2912 htab_delete (tdata->got->got_entries);
2913 htab_delete (tdata->got->got_page_refs);
2914 if (tdata->got->got_page_entries)
2915 htab_delete (tdata->got->got_page_entries);
2916 }
2917 tdata->got = g;
2918 }
2919
2920 /* Return the dynamic relocation section. If it doesn't exist, try to
2921 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2922 if creation fails. */
2923
2924 static asection *
2925 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2926 {
2927 const char *dname;
2928 asection *sreloc;
2929 bfd *dynobj;
2930
2931 dname = MIPS_ELF_REL_DYN_NAME (info);
2932 dynobj = elf_hash_table (info)->dynobj;
2933 sreloc = bfd_get_linker_section (dynobj, dname);
2934 if (sreloc == NULL && create_p)
2935 {
2936 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2937 (SEC_ALLOC
2938 | SEC_LOAD
2939 | SEC_HAS_CONTENTS
2940 | SEC_IN_MEMORY
2941 | SEC_LINKER_CREATED
2942 | SEC_READONLY));
2943 if (sreloc == NULL
2944 || ! bfd_set_section_alignment (dynobj, sreloc,
2945 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2946 return NULL;
2947 }
2948 return sreloc;
2949 }
2950
2951 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2952
2953 static int
2954 mips_elf_reloc_tls_type (unsigned int r_type)
2955 {
2956 if (tls_gd_reloc_p (r_type))
2957 return GOT_TLS_GD;
2958
2959 if (tls_ldm_reloc_p (r_type))
2960 return GOT_TLS_LDM;
2961
2962 if (tls_gottprel_reloc_p (r_type))
2963 return GOT_TLS_IE;
2964
2965 return GOT_TLS_NONE;
2966 }
2967
2968 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
2969
2970 static int
2971 mips_tls_got_entries (unsigned int type)
2972 {
2973 switch (type)
2974 {
2975 case GOT_TLS_GD:
2976 case GOT_TLS_LDM:
2977 return 2;
2978
2979 case GOT_TLS_IE:
2980 return 1;
2981
2982 case GOT_TLS_NONE:
2983 return 0;
2984 }
2985 abort ();
2986 }
2987
2988 /* Count the number of relocations needed for a TLS GOT entry, with
2989 access types from TLS_TYPE, and symbol H (or a local symbol if H
2990 is NULL). */
2991
2992 static int
2993 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2994 struct elf_link_hash_entry *h)
2995 {
2996 int indx = 0;
2997 bfd_boolean need_relocs = FALSE;
2998 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2999
3000 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3001 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3002 indx = h->dynindx;
3003
3004 if ((info->shared || indx != 0)
3005 && (h == NULL
3006 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3007 || h->root.type != bfd_link_hash_undefweak))
3008 need_relocs = TRUE;
3009
3010 if (!need_relocs)
3011 return 0;
3012
3013 switch (tls_type)
3014 {
3015 case GOT_TLS_GD:
3016 return indx != 0 ? 2 : 1;
3017
3018 case GOT_TLS_IE:
3019 return 1;
3020
3021 case GOT_TLS_LDM:
3022 return info->shared ? 1 : 0;
3023
3024 default:
3025 return 0;
3026 }
3027 }
3028
3029 /* Add the number of GOT entries and TLS relocations required by ENTRY
3030 to G. */
3031
3032 static void
3033 mips_elf_count_got_entry (struct bfd_link_info *info,
3034 struct mips_got_info *g,
3035 struct mips_got_entry *entry)
3036 {
3037 if (entry->tls_type)
3038 {
3039 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3040 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3041 entry->symndx < 0
3042 ? &entry->d.h->root : NULL);
3043 }
3044 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3045 g->local_gotno += 1;
3046 else
3047 g->global_gotno += 1;
3048 }
3049
3050 /* Output a simple dynamic relocation into SRELOC. */
3051
3052 static void
3053 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3054 asection *sreloc,
3055 unsigned long reloc_index,
3056 unsigned long indx,
3057 int r_type,
3058 bfd_vma offset)
3059 {
3060 Elf_Internal_Rela rel[3];
3061
3062 memset (rel, 0, sizeof (rel));
3063
3064 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3065 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3066
3067 if (ABI_64_P (output_bfd))
3068 {
3069 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3070 (output_bfd, &rel[0],
3071 (sreloc->contents
3072 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3073 }
3074 else
3075 bfd_elf32_swap_reloc_out
3076 (output_bfd, &rel[0],
3077 (sreloc->contents
3078 + reloc_index * sizeof (Elf32_External_Rel)));
3079 }
3080
3081 /* Initialize a set of TLS GOT entries for one symbol. */
3082
3083 static void
3084 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3085 struct mips_got_entry *entry,
3086 struct mips_elf_link_hash_entry *h,
3087 bfd_vma value)
3088 {
3089 struct mips_elf_link_hash_table *htab;
3090 int indx;
3091 asection *sreloc, *sgot;
3092 bfd_vma got_offset, got_offset2;
3093 bfd_boolean need_relocs = FALSE;
3094
3095 htab = mips_elf_hash_table (info);
3096 if (htab == NULL)
3097 return;
3098
3099 sgot = htab->sgot;
3100
3101 indx = 0;
3102 if (h != NULL)
3103 {
3104 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3105
3106 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3107 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3108 indx = h->root.dynindx;
3109 }
3110
3111 if (entry->tls_initialized)
3112 return;
3113
3114 if ((info->shared || indx != 0)
3115 && (h == NULL
3116 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3117 || h->root.type != bfd_link_hash_undefweak))
3118 need_relocs = TRUE;
3119
3120 /* MINUS_ONE means the symbol is not defined in this object. It may not
3121 be defined at all; assume that the value doesn't matter in that
3122 case. Otherwise complain if we would use the value. */
3123 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3124 || h->root.root.type == bfd_link_hash_undefweak);
3125
3126 /* Emit necessary relocations. */
3127 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3128 got_offset = entry->gotidx;
3129
3130 switch (entry->tls_type)
3131 {
3132 case GOT_TLS_GD:
3133 /* General Dynamic. */
3134 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3135
3136 if (need_relocs)
3137 {
3138 mips_elf_output_dynamic_relocation
3139 (abfd, sreloc, sreloc->reloc_count++, indx,
3140 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3141 sgot->output_offset + sgot->output_section->vma + got_offset);
3142
3143 if (indx)
3144 mips_elf_output_dynamic_relocation
3145 (abfd, sreloc, sreloc->reloc_count++, indx,
3146 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3147 sgot->output_offset + sgot->output_section->vma + got_offset2);
3148 else
3149 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3150 sgot->contents + got_offset2);
3151 }
3152 else
3153 {
3154 MIPS_ELF_PUT_WORD (abfd, 1,
3155 sgot->contents + got_offset);
3156 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3157 sgot->contents + got_offset2);
3158 }
3159 break;
3160
3161 case GOT_TLS_IE:
3162 /* Initial Exec model. */
3163 if (need_relocs)
3164 {
3165 if (indx == 0)
3166 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3167 sgot->contents + got_offset);
3168 else
3169 MIPS_ELF_PUT_WORD (abfd, 0,
3170 sgot->contents + got_offset);
3171
3172 mips_elf_output_dynamic_relocation
3173 (abfd, sreloc, sreloc->reloc_count++, indx,
3174 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3175 sgot->output_offset + sgot->output_section->vma + got_offset);
3176 }
3177 else
3178 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3179 sgot->contents + got_offset);
3180 break;
3181
3182 case GOT_TLS_LDM:
3183 /* The initial offset is zero, and the LD offsets will include the
3184 bias by DTP_OFFSET. */
3185 MIPS_ELF_PUT_WORD (abfd, 0,
3186 sgot->contents + got_offset
3187 + MIPS_ELF_GOT_SIZE (abfd));
3188
3189 if (!info->shared)
3190 MIPS_ELF_PUT_WORD (abfd, 1,
3191 sgot->contents + got_offset);
3192 else
3193 mips_elf_output_dynamic_relocation
3194 (abfd, sreloc, sreloc->reloc_count++, indx,
3195 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3196 sgot->output_offset + sgot->output_section->vma + got_offset);
3197 break;
3198
3199 default:
3200 abort ();
3201 }
3202
3203 entry->tls_initialized = TRUE;
3204 }
3205
3206 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3207 for global symbol H. .got.plt comes before the GOT, so the offset
3208 will be negative. */
3209
3210 static bfd_vma
3211 mips_elf_gotplt_index (struct bfd_link_info *info,
3212 struct elf_link_hash_entry *h)
3213 {
3214 bfd_vma plt_index, got_address, got_value;
3215 struct mips_elf_link_hash_table *htab;
3216
3217 htab = mips_elf_hash_table (info);
3218 BFD_ASSERT (htab != NULL);
3219
3220 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3221
3222 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3223 section starts with reserved entries. */
3224 BFD_ASSERT (htab->is_vxworks);
3225
3226 /* Calculate the index of the symbol's PLT entry. */
3227 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3228
3229 /* Calculate the address of the associated .got.plt entry. */
3230 got_address = (htab->sgotplt->output_section->vma
3231 + htab->sgotplt->output_offset
3232 + plt_index * 4);
3233
3234 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3235 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3236 + htab->root.hgot->root.u.def.section->output_offset
3237 + htab->root.hgot->root.u.def.value);
3238
3239 return got_address - got_value;
3240 }
3241
3242 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3243 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3244 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3245 offset can be found. */
3246
3247 static bfd_vma
3248 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3249 bfd_vma value, unsigned long r_symndx,
3250 struct mips_elf_link_hash_entry *h, int r_type)
3251 {
3252 struct mips_elf_link_hash_table *htab;
3253 struct mips_got_entry *entry;
3254
3255 htab = mips_elf_hash_table (info);
3256 BFD_ASSERT (htab != NULL);
3257
3258 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3259 r_symndx, h, r_type);
3260 if (!entry)
3261 return MINUS_ONE;
3262
3263 if (entry->tls_type)
3264 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3265 return entry->gotidx;
3266 }
3267
3268 /* Return the GOT index of global symbol H in the primary GOT. */
3269
3270 static bfd_vma
3271 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3272 struct elf_link_hash_entry *h)
3273 {
3274 struct mips_elf_link_hash_table *htab;
3275 long global_got_dynindx;
3276 struct mips_got_info *g;
3277 bfd_vma got_index;
3278
3279 htab = mips_elf_hash_table (info);
3280 BFD_ASSERT (htab != NULL);
3281
3282 global_got_dynindx = 0;
3283 if (htab->global_gotsym != NULL)
3284 global_got_dynindx = htab->global_gotsym->dynindx;
3285
3286 /* Once we determine the global GOT entry with the lowest dynamic
3287 symbol table index, we must put all dynamic symbols with greater
3288 indices into the primary GOT. That makes it easy to calculate the
3289 GOT offset. */
3290 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3291 g = mips_elf_bfd_got (obfd, FALSE);
3292 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3293 * MIPS_ELF_GOT_SIZE (obfd));
3294 BFD_ASSERT (got_index < htab->sgot->size);
3295
3296 return got_index;
3297 }
3298
3299 /* Return the GOT index for the global symbol indicated by H, which is
3300 referenced by a relocation of type R_TYPE in IBFD. */
3301
3302 static bfd_vma
3303 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3304 struct elf_link_hash_entry *h, int r_type)
3305 {
3306 struct mips_elf_link_hash_table *htab;
3307 struct mips_got_info *g;
3308 struct mips_got_entry lookup, *entry;
3309 bfd_vma gotidx;
3310
3311 htab = mips_elf_hash_table (info);
3312 BFD_ASSERT (htab != NULL);
3313
3314 g = mips_elf_bfd_got (ibfd, FALSE);
3315 BFD_ASSERT (g);
3316
3317 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3318 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3319 return mips_elf_primary_global_got_index (obfd, info, h);
3320
3321 lookup.abfd = ibfd;
3322 lookup.symndx = -1;
3323 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3324 entry = htab_find (g->got_entries, &lookup);
3325 BFD_ASSERT (entry);
3326
3327 gotidx = entry->gotidx;
3328 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3329
3330 if (lookup.tls_type)
3331 {
3332 bfd_vma value = MINUS_ONE;
3333
3334 if ((h->root.type == bfd_link_hash_defined
3335 || h->root.type == bfd_link_hash_defweak)
3336 && h->root.u.def.section->output_section)
3337 value = (h->root.u.def.value
3338 + h->root.u.def.section->output_offset
3339 + h->root.u.def.section->output_section->vma);
3340
3341 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3342 }
3343 return gotidx;
3344 }
3345
3346 /* Find a GOT page entry that points to within 32KB of VALUE. These
3347 entries are supposed to be placed at small offsets in the GOT, i.e.,
3348 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3349 entry could be created. If OFFSETP is nonnull, use it to return the
3350 offset of the GOT entry from VALUE. */
3351
3352 static bfd_vma
3353 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3354 bfd_vma value, bfd_vma *offsetp)
3355 {
3356 bfd_vma page, got_index;
3357 struct mips_got_entry *entry;
3358
3359 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3360 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3361 NULL, R_MIPS_GOT_PAGE);
3362
3363 if (!entry)
3364 return MINUS_ONE;
3365
3366 got_index = entry->gotidx;
3367
3368 if (offsetp)
3369 *offsetp = value - entry->d.address;
3370
3371 return got_index;
3372 }
3373
3374 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3375 EXTERNAL is true if the relocation was originally against a global
3376 symbol that binds locally. */
3377
3378 static bfd_vma
3379 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3380 bfd_vma value, bfd_boolean external)
3381 {
3382 struct mips_got_entry *entry;
3383
3384 /* GOT16 relocations against local symbols are followed by a LO16
3385 relocation; those against global symbols are not. Thus if the
3386 symbol was originally local, the GOT16 relocation should load the
3387 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3388 if (! external)
3389 value = mips_elf_high (value) << 16;
3390
3391 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3392 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3393 same in all cases. */
3394 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3395 NULL, R_MIPS_GOT16);
3396 if (entry)
3397 return entry->gotidx;
3398 else
3399 return MINUS_ONE;
3400 }
3401
3402 /* Returns the offset for the entry at the INDEXth position
3403 in the GOT. */
3404
3405 static bfd_vma
3406 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3407 bfd *input_bfd, bfd_vma got_index)
3408 {
3409 struct mips_elf_link_hash_table *htab;
3410 asection *sgot;
3411 bfd_vma gp;
3412
3413 htab = mips_elf_hash_table (info);
3414 BFD_ASSERT (htab != NULL);
3415
3416 sgot = htab->sgot;
3417 gp = _bfd_get_gp_value (output_bfd)
3418 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3419
3420 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3421 }
3422
3423 /* Create and return a local GOT entry for VALUE, which was calculated
3424 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3425 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3426 instead. */
3427
3428 static struct mips_got_entry *
3429 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3430 bfd *ibfd, bfd_vma value,
3431 unsigned long r_symndx,
3432 struct mips_elf_link_hash_entry *h,
3433 int r_type)
3434 {
3435 struct mips_got_entry lookup, *entry;
3436 void **loc;
3437 struct mips_got_info *g;
3438 struct mips_elf_link_hash_table *htab;
3439 bfd_vma gotidx;
3440
3441 htab = mips_elf_hash_table (info);
3442 BFD_ASSERT (htab != NULL);
3443
3444 g = mips_elf_bfd_got (ibfd, FALSE);
3445 if (g == NULL)
3446 {
3447 g = mips_elf_bfd_got (abfd, FALSE);
3448 BFD_ASSERT (g != NULL);
3449 }
3450
3451 /* This function shouldn't be called for symbols that live in the global
3452 area of the GOT. */
3453 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3454
3455 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3456 if (lookup.tls_type)
3457 {
3458 lookup.abfd = ibfd;
3459 if (tls_ldm_reloc_p (r_type))
3460 {
3461 lookup.symndx = 0;
3462 lookup.d.addend = 0;
3463 }
3464 else if (h == NULL)
3465 {
3466 lookup.symndx = r_symndx;
3467 lookup.d.addend = 0;
3468 }
3469 else
3470 {
3471 lookup.symndx = -1;
3472 lookup.d.h = h;
3473 }
3474
3475 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3476 BFD_ASSERT (entry);
3477
3478 gotidx = entry->gotidx;
3479 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3480
3481 return entry;
3482 }
3483
3484 lookup.abfd = NULL;
3485 lookup.symndx = -1;
3486 lookup.d.address = value;
3487 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3488 if (!loc)
3489 return NULL;
3490
3491 entry = (struct mips_got_entry *) *loc;
3492 if (entry)
3493 return entry;
3494
3495 if (g->assigned_gotno >= g->local_gotno)
3496 {
3497 /* We didn't allocate enough space in the GOT. */
3498 (*_bfd_error_handler)
3499 (_("not enough GOT space for local GOT entries"));
3500 bfd_set_error (bfd_error_bad_value);
3501 return NULL;
3502 }
3503
3504 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3505 if (!entry)
3506 return NULL;
3507
3508 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3509 *entry = lookup;
3510 *loc = entry;
3511
3512 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3513
3514 /* These GOT entries need a dynamic relocation on VxWorks. */
3515 if (htab->is_vxworks)
3516 {
3517 Elf_Internal_Rela outrel;
3518 asection *s;
3519 bfd_byte *rloc;
3520 bfd_vma got_address;
3521
3522 s = mips_elf_rel_dyn_section (info, FALSE);
3523 got_address = (htab->sgot->output_section->vma
3524 + htab->sgot->output_offset
3525 + entry->gotidx);
3526
3527 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3528 outrel.r_offset = got_address;
3529 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3530 outrel.r_addend = value;
3531 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3532 }
3533
3534 return entry;
3535 }
3536
3537 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3538 The number might be exact or a worst-case estimate, depending on how
3539 much information is available to elf_backend_omit_section_dynsym at
3540 the current linking stage. */
3541
3542 static bfd_size_type
3543 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3544 {
3545 bfd_size_type count;
3546
3547 count = 0;
3548 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3549 {
3550 asection *p;
3551 const struct elf_backend_data *bed;
3552
3553 bed = get_elf_backend_data (output_bfd);
3554 for (p = output_bfd->sections; p ; p = p->next)
3555 if ((p->flags & SEC_EXCLUDE) == 0
3556 && (p->flags & SEC_ALLOC) != 0
3557 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3558 ++count;
3559 }
3560 return count;
3561 }
3562
3563 /* Sort the dynamic symbol table so that symbols that need GOT entries
3564 appear towards the end. */
3565
3566 static bfd_boolean
3567 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3568 {
3569 struct mips_elf_link_hash_table *htab;
3570 struct mips_elf_hash_sort_data hsd;
3571 struct mips_got_info *g;
3572
3573 if (elf_hash_table (info)->dynsymcount == 0)
3574 return TRUE;
3575
3576 htab = mips_elf_hash_table (info);
3577 BFD_ASSERT (htab != NULL);
3578
3579 g = htab->got_info;
3580 if (g == NULL)
3581 return TRUE;
3582
3583 hsd.low = NULL;
3584 hsd.max_unref_got_dynindx
3585 = hsd.min_got_dynindx
3586 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3587 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3588 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3589 elf_hash_table (info)),
3590 mips_elf_sort_hash_table_f,
3591 &hsd);
3592
3593 /* There should have been enough room in the symbol table to
3594 accommodate both the GOT and non-GOT symbols. */
3595 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3596 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3597 == elf_hash_table (info)->dynsymcount);
3598 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3599 == g->global_gotno);
3600
3601 /* Now we know which dynamic symbol has the lowest dynamic symbol
3602 table index in the GOT. */
3603 htab->global_gotsym = hsd.low;
3604
3605 return TRUE;
3606 }
3607
3608 /* If H needs a GOT entry, assign it the highest available dynamic
3609 index. Otherwise, assign it the lowest available dynamic
3610 index. */
3611
3612 static bfd_boolean
3613 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3614 {
3615 struct mips_elf_hash_sort_data *hsd = data;
3616
3617 /* Symbols without dynamic symbol table entries aren't interesting
3618 at all. */
3619 if (h->root.dynindx == -1)
3620 return TRUE;
3621
3622 switch (h->global_got_area)
3623 {
3624 case GGA_NONE:
3625 h->root.dynindx = hsd->max_non_got_dynindx++;
3626 break;
3627
3628 case GGA_NORMAL:
3629 h->root.dynindx = --hsd->min_got_dynindx;
3630 hsd->low = (struct elf_link_hash_entry *) h;
3631 break;
3632
3633 case GGA_RELOC_ONLY:
3634 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3635 hsd->low = (struct elf_link_hash_entry *) h;
3636 h->root.dynindx = hsd->max_unref_got_dynindx++;
3637 break;
3638 }
3639
3640 return TRUE;
3641 }
3642
3643 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3644 (which is owned by the caller and shouldn't be added to the
3645 hash table directly). */
3646
3647 static bfd_boolean
3648 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3649 struct mips_got_entry *lookup)
3650 {
3651 struct mips_elf_link_hash_table *htab;
3652 struct mips_got_entry *entry;
3653 struct mips_got_info *g;
3654 void **loc, **bfd_loc;
3655
3656 /* Make sure there's a slot for this entry in the master GOT. */
3657 htab = mips_elf_hash_table (info);
3658 g = htab->got_info;
3659 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3660 if (!loc)
3661 return FALSE;
3662
3663 /* Populate the entry if it isn't already. */
3664 entry = (struct mips_got_entry *) *loc;
3665 if (!entry)
3666 {
3667 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3668 if (!entry)
3669 return FALSE;
3670
3671 lookup->tls_initialized = FALSE;
3672 lookup->gotidx = -1;
3673 *entry = *lookup;
3674 *loc = entry;
3675 }
3676
3677 /* Reuse the same GOT entry for the BFD's GOT. */
3678 g = mips_elf_bfd_got (abfd, TRUE);
3679 if (!g)
3680 return FALSE;
3681
3682 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3683 if (!bfd_loc)
3684 return FALSE;
3685
3686 if (!*bfd_loc)
3687 *bfd_loc = entry;
3688 return TRUE;
3689 }
3690
3691 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3692 entry for it. FOR_CALL is true if the caller is only interested in
3693 using the GOT entry for calls. */
3694
3695 static bfd_boolean
3696 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3697 bfd *abfd, struct bfd_link_info *info,
3698 bfd_boolean for_call, int r_type)
3699 {
3700 struct mips_elf_link_hash_table *htab;
3701 struct mips_elf_link_hash_entry *hmips;
3702 struct mips_got_entry entry;
3703 unsigned char tls_type;
3704
3705 htab = mips_elf_hash_table (info);
3706 BFD_ASSERT (htab != NULL);
3707
3708 hmips = (struct mips_elf_link_hash_entry *) h;
3709 if (!for_call)
3710 hmips->got_only_for_calls = FALSE;
3711
3712 /* A global symbol in the GOT must also be in the dynamic symbol
3713 table. */
3714 if (h->dynindx == -1)
3715 {
3716 switch (ELF_ST_VISIBILITY (h->other))
3717 {
3718 case STV_INTERNAL:
3719 case STV_HIDDEN:
3720 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3721 break;
3722 }
3723 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3724 return FALSE;
3725 }
3726
3727 tls_type = mips_elf_reloc_tls_type (r_type);
3728 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3729 hmips->global_got_area = GGA_NORMAL;
3730
3731 entry.abfd = abfd;
3732 entry.symndx = -1;
3733 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3734 entry.tls_type = tls_type;
3735 return mips_elf_record_got_entry (info, abfd, &entry);
3736 }
3737
3738 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3739 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3740
3741 static bfd_boolean
3742 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3743 struct bfd_link_info *info, int r_type)
3744 {
3745 struct mips_elf_link_hash_table *htab;
3746 struct mips_got_info *g;
3747 struct mips_got_entry entry;
3748
3749 htab = mips_elf_hash_table (info);
3750 BFD_ASSERT (htab != NULL);
3751
3752 g = htab->got_info;
3753 BFD_ASSERT (g != NULL);
3754
3755 entry.abfd = abfd;
3756 entry.symndx = symndx;
3757 entry.d.addend = addend;
3758 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3759 return mips_elf_record_got_entry (info, abfd, &entry);
3760 }
3761
3762 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3763 H is the symbol's hash table entry, or null if SYMNDX is local
3764 to ABFD. */
3765
3766 static bfd_boolean
3767 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3768 long symndx, struct elf_link_hash_entry *h,
3769 bfd_signed_vma addend)
3770 {
3771 struct mips_elf_link_hash_table *htab;
3772 struct mips_got_info *g1, *g2;
3773 struct mips_got_page_ref lookup, *entry;
3774 void **loc, **bfd_loc;
3775
3776 htab = mips_elf_hash_table (info);
3777 BFD_ASSERT (htab != NULL);
3778
3779 g1 = htab->got_info;
3780 BFD_ASSERT (g1 != NULL);
3781
3782 if (h)
3783 {
3784 lookup.symndx = -1;
3785 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
3786 }
3787 else
3788 {
3789 lookup.symndx = symndx;
3790 lookup.u.abfd = abfd;
3791 }
3792 lookup.addend = addend;
3793 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
3794 if (loc == NULL)
3795 return FALSE;
3796
3797 entry = (struct mips_got_page_ref *) *loc;
3798 if (!entry)
3799 {
3800 entry = bfd_alloc (abfd, sizeof (*entry));
3801 if (!entry)
3802 return FALSE;
3803
3804 *entry = lookup;
3805 *loc = entry;
3806 }
3807
3808 /* Add the same entry to the BFD's GOT. */
3809 g2 = mips_elf_bfd_got (abfd, TRUE);
3810 if (!g2)
3811 return FALSE;
3812
3813 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
3814 if (!bfd_loc)
3815 return FALSE;
3816
3817 if (!*bfd_loc)
3818 *bfd_loc = entry;
3819
3820 return TRUE;
3821 }
3822
3823 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3824
3825 static void
3826 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3827 unsigned int n)
3828 {
3829 asection *s;
3830 struct mips_elf_link_hash_table *htab;
3831
3832 htab = mips_elf_hash_table (info);
3833 BFD_ASSERT (htab != NULL);
3834
3835 s = mips_elf_rel_dyn_section (info, FALSE);
3836 BFD_ASSERT (s != NULL);
3837
3838 if (htab->is_vxworks)
3839 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3840 else
3841 {
3842 if (s->size == 0)
3843 {
3844 /* Make room for a null element. */
3845 s->size += MIPS_ELF_REL_SIZE (abfd);
3846 ++s->reloc_count;
3847 }
3848 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3849 }
3850 }
3851 \f
3852 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3853 mips_elf_traverse_got_arg structure. Count the number of GOT
3854 entries and TLS relocs. Set DATA->value to true if we need
3855 to resolve indirect or warning symbols and then recreate the GOT. */
3856
3857 static int
3858 mips_elf_check_recreate_got (void **entryp, void *data)
3859 {
3860 struct mips_got_entry *entry;
3861 struct mips_elf_traverse_got_arg *arg;
3862
3863 entry = (struct mips_got_entry *) *entryp;
3864 arg = (struct mips_elf_traverse_got_arg *) data;
3865 if (entry->abfd != NULL && entry->symndx == -1)
3866 {
3867 struct mips_elf_link_hash_entry *h;
3868
3869 h = entry->d.h;
3870 if (h->root.root.type == bfd_link_hash_indirect
3871 || h->root.root.type == bfd_link_hash_warning)
3872 {
3873 arg->value = TRUE;
3874 return 0;
3875 }
3876 }
3877 mips_elf_count_got_entry (arg->info, arg->g, entry);
3878 return 1;
3879 }
3880
3881 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3882 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
3883 converting entries for indirect and warning symbols into entries
3884 for the target symbol. Set DATA->g to null on error. */
3885
3886 static int
3887 mips_elf_recreate_got (void **entryp, void *data)
3888 {
3889 struct mips_got_entry new_entry, *entry;
3890 struct mips_elf_traverse_got_arg *arg;
3891 void **slot;
3892
3893 entry = (struct mips_got_entry *) *entryp;
3894 arg = (struct mips_elf_traverse_got_arg *) data;
3895 if (entry->abfd != NULL
3896 && entry->symndx == -1
3897 && (entry->d.h->root.root.type == bfd_link_hash_indirect
3898 || entry->d.h->root.root.type == bfd_link_hash_warning))
3899 {
3900 struct mips_elf_link_hash_entry *h;
3901
3902 new_entry = *entry;
3903 entry = &new_entry;
3904 h = entry->d.h;
3905 do
3906 {
3907 BFD_ASSERT (h->global_got_area == GGA_NONE);
3908 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3909 }
3910 while (h->root.root.type == bfd_link_hash_indirect
3911 || h->root.root.type == bfd_link_hash_warning);
3912 entry->d.h = h;
3913 }
3914 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
3915 if (slot == NULL)
3916 {
3917 arg->g = NULL;
3918 return 0;
3919 }
3920 if (*slot == NULL)
3921 {
3922 if (entry == &new_entry)
3923 {
3924 entry = bfd_alloc (entry->abfd, sizeof (*entry));
3925 if (!entry)
3926 {
3927 arg->g = NULL;
3928 return 0;
3929 }
3930 *entry = new_entry;
3931 }
3932 *slot = entry;
3933 mips_elf_count_got_entry (arg->info, arg->g, entry);
3934 }
3935 return 1;
3936 }
3937
3938 /* Return the maximum number of GOT page entries required for RANGE. */
3939
3940 static bfd_vma
3941 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3942 {
3943 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3944 }
3945
3946 /* Record that G requires a page entry that can reach SEC + ADDEND. */
3947
3948 static bfd_boolean
3949 mips_elf_record_got_page_entry (struct mips_got_info *g,
3950 asection *sec, bfd_signed_vma addend)
3951 {
3952 struct mips_got_page_entry lookup, *entry;
3953 struct mips_got_page_range **range_ptr, *range;
3954 bfd_vma old_pages, new_pages;
3955 void **loc;
3956
3957 /* Find the mips_got_page_entry hash table entry for this section. */
3958 lookup.sec = sec;
3959 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3960 if (loc == NULL)
3961 return FALSE;
3962
3963 /* Create a mips_got_page_entry if this is the first time we've
3964 seen the section. */
3965 entry = (struct mips_got_page_entry *) *loc;
3966 if (!entry)
3967 {
3968 entry = bfd_zalloc (sec->owner, sizeof (*entry));
3969 if (!entry)
3970 return FALSE;
3971
3972 entry->sec = sec;
3973 *loc = entry;
3974 }
3975
3976 /* Skip over ranges whose maximum extent cannot share a page entry
3977 with ADDEND. */
3978 range_ptr = &entry->ranges;
3979 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3980 range_ptr = &(*range_ptr)->next;
3981
3982 /* If we scanned to the end of the list, or found a range whose
3983 minimum extent cannot share a page entry with ADDEND, create
3984 a new singleton range. */
3985 range = *range_ptr;
3986 if (!range || addend < range->min_addend - 0xffff)
3987 {
3988 range = bfd_zalloc (sec->owner, sizeof (*range));
3989 if (!range)
3990 return FALSE;
3991
3992 range->next = *range_ptr;
3993 range->min_addend = addend;
3994 range->max_addend = addend;
3995
3996 *range_ptr = range;
3997 entry->num_pages++;
3998 g->page_gotno++;
3999 return TRUE;
4000 }
4001
4002 /* Remember how many pages the old range contributed. */
4003 old_pages = mips_elf_pages_for_range (range);
4004
4005 /* Update the ranges. */
4006 if (addend < range->min_addend)
4007 range->min_addend = addend;
4008 else if (addend > range->max_addend)
4009 {
4010 if (range->next && addend >= range->next->min_addend - 0xffff)
4011 {
4012 old_pages += mips_elf_pages_for_range (range->next);
4013 range->max_addend = range->next->max_addend;
4014 range->next = range->next->next;
4015 }
4016 else
4017 range->max_addend = addend;
4018 }
4019
4020 /* Record any change in the total estimate. */
4021 new_pages = mips_elf_pages_for_range (range);
4022 if (old_pages != new_pages)
4023 {
4024 entry->num_pages += new_pages - old_pages;
4025 g->page_gotno += new_pages - old_pages;
4026 }
4027
4028 return TRUE;
4029 }
4030
4031 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4032 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4033 whether the page reference described by *REFP needs a GOT page entry,
4034 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4035
4036 static bfd_boolean
4037 mips_elf_resolve_got_page_ref (void **refp, void *data)
4038 {
4039 struct mips_got_page_ref *ref;
4040 struct mips_elf_traverse_got_arg *arg;
4041 struct mips_elf_link_hash_table *htab;
4042 asection *sec;
4043 bfd_vma addend;
4044
4045 ref = (struct mips_got_page_ref *) *refp;
4046 arg = (struct mips_elf_traverse_got_arg *) data;
4047 htab = mips_elf_hash_table (arg->info);
4048
4049 if (ref->symndx < 0)
4050 {
4051 struct mips_elf_link_hash_entry *h;
4052
4053 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4054 h = ref->u.h;
4055 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4056 return 1;
4057
4058 /* Ignore undefined symbols; we'll issue an error later if
4059 appropriate. */
4060 if (!((h->root.root.type == bfd_link_hash_defined
4061 || h->root.root.type == bfd_link_hash_defweak)
4062 && h->root.root.u.def.section))
4063 return 1;
4064
4065 sec = h->root.root.u.def.section;
4066 addend = h->root.root.u.def.value + ref->addend;
4067 }
4068 else
4069 {
4070 Elf_Internal_Sym *isym;
4071
4072 /* Read in the symbol. */
4073 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4074 ref->symndx);
4075 if (isym == NULL)
4076 {
4077 arg->g = NULL;
4078 return 0;
4079 }
4080
4081 /* Get the associated input section. */
4082 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4083 if (sec == NULL)
4084 {
4085 arg->g = NULL;
4086 return 0;
4087 }
4088
4089 /* If this is a mergable section, work out the section and offset
4090 of the merged data. For section symbols, the addend specifies
4091 of the offset _of_ the first byte in the data, otherwise it
4092 specifies the offset _from_ the first byte. */
4093 if (sec->flags & SEC_MERGE)
4094 {
4095 void *secinfo;
4096
4097 secinfo = elf_section_data (sec)->sec_info;
4098 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4099 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4100 isym->st_value + ref->addend);
4101 else
4102 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4103 isym->st_value) + ref->addend;
4104 }
4105 else
4106 addend = isym->st_value + ref->addend;
4107 }
4108 if (!mips_elf_record_got_page_entry (arg->g, sec, addend))
4109 {
4110 arg->g = NULL;
4111 return 0;
4112 }
4113 return 1;
4114 }
4115
4116 /* If any entries in G->got_entries are for indirect or warning symbols,
4117 replace them with entries for the target symbol. Convert g->got_page_refs
4118 into got_page_entry structures and estimate the number of page entries
4119 that they require. */
4120
4121 static bfd_boolean
4122 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4123 struct mips_got_info *g)
4124 {
4125 struct mips_elf_traverse_got_arg tga;
4126 struct mips_got_info oldg;
4127
4128 oldg = *g;
4129
4130 tga.info = info;
4131 tga.g = g;
4132 tga.value = FALSE;
4133 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4134 if (tga.value)
4135 {
4136 *g = oldg;
4137 g->got_entries = htab_create (htab_size (oldg.got_entries),
4138 mips_elf_got_entry_hash,
4139 mips_elf_got_entry_eq, NULL);
4140 if (!g->got_entries)
4141 return FALSE;
4142
4143 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4144 if (!tga.g)
4145 return FALSE;
4146
4147 htab_delete (oldg.got_entries);
4148 }
4149
4150 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4151 mips_got_page_entry_eq, NULL);
4152 if (g->got_page_entries == NULL)
4153 return FALSE;
4154
4155 tga.info = info;
4156 tga.g = g;
4157 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4158
4159 return TRUE;
4160 }
4161
4162 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4163 link_info structure. Decide whether the hash entry needs an entry in
4164 the global part of the primary GOT, setting global_got_area accordingly.
4165 Count the number of global symbols that are in the primary GOT only
4166 because they have relocations against them (reloc_only_gotno). */
4167
4168 static int
4169 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4170 {
4171 struct bfd_link_info *info;
4172 struct mips_elf_link_hash_table *htab;
4173 struct mips_got_info *g;
4174
4175 info = (struct bfd_link_info *) data;
4176 htab = mips_elf_hash_table (info);
4177 g = htab->got_info;
4178 if (h->global_got_area != GGA_NONE)
4179 {
4180 /* Make a final decision about whether the symbol belongs in the
4181 local or global GOT. Symbols that bind locally can (and in the
4182 case of forced-local symbols, must) live in the local GOT.
4183 Those that are aren't in the dynamic symbol table must also
4184 live in the local GOT.
4185
4186 Note that the former condition does not always imply the
4187 latter: symbols do not bind locally if they are completely
4188 undefined. We'll report undefined symbols later if appropriate. */
4189 if (h->root.dynindx == -1
4190 || (h->got_only_for_calls
4191 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4192 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4193 /* The symbol belongs in the local GOT. We no longer need this
4194 entry if it was only used for relocations; those relocations
4195 will be against the null or section symbol instead of H. */
4196 h->global_got_area = GGA_NONE;
4197 else if (htab->is_vxworks
4198 && h->got_only_for_calls
4199 && h->root.plt.offset != MINUS_ONE)
4200 /* On VxWorks, calls can refer directly to the .got.plt entry;
4201 they don't need entries in the regular GOT. .got.plt entries
4202 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4203 h->global_got_area = GGA_NONE;
4204 else if (h->global_got_area == GGA_RELOC_ONLY)
4205 {
4206 g->reloc_only_gotno++;
4207 g->global_gotno++;
4208 }
4209 }
4210 return 1;
4211 }
4212 \f
4213 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4214 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4215
4216 static int
4217 mips_elf_add_got_entry (void **entryp, void *data)
4218 {
4219 struct mips_got_entry *entry;
4220 struct mips_elf_traverse_got_arg *arg;
4221 void **slot;
4222
4223 entry = (struct mips_got_entry *) *entryp;
4224 arg = (struct mips_elf_traverse_got_arg *) data;
4225 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4226 if (!slot)
4227 {
4228 arg->g = NULL;
4229 return 0;
4230 }
4231 if (!*slot)
4232 {
4233 *slot = entry;
4234 mips_elf_count_got_entry (arg->info, arg->g, entry);
4235 }
4236 return 1;
4237 }
4238
4239 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4240 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4241
4242 static int
4243 mips_elf_add_got_page_entry (void **entryp, void *data)
4244 {
4245 struct mips_got_page_entry *entry;
4246 struct mips_elf_traverse_got_arg *arg;
4247 void **slot;
4248
4249 entry = (struct mips_got_page_entry *) *entryp;
4250 arg = (struct mips_elf_traverse_got_arg *) data;
4251 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4252 if (!slot)
4253 {
4254 arg->g = NULL;
4255 return 0;
4256 }
4257 if (!*slot)
4258 {
4259 *slot = entry;
4260 arg->g->page_gotno += entry->num_pages;
4261 }
4262 return 1;
4263 }
4264
4265 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4266 this would lead to overflow, 1 if they were merged successfully,
4267 and 0 if a merge failed due to lack of memory. (These values are chosen
4268 so that nonnegative return values can be returned by a htab_traverse
4269 callback.) */
4270
4271 static int
4272 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4273 struct mips_got_info *to,
4274 struct mips_elf_got_per_bfd_arg *arg)
4275 {
4276 struct mips_elf_traverse_got_arg tga;
4277 unsigned int estimate;
4278
4279 /* Work out how many page entries we would need for the combined GOT. */
4280 estimate = arg->max_pages;
4281 if (estimate >= from->page_gotno + to->page_gotno)
4282 estimate = from->page_gotno + to->page_gotno;
4283
4284 /* And conservatively estimate how many local and TLS entries
4285 would be needed. */
4286 estimate += from->local_gotno + to->local_gotno;
4287 estimate += from->tls_gotno + to->tls_gotno;
4288
4289 /* If we're merging with the primary got, any TLS relocations will
4290 come after the full set of global entries. Otherwise estimate those
4291 conservatively as well. */
4292 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4293 estimate += arg->global_count;
4294 else
4295 estimate += from->global_gotno + to->global_gotno;
4296
4297 /* Bail out if the combined GOT might be too big. */
4298 if (estimate > arg->max_count)
4299 return -1;
4300
4301 /* Transfer the bfd's got information from FROM to TO. */
4302 tga.info = arg->info;
4303 tga.g = to;
4304 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4305 if (!tga.g)
4306 return 0;
4307
4308 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4309 if (!tga.g)
4310 return 0;
4311
4312 mips_elf_replace_bfd_got (abfd, to);
4313 return 1;
4314 }
4315
4316 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4317 as possible of the primary got, since it doesn't require explicit
4318 dynamic relocations, but don't use bfds that would reference global
4319 symbols out of the addressable range. Failing the primary got,
4320 attempt to merge with the current got, or finish the current got
4321 and then make make the new got current. */
4322
4323 static bfd_boolean
4324 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4325 struct mips_elf_got_per_bfd_arg *arg)
4326 {
4327 unsigned int estimate;
4328 int result;
4329
4330 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4331 return FALSE;
4332
4333 /* Work out the number of page, local and TLS entries. */
4334 estimate = arg->max_pages;
4335 if (estimate > g->page_gotno)
4336 estimate = g->page_gotno;
4337 estimate += g->local_gotno + g->tls_gotno;
4338
4339 /* We place TLS GOT entries after both locals and globals. The globals
4340 for the primary GOT may overflow the normal GOT size limit, so be
4341 sure not to merge a GOT which requires TLS with the primary GOT in that
4342 case. This doesn't affect non-primary GOTs. */
4343 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4344
4345 if (estimate <= arg->max_count)
4346 {
4347 /* If we don't have a primary GOT, use it as
4348 a starting point for the primary GOT. */
4349 if (!arg->primary)
4350 {
4351 arg->primary = g;
4352 return TRUE;
4353 }
4354
4355 /* Try merging with the primary GOT. */
4356 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4357 if (result >= 0)
4358 return result;
4359 }
4360
4361 /* If we can merge with the last-created got, do it. */
4362 if (arg->current)
4363 {
4364 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4365 if (result >= 0)
4366 return result;
4367 }
4368
4369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4370 fits; if it turns out that it doesn't, we'll get relocation
4371 overflows anyway. */
4372 g->next = arg->current;
4373 arg->current = g;
4374
4375 return TRUE;
4376 }
4377
4378 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4379 to GOTIDX, duplicating the entry if it has already been assigned
4380 an index in a different GOT. */
4381
4382 static bfd_boolean
4383 mips_elf_set_gotidx (void **entryp, long gotidx)
4384 {
4385 struct mips_got_entry *entry;
4386
4387 entry = (struct mips_got_entry *) *entryp;
4388 if (entry->gotidx > 0)
4389 {
4390 struct mips_got_entry *new_entry;
4391
4392 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4393 if (!new_entry)
4394 return FALSE;
4395
4396 *new_entry = *entry;
4397 *entryp = new_entry;
4398 entry = new_entry;
4399 }
4400 entry->gotidx = gotidx;
4401 return TRUE;
4402 }
4403
4404 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4405 mips_elf_traverse_got_arg in which DATA->value is the size of one
4406 GOT entry. Set DATA->g to null on failure. */
4407
4408 static int
4409 mips_elf_initialize_tls_index (void **entryp, void *data)
4410 {
4411 struct mips_got_entry *entry;
4412 struct mips_elf_traverse_got_arg *arg;
4413
4414 /* We're only interested in TLS symbols. */
4415 entry = (struct mips_got_entry *) *entryp;
4416 if (entry->tls_type == GOT_TLS_NONE)
4417 return 1;
4418
4419 arg = (struct mips_elf_traverse_got_arg *) data;
4420 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4421 {
4422 arg->g = NULL;
4423 return 0;
4424 }
4425
4426 /* Account for the entries we've just allocated. */
4427 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4428 return 1;
4429 }
4430
4431 /* A htab_traverse callback for GOT entries, where DATA points to a
4432 mips_elf_traverse_got_arg. Set the global_got_area of each global
4433 symbol to DATA->value. */
4434
4435 static int
4436 mips_elf_set_global_got_area (void **entryp, void *data)
4437 {
4438 struct mips_got_entry *entry;
4439 struct mips_elf_traverse_got_arg *arg;
4440
4441 entry = (struct mips_got_entry *) *entryp;
4442 arg = (struct mips_elf_traverse_got_arg *) data;
4443 if (entry->abfd != NULL
4444 && entry->symndx == -1
4445 && entry->d.h->global_got_area != GGA_NONE)
4446 entry->d.h->global_got_area = arg->value;
4447 return 1;
4448 }
4449
4450 /* A htab_traverse callback for secondary GOT entries, where DATA points
4451 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4452 and record the number of relocations they require. DATA->value is
4453 the size of one GOT entry. Set DATA->g to null on failure. */
4454
4455 static int
4456 mips_elf_set_global_gotidx (void **entryp, void *data)
4457 {
4458 struct mips_got_entry *entry;
4459 struct mips_elf_traverse_got_arg *arg;
4460
4461 entry = (struct mips_got_entry *) *entryp;
4462 arg = (struct mips_elf_traverse_got_arg *) data;
4463 if (entry->abfd != NULL
4464 && entry->symndx == -1
4465 && entry->d.h->global_got_area != GGA_NONE)
4466 {
4467 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4468 {
4469 arg->g = NULL;
4470 return 0;
4471 }
4472 arg->g->assigned_gotno += 1;
4473
4474 if (arg->info->shared
4475 || (elf_hash_table (arg->info)->dynamic_sections_created
4476 && entry->d.h->root.def_dynamic
4477 && !entry->d.h->root.def_regular))
4478 arg->g->relocs += 1;
4479 }
4480
4481 return 1;
4482 }
4483
4484 /* A htab_traverse callback for GOT entries for which DATA is the
4485 bfd_link_info. Forbid any global symbols from having traditional
4486 lazy-binding stubs. */
4487
4488 static int
4489 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4490 {
4491 struct bfd_link_info *info;
4492 struct mips_elf_link_hash_table *htab;
4493 struct mips_got_entry *entry;
4494
4495 entry = (struct mips_got_entry *) *entryp;
4496 info = (struct bfd_link_info *) data;
4497 htab = mips_elf_hash_table (info);
4498 BFD_ASSERT (htab != NULL);
4499
4500 if (entry->abfd != NULL
4501 && entry->symndx == -1
4502 && entry->d.h->needs_lazy_stub)
4503 {
4504 entry->d.h->needs_lazy_stub = FALSE;
4505 htab->lazy_stub_count--;
4506 }
4507
4508 return 1;
4509 }
4510
4511 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4512 the primary GOT. */
4513 static bfd_vma
4514 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4515 {
4516 if (!g->next)
4517 return 0;
4518
4519 g = mips_elf_bfd_got (ibfd, FALSE);
4520 if (! g)
4521 return 0;
4522
4523 BFD_ASSERT (g->next);
4524
4525 g = g->next;
4526
4527 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4528 * MIPS_ELF_GOT_SIZE (abfd);
4529 }
4530
4531 /* Turn a single GOT that is too big for 16-bit addressing into
4532 a sequence of GOTs, each one 16-bit addressable. */
4533
4534 static bfd_boolean
4535 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4536 asection *got, bfd_size_type pages)
4537 {
4538 struct mips_elf_link_hash_table *htab;
4539 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4540 struct mips_elf_traverse_got_arg tga;
4541 struct mips_got_info *g, *gg;
4542 unsigned int assign, needed_relocs;
4543 bfd *dynobj, *ibfd;
4544
4545 dynobj = elf_hash_table (info)->dynobj;
4546 htab = mips_elf_hash_table (info);
4547 BFD_ASSERT (htab != NULL);
4548
4549 g = htab->got_info;
4550
4551 got_per_bfd_arg.obfd = abfd;
4552 got_per_bfd_arg.info = info;
4553 got_per_bfd_arg.current = NULL;
4554 got_per_bfd_arg.primary = NULL;
4555 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4556 / MIPS_ELF_GOT_SIZE (abfd))
4557 - htab->reserved_gotno);
4558 got_per_bfd_arg.max_pages = pages;
4559 /* The number of globals that will be included in the primary GOT.
4560 See the calls to mips_elf_set_global_got_area below for more
4561 information. */
4562 got_per_bfd_arg.global_count = g->global_gotno;
4563
4564 /* Try to merge the GOTs of input bfds together, as long as they
4565 don't seem to exceed the maximum GOT size, choosing one of them
4566 to be the primary GOT. */
4567 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4568 {
4569 gg = mips_elf_bfd_got (ibfd, FALSE);
4570 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4571 return FALSE;
4572 }
4573
4574 /* If we do not find any suitable primary GOT, create an empty one. */
4575 if (got_per_bfd_arg.primary == NULL)
4576 g->next = mips_elf_create_got_info (abfd);
4577 else
4578 g->next = got_per_bfd_arg.primary;
4579 g->next->next = got_per_bfd_arg.current;
4580
4581 /* GG is now the master GOT, and G is the primary GOT. */
4582 gg = g;
4583 g = g->next;
4584
4585 /* Map the output bfd to the primary got. That's what we're going
4586 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4587 didn't mark in check_relocs, and we want a quick way to find it.
4588 We can't just use gg->next because we're going to reverse the
4589 list. */
4590 mips_elf_replace_bfd_got (abfd, g);
4591
4592 /* Every symbol that is referenced in a dynamic relocation must be
4593 present in the primary GOT, so arrange for them to appear after
4594 those that are actually referenced. */
4595 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4596 g->global_gotno = gg->global_gotno;
4597
4598 tga.info = info;
4599 tga.value = GGA_RELOC_ONLY;
4600 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4601 tga.value = GGA_NORMAL;
4602 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4603
4604 /* Now go through the GOTs assigning them offset ranges.
4605 [assigned_gotno, local_gotno[ will be set to the range of local
4606 entries in each GOT. We can then compute the end of a GOT by
4607 adding local_gotno to global_gotno. We reverse the list and make
4608 it circular since then we'll be able to quickly compute the
4609 beginning of a GOT, by computing the end of its predecessor. To
4610 avoid special cases for the primary GOT, while still preserving
4611 assertions that are valid for both single- and multi-got links,
4612 we arrange for the main got struct to have the right number of
4613 global entries, but set its local_gotno such that the initial
4614 offset of the primary GOT is zero. Remember that the primary GOT
4615 will become the last item in the circular linked list, so it
4616 points back to the master GOT. */
4617 gg->local_gotno = -g->global_gotno;
4618 gg->global_gotno = g->global_gotno;
4619 gg->tls_gotno = 0;
4620 assign = 0;
4621 gg->next = gg;
4622
4623 do
4624 {
4625 struct mips_got_info *gn;
4626
4627 assign += htab->reserved_gotno;
4628 g->assigned_gotno = assign;
4629 g->local_gotno += assign;
4630 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4631 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4632
4633 /* Take g out of the direct list, and push it onto the reversed
4634 list that gg points to. g->next is guaranteed to be nonnull after
4635 this operation, as required by mips_elf_initialize_tls_index. */
4636 gn = g->next;
4637 g->next = gg->next;
4638 gg->next = g;
4639
4640 /* Set up any TLS entries. We always place the TLS entries after
4641 all non-TLS entries. */
4642 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4643 tga.g = g;
4644 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4645 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4646 if (!tga.g)
4647 return FALSE;
4648 BFD_ASSERT (g->tls_assigned_gotno == assign);
4649
4650 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4651 g = gn;
4652
4653 /* Forbid global symbols in every non-primary GOT from having
4654 lazy-binding stubs. */
4655 if (g)
4656 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4657 }
4658 while (g);
4659
4660 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4661
4662 needed_relocs = 0;
4663 for (g = gg->next; g && g->next != gg; g = g->next)
4664 {
4665 unsigned int save_assign;
4666
4667 /* Assign offsets to global GOT entries and count how many
4668 relocations they need. */
4669 save_assign = g->assigned_gotno;
4670 g->assigned_gotno = g->local_gotno;
4671 tga.info = info;
4672 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4673 tga.g = g;
4674 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4675 if (!tga.g)
4676 return FALSE;
4677 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
4678 g->assigned_gotno = save_assign;
4679
4680 if (info->shared)
4681 {
4682 g->relocs += g->local_gotno - g->assigned_gotno;
4683 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4684 + g->next->global_gotno
4685 + g->next->tls_gotno
4686 + htab->reserved_gotno);
4687 }
4688 needed_relocs += g->relocs;
4689 }
4690 needed_relocs += g->relocs;
4691
4692 if (needed_relocs)
4693 mips_elf_allocate_dynamic_relocations (dynobj, info,
4694 needed_relocs);
4695
4696 return TRUE;
4697 }
4698
4699 \f
4700 /* Returns the first relocation of type r_type found, beginning with
4701 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4702
4703 static const Elf_Internal_Rela *
4704 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4705 const Elf_Internal_Rela *relocation,
4706 const Elf_Internal_Rela *relend)
4707 {
4708 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4709
4710 while (relocation < relend)
4711 {
4712 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4713 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4714 return relocation;
4715
4716 ++relocation;
4717 }
4718
4719 /* We didn't find it. */
4720 return NULL;
4721 }
4722
4723 /* Return whether an input relocation is against a local symbol. */
4724
4725 static bfd_boolean
4726 mips_elf_local_relocation_p (bfd *input_bfd,
4727 const Elf_Internal_Rela *relocation,
4728 asection **local_sections)
4729 {
4730 unsigned long r_symndx;
4731 Elf_Internal_Shdr *symtab_hdr;
4732 size_t extsymoff;
4733
4734 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4735 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4736 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4737
4738 if (r_symndx < extsymoff)
4739 return TRUE;
4740 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4741 return TRUE;
4742
4743 return FALSE;
4744 }
4745 \f
4746 /* Sign-extend VALUE, which has the indicated number of BITS. */
4747
4748 bfd_vma
4749 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4750 {
4751 if (value & ((bfd_vma) 1 << (bits - 1)))
4752 /* VALUE is negative. */
4753 value |= ((bfd_vma) - 1) << bits;
4754
4755 return value;
4756 }
4757
4758 /* Return non-zero if the indicated VALUE has overflowed the maximum
4759 range expressible by a signed number with the indicated number of
4760 BITS. */
4761
4762 static bfd_boolean
4763 mips_elf_overflow_p (bfd_vma value, int bits)
4764 {
4765 bfd_signed_vma svalue = (bfd_signed_vma) value;
4766
4767 if (svalue > (1 << (bits - 1)) - 1)
4768 /* The value is too big. */
4769 return TRUE;
4770 else if (svalue < -(1 << (bits - 1)))
4771 /* The value is too small. */
4772 return TRUE;
4773
4774 /* All is well. */
4775 return FALSE;
4776 }
4777
4778 /* Calculate the %high function. */
4779
4780 static bfd_vma
4781 mips_elf_high (bfd_vma value)
4782 {
4783 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4784 }
4785
4786 /* Calculate the %higher function. */
4787
4788 static bfd_vma
4789 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4790 {
4791 #ifdef BFD64
4792 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4793 #else
4794 abort ();
4795 return MINUS_ONE;
4796 #endif
4797 }
4798
4799 /* Calculate the %highest function. */
4800
4801 static bfd_vma
4802 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4803 {
4804 #ifdef BFD64
4805 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4806 #else
4807 abort ();
4808 return MINUS_ONE;
4809 #endif
4810 }
4811 \f
4812 /* Create the .compact_rel section. */
4813
4814 static bfd_boolean
4815 mips_elf_create_compact_rel_section
4816 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4817 {
4818 flagword flags;
4819 register asection *s;
4820
4821 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4822 {
4823 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4824 | SEC_READONLY);
4825
4826 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4827 if (s == NULL
4828 || ! bfd_set_section_alignment (abfd, s,
4829 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4830 return FALSE;
4831
4832 s->size = sizeof (Elf32_External_compact_rel);
4833 }
4834
4835 return TRUE;
4836 }
4837
4838 /* Create the .got section to hold the global offset table. */
4839
4840 static bfd_boolean
4841 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4842 {
4843 flagword flags;
4844 register asection *s;
4845 struct elf_link_hash_entry *h;
4846 struct bfd_link_hash_entry *bh;
4847 struct mips_elf_link_hash_table *htab;
4848
4849 htab = mips_elf_hash_table (info);
4850 BFD_ASSERT (htab != NULL);
4851
4852 /* This function may be called more than once. */
4853 if (htab->sgot)
4854 return TRUE;
4855
4856 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4857 | SEC_LINKER_CREATED);
4858
4859 /* We have to use an alignment of 2**4 here because this is hardcoded
4860 in the function stub generation and in the linker script. */
4861 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4862 if (s == NULL
4863 || ! bfd_set_section_alignment (abfd, s, 4))
4864 return FALSE;
4865 htab->sgot = s;
4866
4867 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4868 linker script because we don't want to define the symbol if we
4869 are not creating a global offset table. */
4870 bh = NULL;
4871 if (! (_bfd_generic_link_add_one_symbol
4872 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4873 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4874 return FALSE;
4875
4876 h = (struct elf_link_hash_entry *) bh;
4877 h->non_elf = 0;
4878 h->def_regular = 1;
4879 h->type = STT_OBJECT;
4880 elf_hash_table (info)->hgot = h;
4881
4882 if (info->shared
4883 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4884 return FALSE;
4885
4886 htab->got_info = mips_elf_create_got_info (abfd);
4887 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4888 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4889
4890 /* We also need a .got.plt section when generating PLTs. */
4891 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4892 SEC_ALLOC | SEC_LOAD
4893 | SEC_HAS_CONTENTS
4894 | SEC_IN_MEMORY
4895 | SEC_LINKER_CREATED);
4896 if (s == NULL)
4897 return FALSE;
4898 htab->sgotplt = s;
4899
4900 return TRUE;
4901 }
4902 \f
4903 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4904 __GOTT_INDEX__ symbols. These symbols are only special for
4905 shared objects; they are not used in executables. */
4906
4907 static bfd_boolean
4908 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4909 {
4910 return (mips_elf_hash_table (info)->is_vxworks
4911 && info->shared
4912 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4913 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4914 }
4915
4916 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4917 require an la25 stub. See also mips_elf_local_pic_function_p,
4918 which determines whether the destination function ever requires a
4919 stub. */
4920
4921 static bfd_boolean
4922 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4923 bfd_boolean target_is_16_bit_code_p)
4924 {
4925 /* We specifically ignore branches and jumps from EF_PIC objects,
4926 where the onus is on the compiler or programmer to perform any
4927 necessary initialization of $25. Sometimes such initialization
4928 is unnecessary; for example, -mno-shared functions do not use
4929 the incoming value of $25, and may therefore be called directly. */
4930 if (PIC_OBJECT_P (input_bfd))
4931 return FALSE;
4932
4933 switch (r_type)
4934 {
4935 case R_MIPS_26:
4936 case R_MIPS_PC16:
4937 case R_MICROMIPS_26_S1:
4938 case R_MICROMIPS_PC7_S1:
4939 case R_MICROMIPS_PC10_S1:
4940 case R_MICROMIPS_PC16_S1:
4941 case R_MICROMIPS_PC23_S2:
4942 return TRUE;
4943
4944 case R_MIPS16_26:
4945 return !target_is_16_bit_code_p;
4946
4947 default:
4948 return FALSE;
4949 }
4950 }
4951 \f
4952 /* Calculate the value produced by the RELOCATION (which comes from
4953 the INPUT_BFD). The ADDEND is the addend to use for this
4954 RELOCATION; RELOCATION->R_ADDEND is ignored.
4955
4956 The result of the relocation calculation is stored in VALUEP.
4957 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4958 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4959
4960 This function returns bfd_reloc_continue if the caller need take no
4961 further action regarding this relocation, bfd_reloc_notsupported if
4962 something goes dramatically wrong, bfd_reloc_overflow if an
4963 overflow occurs, and bfd_reloc_ok to indicate success. */
4964
4965 static bfd_reloc_status_type
4966 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4967 asection *input_section,
4968 struct bfd_link_info *info,
4969 const Elf_Internal_Rela *relocation,
4970 bfd_vma addend, reloc_howto_type *howto,
4971 Elf_Internal_Sym *local_syms,
4972 asection **local_sections, bfd_vma *valuep,
4973 const char **namep,
4974 bfd_boolean *cross_mode_jump_p,
4975 bfd_boolean save_addend)
4976 {
4977 /* The eventual value we will return. */
4978 bfd_vma value;
4979 /* The address of the symbol against which the relocation is
4980 occurring. */
4981 bfd_vma symbol = 0;
4982 /* The final GP value to be used for the relocatable, executable, or
4983 shared object file being produced. */
4984 bfd_vma gp;
4985 /* The place (section offset or address) of the storage unit being
4986 relocated. */
4987 bfd_vma p;
4988 /* The value of GP used to create the relocatable object. */
4989 bfd_vma gp0;
4990 /* The offset into the global offset table at which the address of
4991 the relocation entry symbol, adjusted by the addend, resides
4992 during execution. */
4993 bfd_vma g = MINUS_ONE;
4994 /* The section in which the symbol referenced by the relocation is
4995 located. */
4996 asection *sec = NULL;
4997 struct mips_elf_link_hash_entry *h = NULL;
4998 /* TRUE if the symbol referred to by this relocation is a local
4999 symbol. */
5000 bfd_boolean local_p, was_local_p;
5001 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5002 bfd_boolean gp_disp_p = FALSE;
5003 /* TRUE if the symbol referred to by this relocation is
5004 "__gnu_local_gp". */
5005 bfd_boolean gnu_local_gp_p = FALSE;
5006 Elf_Internal_Shdr *symtab_hdr;
5007 size_t extsymoff;
5008 unsigned long r_symndx;
5009 int r_type;
5010 /* TRUE if overflow occurred during the calculation of the
5011 relocation value. */
5012 bfd_boolean overflowed_p;
5013 /* TRUE if this relocation refers to a MIPS16 function. */
5014 bfd_boolean target_is_16_bit_code_p = FALSE;
5015 bfd_boolean target_is_micromips_code_p = FALSE;
5016 struct mips_elf_link_hash_table *htab;
5017 bfd *dynobj;
5018
5019 dynobj = elf_hash_table (info)->dynobj;
5020 htab = mips_elf_hash_table (info);
5021 BFD_ASSERT (htab != NULL);
5022
5023 /* Parse the relocation. */
5024 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5025 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5026 p = (input_section->output_section->vma
5027 + input_section->output_offset
5028 + relocation->r_offset);
5029
5030 /* Assume that there will be no overflow. */
5031 overflowed_p = FALSE;
5032
5033 /* Figure out whether or not the symbol is local, and get the offset
5034 used in the array of hash table entries. */
5035 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5036 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5037 local_sections);
5038 was_local_p = local_p;
5039 if (! elf_bad_symtab (input_bfd))
5040 extsymoff = symtab_hdr->sh_info;
5041 else
5042 {
5043 /* The symbol table does not follow the rule that local symbols
5044 must come before globals. */
5045 extsymoff = 0;
5046 }
5047
5048 /* Figure out the value of the symbol. */
5049 if (local_p)
5050 {
5051 Elf_Internal_Sym *sym;
5052
5053 sym = local_syms + r_symndx;
5054 sec = local_sections[r_symndx];
5055
5056 symbol = sec->output_section->vma + sec->output_offset;
5057 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5058 || (sec->flags & SEC_MERGE))
5059 symbol += sym->st_value;
5060 if ((sec->flags & SEC_MERGE)
5061 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5062 {
5063 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5064 addend -= symbol;
5065 addend += sec->output_section->vma + sec->output_offset;
5066 }
5067
5068 /* MIPS16/microMIPS text labels should be treated as odd. */
5069 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5070 ++symbol;
5071
5072 /* Record the name of this symbol, for our caller. */
5073 *namep = bfd_elf_string_from_elf_section (input_bfd,
5074 symtab_hdr->sh_link,
5075 sym->st_name);
5076 if (*namep == '\0')
5077 *namep = bfd_section_name (input_bfd, sec);
5078
5079 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5080 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5081 }
5082 else
5083 {
5084 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5085
5086 /* For global symbols we look up the symbol in the hash-table. */
5087 h = ((struct mips_elf_link_hash_entry *)
5088 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5089 /* Find the real hash-table entry for this symbol. */
5090 while (h->root.root.type == bfd_link_hash_indirect
5091 || h->root.root.type == bfd_link_hash_warning)
5092 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5093
5094 /* Record the name of this symbol, for our caller. */
5095 *namep = h->root.root.root.string;
5096
5097 /* See if this is the special _gp_disp symbol. Note that such a
5098 symbol must always be a global symbol. */
5099 if (strcmp (*namep, "_gp_disp") == 0
5100 && ! NEWABI_P (input_bfd))
5101 {
5102 /* Relocations against _gp_disp are permitted only with
5103 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5104 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5105 return bfd_reloc_notsupported;
5106
5107 gp_disp_p = TRUE;
5108 }
5109 /* See if this is the special _gp symbol. Note that such a
5110 symbol must always be a global symbol. */
5111 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5112 gnu_local_gp_p = TRUE;
5113
5114
5115 /* If this symbol is defined, calculate its address. Note that
5116 _gp_disp is a magic symbol, always implicitly defined by the
5117 linker, so it's inappropriate to check to see whether or not
5118 its defined. */
5119 else if ((h->root.root.type == bfd_link_hash_defined
5120 || h->root.root.type == bfd_link_hash_defweak)
5121 && h->root.root.u.def.section)
5122 {
5123 sec = h->root.root.u.def.section;
5124 if (sec->output_section)
5125 symbol = (h->root.root.u.def.value
5126 + sec->output_section->vma
5127 + sec->output_offset);
5128 else
5129 symbol = h->root.root.u.def.value;
5130 }
5131 else if (h->root.root.type == bfd_link_hash_undefweak)
5132 /* We allow relocations against undefined weak symbols, giving
5133 it the value zero, so that you can undefined weak functions
5134 and check to see if they exist by looking at their
5135 addresses. */
5136 symbol = 0;
5137 else if (info->unresolved_syms_in_objects == RM_IGNORE
5138 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5139 symbol = 0;
5140 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5141 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5142 {
5143 /* If this is a dynamic link, we should have created a
5144 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5145 in in _bfd_mips_elf_create_dynamic_sections.
5146 Otherwise, we should define the symbol with a value of 0.
5147 FIXME: It should probably get into the symbol table
5148 somehow as well. */
5149 BFD_ASSERT (! info->shared);
5150 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5151 symbol = 0;
5152 }
5153 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5154 {
5155 /* This is an optional symbol - an Irix specific extension to the
5156 ELF spec. Ignore it for now.
5157 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5158 than simply ignoring them, but we do not handle this for now.
5159 For information see the "64-bit ELF Object File Specification"
5160 which is available from here:
5161 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5162 symbol = 0;
5163 }
5164 else if ((*info->callbacks->undefined_symbol)
5165 (info, h->root.root.root.string, input_bfd,
5166 input_section, relocation->r_offset,
5167 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5168 || ELF_ST_VISIBILITY (h->root.other)))
5169 {
5170 return bfd_reloc_undefined;
5171 }
5172 else
5173 {
5174 return bfd_reloc_notsupported;
5175 }
5176
5177 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5178 /* If the output section is the PLT section,
5179 then the target is not microMIPS. */
5180 target_is_micromips_code_p = (htab->splt != sec
5181 && ELF_ST_IS_MICROMIPS (h->root.other));
5182 }
5183
5184 /* If this is a reference to a 16-bit function with a stub, we need
5185 to redirect the relocation to the stub unless:
5186
5187 (a) the relocation is for a MIPS16 JAL;
5188
5189 (b) the relocation is for a MIPS16 PIC call, and there are no
5190 non-MIPS16 uses of the GOT slot; or
5191
5192 (c) the section allows direct references to MIPS16 functions. */
5193 if (r_type != R_MIPS16_26
5194 && !info->relocatable
5195 && ((h != NULL
5196 && h->fn_stub != NULL
5197 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5198 || (local_p
5199 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5200 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5201 && !section_allows_mips16_refs_p (input_section))
5202 {
5203 /* This is a 32- or 64-bit call to a 16-bit function. We should
5204 have already noticed that we were going to need the
5205 stub. */
5206 if (local_p)
5207 {
5208 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5209 value = 0;
5210 }
5211 else
5212 {
5213 BFD_ASSERT (h->need_fn_stub);
5214 if (h->la25_stub)
5215 {
5216 /* If a LA25 header for the stub itself exists, point to the
5217 prepended LUI/ADDIU sequence. */
5218 sec = h->la25_stub->stub_section;
5219 value = h->la25_stub->offset;
5220 }
5221 else
5222 {
5223 sec = h->fn_stub;
5224 value = 0;
5225 }
5226 }
5227
5228 symbol = sec->output_section->vma + sec->output_offset + value;
5229 /* The target is 16-bit, but the stub isn't. */
5230 target_is_16_bit_code_p = FALSE;
5231 }
5232 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5233 need to redirect the call to the stub. Note that we specifically
5234 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5235 use an indirect stub instead. */
5236 else if (r_type == R_MIPS16_26 && !info->relocatable
5237 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5238 || (local_p
5239 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5240 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5241 && !target_is_16_bit_code_p)
5242 {
5243 if (local_p)
5244 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5245 else
5246 {
5247 /* If both call_stub and call_fp_stub are defined, we can figure
5248 out which one to use by checking which one appears in the input
5249 file. */
5250 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5251 {
5252 asection *o;
5253
5254 sec = NULL;
5255 for (o = input_bfd->sections; o != NULL; o = o->next)
5256 {
5257 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5258 {
5259 sec = h->call_fp_stub;
5260 break;
5261 }
5262 }
5263 if (sec == NULL)
5264 sec = h->call_stub;
5265 }
5266 else if (h->call_stub != NULL)
5267 sec = h->call_stub;
5268 else
5269 sec = h->call_fp_stub;
5270 }
5271
5272 BFD_ASSERT (sec->size > 0);
5273 symbol = sec->output_section->vma + sec->output_offset;
5274 }
5275 /* If this is a direct call to a PIC function, redirect to the
5276 non-PIC stub. */
5277 else if (h != NULL && h->la25_stub
5278 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5279 target_is_16_bit_code_p))
5280 symbol = (h->la25_stub->stub_section->output_section->vma
5281 + h->la25_stub->stub_section->output_offset
5282 + h->la25_stub->offset);
5283
5284 /* Make sure MIPS16 and microMIPS are not used together. */
5285 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5286 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5287 {
5288 (*_bfd_error_handler)
5289 (_("MIPS16 and microMIPS functions cannot call each other"));
5290 return bfd_reloc_notsupported;
5291 }
5292
5293 /* Calls from 16-bit code to 32-bit code and vice versa require the
5294 mode change. However, we can ignore calls to undefined weak symbols,
5295 which should never be executed at runtime. This exception is important
5296 because the assembly writer may have "known" that any definition of the
5297 symbol would be 16-bit code, and that direct jumps were therefore
5298 acceptable. */
5299 *cross_mode_jump_p = (!info->relocatable
5300 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5301 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5302 || (r_type == R_MICROMIPS_26_S1
5303 && !target_is_micromips_code_p)
5304 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5305 && (target_is_16_bit_code_p
5306 || target_is_micromips_code_p))));
5307
5308 local_p = (h == NULL
5309 || (h->got_only_for_calls
5310 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5311 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5312
5313 gp0 = _bfd_get_gp_value (input_bfd);
5314 gp = _bfd_get_gp_value (abfd);
5315 if (htab->got_info)
5316 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5317
5318 if (gnu_local_gp_p)
5319 symbol = gp;
5320
5321 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5322 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5323 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5324 if (got_page_reloc_p (r_type) && !local_p)
5325 {
5326 r_type = (micromips_reloc_p (r_type)
5327 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5328 addend = 0;
5329 }
5330
5331 /* If we haven't already determined the GOT offset, and we're going
5332 to need it, get it now. */
5333 switch (r_type)
5334 {
5335 case R_MIPS16_CALL16:
5336 case R_MIPS16_GOT16:
5337 case R_MIPS_CALL16:
5338 case R_MIPS_GOT16:
5339 case R_MIPS_GOT_DISP:
5340 case R_MIPS_GOT_HI16:
5341 case R_MIPS_CALL_HI16:
5342 case R_MIPS_GOT_LO16:
5343 case R_MIPS_CALL_LO16:
5344 case R_MICROMIPS_CALL16:
5345 case R_MICROMIPS_GOT16:
5346 case R_MICROMIPS_GOT_DISP:
5347 case R_MICROMIPS_GOT_HI16:
5348 case R_MICROMIPS_CALL_HI16:
5349 case R_MICROMIPS_GOT_LO16:
5350 case R_MICROMIPS_CALL_LO16:
5351 case R_MIPS_TLS_GD:
5352 case R_MIPS_TLS_GOTTPREL:
5353 case R_MIPS_TLS_LDM:
5354 case R_MIPS16_TLS_GD:
5355 case R_MIPS16_TLS_GOTTPREL:
5356 case R_MIPS16_TLS_LDM:
5357 case R_MICROMIPS_TLS_GD:
5358 case R_MICROMIPS_TLS_GOTTPREL:
5359 case R_MICROMIPS_TLS_LDM:
5360 /* Find the index into the GOT where this value is located. */
5361 if (tls_ldm_reloc_p (r_type))
5362 {
5363 g = mips_elf_local_got_index (abfd, input_bfd, info,
5364 0, 0, NULL, r_type);
5365 if (g == MINUS_ONE)
5366 return bfd_reloc_outofrange;
5367 }
5368 else if (!local_p)
5369 {
5370 /* On VxWorks, CALL relocations should refer to the .got.plt
5371 entry, which is initialized to point at the PLT stub. */
5372 if (htab->is_vxworks
5373 && (call_hi16_reloc_p (r_type)
5374 || call_lo16_reloc_p (r_type)
5375 || call16_reloc_p (r_type)))
5376 {
5377 BFD_ASSERT (addend == 0);
5378 BFD_ASSERT (h->root.needs_plt);
5379 g = mips_elf_gotplt_index (info, &h->root);
5380 }
5381 else
5382 {
5383 BFD_ASSERT (addend == 0);
5384 g = mips_elf_global_got_index (abfd, info, input_bfd,
5385 &h->root, r_type);
5386 if (!TLS_RELOC_P (r_type)
5387 && !elf_hash_table (info)->dynamic_sections_created)
5388 /* This is a static link. We must initialize the GOT entry. */
5389 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5390 }
5391 }
5392 else if (!htab->is_vxworks
5393 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5394 /* The calculation below does not involve "g". */
5395 break;
5396 else
5397 {
5398 g = mips_elf_local_got_index (abfd, input_bfd, info,
5399 symbol + addend, r_symndx, h, r_type);
5400 if (g == MINUS_ONE)
5401 return bfd_reloc_outofrange;
5402 }
5403
5404 /* Convert GOT indices to actual offsets. */
5405 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5406 break;
5407 }
5408
5409 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5410 symbols are resolved by the loader. Add them to .rela.dyn. */
5411 if (h != NULL && is_gott_symbol (info, &h->root))
5412 {
5413 Elf_Internal_Rela outrel;
5414 bfd_byte *loc;
5415 asection *s;
5416
5417 s = mips_elf_rel_dyn_section (info, FALSE);
5418 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5419
5420 outrel.r_offset = (input_section->output_section->vma
5421 + input_section->output_offset
5422 + relocation->r_offset);
5423 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5424 outrel.r_addend = addend;
5425 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5426
5427 /* If we've written this relocation for a readonly section,
5428 we need to set DF_TEXTREL again, so that we do not delete the
5429 DT_TEXTREL tag. */
5430 if (MIPS_ELF_READONLY_SECTION (input_section))
5431 info->flags |= DF_TEXTREL;
5432
5433 *valuep = 0;
5434 return bfd_reloc_ok;
5435 }
5436
5437 /* Figure out what kind of relocation is being performed. */
5438 switch (r_type)
5439 {
5440 case R_MIPS_NONE:
5441 return bfd_reloc_continue;
5442
5443 case R_MIPS_16:
5444 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5445 overflowed_p = mips_elf_overflow_p (value, 16);
5446 break;
5447
5448 case R_MIPS_32:
5449 case R_MIPS_REL32:
5450 case R_MIPS_64:
5451 if ((info->shared
5452 || (htab->root.dynamic_sections_created
5453 && h != NULL
5454 && h->root.def_dynamic
5455 && !h->root.def_regular
5456 && !h->has_static_relocs))
5457 && r_symndx != STN_UNDEF
5458 && (h == NULL
5459 || h->root.root.type != bfd_link_hash_undefweak
5460 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5461 && (input_section->flags & SEC_ALLOC) != 0)
5462 {
5463 /* If we're creating a shared library, then we can't know
5464 where the symbol will end up. So, we create a relocation
5465 record in the output, and leave the job up to the dynamic
5466 linker. We must do the same for executable references to
5467 shared library symbols, unless we've decided to use copy
5468 relocs or PLTs instead. */
5469 value = addend;
5470 if (!mips_elf_create_dynamic_relocation (abfd,
5471 info,
5472 relocation,
5473 h,
5474 sec,
5475 symbol,
5476 &value,
5477 input_section))
5478 return bfd_reloc_undefined;
5479 }
5480 else
5481 {
5482 if (r_type != R_MIPS_REL32)
5483 value = symbol + addend;
5484 else
5485 value = addend;
5486 }
5487 value &= howto->dst_mask;
5488 break;
5489
5490 case R_MIPS_PC32:
5491 value = symbol + addend - p;
5492 value &= howto->dst_mask;
5493 break;
5494
5495 case R_MIPS16_26:
5496 /* The calculation for R_MIPS16_26 is just the same as for an
5497 R_MIPS_26. It's only the storage of the relocated field into
5498 the output file that's different. That's handled in
5499 mips_elf_perform_relocation. So, we just fall through to the
5500 R_MIPS_26 case here. */
5501 case R_MIPS_26:
5502 case R_MICROMIPS_26_S1:
5503 {
5504 unsigned int shift;
5505
5506 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5507 the correct ISA mode selector and bit 1 must be 0. */
5508 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5509 return bfd_reloc_outofrange;
5510
5511 /* Shift is 2, unusually, for microMIPS JALX. */
5512 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5513
5514 if (was_local_p)
5515 value = addend | ((p + 4) & (0xfc000000 << shift));
5516 else
5517 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5518 value = (value + symbol) >> shift;
5519 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5520 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5521 value &= howto->dst_mask;
5522 }
5523 break;
5524
5525 case R_MIPS_TLS_DTPREL_HI16:
5526 case R_MIPS16_TLS_DTPREL_HI16:
5527 case R_MICROMIPS_TLS_DTPREL_HI16:
5528 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5529 & howto->dst_mask);
5530 break;
5531
5532 case R_MIPS_TLS_DTPREL_LO16:
5533 case R_MIPS_TLS_DTPREL32:
5534 case R_MIPS_TLS_DTPREL64:
5535 case R_MIPS16_TLS_DTPREL_LO16:
5536 case R_MICROMIPS_TLS_DTPREL_LO16:
5537 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5538 break;
5539
5540 case R_MIPS_TLS_TPREL_HI16:
5541 case R_MIPS16_TLS_TPREL_HI16:
5542 case R_MICROMIPS_TLS_TPREL_HI16:
5543 value = (mips_elf_high (addend + symbol - tprel_base (info))
5544 & howto->dst_mask);
5545 break;
5546
5547 case R_MIPS_TLS_TPREL_LO16:
5548 case R_MIPS_TLS_TPREL32:
5549 case R_MIPS_TLS_TPREL64:
5550 case R_MIPS16_TLS_TPREL_LO16:
5551 case R_MICROMIPS_TLS_TPREL_LO16:
5552 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5553 break;
5554
5555 case R_MIPS_HI16:
5556 case R_MIPS16_HI16:
5557 case R_MICROMIPS_HI16:
5558 if (!gp_disp_p)
5559 {
5560 value = mips_elf_high (addend + symbol);
5561 value &= howto->dst_mask;
5562 }
5563 else
5564 {
5565 /* For MIPS16 ABI code we generate this sequence
5566 0: li $v0,%hi(_gp_disp)
5567 4: addiupc $v1,%lo(_gp_disp)
5568 8: sll $v0,16
5569 12: addu $v0,$v1
5570 14: move $gp,$v0
5571 So the offsets of hi and lo relocs are the same, but the
5572 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5573 ADDIUPC clears the low two bits of the instruction address,
5574 so the base is ($t9 + 4) & ~3. */
5575 if (r_type == R_MIPS16_HI16)
5576 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5577 /* The microMIPS .cpload sequence uses the same assembly
5578 instructions as the traditional psABI version, but the
5579 incoming $t9 has the low bit set. */
5580 else if (r_type == R_MICROMIPS_HI16)
5581 value = mips_elf_high (addend + gp - p - 1);
5582 else
5583 value = mips_elf_high (addend + gp - p);
5584 overflowed_p = mips_elf_overflow_p (value, 16);
5585 }
5586 break;
5587
5588 case R_MIPS_LO16:
5589 case R_MIPS16_LO16:
5590 case R_MICROMIPS_LO16:
5591 case R_MICROMIPS_HI0_LO16:
5592 if (!gp_disp_p)
5593 value = (symbol + addend) & howto->dst_mask;
5594 else
5595 {
5596 /* See the comment for R_MIPS16_HI16 above for the reason
5597 for this conditional. */
5598 if (r_type == R_MIPS16_LO16)
5599 value = addend + gp - (p & ~(bfd_vma) 0x3);
5600 else if (r_type == R_MICROMIPS_LO16
5601 || r_type == R_MICROMIPS_HI0_LO16)
5602 value = addend + gp - p + 3;
5603 else
5604 value = addend + gp - p + 4;
5605 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5606 for overflow. But, on, say, IRIX5, relocations against
5607 _gp_disp are normally generated from the .cpload
5608 pseudo-op. It generates code that normally looks like
5609 this:
5610
5611 lui $gp,%hi(_gp_disp)
5612 addiu $gp,$gp,%lo(_gp_disp)
5613 addu $gp,$gp,$t9
5614
5615 Here $t9 holds the address of the function being called,
5616 as required by the MIPS ELF ABI. The R_MIPS_LO16
5617 relocation can easily overflow in this situation, but the
5618 R_MIPS_HI16 relocation will handle the overflow.
5619 Therefore, we consider this a bug in the MIPS ABI, and do
5620 not check for overflow here. */
5621 }
5622 break;
5623
5624 case R_MIPS_LITERAL:
5625 case R_MICROMIPS_LITERAL:
5626 /* Because we don't merge literal sections, we can handle this
5627 just like R_MIPS_GPREL16. In the long run, we should merge
5628 shared literals, and then we will need to additional work
5629 here. */
5630
5631 /* Fall through. */
5632
5633 case R_MIPS16_GPREL:
5634 /* The R_MIPS16_GPREL performs the same calculation as
5635 R_MIPS_GPREL16, but stores the relocated bits in a different
5636 order. We don't need to do anything special here; the
5637 differences are handled in mips_elf_perform_relocation. */
5638 case R_MIPS_GPREL16:
5639 case R_MICROMIPS_GPREL7_S2:
5640 case R_MICROMIPS_GPREL16:
5641 /* Only sign-extend the addend if it was extracted from the
5642 instruction. If the addend was separate, leave it alone,
5643 otherwise we may lose significant bits. */
5644 if (howto->partial_inplace)
5645 addend = _bfd_mips_elf_sign_extend (addend, 16);
5646 value = symbol + addend - gp;
5647 /* If the symbol was local, any earlier relocatable links will
5648 have adjusted its addend with the gp offset, so compensate
5649 for that now. Don't do it for symbols forced local in this
5650 link, though, since they won't have had the gp offset applied
5651 to them before. */
5652 if (was_local_p)
5653 value += gp0;
5654 overflowed_p = mips_elf_overflow_p (value, 16);
5655 break;
5656
5657 case R_MIPS16_GOT16:
5658 case R_MIPS16_CALL16:
5659 case R_MIPS_GOT16:
5660 case R_MIPS_CALL16:
5661 case R_MICROMIPS_GOT16:
5662 case R_MICROMIPS_CALL16:
5663 /* VxWorks does not have separate local and global semantics for
5664 R_MIPS*_GOT16; every relocation evaluates to "G". */
5665 if (!htab->is_vxworks && local_p)
5666 {
5667 value = mips_elf_got16_entry (abfd, input_bfd, info,
5668 symbol + addend, !was_local_p);
5669 if (value == MINUS_ONE)
5670 return bfd_reloc_outofrange;
5671 value
5672 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5673 overflowed_p = mips_elf_overflow_p (value, 16);
5674 break;
5675 }
5676
5677 /* Fall through. */
5678
5679 case R_MIPS_TLS_GD:
5680 case R_MIPS_TLS_GOTTPREL:
5681 case R_MIPS_TLS_LDM:
5682 case R_MIPS_GOT_DISP:
5683 case R_MIPS16_TLS_GD:
5684 case R_MIPS16_TLS_GOTTPREL:
5685 case R_MIPS16_TLS_LDM:
5686 case R_MICROMIPS_TLS_GD:
5687 case R_MICROMIPS_TLS_GOTTPREL:
5688 case R_MICROMIPS_TLS_LDM:
5689 case R_MICROMIPS_GOT_DISP:
5690 value = g;
5691 overflowed_p = mips_elf_overflow_p (value, 16);
5692 break;
5693
5694 case R_MIPS_GPREL32:
5695 value = (addend + symbol + gp0 - gp);
5696 if (!save_addend)
5697 value &= howto->dst_mask;
5698 break;
5699
5700 case R_MIPS_PC16:
5701 case R_MIPS_GNU_REL16_S2:
5702 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5703 overflowed_p = mips_elf_overflow_p (value, 18);
5704 value >>= howto->rightshift;
5705 value &= howto->dst_mask;
5706 break;
5707
5708 case R_MICROMIPS_PC7_S1:
5709 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5710 overflowed_p = mips_elf_overflow_p (value, 8);
5711 value >>= howto->rightshift;
5712 value &= howto->dst_mask;
5713 break;
5714
5715 case R_MICROMIPS_PC10_S1:
5716 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5717 overflowed_p = mips_elf_overflow_p (value, 11);
5718 value >>= howto->rightshift;
5719 value &= howto->dst_mask;
5720 break;
5721
5722 case R_MICROMIPS_PC16_S1:
5723 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5724 overflowed_p = mips_elf_overflow_p (value, 17);
5725 value >>= howto->rightshift;
5726 value &= howto->dst_mask;
5727 break;
5728
5729 case R_MICROMIPS_PC23_S2:
5730 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5731 overflowed_p = mips_elf_overflow_p (value, 25);
5732 value >>= howto->rightshift;
5733 value &= howto->dst_mask;
5734 break;
5735
5736 case R_MIPS_GOT_HI16:
5737 case R_MIPS_CALL_HI16:
5738 case R_MICROMIPS_GOT_HI16:
5739 case R_MICROMIPS_CALL_HI16:
5740 /* We're allowed to handle these two relocations identically.
5741 The dynamic linker is allowed to handle the CALL relocations
5742 differently by creating a lazy evaluation stub. */
5743 value = g;
5744 value = mips_elf_high (value);
5745 value &= howto->dst_mask;
5746 break;
5747
5748 case R_MIPS_GOT_LO16:
5749 case R_MIPS_CALL_LO16:
5750 case R_MICROMIPS_GOT_LO16:
5751 case R_MICROMIPS_CALL_LO16:
5752 value = g & howto->dst_mask;
5753 break;
5754
5755 case R_MIPS_GOT_PAGE:
5756 case R_MICROMIPS_GOT_PAGE:
5757 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5758 if (value == MINUS_ONE)
5759 return bfd_reloc_outofrange;
5760 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5761 overflowed_p = mips_elf_overflow_p (value, 16);
5762 break;
5763
5764 case R_MIPS_GOT_OFST:
5765 case R_MICROMIPS_GOT_OFST:
5766 if (local_p)
5767 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5768 else
5769 value = addend;
5770 overflowed_p = mips_elf_overflow_p (value, 16);
5771 break;
5772
5773 case R_MIPS_SUB:
5774 case R_MICROMIPS_SUB:
5775 value = symbol - addend;
5776 value &= howto->dst_mask;
5777 break;
5778
5779 case R_MIPS_HIGHER:
5780 case R_MICROMIPS_HIGHER:
5781 value = mips_elf_higher (addend + symbol);
5782 value &= howto->dst_mask;
5783 break;
5784
5785 case R_MIPS_HIGHEST:
5786 case R_MICROMIPS_HIGHEST:
5787 value = mips_elf_highest (addend + symbol);
5788 value &= howto->dst_mask;
5789 break;
5790
5791 case R_MIPS_SCN_DISP:
5792 case R_MICROMIPS_SCN_DISP:
5793 value = symbol + addend - sec->output_offset;
5794 value &= howto->dst_mask;
5795 break;
5796
5797 case R_MIPS_JALR:
5798 case R_MICROMIPS_JALR:
5799 /* This relocation is only a hint. In some cases, we optimize
5800 it into a bal instruction. But we don't try to optimize
5801 when the symbol does not resolve locally. */
5802 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5803 return bfd_reloc_continue;
5804 value = symbol + addend;
5805 break;
5806
5807 case R_MIPS_PJUMP:
5808 case R_MIPS_GNU_VTINHERIT:
5809 case R_MIPS_GNU_VTENTRY:
5810 /* We don't do anything with these at present. */
5811 return bfd_reloc_continue;
5812
5813 default:
5814 /* An unrecognized relocation type. */
5815 return bfd_reloc_notsupported;
5816 }
5817
5818 /* Store the VALUE for our caller. */
5819 *valuep = value;
5820 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5821 }
5822
5823 /* Obtain the field relocated by RELOCATION. */
5824
5825 static bfd_vma
5826 mips_elf_obtain_contents (reloc_howto_type *howto,
5827 const Elf_Internal_Rela *relocation,
5828 bfd *input_bfd, bfd_byte *contents)
5829 {
5830 bfd_vma x;
5831 bfd_byte *location = contents + relocation->r_offset;
5832
5833 /* Obtain the bytes. */
5834 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5835
5836 return x;
5837 }
5838
5839 /* It has been determined that the result of the RELOCATION is the
5840 VALUE. Use HOWTO to place VALUE into the output file at the
5841 appropriate position. The SECTION is the section to which the
5842 relocation applies.
5843 CROSS_MODE_JUMP_P is true if the relocation field
5844 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5845
5846 Returns FALSE if anything goes wrong. */
5847
5848 static bfd_boolean
5849 mips_elf_perform_relocation (struct bfd_link_info *info,
5850 reloc_howto_type *howto,
5851 const Elf_Internal_Rela *relocation,
5852 bfd_vma value, bfd *input_bfd,
5853 asection *input_section, bfd_byte *contents,
5854 bfd_boolean cross_mode_jump_p)
5855 {
5856 bfd_vma x;
5857 bfd_byte *location;
5858 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5859
5860 /* Figure out where the relocation is occurring. */
5861 location = contents + relocation->r_offset;
5862
5863 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5864
5865 /* Obtain the current value. */
5866 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5867
5868 /* Clear the field we are setting. */
5869 x &= ~howto->dst_mask;
5870
5871 /* Set the field. */
5872 x |= (value & howto->dst_mask);
5873
5874 /* If required, turn JAL into JALX. */
5875 if (cross_mode_jump_p && jal_reloc_p (r_type))
5876 {
5877 bfd_boolean ok;
5878 bfd_vma opcode = x >> 26;
5879 bfd_vma jalx_opcode;
5880
5881 /* Check to see if the opcode is already JAL or JALX. */
5882 if (r_type == R_MIPS16_26)
5883 {
5884 ok = ((opcode == 0x6) || (opcode == 0x7));
5885 jalx_opcode = 0x7;
5886 }
5887 else if (r_type == R_MICROMIPS_26_S1)
5888 {
5889 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5890 jalx_opcode = 0x3c;
5891 }
5892 else
5893 {
5894 ok = ((opcode == 0x3) || (opcode == 0x1d));
5895 jalx_opcode = 0x1d;
5896 }
5897
5898 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5899 convert J or JALS to JALX. */
5900 if (!ok)
5901 {
5902 (*_bfd_error_handler)
5903 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5904 input_bfd,
5905 input_section,
5906 (unsigned long) relocation->r_offset);
5907 bfd_set_error (bfd_error_bad_value);
5908 return FALSE;
5909 }
5910
5911 /* Make this the JALX opcode. */
5912 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5913 }
5914
5915 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5916 range. */
5917 if (!info->relocatable
5918 && !cross_mode_jump_p
5919 && ((JAL_TO_BAL_P (input_bfd)
5920 && r_type == R_MIPS_26
5921 && (x >> 26) == 0x3) /* jal addr */
5922 || (JALR_TO_BAL_P (input_bfd)
5923 && r_type == R_MIPS_JALR
5924 && x == 0x0320f809) /* jalr t9 */
5925 || (JR_TO_B_P (input_bfd)
5926 && r_type == R_MIPS_JALR
5927 && x == 0x03200008))) /* jr t9 */
5928 {
5929 bfd_vma addr;
5930 bfd_vma dest;
5931 bfd_signed_vma off;
5932
5933 addr = (input_section->output_section->vma
5934 + input_section->output_offset
5935 + relocation->r_offset
5936 + 4);
5937 if (r_type == R_MIPS_26)
5938 dest = (value << 2) | ((addr >> 28) << 28);
5939 else
5940 dest = value;
5941 off = dest - addr;
5942 if (off <= 0x1ffff && off >= -0x20000)
5943 {
5944 if (x == 0x03200008) /* jr t9 */
5945 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5946 else
5947 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5948 }
5949 }
5950
5951 /* Put the value into the output. */
5952 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5953
5954 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5955 location);
5956
5957 return TRUE;
5958 }
5959 \f
5960 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5961 is the original relocation, which is now being transformed into a
5962 dynamic relocation. The ADDENDP is adjusted if necessary; the
5963 caller should store the result in place of the original addend. */
5964
5965 static bfd_boolean
5966 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5967 struct bfd_link_info *info,
5968 const Elf_Internal_Rela *rel,
5969 struct mips_elf_link_hash_entry *h,
5970 asection *sec, bfd_vma symbol,
5971 bfd_vma *addendp, asection *input_section)
5972 {
5973 Elf_Internal_Rela outrel[3];
5974 asection *sreloc;
5975 bfd *dynobj;
5976 int r_type;
5977 long indx;
5978 bfd_boolean defined_p;
5979 struct mips_elf_link_hash_table *htab;
5980
5981 htab = mips_elf_hash_table (info);
5982 BFD_ASSERT (htab != NULL);
5983
5984 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5985 dynobj = elf_hash_table (info)->dynobj;
5986 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5987 BFD_ASSERT (sreloc != NULL);
5988 BFD_ASSERT (sreloc->contents != NULL);
5989 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5990 < sreloc->size);
5991
5992 outrel[0].r_offset =
5993 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5994 if (ABI_64_P (output_bfd))
5995 {
5996 outrel[1].r_offset =
5997 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5998 outrel[2].r_offset =
5999 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6000 }
6001
6002 if (outrel[0].r_offset == MINUS_ONE)
6003 /* The relocation field has been deleted. */
6004 return TRUE;
6005
6006 if (outrel[0].r_offset == MINUS_TWO)
6007 {
6008 /* The relocation field has been converted into a relative value of
6009 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6010 the field to be fully relocated, so add in the symbol's value. */
6011 *addendp += symbol;
6012 return TRUE;
6013 }
6014
6015 /* We must now calculate the dynamic symbol table index to use
6016 in the relocation. */
6017 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6018 {
6019 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6020 indx = h->root.dynindx;
6021 if (SGI_COMPAT (output_bfd))
6022 defined_p = h->root.def_regular;
6023 else
6024 /* ??? glibc's ld.so just adds the final GOT entry to the
6025 relocation field. It therefore treats relocs against
6026 defined symbols in the same way as relocs against
6027 undefined symbols. */
6028 defined_p = FALSE;
6029 }
6030 else
6031 {
6032 if (sec != NULL && bfd_is_abs_section (sec))
6033 indx = 0;
6034 else if (sec == NULL || sec->owner == NULL)
6035 {
6036 bfd_set_error (bfd_error_bad_value);
6037 return FALSE;
6038 }
6039 else
6040 {
6041 indx = elf_section_data (sec->output_section)->dynindx;
6042 if (indx == 0)
6043 {
6044 asection *osec = htab->root.text_index_section;
6045 indx = elf_section_data (osec)->dynindx;
6046 }
6047 if (indx == 0)
6048 abort ();
6049 }
6050
6051 /* Instead of generating a relocation using the section
6052 symbol, we may as well make it a fully relative
6053 relocation. We want to avoid generating relocations to
6054 local symbols because we used to generate them
6055 incorrectly, without adding the original symbol value,
6056 which is mandated by the ABI for section symbols. In
6057 order to give dynamic loaders and applications time to
6058 phase out the incorrect use, we refrain from emitting
6059 section-relative relocations. It's not like they're
6060 useful, after all. This should be a bit more efficient
6061 as well. */
6062 /* ??? Although this behavior is compatible with glibc's ld.so,
6063 the ABI says that relocations against STN_UNDEF should have
6064 a symbol value of 0. Irix rld honors this, so relocations
6065 against STN_UNDEF have no effect. */
6066 if (!SGI_COMPAT (output_bfd))
6067 indx = 0;
6068 defined_p = TRUE;
6069 }
6070
6071 /* If the relocation was previously an absolute relocation and
6072 this symbol will not be referred to by the relocation, we must
6073 adjust it by the value we give it in the dynamic symbol table.
6074 Otherwise leave the job up to the dynamic linker. */
6075 if (defined_p && r_type != R_MIPS_REL32)
6076 *addendp += symbol;
6077
6078 if (htab->is_vxworks)
6079 /* VxWorks uses non-relative relocations for this. */
6080 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6081 else
6082 /* The relocation is always an REL32 relocation because we don't
6083 know where the shared library will wind up at load-time. */
6084 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6085 R_MIPS_REL32);
6086
6087 /* For strict adherence to the ABI specification, we should
6088 generate a R_MIPS_64 relocation record by itself before the
6089 _REL32/_64 record as well, such that the addend is read in as
6090 a 64-bit value (REL32 is a 32-bit relocation, after all).
6091 However, since none of the existing ELF64 MIPS dynamic
6092 loaders seems to care, we don't waste space with these
6093 artificial relocations. If this turns out to not be true,
6094 mips_elf_allocate_dynamic_relocation() should be tweaked so
6095 as to make room for a pair of dynamic relocations per
6096 invocation if ABI_64_P, and here we should generate an
6097 additional relocation record with R_MIPS_64 by itself for a
6098 NULL symbol before this relocation record. */
6099 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6100 ABI_64_P (output_bfd)
6101 ? R_MIPS_64
6102 : R_MIPS_NONE);
6103 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6104
6105 /* Adjust the output offset of the relocation to reference the
6106 correct location in the output file. */
6107 outrel[0].r_offset += (input_section->output_section->vma
6108 + input_section->output_offset);
6109 outrel[1].r_offset += (input_section->output_section->vma
6110 + input_section->output_offset);
6111 outrel[2].r_offset += (input_section->output_section->vma
6112 + input_section->output_offset);
6113
6114 /* Put the relocation back out. We have to use the special
6115 relocation outputter in the 64-bit case since the 64-bit
6116 relocation format is non-standard. */
6117 if (ABI_64_P (output_bfd))
6118 {
6119 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6120 (output_bfd, &outrel[0],
6121 (sreloc->contents
6122 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6123 }
6124 else if (htab->is_vxworks)
6125 {
6126 /* VxWorks uses RELA rather than REL dynamic relocations. */
6127 outrel[0].r_addend = *addendp;
6128 bfd_elf32_swap_reloca_out
6129 (output_bfd, &outrel[0],
6130 (sreloc->contents
6131 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6132 }
6133 else
6134 bfd_elf32_swap_reloc_out
6135 (output_bfd, &outrel[0],
6136 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6137
6138 /* We've now added another relocation. */
6139 ++sreloc->reloc_count;
6140
6141 /* Make sure the output section is writable. The dynamic linker
6142 will be writing to it. */
6143 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6144 |= SHF_WRITE;
6145
6146 /* On IRIX5, make an entry of compact relocation info. */
6147 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6148 {
6149 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6150 bfd_byte *cr;
6151
6152 if (scpt)
6153 {
6154 Elf32_crinfo cptrel;
6155
6156 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6157 cptrel.vaddr = (rel->r_offset
6158 + input_section->output_section->vma
6159 + input_section->output_offset);
6160 if (r_type == R_MIPS_REL32)
6161 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6162 else
6163 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6164 mips_elf_set_cr_dist2to (cptrel, 0);
6165 cptrel.konst = *addendp;
6166
6167 cr = (scpt->contents
6168 + sizeof (Elf32_External_compact_rel));
6169 mips_elf_set_cr_relvaddr (cptrel, 0);
6170 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6171 ((Elf32_External_crinfo *) cr
6172 + scpt->reloc_count));
6173 ++scpt->reloc_count;
6174 }
6175 }
6176
6177 /* If we've written this relocation for a readonly section,
6178 we need to set DF_TEXTREL again, so that we do not delete the
6179 DT_TEXTREL tag. */
6180 if (MIPS_ELF_READONLY_SECTION (input_section))
6181 info->flags |= DF_TEXTREL;
6182
6183 return TRUE;
6184 }
6185 \f
6186 /* Return the MACH for a MIPS e_flags value. */
6187
6188 unsigned long
6189 _bfd_elf_mips_mach (flagword flags)
6190 {
6191 switch (flags & EF_MIPS_MACH)
6192 {
6193 case E_MIPS_MACH_3900:
6194 return bfd_mach_mips3900;
6195
6196 case E_MIPS_MACH_4010:
6197 return bfd_mach_mips4010;
6198
6199 case E_MIPS_MACH_4100:
6200 return bfd_mach_mips4100;
6201
6202 case E_MIPS_MACH_4111:
6203 return bfd_mach_mips4111;
6204
6205 case E_MIPS_MACH_4120:
6206 return bfd_mach_mips4120;
6207
6208 case E_MIPS_MACH_4650:
6209 return bfd_mach_mips4650;
6210
6211 case E_MIPS_MACH_5400:
6212 return bfd_mach_mips5400;
6213
6214 case E_MIPS_MACH_5500:
6215 return bfd_mach_mips5500;
6216
6217 case E_MIPS_MACH_5900:
6218 return bfd_mach_mips5900;
6219
6220 case E_MIPS_MACH_9000:
6221 return bfd_mach_mips9000;
6222
6223 case E_MIPS_MACH_SB1:
6224 return bfd_mach_mips_sb1;
6225
6226 case E_MIPS_MACH_LS2E:
6227 return bfd_mach_mips_loongson_2e;
6228
6229 case E_MIPS_MACH_LS2F:
6230 return bfd_mach_mips_loongson_2f;
6231
6232 case E_MIPS_MACH_LS3A:
6233 return bfd_mach_mips_loongson_3a;
6234
6235 case E_MIPS_MACH_OCTEON2:
6236 return bfd_mach_mips_octeon2;
6237
6238 case E_MIPS_MACH_OCTEON:
6239 return bfd_mach_mips_octeon;
6240
6241 case E_MIPS_MACH_XLR:
6242 return bfd_mach_mips_xlr;
6243
6244 default:
6245 switch (flags & EF_MIPS_ARCH)
6246 {
6247 default:
6248 case E_MIPS_ARCH_1:
6249 return bfd_mach_mips3000;
6250
6251 case E_MIPS_ARCH_2:
6252 return bfd_mach_mips6000;
6253
6254 case E_MIPS_ARCH_3:
6255 return bfd_mach_mips4000;
6256
6257 case E_MIPS_ARCH_4:
6258 return bfd_mach_mips8000;
6259
6260 case E_MIPS_ARCH_5:
6261 return bfd_mach_mips5;
6262
6263 case E_MIPS_ARCH_32:
6264 return bfd_mach_mipsisa32;
6265
6266 case E_MIPS_ARCH_64:
6267 return bfd_mach_mipsisa64;
6268
6269 case E_MIPS_ARCH_32R2:
6270 return bfd_mach_mipsisa32r2;
6271
6272 case E_MIPS_ARCH_64R2:
6273 return bfd_mach_mipsisa64r2;
6274 }
6275 }
6276
6277 return 0;
6278 }
6279
6280 /* Return printable name for ABI. */
6281
6282 static INLINE char *
6283 elf_mips_abi_name (bfd *abfd)
6284 {
6285 flagword flags;
6286
6287 flags = elf_elfheader (abfd)->e_flags;
6288 switch (flags & EF_MIPS_ABI)
6289 {
6290 case 0:
6291 if (ABI_N32_P (abfd))
6292 return "N32";
6293 else if (ABI_64_P (abfd))
6294 return "64";
6295 else
6296 return "none";
6297 case E_MIPS_ABI_O32:
6298 return "O32";
6299 case E_MIPS_ABI_O64:
6300 return "O64";
6301 case E_MIPS_ABI_EABI32:
6302 return "EABI32";
6303 case E_MIPS_ABI_EABI64:
6304 return "EABI64";
6305 default:
6306 return "unknown abi";
6307 }
6308 }
6309 \f
6310 /* MIPS ELF uses two common sections. One is the usual one, and the
6311 other is for small objects. All the small objects are kept
6312 together, and then referenced via the gp pointer, which yields
6313 faster assembler code. This is what we use for the small common
6314 section. This approach is copied from ecoff.c. */
6315 static asection mips_elf_scom_section;
6316 static asymbol mips_elf_scom_symbol;
6317 static asymbol *mips_elf_scom_symbol_ptr;
6318
6319 /* MIPS ELF also uses an acommon section, which represents an
6320 allocated common symbol which may be overridden by a
6321 definition in a shared library. */
6322 static asection mips_elf_acom_section;
6323 static asymbol mips_elf_acom_symbol;
6324 static asymbol *mips_elf_acom_symbol_ptr;
6325
6326 /* This is used for both the 32-bit and the 64-bit ABI. */
6327
6328 void
6329 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6330 {
6331 elf_symbol_type *elfsym;
6332
6333 /* Handle the special MIPS section numbers that a symbol may use. */
6334 elfsym = (elf_symbol_type *) asym;
6335 switch (elfsym->internal_elf_sym.st_shndx)
6336 {
6337 case SHN_MIPS_ACOMMON:
6338 /* This section is used in a dynamically linked executable file.
6339 It is an allocated common section. The dynamic linker can
6340 either resolve these symbols to something in a shared
6341 library, or it can just leave them here. For our purposes,
6342 we can consider these symbols to be in a new section. */
6343 if (mips_elf_acom_section.name == NULL)
6344 {
6345 /* Initialize the acommon section. */
6346 mips_elf_acom_section.name = ".acommon";
6347 mips_elf_acom_section.flags = SEC_ALLOC;
6348 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6349 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6350 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6351 mips_elf_acom_symbol.name = ".acommon";
6352 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6353 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6354 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6355 }
6356 asym->section = &mips_elf_acom_section;
6357 break;
6358
6359 case SHN_COMMON:
6360 /* Common symbols less than the GP size are automatically
6361 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6362 if (asym->value > elf_gp_size (abfd)
6363 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6364 || IRIX_COMPAT (abfd) == ict_irix6)
6365 break;
6366 /* Fall through. */
6367 case SHN_MIPS_SCOMMON:
6368 if (mips_elf_scom_section.name == NULL)
6369 {
6370 /* Initialize the small common section. */
6371 mips_elf_scom_section.name = ".scommon";
6372 mips_elf_scom_section.flags = SEC_IS_COMMON;
6373 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6374 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6375 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6376 mips_elf_scom_symbol.name = ".scommon";
6377 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6378 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6379 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6380 }
6381 asym->section = &mips_elf_scom_section;
6382 asym->value = elfsym->internal_elf_sym.st_size;
6383 break;
6384
6385 case SHN_MIPS_SUNDEFINED:
6386 asym->section = bfd_und_section_ptr;
6387 break;
6388
6389 case SHN_MIPS_TEXT:
6390 {
6391 asection *section = bfd_get_section_by_name (abfd, ".text");
6392
6393 if (section != NULL)
6394 {
6395 asym->section = section;
6396 /* MIPS_TEXT is a bit special, the address is not an offset
6397 to the base of the .text section. So substract the section
6398 base address to make it an offset. */
6399 asym->value -= section->vma;
6400 }
6401 }
6402 break;
6403
6404 case SHN_MIPS_DATA:
6405 {
6406 asection *section = bfd_get_section_by_name (abfd, ".data");
6407
6408 if (section != NULL)
6409 {
6410 asym->section = section;
6411 /* MIPS_DATA is a bit special, the address is not an offset
6412 to the base of the .data section. So substract the section
6413 base address to make it an offset. */
6414 asym->value -= section->vma;
6415 }
6416 }
6417 break;
6418 }
6419
6420 /* If this is an odd-valued function symbol, assume it's a MIPS16
6421 or microMIPS one. */
6422 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6423 && (asym->value & 1) != 0)
6424 {
6425 asym->value--;
6426 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6427 elfsym->internal_elf_sym.st_other
6428 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6429 else
6430 elfsym->internal_elf_sym.st_other
6431 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6432 }
6433 }
6434 \f
6435 /* Implement elf_backend_eh_frame_address_size. This differs from
6436 the default in the way it handles EABI64.
6437
6438 EABI64 was originally specified as an LP64 ABI, and that is what
6439 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6440 historically accepted the combination of -mabi=eabi and -mlong32,
6441 and this ILP32 variation has become semi-official over time.
6442 Both forms use elf32 and have pointer-sized FDE addresses.
6443
6444 If an EABI object was generated by GCC 4.0 or above, it will have
6445 an empty .gcc_compiled_longXX section, where XX is the size of longs
6446 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6447 have no special marking to distinguish them from LP64 objects.
6448
6449 We don't want users of the official LP64 ABI to be punished for the
6450 existence of the ILP32 variant, but at the same time, we don't want
6451 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6452 We therefore take the following approach:
6453
6454 - If ABFD contains a .gcc_compiled_longXX section, use it to
6455 determine the pointer size.
6456
6457 - Otherwise check the type of the first relocation. Assume that
6458 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6459
6460 - Otherwise punt.
6461
6462 The second check is enough to detect LP64 objects generated by pre-4.0
6463 compilers because, in the kind of output generated by those compilers,
6464 the first relocation will be associated with either a CIE personality
6465 routine or an FDE start address. Furthermore, the compilers never
6466 used a special (non-pointer) encoding for this ABI.
6467
6468 Checking the relocation type should also be safe because there is no
6469 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6470 did so. */
6471
6472 unsigned int
6473 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6474 {
6475 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6476 return 8;
6477 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6478 {
6479 bfd_boolean long32_p, long64_p;
6480
6481 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6482 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6483 if (long32_p && long64_p)
6484 return 0;
6485 if (long32_p)
6486 return 4;
6487 if (long64_p)
6488 return 8;
6489
6490 if (sec->reloc_count > 0
6491 && elf_section_data (sec)->relocs != NULL
6492 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6493 == R_MIPS_64))
6494 return 8;
6495
6496 return 0;
6497 }
6498 return 4;
6499 }
6500 \f
6501 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6502 relocations against two unnamed section symbols to resolve to the
6503 same address. For example, if we have code like:
6504
6505 lw $4,%got_disp(.data)($gp)
6506 lw $25,%got_disp(.text)($gp)
6507 jalr $25
6508
6509 then the linker will resolve both relocations to .data and the program
6510 will jump there rather than to .text.
6511
6512 We can work around this problem by giving names to local section symbols.
6513 This is also what the MIPSpro tools do. */
6514
6515 bfd_boolean
6516 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6517 {
6518 return SGI_COMPAT (abfd);
6519 }
6520 \f
6521 /* Work over a section just before writing it out. This routine is
6522 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6523 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6524 a better way. */
6525
6526 bfd_boolean
6527 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6528 {
6529 if (hdr->sh_type == SHT_MIPS_REGINFO
6530 && hdr->sh_size > 0)
6531 {
6532 bfd_byte buf[4];
6533
6534 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6535 BFD_ASSERT (hdr->contents == NULL);
6536
6537 if (bfd_seek (abfd,
6538 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6539 SEEK_SET) != 0)
6540 return FALSE;
6541 H_PUT_32 (abfd, elf_gp (abfd), buf);
6542 if (bfd_bwrite (buf, 4, abfd) != 4)
6543 return FALSE;
6544 }
6545
6546 if (hdr->sh_type == SHT_MIPS_OPTIONS
6547 && hdr->bfd_section != NULL
6548 && mips_elf_section_data (hdr->bfd_section) != NULL
6549 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6550 {
6551 bfd_byte *contents, *l, *lend;
6552
6553 /* We stored the section contents in the tdata field in the
6554 set_section_contents routine. We save the section contents
6555 so that we don't have to read them again.
6556 At this point we know that elf_gp is set, so we can look
6557 through the section contents to see if there is an
6558 ODK_REGINFO structure. */
6559
6560 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6561 l = contents;
6562 lend = contents + hdr->sh_size;
6563 while (l + sizeof (Elf_External_Options) <= lend)
6564 {
6565 Elf_Internal_Options intopt;
6566
6567 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6568 &intopt);
6569 if (intopt.size < sizeof (Elf_External_Options))
6570 {
6571 (*_bfd_error_handler)
6572 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6573 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6574 break;
6575 }
6576 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6577 {
6578 bfd_byte buf[8];
6579
6580 if (bfd_seek (abfd,
6581 (hdr->sh_offset
6582 + (l - contents)
6583 + sizeof (Elf_External_Options)
6584 + (sizeof (Elf64_External_RegInfo) - 8)),
6585 SEEK_SET) != 0)
6586 return FALSE;
6587 H_PUT_64 (abfd, elf_gp (abfd), buf);
6588 if (bfd_bwrite (buf, 8, abfd) != 8)
6589 return FALSE;
6590 }
6591 else if (intopt.kind == ODK_REGINFO)
6592 {
6593 bfd_byte buf[4];
6594
6595 if (bfd_seek (abfd,
6596 (hdr->sh_offset
6597 + (l - contents)
6598 + sizeof (Elf_External_Options)
6599 + (sizeof (Elf32_External_RegInfo) - 4)),
6600 SEEK_SET) != 0)
6601 return FALSE;
6602 H_PUT_32 (abfd, elf_gp (abfd), buf);
6603 if (bfd_bwrite (buf, 4, abfd) != 4)
6604 return FALSE;
6605 }
6606 l += intopt.size;
6607 }
6608 }
6609
6610 if (hdr->bfd_section != NULL)
6611 {
6612 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6613
6614 /* .sbss is not handled specially here because the GNU/Linux
6615 prelinker can convert .sbss from NOBITS to PROGBITS and
6616 changing it back to NOBITS breaks the binary. The entry in
6617 _bfd_mips_elf_special_sections will ensure the correct flags
6618 are set on .sbss if BFD creates it without reading it from an
6619 input file, and without special handling here the flags set
6620 on it in an input file will be followed. */
6621 if (strcmp (name, ".sdata") == 0
6622 || strcmp (name, ".lit8") == 0
6623 || strcmp (name, ".lit4") == 0)
6624 {
6625 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6626 hdr->sh_type = SHT_PROGBITS;
6627 }
6628 else if (strcmp (name, ".srdata") == 0)
6629 {
6630 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6631 hdr->sh_type = SHT_PROGBITS;
6632 }
6633 else if (strcmp (name, ".compact_rel") == 0)
6634 {
6635 hdr->sh_flags = 0;
6636 hdr->sh_type = SHT_PROGBITS;
6637 }
6638 else if (strcmp (name, ".rtproc") == 0)
6639 {
6640 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6641 {
6642 unsigned int adjust;
6643
6644 adjust = hdr->sh_size % hdr->sh_addralign;
6645 if (adjust != 0)
6646 hdr->sh_size += hdr->sh_addralign - adjust;
6647 }
6648 }
6649 }
6650
6651 return TRUE;
6652 }
6653
6654 /* Handle a MIPS specific section when reading an object file. This
6655 is called when elfcode.h finds a section with an unknown type.
6656 This routine supports both the 32-bit and 64-bit ELF ABI.
6657
6658 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6659 how to. */
6660
6661 bfd_boolean
6662 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6663 Elf_Internal_Shdr *hdr,
6664 const char *name,
6665 int shindex)
6666 {
6667 flagword flags = 0;
6668
6669 /* There ought to be a place to keep ELF backend specific flags, but
6670 at the moment there isn't one. We just keep track of the
6671 sections by their name, instead. Fortunately, the ABI gives
6672 suggested names for all the MIPS specific sections, so we will
6673 probably get away with this. */
6674 switch (hdr->sh_type)
6675 {
6676 case SHT_MIPS_LIBLIST:
6677 if (strcmp (name, ".liblist") != 0)
6678 return FALSE;
6679 break;
6680 case SHT_MIPS_MSYM:
6681 if (strcmp (name, ".msym") != 0)
6682 return FALSE;
6683 break;
6684 case SHT_MIPS_CONFLICT:
6685 if (strcmp (name, ".conflict") != 0)
6686 return FALSE;
6687 break;
6688 case SHT_MIPS_GPTAB:
6689 if (! CONST_STRNEQ (name, ".gptab."))
6690 return FALSE;
6691 break;
6692 case SHT_MIPS_UCODE:
6693 if (strcmp (name, ".ucode") != 0)
6694 return FALSE;
6695 break;
6696 case SHT_MIPS_DEBUG:
6697 if (strcmp (name, ".mdebug") != 0)
6698 return FALSE;
6699 flags = SEC_DEBUGGING;
6700 break;
6701 case SHT_MIPS_REGINFO:
6702 if (strcmp (name, ".reginfo") != 0
6703 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6704 return FALSE;
6705 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6706 break;
6707 case SHT_MIPS_IFACE:
6708 if (strcmp (name, ".MIPS.interfaces") != 0)
6709 return FALSE;
6710 break;
6711 case SHT_MIPS_CONTENT:
6712 if (! CONST_STRNEQ (name, ".MIPS.content"))
6713 return FALSE;
6714 break;
6715 case SHT_MIPS_OPTIONS:
6716 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6717 return FALSE;
6718 break;
6719 case SHT_MIPS_DWARF:
6720 if (! CONST_STRNEQ (name, ".debug_")
6721 && ! CONST_STRNEQ (name, ".zdebug_"))
6722 return FALSE;
6723 break;
6724 case SHT_MIPS_SYMBOL_LIB:
6725 if (strcmp (name, ".MIPS.symlib") != 0)
6726 return FALSE;
6727 break;
6728 case SHT_MIPS_EVENTS:
6729 if (! CONST_STRNEQ (name, ".MIPS.events")
6730 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6731 return FALSE;
6732 break;
6733 default:
6734 break;
6735 }
6736
6737 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6738 return FALSE;
6739
6740 if (flags)
6741 {
6742 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6743 (bfd_get_section_flags (abfd,
6744 hdr->bfd_section)
6745 | flags)))
6746 return FALSE;
6747 }
6748
6749 /* FIXME: We should record sh_info for a .gptab section. */
6750
6751 /* For a .reginfo section, set the gp value in the tdata information
6752 from the contents of this section. We need the gp value while
6753 processing relocs, so we just get it now. The .reginfo section
6754 is not used in the 64-bit MIPS ELF ABI. */
6755 if (hdr->sh_type == SHT_MIPS_REGINFO)
6756 {
6757 Elf32_External_RegInfo ext;
6758 Elf32_RegInfo s;
6759
6760 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6761 &ext, 0, sizeof ext))
6762 return FALSE;
6763 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6764 elf_gp (abfd) = s.ri_gp_value;
6765 }
6766
6767 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6768 set the gp value based on what we find. We may see both
6769 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6770 they should agree. */
6771 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6772 {
6773 bfd_byte *contents, *l, *lend;
6774
6775 contents = bfd_malloc (hdr->sh_size);
6776 if (contents == NULL)
6777 return FALSE;
6778 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6779 0, hdr->sh_size))
6780 {
6781 free (contents);
6782 return FALSE;
6783 }
6784 l = contents;
6785 lend = contents + hdr->sh_size;
6786 while (l + sizeof (Elf_External_Options) <= lend)
6787 {
6788 Elf_Internal_Options intopt;
6789
6790 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6791 &intopt);
6792 if (intopt.size < sizeof (Elf_External_Options))
6793 {
6794 (*_bfd_error_handler)
6795 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6796 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6797 break;
6798 }
6799 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6800 {
6801 Elf64_Internal_RegInfo intreg;
6802
6803 bfd_mips_elf64_swap_reginfo_in
6804 (abfd,
6805 ((Elf64_External_RegInfo *)
6806 (l + sizeof (Elf_External_Options))),
6807 &intreg);
6808 elf_gp (abfd) = intreg.ri_gp_value;
6809 }
6810 else if (intopt.kind == ODK_REGINFO)
6811 {
6812 Elf32_RegInfo intreg;
6813
6814 bfd_mips_elf32_swap_reginfo_in
6815 (abfd,
6816 ((Elf32_External_RegInfo *)
6817 (l + sizeof (Elf_External_Options))),
6818 &intreg);
6819 elf_gp (abfd) = intreg.ri_gp_value;
6820 }
6821 l += intopt.size;
6822 }
6823 free (contents);
6824 }
6825
6826 return TRUE;
6827 }
6828
6829 /* Set the correct type for a MIPS ELF section. We do this by the
6830 section name, which is a hack, but ought to work. This routine is
6831 used by both the 32-bit and the 64-bit ABI. */
6832
6833 bfd_boolean
6834 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6835 {
6836 const char *name = bfd_get_section_name (abfd, sec);
6837
6838 if (strcmp (name, ".liblist") == 0)
6839 {
6840 hdr->sh_type = SHT_MIPS_LIBLIST;
6841 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6842 /* The sh_link field is set in final_write_processing. */
6843 }
6844 else if (strcmp (name, ".conflict") == 0)
6845 hdr->sh_type = SHT_MIPS_CONFLICT;
6846 else if (CONST_STRNEQ (name, ".gptab."))
6847 {
6848 hdr->sh_type = SHT_MIPS_GPTAB;
6849 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6850 /* The sh_info field is set in final_write_processing. */
6851 }
6852 else if (strcmp (name, ".ucode") == 0)
6853 hdr->sh_type = SHT_MIPS_UCODE;
6854 else if (strcmp (name, ".mdebug") == 0)
6855 {
6856 hdr->sh_type = SHT_MIPS_DEBUG;
6857 /* In a shared object on IRIX 5.3, the .mdebug section has an
6858 entsize of 0. FIXME: Does this matter? */
6859 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6860 hdr->sh_entsize = 0;
6861 else
6862 hdr->sh_entsize = 1;
6863 }
6864 else if (strcmp (name, ".reginfo") == 0)
6865 {
6866 hdr->sh_type = SHT_MIPS_REGINFO;
6867 /* In a shared object on IRIX 5.3, the .reginfo section has an
6868 entsize of 0x18. FIXME: Does this matter? */
6869 if (SGI_COMPAT (abfd))
6870 {
6871 if ((abfd->flags & DYNAMIC) != 0)
6872 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6873 else
6874 hdr->sh_entsize = 1;
6875 }
6876 else
6877 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6878 }
6879 else if (SGI_COMPAT (abfd)
6880 && (strcmp (name, ".hash") == 0
6881 || strcmp (name, ".dynamic") == 0
6882 || strcmp (name, ".dynstr") == 0))
6883 {
6884 if (SGI_COMPAT (abfd))
6885 hdr->sh_entsize = 0;
6886 #if 0
6887 /* This isn't how the IRIX6 linker behaves. */
6888 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6889 #endif
6890 }
6891 else if (strcmp (name, ".got") == 0
6892 || strcmp (name, ".srdata") == 0
6893 || strcmp (name, ".sdata") == 0
6894 || strcmp (name, ".sbss") == 0
6895 || strcmp (name, ".lit4") == 0
6896 || strcmp (name, ".lit8") == 0)
6897 hdr->sh_flags |= SHF_MIPS_GPREL;
6898 else if (strcmp (name, ".MIPS.interfaces") == 0)
6899 {
6900 hdr->sh_type = SHT_MIPS_IFACE;
6901 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6902 }
6903 else if (CONST_STRNEQ (name, ".MIPS.content"))
6904 {
6905 hdr->sh_type = SHT_MIPS_CONTENT;
6906 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6907 /* The sh_info field is set in final_write_processing. */
6908 }
6909 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6910 {
6911 hdr->sh_type = SHT_MIPS_OPTIONS;
6912 hdr->sh_entsize = 1;
6913 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6914 }
6915 else if (CONST_STRNEQ (name, ".debug_")
6916 || CONST_STRNEQ (name, ".zdebug_"))
6917 {
6918 hdr->sh_type = SHT_MIPS_DWARF;
6919
6920 /* Irix facilities such as libexc expect a single .debug_frame
6921 per executable, the system ones have NOSTRIP set and the linker
6922 doesn't merge sections with different flags so ... */
6923 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6924 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6925 }
6926 else if (strcmp (name, ".MIPS.symlib") == 0)
6927 {
6928 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6929 /* The sh_link and sh_info fields are set in
6930 final_write_processing. */
6931 }
6932 else if (CONST_STRNEQ (name, ".MIPS.events")
6933 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6934 {
6935 hdr->sh_type = SHT_MIPS_EVENTS;
6936 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6937 /* The sh_link field is set in final_write_processing. */
6938 }
6939 else if (strcmp (name, ".msym") == 0)
6940 {
6941 hdr->sh_type = SHT_MIPS_MSYM;
6942 hdr->sh_flags |= SHF_ALLOC;
6943 hdr->sh_entsize = 8;
6944 }
6945
6946 /* The generic elf_fake_sections will set up REL_HDR using the default
6947 kind of relocations. We used to set up a second header for the
6948 non-default kind of relocations here, but only NewABI would use
6949 these, and the IRIX ld doesn't like resulting empty RELA sections.
6950 Thus we create those header only on demand now. */
6951
6952 return TRUE;
6953 }
6954
6955 /* Given a BFD section, try to locate the corresponding ELF section
6956 index. This is used by both the 32-bit and the 64-bit ABI.
6957 Actually, it's not clear to me that the 64-bit ABI supports these,
6958 but for non-PIC objects we will certainly want support for at least
6959 the .scommon section. */
6960
6961 bfd_boolean
6962 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6963 asection *sec, int *retval)
6964 {
6965 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6966 {
6967 *retval = SHN_MIPS_SCOMMON;
6968 return TRUE;
6969 }
6970 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6971 {
6972 *retval = SHN_MIPS_ACOMMON;
6973 return TRUE;
6974 }
6975 return FALSE;
6976 }
6977 \f
6978 /* Hook called by the linker routine which adds symbols from an object
6979 file. We must handle the special MIPS section numbers here. */
6980
6981 bfd_boolean
6982 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6983 Elf_Internal_Sym *sym, const char **namep,
6984 flagword *flagsp ATTRIBUTE_UNUSED,
6985 asection **secp, bfd_vma *valp)
6986 {
6987 if (SGI_COMPAT (abfd)
6988 && (abfd->flags & DYNAMIC) != 0
6989 && strcmp (*namep, "_rld_new_interface") == 0)
6990 {
6991 /* Skip IRIX5 rld entry name. */
6992 *namep = NULL;
6993 return TRUE;
6994 }
6995
6996 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6997 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6998 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6999 a magic symbol resolved by the linker, we ignore this bogus definition
7000 of _gp_disp. New ABI objects do not suffer from this problem so this
7001 is not done for them. */
7002 if (!NEWABI_P(abfd)
7003 && (sym->st_shndx == SHN_ABS)
7004 && (strcmp (*namep, "_gp_disp") == 0))
7005 {
7006 *namep = NULL;
7007 return TRUE;
7008 }
7009
7010 switch (sym->st_shndx)
7011 {
7012 case SHN_COMMON:
7013 /* Common symbols less than the GP size are automatically
7014 treated as SHN_MIPS_SCOMMON symbols. */
7015 if (sym->st_size > elf_gp_size (abfd)
7016 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7017 || IRIX_COMPAT (abfd) == ict_irix6)
7018 break;
7019 /* Fall through. */
7020 case SHN_MIPS_SCOMMON:
7021 *secp = bfd_make_section_old_way (abfd, ".scommon");
7022 (*secp)->flags |= SEC_IS_COMMON;
7023 *valp = sym->st_size;
7024 break;
7025
7026 case SHN_MIPS_TEXT:
7027 /* This section is used in a shared object. */
7028 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7029 {
7030 asymbol *elf_text_symbol;
7031 asection *elf_text_section;
7032 bfd_size_type amt = sizeof (asection);
7033
7034 elf_text_section = bfd_zalloc (abfd, amt);
7035 if (elf_text_section == NULL)
7036 return FALSE;
7037
7038 amt = sizeof (asymbol);
7039 elf_text_symbol = bfd_zalloc (abfd, amt);
7040 if (elf_text_symbol == NULL)
7041 return FALSE;
7042
7043 /* Initialize the section. */
7044
7045 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7046 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7047
7048 elf_text_section->symbol = elf_text_symbol;
7049 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7050
7051 elf_text_section->name = ".text";
7052 elf_text_section->flags = SEC_NO_FLAGS;
7053 elf_text_section->output_section = NULL;
7054 elf_text_section->owner = abfd;
7055 elf_text_symbol->name = ".text";
7056 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7057 elf_text_symbol->section = elf_text_section;
7058 }
7059 /* This code used to do *secp = bfd_und_section_ptr if
7060 info->shared. I don't know why, and that doesn't make sense,
7061 so I took it out. */
7062 *secp = mips_elf_tdata (abfd)->elf_text_section;
7063 break;
7064
7065 case SHN_MIPS_ACOMMON:
7066 /* Fall through. XXX Can we treat this as allocated data? */
7067 case SHN_MIPS_DATA:
7068 /* This section is used in a shared object. */
7069 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7070 {
7071 asymbol *elf_data_symbol;
7072 asection *elf_data_section;
7073 bfd_size_type amt = sizeof (asection);
7074
7075 elf_data_section = bfd_zalloc (abfd, amt);
7076 if (elf_data_section == NULL)
7077 return FALSE;
7078
7079 amt = sizeof (asymbol);
7080 elf_data_symbol = bfd_zalloc (abfd, amt);
7081 if (elf_data_symbol == NULL)
7082 return FALSE;
7083
7084 /* Initialize the section. */
7085
7086 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7087 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7088
7089 elf_data_section->symbol = elf_data_symbol;
7090 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7091
7092 elf_data_section->name = ".data";
7093 elf_data_section->flags = SEC_NO_FLAGS;
7094 elf_data_section->output_section = NULL;
7095 elf_data_section->owner = abfd;
7096 elf_data_symbol->name = ".data";
7097 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7098 elf_data_symbol->section = elf_data_section;
7099 }
7100 /* This code used to do *secp = bfd_und_section_ptr if
7101 info->shared. I don't know why, and that doesn't make sense,
7102 so I took it out. */
7103 *secp = mips_elf_tdata (abfd)->elf_data_section;
7104 break;
7105
7106 case SHN_MIPS_SUNDEFINED:
7107 *secp = bfd_und_section_ptr;
7108 break;
7109 }
7110
7111 if (SGI_COMPAT (abfd)
7112 && ! info->shared
7113 && info->output_bfd->xvec == abfd->xvec
7114 && strcmp (*namep, "__rld_obj_head") == 0)
7115 {
7116 struct elf_link_hash_entry *h;
7117 struct bfd_link_hash_entry *bh;
7118
7119 /* Mark __rld_obj_head as dynamic. */
7120 bh = NULL;
7121 if (! (_bfd_generic_link_add_one_symbol
7122 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7123 get_elf_backend_data (abfd)->collect, &bh)))
7124 return FALSE;
7125
7126 h = (struct elf_link_hash_entry *) bh;
7127 h->non_elf = 0;
7128 h->def_regular = 1;
7129 h->type = STT_OBJECT;
7130
7131 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7132 return FALSE;
7133
7134 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7135 mips_elf_hash_table (info)->rld_symbol = h;
7136 }
7137
7138 /* If this is a mips16 text symbol, add 1 to the value to make it
7139 odd. This will cause something like .word SYM to come up with
7140 the right value when it is loaded into the PC. */
7141 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7142 ++*valp;
7143
7144 return TRUE;
7145 }
7146
7147 /* This hook function is called before the linker writes out a global
7148 symbol. We mark symbols as small common if appropriate. This is
7149 also where we undo the increment of the value for a mips16 symbol. */
7150
7151 int
7152 _bfd_mips_elf_link_output_symbol_hook
7153 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7154 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7155 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7156 {
7157 /* If we see a common symbol, which implies a relocatable link, then
7158 if a symbol was small common in an input file, mark it as small
7159 common in the output file. */
7160 if (sym->st_shndx == SHN_COMMON
7161 && strcmp (input_sec->name, ".scommon") == 0)
7162 sym->st_shndx = SHN_MIPS_SCOMMON;
7163
7164 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7165 sym->st_value &= ~1;
7166
7167 return 1;
7168 }
7169 \f
7170 /* Functions for the dynamic linker. */
7171
7172 /* Create dynamic sections when linking against a dynamic object. */
7173
7174 bfd_boolean
7175 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7176 {
7177 struct elf_link_hash_entry *h;
7178 struct bfd_link_hash_entry *bh;
7179 flagword flags;
7180 register asection *s;
7181 const char * const *namep;
7182 struct mips_elf_link_hash_table *htab;
7183
7184 htab = mips_elf_hash_table (info);
7185 BFD_ASSERT (htab != NULL);
7186
7187 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7188 | SEC_LINKER_CREATED | SEC_READONLY);
7189
7190 /* The psABI requires a read-only .dynamic section, but the VxWorks
7191 EABI doesn't. */
7192 if (!htab->is_vxworks)
7193 {
7194 s = bfd_get_linker_section (abfd, ".dynamic");
7195 if (s != NULL)
7196 {
7197 if (! bfd_set_section_flags (abfd, s, flags))
7198 return FALSE;
7199 }
7200 }
7201
7202 /* We need to create .got section. */
7203 if (!mips_elf_create_got_section (abfd, info))
7204 return FALSE;
7205
7206 if (! mips_elf_rel_dyn_section (info, TRUE))
7207 return FALSE;
7208
7209 /* Create .stub section. */
7210 s = bfd_make_section_anyway_with_flags (abfd,
7211 MIPS_ELF_STUB_SECTION_NAME (abfd),
7212 flags | SEC_CODE);
7213 if (s == NULL
7214 || ! bfd_set_section_alignment (abfd, s,
7215 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7216 return FALSE;
7217 htab->sstubs = s;
7218
7219 if (!mips_elf_hash_table (info)->use_rld_obj_head
7220 && !info->shared
7221 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7222 {
7223 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7224 flags &~ (flagword) SEC_READONLY);
7225 if (s == NULL
7226 || ! bfd_set_section_alignment (abfd, s,
7227 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7228 return FALSE;
7229 }
7230
7231 /* On IRIX5, we adjust add some additional symbols and change the
7232 alignments of several sections. There is no ABI documentation
7233 indicating that this is necessary on IRIX6, nor any evidence that
7234 the linker takes such action. */
7235 if (IRIX_COMPAT (abfd) == ict_irix5)
7236 {
7237 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7238 {
7239 bh = NULL;
7240 if (! (_bfd_generic_link_add_one_symbol
7241 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7242 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7243 return FALSE;
7244
7245 h = (struct elf_link_hash_entry *) bh;
7246 h->non_elf = 0;
7247 h->def_regular = 1;
7248 h->type = STT_SECTION;
7249
7250 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7251 return FALSE;
7252 }
7253
7254 /* We need to create a .compact_rel section. */
7255 if (SGI_COMPAT (abfd))
7256 {
7257 if (!mips_elf_create_compact_rel_section (abfd, info))
7258 return FALSE;
7259 }
7260
7261 /* Change alignments of some sections. */
7262 s = bfd_get_linker_section (abfd, ".hash");
7263 if (s != NULL)
7264 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7265 s = bfd_get_linker_section (abfd, ".dynsym");
7266 if (s != NULL)
7267 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7268 s = bfd_get_linker_section (abfd, ".dynstr");
7269 if (s != NULL)
7270 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7271 /* ??? */
7272 s = bfd_get_section_by_name (abfd, ".reginfo");
7273 if (s != NULL)
7274 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7275 s = bfd_get_linker_section (abfd, ".dynamic");
7276 if (s != NULL)
7277 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7278 }
7279
7280 if (!info->shared)
7281 {
7282 const char *name;
7283
7284 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7285 bh = NULL;
7286 if (!(_bfd_generic_link_add_one_symbol
7287 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7288 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7289 return FALSE;
7290
7291 h = (struct elf_link_hash_entry *) bh;
7292 h->non_elf = 0;
7293 h->def_regular = 1;
7294 h->type = STT_SECTION;
7295
7296 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7297 return FALSE;
7298
7299 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7300 {
7301 /* __rld_map is a four byte word located in the .data section
7302 and is filled in by the rtld to contain a pointer to
7303 the _r_debug structure. Its symbol value will be set in
7304 _bfd_mips_elf_finish_dynamic_symbol. */
7305 s = bfd_get_linker_section (abfd, ".rld_map");
7306 BFD_ASSERT (s != NULL);
7307
7308 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7309 bh = NULL;
7310 if (!(_bfd_generic_link_add_one_symbol
7311 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7312 get_elf_backend_data (abfd)->collect, &bh)))
7313 return FALSE;
7314
7315 h = (struct elf_link_hash_entry *) bh;
7316 h->non_elf = 0;
7317 h->def_regular = 1;
7318 h->type = STT_OBJECT;
7319
7320 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7321 return FALSE;
7322 mips_elf_hash_table (info)->rld_symbol = h;
7323 }
7324 }
7325
7326 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7327 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7328 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7329 return FALSE;
7330
7331 /* Cache the sections created above. */
7332 htab->splt = bfd_get_linker_section (abfd, ".plt");
7333 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7334 if (htab->is_vxworks)
7335 {
7336 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7337 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7338 }
7339 else
7340 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7341 if (!htab->sdynbss
7342 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7343 || !htab->srelplt
7344 || !htab->splt)
7345 abort ();
7346
7347 if (htab->is_vxworks)
7348 {
7349 /* Do the usual VxWorks handling. */
7350 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7351 return FALSE;
7352
7353 /* Work out the PLT sizes. */
7354 if (info->shared)
7355 {
7356 htab->plt_header_size
7357 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7358 htab->plt_entry_size
7359 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7360 }
7361 else
7362 {
7363 htab->plt_header_size
7364 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7365 htab->plt_entry_size
7366 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7367 }
7368 }
7369 else if (!info->shared)
7370 {
7371 /* All variants of the plt0 entry are the same size. */
7372 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7373 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7374 }
7375
7376 return TRUE;
7377 }
7378 \f
7379 /* Return true if relocation REL against section SEC is a REL rather than
7380 RELA relocation. RELOCS is the first relocation in the section and
7381 ABFD is the bfd that contains SEC. */
7382
7383 static bfd_boolean
7384 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7385 const Elf_Internal_Rela *relocs,
7386 const Elf_Internal_Rela *rel)
7387 {
7388 Elf_Internal_Shdr *rel_hdr;
7389 const struct elf_backend_data *bed;
7390
7391 /* To determine which flavor of relocation this is, we depend on the
7392 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7393 rel_hdr = elf_section_data (sec)->rel.hdr;
7394 if (rel_hdr == NULL)
7395 return FALSE;
7396 bed = get_elf_backend_data (abfd);
7397 return ((size_t) (rel - relocs)
7398 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7399 }
7400
7401 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7402 HOWTO is the relocation's howto and CONTENTS points to the contents
7403 of the section that REL is against. */
7404
7405 static bfd_vma
7406 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7407 reloc_howto_type *howto, bfd_byte *contents)
7408 {
7409 bfd_byte *location;
7410 unsigned int r_type;
7411 bfd_vma addend;
7412
7413 r_type = ELF_R_TYPE (abfd, rel->r_info);
7414 location = contents + rel->r_offset;
7415
7416 /* Get the addend, which is stored in the input file. */
7417 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7418 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7419 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7420
7421 return addend & howto->src_mask;
7422 }
7423
7424 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7425 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7426 and update *ADDEND with the final addend. Return true on success
7427 or false if the LO16 could not be found. RELEND is the exclusive
7428 upper bound on the relocations for REL's section. */
7429
7430 static bfd_boolean
7431 mips_elf_add_lo16_rel_addend (bfd *abfd,
7432 const Elf_Internal_Rela *rel,
7433 const Elf_Internal_Rela *relend,
7434 bfd_byte *contents, bfd_vma *addend)
7435 {
7436 unsigned int r_type, lo16_type;
7437 const Elf_Internal_Rela *lo16_relocation;
7438 reloc_howto_type *lo16_howto;
7439 bfd_vma l;
7440
7441 r_type = ELF_R_TYPE (abfd, rel->r_info);
7442 if (mips16_reloc_p (r_type))
7443 lo16_type = R_MIPS16_LO16;
7444 else if (micromips_reloc_p (r_type))
7445 lo16_type = R_MICROMIPS_LO16;
7446 else
7447 lo16_type = R_MIPS_LO16;
7448
7449 /* The combined value is the sum of the HI16 addend, left-shifted by
7450 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7451 code does a `lui' of the HI16 value, and then an `addiu' of the
7452 LO16 value.)
7453
7454 Scan ahead to find a matching LO16 relocation.
7455
7456 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7457 be immediately following. However, for the IRIX6 ABI, the next
7458 relocation may be a composed relocation consisting of several
7459 relocations for the same address. In that case, the R_MIPS_LO16
7460 relocation may occur as one of these. We permit a similar
7461 extension in general, as that is useful for GCC.
7462
7463 In some cases GCC dead code elimination removes the LO16 but keeps
7464 the corresponding HI16. This is strictly speaking a violation of
7465 the ABI but not immediately harmful. */
7466 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7467 if (lo16_relocation == NULL)
7468 return FALSE;
7469
7470 /* Obtain the addend kept there. */
7471 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7472 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7473
7474 l <<= lo16_howto->rightshift;
7475 l = _bfd_mips_elf_sign_extend (l, 16);
7476
7477 *addend <<= 16;
7478 *addend += l;
7479 return TRUE;
7480 }
7481
7482 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7483 store the contents in *CONTENTS on success. Assume that *CONTENTS
7484 already holds the contents if it is nonull on entry. */
7485
7486 static bfd_boolean
7487 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7488 {
7489 if (*contents)
7490 return TRUE;
7491
7492 /* Get cached copy if it exists. */
7493 if (elf_section_data (sec)->this_hdr.contents != NULL)
7494 {
7495 *contents = elf_section_data (sec)->this_hdr.contents;
7496 return TRUE;
7497 }
7498
7499 return bfd_malloc_and_get_section (abfd, sec, contents);
7500 }
7501
7502 /* Look through the relocs for a section during the first phase, and
7503 allocate space in the global offset table. */
7504
7505 bfd_boolean
7506 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7507 asection *sec, const Elf_Internal_Rela *relocs)
7508 {
7509 const char *name;
7510 bfd *dynobj;
7511 Elf_Internal_Shdr *symtab_hdr;
7512 struct elf_link_hash_entry **sym_hashes;
7513 size_t extsymoff;
7514 const Elf_Internal_Rela *rel;
7515 const Elf_Internal_Rela *rel_end;
7516 asection *sreloc;
7517 const struct elf_backend_data *bed;
7518 struct mips_elf_link_hash_table *htab;
7519 bfd_byte *contents;
7520 bfd_vma addend;
7521 reloc_howto_type *howto;
7522
7523 if (info->relocatable)
7524 return TRUE;
7525
7526 htab = mips_elf_hash_table (info);
7527 BFD_ASSERT (htab != NULL);
7528
7529 dynobj = elf_hash_table (info)->dynobj;
7530 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7531 sym_hashes = elf_sym_hashes (abfd);
7532 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7533
7534 bed = get_elf_backend_data (abfd);
7535 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7536
7537 /* Check for the mips16 stub sections. */
7538
7539 name = bfd_get_section_name (abfd, sec);
7540 if (FN_STUB_P (name))
7541 {
7542 unsigned long r_symndx;
7543
7544 /* Look at the relocation information to figure out which symbol
7545 this is for. */
7546
7547 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7548 if (r_symndx == 0)
7549 {
7550 (*_bfd_error_handler)
7551 (_("%B: Warning: cannot determine the target function for"
7552 " stub section `%s'"),
7553 abfd, name);
7554 bfd_set_error (bfd_error_bad_value);
7555 return FALSE;
7556 }
7557
7558 if (r_symndx < extsymoff
7559 || sym_hashes[r_symndx - extsymoff] == NULL)
7560 {
7561 asection *o;
7562
7563 /* This stub is for a local symbol. This stub will only be
7564 needed if there is some relocation in this BFD, other
7565 than a 16 bit function call, which refers to this symbol. */
7566 for (o = abfd->sections; o != NULL; o = o->next)
7567 {
7568 Elf_Internal_Rela *sec_relocs;
7569 const Elf_Internal_Rela *r, *rend;
7570
7571 /* We can ignore stub sections when looking for relocs. */
7572 if ((o->flags & SEC_RELOC) == 0
7573 || o->reloc_count == 0
7574 || section_allows_mips16_refs_p (o))
7575 continue;
7576
7577 sec_relocs
7578 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7579 info->keep_memory);
7580 if (sec_relocs == NULL)
7581 return FALSE;
7582
7583 rend = sec_relocs + o->reloc_count;
7584 for (r = sec_relocs; r < rend; r++)
7585 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7586 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7587 break;
7588
7589 if (elf_section_data (o)->relocs != sec_relocs)
7590 free (sec_relocs);
7591
7592 if (r < rend)
7593 break;
7594 }
7595
7596 if (o == NULL)
7597 {
7598 /* There is no non-call reloc for this stub, so we do
7599 not need it. Since this function is called before
7600 the linker maps input sections to output sections, we
7601 can easily discard it by setting the SEC_EXCLUDE
7602 flag. */
7603 sec->flags |= SEC_EXCLUDE;
7604 return TRUE;
7605 }
7606
7607 /* Record this stub in an array of local symbol stubs for
7608 this BFD. */
7609 if (mips_elf_tdata (abfd)->local_stubs == NULL)
7610 {
7611 unsigned long symcount;
7612 asection **n;
7613 bfd_size_type amt;
7614
7615 if (elf_bad_symtab (abfd))
7616 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7617 else
7618 symcount = symtab_hdr->sh_info;
7619 amt = symcount * sizeof (asection *);
7620 n = bfd_zalloc (abfd, amt);
7621 if (n == NULL)
7622 return FALSE;
7623 mips_elf_tdata (abfd)->local_stubs = n;
7624 }
7625
7626 sec->flags |= SEC_KEEP;
7627 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7628
7629 /* We don't need to set mips16_stubs_seen in this case.
7630 That flag is used to see whether we need to look through
7631 the global symbol table for stubs. We don't need to set
7632 it here, because we just have a local stub. */
7633 }
7634 else
7635 {
7636 struct mips_elf_link_hash_entry *h;
7637
7638 h = ((struct mips_elf_link_hash_entry *)
7639 sym_hashes[r_symndx - extsymoff]);
7640
7641 while (h->root.root.type == bfd_link_hash_indirect
7642 || h->root.root.type == bfd_link_hash_warning)
7643 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7644
7645 /* H is the symbol this stub is for. */
7646
7647 /* If we already have an appropriate stub for this function, we
7648 don't need another one, so we can discard this one. Since
7649 this function is called before the linker maps input sections
7650 to output sections, we can easily discard it by setting the
7651 SEC_EXCLUDE flag. */
7652 if (h->fn_stub != NULL)
7653 {
7654 sec->flags |= SEC_EXCLUDE;
7655 return TRUE;
7656 }
7657
7658 sec->flags |= SEC_KEEP;
7659 h->fn_stub = sec;
7660 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7661 }
7662 }
7663 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7664 {
7665 unsigned long r_symndx;
7666 struct mips_elf_link_hash_entry *h;
7667 asection **loc;
7668
7669 /* Look at the relocation information to figure out which symbol
7670 this is for. */
7671
7672 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7673 if (r_symndx == 0)
7674 {
7675 (*_bfd_error_handler)
7676 (_("%B: Warning: cannot determine the target function for"
7677 " stub section `%s'"),
7678 abfd, name);
7679 bfd_set_error (bfd_error_bad_value);
7680 return FALSE;
7681 }
7682
7683 if (r_symndx < extsymoff
7684 || sym_hashes[r_symndx - extsymoff] == NULL)
7685 {
7686 asection *o;
7687
7688 /* This stub is for a local symbol. This stub will only be
7689 needed if there is some relocation (R_MIPS16_26) in this BFD
7690 that refers to this symbol. */
7691 for (o = abfd->sections; o != NULL; o = o->next)
7692 {
7693 Elf_Internal_Rela *sec_relocs;
7694 const Elf_Internal_Rela *r, *rend;
7695
7696 /* We can ignore stub sections when looking for relocs. */
7697 if ((o->flags & SEC_RELOC) == 0
7698 || o->reloc_count == 0
7699 || section_allows_mips16_refs_p (o))
7700 continue;
7701
7702 sec_relocs
7703 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7704 info->keep_memory);
7705 if (sec_relocs == NULL)
7706 return FALSE;
7707
7708 rend = sec_relocs + o->reloc_count;
7709 for (r = sec_relocs; r < rend; r++)
7710 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7711 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7712 break;
7713
7714 if (elf_section_data (o)->relocs != sec_relocs)
7715 free (sec_relocs);
7716
7717 if (r < rend)
7718 break;
7719 }
7720
7721 if (o == NULL)
7722 {
7723 /* There is no non-call reloc for this stub, so we do
7724 not need it. Since this function is called before
7725 the linker maps input sections to output sections, we
7726 can easily discard it by setting the SEC_EXCLUDE
7727 flag. */
7728 sec->flags |= SEC_EXCLUDE;
7729 return TRUE;
7730 }
7731
7732 /* Record this stub in an array of local symbol call_stubs for
7733 this BFD. */
7734 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
7735 {
7736 unsigned long symcount;
7737 asection **n;
7738 bfd_size_type amt;
7739
7740 if (elf_bad_symtab (abfd))
7741 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7742 else
7743 symcount = symtab_hdr->sh_info;
7744 amt = symcount * sizeof (asection *);
7745 n = bfd_zalloc (abfd, amt);
7746 if (n == NULL)
7747 return FALSE;
7748 mips_elf_tdata (abfd)->local_call_stubs = n;
7749 }
7750
7751 sec->flags |= SEC_KEEP;
7752 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7753
7754 /* We don't need to set mips16_stubs_seen in this case.
7755 That flag is used to see whether we need to look through
7756 the global symbol table for stubs. We don't need to set
7757 it here, because we just have a local stub. */
7758 }
7759 else
7760 {
7761 h = ((struct mips_elf_link_hash_entry *)
7762 sym_hashes[r_symndx - extsymoff]);
7763
7764 /* H is the symbol this stub is for. */
7765
7766 if (CALL_FP_STUB_P (name))
7767 loc = &h->call_fp_stub;
7768 else
7769 loc = &h->call_stub;
7770
7771 /* If we already have an appropriate stub for this function, we
7772 don't need another one, so we can discard this one. Since
7773 this function is called before the linker maps input sections
7774 to output sections, we can easily discard it by setting the
7775 SEC_EXCLUDE flag. */
7776 if (*loc != NULL)
7777 {
7778 sec->flags |= SEC_EXCLUDE;
7779 return TRUE;
7780 }
7781
7782 sec->flags |= SEC_KEEP;
7783 *loc = sec;
7784 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7785 }
7786 }
7787
7788 sreloc = NULL;
7789 contents = NULL;
7790 for (rel = relocs; rel < rel_end; ++rel)
7791 {
7792 unsigned long r_symndx;
7793 unsigned int r_type;
7794 struct elf_link_hash_entry *h;
7795 bfd_boolean can_make_dynamic_p;
7796
7797 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7798 r_type = ELF_R_TYPE (abfd, rel->r_info);
7799
7800 if (r_symndx < extsymoff)
7801 h = NULL;
7802 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7803 {
7804 (*_bfd_error_handler)
7805 (_("%B: Malformed reloc detected for section %s"),
7806 abfd, name);
7807 bfd_set_error (bfd_error_bad_value);
7808 return FALSE;
7809 }
7810 else
7811 {
7812 h = sym_hashes[r_symndx - extsymoff];
7813 while (h != NULL
7814 && (h->root.type == bfd_link_hash_indirect
7815 || h->root.type == bfd_link_hash_warning))
7816 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7817 }
7818
7819 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7820 relocation into a dynamic one. */
7821 can_make_dynamic_p = FALSE;
7822 switch (r_type)
7823 {
7824 case R_MIPS_GOT16:
7825 case R_MIPS_CALL16:
7826 case R_MIPS_CALL_HI16:
7827 case R_MIPS_CALL_LO16:
7828 case R_MIPS_GOT_HI16:
7829 case R_MIPS_GOT_LO16:
7830 case R_MIPS_GOT_PAGE:
7831 case R_MIPS_GOT_OFST:
7832 case R_MIPS_GOT_DISP:
7833 case R_MIPS_TLS_GOTTPREL:
7834 case R_MIPS_TLS_GD:
7835 case R_MIPS_TLS_LDM:
7836 case R_MIPS16_GOT16:
7837 case R_MIPS16_CALL16:
7838 case R_MIPS16_TLS_GOTTPREL:
7839 case R_MIPS16_TLS_GD:
7840 case R_MIPS16_TLS_LDM:
7841 case R_MICROMIPS_GOT16:
7842 case R_MICROMIPS_CALL16:
7843 case R_MICROMIPS_CALL_HI16:
7844 case R_MICROMIPS_CALL_LO16:
7845 case R_MICROMIPS_GOT_HI16:
7846 case R_MICROMIPS_GOT_LO16:
7847 case R_MICROMIPS_GOT_PAGE:
7848 case R_MICROMIPS_GOT_OFST:
7849 case R_MICROMIPS_GOT_DISP:
7850 case R_MICROMIPS_TLS_GOTTPREL:
7851 case R_MICROMIPS_TLS_GD:
7852 case R_MICROMIPS_TLS_LDM:
7853 if (dynobj == NULL)
7854 elf_hash_table (info)->dynobj = dynobj = abfd;
7855 if (!mips_elf_create_got_section (dynobj, info))
7856 return FALSE;
7857 if (htab->is_vxworks && !info->shared)
7858 {
7859 (*_bfd_error_handler)
7860 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7861 abfd, (unsigned long) rel->r_offset);
7862 bfd_set_error (bfd_error_bad_value);
7863 return FALSE;
7864 }
7865 break;
7866
7867 /* This is just a hint; it can safely be ignored. Don't set
7868 has_static_relocs for the corresponding symbol. */
7869 case R_MIPS_JALR:
7870 case R_MICROMIPS_JALR:
7871 break;
7872
7873 case R_MIPS_32:
7874 case R_MIPS_REL32:
7875 case R_MIPS_64:
7876 /* In VxWorks executables, references to external symbols
7877 must be handled using copy relocs or PLT entries; it is not
7878 possible to convert this relocation into a dynamic one.
7879
7880 For executables that use PLTs and copy-relocs, we have a
7881 choice between converting the relocation into a dynamic
7882 one or using copy relocations or PLT entries. It is
7883 usually better to do the former, unless the relocation is
7884 against a read-only section. */
7885 if ((info->shared
7886 || (h != NULL
7887 && !htab->is_vxworks
7888 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7889 && !(!info->nocopyreloc
7890 && !PIC_OBJECT_P (abfd)
7891 && MIPS_ELF_READONLY_SECTION (sec))))
7892 && (sec->flags & SEC_ALLOC) != 0)
7893 {
7894 can_make_dynamic_p = TRUE;
7895 if (dynobj == NULL)
7896 elf_hash_table (info)->dynobj = dynobj = abfd;
7897 break;
7898 }
7899 /* For sections that are not SEC_ALLOC a copy reloc would be
7900 output if possible (implying questionable semantics for
7901 read-only data objects) or otherwise the final link would
7902 fail as ld.so will not process them and could not therefore
7903 handle any outstanding dynamic relocations.
7904
7905 For such sections that are also SEC_DEBUGGING, we can avoid
7906 these problems by simply ignoring any relocs as these
7907 sections have a predefined use and we know it is safe to do
7908 so.
7909
7910 This is needed in cases such as a global symbol definition
7911 in a shared library causing a common symbol from an object
7912 file to be converted to an undefined reference. If that
7913 happens, then all the relocations against this symbol from
7914 SEC_DEBUGGING sections in the object file will resolve to
7915 nil. */
7916 if ((sec->flags & SEC_DEBUGGING) != 0)
7917 break;
7918 /* Fall through. */
7919
7920 default:
7921 /* Most static relocations require pointer equality, except
7922 for branches. */
7923 if (h)
7924 h->pointer_equality_needed = TRUE;
7925 /* Fall through. */
7926
7927 case R_MIPS_26:
7928 case R_MIPS_PC16:
7929 case R_MIPS16_26:
7930 case R_MICROMIPS_26_S1:
7931 case R_MICROMIPS_PC7_S1:
7932 case R_MICROMIPS_PC10_S1:
7933 case R_MICROMIPS_PC16_S1:
7934 case R_MICROMIPS_PC23_S2:
7935 if (h)
7936 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7937 break;
7938 }
7939
7940 if (h)
7941 {
7942 /* Relocations against the special VxWorks __GOTT_BASE__ and
7943 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7944 room for them in .rela.dyn. */
7945 if (is_gott_symbol (info, h))
7946 {
7947 if (sreloc == NULL)
7948 {
7949 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7950 if (sreloc == NULL)
7951 return FALSE;
7952 }
7953 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7954 if (MIPS_ELF_READONLY_SECTION (sec))
7955 /* We tell the dynamic linker that there are
7956 relocations against the text segment. */
7957 info->flags |= DF_TEXTREL;
7958 }
7959 }
7960 else if (call_lo16_reloc_p (r_type)
7961 || got_lo16_reloc_p (r_type)
7962 || got_disp_reloc_p (r_type)
7963 || (got16_reloc_p (r_type) && htab->is_vxworks))
7964 {
7965 /* We may need a local GOT entry for this relocation. We
7966 don't count R_MIPS_GOT_PAGE because we can estimate the
7967 maximum number of pages needed by looking at the size of
7968 the segment. Similar comments apply to R_MIPS*_GOT16 and
7969 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7970 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7971 R_MIPS_CALL_HI16 because these are always followed by an
7972 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7973 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7974 rel->r_addend, info, r_type))
7975 return FALSE;
7976 }
7977
7978 if (h != NULL
7979 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7980 ELF_ST_IS_MIPS16 (h->other)))
7981 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7982
7983 switch (r_type)
7984 {
7985 case R_MIPS_CALL16:
7986 case R_MIPS16_CALL16:
7987 case R_MICROMIPS_CALL16:
7988 if (h == NULL)
7989 {
7990 (*_bfd_error_handler)
7991 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7992 abfd, (unsigned long) rel->r_offset);
7993 bfd_set_error (bfd_error_bad_value);
7994 return FALSE;
7995 }
7996 /* Fall through. */
7997
7998 case R_MIPS_CALL_HI16:
7999 case R_MIPS_CALL_LO16:
8000 case R_MICROMIPS_CALL_HI16:
8001 case R_MICROMIPS_CALL_LO16:
8002 if (h != NULL)
8003 {
8004 /* Make sure there is room in the regular GOT to hold the
8005 function's address. We may eliminate it in favour of
8006 a .got.plt entry later; see mips_elf_count_got_symbols. */
8007 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8008 r_type))
8009 return FALSE;
8010
8011 /* We need a stub, not a plt entry for the undefined
8012 function. But we record it as if it needs plt. See
8013 _bfd_elf_adjust_dynamic_symbol. */
8014 h->needs_plt = 1;
8015 h->type = STT_FUNC;
8016 }
8017 break;
8018
8019 case R_MIPS_GOT_PAGE:
8020 case R_MICROMIPS_GOT_PAGE:
8021 case R_MIPS16_GOT16:
8022 case R_MIPS_GOT16:
8023 case R_MIPS_GOT_HI16:
8024 case R_MIPS_GOT_LO16:
8025 case R_MICROMIPS_GOT16:
8026 case R_MICROMIPS_GOT_HI16:
8027 case R_MICROMIPS_GOT_LO16:
8028 if (!h || got_page_reloc_p (r_type))
8029 {
8030 /* This relocation needs (or may need, if h != NULL) a
8031 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8032 know for sure until we know whether the symbol is
8033 preemptible. */
8034 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8035 {
8036 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8037 return FALSE;
8038 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8039 addend = mips_elf_read_rel_addend (abfd, rel,
8040 howto, contents);
8041 if (got16_reloc_p (r_type))
8042 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8043 contents, &addend);
8044 else
8045 addend <<= howto->rightshift;
8046 }
8047 else
8048 addend = rel->r_addend;
8049 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8050 h, addend))
8051 return FALSE;
8052
8053 if (h)
8054 {
8055 struct mips_elf_link_hash_entry *hmips =
8056 (struct mips_elf_link_hash_entry *) h;
8057
8058 /* This symbol is definitely not overridable. */
8059 if (hmips->root.def_regular
8060 && ! (info->shared && ! info->symbolic
8061 && ! hmips->root.forced_local))
8062 h = NULL;
8063 }
8064 }
8065 /* If this is a global, overridable symbol, GOT_PAGE will
8066 decay to GOT_DISP, so we'll need a GOT entry for it. */
8067 /* Fall through. */
8068
8069 case R_MIPS_GOT_DISP:
8070 case R_MICROMIPS_GOT_DISP:
8071 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8072 FALSE, r_type))
8073 return FALSE;
8074 break;
8075
8076 case R_MIPS_TLS_GOTTPREL:
8077 case R_MIPS16_TLS_GOTTPREL:
8078 case R_MICROMIPS_TLS_GOTTPREL:
8079 if (info->shared)
8080 info->flags |= DF_STATIC_TLS;
8081 /* Fall through */
8082
8083 case R_MIPS_TLS_LDM:
8084 case R_MIPS16_TLS_LDM:
8085 case R_MICROMIPS_TLS_LDM:
8086 if (tls_ldm_reloc_p (r_type))
8087 {
8088 r_symndx = STN_UNDEF;
8089 h = NULL;
8090 }
8091 /* Fall through */
8092
8093 case R_MIPS_TLS_GD:
8094 case R_MIPS16_TLS_GD:
8095 case R_MICROMIPS_TLS_GD:
8096 /* This symbol requires a global offset table entry, or two
8097 for TLS GD relocations. */
8098 if (h != NULL)
8099 {
8100 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8101 FALSE, r_type))
8102 return FALSE;
8103 }
8104 else
8105 {
8106 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8107 rel->r_addend,
8108 info, r_type))
8109 return FALSE;
8110 }
8111 break;
8112
8113 case R_MIPS_32:
8114 case R_MIPS_REL32:
8115 case R_MIPS_64:
8116 /* In VxWorks executables, references to external symbols
8117 are handled using copy relocs or PLT stubs, so there's
8118 no need to add a .rela.dyn entry for this relocation. */
8119 if (can_make_dynamic_p)
8120 {
8121 if (sreloc == NULL)
8122 {
8123 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8124 if (sreloc == NULL)
8125 return FALSE;
8126 }
8127 if (info->shared && h == NULL)
8128 {
8129 /* When creating a shared object, we must copy these
8130 reloc types into the output file as R_MIPS_REL32
8131 relocs. Make room for this reloc in .rel(a).dyn. */
8132 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8133 if (MIPS_ELF_READONLY_SECTION (sec))
8134 /* We tell the dynamic linker that there are
8135 relocations against the text segment. */
8136 info->flags |= DF_TEXTREL;
8137 }
8138 else
8139 {
8140 struct mips_elf_link_hash_entry *hmips;
8141
8142 /* For a shared object, we must copy this relocation
8143 unless the symbol turns out to be undefined and
8144 weak with non-default visibility, in which case
8145 it will be left as zero.
8146
8147 We could elide R_MIPS_REL32 for locally binding symbols
8148 in shared libraries, but do not yet do so.
8149
8150 For an executable, we only need to copy this
8151 reloc if the symbol is defined in a dynamic
8152 object. */
8153 hmips = (struct mips_elf_link_hash_entry *) h;
8154 ++hmips->possibly_dynamic_relocs;
8155 if (MIPS_ELF_READONLY_SECTION (sec))
8156 /* We need it to tell the dynamic linker if there
8157 are relocations against the text segment. */
8158 hmips->readonly_reloc = TRUE;
8159 }
8160 }
8161
8162 if (SGI_COMPAT (abfd))
8163 mips_elf_hash_table (info)->compact_rel_size +=
8164 sizeof (Elf32_External_crinfo);
8165 break;
8166
8167 case R_MIPS_26:
8168 case R_MIPS_GPREL16:
8169 case R_MIPS_LITERAL:
8170 case R_MIPS_GPREL32:
8171 case R_MICROMIPS_26_S1:
8172 case R_MICROMIPS_GPREL16:
8173 case R_MICROMIPS_LITERAL:
8174 case R_MICROMIPS_GPREL7_S2:
8175 if (SGI_COMPAT (abfd))
8176 mips_elf_hash_table (info)->compact_rel_size +=
8177 sizeof (Elf32_External_crinfo);
8178 break;
8179
8180 /* This relocation describes the C++ object vtable hierarchy.
8181 Reconstruct it for later use during GC. */
8182 case R_MIPS_GNU_VTINHERIT:
8183 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8184 return FALSE;
8185 break;
8186
8187 /* This relocation describes which C++ vtable entries are actually
8188 used. Record for later use during GC. */
8189 case R_MIPS_GNU_VTENTRY:
8190 BFD_ASSERT (h != NULL);
8191 if (h != NULL
8192 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8193 return FALSE;
8194 break;
8195
8196 default:
8197 break;
8198 }
8199
8200 /* We must not create a stub for a symbol that has relocations
8201 related to taking the function's address. This doesn't apply to
8202 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8203 a normal .got entry. */
8204 if (!htab->is_vxworks && h != NULL)
8205 switch (r_type)
8206 {
8207 default:
8208 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8209 break;
8210 case R_MIPS16_CALL16:
8211 case R_MIPS_CALL16:
8212 case R_MIPS_CALL_HI16:
8213 case R_MIPS_CALL_LO16:
8214 case R_MIPS_JALR:
8215 case R_MICROMIPS_CALL16:
8216 case R_MICROMIPS_CALL_HI16:
8217 case R_MICROMIPS_CALL_LO16:
8218 case R_MICROMIPS_JALR:
8219 break;
8220 }
8221
8222 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8223 if there is one. We only need to handle global symbols here;
8224 we decide whether to keep or delete stubs for local symbols
8225 when processing the stub's relocations. */
8226 if (h != NULL
8227 && !mips16_call_reloc_p (r_type)
8228 && !section_allows_mips16_refs_p (sec))
8229 {
8230 struct mips_elf_link_hash_entry *mh;
8231
8232 mh = (struct mips_elf_link_hash_entry *) h;
8233 mh->need_fn_stub = TRUE;
8234 }
8235
8236 /* Refuse some position-dependent relocations when creating a
8237 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8238 not PIC, but we can create dynamic relocations and the result
8239 will be fine. Also do not refuse R_MIPS_LO16, which can be
8240 combined with R_MIPS_GOT16. */
8241 if (info->shared)
8242 {
8243 switch (r_type)
8244 {
8245 case R_MIPS16_HI16:
8246 case R_MIPS_HI16:
8247 case R_MIPS_HIGHER:
8248 case R_MIPS_HIGHEST:
8249 case R_MICROMIPS_HI16:
8250 case R_MICROMIPS_HIGHER:
8251 case R_MICROMIPS_HIGHEST:
8252 /* Don't refuse a high part relocation if it's against
8253 no symbol (e.g. part of a compound relocation). */
8254 if (r_symndx == STN_UNDEF)
8255 break;
8256
8257 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8258 and has a special meaning. */
8259 if (!NEWABI_P (abfd) && h != NULL
8260 && strcmp (h->root.root.string, "_gp_disp") == 0)
8261 break;
8262
8263 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8264 if (is_gott_symbol (info, h))
8265 break;
8266
8267 /* FALLTHROUGH */
8268
8269 case R_MIPS16_26:
8270 case R_MIPS_26:
8271 case R_MICROMIPS_26_S1:
8272 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8273 (*_bfd_error_handler)
8274 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8275 abfd, howto->name,
8276 (h) ? h->root.root.string : "a local symbol");
8277 bfd_set_error (bfd_error_bad_value);
8278 return FALSE;
8279 default:
8280 break;
8281 }
8282 }
8283 }
8284
8285 return TRUE;
8286 }
8287 \f
8288 bfd_boolean
8289 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8290 struct bfd_link_info *link_info,
8291 bfd_boolean *again)
8292 {
8293 Elf_Internal_Rela *internal_relocs;
8294 Elf_Internal_Rela *irel, *irelend;
8295 Elf_Internal_Shdr *symtab_hdr;
8296 bfd_byte *contents = NULL;
8297 size_t extsymoff;
8298 bfd_boolean changed_contents = FALSE;
8299 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8300 Elf_Internal_Sym *isymbuf = NULL;
8301
8302 /* We are not currently changing any sizes, so only one pass. */
8303 *again = FALSE;
8304
8305 if (link_info->relocatable)
8306 return TRUE;
8307
8308 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8309 link_info->keep_memory);
8310 if (internal_relocs == NULL)
8311 return TRUE;
8312
8313 irelend = internal_relocs + sec->reloc_count
8314 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8315 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8316 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8317
8318 for (irel = internal_relocs; irel < irelend; irel++)
8319 {
8320 bfd_vma symval;
8321 bfd_signed_vma sym_offset;
8322 unsigned int r_type;
8323 unsigned long r_symndx;
8324 asection *sym_sec;
8325 unsigned long instruction;
8326
8327 /* Turn jalr into bgezal, and jr into beq, if they're marked
8328 with a JALR relocation, that indicate where they jump to.
8329 This saves some pipeline bubbles. */
8330 r_type = ELF_R_TYPE (abfd, irel->r_info);
8331 if (r_type != R_MIPS_JALR)
8332 continue;
8333
8334 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8335 /* Compute the address of the jump target. */
8336 if (r_symndx >= extsymoff)
8337 {
8338 struct mips_elf_link_hash_entry *h
8339 = ((struct mips_elf_link_hash_entry *)
8340 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8341
8342 while (h->root.root.type == bfd_link_hash_indirect
8343 || h->root.root.type == bfd_link_hash_warning)
8344 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8345
8346 /* If a symbol is undefined, or if it may be overridden,
8347 skip it. */
8348 if (! ((h->root.root.type == bfd_link_hash_defined
8349 || h->root.root.type == bfd_link_hash_defweak)
8350 && h->root.root.u.def.section)
8351 || (link_info->shared && ! link_info->symbolic
8352 && !h->root.forced_local))
8353 continue;
8354
8355 sym_sec = h->root.root.u.def.section;
8356 if (sym_sec->output_section)
8357 symval = (h->root.root.u.def.value
8358 + sym_sec->output_section->vma
8359 + sym_sec->output_offset);
8360 else
8361 symval = h->root.root.u.def.value;
8362 }
8363 else
8364 {
8365 Elf_Internal_Sym *isym;
8366
8367 /* Read this BFD's symbols if we haven't done so already. */
8368 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8369 {
8370 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8371 if (isymbuf == NULL)
8372 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8373 symtab_hdr->sh_info, 0,
8374 NULL, NULL, NULL);
8375 if (isymbuf == NULL)
8376 goto relax_return;
8377 }
8378
8379 isym = isymbuf + r_symndx;
8380 if (isym->st_shndx == SHN_UNDEF)
8381 continue;
8382 else if (isym->st_shndx == SHN_ABS)
8383 sym_sec = bfd_abs_section_ptr;
8384 else if (isym->st_shndx == SHN_COMMON)
8385 sym_sec = bfd_com_section_ptr;
8386 else
8387 sym_sec
8388 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8389 symval = isym->st_value
8390 + sym_sec->output_section->vma
8391 + sym_sec->output_offset;
8392 }
8393
8394 /* Compute branch offset, from delay slot of the jump to the
8395 branch target. */
8396 sym_offset = (symval + irel->r_addend)
8397 - (sec_start + irel->r_offset + 4);
8398
8399 /* Branch offset must be properly aligned. */
8400 if ((sym_offset & 3) != 0)
8401 continue;
8402
8403 sym_offset >>= 2;
8404
8405 /* Check that it's in range. */
8406 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8407 continue;
8408
8409 /* Get the section contents if we haven't done so already. */
8410 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8411 goto relax_return;
8412
8413 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8414
8415 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8416 if ((instruction & 0xfc1fffff) == 0x0000f809)
8417 instruction = 0x04110000;
8418 /* If it was jr <reg>, turn it into b <target>. */
8419 else if ((instruction & 0xfc1fffff) == 0x00000008)
8420 instruction = 0x10000000;
8421 else
8422 continue;
8423
8424 instruction |= (sym_offset & 0xffff);
8425 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8426 changed_contents = TRUE;
8427 }
8428
8429 if (contents != NULL
8430 && elf_section_data (sec)->this_hdr.contents != contents)
8431 {
8432 if (!changed_contents && !link_info->keep_memory)
8433 free (contents);
8434 else
8435 {
8436 /* Cache the section contents for elf_link_input_bfd. */
8437 elf_section_data (sec)->this_hdr.contents = contents;
8438 }
8439 }
8440 return TRUE;
8441
8442 relax_return:
8443 if (contents != NULL
8444 && elf_section_data (sec)->this_hdr.contents != contents)
8445 free (contents);
8446 return FALSE;
8447 }
8448 \f
8449 /* Allocate space for global sym dynamic relocs. */
8450
8451 static bfd_boolean
8452 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8453 {
8454 struct bfd_link_info *info = inf;
8455 bfd *dynobj;
8456 struct mips_elf_link_hash_entry *hmips;
8457 struct mips_elf_link_hash_table *htab;
8458
8459 htab = mips_elf_hash_table (info);
8460 BFD_ASSERT (htab != NULL);
8461
8462 dynobj = elf_hash_table (info)->dynobj;
8463 hmips = (struct mips_elf_link_hash_entry *) h;
8464
8465 /* VxWorks executables are handled elsewhere; we only need to
8466 allocate relocations in shared objects. */
8467 if (htab->is_vxworks && !info->shared)
8468 return TRUE;
8469
8470 /* Ignore indirect symbols. All relocations against such symbols
8471 will be redirected to the target symbol. */
8472 if (h->root.type == bfd_link_hash_indirect)
8473 return TRUE;
8474
8475 /* If this symbol is defined in a dynamic object, or we are creating
8476 a shared library, we will need to copy any R_MIPS_32 or
8477 R_MIPS_REL32 relocs against it into the output file. */
8478 if (! info->relocatable
8479 && hmips->possibly_dynamic_relocs != 0
8480 && (h->root.type == bfd_link_hash_defweak
8481 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8482 || info->shared))
8483 {
8484 bfd_boolean do_copy = TRUE;
8485
8486 if (h->root.type == bfd_link_hash_undefweak)
8487 {
8488 /* Do not copy relocations for undefined weak symbols with
8489 non-default visibility. */
8490 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8491 do_copy = FALSE;
8492
8493 /* Make sure undefined weak symbols are output as a dynamic
8494 symbol in PIEs. */
8495 else if (h->dynindx == -1 && !h->forced_local)
8496 {
8497 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8498 return FALSE;
8499 }
8500 }
8501
8502 if (do_copy)
8503 {
8504 /* Even though we don't directly need a GOT entry for this symbol,
8505 the SVR4 psABI requires it to have a dynamic symbol table
8506 index greater that DT_MIPS_GOTSYM if there are dynamic
8507 relocations against it.
8508
8509 VxWorks does not enforce the same mapping between the GOT
8510 and the symbol table, so the same requirement does not
8511 apply there. */
8512 if (!htab->is_vxworks)
8513 {
8514 if (hmips->global_got_area > GGA_RELOC_ONLY)
8515 hmips->global_got_area = GGA_RELOC_ONLY;
8516 hmips->got_only_for_calls = FALSE;
8517 }
8518
8519 mips_elf_allocate_dynamic_relocations
8520 (dynobj, info, hmips->possibly_dynamic_relocs);
8521 if (hmips->readonly_reloc)
8522 /* We tell the dynamic linker that there are relocations
8523 against the text segment. */
8524 info->flags |= DF_TEXTREL;
8525 }
8526 }
8527
8528 return TRUE;
8529 }
8530
8531 /* Adjust a symbol defined by a dynamic object and referenced by a
8532 regular object. The current definition is in some section of the
8533 dynamic object, but we're not including those sections. We have to
8534 change the definition to something the rest of the link can
8535 understand. */
8536
8537 bfd_boolean
8538 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8539 struct elf_link_hash_entry *h)
8540 {
8541 bfd *dynobj;
8542 struct mips_elf_link_hash_entry *hmips;
8543 struct mips_elf_link_hash_table *htab;
8544
8545 htab = mips_elf_hash_table (info);
8546 BFD_ASSERT (htab != NULL);
8547
8548 dynobj = elf_hash_table (info)->dynobj;
8549 hmips = (struct mips_elf_link_hash_entry *) h;
8550
8551 /* Make sure we know what is going on here. */
8552 BFD_ASSERT (dynobj != NULL
8553 && (h->needs_plt
8554 || h->u.weakdef != NULL
8555 || (h->def_dynamic
8556 && h->ref_regular
8557 && !h->def_regular)));
8558
8559 hmips = (struct mips_elf_link_hash_entry *) h;
8560
8561 /* If there are call relocations against an externally-defined symbol,
8562 see whether we can create a MIPS lazy-binding stub for it. We can
8563 only do this if all references to the function are through call
8564 relocations, and in that case, the traditional lazy-binding stubs
8565 are much more efficient than PLT entries.
8566
8567 Traditional stubs are only available on SVR4 psABI-based systems;
8568 VxWorks always uses PLTs instead. */
8569 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8570 {
8571 if (! elf_hash_table (info)->dynamic_sections_created)
8572 return TRUE;
8573
8574 /* If this symbol is not defined in a regular file, then set
8575 the symbol to the stub location. This is required to make
8576 function pointers compare as equal between the normal
8577 executable and the shared library. */
8578 if (!h->def_regular)
8579 {
8580 hmips->needs_lazy_stub = TRUE;
8581 htab->lazy_stub_count++;
8582 return TRUE;
8583 }
8584 }
8585 /* As above, VxWorks requires PLT entries for externally-defined
8586 functions that are only accessed through call relocations.
8587
8588 Both VxWorks and non-VxWorks targets also need PLT entries if there
8589 are static-only relocations against an externally-defined function.
8590 This can technically occur for shared libraries if there are
8591 branches to the symbol, although it is unlikely that this will be
8592 used in practice due to the short ranges involved. It can occur
8593 for any relative or absolute relocation in executables; in that
8594 case, the PLT entry becomes the function's canonical address. */
8595 else if (((h->needs_plt && !hmips->no_fn_stub)
8596 || (h->type == STT_FUNC && hmips->has_static_relocs))
8597 && htab->use_plts_and_copy_relocs
8598 && !SYMBOL_CALLS_LOCAL (info, h)
8599 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8600 && h->root.type == bfd_link_hash_undefweak))
8601 {
8602 /* If this is the first symbol to need a PLT entry, allocate room
8603 for the header. */
8604 if (htab->splt->size == 0)
8605 {
8606 BFD_ASSERT (htab->sgotplt->size == 0);
8607
8608 /* If we're using the PLT additions to the psABI, each PLT
8609 entry is 16 bytes and the PLT0 entry is 32 bytes.
8610 Encourage better cache usage by aligning. We do this
8611 lazily to avoid pessimizing traditional objects. */
8612 if (!htab->is_vxworks
8613 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8614 return FALSE;
8615
8616 /* Make sure that .got.plt is word-aligned. We do this lazily
8617 for the same reason as above. */
8618 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8619 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8620 return FALSE;
8621
8622 htab->splt->size += htab->plt_header_size;
8623
8624 /* On non-VxWorks targets, the first two entries in .got.plt
8625 are reserved. */
8626 if (!htab->is_vxworks)
8627 htab->sgotplt->size
8628 += get_elf_backend_data (dynobj)->got_header_size;
8629
8630 /* On VxWorks, also allocate room for the header's
8631 .rela.plt.unloaded entries. */
8632 if (htab->is_vxworks && !info->shared)
8633 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8634 }
8635
8636 /* Assign the next .plt entry to this symbol. */
8637 h->plt.offset = htab->splt->size;
8638 htab->splt->size += htab->plt_entry_size;
8639
8640 /* If the output file has no definition of the symbol, set the
8641 symbol's value to the address of the stub. */
8642 if (!info->shared && !h->def_regular)
8643 {
8644 h->root.u.def.section = htab->splt;
8645 h->root.u.def.value = h->plt.offset;
8646 /* For VxWorks, point at the PLT load stub rather than the
8647 lazy resolution stub; this stub will become the canonical
8648 function address. */
8649 if (htab->is_vxworks)
8650 h->root.u.def.value += 8;
8651 }
8652
8653 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8654 relocation. */
8655 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8656 htab->srelplt->size += (htab->is_vxworks
8657 ? MIPS_ELF_RELA_SIZE (dynobj)
8658 : MIPS_ELF_REL_SIZE (dynobj));
8659
8660 /* Make room for the .rela.plt.unloaded relocations. */
8661 if (htab->is_vxworks && !info->shared)
8662 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8663
8664 /* All relocations against this symbol that could have been made
8665 dynamic will now refer to the PLT entry instead. */
8666 hmips->possibly_dynamic_relocs = 0;
8667
8668 return TRUE;
8669 }
8670
8671 /* If this is a weak symbol, and there is a real definition, the
8672 processor independent code will have arranged for us to see the
8673 real definition first, and we can just use the same value. */
8674 if (h->u.weakdef != NULL)
8675 {
8676 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8677 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8678 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8679 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8680 return TRUE;
8681 }
8682
8683 /* Otherwise, there is nothing further to do for symbols defined
8684 in regular objects. */
8685 if (h->def_regular)
8686 return TRUE;
8687
8688 /* There's also nothing more to do if we'll convert all relocations
8689 against this symbol into dynamic relocations. */
8690 if (!hmips->has_static_relocs)
8691 return TRUE;
8692
8693 /* We're now relying on copy relocations. Complain if we have
8694 some that we can't convert. */
8695 if (!htab->use_plts_and_copy_relocs || info->shared)
8696 {
8697 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8698 "dynamic symbol %s"),
8699 h->root.root.string);
8700 bfd_set_error (bfd_error_bad_value);
8701 return FALSE;
8702 }
8703
8704 /* We must allocate the symbol in our .dynbss section, which will
8705 become part of the .bss section of the executable. There will be
8706 an entry for this symbol in the .dynsym section. The dynamic
8707 object will contain position independent code, so all references
8708 from the dynamic object to this symbol will go through the global
8709 offset table. The dynamic linker will use the .dynsym entry to
8710 determine the address it must put in the global offset table, so
8711 both the dynamic object and the regular object will refer to the
8712 same memory location for the variable. */
8713
8714 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8715 {
8716 if (htab->is_vxworks)
8717 htab->srelbss->size += sizeof (Elf32_External_Rela);
8718 else
8719 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8720 h->needs_copy = 1;
8721 }
8722
8723 /* All relocations against this symbol that could have been made
8724 dynamic will now refer to the local copy instead. */
8725 hmips->possibly_dynamic_relocs = 0;
8726
8727 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8728 }
8729 \f
8730 /* This function is called after all the input files have been read,
8731 and the input sections have been assigned to output sections. We
8732 check for any mips16 stub sections that we can discard. */
8733
8734 bfd_boolean
8735 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8736 struct bfd_link_info *info)
8737 {
8738 asection *ri;
8739 struct mips_elf_link_hash_table *htab;
8740 struct mips_htab_traverse_info hti;
8741
8742 htab = mips_elf_hash_table (info);
8743 BFD_ASSERT (htab != NULL);
8744
8745 /* The .reginfo section has a fixed size. */
8746 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8747 if (ri != NULL)
8748 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8749
8750 hti.info = info;
8751 hti.output_bfd = output_bfd;
8752 hti.error = FALSE;
8753 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8754 mips_elf_check_symbols, &hti);
8755 if (hti.error)
8756 return FALSE;
8757
8758 return TRUE;
8759 }
8760
8761 /* If the link uses a GOT, lay it out and work out its size. */
8762
8763 static bfd_boolean
8764 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8765 {
8766 bfd *dynobj;
8767 asection *s;
8768 struct mips_got_info *g;
8769 bfd_size_type loadable_size = 0;
8770 bfd_size_type page_gotno;
8771 bfd *ibfd;
8772 struct mips_elf_traverse_got_arg tga;
8773 struct mips_elf_link_hash_table *htab;
8774
8775 htab = mips_elf_hash_table (info);
8776 BFD_ASSERT (htab != NULL);
8777
8778 s = htab->sgot;
8779 if (s == NULL)
8780 return TRUE;
8781
8782 dynobj = elf_hash_table (info)->dynobj;
8783 g = htab->got_info;
8784
8785 /* Allocate room for the reserved entries. VxWorks always reserves
8786 3 entries; other objects only reserve 2 entries. */
8787 BFD_ASSERT (g->assigned_gotno == 0);
8788 if (htab->is_vxworks)
8789 htab->reserved_gotno = 3;
8790 else
8791 htab->reserved_gotno = 2;
8792 g->local_gotno += htab->reserved_gotno;
8793 g->assigned_gotno = htab->reserved_gotno;
8794
8795 /* Decide which symbols need to go in the global part of the GOT and
8796 count the number of reloc-only GOT symbols. */
8797 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8798
8799 if (!mips_elf_resolve_final_got_entries (info, g))
8800 return FALSE;
8801
8802 /* Calculate the total loadable size of the output. That
8803 will give us the maximum number of GOT_PAGE entries
8804 required. */
8805 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8806 {
8807 asection *subsection;
8808
8809 for (subsection = ibfd->sections;
8810 subsection;
8811 subsection = subsection->next)
8812 {
8813 if ((subsection->flags & SEC_ALLOC) == 0)
8814 continue;
8815 loadable_size += ((subsection->size + 0xf)
8816 &~ (bfd_size_type) 0xf);
8817 }
8818 }
8819
8820 if (htab->is_vxworks)
8821 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8822 relocations against local symbols evaluate to "G", and the EABI does
8823 not include R_MIPS_GOT_PAGE. */
8824 page_gotno = 0;
8825 else
8826 /* Assume there are two loadable segments consisting of contiguous
8827 sections. Is 5 enough? */
8828 page_gotno = (loadable_size >> 16) + 5;
8829
8830 /* Choose the smaller of the two page estimates; both are intended to be
8831 conservative. */
8832 if (page_gotno > g->page_gotno)
8833 page_gotno = g->page_gotno;
8834
8835 g->local_gotno += page_gotno;
8836
8837 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8838 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8839 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8840
8841 /* VxWorks does not support multiple GOTs. It initializes $gp to
8842 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8843 dynamic loader. */
8844 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8845 {
8846 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8847 return FALSE;
8848 }
8849 else
8850 {
8851 /* Record that all bfds use G. This also has the effect of freeing
8852 the per-bfd GOTs, which we no longer need. */
8853 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8854 if (mips_elf_bfd_got (ibfd, FALSE))
8855 mips_elf_replace_bfd_got (ibfd, g);
8856 mips_elf_replace_bfd_got (output_bfd, g);
8857
8858 /* Set up TLS entries. */
8859 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8860 tga.info = info;
8861 tga.g = g;
8862 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
8863 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
8864 if (!tga.g)
8865 return FALSE;
8866 BFD_ASSERT (g->tls_assigned_gotno
8867 == g->global_gotno + g->local_gotno + g->tls_gotno);
8868
8869 /* Each VxWorks GOT entry needs an explicit relocation. */
8870 if (htab->is_vxworks && info->shared)
8871 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
8872
8873 /* Allocate room for the TLS relocations. */
8874 if (g->relocs)
8875 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
8876 }
8877
8878 return TRUE;
8879 }
8880
8881 /* Estimate the size of the .MIPS.stubs section. */
8882
8883 static void
8884 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8885 {
8886 struct mips_elf_link_hash_table *htab;
8887 bfd_size_type dynsymcount;
8888
8889 htab = mips_elf_hash_table (info);
8890 BFD_ASSERT (htab != NULL);
8891
8892 if (htab->lazy_stub_count == 0)
8893 return;
8894
8895 /* IRIX rld assumes that a function stub isn't at the end of the .text
8896 section, so add a dummy entry to the end. */
8897 htab->lazy_stub_count++;
8898
8899 /* Get a worst-case estimate of the number of dynamic symbols needed.
8900 At this point, dynsymcount does not account for section symbols
8901 and count_section_dynsyms may overestimate the number that will
8902 be needed. */
8903 dynsymcount = (elf_hash_table (info)->dynsymcount
8904 + count_section_dynsyms (output_bfd, info));
8905
8906 /* Determine the size of one stub entry. */
8907 htab->function_stub_size = (dynsymcount > 0x10000
8908 ? MIPS_FUNCTION_STUB_BIG_SIZE
8909 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8910
8911 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8912 }
8913
8914 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8915 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8916 allocate an entry in the stubs section. */
8917
8918 static bfd_boolean
8919 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8920 {
8921 struct mips_elf_link_hash_table *htab;
8922
8923 htab = (struct mips_elf_link_hash_table *) data;
8924 if (h->needs_lazy_stub)
8925 {
8926 h->root.root.u.def.section = htab->sstubs;
8927 h->root.root.u.def.value = htab->sstubs->size;
8928 h->root.plt.offset = htab->sstubs->size;
8929 htab->sstubs->size += htab->function_stub_size;
8930 }
8931 return TRUE;
8932 }
8933
8934 /* Allocate offsets in the stubs section to each symbol that needs one.
8935 Set the final size of the .MIPS.stub section. */
8936
8937 static void
8938 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8939 {
8940 struct mips_elf_link_hash_table *htab;
8941
8942 htab = mips_elf_hash_table (info);
8943 BFD_ASSERT (htab != NULL);
8944
8945 if (htab->lazy_stub_count == 0)
8946 return;
8947
8948 htab->sstubs->size = 0;
8949 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8950 htab->sstubs->size += htab->function_stub_size;
8951 BFD_ASSERT (htab->sstubs->size
8952 == htab->lazy_stub_count * htab->function_stub_size);
8953 }
8954
8955 /* Set the sizes of the dynamic sections. */
8956
8957 bfd_boolean
8958 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8959 struct bfd_link_info *info)
8960 {
8961 bfd *dynobj;
8962 asection *s, *sreldyn;
8963 bfd_boolean reltext;
8964 struct mips_elf_link_hash_table *htab;
8965
8966 htab = mips_elf_hash_table (info);
8967 BFD_ASSERT (htab != NULL);
8968 dynobj = elf_hash_table (info)->dynobj;
8969 BFD_ASSERT (dynobj != NULL);
8970
8971 if (elf_hash_table (info)->dynamic_sections_created)
8972 {
8973 /* Set the contents of the .interp section to the interpreter. */
8974 if (info->executable)
8975 {
8976 s = bfd_get_linker_section (dynobj, ".interp");
8977 BFD_ASSERT (s != NULL);
8978 s->size
8979 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8980 s->contents
8981 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8982 }
8983
8984 /* Create a symbol for the PLT, if we know that we are using it. */
8985 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8986 {
8987 struct elf_link_hash_entry *h;
8988
8989 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8990
8991 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8992 "_PROCEDURE_LINKAGE_TABLE_");
8993 htab->root.hplt = h;
8994 if (h == NULL)
8995 return FALSE;
8996 h->type = STT_FUNC;
8997 }
8998 }
8999
9000 /* Allocate space for global sym dynamic relocs. */
9001 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9002
9003 mips_elf_estimate_stub_size (output_bfd, info);
9004
9005 if (!mips_elf_lay_out_got (output_bfd, info))
9006 return FALSE;
9007
9008 mips_elf_lay_out_lazy_stubs (info);
9009
9010 /* The check_relocs and adjust_dynamic_symbol entry points have
9011 determined the sizes of the various dynamic sections. Allocate
9012 memory for them. */
9013 reltext = FALSE;
9014 for (s = dynobj->sections; s != NULL; s = s->next)
9015 {
9016 const char *name;
9017
9018 /* It's OK to base decisions on the section name, because none
9019 of the dynobj section names depend upon the input files. */
9020 name = bfd_get_section_name (dynobj, s);
9021
9022 if ((s->flags & SEC_LINKER_CREATED) == 0)
9023 continue;
9024
9025 if (CONST_STRNEQ (name, ".rel"))
9026 {
9027 if (s->size != 0)
9028 {
9029 const char *outname;
9030 asection *target;
9031
9032 /* If this relocation section applies to a read only
9033 section, then we probably need a DT_TEXTREL entry.
9034 If the relocation section is .rel(a).dyn, we always
9035 assert a DT_TEXTREL entry rather than testing whether
9036 there exists a relocation to a read only section or
9037 not. */
9038 outname = bfd_get_section_name (output_bfd,
9039 s->output_section);
9040 target = bfd_get_section_by_name (output_bfd, outname + 4);
9041 if ((target != NULL
9042 && (target->flags & SEC_READONLY) != 0
9043 && (target->flags & SEC_ALLOC) != 0)
9044 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9045 reltext = TRUE;
9046
9047 /* We use the reloc_count field as a counter if we need
9048 to copy relocs into the output file. */
9049 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9050 s->reloc_count = 0;
9051
9052 /* If combreloc is enabled, elf_link_sort_relocs() will
9053 sort relocations, but in a different way than we do,
9054 and before we're done creating relocations. Also, it
9055 will move them around between input sections'
9056 relocation's contents, so our sorting would be
9057 broken, so don't let it run. */
9058 info->combreloc = 0;
9059 }
9060 }
9061 else if (! info->shared
9062 && ! mips_elf_hash_table (info)->use_rld_obj_head
9063 && CONST_STRNEQ (name, ".rld_map"))
9064 {
9065 /* We add a room for __rld_map. It will be filled in by the
9066 rtld to contain a pointer to the _r_debug structure. */
9067 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9068 }
9069 else if (SGI_COMPAT (output_bfd)
9070 && CONST_STRNEQ (name, ".compact_rel"))
9071 s->size += mips_elf_hash_table (info)->compact_rel_size;
9072 else if (s == htab->splt)
9073 {
9074 /* If the last PLT entry has a branch delay slot, allocate
9075 room for an extra nop to fill the delay slot. This is
9076 for CPUs without load interlocking. */
9077 if (! LOAD_INTERLOCKS_P (output_bfd)
9078 && ! htab->is_vxworks && s->size > 0)
9079 s->size += 4;
9080 }
9081 else if (! CONST_STRNEQ (name, ".init")
9082 && s != htab->sgot
9083 && s != htab->sgotplt
9084 && s != htab->sstubs
9085 && s != htab->sdynbss)
9086 {
9087 /* It's not one of our sections, so don't allocate space. */
9088 continue;
9089 }
9090
9091 if (s->size == 0)
9092 {
9093 s->flags |= SEC_EXCLUDE;
9094 continue;
9095 }
9096
9097 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9098 continue;
9099
9100 /* Allocate memory for the section contents. */
9101 s->contents = bfd_zalloc (dynobj, s->size);
9102 if (s->contents == NULL)
9103 {
9104 bfd_set_error (bfd_error_no_memory);
9105 return FALSE;
9106 }
9107 }
9108
9109 if (elf_hash_table (info)->dynamic_sections_created)
9110 {
9111 /* Add some entries to the .dynamic section. We fill in the
9112 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9113 must add the entries now so that we get the correct size for
9114 the .dynamic section. */
9115
9116 /* SGI object has the equivalence of DT_DEBUG in the
9117 DT_MIPS_RLD_MAP entry. This must come first because glibc
9118 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9119 may only look at the first one they see. */
9120 if (!info->shared
9121 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9122 return FALSE;
9123
9124 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9125 used by the debugger. */
9126 if (info->executable
9127 && !SGI_COMPAT (output_bfd)
9128 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9129 return FALSE;
9130
9131 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9132 info->flags |= DF_TEXTREL;
9133
9134 if ((info->flags & DF_TEXTREL) != 0)
9135 {
9136 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9137 return FALSE;
9138
9139 /* Clear the DF_TEXTREL flag. It will be set again if we
9140 write out an actual text relocation; we may not, because
9141 at this point we do not know whether e.g. any .eh_frame
9142 absolute relocations have been converted to PC-relative. */
9143 info->flags &= ~DF_TEXTREL;
9144 }
9145
9146 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9147 return FALSE;
9148
9149 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9150 if (htab->is_vxworks)
9151 {
9152 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9153 use any of the DT_MIPS_* tags. */
9154 if (sreldyn && sreldyn->size > 0)
9155 {
9156 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9157 return FALSE;
9158
9159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9160 return FALSE;
9161
9162 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9163 return FALSE;
9164 }
9165 }
9166 else
9167 {
9168 if (sreldyn && sreldyn->size > 0)
9169 {
9170 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9171 return FALSE;
9172
9173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9174 return FALSE;
9175
9176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9177 return FALSE;
9178 }
9179
9180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9181 return FALSE;
9182
9183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9184 return FALSE;
9185
9186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9187 return FALSE;
9188
9189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9190 return FALSE;
9191
9192 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9193 return FALSE;
9194
9195 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9196 return FALSE;
9197
9198 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9199 return FALSE;
9200
9201 if (IRIX_COMPAT (dynobj) == ict_irix5
9202 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9203 return FALSE;
9204
9205 if (IRIX_COMPAT (dynobj) == ict_irix6
9206 && (bfd_get_section_by_name
9207 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9208 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9209 return FALSE;
9210 }
9211 if (htab->splt->size > 0)
9212 {
9213 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9214 return FALSE;
9215
9216 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9217 return FALSE;
9218
9219 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9220 return FALSE;
9221
9222 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9223 return FALSE;
9224 }
9225 if (htab->is_vxworks
9226 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9227 return FALSE;
9228 }
9229
9230 return TRUE;
9231 }
9232 \f
9233 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9234 Adjust its R_ADDEND field so that it is correct for the output file.
9235 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9236 and sections respectively; both use symbol indexes. */
9237
9238 static void
9239 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9240 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9241 asection **local_sections, Elf_Internal_Rela *rel)
9242 {
9243 unsigned int r_type, r_symndx;
9244 Elf_Internal_Sym *sym;
9245 asection *sec;
9246
9247 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9248 {
9249 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9250 if (gprel16_reloc_p (r_type)
9251 || r_type == R_MIPS_GPREL32
9252 || literal_reloc_p (r_type))
9253 {
9254 rel->r_addend += _bfd_get_gp_value (input_bfd);
9255 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9256 }
9257
9258 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9259 sym = local_syms + r_symndx;
9260
9261 /* Adjust REL's addend to account for section merging. */
9262 if (!info->relocatable)
9263 {
9264 sec = local_sections[r_symndx];
9265 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9266 }
9267
9268 /* This would normally be done by the rela_normal code in elflink.c. */
9269 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9270 rel->r_addend += local_sections[r_symndx]->output_offset;
9271 }
9272 }
9273
9274 /* Handle relocations against symbols from removed linkonce sections,
9275 or sections discarded by a linker script. We use this wrapper around
9276 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9277 on 64-bit ELF targets. In this case for any relocation handled, which
9278 always be the first in a triplet, the remaining two have to be processed
9279 together with the first, even if they are R_MIPS_NONE. It is the symbol
9280 index referred by the first reloc that applies to all the three and the
9281 remaining two never refer to an object symbol. And it is the final
9282 relocation (the last non-null one) that determines the output field of
9283 the whole relocation so retrieve the corresponding howto structure for
9284 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9285
9286 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9287 and therefore requires to be pasted in a loop. It also defines a block
9288 and does not protect any of its arguments, hence the extra brackets. */
9289
9290 static void
9291 mips_reloc_against_discarded_section (bfd *output_bfd,
9292 struct bfd_link_info *info,
9293 bfd *input_bfd, asection *input_section,
9294 Elf_Internal_Rela **rel,
9295 const Elf_Internal_Rela **relend,
9296 bfd_boolean rel_reloc,
9297 reloc_howto_type *howto,
9298 bfd_byte *contents)
9299 {
9300 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9301 int count = bed->s->int_rels_per_ext_rel;
9302 unsigned int r_type;
9303 int i;
9304
9305 for (i = count - 1; i > 0; i--)
9306 {
9307 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9308 if (r_type != R_MIPS_NONE)
9309 {
9310 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9311 break;
9312 }
9313 }
9314 do
9315 {
9316 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9317 (*rel), count, (*relend),
9318 howto, i, contents);
9319 }
9320 while (0);
9321 }
9322
9323 /* Relocate a MIPS ELF section. */
9324
9325 bfd_boolean
9326 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9327 bfd *input_bfd, asection *input_section,
9328 bfd_byte *contents, Elf_Internal_Rela *relocs,
9329 Elf_Internal_Sym *local_syms,
9330 asection **local_sections)
9331 {
9332 Elf_Internal_Rela *rel;
9333 const Elf_Internal_Rela *relend;
9334 bfd_vma addend = 0;
9335 bfd_boolean use_saved_addend_p = FALSE;
9336 const struct elf_backend_data *bed;
9337
9338 bed = get_elf_backend_data (output_bfd);
9339 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9340 for (rel = relocs; rel < relend; ++rel)
9341 {
9342 const char *name;
9343 bfd_vma value = 0;
9344 reloc_howto_type *howto;
9345 bfd_boolean cross_mode_jump_p;
9346 /* TRUE if the relocation is a RELA relocation, rather than a
9347 REL relocation. */
9348 bfd_boolean rela_relocation_p = TRUE;
9349 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9350 const char *msg;
9351 unsigned long r_symndx;
9352 asection *sec;
9353 Elf_Internal_Shdr *symtab_hdr;
9354 struct elf_link_hash_entry *h;
9355 bfd_boolean rel_reloc;
9356
9357 rel_reloc = (NEWABI_P (input_bfd)
9358 && mips_elf_rel_relocation_p (input_bfd, input_section,
9359 relocs, rel));
9360 /* Find the relocation howto for this relocation. */
9361 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9362
9363 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9364 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9365 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9366 {
9367 sec = local_sections[r_symndx];
9368 h = NULL;
9369 }
9370 else
9371 {
9372 unsigned long extsymoff;
9373
9374 extsymoff = 0;
9375 if (!elf_bad_symtab (input_bfd))
9376 extsymoff = symtab_hdr->sh_info;
9377 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9378 while (h->root.type == bfd_link_hash_indirect
9379 || h->root.type == bfd_link_hash_warning)
9380 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9381
9382 sec = NULL;
9383 if (h->root.type == bfd_link_hash_defined
9384 || h->root.type == bfd_link_hash_defweak)
9385 sec = h->root.u.def.section;
9386 }
9387
9388 if (sec != NULL && discarded_section (sec))
9389 {
9390 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9391 input_section, &rel, &relend,
9392 rel_reloc, howto, contents);
9393 continue;
9394 }
9395
9396 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9397 {
9398 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9399 64-bit code, but make sure all their addresses are in the
9400 lowermost or uppermost 32-bit section of the 64-bit address
9401 space. Thus, when they use an R_MIPS_64 they mean what is
9402 usually meant by R_MIPS_32, with the exception that the
9403 stored value is sign-extended to 64 bits. */
9404 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9405
9406 /* On big-endian systems, we need to lie about the position
9407 of the reloc. */
9408 if (bfd_big_endian (input_bfd))
9409 rel->r_offset += 4;
9410 }
9411
9412 if (!use_saved_addend_p)
9413 {
9414 /* If these relocations were originally of the REL variety,
9415 we must pull the addend out of the field that will be
9416 relocated. Otherwise, we simply use the contents of the
9417 RELA relocation. */
9418 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9419 relocs, rel))
9420 {
9421 rela_relocation_p = FALSE;
9422 addend = mips_elf_read_rel_addend (input_bfd, rel,
9423 howto, contents);
9424 if (hi16_reloc_p (r_type)
9425 || (got16_reloc_p (r_type)
9426 && mips_elf_local_relocation_p (input_bfd, rel,
9427 local_sections)))
9428 {
9429 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9430 contents, &addend))
9431 {
9432 if (h)
9433 name = h->root.root.string;
9434 else
9435 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9436 local_syms + r_symndx,
9437 sec);
9438 (*_bfd_error_handler)
9439 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9440 input_bfd, input_section, name, howto->name,
9441 rel->r_offset);
9442 }
9443 }
9444 else
9445 addend <<= howto->rightshift;
9446 }
9447 else
9448 addend = rel->r_addend;
9449 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9450 local_syms, local_sections, rel);
9451 }
9452
9453 if (info->relocatable)
9454 {
9455 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9456 && bfd_big_endian (input_bfd))
9457 rel->r_offset -= 4;
9458
9459 if (!rela_relocation_p && rel->r_addend)
9460 {
9461 addend += rel->r_addend;
9462 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9463 addend = mips_elf_high (addend);
9464 else if (r_type == R_MIPS_HIGHER)
9465 addend = mips_elf_higher (addend);
9466 else if (r_type == R_MIPS_HIGHEST)
9467 addend = mips_elf_highest (addend);
9468 else
9469 addend >>= howto->rightshift;
9470
9471 /* We use the source mask, rather than the destination
9472 mask because the place to which we are writing will be
9473 source of the addend in the final link. */
9474 addend &= howto->src_mask;
9475
9476 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9477 /* See the comment above about using R_MIPS_64 in the 32-bit
9478 ABI. Here, we need to update the addend. It would be
9479 possible to get away with just using the R_MIPS_32 reloc
9480 but for endianness. */
9481 {
9482 bfd_vma sign_bits;
9483 bfd_vma low_bits;
9484 bfd_vma high_bits;
9485
9486 if (addend & ((bfd_vma) 1 << 31))
9487 #ifdef BFD64
9488 sign_bits = ((bfd_vma) 1 << 32) - 1;
9489 #else
9490 sign_bits = -1;
9491 #endif
9492 else
9493 sign_bits = 0;
9494
9495 /* If we don't know that we have a 64-bit type,
9496 do two separate stores. */
9497 if (bfd_big_endian (input_bfd))
9498 {
9499 /* Store the sign-bits (which are most significant)
9500 first. */
9501 low_bits = sign_bits;
9502 high_bits = addend;
9503 }
9504 else
9505 {
9506 low_bits = addend;
9507 high_bits = sign_bits;
9508 }
9509 bfd_put_32 (input_bfd, low_bits,
9510 contents + rel->r_offset);
9511 bfd_put_32 (input_bfd, high_bits,
9512 contents + rel->r_offset + 4);
9513 continue;
9514 }
9515
9516 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9517 input_bfd, input_section,
9518 contents, FALSE))
9519 return FALSE;
9520 }
9521
9522 /* Go on to the next relocation. */
9523 continue;
9524 }
9525
9526 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9527 relocations for the same offset. In that case we are
9528 supposed to treat the output of each relocation as the addend
9529 for the next. */
9530 if (rel + 1 < relend
9531 && rel->r_offset == rel[1].r_offset
9532 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9533 use_saved_addend_p = TRUE;
9534 else
9535 use_saved_addend_p = FALSE;
9536
9537 /* Figure out what value we are supposed to relocate. */
9538 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9539 input_section, info, rel,
9540 addend, howto, local_syms,
9541 local_sections, &value,
9542 &name, &cross_mode_jump_p,
9543 use_saved_addend_p))
9544 {
9545 case bfd_reloc_continue:
9546 /* There's nothing to do. */
9547 continue;
9548
9549 case bfd_reloc_undefined:
9550 /* mips_elf_calculate_relocation already called the
9551 undefined_symbol callback. There's no real point in
9552 trying to perform the relocation at this point, so we
9553 just skip ahead to the next relocation. */
9554 continue;
9555
9556 case bfd_reloc_notsupported:
9557 msg = _("internal error: unsupported relocation error");
9558 info->callbacks->warning
9559 (info, msg, name, input_bfd, input_section, rel->r_offset);
9560 return FALSE;
9561
9562 case bfd_reloc_overflow:
9563 if (use_saved_addend_p)
9564 /* Ignore overflow until we reach the last relocation for
9565 a given location. */
9566 ;
9567 else
9568 {
9569 struct mips_elf_link_hash_table *htab;
9570
9571 htab = mips_elf_hash_table (info);
9572 BFD_ASSERT (htab != NULL);
9573 BFD_ASSERT (name != NULL);
9574 if (!htab->small_data_overflow_reported
9575 && (gprel16_reloc_p (howto->type)
9576 || literal_reloc_p (howto->type)))
9577 {
9578 msg = _("small-data section exceeds 64KB;"
9579 " lower small-data size limit (see option -G)");
9580
9581 htab->small_data_overflow_reported = TRUE;
9582 (*info->callbacks->einfo) ("%P: %s\n", msg);
9583 }
9584 if (! ((*info->callbacks->reloc_overflow)
9585 (info, NULL, name, howto->name, (bfd_vma) 0,
9586 input_bfd, input_section, rel->r_offset)))
9587 return FALSE;
9588 }
9589 break;
9590
9591 case bfd_reloc_ok:
9592 break;
9593
9594 case bfd_reloc_outofrange:
9595 if (jal_reloc_p (howto->type))
9596 {
9597 msg = _("JALX to a non-word-aligned address");
9598 info->callbacks->warning
9599 (info, msg, name, input_bfd, input_section, rel->r_offset);
9600 return FALSE;
9601 }
9602 /* Fall through. */
9603
9604 default:
9605 abort ();
9606 break;
9607 }
9608
9609 /* If we've got another relocation for the address, keep going
9610 until we reach the last one. */
9611 if (use_saved_addend_p)
9612 {
9613 addend = value;
9614 continue;
9615 }
9616
9617 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9618 /* See the comment above about using R_MIPS_64 in the 32-bit
9619 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9620 that calculated the right value. Now, however, we
9621 sign-extend the 32-bit result to 64-bits, and store it as a
9622 64-bit value. We are especially generous here in that we
9623 go to extreme lengths to support this usage on systems with
9624 only a 32-bit VMA. */
9625 {
9626 bfd_vma sign_bits;
9627 bfd_vma low_bits;
9628 bfd_vma high_bits;
9629
9630 if (value & ((bfd_vma) 1 << 31))
9631 #ifdef BFD64
9632 sign_bits = ((bfd_vma) 1 << 32) - 1;
9633 #else
9634 sign_bits = -1;
9635 #endif
9636 else
9637 sign_bits = 0;
9638
9639 /* If we don't know that we have a 64-bit type,
9640 do two separate stores. */
9641 if (bfd_big_endian (input_bfd))
9642 {
9643 /* Undo what we did above. */
9644 rel->r_offset -= 4;
9645 /* Store the sign-bits (which are most significant)
9646 first. */
9647 low_bits = sign_bits;
9648 high_bits = value;
9649 }
9650 else
9651 {
9652 low_bits = value;
9653 high_bits = sign_bits;
9654 }
9655 bfd_put_32 (input_bfd, low_bits,
9656 contents + rel->r_offset);
9657 bfd_put_32 (input_bfd, high_bits,
9658 contents + rel->r_offset + 4);
9659 continue;
9660 }
9661
9662 /* Actually perform the relocation. */
9663 if (! mips_elf_perform_relocation (info, howto, rel, value,
9664 input_bfd, input_section,
9665 contents, cross_mode_jump_p))
9666 return FALSE;
9667 }
9668
9669 return TRUE;
9670 }
9671 \f
9672 /* A function that iterates over each entry in la25_stubs and fills
9673 in the code for each one. DATA points to a mips_htab_traverse_info. */
9674
9675 static int
9676 mips_elf_create_la25_stub (void **slot, void *data)
9677 {
9678 struct mips_htab_traverse_info *hti;
9679 struct mips_elf_link_hash_table *htab;
9680 struct mips_elf_la25_stub *stub;
9681 asection *s;
9682 bfd_byte *loc;
9683 bfd_vma offset, target, target_high, target_low;
9684
9685 stub = (struct mips_elf_la25_stub *) *slot;
9686 hti = (struct mips_htab_traverse_info *) data;
9687 htab = mips_elf_hash_table (hti->info);
9688 BFD_ASSERT (htab != NULL);
9689
9690 /* Create the section contents, if we haven't already. */
9691 s = stub->stub_section;
9692 loc = s->contents;
9693 if (loc == NULL)
9694 {
9695 loc = bfd_malloc (s->size);
9696 if (loc == NULL)
9697 {
9698 hti->error = TRUE;
9699 return FALSE;
9700 }
9701 s->contents = loc;
9702 }
9703
9704 /* Work out where in the section this stub should go. */
9705 offset = stub->offset;
9706
9707 /* Work out the target address. */
9708 target = mips_elf_get_la25_target (stub, &s);
9709 target += s->output_section->vma + s->output_offset;
9710
9711 target_high = ((target + 0x8000) >> 16) & 0xffff;
9712 target_low = (target & 0xffff);
9713
9714 if (stub->stub_section != htab->strampoline)
9715 {
9716 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9717 of the section and write the two instructions at the end. */
9718 memset (loc, 0, offset);
9719 loc += offset;
9720 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9721 {
9722 bfd_put_micromips_32 (hti->output_bfd,
9723 LA25_LUI_MICROMIPS (target_high),
9724 loc);
9725 bfd_put_micromips_32 (hti->output_bfd,
9726 LA25_ADDIU_MICROMIPS (target_low),
9727 loc + 4);
9728 }
9729 else
9730 {
9731 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9732 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9733 }
9734 }
9735 else
9736 {
9737 /* This is trampoline. */
9738 loc += offset;
9739 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9740 {
9741 bfd_put_micromips_32 (hti->output_bfd,
9742 LA25_LUI_MICROMIPS (target_high), loc);
9743 bfd_put_micromips_32 (hti->output_bfd,
9744 LA25_J_MICROMIPS (target), loc + 4);
9745 bfd_put_micromips_32 (hti->output_bfd,
9746 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9747 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9748 }
9749 else
9750 {
9751 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9752 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9753 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9754 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9755 }
9756 }
9757 return TRUE;
9758 }
9759
9760 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9761 adjust it appropriately now. */
9762
9763 static void
9764 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9765 const char *name, Elf_Internal_Sym *sym)
9766 {
9767 /* The linker script takes care of providing names and values for
9768 these, but we must place them into the right sections. */
9769 static const char* const text_section_symbols[] = {
9770 "_ftext",
9771 "_etext",
9772 "__dso_displacement",
9773 "__elf_header",
9774 "__program_header_table",
9775 NULL
9776 };
9777
9778 static const char* const data_section_symbols[] = {
9779 "_fdata",
9780 "_edata",
9781 "_end",
9782 "_fbss",
9783 NULL
9784 };
9785
9786 const char* const *p;
9787 int i;
9788
9789 for (i = 0; i < 2; ++i)
9790 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9791 *p;
9792 ++p)
9793 if (strcmp (*p, name) == 0)
9794 {
9795 /* All of these symbols are given type STT_SECTION by the
9796 IRIX6 linker. */
9797 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9798 sym->st_other = STO_PROTECTED;
9799
9800 /* The IRIX linker puts these symbols in special sections. */
9801 if (i == 0)
9802 sym->st_shndx = SHN_MIPS_TEXT;
9803 else
9804 sym->st_shndx = SHN_MIPS_DATA;
9805
9806 break;
9807 }
9808 }
9809
9810 /* Finish up dynamic symbol handling. We set the contents of various
9811 dynamic sections here. */
9812
9813 bfd_boolean
9814 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9815 struct bfd_link_info *info,
9816 struct elf_link_hash_entry *h,
9817 Elf_Internal_Sym *sym)
9818 {
9819 bfd *dynobj;
9820 asection *sgot;
9821 struct mips_got_info *g, *gg;
9822 const char *name;
9823 int idx;
9824 struct mips_elf_link_hash_table *htab;
9825 struct mips_elf_link_hash_entry *hmips;
9826
9827 htab = mips_elf_hash_table (info);
9828 BFD_ASSERT (htab != NULL);
9829 dynobj = elf_hash_table (info)->dynobj;
9830 hmips = (struct mips_elf_link_hash_entry *) h;
9831
9832 BFD_ASSERT (!htab->is_vxworks);
9833
9834 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9835 {
9836 /* We've decided to create a PLT entry for this symbol. */
9837 bfd_byte *loc;
9838 bfd_vma header_address, plt_index, got_address;
9839 bfd_vma got_address_high, got_address_low, load;
9840 const bfd_vma *plt_entry;
9841
9842 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9843 BFD_ASSERT (h->dynindx != -1);
9844 BFD_ASSERT (htab->splt != NULL);
9845 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9846 BFD_ASSERT (!h->def_regular);
9847
9848 /* Calculate the address of the PLT header. */
9849 header_address = (htab->splt->output_section->vma
9850 + htab->splt->output_offset);
9851
9852 /* Calculate the index of the entry. */
9853 plt_index = ((h->plt.offset - htab->plt_header_size)
9854 / htab->plt_entry_size);
9855
9856 /* Calculate the address of the .got.plt entry. */
9857 got_address = (htab->sgotplt->output_section->vma
9858 + htab->sgotplt->output_offset
9859 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9860 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9861 got_address_low = got_address & 0xffff;
9862
9863 /* Initially point the .got.plt entry at the PLT header. */
9864 loc = (htab->sgotplt->contents
9865 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9866 if (ABI_64_P (output_bfd))
9867 bfd_put_64 (output_bfd, header_address, loc);
9868 else
9869 bfd_put_32 (output_bfd, header_address, loc);
9870
9871 /* Find out where the .plt entry should go. */
9872 loc = htab->splt->contents + h->plt.offset;
9873
9874 /* Pick the load opcode. */
9875 load = MIPS_ELF_LOAD_WORD (output_bfd);
9876
9877 /* Fill in the PLT entry itself. */
9878 plt_entry = mips_exec_plt_entry;
9879 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9880 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9881
9882 if (! LOAD_INTERLOCKS_P (output_bfd))
9883 {
9884 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9885 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9886 }
9887 else
9888 {
9889 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9890 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9891 }
9892
9893 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9894 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9895 plt_index, h->dynindx,
9896 R_MIPS_JUMP_SLOT, got_address);
9897
9898 /* We distinguish between PLT entries and lazy-binding stubs by
9899 giving the former an st_other value of STO_MIPS_PLT. Set the
9900 flag and leave the value if there are any relocations in the
9901 binary where pointer equality matters. */
9902 sym->st_shndx = SHN_UNDEF;
9903 if (h->pointer_equality_needed)
9904 sym->st_other = STO_MIPS_PLT;
9905 else
9906 sym->st_value = 0;
9907 }
9908 else if (h->plt.offset != MINUS_ONE)
9909 {
9910 /* We've decided to create a lazy-binding stub. */
9911 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9912
9913 /* This symbol has a stub. Set it up. */
9914
9915 BFD_ASSERT (h->dynindx != -1);
9916
9917 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9918 || (h->dynindx <= 0xffff));
9919
9920 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9921 sign extension at runtime in the stub, resulting in a negative
9922 index value. */
9923 if (h->dynindx & ~0x7fffffff)
9924 return FALSE;
9925
9926 /* Fill the stub. */
9927 idx = 0;
9928 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9929 idx += 4;
9930 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9931 idx += 4;
9932 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9933 {
9934 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9935 stub + idx);
9936 idx += 4;
9937 }
9938 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9939 idx += 4;
9940
9941 /* If a large stub is not required and sign extension is not a
9942 problem, then use legacy code in the stub. */
9943 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9944 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9945 else if (h->dynindx & ~0x7fff)
9946 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9947 else
9948 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9949 stub + idx);
9950
9951 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9952 memcpy (htab->sstubs->contents + h->plt.offset,
9953 stub, htab->function_stub_size);
9954
9955 /* Mark the symbol as undefined. plt.offset != -1 occurs
9956 only for the referenced symbol. */
9957 sym->st_shndx = SHN_UNDEF;
9958
9959 /* The run-time linker uses the st_value field of the symbol
9960 to reset the global offset table entry for this external
9961 to its stub address when unlinking a shared object. */
9962 sym->st_value = (htab->sstubs->output_section->vma
9963 + htab->sstubs->output_offset
9964 + h->plt.offset);
9965 }
9966
9967 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9968 refer to the stub, since only the stub uses the standard calling
9969 conventions. */
9970 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9971 {
9972 BFD_ASSERT (hmips->need_fn_stub);
9973 sym->st_value = (hmips->fn_stub->output_section->vma
9974 + hmips->fn_stub->output_offset);
9975 sym->st_size = hmips->fn_stub->size;
9976 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9977 }
9978
9979 BFD_ASSERT (h->dynindx != -1
9980 || h->forced_local);
9981
9982 sgot = htab->sgot;
9983 g = htab->got_info;
9984 BFD_ASSERT (g != NULL);
9985
9986 /* Run through the global symbol table, creating GOT entries for all
9987 the symbols that need them. */
9988 if (hmips->global_got_area != GGA_NONE)
9989 {
9990 bfd_vma offset;
9991 bfd_vma value;
9992
9993 value = sym->st_value;
9994 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
9995 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9996 }
9997
9998 if (hmips->global_got_area != GGA_NONE && g->next)
9999 {
10000 struct mips_got_entry e, *p;
10001 bfd_vma entry;
10002 bfd_vma offset;
10003
10004 gg = g;
10005
10006 e.abfd = output_bfd;
10007 e.symndx = -1;
10008 e.d.h = hmips;
10009 e.tls_type = GOT_TLS_NONE;
10010
10011 for (g = g->next; g->next != gg; g = g->next)
10012 {
10013 if (g->got_entries
10014 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10015 &e)))
10016 {
10017 offset = p->gotidx;
10018 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10019 if (info->shared
10020 || (elf_hash_table (info)->dynamic_sections_created
10021 && p->d.h != NULL
10022 && p->d.h->root.def_dynamic
10023 && !p->d.h->root.def_regular))
10024 {
10025 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10026 the various compatibility problems, it's easier to mock
10027 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10028 mips_elf_create_dynamic_relocation to calculate the
10029 appropriate addend. */
10030 Elf_Internal_Rela rel[3];
10031
10032 memset (rel, 0, sizeof (rel));
10033 if (ABI_64_P (output_bfd))
10034 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10035 else
10036 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10037 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10038
10039 entry = 0;
10040 if (! (mips_elf_create_dynamic_relocation
10041 (output_bfd, info, rel,
10042 e.d.h, NULL, sym->st_value, &entry, sgot)))
10043 return FALSE;
10044 }
10045 else
10046 entry = sym->st_value;
10047 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10048 }
10049 }
10050 }
10051
10052 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10053 name = h->root.root.string;
10054 if (h == elf_hash_table (info)->hdynamic
10055 || h == elf_hash_table (info)->hgot)
10056 sym->st_shndx = SHN_ABS;
10057 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10058 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10059 {
10060 sym->st_shndx = SHN_ABS;
10061 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10062 sym->st_value = 1;
10063 }
10064 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10065 {
10066 sym->st_shndx = SHN_ABS;
10067 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10068 sym->st_value = elf_gp (output_bfd);
10069 }
10070 else if (SGI_COMPAT (output_bfd))
10071 {
10072 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10073 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10074 {
10075 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10076 sym->st_other = STO_PROTECTED;
10077 sym->st_value = 0;
10078 sym->st_shndx = SHN_MIPS_DATA;
10079 }
10080 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10081 {
10082 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10083 sym->st_other = STO_PROTECTED;
10084 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10085 sym->st_shndx = SHN_ABS;
10086 }
10087 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10088 {
10089 if (h->type == STT_FUNC)
10090 sym->st_shndx = SHN_MIPS_TEXT;
10091 else if (h->type == STT_OBJECT)
10092 sym->st_shndx = SHN_MIPS_DATA;
10093 }
10094 }
10095
10096 /* Emit a copy reloc, if needed. */
10097 if (h->needs_copy)
10098 {
10099 asection *s;
10100 bfd_vma symval;
10101
10102 BFD_ASSERT (h->dynindx != -1);
10103 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10104
10105 s = mips_elf_rel_dyn_section (info, FALSE);
10106 symval = (h->root.u.def.section->output_section->vma
10107 + h->root.u.def.section->output_offset
10108 + h->root.u.def.value);
10109 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10110 h->dynindx, R_MIPS_COPY, symval);
10111 }
10112
10113 /* Handle the IRIX6-specific symbols. */
10114 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10115 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10116
10117 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10118 treat MIPS16 symbols like any other. */
10119 if (ELF_ST_IS_MIPS16 (sym->st_other))
10120 {
10121 BFD_ASSERT (sym->st_value & 1);
10122 sym->st_other -= STO_MIPS16;
10123 }
10124
10125 return TRUE;
10126 }
10127
10128 /* Likewise, for VxWorks. */
10129
10130 bfd_boolean
10131 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10132 struct bfd_link_info *info,
10133 struct elf_link_hash_entry *h,
10134 Elf_Internal_Sym *sym)
10135 {
10136 bfd *dynobj;
10137 asection *sgot;
10138 struct mips_got_info *g;
10139 struct mips_elf_link_hash_table *htab;
10140 struct mips_elf_link_hash_entry *hmips;
10141
10142 htab = mips_elf_hash_table (info);
10143 BFD_ASSERT (htab != NULL);
10144 dynobj = elf_hash_table (info)->dynobj;
10145 hmips = (struct mips_elf_link_hash_entry *) h;
10146
10147 if (h->plt.offset != (bfd_vma) -1)
10148 {
10149 bfd_byte *loc;
10150 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10151 Elf_Internal_Rela rel;
10152 static const bfd_vma *plt_entry;
10153
10154 BFD_ASSERT (h->dynindx != -1);
10155 BFD_ASSERT (htab->splt != NULL);
10156 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10157
10158 /* Calculate the address of the .plt entry. */
10159 plt_address = (htab->splt->output_section->vma
10160 + htab->splt->output_offset
10161 + h->plt.offset);
10162
10163 /* Calculate the index of the entry. */
10164 plt_index = ((h->plt.offset - htab->plt_header_size)
10165 / htab->plt_entry_size);
10166
10167 /* Calculate the address of the .got.plt entry. */
10168 got_address = (htab->sgotplt->output_section->vma
10169 + htab->sgotplt->output_offset
10170 + plt_index * 4);
10171
10172 /* Calculate the offset of the .got.plt entry from
10173 _GLOBAL_OFFSET_TABLE_. */
10174 got_offset = mips_elf_gotplt_index (info, h);
10175
10176 /* Calculate the offset for the branch at the start of the PLT
10177 entry. The branch jumps to the beginning of .plt. */
10178 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10179
10180 /* Fill in the initial value of the .got.plt entry. */
10181 bfd_put_32 (output_bfd, plt_address,
10182 htab->sgotplt->contents + plt_index * 4);
10183
10184 /* Find out where the .plt entry should go. */
10185 loc = htab->splt->contents + h->plt.offset;
10186
10187 if (info->shared)
10188 {
10189 plt_entry = mips_vxworks_shared_plt_entry;
10190 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10191 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10192 }
10193 else
10194 {
10195 bfd_vma got_address_high, got_address_low;
10196
10197 plt_entry = mips_vxworks_exec_plt_entry;
10198 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10199 got_address_low = got_address & 0xffff;
10200
10201 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10202 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10203 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10204 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10205 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10206 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10207 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10208 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10209
10210 loc = (htab->srelplt2->contents
10211 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10212
10213 /* Emit a relocation for the .got.plt entry. */
10214 rel.r_offset = got_address;
10215 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10216 rel.r_addend = h->plt.offset;
10217 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10218
10219 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10220 loc += sizeof (Elf32_External_Rela);
10221 rel.r_offset = plt_address + 8;
10222 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10223 rel.r_addend = got_offset;
10224 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10225
10226 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10227 loc += sizeof (Elf32_External_Rela);
10228 rel.r_offset += 4;
10229 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10230 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10231 }
10232
10233 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10234 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10235 rel.r_offset = got_address;
10236 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10237 rel.r_addend = 0;
10238 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10239
10240 if (!h->def_regular)
10241 sym->st_shndx = SHN_UNDEF;
10242 }
10243
10244 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10245
10246 sgot = htab->sgot;
10247 g = htab->got_info;
10248 BFD_ASSERT (g != NULL);
10249
10250 /* See if this symbol has an entry in the GOT. */
10251 if (hmips->global_got_area != GGA_NONE)
10252 {
10253 bfd_vma offset;
10254 Elf_Internal_Rela outrel;
10255 bfd_byte *loc;
10256 asection *s;
10257
10258 /* Install the symbol value in the GOT. */
10259 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10260 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10261
10262 /* Add a dynamic relocation for it. */
10263 s = mips_elf_rel_dyn_section (info, FALSE);
10264 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10265 outrel.r_offset = (sgot->output_section->vma
10266 + sgot->output_offset
10267 + offset);
10268 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10269 outrel.r_addend = 0;
10270 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10271 }
10272
10273 /* Emit a copy reloc, if needed. */
10274 if (h->needs_copy)
10275 {
10276 Elf_Internal_Rela rel;
10277
10278 BFD_ASSERT (h->dynindx != -1);
10279
10280 rel.r_offset = (h->root.u.def.section->output_section->vma
10281 + h->root.u.def.section->output_offset
10282 + h->root.u.def.value);
10283 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10284 rel.r_addend = 0;
10285 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10286 htab->srelbss->contents
10287 + (htab->srelbss->reloc_count
10288 * sizeof (Elf32_External_Rela)));
10289 ++htab->srelbss->reloc_count;
10290 }
10291
10292 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10293 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10294 sym->st_value &= ~1;
10295
10296 return TRUE;
10297 }
10298
10299 /* Write out a plt0 entry to the beginning of .plt. */
10300
10301 static void
10302 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10303 {
10304 bfd_byte *loc;
10305 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10306 static const bfd_vma *plt_entry;
10307 struct mips_elf_link_hash_table *htab;
10308
10309 htab = mips_elf_hash_table (info);
10310 BFD_ASSERT (htab != NULL);
10311
10312 if (ABI_64_P (output_bfd))
10313 plt_entry = mips_n64_exec_plt0_entry;
10314 else if (ABI_N32_P (output_bfd))
10315 plt_entry = mips_n32_exec_plt0_entry;
10316 else
10317 plt_entry = mips_o32_exec_plt0_entry;
10318
10319 /* Calculate the value of .got.plt. */
10320 gotplt_value = (htab->sgotplt->output_section->vma
10321 + htab->sgotplt->output_offset);
10322 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10323 gotplt_value_low = gotplt_value & 0xffff;
10324
10325 /* The PLT sequence is not safe for N64 if .got.plt's address can
10326 not be loaded in two instructions. */
10327 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10328 || ~(gotplt_value | 0x7fffffff) == 0);
10329
10330 /* Install the PLT header. */
10331 loc = htab->splt->contents;
10332 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10333 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10334 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10335 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10336 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10337 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10338 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10339 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10340 }
10341
10342 /* Install the PLT header for a VxWorks executable and finalize the
10343 contents of .rela.plt.unloaded. */
10344
10345 static void
10346 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10347 {
10348 Elf_Internal_Rela rela;
10349 bfd_byte *loc;
10350 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10351 static const bfd_vma *plt_entry;
10352 struct mips_elf_link_hash_table *htab;
10353
10354 htab = mips_elf_hash_table (info);
10355 BFD_ASSERT (htab != NULL);
10356
10357 plt_entry = mips_vxworks_exec_plt0_entry;
10358
10359 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10360 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10361 + htab->root.hgot->root.u.def.section->output_offset
10362 + htab->root.hgot->root.u.def.value);
10363
10364 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10365 got_value_low = got_value & 0xffff;
10366
10367 /* Calculate the address of the PLT header. */
10368 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10369
10370 /* Install the PLT header. */
10371 loc = htab->splt->contents;
10372 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10373 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10374 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10375 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10376 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10377 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10378
10379 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10380 loc = htab->srelplt2->contents;
10381 rela.r_offset = plt_address;
10382 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10383 rela.r_addend = 0;
10384 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10385 loc += sizeof (Elf32_External_Rela);
10386
10387 /* Output the relocation for the following addiu of
10388 %lo(_GLOBAL_OFFSET_TABLE_). */
10389 rela.r_offset += 4;
10390 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10391 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10392 loc += sizeof (Elf32_External_Rela);
10393
10394 /* Fix up the remaining relocations. They may have the wrong
10395 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10396 in which symbols were output. */
10397 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10398 {
10399 Elf_Internal_Rela rel;
10400
10401 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10402 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10403 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10404 loc += sizeof (Elf32_External_Rela);
10405
10406 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10407 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10408 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10409 loc += sizeof (Elf32_External_Rela);
10410
10411 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10412 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10413 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10414 loc += sizeof (Elf32_External_Rela);
10415 }
10416 }
10417
10418 /* Install the PLT header for a VxWorks shared library. */
10419
10420 static void
10421 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10422 {
10423 unsigned int i;
10424 struct mips_elf_link_hash_table *htab;
10425
10426 htab = mips_elf_hash_table (info);
10427 BFD_ASSERT (htab != NULL);
10428
10429 /* We just need to copy the entry byte-by-byte. */
10430 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10431 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10432 htab->splt->contents + i * 4);
10433 }
10434
10435 /* Finish up the dynamic sections. */
10436
10437 bfd_boolean
10438 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10439 struct bfd_link_info *info)
10440 {
10441 bfd *dynobj;
10442 asection *sdyn;
10443 asection *sgot;
10444 struct mips_got_info *gg, *g;
10445 struct mips_elf_link_hash_table *htab;
10446
10447 htab = mips_elf_hash_table (info);
10448 BFD_ASSERT (htab != NULL);
10449
10450 dynobj = elf_hash_table (info)->dynobj;
10451
10452 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10453
10454 sgot = htab->sgot;
10455 gg = htab->got_info;
10456
10457 if (elf_hash_table (info)->dynamic_sections_created)
10458 {
10459 bfd_byte *b;
10460 int dyn_to_skip = 0, dyn_skipped = 0;
10461
10462 BFD_ASSERT (sdyn != NULL);
10463 BFD_ASSERT (gg != NULL);
10464
10465 g = mips_elf_bfd_got (output_bfd, FALSE);
10466 BFD_ASSERT (g != NULL);
10467
10468 for (b = sdyn->contents;
10469 b < sdyn->contents + sdyn->size;
10470 b += MIPS_ELF_DYN_SIZE (dynobj))
10471 {
10472 Elf_Internal_Dyn dyn;
10473 const char *name;
10474 size_t elemsize;
10475 asection *s;
10476 bfd_boolean swap_out_p;
10477
10478 /* Read in the current dynamic entry. */
10479 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10480
10481 /* Assume that we're going to modify it and write it out. */
10482 swap_out_p = TRUE;
10483
10484 switch (dyn.d_tag)
10485 {
10486 case DT_RELENT:
10487 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10488 break;
10489
10490 case DT_RELAENT:
10491 BFD_ASSERT (htab->is_vxworks);
10492 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10493 break;
10494
10495 case DT_STRSZ:
10496 /* Rewrite DT_STRSZ. */
10497 dyn.d_un.d_val =
10498 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10499 break;
10500
10501 case DT_PLTGOT:
10502 s = htab->sgot;
10503 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10504 break;
10505
10506 case DT_MIPS_PLTGOT:
10507 s = htab->sgotplt;
10508 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10509 break;
10510
10511 case DT_MIPS_RLD_VERSION:
10512 dyn.d_un.d_val = 1; /* XXX */
10513 break;
10514
10515 case DT_MIPS_FLAGS:
10516 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10517 break;
10518
10519 case DT_MIPS_TIME_STAMP:
10520 {
10521 time_t t;
10522 time (&t);
10523 dyn.d_un.d_val = t;
10524 }
10525 break;
10526
10527 case DT_MIPS_ICHECKSUM:
10528 /* XXX FIXME: */
10529 swap_out_p = FALSE;
10530 break;
10531
10532 case DT_MIPS_IVERSION:
10533 /* XXX FIXME: */
10534 swap_out_p = FALSE;
10535 break;
10536
10537 case DT_MIPS_BASE_ADDRESS:
10538 s = output_bfd->sections;
10539 BFD_ASSERT (s != NULL);
10540 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10541 break;
10542
10543 case DT_MIPS_LOCAL_GOTNO:
10544 dyn.d_un.d_val = g->local_gotno;
10545 break;
10546
10547 case DT_MIPS_UNREFEXTNO:
10548 /* The index into the dynamic symbol table which is the
10549 entry of the first external symbol that is not
10550 referenced within the same object. */
10551 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10552 break;
10553
10554 case DT_MIPS_GOTSYM:
10555 if (htab->global_gotsym)
10556 {
10557 dyn.d_un.d_val = htab->global_gotsym->dynindx;
10558 break;
10559 }
10560 /* In case if we don't have global got symbols we default
10561 to setting DT_MIPS_GOTSYM to the same value as
10562 DT_MIPS_SYMTABNO, so we just fall through. */
10563
10564 case DT_MIPS_SYMTABNO:
10565 name = ".dynsym";
10566 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10567 s = bfd_get_section_by_name (output_bfd, name);
10568 BFD_ASSERT (s != NULL);
10569
10570 dyn.d_un.d_val = s->size / elemsize;
10571 break;
10572
10573 case DT_MIPS_HIPAGENO:
10574 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10575 break;
10576
10577 case DT_MIPS_RLD_MAP:
10578 {
10579 struct elf_link_hash_entry *h;
10580 h = mips_elf_hash_table (info)->rld_symbol;
10581 if (!h)
10582 {
10583 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10584 swap_out_p = FALSE;
10585 break;
10586 }
10587 s = h->root.u.def.section;
10588 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10589 + h->root.u.def.value);
10590 }
10591 break;
10592
10593 case DT_MIPS_OPTIONS:
10594 s = (bfd_get_section_by_name
10595 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10596 dyn.d_un.d_ptr = s->vma;
10597 break;
10598
10599 case DT_RELASZ:
10600 BFD_ASSERT (htab->is_vxworks);
10601 /* The count does not include the JUMP_SLOT relocations. */
10602 if (htab->srelplt)
10603 dyn.d_un.d_val -= htab->srelplt->size;
10604 break;
10605
10606 case DT_PLTREL:
10607 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10608 if (htab->is_vxworks)
10609 dyn.d_un.d_val = DT_RELA;
10610 else
10611 dyn.d_un.d_val = DT_REL;
10612 break;
10613
10614 case DT_PLTRELSZ:
10615 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10616 dyn.d_un.d_val = htab->srelplt->size;
10617 break;
10618
10619 case DT_JMPREL:
10620 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10621 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10622 + htab->srelplt->output_offset);
10623 break;
10624
10625 case DT_TEXTREL:
10626 /* If we didn't need any text relocations after all, delete
10627 the dynamic tag. */
10628 if (!(info->flags & DF_TEXTREL))
10629 {
10630 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10631 swap_out_p = FALSE;
10632 }
10633 break;
10634
10635 case DT_FLAGS:
10636 /* If we didn't need any text relocations after all, clear
10637 DF_TEXTREL from DT_FLAGS. */
10638 if (!(info->flags & DF_TEXTREL))
10639 dyn.d_un.d_val &= ~DF_TEXTREL;
10640 else
10641 swap_out_p = FALSE;
10642 break;
10643
10644 default:
10645 swap_out_p = FALSE;
10646 if (htab->is_vxworks
10647 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10648 swap_out_p = TRUE;
10649 break;
10650 }
10651
10652 if (swap_out_p || dyn_skipped)
10653 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10654 (dynobj, &dyn, b - dyn_skipped);
10655
10656 if (dyn_to_skip)
10657 {
10658 dyn_skipped += dyn_to_skip;
10659 dyn_to_skip = 0;
10660 }
10661 }
10662
10663 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10664 if (dyn_skipped > 0)
10665 memset (b - dyn_skipped, 0, dyn_skipped);
10666 }
10667
10668 if (sgot != NULL && sgot->size > 0
10669 && !bfd_is_abs_section (sgot->output_section))
10670 {
10671 if (htab->is_vxworks)
10672 {
10673 /* The first entry of the global offset table points to the
10674 ".dynamic" section. The second is initialized by the
10675 loader and contains the shared library identifier.
10676 The third is also initialized by the loader and points
10677 to the lazy resolution stub. */
10678 MIPS_ELF_PUT_WORD (output_bfd,
10679 sdyn->output_offset + sdyn->output_section->vma,
10680 sgot->contents);
10681 MIPS_ELF_PUT_WORD (output_bfd, 0,
10682 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10683 MIPS_ELF_PUT_WORD (output_bfd, 0,
10684 sgot->contents
10685 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10686 }
10687 else
10688 {
10689 /* The first entry of the global offset table will be filled at
10690 runtime. The second entry will be used by some runtime loaders.
10691 This isn't the case of IRIX rld. */
10692 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10693 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10694 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10695 }
10696
10697 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10698 = MIPS_ELF_GOT_SIZE (output_bfd);
10699 }
10700
10701 /* Generate dynamic relocations for the non-primary gots. */
10702 if (gg != NULL && gg->next)
10703 {
10704 Elf_Internal_Rela rel[3];
10705 bfd_vma addend = 0;
10706
10707 memset (rel, 0, sizeof (rel));
10708 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10709
10710 for (g = gg->next; g->next != gg; g = g->next)
10711 {
10712 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10713 + g->next->tls_gotno;
10714
10715 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10716 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10717 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10718 sgot->contents
10719 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10720
10721 if (! info->shared)
10722 continue;
10723
10724 while (got_index < g->assigned_gotno)
10725 {
10726 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10727 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10728 if (!(mips_elf_create_dynamic_relocation
10729 (output_bfd, info, rel, NULL,
10730 bfd_abs_section_ptr,
10731 0, &addend, sgot)))
10732 return FALSE;
10733 BFD_ASSERT (addend == 0);
10734 }
10735 }
10736 }
10737
10738 /* The generation of dynamic relocations for the non-primary gots
10739 adds more dynamic relocations. We cannot count them until
10740 here. */
10741
10742 if (elf_hash_table (info)->dynamic_sections_created)
10743 {
10744 bfd_byte *b;
10745 bfd_boolean swap_out_p;
10746
10747 BFD_ASSERT (sdyn != NULL);
10748
10749 for (b = sdyn->contents;
10750 b < sdyn->contents + sdyn->size;
10751 b += MIPS_ELF_DYN_SIZE (dynobj))
10752 {
10753 Elf_Internal_Dyn dyn;
10754 asection *s;
10755
10756 /* Read in the current dynamic entry. */
10757 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10758
10759 /* Assume that we're going to modify it and write it out. */
10760 swap_out_p = TRUE;
10761
10762 switch (dyn.d_tag)
10763 {
10764 case DT_RELSZ:
10765 /* Reduce DT_RELSZ to account for any relocations we
10766 decided not to make. This is for the n64 irix rld,
10767 which doesn't seem to apply any relocations if there
10768 are trailing null entries. */
10769 s = mips_elf_rel_dyn_section (info, FALSE);
10770 dyn.d_un.d_val = (s->reloc_count
10771 * (ABI_64_P (output_bfd)
10772 ? sizeof (Elf64_Mips_External_Rel)
10773 : sizeof (Elf32_External_Rel)));
10774 /* Adjust the section size too. Tools like the prelinker
10775 can reasonably expect the values to the same. */
10776 elf_section_data (s->output_section)->this_hdr.sh_size
10777 = dyn.d_un.d_val;
10778 break;
10779
10780 default:
10781 swap_out_p = FALSE;
10782 break;
10783 }
10784
10785 if (swap_out_p)
10786 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10787 (dynobj, &dyn, b);
10788 }
10789 }
10790
10791 {
10792 asection *s;
10793 Elf32_compact_rel cpt;
10794
10795 if (SGI_COMPAT (output_bfd))
10796 {
10797 /* Write .compact_rel section out. */
10798 s = bfd_get_linker_section (dynobj, ".compact_rel");
10799 if (s != NULL)
10800 {
10801 cpt.id1 = 1;
10802 cpt.num = s->reloc_count;
10803 cpt.id2 = 2;
10804 cpt.offset = (s->output_section->filepos
10805 + sizeof (Elf32_External_compact_rel));
10806 cpt.reserved0 = 0;
10807 cpt.reserved1 = 0;
10808 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10809 ((Elf32_External_compact_rel *)
10810 s->contents));
10811
10812 /* Clean up a dummy stub function entry in .text. */
10813 if (htab->sstubs != NULL)
10814 {
10815 file_ptr dummy_offset;
10816
10817 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10818 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10819 memset (htab->sstubs->contents + dummy_offset, 0,
10820 htab->function_stub_size);
10821 }
10822 }
10823 }
10824
10825 /* The psABI says that the dynamic relocations must be sorted in
10826 increasing order of r_symndx. The VxWorks EABI doesn't require
10827 this, and because the code below handles REL rather than RELA
10828 relocations, using it for VxWorks would be outright harmful. */
10829 if (!htab->is_vxworks)
10830 {
10831 s = mips_elf_rel_dyn_section (info, FALSE);
10832 if (s != NULL
10833 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10834 {
10835 reldyn_sorting_bfd = output_bfd;
10836
10837 if (ABI_64_P (output_bfd))
10838 qsort ((Elf64_External_Rel *) s->contents + 1,
10839 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10840 sort_dynamic_relocs_64);
10841 else
10842 qsort ((Elf32_External_Rel *) s->contents + 1,
10843 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10844 sort_dynamic_relocs);
10845 }
10846 }
10847 }
10848
10849 if (htab->splt && htab->splt->size > 0)
10850 {
10851 if (htab->is_vxworks)
10852 {
10853 if (info->shared)
10854 mips_vxworks_finish_shared_plt (output_bfd, info);
10855 else
10856 mips_vxworks_finish_exec_plt (output_bfd, info);
10857 }
10858 else
10859 {
10860 BFD_ASSERT (!info->shared);
10861 mips_finish_exec_plt (output_bfd, info);
10862 }
10863 }
10864 return TRUE;
10865 }
10866
10867
10868 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10869
10870 static void
10871 mips_set_isa_flags (bfd *abfd)
10872 {
10873 flagword val;
10874
10875 switch (bfd_get_mach (abfd))
10876 {
10877 default:
10878 case bfd_mach_mips3000:
10879 val = E_MIPS_ARCH_1;
10880 break;
10881
10882 case bfd_mach_mips3900:
10883 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10884 break;
10885
10886 case bfd_mach_mips6000:
10887 val = E_MIPS_ARCH_2;
10888 break;
10889
10890 case bfd_mach_mips4000:
10891 case bfd_mach_mips4300:
10892 case bfd_mach_mips4400:
10893 case bfd_mach_mips4600:
10894 val = E_MIPS_ARCH_3;
10895 break;
10896
10897 case bfd_mach_mips4010:
10898 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10899 break;
10900
10901 case bfd_mach_mips4100:
10902 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10903 break;
10904
10905 case bfd_mach_mips4111:
10906 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10907 break;
10908
10909 case bfd_mach_mips4120:
10910 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10911 break;
10912
10913 case bfd_mach_mips4650:
10914 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10915 break;
10916
10917 case bfd_mach_mips5400:
10918 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10919 break;
10920
10921 case bfd_mach_mips5500:
10922 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10923 break;
10924
10925 case bfd_mach_mips5900:
10926 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10927 break;
10928
10929 case bfd_mach_mips9000:
10930 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10931 break;
10932
10933 case bfd_mach_mips5000:
10934 case bfd_mach_mips7000:
10935 case bfd_mach_mips8000:
10936 case bfd_mach_mips10000:
10937 case bfd_mach_mips12000:
10938 case bfd_mach_mips14000:
10939 case bfd_mach_mips16000:
10940 val = E_MIPS_ARCH_4;
10941 break;
10942
10943 case bfd_mach_mips5:
10944 val = E_MIPS_ARCH_5;
10945 break;
10946
10947 case bfd_mach_mips_loongson_2e:
10948 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10949 break;
10950
10951 case bfd_mach_mips_loongson_2f:
10952 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10953 break;
10954
10955 case bfd_mach_mips_sb1:
10956 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10957 break;
10958
10959 case bfd_mach_mips_loongson_3a:
10960 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10961 break;
10962
10963 case bfd_mach_mips_octeon:
10964 case bfd_mach_mips_octeonp:
10965 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10966 break;
10967
10968 case bfd_mach_mips_xlr:
10969 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10970 break;
10971
10972 case bfd_mach_mips_octeon2:
10973 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10974 break;
10975
10976 case bfd_mach_mipsisa32:
10977 val = E_MIPS_ARCH_32;
10978 break;
10979
10980 case bfd_mach_mipsisa64:
10981 val = E_MIPS_ARCH_64;
10982 break;
10983
10984 case bfd_mach_mipsisa32r2:
10985 val = E_MIPS_ARCH_32R2;
10986 break;
10987
10988 case bfd_mach_mipsisa64r2:
10989 val = E_MIPS_ARCH_64R2;
10990 break;
10991 }
10992 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10993 elf_elfheader (abfd)->e_flags |= val;
10994
10995 }
10996
10997
10998 /* The final processing done just before writing out a MIPS ELF object
10999 file. This gets the MIPS architecture right based on the machine
11000 number. This is used by both the 32-bit and the 64-bit ABI. */
11001
11002 void
11003 _bfd_mips_elf_final_write_processing (bfd *abfd,
11004 bfd_boolean linker ATTRIBUTE_UNUSED)
11005 {
11006 unsigned int i;
11007 Elf_Internal_Shdr **hdrpp;
11008 const char *name;
11009 asection *sec;
11010
11011 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11012 is nonzero. This is for compatibility with old objects, which used
11013 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11014 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11015 mips_set_isa_flags (abfd);
11016
11017 /* Set the sh_info field for .gptab sections and other appropriate
11018 info for each special section. */
11019 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11020 i < elf_numsections (abfd);
11021 i++, hdrpp++)
11022 {
11023 switch ((*hdrpp)->sh_type)
11024 {
11025 case SHT_MIPS_MSYM:
11026 case SHT_MIPS_LIBLIST:
11027 sec = bfd_get_section_by_name (abfd, ".dynstr");
11028 if (sec != NULL)
11029 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11030 break;
11031
11032 case SHT_MIPS_GPTAB:
11033 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11034 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11035 BFD_ASSERT (name != NULL
11036 && CONST_STRNEQ (name, ".gptab."));
11037 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11038 BFD_ASSERT (sec != NULL);
11039 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11040 break;
11041
11042 case SHT_MIPS_CONTENT:
11043 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11044 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11045 BFD_ASSERT (name != NULL
11046 && CONST_STRNEQ (name, ".MIPS.content"));
11047 sec = bfd_get_section_by_name (abfd,
11048 name + sizeof ".MIPS.content" - 1);
11049 BFD_ASSERT (sec != NULL);
11050 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11051 break;
11052
11053 case SHT_MIPS_SYMBOL_LIB:
11054 sec = bfd_get_section_by_name (abfd, ".dynsym");
11055 if (sec != NULL)
11056 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11057 sec = bfd_get_section_by_name (abfd, ".liblist");
11058 if (sec != NULL)
11059 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11060 break;
11061
11062 case SHT_MIPS_EVENTS:
11063 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11064 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11065 BFD_ASSERT (name != NULL);
11066 if (CONST_STRNEQ (name, ".MIPS.events"))
11067 sec = bfd_get_section_by_name (abfd,
11068 name + sizeof ".MIPS.events" - 1);
11069 else
11070 {
11071 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11072 sec = bfd_get_section_by_name (abfd,
11073 (name
11074 + sizeof ".MIPS.post_rel" - 1));
11075 }
11076 BFD_ASSERT (sec != NULL);
11077 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11078 break;
11079
11080 }
11081 }
11082 }
11083 \f
11084 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11085 segments. */
11086
11087 int
11088 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11089 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11090 {
11091 asection *s;
11092 int ret = 0;
11093
11094 /* See if we need a PT_MIPS_REGINFO segment. */
11095 s = bfd_get_section_by_name (abfd, ".reginfo");
11096 if (s && (s->flags & SEC_LOAD))
11097 ++ret;
11098
11099 /* See if we need a PT_MIPS_OPTIONS segment. */
11100 if (IRIX_COMPAT (abfd) == ict_irix6
11101 && bfd_get_section_by_name (abfd,
11102 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11103 ++ret;
11104
11105 /* See if we need a PT_MIPS_RTPROC segment. */
11106 if (IRIX_COMPAT (abfd) == ict_irix5
11107 && bfd_get_section_by_name (abfd, ".dynamic")
11108 && bfd_get_section_by_name (abfd, ".mdebug"))
11109 ++ret;
11110
11111 /* Allocate a PT_NULL header in dynamic objects. See
11112 _bfd_mips_elf_modify_segment_map for details. */
11113 if (!SGI_COMPAT (abfd)
11114 && bfd_get_section_by_name (abfd, ".dynamic"))
11115 ++ret;
11116
11117 return ret;
11118 }
11119
11120 /* Modify the segment map for an IRIX5 executable. */
11121
11122 bfd_boolean
11123 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11124 struct bfd_link_info *info)
11125 {
11126 asection *s;
11127 struct elf_segment_map *m, **pm;
11128 bfd_size_type amt;
11129
11130 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11131 segment. */
11132 s = bfd_get_section_by_name (abfd, ".reginfo");
11133 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11134 {
11135 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11136 if (m->p_type == PT_MIPS_REGINFO)
11137 break;
11138 if (m == NULL)
11139 {
11140 amt = sizeof *m;
11141 m = bfd_zalloc (abfd, amt);
11142 if (m == NULL)
11143 return FALSE;
11144
11145 m->p_type = PT_MIPS_REGINFO;
11146 m->count = 1;
11147 m->sections[0] = s;
11148
11149 /* We want to put it after the PHDR and INTERP segments. */
11150 pm = &elf_tdata (abfd)->segment_map;
11151 while (*pm != NULL
11152 && ((*pm)->p_type == PT_PHDR
11153 || (*pm)->p_type == PT_INTERP))
11154 pm = &(*pm)->next;
11155
11156 m->next = *pm;
11157 *pm = m;
11158 }
11159 }
11160
11161 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11162 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11163 PT_MIPS_OPTIONS segment immediately following the program header
11164 table. */
11165 if (NEWABI_P (abfd)
11166 /* On non-IRIX6 new abi, we'll have already created a segment
11167 for this section, so don't create another. I'm not sure this
11168 is not also the case for IRIX 6, but I can't test it right
11169 now. */
11170 && IRIX_COMPAT (abfd) == ict_irix6)
11171 {
11172 for (s = abfd->sections; s; s = s->next)
11173 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11174 break;
11175
11176 if (s)
11177 {
11178 struct elf_segment_map *options_segment;
11179
11180 pm = &elf_tdata (abfd)->segment_map;
11181 while (*pm != NULL
11182 && ((*pm)->p_type == PT_PHDR
11183 || (*pm)->p_type == PT_INTERP))
11184 pm = &(*pm)->next;
11185
11186 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11187 {
11188 amt = sizeof (struct elf_segment_map);
11189 options_segment = bfd_zalloc (abfd, amt);
11190 options_segment->next = *pm;
11191 options_segment->p_type = PT_MIPS_OPTIONS;
11192 options_segment->p_flags = PF_R;
11193 options_segment->p_flags_valid = TRUE;
11194 options_segment->count = 1;
11195 options_segment->sections[0] = s;
11196 *pm = options_segment;
11197 }
11198 }
11199 }
11200 else
11201 {
11202 if (IRIX_COMPAT (abfd) == ict_irix5)
11203 {
11204 /* If there are .dynamic and .mdebug sections, we make a room
11205 for the RTPROC header. FIXME: Rewrite without section names. */
11206 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11207 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11208 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11209 {
11210 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11211 if (m->p_type == PT_MIPS_RTPROC)
11212 break;
11213 if (m == NULL)
11214 {
11215 amt = sizeof *m;
11216 m = bfd_zalloc (abfd, amt);
11217 if (m == NULL)
11218 return FALSE;
11219
11220 m->p_type = PT_MIPS_RTPROC;
11221
11222 s = bfd_get_section_by_name (abfd, ".rtproc");
11223 if (s == NULL)
11224 {
11225 m->count = 0;
11226 m->p_flags = 0;
11227 m->p_flags_valid = 1;
11228 }
11229 else
11230 {
11231 m->count = 1;
11232 m->sections[0] = s;
11233 }
11234
11235 /* We want to put it after the DYNAMIC segment. */
11236 pm = &elf_tdata (abfd)->segment_map;
11237 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11238 pm = &(*pm)->next;
11239 if (*pm != NULL)
11240 pm = &(*pm)->next;
11241
11242 m->next = *pm;
11243 *pm = m;
11244 }
11245 }
11246 }
11247 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11248 .dynstr, .dynsym, and .hash sections, and everything in
11249 between. */
11250 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11251 pm = &(*pm)->next)
11252 if ((*pm)->p_type == PT_DYNAMIC)
11253 break;
11254 m = *pm;
11255 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11256 {
11257 /* For a normal mips executable the permissions for the PT_DYNAMIC
11258 segment are read, write and execute. We do that here since
11259 the code in elf.c sets only the read permission. This matters
11260 sometimes for the dynamic linker. */
11261 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11262 {
11263 m->p_flags = PF_R | PF_W | PF_X;
11264 m->p_flags_valid = 1;
11265 }
11266 }
11267 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11268 glibc's dynamic linker has traditionally derived the number of
11269 tags from the p_filesz field, and sometimes allocates stack
11270 arrays of that size. An overly-big PT_DYNAMIC segment can
11271 be actively harmful in such cases. Making PT_DYNAMIC contain
11272 other sections can also make life hard for the prelinker,
11273 which might move one of the other sections to a different
11274 PT_LOAD segment. */
11275 if (SGI_COMPAT (abfd)
11276 && m != NULL
11277 && m->count == 1
11278 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11279 {
11280 static const char *sec_names[] =
11281 {
11282 ".dynamic", ".dynstr", ".dynsym", ".hash"
11283 };
11284 bfd_vma low, high;
11285 unsigned int i, c;
11286 struct elf_segment_map *n;
11287
11288 low = ~(bfd_vma) 0;
11289 high = 0;
11290 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11291 {
11292 s = bfd_get_section_by_name (abfd, sec_names[i]);
11293 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11294 {
11295 bfd_size_type sz;
11296
11297 if (low > s->vma)
11298 low = s->vma;
11299 sz = s->size;
11300 if (high < s->vma + sz)
11301 high = s->vma + sz;
11302 }
11303 }
11304
11305 c = 0;
11306 for (s = abfd->sections; s != NULL; s = s->next)
11307 if ((s->flags & SEC_LOAD) != 0
11308 && s->vma >= low
11309 && s->vma + s->size <= high)
11310 ++c;
11311
11312 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11313 n = bfd_zalloc (abfd, amt);
11314 if (n == NULL)
11315 return FALSE;
11316 *n = *m;
11317 n->count = c;
11318
11319 i = 0;
11320 for (s = abfd->sections; s != NULL; s = s->next)
11321 {
11322 if ((s->flags & SEC_LOAD) != 0
11323 && s->vma >= low
11324 && s->vma + s->size <= high)
11325 {
11326 n->sections[i] = s;
11327 ++i;
11328 }
11329 }
11330
11331 *pm = n;
11332 }
11333 }
11334
11335 /* Allocate a spare program header in dynamic objects so that tools
11336 like the prelinker can add an extra PT_LOAD entry.
11337
11338 If the prelinker needs to make room for a new PT_LOAD entry, its
11339 standard procedure is to move the first (read-only) sections into
11340 the new (writable) segment. However, the MIPS ABI requires
11341 .dynamic to be in a read-only segment, and the section will often
11342 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11343
11344 Although the prelinker could in principle move .dynamic to a
11345 writable segment, it seems better to allocate a spare program
11346 header instead, and avoid the need to move any sections.
11347 There is a long tradition of allocating spare dynamic tags,
11348 so allocating a spare program header seems like a natural
11349 extension.
11350
11351 If INFO is NULL, we may be copying an already prelinked binary
11352 with objcopy or strip, so do not add this header. */
11353 if (info != NULL
11354 && !SGI_COMPAT (abfd)
11355 && bfd_get_section_by_name (abfd, ".dynamic"))
11356 {
11357 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11358 if ((*pm)->p_type == PT_NULL)
11359 break;
11360 if (*pm == NULL)
11361 {
11362 m = bfd_zalloc (abfd, sizeof (*m));
11363 if (m == NULL)
11364 return FALSE;
11365
11366 m->p_type = PT_NULL;
11367 *pm = m;
11368 }
11369 }
11370
11371 return TRUE;
11372 }
11373 \f
11374 /* Return the section that should be marked against GC for a given
11375 relocation. */
11376
11377 asection *
11378 _bfd_mips_elf_gc_mark_hook (asection *sec,
11379 struct bfd_link_info *info,
11380 Elf_Internal_Rela *rel,
11381 struct elf_link_hash_entry *h,
11382 Elf_Internal_Sym *sym)
11383 {
11384 /* ??? Do mips16 stub sections need to be handled special? */
11385
11386 if (h != NULL)
11387 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11388 {
11389 case R_MIPS_GNU_VTINHERIT:
11390 case R_MIPS_GNU_VTENTRY:
11391 return NULL;
11392 }
11393
11394 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11395 }
11396
11397 /* Update the got entry reference counts for the section being removed. */
11398
11399 bfd_boolean
11400 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11401 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11402 asection *sec ATTRIBUTE_UNUSED,
11403 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11404 {
11405 #if 0
11406 Elf_Internal_Shdr *symtab_hdr;
11407 struct elf_link_hash_entry **sym_hashes;
11408 bfd_signed_vma *local_got_refcounts;
11409 const Elf_Internal_Rela *rel, *relend;
11410 unsigned long r_symndx;
11411 struct elf_link_hash_entry *h;
11412
11413 if (info->relocatable)
11414 return TRUE;
11415
11416 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11417 sym_hashes = elf_sym_hashes (abfd);
11418 local_got_refcounts = elf_local_got_refcounts (abfd);
11419
11420 relend = relocs + sec->reloc_count;
11421 for (rel = relocs; rel < relend; rel++)
11422 switch (ELF_R_TYPE (abfd, rel->r_info))
11423 {
11424 case R_MIPS16_GOT16:
11425 case R_MIPS16_CALL16:
11426 case R_MIPS_GOT16:
11427 case R_MIPS_CALL16:
11428 case R_MIPS_CALL_HI16:
11429 case R_MIPS_CALL_LO16:
11430 case R_MIPS_GOT_HI16:
11431 case R_MIPS_GOT_LO16:
11432 case R_MIPS_GOT_DISP:
11433 case R_MIPS_GOT_PAGE:
11434 case R_MIPS_GOT_OFST:
11435 case R_MICROMIPS_GOT16:
11436 case R_MICROMIPS_CALL16:
11437 case R_MICROMIPS_CALL_HI16:
11438 case R_MICROMIPS_CALL_LO16:
11439 case R_MICROMIPS_GOT_HI16:
11440 case R_MICROMIPS_GOT_LO16:
11441 case R_MICROMIPS_GOT_DISP:
11442 case R_MICROMIPS_GOT_PAGE:
11443 case R_MICROMIPS_GOT_OFST:
11444 /* ??? It would seem that the existing MIPS code does no sort
11445 of reference counting or whatnot on its GOT and PLT entries,
11446 so it is not possible to garbage collect them at this time. */
11447 break;
11448
11449 default:
11450 break;
11451 }
11452 #endif
11453
11454 return TRUE;
11455 }
11456 \f
11457 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11458 hiding the old indirect symbol. Process additional relocation
11459 information. Also called for weakdefs, in which case we just let
11460 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11461
11462 void
11463 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11464 struct elf_link_hash_entry *dir,
11465 struct elf_link_hash_entry *ind)
11466 {
11467 struct mips_elf_link_hash_entry *dirmips, *indmips;
11468
11469 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11470
11471 dirmips = (struct mips_elf_link_hash_entry *) dir;
11472 indmips = (struct mips_elf_link_hash_entry *) ind;
11473 /* Any absolute non-dynamic relocations against an indirect or weak
11474 definition will be against the target symbol. */
11475 if (indmips->has_static_relocs)
11476 dirmips->has_static_relocs = TRUE;
11477
11478 if (ind->root.type != bfd_link_hash_indirect)
11479 return;
11480
11481 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11482 if (indmips->readonly_reloc)
11483 dirmips->readonly_reloc = TRUE;
11484 if (indmips->no_fn_stub)
11485 dirmips->no_fn_stub = TRUE;
11486 if (indmips->fn_stub)
11487 {
11488 dirmips->fn_stub = indmips->fn_stub;
11489 indmips->fn_stub = NULL;
11490 }
11491 if (indmips->need_fn_stub)
11492 {
11493 dirmips->need_fn_stub = TRUE;
11494 indmips->need_fn_stub = FALSE;
11495 }
11496 if (indmips->call_stub)
11497 {
11498 dirmips->call_stub = indmips->call_stub;
11499 indmips->call_stub = NULL;
11500 }
11501 if (indmips->call_fp_stub)
11502 {
11503 dirmips->call_fp_stub = indmips->call_fp_stub;
11504 indmips->call_fp_stub = NULL;
11505 }
11506 if (indmips->global_got_area < dirmips->global_got_area)
11507 dirmips->global_got_area = indmips->global_got_area;
11508 if (indmips->global_got_area < GGA_NONE)
11509 indmips->global_got_area = GGA_NONE;
11510 if (indmips->has_nonpic_branches)
11511 dirmips->has_nonpic_branches = TRUE;
11512 }
11513 \f
11514 #define PDR_SIZE 32
11515
11516 bfd_boolean
11517 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11518 struct bfd_link_info *info)
11519 {
11520 asection *o;
11521 bfd_boolean ret = FALSE;
11522 unsigned char *tdata;
11523 size_t i, skip;
11524
11525 o = bfd_get_section_by_name (abfd, ".pdr");
11526 if (! o)
11527 return FALSE;
11528 if (o->size == 0)
11529 return FALSE;
11530 if (o->size % PDR_SIZE != 0)
11531 return FALSE;
11532 if (o->output_section != NULL
11533 && bfd_is_abs_section (o->output_section))
11534 return FALSE;
11535
11536 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11537 if (! tdata)
11538 return FALSE;
11539
11540 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11541 info->keep_memory);
11542 if (!cookie->rels)
11543 {
11544 free (tdata);
11545 return FALSE;
11546 }
11547
11548 cookie->rel = cookie->rels;
11549 cookie->relend = cookie->rels + o->reloc_count;
11550
11551 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11552 {
11553 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11554 {
11555 tdata[i] = 1;
11556 skip ++;
11557 }
11558 }
11559
11560 if (skip != 0)
11561 {
11562 mips_elf_section_data (o)->u.tdata = tdata;
11563 o->size -= skip * PDR_SIZE;
11564 ret = TRUE;
11565 }
11566 else
11567 free (tdata);
11568
11569 if (! info->keep_memory)
11570 free (cookie->rels);
11571
11572 return ret;
11573 }
11574
11575 bfd_boolean
11576 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11577 {
11578 if (strcmp (sec->name, ".pdr") == 0)
11579 return TRUE;
11580 return FALSE;
11581 }
11582
11583 bfd_boolean
11584 _bfd_mips_elf_write_section (bfd *output_bfd,
11585 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11586 asection *sec, bfd_byte *contents)
11587 {
11588 bfd_byte *to, *from, *end;
11589 int i;
11590
11591 if (strcmp (sec->name, ".pdr") != 0)
11592 return FALSE;
11593
11594 if (mips_elf_section_data (sec)->u.tdata == NULL)
11595 return FALSE;
11596
11597 to = contents;
11598 end = contents + sec->size;
11599 for (from = contents, i = 0;
11600 from < end;
11601 from += PDR_SIZE, i++)
11602 {
11603 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11604 continue;
11605 if (to != from)
11606 memcpy (to, from, PDR_SIZE);
11607 to += PDR_SIZE;
11608 }
11609 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11610 sec->output_offset, sec->size);
11611 return TRUE;
11612 }
11613 \f
11614 /* microMIPS code retains local labels for linker relaxation. Omit them
11615 from output by default for clarity. */
11616
11617 bfd_boolean
11618 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11619 {
11620 return _bfd_elf_is_local_label_name (abfd, sym->name);
11621 }
11622
11623 /* MIPS ELF uses a special find_nearest_line routine in order the
11624 handle the ECOFF debugging information. */
11625
11626 struct mips_elf_find_line
11627 {
11628 struct ecoff_debug_info d;
11629 struct ecoff_find_line i;
11630 };
11631
11632 bfd_boolean
11633 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11634 asymbol **symbols, bfd_vma offset,
11635 const char **filename_ptr,
11636 const char **functionname_ptr,
11637 unsigned int *line_ptr)
11638 {
11639 asection *msec;
11640
11641 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11642 filename_ptr, functionname_ptr,
11643 line_ptr))
11644 return TRUE;
11645
11646 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11647 section, symbols, offset,
11648 filename_ptr, functionname_ptr,
11649 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11650 &elf_tdata (abfd)->dwarf2_find_line_info))
11651 return TRUE;
11652
11653 msec = bfd_get_section_by_name (abfd, ".mdebug");
11654 if (msec != NULL)
11655 {
11656 flagword origflags;
11657 struct mips_elf_find_line *fi;
11658 const struct ecoff_debug_swap * const swap =
11659 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11660
11661 /* If we are called during a link, mips_elf_final_link may have
11662 cleared the SEC_HAS_CONTENTS field. We force it back on here
11663 if appropriate (which it normally will be). */
11664 origflags = msec->flags;
11665 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11666 msec->flags |= SEC_HAS_CONTENTS;
11667
11668 fi = mips_elf_tdata (abfd)->find_line_info;
11669 if (fi == NULL)
11670 {
11671 bfd_size_type external_fdr_size;
11672 char *fraw_src;
11673 char *fraw_end;
11674 struct fdr *fdr_ptr;
11675 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11676
11677 fi = bfd_zalloc (abfd, amt);
11678 if (fi == NULL)
11679 {
11680 msec->flags = origflags;
11681 return FALSE;
11682 }
11683
11684 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11685 {
11686 msec->flags = origflags;
11687 return FALSE;
11688 }
11689
11690 /* Swap in the FDR information. */
11691 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11692 fi->d.fdr = bfd_alloc (abfd, amt);
11693 if (fi->d.fdr == NULL)
11694 {
11695 msec->flags = origflags;
11696 return FALSE;
11697 }
11698 external_fdr_size = swap->external_fdr_size;
11699 fdr_ptr = fi->d.fdr;
11700 fraw_src = (char *) fi->d.external_fdr;
11701 fraw_end = (fraw_src
11702 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11703 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11704 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11705
11706 mips_elf_tdata (abfd)->find_line_info = fi;
11707
11708 /* Note that we don't bother to ever free this information.
11709 find_nearest_line is either called all the time, as in
11710 objdump -l, so the information should be saved, or it is
11711 rarely called, as in ld error messages, so the memory
11712 wasted is unimportant. Still, it would probably be a
11713 good idea for free_cached_info to throw it away. */
11714 }
11715
11716 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11717 &fi->i, filename_ptr, functionname_ptr,
11718 line_ptr))
11719 {
11720 msec->flags = origflags;
11721 return TRUE;
11722 }
11723
11724 msec->flags = origflags;
11725 }
11726
11727 /* Fall back on the generic ELF find_nearest_line routine. */
11728
11729 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11730 filename_ptr, functionname_ptr,
11731 line_ptr);
11732 }
11733
11734 bfd_boolean
11735 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11736 const char **filename_ptr,
11737 const char **functionname_ptr,
11738 unsigned int *line_ptr)
11739 {
11740 bfd_boolean found;
11741 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11742 functionname_ptr, line_ptr,
11743 & elf_tdata (abfd)->dwarf2_find_line_info);
11744 return found;
11745 }
11746
11747 \f
11748 /* When are writing out the .options or .MIPS.options section,
11749 remember the bytes we are writing out, so that we can install the
11750 GP value in the section_processing routine. */
11751
11752 bfd_boolean
11753 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11754 const void *location,
11755 file_ptr offset, bfd_size_type count)
11756 {
11757 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11758 {
11759 bfd_byte *c;
11760
11761 if (elf_section_data (section) == NULL)
11762 {
11763 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11764 section->used_by_bfd = bfd_zalloc (abfd, amt);
11765 if (elf_section_data (section) == NULL)
11766 return FALSE;
11767 }
11768 c = mips_elf_section_data (section)->u.tdata;
11769 if (c == NULL)
11770 {
11771 c = bfd_zalloc (abfd, section->size);
11772 if (c == NULL)
11773 return FALSE;
11774 mips_elf_section_data (section)->u.tdata = c;
11775 }
11776
11777 memcpy (c + offset, location, count);
11778 }
11779
11780 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11781 count);
11782 }
11783
11784 /* This is almost identical to bfd_generic_get_... except that some
11785 MIPS relocations need to be handled specially. Sigh. */
11786
11787 bfd_byte *
11788 _bfd_elf_mips_get_relocated_section_contents
11789 (bfd *abfd,
11790 struct bfd_link_info *link_info,
11791 struct bfd_link_order *link_order,
11792 bfd_byte *data,
11793 bfd_boolean relocatable,
11794 asymbol **symbols)
11795 {
11796 /* Get enough memory to hold the stuff */
11797 bfd *input_bfd = link_order->u.indirect.section->owner;
11798 asection *input_section = link_order->u.indirect.section;
11799 bfd_size_type sz;
11800
11801 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11802 arelent **reloc_vector = NULL;
11803 long reloc_count;
11804
11805 if (reloc_size < 0)
11806 goto error_return;
11807
11808 reloc_vector = bfd_malloc (reloc_size);
11809 if (reloc_vector == NULL && reloc_size != 0)
11810 goto error_return;
11811
11812 /* read in the section */
11813 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11814 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11815 goto error_return;
11816
11817 reloc_count = bfd_canonicalize_reloc (input_bfd,
11818 input_section,
11819 reloc_vector,
11820 symbols);
11821 if (reloc_count < 0)
11822 goto error_return;
11823
11824 if (reloc_count > 0)
11825 {
11826 arelent **parent;
11827 /* for mips */
11828 int gp_found;
11829 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11830
11831 {
11832 struct bfd_hash_entry *h;
11833 struct bfd_link_hash_entry *lh;
11834 /* Skip all this stuff if we aren't mixing formats. */
11835 if (abfd && input_bfd
11836 && abfd->xvec == input_bfd->xvec)
11837 lh = 0;
11838 else
11839 {
11840 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11841 lh = (struct bfd_link_hash_entry *) h;
11842 }
11843 lookup:
11844 if (lh)
11845 {
11846 switch (lh->type)
11847 {
11848 case bfd_link_hash_undefined:
11849 case bfd_link_hash_undefweak:
11850 case bfd_link_hash_common:
11851 gp_found = 0;
11852 break;
11853 case bfd_link_hash_defined:
11854 case bfd_link_hash_defweak:
11855 gp_found = 1;
11856 gp = lh->u.def.value;
11857 break;
11858 case bfd_link_hash_indirect:
11859 case bfd_link_hash_warning:
11860 lh = lh->u.i.link;
11861 /* @@FIXME ignoring warning for now */
11862 goto lookup;
11863 case bfd_link_hash_new:
11864 default:
11865 abort ();
11866 }
11867 }
11868 else
11869 gp_found = 0;
11870 }
11871 /* end mips */
11872 for (parent = reloc_vector; *parent != NULL; parent++)
11873 {
11874 char *error_message = NULL;
11875 bfd_reloc_status_type r;
11876
11877 /* Specific to MIPS: Deal with relocation types that require
11878 knowing the gp of the output bfd. */
11879 asymbol *sym = *(*parent)->sym_ptr_ptr;
11880
11881 /* If we've managed to find the gp and have a special
11882 function for the relocation then go ahead, else default
11883 to the generic handling. */
11884 if (gp_found
11885 && (*parent)->howto->special_function
11886 == _bfd_mips_elf32_gprel16_reloc)
11887 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11888 input_section, relocatable,
11889 data, gp);
11890 else
11891 r = bfd_perform_relocation (input_bfd, *parent, data,
11892 input_section,
11893 relocatable ? abfd : NULL,
11894 &error_message);
11895
11896 if (relocatable)
11897 {
11898 asection *os = input_section->output_section;
11899
11900 /* A partial link, so keep the relocs */
11901 os->orelocation[os->reloc_count] = *parent;
11902 os->reloc_count++;
11903 }
11904
11905 if (r != bfd_reloc_ok)
11906 {
11907 switch (r)
11908 {
11909 case bfd_reloc_undefined:
11910 if (!((*link_info->callbacks->undefined_symbol)
11911 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11912 input_bfd, input_section, (*parent)->address, TRUE)))
11913 goto error_return;
11914 break;
11915 case bfd_reloc_dangerous:
11916 BFD_ASSERT (error_message != NULL);
11917 if (!((*link_info->callbacks->reloc_dangerous)
11918 (link_info, error_message, input_bfd, input_section,
11919 (*parent)->address)))
11920 goto error_return;
11921 break;
11922 case bfd_reloc_overflow:
11923 if (!((*link_info->callbacks->reloc_overflow)
11924 (link_info, NULL,
11925 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11926 (*parent)->howto->name, (*parent)->addend,
11927 input_bfd, input_section, (*parent)->address)))
11928 goto error_return;
11929 break;
11930 case bfd_reloc_outofrange:
11931 default:
11932 abort ();
11933 break;
11934 }
11935
11936 }
11937 }
11938 }
11939 if (reloc_vector != NULL)
11940 free (reloc_vector);
11941 return data;
11942
11943 error_return:
11944 if (reloc_vector != NULL)
11945 free (reloc_vector);
11946 return NULL;
11947 }
11948 \f
11949 static bfd_boolean
11950 mips_elf_relax_delete_bytes (bfd *abfd,
11951 asection *sec, bfd_vma addr, int count)
11952 {
11953 Elf_Internal_Shdr *symtab_hdr;
11954 unsigned int sec_shndx;
11955 bfd_byte *contents;
11956 Elf_Internal_Rela *irel, *irelend;
11957 Elf_Internal_Sym *isym;
11958 Elf_Internal_Sym *isymend;
11959 struct elf_link_hash_entry **sym_hashes;
11960 struct elf_link_hash_entry **end_hashes;
11961 struct elf_link_hash_entry **start_hashes;
11962 unsigned int symcount;
11963
11964 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11965 contents = elf_section_data (sec)->this_hdr.contents;
11966
11967 irel = elf_section_data (sec)->relocs;
11968 irelend = irel + sec->reloc_count;
11969
11970 /* Actually delete the bytes. */
11971 memmove (contents + addr, contents + addr + count,
11972 (size_t) (sec->size - addr - count));
11973 sec->size -= count;
11974
11975 /* Adjust all the relocs. */
11976 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11977 {
11978 /* Get the new reloc address. */
11979 if (irel->r_offset > addr)
11980 irel->r_offset -= count;
11981 }
11982
11983 BFD_ASSERT (addr % 2 == 0);
11984 BFD_ASSERT (count % 2 == 0);
11985
11986 /* Adjust the local symbols defined in this section. */
11987 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11988 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11989 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11990 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11991 isym->st_value -= count;
11992
11993 /* Now adjust the global symbols defined in this section. */
11994 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11995 - symtab_hdr->sh_info);
11996 sym_hashes = start_hashes = elf_sym_hashes (abfd);
11997 end_hashes = sym_hashes + symcount;
11998
11999 for (; sym_hashes < end_hashes; sym_hashes++)
12000 {
12001 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12002
12003 if ((sym_hash->root.type == bfd_link_hash_defined
12004 || sym_hash->root.type == bfd_link_hash_defweak)
12005 && sym_hash->root.u.def.section == sec)
12006 {
12007 bfd_vma value = sym_hash->root.u.def.value;
12008
12009 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12010 value &= MINUS_TWO;
12011 if (value > addr)
12012 sym_hash->root.u.def.value -= count;
12013 }
12014 }
12015
12016 return TRUE;
12017 }
12018
12019
12020 /* Opcodes needed for microMIPS relaxation as found in
12021 opcodes/micromips-opc.c. */
12022
12023 struct opcode_descriptor {
12024 unsigned long match;
12025 unsigned long mask;
12026 };
12027
12028 /* The $ra register aka $31. */
12029
12030 #define RA 31
12031
12032 /* 32-bit instruction format register fields. */
12033
12034 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12035 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12036
12037 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12038
12039 #define OP16_VALID_REG(r) \
12040 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12041
12042
12043 /* 32-bit and 16-bit branches. */
12044
12045 static const struct opcode_descriptor b_insns_32[] = {
12046 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12047 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12048 { 0, 0 } /* End marker for find_match(). */
12049 };
12050
12051 static const struct opcode_descriptor bc_insn_32 =
12052 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12053
12054 static const struct opcode_descriptor bz_insn_32 =
12055 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12056
12057 static const struct opcode_descriptor bzal_insn_32 =
12058 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12059
12060 static const struct opcode_descriptor beq_insn_32 =
12061 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12062
12063 static const struct opcode_descriptor b_insn_16 =
12064 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12065
12066 static const struct opcode_descriptor bz_insn_16 =
12067 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12068
12069
12070 /* 32-bit and 16-bit branch EQ and NE zero. */
12071
12072 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12073 eq and second the ne. This convention is used when replacing a
12074 32-bit BEQ/BNE with the 16-bit version. */
12075
12076 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12077
12078 static const struct opcode_descriptor bz_rs_insns_32[] = {
12079 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12080 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12081 { 0, 0 } /* End marker for find_match(). */
12082 };
12083
12084 static const struct opcode_descriptor bz_rt_insns_32[] = {
12085 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12086 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12087 { 0, 0 } /* End marker for find_match(). */
12088 };
12089
12090 static const struct opcode_descriptor bzc_insns_32[] = {
12091 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12092 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12093 { 0, 0 } /* End marker for find_match(). */
12094 };
12095
12096 static const struct opcode_descriptor bz_insns_16[] = {
12097 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12098 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12099 { 0, 0 } /* End marker for find_match(). */
12100 };
12101
12102 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12103
12104 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12105 #define BZ16_REG_FIELD(r) \
12106 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12107
12108
12109 /* 32-bit instructions with a delay slot. */
12110
12111 static const struct opcode_descriptor jal_insn_32_bd16 =
12112 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12113
12114 static const struct opcode_descriptor jal_insn_32_bd32 =
12115 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12116
12117 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12118 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12119
12120 static const struct opcode_descriptor j_insn_32 =
12121 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12122
12123 static const struct opcode_descriptor jalr_insn_32 =
12124 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12125
12126 /* This table can be compacted, because no opcode replacement is made. */
12127
12128 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12129 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12130
12131 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12132 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12133
12134 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12135 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12136 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12137 { 0, 0 } /* End marker for find_match(). */
12138 };
12139
12140 /* This table can be compacted, because no opcode replacement is made. */
12141
12142 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12143 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12144
12145 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12146 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12147 { 0, 0 } /* End marker for find_match(). */
12148 };
12149
12150
12151 /* 16-bit instructions with a delay slot. */
12152
12153 static const struct opcode_descriptor jalr_insn_16_bd16 =
12154 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12155
12156 static const struct opcode_descriptor jalr_insn_16_bd32 =
12157 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12158
12159 static const struct opcode_descriptor jr_insn_16 =
12160 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12161
12162 #define JR16_REG(opcode) ((opcode) & 0x1f)
12163
12164 /* This table can be compacted, because no opcode replacement is made. */
12165
12166 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12167 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12168
12169 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12170 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12171 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12172 { 0, 0 } /* End marker for find_match(). */
12173 };
12174
12175
12176 /* LUI instruction. */
12177
12178 static const struct opcode_descriptor lui_insn =
12179 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12180
12181
12182 /* ADDIU instruction. */
12183
12184 static const struct opcode_descriptor addiu_insn =
12185 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12186
12187 static const struct opcode_descriptor addiupc_insn =
12188 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12189
12190 #define ADDIUPC_REG_FIELD(r) \
12191 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12192
12193
12194 /* Relaxable instructions in a JAL delay slot: MOVE. */
12195
12196 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12197 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12198 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12199 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12200
12201 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12202 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12203
12204 static const struct opcode_descriptor move_insns_32[] = {
12205 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12206 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12207 { 0, 0 } /* End marker for find_match(). */
12208 };
12209
12210 static const struct opcode_descriptor move_insn_16 =
12211 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12212
12213
12214 /* NOP instructions. */
12215
12216 static const struct opcode_descriptor nop_insn_32 =
12217 { /* "nop", "", */ 0x00000000, 0xffffffff };
12218
12219 static const struct opcode_descriptor nop_insn_16 =
12220 { /* "nop", "", */ 0x0c00, 0xffff };
12221
12222
12223 /* Instruction match support. */
12224
12225 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12226
12227 static int
12228 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12229 {
12230 unsigned long indx;
12231
12232 for (indx = 0; insn[indx].mask != 0; indx++)
12233 if (MATCH (opcode, insn[indx]))
12234 return indx;
12235
12236 return -1;
12237 }
12238
12239
12240 /* Branch and delay slot decoding support. */
12241
12242 /* If PTR points to what *might* be a 16-bit branch or jump, then
12243 return the minimum length of its delay slot, otherwise return 0.
12244 Non-zero results are not definitive as we might be checking against
12245 the second half of another instruction. */
12246
12247 static int
12248 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12249 {
12250 unsigned long opcode;
12251 int bdsize;
12252
12253 opcode = bfd_get_16 (abfd, ptr);
12254 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12255 /* 16-bit branch/jump with a 32-bit delay slot. */
12256 bdsize = 4;
12257 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12258 || find_match (opcode, ds_insns_16_bd16) >= 0)
12259 /* 16-bit branch/jump with a 16-bit delay slot. */
12260 bdsize = 2;
12261 else
12262 /* No delay slot. */
12263 bdsize = 0;
12264
12265 return bdsize;
12266 }
12267
12268 /* If PTR points to what *might* be a 32-bit branch or jump, then
12269 return the minimum length of its delay slot, otherwise return 0.
12270 Non-zero results are not definitive as we might be checking against
12271 the second half of another instruction. */
12272
12273 static int
12274 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12275 {
12276 unsigned long opcode;
12277 int bdsize;
12278
12279 opcode = bfd_get_micromips_32 (abfd, ptr);
12280 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12281 /* 32-bit branch/jump with a 32-bit delay slot. */
12282 bdsize = 4;
12283 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12284 /* 32-bit branch/jump with a 16-bit delay slot. */
12285 bdsize = 2;
12286 else
12287 /* No delay slot. */
12288 bdsize = 0;
12289
12290 return bdsize;
12291 }
12292
12293 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12294 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12295
12296 static bfd_boolean
12297 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12298 {
12299 unsigned long opcode;
12300
12301 opcode = bfd_get_16 (abfd, ptr);
12302 if (MATCH (opcode, b_insn_16)
12303 /* B16 */
12304 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12305 /* JR16 */
12306 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12307 /* BEQZ16, BNEZ16 */
12308 || (MATCH (opcode, jalr_insn_16_bd32)
12309 /* JALR16 */
12310 && reg != JR16_REG (opcode) && reg != RA))
12311 return TRUE;
12312
12313 return FALSE;
12314 }
12315
12316 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12317 then return TRUE, otherwise FALSE. */
12318
12319 static bfd_boolean
12320 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12321 {
12322 unsigned long opcode;
12323
12324 opcode = bfd_get_micromips_32 (abfd, ptr);
12325 if (MATCH (opcode, j_insn_32)
12326 /* J */
12327 || MATCH (opcode, bc_insn_32)
12328 /* BC1F, BC1T, BC2F, BC2T */
12329 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12330 /* JAL, JALX */
12331 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12332 /* BGEZ, BGTZ, BLEZ, BLTZ */
12333 || (MATCH (opcode, bzal_insn_32)
12334 /* BGEZAL, BLTZAL */
12335 && reg != OP32_SREG (opcode) && reg != RA)
12336 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12337 /* JALR, JALR.HB, BEQ, BNE */
12338 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12339 return TRUE;
12340
12341 return FALSE;
12342 }
12343
12344 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12345 IRELEND) at OFFSET indicate that there must be a compact branch there,
12346 then return TRUE, otherwise FALSE. */
12347
12348 static bfd_boolean
12349 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12350 const Elf_Internal_Rela *internal_relocs,
12351 const Elf_Internal_Rela *irelend)
12352 {
12353 const Elf_Internal_Rela *irel;
12354 unsigned long opcode;
12355
12356 opcode = bfd_get_micromips_32 (abfd, ptr);
12357 if (find_match (opcode, bzc_insns_32) < 0)
12358 return FALSE;
12359
12360 for (irel = internal_relocs; irel < irelend; irel++)
12361 if (irel->r_offset == offset
12362 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12363 return TRUE;
12364
12365 return FALSE;
12366 }
12367
12368 /* Bitsize checking. */
12369 #define IS_BITSIZE(val, N) \
12370 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12371 - (1ULL << ((N) - 1))) == (val))
12372
12373 \f
12374 bfd_boolean
12375 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12376 struct bfd_link_info *link_info,
12377 bfd_boolean *again)
12378 {
12379 Elf_Internal_Shdr *symtab_hdr;
12380 Elf_Internal_Rela *internal_relocs;
12381 Elf_Internal_Rela *irel, *irelend;
12382 bfd_byte *contents = NULL;
12383 Elf_Internal_Sym *isymbuf = NULL;
12384
12385 /* Assume nothing changes. */
12386 *again = FALSE;
12387
12388 /* We don't have to do anything for a relocatable link, if
12389 this section does not have relocs, or if this is not a
12390 code section. */
12391
12392 if (link_info->relocatable
12393 || (sec->flags & SEC_RELOC) == 0
12394 || sec->reloc_count == 0
12395 || (sec->flags & SEC_CODE) == 0)
12396 return TRUE;
12397
12398 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12399
12400 /* Get a copy of the native relocations. */
12401 internal_relocs = (_bfd_elf_link_read_relocs
12402 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12403 link_info->keep_memory));
12404 if (internal_relocs == NULL)
12405 goto error_return;
12406
12407 /* Walk through them looking for relaxing opportunities. */
12408 irelend = internal_relocs + sec->reloc_count;
12409 for (irel = internal_relocs; irel < irelend; irel++)
12410 {
12411 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12412 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12413 bfd_boolean target_is_micromips_code_p;
12414 unsigned long opcode;
12415 bfd_vma symval;
12416 bfd_vma pcrval;
12417 bfd_byte *ptr;
12418 int fndopc;
12419
12420 /* The number of bytes to delete for relaxation and from where
12421 to delete these bytes starting at irel->r_offset. */
12422 int delcnt = 0;
12423 int deloff = 0;
12424
12425 /* If this isn't something that can be relaxed, then ignore
12426 this reloc. */
12427 if (r_type != R_MICROMIPS_HI16
12428 && r_type != R_MICROMIPS_PC16_S1
12429 && r_type != R_MICROMIPS_26_S1)
12430 continue;
12431
12432 /* Get the section contents if we haven't done so already. */
12433 if (contents == NULL)
12434 {
12435 /* Get cached copy if it exists. */
12436 if (elf_section_data (sec)->this_hdr.contents != NULL)
12437 contents = elf_section_data (sec)->this_hdr.contents;
12438 /* Go get them off disk. */
12439 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12440 goto error_return;
12441 }
12442 ptr = contents + irel->r_offset;
12443
12444 /* Read this BFD's local symbols if we haven't done so already. */
12445 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12446 {
12447 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12448 if (isymbuf == NULL)
12449 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12450 symtab_hdr->sh_info, 0,
12451 NULL, NULL, NULL);
12452 if (isymbuf == NULL)
12453 goto error_return;
12454 }
12455
12456 /* Get the value of the symbol referred to by the reloc. */
12457 if (r_symndx < symtab_hdr->sh_info)
12458 {
12459 /* A local symbol. */
12460 Elf_Internal_Sym *isym;
12461 asection *sym_sec;
12462
12463 isym = isymbuf + r_symndx;
12464 if (isym->st_shndx == SHN_UNDEF)
12465 sym_sec = bfd_und_section_ptr;
12466 else if (isym->st_shndx == SHN_ABS)
12467 sym_sec = bfd_abs_section_ptr;
12468 else if (isym->st_shndx == SHN_COMMON)
12469 sym_sec = bfd_com_section_ptr;
12470 else
12471 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12472 symval = (isym->st_value
12473 + sym_sec->output_section->vma
12474 + sym_sec->output_offset);
12475 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12476 }
12477 else
12478 {
12479 unsigned long indx;
12480 struct elf_link_hash_entry *h;
12481
12482 /* An external symbol. */
12483 indx = r_symndx - symtab_hdr->sh_info;
12484 h = elf_sym_hashes (abfd)[indx];
12485 BFD_ASSERT (h != NULL);
12486
12487 if (h->root.type != bfd_link_hash_defined
12488 && h->root.type != bfd_link_hash_defweak)
12489 /* This appears to be a reference to an undefined
12490 symbol. Just ignore it -- it will be caught by the
12491 regular reloc processing. */
12492 continue;
12493
12494 symval = (h->root.u.def.value
12495 + h->root.u.def.section->output_section->vma
12496 + h->root.u.def.section->output_offset);
12497 target_is_micromips_code_p = (!h->needs_plt
12498 && ELF_ST_IS_MICROMIPS (h->other));
12499 }
12500
12501
12502 /* For simplicity of coding, we are going to modify the
12503 section contents, the section relocs, and the BFD symbol
12504 table. We must tell the rest of the code not to free up this
12505 information. It would be possible to instead create a table
12506 of changes which have to be made, as is done in coff-mips.c;
12507 that would be more work, but would require less memory when
12508 the linker is run. */
12509
12510 /* Only 32-bit instructions relaxed. */
12511 if (irel->r_offset + 4 > sec->size)
12512 continue;
12513
12514 opcode = bfd_get_micromips_32 (abfd, ptr);
12515
12516 /* This is the pc-relative distance from the instruction the
12517 relocation is applied to, to the symbol referred. */
12518 pcrval = (symval
12519 - (sec->output_section->vma + sec->output_offset)
12520 - irel->r_offset);
12521
12522 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12523 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12524 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12525
12526 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12527
12528 where pcrval has first to be adjusted to apply against the LO16
12529 location (we make the adjustment later on, when we have figured
12530 out the offset). */
12531 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12532 {
12533 bfd_boolean bzc = FALSE;
12534 unsigned long nextopc;
12535 unsigned long reg;
12536 bfd_vma offset;
12537
12538 /* Give up if the previous reloc was a HI16 against this symbol
12539 too. */
12540 if (irel > internal_relocs
12541 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12542 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12543 continue;
12544
12545 /* Or if the next reloc is not a LO16 against this symbol. */
12546 if (irel + 1 >= irelend
12547 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12548 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12549 continue;
12550
12551 /* Or if the second next reloc is a LO16 against this symbol too. */
12552 if (irel + 2 >= irelend
12553 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12554 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12555 continue;
12556
12557 /* See if the LUI instruction *might* be in a branch delay slot.
12558 We check whether what looks like a 16-bit branch or jump is
12559 actually an immediate argument to a compact branch, and let
12560 it through if so. */
12561 if (irel->r_offset >= 2
12562 && check_br16_dslot (abfd, ptr - 2)
12563 && !(irel->r_offset >= 4
12564 && (bzc = check_relocated_bzc (abfd,
12565 ptr - 4, irel->r_offset - 4,
12566 internal_relocs, irelend))))
12567 continue;
12568 if (irel->r_offset >= 4
12569 && !bzc
12570 && check_br32_dslot (abfd, ptr - 4))
12571 continue;
12572
12573 reg = OP32_SREG (opcode);
12574
12575 /* We only relax adjacent instructions or ones separated with
12576 a branch or jump that has a delay slot. The branch or jump
12577 must not fiddle with the register used to hold the address.
12578 Subtract 4 for the LUI itself. */
12579 offset = irel[1].r_offset - irel[0].r_offset;
12580 switch (offset - 4)
12581 {
12582 case 0:
12583 break;
12584 case 2:
12585 if (check_br16 (abfd, ptr + 4, reg))
12586 break;
12587 continue;
12588 case 4:
12589 if (check_br32 (abfd, ptr + 4, reg))
12590 break;
12591 continue;
12592 default:
12593 continue;
12594 }
12595
12596 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12597
12598 /* Give up unless the same register is used with both
12599 relocations. */
12600 if (OP32_SREG (nextopc) != reg)
12601 continue;
12602
12603 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12604 and rounding up to take masking of the two LSBs into account. */
12605 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12606
12607 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12608 if (IS_BITSIZE (symval, 16))
12609 {
12610 /* Fix the relocation's type. */
12611 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12612
12613 /* Instructions using R_MICROMIPS_LO16 have the base or
12614 source register in bits 20:16. This register becomes $0
12615 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12616 nextopc &= ~0x001f0000;
12617 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12618 contents + irel[1].r_offset);
12619 }
12620
12621 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12622 We add 4 to take LUI deletion into account while checking
12623 the PC-relative distance. */
12624 else if (symval % 4 == 0
12625 && IS_BITSIZE (pcrval + 4, 25)
12626 && MATCH (nextopc, addiu_insn)
12627 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12628 && OP16_VALID_REG (OP32_TREG (nextopc)))
12629 {
12630 /* Fix the relocation's type. */
12631 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12632
12633 /* Replace ADDIU with the ADDIUPC version. */
12634 nextopc = (addiupc_insn.match
12635 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12636
12637 bfd_put_micromips_32 (abfd, nextopc,
12638 contents + irel[1].r_offset);
12639 }
12640
12641 /* Can't do anything, give up, sigh... */
12642 else
12643 continue;
12644
12645 /* Fix the relocation's type. */
12646 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12647
12648 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12649 delcnt = 4;
12650 deloff = 0;
12651 }
12652
12653 /* Compact branch relaxation -- due to the multitude of macros
12654 employed by the compiler/assembler, compact branches are not
12655 always generated. Obviously, this can/will be fixed elsewhere,
12656 but there is no drawback in double checking it here. */
12657 else if (r_type == R_MICROMIPS_PC16_S1
12658 && irel->r_offset + 5 < sec->size
12659 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12660 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12661 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12662 {
12663 unsigned long reg;
12664
12665 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12666
12667 /* Replace BEQZ/BNEZ with the compact version. */
12668 opcode = (bzc_insns_32[fndopc].match
12669 | BZC32_REG_FIELD (reg)
12670 | (opcode & 0xffff)); /* Addend value. */
12671
12672 bfd_put_micromips_32 (abfd, opcode, ptr);
12673
12674 /* Delete the 16-bit delay slot NOP: two bytes from
12675 irel->offset + 4. */
12676 delcnt = 2;
12677 deloff = 4;
12678 }
12679
12680 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12681 to check the distance from the next instruction, so subtract 2. */
12682 else if (r_type == R_MICROMIPS_PC16_S1
12683 && IS_BITSIZE (pcrval - 2, 11)
12684 && find_match (opcode, b_insns_32) >= 0)
12685 {
12686 /* Fix the relocation's type. */
12687 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12688
12689 /* Replace the 32-bit opcode with a 16-bit opcode. */
12690 bfd_put_16 (abfd,
12691 (b_insn_16.match
12692 | (opcode & 0x3ff)), /* Addend value. */
12693 ptr);
12694
12695 /* Delete 2 bytes from irel->r_offset + 2. */
12696 delcnt = 2;
12697 deloff = 2;
12698 }
12699
12700 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12701 to check the distance from the next instruction, so subtract 2. */
12702 else if (r_type == R_MICROMIPS_PC16_S1
12703 && IS_BITSIZE (pcrval - 2, 8)
12704 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12705 && OP16_VALID_REG (OP32_SREG (opcode)))
12706 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12707 && OP16_VALID_REG (OP32_TREG (opcode)))))
12708 {
12709 unsigned long reg;
12710
12711 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12712
12713 /* Fix the relocation's type. */
12714 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12715
12716 /* Replace the 32-bit opcode with a 16-bit opcode. */
12717 bfd_put_16 (abfd,
12718 (bz_insns_16[fndopc].match
12719 | BZ16_REG_FIELD (reg)
12720 | (opcode & 0x7f)), /* Addend value. */
12721 ptr);
12722
12723 /* Delete 2 bytes from irel->r_offset + 2. */
12724 delcnt = 2;
12725 deloff = 2;
12726 }
12727
12728 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12729 else if (r_type == R_MICROMIPS_26_S1
12730 && target_is_micromips_code_p
12731 && irel->r_offset + 7 < sec->size
12732 && MATCH (opcode, jal_insn_32_bd32))
12733 {
12734 unsigned long n32opc;
12735 bfd_boolean relaxed = FALSE;
12736
12737 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12738
12739 if (MATCH (n32opc, nop_insn_32))
12740 {
12741 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12742 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12743
12744 relaxed = TRUE;
12745 }
12746 else if (find_match (n32opc, move_insns_32) >= 0)
12747 {
12748 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12749 bfd_put_16 (abfd,
12750 (move_insn_16.match
12751 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12752 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12753 ptr + 4);
12754
12755 relaxed = TRUE;
12756 }
12757 /* Other 32-bit instructions relaxable to 16-bit
12758 instructions will be handled here later. */
12759
12760 if (relaxed)
12761 {
12762 /* JAL with 32-bit delay slot that is changed to a JALS
12763 with 16-bit delay slot. */
12764 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12765
12766 /* Delete 2 bytes from irel->r_offset + 6. */
12767 delcnt = 2;
12768 deloff = 6;
12769 }
12770 }
12771
12772 if (delcnt != 0)
12773 {
12774 /* Note that we've changed the relocs, section contents, etc. */
12775 elf_section_data (sec)->relocs = internal_relocs;
12776 elf_section_data (sec)->this_hdr.contents = contents;
12777 symtab_hdr->contents = (unsigned char *) isymbuf;
12778
12779 /* Delete bytes depending on the delcnt and deloff. */
12780 if (!mips_elf_relax_delete_bytes (abfd, sec,
12781 irel->r_offset + deloff, delcnt))
12782 goto error_return;
12783
12784 /* That will change things, so we should relax again.
12785 Note that this is not required, and it may be slow. */
12786 *again = TRUE;
12787 }
12788 }
12789
12790 if (isymbuf != NULL
12791 && symtab_hdr->contents != (unsigned char *) isymbuf)
12792 {
12793 if (! link_info->keep_memory)
12794 free (isymbuf);
12795 else
12796 {
12797 /* Cache the symbols for elf_link_input_bfd. */
12798 symtab_hdr->contents = (unsigned char *) isymbuf;
12799 }
12800 }
12801
12802 if (contents != NULL
12803 && elf_section_data (sec)->this_hdr.contents != contents)
12804 {
12805 if (! link_info->keep_memory)
12806 free (contents);
12807 else
12808 {
12809 /* Cache the section contents for elf_link_input_bfd. */
12810 elf_section_data (sec)->this_hdr.contents = contents;
12811 }
12812 }
12813
12814 if (internal_relocs != NULL
12815 && elf_section_data (sec)->relocs != internal_relocs)
12816 free (internal_relocs);
12817
12818 return TRUE;
12819
12820 error_return:
12821 if (isymbuf != NULL
12822 && symtab_hdr->contents != (unsigned char *) isymbuf)
12823 free (isymbuf);
12824 if (contents != NULL
12825 && elf_section_data (sec)->this_hdr.contents != contents)
12826 free (contents);
12827 if (internal_relocs != NULL
12828 && elf_section_data (sec)->relocs != internal_relocs)
12829 free (internal_relocs);
12830
12831 return FALSE;
12832 }
12833 \f
12834 /* Create a MIPS ELF linker hash table. */
12835
12836 struct bfd_link_hash_table *
12837 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12838 {
12839 struct mips_elf_link_hash_table *ret;
12840 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12841
12842 ret = bfd_zmalloc (amt);
12843 if (ret == NULL)
12844 return NULL;
12845
12846 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12847 mips_elf_link_hash_newfunc,
12848 sizeof (struct mips_elf_link_hash_entry),
12849 MIPS_ELF_DATA))
12850 {
12851 free (ret);
12852 return NULL;
12853 }
12854
12855 return &ret->root.root;
12856 }
12857
12858 /* Likewise, but indicate that the target is VxWorks. */
12859
12860 struct bfd_link_hash_table *
12861 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12862 {
12863 struct bfd_link_hash_table *ret;
12864
12865 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12866 if (ret)
12867 {
12868 struct mips_elf_link_hash_table *htab;
12869
12870 htab = (struct mips_elf_link_hash_table *) ret;
12871 htab->use_plts_and_copy_relocs = TRUE;
12872 htab->is_vxworks = TRUE;
12873 }
12874 return ret;
12875 }
12876
12877 /* A function that the linker calls if we are allowed to use PLTs
12878 and copy relocs. */
12879
12880 void
12881 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12882 {
12883 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12884 }
12885 \f
12886 /* We need to use a special link routine to handle the .reginfo and
12887 the .mdebug sections. We need to merge all instances of these
12888 sections together, not write them all out sequentially. */
12889
12890 bfd_boolean
12891 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12892 {
12893 asection *o;
12894 struct bfd_link_order *p;
12895 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12896 asection *rtproc_sec;
12897 Elf32_RegInfo reginfo;
12898 struct ecoff_debug_info debug;
12899 struct mips_htab_traverse_info hti;
12900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12901 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12902 HDRR *symhdr = &debug.symbolic_header;
12903 void *mdebug_handle = NULL;
12904 asection *s;
12905 EXTR esym;
12906 unsigned int i;
12907 bfd_size_type amt;
12908 struct mips_elf_link_hash_table *htab;
12909
12910 static const char * const secname[] =
12911 {
12912 ".text", ".init", ".fini", ".data",
12913 ".rodata", ".sdata", ".sbss", ".bss"
12914 };
12915 static const int sc[] =
12916 {
12917 scText, scInit, scFini, scData,
12918 scRData, scSData, scSBss, scBss
12919 };
12920
12921 /* Sort the dynamic symbols so that those with GOT entries come after
12922 those without. */
12923 htab = mips_elf_hash_table (info);
12924 BFD_ASSERT (htab != NULL);
12925
12926 if (!mips_elf_sort_hash_table (abfd, info))
12927 return FALSE;
12928
12929 /* Create any scheduled LA25 stubs. */
12930 hti.info = info;
12931 hti.output_bfd = abfd;
12932 hti.error = FALSE;
12933 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12934 if (hti.error)
12935 return FALSE;
12936
12937 /* Get a value for the GP register. */
12938 if (elf_gp (abfd) == 0)
12939 {
12940 struct bfd_link_hash_entry *h;
12941
12942 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12943 if (h != NULL && h->type == bfd_link_hash_defined)
12944 elf_gp (abfd) = (h->u.def.value
12945 + h->u.def.section->output_section->vma
12946 + h->u.def.section->output_offset);
12947 else if (htab->is_vxworks
12948 && (h = bfd_link_hash_lookup (info->hash,
12949 "_GLOBAL_OFFSET_TABLE_",
12950 FALSE, FALSE, TRUE))
12951 && h->type == bfd_link_hash_defined)
12952 elf_gp (abfd) = (h->u.def.section->output_section->vma
12953 + h->u.def.section->output_offset
12954 + h->u.def.value);
12955 else if (info->relocatable)
12956 {
12957 bfd_vma lo = MINUS_ONE;
12958
12959 /* Find the GP-relative section with the lowest offset. */
12960 for (o = abfd->sections; o != NULL; o = o->next)
12961 if (o->vma < lo
12962 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12963 lo = o->vma;
12964
12965 /* And calculate GP relative to that. */
12966 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12967 }
12968 else
12969 {
12970 /* If the relocate_section function needs to do a reloc
12971 involving the GP value, it should make a reloc_dangerous
12972 callback to warn that GP is not defined. */
12973 }
12974 }
12975
12976 /* Go through the sections and collect the .reginfo and .mdebug
12977 information. */
12978 reginfo_sec = NULL;
12979 mdebug_sec = NULL;
12980 gptab_data_sec = NULL;
12981 gptab_bss_sec = NULL;
12982 for (o = abfd->sections; o != NULL; o = o->next)
12983 {
12984 if (strcmp (o->name, ".reginfo") == 0)
12985 {
12986 memset (&reginfo, 0, sizeof reginfo);
12987
12988 /* We have found the .reginfo section in the output file.
12989 Look through all the link_orders comprising it and merge
12990 the information together. */
12991 for (p = o->map_head.link_order; p != NULL; p = p->next)
12992 {
12993 asection *input_section;
12994 bfd *input_bfd;
12995 Elf32_External_RegInfo ext;
12996 Elf32_RegInfo sub;
12997
12998 if (p->type != bfd_indirect_link_order)
12999 {
13000 if (p->type == bfd_data_link_order)
13001 continue;
13002 abort ();
13003 }
13004
13005 input_section = p->u.indirect.section;
13006 input_bfd = input_section->owner;
13007
13008 if (! bfd_get_section_contents (input_bfd, input_section,
13009 &ext, 0, sizeof ext))
13010 return FALSE;
13011
13012 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13013
13014 reginfo.ri_gprmask |= sub.ri_gprmask;
13015 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13016 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13017 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13018 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13019
13020 /* ri_gp_value is set by the function
13021 mips_elf32_section_processing when the section is
13022 finally written out. */
13023
13024 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13025 elf_link_input_bfd ignores this section. */
13026 input_section->flags &= ~SEC_HAS_CONTENTS;
13027 }
13028
13029 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13030 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13031
13032 /* Skip this section later on (I don't think this currently
13033 matters, but someday it might). */
13034 o->map_head.link_order = NULL;
13035
13036 reginfo_sec = o;
13037 }
13038
13039 if (strcmp (o->name, ".mdebug") == 0)
13040 {
13041 struct extsym_info einfo;
13042 bfd_vma last;
13043
13044 /* We have found the .mdebug section in the output file.
13045 Look through all the link_orders comprising it and merge
13046 the information together. */
13047 symhdr->magic = swap->sym_magic;
13048 /* FIXME: What should the version stamp be? */
13049 symhdr->vstamp = 0;
13050 symhdr->ilineMax = 0;
13051 symhdr->cbLine = 0;
13052 symhdr->idnMax = 0;
13053 symhdr->ipdMax = 0;
13054 symhdr->isymMax = 0;
13055 symhdr->ioptMax = 0;
13056 symhdr->iauxMax = 0;
13057 symhdr->issMax = 0;
13058 symhdr->issExtMax = 0;
13059 symhdr->ifdMax = 0;
13060 symhdr->crfd = 0;
13061 symhdr->iextMax = 0;
13062
13063 /* We accumulate the debugging information itself in the
13064 debug_info structure. */
13065 debug.line = NULL;
13066 debug.external_dnr = NULL;
13067 debug.external_pdr = NULL;
13068 debug.external_sym = NULL;
13069 debug.external_opt = NULL;
13070 debug.external_aux = NULL;
13071 debug.ss = NULL;
13072 debug.ssext = debug.ssext_end = NULL;
13073 debug.external_fdr = NULL;
13074 debug.external_rfd = NULL;
13075 debug.external_ext = debug.external_ext_end = NULL;
13076
13077 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13078 if (mdebug_handle == NULL)
13079 return FALSE;
13080
13081 esym.jmptbl = 0;
13082 esym.cobol_main = 0;
13083 esym.weakext = 0;
13084 esym.reserved = 0;
13085 esym.ifd = ifdNil;
13086 esym.asym.iss = issNil;
13087 esym.asym.st = stLocal;
13088 esym.asym.reserved = 0;
13089 esym.asym.index = indexNil;
13090 last = 0;
13091 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13092 {
13093 esym.asym.sc = sc[i];
13094 s = bfd_get_section_by_name (abfd, secname[i]);
13095 if (s != NULL)
13096 {
13097 esym.asym.value = s->vma;
13098 last = s->vma + s->size;
13099 }
13100 else
13101 esym.asym.value = last;
13102 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13103 secname[i], &esym))
13104 return FALSE;
13105 }
13106
13107 for (p = o->map_head.link_order; p != NULL; p = p->next)
13108 {
13109 asection *input_section;
13110 bfd *input_bfd;
13111 const struct ecoff_debug_swap *input_swap;
13112 struct ecoff_debug_info input_debug;
13113 char *eraw_src;
13114 char *eraw_end;
13115
13116 if (p->type != bfd_indirect_link_order)
13117 {
13118 if (p->type == bfd_data_link_order)
13119 continue;
13120 abort ();
13121 }
13122
13123 input_section = p->u.indirect.section;
13124 input_bfd = input_section->owner;
13125
13126 if (!is_mips_elf (input_bfd))
13127 {
13128 /* I don't know what a non MIPS ELF bfd would be
13129 doing with a .mdebug section, but I don't really
13130 want to deal with it. */
13131 continue;
13132 }
13133
13134 input_swap = (get_elf_backend_data (input_bfd)
13135 ->elf_backend_ecoff_debug_swap);
13136
13137 BFD_ASSERT (p->size == input_section->size);
13138
13139 /* The ECOFF linking code expects that we have already
13140 read in the debugging information and set up an
13141 ecoff_debug_info structure, so we do that now. */
13142 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13143 &input_debug))
13144 return FALSE;
13145
13146 if (! (bfd_ecoff_debug_accumulate
13147 (mdebug_handle, abfd, &debug, swap, input_bfd,
13148 &input_debug, input_swap, info)))
13149 return FALSE;
13150
13151 /* Loop through the external symbols. For each one with
13152 interesting information, try to find the symbol in
13153 the linker global hash table and save the information
13154 for the output external symbols. */
13155 eraw_src = input_debug.external_ext;
13156 eraw_end = (eraw_src
13157 + (input_debug.symbolic_header.iextMax
13158 * input_swap->external_ext_size));
13159 for (;
13160 eraw_src < eraw_end;
13161 eraw_src += input_swap->external_ext_size)
13162 {
13163 EXTR ext;
13164 const char *name;
13165 struct mips_elf_link_hash_entry *h;
13166
13167 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13168 if (ext.asym.sc == scNil
13169 || ext.asym.sc == scUndefined
13170 || ext.asym.sc == scSUndefined)
13171 continue;
13172
13173 name = input_debug.ssext + ext.asym.iss;
13174 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13175 name, FALSE, FALSE, TRUE);
13176 if (h == NULL || h->esym.ifd != -2)
13177 continue;
13178
13179 if (ext.ifd != -1)
13180 {
13181 BFD_ASSERT (ext.ifd
13182 < input_debug.symbolic_header.ifdMax);
13183 ext.ifd = input_debug.ifdmap[ext.ifd];
13184 }
13185
13186 h->esym = ext;
13187 }
13188
13189 /* Free up the information we just read. */
13190 free (input_debug.line);
13191 free (input_debug.external_dnr);
13192 free (input_debug.external_pdr);
13193 free (input_debug.external_sym);
13194 free (input_debug.external_opt);
13195 free (input_debug.external_aux);
13196 free (input_debug.ss);
13197 free (input_debug.ssext);
13198 free (input_debug.external_fdr);
13199 free (input_debug.external_rfd);
13200 free (input_debug.external_ext);
13201
13202 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13203 elf_link_input_bfd ignores this section. */
13204 input_section->flags &= ~SEC_HAS_CONTENTS;
13205 }
13206
13207 if (SGI_COMPAT (abfd) && info->shared)
13208 {
13209 /* Create .rtproc section. */
13210 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13211 if (rtproc_sec == NULL)
13212 {
13213 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13214 | SEC_LINKER_CREATED | SEC_READONLY);
13215
13216 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13217 ".rtproc",
13218 flags);
13219 if (rtproc_sec == NULL
13220 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13221 return FALSE;
13222 }
13223
13224 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13225 info, rtproc_sec,
13226 &debug))
13227 return FALSE;
13228 }
13229
13230 /* Build the external symbol information. */
13231 einfo.abfd = abfd;
13232 einfo.info = info;
13233 einfo.debug = &debug;
13234 einfo.swap = swap;
13235 einfo.failed = FALSE;
13236 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13237 mips_elf_output_extsym, &einfo);
13238 if (einfo.failed)
13239 return FALSE;
13240
13241 /* Set the size of the .mdebug section. */
13242 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13243
13244 /* Skip this section later on (I don't think this currently
13245 matters, but someday it might). */
13246 o->map_head.link_order = NULL;
13247
13248 mdebug_sec = o;
13249 }
13250
13251 if (CONST_STRNEQ (o->name, ".gptab."))
13252 {
13253 const char *subname;
13254 unsigned int c;
13255 Elf32_gptab *tab;
13256 Elf32_External_gptab *ext_tab;
13257 unsigned int j;
13258
13259 /* The .gptab.sdata and .gptab.sbss sections hold
13260 information describing how the small data area would
13261 change depending upon the -G switch. These sections
13262 not used in executables files. */
13263 if (! info->relocatable)
13264 {
13265 for (p = o->map_head.link_order; p != NULL; p = p->next)
13266 {
13267 asection *input_section;
13268
13269 if (p->type != bfd_indirect_link_order)
13270 {
13271 if (p->type == bfd_data_link_order)
13272 continue;
13273 abort ();
13274 }
13275
13276 input_section = p->u.indirect.section;
13277
13278 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13279 elf_link_input_bfd ignores this section. */
13280 input_section->flags &= ~SEC_HAS_CONTENTS;
13281 }
13282
13283 /* Skip this section later on (I don't think this
13284 currently matters, but someday it might). */
13285 o->map_head.link_order = NULL;
13286
13287 /* Really remove the section. */
13288 bfd_section_list_remove (abfd, o);
13289 --abfd->section_count;
13290
13291 continue;
13292 }
13293
13294 /* There is one gptab for initialized data, and one for
13295 uninitialized data. */
13296 if (strcmp (o->name, ".gptab.sdata") == 0)
13297 gptab_data_sec = o;
13298 else if (strcmp (o->name, ".gptab.sbss") == 0)
13299 gptab_bss_sec = o;
13300 else
13301 {
13302 (*_bfd_error_handler)
13303 (_("%s: illegal section name `%s'"),
13304 bfd_get_filename (abfd), o->name);
13305 bfd_set_error (bfd_error_nonrepresentable_section);
13306 return FALSE;
13307 }
13308
13309 /* The linker script always combines .gptab.data and
13310 .gptab.sdata into .gptab.sdata, and likewise for
13311 .gptab.bss and .gptab.sbss. It is possible that there is
13312 no .sdata or .sbss section in the output file, in which
13313 case we must change the name of the output section. */
13314 subname = o->name + sizeof ".gptab" - 1;
13315 if (bfd_get_section_by_name (abfd, subname) == NULL)
13316 {
13317 if (o == gptab_data_sec)
13318 o->name = ".gptab.data";
13319 else
13320 o->name = ".gptab.bss";
13321 subname = o->name + sizeof ".gptab" - 1;
13322 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13323 }
13324
13325 /* Set up the first entry. */
13326 c = 1;
13327 amt = c * sizeof (Elf32_gptab);
13328 tab = bfd_malloc (amt);
13329 if (tab == NULL)
13330 return FALSE;
13331 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13332 tab[0].gt_header.gt_unused = 0;
13333
13334 /* Combine the input sections. */
13335 for (p = o->map_head.link_order; p != NULL; p = p->next)
13336 {
13337 asection *input_section;
13338 bfd *input_bfd;
13339 bfd_size_type size;
13340 unsigned long last;
13341 bfd_size_type gpentry;
13342
13343 if (p->type != bfd_indirect_link_order)
13344 {
13345 if (p->type == bfd_data_link_order)
13346 continue;
13347 abort ();
13348 }
13349
13350 input_section = p->u.indirect.section;
13351 input_bfd = input_section->owner;
13352
13353 /* Combine the gptab entries for this input section one
13354 by one. We know that the input gptab entries are
13355 sorted by ascending -G value. */
13356 size = input_section->size;
13357 last = 0;
13358 for (gpentry = sizeof (Elf32_External_gptab);
13359 gpentry < size;
13360 gpentry += sizeof (Elf32_External_gptab))
13361 {
13362 Elf32_External_gptab ext_gptab;
13363 Elf32_gptab int_gptab;
13364 unsigned long val;
13365 unsigned long add;
13366 bfd_boolean exact;
13367 unsigned int look;
13368
13369 if (! (bfd_get_section_contents
13370 (input_bfd, input_section, &ext_gptab, gpentry,
13371 sizeof (Elf32_External_gptab))))
13372 {
13373 free (tab);
13374 return FALSE;
13375 }
13376
13377 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13378 &int_gptab);
13379 val = int_gptab.gt_entry.gt_g_value;
13380 add = int_gptab.gt_entry.gt_bytes - last;
13381
13382 exact = FALSE;
13383 for (look = 1; look < c; look++)
13384 {
13385 if (tab[look].gt_entry.gt_g_value >= val)
13386 tab[look].gt_entry.gt_bytes += add;
13387
13388 if (tab[look].gt_entry.gt_g_value == val)
13389 exact = TRUE;
13390 }
13391
13392 if (! exact)
13393 {
13394 Elf32_gptab *new_tab;
13395 unsigned int max;
13396
13397 /* We need a new table entry. */
13398 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13399 new_tab = bfd_realloc (tab, amt);
13400 if (new_tab == NULL)
13401 {
13402 free (tab);
13403 return FALSE;
13404 }
13405 tab = new_tab;
13406 tab[c].gt_entry.gt_g_value = val;
13407 tab[c].gt_entry.gt_bytes = add;
13408
13409 /* Merge in the size for the next smallest -G
13410 value, since that will be implied by this new
13411 value. */
13412 max = 0;
13413 for (look = 1; look < c; look++)
13414 {
13415 if (tab[look].gt_entry.gt_g_value < val
13416 && (max == 0
13417 || (tab[look].gt_entry.gt_g_value
13418 > tab[max].gt_entry.gt_g_value)))
13419 max = look;
13420 }
13421 if (max != 0)
13422 tab[c].gt_entry.gt_bytes +=
13423 tab[max].gt_entry.gt_bytes;
13424
13425 ++c;
13426 }
13427
13428 last = int_gptab.gt_entry.gt_bytes;
13429 }
13430
13431 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13432 elf_link_input_bfd ignores this section. */
13433 input_section->flags &= ~SEC_HAS_CONTENTS;
13434 }
13435
13436 /* The table must be sorted by -G value. */
13437 if (c > 2)
13438 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13439
13440 /* Swap out the table. */
13441 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13442 ext_tab = bfd_alloc (abfd, amt);
13443 if (ext_tab == NULL)
13444 {
13445 free (tab);
13446 return FALSE;
13447 }
13448
13449 for (j = 0; j < c; j++)
13450 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13451 free (tab);
13452
13453 o->size = c * sizeof (Elf32_External_gptab);
13454 o->contents = (bfd_byte *) ext_tab;
13455
13456 /* Skip this section later on (I don't think this currently
13457 matters, but someday it might). */
13458 o->map_head.link_order = NULL;
13459 }
13460 }
13461
13462 /* Invoke the regular ELF backend linker to do all the work. */
13463 if (!bfd_elf_final_link (abfd, info))
13464 return FALSE;
13465
13466 /* Now write out the computed sections. */
13467
13468 if (reginfo_sec != NULL)
13469 {
13470 Elf32_External_RegInfo ext;
13471
13472 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13473 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13474 return FALSE;
13475 }
13476
13477 if (mdebug_sec != NULL)
13478 {
13479 BFD_ASSERT (abfd->output_has_begun);
13480 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13481 swap, info,
13482 mdebug_sec->filepos))
13483 return FALSE;
13484
13485 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13486 }
13487
13488 if (gptab_data_sec != NULL)
13489 {
13490 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13491 gptab_data_sec->contents,
13492 0, gptab_data_sec->size))
13493 return FALSE;
13494 }
13495
13496 if (gptab_bss_sec != NULL)
13497 {
13498 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13499 gptab_bss_sec->contents,
13500 0, gptab_bss_sec->size))
13501 return FALSE;
13502 }
13503
13504 if (SGI_COMPAT (abfd))
13505 {
13506 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13507 if (rtproc_sec != NULL)
13508 {
13509 if (! bfd_set_section_contents (abfd, rtproc_sec,
13510 rtproc_sec->contents,
13511 0, rtproc_sec->size))
13512 return FALSE;
13513 }
13514 }
13515
13516 return TRUE;
13517 }
13518 \f
13519 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13520
13521 struct mips_mach_extension {
13522 unsigned long extension, base;
13523 };
13524
13525
13526 /* An array describing how BFD machines relate to one another. The entries
13527 are ordered topologically with MIPS I extensions listed last. */
13528
13529 static const struct mips_mach_extension mips_mach_extensions[] = {
13530 /* MIPS64r2 extensions. */
13531 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13532 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13533 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13534
13535 /* MIPS64 extensions. */
13536 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13537 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13538 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13539 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13540
13541 /* MIPS V extensions. */
13542 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13543
13544 /* R10000 extensions. */
13545 { bfd_mach_mips12000, bfd_mach_mips10000 },
13546 { bfd_mach_mips14000, bfd_mach_mips10000 },
13547 { bfd_mach_mips16000, bfd_mach_mips10000 },
13548
13549 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13550 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13551 better to allow vr5400 and vr5500 code to be merged anyway, since
13552 many libraries will just use the core ISA. Perhaps we could add
13553 some sort of ASE flag if this ever proves a problem. */
13554 { bfd_mach_mips5500, bfd_mach_mips5400 },
13555 { bfd_mach_mips5400, bfd_mach_mips5000 },
13556
13557 /* MIPS IV extensions. */
13558 { bfd_mach_mips5, bfd_mach_mips8000 },
13559 { bfd_mach_mips10000, bfd_mach_mips8000 },
13560 { bfd_mach_mips5000, bfd_mach_mips8000 },
13561 { bfd_mach_mips7000, bfd_mach_mips8000 },
13562 { bfd_mach_mips9000, bfd_mach_mips8000 },
13563
13564 /* VR4100 extensions. */
13565 { bfd_mach_mips4120, bfd_mach_mips4100 },
13566 { bfd_mach_mips4111, bfd_mach_mips4100 },
13567
13568 /* MIPS III extensions. */
13569 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13570 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13571 { bfd_mach_mips8000, bfd_mach_mips4000 },
13572 { bfd_mach_mips4650, bfd_mach_mips4000 },
13573 { bfd_mach_mips4600, bfd_mach_mips4000 },
13574 { bfd_mach_mips4400, bfd_mach_mips4000 },
13575 { bfd_mach_mips4300, bfd_mach_mips4000 },
13576 { bfd_mach_mips4100, bfd_mach_mips4000 },
13577 { bfd_mach_mips4010, bfd_mach_mips4000 },
13578 { bfd_mach_mips5900, bfd_mach_mips4000 },
13579
13580 /* MIPS32 extensions. */
13581 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13582
13583 /* MIPS II extensions. */
13584 { bfd_mach_mips4000, bfd_mach_mips6000 },
13585 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13586
13587 /* MIPS I extensions. */
13588 { bfd_mach_mips6000, bfd_mach_mips3000 },
13589 { bfd_mach_mips3900, bfd_mach_mips3000 }
13590 };
13591
13592
13593 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13594
13595 static bfd_boolean
13596 mips_mach_extends_p (unsigned long base, unsigned long extension)
13597 {
13598 size_t i;
13599
13600 if (extension == base)
13601 return TRUE;
13602
13603 if (base == bfd_mach_mipsisa32
13604 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13605 return TRUE;
13606
13607 if (base == bfd_mach_mipsisa32r2
13608 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13609 return TRUE;
13610
13611 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13612 if (extension == mips_mach_extensions[i].extension)
13613 {
13614 extension = mips_mach_extensions[i].base;
13615 if (extension == base)
13616 return TRUE;
13617 }
13618
13619 return FALSE;
13620 }
13621
13622
13623 /* Return true if the given ELF header flags describe a 32-bit binary. */
13624
13625 static bfd_boolean
13626 mips_32bit_flags_p (flagword flags)
13627 {
13628 return ((flags & EF_MIPS_32BITMODE) != 0
13629 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13630 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13631 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13632 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13633 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13634 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13635 }
13636
13637
13638 /* Merge object attributes from IBFD into OBFD. Raise an error if
13639 there are conflicting attributes. */
13640 static bfd_boolean
13641 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13642 {
13643 obj_attribute *in_attr;
13644 obj_attribute *out_attr;
13645 bfd *abi_fp_bfd;
13646
13647 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13648 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13649 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13650 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13651
13652 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13653 {
13654 /* This is the first object. Copy the attributes. */
13655 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13656
13657 /* Use the Tag_null value to indicate the attributes have been
13658 initialized. */
13659 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13660
13661 return TRUE;
13662 }
13663
13664 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13665 non-conflicting ones. */
13666 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13667 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13668 {
13669 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13670 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13671 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13672 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13673 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13674 {
13675 case 1:
13676 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13677 {
13678 case 2:
13679 _bfd_error_handler
13680 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13681 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13682 break;
13683
13684 case 3:
13685 _bfd_error_handler
13686 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13687 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13688 break;
13689
13690 case 4:
13691 _bfd_error_handler
13692 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13693 obfd, abi_fp_bfd, ibfd,
13694 "-mdouble-float", "-mips32r2 -mfp64");
13695 break;
13696
13697 default:
13698 _bfd_error_handler
13699 (_("Warning: %B uses %s (set by %B), "
13700 "%B uses unknown floating point ABI %d"),
13701 obfd, abi_fp_bfd, ibfd,
13702 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13703 break;
13704 }
13705 break;
13706
13707 case 2:
13708 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13709 {
13710 case 1:
13711 _bfd_error_handler
13712 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13713 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13714 break;
13715
13716 case 3:
13717 _bfd_error_handler
13718 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13719 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13720 break;
13721
13722 case 4:
13723 _bfd_error_handler
13724 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13725 obfd, abi_fp_bfd, ibfd,
13726 "-msingle-float", "-mips32r2 -mfp64");
13727 break;
13728
13729 default:
13730 _bfd_error_handler
13731 (_("Warning: %B uses %s (set by %B), "
13732 "%B uses unknown floating point ABI %d"),
13733 obfd, abi_fp_bfd, ibfd,
13734 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13735 break;
13736 }
13737 break;
13738
13739 case 3:
13740 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13741 {
13742 case 1:
13743 case 2:
13744 case 4:
13745 _bfd_error_handler
13746 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13747 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13748 break;
13749
13750 default:
13751 _bfd_error_handler
13752 (_("Warning: %B uses %s (set by %B), "
13753 "%B uses unknown floating point ABI %d"),
13754 obfd, abi_fp_bfd, ibfd,
13755 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13756 break;
13757 }
13758 break;
13759
13760 case 4:
13761 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13762 {
13763 case 1:
13764 _bfd_error_handler
13765 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13766 obfd, abi_fp_bfd, ibfd,
13767 "-mips32r2 -mfp64", "-mdouble-float");
13768 break;
13769
13770 case 2:
13771 _bfd_error_handler
13772 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13773 obfd, abi_fp_bfd, ibfd,
13774 "-mips32r2 -mfp64", "-msingle-float");
13775 break;
13776
13777 case 3:
13778 _bfd_error_handler
13779 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13780 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13781 break;
13782
13783 default:
13784 _bfd_error_handler
13785 (_("Warning: %B uses %s (set by %B), "
13786 "%B uses unknown floating point ABI %d"),
13787 obfd, abi_fp_bfd, ibfd,
13788 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13789 break;
13790 }
13791 break;
13792
13793 default:
13794 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13795 {
13796 case 1:
13797 _bfd_error_handler
13798 (_("Warning: %B uses unknown floating point ABI %d "
13799 "(set by %B), %B uses %s"),
13800 obfd, abi_fp_bfd, ibfd,
13801 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13802 break;
13803
13804 case 2:
13805 _bfd_error_handler
13806 (_("Warning: %B uses unknown floating point ABI %d "
13807 "(set by %B), %B uses %s"),
13808 obfd, abi_fp_bfd, ibfd,
13809 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13810 break;
13811
13812 case 3:
13813 _bfd_error_handler
13814 (_("Warning: %B uses unknown floating point ABI %d "
13815 "(set by %B), %B uses %s"),
13816 obfd, abi_fp_bfd, ibfd,
13817 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13818 break;
13819
13820 case 4:
13821 _bfd_error_handler
13822 (_("Warning: %B uses unknown floating point ABI %d "
13823 "(set by %B), %B uses %s"),
13824 obfd, abi_fp_bfd, ibfd,
13825 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13826 break;
13827
13828 default:
13829 _bfd_error_handler
13830 (_("Warning: %B uses unknown floating point ABI %d "
13831 "(set by %B), %B uses unknown floating point ABI %d"),
13832 obfd, abi_fp_bfd, ibfd,
13833 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13834 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13835 break;
13836 }
13837 break;
13838 }
13839 }
13840
13841 /* Merge Tag_compatibility attributes and any common GNU ones. */
13842 _bfd_elf_merge_object_attributes (ibfd, obfd);
13843
13844 return TRUE;
13845 }
13846
13847 /* Merge backend specific data from an object file to the output
13848 object file when linking. */
13849
13850 bfd_boolean
13851 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13852 {
13853 flagword old_flags;
13854 flagword new_flags;
13855 bfd_boolean ok;
13856 bfd_boolean null_input_bfd = TRUE;
13857 asection *sec;
13858
13859 /* Check if we have the same endianness. */
13860 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13861 {
13862 (*_bfd_error_handler)
13863 (_("%B: endianness incompatible with that of the selected emulation"),
13864 ibfd);
13865 return FALSE;
13866 }
13867
13868 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13869 return TRUE;
13870
13871 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13872 {
13873 (*_bfd_error_handler)
13874 (_("%B: ABI is incompatible with that of the selected emulation"),
13875 ibfd);
13876 return FALSE;
13877 }
13878
13879 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13880 return FALSE;
13881
13882 new_flags = elf_elfheader (ibfd)->e_flags;
13883 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13884 old_flags = elf_elfheader (obfd)->e_flags;
13885
13886 if (! elf_flags_init (obfd))
13887 {
13888 elf_flags_init (obfd) = TRUE;
13889 elf_elfheader (obfd)->e_flags = new_flags;
13890 elf_elfheader (obfd)->e_ident[EI_CLASS]
13891 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13892
13893 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13894 && (bfd_get_arch_info (obfd)->the_default
13895 || mips_mach_extends_p (bfd_get_mach (obfd),
13896 bfd_get_mach (ibfd))))
13897 {
13898 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13899 bfd_get_mach (ibfd)))
13900 return FALSE;
13901 }
13902
13903 return TRUE;
13904 }
13905
13906 /* Check flag compatibility. */
13907
13908 new_flags &= ~EF_MIPS_NOREORDER;
13909 old_flags &= ~EF_MIPS_NOREORDER;
13910
13911 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13912 doesn't seem to matter. */
13913 new_flags &= ~EF_MIPS_XGOT;
13914 old_flags &= ~EF_MIPS_XGOT;
13915
13916 /* MIPSpro generates ucode info in n64 objects. Again, we should
13917 just be able to ignore this. */
13918 new_flags &= ~EF_MIPS_UCODE;
13919 old_flags &= ~EF_MIPS_UCODE;
13920
13921 /* DSOs should only be linked with CPIC code. */
13922 if ((ibfd->flags & DYNAMIC) != 0)
13923 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13924
13925 if (new_flags == old_flags)
13926 return TRUE;
13927
13928 /* Check to see if the input BFD actually contains any sections.
13929 If not, its flags may not have been initialised either, but it cannot
13930 actually cause any incompatibility. */
13931 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13932 {
13933 /* Ignore synthetic sections and empty .text, .data and .bss sections
13934 which are automatically generated by gas. Also ignore fake
13935 (s)common sections, since merely defining a common symbol does
13936 not affect compatibility. */
13937 if ((sec->flags & SEC_IS_COMMON) == 0
13938 && strcmp (sec->name, ".reginfo")
13939 && strcmp (sec->name, ".mdebug")
13940 && (sec->size != 0
13941 || (strcmp (sec->name, ".text")
13942 && strcmp (sec->name, ".data")
13943 && strcmp (sec->name, ".bss"))))
13944 {
13945 null_input_bfd = FALSE;
13946 break;
13947 }
13948 }
13949 if (null_input_bfd)
13950 return TRUE;
13951
13952 ok = TRUE;
13953
13954 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13955 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13956 {
13957 (*_bfd_error_handler)
13958 (_("%B: warning: linking abicalls files with non-abicalls files"),
13959 ibfd);
13960 ok = TRUE;
13961 }
13962
13963 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13964 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13965 if (! (new_flags & EF_MIPS_PIC))
13966 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13967
13968 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13969 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13970
13971 /* Compare the ISAs. */
13972 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13973 {
13974 (*_bfd_error_handler)
13975 (_("%B: linking 32-bit code with 64-bit code"),
13976 ibfd);
13977 ok = FALSE;
13978 }
13979 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13980 {
13981 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13982 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13983 {
13984 /* Copy the architecture info from IBFD to OBFD. Also copy
13985 the 32-bit flag (if set) so that we continue to recognise
13986 OBFD as a 32-bit binary. */
13987 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13988 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13989 elf_elfheader (obfd)->e_flags
13990 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13991
13992 /* Copy across the ABI flags if OBFD doesn't use them
13993 and if that was what caused us to treat IBFD as 32-bit. */
13994 if ((old_flags & EF_MIPS_ABI) == 0
13995 && mips_32bit_flags_p (new_flags)
13996 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13997 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13998 }
13999 else
14000 {
14001 /* The ISAs aren't compatible. */
14002 (*_bfd_error_handler)
14003 (_("%B: linking %s module with previous %s modules"),
14004 ibfd,
14005 bfd_printable_name (ibfd),
14006 bfd_printable_name (obfd));
14007 ok = FALSE;
14008 }
14009 }
14010
14011 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14012 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14013
14014 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14015 does set EI_CLASS differently from any 32-bit ABI. */
14016 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14017 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14018 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14019 {
14020 /* Only error if both are set (to different values). */
14021 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14022 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14023 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14024 {
14025 (*_bfd_error_handler)
14026 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14027 ibfd,
14028 elf_mips_abi_name (ibfd),
14029 elf_mips_abi_name (obfd));
14030 ok = FALSE;
14031 }
14032 new_flags &= ~EF_MIPS_ABI;
14033 old_flags &= ~EF_MIPS_ABI;
14034 }
14035
14036 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14037 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14038 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14039 {
14040 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14041 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14042 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14043 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14044 int micro_mis = old_m16 && new_micro;
14045 int m16_mis = old_micro && new_m16;
14046
14047 if (m16_mis || micro_mis)
14048 {
14049 (*_bfd_error_handler)
14050 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14051 ibfd,
14052 m16_mis ? "MIPS16" : "microMIPS",
14053 m16_mis ? "microMIPS" : "MIPS16");
14054 ok = FALSE;
14055 }
14056
14057 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14058
14059 new_flags &= ~ EF_MIPS_ARCH_ASE;
14060 old_flags &= ~ EF_MIPS_ARCH_ASE;
14061 }
14062
14063 /* Warn about any other mismatches */
14064 if (new_flags != old_flags)
14065 {
14066 (*_bfd_error_handler)
14067 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14068 ibfd, (unsigned long) new_flags,
14069 (unsigned long) old_flags);
14070 ok = FALSE;
14071 }
14072
14073 if (! ok)
14074 {
14075 bfd_set_error (bfd_error_bad_value);
14076 return FALSE;
14077 }
14078
14079 return TRUE;
14080 }
14081
14082 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14083
14084 bfd_boolean
14085 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14086 {
14087 BFD_ASSERT (!elf_flags_init (abfd)
14088 || elf_elfheader (abfd)->e_flags == flags);
14089
14090 elf_elfheader (abfd)->e_flags = flags;
14091 elf_flags_init (abfd) = TRUE;
14092 return TRUE;
14093 }
14094
14095 char *
14096 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14097 {
14098 switch (dtag)
14099 {
14100 default: return "";
14101 case DT_MIPS_RLD_VERSION:
14102 return "MIPS_RLD_VERSION";
14103 case DT_MIPS_TIME_STAMP:
14104 return "MIPS_TIME_STAMP";
14105 case DT_MIPS_ICHECKSUM:
14106 return "MIPS_ICHECKSUM";
14107 case DT_MIPS_IVERSION:
14108 return "MIPS_IVERSION";
14109 case DT_MIPS_FLAGS:
14110 return "MIPS_FLAGS";
14111 case DT_MIPS_BASE_ADDRESS:
14112 return "MIPS_BASE_ADDRESS";
14113 case DT_MIPS_MSYM:
14114 return "MIPS_MSYM";
14115 case DT_MIPS_CONFLICT:
14116 return "MIPS_CONFLICT";
14117 case DT_MIPS_LIBLIST:
14118 return "MIPS_LIBLIST";
14119 case DT_MIPS_LOCAL_GOTNO:
14120 return "MIPS_LOCAL_GOTNO";
14121 case DT_MIPS_CONFLICTNO:
14122 return "MIPS_CONFLICTNO";
14123 case DT_MIPS_LIBLISTNO:
14124 return "MIPS_LIBLISTNO";
14125 case DT_MIPS_SYMTABNO:
14126 return "MIPS_SYMTABNO";
14127 case DT_MIPS_UNREFEXTNO:
14128 return "MIPS_UNREFEXTNO";
14129 case DT_MIPS_GOTSYM:
14130 return "MIPS_GOTSYM";
14131 case DT_MIPS_HIPAGENO:
14132 return "MIPS_HIPAGENO";
14133 case DT_MIPS_RLD_MAP:
14134 return "MIPS_RLD_MAP";
14135 case DT_MIPS_DELTA_CLASS:
14136 return "MIPS_DELTA_CLASS";
14137 case DT_MIPS_DELTA_CLASS_NO:
14138 return "MIPS_DELTA_CLASS_NO";
14139 case DT_MIPS_DELTA_INSTANCE:
14140 return "MIPS_DELTA_INSTANCE";
14141 case DT_MIPS_DELTA_INSTANCE_NO:
14142 return "MIPS_DELTA_INSTANCE_NO";
14143 case DT_MIPS_DELTA_RELOC:
14144 return "MIPS_DELTA_RELOC";
14145 case DT_MIPS_DELTA_RELOC_NO:
14146 return "MIPS_DELTA_RELOC_NO";
14147 case DT_MIPS_DELTA_SYM:
14148 return "MIPS_DELTA_SYM";
14149 case DT_MIPS_DELTA_SYM_NO:
14150 return "MIPS_DELTA_SYM_NO";
14151 case DT_MIPS_DELTA_CLASSSYM:
14152 return "MIPS_DELTA_CLASSSYM";
14153 case DT_MIPS_DELTA_CLASSSYM_NO:
14154 return "MIPS_DELTA_CLASSSYM_NO";
14155 case DT_MIPS_CXX_FLAGS:
14156 return "MIPS_CXX_FLAGS";
14157 case DT_MIPS_PIXIE_INIT:
14158 return "MIPS_PIXIE_INIT";
14159 case DT_MIPS_SYMBOL_LIB:
14160 return "MIPS_SYMBOL_LIB";
14161 case DT_MIPS_LOCALPAGE_GOTIDX:
14162 return "MIPS_LOCALPAGE_GOTIDX";
14163 case DT_MIPS_LOCAL_GOTIDX:
14164 return "MIPS_LOCAL_GOTIDX";
14165 case DT_MIPS_HIDDEN_GOTIDX:
14166 return "MIPS_HIDDEN_GOTIDX";
14167 case DT_MIPS_PROTECTED_GOTIDX:
14168 return "MIPS_PROTECTED_GOT_IDX";
14169 case DT_MIPS_OPTIONS:
14170 return "MIPS_OPTIONS";
14171 case DT_MIPS_INTERFACE:
14172 return "MIPS_INTERFACE";
14173 case DT_MIPS_DYNSTR_ALIGN:
14174 return "DT_MIPS_DYNSTR_ALIGN";
14175 case DT_MIPS_INTERFACE_SIZE:
14176 return "DT_MIPS_INTERFACE_SIZE";
14177 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14178 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14179 case DT_MIPS_PERF_SUFFIX:
14180 return "DT_MIPS_PERF_SUFFIX";
14181 case DT_MIPS_COMPACT_SIZE:
14182 return "DT_MIPS_COMPACT_SIZE";
14183 case DT_MIPS_GP_VALUE:
14184 return "DT_MIPS_GP_VALUE";
14185 case DT_MIPS_AUX_DYNAMIC:
14186 return "DT_MIPS_AUX_DYNAMIC";
14187 case DT_MIPS_PLTGOT:
14188 return "DT_MIPS_PLTGOT";
14189 case DT_MIPS_RWPLT:
14190 return "DT_MIPS_RWPLT";
14191 }
14192 }
14193
14194 bfd_boolean
14195 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14196 {
14197 FILE *file = ptr;
14198
14199 BFD_ASSERT (abfd != NULL && ptr != NULL);
14200
14201 /* Print normal ELF private data. */
14202 _bfd_elf_print_private_bfd_data (abfd, ptr);
14203
14204 /* xgettext:c-format */
14205 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14206
14207 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14208 fprintf (file, _(" [abi=O32]"));
14209 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14210 fprintf (file, _(" [abi=O64]"));
14211 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14212 fprintf (file, _(" [abi=EABI32]"));
14213 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14214 fprintf (file, _(" [abi=EABI64]"));
14215 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14216 fprintf (file, _(" [abi unknown]"));
14217 else if (ABI_N32_P (abfd))
14218 fprintf (file, _(" [abi=N32]"));
14219 else if (ABI_64_P (abfd))
14220 fprintf (file, _(" [abi=64]"));
14221 else
14222 fprintf (file, _(" [no abi set]"));
14223
14224 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14225 fprintf (file, " [mips1]");
14226 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14227 fprintf (file, " [mips2]");
14228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14229 fprintf (file, " [mips3]");
14230 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14231 fprintf (file, " [mips4]");
14232 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14233 fprintf (file, " [mips5]");
14234 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14235 fprintf (file, " [mips32]");
14236 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14237 fprintf (file, " [mips64]");
14238 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14239 fprintf (file, " [mips32r2]");
14240 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14241 fprintf (file, " [mips64r2]");
14242 else
14243 fprintf (file, _(" [unknown ISA]"));
14244
14245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14246 fprintf (file, " [mdmx]");
14247
14248 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14249 fprintf (file, " [mips16]");
14250
14251 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14252 fprintf (file, " [micromips]");
14253
14254 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14255 fprintf (file, " [32bitmode]");
14256 else
14257 fprintf (file, _(" [not 32bitmode]"));
14258
14259 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14260 fprintf (file, " [noreorder]");
14261
14262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14263 fprintf (file, " [PIC]");
14264
14265 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14266 fprintf (file, " [CPIC]");
14267
14268 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14269 fprintf (file, " [XGOT]");
14270
14271 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14272 fprintf (file, " [UCODE]");
14273
14274 fputc ('\n', file);
14275
14276 return TRUE;
14277 }
14278
14279 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14280 {
14281 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14282 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14283 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14284 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14285 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14286 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14287 { NULL, 0, 0, 0, 0 }
14288 };
14289
14290 /* Merge non visibility st_other attributes. Ensure that the
14291 STO_OPTIONAL flag is copied into h->other, even if this is not a
14292 definiton of the symbol. */
14293 void
14294 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14295 const Elf_Internal_Sym *isym,
14296 bfd_boolean definition,
14297 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14298 {
14299 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14300 {
14301 unsigned char other;
14302
14303 other = (definition ? isym->st_other : h->other);
14304 other &= ~ELF_ST_VISIBILITY (-1);
14305 h->other = other | ELF_ST_VISIBILITY (h->other);
14306 }
14307
14308 if (!definition
14309 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14310 h->other |= STO_OPTIONAL;
14311 }
14312
14313 /* Decide whether an undefined symbol is special and can be ignored.
14314 This is the case for OPTIONAL symbols on IRIX. */
14315 bfd_boolean
14316 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14317 {
14318 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14319 }
14320
14321 bfd_boolean
14322 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14323 {
14324 return (sym->st_shndx == SHN_COMMON
14325 || sym->st_shndx == SHN_MIPS_ACOMMON
14326 || sym->st_shndx == SHN_MIPS_SCOMMON);
14327 }
14328
14329 /* Return address for Ith PLT stub in section PLT, for relocation REL
14330 or (bfd_vma) -1 if it should not be included. */
14331
14332 bfd_vma
14333 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14334 const arelent *rel ATTRIBUTE_UNUSED)
14335 {
14336 return (plt->vma
14337 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14338 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14339 }
14340
14341 void
14342 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14343 {
14344 struct mips_elf_link_hash_table *htab;
14345 Elf_Internal_Ehdr *i_ehdrp;
14346
14347 i_ehdrp = elf_elfheader (abfd);
14348 if (link_info)
14349 {
14350 htab = mips_elf_hash_table (link_info);
14351 BFD_ASSERT (htab != NULL);
14352
14353 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14354 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14355 }
14356 }
This page took 0.34282 seconds and 4 git commands to generate.