daily update
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
438
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MIPS16_TLS_GD \
533 || r_type == R_MIPS16_TLS_LDM \
534 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
535 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
536 || r_type == R_MIPS16_TLS_GOTTPREL \
537 || r_type == R_MIPS16_TLS_TPREL_HI16 \
538 || r_type == R_MIPS16_TLS_TPREL_LO16 \
539 || r_type == R_MICROMIPS_TLS_GD \
540 || r_type == R_MICROMIPS_TLS_LDM \
541 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MICROMIPS_TLS_GOTTPREL \
544 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
545 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
546
547 /* Structure used to pass information to mips_elf_output_extsym. */
548
549 struct extsym_info
550 {
551 bfd *abfd;
552 struct bfd_link_info *info;
553 struct ecoff_debug_info *debug;
554 const struct ecoff_debug_swap *swap;
555 bfd_boolean failed;
556 };
557
558 /* The names of the runtime procedure table symbols used on IRIX5. */
559
560 static const char * const mips_elf_dynsym_rtproc_names[] =
561 {
562 "_procedure_table",
563 "_procedure_string_table",
564 "_procedure_table_size",
565 NULL
566 };
567
568 /* These structures are used to generate the .compact_rel section on
569 IRIX5. */
570
571 typedef struct
572 {
573 unsigned long id1; /* Always one? */
574 unsigned long num; /* Number of compact relocation entries. */
575 unsigned long id2; /* Always two? */
576 unsigned long offset; /* The file offset of the first relocation. */
577 unsigned long reserved0; /* Zero? */
578 unsigned long reserved1; /* Zero? */
579 } Elf32_compact_rel;
580
581 typedef struct
582 {
583 bfd_byte id1[4];
584 bfd_byte num[4];
585 bfd_byte id2[4];
586 bfd_byte offset[4];
587 bfd_byte reserved0[4];
588 bfd_byte reserved1[4];
589 } Elf32_External_compact_rel;
590
591 typedef struct
592 {
593 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
594 unsigned int rtype : 4; /* Relocation types. See below. */
595 unsigned int dist2to : 8;
596 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
597 unsigned long konst; /* KONST field. See below. */
598 unsigned long vaddr; /* VADDR to be relocated. */
599 } Elf32_crinfo;
600
601 typedef struct
602 {
603 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
604 unsigned int rtype : 4; /* Relocation types. See below. */
605 unsigned int dist2to : 8;
606 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
607 unsigned long konst; /* KONST field. See below. */
608 } Elf32_crinfo2;
609
610 typedef struct
611 {
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 bfd_byte vaddr[4];
615 } Elf32_External_crinfo;
616
617 typedef struct
618 {
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 } Elf32_External_crinfo2;
622
623 /* These are the constants used to swap the bitfields in a crinfo. */
624
625 #define CRINFO_CTYPE (0x1)
626 #define CRINFO_CTYPE_SH (31)
627 #define CRINFO_RTYPE (0xf)
628 #define CRINFO_RTYPE_SH (27)
629 #define CRINFO_DIST2TO (0xff)
630 #define CRINFO_DIST2TO_SH (19)
631 #define CRINFO_RELVADDR (0x7ffff)
632 #define CRINFO_RELVADDR_SH (0)
633
634 /* A compact relocation info has long (3 words) or short (2 words)
635 formats. A short format doesn't have VADDR field and relvaddr
636 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
637 #define CRF_MIPS_LONG 1
638 #define CRF_MIPS_SHORT 0
639
640 /* There are 4 types of compact relocation at least. The value KONST
641 has different meaning for each type:
642
643 (type) (konst)
644 CT_MIPS_REL32 Address in data
645 CT_MIPS_WORD Address in word (XXX)
646 CT_MIPS_GPHI_LO GP - vaddr
647 CT_MIPS_JMPAD Address to jump
648 */
649
650 #define CRT_MIPS_REL32 0xa
651 #define CRT_MIPS_WORD 0xb
652 #define CRT_MIPS_GPHI_LO 0xc
653 #define CRT_MIPS_JMPAD 0xd
654
655 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
656 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
657 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
658 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
659 \f
660 /* The structure of the runtime procedure descriptor created by the
661 loader for use by the static exception system. */
662
663 typedef struct runtime_pdr {
664 bfd_vma adr; /* Memory address of start of procedure. */
665 long regmask; /* Save register mask. */
666 long regoffset; /* Save register offset. */
667 long fregmask; /* Save floating point register mask. */
668 long fregoffset; /* Save floating point register offset. */
669 long frameoffset; /* Frame size. */
670 short framereg; /* Frame pointer register. */
671 short pcreg; /* Offset or reg of return pc. */
672 long irpss; /* Index into the runtime string table. */
673 long reserved;
674 struct exception_info *exception_info;/* Pointer to exception array. */
675 } RPDR, *pRPDR;
676 #define cbRPDR sizeof (RPDR)
677 #define rpdNil ((pRPDR) 0)
678 \f
679 static struct mips_got_entry *mips_elf_create_local_got_entry
680 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
681 struct mips_elf_link_hash_entry *, int);
682 static bfd_boolean mips_elf_sort_hash_table_f
683 (struct mips_elf_link_hash_entry *, void *);
684 static bfd_vma mips_elf_high
685 (bfd_vma);
686 static bfd_boolean mips_elf_create_dynamic_relocation
687 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
688 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
689 bfd_vma *, asection *);
690 static hashval_t mips_elf_got_entry_hash
691 (const void *);
692 static bfd_vma mips_elf_adjust_gp
693 (bfd *, struct mips_got_info *, bfd *);
694 static struct mips_got_info *mips_elf_got_for_ibfd
695 (struct mips_got_info *, bfd *);
696
697 /* This will be used when we sort the dynamic relocation records. */
698 static bfd *reldyn_sorting_bfd;
699
700 /* True if ABFD is for CPUs with load interlocking that include
701 non-MIPS1 CPUs and R3900. */
702 #define LOAD_INTERLOCKS_P(abfd) \
703 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
704 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
705
706 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
707 This should be safe for all architectures. We enable this predicate
708 for RM9000 for now. */
709 #define JAL_TO_BAL_P(abfd) \
710 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
711
712 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
713 This should be safe for all architectures. We enable this predicate for
714 all CPUs. */
715 #define JALR_TO_BAL_P(abfd) 1
716
717 /* True if ABFD is for CPUs that are faster if JR is converted to B.
718 This should be safe for all architectures. We enable this predicate for
719 all CPUs. */
720 #define JR_TO_B_P(abfd) 1
721
722 /* True if ABFD is a PIC object. */
723 #define PIC_OBJECT_P(abfd) \
724 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
725
726 /* Nonzero if ABFD is using the N32 ABI. */
727 #define ABI_N32_P(abfd) \
728 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
729
730 /* Nonzero if ABFD is using the N64 ABI. */
731 #define ABI_64_P(abfd) \
732 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
733
734 /* Nonzero if ABFD is using NewABI conventions. */
735 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
736
737 /* The IRIX compatibility level we are striving for. */
738 #define IRIX_COMPAT(abfd) \
739 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
740
741 /* Whether we are trying to be compatible with IRIX at all. */
742 #define SGI_COMPAT(abfd) \
743 (IRIX_COMPAT (abfd) != ict_none)
744
745 /* The name of the options section. */
746 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
747 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
748
749 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
750 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
751 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
752 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
753
754 /* Whether the section is readonly. */
755 #define MIPS_ELF_READONLY_SECTION(sec) \
756 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
757 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
758
759 /* The name of the stub section. */
760 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
761
762 /* The size of an external REL relocation. */
763 #define MIPS_ELF_REL_SIZE(abfd) \
764 (get_elf_backend_data (abfd)->s->sizeof_rel)
765
766 /* The size of an external RELA relocation. */
767 #define MIPS_ELF_RELA_SIZE(abfd) \
768 (get_elf_backend_data (abfd)->s->sizeof_rela)
769
770 /* The size of an external dynamic table entry. */
771 #define MIPS_ELF_DYN_SIZE(abfd) \
772 (get_elf_backend_data (abfd)->s->sizeof_dyn)
773
774 /* The size of a GOT entry. */
775 #define MIPS_ELF_GOT_SIZE(abfd) \
776 (get_elf_backend_data (abfd)->s->arch_size / 8)
777
778 /* The size of the .rld_map section. */
779 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->arch_size / 8)
781
782 /* The size of a symbol-table entry. */
783 #define MIPS_ELF_SYM_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_sym)
785
786 /* The default alignment for sections, as a power of two. */
787 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
788 (get_elf_backend_data (abfd)->s->log_file_align)
789
790 /* Get word-sized data. */
791 #define MIPS_ELF_GET_WORD(abfd, ptr) \
792 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
793
794 /* Put out word-sized data. */
795 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
796 (ABI_64_P (abfd) \
797 ? bfd_put_64 (abfd, val, ptr) \
798 : bfd_put_32 (abfd, val, ptr))
799
800 /* The opcode for word-sized loads (LW or LD). */
801 #define MIPS_ELF_LOAD_WORD(abfd) \
802 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
803
804 /* Add a dynamic symbol table-entry. */
805 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
806 _bfd_elf_add_dynamic_entry (info, tag, val)
807
808 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
810
811 /* The name of the dynamic relocation section. */
812 #define MIPS_ELF_REL_DYN_NAME(INFO) \
813 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
814
815 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
816 from smaller values. Start with zero, widen, *then* decrement. */
817 #define MINUS_ONE (((bfd_vma)0) - 1)
818 #define MINUS_TWO (((bfd_vma)0) - 2)
819
820 /* The value to write into got[1] for SVR4 targets, to identify it is
821 a GNU object. The dynamic linker can then use got[1] to store the
822 module pointer. */
823 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
824 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
825
826 /* The offset of $gp from the beginning of the .got section. */
827 #define ELF_MIPS_GP_OFFSET(INFO) \
828 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
829
830 /* The maximum size of the GOT for it to be addressable using 16-bit
831 offsets from $gp. */
832 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
833
834 /* Instructions which appear in a stub. */
835 #define STUB_LW(abfd) \
836 ((ABI_64_P (abfd) \
837 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
838 : 0x8f998010)) /* lw t9,0x8010(gp) */
839 #define STUB_MOVE(abfd) \
840 ((ABI_64_P (abfd) \
841 ? 0x03e0782d /* daddu t7,ra */ \
842 : 0x03e07821)) /* addu t7,ra */
843 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
844 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
845 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
846 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
847 #define STUB_LI16S(abfd, VAL) \
848 ((ABI_64_P (abfd) \
849 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
850 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
851
852 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
853 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
854
855 /* The name of the dynamic interpreter. This is put in the .interp
856 section. */
857
858 #define ELF_DYNAMIC_INTERPRETER(abfd) \
859 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
860 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
861 : "/usr/lib/libc.so.1")
862
863 #ifdef BFD64
864 #define MNAME(bfd,pre,pos) \
865 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
866 #define ELF_R_SYM(bfd, i) \
867 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
868 #define ELF_R_TYPE(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
870 #define ELF_R_INFO(bfd, s, t) \
871 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
872 #else
873 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
874 #define ELF_R_SYM(bfd, i) \
875 (ELF32_R_SYM (i))
876 #define ELF_R_TYPE(bfd, i) \
877 (ELF32_R_TYPE (i))
878 #define ELF_R_INFO(bfd, s, t) \
879 (ELF32_R_INFO (s, t))
880 #endif
881 \f
882 /* The mips16 compiler uses a couple of special sections to handle
883 floating point arguments.
884
885 Section names that look like .mips16.fn.FNNAME contain stubs that
886 copy floating point arguments from the fp regs to the gp regs and
887 then jump to FNNAME. If any 32 bit function calls FNNAME, the
888 call should be redirected to the stub instead. If no 32 bit
889 function calls FNNAME, the stub should be discarded. We need to
890 consider any reference to the function, not just a call, because
891 if the address of the function is taken we will need the stub,
892 since the address might be passed to a 32 bit function.
893
894 Section names that look like .mips16.call.FNNAME contain stubs
895 that copy floating point arguments from the gp regs to the fp
896 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
897 then any 16 bit function that calls FNNAME should be redirected
898 to the stub instead. If FNNAME is not a 32 bit function, the
899 stub should be discarded.
900
901 .mips16.call.fp.FNNAME sections are similar, but contain stubs
902 which call FNNAME and then copy the return value from the fp regs
903 to the gp regs. These stubs store the return value in $18 while
904 calling FNNAME; any function which might call one of these stubs
905 must arrange to save $18 around the call. (This case is not
906 needed for 32 bit functions that call 16 bit functions, because
907 16 bit functions always return floating point values in both
908 $f0/$f1 and $2/$3.)
909
910 Note that in all cases FNNAME might be defined statically.
911 Therefore, FNNAME is not used literally. Instead, the relocation
912 information will indicate which symbol the section is for.
913
914 We record any stubs that we find in the symbol table. */
915
916 #define FN_STUB ".mips16.fn."
917 #define CALL_STUB ".mips16.call."
918 #define CALL_FP_STUB ".mips16.call.fp."
919
920 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
921 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
922 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
923 \f
924 /* The format of the first PLT entry in an O32 executable. */
925 static const bfd_vma mips_o32_exec_plt0_entry[] =
926 {
927 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
928 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
929 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
930 0x031cc023, /* subu $24, $24, $28 */
931 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
935 };
936
937 /* The format of the first PLT entry in an N32 executable. Different
938 because gp ($28) is not available; we use t2 ($14) instead. */
939 static const bfd_vma mips_n32_exec_plt0_entry[] =
940 {
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
945 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
946 0x0018c082, /* srl $24, $24, 2 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
949 };
950
951 /* The format of the first PLT entry in an N64 executable. Different
952 from N32 because of the increased size of GOT entries. */
953 static const bfd_vma mips_n64_exec_plt0_entry[] =
954 {
955 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
956 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
957 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
958 0x030ec023, /* subu $24, $24, $14 */
959 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
960 0x0018c0c2, /* srl $24, $24, 3 */
961 0x0320f809, /* jalr $25 */
962 0x2718fffe /* subu $24, $24, 2 */
963 };
964
965 /* The format of subsequent PLT entries. */
966 static const bfd_vma mips_exec_plt_entry[] =
967 {
968 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
969 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
970 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
971 0x03200008 /* jr $25 */
972 };
973
974 /* The format of the first PLT entry in a VxWorks executable. */
975 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
976 {
977 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
978 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
979 0x8f390008, /* lw t9, 8(t9) */
980 0x00000000, /* nop */
981 0x03200008, /* jr t9 */
982 0x00000000 /* nop */
983 };
984
985 /* The format of subsequent PLT entries. */
986 static const bfd_vma mips_vxworks_exec_plt_entry[] =
987 {
988 0x10000000, /* b .PLT_resolver */
989 0x24180000, /* li t8, <pltindex> */
990 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
991 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
992 0x8f390000, /* lw t9, 0(t9) */
993 0x00000000, /* nop */
994 0x03200008, /* jr t9 */
995 0x00000000 /* nop */
996 };
997
998 /* The format of the first PLT entry in a VxWorks shared object. */
999 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1000 {
1001 0x8f990008, /* lw t9, 8(gp) */
1002 0x00000000, /* nop */
1003 0x03200008, /* jr t9 */
1004 0x00000000, /* nop */
1005 0x00000000, /* nop */
1006 0x00000000 /* nop */
1007 };
1008
1009 /* The format of subsequent PLT entries. */
1010 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1011 {
1012 0x10000000, /* b .PLT_resolver */
1013 0x24180000 /* li t8, <pltindex> */
1014 };
1015 \f
1016 /* Look up an entry in a MIPS ELF linker hash table. */
1017
1018 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1019 ((struct mips_elf_link_hash_entry *) \
1020 elf_link_hash_lookup (&(table)->root, (string), (create), \
1021 (copy), (follow)))
1022
1023 /* Traverse a MIPS ELF linker hash table. */
1024
1025 #define mips_elf_link_hash_traverse(table, func, info) \
1026 (elf_link_hash_traverse \
1027 (&(table)->root, \
1028 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1029 (info)))
1030
1031 /* Find the base offsets for thread-local storage in this object,
1032 for GD/LD and IE/LE respectively. */
1033
1034 #define TP_OFFSET 0x7000
1035 #define DTP_OFFSET 0x8000
1036
1037 static bfd_vma
1038 dtprel_base (struct bfd_link_info *info)
1039 {
1040 /* If tls_sec is NULL, we should have signalled an error already. */
1041 if (elf_hash_table (info)->tls_sec == NULL)
1042 return 0;
1043 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1044 }
1045
1046 static bfd_vma
1047 tprel_base (struct bfd_link_info *info)
1048 {
1049 /* If tls_sec is NULL, we should have signalled an error already. */
1050 if (elf_hash_table (info)->tls_sec == NULL)
1051 return 0;
1052 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1053 }
1054
1055 /* Create an entry in a MIPS ELF linker hash table. */
1056
1057 static struct bfd_hash_entry *
1058 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1059 struct bfd_hash_table *table, const char *string)
1060 {
1061 struct mips_elf_link_hash_entry *ret =
1062 (struct mips_elf_link_hash_entry *) entry;
1063
1064 /* Allocate the structure if it has not already been allocated by a
1065 subclass. */
1066 if (ret == NULL)
1067 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1068 if (ret == NULL)
1069 return (struct bfd_hash_entry *) ret;
1070
1071 /* Call the allocation method of the superclass. */
1072 ret = ((struct mips_elf_link_hash_entry *)
1073 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1074 table, string));
1075 if (ret != NULL)
1076 {
1077 /* Set local fields. */
1078 memset (&ret->esym, 0, sizeof (EXTR));
1079 /* We use -2 as a marker to indicate that the information has
1080 not been set. -1 means there is no associated ifd. */
1081 ret->esym.ifd = -2;
1082 ret->la25_stub = 0;
1083 ret->possibly_dynamic_relocs = 0;
1084 ret->fn_stub = NULL;
1085 ret->call_stub = NULL;
1086 ret->call_fp_stub = NULL;
1087 ret->tls_type = GOT_NORMAL;
1088 ret->global_got_area = GGA_NONE;
1089 ret->got_only_for_calls = TRUE;
1090 ret->readonly_reloc = FALSE;
1091 ret->has_static_relocs = FALSE;
1092 ret->no_fn_stub = FALSE;
1093 ret->need_fn_stub = FALSE;
1094 ret->has_nonpic_branches = FALSE;
1095 ret->needs_lazy_stub = FALSE;
1096 }
1097
1098 return (struct bfd_hash_entry *) ret;
1099 }
1100
1101 bfd_boolean
1102 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1103 {
1104 if (!sec->used_by_bfd)
1105 {
1106 struct _mips_elf_section_data *sdata;
1107 bfd_size_type amt = sizeof (*sdata);
1108
1109 sdata = bfd_zalloc (abfd, amt);
1110 if (sdata == NULL)
1111 return FALSE;
1112 sec->used_by_bfd = sdata;
1113 }
1114
1115 return _bfd_elf_new_section_hook (abfd, sec);
1116 }
1117 \f
1118 /* Read ECOFF debugging information from a .mdebug section into a
1119 ecoff_debug_info structure. */
1120
1121 bfd_boolean
1122 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1123 struct ecoff_debug_info *debug)
1124 {
1125 HDRR *symhdr;
1126 const struct ecoff_debug_swap *swap;
1127 char *ext_hdr;
1128
1129 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1130 memset (debug, 0, sizeof (*debug));
1131
1132 ext_hdr = bfd_malloc (swap->external_hdr_size);
1133 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1134 goto error_return;
1135
1136 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1137 swap->external_hdr_size))
1138 goto error_return;
1139
1140 symhdr = &debug->symbolic_header;
1141 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1142
1143 /* The symbolic header contains absolute file offsets and sizes to
1144 read. */
1145 #define READ(ptr, offset, count, size, type) \
1146 if (symhdr->count == 0) \
1147 debug->ptr = NULL; \
1148 else \
1149 { \
1150 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1151 debug->ptr = bfd_malloc (amt); \
1152 if (debug->ptr == NULL) \
1153 goto error_return; \
1154 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1155 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1156 goto error_return; \
1157 }
1158
1159 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1160 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1161 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1162 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1163 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1164 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1165 union aux_ext *);
1166 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1167 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1168 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1169 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1170 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1171 #undef READ
1172
1173 debug->fdr = NULL;
1174
1175 return TRUE;
1176
1177 error_return:
1178 if (ext_hdr != NULL)
1179 free (ext_hdr);
1180 if (debug->line != NULL)
1181 free (debug->line);
1182 if (debug->external_dnr != NULL)
1183 free (debug->external_dnr);
1184 if (debug->external_pdr != NULL)
1185 free (debug->external_pdr);
1186 if (debug->external_sym != NULL)
1187 free (debug->external_sym);
1188 if (debug->external_opt != NULL)
1189 free (debug->external_opt);
1190 if (debug->external_aux != NULL)
1191 free (debug->external_aux);
1192 if (debug->ss != NULL)
1193 free (debug->ss);
1194 if (debug->ssext != NULL)
1195 free (debug->ssext);
1196 if (debug->external_fdr != NULL)
1197 free (debug->external_fdr);
1198 if (debug->external_rfd != NULL)
1199 free (debug->external_rfd);
1200 if (debug->external_ext != NULL)
1201 free (debug->external_ext);
1202 return FALSE;
1203 }
1204 \f
1205 /* Swap RPDR (runtime procedure table entry) for output. */
1206
1207 static void
1208 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1209 {
1210 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1211 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1212 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1213 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1214 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1215 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1216
1217 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1218 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1219
1220 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1221 }
1222
1223 /* Create a runtime procedure table from the .mdebug section. */
1224
1225 static bfd_boolean
1226 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1227 struct bfd_link_info *info, asection *s,
1228 struct ecoff_debug_info *debug)
1229 {
1230 const struct ecoff_debug_swap *swap;
1231 HDRR *hdr = &debug->symbolic_header;
1232 RPDR *rpdr, *rp;
1233 struct rpdr_ext *erp;
1234 void *rtproc;
1235 struct pdr_ext *epdr;
1236 struct sym_ext *esym;
1237 char *ss, **sv;
1238 char *str;
1239 bfd_size_type size;
1240 bfd_size_type count;
1241 unsigned long sindex;
1242 unsigned long i;
1243 PDR pdr;
1244 SYMR sym;
1245 const char *no_name_func = _("static procedure (no name)");
1246
1247 epdr = NULL;
1248 rpdr = NULL;
1249 esym = NULL;
1250 ss = NULL;
1251 sv = NULL;
1252
1253 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1254
1255 sindex = strlen (no_name_func) + 1;
1256 count = hdr->ipdMax;
1257 if (count > 0)
1258 {
1259 size = swap->external_pdr_size;
1260
1261 epdr = bfd_malloc (size * count);
1262 if (epdr == NULL)
1263 goto error_return;
1264
1265 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1266 goto error_return;
1267
1268 size = sizeof (RPDR);
1269 rp = rpdr = bfd_malloc (size * count);
1270 if (rpdr == NULL)
1271 goto error_return;
1272
1273 size = sizeof (char *);
1274 sv = bfd_malloc (size * count);
1275 if (sv == NULL)
1276 goto error_return;
1277
1278 count = hdr->isymMax;
1279 size = swap->external_sym_size;
1280 esym = bfd_malloc (size * count);
1281 if (esym == NULL)
1282 goto error_return;
1283
1284 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1285 goto error_return;
1286
1287 count = hdr->issMax;
1288 ss = bfd_malloc (count);
1289 if (ss == NULL)
1290 goto error_return;
1291 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1292 goto error_return;
1293
1294 count = hdr->ipdMax;
1295 for (i = 0; i < (unsigned long) count; i++, rp++)
1296 {
1297 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1298 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1299 rp->adr = sym.value;
1300 rp->regmask = pdr.regmask;
1301 rp->regoffset = pdr.regoffset;
1302 rp->fregmask = pdr.fregmask;
1303 rp->fregoffset = pdr.fregoffset;
1304 rp->frameoffset = pdr.frameoffset;
1305 rp->framereg = pdr.framereg;
1306 rp->pcreg = pdr.pcreg;
1307 rp->irpss = sindex;
1308 sv[i] = ss + sym.iss;
1309 sindex += strlen (sv[i]) + 1;
1310 }
1311 }
1312
1313 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1314 size = BFD_ALIGN (size, 16);
1315 rtproc = bfd_alloc (abfd, size);
1316 if (rtproc == NULL)
1317 {
1318 mips_elf_hash_table (info)->procedure_count = 0;
1319 goto error_return;
1320 }
1321
1322 mips_elf_hash_table (info)->procedure_count = count + 2;
1323
1324 erp = rtproc;
1325 memset (erp, 0, sizeof (struct rpdr_ext));
1326 erp++;
1327 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1328 strcpy (str, no_name_func);
1329 str += strlen (no_name_func) + 1;
1330 for (i = 0; i < count; i++)
1331 {
1332 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1333 strcpy (str, sv[i]);
1334 str += strlen (sv[i]) + 1;
1335 }
1336 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1337
1338 /* Set the size and contents of .rtproc section. */
1339 s->size = size;
1340 s->contents = rtproc;
1341
1342 /* Skip this section later on (I don't think this currently
1343 matters, but someday it might). */
1344 s->map_head.link_order = NULL;
1345
1346 if (epdr != NULL)
1347 free (epdr);
1348 if (rpdr != NULL)
1349 free (rpdr);
1350 if (esym != NULL)
1351 free (esym);
1352 if (ss != NULL)
1353 free (ss);
1354 if (sv != NULL)
1355 free (sv);
1356
1357 return TRUE;
1358
1359 error_return:
1360 if (epdr != NULL)
1361 free (epdr);
1362 if (rpdr != NULL)
1363 free (rpdr);
1364 if (esym != NULL)
1365 free (esym);
1366 if (ss != NULL)
1367 free (ss);
1368 if (sv != NULL)
1369 free (sv);
1370 return FALSE;
1371 }
1372 \f
1373 /* We're going to create a stub for H. Create a symbol for the stub's
1374 value and size, to help make the disassembly easier to read. */
1375
1376 static bfd_boolean
1377 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1378 struct mips_elf_link_hash_entry *h,
1379 const char *prefix, asection *s, bfd_vma value,
1380 bfd_vma size)
1381 {
1382 struct bfd_link_hash_entry *bh;
1383 struct elf_link_hash_entry *elfh;
1384 const char *name;
1385
1386 if (ELF_ST_IS_MICROMIPS (h->root.other))
1387 value |= 1;
1388
1389 /* Create a new symbol. */
1390 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1391 bh = NULL;
1392 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1393 BSF_LOCAL, s, value, NULL,
1394 TRUE, FALSE, &bh))
1395 return FALSE;
1396
1397 /* Make it a local function. */
1398 elfh = (struct elf_link_hash_entry *) bh;
1399 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1400 elfh->size = size;
1401 elfh->forced_local = 1;
1402 return TRUE;
1403 }
1404
1405 /* We're about to redefine H. Create a symbol to represent H's
1406 current value and size, to help make the disassembly easier
1407 to read. */
1408
1409 static bfd_boolean
1410 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1411 struct mips_elf_link_hash_entry *h,
1412 const char *prefix)
1413 {
1414 struct bfd_link_hash_entry *bh;
1415 struct elf_link_hash_entry *elfh;
1416 const char *name;
1417 asection *s;
1418 bfd_vma value;
1419
1420 /* Read the symbol's value. */
1421 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1422 || h->root.root.type == bfd_link_hash_defweak);
1423 s = h->root.root.u.def.section;
1424 value = h->root.root.u.def.value;
1425
1426 /* Create a new symbol. */
1427 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1428 bh = NULL;
1429 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1430 BSF_LOCAL, s, value, NULL,
1431 TRUE, FALSE, &bh))
1432 return FALSE;
1433
1434 /* Make it local and copy the other attributes from H. */
1435 elfh = (struct elf_link_hash_entry *) bh;
1436 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1437 elfh->other = h->root.other;
1438 elfh->size = h->root.size;
1439 elfh->forced_local = 1;
1440 return TRUE;
1441 }
1442
1443 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1444 function rather than to a hard-float stub. */
1445
1446 static bfd_boolean
1447 section_allows_mips16_refs_p (asection *section)
1448 {
1449 const char *name;
1450
1451 name = bfd_get_section_name (section->owner, section);
1452 return (FN_STUB_P (name)
1453 || CALL_STUB_P (name)
1454 || CALL_FP_STUB_P (name)
1455 || strcmp (name, ".pdr") == 0);
1456 }
1457
1458 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1459 stub section of some kind. Return the R_SYMNDX of the target
1460 function, or 0 if we can't decide which function that is. */
1461
1462 static unsigned long
1463 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1464 const Elf_Internal_Rela *relocs,
1465 const Elf_Internal_Rela *relend)
1466 {
1467 const Elf_Internal_Rela *rel;
1468
1469 /* Trust the first R_MIPS_NONE relocation, if any. */
1470 for (rel = relocs; rel < relend; rel++)
1471 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1472 return ELF_R_SYM (sec->owner, rel->r_info);
1473
1474 /* Otherwise trust the first relocation, whatever its kind. This is
1475 the traditional behavior. */
1476 if (relocs < relend)
1477 return ELF_R_SYM (sec->owner, relocs->r_info);
1478
1479 return 0;
1480 }
1481
1482 /* Check the mips16 stubs for a particular symbol, and see if we can
1483 discard them. */
1484
1485 static void
1486 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1487 struct mips_elf_link_hash_entry *h)
1488 {
1489 /* Dynamic symbols must use the standard call interface, in case other
1490 objects try to call them. */
1491 if (h->fn_stub != NULL
1492 && h->root.dynindx != -1)
1493 {
1494 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1495 h->need_fn_stub = TRUE;
1496 }
1497
1498 if (h->fn_stub != NULL
1499 && ! h->need_fn_stub)
1500 {
1501 /* We don't need the fn_stub; the only references to this symbol
1502 are 16 bit calls. Clobber the size to 0 to prevent it from
1503 being included in the link. */
1504 h->fn_stub->size = 0;
1505 h->fn_stub->flags &= ~SEC_RELOC;
1506 h->fn_stub->reloc_count = 0;
1507 h->fn_stub->flags |= SEC_EXCLUDE;
1508 }
1509
1510 if (h->call_stub != NULL
1511 && ELF_ST_IS_MIPS16 (h->root.other))
1512 {
1513 /* We don't need the call_stub; this is a 16 bit function, so
1514 calls from other 16 bit functions are OK. Clobber the size
1515 to 0 to prevent it from being included in the link. */
1516 h->call_stub->size = 0;
1517 h->call_stub->flags &= ~SEC_RELOC;
1518 h->call_stub->reloc_count = 0;
1519 h->call_stub->flags |= SEC_EXCLUDE;
1520 }
1521
1522 if (h->call_fp_stub != NULL
1523 && ELF_ST_IS_MIPS16 (h->root.other))
1524 {
1525 /* We don't need the call_stub; this is a 16 bit function, so
1526 calls from other 16 bit functions are OK. Clobber the size
1527 to 0 to prevent it from being included in the link. */
1528 h->call_fp_stub->size = 0;
1529 h->call_fp_stub->flags &= ~SEC_RELOC;
1530 h->call_fp_stub->reloc_count = 0;
1531 h->call_fp_stub->flags |= SEC_EXCLUDE;
1532 }
1533 }
1534
1535 /* Hashtable callbacks for mips_elf_la25_stubs. */
1536
1537 static hashval_t
1538 mips_elf_la25_stub_hash (const void *entry_)
1539 {
1540 const struct mips_elf_la25_stub *entry;
1541
1542 entry = (struct mips_elf_la25_stub *) entry_;
1543 return entry->h->root.root.u.def.section->id
1544 + entry->h->root.root.u.def.value;
1545 }
1546
1547 static int
1548 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1549 {
1550 const struct mips_elf_la25_stub *entry1, *entry2;
1551
1552 entry1 = (struct mips_elf_la25_stub *) entry1_;
1553 entry2 = (struct mips_elf_la25_stub *) entry2_;
1554 return ((entry1->h->root.root.u.def.section
1555 == entry2->h->root.root.u.def.section)
1556 && (entry1->h->root.root.u.def.value
1557 == entry2->h->root.root.u.def.value));
1558 }
1559
1560 /* Called by the linker to set up the la25 stub-creation code. FN is
1561 the linker's implementation of add_stub_function. Return true on
1562 success. */
1563
1564 bfd_boolean
1565 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1566 asection *(*fn) (const char *, asection *,
1567 asection *))
1568 {
1569 struct mips_elf_link_hash_table *htab;
1570
1571 htab = mips_elf_hash_table (info);
1572 if (htab == NULL)
1573 return FALSE;
1574
1575 htab->add_stub_section = fn;
1576 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1577 mips_elf_la25_stub_eq, NULL);
1578 if (htab->la25_stubs == NULL)
1579 return FALSE;
1580
1581 return TRUE;
1582 }
1583
1584 /* Return true if H is a locally-defined PIC function, in the sense
1585 that it or its fn_stub might need $25 to be valid on entry.
1586 Note that MIPS16 functions set up $gp using PC-relative instructions,
1587 so they themselves never need $25 to be valid. Only non-MIPS16
1588 entry points are of interest here. */
1589
1590 static bfd_boolean
1591 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1592 {
1593 return ((h->root.root.type == bfd_link_hash_defined
1594 || h->root.root.type == bfd_link_hash_defweak)
1595 && h->root.def_regular
1596 && !bfd_is_abs_section (h->root.root.u.def.section)
1597 && (!ELF_ST_IS_MIPS16 (h->root.other)
1598 || (h->fn_stub && h->need_fn_stub))
1599 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1600 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1601 }
1602
1603 /* Set *SEC to the input section that contains the target of STUB.
1604 Return the offset of the target from the start of that section. */
1605
1606 static bfd_vma
1607 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1608 asection **sec)
1609 {
1610 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1611 {
1612 BFD_ASSERT (stub->h->need_fn_stub);
1613 *sec = stub->h->fn_stub;
1614 return 0;
1615 }
1616 else
1617 {
1618 *sec = stub->h->root.root.u.def.section;
1619 return stub->h->root.root.u.def.value;
1620 }
1621 }
1622
1623 /* STUB describes an la25 stub that we have decided to implement
1624 by inserting an LUI/ADDIU pair before the target function.
1625 Create the section and redirect the function symbol to it. */
1626
1627 static bfd_boolean
1628 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1629 struct bfd_link_info *info)
1630 {
1631 struct mips_elf_link_hash_table *htab;
1632 char *name;
1633 asection *s, *input_section;
1634 unsigned int align;
1635
1636 htab = mips_elf_hash_table (info);
1637 if (htab == NULL)
1638 return FALSE;
1639
1640 /* Create a unique name for the new section. */
1641 name = bfd_malloc (11 + sizeof (".text.stub."));
1642 if (name == NULL)
1643 return FALSE;
1644 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1645
1646 /* Create the section. */
1647 mips_elf_get_la25_target (stub, &input_section);
1648 s = htab->add_stub_section (name, input_section,
1649 input_section->output_section);
1650 if (s == NULL)
1651 return FALSE;
1652
1653 /* Make sure that any padding goes before the stub. */
1654 align = input_section->alignment_power;
1655 if (!bfd_set_section_alignment (s->owner, s, align))
1656 return FALSE;
1657 if (align > 3)
1658 s->size = (1 << align) - 8;
1659
1660 /* Create a symbol for the stub. */
1661 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1662 stub->stub_section = s;
1663 stub->offset = s->size;
1664
1665 /* Allocate room for it. */
1666 s->size += 8;
1667 return TRUE;
1668 }
1669
1670 /* STUB describes an la25 stub that we have decided to implement
1671 with a separate trampoline. Allocate room for it and redirect
1672 the function symbol to it. */
1673
1674 static bfd_boolean
1675 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1676 struct bfd_link_info *info)
1677 {
1678 struct mips_elf_link_hash_table *htab;
1679 asection *s;
1680
1681 htab = mips_elf_hash_table (info);
1682 if (htab == NULL)
1683 return FALSE;
1684
1685 /* Create a trampoline section, if we haven't already. */
1686 s = htab->strampoline;
1687 if (s == NULL)
1688 {
1689 asection *input_section = stub->h->root.root.u.def.section;
1690 s = htab->add_stub_section (".text", NULL,
1691 input_section->output_section);
1692 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1693 return FALSE;
1694 htab->strampoline = s;
1695 }
1696
1697 /* Create a symbol for the stub. */
1698 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1699 stub->stub_section = s;
1700 stub->offset = s->size;
1701
1702 /* Allocate room for it. */
1703 s->size += 16;
1704 return TRUE;
1705 }
1706
1707 /* H describes a symbol that needs an la25 stub. Make sure that an
1708 appropriate stub exists and point H at it. */
1709
1710 static bfd_boolean
1711 mips_elf_add_la25_stub (struct bfd_link_info *info,
1712 struct mips_elf_link_hash_entry *h)
1713 {
1714 struct mips_elf_link_hash_table *htab;
1715 struct mips_elf_la25_stub search, *stub;
1716 bfd_boolean use_trampoline_p;
1717 asection *s;
1718 bfd_vma value;
1719 void **slot;
1720
1721 /* Describe the stub we want. */
1722 search.stub_section = NULL;
1723 search.offset = 0;
1724 search.h = h;
1725
1726 /* See if we've already created an equivalent stub. */
1727 htab = mips_elf_hash_table (info);
1728 if (htab == NULL)
1729 return FALSE;
1730
1731 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1732 if (slot == NULL)
1733 return FALSE;
1734
1735 stub = (struct mips_elf_la25_stub *) *slot;
1736 if (stub != NULL)
1737 {
1738 /* We can reuse the existing stub. */
1739 h->la25_stub = stub;
1740 return TRUE;
1741 }
1742
1743 /* Create a permanent copy of ENTRY and add it to the hash table. */
1744 stub = bfd_malloc (sizeof (search));
1745 if (stub == NULL)
1746 return FALSE;
1747 *stub = search;
1748 *slot = stub;
1749
1750 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1751 of the section and if we would need no more than 2 nops. */
1752 value = mips_elf_get_la25_target (stub, &s);
1753 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1754
1755 h->la25_stub = stub;
1756 return (use_trampoline_p
1757 ? mips_elf_add_la25_trampoline (stub, info)
1758 : mips_elf_add_la25_intro (stub, info));
1759 }
1760
1761 /* A mips_elf_link_hash_traverse callback that is called before sizing
1762 sections. DATA points to a mips_htab_traverse_info structure. */
1763
1764 static bfd_boolean
1765 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1766 {
1767 struct mips_htab_traverse_info *hti;
1768
1769 hti = (struct mips_htab_traverse_info *) data;
1770 if (!hti->info->relocatable)
1771 mips_elf_check_mips16_stubs (hti->info, h);
1772
1773 if (mips_elf_local_pic_function_p (h))
1774 {
1775 /* PR 12845: If H is in a section that has been garbage
1776 collected it will have its output section set to *ABS*. */
1777 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1778 return TRUE;
1779
1780 /* H is a function that might need $25 to be valid on entry.
1781 If we're creating a non-PIC relocatable object, mark H as
1782 being PIC. If we're creating a non-relocatable object with
1783 non-PIC branches and jumps to H, make sure that H has an la25
1784 stub. */
1785 if (hti->info->relocatable)
1786 {
1787 if (!PIC_OBJECT_P (hti->output_bfd))
1788 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1789 }
1790 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1791 {
1792 hti->error = TRUE;
1793 return FALSE;
1794 }
1795 }
1796 return TRUE;
1797 }
1798 \f
1799 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1800 Most mips16 instructions are 16 bits, but these instructions
1801 are 32 bits.
1802
1803 The format of these instructions is:
1804
1805 +--------------+--------------------------------+
1806 | JALX | X| Imm 20:16 | Imm 25:21 |
1807 +--------------+--------------------------------+
1808 | Immediate 15:0 |
1809 +-----------------------------------------------+
1810
1811 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1812 Note that the immediate value in the first word is swapped.
1813
1814 When producing a relocatable object file, R_MIPS16_26 is
1815 handled mostly like R_MIPS_26. In particular, the addend is
1816 stored as a straight 26-bit value in a 32-bit instruction.
1817 (gas makes life simpler for itself by never adjusting a
1818 R_MIPS16_26 reloc to be against a section, so the addend is
1819 always zero). However, the 32 bit instruction is stored as 2
1820 16-bit values, rather than a single 32-bit value. In a
1821 big-endian file, the result is the same; in a little-endian
1822 file, the two 16-bit halves of the 32 bit value are swapped.
1823 This is so that a disassembler can recognize the jal
1824 instruction.
1825
1826 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1827 instruction stored as two 16-bit values. The addend A is the
1828 contents of the targ26 field. The calculation is the same as
1829 R_MIPS_26. When storing the calculated value, reorder the
1830 immediate value as shown above, and don't forget to store the
1831 value as two 16-bit values.
1832
1833 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1834 defined as
1835
1836 big-endian:
1837 +--------+----------------------+
1838 | | |
1839 | | targ26-16 |
1840 |31 26|25 0|
1841 +--------+----------------------+
1842
1843 little-endian:
1844 +----------+------+-------------+
1845 | | | |
1846 | sub1 | | sub2 |
1847 |0 9|10 15|16 31|
1848 +----------+--------------------+
1849 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1850 ((sub1 << 16) | sub2)).
1851
1852 When producing a relocatable object file, the calculation is
1853 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1854 When producing a fully linked file, the calculation is
1855 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1856 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1857
1858 The table below lists the other MIPS16 instruction relocations.
1859 Each one is calculated in the same way as the non-MIPS16 relocation
1860 given on the right, but using the extended MIPS16 layout of 16-bit
1861 immediate fields:
1862
1863 R_MIPS16_GPREL R_MIPS_GPREL16
1864 R_MIPS16_GOT16 R_MIPS_GOT16
1865 R_MIPS16_CALL16 R_MIPS_CALL16
1866 R_MIPS16_HI16 R_MIPS_HI16
1867 R_MIPS16_LO16 R_MIPS_LO16
1868
1869 A typical instruction will have a format like this:
1870
1871 +--------------+--------------------------------+
1872 | EXTEND | Imm 10:5 | Imm 15:11 |
1873 +--------------+--------------------------------+
1874 | Major | rx | ry | Imm 4:0 |
1875 +--------------+--------------------------------+
1876
1877 EXTEND is the five bit value 11110. Major is the instruction
1878 opcode.
1879
1880 All we need to do here is shuffle the bits appropriately.
1881 As above, the two 16-bit halves must be swapped on a
1882 little-endian system. */
1883
1884 static inline bfd_boolean
1885 mips16_reloc_p (int r_type)
1886 {
1887 switch (r_type)
1888 {
1889 case R_MIPS16_26:
1890 case R_MIPS16_GPREL:
1891 case R_MIPS16_GOT16:
1892 case R_MIPS16_CALL16:
1893 case R_MIPS16_HI16:
1894 case R_MIPS16_LO16:
1895 case R_MIPS16_TLS_GD:
1896 case R_MIPS16_TLS_LDM:
1897 case R_MIPS16_TLS_DTPREL_HI16:
1898 case R_MIPS16_TLS_DTPREL_LO16:
1899 case R_MIPS16_TLS_GOTTPREL:
1900 case R_MIPS16_TLS_TPREL_HI16:
1901 case R_MIPS16_TLS_TPREL_LO16:
1902 return TRUE;
1903
1904 default:
1905 return FALSE;
1906 }
1907 }
1908
1909 /* Check if a microMIPS reloc. */
1910
1911 static inline bfd_boolean
1912 micromips_reloc_p (unsigned int r_type)
1913 {
1914 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1915 }
1916
1917 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1918 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1919 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1920
1921 static inline bfd_boolean
1922 micromips_reloc_shuffle_p (unsigned int r_type)
1923 {
1924 return (micromips_reloc_p (r_type)
1925 && r_type != R_MICROMIPS_PC7_S1
1926 && r_type != R_MICROMIPS_PC10_S1);
1927 }
1928
1929 static inline bfd_boolean
1930 got16_reloc_p (int r_type)
1931 {
1932 return (r_type == R_MIPS_GOT16
1933 || r_type == R_MIPS16_GOT16
1934 || r_type == R_MICROMIPS_GOT16);
1935 }
1936
1937 static inline bfd_boolean
1938 call16_reloc_p (int r_type)
1939 {
1940 return (r_type == R_MIPS_CALL16
1941 || r_type == R_MIPS16_CALL16
1942 || r_type == R_MICROMIPS_CALL16);
1943 }
1944
1945 static inline bfd_boolean
1946 got_disp_reloc_p (unsigned int r_type)
1947 {
1948 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1949 }
1950
1951 static inline bfd_boolean
1952 got_page_reloc_p (unsigned int r_type)
1953 {
1954 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1955 }
1956
1957 static inline bfd_boolean
1958 got_ofst_reloc_p (unsigned int r_type)
1959 {
1960 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1961 }
1962
1963 static inline bfd_boolean
1964 got_hi16_reloc_p (unsigned int r_type)
1965 {
1966 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1967 }
1968
1969 static inline bfd_boolean
1970 got_lo16_reloc_p (unsigned int r_type)
1971 {
1972 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1973 }
1974
1975 static inline bfd_boolean
1976 call_hi16_reloc_p (unsigned int r_type)
1977 {
1978 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1979 }
1980
1981 static inline bfd_boolean
1982 call_lo16_reloc_p (unsigned int r_type)
1983 {
1984 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1985 }
1986
1987 static inline bfd_boolean
1988 hi16_reloc_p (int r_type)
1989 {
1990 return (r_type == R_MIPS_HI16
1991 || r_type == R_MIPS16_HI16
1992 || r_type == R_MICROMIPS_HI16);
1993 }
1994
1995 static inline bfd_boolean
1996 lo16_reloc_p (int r_type)
1997 {
1998 return (r_type == R_MIPS_LO16
1999 || r_type == R_MIPS16_LO16
2000 || r_type == R_MICROMIPS_LO16);
2001 }
2002
2003 static inline bfd_boolean
2004 mips16_call_reloc_p (int r_type)
2005 {
2006 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2007 }
2008
2009 static inline bfd_boolean
2010 jal_reloc_p (int r_type)
2011 {
2012 return (r_type == R_MIPS_26
2013 || r_type == R_MIPS16_26
2014 || r_type == R_MICROMIPS_26_S1);
2015 }
2016
2017 static inline bfd_boolean
2018 micromips_branch_reloc_p (int r_type)
2019 {
2020 return (r_type == R_MICROMIPS_26_S1
2021 || r_type == R_MICROMIPS_PC16_S1
2022 || r_type == R_MICROMIPS_PC10_S1
2023 || r_type == R_MICROMIPS_PC7_S1);
2024 }
2025
2026 static inline bfd_boolean
2027 tls_gd_reloc_p (unsigned int r_type)
2028 {
2029 return (r_type == R_MIPS_TLS_GD
2030 || r_type == R_MIPS16_TLS_GD
2031 || r_type == R_MICROMIPS_TLS_GD);
2032 }
2033
2034 static inline bfd_boolean
2035 tls_ldm_reloc_p (unsigned int r_type)
2036 {
2037 return (r_type == R_MIPS_TLS_LDM
2038 || r_type == R_MIPS16_TLS_LDM
2039 || r_type == R_MICROMIPS_TLS_LDM);
2040 }
2041
2042 static inline bfd_boolean
2043 tls_gottprel_reloc_p (unsigned int r_type)
2044 {
2045 return (r_type == R_MIPS_TLS_GOTTPREL
2046 || r_type == R_MIPS16_TLS_GOTTPREL
2047 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2048 }
2049
2050 void
2051 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2052 bfd_boolean jal_shuffle, bfd_byte *data)
2053 {
2054 bfd_vma first, second, val;
2055
2056 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2057 return;
2058
2059 /* Pick up the first and second halfwords of the instruction. */
2060 first = bfd_get_16 (abfd, data);
2061 second = bfd_get_16 (abfd, data + 2);
2062 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2063 val = first << 16 | second;
2064 else if (r_type != R_MIPS16_26)
2065 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2066 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2067 else
2068 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2069 | ((first & 0x1f) << 21) | second);
2070 bfd_put_32 (abfd, val, data);
2071 }
2072
2073 void
2074 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2075 bfd_boolean jal_shuffle, bfd_byte *data)
2076 {
2077 bfd_vma first, second, val;
2078
2079 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2080 return;
2081
2082 val = bfd_get_32 (abfd, data);
2083 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2084 {
2085 second = val & 0xffff;
2086 first = val >> 16;
2087 }
2088 else if (r_type != R_MIPS16_26)
2089 {
2090 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2091 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2092 }
2093 else
2094 {
2095 second = val & 0xffff;
2096 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2097 | ((val >> 21) & 0x1f);
2098 }
2099 bfd_put_16 (abfd, second, data + 2);
2100 bfd_put_16 (abfd, first, data);
2101 }
2102
2103 bfd_reloc_status_type
2104 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2105 arelent *reloc_entry, asection *input_section,
2106 bfd_boolean relocatable, void *data, bfd_vma gp)
2107 {
2108 bfd_vma relocation;
2109 bfd_signed_vma val;
2110 bfd_reloc_status_type status;
2111
2112 if (bfd_is_com_section (symbol->section))
2113 relocation = 0;
2114 else
2115 relocation = symbol->value;
2116
2117 relocation += symbol->section->output_section->vma;
2118 relocation += symbol->section->output_offset;
2119
2120 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2121 return bfd_reloc_outofrange;
2122
2123 /* Set val to the offset into the section or symbol. */
2124 val = reloc_entry->addend;
2125
2126 _bfd_mips_elf_sign_extend (val, 16);
2127
2128 /* Adjust val for the final section location and GP value. If we
2129 are producing relocatable output, we don't want to do this for
2130 an external symbol. */
2131 if (! relocatable
2132 || (symbol->flags & BSF_SECTION_SYM) != 0)
2133 val += relocation - gp;
2134
2135 if (reloc_entry->howto->partial_inplace)
2136 {
2137 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2138 (bfd_byte *) data
2139 + reloc_entry->address);
2140 if (status != bfd_reloc_ok)
2141 return status;
2142 }
2143 else
2144 reloc_entry->addend = val;
2145
2146 if (relocatable)
2147 reloc_entry->address += input_section->output_offset;
2148
2149 return bfd_reloc_ok;
2150 }
2151
2152 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2153 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2154 that contains the relocation field and DATA points to the start of
2155 INPUT_SECTION. */
2156
2157 struct mips_hi16
2158 {
2159 struct mips_hi16 *next;
2160 bfd_byte *data;
2161 asection *input_section;
2162 arelent rel;
2163 };
2164
2165 /* FIXME: This should not be a static variable. */
2166
2167 static struct mips_hi16 *mips_hi16_list;
2168
2169 /* A howto special_function for REL *HI16 relocations. We can only
2170 calculate the correct value once we've seen the partnering
2171 *LO16 relocation, so just save the information for later.
2172
2173 The ABI requires that the *LO16 immediately follow the *HI16.
2174 However, as a GNU extension, we permit an arbitrary number of
2175 *HI16s to be associated with a single *LO16. This significantly
2176 simplies the relocation handling in gcc. */
2177
2178 bfd_reloc_status_type
2179 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2180 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2181 asection *input_section, bfd *output_bfd,
2182 char **error_message ATTRIBUTE_UNUSED)
2183 {
2184 struct mips_hi16 *n;
2185
2186 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2187 return bfd_reloc_outofrange;
2188
2189 n = bfd_malloc (sizeof *n);
2190 if (n == NULL)
2191 return bfd_reloc_outofrange;
2192
2193 n->next = mips_hi16_list;
2194 n->data = data;
2195 n->input_section = input_section;
2196 n->rel = *reloc_entry;
2197 mips_hi16_list = n;
2198
2199 if (output_bfd != NULL)
2200 reloc_entry->address += input_section->output_offset;
2201
2202 return bfd_reloc_ok;
2203 }
2204
2205 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2206 like any other 16-bit relocation when applied to global symbols, but is
2207 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2208
2209 bfd_reloc_status_type
2210 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2211 void *data, asection *input_section,
2212 bfd *output_bfd, char **error_message)
2213 {
2214 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2215 || bfd_is_und_section (bfd_get_section (symbol))
2216 || bfd_is_com_section (bfd_get_section (symbol)))
2217 /* The relocation is against a global symbol. */
2218 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2219 input_section, output_bfd,
2220 error_message);
2221
2222 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2223 input_section, output_bfd, error_message);
2224 }
2225
2226 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2227 is a straightforward 16 bit inplace relocation, but we must deal with
2228 any partnering high-part relocations as well. */
2229
2230 bfd_reloc_status_type
2231 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2232 void *data, asection *input_section,
2233 bfd *output_bfd, char **error_message)
2234 {
2235 bfd_vma vallo;
2236 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2237
2238 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2239 return bfd_reloc_outofrange;
2240
2241 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2242 location);
2243 vallo = bfd_get_32 (abfd, location);
2244 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2245 location);
2246
2247 while (mips_hi16_list != NULL)
2248 {
2249 bfd_reloc_status_type ret;
2250 struct mips_hi16 *hi;
2251
2252 hi = mips_hi16_list;
2253
2254 /* R_MIPS*_GOT16 relocations are something of a special case. We
2255 want to install the addend in the same way as for a R_MIPS*_HI16
2256 relocation (with a rightshift of 16). However, since GOT16
2257 relocations can also be used with global symbols, their howto
2258 has a rightshift of 0. */
2259 if (hi->rel.howto->type == R_MIPS_GOT16)
2260 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2261 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2262 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2263 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2264 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2265
2266 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2267 carry or borrow will induce a change of +1 or -1 in the high part. */
2268 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2269
2270 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2271 hi->input_section, output_bfd,
2272 error_message);
2273 if (ret != bfd_reloc_ok)
2274 return ret;
2275
2276 mips_hi16_list = hi->next;
2277 free (hi);
2278 }
2279
2280 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2281 input_section, output_bfd,
2282 error_message);
2283 }
2284
2285 /* A generic howto special_function. This calculates and installs the
2286 relocation itself, thus avoiding the oft-discussed problems in
2287 bfd_perform_relocation and bfd_install_relocation. */
2288
2289 bfd_reloc_status_type
2290 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2291 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2292 asection *input_section, bfd *output_bfd,
2293 char **error_message ATTRIBUTE_UNUSED)
2294 {
2295 bfd_signed_vma val;
2296 bfd_reloc_status_type status;
2297 bfd_boolean relocatable;
2298
2299 relocatable = (output_bfd != NULL);
2300
2301 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2302 return bfd_reloc_outofrange;
2303
2304 /* Build up the field adjustment in VAL. */
2305 val = 0;
2306 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2307 {
2308 /* Either we're calculating the final field value or we have a
2309 relocation against a section symbol. Add in the section's
2310 offset or address. */
2311 val += symbol->section->output_section->vma;
2312 val += symbol->section->output_offset;
2313 }
2314
2315 if (!relocatable)
2316 {
2317 /* We're calculating the final field value. Add in the symbol's value
2318 and, if pc-relative, subtract the address of the field itself. */
2319 val += symbol->value;
2320 if (reloc_entry->howto->pc_relative)
2321 {
2322 val -= input_section->output_section->vma;
2323 val -= input_section->output_offset;
2324 val -= reloc_entry->address;
2325 }
2326 }
2327
2328 /* VAL is now the final adjustment. If we're keeping this relocation
2329 in the output file, and if the relocation uses a separate addend,
2330 we just need to add VAL to that addend. Otherwise we need to add
2331 VAL to the relocation field itself. */
2332 if (relocatable && !reloc_entry->howto->partial_inplace)
2333 reloc_entry->addend += val;
2334 else
2335 {
2336 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2337
2338 /* Add in the separate addend, if any. */
2339 val += reloc_entry->addend;
2340
2341 /* Add VAL to the relocation field. */
2342 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2343 location);
2344 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2345 location);
2346 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2347 location);
2348
2349 if (status != bfd_reloc_ok)
2350 return status;
2351 }
2352
2353 if (relocatable)
2354 reloc_entry->address += input_section->output_offset;
2355
2356 return bfd_reloc_ok;
2357 }
2358 \f
2359 /* Swap an entry in a .gptab section. Note that these routines rely
2360 on the equivalence of the two elements of the union. */
2361
2362 static void
2363 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2364 Elf32_gptab *in)
2365 {
2366 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2367 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2368 }
2369
2370 static void
2371 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2372 Elf32_External_gptab *ex)
2373 {
2374 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2375 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2376 }
2377
2378 static void
2379 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2380 Elf32_External_compact_rel *ex)
2381 {
2382 H_PUT_32 (abfd, in->id1, ex->id1);
2383 H_PUT_32 (abfd, in->num, ex->num);
2384 H_PUT_32 (abfd, in->id2, ex->id2);
2385 H_PUT_32 (abfd, in->offset, ex->offset);
2386 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2387 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2388 }
2389
2390 static void
2391 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2392 Elf32_External_crinfo *ex)
2393 {
2394 unsigned long l;
2395
2396 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2397 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2398 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2399 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2400 H_PUT_32 (abfd, l, ex->info);
2401 H_PUT_32 (abfd, in->konst, ex->konst);
2402 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2403 }
2404 \f
2405 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2406 routines swap this structure in and out. They are used outside of
2407 BFD, so they are globally visible. */
2408
2409 void
2410 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2411 Elf32_RegInfo *in)
2412 {
2413 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2414 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2415 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2416 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2417 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2418 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2419 }
2420
2421 void
2422 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2423 Elf32_External_RegInfo *ex)
2424 {
2425 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2426 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2427 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2428 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2429 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2430 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2431 }
2432
2433 /* In the 64 bit ABI, the .MIPS.options section holds register
2434 information in an Elf64_Reginfo structure. These routines swap
2435 them in and out. They are globally visible because they are used
2436 outside of BFD. These routines are here so that gas can call them
2437 without worrying about whether the 64 bit ABI has been included. */
2438
2439 void
2440 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2441 Elf64_Internal_RegInfo *in)
2442 {
2443 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2444 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2445 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2446 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2447 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2448 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2449 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2450 }
2451
2452 void
2453 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2454 Elf64_External_RegInfo *ex)
2455 {
2456 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2457 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2458 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2459 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2460 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2461 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2462 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2463 }
2464
2465 /* Swap in an options header. */
2466
2467 void
2468 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2469 Elf_Internal_Options *in)
2470 {
2471 in->kind = H_GET_8 (abfd, ex->kind);
2472 in->size = H_GET_8 (abfd, ex->size);
2473 in->section = H_GET_16 (abfd, ex->section);
2474 in->info = H_GET_32 (abfd, ex->info);
2475 }
2476
2477 /* Swap out an options header. */
2478
2479 void
2480 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2481 Elf_External_Options *ex)
2482 {
2483 H_PUT_8 (abfd, in->kind, ex->kind);
2484 H_PUT_8 (abfd, in->size, ex->size);
2485 H_PUT_16 (abfd, in->section, ex->section);
2486 H_PUT_32 (abfd, in->info, ex->info);
2487 }
2488 \f
2489 /* This function is called via qsort() to sort the dynamic relocation
2490 entries by increasing r_symndx value. */
2491
2492 static int
2493 sort_dynamic_relocs (const void *arg1, const void *arg2)
2494 {
2495 Elf_Internal_Rela int_reloc1;
2496 Elf_Internal_Rela int_reloc2;
2497 int diff;
2498
2499 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2500 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2501
2502 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2503 if (diff != 0)
2504 return diff;
2505
2506 if (int_reloc1.r_offset < int_reloc2.r_offset)
2507 return -1;
2508 if (int_reloc1.r_offset > int_reloc2.r_offset)
2509 return 1;
2510 return 0;
2511 }
2512
2513 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2514
2515 static int
2516 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2517 const void *arg2 ATTRIBUTE_UNUSED)
2518 {
2519 #ifdef BFD64
2520 Elf_Internal_Rela int_reloc1[3];
2521 Elf_Internal_Rela int_reloc2[3];
2522
2523 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2524 (reldyn_sorting_bfd, arg1, int_reloc1);
2525 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2526 (reldyn_sorting_bfd, arg2, int_reloc2);
2527
2528 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2529 return -1;
2530 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2531 return 1;
2532
2533 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2534 return -1;
2535 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2536 return 1;
2537 return 0;
2538 #else
2539 abort ();
2540 #endif
2541 }
2542
2543
2544 /* This routine is used to write out ECOFF debugging external symbol
2545 information. It is called via mips_elf_link_hash_traverse. The
2546 ECOFF external symbol information must match the ELF external
2547 symbol information. Unfortunately, at this point we don't know
2548 whether a symbol is required by reloc information, so the two
2549 tables may wind up being different. We must sort out the external
2550 symbol information before we can set the final size of the .mdebug
2551 section, and we must set the size of the .mdebug section before we
2552 can relocate any sections, and we can't know which symbols are
2553 required by relocation until we relocate the sections.
2554 Fortunately, it is relatively unlikely that any symbol will be
2555 stripped but required by a reloc. In particular, it can not happen
2556 when generating a final executable. */
2557
2558 static bfd_boolean
2559 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2560 {
2561 struct extsym_info *einfo = data;
2562 bfd_boolean strip;
2563 asection *sec, *output_section;
2564
2565 if (h->root.indx == -2)
2566 strip = FALSE;
2567 else if ((h->root.def_dynamic
2568 || h->root.ref_dynamic
2569 || h->root.type == bfd_link_hash_new)
2570 && !h->root.def_regular
2571 && !h->root.ref_regular)
2572 strip = TRUE;
2573 else if (einfo->info->strip == strip_all
2574 || (einfo->info->strip == strip_some
2575 && bfd_hash_lookup (einfo->info->keep_hash,
2576 h->root.root.root.string,
2577 FALSE, FALSE) == NULL))
2578 strip = TRUE;
2579 else
2580 strip = FALSE;
2581
2582 if (strip)
2583 return TRUE;
2584
2585 if (h->esym.ifd == -2)
2586 {
2587 h->esym.jmptbl = 0;
2588 h->esym.cobol_main = 0;
2589 h->esym.weakext = 0;
2590 h->esym.reserved = 0;
2591 h->esym.ifd = ifdNil;
2592 h->esym.asym.value = 0;
2593 h->esym.asym.st = stGlobal;
2594
2595 if (h->root.root.type == bfd_link_hash_undefined
2596 || h->root.root.type == bfd_link_hash_undefweak)
2597 {
2598 const char *name;
2599
2600 /* Use undefined class. Also, set class and type for some
2601 special symbols. */
2602 name = h->root.root.root.string;
2603 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2604 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2605 {
2606 h->esym.asym.sc = scData;
2607 h->esym.asym.st = stLabel;
2608 h->esym.asym.value = 0;
2609 }
2610 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2611 {
2612 h->esym.asym.sc = scAbs;
2613 h->esym.asym.st = stLabel;
2614 h->esym.asym.value =
2615 mips_elf_hash_table (einfo->info)->procedure_count;
2616 }
2617 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2618 {
2619 h->esym.asym.sc = scAbs;
2620 h->esym.asym.st = stLabel;
2621 h->esym.asym.value = elf_gp (einfo->abfd);
2622 }
2623 else
2624 h->esym.asym.sc = scUndefined;
2625 }
2626 else if (h->root.root.type != bfd_link_hash_defined
2627 && h->root.root.type != bfd_link_hash_defweak)
2628 h->esym.asym.sc = scAbs;
2629 else
2630 {
2631 const char *name;
2632
2633 sec = h->root.root.u.def.section;
2634 output_section = sec->output_section;
2635
2636 /* When making a shared library and symbol h is the one from
2637 the another shared library, OUTPUT_SECTION may be null. */
2638 if (output_section == NULL)
2639 h->esym.asym.sc = scUndefined;
2640 else
2641 {
2642 name = bfd_section_name (output_section->owner, output_section);
2643
2644 if (strcmp (name, ".text") == 0)
2645 h->esym.asym.sc = scText;
2646 else if (strcmp (name, ".data") == 0)
2647 h->esym.asym.sc = scData;
2648 else if (strcmp (name, ".sdata") == 0)
2649 h->esym.asym.sc = scSData;
2650 else if (strcmp (name, ".rodata") == 0
2651 || strcmp (name, ".rdata") == 0)
2652 h->esym.asym.sc = scRData;
2653 else if (strcmp (name, ".bss") == 0)
2654 h->esym.asym.sc = scBss;
2655 else if (strcmp (name, ".sbss") == 0)
2656 h->esym.asym.sc = scSBss;
2657 else if (strcmp (name, ".init") == 0)
2658 h->esym.asym.sc = scInit;
2659 else if (strcmp (name, ".fini") == 0)
2660 h->esym.asym.sc = scFini;
2661 else
2662 h->esym.asym.sc = scAbs;
2663 }
2664 }
2665
2666 h->esym.asym.reserved = 0;
2667 h->esym.asym.index = indexNil;
2668 }
2669
2670 if (h->root.root.type == bfd_link_hash_common)
2671 h->esym.asym.value = h->root.root.u.c.size;
2672 else if (h->root.root.type == bfd_link_hash_defined
2673 || h->root.root.type == bfd_link_hash_defweak)
2674 {
2675 if (h->esym.asym.sc == scCommon)
2676 h->esym.asym.sc = scBss;
2677 else if (h->esym.asym.sc == scSCommon)
2678 h->esym.asym.sc = scSBss;
2679
2680 sec = h->root.root.u.def.section;
2681 output_section = sec->output_section;
2682 if (output_section != NULL)
2683 h->esym.asym.value = (h->root.root.u.def.value
2684 + sec->output_offset
2685 + output_section->vma);
2686 else
2687 h->esym.asym.value = 0;
2688 }
2689 else
2690 {
2691 struct mips_elf_link_hash_entry *hd = h;
2692
2693 while (hd->root.root.type == bfd_link_hash_indirect)
2694 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2695
2696 if (hd->needs_lazy_stub)
2697 {
2698 /* Set type and value for a symbol with a function stub. */
2699 h->esym.asym.st = stProc;
2700 sec = hd->root.root.u.def.section;
2701 if (sec == NULL)
2702 h->esym.asym.value = 0;
2703 else
2704 {
2705 output_section = sec->output_section;
2706 if (output_section != NULL)
2707 h->esym.asym.value = (hd->root.plt.offset
2708 + sec->output_offset
2709 + output_section->vma);
2710 else
2711 h->esym.asym.value = 0;
2712 }
2713 }
2714 }
2715
2716 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2717 h->root.root.root.string,
2718 &h->esym))
2719 {
2720 einfo->failed = TRUE;
2721 return FALSE;
2722 }
2723
2724 return TRUE;
2725 }
2726
2727 /* A comparison routine used to sort .gptab entries. */
2728
2729 static int
2730 gptab_compare (const void *p1, const void *p2)
2731 {
2732 const Elf32_gptab *a1 = p1;
2733 const Elf32_gptab *a2 = p2;
2734
2735 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2736 }
2737 \f
2738 /* Functions to manage the got entry hash table. */
2739
2740 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2741 hash number. */
2742
2743 static INLINE hashval_t
2744 mips_elf_hash_bfd_vma (bfd_vma addr)
2745 {
2746 #ifdef BFD64
2747 return addr + (addr >> 32);
2748 #else
2749 return addr;
2750 #endif
2751 }
2752
2753 /* got_entries only match if they're identical, except for gotidx, so
2754 use all fields to compute the hash, and compare the appropriate
2755 union members. */
2756
2757 static hashval_t
2758 mips_elf_got_entry_hash (const void *entry_)
2759 {
2760 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2761
2762 return entry->symndx
2763 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2764 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2765 : entry->abfd->id
2766 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2767 : entry->d.h->root.root.root.hash));
2768 }
2769
2770 static int
2771 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2772 {
2773 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2774 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2775
2776 /* An LDM entry can only match another LDM entry. */
2777 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2778 return 0;
2779
2780 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2781 && (! e1->abfd ? e1->d.address == e2->d.address
2782 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2783 : e1->d.h == e2->d.h);
2784 }
2785
2786 /* multi_got_entries are still a match in the case of global objects,
2787 even if the input bfd in which they're referenced differs, so the
2788 hash computation and compare functions are adjusted
2789 accordingly. */
2790
2791 static hashval_t
2792 mips_elf_multi_got_entry_hash (const void *entry_)
2793 {
2794 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2795
2796 return entry->symndx
2797 + (! entry->abfd
2798 ? mips_elf_hash_bfd_vma (entry->d.address)
2799 : entry->symndx >= 0
2800 ? ((entry->tls_type & GOT_TLS_LDM)
2801 ? (GOT_TLS_LDM << 17)
2802 : (entry->abfd->id
2803 + mips_elf_hash_bfd_vma (entry->d.addend)))
2804 : entry->d.h->root.root.root.hash);
2805 }
2806
2807 static int
2808 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2809 {
2810 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2811 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2812
2813 /* Any two LDM entries match. */
2814 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2815 return 1;
2816
2817 /* Nothing else matches an LDM entry. */
2818 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2819 return 0;
2820
2821 return e1->symndx == e2->symndx
2822 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2823 : e1->abfd == NULL || e2->abfd == NULL
2824 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2825 : e1->d.h == e2->d.h);
2826 }
2827
2828 static hashval_t
2829 mips_got_page_entry_hash (const void *entry_)
2830 {
2831 const struct mips_got_page_entry *entry;
2832
2833 entry = (const struct mips_got_page_entry *) entry_;
2834 return entry->abfd->id + entry->symndx;
2835 }
2836
2837 static int
2838 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2839 {
2840 const struct mips_got_page_entry *entry1, *entry2;
2841
2842 entry1 = (const struct mips_got_page_entry *) entry1_;
2843 entry2 = (const struct mips_got_page_entry *) entry2_;
2844 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2845 }
2846 \f
2847 /* Return the dynamic relocation section. If it doesn't exist, try to
2848 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2849 if creation fails. */
2850
2851 static asection *
2852 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2853 {
2854 const char *dname;
2855 asection *sreloc;
2856 bfd *dynobj;
2857
2858 dname = MIPS_ELF_REL_DYN_NAME (info);
2859 dynobj = elf_hash_table (info)->dynobj;
2860 sreloc = bfd_get_section_by_name (dynobj, dname);
2861 if (sreloc == NULL && create_p)
2862 {
2863 sreloc = bfd_make_section_with_flags (dynobj, dname,
2864 (SEC_ALLOC
2865 | SEC_LOAD
2866 | SEC_HAS_CONTENTS
2867 | SEC_IN_MEMORY
2868 | SEC_LINKER_CREATED
2869 | SEC_READONLY));
2870 if (sreloc == NULL
2871 || ! bfd_set_section_alignment (dynobj, sreloc,
2872 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2873 return NULL;
2874 }
2875 return sreloc;
2876 }
2877
2878 /* Count the number of relocations needed for a TLS GOT entry, with
2879 access types from TLS_TYPE, and symbol H (or a local symbol if H
2880 is NULL). */
2881
2882 static int
2883 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2884 struct elf_link_hash_entry *h)
2885 {
2886 int indx = 0;
2887 int ret = 0;
2888 bfd_boolean need_relocs = FALSE;
2889 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2890
2891 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2892 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2893 indx = h->dynindx;
2894
2895 if ((info->shared || indx != 0)
2896 && (h == NULL
2897 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2898 || h->root.type != bfd_link_hash_undefweak))
2899 need_relocs = TRUE;
2900
2901 if (!need_relocs)
2902 return FALSE;
2903
2904 if (tls_type & GOT_TLS_GD)
2905 {
2906 ret++;
2907 if (indx != 0)
2908 ret++;
2909 }
2910
2911 if (tls_type & GOT_TLS_IE)
2912 ret++;
2913
2914 if ((tls_type & GOT_TLS_LDM) && info->shared)
2915 ret++;
2916
2917 return ret;
2918 }
2919
2920 /* Count the number of TLS relocations required for the GOT entry in
2921 ARG1, if it describes a local symbol. */
2922
2923 static int
2924 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2925 {
2926 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2927 struct mips_elf_count_tls_arg *arg = arg2;
2928
2929 if (entry->abfd != NULL && entry->symndx != -1)
2930 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2931
2932 return 1;
2933 }
2934
2935 /* Count the number of TLS GOT entries required for the global (or
2936 forced-local) symbol in ARG1. */
2937
2938 static int
2939 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2940 {
2941 struct mips_elf_link_hash_entry *hm
2942 = (struct mips_elf_link_hash_entry *) arg1;
2943 struct mips_elf_count_tls_arg *arg = arg2;
2944
2945 if (hm->tls_type & GOT_TLS_GD)
2946 arg->needed += 2;
2947 if (hm->tls_type & GOT_TLS_IE)
2948 arg->needed += 1;
2949
2950 return 1;
2951 }
2952
2953 /* Count the number of TLS relocations required for the global (or
2954 forced-local) symbol in ARG1. */
2955
2956 static int
2957 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2958 {
2959 struct mips_elf_link_hash_entry *hm
2960 = (struct mips_elf_link_hash_entry *) arg1;
2961 struct mips_elf_count_tls_arg *arg = arg2;
2962
2963 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2964
2965 return 1;
2966 }
2967
2968 /* Output a simple dynamic relocation into SRELOC. */
2969
2970 static void
2971 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2972 asection *sreloc,
2973 unsigned long reloc_index,
2974 unsigned long indx,
2975 int r_type,
2976 bfd_vma offset)
2977 {
2978 Elf_Internal_Rela rel[3];
2979
2980 memset (rel, 0, sizeof (rel));
2981
2982 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2983 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2984
2985 if (ABI_64_P (output_bfd))
2986 {
2987 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2988 (output_bfd, &rel[0],
2989 (sreloc->contents
2990 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2991 }
2992 else
2993 bfd_elf32_swap_reloc_out
2994 (output_bfd, &rel[0],
2995 (sreloc->contents
2996 + reloc_index * sizeof (Elf32_External_Rel)));
2997 }
2998
2999 /* Initialize a set of TLS GOT entries for one symbol. */
3000
3001 static void
3002 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3003 unsigned char *tls_type_p,
3004 struct bfd_link_info *info,
3005 struct mips_elf_link_hash_entry *h,
3006 bfd_vma value)
3007 {
3008 struct mips_elf_link_hash_table *htab;
3009 int indx;
3010 asection *sreloc, *sgot;
3011 bfd_vma offset, offset2;
3012 bfd_boolean need_relocs = FALSE;
3013
3014 htab = mips_elf_hash_table (info);
3015 if (htab == NULL)
3016 return;
3017
3018 sgot = htab->sgot;
3019
3020 indx = 0;
3021 if (h != NULL)
3022 {
3023 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3024
3025 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3026 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3027 indx = h->root.dynindx;
3028 }
3029
3030 if (*tls_type_p & GOT_TLS_DONE)
3031 return;
3032
3033 if ((info->shared || indx != 0)
3034 && (h == NULL
3035 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3036 || h->root.type != bfd_link_hash_undefweak))
3037 need_relocs = TRUE;
3038
3039 /* MINUS_ONE means the symbol is not defined in this object. It may not
3040 be defined at all; assume that the value doesn't matter in that
3041 case. Otherwise complain if we would use the value. */
3042 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3043 || h->root.root.type == bfd_link_hash_undefweak);
3044
3045 /* Emit necessary relocations. */
3046 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3047
3048 /* General Dynamic. */
3049 if (*tls_type_p & GOT_TLS_GD)
3050 {
3051 offset = got_offset;
3052 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3053
3054 if (need_relocs)
3055 {
3056 mips_elf_output_dynamic_relocation
3057 (abfd, sreloc, sreloc->reloc_count++, indx,
3058 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3059 sgot->output_offset + sgot->output_section->vma + offset);
3060
3061 if (indx)
3062 mips_elf_output_dynamic_relocation
3063 (abfd, sreloc, sreloc->reloc_count++, indx,
3064 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3065 sgot->output_offset + sgot->output_section->vma + offset2);
3066 else
3067 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3068 sgot->contents + offset2);
3069 }
3070 else
3071 {
3072 MIPS_ELF_PUT_WORD (abfd, 1,
3073 sgot->contents + offset);
3074 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3075 sgot->contents + offset2);
3076 }
3077
3078 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3079 }
3080
3081 /* Initial Exec model. */
3082 if (*tls_type_p & GOT_TLS_IE)
3083 {
3084 offset = got_offset;
3085
3086 if (need_relocs)
3087 {
3088 if (indx == 0)
3089 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3090 sgot->contents + offset);
3091 else
3092 MIPS_ELF_PUT_WORD (abfd, 0,
3093 sgot->contents + offset);
3094
3095 mips_elf_output_dynamic_relocation
3096 (abfd, sreloc, sreloc->reloc_count++, indx,
3097 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3098 sgot->output_offset + sgot->output_section->vma + offset);
3099 }
3100 else
3101 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3102 sgot->contents + offset);
3103 }
3104
3105 if (*tls_type_p & GOT_TLS_LDM)
3106 {
3107 /* The initial offset is zero, and the LD offsets will include the
3108 bias by DTP_OFFSET. */
3109 MIPS_ELF_PUT_WORD (abfd, 0,
3110 sgot->contents + got_offset
3111 + MIPS_ELF_GOT_SIZE (abfd));
3112
3113 if (!info->shared)
3114 MIPS_ELF_PUT_WORD (abfd, 1,
3115 sgot->contents + got_offset);
3116 else
3117 mips_elf_output_dynamic_relocation
3118 (abfd, sreloc, sreloc->reloc_count++, indx,
3119 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3120 sgot->output_offset + sgot->output_section->vma + got_offset);
3121 }
3122
3123 *tls_type_p |= GOT_TLS_DONE;
3124 }
3125
3126 /* Return the GOT index to use for a relocation of type R_TYPE against
3127 a symbol accessed using TLS_TYPE models. The GOT entries for this
3128 symbol in this GOT start at GOT_INDEX. This function initializes the
3129 GOT entries and corresponding relocations. */
3130
3131 static bfd_vma
3132 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3133 int r_type, struct bfd_link_info *info,
3134 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3135 {
3136 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3137 || tls_gd_reloc_p (r_type)
3138 || tls_ldm_reloc_p (r_type));
3139
3140 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3141
3142 if (tls_gottprel_reloc_p (r_type))
3143 {
3144 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3145 if (*tls_type & GOT_TLS_GD)
3146 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3147 else
3148 return got_index;
3149 }
3150
3151 if (tls_gd_reloc_p (r_type))
3152 {
3153 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3154 return got_index;
3155 }
3156
3157 if (tls_ldm_reloc_p (r_type))
3158 {
3159 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3160 return got_index;
3161 }
3162
3163 return got_index;
3164 }
3165
3166 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3167 for global symbol H. .got.plt comes before the GOT, so the offset
3168 will be negative. */
3169
3170 static bfd_vma
3171 mips_elf_gotplt_index (struct bfd_link_info *info,
3172 struct elf_link_hash_entry *h)
3173 {
3174 bfd_vma plt_index, got_address, got_value;
3175 struct mips_elf_link_hash_table *htab;
3176
3177 htab = mips_elf_hash_table (info);
3178 BFD_ASSERT (htab != NULL);
3179
3180 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3181
3182 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3183 section starts with reserved entries. */
3184 BFD_ASSERT (htab->is_vxworks);
3185
3186 /* Calculate the index of the symbol's PLT entry. */
3187 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3188
3189 /* Calculate the address of the associated .got.plt entry. */
3190 got_address = (htab->sgotplt->output_section->vma
3191 + htab->sgotplt->output_offset
3192 + plt_index * 4);
3193
3194 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3195 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3196 + htab->root.hgot->root.u.def.section->output_offset
3197 + htab->root.hgot->root.u.def.value);
3198
3199 return got_address - got_value;
3200 }
3201
3202 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3203 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3204 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3205 offset can be found. */
3206
3207 static bfd_vma
3208 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3209 bfd_vma value, unsigned long r_symndx,
3210 struct mips_elf_link_hash_entry *h, int r_type)
3211 {
3212 struct mips_elf_link_hash_table *htab;
3213 struct mips_got_entry *entry;
3214
3215 htab = mips_elf_hash_table (info);
3216 BFD_ASSERT (htab != NULL);
3217
3218 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3219 r_symndx, h, r_type);
3220 if (!entry)
3221 return MINUS_ONE;
3222
3223 if (TLS_RELOC_P (r_type))
3224 {
3225 if (entry->symndx == -1 && htab->got_info->next == NULL)
3226 /* A type (3) entry in the single-GOT case. We use the symbol's
3227 hash table entry to track the index. */
3228 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3229 r_type, info, h, value);
3230 else
3231 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3232 r_type, info, h, value);
3233 }
3234 else
3235 return entry->gotidx;
3236 }
3237
3238 /* Returns the GOT index for the global symbol indicated by H. */
3239
3240 static bfd_vma
3241 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3242 int r_type, struct bfd_link_info *info)
3243 {
3244 struct mips_elf_link_hash_table *htab;
3245 bfd_vma got_index;
3246 struct mips_got_info *g, *gg;
3247 long global_got_dynindx = 0;
3248
3249 htab = mips_elf_hash_table (info);
3250 BFD_ASSERT (htab != NULL);
3251
3252 gg = g = htab->got_info;
3253 if (g->bfd2got && ibfd)
3254 {
3255 struct mips_got_entry e, *p;
3256
3257 BFD_ASSERT (h->dynindx >= 0);
3258
3259 g = mips_elf_got_for_ibfd (g, ibfd);
3260 if (g->next != gg || TLS_RELOC_P (r_type))
3261 {
3262 e.abfd = ibfd;
3263 e.symndx = -1;
3264 e.d.h = (struct mips_elf_link_hash_entry *)h;
3265 e.tls_type = 0;
3266
3267 p = htab_find (g->got_entries, &e);
3268
3269 BFD_ASSERT (p->gotidx > 0);
3270
3271 if (TLS_RELOC_P (r_type))
3272 {
3273 bfd_vma value = MINUS_ONE;
3274 if ((h->root.type == bfd_link_hash_defined
3275 || h->root.type == bfd_link_hash_defweak)
3276 && h->root.u.def.section->output_section)
3277 value = (h->root.u.def.value
3278 + h->root.u.def.section->output_offset
3279 + h->root.u.def.section->output_section->vma);
3280
3281 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3282 info, e.d.h, value);
3283 }
3284 else
3285 return p->gotidx;
3286 }
3287 }
3288
3289 if (gg->global_gotsym != NULL)
3290 global_got_dynindx = gg->global_gotsym->dynindx;
3291
3292 if (TLS_RELOC_P (r_type))
3293 {
3294 struct mips_elf_link_hash_entry *hm
3295 = (struct mips_elf_link_hash_entry *) h;
3296 bfd_vma value = MINUS_ONE;
3297
3298 if ((h->root.type == bfd_link_hash_defined
3299 || h->root.type == bfd_link_hash_defweak)
3300 && h->root.u.def.section->output_section)
3301 value = (h->root.u.def.value
3302 + h->root.u.def.section->output_offset
3303 + h->root.u.def.section->output_section->vma);
3304
3305 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3306 r_type, info, hm, value);
3307 }
3308 else
3309 {
3310 /* Once we determine the global GOT entry with the lowest dynamic
3311 symbol table index, we must put all dynamic symbols with greater
3312 indices into the GOT. That makes it easy to calculate the GOT
3313 offset. */
3314 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3315 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3316 * MIPS_ELF_GOT_SIZE (abfd));
3317 }
3318 BFD_ASSERT (got_index < htab->sgot->size);
3319
3320 return got_index;
3321 }
3322
3323 /* Find a GOT page entry that points to within 32KB of VALUE. These
3324 entries are supposed to be placed at small offsets in the GOT, i.e.,
3325 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3326 entry could be created. If OFFSETP is nonnull, use it to return the
3327 offset of the GOT entry from VALUE. */
3328
3329 static bfd_vma
3330 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3331 bfd_vma value, bfd_vma *offsetp)
3332 {
3333 bfd_vma page, got_index;
3334 struct mips_got_entry *entry;
3335
3336 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3337 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3338 NULL, R_MIPS_GOT_PAGE);
3339
3340 if (!entry)
3341 return MINUS_ONE;
3342
3343 got_index = entry->gotidx;
3344
3345 if (offsetp)
3346 *offsetp = value - entry->d.address;
3347
3348 return got_index;
3349 }
3350
3351 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3352 EXTERNAL is true if the relocation was originally against a global
3353 symbol that binds locally. */
3354
3355 static bfd_vma
3356 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3357 bfd_vma value, bfd_boolean external)
3358 {
3359 struct mips_got_entry *entry;
3360
3361 /* GOT16 relocations against local symbols are followed by a LO16
3362 relocation; those against global symbols are not. Thus if the
3363 symbol was originally local, the GOT16 relocation should load the
3364 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3365 if (! external)
3366 value = mips_elf_high (value) << 16;
3367
3368 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3369 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3370 same in all cases. */
3371 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3372 NULL, R_MIPS_GOT16);
3373 if (entry)
3374 return entry->gotidx;
3375 else
3376 return MINUS_ONE;
3377 }
3378
3379 /* Returns the offset for the entry at the INDEXth position
3380 in the GOT. */
3381
3382 static bfd_vma
3383 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3384 bfd *input_bfd, bfd_vma got_index)
3385 {
3386 struct mips_elf_link_hash_table *htab;
3387 asection *sgot;
3388 bfd_vma gp;
3389
3390 htab = mips_elf_hash_table (info);
3391 BFD_ASSERT (htab != NULL);
3392
3393 sgot = htab->sgot;
3394 gp = _bfd_get_gp_value (output_bfd)
3395 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3396
3397 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3398 }
3399
3400 /* Create and return a local GOT entry for VALUE, which was calculated
3401 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3402 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3403 instead. */
3404
3405 static struct mips_got_entry *
3406 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3407 bfd *ibfd, bfd_vma value,
3408 unsigned long r_symndx,
3409 struct mips_elf_link_hash_entry *h,
3410 int r_type)
3411 {
3412 struct mips_got_entry entry, **loc;
3413 struct mips_got_info *g;
3414 struct mips_elf_link_hash_table *htab;
3415
3416 htab = mips_elf_hash_table (info);
3417 BFD_ASSERT (htab != NULL);
3418
3419 entry.abfd = NULL;
3420 entry.symndx = -1;
3421 entry.d.address = value;
3422 entry.tls_type = 0;
3423
3424 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3425 if (g == NULL)
3426 {
3427 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3428 BFD_ASSERT (g != NULL);
3429 }
3430
3431 /* This function shouldn't be called for symbols that live in the global
3432 area of the GOT. */
3433 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3434 if (TLS_RELOC_P (r_type))
3435 {
3436 struct mips_got_entry *p;
3437
3438 entry.abfd = ibfd;
3439 if (tls_ldm_reloc_p (r_type))
3440 {
3441 entry.tls_type = GOT_TLS_LDM;
3442 entry.symndx = 0;
3443 entry.d.addend = 0;
3444 }
3445 else if (h == NULL)
3446 {
3447 entry.symndx = r_symndx;
3448 entry.d.addend = 0;
3449 }
3450 else
3451 entry.d.h = h;
3452
3453 p = (struct mips_got_entry *)
3454 htab_find (g->got_entries, &entry);
3455
3456 BFD_ASSERT (p);
3457 return p;
3458 }
3459
3460 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3461 INSERT);
3462 if (*loc)
3463 return *loc;
3464
3465 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3466 entry.tls_type = 0;
3467
3468 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3469
3470 if (! *loc)
3471 return NULL;
3472
3473 memcpy (*loc, &entry, sizeof entry);
3474
3475 if (g->assigned_gotno > g->local_gotno)
3476 {
3477 (*loc)->gotidx = -1;
3478 /* We didn't allocate enough space in the GOT. */
3479 (*_bfd_error_handler)
3480 (_("not enough GOT space for local GOT entries"));
3481 bfd_set_error (bfd_error_bad_value);
3482 return NULL;
3483 }
3484
3485 MIPS_ELF_PUT_WORD (abfd, value,
3486 (htab->sgot->contents + entry.gotidx));
3487
3488 /* These GOT entries need a dynamic relocation on VxWorks. */
3489 if (htab->is_vxworks)
3490 {
3491 Elf_Internal_Rela outrel;
3492 asection *s;
3493 bfd_byte *rloc;
3494 bfd_vma got_address;
3495
3496 s = mips_elf_rel_dyn_section (info, FALSE);
3497 got_address = (htab->sgot->output_section->vma
3498 + htab->sgot->output_offset
3499 + entry.gotidx);
3500
3501 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3502 outrel.r_offset = got_address;
3503 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3504 outrel.r_addend = value;
3505 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3506 }
3507
3508 return *loc;
3509 }
3510
3511 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3512 The number might be exact or a worst-case estimate, depending on how
3513 much information is available to elf_backend_omit_section_dynsym at
3514 the current linking stage. */
3515
3516 static bfd_size_type
3517 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3518 {
3519 bfd_size_type count;
3520
3521 count = 0;
3522 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3523 {
3524 asection *p;
3525 const struct elf_backend_data *bed;
3526
3527 bed = get_elf_backend_data (output_bfd);
3528 for (p = output_bfd->sections; p ; p = p->next)
3529 if ((p->flags & SEC_EXCLUDE) == 0
3530 && (p->flags & SEC_ALLOC) != 0
3531 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3532 ++count;
3533 }
3534 return count;
3535 }
3536
3537 /* Sort the dynamic symbol table so that symbols that need GOT entries
3538 appear towards the end. */
3539
3540 static bfd_boolean
3541 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3542 {
3543 struct mips_elf_link_hash_table *htab;
3544 struct mips_elf_hash_sort_data hsd;
3545 struct mips_got_info *g;
3546
3547 if (elf_hash_table (info)->dynsymcount == 0)
3548 return TRUE;
3549
3550 htab = mips_elf_hash_table (info);
3551 BFD_ASSERT (htab != NULL);
3552
3553 g = htab->got_info;
3554 if (g == NULL)
3555 return TRUE;
3556
3557 hsd.low = NULL;
3558 hsd.max_unref_got_dynindx
3559 = hsd.min_got_dynindx
3560 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3561 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3562 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3563 elf_hash_table (info)),
3564 mips_elf_sort_hash_table_f,
3565 &hsd);
3566
3567 /* There should have been enough room in the symbol table to
3568 accommodate both the GOT and non-GOT symbols. */
3569 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3570 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3571 == elf_hash_table (info)->dynsymcount);
3572 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3573 == g->global_gotno);
3574
3575 /* Now we know which dynamic symbol has the lowest dynamic symbol
3576 table index in the GOT. */
3577 g->global_gotsym = hsd.low;
3578
3579 return TRUE;
3580 }
3581
3582 /* If H needs a GOT entry, assign it the highest available dynamic
3583 index. Otherwise, assign it the lowest available dynamic
3584 index. */
3585
3586 static bfd_boolean
3587 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3588 {
3589 struct mips_elf_hash_sort_data *hsd = data;
3590
3591 /* Symbols without dynamic symbol table entries aren't interesting
3592 at all. */
3593 if (h->root.dynindx == -1)
3594 return TRUE;
3595
3596 switch (h->global_got_area)
3597 {
3598 case GGA_NONE:
3599 h->root.dynindx = hsd->max_non_got_dynindx++;
3600 break;
3601
3602 case GGA_NORMAL:
3603 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3604
3605 h->root.dynindx = --hsd->min_got_dynindx;
3606 hsd->low = (struct elf_link_hash_entry *) h;
3607 break;
3608
3609 case GGA_RELOC_ONLY:
3610 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3611
3612 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3613 hsd->low = (struct elf_link_hash_entry *) h;
3614 h->root.dynindx = hsd->max_unref_got_dynindx++;
3615 break;
3616 }
3617
3618 return TRUE;
3619 }
3620
3621 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3622 symbol table index lower than any we've seen to date, record it for
3623 posterity. FOR_CALL is true if the caller is only interested in
3624 using the GOT entry for calls. */
3625
3626 static bfd_boolean
3627 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3628 bfd *abfd, struct bfd_link_info *info,
3629 bfd_boolean for_call,
3630 unsigned char tls_flag)
3631 {
3632 struct mips_elf_link_hash_table *htab;
3633 struct mips_elf_link_hash_entry *hmips;
3634 struct mips_got_entry entry, **loc;
3635 struct mips_got_info *g;
3636
3637 htab = mips_elf_hash_table (info);
3638 BFD_ASSERT (htab != NULL);
3639
3640 hmips = (struct mips_elf_link_hash_entry *) h;
3641 if (!for_call)
3642 hmips->got_only_for_calls = FALSE;
3643
3644 /* A global symbol in the GOT must also be in the dynamic symbol
3645 table. */
3646 if (h->dynindx == -1)
3647 {
3648 switch (ELF_ST_VISIBILITY (h->other))
3649 {
3650 case STV_INTERNAL:
3651 case STV_HIDDEN:
3652 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3653 break;
3654 }
3655 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3656 return FALSE;
3657 }
3658
3659 /* Make sure we have a GOT to put this entry into. */
3660 g = htab->got_info;
3661 BFD_ASSERT (g != NULL);
3662
3663 entry.abfd = abfd;
3664 entry.symndx = -1;
3665 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3666 entry.tls_type = 0;
3667
3668 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3669 INSERT);
3670
3671 /* If we've already marked this entry as needing GOT space, we don't
3672 need to do it again. */
3673 if (*loc)
3674 {
3675 (*loc)->tls_type |= tls_flag;
3676 return TRUE;
3677 }
3678
3679 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3680
3681 if (! *loc)
3682 return FALSE;
3683
3684 entry.gotidx = -1;
3685 entry.tls_type = tls_flag;
3686
3687 memcpy (*loc, &entry, sizeof entry);
3688
3689 if (tls_flag == 0)
3690 hmips->global_got_area = GGA_NORMAL;
3691
3692 return TRUE;
3693 }
3694
3695 /* Reserve space in G for a GOT entry containing the value of symbol
3696 SYMNDX in input bfd ABDF, plus ADDEND. */
3697
3698 static bfd_boolean
3699 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3700 struct bfd_link_info *info,
3701 unsigned char tls_flag)
3702 {
3703 struct mips_elf_link_hash_table *htab;
3704 struct mips_got_info *g;
3705 struct mips_got_entry entry, **loc;
3706
3707 htab = mips_elf_hash_table (info);
3708 BFD_ASSERT (htab != NULL);
3709
3710 g = htab->got_info;
3711 BFD_ASSERT (g != NULL);
3712
3713 entry.abfd = abfd;
3714 entry.symndx = symndx;
3715 entry.d.addend = addend;
3716 entry.tls_type = tls_flag;
3717 loc = (struct mips_got_entry **)
3718 htab_find_slot (g->got_entries, &entry, INSERT);
3719
3720 if (*loc)
3721 {
3722 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3723 {
3724 g->tls_gotno += 2;
3725 (*loc)->tls_type |= tls_flag;
3726 }
3727 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3728 {
3729 g->tls_gotno += 1;
3730 (*loc)->tls_type |= tls_flag;
3731 }
3732 return TRUE;
3733 }
3734
3735 if (tls_flag != 0)
3736 {
3737 entry.gotidx = -1;
3738 entry.tls_type = tls_flag;
3739 if (tls_flag == GOT_TLS_IE)
3740 g->tls_gotno += 1;
3741 else if (tls_flag == GOT_TLS_GD)
3742 g->tls_gotno += 2;
3743 else if (g->tls_ldm_offset == MINUS_ONE)
3744 {
3745 g->tls_ldm_offset = MINUS_TWO;
3746 g->tls_gotno += 2;
3747 }
3748 }
3749 else
3750 {
3751 entry.gotidx = g->local_gotno++;
3752 entry.tls_type = 0;
3753 }
3754
3755 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3756
3757 if (! *loc)
3758 return FALSE;
3759
3760 memcpy (*loc, &entry, sizeof entry);
3761
3762 return TRUE;
3763 }
3764
3765 /* Return the maximum number of GOT page entries required for RANGE. */
3766
3767 static bfd_vma
3768 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3769 {
3770 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3771 }
3772
3773 /* Record that ABFD has a page relocation against symbol SYMNDX and
3774 that ADDEND is the addend for that relocation.
3775
3776 This function creates an upper bound on the number of GOT slots
3777 required; no attempt is made to combine references to non-overridable
3778 global symbols across multiple input files. */
3779
3780 static bfd_boolean
3781 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3782 long symndx, bfd_signed_vma addend)
3783 {
3784 struct mips_elf_link_hash_table *htab;
3785 struct mips_got_info *g;
3786 struct mips_got_page_entry lookup, *entry;
3787 struct mips_got_page_range **range_ptr, *range;
3788 bfd_vma old_pages, new_pages;
3789 void **loc;
3790
3791 htab = mips_elf_hash_table (info);
3792 BFD_ASSERT (htab != NULL);
3793
3794 g = htab->got_info;
3795 BFD_ASSERT (g != NULL);
3796
3797 /* Find the mips_got_page_entry hash table entry for this symbol. */
3798 lookup.abfd = abfd;
3799 lookup.symndx = symndx;
3800 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3801 if (loc == NULL)
3802 return FALSE;
3803
3804 /* Create a mips_got_page_entry if this is the first time we've
3805 seen the symbol. */
3806 entry = (struct mips_got_page_entry *) *loc;
3807 if (!entry)
3808 {
3809 entry = bfd_alloc (abfd, sizeof (*entry));
3810 if (!entry)
3811 return FALSE;
3812
3813 entry->abfd = abfd;
3814 entry->symndx = symndx;
3815 entry->ranges = NULL;
3816 entry->num_pages = 0;
3817 *loc = entry;
3818 }
3819
3820 /* Skip over ranges whose maximum extent cannot share a page entry
3821 with ADDEND. */
3822 range_ptr = &entry->ranges;
3823 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3824 range_ptr = &(*range_ptr)->next;
3825
3826 /* If we scanned to the end of the list, or found a range whose
3827 minimum extent cannot share a page entry with ADDEND, create
3828 a new singleton range. */
3829 range = *range_ptr;
3830 if (!range || addend < range->min_addend - 0xffff)
3831 {
3832 range = bfd_alloc (abfd, sizeof (*range));
3833 if (!range)
3834 return FALSE;
3835
3836 range->next = *range_ptr;
3837 range->min_addend = addend;
3838 range->max_addend = addend;
3839
3840 *range_ptr = range;
3841 entry->num_pages++;
3842 g->page_gotno++;
3843 return TRUE;
3844 }
3845
3846 /* Remember how many pages the old range contributed. */
3847 old_pages = mips_elf_pages_for_range (range);
3848
3849 /* Update the ranges. */
3850 if (addend < range->min_addend)
3851 range->min_addend = addend;
3852 else if (addend > range->max_addend)
3853 {
3854 if (range->next && addend >= range->next->min_addend - 0xffff)
3855 {
3856 old_pages += mips_elf_pages_for_range (range->next);
3857 range->max_addend = range->next->max_addend;
3858 range->next = range->next->next;
3859 }
3860 else
3861 range->max_addend = addend;
3862 }
3863
3864 /* Record any change in the total estimate. */
3865 new_pages = mips_elf_pages_for_range (range);
3866 if (old_pages != new_pages)
3867 {
3868 entry->num_pages += new_pages - old_pages;
3869 g->page_gotno += new_pages - old_pages;
3870 }
3871
3872 return TRUE;
3873 }
3874
3875 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3876
3877 static void
3878 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3879 unsigned int n)
3880 {
3881 asection *s;
3882 struct mips_elf_link_hash_table *htab;
3883
3884 htab = mips_elf_hash_table (info);
3885 BFD_ASSERT (htab != NULL);
3886
3887 s = mips_elf_rel_dyn_section (info, FALSE);
3888 BFD_ASSERT (s != NULL);
3889
3890 if (htab->is_vxworks)
3891 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3892 else
3893 {
3894 if (s->size == 0)
3895 {
3896 /* Make room for a null element. */
3897 s->size += MIPS_ELF_REL_SIZE (abfd);
3898 ++s->reloc_count;
3899 }
3900 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3901 }
3902 }
3903 \f
3904 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3905 if the GOT entry is for an indirect or warning symbol. */
3906
3907 static int
3908 mips_elf_check_recreate_got (void **entryp, void *data)
3909 {
3910 struct mips_got_entry *entry;
3911 bfd_boolean *must_recreate;
3912
3913 entry = (struct mips_got_entry *) *entryp;
3914 must_recreate = (bfd_boolean *) data;
3915 if (entry->abfd != NULL && entry->symndx == -1)
3916 {
3917 struct mips_elf_link_hash_entry *h;
3918
3919 h = entry->d.h;
3920 if (h->root.root.type == bfd_link_hash_indirect
3921 || h->root.root.type == bfd_link_hash_warning)
3922 {
3923 *must_recreate = TRUE;
3924 return 0;
3925 }
3926 }
3927 return 1;
3928 }
3929
3930 /* A htab_traverse callback for GOT entries. Add all entries to
3931 hash table *DATA, converting entries for indirect and warning
3932 symbols into entries for the target symbol. Set *DATA to null
3933 on error. */
3934
3935 static int
3936 mips_elf_recreate_got (void **entryp, void *data)
3937 {
3938 htab_t *new_got;
3939 struct mips_got_entry *entry;
3940 void **slot;
3941
3942 new_got = (htab_t *) data;
3943 entry = (struct mips_got_entry *) *entryp;
3944 if (entry->abfd != NULL && entry->symndx == -1)
3945 {
3946 struct mips_elf_link_hash_entry *h;
3947
3948 h = entry->d.h;
3949 while (h->root.root.type == bfd_link_hash_indirect
3950 || h->root.root.type == bfd_link_hash_warning)
3951 {
3952 BFD_ASSERT (h->global_got_area == GGA_NONE);
3953 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3954 }
3955 entry->d.h = h;
3956 }
3957 slot = htab_find_slot (*new_got, entry, INSERT);
3958 if (slot == NULL)
3959 {
3960 *new_got = NULL;
3961 return 0;
3962 }
3963 if (*slot == NULL)
3964 *slot = entry;
3965 else
3966 free (entry);
3967 return 1;
3968 }
3969
3970 /* If any entries in G->got_entries are for indirect or warning symbols,
3971 replace them with entries for the target symbol. */
3972
3973 static bfd_boolean
3974 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3975 {
3976 bfd_boolean must_recreate;
3977 htab_t new_got;
3978
3979 must_recreate = FALSE;
3980 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3981 if (must_recreate)
3982 {
3983 new_got = htab_create (htab_size (g->got_entries),
3984 mips_elf_got_entry_hash,
3985 mips_elf_got_entry_eq, NULL);
3986 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3987 if (new_got == NULL)
3988 return FALSE;
3989
3990 /* Each entry in g->got_entries has either been copied to new_got
3991 or freed. Now delete the hash table itself. */
3992 htab_delete (g->got_entries);
3993 g->got_entries = new_got;
3994 }
3995 return TRUE;
3996 }
3997
3998 /* A mips_elf_link_hash_traverse callback for which DATA points
3999 to the link_info structure. Count the number of type (3) entries
4000 in the master GOT. */
4001
4002 static int
4003 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4004 {
4005 struct bfd_link_info *info;
4006 struct mips_elf_link_hash_table *htab;
4007 struct mips_got_info *g;
4008
4009 info = (struct bfd_link_info *) data;
4010 htab = mips_elf_hash_table (info);
4011 g = htab->got_info;
4012 if (h->global_got_area != GGA_NONE)
4013 {
4014 /* Make a final decision about whether the symbol belongs in the
4015 local or global GOT. Symbols that bind locally can (and in the
4016 case of forced-local symbols, must) live in the local GOT.
4017 Those that are aren't in the dynamic symbol table must also
4018 live in the local GOT.
4019
4020 Note that the former condition does not always imply the
4021 latter: symbols do not bind locally if they are completely
4022 undefined. We'll report undefined symbols later if appropriate. */
4023 if (h->root.dynindx == -1
4024 || (h->got_only_for_calls
4025 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4026 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4027 {
4028 /* The symbol belongs in the local GOT. We no longer need this
4029 entry if it was only used for relocations; those relocations
4030 will be against the null or section symbol instead of H. */
4031 if (h->global_got_area != GGA_RELOC_ONLY)
4032 g->local_gotno++;
4033 h->global_got_area = GGA_NONE;
4034 }
4035 else if (htab->is_vxworks
4036 && h->got_only_for_calls
4037 && h->root.plt.offset != MINUS_ONE)
4038 /* On VxWorks, calls can refer directly to the .got.plt entry;
4039 they don't need entries in the regular GOT. .got.plt entries
4040 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4041 h->global_got_area = GGA_NONE;
4042 else
4043 {
4044 g->global_gotno++;
4045 if (h->global_got_area == GGA_RELOC_ONLY)
4046 g->reloc_only_gotno++;
4047 }
4048 }
4049 return 1;
4050 }
4051 \f
4052 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4053
4054 static hashval_t
4055 mips_elf_bfd2got_entry_hash (const void *entry_)
4056 {
4057 const struct mips_elf_bfd2got_hash *entry
4058 = (struct mips_elf_bfd2got_hash *)entry_;
4059
4060 return entry->bfd->id;
4061 }
4062
4063 /* Check whether two hash entries have the same bfd. */
4064
4065 static int
4066 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4067 {
4068 const struct mips_elf_bfd2got_hash *e1
4069 = (const struct mips_elf_bfd2got_hash *)entry1;
4070 const struct mips_elf_bfd2got_hash *e2
4071 = (const struct mips_elf_bfd2got_hash *)entry2;
4072
4073 return e1->bfd == e2->bfd;
4074 }
4075
4076 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4077 be the master GOT data. */
4078
4079 static struct mips_got_info *
4080 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4081 {
4082 struct mips_elf_bfd2got_hash e, *p;
4083
4084 if (! g->bfd2got)
4085 return g;
4086
4087 e.bfd = ibfd;
4088 p = htab_find (g->bfd2got, &e);
4089 return p ? p->g : NULL;
4090 }
4091
4092 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4093 Return NULL if an error occured. */
4094
4095 static struct mips_got_info *
4096 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4097 bfd *input_bfd)
4098 {
4099 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4100 struct mips_got_info *g;
4101 void **bfdgotp;
4102
4103 bfdgot_entry.bfd = input_bfd;
4104 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4105 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4106
4107 if (bfdgot == NULL)
4108 {
4109 bfdgot = ((struct mips_elf_bfd2got_hash *)
4110 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4111 if (bfdgot == NULL)
4112 return NULL;
4113
4114 *bfdgotp = bfdgot;
4115
4116 g = ((struct mips_got_info *)
4117 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4118 if (g == NULL)
4119 return NULL;
4120
4121 bfdgot->bfd = input_bfd;
4122 bfdgot->g = g;
4123
4124 g->global_gotsym = NULL;
4125 g->global_gotno = 0;
4126 g->reloc_only_gotno = 0;
4127 g->local_gotno = 0;
4128 g->page_gotno = 0;
4129 g->assigned_gotno = -1;
4130 g->tls_gotno = 0;
4131 g->tls_assigned_gotno = 0;
4132 g->tls_ldm_offset = MINUS_ONE;
4133 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4134 mips_elf_multi_got_entry_eq, NULL);
4135 if (g->got_entries == NULL)
4136 return NULL;
4137
4138 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4139 mips_got_page_entry_eq, NULL);
4140 if (g->got_page_entries == NULL)
4141 return NULL;
4142
4143 g->bfd2got = NULL;
4144 g->next = NULL;
4145 }
4146
4147 return bfdgot->g;
4148 }
4149
4150 /* A htab_traverse callback for the entries in the master got.
4151 Create one separate got for each bfd that has entries in the global
4152 got, such that we can tell how many local and global entries each
4153 bfd requires. */
4154
4155 static int
4156 mips_elf_make_got_per_bfd (void **entryp, void *p)
4157 {
4158 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4159 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4160 struct mips_got_info *g;
4161
4162 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4163 if (g == NULL)
4164 {
4165 arg->obfd = NULL;
4166 return 0;
4167 }
4168
4169 /* Insert the GOT entry in the bfd's got entry hash table. */
4170 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4171 if (*entryp != NULL)
4172 return 1;
4173
4174 *entryp = entry;
4175
4176 if (entry->tls_type)
4177 {
4178 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4179 g->tls_gotno += 2;
4180 if (entry->tls_type & GOT_TLS_IE)
4181 g->tls_gotno += 1;
4182 }
4183 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4184 ++g->local_gotno;
4185 else
4186 ++g->global_gotno;
4187
4188 return 1;
4189 }
4190
4191 /* A htab_traverse callback for the page entries in the master got.
4192 Associate each page entry with the bfd's got. */
4193
4194 static int
4195 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4196 {
4197 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4198 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4199 struct mips_got_info *g;
4200
4201 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4202 if (g == NULL)
4203 {
4204 arg->obfd = NULL;
4205 return 0;
4206 }
4207
4208 /* Insert the GOT entry in the bfd's got entry hash table. */
4209 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4210 if (*entryp != NULL)
4211 return 1;
4212
4213 *entryp = entry;
4214 g->page_gotno += entry->num_pages;
4215 return 1;
4216 }
4217
4218 /* Consider merging the got described by BFD2GOT with TO, using the
4219 information given by ARG. Return -1 if this would lead to overflow,
4220 1 if they were merged successfully, and 0 if a merge failed due to
4221 lack of memory. (These values are chosen so that nonnegative return
4222 values can be returned by a htab_traverse callback.) */
4223
4224 static int
4225 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4226 struct mips_got_info *to,
4227 struct mips_elf_got_per_bfd_arg *arg)
4228 {
4229 struct mips_got_info *from = bfd2got->g;
4230 unsigned int estimate;
4231
4232 /* Work out how many page entries we would need for the combined GOT. */
4233 estimate = arg->max_pages;
4234 if (estimate >= from->page_gotno + to->page_gotno)
4235 estimate = from->page_gotno + to->page_gotno;
4236
4237 /* And conservatively estimate how many local and TLS entries
4238 would be needed. */
4239 estimate += from->local_gotno + to->local_gotno;
4240 estimate += from->tls_gotno + to->tls_gotno;
4241
4242 /* If we're merging with the primary got, we will always have
4243 the full set of global entries. Otherwise estimate those
4244 conservatively as well. */
4245 if (to == arg->primary)
4246 estimate += arg->global_count;
4247 else
4248 estimate += from->global_gotno + to->global_gotno;
4249
4250 /* Bail out if the combined GOT might be too big. */
4251 if (estimate > arg->max_count)
4252 return -1;
4253
4254 /* Commit to the merge. Record that TO is now the bfd for this got. */
4255 bfd2got->g = to;
4256
4257 /* Transfer the bfd's got information from FROM to TO. */
4258 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4259 if (arg->obfd == NULL)
4260 return 0;
4261
4262 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4263 if (arg->obfd == NULL)
4264 return 0;
4265
4266 /* We don't have to worry about releasing memory of the actual
4267 got entries, since they're all in the master got_entries hash
4268 table anyway. */
4269 htab_delete (from->got_entries);
4270 htab_delete (from->got_page_entries);
4271 return 1;
4272 }
4273
4274 /* Attempt to merge gots of different input bfds. Try to use as much
4275 as possible of the primary got, since it doesn't require explicit
4276 dynamic relocations, but don't use bfds that would reference global
4277 symbols out of the addressable range. Failing the primary got,
4278 attempt to merge with the current got, or finish the current got
4279 and then make make the new got current. */
4280
4281 static int
4282 mips_elf_merge_gots (void **bfd2got_, void *p)
4283 {
4284 struct mips_elf_bfd2got_hash *bfd2got
4285 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4286 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4287 struct mips_got_info *g;
4288 unsigned int estimate;
4289 int result;
4290
4291 g = bfd2got->g;
4292
4293 /* Work out the number of page, local and TLS entries. */
4294 estimate = arg->max_pages;
4295 if (estimate > g->page_gotno)
4296 estimate = g->page_gotno;
4297 estimate += g->local_gotno + g->tls_gotno;
4298
4299 /* We place TLS GOT entries after both locals and globals. The globals
4300 for the primary GOT may overflow the normal GOT size limit, so be
4301 sure not to merge a GOT which requires TLS with the primary GOT in that
4302 case. This doesn't affect non-primary GOTs. */
4303 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4304
4305 if (estimate <= arg->max_count)
4306 {
4307 /* If we don't have a primary GOT, use it as
4308 a starting point for the primary GOT. */
4309 if (!arg->primary)
4310 {
4311 arg->primary = bfd2got->g;
4312 return 1;
4313 }
4314
4315 /* Try merging with the primary GOT. */
4316 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4317 if (result >= 0)
4318 return result;
4319 }
4320
4321 /* If we can merge with the last-created got, do it. */
4322 if (arg->current)
4323 {
4324 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4325 if (result >= 0)
4326 return result;
4327 }
4328
4329 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4330 fits; if it turns out that it doesn't, we'll get relocation
4331 overflows anyway. */
4332 g->next = arg->current;
4333 arg->current = g;
4334
4335 return 1;
4336 }
4337
4338 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4339 is null iff there is just a single GOT. */
4340
4341 static int
4342 mips_elf_initialize_tls_index (void **entryp, void *p)
4343 {
4344 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4345 struct mips_got_info *g = p;
4346 bfd_vma next_index;
4347 unsigned char tls_type;
4348
4349 /* We're only interested in TLS symbols. */
4350 if (entry->tls_type == 0)
4351 return 1;
4352
4353 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4354
4355 if (entry->symndx == -1 && g->next == NULL)
4356 {
4357 /* A type (3) got entry in the single-GOT case. We use the symbol's
4358 hash table entry to track its index. */
4359 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4360 return 1;
4361 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4362 entry->d.h->tls_got_offset = next_index;
4363 tls_type = entry->d.h->tls_type;
4364 }
4365 else
4366 {
4367 if (entry->tls_type & GOT_TLS_LDM)
4368 {
4369 /* There are separate mips_got_entry objects for each input bfd
4370 that requires an LDM entry. Make sure that all LDM entries in
4371 a GOT resolve to the same index. */
4372 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4373 {
4374 entry->gotidx = g->tls_ldm_offset;
4375 return 1;
4376 }
4377 g->tls_ldm_offset = next_index;
4378 }
4379 entry->gotidx = next_index;
4380 tls_type = entry->tls_type;
4381 }
4382
4383 /* Account for the entries we've just allocated. */
4384 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4385 g->tls_assigned_gotno += 2;
4386 if (tls_type & GOT_TLS_IE)
4387 g->tls_assigned_gotno += 1;
4388
4389 return 1;
4390 }
4391
4392 /* If passed a NULL mips_got_info in the argument, set the marker used
4393 to tell whether a global symbol needs a got entry (in the primary
4394 got) to the given VALUE.
4395
4396 If passed a pointer G to a mips_got_info in the argument (it must
4397 not be the primary GOT), compute the offset from the beginning of
4398 the (primary) GOT section to the entry in G corresponding to the
4399 global symbol. G's assigned_gotno must contain the index of the
4400 first available global GOT entry in G. VALUE must contain the size
4401 of a GOT entry in bytes. For each global GOT entry that requires a
4402 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4403 marked as not eligible for lazy resolution through a function
4404 stub. */
4405 static int
4406 mips_elf_set_global_got_offset (void **entryp, void *p)
4407 {
4408 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4409 struct mips_elf_set_global_got_offset_arg *arg
4410 = (struct mips_elf_set_global_got_offset_arg *)p;
4411 struct mips_got_info *g = arg->g;
4412
4413 if (g && entry->tls_type != GOT_NORMAL)
4414 arg->needed_relocs +=
4415 mips_tls_got_relocs (arg->info, entry->tls_type,
4416 entry->symndx == -1 ? &entry->d.h->root : NULL);
4417
4418 if (entry->abfd != NULL
4419 && entry->symndx == -1
4420 && entry->d.h->global_got_area != GGA_NONE)
4421 {
4422 if (g)
4423 {
4424 BFD_ASSERT (g->global_gotsym == NULL);
4425
4426 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4427 if (arg->info->shared
4428 || (elf_hash_table (arg->info)->dynamic_sections_created
4429 && entry->d.h->root.def_dynamic
4430 && !entry->d.h->root.def_regular))
4431 ++arg->needed_relocs;
4432 }
4433 else
4434 entry->d.h->global_got_area = arg->value;
4435 }
4436
4437 return 1;
4438 }
4439
4440 /* A htab_traverse callback for GOT entries for which DATA is the
4441 bfd_link_info. Forbid any global symbols from having traditional
4442 lazy-binding stubs. */
4443
4444 static int
4445 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4446 {
4447 struct bfd_link_info *info;
4448 struct mips_elf_link_hash_table *htab;
4449 struct mips_got_entry *entry;
4450
4451 entry = (struct mips_got_entry *) *entryp;
4452 info = (struct bfd_link_info *) data;
4453 htab = mips_elf_hash_table (info);
4454 BFD_ASSERT (htab != NULL);
4455
4456 if (entry->abfd != NULL
4457 && entry->symndx == -1
4458 && entry->d.h->needs_lazy_stub)
4459 {
4460 entry->d.h->needs_lazy_stub = FALSE;
4461 htab->lazy_stub_count--;
4462 }
4463
4464 return 1;
4465 }
4466
4467 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4468 the primary GOT. */
4469 static bfd_vma
4470 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4471 {
4472 if (g->bfd2got == NULL)
4473 return 0;
4474
4475 g = mips_elf_got_for_ibfd (g, ibfd);
4476 if (! g)
4477 return 0;
4478
4479 BFD_ASSERT (g->next);
4480
4481 g = g->next;
4482
4483 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4484 * MIPS_ELF_GOT_SIZE (abfd);
4485 }
4486
4487 /* Turn a single GOT that is too big for 16-bit addressing into
4488 a sequence of GOTs, each one 16-bit addressable. */
4489
4490 static bfd_boolean
4491 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4492 asection *got, bfd_size_type pages)
4493 {
4494 struct mips_elf_link_hash_table *htab;
4495 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4496 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4497 struct mips_got_info *g, *gg;
4498 unsigned int assign, needed_relocs;
4499 bfd *dynobj;
4500
4501 dynobj = elf_hash_table (info)->dynobj;
4502 htab = mips_elf_hash_table (info);
4503 BFD_ASSERT (htab != NULL);
4504
4505 g = htab->got_info;
4506 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4507 mips_elf_bfd2got_entry_eq, NULL);
4508 if (g->bfd2got == NULL)
4509 return FALSE;
4510
4511 got_per_bfd_arg.bfd2got = g->bfd2got;
4512 got_per_bfd_arg.obfd = abfd;
4513 got_per_bfd_arg.info = info;
4514
4515 /* Count how many GOT entries each input bfd requires, creating a
4516 map from bfd to got info while at that. */
4517 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4518 if (got_per_bfd_arg.obfd == NULL)
4519 return FALSE;
4520
4521 /* Also count how many page entries each input bfd requires. */
4522 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4523 &got_per_bfd_arg);
4524 if (got_per_bfd_arg.obfd == NULL)
4525 return FALSE;
4526
4527 got_per_bfd_arg.current = NULL;
4528 got_per_bfd_arg.primary = NULL;
4529 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4530 / MIPS_ELF_GOT_SIZE (abfd))
4531 - htab->reserved_gotno);
4532 got_per_bfd_arg.max_pages = pages;
4533 /* The number of globals that will be included in the primary GOT.
4534 See the calls to mips_elf_set_global_got_offset below for more
4535 information. */
4536 got_per_bfd_arg.global_count = g->global_gotno;
4537
4538 /* Try to merge the GOTs of input bfds together, as long as they
4539 don't seem to exceed the maximum GOT size, choosing one of them
4540 to be the primary GOT. */
4541 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4542 if (got_per_bfd_arg.obfd == NULL)
4543 return FALSE;
4544
4545 /* If we do not find any suitable primary GOT, create an empty one. */
4546 if (got_per_bfd_arg.primary == NULL)
4547 {
4548 g->next = (struct mips_got_info *)
4549 bfd_alloc (abfd, sizeof (struct mips_got_info));
4550 if (g->next == NULL)
4551 return FALSE;
4552
4553 g->next->global_gotsym = NULL;
4554 g->next->global_gotno = 0;
4555 g->next->reloc_only_gotno = 0;
4556 g->next->local_gotno = 0;
4557 g->next->page_gotno = 0;
4558 g->next->tls_gotno = 0;
4559 g->next->assigned_gotno = 0;
4560 g->next->tls_assigned_gotno = 0;
4561 g->next->tls_ldm_offset = MINUS_ONE;
4562 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4563 mips_elf_multi_got_entry_eq,
4564 NULL);
4565 if (g->next->got_entries == NULL)
4566 return FALSE;
4567 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4568 mips_got_page_entry_eq,
4569 NULL);
4570 if (g->next->got_page_entries == NULL)
4571 return FALSE;
4572 g->next->bfd2got = NULL;
4573 }
4574 else
4575 g->next = got_per_bfd_arg.primary;
4576 g->next->next = got_per_bfd_arg.current;
4577
4578 /* GG is now the master GOT, and G is the primary GOT. */
4579 gg = g;
4580 g = g->next;
4581
4582 /* Map the output bfd to the primary got. That's what we're going
4583 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4584 didn't mark in check_relocs, and we want a quick way to find it.
4585 We can't just use gg->next because we're going to reverse the
4586 list. */
4587 {
4588 struct mips_elf_bfd2got_hash *bfdgot;
4589 void **bfdgotp;
4590
4591 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4592 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4593
4594 if (bfdgot == NULL)
4595 return FALSE;
4596
4597 bfdgot->bfd = abfd;
4598 bfdgot->g = g;
4599 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4600
4601 BFD_ASSERT (*bfdgotp == NULL);
4602 *bfdgotp = bfdgot;
4603 }
4604
4605 /* Every symbol that is referenced in a dynamic relocation must be
4606 present in the primary GOT, so arrange for them to appear after
4607 those that are actually referenced. */
4608 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4609 g->global_gotno = gg->global_gotno;
4610
4611 set_got_offset_arg.g = NULL;
4612 set_got_offset_arg.value = GGA_RELOC_ONLY;
4613 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4614 &set_got_offset_arg);
4615 set_got_offset_arg.value = GGA_NORMAL;
4616 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4617 &set_got_offset_arg);
4618
4619 /* Now go through the GOTs assigning them offset ranges.
4620 [assigned_gotno, local_gotno[ will be set to the range of local
4621 entries in each GOT. We can then compute the end of a GOT by
4622 adding local_gotno to global_gotno. We reverse the list and make
4623 it circular since then we'll be able to quickly compute the
4624 beginning of a GOT, by computing the end of its predecessor. To
4625 avoid special cases for the primary GOT, while still preserving
4626 assertions that are valid for both single- and multi-got links,
4627 we arrange for the main got struct to have the right number of
4628 global entries, but set its local_gotno such that the initial
4629 offset of the primary GOT is zero. Remember that the primary GOT
4630 will become the last item in the circular linked list, so it
4631 points back to the master GOT. */
4632 gg->local_gotno = -g->global_gotno;
4633 gg->global_gotno = g->global_gotno;
4634 gg->tls_gotno = 0;
4635 assign = 0;
4636 gg->next = gg;
4637
4638 do
4639 {
4640 struct mips_got_info *gn;
4641
4642 assign += htab->reserved_gotno;
4643 g->assigned_gotno = assign;
4644 g->local_gotno += assign;
4645 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4646 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4647
4648 /* Take g out of the direct list, and push it onto the reversed
4649 list that gg points to. g->next is guaranteed to be nonnull after
4650 this operation, as required by mips_elf_initialize_tls_index. */
4651 gn = g->next;
4652 g->next = gg->next;
4653 gg->next = g;
4654
4655 /* Set up any TLS entries. We always place the TLS entries after
4656 all non-TLS entries. */
4657 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4658 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4659
4660 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4661 g = gn;
4662
4663 /* Forbid global symbols in every non-primary GOT from having
4664 lazy-binding stubs. */
4665 if (g)
4666 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4667 }
4668 while (g);
4669
4670 got->size = (gg->next->local_gotno
4671 + gg->next->global_gotno
4672 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4673
4674 needed_relocs = 0;
4675 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4676 set_got_offset_arg.info = info;
4677 for (g = gg->next; g && g->next != gg; g = g->next)
4678 {
4679 unsigned int save_assign;
4680
4681 /* Assign offsets to global GOT entries. */
4682 save_assign = g->assigned_gotno;
4683 g->assigned_gotno = g->local_gotno;
4684 set_got_offset_arg.g = g;
4685 set_got_offset_arg.needed_relocs = 0;
4686 htab_traverse (g->got_entries,
4687 mips_elf_set_global_got_offset,
4688 &set_got_offset_arg);
4689 needed_relocs += set_got_offset_arg.needed_relocs;
4690 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4691
4692 g->assigned_gotno = save_assign;
4693 if (info->shared)
4694 {
4695 needed_relocs += g->local_gotno - g->assigned_gotno;
4696 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4697 + g->next->global_gotno
4698 + g->next->tls_gotno
4699 + htab->reserved_gotno);
4700 }
4701 }
4702
4703 if (needed_relocs)
4704 mips_elf_allocate_dynamic_relocations (dynobj, info,
4705 needed_relocs);
4706
4707 return TRUE;
4708 }
4709
4710 \f
4711 /* Returns the first relocation of type r_type found, beginning with
4712 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4713
4714 static const Elf_Internal_Rela *
4715 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4716 const Elf_Internal_Rela *relocation,
4717 const Elf_Internal_Rela *relend)
4718 {
4719 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4720
4721 while (relocation < relend)
4722 {
4723 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4724 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4725 return relocation;
4726
4727 ++relocation;
4728 }
4729
4730 /* We didn't find it. */
4731 return NULL;
4732 }
4733
4734 /* Return whether an input relocation is against a local symbol. */
4735
4736 static bfd_boolean
4737 mips_elf_local_relocation_p (bfd *input_bfd,
4738 const Elf_Internal_Rela *relocation,
4739 asection **local_sections)
4740 {
4741 unsigned long r_symndx;
4742 Elf_Internal_Shdr *symtab_hdr;
4743 size_t extsymoff;
4744
4745 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4746 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4747 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4748
4749 if (r_symndx < extsymoff)
4750 return TRUE;
4751 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4752 return TRUE;
4753
4754 return FALSE;
4755 }
4756 \f
4757 /* Sign-extend VALUE, which has the indicated number of BITS. */
4758
4759 bfd_vma
4760 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4761 {
4762 if (value & ((bfd_vma) 1 << (bits - 1)))
4763 /* VALUE is negative. */
4764 value |= ((bfd_vma) - 1) << bits;
4765
4766 return value;
4767 }
4768
4769 /* Return non-zero if the indicated VALUE has overflowed the maximum
4770 range expressible by a signed number with the indicated number of
4771 BITS. */
4772
4773 static bfd_boolean
4774 mips_elf_overflow_p (bfd_vma value, int bits)
4775 {
4776 bfd_signed_vma svalue = (bfd_signed_vma) value;
4777
4778 if (svalue > (1 << (bits - 1)) - 1)
4779 /* The value is too big. */
4780 return TRUE;
4781 else if (svalue < -(1 << (bits - 1)))
4782 /* The value is too small. */
4783 return TRUE;
4784
4785 /* All is well. */
4786 return FALSE;
4787 }
4788
4789 /* Calculate the %high function. */
4790
4791 static bfd_vma
4792 mips_elf_high (bfd_vma value)
4793 {
4794 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4795 }
4796
4797 /* Calculate the %higher function. */
4798
4799 static bfd_vma
4800 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4801 {
4802 #ifdef BFD64
4803 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4804 #else
4805 abort ();
4806 return MINUS_ONE;
4807 #endif
4808 }
4809
4810 /* Calculate the %highest function. */
4811
4812 static bfd_vma
4813 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4814 {
4815 #ifdef BFD64
4816 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4817 #else
4818 abort ();
4819 return MINUS_ONE;
4820 #endif
4821 }
4822 \f
4823 /* Create the .compact_rel section. */
4824
4825 static bfd_boolean
4826 mips_elf_create_compact_rel_section
4827 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4828 {
4829 flagword flags;
4830 register asection *s;
4831
4832 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4833 {
4834 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4835 | SEC_READONLY);
4836
4837 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4838 if (s == NULL
4839 || ! bfd_set_section_alignment (abfd, s,
4840 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4841 return FALSE;
4842
4843 s->size = sizeof (Elf32_External_compact_rel);
4844 }
4845
4846 return TRUE;
4847 }
4848
4849 /* Create the .got section to hold the global offset table. */
4850
4851 static bfd_boolean
4852 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4853 {
4854 flagword flags;
4855 register asection *s;
4856 struct elf_link_hash_entry *h;
4857 struct bfd_link_hash_entry *bh;
4858 struct mips_got_info *g;
4859 bfd_size_type amt;
4860 struct mips_elf_link_hash_table *htab;
4861
4862 htab = mips_elf_hash_table (info);
4863 BFD_ASSERT (htab != NULL);
4864
4865 /* This function may be called more than once. */
4866 if (htab->sgot)
4867 return TRUE;
4868
4869 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4870 | SEC_LINKER_CREATED);
4871
4872 /* We have to use an alignment of 2**4 here because this is hardcoded
4873 in the function stub generation and in the linker script. */
4874 s = bfd_make_section_with_flags (abfd, ".got", flags);
4875 if (s == NULL
4876 || ! bfd_set_section_alignment (abfd, s, 4))
4877 return FALSE;
4878 htab->sgot = s;
4879
4880 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4881 linker script because we don't want to define the symbol if we
4882 are not creating a global offset table. */
4883 bh = NULL;
4884 if (! (_bfd_generic_link_add_one_symbol
4885 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4886 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4887 return FALSE;
4888
4889 h = (struct elf_link_hash_entry *) bh;
4890 h->non_elf = 0;
4891 h->def_regular = 1;
4892 h->type = STT_OBJECT;
4893 elf_hash_table (info)->hgot = h;
4894
4895 if (info->shared
4896 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4897 return FALSE;
4898
4899 amt = sizeof (struct mips_got_info);
4900 g = bfd_alloc (abfd, amt);
4901 if (g == NULL)
4902 return FALSE;
4903 g->global_gotsym = NULL;
4904 g->global_gotno = 0;
4905 g->reloc_only_gotno = 0;
4906 g->tls_gotno = 0;
4907 g->local_gotno = 0;
4908 g->page_gotno = 0;
4909 g->assigned_gotno = 0;
4910 g->bfd2got = NULL;
4911 g->next = NULL;
4912 g->tls_ldm_offset = MINUS_ONE;
4913 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4914 mips_elf_got_entry_eq, NULL);
4915 if (g->got_entries == NULL)
4916 return FALSE;
4917 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4918 mips_got_page_entry_eq, NULL);
4919 if (g->got_page_entries == NULL)
4920 return FALSE;
4921 htab->got_info = g;
4922 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4923 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4924
4925 /* We also need a .got.plt section when generating PLTs. */
4926 s = bfd_make_section_with_flags (abfd, ".got.plt",
4927 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4928 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4929 if (s == NULL)
4930 return FALSE;
4931 htab->sgotplt = s;
4932
4933 return TRUE;
4934 }
4935 \f
4936 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4937 __GOTT_INDEX__ symbols. These symbols are only special for
4938 shared objects; they are not used in executables. */
4939
4940 static bfd_boolean
4941 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4942 {
4943 return (mips_elf_hash_table (info)->is_vxworks
4944 && info->shared
4945 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4946 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4947 }
4948
4949 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4950 require an la25 stub. See also mips_elf_local_pic_function_p,
4951 which determines whether the destination function ever requires a
4952 stub. */
4953
4954 static bfd_boolean
4955 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4956 bfd_boolean target_is_16_bit_code_p)
4957 {
4958 /* We specifically ignore branches and jumps from EF_PIC objects,
4959 where the onus is on the compiler or programmer to perform any
4960 necessary initialization of $25. Sometimes such initialization
4961 is unnecessary; for example, -mno-shared functions do not use
4962 the incoming value of $25, and may therefore be called directly. */
4963 if (PIC_OBJECT_P (input_bfd))
4964 return FALSE;
4965
4966 switch (r_type)
4967 {
4968 case R_MIPS_26:
4969 case R_MIPS_PC16:
4970 case R_MICROMIPS_26_S1:
4971 case R_MICROMIPS_PC7_S1:
4972 case R_MICROMIPS_PC10_S1:
4973 case R_MICROMIPS_PC16_S1:
4974 case R_MICROMIPS_PC23_S2:
4975 return TRUE;
4976
4977 case R_MIPS16_26:
4978 return !target_is_16_bit_code_p;
4979
4980 default:
4981 return FALSE;
4982 }
4983 }
4984 \f
4985 /* Calculate the value produced by the RELOCATION (which comes from
4986 the INPUT_BFD). The ADDEND is the addend to use for this
4987 RELOCATION; RELOCATION->R_ADDEND is ignored.
4988
4989 The result of the relocation calculation is stored in VALUEP.
4990 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4991 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4992
4993 This function returns bfd_reloc_continue if the caller need take no
4994 further action regarding this relocation, bfd_reloc_notsupported if
4995 something goes dramatically wrong, bfd_reloc_overflow if an
4996 overflow occurs, and bfd_reloc_ok to indicate success. */
4997
4998 static bfd_reloc_status_type
4999 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5000 asection *input_section,
5001 struct bfd_link_info *info,
5002 const Elf_Internal_Rela *relocation,
5003 bfd_vma addend, reloc_howto_type *howto,
5004 Elf_Internal_Sym *local_syms,
5005 asection **local_sections, bfd_vma *valuep,
5006 const char **namep,
5007 bfd_boolean *cross_mode_jump_p,
5008 bfd_boolean save_addend)
5009 {
5010 /* The eventual value we will return. */
5011 bfd_vma value;
5012 /* The address of the symbol against which the relocation is
5013 occurring. */
5014 bfd_vma symbol = 0;
5015 /* The final GP value to be used for the relocatable, executable, or
5016 shared object file being produced. */
5017 bfd_vma gp;
5018 /* The place (section offset or address) of the storage unit being
5019 relocated. */
5020 bfd_vma p;
5021 /* The value of GP used to create the relocatable object. */
5022 bfd_vma gp0;
5023 /* The offset into the global offset table at which the address of
5024 the relocation entry symbol, adjusted by the addend, resides
5025 during execution. */
5026 bfd_vma g = MINUS_ONE;
5027 /* The section in which the symbol referenced by the relocation is
5028 located. */
5029 asection *sec = NULL;
5030 struct mips_elf_link_hash_entry *h = NULL;
5031 /* TRUE if the symbol referred to by this relocation is a local
5032 symbol. */
5033 bfd_boolean local_p, was_local_p;
5034 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5035 bfd_boolean gp_disp_p = FALSE;
5036 /* TRUE if the symbol referred to by this relocation is
5037 "__gnu_local_gp". */
5038 bfd_boolean gnu_local_gp_p = FALSE;
5039 Elf_Internal_Shdr *symtab_hdr;
5040 size_t extsymoff;
5041 unsigned long r_symndx;
5042 int r_type;
5043 /* TRUE if overflow occurred during the calculation of the
5044 relocation value. */
5045 bfd_boolean overflowed_p;
5046 /* TRUE if this relocation refers to a MIPS16 function. */
5047 bfd_boolean target_is_16_bit_code_p = FALSE;
5048 bfd_boolean target_is_micromips_code_p = FALSE;
5049 struct mips_elf_link_hash_table *htab;
5050 bfd *dynobj;
5051
5052 dynobj = elf_hash_table (info)->dynobj;
5053 htab = mips_elf_hash_table (info);
5054 BFD_ASSERT (htab != NULL);
5055
5056 /* Parse the relocation. */
5057 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5058 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5059 p = (input_section->output_section->vma
5060 + input_section->output_offset
5061 + relocation->r_offset);
5062
5063 /* Assume that there will be no overflow. */
5064 overflowed_p = FALSE;
5065
5066 /* Figure out whether or not the symbol is local, and get the offset
5067 used in the array of hash table entries. */
5068 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5069 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5070 local_sections);
5071 was_local_p = local_p;
5072 if (! elf_bad_symtab (input_bfd))
5073 extsymoff = symtab_hdr->sh_info;
5074 else
5075 {
5076 /* The symbol table does not follow the rule that local symbols
5077 must come before globals. */
5078 extsymoff = 0;
5079 }
5080
5081 /* Figure out the value of the symbol. */
5082 if (local_p)
5083 {
5084 Elf_Internal_Sym *sym;
5085
5086 sym = local_syms + r_symndx;
5087 sec = local_sections[r_symndx];
5088
5089 symbol = sec->output_section->vma + sec->output_offset;
5090 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5091 || (sec->flags & SEC_MERGE))
5092 symbol += sym->st_value;
5093 if ((sec->flags & SEC_MERGE)
5094 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5095 {
5096 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5097 addend -= symbol;
5098 addend += sec->output_section->vma + sec->output_offset;
5099 }
5100
5101 /* MIPS16/microMIPS text labels should be treated as odd. */
5102 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5103 ++symbol;
5104
5105 /* Record the name of this symbol, for our caller. */
5106 *namep = bfd_elf_string_from_elf_section (input_bfd,
5107 symtab_hdr->sh_link,
5108 sym->st_name);
5109 if (*namep == '\0')
5110 *namep = bfd_section_name (input_bfd, sec);
5111
5112 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5113 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5114 }
5115 else
5116 {
5117 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5118
5119 /* For global symbols we look up the symbol in the hash-table. */
5120 h = ((struct mips_elf_link_hash_entry *)
5121 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5122 /* Find the real hash-table entry for this symbol. */
5123 while (h->root.root.type == bfd_link_hash_indirect
5124 || h->root.root.type == bfd_link_hash_warning)
5125 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5126
5127 /* Record the name of this symbol, for our caller. */
5128 *namep = h->root.root.root.string;
5129
5130 /* See if this is the special _gp_disp symbol. Note that such a
5131 symbol must always be a global symbol. */
5132 if (strcmp (*namep, "_gp_disp") == 0
5133 && ! NEWABI_P (input_bfd))
5134 {
5135 /* Relocations against _gp_disp are permitted only with
5136 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5137 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5138 return bfd_reloc_notsupported;
5139
5140 gp_disp_p = TRUE;
5141 }
5142 /* See if this is the special _gp symbol. Note that such a
5143 symbol must always be a global symbol. */
5144 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5145 gnu_local_gp_p = TRUE;
5146
5147
5148 /* If this symbol is defined, calculate its address. Note that
5149 _gp_disp is a magic symbol, always implicitly defined by the
5150 linker, so it's inappropriate to check to see whether or not
5151 its defined. */
5152 else if ((h->root.root.type == bfd_link_hash_defined
5153 || h->root.root.type == bfd_link_hash_defweak)
5154 && h->root.root.u.def.section)
5155 {
5156 sec = h->root.root.u.def.section;
5157 if (sec->output_section)
5158 symbol = (h->root.root.u.def.value
5159 + sec->output_section->vma
5160 + sec->output_offset);
5161 else
5162 symbol = h->root.root.u.def.value;
5163 }
5164 else if (h->root.root.type == bfd_link_hash_undefweak)
5165 /* We allow relocations against undefined weak symbols, giving
5166 it the value zero, so that you can undefined weak functions
5167 and check to see if they exist by looking at their
5168 addresses. */
5169 symbol = 0;
5170 else if (info->unresolved_syms_in_objects == RM_IGNORE
5171 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5172 symbol = 0;
5173 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5174 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5175 {
5176 /* If this is a dynamic link, we should have created a
5177 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5178 in in _bfd_mips_elf_create_dynamic_sections.
5179 Otherwise, we should define the symbol with a value of 0.
5180 FIXME: It should probably get into the symbol table
5181 somehow as well. */
5182 BFD_ASSERT (! info->shared);
5183 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5184 symbol = 0;
5185 }
5186 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5187 {
5188 /* This is an optional symbol - an Irix specific extension to the
5189 ELF spec. Ignore it for now.
5190 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5191 than simply ignoring them, but we do not handle this for now.
5192 For information see the "64-bit ELF Object File Specification"
5193 which is available from here:
5194 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5195 symbol = 0;
5196 }
5197 else if ((*info->callbacks->undefined_symbol)
5198 (info, h->root.root.root.string, input_bfd,
5199 input_section, relocation->r_offset,
5200 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5201 || ELF_ST_VISIBILITY (h->root.other)))
5202 {
5203 return bfd_reloc_undefined;
5204 }
5205 else
5206 {
5207 return bfd_reloc_notsupported;
5208 }
5209
5210 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5211 /* If the output section is the PLT section,
5212 then the target is not microMIPS. */
5213 target_is_micromips_code_p = (htab->splt != sec
5214 && ELF_ST_IS_MICROMIPS (h->root.other));
5215 }
5216
5217 /* If this is a reference to a 16-bit function with a stub, we need
5218 to redirect the relocation to the stub unless:
5219
5220 (a) the relocation is for a MIPS16 JAL;
5221
5222 (b) the relocation is for a MIPS16 PIC call, and there are no
5223 non-MIPS16 uses of the GOT slot; or
5224
5225 (c) the section allows direct references to MIPS16 functions. */
5226 if (r_type != R_MIPS16_26
5227 && !info->relocatable
5228 && ((h != NULL
5229 && h->fn_stub != NULL
5230 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5231 || (local_p
5232 && elf_tdata (input_bfd)->local_stubs != NULL
5233 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5234 && !section_allows_mips16_refs_p (input_section))
5235 {
5236 /* This is a 32- or 64-bit call to a 16-bit function. We should
5237 have already noticed that we were going to need the
5238 stub. */
5239 if (local_p)
5240 {
5241 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5242 value = 0;
5243 }
5244 else
5245 {
5246 BFD_ASSERT (h->need_fn_stub);
5247 if (h->la25_stub)
5248 {
5249 /* If a LA25 header for the stub itself exists, point to the
5250 prepended LUI/ADDIU sequence. */
5251 sec = h->la25_stub->stub_section;
5252 value = h->la25_stub->offset;
5253 }
5254 else
5255 {
5256 sec = h->fn_stub;
5257 value = 0;
5258 }
5259 }
5260
5261 symbol = sec->output_section->vma + sec->output_offset + value;
5262 /* The target is 16-bit, but the stub isn't. */
5263 target_is_16_bit_code_p = FALSE;
5264 }
5265 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5266 need to redirect the call to the stub. Note that we specifically
5267 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5268 use an indirect stub instead. */
5269 else if (r_type == R_MIPS16_26 && !info->relocatable
5270 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5271 || (local_p
5272 && elf_tdata (input_bfd)->local_call_stubs != NULL
5273 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5274 && !target_is_16_bit_code_p)
5275 {
5276 if (local_p)
5277 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5278 else
5279 {
5280 /* If both call_stub and call_fp_stub are defined, we can figure
5281 out which one to use by checking which one appears in the input
5282 file. */
5283 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5284 {
5285 asection *o;
5286
5287 sec = NULL;
5288 for (o = input_bfd->sections; o != NULL; o = o->next)
5289 {
5290 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5291 {
5292 sec = h->call_fp_stub;
5293 break;
5294 }
5295 }
5296 if (sec == NULL)
5297 sec = h->call_stub;
5298 }
5299 else if (h->call_stub != NULL)
5300 sec = h->call_stub;
5301 else
5302 sec = h->call_fp_stub;
5303 }
5304
5305 BFD_ASSERT (sec->size > 0);
5306 symbol = sec->output_section->vma + sec->output_offset;
5307 }
5308 /* If this is a direct call to a PIC function, redirect to the
5309 non-PIC stub. */
5310 else if (h != NULL && h->la25_stub
5311 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5312 target_is_16_bit_code_p))
5313 symbol = (h->la25_stub->stub_section->output_section->vma
5314 + h->la25_stub->stub_section->output_offset
5315 + h->la25_stub->offset);
5316
5317 /* Make sure MIPS16 and microMIPS are not used together. */
5318 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5319 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5320 {
5321 (*_bfd_error_handler)
5322 (_("MIPS16 and microMIPS functions cannot call each other"));
5323 return bfd_reloc_notsupported;
5324 }
5325
5326 /* Calls from 16-bit code to 32-bit code and vice versa require the
5327 mode change. However, we can ignore calls to undefined weak symbols,
5328 which should never be executed at runtime. This exception is important
5329 because the assembly writer may have "known" that any definition of the
5330 symbol would be 16-bit code, and that direct jumps were therefore
5331 acceptable. */
5332 *cross_mode_jump_p = (!info->relocatable
5333 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5334 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5335 || (r_type == R_MICROMIPS_26_S1
5336 && !target_is_micromips_code_p)
5337 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5338 && (target_is_16_bit_code_p
5339 || target_is_micromips_code_p))));
5340
5341 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5342
5343 gp0 = _bfd_get_gp_value (input_bfd);
5344 gp = _bfd_get_gp_value (abfd);
5345 if (htab->got_info)
5346 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5347
5348 if (gnu_local_gp_p)
5349 symbol = gp;
5350
5351 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5352 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5353 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5354 if (got_page_reloc_p (r_type) && !local_p)
5355 {
5356 r_type = (micromips_reloc_p (r_type)
5357 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5358 addend = 0;
5359 }
5360
5361 /* If we haven't already determined the GOT offset, and we're going
5362 to need it, get it now. */
5363 switch (r_type)
5364 {
5365 case R_MIPS16_CALL16:
5366 case R_MIPS16_GOT16:
5367 case R_MIPS_CALL16:
5368 case R_MIPS_GOT16:
5369 case R_MIPS_GOT_DISP:
5370 case R_MIPS_GOT_HI16:
5371 case R_MIPS_CALL_HI16:
5372 case R_MIPS_GOT_LO16:
5373 case R_MIPS_CALL_LO16:
5374 case R_MICROMIPS_CALL16:
5375 case R_MICROMIPS_GOT16:
5376 case R_MICROMIPS_GOT_DISP:
5377 case R_MICROMIPS_GOT_HI16:
5378 case R_MICROMIPS_CALL_HI16:
5379 case R_MICROMIPS_GOT_LO16:
5380 case R_MICROMIPS_CALL_LO16:
5381 case R_MIPS_TLS_GD:
5382 case R_MIPS_TLS_GOTTPREL:
5383 case R_MIPS_TLS_LDM:
5384 case R_MIPS16_TLS_GD:
5385 case R_MIPS16_TLS_GOTTPREL:
5386 case R_MIPS16_TLS_LDM:
5387 case R_MICROMIPS_TLS_GD:
5388 case R_MICROMIPS_TLS_GOTTPREL:
5389 case R_MICROMIPS_TLS_LDM:
5390 /* Find the index into the GOT where this value is located. */
5391 if (tls_ldm_reloc_p (r_type))
5392 {
5393 g = mips_elf_local_got_index (abfd, input_bfd, info,
5394 0, 0, NULL, r_type);
5395 if (g == MINUS_ONE)
5396 return bfd_reloc_outofrange;
5397 }
5398 else if (!local_p)
5399 {
5400 /* On VxWorks, CALL relocations should refer to the .got.plt
5401 entry, which is initialized to point at the PLT stub. */
5402 if (htab->is_vxworks
5403 && (call_hi16_reloc_p (r_type)
5404 || call_lo16_reloc_p (r_type)
5405 || call16_reloc_p (r_type)))
5406 {
5407 BFD_ASSERT (addend == 0);
5408 BFD_ASSERT (h->root.needs_plt);
5409 g = mips_elf_gotplt_index (info, &h->root);
5410 }
5411 else
5412 {
5413 BFD_ASSERT (addend == 0);
5414 g = mips_elf_global_got_index (dynobj, input_bfd,
5415 &h->root, r_type, info);
5416 if (h->tls_type == GOT_NORMAL
5417 && !elf_hash_table (info)->dynamic_sections_created)
5418 /* This is a static link. We must initialize the GOT entry. */
5419 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5420 }
5421 }
5422 else if (!htab->is_vxworks
5423 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5424 /* The calculation below does not involve "g". */
5425 break;
5426 else
5427 {
5428 g = mips_elf_local_got_index (abfd, input_bfd, info,
5429 symbol + addend, r_symndx, h, r_type);
5430 if (g == MINUS_ONE)
5431 return bfd_reloc_outofrange;
5432 }
5433
5434 /* Convert GOT indices to actual offsets. */
5435 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5436 break;
5437 }
5438
5439 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5440 symbols are resolved by the loader. Add them to .rela.dyn. */
5441 if (h != NULL && is_gott_symbol (info, &h->root))
5442 {
5443 Elf_Internal_Rela outrel;
5444 bfd_byte *loc;
5445 asection *s;
5446
5447 s = mips_elf_rel_dyn_section (info, FALSE);
5448 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5449
5450 outrel.r_offset = (input_section->output_section->vma
5451 + input_section->output_offset
5452 + relocation->r_offset);
5453 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5454 outrel.r_addend = addend;
5455 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5456
5457 /* If we've written this relocation for a readonly section,
5458 we need to set DF_TEXTREL again, so that we do not delete the
5459 DT_TEXTREL tag. */
5460 if (MIPS_ELF_READONLY_SECTION (input_section))
5461 info->flags |= DF_TEXTREL;
5462
5463 *valuep = 0;
5464 return bfd_reloc_ok;
5465 }
5466
5467 /* Figure out what kind of relocation is being performed. */
5468 switch (r_type)
5469 {
5470 case R_MIPS_NONE:
5471 return bfd_reloc_continue;
5472
5473 case R_MIPS_16:
5474 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5475 overflowed_p = mips_elf_overflow_p (value, 16);
5476 break;
5477
5478 case R_MIPS_32:
5479 case R_MIPS_REL32:
5480 case R_MIPS_64:
5481 if ((info->shared
5482 || (htab->root.dynamic_sections_created
5483 && h != NULL
5484 && h->root.def_dynamic
5485 && !h->root.def_regular
5486 && !h->has_static_relocs))
5487 && r_symndx != STN_UNDEF
5488 && (h == NULL
5489 || h->root.root.type != bfd_link_hash_undefweak
5490 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5491 && (input_section->flags & SEC_ALLOC) != 0)
5492 {
5493 /* If we're creating a shared library, then we can't know
5494 where the symbol will end up. So, we create a relocation
5495 record in the output, and leave the job up to the dynamic
5496 linker. We must do the same for executable references to
5497 shared library symbols, unless we've decided to use copy
5498 relocs or PLTs instead. */
5499 value = addend;
5500 if (!mips_elf_create_dynamic_relocation (abfd,
5501 info,
5502 relocation,
5503 h,
5504 sec,
5505 symbol,
5506 &value,
5507 input_section))
5508 return bfd_reloc_undefined;
5509 }
5510 else
5511 {
5512 if (r_type != R_MIPS_REL32)
5513 value = symbol + addend;
5514 else
5515 value = addend;
5516 }
5517 value &= howto->dst_mask;
5518 break;
5519
5520 case R_MIPS_PC32:
5521 value = symbol + addend - p;
5522 value &= howto->dst_mask;
5523 break;
5524
5525 case R_MIPS16_26:
5526 /* The calculation for R_MIPS16_26 is just the same as for an
5527 R_MIPS_26. It's only the storage of the relocated field into
5528 the output file that's different. That's handled in
5529 mips_elf_perform_relocation. So, we just fall through to the
5530 R_MIPS_26 case here. */
5531 case R_MIPS_26:
5532 case R_MICROMIPS_26_S1:
5533 {
5534 unsigned int shift;
5535
5536 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5537 the correct ISA mode selector and bit 1 must be 0. */
5538 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5539 return bfd_reloc_outofrange;
5540
5541 /* Shift is 2, unusually, for microMIPS JALX. */
5542 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5543
5544 if (was_local_p)
5545 value = addend | ((p + 4) & (0xfc000000 << shift));
5546 else
5547 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5548 value = (value + symbol) >> shift;
5549 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5550 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5551 value &= howto->dst_mask;
5552 }
5553 break;
5554
5555 case R_MIPS_TLS_DTPREL_HI16:
5556 case R_MIPS16_TLS_DTPREL_HI16:
5557 case R_MICROMIPS_TLS_DTPREL_HI16:
5558 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5559 & howto->dst_mask);
5560 break;
5561
5562 case R_MIPS_TLS_DTPREL_LO16:
5563 case R_MIPS_TLS_DTPREL32:
5564 case R_MIPS_TLS_DTPREL64:
5565 case R_MIPS16_TLS_DTPREL_LO16:
5566 case R_MICROMIPS_TLS_DTPREL_LO16:
5567 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5568 break;
5569
5570 case R_MIPS_TLS_TPREL_HI16:
5571 case R_MIPS16_TLS_TPREL_HI16:
5572 case R_MICROMIPS_TLS_TPREL_HI16:
5573 value = (mips_elf_high (addend + symbol - tprel_base (info))
5574 & howto->dst_mask);
5575 break;
5576
5577 case R_MIPS_TLS_TPREL_LO16:
5578 case R_MIPS_TLS_TPREL32:
5579 case R_MIPS_TLS_TPREL64:
5580 case R_MIPS16_TLS_TPREL_LO16:
5581 case R_MICROMIPS_TLS_TPREL_LO16:
5582 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5583 break;
5584
5585 case R_MIPS_HI16:
5586 case R_MIPS16_HI16:
5587 case R_MICROMIPS_HI16:
5588 if (!gp_disp_p)
5589 {
5590 value = mips_elf_high (addend + symbol);
5591 value &= howto->dst_mask;
5592 }
5593 else
5594 {
5595 /* For MIPS16 ABI code we generate this sequence
5596 0: li $v0,%hi(_gp_disp)
5597 4: addiupc $v1,%lo(_gp_disp)
5598 8: sll $v0,16
5599 12: addu $v0,$v1
5600 14: move $gp,$v0
5601 So the offsets of hi and lo relocs are the same, but the
5602 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5603 ADDIUPC clears the low two bits of the instruction address,
5604 so the base is ($t9 + 4) & ~3. */
5605 if (r_type == R_MIPS16_HI16)
5606 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5607 /* The microMIPS .cpload sequence uses the same assembly
5608 instructions as the traditional psABI version, but the
5609 incoming $t9 has the low bit set. */
5610 else if (r_type == R_MICROMIPS_HI16)
5611 value = mips_elf_high (addend + gp - p - 1);
5612 else
5613 value = mips_elf_high (addend + gp - p);
5614 overflowed_p = mips_elf_overflow_p (value, 16);
5615 }
5616 break;
5617
5618 case R_MIPS_LO16:
5619 case R_MIPS16_LO16:
5620 case R_MICROMIPS_LO16:
5621 case R_MICROMIPS_HI0_LO16:
5622 if (!gp_disp_p)
5623 value = (symbol + addend) & howto->dst_mask;
5624 else
5625 {
5626 /* See the comment for R_MIPS16_HI16 above for the reason
5627 for this conditional. */
5628 if (r_type == R_MIPS16_LO16)
5629 value = addend + gp - (p & ~(bfd_vma) 0x3);
5630 else if (r_type == R_MICROMIPS_LO16
5631 || r_type == R_MICROMIPS_HI0_LO16)
5632 value = addend + gp - p + 3;
5633 else
5634 value = addend + gp - p + 4;
5635 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5636 for overflow. But, on, say, IRIX5, relocations against
5637 _gp_disp are normally generated from the .cpload
5638 pseudo-op. It generates code that normally looks like
5639 this:
5640
5641 lui $gp,%hi(_gp_disp)
5642 addiu $gp,$gp,%lo(_gp_disp)
5643 addu $gp,$gp,$t9
5644
5645 Here $t9 holds the address of the function being called,
5646 as required by the MIPS ELF ABI. The R_MIPS_LO16
5647 relocation can easily overflow in this situation, but the
5648 R_MIPS_HI16 relocation will handle the overflow.
5649 Therefore, we consider this a bug in the MIPS ABI, and do
5650 not check for overflow here. */
5651 }
5652 break;
5653
5654 case R_MIPS_LITERAL:
5655 case R_MICROMIPS_LITERAL:
5656 /* Because we don't merge literal sections, we can handle this
5657 just like R_MIPS_GPREL16. In the long run, we should merge
5658 shared literals, and then we will need to additional work
5659 here. */
5660
5661 /* Fall through. */
5662
5663 case R_MIPS16_GPREL:
5664 /* The R_MIPS16_GPREL performs the same calculation as
5665 R_MIPS_GPREL16, but stores the relocated bits in a different
5666 order. We don't need to do anything special here; the
5667 differences are handled in mips_elf_perform_relocation. */
5668 case R_MIPS_GPREL16:
5669 case R_MICROMIPS_GPREL7_S2:
5670 case R_MICROMIPS_GPREL16:
5671 /* Only sign-extend the addend if it was extracted from the
5672 instruction. If the addend was separate, leave it alone,
5673 otherwise we may lose significant bits. */
5674 if (howto->partial_inplace)
5675 addend = _bfd_mips_elf_sign_extend (addend, 16);
5676 value = symbol + addend - gp;
5677 /* If the symbol was local, any earlier relocatable links will
5678 have adjusted its addend with the gp offset, so compensate
5679 for that now. Don't do it for symbols forced local in this
5680 link, though, since they won't have had the gp offset applied
5681 to them before. */
5682 if (was_local_p)
5683 value += gp0;
5684 overflowed_p = mips_elf_overflow_p (value, 16);
5685 break;
5686
5687 case R_MIPS16_GOT16:
5688 case R_MIPS16_CALL16:
5689 case R_MIPS_GOT16:
5690 case R_MIPS_CALL16:
5691 case R_MICROMIPS_GOT16:
5692 case R_MICROMIPS_CALL16:
5693 /* VxWorks does not have separate local and global semantics for
5694 R_MIPS*_GOT16; every relocation evaluates to "G". */
5695 if (!htab->is_vxworks && local_p)
5696 {
5697 value = mips_elf_got16_entry (abfd, input_bfd, info,
5698 symbol + addend, !was_local_p);
5699 if (value == MINUS_ONE)
5700 return bfd_reloc_outofrange;
5701 value
5702 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5703 overflowed_p = mips_elf_overflow_p (value, 16);
5704 break;
5705 }
5706
5707 /* Fall through. */
5708
5709 case R_MIPS_TLS_GD:
5710 case R_MIPS_TLS_GOTTPREL:
5711 case R_MIPS_TLS_LDM:
5712 case R_MIPS_GOT_DISP:
5713 case R_MIPS16_TLS_GD:
5714 case R_MIPS16_TLS_GOTTPREL:
5715 case R_MIPS16_TLS_LDM:
5716 case R_MICROMIPS_TLS_GD:
5717 case R_MICROMIPS_TLS_GOTTPREL:
5718 case R_MICROMIPS_TLS_LDM:
5719 case R_MICROMIPS_GOT_DISP:
5720 value = g;
5721 overflowed_p = mips_elf_overflow_p (value, 16);
5722 break;
5723
5724 case R_MIPS_GPREL32:
5725 value = (addend + symbol + gp0 - gp);
5726 if (!save_addend)
5727 value &= howto->dst_mask;
5728 break;
5729
5730 case R_MIPS_PC16:
5731 case R_MIPS_GNU_REL16_S2:
5732 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5733 overflowed_p = mips_elf_overflow_p (value, 18);
5734 value >>= howto->rightshift;
5735 value &= howto->dst_mask;
5736 break;
5737
5738 case R_MICROMIPS_PC7_S1:
5739 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5740 overflowed_p = mips_elf_overflow_p (value, 8);
5741 value >>= howto->rightshift;
5742 value &= howto->dst_mask;
5743 break;
5744
5745 case R_MICROMIPS_PC10_S1:
5746 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5747 overflowed_p = mips_elf_overflow_p (value, 11);
5748 value >>= howto->rightshift;
5749 value &= howto->dst_mask;
5750 break;
5751
5752 case R_MICROMIPS_PC16_S1:
5753 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5754 overflowed_p = mips_elf_overflow_p (value, 17);
5755 value >>= howto->rightshift;
5756 value &= howto->dst_mask;
5757 break;
5758
5759 case R_MICROMIPS_PC23_S2:
5760 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5761 overflowed_p = mips_elf_overflow_p (value, 25);
5762 value >>= howto->rightshift;
5763 value &= howto->dst_mask;
5764 break;
5765
5766 case R_MIPS_GOT_HI16:
5767 case R_MIPS_CALL_HI16:
5768 case R_MICROMIPS_GOT_HI16:
5769 case R_MICROMIPS_CALL_HI16:
5770 /* We're allowed to handle these two relocations identically.
5771 The dynamic linker is allowed to handle the CALL relocations
5772 differently by creating a lazy evaluation stub. */
5773 value = g;
5774 value = mips_elf_high (value);
5775 value &= howto->dst_mask;
5776 break;
5777
5778 case R_MIPS_GOT_LO16:
5779 case R_MIPS_CALL_LO16:
5780 case R_MICROMIPS_GOT_LO16:
5781 case R_MICROMIPS_CALL_LO16:
5782 value = g & howto->dst_mask;
5783 break;
5784
5785 case R_MIPS_GOT_PAGE:
5786 case R_MICROMIPS_GOT_PAGE:
5787 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5788 if (value == MINUS_ONE)
5789 return bfd_reloc_outofrange;
5790 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5791 overflowed_p = mips_elf_overflow_p (value, 16);
5792 break;
5793
5794 case R_MIPS_GOT_OFST:
5795 case R_MICROMIPS_GOT_OFST:
5796 if (local_p)
5797 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5798 else
5799 value = addend;
5800 overflowed_p = mips_elf_overflow_p (value, 16);
5801 break;
5802
5803 case R_MIPS_SUB:
5804 case R_MICROMIPS_SUB:
5805 value = symbol - addend;
5806 value &= howto->dst_mask;
5807 break;
5808
5809 case R_MIPS_HIGHER:
5810 case R_MICROMIPS_HIGHER:
5811 value = mips_elf_higher (addend + symbol);
5812 value &= howto->dst_mask;
5813 break;
5814
5815 case R_MIPS_HIGHEST:
5816 case R_MICROMIPS_HIGHEST:
5817 value = mips_elf_highest (addend + symbol);
5818 value &= howto->dst_mask;
5819 break;
5820
5821 case R_MIPS_SCN_DISP:
5822 case R_MICROMIPS_SCN_DISP:
5823 value = symbol + addend - sec->output_offset;
5824 value &= howto->dst_mask;
5825 break;
5826
5827 case R_MIPS_JALR:
5828 case R_MICROMIPS_JALR:
5829 /* This relocation is only a hint. In some cases, we optimize
5830 it into a bal instruction. But we don't try to optimize
5831 when the symbol does not resolve locally. */
5832 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5833 return bfd_reloc_continue;
5834 value = symbol + addend;
5835 break;
5836
5837 case R_MIPS_PJUMP:
5838 case R_MIPS_GNU_VTINHERIT:
5839 case R_MIPS_GNU_VTENTRY:
5840 /* We don't do anything with these at present. */
5841 return bfd_reloc_continue;
5842
5843 default:
5844 /* An unrecognized relocation type. */
5845 return bfd_reloc_notsupported;
5846 }
5847
5848 /* Store the VALUE for our caller. */
5849 *valuep = value;
5850 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5851 }
5852
5853 /* Obtain the field relocated by RELOCATION. */
5854
5855 static bfd_vma
5856 mips_elf_obtain_contents (reloc_howto_type *howto,
5857 const Elf_Internal_Rela *relocation,
5858 bfd *input_bfd, bfd_byte *contents)
5859 {
5860 bfd_vma x;
5861 bfd_byte *location = contents + relocation->r_offset;
5862
5863 /* Obtain the bytes. */
5864 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5865
5866 return x;
5867 }
5868
5869 /* It has been determined that the result of the RELOCATION is the
5870 VALUE. Use HOWTO to place VALUE into the output file at the
5871 appropriate position. The SECTION is the section to which the
5872 relocation applies.
5873 CROSS_MODE_JUMP_P is true if the relocation field
5874 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5875
5876 Returns FALSE if anything goes wrong. */
5877
5878 static bfd_boolean
5879 mips_elf_perform_relocation (struct bfd_link_info *info,
5880 reloc_howto_type *howto,
5881 const Elf_Internal_Rela *relocation,
5882 bfd_vma value, bfd *input_bfd,
5883 asection *input_section, bfd_byte *contents,
5884 bfd_boolean cross_mode_jump_p)
5885 {
5886 bfd_vma x;
5887 bfd_byte *location;
5888 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5889
5890 /* Figure out where the relocation is occurring. */
5891 location = contents + relocation->r_offset;
5892
5893 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5894
5895 /* Obtain the current value. */
5896 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5897
5898 /* Clear the field we are setting. */
5899 x &= ~howto->dst_mask;
5900
5901 /* Set the field. */
5902 x |= (value & howto->dst_mask);
5903
5904 /* If required, turn JAL into JALX. */
5905 if (cross_mode_jump_p && jal_reloc_p (r_type))
5906 {
5907 bfd_boolean ok;
5908 bfd_vma opcode = x >> 26;
5909 bfd_vma jalx_opcode;
5910
5911 /* Check to see if the opcode is already JAL or JALX. */
5912 if (r_type == R_MIPS16_26)
5913 {
5914 ok = ((opcode == 0x6) || (opcode == 0x7));
5915 jalx_opcode = 0x7;
5916 }
5917 else if (r_type == R_MICROMIPS_26_S1)
5918 {
5919 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5920 jalx_opcode = 0x3c;
5921 }
5922 else
5923 {
5924 ok = ((opcode == 0x3) || (opcode == 0x1d));
5925 jalx_opcode = 0x1d;
5926 }
5927
5928 /* If the opcode is not JAL or JALX, there's a problem. */
5929 if (!ok)
5930 {
5931 (*_bfd_error_handler)
5932 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5933 input_bfd,
5934 input_section,
5935 (unsigned long) relocation->r_offset);
5936 bfd_set_error (bfd_error_bad_value);
5937 return FALSE;
5938 }
5939
5940 /* Make this the JALX opcode. */
5941 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5942 }
5943
5944 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5945 range. */
5946 if (!info->relocatable
5947 && !cross_mode_jump_p
5948 && ((JAL_TO_BAL_P (input_bfd)
5949 && r_type == R_MIPS_26
5950 && (x >> 26) == 0x3) /* jal addr */
5951 || (JALR_TO_BAL_P (input_bfd)
5952 && r_type == R_MIPS_JALR
5953 && x == 0x0320f809) /* jalr t9 */
5954 || (JR_TO_B_P (input_bfd)
5955 && r_type == R_MIPS_JALR
5956 && x == 0x03200008))) /* jr t9 */
5957 {
5958 bfd_vma addr;
5959 bfd_vma dest;
5960 bfd_signed_vma off;
5961
5962 addr = (input_section->output_section->vma
5963 + input_section->output_offset
5964 + relocation->r_offset
5965 + 4);
5966 if (r_type == R_MIPS_26)
5967 dest = (value << 2) | ((addr >> 28) << 28);
5968 else
5969 dest = value;
5970 off = dest - addr;
5971 if (off <= 0x1ffff && off >= -0x20000)
5972 {
5973 if (x == 0x03200008) /* jr t9 */
5974 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5975 else
5976 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5977 }
5978 }
5979
5980 /* Put the value into the output. */
5981 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5982
5983 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5984 location);
5985
5986 return TRUE;
5987 }
5988 \f
5989 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5990 is the original relocation, which is now being transformed into a
5991 dynamic relocation. The ADDENDP is adjusted if necessary; the
5992 caller should store the result in place of the original addend. */
5993
5994 static bfd_boolean
5995 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5996 struct bfd_link_info *info,
5997 const Elf_Internal_Rela *rel,
5998 struct mips_elf_link_hash_entry *h,
5999 asection *sec, bfd_vma symbol,
6000 bfd_vma *addendp, asection *input_section)
6001 {
6002 Elf_Internal_Rela outrel[3];
6003 asection *sreloc;
6004 bfd *dynobj;
6005 int r_type;
6006 long indx;
6007 bfd_boolean defined_p;
6008 struct mips_elf_link_hash_table *htab;
6009
6010 htab = mips_elf_hash_table (info);
6011 BFD_ASSERT (htab != NULL);
6012
6013 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6014 dynobj = elf_hash_table (info)->dynobj;
6015 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6016 BFD_ASSERT (sreloc != NULL);
6017 BFD_ASSERT (sreloc->contents != NULL);
6018 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6019 < sreloc->size);
6020
6021 outrel[0].r_offset =
6022 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6023 if (ABI_64_P (output_bfd))
6024 {
6025 outrel[1].r_offset =
6026 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6027 outrel[2].r_offset =
6028 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6029 }
6030
6031 if (outrel[0].r_offset == MINUS_ONE)
6032 /* The relocation field has been deleted. */
6033 return TRUE;
6034
6035 if (outrel[0].r_offset == MINUS_TWO)
6036 {
6037 /* The relocation field has been converted into a relative value of
6038 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6039 the field to be fully relocated, so add in the symbol's value. */
6040 *addendp += symbol;
6041 return TRUE;
6042 }
6043
6044 /* We must now calculate the dynamic symbol table index to use
6045 in the relocation. */
6046 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6047 {
6048 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6049 indx = h->root.dynindx;
6050 if (SGI_COMPAT (output_bfd))
6051 defined_p = h->root.def_regular;
6052 else
6053 /* ??? glibc's ld.so just adds the final GOT entry to the
6054 relocation field. It therefore treats relocs against
6055 defined symbols in the same way as relocs against
6056 undefined symbols. */
6057 defined_p = FALSE;
6058 }
6059 else
6060 {
6061 if (sec != NULL && bfd_is_abs_section (sec))
6062 indx = 0;
6063 else if (sec == NULL || sec->owner == NULL)
6064 {
6065 bfd_set_error (bfd_error_bad_value);
6066 return FALSE;
6067 }
6068 else
6069 {
6070 indx = elf_section_data (sec->output_section)->dynindx;
6071 if (indx == 0)
6072 {
6073 asection *osec = htab->root.text_index_section;
6074 indx = elf_section_data (osec)->dynindx;
6075 }
6076 if (indx == 0)
6077 abort ();
6078 }
6079
6080 /* Instead of generating a relocation using the section
6081 symbol, we may as well make it a fully relative
6082 relocation. We want to avoid generating relocations to
6083 local symbols because we used to generate them
6084 incorrectly, without adding the original symbol value,
6085 which is mandated by the ABI for section symbols. In
6086 order to give dynamic loaders and applications time to
6087 phase out the incorrect use, we refrain from emitting
6088 section-relative relocations. It's not like they're
6089 useful, after all. This should be a bit more efficient
6090 as well. */
6091 /* ??? Although this behavior is compatible with glibc's ld.so,
6092 the ABI says that relocations against STN_UNDEF should have
6093 a symbol value of 0. Irix rld honors this, so relocations
6094 against STN_UNDEF have no effect. */
6095 if (!SGI_COMPAT (output_bfd))
6096 indx = 0;
6097 defined_p = TRUE;
6098 }
6099
6100 /* If the relocation was previously an absolute relocation and
6101 this symbol will not be referred to by the relocation, we must
6102 adjust it by the value we give it in the dynamic symbol table.
6103 Otherwise leave the job up to the dynamic linker. */
6104 if (defined_p && r_type != R_MIPS_REL32)
6105 *addendp += symbol;
6106
6107 if (htab->is_vxworks)
6108 /* VxWorks uses non-relative relocations for this. */
6109 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6110 else
6111 /* The relocation is always an REL32 relocation because we don't
6112 know where the shared library will wind up at load-time. */
6113 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6114 R_MIPS_REL32);
6115
6116 /* For strict adherence to the ABI specification, we should
6117 generate a R_MIPS_64 relocation record by itself before the
6118 _REL32/_64 record as well, such that the addend is read in as
6119 a 64-bit value (REL32 is a 32-bit relocation, after all).
6120 However, since none of the existing ELF64 MIPS dynamic
6121 loaders seems to care, we don't waste space with these
6122 artificial relocations. If this turns out to not be true,
6123 mips_elf_allocate_dynamic_relocation() should be tweaked so
6124 as to make room for a pair of dynamic relocations per
6125 invocation if ABI_64_P, and here we should generate an
6126 additional relocation record with R_MIPS_64 by itself for a
6127 NULL symbol before this relocation record. */
6128 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6129 ABI_64_P (output_bfd)
6130 ? R_MIPS_64
6131 : R_MIPS_NONE);
6132 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6133
6134 /* Adjust the output offset of the relocation to reference the
6135 correct location in the output file. */
6136 outrel[0].r_offset += (input_section->output_section->vma
6137 + input_section->output_offset);
6138 outrel[1].r_offset += (input_section->output_section->vma
6139 + input_section->output_offset);
6140 outrel[2].r_offset += (input_section->output_section->vma
6141 + input_section->output_offset);
6142
6143 /* Put the relocation back out. We have to use the special
6144 relocation outputter in the 64-bit case since the 64-bit
6145 relocation format is non-standard. */
6146 if (ABI_64_P (output_bfd))
6147 {
6148 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6149 (output_bfd, &outrel[0],
6150 (sreloc->contents
6151 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6152 }
6153 else if (htab->is_vxworks)
6154 {
6155 /* VxWorks uses RELA rather than REL dynamic relocations. */
6156 outrel[0].r_addend = *addendp;
6157 bfd_elf32_swap_reloca_out
6158 (output_bfd, &outrel[0],
6159 (sreloc->contents
6160 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6161 }
6162 else
6163 bfd_elf32_swap_reloc_out
6164 (output_bfd, &outrel[0],
6165 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6166
6167 /* We've now added another relocation. */
6168 ++sreloc->reloc_count;
6169
6170 /* Make sure the output section is writable. The dynamic linker
6171 will be writing to it. */
6172 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6173 |= SHF_WRITE;
6174
6175 /* On IRIX5, make an entry of compact relocation info. */
6176 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6177 {
6178 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6179 bfd_byte *cr;
6180
6181 if (scpt)
6182 {
6183 Elf32_crinfo cptrel;
6184
6185 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6186 cptrel.vaddr = (rel->r_offset
6187 + input_section->output_section->vma
6188 + input_section->output_offset);
6189 if (r_type == R_MIPS_REL32)
6190 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6191 else
6192 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6193 mips_elf_set_cr_dist2to (cptrel, 0);
6194 cptrel.konst = *addendp;
6195
6196 cr = (scpt->contents
6197 + sizeof (Elf32_External_compact_rel));
6198 mips_elf_set_cr_relvaddr (cptrel, 0);
6199 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6200 ((Elf32_External_crinfo *) cr
6201 + scpt->reloc_count));
6202 ++scpt->reloc_count;
6203 }
6204 }
6205
6206 /* If we've written this relocation for a readonly section,
6207 we need to set DF_TEXTREL again, so that we do not delete the
6208 DT_TEXTREL tag. */
6209 if (MIPS_ELF_READONLY_SECTION (input_section))
6210 info->flags |= DF_TEXTREL;
6211
6212 return TRUE;
6213 }
6214 \f
6215 /* Return the MACH for a MIPS e_flags value. */
6216
6217 unsigned long
6218 _bfd_elf_mips_mach (flagword flags)
6219 {
6220 switch (flags & EF_MIPS_MACH)
6221 {
6222 case E_MIPS_MACH_3900:
6223 return bfd_mach_mips3900;
6224
6225 case E_MIPS_MACH_4010:
6226 return bfd_mach_mips4010;
6227
6228 case E_MIPS_MACH_4100:
6229 return bfd_mach_mips4100;
6230
6231 case E_MIPS_MACH_4111:
6232 return bfd_mach_mips4111;
6233
6234 case E_MIPS_MACH_4120:
6235 return bfd_mach_mips4120;
6236
6237 case E_MIPS_MACH_4650:
6238 return bfd_mach_mips4650;
6239
6240 case E_MIPS_MACH_5400:
6241 return bfd_mach_mips5400;
6242
6243 case E_MIPS_MACH_5500:
6244 return bfd_mach_mips5500;
6245
6246 case E_MIPS_MACH_9000:
6247 return bfd_mach_mips9000;
6248
6249 case E_MIPS_MACH_SB1:
6250 return bfd_mach_mips_sb1;
6251
6252 case E_MIPS_MACH_LS2E:
6253 return bfd_mach_mips_loongson_2e;
6254
6255 case E_MIPS_MACH_LS2F:
6256 return bfd_mach_mips_loongson_2f;
6257
6258 case E_MIPS_MACH_LS3A:
6259 return bfd_mach_mips_loongson_3a;
6260
6261 case E_MIPS_MACH_OCTEON2:
6262 return bfd_mach_mips_octeon2;
6263
6264 case E_MIPS_MACH_OCTEON:
6265 return bfd_mach_mips_octeon;
6266
6267 case E_MIPS_MACH_XLR:
6268 return bfd_mach_mips_xlr;
6269
6270 default:
6271 switch (flags & EF_MIPS_ARCH)
6272 {
6273 default:
6274 case E_MIPS_ARCH_1:
6275 return bfd_mach_mips3000;
6276
6277 case E_MIPS_ARCH_2:
6278 return bfd_mach_mips6000;
6279
6280 case E_MIPS_ARCH_3:
6281 return bfd_mach_mips4000;
6282
6283 case E_MIPS_ARCH_4:
6284 return bfd_mach_mips8000;
6285
6286 case E_MIPS_ARCH_5:
6287 return bfd_mach_mips5;
6288
6289 case E_MIPS_ARCH_32:
6290 return bfd_mach_mipsisa32;
6291
6292 case E_MIPS_ARCH_64:
6293 return bfd_mach_mipsisa64;
6294
6295 case E_MIPS_ARCH_32R2:
6296 return bfd_mach_mipsisa32r2;
6297
6298 case E_MIPS_ARCH_64R2:
6299 return bfd_mach_mipsisa64r2;
6300 }
6301 }
6302
6303 return 0;
6304 }
6305
6306 /* Return printable name for ABI. */
6307
6308 static INLINE char *
6309 elf_mips_abi_name (bfd *abfd)
6310 {
6311 flagword flags;
6312
6313 flags = elf_elfheader (abfd)->e_flags;
6314 switch (flags & EF_MIPS_ABI)
6315 {
6316 case 0:
6317 if (ABI_N32_P (abfd))
6318 return "N32";
6319 else if (ABI_64_P (abfd))
6320 return "64";
6321 else
6322 return "none";
6323 case E_MIPS_ABI_O32:
6324 return "O32";
6325 case E_MIPS_ABI_O64:
6326 return "O64";
6327 case E_MIPS_ABI_EABI32:
6328 return "EABI32";
6329 case E_MIPS_ABI_EABI64:
6330 return "EABI64";
6331 default:
6332 return "unknown abi";
6333 }
6334 }
6335 \f
6336 /* MIPS ELF uses two common sections. One is the usual one, and the
6337 other is for small objects. All the small objects are kept
6338 together, and then referenced via the gp pointer, which yields
6339 faster assembler code. This is what we use for the small common
6340 section. This approach is copied from ecoff.c. */
6341 static asection mips_elf_scom_section;
6342 static asymbol mips_elf_scom_symbol;
6343 static asymbol *mips_elf_scom_symbol_ptr;
6344
6345 /* MIPS ELF also uses an acommon section, which represents an
6346 allocated common symbol which may be overridden by a
6347 definition in a shared library. */
6348 static asection mips_elf_acom_section;
6349 static asymbol mips_elf_acom_symbol;
6350 static asymbol *mips_elf_acom_symbol_ptr;
6351
6352 /* This is used for both the 32-bit and the 64-bit ABI. */
6353
6354 void
6355 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6356 {
6357 elf_symbol_type *elfsym;
6358
6359 /* Handle the special MIPS section numbers that a symbol may use. */
6360 elfsym = (elf_symbol_type *) asym;
6361 switch (elfsym->internal_elf_sym.st_shndx)
6362 {
6363 case SHN_MIPS_ACOMMON:
6364 /* This section is used in a dynamically linked executable file.
6365 It is an allocated common section. The dynamic linker can
6366 either resolve these symbols to something in a shared
6367 library, or it can just leave them here. For our purposes,
6368 we can consider these symbols to be in a new section. */
6369 if (mips_elf_acom_section.name == NULL)
6370 {
6371 /* Initialize the acommon section. */
6372 mips_elf_acom_section.name = ".acommon";
6373 mips_elf_acom_section.flags = SEC_ALLOC;
6374 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6375 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6376 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6377 mips_elf_acom_symbol.name = ".acommon";
6378 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6379 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6380 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6381 }
6382 asym->section = &mips_elf_acom_section;
6383 break;
6384
6385 case SHN_COMMON:
6386 /* Common symbols less than the GP size are automatically
6387 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6388 if (asym->value > elf_gp_size (abfd)
6389 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6390 || IRIX_COMPAT (abfd) == ict_irix6)
6391 break;
6392 /* Fall through. */
6393 case SHN_MIPS_SCOMMON:
6394 if (mips_elf_scom_section.name == NULL)
6395 {
6396 /* Initialize the small common section. */
6397 mips_elf_scom_section.name = ".scommon";
6398 mips_elf_scom_section.flags = SEC_IS_COMMON;
6399 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6400 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6401 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6402 mips_elf_scom_symbol.name = ".scommon";
6403 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6404 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6405 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6406 }
6407 asym->section = &mips_elf_scom_section;
6408 asym->value = elfsym->internal_elf_sym.st_size;
6409 break;
6410
6411 case SHN_MIPS_SUNDEFINED:
6412 asym->section = bfd_und_section_ptr;
6413 break;
6414
6415 case SHN_MIPS_TEXT:
6416 {
6417 asection *section = bfd_get_section_by_name (abfd, ".text");
6418
6419 if (section != NULL)
6420 {
6421 asym->section = section;
6422 /* MIPS_TEXT is a bit special, the address is not an offset
6423 to the base of the .text section. So substract the section
6424 base address to make it an offset. */
6425 asym->value -= section->vma;
6426 }
6427 }
6428 break;
6429
6430 case SHN_MIPS_DATA:
6431 {
6432 asection *section = bfd_get_section_by_name (abfd, ".data");
6433
6434 if (section != NULL)
6435 {
6436 asym->section = section;
6437 /* MIPS_DATA is a bit special, the address is not an offset
6438 to the base of the .data section. So substract the section
6439 base address to make it an offset. */
6440 asym->value -= section->vma;
6441 }
6442 }
6443 break;
6444 }
6445
6446 /* If this is an odd-valued function symbol, assume it's a MIPS16
6447 or microMIPS one. */
6448 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6449 && (asym->value & 1) != 0)
6450 {
6451 asym->value--;
6452 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6453 elfsym->internal_elf_sym.st_other
6454 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6455 else
6456 elfsym->internal_elf_sym.st_other
6457 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6458 }
6459 }
6460 \f
6461 /* Implement elf_backend_eh_frame_address_size. This differs from
6462 the default in the way it handles EABI64.
6463
6464 EABI64 was originally specified as an LP64 ABI, and that is what
6465 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6466 historically accepted the combination of -mabi=eabi and -mlong32,
6467 and this ILP32 variation has become semi-official over time.
6468 Both forms use elf32 and have pointer-sized FDE addresses.
6469
6470 If an EABI object was generated by GCC 4.0 or above, it will have
6471 an empty .gcc_compiled_longXX section, where XX is the size of longs
6472 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6473 have no special marking to distinguish them from LP64 objects.
6474
6475 We don't want users of the official LP64 ABI to be punished for the
6476 existence of the ILP32 variant, but at the same time, we don't want
6477 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6478 We therefore take the following approach:
6479
6480 - If ABFD contains a .gcc_compiled_longXX section, use it to
6481 determine the pointer size.
6482
6483 - Otherwise check the type of the first relocation. Assume that
6484 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6485
6486 - Otherwise punt.
6487
6488 The second check is enough to detect LP64 objects generated by pre-4.0
6489 compilers because, in the kind of output generated by those compilers,
6490 the first relocation will be associated with either a CIE personality
6491 routine or an FDE start address. Furthermore, the compilers never
6492 used a special (non-pointer) encoding for this ABI.
6493
6494 Checking the relocation type should also be safe because there is no
6495 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6496 did so. */
6497
6498 unsigned int
6499 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6500 {
6501 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6502 return 8;
6503 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6504 {
6505 bfd_boolean long32_p, long64_p;
6506
6507 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6508 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6509 if (long32_p && long64_p)
6510 return 0;
6511 if (long32_p)
6512 return 4;
6513 if (long64_p)
6514 return 8;
6515
6516 if (sec->reloc_count > 0
6517 && elf_section_data (sec)->relocs != NULL
6518 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6519 == R_MIPS_64))
6520 return 8;
6521
6522 return 0;
6523 }
6524 return 4;
6525 }
6526 \f
6527 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6528 relocations against two unnamed section symbols to resolve to the
6529 same address. For example, if we have code like:
6530
6531 lw $4,%got_disp(.data)($gp)
6532 lw $25,%got_disp(.text)($gp)
6533 jalr $25
6534
6535 then the linker will resolve both relocations to .data and the program
6536 will jump there rather than to .text.
6537
6538 We can work around this problem by giving names to local section symbols.
6539 This is also what the MIPSpro tools do. */
6540
6541 bfd_boolean
6542 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6543 {
6544 return SGI_COMPAT (abfd);
6545 }
6546 \f
6547 /* Work over a section just before writing it out. This routine is
6548 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6549 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6550 a better way. */
6551
6552 bfd_boolean
6553 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6554 {
6555 if (hdr->sh_type == SHT_MIPS_REGINFO
6556 && hdr->sh_size > 0)
6557 {
6558 bfd_byte buf[4];
6559
6560 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6561 BFD_ASSERT (hdr->contents == NULL);
6562
6563 if (bfd_seek (abfd,
6564 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6565 SEEK_SET) != 0)
6566 return FALSE;
6567 H_PUT_32 (abfd, elf_gp (abfd), buf);
6568 if (bfd_bwrite (buf, 4, abfd) != 4)
6569 return FALSE;
6570 }
6571
6572 if (hdr->sh_type == SHT_MIPS_OPTIONS
6573 && hdr->bfd_section != NULL
6574 && mips_elf_section_data (hdr->bfd_section) != NULL
6575 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6576 {
6577 bfd_byte *contents, *l, *lend;
6578
6579 /* We stored the section contents in the tdata field in the
6580 set_section_contents routine. We save the section contents
6581 so that we don't have to read them again.
6582 At this point we know that elf_gp is set, so we can look
6583 through the section contents to see if there is an
6584 ODK_REGINFO structure. */
6585
6586 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6587 l = contents;
6588 lend = contents + hdr->sh_size;
6589 while (l + sizeof (Elf_External_Options) <= lend)
6590 {
6591 Elf_Internal_Options intopt;
6592
6593 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6594 &intopt);
6595 if (intopt.size < sizeof (Elf_External_Options))
6596 {
6597 (*_bfd_error_handler)
6598 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6599 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6600 break;
6601 }
6602 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6603 {
6604 bfd_byte buf[8];
6605
6606 if (bfd_seek (abfd,
6607 (hdr->sh_offset
6608 + (l - contents)
6609 + sizeof (Elf_External_Options)
6610 + (sizeof (Elf64_External_RegInfo) - 8)),
6611 SEEK_SET) != 0)
6612 return FALSE;
6613 H_PUT_64 (abfd, elf_gp (abfd), buf);
6614 if (bfd_bwrite (buf, 8, abfd) != 8)
6615 return FALSE;
6616 }
6617 else if (intopt.kind == ODK_REGINFO)
6618 {
6619 bfd_byte buf[4];
6620
6621 if (bfd_seek (abfd,
6622 (hdr->sh_offset
6623 + (l - contents)
6624 + sizeof (Elf_External_Options)
6625 + (sizeof (Elf32_External_RegInfo) - 4)),
6626 SEEK_SET) != 0)
6627 return FALSE;
6628 H_PUT_32 (abfd, elf_gp (abfd), buf);
6629 if (bfd_bwrite (buf, 4, abfd) != 4)
6630 return FALSE;
6631 }
6632 l += intopt.size;
6633 }
6634 }
6635
6636 if (hdr->bfd_section != NULL)
6637 {
6638 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6639
6640 /* .sbss is not handled specially here because the GNU/Linux
6641 prelinker can convert .sbss from NOBITS to PROGBITS and
6642 changing it back to NOBITS breaks the binary. The entry in
6643 _bfd_mips_elf_special_sections will ensure the correct flags
6644 are set on .sbss if BFD creates it without reading it from an
6645 input file, and without special handling here the flags set
6646 on it in an input file will be followed. */
6647 if (strcmp (name, ".sdata") == 0
6648 || strcmp (name, ".lit8") == 0
6649 || strcmp (name, ".lit4") == 0)
6650 {
6651 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6652 hdr->sh_type = SHT_PROGBITS;
6653 }
6654 else if (strcmp (name, ".srdata") == 0)
6655 {
6656 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6657 hdr->sh_type = SHT_PROGBITS;
6658 }
6659 else if (strcmp (name, ".compact_rel") == 0)
6660 {
6661 hdr->sh_flags = 0;
6662 hdr->sh_type = SHT_PROGBITS;
6663 }
6664 else if (strcmp (name, ".rtproc") == 0)
6665 {
6666 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6667 {
6668 unsigned int adjust;
6669
6670 adjust = hdr->sh_size % hdr->sh_addralign;
6671 if (adjust != 0)
6672 hdr->sh_size += hdr->sh_addralign - adjust;
6673 }
6674 }
6675 }
6676
6677 return TRUE;
6678 }
6679
6680 /* Handle a MIPS specific section when reading an object file. This
6681 is called when elfcode.h finds a section with an unknown type.
6682 This routine supports both the 32-bit and 64-bit ELF ABI.
6683
6684 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6685 how to. */
6686
6687 bfd_boolean
6688 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6689 Elf_Internal_Shdr *hdr,
6690 const char *name,
6691 int shindex)
6692 {
6693 flagword flags = 0;
6694
6695 /* There ought to be a place to keep ELF backend specific flags, but
6696 at the moment there isn't one. We just keep track of the
6697 sections by their name, instead. Fortunately, the ABI gives
6698 suggested names for all the MIPS specific sections, so we will
6699 probably get away with this. */
6700 switch (hdr->sh_type)
6701 {
6702 case SHT_MIPS_LIBLIST:
6703 if (strcmp (name, ".liblist") != 0)
6704 return FALSE;
6705 break;
6706 case SHT_MIPS_MSYM:
6707 if (strcmp (name, ".msym") != 0)
6708 return FALSE;
6709 break;
6710 case SHT_MIPS_CONFLICT:
6711 if (strcmp (name, ".conflict") != 0)
6712 return FALSE;
6713 break;
6714 case SHT_MIPS_GPTAB:
6715 if (! CONST_STRNEQ (name, ".gptab."))
6716 return FALSE;
6717 break;
6718 case SHT_MIPS_UCODE:
6719 if (strcmp (name, ".ucode") != 0)
6720 return FALSE;
6721 break;
6722 case SHT_MIPS_DEBUG:
6723 if (strcmp (name, ".mdebug") != 0)
6724 return FALSE;
6725 flags = SEC_DEBUGGING;
6726 break;
6727 case SHT_MIPS_REGINFO:
6728 if (strcmp (name, ".reginfo") != 0
6729 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6730 return FALSE;
6731 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6732 break;
6733 case SHT_MIPS_IFACE:
6734 if (strcmp (name, ".MIPS.interfaces") != 0)
6735 return FALSE;
6736 break;
6737 case SHT_MIPS_CONTENT:
6738 if (! CONST_STRNEQ (name, ".MIPS.content"))
6739 return FALSE;
6740 break;
6741 case SHT_MIPS_OPTIONS:
6742 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6743 return FALSE;
6744 break;
6745 case SHT_MIPS_DWARF:
6746 if (! CONST_STRNEQ (name, ".debug_")
6747 && ! CONST_STRNEQ (name, ".zdebug_"))
6748 return FALSE;
6749 break;
6750 case SHT_MIPS_SYMBOL_LIB:
6751 if (strcmp (name, ".MIPS.symlib") != 0)
6752 return FALSE;
6753 break;
6754 case SHT_MIPS_EVENTS:
6755 if (! CONST_STRNEQ (name, ".MIPS.events")
6756 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6757 return FALSE;
6758 break;
6759 default:
6760 break;
6761 }
6762
6763 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6764 return FALSE;
6765
6766 if (flags)
6767 {
6768 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6769 (bfd_get_section_flags (abfd,
6770 hdr->bfd_section)
6771 | flags)))
6772 return FALSE;
6773 }
6774
6775 /* FIXME: We should record sh_info for a .gptab section. */
6776
6777 /* For a .reginfo section, set the gp value in the tdata information
6778 from the contents of this section. We need the gp value while
6779 processing relocs, so we just get it now. The .reginfo section
6780 is not used in the 64-bit MIPS ELF ABI. */
6781 if (hdr->sh_type == SHT_MIPS_REGINFO)
6782 {
6783 Elf32_External_RegInfo ext;
6784 Elf32_RegInfo s;
6785
6786 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6787 &ext, 0, sizeof ext))
6788 return FALSE;
6789 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6790 elf_gp (abfd) = s.ri_gp_value;
6791 }
6792
6793 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6794 set the gp value based on what we find. We may see both
6795 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6796 they should agree. */
6797 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6798 {
6799 bfd_byte *contents, *l, *lend;
6800
6801 contents = bfd_malloc (hdr->sh_size);
6802 if (contents == NULL)
6803 return FALSE;
6804 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6805 0, hdr->sh_size))
6806 {
6807 free (contents);
6808 return FALSE;
6809 }
6810 l = contents;
6811 lend = contents + hdr->sh_size;
6812 while (l + sizeof (Elf_External_Options) <= lend)
6813 {
6814 Elf_Internal_Options intopt;
6815
6816 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6817 &intopt);
6818 if (intopt.size < sizeof (Elf_External_Options))
6819 {
6820 (*_bfd_error_handler)
6821 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6822 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6823 break;
6824 }
6825 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6826 {
6827 Elf64_Internal_RegInfo intreg;
6828
6829 bfd_mips_elf64_swap_reginfo_in
6830 (abfd,
6831 ((Elf64_External_RegInfo *)
6832 (l + sizeof (Elf_External_Options))),
6833 &intreg);
6834 elf_gp (abfd) = intreg.ri_gp_value;
6835 }
6836 else if (intopt.kind == ODK_REGINFO)
6837 {
6838 Elf32_RegInfo intreg;
6839
6840 bfd_mips_elf32_swap_reginfo_in
6841 (abfd,
6842 ((Elf32_External_RegInfo *)
6843 (l + sizeof (Elf_External_Options))),
6844 &intreg);
6845 elf_gp (abfd) = intreg.ri_gp_value;
6846 }
6847 l += intopt.size;
6848 }
6849 free (contents);
6850 }
6851
6852 return TRUE;
6853 }
6854
6855 /* Set the correct type for a MIPS ELF section. We do this by the
6856 section name, which is a hack, but ought to work. This routine is
6857 used by both the 32-bit and the 64-bit ABI. */
6858
6859 bfd_boolean
6860 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6861 {
6862 const char *name = bfd_get_section_name (abfd, sec);
6863
6864 if (strcmp (name, ".liblist") == 0)
6865 {
6866 hdr->sh_type = SHT_MIPS_LIBLIST;
6867 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6868 /* The sh_link field is set in final_write_processing. */
6869 }
6870 else if (strcmp (name, ".conflict") == 0)
6871 hdr->sh_type = SHT_MIPS_CONFLICT;
6872 else if (CONST_STRNEQ (name, ".gptab."))
6873 {
6874 hdr->sh_type = SHT_MIPS_GPTAB;
6875 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6876 /* The sh_info field is set in final_write_processing. */
6877 }
6878 else if (strcmp (name, ".ucode") == 0)
6879 hdr->sh_type = SHT_MIPS_UCODE;
6880 else if (strcmp (name, ".mdebug") == 0)
6881 {
6882 hdr->sh_type = SHT_MIPS_DEBUG;
6883 /* In a shared object on IRIX 5.3, the .mdebug section has an
6884 entsize of 0. FIXME: Does this matter? */
6885 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6886 hdr->sh_entsize = 0;
6887 else
6888 hdr->sh_entsize = 1;
6889 }
6890 else if (strcmp (name, ".reginfo") == 0)
6891 {
6892 hdr->sh_type = SHT_MIPS_REGINFO;
6893 /* In a shared object on IRIX 5.3, the .reginfo section has an
6894 entsize of 0x18. FIXME: Does this matter? */
6895 if (SGI_COMPAT (abfd))
6896 {
6897 if ((abfd->flags & DYNAMIC) != 0)
6898 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6899 else
6900 hdr->sh_entsize = 1;
6901 }
6902 else
6903 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6904 }
6905 else if (SGI_COMPAT (abfd)
6906 && (strcmp (name, ".hash") == 0
6907 || strcmp (name, ".dynamic") == 0
6908 || strcmp (name, ".dynstr") == 0))
6909 {
6910 if (SGI_COMPAT (abfd))
6911 hdr->sh_entsize = 0;
6912 #if 0
6913 /* This isn't how the IRIX6 linker behaves. */
6914 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6915 #endif
6916 }
6917 else if (strcmp (name, ".got") == 0
6918 || strcmp (name, ".srdata") == 0
6919 || strcmp (name, ".sdata") == 0
6920 || strcmp (name, ".sbss") == 0
6921 || strcmp (name, ".lit4") == 0
6922 || strcmp (name, ".lit8") == 0)
6923 hdr->sh_flags |= SHF_MIPS_GPREL;
6924 else if (strcmp (name, ".MIPS.interfaces") == 0)
6925 {
6926 hdr->sh_type = SHT_MIPS_IFACE;
6927 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6928 }
6929 else if (CONST_STRNEQ (name, ".MIPS.content"))
6930 {
6931 hdr->sh_type = SHT_MIPS_CONTENT;
6932 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6933 /* The sh_info field is set in final_write_processing. */
6934 }
6935 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6936 {
6937 hdr->sh_type = SHT_MIPS_OPTIONS;
6938 hdr->sh_entsize = 1;
6939 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6940 }
6941 else if (CONST_STRNEQ (name, ".debug_")
6942 || CONST_STRNEQ (name, ".zdebug_"))
6943 {
6944 hdr->sh_type = SHT_MIPS_DWARF;
6945
6946 /* Irix facilities such as libexc expect a single .debug_frame
6947 per executable, the system ones have NOSTRIP set and the linker
6948 doesn't merge sections with different flags so ... */
6949 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6950 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6951 }
6952 else if (strcmp (name, ".MIPS.symlib") == 0)
6953 {
6954 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6955 /* The sh_link and sh_info fields are set in
6956 final_write_processing. */
6957 }
6958 else if (CONST_STRNEQ (name, ".MIPS.events")
6959 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6960 {
6961 hdr->sh_type = SHT_MIPS_EVENTS;
6962 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6963 /* The sh_link field is set in final_write_processing. */
6964 }
6965 else if (strcmp (name, ".msym") == 0)
6966 {
6967 hdr->sh_type = SHT_MIPS_MSYM;
6968 hdr->sh_flags |= SHF_ALLOC;
6969 hdr->sh_entsize = 8;
6970 }
6971
6972 /* The generic elf_fake_sections will set up REL_HDR using the default
6973 kind of relocations. We used to set up a second header for the
6974 non-default kind of relocations here, but only NewABI would use
6975 these, and the IRIX ld doesn't like resulting empty RELA sections.
6976 Thus we create those header only on demand now. */
6977
6978 return TRUE;
6979 }
6980
6981 /* Given a BFD section, try to locate the corresponding ELF section
6982 index. This is used by both the 32-bit and the 64-bit ABI.
6983 Actually, it's not clear to me that the 64-bit ABI supports these,
6984 but for non-PIC objects we will certainly want support for at least
6985 the .scommon section. */
6986
6987 bfd_boolean
6988 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6989 asection *sec, int *retval)
6990 {
6991 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6992 {
6993 *retval = SHN_MIPS_SCOMMON;
6994 return TRUE;
6995 }
6996 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6997 {
6998 *retval = SHN_MIPS_ACOMMON;
6999 return TRUE;
7000 }
7001 return FALSE;
7002 }
7003 \f
7004 /* Hook called by the linker routine which adds symbols from an object
7005 file. We must handle the special MIPS section numbers here. */
7006
7007 bfd_boolean
7008 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7009 Elf_Internal_Sym *sym, const char **namep,
7010 flagword *flagsp ATTRIBUTE_UNUSED,
7011 asection **secp, bfd_vma *valp)
7012 {
7013 if (SGI_COMPAT (abfd)
7014 && (abfd->flags & DYNAMIC) != 0
7015 && strcmp (*namep, "_rld_new_interface") == 0)
7016 {
7017 /* Skip IRIX5 rld entry name. */
7018 *namep = NULL;
7019 return TRUE;
7020 }
7021
7022 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7023 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7024 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7025 a magic symbol resolved by the linker, we ignore this bogus definition
7026 of _gp_disp. New ABI objects do not suffer from this problem so this
7027 is not done for them. */
7028 if (!NEWABI_P(abfd)
7029 && (sym->st_shndx == SHN_ABS)
7030 && (strcmp (*namep, "_gp_disp") == 0))
7031 {
7032 *namep = NULL;
7033 return TRUE;
7034 }
7035
7036 switch (sym->st_shndx)
7037 {
7038 case SHN_COMMON:
7039 /* Common symbols less than the GP size are automatically
7040 treated as SHN_MIPS_SCOMMON symbols. */
7041 if (sym->st_size > elf_gp_size (abfd)
7042 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7043 || IRIX_COMPAT (abfd) == ict_irix6)
7044 break;
7045 /* Fall through. */
7046 case SHN_MIPS_SCOMMON:
7047 *secp = bfd_make_section_old_way (abfd, ".scommon");
7048 (*secp)->flags |= SEC_IS_COMMON;
7049 *valp = sym->st_size;
7050 break;
7051
7052 case SHN_MIPS_TEXT:
7053 /* This section is used in a shared object. */
7054 if (elf_tdata (abfd)->elf_text_section == NULL)
7055 {
7056 asymbol *elf_text_symbol;
7057 asection *elf_text_section;
7058 bfd_size_type amt = sizeof (asection);
7059
7060 elf_text_section = bfd_zalloc (abfd, amt);
7061 if (elf_text_section == NULL)
7062 return FALSE;
7063
7064 amt = sizeof (asymbol);
7065 elf_text_symbol = bfd_zalloc (abfd, amt);
7066 if (elf_text_symbol == NULL)
7067 return FALSE;
7068
7069 /* Initialize the section. */
7070
7071 elf_tdata (abfd)->elf_text_section = elf_text_section;
7072 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7073
7074 elf_text_section->symbol = elf_text_symbol;
7075 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7076
7077 elf_text_section->name = ".text";
7078 elf_text_section->flags = SEC_NO_FLAGS;
7079 elf_text_section->output_section = NULL;
7080 elf_text_section->owner = abfd;
7081 elf_text_symbol->name = ".text";
7082 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7083 elf_text_symbol->section = elf_text_section;
7084 }
7085 /* This code used to do *secp = bfd_und_section_ptr if
7086 info->shared. I don't know why, and that doesn't make sense,
7087 so I took it out. */
7088 *secp = elf_tdata (abfd)->elf_text_section;
7089 break;
7090
7091 case SHN_MIPS_ACOMMON:
7092 /* Fall through. XXX Can we treat this as allocated data? */
7093 case SHN_MIPS_DATA:
7094 /* This section is used in a shared object. */
7095 if (elf_tdata (abfd)->elf_data_section == NULL)
7096 {
7097 asymbol *elf_data_symbol;
7098 asection *elf_data_section;
7099 bfd_size_type amt = sizeof (asection);
7100
7101 elf_data_section = bfd_zalloc (abfd, amt);
7102 if (elf_data_section == NULL)
7103 return FALSE;
7104
7105 amt = sizeof (asymbol);
7106 elf_data_symbol = bfd_zalloc (abfd, amt);
7107 if (elf_data_symbol == NULL)
7108 return FALSE;
7109
7110 /* Initialize the section. */
7111
7112 elf_tdata (abfd)->elf_data_section = elf_data_section;
7113 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7114
7115 elf_data_section->symbol = elf_data_symbol;
7116 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7117
7118 elf_data_section->name = ".data";
7119 elf_data_section->flags = SEC_NO_FLAGS;
7120 elf_data_section->output_section = NULL;
7121 elf_data_section->owner = abfd;
7122 elf_data_symbol->name = ".data";
7123 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7124 elf_data_symbol->section = elf_data_section;
7125 }
7126 /* This code used to do *secp = bfd_und_section_ptr if
7127 info->shared. I don't know why, and that doesn't make sense,
7128 so I took it out. */
7129 *secp = elf_tdata (abfd)->elf_data_section;
7130 break;
7131
7132 case SHN_MIPS_SUNDEFINED:
7133 *secp = bfd_und_section_ptr;
7134 break;
7135 }
7136
7137 if (SGI_COMPAT (abfd)
7138 && ! info->shared
7139 && info->output_bfd->xvec == abfd->xvec
7140 && strcmp (*namep, "__rld_obj_head") == 0)
7141 {
7142 struct elf_link_hash_entry *h;
7143 struct bfd_link_hash_entry *bh;
7144
7145 /* Mark __rld_obj_head as dynamic. */
7146 bh = NULL;
7147 if (! (_bfd_generic_link_add_one_symbol
7148 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7149 get_elf_backend_data (abfd)->collect, &bh)))
7150 return FALSE;
7151
7152 h = (struct elf_link_hash_entry *) bh;
7153 h->non_elf = 0;
7154 h->def_regular = 1;
7155 h->type = STT_OBJECT;
7156
7157 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7158 return FALSE;
7159
7160 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7161 mips_elf_hash_table (info)->rld_symbol = h;
7162 }
7163
7164 /* If this is a mips16 text symbol, add 1 to the value to make it
7165 odd. This will cause something like .word SYM to come up with
7166 the right value when it is loaded into the PC. */
7167 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7168 ++*valp;
7169
7170 return TRUE;
7171 }
7172
7173 /* This hook function is called before the linker writes out a global
7174 symbol. We mark symbols as small common if appropriate. This is
7175 also where we undo the increment of the value for a mips16 symbol. */
7176
7177 int
7178 _bfd_mips_elf_link_output_symbol_hook
7179 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7180 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7181 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7182 {
7183 /* If we see a common symbol, which implies a relocatable link, then
7184 if a symbol was small common in an input file, mark it as small
7185 common in the output file. */
7186 if (sym->st_shndx == SHN_COMMON
7187 && strcmp (input_sec->name, ".scommon") == 0)
7188 sym->st_shndx = SHN_MIPS_SCOMMON;
7189
7190 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7191 sym->st_value &= ~1;
7192
7193 return 1;
7194 }
7195 \f
7196 /* Functions for the dynamic linker. */
7197
7198 /* Create dynamic sections when linking against a dynamic object. */
7199
7200 bfd_boolean
7201 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7202 {
7203 struct elf_link_hash_entry *h;
7204 struct bfd_link_hash_entry *bh;
7205 flagword flags;
7206 register asection *s;
7207 const char * const *namep;
7208 struct mips_elf_link_hash_table *htab;
7209
7210 htab = mips_elf_hash_table (info);
7211 BFD_ASSERT (htab != NULL);
7212
7213 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7214 | SEC_LINKER_CREATED | SEC_READONLY);
7215
7216 /* The psABI requires a read-only .dynamic section, but the VxWorks
7217 EABI doesn't. */
7218 if (!htab->is_vxworks)
7219 {
7220 s = bfd_get_section_by_name (abfd, ".dynamic");
7221 if (s != NULL)
7222 {
7223 if (! bfd_set_section_flags (abfd, s, flags))
7224 return FALSE;
7225 }
7226 }
7227
7228 /* We need to create .got section. */
7229 if (!mips_elf_create_got_section (abfd, info))
7230 return FALSE;
7231
7232 if (! mips_elf_rel_dyn_section (info, TRUE))
7233 return FALSE;
7234
7235 /* Create .stub section. */
7236 s = bfd_make_section_with_flags (abfd,
7237 MIPS_ELF_STUB_SECTION_NAME (abfd),
7238 flags | SEC_CODE);
7239 if (s == NULL
7240 || ! bfd_set_section_alignment (abfd, s,
7241 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7242 return FALSE;
7243 htab->sstubs = s;
7244
7245 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7246 && !info->shared
7247 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7248 {
7249 s = bfd_make_section_with_flags (abfd, ".rld_map",
7250 flags &~ (flagword) SEC_READONLY);
7251 if (s == NULL
7252 || ! bfd_set_section_alignment (abfd, s,
7253 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7254 return FALSE;
7255 }
7256
7257 /* On IRIX5, we adjust add some additional symbols and change the
7258 alignments of several sections. There is no ABI documentation
7259 indicating that this is necessary on IRIX6, nor any evidence that
7260 the linker takes such action. */
7261 if (IRIX_COMPAT (abfd) == ict_irix5)
7262 {
7263 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7264 {
7265 bh = NULL;
7266 if (! (_bfd_generic_link_add_one_symbol
7267 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7268 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7269 return FALSE;
7270
7271 h = (struct elf_link_hash_entry *) bh;
7272 h->non_elf = 0;
7273 h->def_regular = 1;
7274 h->type = STT_SECTION;
7275
7276 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7277 return FALSE;
7278 }
7279
7280 /* We need to create a .compact_rel section. */
7281 if (SGI_COMPAT (abfd))
7282 {
7283 if (!mips_elf_create_compact_rel_section (abfd, info))
7284 return FALSE;
7285 }
7286
7287 /* Change alignments of some sections. */
7288 s = bfd_get_section_by_name (abfd, ".hash");
7289 if (s != NULL)
7290 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7291 s = bfd_get_section_by_name (abfd, ".dynsym");
7292 if (s != NULL)
7293 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7294 s = bfd_get_section_by_name (abfd, ".dynstr");
7295 if (s != NULL)
7296 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7297 s = bfd_get_section_by_name (abfd, ".reginfo");
7298 if (s != NULL)
7299 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7300 s = bfd_get_section_by_name (abfd, ".dynamic");
7301 if (s != NULL)
7302 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7303 }
7304
7305 if (!info->shared)
7306 {
7307 const char *name;
7308
7309 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7310 bh = NULL;
7311 if (!(_bfd_generic_link_add_one_symbol
7312 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7313 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7314 return FALSE;
7315
7316 h = (struct elf_link_hash_entry *) bh;
7317 h->non_elf = 0;
7318 h->def_regular = 1;
7319 h->type = STT_SECTION;
7320
7321 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7322 return FALSE;
7323
7324 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7325 {
7326 /* __rld_map is a four byte word located in the .data section
7327 and is filled in by the rtld to contain a pointer to
7328 the _r_debug structure. Its symbol value will be set in
7329 _bfd_mips_elf_finish_dynamic_symbol. */
7330 s = bfd_get_section_by_name (abfd, ".rld_map");
7331 BFD_ASSERT (s != NULL);
7332
7333 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7334 bh = NULL;
7335 if (!(_bfd_generic_link_add_one_symbol
7336 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7337 get_elf_backend_data (abfd)->collect, &bh)))
7338 return FALSE;
7339
7340 h = (struct elf_link_hash_entry *) bh;
7341 h->non_elf = 0;
7342 h->def_regular = 1;
7343 h->type = STT_OBJECT;
7344
7345 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7346 return FALSE;
7347 mips_elf_hash_table (info)->rld_symbol = h;
7348 }
7349 }
7350
7351 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7352 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7353 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7354 return FALSE;
7355
7356 /* Cache the sections created above. */
7357 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7358 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7359 if (htab->is_vxworks)
7360 {
7361 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7362 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7363 }
7364 else
7365 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7366 if (!htab->sdynbss
7367 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7368 || !htab->srelplt
7369 || !htab->splt)
7370 abort ();
7371
7372 if (htab->is_vxworks)
7373 {
7374 /* Do the usual VxWorks handling. */
7375 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7376 return FALSE;
7377
7378 /* Work out the PLT sizes. */
7379 if (info->shared)
7380 {
7381 htab->plt_header_size
7382 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7383 htab->plt_entry_size
7384 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7385 }
7386 else
7387 {
7388 htab->plt_header_size
7389 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7390 htab->plt_entry_size
7391 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7392 }
7393 }
7394 else if (!info->shared)
7395 {
7396 /* All variants of the plt0 entry are the same size. */
7397 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7398 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7399 }
7400
7401 return TRUE;
7402 }
7403 \f
7404 /* Return true if relocation REL against section SEC is a REL rather than
7405 RELA relocation. RELOCS is the first relocation in the section and
7406 ABFD is the bfd that contains SEC. */
7407
7408 static bfd_boolean
7409 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7410 const Elf_Internal_Rela *relocs,
7411 const Elf_Internal_Rela *rel)
7412 {
7413 Elf_Internal_Shdr *rel_hdr;
7414 const struct elf_backend_data *bed;
7415
7416 /* To determine which flavor of relocation this is, we depend on the
7417 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7418 rel_hdr = elf_section_data (sec)->rel.hdr;
7419 if (rel_hdr == NULL)
7420 return FALSE;
7421 bed = get_elf_backend_data (abfd);
7422 return ((size_t) (rel - relocs)
7423 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7424 }
7425
7426 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7427 HOWTO is the relocation's howto and CONTENTS points to the contents
7428 of the section that REL is against. */
7429
7430 static bfd_vma
7431 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7432 reloc_howto_type *howto, bfd_byte *contents)
7433 {
7434 bfd_byte *location;
7435 unsigned int r_type;
7436 bfd_vma addend;
7437
7438 r_type = ELF_R_TYPE (abfd, rel->r_info);
7439 location = contents + rel->r_offset;
7440
7441 /* Get the addend, which is stored in the input file. */
7442 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7443 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7444 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7445
7446 return addend & howto->src_mask;
7447 }
7448
7449 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7450 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7451 and update *ADDEND with the final addend. Return true on success
7452 or false if the LO16 could not be found. RELEND is the exclusive
7453 upper bound on the relocations for REL's section. */
7454
7455 static bfd_boolean
7456 mips_elf_add_lo16_rel_addend (bfd *abfd,
7457 const Elf_Internal_Rela *rel,
7458 const Elf_Internal_Rela *relend,
7459 bfd_byte *contents, bfd_vma *addend)
7460 {
7461 unsigned int r_type, lo16_type;
7462 const Elf_Internal_Rela *lo16_relocation;
7463 reloc_howto_type *lo16_howto;
7464 bfd_vma l;
7465
7466 r_type = ELF_R_TYPE (abfd, rel->r_info);
7467 if (mips16_reloc_p (r_type))
7468 lo16_type = R_MIPS16_LO16;
7469 else if (micromips_reloc_p (r_type))
7470 lo16_type = R_MICROMIPS_LO16;
7471 else
7472 lo16_type = R_MIPS_LO16;
7473
7474 /* The combined value is the sum of the HI16 addend, left-shifted by
7475 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7476 code does a `lui' of the HI16 value, and then an `addiu' of the
7477 LO16 value.)
7478
7479 Scan ahead to find a matching LO16 relocation.
7480
7481 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7482 be immediately following. However, for the IRIX6 ABI, the next
7483 relocation may be a composed relocation consisting of several
7484 relocations for the same address. In that case, the R_MIPS_LO16
7485 relocation may occur as one of these. We permit a similar
7486 extension in general, as that is useful for GCC.
7487
7488 In some cases GCC dead code elimination removes the LO16 but keeps
7489 the corresponding HI16. This is strictly speaking a violation of
7490 the ABI but not immediately harmful. */
7491 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7492 if (lo16_relocation == NULL)
7493 return FALSE;
7494
7495 /* Obtain the addend kept there. */
7496 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7497 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7498
7499 l <<= lo16_howto->rightshift;
7500 l = _bfd_mips_elf_sign_extend (l, 16);
7501
7502 *addend <<= 16;
7503 *addend += l;
7504 return TRUE;
7505 }
7506
7507 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7508 store the contents in *CONTENTS on success. Assume that *CONTENTS
7509 already holds the contents if it is nonull on entry. */
7510
7511 static bfd_boolean
7512 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7513 {
7514 if (*contents)
7515 return TRUE;
7516
7517 /* Get cached copy if it exists. */
7518 if (elf_section_data (sec)->this_hdr.contents != NULL)
7519 {
7520 *contents = elf_section_data (sec)->this_hdr.contents;
7521 return TRUE;
7522 }
7523
7524 return bfd_malloc_and_get_section (abfd, sec, contents);
7525 }
7526
7527 /* Look through the relocs for a section during the first phase, and
7528 allocate space in the global offset table. */
7529
7530 bfd_boolean
7531 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7532 asection *sec, const Elf_Internal_Rela *relocs)
7533 {
7534 const char *name;
7535 bfd *dynobj;
7536 Elf_Internal_Shdr *symtab_hdr;
7537 struct elf_link_hash_entry **sym_hashes;
7538 size_t extsymoff;
7539 const Elf_Internal_Rela *rel;
7540 const Elf_Internal_Rela *rel_end;
7541 asection *sreloc;
7542 const struct elf_backend_data *bed;
7543 struct mips_elf_link_hash_table *htab;
7544 bfd_byte *contents;
7545 bfd_vma addend;
7546 reloc_howto_type *howto;
7547
7548 if (info->relocatable)
7549 return TRUE;
7550
7551 htab = mips_elf_hash_table (info);
7552 BFD_ASSERT (htab != NULL);
7553
7554 dynobj = elf_hash_table (info)->dynobj;
7555 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7556 sym_hashes = elf_sym_hashes (abfd);
7557 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7558
7559 bed = get_elf_backend_data (abfd);
7560 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7561
7562 /* Check for the mips16 stub sections. */
7563
7564 name = bfd_get_section_name (abfd, sec);
7565 if (FN_STUB_P (name))
7566 {
7567 unsigned long r_symndx;
7568
7569 /* Look at the relocation information to figure out which symbol
7570 this is for. */
7571
7572 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7573 if (r_symndx == 0)
7574 {
7575 (*_bfd_error_handler)
7576 (_("%B: Warning: cannot determine the target function for"
7577 " stub section `%s'"),
7578 abfd, name);
7579 bfd_set_error (bfd_error_bad_value);
7580 return FALSE;
7581 }
7582
7583 if (r_symndx < extsymoff
7584 || sym_hashes[r_symndx - extsymoff] == NULL)
7585 {
7586 asection *o;
7587
7588 /* This stub is for a local symbol. This stub will only be
7589 needed if there is some relocation in this BFD, other
7590 than a 16 bit function call, which refers to this symbol. */
7591 for (o = abfd->sections; o != NULL; o = o->next)
7592 {
7593 Elf_Internal_Rela *sec_relocs;
7594 const Elf_Internal_Rela *r, *rend;
7595
7596 /* We can ignore stub sections when looking for relocs. */
7597 if ((o->flags & SEC_RELOC) == 0
7598 || o->reloc_count == 0
7599 || section_allows_mips16_refs_p (o))
7600 continue;
7601
7602 sec_relocs
7603 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7604 info->keep_memory);
7605 if (sec_relocs == NULL)
7606 return FALSE;
7607
7608 rend = sec_relocs + o->reloc_count;
7609 for (r = sec_relocs; r < rend; r++)
7610 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7611 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7612 break;
7613
7614 if (elf_section_data (o)->relocs != sec_relocs)
7615 free (sec_relocs);
7616
7617 if (r < rend)
7618 break;
7619 }
7620
7621 if (o == NULL)
7622 {
7623 /* There is no non-call reloc for this stub, so we do
7624 not need it. Since this function is called before
7625 the linker maps input sections to output sections, we
7626 can easily discard it by setting the SEC_EXCLUDE
7627 flag. */
7628 sec->flags |= SEC_EXCLUDE;
7629 return TRUE;
7630 }
7631
7632 /* Record this stub in an array of local symbol stubs for
7633 this BFD. */
7634 if (elf_tdata (abfd)->local_stubs == NULL)
7635 {
7636 unsigned long symcount;
7637 asection **n;
7638 bfd_size_type amt;
7639
7640 if (elf_bad_symtab (abfd))
7641 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7642 else
7643 symcount = symtab_hdr->sh_info;
7644 amt = symcount * sizeof (asection *);
7645 n = bfd_zalloc (abfd, amt);
7646 if (n == NULL)
7647 return FALSE;
7648 elf_tdata (abfd)->local_stubs = n;
7649 }
7650
7651 sec->flags |= SEC_KEEP;
7652 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7653
7654 /* We don't need to set mips16_stubs_seen in this case.
7655 That flag is used to see whether we need to look through
7656 the global symbol table for stubs. We don't need to set
7657 it here, because we just have a local stub. */
7658 }
7659 else
7660 {
7661 struct mips_elf_link_hash_entry *h;
7662
7663 h = ((struct mips_elf_link_hash_entry *)
7664 sym_hashes[r_symndx - extsymoff]);
7665
7666 while (h->root.root.type == bfd_link_hash_indirect
7667 || h->root.root.type == bfd_link_hash_warning)
7668 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7669
7670 /* H is the symbol this stub is for. */
7671
7672 /* If we already have an appropriate stub for this function, we
7673 don't need another one, so we can discard this one. Since
7674 this function is called before the linker maps input sections
7675 to output sections, we can easily discard it by setting the
7676 SEC_EXCLUDE flag. */
7677 if (h->fn_stub != NULL)
7678 {
7679 sec->flags |= SEC_EXCLUDE;
7680 return TRUE;
7681 }
7682
7683 sec->flags |= SEC_KEEP;
7684 h->fn_stub = sec;
7685 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7686 }
7687 }
7688 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7689 {
7690 unsigned long r_symndx;
7691 struct mips_elf_link_hash_entry *h;
7692 asection **loc;
7693
7694 /* Look at the relocation information to figure out which symbol
7695 this is for. */
7696
7697 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7698 if (r_symndx == 0)
7699 {
7700 (*_bfd_error_handler)
7701 (_("%B: Warning: cannot determine the target function for"
7702 " stub section `%s'"),
7703 abfd, name);
7704 bfd_set_error (bfd_error_bad_value);
7705 return FALSE;
7706 }
7707
7708 if (r_symndx < extsymoff
7709 || sym_hashes[r_symndx - extsymoff] == NULL)
7710 {
7711 asection *o;
7712
7713 /* This stub is for a local symbol. This stub will only be
7714 needed if there is some relocation (R_MIPS16_26) in this BFD
7715 that refers to this symbol. */
7716 for (o = abfd->sections; o != NULL; o = o->next)
7717 {
7718 Elf_Internal_Rela *sec_relocs;
7719 const Elf_Internal_Rela *r, *rend;
7720
7721 /* We can ignore stub sections when looking for relocs. */
7722 if ((o->flags & SEC_RELOC) == 0
7723 || o->reloc_count == 0
7724 || section_allows_mips16_refs_p (o))
7725 continue;
7726
7727 sec_relocs
7728 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7729 info->keep_memory);
7730 if (sec_relocs == NULL)
7731 return FALSE;
7732
7733 rend = sec_relocs + o->reloc_count;
7734 for (r = sec_relocs; r < rend; r++)
7735 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7736 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7737 break;
7738
7739 if (elf_section_data (o)->relocs != sec_relocs)
7740 free (sec_relocs);
7741
7742 if (r < rend)
7743 break;
7744 }
7745
7746 if (o == NULL)
7747 {
7748 /* There is no non-call reloc for this stub, so we do
7749 not need it. Since this function is called before
7750 the linker maps input sections to output sections, we
7751 can easily discard it by setting the SEC_EXCLUDE
7752 flag. */
7753 sec->flags |= SEC_EXCLUDE;
7754 return TRUE;
7755 }
7756
7757 /* Record this stub in an array of local symbol call_stubs for
7758 this BFD. */
7759 if (elf_tdata (abfd)->local_call_stubs == NULL)
7760 {
7761 unsigned long symcount;
7762 asection **n;
7763 bfd_size_type amt;
7764
7765 if (elf_bad_symtab (abfd))
7766 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7767 else
7768 symcount = symtab_hdr->sh_info;
7769 amt = symcount * sizeof (asection *);
7770 n = bfd_zalloc (abfd, amt);
7771 if (n == NULL)
7772 return FALSE;
7773 elf_tdata (abfd)->local_call_stubs = n;
7774 }
7775
7776 sec->flags |= SEC_KEEP;
7777 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7778
7779 /* We don't need to set mips16_stubs_seen in this case.
7780 That flag is used to see whether we need to look through
7781 the global symbol table for stubs. We don't need to set
7782 it here, because we just have a local stub. */
7783 }
7784 else
7785 {
7786 h = ((struct mips_elf_link_hash_entry *)
7787 sym_hashes[r_symndx - extsymoff]);
7788
7789 /* H is the symbol this stub is for. */
7790
7791 if (CALL_FP_STUB_P (name))
7792 loc = &h->call_fp_stub;
7793 else
7794 loc = &h->call_stub;
7795
7796 /* If we already have an appropriate stub for this function, we
7797 don't need another one, so we can discard this one. Since
7798 this function is called before the linker maps input sections
7799 to output sections, we can easily discard it by setting the
7800 SEC_EXCLUDE flag. */
7801 if (*loc != NULL)
7802 {
7803 sec->flags |= SEC_EXCLUDE;
7804 return TRUE;
7805 }
7806
7807 sec->flags |= SEC_KEEP;
7808 *loc = sec;
7809 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7810 }
7811 }
7812
7813 sreloc = NULL;
7814 contents = NULL;
7815 for (rel = relocs; rel < rel_end; ++rel)
7816 {
7817 unsigned long r_symndx;
7818 unsigned int r_type;
7819 struct elf_link_hash_entry *h;
7820 bfd_boolean can_make_dynamic_p;
7821
7822 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7823 r_type = ELF_R_TYPE (abfd, rel->r_info);
7824
7825 if (r_symndx < extsymoff)
7826 h = NULL;
7827 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7828 {
7829 (*_bfd_error_handler)
7830 (_("%B: Malformed reloc detected for section %s"),
7831 abfd, name);
7832 bfd_set_error (bfd_error_bad_value);
7833 return FALSE;
7834 }
7835 else
7836 {
7837 h = sym_hashes[r_symndx - extsymoff];
7838 while (h != NULL
7839 && (h->root.type == bfd_link_hash_indirect
7840 || h->root.type == bfd_link_hash_warning))
7841 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7842 }
7843
7844 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7845 relocation into a dynamic one. */
7846 can_make_dynamic_p = FALSE;
7847 switch (r_type)
7848 {
7849 case R_MIPS_GOT16:
7850 case R_MIPS_CALL16:
7851 case R_MIPS_CALL_HI16:
7852 case R_MIPS_CALL_LO16:
7853 case R_MIPS_GOT_HI16:
7854 case R_MIPS_GOT_LO16:
7855 case R_MIPS_GOT_PAGE:
7856 case R_MIPS_GOT_OFST:
7857 case R_MIPS_GOT_DISP:
7858 case R_MIPS_TLS_GOTTPREL:
7859 case R_MIPS_TLS_GD:
7860 case R_MIPS_TLS_LDM:
7861 case R_MIPS16_GOT16:
7862 case R_MIPS16_CALL16:
7863 case R_MIPS16_TLS_GOTTPREL:
7864 case R_MIPS16_TLS_GD:
7865 case R_MIPS16_TLS_LDM:
7866 case R_MICROMIPS_GOT16:
7867 case R_MICROMIPS_CALL16:
7868 case R_MICROMIPS_CALL_HI16:
7869 case R_MICROMIPS_CALL_LO16:
7870 case R_MICROMIPS_GOT_HI16:
7871 case R_MICROMIPS_GOT_LO16:
7872 case R_MICROMIPS_GOT_PAGE:
7873 case R_MICROMIPS_GOT_OFST:
7874 case R_MICROMIPS_GOT_DISP:
7875 case R_MICROMIPS_TLS_GOTTPREL:
7876 case R_MICROMIPS_TLS_GD:
7877 case R_MICROMIPS_TLS_LDM:
7878 if (dynobj == NULL)
7879 elf_hash_table (info)->dynobj = dynobj = abfd;
7880 if (!mips_elf_create_got_section (dynobj, info))
7881 return FALSE;
7882 if (htab->is_vxworks && !info->shared)
7883 {
7884 (*_bfd_error_handler)
7885 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7886 abfd, (unsigned long) rel->r_offset);
7887 bfd_set_error (bfd_error_bad_value);
7888 return FALSE;
7889 }
7890 break;
7891
7892 /* This is just a hint; it can safely be ignored. Don't set
7893 has_static_relocs for the corresponding symbol. */
7894 case R_MIPS_JALR:
7895 case R_MICROMIPS_JALR:
7896 break;
7897
7898 case R_MIPS_32:
7899 case R_MIPS_REL32:
7900 case R_MIPS_64:
7901 /* In VxWorks executables, references to external symbols
7902 must be handled using copy relocs or PLT entries; it is not
7903 possible to convert this relocation into a dynamic one.
7904
7905 For executables that use PLTs and copy-relocs, we have a
7906 choice between converting the relocation into a dynamic
7907 one or using copy relocations or PLT entries. It is
7908 usually better to do the former, unless the relocation is
7909 against a read-only section. */
7910 if ((info->shared
7911 || (h != NULL
7912 && !htab->is_vxworks
7913 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7914 && !(!info->nocopyreloc
7915 && !PIC_OBJECT_P (abfd)
7916 && MIPS_ELF_READONLY_SECTION (sec))))
7917 && (sec->flags & SEC_ALLOC) != 0)
7918 {
7919 can_make_dynamic_p = TRUE;
7920 if (dynobj == NULL)
7921 elf_hash_table (info)->dynobj = dynobj = abfd;
7922 break;
7923 }
7924 /* For sections that are not SEC_ALLOC a copy reloc would be
7925 output if possible (implying questionable semantics for
7926 read-only data objects) or otherwise the final link would
7927 fail as ld.so will not process them and could not therefore
7928 handle any outstanding dynamic relocations.
7929
7930 For such sections that are also SEC_DEBUGGING, we can avoid
7931 these problems by simply ignoring any relocs as these
7932 sections have a predefined use and we know it is safe to do
7933 so.
7934
7935 This is needed in cases such as a global symbol definition
7936 in a shared library causing a common symbol from an object
7937 file to be converted to an undefined reference. If that
7938 happens, then all the relocations against this symbol from
7939 SEC_DEBUGGING sections in the object file will resolve to
7940 nil. */
7941 if ((sec->flags & SEC_DEBUGGING) != 0)
7942 break;
7943 /* Fall through. */
7944
7945 default:
7946 /* Most static relocations require pointer equality, except
7947 for branches. */
7948 if (h)
7949 h->pointer_equality_needed = TRUE;
7950 /* Fall through. */
7951
7952 case R_MIPS_26:
7953 case R_MIPS_PC16:
7954 case R_MIPS16_26:
7955 case R_MICROMIPS_26_S1:
7956 case R_MICROMIPS_PC7_S1:
7957 case R_MICROMIPS_PC10_S1:
7958 case R_MICROMIPS_PC16_S1:
7959 case R_MICROMIPS_PC23_S2:
7960 if (h)
7961 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7962 break;
7963 }
7964
7965 if (h)
7966 {
7967 /* Relocations against the special VxWorks __GOTT_BASE__ and
7968 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7969 room for them in .rela.dyn. */
7970 if (is_gott_symbol (info, h))
7971 {
7972 if (sreloc == NULL)
7973 {
7974 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7975 if (sreloc == NULL)
7976 return FALSE;
7977 }
7978 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7979 if (MIPS_ELF_READONLY_SECTION (sec))
7980 /* We tell the dynamic linker that there are
7981 relocations against the text segment. */
7982 info->flags |= DF_TEXTREL;
7983 }
7984 }
7985 else if (call_lo16_reloc_p (r_type)
7986 || got_lo16_reloc_p (r_type)
7987 || got_disp_reloc_p (r_type)
7988 || (got16_reloc_p (r_type) && htab->is_vxworks))
7989 {
7990 /* We may need a local GOT entry for this relocation. We
7991 don't count R_MIPS_GOT_PAGE because we can estimate the
7992 maximum number of pages needed by looking at the size of
7993 the segment. Similar comments apply to R_MIPS*_GOT16 and
7994 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7995 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7996 R_MIPS_CALL_HI16 because these are always followed by an
7997 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7998 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7999 rel->r_addend, info, 0))
8000 return FALSE;
8001 }
8002
8003 if (h != NULL
8004 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8005 ELF_ST_IS_MIPS16 (h->other)))
8006 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8007
8008 switch (r_type)
8009 {
8010 case R_MIPS_CALL16:
8011 case R_MIPS16_CALL16:
8012 case R_MICROMIPS_CALL16:
8013 if (h == NULL)
8014 {
8015 (*_bfd_error_handler)
8016 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8017 abfd, (unsigned long) rel->r_offset);
8018 bfd_set_error (bfd_error_bad_value);
8019 return FALSE;
8020 }
8021 /* Fall through. */
8022
8023 case R_MIPS_CALL_HI16:
8024 case R_MIPS_CALL_LO16:
8025 case R_MICROMIPS_CALL_HI16:
8026 case R_MICROMIPS_CALL_LO16:
8027 if (h != NULL)
8028 {
8029 /* Make sure there is room in the regular GOT to hold the
8030 function's address. We may eliminate it in favour of
8031 a .got.plt entry later; see mips_elf_count_got_symbols. */
8032 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8033 return FALSE;
8034
8035 /* We need a stub, not a plt entry for the undefined
8036 function. But we record it as if it needs plt. See
8037 _bfd_elf_adjust_dynamic_symbol. */
8038 h->needs_plt = 1;
8039 h->type = STT_FUNC;
8040 }
8041 break;
8042
8043 case R_MIPS_GOT_PAGE:
8044 case R_MICROMIPS_GOT_PAGE:
8045 /* If this is a global, overridable symbol, GOT_PAGE will
8046 decay to GOT_DISP, so we'll need a GOT entry for it. */
8047 if (h)
8048 {
8049 struct mips_elf_link_hash_entry *hmips =
8050 (struct mips_elf_link_hash_entry *) h;
8051
8052 /* This symbol is definitely not overridable. */
8053 if (hmips->root.def_regular
8054 && ! (info->shared && ! info->symbolic
8055 && ! hmips->root.forced_local))
8056 h = NULL;
8057 }
8058 /* Fall through. */
8059
8060 case R_MIPS16_GOT16:
8061 case R_MIPS_GOT16:
8062 case R_MIPS_GOT_HI16:
8063 case R_MIPS_GOT_LO16:
8064 case R_MICROMIPS_GOT16:
8065 case R_MICROMIPS_GOT_HI16:
8066 case R_MICROMIPS_GOT_LO16:
8067 if (!h || got_page_reloc_p (r_type))
8068 {
8069 /* This relocation needs (or may need, if h != NULL) a
8070 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8071 know for sure until we know whether the symbol is
8072 preemptible. */
8073 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8074 {
8075 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8076 return FALSE;
8077 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8078 addend = mips_elf_read_rel_addend (abfd, rel,
8079 howto, contents);
8080 if (got16_reloc_p (r_type))
8081 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8082 contents, &addend);
8083 else
8084 addend <<= howto->rightshift;
8085 }
8086 else
8087 addend = rel->r_addend;
8088 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8089 addend))
8090 return FALSE;
8091 }
8092 /* Fall through. */
8093
8094 case R_MIPS_GOT_DISP:
8095 case R_MICROMIPS_GOT_DISP:
8096 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8097 FALSE, 0))
8098 return FALSE;
8099 break;
8100
8101 case R_MIPS_TLS_GOTTPREL:
8102 case R_MIPS16_TLS_GOTTPREL:
8103 case R_MICROMIPS_TLS_GOTTPREL:
8104 if (info->shared)
8105 info->flags |= DF_STATIC_TLS;
8106 /* Fall through */
8107
8108 case R_MIPS_TLS_LDM:
8109 case R_MIPS16_TLS_LDM:
8110 case R_MICROMIPS_TLS_LDM:
8111 if (tls_ldm_reloc_p (r_type))
8112 {
8113 r_symndx = STN_UNDEF;
8114 h = NULL;
8115 }
8116 /* Fall through */
8117
8118 case R_MIPS_TLS_GD:
8119 case R_MIPS16_TLS_GD:
8120 case R_MICROMIPS_TLS_GD:
8121 /* This symbol requires a global offset table entry, or two
8122 for TLS GD relocations. */
8123 {
8124 unsigned char flag;
8125
8126 flag = (tls_gd_reloc_p (r_type)
8127 ? GOT_TLS_GD
8128 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8129 if (h != NULL)
8130 {
8131 struct mips_elf_link_hash_entry *hmips =
8132 (struct mips_elf_link_hash_entry *) h;
8133 hmips->tls_type |= flag;
8134
8135 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8136 FALSE, flag))
8137 return FALSE;
8138 }
8139 else
8140 {
8141 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8142
8143 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8144 rel->r_addend,
8145 info, flag))
8146 return FALSE;
8147 }
8148 }
8149 break;
8150
8151 case R_MIPS_32:
8152 case R_MIPS_REL32:
8153 case R_MIPS_64:
8154 /* In VxWorks executables, references to external symbols
8155 are handled using copy relocs or PLT stubs, so there's
8156 no need to add a .rela.dyn entry for this relocation. */
8157 if (can_make_dynamic_p)
8158 {
8159 if (sreloc == NULL)
8160 {
8161 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8162 if (sreloc == NULL)
8163 return FALSE;
8164 }
8165 if (info->shared && h == NULL)
8166 {
8167 /* When creating a shared object, we must copy these
8168 reloc types into the output file as R_MIPS_REL32
8169 relocs. Make room for this reloc in .rel(a).dyn. */
8170 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8171 if (MIPS_ELF_READONLY_SECTION (sec))
8172 /* We tell the dynamic linker that there are
8173 relocations against the text segment. */
8174 info->flags |= DF_TEXTREL;
8175 }
8176 else
8177 {
8178 struct mips_elf_link_hash_entry *hmips;
8179
8180 /* For a shared object, we must copy this relocation
8181 unless the symbol turns out to be undefined and
8182 weak with non-default visibility, in which case
8183 it will be left as zero.
8184
8185 We could elide R_MIPS_REL32 for locally binding symbols
8186 in shared libraries, but do not yet do so.
8187
8188 For an executable, we only need to copy this
8189 reloc if the symbol is defined in a dynamic
8190 object. */
8191 hmips = (struct mips_elf_link_hash_entry *) h;
8192 ++hmips->possibly_dynamic_relocs;
8193 if (MIPS_ELF_READONLY_SECTION (sec))
8194 /* We need it to tell the dynamic linker if there
8195 are relocations against the text segment. */
8196 hmips->readonly_reloc = TRUE;
8197 }
8198 }
8199
8200 if (SGI_COMPAT (abfd))
8201 mips_elf_hash_table (info)->compact_rel_size +=
8202 sizeof (Elf32_External_crinfo);
8203 break;
8204
8205 case R_MIPS_26:
8206 case R_MIPS_GPREL16:
8207 case R_MIPS_LITERAL:
8208 case R_MIPS_GPREL32:
8209 case R_MICROMIPS_26_S1:
8210 case R_MICROMIPS_GPREL16:
8211 case R_MICROMIPS_LITERAL:
8212 case R_MICROMIPS_GPREL7_S2:
8213 if (SGI_COMPAT (abfd))
8214 mips_elf_hash_table (info)->compact_rel_size +=
8215 sizeof (Elf32_External_crinfo);
8216 break;
8217
8218 /* This relocation describes the C++ object vtable hierarchy.
8219 Reconstruct it for later use during GC. */
8220 case R_MIPS_GNU_VTINHERIT:
8221 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8222 return FALSE;
8223 break;
8224
8225 /* This relocation describes which C++ vtable entries are actually
8226 used. Record for later use during GC. */
8227 case R_MIPS_GNU_VTENTRY:
8228 BFD_ASSERT (h != NULL);
8229 if (h != NULL
8230 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8231 return FALSE;
8232 break;
8233
8234 default:
8235 break;
8236 }
8237
8238 /* We must not create a stub for a symbol that has relocations
8239 related to taking the function's address. This doesn't apply to
8240 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8241 a normal .got entry. */
8242 if (!htab->is_vxworks && h != NULL)
8243 switch (r_type)
8244 {
8245 default:
8246 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8247 break;
8248 case R_MIPS16_CALL16:
8249 case R_MIPS_CALL16:
8250 case R_MIPS_CALL_HI16:
8251 case R_MIPS_CALL_LO16:
8252 case R_MIPS_JALR:
8253 case R_MICROMIPS_CALL16:
8254 case R_MICROMIPS_CALL_HI16:
8255 case R_MICROMIPS_CALL_LO16:
8256 case R_MICROMIPS_JALR:
8257 break;
8258 }
8259
8260 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8261 if there is one. We only need to handle global symbols here;
8262 we decide whether to keep or delete stubs for local symbols
8263 when processing the stub's relocations. */
8264 if (h != NULL
8265 && !mips16_call_reloc_p (r_type)
8266 && !section_allows_mips16_refs_p (sec))
8267 {
8268 struct mips_elf_link_hash_entry *mh;
8269
8270 mh = (struct mips_elf_link_hash_entry *) h;
8271 mh->need_fn_stub = TRUE;
8272 }
8273
8274 /* Refuse some position-dependent relocations when creating a
8275 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8276 not PIC, but we can create dynamic relocations and the result
8277 will be fine. Also do not refuse R_MIPS_LO16, which can be
8278 combined with R_MIPS_GOT16. */
8279 if (info->shared)
8280 {
8281 switch (r_type)
8282 {
8283 case R_MIPS16_HI16:
8284 case R_MIPS_HI16:
8285 case R_MIPS_HIGHER:
8286 case R_MIPS_HIGHEST:
8287 case R_MICROMIPS_HI16:
8288 case R_MICROMIPS_HIGHER:
8289 case R_MICROMIPS_HIGHEST:
8290 /* Don't refuse a high part relocation if it's against
8291 no symbol (e.g. part of a compound relocation). */
8292 if (r_symndx == STN_UNDEF)
8293 break;
8294
8295 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8296 and has a special meaning. */
8297 if (!NEWABI_P (abfd) && h != NULL
8298 && strcmp (h->root.root.string, "_gp_disp") == 0)
8299 break;
8300
8301 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8302 if (is_gott_symbol (info, h))
8303 break;
8304
8305 /* FALLTHROUGH */
8306
8307 case R_MIPS16_26:
8308 case R_MIPS_26:
8309 case R_MICROMIPS_26_S1:
8310 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8311 (*_bfd_error_handler)
8312 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8313 abfd, howto->name,
8314 (h) ? h->root.root.string : "a local symbol");
8315 bfd_set_error (bfd_error_bad_value);
8316 return FALSE;
8317 default:
8318 break;
8319 }
8320 }
8321 }
8322
8323 return TRUE;
8324 }
8325 \f
8326 bfd_boolean
8327 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8328 struct bfd_link_info *link_info,
8329 bfd_boolean *again)
8330 {
8331 Elf_Internal_Rela *internal_relocs;
8332 Elf_Internal_Rela *irel, *irelend;
8333 Elf_Internal_Shdr *symtab_hdr;
8334 bfd_byte *contents = NULL;
8335 size_t extsymoff;
8336 bfd_boolean changed_contents = FALSE;
8337 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8338 Elf_Internal_Sym *isymbuf = NULL;
8339
8340 /* We are not currently changing any sizes, so only one pass. */
8341 *again = FALSE;
8342
8343 if (link_info->relocatable)
8344 return TRUE;
8345
8346 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8347 link_info->keep_memory);
8348 if (internal_relocs == NULL)
8349 return TRUE;
8350
8351 irelend = internal_relocs + sec->reloc_count
8352 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8353 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8354 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8355
8356 for (irel = internal_relocs; irel < irelend; irel++)
8357 {
8358 bfd_vma symval;
8359 bfd_signed_vma sym_offset;
8360 unsigned int r_type;
8361 unsigned long r_symndx;
8362 asection *sym_sec;
8363 unsigned long instruction;
8364
8365 /* Turn jalr into bgezal, and jr into beq, if they're marked
8366 with a JALR relocation, that indicate where they jump to.
8367 This saves some pipeline bubbles. */
8368 r_type = ELF_R_TYPE (abfd, irel->r_info);
8369 if (r_type != R_MIPS_JALR)
8370 continue;
8371
8372 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8373 /* Compute the address of the jump target. */
8374 if (r_symndx >= extsymoff)
8375 {
8376 struct mips_elf_link_hash_entry *h
8377 = ((struct mips_elf_link_hash_entry *)
8378 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8379
8380 while (h->root.root.type == bfd_link_hash_indirect
8381 || h->root.root.type == bfd_link_hash_warning)
8382 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8383
8384 /* If a symbol is undefined, or if it may be overridden,
8385 skip it. */
8386 if (! ((h->root.root.type == bfd_link_hash_defined
8387 || h->root.root.type == bfd_link_hash_defweak)
8388 && h->root.root.u.def.section)
8389 || (link_info->shared && ! link_info->symbolic
8390 && !h->root.forced_local))
8391 continue;
8392
8393 sym_sec = h->root.root.u.def.section;
8394 if (sym_sec->output_section)
8395 symval = (h->root.root.u.def.value
8396 + sym_sec->output_section->vma
8397 + sym_sec->output_offset);
8398 else
8399 symval = h->root.root.u.def.value;
8400 }
8401 else
8402 {
8403 Elf_Internal_Sym *isym;
8404
8405 /* Read this BFD's symbols if we haven't done so already. */
8406 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8407 {
8408 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8409 if (isymbuf == NULL)
8410 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8411 symtab_hdr->sh_info, 0,
8412 NULL, NULL, NULL);
8413 if (isymbuf == NULL)
8414 goto relax_return;
8415 }
8416
8417 isym = isymbuf + r_symndx;
8418 if (isym->st_shndx == SHN_UNDEF)
8419 continue;
8420 else if (isym->st_shndx == SHN_ABS)
8421 sym_sec = bfd_abs_section_ptr;
8422 else if (isym->st_shndx == SHN_COMMON)
8423 sym_sec = bfd_com_section_ptr;
8424 else
8425 sym_sec
8426 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8427 symval = isym->st_value
8428 + sym_sec->output_section->vma
8429 + sym_sec->output_offset;
8430 }
8431
8432 /* Compute branch offset, from delay slot of the jump to the
8433 branch target. */
8434 sym_offset = (symval + irel->r_addend)
8435 - (sec_start + irel->r_offset + 4);
8436
8437 /* Branch offset must be properly aligned. */
8438 if ((sym_offset & 3) != 0)
8439 continue;
8440
8441 sym_offset >>= 2;
8442
8443 /* Check that it's in range. */
8444 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8445 continue;
8446
8447 /* Get the section contents if we haven't done so already. */
8448 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8449 goto relax_return;
8450
8451 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8452
8453 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8454 if ((instruction & 0xfc1fffff) == 0x0000f809)
8455 instruction = 0x04110000;
8456 /* If it was jr <reg>, turn it into b <target>. */
8457 else if ((instruction & 0xfc1fffff) == 0x00000008)
8458 instruction = 0x10000000;
8459 else
8460 continue;
8461
8462 instruction |= (sym_offset & 0xffff);
8463 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8464 changed_contents = TRUE;
8465 }
8466
8467 if (contents != NULL
8468 && elf_section_data (sec)->this_hdr.contents != contents)
8469 {
8470 if (!changed_contents && !link_info->keep_memory)
8471 free (contents);
8472 else
8473 {
8474 /* Cache the section contents for elf_link_input_bfd. */
8475 elf_section_data (sec)->this_hdr.contents = contents;
8476 }
8477 }
8478 return TRUE;
8479
8480 relax_return:
8481 if (contents != NULL
8482 && elf_section_data (sec)->this_hdr.contents != contents)
8483 free (contents);
8484 return FALSE;
8485 }
8486 \f
8487 /* Allocate space for global sym dynamic relocs. */
8488
8489 static bfd_boolean
8490 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8491 {
8492 struct bfd_link_info *info = inf;
8493 bfd *dynobj;
8494 struct mips_elf_link_hash_entry *hmips;
8495 struct mips_elf_link_hash_table *htab;
8496
8497 htab = mips_elf_hash_table (info);
8498 BFD_ASSERT (htab != NULL);
8499
8500 dynobj = elf_hash_table (info)->dynobj;
8501 hmips = (struct mips_elf_link_hash_entry *) h;
8502
8503 /* VxWorks executables are handled elsewhere; we only need to
8504 allocate relocations in shared objects. */
8505 if (htab->is_vxworks && !info->shared)
8506 return TRUE;
8507
8508 /* Ignore indirect symbols. All relocations against such symbols
8509 will be redirected to the target symbol. */
8510 if (h->root.type == bfd_link_hash_indirect)
8511 return TRUE;
8512
8513 /* If this symbol is defined in a dynamic object, or we are creating
8514 a shared library, we will need to copy any R_MIPS_32 or
8515 R_MIPS_REL32 relocs against it into the output file. */
8516 if (! info->relocatable
8517 && hmips->possibly_dynamic_relocs != 0
8518 && (h->root.type == bfd_link_hash_defweak
8519 || !h->def_regular
8520 || info->shared))
8521 {
8522 bfd_boolean do_copy = TRUE;
8523
8524 if (h->root.type == bfd_link_hash_undefweak)
8525 {
8526 /* Do not copy relocations for undefined weak symbols with
8527 non-default visibility. */
8528 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8529 do_copy = FALSE;
8530
8531 /* Make sure undefined weak symbols are output as a dynamic
8532 symbol in PIEs. */
8533 else if (h->dynindx == -1 && !h->forced_local)
8534 {
8535 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8536 return FALSE;
8537 }
8538 }
8539
8540 if (do_copy)
8541 {
8542 /* Even though we don't directly need a GOT entry for this symbol,
8543 the SVR4 psABI requires it to have a dynamic symbol table
8544 index greater that DT_MIPS_GOTSYM if there are dynamic
8545 relocations against it.
8546
8547 VxWorks does not enforce the same mapping between the GOT
8548 and the symbol table, so the same requirement does not
8549 apply there. */
8550 if (!htab->is_vxworks)
8551 {
8552 if (hmips->global_got_area > GGA_RELOC_ONLY)
8553 hmips->global_got_area = GGA_RELOC_ONLY;
8554 hmips->got_only_for_calls = FALSE;
8555 }
8556
8557 mips_elf_allocate_dynamic_relocations
8558 (dynobj, info, hmips->possibly_dynamic_relocs);
8559 if (hmips->readonly_reloc)
8560 /* We tell the dynamic linker that there are relocations
8561 against the text segment. */
8562 info->flags |= DF_TEXTREL;
8563 }
8564 }
8565
8566 return TRUE;
8567 }
8568
8569 /* Adjust a symbol defined by a dynamic object and referenced by a
8570 regular object. The current definition is in some section of the
8571 dynamic object, but we're not including those sections. We have to
8572 change the definition to something the rest of the link can
8573 understand. */
8574
8575 bfd_boolean
8576 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8577 struct elf_link_hash_entry *h)
8578 {
8579 bfd *dynobj;
8580 struct mips_elf_link_hash_entry *hmips;
8581 struct mips_elf_link_hash_table *htab;
8582
8583 htab = mips_elf_hash_table (info);
8584 BFD_ASSERT (htab != NULL);
8585
8586 dynobj = elf_hash_table (info)->dynobj;
8587 hmips = (struct mips_elf_link_hash_entry *) h;
8588
8589 /* Make sure we know what is going on here. */
8590 BFD_ASSERT (dynobj != NULL
8591 && (h->needs_plt
8592 || h->u.weakdef != NULL
8593 || (h->def_dynamic
8594 && h->ref_regular
8595 && !h->def_regular)));
8596
8597 hmips = (struct mips_elf_link_hash_entry *) h;
8598
8599 /* If there are call relocations against an externally-defined symbol,
8600 see whether we can create a MIPS lazy-binding stub for it. We can
8601 only do this if all references to the function are through call
8602 relocations, and in that case, the traditional lazy-binding stubs
8603 are much more efficient than PLT entries.
8604
8605 Traditional stubs are only available on SVR4 psABI-based systems;
8606 VxWorks always uses PLTs instead. */
8607 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8608 {
8609 if (! elf_hash_table (info)->dynamic_sections_created)
8610 return TRUE;
8611
8612 /* If this symbol is not defined in a regular file, then set
8613 the symbol to the stub location. This is required to make
8614 function pointers compare as equal between the normal
8615 executable and the shared library. */
8616 if (!h->def_regular)
8617 {
8618 hmips->needs_lazy_stub = TRUE;
8619 htab->lazy_stub_count++;
8620 return TRUE;
8621 }
8622 }
8623 /* As above, VxWorks requires PLT entries for externally-defined
8624 functions that are only accessed through call relocations.
8625
8626 Both VxWorks and non-VxWorks targets also need PLT entries if there
8627 are static-only relocations against an externally-defined function.
8628 This can technically occur for shared libraries if there are
8629 branches to the symbol, although it is unlikely that this will be
8630 used in practice due to the short ranges involved. It can occur
8631 for any relative or absolute relocation in executables; in that
8632 case, the PLT entry becomes the function's canonical address. */
8633 else if (((h->needs_plt && !hmips->no_fn_stub)
8634 || (h->type == STT_FUNC && hmips->has_static_relocs))
8635 && htab->use_plts_and_copy_relocs
8636 && !SYMBOL_CALLS_LOCAL (info, h)
8637 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8638 && h->root.type == bfd_link_hash_undefweak))
8639 {
8640 /* If this is the first symbol to need a PLT entry, allocate room
8641 for the header. */
8642 if (htab->splt->size == 0)
8643 {
8644 BFD_ASSERT (htab->sgotplt->size == 0);
8645
8646 /* If we're using the PLT additions to the psABI, each PLT
8647 entry is 16 bytes and the PLT0 entry is 32 bytes.
8648 Encourage better cache usage by aligning. We do this
8649 lazily to avoid pessimizing traditional objects. */
8650 if (!htab->is_vxworks
8651 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8652 return FALSE;
8653
8654 /* Make sure that .got.plt is word-aligned. We do this lazily
8655 for the same reason as above. */
8656 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8657 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8658 return FALSE;
8659
8660 htab->splt->size += htab->plt_header_size;
8661
8662 /* On non-VxWorks targets, the first two entries in .got.plt
8663 are reserved. */
8664 if (!htab->is_vxworks)
8665 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8666
8667 /* On VxWorks, also allocate room for the header's
8668 .rela.plt.unloaded entries. */
8669 if (htab->is_vxworks && !info->shared)
8670 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8671 }
8672
8673 /* Assign the next .plt entry to this symbol. */
8674 h->plt.offset = htab->splt->size;
8675 htab->splt->size += htab->plt_entry_size;
8676
8677 /* If the output file has no definition of the symbol, set the
8678 symbol's value to the address of the stub. */
8679 if (!info->shared && !h->def_regular)
8680 {
8681 h->root.u.def.section = htab->splt;
8682 h->root.u.def.value = h->plt.offset;
8683 /* For VxWorks, point at the PLT load stub rather than the
8684 lazy resolution stub; this stub will become the canonical
8685 function address. */
8686 if (htab->is_vxworks)
8687 h->root.u.def.value += 8;
8688 }
8689
8690 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8691 relocation. */
8692 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8693 htab->srelplt->size += (htab->is_vxworks
8694 ? MIPS_ELF_RELA_SIZE (dynobj)
8695 : MIPS_ELF_REL_SIZE (dynobj));
8696
8697 /* Make room for the .rela.plt.unloaded relocations. */
8698 if (htab->is_vxworks && !info->shared)
8699 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8700
8701 /* All relocations against this symbol that could have been made
8702 dynamic will now refer to the PLT entry instead. */
8703 hmips->possibly_dynamic_relocs = 0;
8704
8705 return TRUE;
8706 }
8707
8708 /* If this is a weak symbol, and there is a real definition, the
8709 processor independent code will have arranged for us to see the
8710 real definition first, and we can just use the same value. */
8711 if (h->u.weakdef != NULL)
8712 {
8713 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8714 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8715 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8716 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8717 return TRUE;
8718 }
8719
8720 /* Otherwise, there is nothing further to do for symbols defined
8721 in regular objects. */
8722 if (h->def_regular)
8723 return TRUE;
8724
8725 /* There's also nothing more to do if we'll convert all relocations
8726 against this symbol into dynamic relocations. */
8727 if (!hmips->has_static_relocs)
8728 return TRUE;
8729
8730 /* We're now relying on copy relocations. Complain if we have
8731 some that we can't convert. */
8732 if (!htab->use_plts_and_copy_relocs || info->shared)
8733 {
8734 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8735 "dynamic symbol %s"),
8736 h->root.root.string);
8737 bfd_set_error (bfd_error_bad_value);
8738 return FALSE;
8739 }
8740
8741 /* We must allocate the symbol in our .dynbss section, which will
8742 become part of the .bss section of the executable. There will be
8743 an entry for this symbol in the .dynsym section. The dynamic
8744 object will contain position independent code, so all references
8745 from the dynamic object to this symbol will go through the global
8746 offset table. The dynamic linker will use the .dynsym entry to
8747 determine the address it must put in the global offset table, so
8748 both the dynamic object and the regular object will refer to the
8749 same memory location for the variable. */
8750
8751 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8752 {
8753 if (htab->is_vxworks)
8754 htab->srelbss->size += sizeof (Elf32_External_Rela);
8755 else
8756 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8757 h->needs_copy = 1;
8758 }
8759
8760 /* All relocations against this symbol that could have been made
8761 dynamic will now refer to the local copy instead. */
8762 hmips->possibly_dynamic_relocs = 0;
8763
8764 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8765 }
8766 \f
8767 /* This function is called after all the input files have been read,
8768 and the input sections have been assigned to output sections. We
8769 check for any mips16 stub sections that we can discard. */
8770
8771 bfd_boolean
8772 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8773 struct bfd_link_info *info)
8774 {
8775 asection *ri;
8776 struct mips_elf_link_hash_table *htab;
8777 struct mips_htab_traverse_info hti;
8778
8779 htab = mips_elf_hash_table (info);
8780 BFD_ASSERT (htab != NULL);
8781
8782 /* The .reginfo section has a fixed size. */
8783 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8784 if (ri != NULL)
8785 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8786
8787 hti.info = info;
8788 hti.output_bfd = output_bfd;
8789 hti.error = FALSE;
8790 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8791 mips_elf_check_symbols, &hti);
8792 if (hti.error)
8793 return FALSE;
8794
8795 return TRUE;
8796 }
8797
8798 /* If the link uses a GOT, lay it out and work out its size. */
8799
8800 static bfd_boolean
8801 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8802 {
8803 bfd *dynobj;
8804 asection *s;
8805 struct mips_got_info *g;
8806 bfd_size_type loadable_size = 0;
8807 bfd_size_type page_gotno;
8808 bfd *sub;
8809 struct mips_elf_count_tls_arg count_tls_arg;
8810 struct mips_elf_link_hash_table *htab;
8811
8812 htab = mips_elf_hash_table (info);
8813 BFD_ASSERT (htab != NULL);
8814
8815 s = htab->sgot;
8816 if (s == NULL)
8817 return TRUE;
8818
8819 dynobj = elf_hash_table (info)->dynobj;
8820 g = htab->got_info;
8821
8822 /* Allocate room for the reserved entries. VxWorks always reserves
8823 3 entries; other objects only reserve 2 entries. */
8824 BFD_ASSERT (g->assigned_gotno == 0);
8825 if (htab->is_vxworks)
8826 htab->reserved_gotno = 3;
8827 else
8828 htab->reserved_gotno = 2;
8829 g->local_gotno += htab->reserved_gotno;
8830 g->assigned_gotno = htab->reserved_gotno;
8831
8832 /* Replace entries for indirect and warning symbols with entries for
8833 the target symbol. */
8834 if (!mips_elf_resolve_final_got_entries (g))
8835 return FALSE;
8836
8837 /* Count the number of GOT symbols. */
8838 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8839
8840 /* Calculate the total loadable size of the output. That
8841 will give us the maximum number of GOT_PAGE entries
8842 required. */
8843 for (sub = info->input_bfds; sub; sub = sub->link_next)
8844 {
8845 asection *subsection;
8846
8847 for (subsection = sub->sections;
8848 subsection;
8849 subsection = subsection->next)
8850 {
8851 if ((subsection->flags & SEC_ALLOC) == 0)
8852 continue;
8853 loadable_size += ((subsection->size + 0xf)
8854 &~ (bfd_size_type) 0xf);
8855 }
8856 }
8857
8858 if (htab->is_vxworks)
8859 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8860 relocations against local symbols evaluate to "G", and the EABI does
8861 not include R_MIPS_GOT_PAGE. */
8862 page_gotno = 0;
8863 else
8864 /* Assume there are two loadable segments consisting of contiguous
8865 sections. Is 5 enough? */
8866 page_gotno = (loadable_size >> 16) + 5;
8867
8868 /* Choose the smaller of the two estimates; both are intended to be
8869 conservative. */
8870 if (page_gotno > g->page_gotno)
8871 page_gotno = g->page_gotno;
8872
8873 g->local_gotno += page_gotno;
8874 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8875 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8876
8877 /* We need to calculate tls_gotno for global symbols at this point
8878 instead of building it up earlier, to avoid doublecounting
8879 entries for one global symbol from multiple input files. */
8880 count_tls_arg.info = info;
8881 count_tls_arg.needed = 0;
8882 elf_link_hash_traverse (elf_hash_table (info),
8883 mips_elf_count_global_tls_entries,
8884 &count_tls_arg);
8885 g->tls_gotno += count_tls_arg.needed;
8886 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8887
8888 /* VxWorks does not support multiple GOTs. It initializes $gp to
8889 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8890 dynamic loader. */
8891 if (htab->is_vxworks)
8892 {
8893 /* VxWorks executables do not need a GOT. */
8894 if (info->shared)
8895 {
8896 /* Each VxWorks GOT entry needs an explicit relocation. */
8897 unsigned int count;
8898
8899 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8900 if (count)
8901 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8902 }
8903 }
8904 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8905 {
8906 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8907 return FALSE;
8908 }
8909 else
8910 {
8911 struct mips_elf_count_tls_arg arg;
8912
8913 /* Set up TLS entries. */
8914 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8915 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8916
8917 /* Allocate room for the TLS relocations. */
8918 arg.info = info;
8919 arg.needed = 0;
8920 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8921 elf_link_hash_traverse (elf_hash_table (info),
8922 mips_elf_count_global_tls_relocs,
8923 &arg);
8924 if (arg.needed)
8925 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8926 }
8927
8928 return TRUE;
8929 }
8930
8931 /* Estimate the size of the .MIPS.stubs section. */
8932
8933 static void
8934 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8935 {
8936 struct mips_elf_link_hash_table *htab;
8937 bfd_size_type dynsymcount;
8938
8939 htab = mips_elf_hash_table (info);
8940 BFD_ASSERT (htab != NULL);
8941
8942 if (htab->lazy_stub_count == 0)
8943 return;
8944
8945 /* IRIX rld assumes that a function stub isn't at the end of the .text
8946 section, so add a dummy entry to the end. */
8947 htab->lazy_stub_count++;
8948
8949 /* Get a worst-case estimate of the number of dynamic symbols needed.
8950 At this point, dynsymcount does not account for section symbols
8951 and count_section_dynsyms may overestimate the number that will
8952 be needed. */
8953 dynsymcount = (elf_hash_table (info)->dynsymcount
8954 + count_section_dynsyms (output_bfd, info));
8955
8956 /* Determine the size of one stub entry. */
8957 htab->function_stub_size = (dynsymcount > 0x10000
8958 ? MIPS_FUNCTION_STUB_BIG_SIZE
8959 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8960
8961 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8962 }
8963
8964 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8965 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8966 allocate an entry in the stubs section. */
8967
8968 static bfd_boolean
8969 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8970 {
8971 struct mips_elf_link_hash_table *htab;
8972
8973 htab = (struct mips_elf_link_hash_table *) data;
8974 if (h->needs_lazy_stub)
8975 {
8976 h->root.root.u.def.section = htab->sstubs;
8977 h->root.root.u.def.value = htab->sstubs->size;
8978 h->root.plt.offset = htab->sstubs->size;
8979 htab->sstubs->size += htab->function_stub_size;
8980 }
8981 return TRUE;
8982 }
8983
8984 /* Allocate offsets in the stubs section to each symbol that needs one.
8985 Set the final size of the .MIPS.stub section. */
8986
8987 static void
8988 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8989 {
8990 struct mips_elf_link_hash_table *htab;
8991
8992 htab = mips_elf_hash_table (info);
8993 BFD_ASSERT (htab != NULL);
8994
8995 if (htab->lazy_stub_count == 0)
8996 return;
8997
8998 htab->sstubs->size = 0;
8999 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9000 htab->sstubs->size += htab->function_stub_size;
9001 BFD_ASSERT (htab->sstubs->size
9002 == htab->lazy_stub_count * htab->function_stub_size);
9003 }
9004
9005 /* Set the sizes of the dynamic sections. */
9006
9007 bfd_boolean
9008 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9009 struct bfd_link_info *info)
9010 {
9011 bfd *dynobj;
9012 asection *s, *sreldyn;
9013 bfd_boolean reltext;
9014 struct mips_elf_link_hash_table *htab;
9015
9016 htab = mips_elf_hash_table (info);
9017 BFD_ASSERT (htab != NULL);
9018 dynobj = elf_hash_table (info)->dynobj;
9019 BFD_ASSERT (dynobj != NULL);
9020
9021 if (elf_hash_table (info)->dynamic_sections_created)
9022 {
9023 /* Set the contents of the .interp section to the interpreter. */
9024 if (info->executable)
9025 {
9026 s = bfd_get_section_by_name (dynobj, ".interp");
9027 BFD_ASSERT (s != NULL);
9028 s->size
9029 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9030 s->contents
9031 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9032 }
9033
9034 /* Create a symbol for the PLT, if we know that we are using it. */
9035 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9036 {
9037 struct elf_link_hash_entry *h;
9038
9039 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9040
9041 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9042 "_PROCEDURE_LINKAGE_TABLE_");
9043 htab->root.hplt = h;
9044 if (h == NULL)
9045 return FALSE;
9046 h->type = STT_FUNC;
9047 }
9048 }
9049
9050 /* Allocate space for global sym dynamic relocs. */
9051 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
9052
9053 mips_elf_estimate_stub_size (output_bfd, info);
9054
9055 if (!mips_elf_lay_out_got (output_bfd, info))
9056 return FALSE;
9057
9058 mips_elf_lay_out_lazy_stubs (info);
9059
9060 /* The check_relocs and adjust_dynamic_symbol entry points have
9061 determined the sizes of the various dynamic sections. Allocate
9062 memory for them. */
9063 reltext = FALSE;
9064 for (s = dynobj->sections; s != NULL; s = s->next)
9065 {
9066 const char *name;
9067
9068 /* It's OK to base decisions on the section name, because none
9069 of the dynobj section names depend upon the input files. */
9070 name = bfd_get_section_name (dynobj, s);
9071
9072 if ((s->flags & SEC_LINKER_CREATED) == 0)
9073 continue;
9074
9075 if (CONST_STRNEQ (name, ".rel"))
9076 {
9077 if (s->size != 0)
9078 {
9079 const char *outname;
9080 asection *target;
9081
9082 /* If this relocation section applies to a read only
9083 section, then we probably need a DT_TEXTREL entry.
9084 If the relocation section is .rel(a).dyn, we always
9085 assert a DT_TEXTREL entry rather than testing whether
9086 there exists a relocation to a read only section or
9087 not. */
9088 outname = bfd_get_section_name (output_bfd,
9089 s->output_section);
9090 target = bfd_get_section_by_name (output_bfd, outname + 4);
9091 if ((target != NULL
9092 && (target->flags & SEC_READONLY) != 0
9093 && (target->flags & SEC_ALLOC) != 0)
9094 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9095 reltext = TRUE;
9096
9097 /* We use the reloc_count field as a counter if we need
9098 to copy relocs into the output file. */
9099 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9100 s->reloc_count = 0;
9101
9102 /* If combreloc is enabled, elf_link_sort_relocs() will
9103 sort relocations, but in a different way than we do,
9104 and before we're done creating relocations. Also, it
9105 will move them around between input sections'
9106 relocation's contents, so our sorting would be
9107 broken, so don't let it run. */
9108 info->combreloc = 0;
9109 }
9110 }
9111 else if (! info->shared
9112 && ! mips_elf_hash_table (info)->use_rld_obj_head
9113 && CONST_STRNEQ (name, ".rld_map"))
9114 {
9115 /* We add a room for __rld_map. It will be filled in by the
9116 rtld to contain a pointer to the _r_debug structure. */
9117 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9118 }
9119 else if (SGI_COMPAT (output_bfd)
9120 && CONST_STRNEQ (name, ".compact_rel"))
9121 s->size += mips_elf_hash_table (info)->compact_rel_size;
9122 else if (s == htab->splt)
9123 {
9124 /* If the last PLT entry has a branch delay slot, allocate
9125 room for an extra nop to fill the delay slot. This is
9126 for CPUs without load interlocking. */
9127 if (! LOAD_INTERLOCKS_P (output_bfd)
9128 && ! htab->is_vxworks && s->size > 0)
9129 s->size += 4;
9130 }
9131 else if (! CONST_STRNEQ (name, ".init")
9132 && s != htab->sgot
9133 && s != htab->sgotplt
9134 && s != htab->sstubs
9135 && s != htab->sdynbss)
9136 {
9137 /* It's not one of our sections, so don't allocate space. */
9138 continue;
9139 }
9140
9141 if (s->size == 0)
9142 {
9143 s->flags |= SEC_EXCLUDE;
9144 continue;
9145 }
9146
9147 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9148 continue;
9149
9150 /* Allocate memory for the section contents. */
9151 s->contents = bfd_zalloc (dynobj, s->size);
9152 if (s->contents == NULL)
9153 {
9154 bfd_set_error (bfd_error_no_memory);
9155 return FALSE;
9156 }
9157 }
9158
9159 if (elf_hash_table (info)->dynamic_sections_created)
9160 {
9161 /* Add some entries to the .dynamic section. We fill in the
9162 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9163 must add the entries now so that we get the correct size for
9164 the .dynamic section. */
9165
9166 /* SGI object has the equivalence of DT_DEBUG in the
9167 DT_MIPS_RLD_MAP entry. This must come first because glibc
9168 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9169 looks at the first one it sees. */
9170 if (!info->shared
9171 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9172 return FALSE;
9173
9174 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9175 used by the debugger. */
9176 if (info->executable
9177 && !SGI_COMPAT (output_bfd)
9178 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9179 return FALSE;
9180
9181 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9182 info->flags |= DF_TEXTREL;
9183
9184 if ((info->flags & DF_TEXTREL) != 0)
9185 {
9186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9187 return FALSE;
9188
9189 /* Clear the DF_TEXTREL flag. It will be set again if we
9190 write out an actual text relocation; we may not, because
9191 at this point we do not know whether e.g. any .eh_frame
9192 absolute relocations have been converted to PC-relative. */
9193 info->flags &= ~DF_TEXTREL;
9194 }
9195
9196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9197 return FALSE;
9198
9199 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9200 if (htab->is_vxworks)
9201 {
9202 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9203 use any of the DT_MIPS_* tags. */
9204 if (sreldyn && sreldyn->size > 0)
9205 {
9206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9207 return FALSE;
9208
9209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9210 return FALSE;
9211
9212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9213 return FALSE;
9214 }
9215 }
9216 else
9217 {
9218 if (sreldyn && sreldyn->size > 0)
9219 {
9220 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9221 return FALSE;
9222
9223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9224 return FALSE;
9225
9226 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9227 return FALSE;
9228 }
9229
9230 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9231 return FALSE;
9232
9233 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9234 return FALSE;
9235
9236 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9237 return FALSE;
9238
9239 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9240 return FALSE;
9241
9242 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9243 return FALSE;
9244
9245 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9246 return FALSE;
9247
9248 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9249 return FALSE;
9250
9251 if (IRIX_COMPAT (dynobj) == ict_irix5
9252 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9253 return FALSE;
9254
9255 if (IRIX_COMPAT (dynobj) == ict_irix6
9256 && (bfd_get_section_by_name
9257 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9258 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9259 return FALSE;
9260 }
9261 if (htab->splt->size > 0)
9262 {
9263 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9264 return FALSE;
9265
9266 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9267 return FALSE;
9268
9269 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9270 return FALSE;
9271
9272 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9273 return FALSE;
9274 }
9275 if (htab->is_vxworks
9276 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9277 return FALSE;
9278 }
9279
9280 return TRUE;
9281 }
9282 \f
9283 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9284 Adjust its R_ADDEND field so that it is correct for the output file.
9285 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9286 and sections respectively; both use symbol indexes. */
9287
9288 static void
9289 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9290 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9291 asection **local_sections, Elf_Internal_Rela *rel)
9292 {
9293 unsigned int r_type, r_symndx;
9294 Elf_Internal_Sym *sym;
9295 asection *sec;
9296
9297 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9298 {
9299 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9300 if (gprel16_reloc_p (r_type)
9301 || r_type == R_MIPS_GPREL32
9302 || literal_reloc_p (r_type))
9303 {
9304 rel->r_addend += _bfd_get_gp_value (input_bfd);
9305 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9306 }
9307
9308 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9309 sym = local_syms + r_symndx;
9310
9311 /* Adjust REL's addend to account for section merging. */
9312 if (!info->relocatable)
9313 {
9314 sec = local_sections[r_symndx];
9315 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9316 }
9317
9318 /* This would normally be done by the rela_normal code in elflink.c. */
9319 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9320 rel->r_addend += local_sections[r_symndx]->output_offset;
9321 }
9322 }
9323
9324 /* Relocate a MIPS ELF section. */
9325
9326 bfd_boolean
9327 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9328 bfd *input_bfd, asection *input_section,
9329 bfd_byte *contents, Elf_Internal_Rela *relocs,
9330 Elf_Internal_Sym *local_syms,
9331 asection **local_sections)
9332 {
9333 Elf_Internal_Rela *rel;
9334 const Elf_Internal_Rela *relend;
9335 bfd_vma addend = 0;
9336 bfd_boolean use_saved_addend_p = FALSE;
9337 const struct elf_backend_data *bed;
9338
9339 bed = get_elf_backend_data (output_bfd);
9340 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9341 for (rel = relocs; rel < relend; ++rel)
9342 {
9343 const char *name;
9344 bfd_vma value = 0;
9345 reloc_howto_type *howto;
9346 bfd_boolean cross_mode_jump_p;
9347 /* TRUE if the relocation is a RELA relocation, rather than a
9348 REL relocation. */
9349 bfd_boolean rela_relocation_p = TRUE;
9350 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9351 const char *msg;
9352 unsigned long r_symndx;
9353 asection *sec;
9354 Elf_Internal_Shdr *symtab_hdr;
9355 struct elf_link_hash_entry *h;
9356 bfd_boolean rel_reloc;
9357
9358 rel_reloc = (NEWABI_P (input_bfd)
9359 && mips_elf_rel_relocation_p (input_bfd, input_section,
9360 relocs, rel));
9361 /* Find the relocation howto for this relocation. */
9362 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9363
9364 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9365 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9366 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9367 {
9368 sec = local_sections[r_symndx];
9369 h = NULL;
9370 }
9371 else
9372 {
9373 unsigned long extsymoff;
9374
9375 extsymoff = 0;
9376 if (!elf_bad_symtab (input_bfd))
9377 extsymoff = symtab_hdr->sh_info;
9378 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9379 while (h->root.type == bfd_link_hash_indirect
9380 || h->root.type == bfd_link_hash_warning)
9381 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9382
9383 sec = NULL;
9384 if (h->root.type == bfd_link_hash_defined
9385 || h->root.type == bfd_link_hash_defweak)
9386 sec = h->root.u.def.section;
9387 }
9388
9389 if (sec != NULL && elf_discarded_section (sec))
9390 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9391 rel, relend, howto, contents);
9392
9393 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9394 {
9395 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9396 64-bit code, but make sure all their addresses are in the
9397 lowermost or uppermost 32-bit section of the 64-bit address
9398 space. Thus, when they use an R_MIPS_64 they mean what is
9399 usually meant by R_MIPS_32, with the exception that the
9400 stored value is sign-extended to 64 bits. */
9401 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9402
9403 /* On big-endian systems, we need to lie about the position
9404 of the reloc. */
9405 if (bfd_big_endian (input_bfd))
9406 rel->r_offset += 4;
9407 }
9408
9409 if (!use_saved_addend_p)
9410 {
9411 /* If these relocations were originally of the REL variety,
9412 we must pull the addend out of the field that will be
9413 relocated. Otherwise, we simply use the contents of the
9414 RELA relocation. */
9415 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9416 relocs, rel))
9417 {
9418 rela_relocation_p = FALSE;
9419 addend = mips_elf_read_rel_addend (input_bfd, rel,
9420 howto, contents);
9421 if (hi16_reloc_p (r_type)
9422 || (got16_reloc_p (r_type)
9423 && mips_elf_local_relocation_p (input_bfd, rel,
9424 local_sections)))
9425 {
9426 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9427 contents, &addend))
9428 {
9429 if (h)
9430 name = h->root.root.string;
9431 else
9432 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9433 local_syms + r_symndx,
9434 sec);
9435 (*_bfd_error_handler)
9436 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9437 input_bfd, input_section, name, howto->name,
9438 rel->r_offset);
9439 }
9440 }
9441 else
9442 addend <<= howto->rightshift;
9443 }
9444 else
9445 addend = rel->r_addend;
9446 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9447 local_syms, local_sections, rel);
9448 }
9449
9450 if (info->relocatable)
9451 {
9452 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9453 && bfd_big_endian (input_bfd))
9454 rel->r_offset -= 4;
9455
9456 if (!rela_relocation_p && rel->r_addend)
9457 {
9458 addend += rel->r_addend;
9459 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9460 addend = mips_elf_high (addend);
9461 else if (r_type == R_MIPS_HIGHER)
9462 addend = mips_elf_higher (addend);
9463 else if (r_type == R_MIPS_HIGHEST)
9464 addend = mips_elf_highest (addend);
9465 else
9466 addend >>= howto->rightshift;
9467
9468 /* We use the source mask, rather than the destination
9469 mask because the place to which we are writing will be
9470 source of the addend in the final link. */
9471 addend &= howto->src_mask;
9472
9473 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9474 /* See the comment above about using R_MIPS_64 in the 32-bit
9475 ABI. Here, we need to update the addend. It would be
9476 possible to get away with just using the R_MIPS_32 reloc
9477 but for endianness. */
9478 {
9479 bfd_vma sign_bits;
9480 bfd_vma low_bits;
9481 bfd_vma high_bits;
9482
9483 if (addend & ((bfd_vma) 1 << 31))
9484 #ifdef BFD64
9485 sign_bits = ((bfd_vma) 1 << 32) - 1;
9486 #else
9487 sign_bits = -1;
9488 #endif
9489 else
9490 sign_bits = 0;
9491
9492 /* If we don't know that we have a 64-bit type,
9493 do two separate stores. */
9494 if (bfd_big_endian (input_bfd))
9495 {
9496 /* Store the sign-bits (which are most significant)
9497 first. */
9498 low_bits = sign_bits;
9499 high_bits = addend;
9500 }
9501 else
9502 {
9503 low_bits = addend;
9504 high_bits = sign_bits;
9505 }
9506 bfd_put_32 (input_bfd, low_bits,
9507 contents + rel->r_offset);
9508 bfd_put_32 (input_bfd, high_bits,
9509 contents + rel->r_offset + 4);
9510 continue;
9511 }
9512
9513 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9514 input_bfd, input_section,
9515 contents, FALSE))
9516 return FALSE;
9517 }
9518
9519 /* Go on to the next relocation. */
9520 continue;
9521 }
9522
9523 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9524 relocations for the same offset. In that case we are
9525 supposed to treat the output of each relocation as the addend
9526 for the next. */
9527 if (rel + 1 < relend
9528 && rel->r_offset == rel[1].r_offset
9529 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9530 use_saved_addend_p = TRUE;
9531 else
9532 use_saved_addend_p = FALSE;
9533
9534 /* Figure out what value we are supposed to relocate. */
9535 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9536 input_section, info, rel,
9537 addend, howto, local_syms,
9538 local_sections, &value,
9539 &name, &cross_mode_jump_p,
9540 use_saved_addend_p))
9541 {
9542 case bfd_reloc_continue:
9543 /* There's nothing to do. */
9544 continue;
9545
9546 case bfd_reloc_undefined:
9547 /* mips_elf_calculate_relocation already called the
9548 undefined_symbol callback. There's no real point in
9549 trying to perform the relocation at this point, so we
9550 just skip ahead to the next relocation. */
9551 continue;
9552
9553 case bfd_reloc_notsupported:
9554 msg = _("internal error: unsupported relocation error");
9555 info->callbacks->warning
9556 (info, msg, name, input_bfd, input_section, rel->r_offset);
9557 return FALSE;
9558
9559 case bfd_reloc_overflow:
9560 if (use_saved_addend_p)
9561 /* Ignore overflow until we reach the last relocation for
9562 a given location. */
9563 ;
9564 else
9565 {
9566 struct mips_elf_link_hash_table *htab;
9567
9568 htab = mips_elf_hash_table (info);
9569 BFD_ASSERT (htab != NULL);
9570 BFD_ASSERT (name != NULL);
9571 if (!htab->small_data_overflow_reported
9572 && (gprel16_reloc_p (howto->type)
9573 || literal_reloc_p (howto->type)))
9574 {
9575 msg = _("small-data section exceeds 64KB;"
9576 " lower small-data size limit (see option -G)");
9577
9578 htab->small_data_overflow_reported = TRUE;
9579 (*info->callbacks->einfo) ("%P: %s\n", msg);
9580 }
9581 if (! ((*info->callbacks->reloc_overflow)
9582 (info, NULL, name, howto->name, (bfd_vma) 0,
9583 input_bfd, input_section, rel->r_offset)))
9584 return FALSE;
9585 }
9586 break;
9587
9588 case bfd_reloc_ok:
9589 break;
9590
9591 case bfd_reloc_outofrange:
9592 if (jal_reloc_p (howto->type))
9593 {
9594 msg = _("JALX to a non-word-aligned address");
9595 info->callbacks->warning
9596 (info, msg, name, input_bfd, input_section, rel->r_offset);
9597 return FALSE;
9598 }
9599 /* Fall through. */
9600
9601 default:
9602 abort ();
9603 break;
9604 }
9605
9606 /* If we've got another relocation for the address, keep going
9607 until we reach the last one. */
9608 if (use_saved_addend_p)
9609 {
9610 addend = value;
9611 continue;
9612 }
9613
9614 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9615 /* See the comment above about using R_MIPS_64 in the 32-bit
9616 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9617 that calculated the right value. Now, however, we
9618 sign-extend the 32-bit result to 64-bits, and store it as a
9619 64-bit value. We are especially generous here in that we
9620 go to extreme lengths to support this usage on systems with
9621 only a 32-bit VMA. */
9622 {
9623 bfd_vma sign_bits;
9624 bfd_vma low_bits;
9625 bfd_vma high_bits;
9626
9627 if (value & ((bfd_vma) 1 << 31))
9628 #ifdef BFD64
9629 sign_bits = ((bfd_vma) 1 << 32) - 1;
9630 #else
9631 sign_bits = -1;
9632 #endif
9633 else
9634 sign_bits = 0;
9635
9636 /* If we don't know that we have a 64-bit type,
9637 do two separate stores. */
9638 if (bfd_big_endian (input_bfd))
9639 {
9640 /* Undo what we did above. */
9641 rel->r_offset -= 4;
9642 /* Store the sign-bits (which are most significant)
9643 first. */
9644 low_bits = sign_bits;
9645 high_bits = value;
9646 }
9647 else
9648 {
9649 low_bits = value;
9650 high_bits = sign_bits;
9651 }
9652 bfd_put_32 (input_bfd, low_bits,
9653 contents + rel->r_offset);
9654 bfd_put_32 (input_bfd, high_bits,
9655 contents + rel->r_offset + 4);
9656 continue;
9657 }
9658
9659 /* Actually perform the relocation. */
9660 if (! mips_elf_perform_relocation (info, howto, rel, value,
9661 input_bfd, input_section,
9662 contents, cross_mode_jump_p))
9663 return FALSE;
9664 }
9665
9666 return TRUE;
9667 }
9668 \f
9669 /* A function that iterates over each entry in la25_stubs and fills
9670 in the code for each one. DATA points to a mips_htab_traverse_info. */
9671
9672 static int
9673 mips_elf_create_la25_stub (void **slot, void *data)
9674 {
9675 struct mips_htab_traverse_info *hti;
9676 struct mips_elf_link_hash_table *htab;
9677 struct mips_elf_la25_stub *stub;
9678 asection *s;
9679 bfd_byte *loc;
9680 bfd_vma offset, target, target_high, target_low;
9681
9682 stub = (struct mips_elf_la25_stub *) *slot;
9683 hti = (struct mips_htab_traverse_info *) data;
9684 htab = mips_elf_hash_table (hti->info);
9685 BFD_ASSERT (htab != NULL);
9686
9687 /* Create the section contents, if we haven't already. */
9688 s = stub->stub_section;
9689 loc = s->contents;
9690 if (loc == NULL)
9691 {
9692 loc = bfd_malloc (s->size);
9693 if (loc == NULL)
9694 {
9695 hti->error = TRUE;
9696 return FALSE;
9697 }
9698 s->contents = loc;
9699 }
9700
9701 /* Work out where in the section this stub should go. */
9702 offset = stub->offset;
9703
9704 /* Work out the target address. */
9705 target = mips_elf_get_la25_target (stub, &s);
9706 target += s->output_section->vma + s->output_offset;
9707
9708 target_high = ((target + 0x8000) >> 16) & 0xffff;
9709 target_low = (target & 0xffff);
9710
9711 if (stub->stub_section != htab->strampoline)
9712 {
9713 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9714 of the section and write the two instructions at the end. */
9715 memset (loc, 0, offset);
9716 loc += offset;
9717 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9718 {
9719 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9720 loc);
9721 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9722 loc + 2);
9723 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9724 loc + 4);
9725 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9726 loc + 6);
9727 }
9728 else
9729 {
9730 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9731 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9732 }
9733 }
9734 else
9735 {
9736 /* This is trampoline. */
9737 loc += offset;
9738 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9739 {
9740 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9741 loc);
9742 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9743 loc + 2);
9744 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9745 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9746 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9747 loc + 8);
9748 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9749 loc + 10);
9750 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9751 }
9752 else
9753 {
9754 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9755 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9756 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9757 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9758 }
9759 }
9760 return TRUE;
9761 }
9762
9763 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9764 adjust it appropriately now. */
9765
9766 static void
9767 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9768 const char *name, Elf_Internal_Sym *sym)
9769 {
9770 /* The linker script takes care of providing names and values for
9771 these, but we must place them into the right sections. */
9772 static const char* const text_section_symbols[] = {
9773 "_ftext",
9774 "_etext",
9775 "__dso_displacement",
9776 "__elf_header",
9777 "__program_header_table",
9778 NULL
9779 };
9780
9781 static const char* const data_section_symbols[] = {
9782 "_fdata",
9783 "_edata",
9784 "_end",
9785 "_fbss",
9786 NULL
9787 };
9788
9789 const char* const *p;
9790 int i;
9791
9792 for (i = 0; i < 2; ++i)
9793 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9794 *p;
9795 ++p)
9796 if (strcmp (*p, name) == 0)
9797 {
9798 /* All of these symbols are given type STT_SECTION by the
9799 IRIX6 linker. */
9800 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9801 sym->st_other = STO_PROTECTED;
9802
9803 /* The IRIX linker puts these symbols in special sections. */
9804 if (i == 0)
9805 sym->st_shndx = SHN_MIPS_TEXT;
9806 else
9807 sym->st_shndx = SHN_MIPS_DATA;
9808
9809 break;
9810 }
9811 }
9812
9813 /* Finish up dynamic symbol handling. We set the contents of various
9814 dynamic sections here. */
9815
9816 bfd_boolean
9817 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9818 struct bfd_link_info *info,
9819 struct elf_link_hash_entry *h,
9820 Elf_Internal_Sym *sym)
9821 {
9822 bfd *dynobj;
9823 asection *sgot;
9824 struct mips_got_info *g, *gg;
9825 const char *name;
9826 int idx;
9827 struct mips_elf_link_hash_table *htab;
9828 struct mips_elf_link_hash_entry *hmips;
9829
9830 htab = mips_elf_hash_table (info);
9831 BFD_ASSERT (htab != NULL);
9832 dynobj = elf_hash_table (info)->dynobj;
9833 hmips = (struct mips_elf_link_hash_entry *) h;
9834
9835 BFD_ASSERT (!htab->is_vxworks);
9836
9837 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9838 {
9839 /* We've decided to create a PLT entry for this symbol. */
9840 bfd_byte *loc;
9841 bfd_vma header_address, plt_index, got_address;
9842 bfd_vma got_address_high, got_address_low, load;
9843 const bfd_vma *plt_entry;
9844
9845 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9846 BFD_ASSERT (h->dynindx != -1);
9847 BFD_ASSERT (htab->splt != NULL);
9848 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9849 BFD_ASSERT (!h->def_regular);
9850
9851 /* Calculate the address of the PLT header. */
9852 header_address = (htab->splt->output_section->vma
9853 + htab->splt->output_offset);
9854
9855 /* Calculate the index of the entry. */
9856 plt_index = ((h->plt.offset - htab->plt_header_size)
9857 / htab->plt_entry_size);
9858
9859 /* Calculate the address of the .got.plt entry. */
9860 got_address = (htab->sgotplt->output_section->vma
9861 + htab->sgotplt->output_offset
9862 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9863 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9864 got_address_low = got_address & 0xffff;
9865
9866 /* Initially point the .got.plt entry at the PLT header. */
9867 loc = (htab->sgotplt->contents
9868 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9869 if (ABI_64_P (output_bfd))
9870 bfd_put_64 (output_bfd, header_address, loc);
9871 else
9872 bfd_put_32 (output_bfd, header_address, loc);
9873
9874 /* Find out where the .plt entry should go. */
9875 loc = htab->splt->contents + h->plt.offset;
9876
9877 /* Pick the load opcode. */
9878 load = MIPS_ELF_LOAD_WORD (output_bfd);
9879
9880 /* Fill in the PLT entry itself. */
9881 plt_entry = mips_exec_plt_entry;
9882 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9883 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9884
9885 if (! LOAD_INTERLOCKS_P (output_bfd))
9886 {
9887 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9888 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9889 }
9890 else
9891 {
9892 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9893 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9894 }
9895
9896 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9897 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9898 plt_index, h->dynindx,
9899 R_MIPS_JUMP_SLOT, got_address);
9900
9901 /* We distinguish between PLT entries and lazy-binding stubs by
9902 giving the former an st_other value of STO_MIPS_PLT. Set the
9903 flag and leave the value if there are any relocations in the
9904 binary where pointer equality matters. */
9905 sym->st_shndx = SHN_UNDEF;
9906 if (h->pointer_equality_needed)
9907 sym->st_other = STO_MIPS_PLT;
9908 else
9909 sym->st_value = 0;
9910 }
9911 else if (h->plt.offset != MINUS_ONE)
9912 {
9913 /* We've decided to create a lazy-binding stub. */
9914 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9915
9916 /* This symbol has a stub. Set it up. */
9917
9918 BFD_ASSERT (h->dynindx != -1);
9919
9920 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9921 || (h->dynindx <= 0xffff));
9922
9923 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9924 sign extension at runtime in the stub, resulting in a negative
9925 index value. */
9926 if (h->dynindx & ~0x7fffffff)
9927 return FALSE;
9928
9929 /* Fill the stub. */
9930 idx = 0;
9931 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9932 idx += 4;
9933 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9934 idx += 4;
9935 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9936 {
9937 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9938 stub + idx);
9939 idx += 4;
9940 }
9941 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9942 idx += 4;
9943
9944 /* If a large stub is not required and sign extension is not a
9945 problem, then use legacy code in the stub. */
9946 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9947 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9948 else if (h->dynindx & ~0x7fff)
9949 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9950 else
9951 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9952 stub + idx);
9953
9954 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9955 memcpy (htab->sstubs->contents + h->plt.offset,
9956 stub, htab->function_stub_size);
9957
9958 /* Mark the symbol as undefined. plt.offset != -1 occurs
9959 only for the referenced symbol. */
9960 sym->st_shndx = SHN_UNDEF;
9961
9962 /* The run-time linker uses the st_value field of the symbol
9963 to reset the global offset table entry for this external
9964 to its stub address when unlinking a shared object. */
9965 sym->st_value = (htab->sstubs->output_section->vma
9966 + htab->sstubs->output_offset
9967 + h->plt.offset);
9968 }
9969
9970 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9971 refer to the stub, since only the stub uses the standard calling
9972 conventions. */
9973 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9974 {
9975 BFD_ASSERT (hmips->need_fn_stub);
9976 sym->st_value = (hmips->fn_stub->output_section->vma
9977 + hmips->fn_stub->output_offset);
9978 sym->st_size = hmips->fn_stub->size;
9979 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9980 }
9981
9982 BFD_ASSERT (h->dynindx != -1
9983 || h->forced_local);
9984
9985 sgot = htab->sgot;
9986 g = htab->got_info;
9987 BFD_ASSERT (g != NULL);
9988
9989 /* Run through the global symbol table, creating GOT entries for all
9990 the symbols that need them. */
9991 if (hmips->global_got_area != GGA_NONE)
9992 {
9993 bfd_vma offset;
9994 bfd_vma value;
9995
9996 value = sym->st_value;
9997 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9998 R_MIPS_GOT16, info);
9999 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10000 }
10001
10002 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10003 {
10004 struct mips_got_entry e, *p;
10005 bfd_vma entry;
10006 bfd_vma offset;
10007
10008 gg = g;
10009
10010 e.abfd = output_bfd;
10011 e.symndx = -1;
10012 e.d.h = hmips;
10013 e.tls_type = 0;
10014
10015 for (g = g->next; g->next != gg; g = g->next)
10016 {
10017 if (g->got_entries
10018 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10019 &e)))
10020 {
10021 offset = p->gotidx;
10022 if (info->shared
10023 || (elf_hash_table (info)->dynamic_sections_created
10024 && p->d.h != NULL
10025 && p->d.h->root.def_dynamic
10026 && !p->d.h->root.def_regular))
10027 {
10028 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10029 the various compatibility problems, it's easier to mock
10030 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10031 mips_elf_create_dynamic_relocation to calculate the
10032 appropriate addend. */
10033 Elf_Internal_Rela rel[3];
10034
10035 memset (rel, 0, sizeof (rel));
10036 if (ABI_64_P (output_bfd))
10037 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10038 else
10039 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10040 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10041
10042 entry = 0;
10043 if (! (mips_elf_create_dynamic_relocation
10044 (output_bfd, info, rel,
10045 e.d.h, NULL, sym->st_value, &entry, sgot)))
10046 return FALSE;
10047 }
10048 else
10049 entry = sym->st_value;
10050 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10051 }
10052 }
10053 }
10054
10055 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10056 name = h->root.root.string;
10057 if (strcmp (name, "_DYNAMIC") == 0
10058 || h == elf_hash_table (info)->hgot)
10059 sym->st_shndx = SHN_ABS;
10060 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10061 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10062 {
10063 sym->st_shndx = SHN_ABS;
10064 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10065 sym->st_value = 1;
10066 }
10067 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10068 {
10069 sym->st_shndx = SHN_ABS;
10070 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10071 sym->st_value = elf_gp (output_bfd);
10072 }
10073 else if (SGI_COMPAT (output_bfd))
10074 {
10075 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10076 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10077 {
10078 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10079 sym->st_other = STO_PROTECTED;
10080 sym->st_value = 0;
10081 sym->st_shndx = SHN_MIPS_DATA;
10082 }
10083 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10084 {
10085 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10086 sym->st_other = STO_PROTECTED;
10087 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10088 sym->st_shndx = SHN_ABS;
10089 }
10090 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10091 {
10092 if (h->type == STT_FUNC)
10093 sym->st_shndx = SHN_MIPS_TEXT;
10094 else if (h->type == STT_OBJECT)
10095 sym->st_shndx = SHN_MIPS_DATA;
10096 }
10097 }
10098
10099 /* Emit a copy reloc, if needed. */
10100 if (h->needs_copy)
10101 {
10102 asection *s;
10103 bfd_vma symval;
10104
10105 BFD_ASSERT (h->dynindx != -1);
10106 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10107
10108 s = mips_elf_rel_dyn_section (info, FALSE);
10109 symval = (h->root.u.def.section->output_section->vma
10110 + h->root.u.def.section->output_offset
10111 + h->root.u.def.value);
10112 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10113 h->dynindx, R_MIPS_COPY, symval);
10114 }
10115
10116 /* Handle the IRIX6-specific symbols. */
10117 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10118 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10119
10120 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10121 treat MIPS16 symbols like any other. */
10122 if (ELF_ST_IS_MIPS16 (sym->st_other))
10123 {
10124 BFD_ASSERT (sym->st_value & 1);
10125 sym->st_other -= STO_MIPS16;
10126 }
10127
10128 return TRUE;
10129 }
10130
10131 /* Likewise, for VxWorks. */
10132
10133 bfd_boolean
10134 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10135 struct bfd_link_info *info,
10136 struct elf_link_hash_entry *h,
10137 Elf_Internal_Sym *sym)
10138 {
10139 bfd *dynobj;
10140 asection *sgot;
10141 struct mips_got_info *g;
10142 struct mips_elf_link_hash_table *htab;
10143 struct mips_elf_link_hash_entry *hmips;
10144
10145 htab = mips_elf_hash_table (info);
10146 BFD_ASSERT (htab != NULL);
10147 dynobj = elf_hash_table (info)->dynobj;
10148 hmips = (struct mips_elf_link_hash_entry *) h;
10149
10150 if (h->plt.offset != (bfd_vma) -1)
10151 {
10152 bfd_byte *loc;
10153 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10154 Elf_Internal_Rela rel;
10155 static const bfd_vma *plt_entry;
10156
10157 BFD_ASSERT (h->dynindx != -1);
10158 BFD_ASSERT (htab->splt != NULL);
10159 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10160
10161 /* Calculate the address of the .plt entry. */
10162 plt_address = (htab->splt->output_section->vma
10163 + htab->splt->output_offset
10164 + h->plt.offset);
10165
10166 /* Calculate the index of the entry. */
10167 plt_index = ((h->plt.offset - htab->plt_header_size)
10168 / htab->plt_entry_size);
10169
10170 /* Calculate the address of the .got.plt entry. */
10171 got_address = (htab->sgotplt->output_section->vma
10172 + htab->sgotplt->output_offset
10173 + plt_index * 4);
10174
10175 /* Calculate the offset of the .got.plt entry from
10176 _GLOBAL_OFFSET_TABLE_. */
10177 got_offset = mips_elf_gotplt_index (info, h);
10178
10179 /* Calculate the offset for the branch at the start of the PLT
10180 entry. The branch jumps to the beginning of .plt. */
10181 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10182
10183 /* Fill in the initial value of the .got.plt entry. */
10184 bfd_put_32 (output_bfd, plt_address,
10185 htab->sgotplt->contents + plt_index * 4);
10186
10187 /* Find out where the .plt entry should go. */
10188 loc = htab->splt->contents + h->plt.offset;
10189
10190 if (info->shared)
10191 {
10192 plt_entry = mips_vxworks_shared_plt_entry;
10193 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10194 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10195 }
10196 else
10197 {
10198 bfd_vma got_address_high, got_address_low;
10199
10200 plt_entry = mips_vxworks_exec_plt_entry;
10201 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10202 got_address_low = got_address & 0xffff;
10203
10204 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10205 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10206 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10207 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10208 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10209 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10210 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10211 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10212
10213 loc = (htab->srelplt2->contents
10214 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10215
10216 /* Emit a relocation for the .got.plt entry. */
10217 rel.r_offset = got_address;
10218 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10219 rel.r_addend = h->plt.offset;
10220 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10221
10222 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10223 loc += sizeof (Elf32_External_Rela);
10224 rel.r_offset = plt_address + 8;
10225 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10226 rel.r_addend = got_offset;
10227 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10228
10229 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10230 loc += sizeof (Elf32_External_Rela);
10231 rel.r_offset += 4;
10232 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10233 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10234 }
10235
10236 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10237 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10238 rel.r_offset = got_address;
10239 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10240 rel.r_addend = 0;
10241 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10242
10243 if (!h->def_regular)
10244 sym->st_shndx = SHN_UNDEF;
10245 }
10246
10247 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10248
10249 sgot = htab->sgot;
10250 g = htab->got_info;
10251 BFD_ASSERT (g != NULL);
10252
10253 /* See if this symbol has an entry in the GOT. */
10254 if (hmips->global_got_area != GGA_NONE)
10255 {
10256 bfd_vma offset;
10257 Elf_Internal_Rela outrel;
10258 bfd_byte *loc;
10259 asection *s;
10260
10261 /* Install the symbol value in the GOT. */
10262 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10263 R_MIPS_GOT16, info);
10264 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10265
10266 /* Add a dynamic relocation for it. */
10267 s = mips_elf_rel_dyn_section (info, FALSE);
10268 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10269 outrel.r_offset = (sgot->output_section->vma
10270 + sgot->output_offset
10271 + offset);
10272 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10273 outrel.r_addend = 0;
10274 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10275 }
10276
10277 /* Emit a copy reloc, if needed. */
10278 if (h->needs_copy)
10279 {
10280 Elf_Internal_Rela rel;
10281
10282 BFD_ASSERT (h->dynindx != -1);
10283
10284 rel.r_offset = (h->root.u.def.section->output_section->vma
10285 + h->root.u.def.section->output_offset
10286 + h->root.u.def.value);
10287 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10288 rel.r_addend = 0;
10289 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10290 htab->srelbss->contents
10291 + (htab->srelbss->reloc_count
10292 * sizeof (Elf32_External_Rela)));
10293 ++htab->srelbss->reloc_count;
10294 }
10295
10296 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10297 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10298 sym->st_value &= ~1;
10299
10300 return TRUE;
10301 }
10302
10303 /* Write out a plt0 entry to the beginning of .plt. */
10304
10305 static void
10306 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10307 {
10308 bfd_byte *loc;
10309 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10310 static const bfd_vma *plt_entry;
10311 struct mips_elf_link_hash_table *htab;
10312
10313 htab = mips_elf_hash_table (info);
10314 BFD_ASSERT (htab != NULL);
10315
10316 if (ABI_64_P (output_bfd))
10317 plt_entry = mips_n64_exec_plt0_entry;
10318 else if (ABI_N32_P (output_bfd))
10319 plt_entry = mips_n32_exec_plt0_entry;
10320 else
10321 plt_entry = mips_o32_exec_plt0_entry;
10322
10323 /* Calculate the value of .got.plt. */
10324 gotplt_value = (htab->sgotplt->output_section->vma
10325 + htab->sgotplt->output_offset);
10326 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10327 gotplt_value_low = gotplt_value & 0xffff;
10328
10329 /* The PLT sequence is not safe for N64 if .got.plt's address can
10330 not be loaded in two instructions. */
10331 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10332 || ~(gotplt_value | 0x7fffffff) == 0);
10333
10334 /* Install the PLT header. */
10335 loc = htab->splt->contents;
10336 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10337 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10338 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10339 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10340 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10341 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10342 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10343 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10344 }
10345
10346 /* Install the PLT header for a VxWorks executable and finalize the
10347 contents of .rela.plt.unloaded. */
10348
10349 static void
10350 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10351 {
10352 Elf_Internal_Rela rela;
10353 bfd_byte *loc;
10354 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10355 static const bfd_vma *plt_entry;
10356 struct mips_elf_link_hash_table *htab;
10357
10358 htab = mips_elf_hash_table (info);
10359 BFD_ASSERT (htab != NULL);
10360
10361 plt_entry = mips_vxworks_exec_plt0_entry;
10362
10363 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10364 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10365 + htab->root.hgot->root.u.def.section->output_offset
10366 + htab->root.hgot->root.u.def.value);
10367
10368 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10369 got_value_low = got_value & 0xffff;
10370
10371 /* Calculate the address of the PLT header. */
10372 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10373
10374 /* Install the PLT header. */
10375 loc = htab->splt->contents;
10376 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10377 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10378 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10379 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10380 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10381 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10382
10383 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10384 loc = htab->srelplt2->contents;
10385 rela.r_offset = plt_address;
10386 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10387 rela.r_addend = 0;
10388 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10389 loc += sizeof (Elf32_External_Rela);
10390
10391 /* Output the relocation for the following addiu of
10392 %lo(_GLOBAL_OFFSET_TABLE_). */
10393 rela.r_offset += 4;
10394 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10395 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10396 loc += sizeof (Elf32_External_Rela);
10397
10398 /* Fix up the remaining relocations. They may have the wrong
10399 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10400 in which symbols were output. */
10401 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10402 {
10403 Elf_Internal_Rela rel;
10404
10405 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10406 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10407 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10408 loc += sizeof (Elf32_External_Rela);
10409
10410 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10411 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10412 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10413 loc += sizeof (Elf32_External_Rela);
10414
10415 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10416 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10417 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10418 loc += sizeof (Elf32_External_Rela);
10419 }
10420 }
10421
10422 /* Install the PLT header for a VxWorks shared library. */
10423
10424 static void
10425 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10426 {
10427 unsigned int i;
10428 struct mips_elf_link_hash_table *htab;
10429
10430 htab = mips_elf_hash_table (info);
10431 BFD_ASSERT (htab != NULL);
10432
10433 /* We just need to copy the entry byte-by-byte. */
10434 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10435 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10436 htab->splt->contents + i * 4);
10437 }
10438
10439 /* Finish up the dynamic sections. */
10440
10441 bfd_boolean
10442 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10443 struct bfd_link_info *info)
10444 {
10445 bfd *dynobj;
10446 asection *sdyn;
10447 asection *sgot;
10448 struct mips_got_info *gg, *g;
10449 struct mips_elf_link_hash_table *htab;
10450
10451 htab = mips_elf_hash_table (info);
10452 BFD_ASSERT (htab != NULL);
10453
10454 dynobj = elf_hash_table (info)->dynobj;
10455
10456 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10457
10458 sgot = htab->sgot;
10459 gg = htab->got_info;
10460
10461 if (elf_hash_table (info)->dynamic_sections_created)
10462 {
10463 bfd_byte *b;
10464 int dyn_to_skip = 0, dyn_skipped = 0;
10465
10466 BFD_ASSERT (sdyn != NULL);
10467 BFD_ASSERT (gg != NULL);
10468
10469 g = mips_elf_got_for_ibfd (gg, output_bfd);
10470 BFD_ASSERT (g != NULL);
10471
10472 for (b = sdyn->contents;
10473 b < sdyn->contents + sdyn->size;
10474 b += MIPS_ELF_DYN_SIZE (dynobj))
10475 {
10476 Elf_Internal_Dyn dyn;
10477 const char *name;
10478 size_t elemsize;
10479 asection *s;
10480 bfd_boolean swap_out_p;
10481
10482 /* Read in the current dynamic entry. */
10483 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10484
10485 /* Assume that we're going to modify it and write it out. */
10486 swap_out_p = TRUE;
10487
10488 switch (dyn.d_tag)
10489 {
10490 case DT_RELENT:
10491 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10492 break;
10493
10494 case DT_RELAENT:
10495 BFD_ASSERT (htab->is_vxworks);
10496 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10497 break;
10498
10499 case DT_STRSZ:
10500 /* Rewrite DT_STRSZ. */
10501 dyn.d_un.d_val =
10502 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10503 break;
10504
10505 case DT_PLTGOT:
10506 s = htab->sgot;
10507 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10508 break;
10509
10510 case DT_MIPS_PLTGOT:
10511 s = htab->sgotplt;
10512 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10513 break;
10514
10515 case DT_MIPS_RLD_VERSION:
10516 dyn.d_un.d_val = 1; /* XXX */
10517 break;
10518
10519 case DT_MIPS_FLAGS:
10520 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10521 break;
10522
10523 case DT_MIPS_TIME_STAMP:
10524 {
10525 time_t t;
10526 time (&t);
10527 dyn.d_un.d_val = t;
10528 }
10529 break;
10530
10531 case DT_MIPS_ICHECKSUM:
10532 /* XXX FIXME: */
10533 swap_out_p = FALSE;
10534 break;
10535
10536 case DT_MIPS_IVERSION:
10537 /* XXX FIXME: */
10538 swap_out_p = FALSE;
10539 break;
10540
10541 case DT_MIPS_BASE_ADDRESS:
10542 s = output_bfd->sections;
10543 BFD_ASSERT (s != NULL);
10544 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10545 break;
10546
10547 case DT_MIPS_LOCAL_GOTNO:
10548 dyn.d_un.d_val = g->local_gotno;
10549 break;
10550
10551 case DT_MIPS_UNREFEXTNO:
10552 /* The index into the dynamic symbol table which is the
10553 entry of the first external symbol that is not
10554 referenced within the same object. */
10555 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10556 break;
10557
10558 case DT_MIPS_GOTSYM:
10559 if (gg->global_gotsym)
10560 {
10561 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10562 break;
10563 }
10564 /* In case if we don't have global got symbols we default
10565 to setting DT_MIPS_GOTSYM to the same value as
10566 DT_MIPS_SYMTABNO, so we just fall through. */
10567
10568 case DT_MIPS_SYMTABNO:
10569 name = ".dynsym";
10570 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10571 s = bfd_get_section_by_name (output_bfd, name);
10572 BFD_ASSERT (s != NULL);
10573
10574 dyn.d_un.d_val = s->size / elemsize;
10575 break;
10576
10577 case DT_MIPS_HIPAGENO:
10578 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10579 break;
10580
10581 case DT_MIPS_RLD_MAP:
10582 {
10583 struct elf_link_hash_entry *h;
10584 h = mips_elf_hash_table (info)->rld_symbol;
10585 if (!h)
10586 {
10587 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10588 swap_out_p = FALSE;
10589 break;
10590 }
10591 s = h->root.u.def.section;
10592 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10593 + h->root.u.def.value);
10594 }
10595 break;
10596
10597 case DT_MIPS_OPTIONS:
10598 s = (bfd_get_section_by_name
10599 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10600 dyn.d_un.d_ptr = s->vma;
10601 break;
10602
10603 case DT_RELASZ:
10604 BFD_ASSERT (htab->is_vxworks);
10605 /* The count does not include the JUMP_SLOT relocations. */
10606 if (htab->srelplt)
10607 dyn.d_un.d_val -= htab->srelplt->size;
10608 break;
10609
10610 case DT_PLTREL:
10611 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10612 if (htab->is_vxworks)
10613 dyn.d_un.d_val = DT_RELA;
10614 else
10615 dyn.d_un.d_val = DT_REL;
10616 break;
10617
10618 case DT_PLTRELSZ:
10619 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10620 dyn.d_un.d_val = htab->srelplt->size;
10621 break;
10622
10623 case DT_JMPREL:
10624 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10625 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10626 + htab->srelplt->output_offset);
10627 break;
10628
10629 case DT_TEXTREL:
10630 /* If we didn't need any text relocations after all, delete
10631 the dynamic tag. */
10632 if (!(info->flags & DF_TEXTREL))
10633 {
10634 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10635 swap_out_p = FALSE;
10636 }
10637 break;
10638
10639 case DT_FLAGS:
10640 /* If we didn't need any text relocations after all, clear
10641 DF_TEXTREL from DT_FLAGS. */
10642 if (!(info->flags & DF_TEXTREL))
10643 dyn.d_un.d_val &= ~DF_TEXTREL;
10644 else
10645 swap_out_p = FALSE;
10646 break;
10647
10648 default:
10649 swap_out_p = FALSE;
10650 if (htab->is_vxworks
10651 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10652 swap_out_p = TRUE;
10653 break;
10654 }
10655
10656 if (swap_out_p || dyn_skipped)
10657 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10658 (dynobj, &dyn, b - dyn_skipped);
10659
10660 if (dyn_to_skip)
10661 {
10662 dyn_skipped += dyn_to_skip;
10663 dyn_to_skip = 0;
10664 }
10665 }
10666
10667 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10668 if (dyn_skipped > 0)
10669 memset (b - dyn_skipped, 0, dyn_skipped);
10670 }
10671
10672 if (sgot != NULL && sgot->size > 0
10673 && !bfd_is_abs_section (sgot->output_section))
10674 {
10675 if (htab->is_vxworks)
10676 {
10677 /* The first entry of the global offset table points to the
10678 ".dynamic" section. The second is initialized by the
10679 loader and contains the shared library identifier.
10680 The third is also initialized by the loader and points
10681 to the lazy resolution stub. */
10682 MIPS_ELF_PUT_WORD (output_bfd,
10683 sdyn->output_offset + sdyn->output_section->vma,
10684 sgot->contents);
10685 MIPS_ELF_PUT_WORD (output_bfd, 0,
10686 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10687 MIPS_ELF_PUT_WORD (output_bfd, 0,
10688 sgot->contents
10689 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10690 }
10691 else
10692 {
10693 /* The first entry of the global offset table will be filled at
10694 runtime. The second entry will be used by some runtime loaders.
10695 This isn't the case of IRIX rld. */
10696 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10697 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10698 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10699 }
10700
10701 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10702 = MIPS_ELF_GOT_SIZE (output_bfd);
10703 }
10704
10705 /* Generate dynamic relocations for the non-primary gots. */
10706 if (gg != NULL && gg->next)
10707 {
10708 Elf_Internal_Rela rel[3];
10709 bfd_vma addend = 0;
10710
10711 memset (rel, 0, sizeof (rel));
10712 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10713
10714 for (g = gg->next; g->next != gg; g = g->next)
10715 {
10716 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10717 + g->next->tls_gotno;
10718
10719 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10720 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10721 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10722 sgot->contents
10723 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10724
10725 if (! info->shared)
10726 continue;
10727
10728 while (got_index < g->assigned_gotno)
10729 {
10730 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10731 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10732 if (!(mips_elf_create_dynamic_relocation
10733 (output_bfd, info, rel, NULL,
10734 bfd_abs_section_ptr,
10735 0, &addend, sgot)))
10736 return FALSE;
10737 BFD_ASSERT (addend == 0);
10738 }
10739 }
10740 }
10741
10742 /* The generation of dynamic relocations for the non-primary gots
10743 adds more dynamic relocations. We cannot count them until
10744 here. */
10745
10746 if (elf_hash_table (info)->dynamic_sections_created)
10747 {
10748 bfd_byte *b;
10749 bfd_boolean swap_out_p;
10750
10751 BFD_ASSERT (sdyn != NULL);
10752
10753 for (b = sdyn->contents;
10754 b < sdyn->contents + sdyn->size;
10755 b += MIPS_ELF_DYN_SIZE (dynobj))
10756 {
10757 Elf_Internal_Dyn dyn;
10758 asection *s;
10759
10760 /* Read in the current dynamic entry. */
10761 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10762
10763 /* Assume that we're going to modify it and write it out. */
10764 swap_out_p = TRUE;
10765
10766 switch (dyn.d_tag)
10767 {
10768 case DT_RELSZ:
10769 /* Reduce DT_RELSZ to account for any relocations we
10770 decided not to make. This is for the n64 irix rld,
10771 which doesn't seem to apply any relocations if there
10772 are trailing null entries. */
10773 s = mips_elf_rel_dyn_section (info, FALSE);
10774 dyn.d_un.d_val = (s->reloc_count
10775 * (ABI_64_P (output_bfd)
10776 ? sizeof (Elf64_Mips_External_Rel)
10777 : sizeof (Elf32_External_Rel)));
10778 /* Adjust the section size too. Tools like the prelinker
10779 can reasonably expect the values to the same. */
10780 elf_section_data (s->output_section)->this_hdr.sh_size
10781 = dyn.d_un.d_val;
10782 break;
10783
10784 default:
10785 swap_out_p = FALSE;
10786 break;
10787 }
10788
10789 if (swap_out_p)
10790 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10791 (dynobj, &dyn, b);
10792 }
10793 }
10794
10795 {
10796 asection *s;
10797 Elf32_compact_rel cpt;
10798
10799 if (SGI_COMPAT (output_bfd))
10800 {
10801 /* Write .compact_rel section out. */
10802 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10803 if (s != NULL)
10804 {
10805 cpt.id1 = 1;
10806 cpt.num = s->reloc_count;
10807 cpt.id2 = 2;
10808 cpt.offset = (s->output_section->filepos
10809 + sizeof (Elf32_External_compact_rel));
10810 cpt.reserved0 = 0;
10811 cpt.reserved1 = 0;
10812 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10813 ((Elf32_External_compact_rel *)
10814 s->contents));
10815
10816 /* Clean up a dummy stub function entry in .text. */
10817 if (htab->sstubs != NULL)
10818 {
10819 file_ptr dummy_offset;
10820
10821 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10822 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10823 memset (htab->sstubs->contents + dummy_offset, 0,
10824 htab->function_stub_size);
10825 }
10826 }
10827 }
10828
10829 /* The psABI says that the dynamic relocations must be sorted in
10830 increasing order of r_symndx. The VxWorks EABI doesn't require
10831 this, and because the code below handles REL rather than RELA
10832 relocations, using it for VxWorks would be outright harmful. */
10833 if (!htab->is_vxworks)
10834 {
10835 s = mips_elf_rel_dyn_section (info, FALSE);
10836 if (s != NULL
10837 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10838 {
10839 reldyn_sorting_bfd = output_bfd;
10840
10841 if (ABI_64_P (output_bfd))
10842 qsort ((Elf64_External_Rel *) s->contents + 1,
10843 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10844 sort_dynamic_relocs_64);
10845 else
10846 qsort ((Elf32_External_Rel *) s->contents + 1,
10847 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10848 sort_dynamic_relocs);
10849 }
10850 }
10851 }
10852
10853 if (htab->splt && htab->splt->size > 0)
10854 {
10855 if (htab->is_vxworks)
10856 {
10857 if (info->shared)
10858 mips_vxworks_finish_shared_plt (output_bfd, info);
10859 else
10860 mips_vxworks_finish_exec_plt (output_bfd, info);
10861 }
10862 else
10863 {
10864 BFD_ASSERT (!info->shared);
10865 mips_finish_exec_plt (output_bfd, info);
10866 }
10867 }
10868 return TRUE;
10869 }
10870
10871
10872 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10873
10874 static void
10875 mips_set_isa_flags (bfd *abfd)
10876 {
10877 flagword val;
10878
10879 switch (bfd_get_mach (abfd))
10880 {
10881 default:
10882 case bfd_mach_mips3000:
10883 val = E_MIPS_ARCH_1;
10884 break;
10885
10886 case bfd_mach_mips3900:
10887 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10888 break;
10889
10890 case bfd_mach_mips6000:
10891 val = E_MIPS_ARCH_2;
10892 break;
10893
10894 case bfd_mach_mips4000:
10895 case bfd_mach_mips4300:
10896 case bfd_mach_mips4400:
10897 case bfd_mach_mips4600:
10898 val = E_MIPS_ARCH_3;
10899 break;
10900
10901 case bfd_mach_mips4010:
10902 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10903 break;
10904
10905 case bfd_mach_mips4100:
10906 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10907 break;
10908
10909 case bfd_mach_mips4111:
10910 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10911 break;
10912
10913 case bfd_mach_mips4120:
10914 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10915 break;
10916
10917 case bfd_mach_mips4650:
10918 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10919 break;
10920
10921 case bfd_mach_mips5400:
10922 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10923 break;
10924
10925 case bfd_mach_mips5500:
10926 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10927 break;
10928
10929 case bfd_mach_mips9000:
10930 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10931 break;
10932
10933 case bfd_mach_mips5000:
10934 case bfd_mach_mips7000:
10935 case bfd_mach_mips8000:
10936 case bfd_mach_mips10000:
10937 case bfd_mach_mips12000:
10938 case bfd_mach_mips14000:
10939 case bfd_mach_mips16000:
10940 val = E_MIPS_ARCH_4;
10941 break;
10942
10943 case bfd_mach_mips5:
10944 val = E_MIPS_ARCH_5;
10945 break;
10946
10947 case bfd_mach_mips_loongson_2e:
10948 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10949 break;
10950
10951 case bfd_mach_mips_loongson_2f:
10952 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10953 break;
10954
10955 case bfd_mach_mips_sb1:
10956 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10957 break;
10958
10959 case bfd_mach_mips_loongson_3a:
10960 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10961 break;
10962
10963 case bfd_mach_mips_octeon:
10964 case bfd_mach_mips_octeonp:
10965 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10966 break;
10967
10968 case bfd_mach_mips_xlr:
10969 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10970 break;
10971
10972 case bfd_mach_mips_octeon2:
10973 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10974 break;
10975
10976 case bfd_mach_mipsisa32:
10977 val = E_MIPS_ARCH_32;
10978 break;
10979
10980 case bfd_mach_mipsisa64:
10981 val = E_MIPS_ARCH_64;
10982 break;
10983
10984 case bfd_mach_mipsisa32r2:
10985 val = E_MIPS_ARCH_32R2;
10986 break;
10987
10988 case bfd_mach_mipsisa64r2:
10989 val = E_MIPS_ARCH_64R2;
10990 break;
10991 }
10992 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10993 elf_elfheader (abfd)->e_flags |= val;
10994
10995 }
10996
10997
10998 /* The final processing done just before writing out a MIPS ELF object
10999 file. This gets the MIPS architecture right based on the machine
11000 number. This is used by both the 32-bit and the 64-bit ABI. */
11001
11002 void
11003 _bfd_mips_elf_final_write_processing (bfd *abfd,
11004 bfd_boolean linker ATTRIBUTE_UNUSED)
11005 {
11006 unsigned int i;
11007 Elf_Internal_Shdr **hdrpp;
11008 const char *name;
11009 asection *sec;
11010
11011 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11012 is nonzero. This is for compatibility with old objects, which used
11013 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11014 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11015 mips_set_isa_flags (abfd);
11016
11017 /* Set the sh_info field for .gptab sections and other appropriate
11018 info for each special section. */
11019 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11020 i < elf_numsections (abfd);
11021 i++, hdrpp++)
11022 {
11023 switch ((*hdrpp)->sh_type)
11024 {
11025 case SHT_MIPS_MSYM:
11026 case SHT_MIPS_LIBLIST:
11027 sec = bfd_get_section_by_name (abfd, ".dynstr");
11028 if (sec != NULL)
11029 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11030 break;
11031
11032 case SHT_MIPS_GPTAB:
11033 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11034 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11035 BFD_ASSERT (name != NULL
11036 && CONST_STRNEQ (name, ".gptab."));
11037 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11038 BFD_ASSERT (sec != NULL);
11039 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11040 break;
11041
11042 case SHT_MIPS_CONTENT:
11043 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11044 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11045 BFD_ASSERT (name != NULL
11046 && CONST_STRNEQ (name, ".MIPS.content"));
11047 sec = bfd_get_section_by_name (abfd,
11048 name + sizeof ".MIPS.content" - 1);
11049 BFD_ASSERT (sec != NULL);
11050 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11051 break;
11052
11053 case SHT_MIPS_SYMBOL_LIB:
11054 sec = bfd_get_section_by_name (abfd, ".dynsym");
11055 if (sec != NULL)
11056 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11057 sec = bfd_get_section_by_name (abfd, ".liblist");
11058 if (sec != NULL)
11059 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11060 break;
11061
11062 case SHT_MIPS_EVENTS:
11063 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11064 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11065 BFD_ASSERT (name != NULL);
11066 if (CONST_STRNEQ (name, ".MIPS.events"))
11067 sec = bfd_get_section_by_name (abfd,
11068 name + sizeof ".MIPS.events" - 1);
11069 else
11070 {
11071 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11072 sec = bfd_get_section_by_name (abfd,
11073 (name
11074 + sizeof ".MIPS.post_rel" - 1));
11075 }
11076 BFD_ASSERT (sec != NULL);
11077 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11078 break;
11079
11080 }
11081 }
11082 }
11083 \f
11084 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11085 segments. */
11086
11087 int
11088 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11089 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11090 {
11091 asection *s;
11092 int ret = 0;
11093
11094 /* See if we need a PT_MIPS_REGINFO segment. */
11095 s = bfd_get_section_by_name (abfd, ".reginfo");
11096 if (s && (s->flags & SEC_LOAD))
11097 ++ret;
11098
11099 /* See if we need a PT_MIPS_OPTIONS segment. */
11100 if (IRIX_COMPAT (abfd) == ict_irix6
11101 && bfd_get_section_by_name (abfd,
11102 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11103 ++ret;
11104
11105 /* See if we need a PT_MIPS_RTPROC segment. */
11106 if (IRIX_COMPAT (abfd) == ict_irix5
11107 && bfd_get_section_by_name (abfd, ".dynamic")
11108 && bfd_get_section_by_name (abfd, ".mdebug"))
11109 ++ret;
11110
11111 /* Allocate a PT_NULL header in dynamic objects. See
11112 _bfd_mips_elf_modify_segment_map for details. */
11113 if (!SGI_COMPAT (abfd)
11114 && bfd_get_section_by_name (abfd, ".dynamic"))
11115 ++ret;
11116
11117 return ret;
11118 }
11119
11120 /* Modify the segment map for an IRIX5 executable. */
11121
11122 bfd_boolean
11123 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11124 struct bfd_link_info *info)
11125 {
11126 asection *s;
11127 struct elf_segment_map *m, **pm;
11128 bfd_size_type amt;
11129
11130 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11131 segment. */
11132 s = bfd_get_section_by_name (abfd, ".reginfo");
11133 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11134 {
11135 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11136 if (m->p_type == PT_MIPS_REGINFO)
11137 break;
11138 if (m == NULL)
11139 {
11140 amt = sizeof *m;
11141 m = bfd_zalloc (abfd, amt);
11142 if (m == NULL)
11143 return FALSE;
11144
11145 m->p_type = PT_MIPS_REGINFO;
11146 m->count = 1;
11147 m->sections[0] = s;
11148
11149 /* We want to put it after the PHDR and INTERP segments. */
11150 pm = &elf_tdata (abfd)->segment_map;
11151 while (*pm != NULL
11152 && ((*pm)->p_type == PT_PHDR
11153 || (*pm)->p_type == PT_INTERP))
11154 pm = &(*pm)->next;
11155
11156 m->next = *pm;
11157 *pm = m;
11158 }
11159 }
11160
11161 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11162 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11163 PT_MIPS_OPTIONS segment immediately following the program header
11164 table. */
11165 if (NEWABI_P (abfd)
11166 /* On non-IRIX6 new abi, we'll have already created a segment
11167 for this section, so don't create another. I'm not sure this
11168 is not also the case for IRIX 6, but I can't test it right
11169 now. */
11170 && IRIX_COMPAT (abfd) == ict_irix6)
11171 {
11172 for (s = abfd->sections; s; s = s->next)
11173 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11174 break;
11175
11176 if (s)
11177 {
11178 struct elf_segment_map *options_segment;
11179
11180 pm = &elf_tdata (abfd)->segment_map;
11181 while (*pm != NULL
11182 && ((*pm)->p_type == PT_PHDR
11183 || (*pm)->p_type == PT_INTERP))
11184 pm = &(*pm)->next;
11185
11186 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11187 {
11188 amt = sizeof (struct elf_segment_map);
11189 options_segment = bfd_zalloc (abfd, amt);
11190 options_segment->next = *pm;
11191 options_segment->p_type = PT_MIPS_OPTIONS;
11192 options_segment->p_flags = PF_R;
11193 options_segment->p_flags_valid = TRUE;
11194 options_segment->count = 1;
11195 options_segment->sections[0] = s;
11196 *pm = options_segment;
11197 }
11198 }
11199 }
11200 else
11201 {
11202 if (IRIX_COMPAT (abfd) == ict_irix5)
11203 {
11204 /* If there are .dynamic and .mdebug sections, we make a room
11205 for the RTPROC header. FIXME: Rewrite without section names. */
11206 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11207 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11208 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11209 {
11210 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11211 if (m->p_type == PT_MIPS_RTPROC)
11212 break;
11213 if (m == NULL)
11214 {
11215 amt = sizeof *m;
11216 m = bfd_zalloc (abfd, amt);
11217 if (m == NULL)
11218 return FALSE;
11219
11220 m->p_type = PT_MIPS_RTPROC;
11221
11222 s = bfd_get_section_by_name (abfd, ".rtproc");
11223 if (s == NULL)
11224 {
11225 m->count = 0;
11226 m->p_flags = 0;
11227 m->p_flags_valid = 1;
11228 }
11229 else
11230 {
11231 m->count = 1;
11232 m->sections[0] = s;
11233 }
11234
11235 /* We want to put it after the DYNAMIC segment. */
11236 pm = &elf_tdata (abfd)->segment_map;
11237 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11238 pm = &(*pm)->next;
11239 if (*pm != NULL)
11240 pm = &(*pm)->next;
11241
11242 m->next = *pm;
11243 *pm = m;
11244 }
11245 }
11246 }
11247 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11248 .dynstr, .dynsym, and .hash sections, and everything in
11249 between. */
11250 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11251 pm = &(*pm)->next)
11252 if ((*pm)->p_type == PT_DYNAMIC)
11253 break;
11254 m = *pm;
11255 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11256 {
11257 /* For a normal mips executable the permissions for the PT_DYNAMIC
11258 segment are read, write and execute. We do that here since
11259 the code in elf.c sets only the read permission. This matters
11260 sometimes for the dynamic linker. */
11261 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11262 {
11263 m->p_flags = PF_R | PF_W | PF_X;
11264 m->p_flags_valid = 1;
11265 }
11266 }
11267 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11268 glibc's dynamic linker has traditionally derived the number of
11269 tags from the p_filesz field, and sometimes allocates stack
11270 arrays of that size. An overly-big PT_DYNAMIC segment can
11271 be actively harmful in such cases. Making PT_DYNAMIC contain
11272 other sections can also make life hard for the prelinker,
11273 which might move one of the other sections to a different
11274 PT_LOAD segment. */
11275 if (SGI_COMPAT (abfd)
11276 && m != NULL
11277 && m->count == 1
11278 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11279 {
11280 static const char *sec_names[] =
11281 {
11282 ".dynamic", ".dynstr", ".dynsym", ".hash"
11283 };
11284 bfd_vma low, high;
11285 unsigned int i, c;
11286 struct elf_segment_map *n;
11287
11288 low = ~(bfd_vma) 0;
11289 high = 0;
11290 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11291 {
11292 s = bfd_get_section_by_name (abfd, sec_names[i]);
11293 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11294 {
11295 bfd_size_type sz;
11296
11297 if (low > s->vma)
11298 low = s->vma;
11299 sz = s->size;
11300 if (high < s->vma + sz)
11301 high = s->vma + sz;
11302 }
11303 }
11304
11305 c = 0;
11306 for (s = abfd->sections; s != NULL; s = s->next)
11307 if ((s->flags & SEC_LOAD) != 0
11308 && s->vma >= low
11309 && s->vma + s->size <= high)
11310 ++c;
11311
11312 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11313 n = bfd_zalloc (abfd, amt);
11314 if (n == NULL)
11315 return FALSE;
11316 *n = *m;
11317 n->count = c;
11318
11319 i = 0;
11320 for (s = abfd->sections; s != NULL; s = s->next)
11321 {
11322 if ((s->flags & SEC_LOAD) != 0
11323 && s->vma >= low
11324 && s->vma + s->size <= high)
11325 {
11326 n->sections[i] = s;
11327 ++i;
11328 }
11329 }
11330
11331 *pm = n;
11332 }
11333 }
11334
11335 /* Allocate a spare program header in dynamic objects so that tools
11336 like the prelinker can add an extra PT_LOAD entry.
11337
11338 If the prelinker needs to make room for a new PT_LOAD entry, its
11339 standard procedure is to move the first (read-only) sections into
11340 the new (writable) segment. However, the MIPS ABI requires
11341 .dynamic to be in a read-only segment, and the section will often
11342 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11343
11344 Although the prelinker could in principle move .dynamic to a
11345 writable segment, it seems better to allocate a spare program
11346 header instead, and avoid the need to move any sections.
11347 There is a long tradition of allocating spare dynamic tags,
11348 so allocating a spare program header seems like a natural
11349 extension.
11350
11351 If INFO is NULL, we may be copying an already prelinked binary
11352 with objcopy or strip, so do not add this header. */
11353 if (info != NULL
11354 && !SGI_COMPAT (abfd)
11355 && bfd_get_section_by_name (abfd, ".dynamic"))
11356 {
11357 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11358 if ((*pm)->p_type == PT_NULL)
11359 break;
11360 if (*pm == NULL)
11361 {
11362 m = bfd_zalloc (abfd, sizeof (*m));
11363 if (m == NULL)
11364 return FALSE;
11365
11366 m->p_type = PT_NULL;
11367 *pm = m;
11368 }
11369 }
11370
11371 return TRUE;
11372 }
11373 \f
11374 /* Return the section that should be marked against GC for a given
11375 relocation. */
11376
11377 asection *
11378 _bfd_mips_elf_gc_mark_hook (asection *sec,
11379 struct bfd_link_info *info,
11380 Elf_Internal_Rela *rel,
11381 struct elf_link_hash_entry *h,
11382 Elf_Internal_Sym *sym)
11383 {
11384 /* ??? Do mips16 stub sections need to be handled special? */
11385
11386 if (h != NULL)
11387 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11388 {
11389 case R_MIPS_GNU_VTINHERIT:
11390 case R_MIPS_GNU_VTENTRY:
11391 return NULL;
11392 }
11393
11394 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11395 }
11396
11397 /* Update the got entry reference counts for the section being removed. */
11398
11399 bfd_boolean
11400 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11401 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11402 asection *sec ATTRIBUTE_UNUSED,
11403 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11404 {
11405 #if 0
11406 Elf_Internal_Shdr *symtab_hdr;
11407 struct elf_link_hash_entry **sym_hashes;
11408 bfd_signed_vma *local_got_refcounts;
11409 const Elf_Internal_Rela *rel, *relend;
11410 unsigned long r_symndx;
11411 struct elf_link_hash_entry *h;
11412
11413 if (info->relocatable)
11414 return TRUE;
11415
11416 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11417 sym_hashes = elf_sym_hashes (abfd);
11418 local_got_refcounts = elf_local_got_refcounts (abfd);
11419
11420 relend = relocs + sec->reloc_count;
11421 for (rel = relocs; rel < relend; rel++)
11422 switch (ELF_R_TYPE (abfd, rel->r_info))
11423 {
11424 case R_MIPS16_GOT16:
11425 case R_MIPS16_CALL16:
11426 case R_MIPS_GOT16:
11427 case R_MIPS_CALL16:
11428 case R_MIPS_CALL_HI16:
11429 case R_MIPS_CALL_LO16:
11430 case R_MIPS_GOT_HI16:
11431 case R_MIPS_GOT_LO16:
11432 case R_MIPS_GOT_DISP:
11433 case R_MIPS_GOT_PAGE:
11434 case R_MIPS_GOT_OFST:
11435 case R_MICROMIPS_GOT16:
11436 case R_MICROMIPS_CALL16:
11437 case R_MICROMIPS_CALL_HI16:
11438 case R_MICROMIPS_CALL_LO16:
11439 case R_MICROMIPS_GOT_HI16:
11440 case R_MICROMIPS_GOT_LO16:
11441 case R_MICROMIPS_GOT_DISP:
11442 case R_MICROMIPS_GOT_PAGE:
11443 case R_MICROMIPS_GOT_OFST:
11444 /* ??? It would seem that the existing MIPS code does no sort
11445 of reference counting or whatnot on its GOT and PLT entries,
11446 so it is not possible to garbage collect them at this time. */
11447 break;
11448
11449 default:
11450 break;
11451 }
11452 #endif
11453
11454 return TRUE;
11455 }
11456 \f
11457 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11458 hiding the old indirect symbol. Process additional relocation
11459 information. Also called for weakdefs, in which case we just let
11460 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11461
11462 void
11463 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11464 struct elf_link_hash_entry *dir,
11465 struct elf_link_hash_entry *ind)
11466 {
11467 struct mips_elf_link_hash_entry *dirmips, *indmips;
11468
11469 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11470
11471 dirmips = (struct mips_elf_link_hash_entry *) dir;
11472 indmips = (struct mips_elf_link_hash_entry *) ind;
11473 /* Any absolute non-dynamic relocations against an indirect or weak
11474 definition will be against the target symbol. */
11475 if (indmips->has_static_relocs)
11476 dirmips->has_static_relocs = TRUE;
11477
11478 if (ind->root.type != bfd_link_hash_indirect)
11479 return;
11480
11481 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11482 if (indmips->readonly_reloc)
11483 dirmips->readonly_reloc = TRUE;
11484 if (indmips->no_fn_stub)
11485 dirmips->no_fn_stub = TRUE;
11486 if (indmips->fn_stub)
11487 {
11488 dirmips->fn_stub = indmips->fn_stub;
11489 indmips->fn_stub = NULL;
11490 }
11491 if (indmips->need_fn_stub)
11492 {
11493 dirmips->need_fn_stub = TRUE;
11494 indmips->need_fn_stub = FALSE;
11495 }
11496 if (indmips->call_stub)
11497 {
11498 dirmips->call_stub = indmips->call_stub;
11499 indmips->call_stub = NULL;
11500 }
11501 if (indmips->call_fp_stub)
11502 {
11503 dirmips->call_fp_stub = indmips->call_fp_stub;
11504 indmips->call_fp_stub = NULL;
11505 }
11506 if (indmips->global_got_area < dirmips->global_got_area)
11507 dirmips->global_got_area = indmips->global_got_area;
11508 if (indmips->global_got_area < GGA_NONE)
11509 indmips->global_got_area = GGA_NONE;
11510 if (indmips->has_nonpic_branches)
11511 dirmips->has_nonpic_branches = TRUE;
11512
11513 if (dirmips->tls_type == 0)
11514 dirmips->tls_type = indmips->tls_type;
11515 }
11516 \f
11517 #define PDR_SIZE 32
11518
11519 bfd_boolean
11520 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11521 struct bfd_link_info *info)
11522 {
11523 asection *o;
11524 bfd_boolean ret = FALSE;
11525 unsigned char *tdata;
11526 size_t i, skip;
11527
11528 o = bfd_get_section_by_name (abfd, ".pdr");
11529 if (! o)
11530 return FALSE;
11531 if (o->size == 0)
11532 return FALSE;
11533 if (o->size % PDR_SIZE != 0)
11534 return FALSE;
11535 if (o->output_section != NULL
11536 && bfd_is_abs_section (o->output_section))
11537 return FALSE;
11538
11539 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11540 if (! tdata)
11541 return FALSE;
11542
11543 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11544 info->keep_memory);
11545 if (!cookie->rels)
11546 {
11547 free (tdata);
11548 return FALSE;
11549 }
11550
11551 cookie->rel = cookie->rels;
11552 cookie->relend = cookie->rels + o->reloc_count;
11553
11554 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11555 {
11556 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11557 {
11558 tdata[i] = 1;
11559 skip ++;
11560 }
11561 }
11562
11563 if (skip != 0)
11564 {
11565 mips_elf_section_data (o)->u.tdata = tdata;
11566 o->size -= skip * PDR_SIZE;
11567 ret = TRUE;
11568 }
11569 else
11570 free (tdata);
11571
11572 if (! info->keep_memory)
11573 free (cookie->rels);
11574
11575 return ret;
11576 }
11577
11578 bfd_boolean
11579 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11580 {
11581 if (strcmp (sec->name, ".pdr") == 0)
11582 return TRUE;
11583 return FALSE;
11584 }
11585
11586 bfd_boolean
11587 _bfd_mips_elf_write_section (bfd *output_bfd,
11588 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11589 asection *sec, bfd_byte *contents)
11590 {
11591 bfd_byte *to, *from, *end;
11592 int i;
11593
11594 if (strcmp (sec->name, ".pdr") != 0)
11595 return FALSE;
11596
11597 if (mips_elf_section_data (sec)->u.tdata == NULL)
11598 return FALSE;
11599
11600 to = contents;
11601 end = contents + sec->size;
11602 for (from = contents, i = 0;
11603 from < end;
11604 from += PDR_SIZE, i++)
11605 {
11606 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11607 continue;
11608 if (to != from)
11609 memcpy (to, from, PDR_SIZE);
11610 to += PDR_SIZE;
11611 }
11612 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11613 sec->output_offset, sec->size);
11614 return TRUE;
11615 }
11616 \f
11617 /* microMIPS code retains local labels for linker relaxation. Omit them
11618 from output by default for clarity. */
11619
11620 bfd_boolean
11621 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11622 {
11623 return _bfd_elf_is_local_label_name (abfd, sym->name);
11624 }
11625
11626 /* MIPS ELF uses a special find_nearest_line routine in order the
11627 handle the ECOFF debugging information. */
11628
11629 struct mips_elf_find_line
11630 {
11631 struct ecoff_debug_info d;
11632 struct ecoff_find_line i;
11633 };
11634
11635 bfd_boolean
11636 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11637 asymbol **symbols, bfd_vma offset,
11638 const char **filename_ptr,
11639 const char **functionname_ptr,
11640 unsigned int *line_ptr)
11641 {
11642 asection *msec;
11643
11644 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11645 filename_ptr, functionname_ptr,
11646 line_ptr))
11647 return TRUE;
11648
11649 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11650 section, symbols, offset,
11651 filename_ptr, functionname_ptr,
11652 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11653 &elf_tdata (abfd)->dwarf2_find_line_info))
11654 return TRUE;
11655
11656 msec = bfd_get_section_by_name (abfd, ".mdebug");
11657 if (msec != NULL)
11658 {
11659 flagword origflags;
11660 struct mips_elf_find_line *fi;
11661 const struct ecoff_debug_swap * const swap =
11662 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11663
11664 /* If we are called during a link, mips_elf_final_link may have
11665 cleared the SEC_HAS_CONTENTS field. We force it back on here
11666 if appropriate (which it normally will be). */
11667 origflags = msec->flags;
11668 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11669 msec->flags |= SEC_HAS_CONTENTS;
11670
11671 fi = elf_tdata (abfd)->find_line_info;
11672 if (fi == NULL)
11673 {
11674 bfd_size_type external_fdr_size;
11675 char *fraw_src;
11676 char *fraw_end;
11677 struct fdr *fdr_ptr;
11678 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11679
11680 fi = bfd_zalloc (abfd, amt);
11681 if (fi == NULL)
11682 {
11683 msec->flags = origflags;
11684 return FALSE;
11685 }
11686
11687 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11688 {
11689 msec->flags = origflags;
11690 return FALSE;
11691 }
11692
11693 /* Swap in the FDR information. */
11694 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11695 fi->d.fdr = bfd_alloc (abfd, amt);
11696 if (fi->d.fdr == NULL)
11697 {
11698 msec->flags = origflags;
11699 return FALSE;
11700 }
11701 external_fdr_size = swap->external_fdr_size;
11702 fdr_ptr = fi->d.fdr;
11703 fraw_src = (char *) fi->d.external_fdr;
11704 fraw_end = (fraw_src
11705 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11706 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11707 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11708
11709 elf_tdata (abfd)->find_line_info = fi;
11710
11711 /* Note that we don't bother to ever free this information.
11712 find_nearest_line is either called all the time, as in
11713 objdump -l, so the information should be saved, or it is
11714 rarely called, as in ld error messages, so the memory
11715 wasted is unimportant. Still, it would probably be a
11716 good idea for free_cached_info to throw it away. */
11717 }
11718
11719 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11720 &fi->i, filename_ptr, functionname_ptr,
11721 line_ptr))
11722 {
11723 msec->flags = origflags;
11724 return TRUE;
11725 }
11726
11727 msec->flags = origflags;
11728 }
11729
11730 /* Fall back on the generic ELF find_nearest_line routine. */
11731
11732 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11733 filename_ptr, functionname_ptr,
11734 line_ptr);
11735 }
11736
11737 bfd_boolean
11738 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11739 const char **filename_ptr,
11740 const char **functionname_ptr,
11741 unsigned int *line_ptr)
11742 {
11743 bfd_boolean found;
11744 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11745 functionname_ptr, line_ptr,
11746 & elf_tdata (abfd)->dwarf2_find_line_info);
11747 return found;
11748 }
11749
11750 \f
11751 /* When are writing out the .options or .MIPS.options section,
11752 remember the bytes we are writing out, so that we can install the
11753 GP value in the section_processing routine. */
11754
11755 bfd_boolean
11756 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11757 const void *location,
11758 file_ptr offset, bfd_size_type count)
11759 {
11760 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11761 {
11762 bfd_byte *c;
11763
11764 if (elf_section_data (section) == NULL)
11765 {
11766 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11767 section->used_by_bfd = bfd_zalloc (abfd, amt);
11768 if (elf_section_data (section) == NULL)
11769 return FALSE;
11770 }
11771 c = mips_elf_section_data (section)->u.tdata;
11772 if (c == NULL)
11773 {
11774 c = bfd_zalloc (abfd, section->size);
11775 if (c == NULL)
11776 return FALSE;
11777 mips_elf_section_data (section)->u.tdata = c;
11778 }
11779
11780 memcpy (c + offset, location, count);
11781 }
11782
11783 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11784 count);
11785 }
11786
11787 /* This is almost identical to bfd_generic_get_... except that some
11788 MIPS relocations need to be handled specially. Sigh. */
11789
11790 bfd_byte *
11791 _bfd_elf_mips_get_relocated_section_contents
11792 (bfd *abfd,
11793 struct bfd_link_info *link_info,
11794 struct bfd_link_order *link_order,
11795 bfd_byte *data,
11796 bfd_boolean relocatable,
11797 asymbol **symbols)
11798 {
11799 /* Get enough memory to hold the stuff */
11800 bfd *input_bfd = link_order->u.indirect.section->owner;
11801 asection *input_section = link_order->u.indirect.section;
11802 bfd_size_type sz;
11803
11804 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11805 arelent **reloc_vector = NULL;
11806 long reloc_count;
11807
11808 if (reloc_size < 0)
11809 goto error_return;
11810
11811 reloc_vector = bfd_malloc (reloc_size);
11812 if (reloc_vector == NULL && reloc_size != 0)
11813 goto error_return;
11814
11815 /* read in the section */
11816 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11817 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11818 goto error_return;
11819
11820 reloc_count = bfd_canonicalize_reloc (input_bfd,
11821 input_section,
11822 reloc_vector,
11823 symbols);
11824 if (reloc_count < 0)
11825 goto error_return;
11826
11827 if (reloc_count > 0)
11828 {
11829 arelent **parent;
11830 /* for mips */
11831 int gp_found;
11832 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11833
11834 {
11835 struct bfd_hash_entry *h;
11836 struct bfd_link_hash_entry *lh;
11837 /* Skip all this stuff if we aren't mixing formats. */
11838 if (abfd && input_bfd
11839 && abfd->xvec == input_bfd->xvec)
11840 lh = 0;
11841 else
11842 {
11843 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11844 lh = (struct bfd_link_hash_entry *) h;
11845 }
11846 lookup:
11847 if (lh)
11848 {
11849 switch (lh->type)
11850 {
11851 case bfd_link_hash_undefined:
11852 case bfd_link_hash_undefweak:
11853 case bfd_link_hash_common:
11854 gp_found = 0;
11855 break;
11856 case bfd_link_hash_defined:
11857 case bfd_link_hash_defweak:
11858 gp_found = 1;
11859 gp = lh->u.def.value;
11860 break;
11861 case bfd_link_hash_indirect:
11862 case bfd_link_hash_warning:
11863 lh = lh->u.i.link;
11864 /* @@FIXME ignoring warning for now */
11865 goto lookup;
11866 case bfd_link_hash_new:
11867 default:
11868 abort ();
11869 }
11870 }
11871 else
11872 gp_found = 0;
11873 }
11874 /* end mips */
11875 for (parent = reloc_vector; *parent != NULL; parent++)
11876 {
11877 char *error_message = NULL;
11878 bfd_reloc_status_type r;
11879
11880 /* Specific to MIPS: Deal with relocation types that require
11881 knowing the gp of the output bfd. */
11882 asymbol *sym = *(*parent)->sym_ptr_ptr;
11883
11884 /* If we've managed to find the gp and have a special
11885 function for the relocation then go ahead, else default
11886 to the generic handling. */
11887 if (gp_found
11888 && (*parent)->howto->special_function
11889 == _bfd_mips_elf32_gprel16_reloc)
11890 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11891 input_section, relocatable,
11892 data, gp);
11893 else
11894 r = bfd_perform_relocation (input_bfd, *parent, data,
11895 input_section,
11896 relocatable ? abfd : NULL,
11897 &error_message);
11898
11899 if (relocatable)
11900 {
11901 asection *os = input_section->output_section;
11902
11903 /* A partial link, so keep the relocs */
11904 os->orelocation[os->reloc_count] = *parent;
11905 os->reloc_count++;
11906 }
11907
11908 if (r != bfd_reloc_ok)
11909 {
11910 switch (r)
11911 {
11912 case bfd_reloc_undefined:
11913 if (!((*link_info->callbacks->undefined_symbol)
11914 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11915 input_bfd, input_section, (*parent)->address, TRUE)))
11916 goto error_return;
11917 break;
11918 case bfd_reloc_dangerous:
11919 BFD_ASSERT (error_message != NULL);
11920 if (!((*link_info->callbacks->reloc_dangerous)
11921 (link_info, error_message, input_bfd, input_section,
11922 (*parent)->address)))
11923 goto error_return;
11924 break;
11925 case bfd_reloc_overflow:
11926 if (!((*link_info->callbacks->reloc_overflow)
11927 (link_info, NULL,
11928 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11929 (*parent)->howto->name, (*parent)->addend,
11930 input_bfd, input_section, (*parent)->address)))
11931 goto error_return;
11932 break;
11933 case bfd_reloc_outofrange:
11934 default:
11935 abort ();
11936 break;
11937 }
11938
11939 }
11940 }
11941 }
11942 if (reloc_vector != NULL)
11943 free (reloc_vector);
11944 return data;
11945
11946 error_return:
11947 if (reloc_vector != NULL)
11948 free (reloc_vector);
11949 return NULL;
11950 }
11951 \f
11952 static bfd_boolean
11953 mips_elf_relax_delete_bytes (bfd *abfd,
11954 asection *sec, bfd_vma addr, int count)
11955 {
11956 Elf_Internal_Shdr *symtab_hdr;
11957 unsigned int sec_shndx;
11958 bfd_byte *contents;
11959 Elf_Internal_Rela *irel, *irelend;
11960 Elf_Internal_Sym *isym;
11961 Elf_Internal_Sym *isymend;
11962 struct elf_link_hash_entry **sym_hashes;
11963 struct elf_link_hash_entry **end_hashes;
11964 struct elf_link_hash_entry **start_hashes;
11965 unsigned int symcount;
11966
11967 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11968 contents = elf_section_data (sec)->this_hdr.contents;
11969
11970 irel = elf_section_data (sec)->relocs;
11971 irelend = irel + sec->reloc_count;
11972
11973 /* Actually delete the bytes. */
11974 memmove (contents + addr, contents + addr + count,
11975 (size_t) (sec->size - addr - count));
11976 sec->size -= count;
11977
11978 /* Adjust all the relocs. */
11979 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11980 {
11981 /* Get the new reloc address. */
11982 if (irel->r_offset > addr)
11983 irel->r_offset -= count;
11984 }
11985
11986 BFD_ASSERT (addr % 2 == 0);
11987 BFD_ASSERT (count % 2 == 0);
11988
11989 /* Adjust the local symbols defined in this section. */
11990 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11991 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11992 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11993 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11994 isym->st_value -= count;
11995
11996 /* Now adjust the global symbols defined in this section. */
11997 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11998 - symtab_hdr->sh_info);
11999 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12000 end_hashes = sym_hashes + symcount;
12001
12002 for (; sym_hashes < end_hashes; sym_hashes++)
12003 {
12004 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12005
12006 if ((sym_hash->root.type == bfd_link_hash_defined
12007 || sym_hash->root.type == bfd_link_hash_defweak)
12008 && sym_hash->root.u.def.section == sec)
12009 {
12010 bfd_vma value = sym_hash->root.u.def.value;
12011
12012 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12013 value &= MINUS_TWO;
12014 if (value > addr)
12015 sym_hash->root.u.def.value -= count;
12016 }
12017 }
12018
12019 return TRUE;
12020 }
12021
12022
12023 /* Opcodes needed for microMIPS relaxation as found in
12024 opcodes/micromips-opc.c. */
12025
12026 struct opcode_descriptor {
12027 unsigned long match;
12028 unsigned long mask;
12029 };
12030
12031 /* The $ra register aka $31. */
12032
12033 #define RA 31
12034
12035 /* 32-bit instruction format register fields. */
12036
12037 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12038 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12039
12040 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12041
12042 #define OP16_VALID_REG(r) \
12043 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12044
12045
12046 /* 32-bit and 16-bit branches. */
12047
12048 static const struct opcode_descriptor b_insns_32[] = {
12049 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12050 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12051 { 0, 0 } /* End marker for find_match(). */
12052 };
12053
12054 static const struct opcode_descriptor bc_insn_32 =
12055 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12056
12057 static const struct opcode_descriptor bz_insn_32 =
12058 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12059
12060 static const struct opcode_descriptor bzal_insn_32 =
12061 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12062
12063 static const struct opcode_descriptor beq_insn_32 =
12064 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12065
12066 static const struct opcode_descriptor b_insn_16 =
12067 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12068
12069 static const struct opcode_descriptor bz_insn_16 =
12070 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12071
12072
12073 /* 32-bit and 16-bit branch EQ and NE zero. */
12074
12075 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12076 eq and second the ne. This convention is used when replacing a
12077 32-bit BEQ/BNE with the 16-bit version. */
12078
12079 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12080
12081 static const struct opcode_descriptor bz_rs_insns_32[] = {
12082 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12083 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12084 { 0, 0 } /* End marker for find_match(). */
12085 };
12086
12087 static const struct opcode_descriptor bz_rt_insns_32[] = {
12088 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12089 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12090 { 0, 0 } /* End marker for find_match(). */
12091 };
12092
12093 static const struct opcode_descriptor bzc_insns_32[] = {
12094 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12095 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12096 { 0, 0 } /* End marker for find_match(). */
12097 };
12098
12099 static const struct opcode_descriptor bz_insns_16[] = {
12100 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12101 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12102 { 0, 0 } /* End marker for find_match(). */
12103 };
12104
12105 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12106
12107 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12108 #define BZ16_REG_FIELD(r) \
12109 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12110
12111
12112 /* 32-bit instructions with a delay slot. */
12113
12114 static const struct opcode_descriptor jal_insn_32_bd16 =
12115 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12116
12117 static const struct opcode_descriptor jal_insn_32_bd32 =
12118 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12119
12120 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12121 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12122
12123 static const struct opcode_descriptor j_insn_32 =
12124 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12125
12126 static const struct opcode_descriptor jalr_insn_32 =
12127 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12128
12129 /* This table can be compacted, because no opcode replacement is made. */
12130
12131 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12132 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12133
12134 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12135 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12136
12137 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12138 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12139 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12140 { 0, 0 } /* End marker for find_match(). */
12141 };
12142
12143 /* This table can be compacted, because no opcode replacement is made. */
12144
12145 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12146 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12147
12148 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12149 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12150 { 0, 0 } /* End marker for find_match(). */
12151 };
12152
12153
12154 /* 16-bit instructions with a delay slot. */
12155
12156 static const struct opcode_descriptor jalr_insn_16_bd16 =
12157 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12158
12159 static const struct opcode_descriptor jalr_insn_16_bd32 =
12160 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12161
12162 static const struct opcode_descriptor jr_insn_16 =
12163 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12164
12165 #define JR16_REG(opcode) ((opcode) & 0x1f)
12166
12167 /* This table can be compacted, because no opcode replacement is made. */
12168
12169 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12170 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12171
12172 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12173 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12174 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12175 { 0, 0 } /* End marker for find_match(). */
12176 };
12177
12178
12179 /* LUI instruction. */
12180
12181 static const struct opcode_descriptor lui_insn =
12182 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12183
12184
12185 /* ADDIU instruction. */
12186
12187 static const struct opcode_descriptor addiu_insn =
12188 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12189
12190 static const struct opcode_descriptor addiupc_insn =
12191 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12192
12193 #define ADDIUPC_REG_FIELD(r) \
12194 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12195
12196
12197 /* Relaxable instructions in a JAL delay slot: MOVE. */
12198
12199 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12200 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12201 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12202 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12203
12204 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12205 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12206
12207 static const struct opcode_descriptor move_insns_32[] = {
12208 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12209 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12210 { 0, 0 } /* End marker for find_match(). */
12211 };
12212
12213 static const struct opcode_descriptor move_insn_16 =
12214 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12215
12216
12217 /* NOP instructions. */
12218
12219 static const struct opcode_descriptor nop_insn_32 =
12220 { /* "nop", "", */ 0x00000000, 0xffffffff };
12221
12222 static const struct opcode_descriptor nop_insn_16 =
12223 { /* "nop", "", */ 0x0c00, 0xffff };
12224
12225
12226 /* Instruction match support. */
12227
12228 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12229
12230 static int
12231 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12232 {
12233 unsigned long indx;
12234
12235 for (indx = 0; insn[indx].mask != 0; indx++)
12236 if (MATCH (opcode, insn[indx]))
12237 return indx;
12238
12239 return -1;
12240 }
12241
12242
12243 /* Branch and delay slot decoding support. */
12244
12245 /* If PTR points to what *might* be a 16-bit branch or jump, then
12246 return the minimum length of its delay slot, otherwise return 0.
12247 Non-zero results are not definitive as we might be checking against
12248 the second half of another instruction. */
12249
12250 static int
12251 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12252 {
12253 unsigned long opcode;
12254 int bdsize;
12255
12256 opcode = bfd_get_16 (abfd, ptr);
12257 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12258 /* 16-bit branch/jump with a 32-bit delay slot. */
12259 bdsize = 4;
12260 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12261 || find_match (opcode, ds_insns_16_bd16) >= 0)
12262 /* 16-bit branch/jump with a 16-bit delay slot. */
12263 bdsize = 2;
12264 else
12265 /* No delay slot. */
12266 bdsize = 0;
12267
12268 return bdsize;
12269 }
12270
12271 /* If PTR points to what *might* be a 32-bit branch or jump, then
12272 return the minimum length of its delay slot, otherwise return 0.
12273 Non-zero results are not definitive as we might be checking against
12274 the second half of another instruction. */
12275
12276 static int
12277 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12278 {
12279 unsigned long opcode;
12280 int bdsize;
12281
12282 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12283 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12284 /* 32-bit branch/jump with a 32-bit delay slot. */
12285 bdsize = 4;
12286 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12287 /* 32-bit branch/jump with a 16-bit delay slot. */
12288 bdsize = 2;
12289 else
12290 /* No delay slot. */
12291 bdsize = 0;
12292
12293 return bdsize;
12294 }
12295
12296 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12297 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12298
12299 static bfd_boolean
12300 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12301 {
12302 unsigned long opcode;
12303
12304 opcode = bfd_get_16 (abfd, ptr);
12305 if (MATCH (opcode, b_insn_16)
12306 /* B16 */
12307 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12308 /* JR16 */
12309 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12310 /* BEQZ16, BNEZ16 */
12311 || (MATCH (opcode, jalr_insn_16_bd32)
12312 /* JALR16 */
12313 && reg != JR16_REG (opcode) && reg != RA))
12314 return TRUE;
12315
12316 return FALSE;
12317 }
12318
12319 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12320 then return TRUE, otherwise FALSE. */
12321
12322 static bfd_boolean
12323 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12324 {
12325 unsigned long opcode;
12326
12327 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12328 if (MATCH (opcode, j_insn_32)
12329 /* J */
12330 || MATCH (opcode, bc_insn_32)
12331 /* BC1F, BC1T, BC2F, BC2T */
12332 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12333 /* JAL, JALX */
12334 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12335 /* BGEZ, BGTZ, BLEZ, BLTZ */
12336 || (MATCH (opcode, bzal_insn_32)
12337 /* BGEZAL, BLTZAL */
12338 && reg != OP32_SREG (opcode) && reg != RA)
12339 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12340 /* JALR, JALR.HB, BEQ, BNE */
12341 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12342 return TRUE;
12343
12344 return FALSE;
12345 }
12346
12347 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12348 IRELEND) at OFFSET indicate that there must be a compact branch there,
12349 then return TRUE, otherwise FALSE. */
12350
12351 static bfd_boolean
12352 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12353 const Elf_Internal_Rela *internal_relocs,
12354 const Elf_Internal_Rela *irelend)
12355 {
12356 const Elf_Internal_Rela *irel;
12357 unsigned long opcode;
12358
12359 opcode = bfd_get_16 (abfd, ptr);
12360 opcode <<= 16;
12361 opcode |= bfd_get_16 (abfd, ptr + 2);
12362 if (find_match (opcode, bzc_insns_32) < 0)
12363 return FALSE;
12364
12365 for (irel = internal_relocs; irel < irelend; irel++)
12366 if (irel->r_offset == offset
12367 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12368 return TRUE;
12369
12370 return FALSE;
12371 }
12372
12373 /* Bitsize checking. */
12374 #define IS_BITSIZE(val, N) \
12375 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12376 - (1ULL << ((N) - 1))) == (val))
12377
12378 \f
12379 bfd_boolean
12380 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12381 struct bfd_link_info *link_info,
12382 bfd_boolean *again)
12383 {
12384 Elf_Internal_Shdr *symtab_hdr;
12385 Elf_Internal_Rela *internal_relocs;
12386 Elf_Internal_Rela *irel, *irelend;
12387 bfd_byte *contents = NULL;
12388 Elf_Internal_Sym *isymbuf = NULL;
12389
12390 /* Assume nothing changes. */
12391 *again = FALSE;
12392
12393 /* We don't have to do anything for a relocatable link, if
12394 this section does not have relocs, or if this is not a
12395 code section. */
12396
12397 if (link_info->relocatable
12398 || (sec->flags & SEC_RELOC) == 0
12399 || sec->reloc_count == 0
12400 || (sec->flags & SEC_CODE) == 0)
12401 return TRUE;
12402
12403 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12404
12405 /* Get a copy of the native relocations. */
12406 internal_relocs = (_bfd_elf_link_read_relocs
12407 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
12408 link_info->keep_memory));
12409 if (internal_relocs == NULL)
12410 goto error_return;
12411
12412 /* Walk through them looking for relaxing opportunities. */
12413 irelend = internal_relocs + sec->reloc_count;
12414 for (irel = internal_relocs; irel < irelend; irel++)
12415 {
12416 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12417 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12418 bfd_boolean target_is_micromips_code_p;
12419 unsigned long opcode;
12420 bfd_vma symval;
12421 bfd_vma pcrval;
12422 bfd_byte *ptr;
12423 int fndopc;
12424
12425 /* The number of bytes to delete for relaxation and from where
12426 to delete these bytes starting at irel->r_offset. */
12427 int delcnt = 0;
12428 int deloff = 0;
12429
12430 /* If this isn't something that can be relaxed, then ignore
12431 this reloc. */
12432 if (r_type != R_MICROMIPS_HI16
12433 && r_type != R_MICROMIPS_PC16_S1
12434 && r_type != R_MICROMIPS_26_S1)
12435 continue;
12436
12437 /* Get the section contents if we haven't done so already. */
12438 if (contents == NULL)
12439 {
12440 /* Get cached copy if it exists. */
12441 if (elf_section_data (sec)->this_hdr.contents != NULL)
12442 contents = elf_section_data (sec)->this_hdr.contents;
12443 /* Go get them off disk. */
12444 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12445 goto error_return;
12446 }
12447 ptr = contents + irel->r_offset;
12448
12449 /* Read this BFD's local symbols if we haven't done so already. */
12450 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12451 {
12452 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12453 if (isymbuf == NULL)
12454 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12455 symtab_hdr->sh_info, 0,
12456 NULL, NULL, NULL);
12457 if (isymbuf == NULL)
12458 goto error_return;
12459 }
12460
12461 /* Get the value of the symbol referred to by the reloc. */
12462 if (r_symndx < symtab_hdr->sh_info)
12463 {
12464 /* A local symbol. */
12465 Elf_Internal_Sym *isym;
12466 asection *sym_sec;
12467
12468 isym = isymbuf + r_symndx;
12469 if (isym->st_shndx == SHN_UNDEF)
12470 sym_sec = bfd_und_section_ptr;
12471 else if (isym->st_shndx == SHN_ABS)
12472 sym_sec = bfd_abs_section_ptr;
12473 else if (isym->st_shndx == SHN_COMMON)
12474 sym_sec = bfd_com_section_ptr;
12475 else
12476 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12477 symval = (isym->st_value
12478 + sym_sec->output_section->vma
12479 + sym_sec->output_offset);
12480 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12481 }
12482 else
12483 {
12484 unsigned long indx;
12485 struct elf_link_hash_entry *h;
12486
12487 /* An external symbol. */
12488 indx = r_symndx - symtab_hdr->sh_info;
12489 h = elf_sym_hashes (abfd)[indx];
12490 BFD_ASSERT (h != NULL);
12491
12492 if (h->root.type != bfd_link_hash_defined
12493 && h->root.type != bfd_link_hash_defweak)
12494 /* This appears to be a reference to an undefined
12495 symbol. Just ignore it -- it will be caught by the
12496 regular reloc processing. */
12497 continue;
12498
12499 symval = (h->root.u.def.value
12500 + h->root.u.def.section->output_section->vma
12501 + h->root.u.def.section->output_offset);
12502 target_is_micromips_code_p = (!h->needs_plt
12503 && ELF_ST_IS_MICROMIPS (h->other));
12504 }
12505
12506
12507 /* For simplicity of coding, we are going to modify the
12508 section contents, the section relocs, and the BFD symbol
12509 table. We must tell the rest of the code not to free up this
12510 information. It would be possible to instead create a table
12511 of changes which have to be made, as is done in coff-mips.c;
12512 that would be more work, but would require less memory when
12513 the linker is run. */
12514
12515 /* Only 32-bit instructions relaxed. */
12516 if (irel->r_offset + 4 > sec->size)
12517 continue;
12518
12519 opcode = bfd_get_16 (abfd, ptr ) << 16;
12520 opcode |= bfd_get_16 (abfd, ptr + 2);
12521
12522 /* This is the pc-relative distance from the instruction the
12523 relocation is applied to, to the symbol referred. */
12524 pcrval = (symval
12525 - (sec->output_section->vma + sec->output_offset)
12526 - irel->r_offset);
12527
12528 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12529 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12530 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12531
12532 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12533
12534 where pcrval has first to be adjusted to apply against the LO16
12535 location (we make the adjustment later on, when we have figured
12536 out the offset). */
12537 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12538 {
12539 bfd_boolean bzc = FALSE;
12540 unsigned long nextopc;
12541 unsigned long reg;
12542 bfd_vma offset;
12543
12544 /* Give up if the previous reloc was a HI16 against this symbol
12545 too. */
12546 if (irel > internal_relocs
12547 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12548 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12549 continue;
12550
12551 /* Or if the next reloc is not a LO16 against this symbol. */
12552 if (irel + 1 >= irelend
12553 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12554 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12555 continue;
12556
12557 /* Or if the second next reloc is a LO16 against this symbol too. */
12558 if (irel + 2 >= irelend
12559 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12560 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12561 continue;
12562
12563 /* See if the LUI instruction *might* be in a branch delay slot.
12564 We check whether what looks like a 16-bit branch or jump is
12565 actually an immediate argument to a compact branch, and let
12566 it through if so. */
12567 if (irel->r_offset >= 2
12568 && check_br16_dslot (abfd, ptr - 2)
12569 && !(irel->r_offset >= 4
12570 && (bzc = check_relocated_bzc (abfd,
12571 ptr - 4, irel->r_offset - 4,
12572 internal_relocs, irelend))))
12573 continue;
12574 if (irel->r_offset >= 4
12575 && !bzc
12576 && check_br32_dslot (abfd, ptr - 4))
12577 continue;
12578
12579 reg = OP32_SREG (opcode);
12580
12581 /* We only relax adjacent instructions or ones separated with
12582 a branch or jump that has a delay slot. The branch or jump
12583 must not fiddle with the register used to hold the address.
12584 Subtract 4 for the LUI itself. */
12585 offset = irel[1].r_offset - irel[0].r_offset;
12586 switch (offset - 4)
12587 {
12588 case 0:
12589 break;
12590 case 2:
12591 if (check_br16 (abfd, ptr + 4, reg))
12592 break;
12593 continue;
12594 case 4:
12595 if (check_br32 (abfd, ptr + 4, reg))
12596 break;
12597 continue;
12598 default:
12599 continue;
12600 }
12601
12602 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12603 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12604
12605 /* Give up unless the same register is used with both
12606 relocations. */
12607 if (OP32_SREG (nextopc) != reg)
12608 continue;
12609
12610 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12611 and rounding up to take masking of the two LSBs into account. */
12612 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12613
12614 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12615 if (IS_BITSIZE (symval, 16))
12616 {
12617 /* Fix the relocation's type. */
12618 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12619
12620 /* Instructions using R_MICROMIPS_LO16 have the base or
12621 source register in bits 20:16. This register becomes $0
12622 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12623 nextopc &= ~0x001f0000;
12624 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12625 contents + irel[1].r_offset);
12626 }
12627
12628 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12629 We add 4 to take LUI deletion into account while checking
12630 the PC-relative distance. */
12631 else if (symval % 4 == 0
12632 && IS_BITSIZE (pcrval + 4, 25)
12633 && MATCH (nextopc, addiu_insn)
12634 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12635 && OP16_VALID_REG (OP32_TREG (nextopc)))
12636 {
12637 /* Fix the relocation's type. */
12638 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12639
12640 /* Replace ADDIU with the ADDIUPC version. */
12641 nextopc = (addiupc_insn.match
12642 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12643
12644 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12645 contents + irel[1].r_offset);
12646 bfd_put_16 (abfd, nextopc & 0xffff,
12647 contents + irel[1].r_offset + 2);
12648 }
12649
12650 /* Can't do anything, give up, sigh... */
12651 else
12652 continue;
12653
12654 /* Fix the relocation's type. */
12655 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12656
12657 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12658 delcnt = 4;
12659 deloff = 0;
12660 }
12661
12662 /* Compact branch relaxation -- due to the multitude of macros
12663 employed by the compiler/assembler, compact branches are not
12664 always generated. Obviously, this can/will be fixed elsewhere,
12665 but there is no drawback in double checking it here. */
12666 else if (r_type == R_MICROMIPS_PC16_S1
12667 && irel->r_offset + 5 < sec->size
12668 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12669 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12670 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12671 {
12672 unsigned long reg;
12673
12674 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12675
12676 /* Replace BEQZ/BNEZ with the compact version. */
12677 opcode = (bzc_insns_32[fndopc].match
12678 | BZC32_REG_FIELD (reg)
12679 | (opcode & 0xffff)); /* Addend value. */
12680
12681 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12682 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
12683
12684 /* Delete the 16-bit delay slot NOP: two bytes from
12685 irel->offset + 4. */
12686 delcnt = 2;
12687 deloff = 4;
12688 }
12689
12690 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12691 to check the distance from the next instruction, so subtract 2. */
12692 else if (r_type == R_MICROMIPS_PC16_S1
12693 && IS_BITSIZE (pcrval - 2, 11)
12694 && find_match (opcode, b_insns_32) >= 0)
12695 {
12696 /* Fix the relocation's type. */
12697 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12698
12699 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12700 bfd_put_16 (abfd,
12701 (b_insn_16.match
12702 | (opcode & 0x3ff)), /* Addend value. */
12703 ptr);
12704
12705 /* Delete 2 bytes from irel->r_offset + 2. */
12706 delcnt = 2;
12707 deloff = 2;
12708 }
12709
12710 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12711 to check the distance from the next instruction, so subtract 2. */
12712 else if (r_type == R_MICROMIPS_PC16_S1
12713 && IS_BITSIZE (pcrval - 2, 8)
12714 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12715 && OP16_VALID_REG (OP32_SREG (opcode)))
12716 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12717 && OP16_VALID_REG (OP32_TREG (opcode)))))
12718 {
12719 unsigned long reg;
12720
12721 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12722
12723 /* Fix the relocation's type. */
12724 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12725
12726 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12727 bfd_put_16 (abfd,
12728 (bz_insns_16[fndopc].match
12729 | BZ16_REG_FIELD (reg)
12730 | (opcode & 0x7f)), /* Addend value. */
12731 ptr);
12732
12733 /* Delete 2 bytes from irel->r_offset + 2. */
12734 delcnt = 2;
12735 deloff = 2;
12736 }
12737
12738 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12739 else if (r_type == R_MICROMIPS_26_S1
12740 && target_is_micromips_code_p
12741 && irel->r_offset + 7 < sec->size
12742 && MATCH (opcode, jal_insn_32_bd32))
12743 {
12744 unsigned long n32opc;
12745 bfd_boolean relaxed = FALSE;
12746
12747 n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
12748 n32opc |= bfd_get_16 (abfd, ptr + 6);
12749
12750 if (MATCH (n32opc, nop_insn_32))
12751 {
12752 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12753 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12754
12755 relaxed = TRUE;
12756 }
12757 else if (find_match (n32opc, move_insns_32) >= 0)
12758 {
12759 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12760 bfd_put_16 (abfd,
12761 (move_insn_16.match
12762 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12763 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12764 ptr + 4);
12765
12766 relaxed = TRUE;
12767 }
12768 /* Other 32-bit instructions relaxable to 16-bit
12769 instructions will be handled here later. */
12770
12771 if (relaxed)
12772 {
12773 /* JAL with 32-bit delay slot that is changed to a JALS
12774 with 16-bit delay slot. */
12775 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12776 ptr);
12777 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
12778 ptr + 2);
12779
12780 /* Delete 2 bytes from irel->r_offset + 6. */
12781 delcnt = 2;
12782 deloff = 6;
12783 }
12784 }
12785
12786 if (delcnt != 0)
12787 {
12788 /* Note that we've changed the relocs, section contents, etc. */
12789 elf_section_data (sec)->relocs = internal_relocs;
12790 elf_section_data (sec)->this_hdr.contents = contents;
12791 symtab_hdr->contents = (unsigned char *) isymbuf;
12792
12793 /* Delete bytes depending on the delcnt and deloff. */
12794 if (!mips_elf_relax_delete_bytes (abfd, sec,
12795 irel->r_offset + deloff, delcnt))
12796 goto error_return;
12797
12798 /* That will change things, so we should relax again.
12799 Note that this is not required, and it may be slow. */
12800 *again = TRUE;
12801 }
12802 }
12803
12804 if (isymbuf != NULL
12805 && symtab_hdr->contents != (unsigned char *) isymbuf)
12806 {
12807 if (! link_info->keep_memory)
12808 free (isymbuf);
12809 else
12810 {
12811 /* Cache the symbols for elf_link_input_bfd. */
12812 symtab_hdr->contents = (unsigned char *) isymbuf;
12813 }
12814 }
12815
12816 if (contents != NULL
12817 && elf_section_data (sec)->this_hdr.contents != contents)
12818 {
12819 if (! link_info->keep_memory)
12820 free (contents);
12821 else
12822 {
12823 /* Cache the section contents for elf_link_input_bfd. */
12824 elf_section_data (sec)->this_hdr.contents = contents;
12825 }
12826 }
12827
12828 if (internal_relocs != NULL
12829 && elf_section_data (sec)->relocs != internal_relocs)
12830 free (internal_relocs);
12831
12832 return TRUE;
12833
12834 error_return:
12835 if (isymbuf != NULL
12836 && symtab_hdr->contents != (unsigned char *) isymbuf)
12837 free (isymbuf);
12838 if (contents != NULL
12839 && elf_section_data (sec)->this_hdr.contents != contents)
12840 free (contents);
12841 if (internal_relocs != NULL
12842 && elf_section_data (sec)->relocs != internal_relocs)
12843 free (internal_relocs);
12844
12845 return FALSE;
12846 }
12847 \f
12848 /* Create a MIPS ELF linker hash table. */
12849
12850 struct bfd_link_hash_table *
12851 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12852 {
12853 struct mips_elf_link_hash_table *ret;
12854 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12855
12856 ret = bfd_malloc (amt);
12857 if (ret == NULL)
12858 return NULL;
12859
12860 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12861 mips_elf_link_hash_newfunc,
12862 sizeof (struct mips_elf_link_hash_entry),
12863 MIPS_ELF_DATA))
12864 {
12865 free (ret);
12866 return NULL;
12867 }
12868
12869 #if 0
12870 /* We no longer use this. */
12871 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12872 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12873 #endif
12874 ret->procedure_count = 0;
12875 ret->compact_rel_size = 0;
12876 ret->use_rld_obj_head = FALSE;
12877 ret->rld_symbol = NULL;
12878 ret->mips16_stubs_seen = FALSE;
12879 ret->use_plts_and_copy_relocs = FALSE;
12880 ret->is_vxworks = FALSE;
12881 ret->small_data_overflow_reported = FALSE;
12882 ret->srelbss = NULL;
12883 ret->sdynbss = NULL;
12884 ret->srelplt = NULL;
12885 ret->srelplt2 = NULL;
12886 ret->sgotplt = NULL;
12887 ret->splt = NULL;
12888 ret->sstubs = NULL;
12889 ret->sgot = NULL;
12890 ret->got_info = NULL;
12891 ret->plt_header_size = 0;
12892 ret->plt_entry_size = 0;
12893 ret->lazy_stub_count = 0;
12894 ret->function_stub_size = 0;
12895 ret->strampoline = NULL;
12896 ret->la25_stubs = NULL;
12897 ret->add_stub_section = NULL;
12898
12899 return &ret->root.root;
12900 }
12901
12902 /* Likewise, but indicate that the target is VxWorks. */
12903
12904 struct bfd_link_hash_table *
12905 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12906 {
12907 struct bfd_link_hash_table *ret;
12908
12909 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12910 if (ret)
12911 {
12912 struct mips_elf_link_hash_table *htab;
12913
12914 htab = (struct mips_elf_link_hash_table *) ret;
12915 htab->use_plts_and_copy_relocs = TRUE;
12916 htab->is_vxworks = TRUE;
12917 }
12918 return ret;
12919 }
12920
12921 /* A function that the linker calls if we are allowed to use PLTs
12922 and copy relocs. */
12923
12924 void
12925 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12926 {
12927 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12928 }
12929 \f
12930 /* We need to use a special link routine to handle the .reginfo and
12931 the .mdebug sections. We need to merge all instances of these
12932 sections together, not write them all out sequentially. */
12933
12934 bfd_boolean
12935 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12936 {
12937 asection *o;
12938 struct bfd_link_order *p;
12939 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12940 asection *rtproc_sec;
12941 Elf32_RegInfo reginfo;
12942 struct ecoff_debug_info debug;
12943 struct mips_htab_traverse_info hti;
12944 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12945 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12946 HDRR *symhdr = &debug.symbolic_header;
12947 void *mdebug_handle = NULL;
12948 asection *s;
12949 EXTR esym;
12950 unsigned int i;
12951 bfd_size_type amt;
12952 struct mips_elf_link_hash_table *htab;
12953
12954 static const char * const secname[] =
12955 {
12956 ".text", ".init", ".fini", ".data",
12957 ".rodata", ".sdata", ".sbss", ".bss"
12958 };
12959 static const int sc[] =
12960 {
12961 scText, scInit, scFini, scData,
12962 scRData, scSData, scSBss, scBss
12963 };
12964
12965 /* Sort the dynamic symbols so that those with GOT entries come after
12966 those without. */
12967 htab = mips_elf_hash_table (info);
12968 BFD_ASSERT (htab != NULL);
12969
12970 if (!mips_elf_sort_hash_table (abfd, info))
12971 return FALSE;
12972
12973 /* Create any scheduled LA25 stubs. */
12974 hti.info = info;
12975 hti.output_bfd = abfd;
12976 hti.error = FALSE;
12977 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12978 if (hti.error)
12979 return FALSE;
12980
12981 /* Get a value for the GP register. */
12982 if (elf_gp (abfd) == 0)
12983 {
12984 struct bfd_link_hash_entry *h;
12985
12986 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12987 if (h != NULL && h->type == bfd_link_hash_defined)
12988 elf_gp (abfd) = (h->u.def.value
12989 + h->u.def.section->output_section->vma
12990 + h->u.def.section->output_offset);
12991 else if (htab->is_vxworks
12992 && (h = bfd_link_hash_lookup (info->hash,
12993 "_GLOBAL_OFFSET_TABLE_",
12994 FALSE, FALSE, TRUE))
12995 && h->type == bfd_link_hash_defined)
12996 elf_gp (abfd) = (h->u.def.section->output_section->vma
12997 + h->u.def.section->output_offset
12998 + h->u.def.value);
12999 else if (info->relocatable)
13000 {
13001 bfd_vma lo = MINUS_ONE;
13002
13003 /* Find the GP-relative section with the lowest offset. */
13004 for (o = abfd->sections; o != NULL; o = o->next)
13005 if (o->vma < lo
13006 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13007 lo = o->vma;
13008
13009 /* And calculate GP relative to that. */
13010 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13011 }
13012 else
13013 {
13014 /* If the relocate_section function needs to do a reloc
13015 involving the GP value, it should make a reloc_dangerous
13016 callback to warn that GP is not defined. */
13017 }
13018 }
13019
13020 /* Go through the sections and collect the .reginfo and .mdebug
13021 information. */
13022 reginfo_sec = NULL;
13023 mdebug_sec = NULL;
13024 gptab_data_sec = NULL;
13025 gptab_bss_sec = NULL;
13026 for (o = abfd->sections; o != NULL; o = o->next)
13027 {
13028 if (strcmp (o->name, ".reginfo") == 0)
13029 {
13030 memset (&reginfo, 0, sizeof reginfo);
13031
13032 /* We have found the .reginfo section in the output file.
13033 Look through all the link_orders comprising it and merge
13034 the information together. */
13035 for (p = o->map_head.link_order; p != NULL; p = p->next)
13036 {
13037 asection *input_section;
13038 bfd *input_bfd;
13039 Elf32_External_RegInfo ext;
13040 Elf32_RegInfo sub;
13041
13042 if (p->type != bfd_indirect_link_order)
13043 {
13044 if (p->type == bfd_data_link_order)
13045 continue;
13046 abort ();
13047 }
13048
13049 input_section = p->u.indirect.section;
13050 input_bfd = input_section->owner;
13051
13052 if (! bfd_get_section_contents (input_bfd, input_section,
13053 &ext, 0, sizeof ext))
13054 return FALSE;
13055
13056 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13057
13058 reginfo.ri_gprmask |= sub.ri_gprmask;
13059 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13060 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13061 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13062 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13063
13064 /* ri_gp_value is set by the function
13065 mips_elf32_section_processing when the section is
13066 finally written out. */
13067
13068 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13069 elf_link_input_bfd ignores this section. */
13070 input_section->flags &= ~SEC_HAS_CONTENTS;
13071 }
13072
13073 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13074 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13075
13076 /* Skip this section later on (I don't think this currently
13077 matters, but someday it might). */
13078 o->map_head.link_order = NULL;
13079
13080 reginfo_sec = o;
13081 }
13082
13083 if (strcmp (o->name, ".mdebug") == 0)
13084 {
13085 struct extsym_info einfo;
13086 bfd_vma last;
13087
13088 /* We have found the .mdebug section in the output file.
13089 Look through all the link_orders comprising it and merge
13090 the information together. */
13091 symhdr->magic = swap->sym_magic;
13092 /* FIXME: What should the version stamp be? */
13093 symhdr->vstamp = 0;
13094 symhdr->ilineMax = 0;
13095 symhdr->cbLine = 0;
13096 symhdr->idnMax = 0;
13097 symhdr->ipdMax = 0;
13098 symhdr->isymMax = 0;
13099 symhdr->ioptMax = 0;
13100 symhdr->iauxMax = 0;
13101 symhdr->issMax = 0;
13102 symhdr->issExtMax = 0;
13103 symhdr->ifdMax = 0;
13104 symhdr->crfd = 0;
13105 symhdr->iextMax = 0;
13106
13107 /* We accumulate the debugging information itself in the
13108 debug_info structure. */
13109 debug.line = NULL;
13110 debug.external_dnr = NULL;
13111 debug.external_pdr = NULL;
13112 debug.external_sym = NULL;
13113 debug.external_opt = NULL;
13114 debug.external_aux = NULL;
13115 debug.ss = NULL;
13116 debug.ssext = debug.ssext_end = NULL;
13117 debug.external_fdr = NULL;
13118 debug.external_rfd = NULL;
13119 debug.external_ext = debug.external_ext_end = NULL;
13120
13121 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13122 if (mdebug_handle == NULL)
13123 return FALSE;
13124
13125 esym.jmptbl = 0;
13126 esym.cobol_main = 0;
13127 esym.weakext = 0;
13128 esym.reserved = 0;
13129 esym.ifd = ifdNil;
13130 esym.asym.iss = issNil;
13131 esym.asym.st = stLocal;
13132 esym.asym.reserved = 0;
13133 esym.asym.index = indexNil;
13134 last = 0;
13135 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13136 {
13137 esym.asym.sc = sc[i];
13138 s = bfd_get_section_by_name (abfd, secname[i]);
13139 if (s != NULL)
13140 {
13141 esym.asym.value = s->vma;
13142 last = s->vma + s->size;
13143 }
13144 else
13145 esym.asym.value = last;
13146 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13147 secname[i], &esym))
13148 return FALSE;
13149 }
13150
13151 for (p = o->map_head.link_order; p != NULL; p = p->next)
13152 {
13153 asection *input_section;
13154 bfd *input_bfd;
13155 const struct ecoff_debug_swap *input_swap;
13156 struct ecoff_debug_info input_debug;
13157 char *eraw_src;
13158 char *eraw_end;
13159
13160 if (p->type != bfd_indirect_link_order)
13161 {
13162 if (p->type == bfd_data_link_order)
13163 continue;
13164 abort ();
13165 }
13166
13167 input_section = p->u.indirect.section;
13168 input_bfd = input_section->owner;
13169
13170 if (!is_mips_elf (input_bfd))
13171 {
13172 /* I don't know what a non MIPS ELF bfd would be
13173 doing with a .mdebug section, but I don't really
13174 want to deal with it. */
13175 continue;
13176 }
13177
13178 input_swap = (get_elf_backend_data (input_bfd)
13179 ->elf_backend_ecoff_debug_swap);
13180
13181 BFD_ASSERT (p->size == input_section->size);
13182
13183 /* The ECOFF linking code expects that we have already
13184 read in the debugging information and set up an
13185 ecoff_debug_info structure, so we do that now. */
13186 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13187 &input_debug))
13188 return FALSE;
13189
13190 if (! (bfd_ecoff_debug_accumulate
13191 (mdebug_handle, abfd, &debug, swap, input_bfd,
13192 &input_debug, input_swap, info)))
13193 return FALSE;
13194
13195 /* Loop through the external symbols. For each one with
13196 interesting information, try to find the symbol in
13197 the linker global hash table and save the information
13198 for the output external symbols. */
13199 eraw_src = input_debug.external_ext;
13200 eraw_end = (eraw_src
13201 + (input_debug.symbolic_header.iextMax
13202 * input_swap->external_ext_size));
13203 for (;
13204 eraw_src < eraw_end;
13205 eraw_src += input_swap->external_ext_size)
13206 {
13207 EXTR ext;
13208 const char *name;
13209 struct mips_elf_link_hash_entry *h;
13210
13211 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13212 if (ext.asym.sc == scNil
13213 || ext.asym.sc == scUndefined
13214 || ext.asym.sc == scSUndefined)
13215 continue;
13216
13217 name = input_debug.ssext + ext.asym.iss;
13218 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13219 name, FALSE, FALSE, TRUE);
13220 if (h == NULL || h->esym.ifd != -2)
13221 continue;
13222
13223 if (ext.ifd != -1)
13224 {
13225 BFD_ASSERT (ext.ifd
13226 < input_debug.symbolic_header.ifdMax);
13227 ext.ifd = input_debug.ifdmap[ext.ifd];
13228 }
13229
13230 h->esym = ext;
13231 }
13232
13233 /* Free up the information we just read. */
13234 free (input_debug.line);
13235 free (input_debug.external_dnr);
13236 free (input_debug.external_pdr);
13237 free (input_debug.external_sym);
13238 free (input_debug.external_opt);
13239 free (input_debug.external_aux);
13240 free (input_debug.ss);
13241 free (input_debug.ssext);
13242 free (input_debug.external_fdr);
13243 free (input_debug.external_rfd);
13244 free (input_debug.external_ext);
13245
13246 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13247 elf_link_input_bfd ignores this section. */
13248 input_section->flags &= ~SEC_HAS_CONTENTS;
13249 }
13250
13251 if (SGI_COMPAT (abfd) && info->shared)
13252 {
13253 /* Create .rtproc section. */
13254 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13255 if (rtproc_sec == NULL)
13256 {
13257 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13258 | SEC_LINKER_CREATED | SEC_READONLY);
13259
13260 rtproc_sec = bfd_make_section_with_flags (abfd,
13261 ".rtproc",
13262 flags);
13263 if (rtproc_sec == NULL
13264 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13265 return FALSE;
13266 }
13267
13268 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13269 info, rtproc_sec,
13270 &debug))
13271 return FALSE;
13272 }
13273
13274 /* Build the external symbol information. */
13275 einfo.abfd = abfd;
13276 einfo.info = info;
13277 einfo.debug = &debug;
13278 einfo.swap = swap;
13279 einfo.failed = FALSE;
13280 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13281 mips_elf_output_extsym, &einfo);
13282 if (einfo.failed)
13283 return FALSE;
13284
13285 /* Set the size of the .mdebug section. */
13286 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13287
13288 /* Skip this section later on (I don't think this currently
13289 matters, but someday it might). */
13290 o->map_head.link_order = NULL;
13291
13292 mdebug_sec = o;
13293 }
13294
13295 if (CONST_STRNEQ (o->name, ".gptab."))
13296 {
13297 const char *subname;
13298 unsigned int c;
13299 Elf32_gptab *tab;
13300 Elf32_External_gptab *ext_tab;
13301 unsigned int j;
13302
13303 /* The .gptab.sdata and .gptab.sbss sections hold
13304 information describing how the small data area would
13305 change depending upon the -G switch. These sections
13306 not used in executables files. */
13307 if (! info->relocatable)
13308 {
13309 for (p = o->map_head.link_order; p != NULL; p = p->next)
13310 {
13311 asection *input_section;
13312
13313 if (p->type != bfd_indirect_link_order)
13314 {
13315 if (p->type == bfd_data_link_order)
13316 continue;
13317 abort ();
13318 }
13319
13320 input_section = p->u.indirect.section;
13321
13322 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13323 elf_link_input_bfd ignores this section. */
13324 input_section->flags &= ~SEC_HAS_CONTENTS;
13325 }
13326
13327 /* Skip this section later on (I don't think this
13328 currently matters, but someday it might). */
13329 o->map_head.link_order = NULL;
13330
13331 /* Really remove the section. */
13332 bfd_section_list_remove (abfd, o);
13333 --abfd->section_count;
13334
13335 continue;
13336 }
13337
13338 /* There is one gptab for initialized data, and one for
13339 uninitialized data. */
13340 if (strcmp (o->name, ".gptab.sdata") == 0)
13341 gptab_data_sec = o;
13342 else if (strcmp (o->name, ".gptab.sbss") == 0)
13343 gptab_bss_sec = o;
13344 else
13345 {
13346 (*_bfd_error_handler)
13347 (_("%s: illegal section name `%s'"),
13348 bfd_get_filename (abfd), o->name);
13349 bfd_set_error (bfd_error_nonrepresentable_section);
13350 return FALSE;
13351 }
13352
13353 /* The linker script always combines .gptab.data and
13354 .gptab.sdata into .gptab.sdata, and likewise for
13355 .gptab.bss and .gptab.sbss. It is possible that there is
13356 no .sdata or .sbss section in the output file, in which
13357 case we must change the name of the output section. */
13358 subname = o->name + sizeof ".gptab" - 1;
13359 if (bfd_get_section_by_name (abfd, subname) == NULL)
13360 {
13361 if (o == gptab_data_sec)
13362 o->name = ".gptab.data";
13363 else
13364 o->name = ".gptab.bss";
13365 subname = o->name + sizeof ".gptab" - 1;
13366 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13367 }
13368
13369 /* Set up the first entry. */
13370 c = 1;
13371 amt = c * sizeof (Elf32_gptab);
13372 tab = bfd_malloc (amt);
13373 if (tab == NULL)
13374 return FALSE;
13375 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13376 tab[0].gt_header.gt_unused = 0;
13377
13378 /* Combine the input sections. */
13379 for (p = o->map_head.link_order; p != NULL; p = p->next)
13380 {
13381 asection *input_section;
13382 bfd *input_bfd;
13383 bfd_size_type size;
13384 unsigned long last;
13385 bfd_size_type gpentry;
13386
13387 if (p->type != bfd_indirect_link_order)
13388 {
13389 if (p->type == bfd_data_link_order)
13390 continue;
13391 abort ();
13392 }
13393
13394 input_section = p->u.indirect.section;
13395 input_bfd = input_section->owner;
13396
13397 /* Combine the gptab entries for this input section one
13398 by one. We know that the input gptab entries are
13399 sorted by ascending -G value. */
13400 size = input_section->size;
13401 last = 0;
13402 for (gpentry = sizeof (Elf32_External_gptab);
13403 gpentry < size;
13404 gpentry += sizeof (Elf32_External_gptab))
13405 {
13406 Elf32_External_gptab ext_gptab;
13407 Elf32_gptab int_gptab;
13408 unsigned long val;
13409 unsigned long add;
13410 bfd_boolean exact;
13411 unsigned int look;
13412
13413 if (! (bfd_get_section_contents
13414 (input_bfd, input_section, &ext_gptab, gpentry,
13415 sizeof (Elf32_External_gptab))))
13416 {
13417 free (tab);
13418 return FALSE;
13419 }
13420
13421 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13422 &int_gptab);
13423 val = int_gptab.gt_entry.gt_g_value;
13424 add = int_gptab.gt_entry.gt_bytes - last;
13425
13426 exact = FALSE;
13427 for (look = 1; look < c; look++)
13428 {
13429 if (tab[look].gt_entry.gt_g_value >= val)
13430 tab[look].gt_entry.gt_bytes += add;
13431
13432 if (tab[look].gt_entry.gt_g_value == val)
13433 exact = TRUE;
13434 }
13435
13436 if (! exact)
13437 {
13438 Elf32_gptab *new_tab;
13439 unsigned int max;
13440
13441 /* We need a new table entry. */
13442 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13443 new_tab = bfd_realloc (tab, amt);
13444 if (new_tab == NULL)
13445 {
13446 free (tab);
13447 return FALSE;
13448 }
13449 tab = new_tab;
13450 tab[c].gt_entry.gt_g_value = val;
13451 tab[c].gt_entry.gt_bytes = add;
13452
13453 /* Merge in the size for the next smallest -G
13454 value, since that will be implied by this new
13455 value. */
13456 max = 0;
13457 for (look = 1; look < c; look++)
13458 {
13459 if (tab[look].gt_entry.gt_g_value < val
13460 && (max == 0
13461 || (tab[look].gt_entry.gt_g_value
13462 > tab[max].gt_entry.gt_g_value)))
13463 max = look;
13464 }
13465 if (max != 0)
13466 tab[c].gt_entry.gt_bytes +=
13467 tab[max].gt_entry.gt_bytes;
13468
13469 ++c;
13470 }
13471
13472 last = int_gptab.gt_entry.gt_bytes;
13473 }
13474
13475 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13476 elf_link_input_bfd ignores this section. */
13477 input_section->flags &= ~SEC_HAS_CONTENTS;
13478 }
13479
13480 /* The table must be sorted by -G value. */
13481 if (c > 2)
13482 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13483
13484 /* Swap out the table. */
13485 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13486 ext_tab = bfd_alloc (abfd, amt);
13487 if (ext_tab == NULL)
13488 {
13489 free (tab);
13490 return FALSE;
13491 }
13492
13493 for (j = 0; j < c; j++)
13494 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13495 free (tab);
13496
13497 o->size = c * sizeof (Elf32_External_gptab);
13498 o->contents = (bfd_byte *) ext_tab;
13499
13500 /* Skip this section later on (I don't think this currently
13501 matters, but someday it might). */
13502 o->map_head.link_order = NULL;
13503 }
13504 }
13505
13506 /* Invoke the regular ELF backend linker to do all the work. */
13507 if (!bfd_elf_final_link (abfd, info))
13508 return FALSE;
13509
13510 /* Now write out the computed sections. */
13511
13512 if (reginfo_sec != NULL)
13513 {
13514 Elf32_External_RegInfo ext;
13515
13516 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13517 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13518 return FALSE;
13519 }
13520
13521 if (mdebug_sec != NULL)
13522 {
13523 BFD_ASSERT (abfd->output_has_begun);
13524 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13525 swap, info,
13526 mdebug_sec->filepos))
13527 return FALSE;
13528
13529 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13530 }
13531
13532 if (gptab_data_sec != NULL)
13533 {
13534 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13535 gptab_data_sec->contents,
13536 0, gptab_data_sec->size))
13537 return FALSE;
13538 }
13539
13540 if (gptab_bss_sec != NULL)
13541 {
13542 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13543 gptab_bss_sec->contents,
13544 0, gptab_bss_sec->size))
13545 return FALSE;
13546 }
13547
13548 if (SGI_COMPAT (abfd))
13549 {
13550 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13551 if (rtproc_sec != NULL)
13552 {
13553 if (! bfd_set_section_contents (abfd, rtproc_sec,
13554 rtproc_sec->contents,
13555 0, rtproc_sec->size))
13556 return FALSE;
13557 }
13558 }
13559
13560 return TRUE;
13561 }
13562 \f
13563 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13564
13565 struct mips_mach_extension {
13566 unsigned long extension, base;
13567 };
13568
13569
13570 /* An array describing how BFD machines relate to one another. The entries
13571 are ordered topologically with MIPS I extensions listed last. */
13572
13573 static const struct mips_mach_extension mips_mach_extensions[] = {
13574 /* MIPS64r2 extensions. */
13575 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13576 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13577 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13578
13579 /* MIPS64 extensions. */
13580 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13581 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13582 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13583 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13584
13585 /* MIPS V extensions. */
13586 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13587
13588 /* R10000 extensions. */
13589 { bfd_mach_mips12000, bfd_mach_mips10000 },
13590 { bfd_mach_mips14000, bfd_mach_mips10000 },
13591 { bfd_mach_mips16000, bfd_mach_mips10000 },
13592
13593 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13594 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13595 better to allow vr5400 and vr5500 code to be merged anyway, since
13596 many libraries will just use the core ISA. Perhaps we could add
13597 some sort of ASE flag if this ever proves a problem. */
13598 { bfd_mach_mips5500, bfd_mach_mips5400 },
13599 { bfd_mach_mips5400, bfd_mach_mips5000 },
13600
13601 /* MIPS IV extensions. */
13602 { bfd_mach_mips5, bfd_mach_mips8000 },
13603 { bfd_mach_mips10000, bfd_mach_mips8000 },
13604 { bfd_mach_mips5000, bfd_mach_mips8000 },
13605 { bfd_mach_mips7000, bfd_mach_mips8000 },
13606 { bfd_mach_mips9000, bfd_mach_mips8000 },
13607
13608 /* VR4100 extensions. */
13609 { bfd_mach_mips4120, bfd_mach_mips4100 },
13610 { bfd_mach_mips4111, bfd_mach_mips4100 },
13611
13612 /* MIPS III extensions. */
13613 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13614 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13615 { bfd_mach_mips8000, bfd_mach_mips4000 },
13616 { bfd_mach_mips4650, bfd_mach_mips4000 },
13617 { bfd_mach_mips4600, bfd_mach_mips4000 },
13618 { bfd_mach_mips4400, bfd_mach_mips4000 },
13619 { bfd_mach_mips4300, bfd_mach_mips4000 },
13620 { bfd_mach_mips4100, bfd_mach_mips4000 },
13621 { bfd_mach_mips4010, bfd_mach_mips4000 },
13622
13623 /* MIPS32 extensions. */
13624 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13625
13626 /* MIPS II extensions. */
13627 { bfd_mach_mips4000, bfd_mach_mips6000 },
13628 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13629
13630 /* MIPS I extensions. */
13631 { bfd_mach_mips6000, bfd_mach_mips3000 },
13632 { bfd_mach_mips3900, bfd_mach_mips3000 }
13633 };
13634
13635
13636 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13637
13638 static bfd_boolean
13639 mips_mach_extends_p (unsigned long base, unsigned long extension)
13640 {
13641 size_t i;
13642
13643 if (extension == base)
13644 return TRUE;
13645
13646 if (base == bfd_mach_mipsisa32
13647 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13648 return TRUE;
13649
13650 if (base == bfd_mach_mipsisa32r2
13651 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13652 return TRUE;
13653
13654 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13655 if (extension == mips_mach_extensions[i].extension)
13656 {
13657 extension = mips_mach_extensions[i].base;
13658 if (extension == base)
13659 return TRUE;
13660 }
13661
13662 return FALSE;
13663 }
13664
13665
13666 /* Return true if the given ELF header flags describe a 32-bit binary. */
13667
13668 static bfd_boolean
13669 mips_32bit_flags_p (flagword flags)
13670 {
13671 return ((flags & EF_MIPS_32BITMODE) != 0
13672 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13673 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13674 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13675 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13676 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13677 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13678 }
13679
13680
13681 /* Merge object attributes from IBFD into OBFD. Raise an error if
13682 there are conflicting attributes. */
13683 static bfd_boolean
13684 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13685 {
13686 obj_attribute *in_attr;
13687 obj_attribute *out_attr;
13688
13689 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13690 {
13691 /* This is the first object. Copy the attributes. */
13692 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13693
13694 /* Use the Tag_null value to indicate the attributes have been
13695 initialized. */
13696 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13697
13698 return TRUE;
13699 }
13700
13701 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13702 non-conflicting ones. */
13703 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13704 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13705 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13706 {
13707 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13708 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13709 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13710 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13711 ;
13712 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13713 _bfd_error_handler
13714 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13715 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13716 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13717 _bfd_error_handler
13718 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13719 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13720 else
13721 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13722 {
13723 case 1:
13724 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13725 {
13726 case 2:
13727 _bfd_error_handler
13728 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13729 obfd, ibfd);
13730 break;
13731
13732 case 3:
13733 _bfd_error_handler
13734 (_("Warning: %B uses hard float, %B uses soft float"),
13735 obfd, ibfd);
13736 break;
13737
13738 case 4:
13739 _bfd_error_handler
13740 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13741 obfd, ibfd);
13742 break;
13743
13744 default:
13745 abort ();
13746 }
13747 break;
13748
13749 case 2:
13750 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13751 {
13752 case 1:
13753 _bfd_error_handler
13754 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13755 ibfd, obfd);
13756 break;
13757
13758 case 3:
13759 _bfd_error_handler
13760 (_("Warning: %B uses hard float, %B uses soft float"),
13761 obfd, ibfd);
13762 break;
13763
13764 case 4:
13765 _bfd_error_handler
13766 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13767 obfd, ibfd);
13768 break;
13769
13770 default:
13771 abort ();
13772 }
13773 break;
13774
13775 case 3:
13776 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13777 {
13778 case 1:
13779 case 2:
13780 case 4:
13781 _bfd_error_handler
13782 (_("Warning: %B uses hard float, %B uses soft float"),
13783 ibfd, obfd);
13784 break;
13785
13786 default:
13787 abort ();
13788 }
13789 break;
13790
13791 case 4:
13792 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13793 {
13794 case 1:
13795 _bfd_error_handler
13796 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13797 ibfd, obfd);
13798 break;
13799
13800 case 2:
13801 _bfd_error_handler
13802 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13803 ibfd, obfd);
13804 break;
13805
13806 case 3:
13807 _bfd_error_handler
13808 (_("Warning: %B uses hard float, %B uses soft float"),
13809 obfd, ibfd);
13810 break;
13811
13812 default:
13813 abort ();
13814 }
13815 break;
13816
13817 default:
13818 abort ();
13819 }
13820 }
13821
13822 /* Merge Tag_compatibility attributes and any common GNU ones. */
13823 _bfd_elf_merge_object_attributes (ibfd, obfd);
13824
13825 return TRUE;
13826 }
13827
13828 /* Merge backend specific data from an object file to the output
13829 object file when linking. */
13830
13831 bfd_boolean
13832 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13833 {
13834 flagword old_flags;
13835 flagword new_flags;
13836 bfd_boolean ok;
13837 bfd_boolean null_input_bfd = TRUE;
13838 asection *sec;
13839
13840 /* Check if we have the same endianness. */
13841 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13842 {
13843 (*_bfd_error_handler)
13844 (_("%B: endianness incompatible with that of the selected emulation"),
13845 ibfd);
13846 return FALSE;
13847 }
13848
13849 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13850 return TRUE;
13851
13852 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13853 {
13854 (*_bfd_error_handler)
13855 (_("%B: ABI is incompatible with that of the selected emulation"),
13856 ibfd);
13857 return FALSE;
13858 }
13859
13860 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13861 return FALSE;
13862
13863 new_flags = elf_elfheader (ibfd)->e_flags;
13864 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13865 old_flags = elf_elfheader (obfd)->e_flags;
13866
13867 if (! elf_flags_init (obfd))
13868 {
13869 elf_flags_init (obfd) = TRUE;
13870 elf_elfheader (obfd)->e_flags = new_flags;
13871 elf_elfheader (obfd)->e_ident[EI_CLASS]
13872 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13873
13874 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13875 && (bfd_get_arch_info (obfd)->the_default
13876 || mips_mach_extends_p (bfd_get_mach (obfd),
13877 bfd_get_mach (ibfd))))
13878 {
13879 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13880 bfd_get_mach (ibfd)))
13881 return FALSE;
13882 }
13883
13884 return TRUE;
13885 }
13886
13887 /* Check flag compatibility. */
13888
13889 new_flags &= ~EF_MIPS_NOREORDER;
13890 old_flags &= ~EF_MIPS_NOREORDER;
13891
13892 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13893 doesn't seem to matter. */
13894 new_flags &= ~EF_MIPS_XGOT;
13895 old_flags &= ~EF_MIPS_XGOT;
13896
13897 /* MIPSpro generates ucode info in n64 objects. Again, we should
13898 just be able to ignore this. */
13899 new_flags &= ~EF_MIPS_UCODE;
13900 old_flags &= ~EF_MIPS_UCODE;
13901
13902 /* DSOs should only be linked with CPIC code. */
13903 if ((ibfd->flags & DYNAMIC) != 0)
13904 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13905
13906 if (new_flags == old_flags)
13907 return TRUE;
13908
13909 /* Check to see if the input BFD actually contains any sections.
13910 If not, its flags may not have been initialised either, but it cannot
13911 actually cause any incompatibility. */
13912 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13913 {
13914 /* Ignore synthetic sections and empty .text, .data and .bss sections
13915 which are automatically generated by gas. Also ignore fake
13916 (s)common sections, since merely defining a common symbol does
13917 not affect compatibility. */
13918 if ((sec->flags & SEC_IS_COMMON) == 0
13919 && strcmp (sec->name, ".reginfo")
13920 && strcmp (sec->name, ".mdebug")
13921 && (sec->size != 0
13922 || (strcmp (sec->name, ".text")
13923 && strcmp (sec->name, ".data")
13924 && strcmp (sec->name, ".bss"))))
13925 {
13926 null_input_bfd = FALSE;
13927 break;
13928 }
13929 }
13930 if (null_input_bfd)
13931 return TRUE;
13932
13933 ok = TRUE;
13934
13935 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13936 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13937 {
13938 (*_bfd_error_handler)
13939 (_("%B: warning: linking abicalls files with non-abicalls files"),
13940 ibfd);
13941 ok = TRUE;
13942 }
13943
13944 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13945 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13946 if (! (new_flags & EF_MIPS_PIC))
13947 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13948
13949 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13950 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13951
13952 /* Compare the ISAs. */
13953 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13954 {
13955 (*_bfd_error_handler)
13956 (_("%B: linking 32-bit code with 64-bit code"),
13957 ibfd);
13958 ok = FALSE;
13959 }
13960 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13961 {
13962 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13963 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13964 {
13965 /* Copy the architecture info from IBFD to OBFD. Also copy
13966 the 32-bit flag (if set) so that we continue to recognise
13967 OBFD as a 32-bit binary. */
13968 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13969 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13970 elf_elfheader (obfd)->e_flags
13971 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13972
13973 /* Copy across the ABI flags if OBFD doesn't use them
13974 and if that was what caused us to treat IBFD as 32-bit. */
13975 if ((old_flags & EF_MIPS_ABI) == 0
13976 && mips_32bit_flags_p (new_flags)
13977 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13978 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13979 }
13980 else
13981 {
13982 /* The ISAs aren't compatible. */
13983 (*_bfd_error_handler)
13984 (_("%B: linking %s module with previous %s modules"),
13985 ibfd,
13986 bfd_printable_name (ibfd),
13987 bfd_printable_name (obfd));
13988 ok = FALSE;
13989 }
13990 }
13991
13992 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13993 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13994
13995 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
13996 does set EI_CLASS differently from any 32-bit ABI. */
13997 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
13998 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13999 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14000 {
14001 /* Only error if both are set (to different values). */
14002 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14003 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14004 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14005 {
14006 (*_bfd_error_handler)
14007 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14008 ibfd,
14009 elf_mips_abi_name (ibfd),
14010 elf_mips_abi_name (obfd));
14011 ok = FALSE;
14012 }
14013 new_flags &= ~EF_MIPS_ABI;
14014 old_flags &= ~EF_MIPS_ABI;
14015 }
14016
14017 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14018 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14019 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14020 {
14021 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14022 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14023 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14024 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14025 int micro_mis = old_m16 && new_micro;
14026 int m16_mis = old_micro && new_m16;
14027
14028 if (m16_mis || micro_mis)
14029 {
14030 (*_bfd_error_handler)
14031 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14032 ibfd,
14033 m16_mis ? "MIPS16" : "microMIPS",
14034 m16_mis ? "microMIPS" : "MIPS16");
14035 ok = FALSE;
14036 }
14037
14038 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14039
14040 new_flags &= ~ EF_MIPS_ARCH_ASE;
14041 old_flags &= ~ EF_MIPS_ARCH_ASE;
14042 }
14043
14044 /* Warn about any other mismatches */
14045 if (new_flags != old_flags)
14046 {
14047 (*_bfd_error_handler)
14048 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14049 ibfd, (unsigned long) new_flags,
14050 (unsigned long) old_flags);
14051 ok = FALSE;
14052 }
14053
14054 if (! ok)
14055 {
14056 bfd_set_error (bfd_error_bad_value);
14057 return FALSE;
14058 }
14059
14060 return TRUE;
14061 }
14062
14063 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14064
14065 bfd_boolean
14066 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14067 {
14068 BFD_ASSERT (!elf_flags_init (abfd)
14069 || elf_elfheader (abfd)->e_flags == flags);
14070
14071 elf_elfheader (abfd)->e_flags = flags;
14072 elf_flags_init (abfd) = TRUE;
14073 return TRUE;
14074 }
14075
14076 char *
14077 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14078 {
14079 switch (dtag)
14080 {
14081 default: return "";
14082 case DT_MIPS_RLD_VERSION:
14083 return "MIPS_RLD_VERSION";
14084 case DT_MIPS_TIME_STAMP:
14085 return "MIPS_TIME_STAMP";
14086 case DT_MIPS_ICHECKSUM:
14087 return "MIPS_ICHECKSUM";
14088 case DT_MIPS_IVERSION:
14089 return "MIPS_IVERSION";
14090 case DT_MIPS_FLAGS:
14091 return "MIPS_FLAGS";
14092 case DT_MIPS_BASE_ADDRESS:
14093 return "MIPS_BASE_ADDRESS";
14094 case DT_MIPS_MSYM:
14095 return "MIPS_MSYM";
14096 case DT_MIPS_CONFLICT:
14097 return "MIPS_CONFLICT";
14098 case DT_MIPS_LIBLIST:
14099 return "MIPS_LIBLIST";
14100 case DT_MIPS_LOCAL_GOTNO:
14101 return "MIPS_LOCAL_GOTNO";
14102 case DT_MIPS_CONFLICTNO:
14103 return "MIPS_CONFLICTNO";
14104 case DT_MIPS_LIBLISTNO:
14105 return "MIPS_LIBLISTNO";
14106 case DT_MIPS_SYMTABNO:
14107 return "MIPS_SYMTABNO";
14108 case DT_MIPS_UNREFEXTNO:
14109 return "MIPS_UNREFEXTNO";
14110 case DT_MIPS_GOTSYM:
14111 return "MIPS_GOTSYM";
14112 case DT_MIPS_HIPAGENO:
14113 return "MIPS_HIPAGENO";
14114 case DT_MIPS_RLD_MAP:
14115 return "MIPS_RLD_MAP";
14116 case DT_MIPS_DELTA_CLASS:
14117 return "MIPS_DELTA_CLASS";
14118 case DT_MIPS_DELTA_CLASS_NO:
14119 return "MIPS_DELTA_CLASS_NO";
14120 case DT_MIPS_DELTA_INSTANCE:
14121 return "MIPS_DELTA_INSTANCE";
14122 case DT_MIPS_DELTA_INSTANCE_NO:
14123 return "MIPS_DELTA_INSTANCE_NO";
14124 case DT_MIPS_DELTA_RELOC:
14125 return "MIPS_DELTA_RELOC";
14126 case DT_MIPS_DELTA_RELOC_NO:
14127 return "MIPS_DELTA_RELOC_NO";
14128 case DT_MIPS_DELTA_SYM:
14129 return "MIPS_DELTA_SYM";
14130 case DT_MIPS_DELTA_SYM_NO:
14131 return "MIPS_DELTA_SYM_NO";
14132 case DT_MIPS_DELTA_CLASSSYM:
14133 return "MIPS_DELTA_CLASSSYM";
14134 case DT_MIPS_DELTA_CLASSSYM_NO:
14135 return "MIPS_DELTA_CLASSSYM_NO";
14136 case DT_MIPS_CXX_FLAGS:
14137 return "MIPS_CXX_FLAGS";
14138 case DT_MIPS_PIXIE_INIT:
14139 return "MIPS_PIXIE_INIT";
14140 case DT_MIPS_SYMBOL_LIB:
14141 return "MIPS_SYMBOL_LIB";
14142 case DT_MIPS_LOCALPAGE_GOTIDX:
14143 return "MIPS_LOCALPAGE_GOTIDX";
14144 case DT_MIPS_LOCAL_GOTIDX:
14145 return "MIPS_LOCAL_GOTIDX";
14146 case DT_MIPS_HIDDEN_GOTIDX:
14147 return "MIPS_HIDDEN_GOTIDX";
14148 case DT_MIPS_PROTECTED_GOTIDX:
14149 return "MIPS_PROTECTED_GOT_IDX";
14150 case DT_MIPS_OPTIONS:
14151 return "MIPS_OPTIONS";
14152 case DT_MIPS_INTERFACE:
14153 return "MIPS_INTERFACE";
14154 case DT_MIPS_DYNSTR_ALIGN:
14155 return "DT_MIPS_DYNSTR_ALIGN";
14156 case DT_MIPS_INTERFACE_SIZE:
14157 return "DT_MIPS_INTERFACE_SIZE";
14158 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14159 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14160 case DT_MIPS_PERF_SUFFIX:
14161 return "DT_MIPS_PERF_SUFFIX";
14162 case DT_MIPS_COMPACT_SIZE:
14163 return "DT_MIPS_COMPACT_SIZE";
14164 case DT_MIPS_GP_VALUE:
14165 return "DT_MIPS_GP_VALUE";
14166 case DT_MIPS_AUX_DYNAMIC:
14167 return "DT_MIPS_AUX_DYNAMIC";
14168 case DT_MIPS_PLTGOT:
14169 return "DT_MIPS_PLTGOT";
14170 case DT_MIPS_RWPLT:
14171 return "DT_MIPS_RWPLT";
14172 }
14173 }
14174
14175 bfd_boolean
14176 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14177 {
14178 FILE *file = ptr;
14179
14180 BFD_ASSERT (abfd != NULL && ptr != NULL);
14181
14182 /* Print normal ELF private data. */
14183 _bfd_elf_print_private_bfd_data (abfd, ptr);
14184
14185 /* xgettext:c-format */
14186 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14187
14188 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14189 fprintf (file, _(" [abi=O32]"));
14190 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14191 fprintf (file, _(" [abi=O64]"));
14192 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14193 fprintf (file, _(" [abi=EABI32]"));
14194 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14195 fprintf (file, _(" [abi=EABI64]"));
14196 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14197 fprintf (file, _(" [abi unknown]"));
14198 else if (ABI_N32_P (abfd))
14199 fprintf (file, _(" [abi=N32]"));
14200 else if (ABI_64_P (abfd))
14201 fprintf (file, _(" [abi=64]"));
14202 else
14203 fprintf (file, _(" [no abi set]"));
14204
14205 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14206 fprintf (file, " [mips1]");
14207 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14208 fprintf (file, " [mips2]");
14209 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14210 fprintf (file, " [mips3]");
14211 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14212 fprintf (file, " [mips4]");
14213 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14214 fprintf (file, " [mips5]");
14215 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14216 fprintf (file, " [mips32]");
14217 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14218 fprintf (file, " [mips64]");
14219 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14220 fprintf (file, " [mips32r2]");
14221 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14222 fprintf (file, " [mips64r2]");
14223 else
14224 fprintf (file, _(" [unknown ISA]"));
14225
14226 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14227 fprintf (file, " [mdmx]");
14228
14229 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14230 fprintf (file, " [mips16]");
14231
14232 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14233 fprintf (file, " [micromips]");
14234
14235 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14236 fprintf (file, " [32bitmode]");
14237 else
14238 fprintf (file, _(" [not 32bitmode]"));
14239
14240 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14241 fprintf (file, " [noreorder]");
14242
14243 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14244 fprintf (file, " [PIC]");
14245
14246 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14247 fprintf (file, " [CPIC]");
14248
14249 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14250 fprintf (file, " [XGOT]");
14251
14252 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14253 fprintf (file, " [UCODE]");
14254
14255 fputc ('\n', file);
14256
14257 return TRUE;
14258 }
14259
14260 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14261 {
14262 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14263 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14264 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14265 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14266 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14267 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14268 { NULL, 0, 0, 0, 0 }
14269 };
14270
14271 /* Merge non visibility st_other attributes. Ensure that the
14272 STO_OPTIONAL flag is copied into h->other, even if this is not a
14273 definiton of the symbol. */
14274 void
14275 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14276 const Elf_Internal_Sym *isym,
14277 bfd_boolean definition,
14278 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14279 {
14280 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14281 {
14282 unsigned char other;
14283
14284 other = (definition ? isym->st_other : h->other);
14285 other &= ~ELF_ST_VISIBILITY (-1);
14286 h->other = other | ELF_ST_VISIBILITY (h->other);
14287 }
14288
14289 if (!definition
14290 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14291 h->other |= STO_OPTIONAL;
14292 }
14293
14294 /* Decide whether an undefined symbol is special and can be ignored.
14295 This is the case for OPTIONAL symbols on IRIX. */
14296 bfd_boolean
14297 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14298 {
14299 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14300 }
14301
14302 bfd_boolean
14303 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14304 {
14305 return (sym->st_shndx == SHN_COMMON
14306 || sym->st_shndx == SHN_MIPS_ACOMMON
14307 || sym->st_shndx == SHN_MIPS_SCOMMON);
14308 }
14309
14310 /* Return address for Ith PLT stub in section PLT, for relocation REL
14311 or (bfd_vma) -1 if it should not be included. */
14312
14313 bfd_vma
14314 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14315 const arelent *rel ATTRIBUTE_UNUSED)
14316 {
14317 return (plt->vma
14318 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14319 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14320 }
14321
14322 void
14323 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14324 {
14325 struct mips_elf_link_hash_table *htab;
14326 Elf_Internal_Ehdr *i_ehdrp;
14327
14328 i_ehdrp = elf_elfheader (abfd);
14329 if (link_info)
14330 {
14331 htab = mips_elf_hash_table (link_info);
14332 BFD_ASSERT (htab != NULL);
14333
14334 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14335 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14336 }
14337 }
This page took 0.333144 seconds and 4 git commands to generate.