Check corrupt VTENTRY entry in bfd_elf_gc_record_vtentry
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* True if we use the special `__gnu_absolute_zero' symbol. */
459 bfd_boolean use_absolute_zero;
460
461 /* True if we have been configured for a GNU target. */
462 bfd_boolean gnu_target;
463
464 /* Shortcuts to some dynamic sections, or NULL if they are not
465 being used. */
466 asection *srelplt2;
467 asection *sstubs;
468
469 /* The master GOT information. */
470 struct mips_got_info *got_info;
471
472 /* The global symbol in the GOT with the lowest index in the dynamic
473 symbol table. */
474 struct elf_link_hash_entry *global_gotsym;
475
476 /* The size of the PLT header in bytes. */
477 bfd_vma plt_header_size;
478
479 /* The size of a standard PLT entry in bytes. */
480 bfd_vma plt_mips_entry_size;
481
482 /* The size of a compressed PLT entry in bytes. */
483 bfd_vma plt_comp_entry_size;
484
485 /* The offset of the next standard PLT entry to create. */
486 bfd_vma plt_mips_offset;
487
488 /* The offset of the next compressed PLT entry to create. */
489 bfd_vma plt_comp_offset;
490
491 /* The index of the next .got.plt entry to create. */
492 bfd_vma plt_got_index;
493
494 /* The number of functions that need a lazy-binding stub. */
495 bfd_vma lazy_stub_count;
496
497 /* The size of a function stub entry in bytes. */
498 bfd_vma function_stub_size;
499
500 /* The number of reserved entries at the beginning of the GOT. */
501 unsigned int reserved_gotno;
502
503 /* The section used for mips_elf_la25_stub trampolines.
504 See the comment above that structure for details. */
505 asection *strampoline;
506
507 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
508 pairs. */
509 htab_t la25_stubs;
510
511 /* A function FN (NAME, IS, OS) that creates a new input section
512 called NAME and links it to output section OS. If IS is nonnull,
513 the new section should go immediately before it, otherwise it
514 should go at the (current) beginning of OS.
515
516 The function returns the new section on success, otherwise it
517 returns null. */
518 asection *(*add_stub_section) (const char *, asection *, asection *);
519
520 /* Small local sym cache. */
521 struct sym_cache sym_cache;
522
523 /* Is the PLT header compressed? */
524 unsigned int plt_header_is_comp : 1;
525 };
526
527 /* Get the MIPS ELF linker hash table from a link_info structure. */
528
529 #define mips_elf_hash_table(p) \
530 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
531 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
532
533 /* A structure used to communicate with htab_traverse callbacks. */
534 struct mips_htab_traverse_info
535 {
536 /* The usual link-wide information. */
537 struct bfd_link_info *info;
538 bfd *output_bfd;
539
540 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
541 bfd_boolean error;
542 };
543
544 /* MIPS ELF private object data. */
545
546 struct mips_elf_obj_tdata
547 {
548 /* Generic ELF private object data. */
549 struct elf_obj_tdata root;
550
551 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
552 bfd *abi_fp_bfd;
553
554 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
555 bfd *abi_msa_bfd;
556
557 /* The abiflags for this object. */
558 Elf_Internal_ABIFlags_v0 abiflags;
559 bfd_boolean abiflags_valid;
560
561 /* The GOT requirements of input bfds. */
562 struct mips_got_info *got;
563
564 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
565 included directly in this one, but there's no point to wasting
566 the memory just for the infrequently called find_nearest_line. */
567 struct mips_elf_find_line *find_line_info;
568
569 /* An array of stub sections indexed by symbol number. */
570 asection **local_stubs;
571 asection **local_call_stubs;
572
573 /* The Irix 5 support uses two virtual sections, which represent
574 text/data symbols defined in dynamic objects. */
575 asymbol *elf_data_symbol;
576 asymbol *elf_text_symbol;
577 asection *elf_data_section;
578 asection *elf_text_section;
579 };
580
581 /* Get MIPS ELF private object data from BFD's tdata. */
582
583 #define mips_elf_tdata(bfd) \
584 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
585
586 #define TLS_RELOC_P(r_type) \
587 (r_type == R_MIPS_TLS_DTPMOD32 \
588 || r_type == R_MIPS_TLS_DTPMOD64 \
589 || r_type == R_MIPS_TLS_DTPREL32 \
590 || r_type == R_MIPS_TLS_DTPREL64 \
591 || r_type == R_MIPS_TLS_GD \
592 || r_type == R_MIPS_TLS_LDM \
593 || r_type == R_MIPS_TLS_DTPREL_HI16 \
594 || r_type == R_MIPS_TLS_DTPREL_LO16 \
595 || r_type == R_MIPS_TLS_GOTTPREL \
596 || r_type == R_MIPS_TLS_TPREL32 \
597 || r_type == R_MIPS_TLS_TPREL64 \
598 || r_type == R_MIPS_TLS_TPREL_HI16 \
599 || r_type == R_MIPS_TLS_TPREL_LO16 \
600 || r_type == R_MIPS16_TLS_GD \
601 || r_type == R_MIPS16_TLS_LDM \
602 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
603 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
604 || r_type == R_MIPS16_TLS_GOTTPREL \
605 || r_type == R_MIPS16_TLS_TPREL_HI16 \
606 || r_type == R_MIPS16_TLS_TPREL_LO16 \
607 || r_type == R_MICROMIPS_TLS_GD \
608 || r_type == R_MICROMIPS_TLS_LDM \
609 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
610 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
611 || r_type == R_MICROMIPS_TLS_GOTTPREL \
612 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
613 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
614
615 /* Structure used to pass information to mips_elf_output_extsym. */
616
617 struct extsym_info
618 {
619 bfd *abfd;
620 struct bfd_link_info *info;
621 struct ecoff_debug_info *debug;
622 const struct ecoff_debug_swap *swap;
623 bfd_boolean failed;
624 };
625
626 /* The names of the runtime procedure table symbols used on IRIX5. */
627
628 static const char * const mips_elf_dynsym_rtproc_names[] =
629 {
630 "_procedure_table",
631 "_procedure_string_table",
632 "_procedure_table_size",
633 NULL
634 };
635
636 /* These structures are used to generate the .compact_rel section on
637 IRIX5. */
638
639 typedef struct
640 {
641 unsigned long id1; /* Always one? */
642 unsigned long num; /* Number of compact relocation entries. */
643 unsigned long id2; /* Always two? */
644 unsigned long offset; /* The file offset of the first relocation. */
645 unsigned long reserved0; /* Zero? */
646 unsigned long reserved1; /* Zero? */
647 } Elf32_compact_rel;
648
649 typedef struct
650 {
651 bfd_byte id1[4];
652 bfd_byte num[4];
653 bfd_byte id2[4];
654 bfd_byte offset[4];
655 bfd_byte reserved0[4];
656 bfd_byte reserved1[4];
657 } Elf32_External_compact_rel;
658
659 typedef struct
660 {
661 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
662 unsigned int rtype : 4; /* Relocation types. See below. */
663 unsigned int dist2to : 8;
664 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
665 unsigned long konst; /* KONST field. See below. */
666 unsigned long vaddr; /* VADDR to be relocated. */
667 } Elf32_crinfo;
668
669 typedef struct
670 {
671 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
672 unsigned int rtype : 4; /* Relocation types. See below. */
673 unsigned int dist2to : 8;
674 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
675 unsigned long konst; /* KONST field. See below. */
676 } Elf32_crinfo2;
677
678 typedef struct
679 {
680 bfd_byte info[4];
681 bfd_byte konst[4];
682 bfd_byte vaddr[4];
683 } Elf32_External_crinfo;
684
685 typedef struct
686 {
687 bfd_byte info[4];
688 bfd_byte konst[4];
689 } Elf32_External_crinfo2;
690
691 /* These are the constants used to swap the bitfields in a crinfo. */
692
693 #define CRINFO_CTYPE (0x1)
694 #define CRINFO_CTYPE_SH (31)
695 #define CRINFO_RTYPE (0xf)
696 #define CRINFO_RTYPE_SH (27)
697 #define CRINFO_DIST2TO (0xff)
698 #define CRINFO_DIST2TO_SH (19)
699 #define CRINFO_RELVADDR (0x7ffff)
700 #define CRINFO_RELVADDR_SH (0)
701
702 /* A compact relocation info has long (3 words) or short (2 words)
703 formats. A short format doesn't have VADDR field and relvaddr
704 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
705 #define CRF_MIPS_LONG 1
706 #define CRF_MIPS_SHORT 0
707
708 /* There are 4 types of compact relocation at least. The value KONST
709 has different meaning for each type:
710
711 (type) (konst)
712 CT_MIPS_REL32 Address in data
713 CT_MIPS_WORD Address in word (XXX)
714 CT_MIPS_GPHI_LO GP - vaddr
715 CT_MIPS_JMPAD Address to jump
716 */
717
718 #define CRT_MIPS_REL32 0xa
719 #define CRT_MIPS_WORD 0xb
720 #define CRT_MIPS_GPHI_LO 0xc
721 #define CRT_MIPS_JMPAD 0xd
722
723 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
724 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
725 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
726 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
727 \f
728 /* The structure of the runtime procedure descriptor created by the
729 loader for use by the static exception system. */
730
731 typedef struct runtime_pdr {
732 bfd_vma adr; /* Memory address of start of procedure. */
733 long regmask; /* Save register mask. */
734 long regoffset; /* Save register offset. */
735 long fregmask; /* Save floating point register mask. */
736 long fregoffset; /* Save floating point register offset. */
737 long frameoffset; /* Frame size. */
738 short framereg; /* Frame pointer register. */
739 short pcreg; /* Offset or reg of return pc. */
740 long irpss; /* Index into the runtime string table. */
741 long reserved;
742 struct exception_info *exception_info;/* Pointer to exception array. */
743 } RPDR, *pRPDR;
744 #define cbRPDR sizeof (RPDR)
745 #define rpdNil ((pRPDR) 0)
746 \f
747 static struct mips_got_entry *mips_elf_create_local_got_entry
748 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
749 struct mips_elf_link_hash_entry *, int);
750 static bfd_boolean mips_elf_sort_hash_table_f
751 (struct mips_elf_link_hash_entry *, void *);
752 static bfd_vma mips_elf_high
753 (bfd_vma);
754 static bfd_boolean mips_elf_create_dynamic_relocation
755 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
756 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
757 bfd_vma *, asection *);
758 static bfd_vma mips_elf_adjust_gp
759 (bfd *, struct mips_got_info *, bfd *);
760
761 /* This will be used when we sort the dynamic relocation records. */
762 static bfd *reldyn_sorting_bfd;
763
764 /* True if ABFD is for CPUs with load interlocking that include
765 non-MIPS1 CPUs and R3900. */
766 #define LOAD_INTERLOCKS_P(abfd) \
767 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
768 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
769
770 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
771 This should be safe for all architectures. We enable this predicate
772 for RM9000 for now. */
773 #define JAL_TO_BAL_P(abfd) \
774 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
775
776 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
777 This should be safe for all architectures. We enable this predicate for
778 all CPUs. */
779 #define JALR_TO_BAL_P(abfd) 1
780
781 /* True if ABFD is for CPUs that are faster if JR is converted to B.
782 This should be safe for all architectures. We enable this predicate for
783 all CPUs. */
784 #define JR_TO_B_P(abfd) 1
785
786 /* True if ABFD is a PIC object. */
787 #define PIC_OBJECT_P(abfd) \
788 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
789
790 /* Nonzero if ABFD is using the O32 ABI. */
791 #define ABI_O32_P(abfd) \
792 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
793
794 /* Nonzero if ABFD is using the N32 ABI. */
795 #define ABI_N32_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
797
798 /* Nonzero if ABFD is using the N64 ABI. */
799 #define ABI_64_P(abfd) \
800 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
801
802 /* Nonzero if ABFD is using NewABI conventions. */
803 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
804
805 /* Nonzero if ABFD has microMIPS code. */
806 #define MICROMIPS_P(abfd) \
807 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
808
809 /* Nonzero if ABFD is MIPS R6. */
810 #define MIPSR6_P(abfd) \
811 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
812 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
813
814 /* The IRIX compatibility level we are striving for. */
815 #define IRIX_COMPAT(abfd) \
816 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
817
818 /* Whether we are trying to be compatible with IRIX at all. */
819 #define SGI_COMPAT(abfd) \
820 (IRIX_COMPAT (abfd) != ict_none)
821
822 /* The name of the options section. */
823 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
824 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
825
826 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
827 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
828 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
829 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
830
831 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
832 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
833 (strcmp (NAME, ".MIPS.abiflags") == 0)
834
835 /* Whether the section is readonly. */
836 #define MIPS_ELF_READONLY_SECTION(sec) \
837 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
838 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
839
840 /* The name of the stub section. */
841 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
842
843 /* The size of an external REL relocation. */
844 #define MIPS_ELF_REL_SIZE(abfd) \
845 (get_elf_backend_data (abfd)->s->sizeof_rel)
846
847 /* The size of an external RELA relocation. */
848 #define MIPS_ELF_RELA_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->sizeof_rela)
850
851 /* The size of an external dynamic table entry. */
852 #define MIPS_ELF_DYN_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_dyn)
854
855 /* The size of a GOT entry. */
856 #define MIPS_ELF_GOT_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->arch_size / 8)
858
859 /* The size of the .rld_map section. */
860 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->arch_size / 8)
862
863 /* The size of a symbol-table entry. */
864 #define MIPS_ELF_SYM_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->sizeof_sym)
866
867 /* The default alignment for sections, as a power of two. */
868 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
869 (get_elf_backend_data (abfd)->s->log_file_align)
870
871 /* Get word-sized data. */
872 #define MIPS_ELF_GET_WORD(abfd, ptr) \
873 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
874
875 /* Put out word-sized data. */
876 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
877 (ABI_64_P (abfd) \
878 ? bfd_put_64 (abfd, val, ptr) \
879 : bfd_put_32 (abfd, val, ptr))
880
881 /* The opcode for word-sized loads (LW or LD). */
882 #define MIPS_ELF_LOAD_WORD(abfd) \
883 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
884
885 /* Add a dynamic symbol table-entry. */
886 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
887 _bfd_elf_add_dynamic_entry (info, tag, val)
888
889 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
890 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
891
892 /* The name of the dynamic relocation section. */
893 #define MIPS_ELF_REL_DYN_NAME(INFO) \
894 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
895
896 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
897 from smaller values. Start with zero, widen, *then* decrement. */
898 #define MINUS_ONE (((bfd_vma)0) - 1)
899 #define MINUS_TWO (((bfd_vma)0) - 2)
900
901 /* The value to write into got[1] for SVR4 targets, to identify it is
902 a GNU object. The dynamic linker can then use got[1] to store the
903 module pointer. */
904 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
905 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
906
907 /* The offset of $gp from the beginning of the .got section. */
908 #define ELF_MIPS_GP_OFFSET(INFO) \
909 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
910
911 /* The maximum size of the GOT for it to be addressable using 16-bit
912 offsets from $gp. */
913 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
914
915 /* Instructions which appear in a stub. */
916 #define STUB_LW(abfd) \
917 ((ABI_64_P (abfd) \
918 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
919 : 0x8f998010)) /* lw t9,0x8010(gp) */
920 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
921 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
922 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
923 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
924 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
925 #define STUB_LI16S(abfd, VAL) \
926 ((ABI_64_P (abfd) \
927 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
928 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
929
930 /* Likewise for the microMIPS ASE. */
931 #define STUB_LW_MICROMIPS(abfd) \
932 (ABI_64_P (abfd) \
933 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
934 : 0xff3c8010) /* lw t9,0x8010(gp) */
935 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
936 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
937 #define STUB_LUI_MICROMIPS(VAL) \
938 (0x41b80000 + (VAL)) /* lui t8,VAL */
939 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
940 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
941 #define STUB_ORI_MICROMIPS(VAL) \
942 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
943 #define STUB_LI16U_MICROMIPS(VAL) \
944 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
945 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
946 (ABI_64_P (abfd) \
947 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
948 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
949
950 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
951 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
952 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
953 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
954 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
955 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
956
957 /* The name of the dynamic interpreter. This is put in the .interp
958 section. */
959
960 #define ELF_DYNAMIC_INTERPRETER(abfd) \
961 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
962 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
963 : "/usr/lib/libc.so.1")
964
965 #ifdef BFD64
966 #define MNAME(bfd,pre,pos) \
967 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
968 #define ELF_R_SYM(bfd, i) \
969 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
970 #define ELF_R_TYPE(bfd, i) \
971 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
972 #define ELF_R_INFO(bfd, s, t) \
973 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
974 #else
975 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
976 #define ELF_R_SYM(bfd, i) \
977 (ELF32_R_SYM (i))
978 #define ELF_R_TYPE(bfd, i) \
979 (ELF32_R_TYPE (i))
980 #define ELF_R_INFO(bfd, s, t) \
981 (ELF32_R_INFO (s, t))
982 #endif
983 \f
984 /* The mips16 compiler uses a couple of special sections to handle
985 floating point arguments.
986
987 Section names that look like .mips16.fn.FNNAME contain stubs that
988 copy floating point arguments from the fp regs to the gp regs and
989 then jump to FNNAME. If any 32 bit function calls FNNAME, the
990 call should be redirected to the stub instead. If no 32 bit
991 function calls FNNAME, the stub should be discarded. We need to
992 consider any reference to the function, not just a call, because
993 if the address of the function is taken we will need the stub,
994 since the address might be passed to a 32 bit function.
995
996 Section names that look like .mips16.call.FNNAME contain stubs
997 that copy floating point arguments from the gp regs to the fp
998 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
999 then any 16 bit function that calls FNNAME should be redirected
1000 to the stub instead. If FNNAME is not a 32 bit function, the
1001 stub should be discarded.
1002
1003 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1004 which call FNNAME and then copy the return value from the fp regs
1005 to the gp regs. These stubs store the return value in $18 while
1006 calling FNNAME; any function which might call one of these stubs
1007 must arrange to save $18 around the call. (This case is not
1008 needed for 32 bit functions that call 16 bit functions, because
1009 16 bit functions always return floating point values in both
1010 $f0/$f1 and $2/$3.)
1011
1012 Note that in all cases FNNAME might be defined statically.
1013 Therefore, FNNAME is not used literally. Instead, the relocation
1014 information will indicate which symbol the section is for.
1015
1016 We record any stubs that we find in the symbol table. */
1017
1018 #define FN_STUB ".mips16.fn."
1019 #define CALL_STUB ".mips16.call."
1020 #define CALL_FP_STUB ".mips16.call.fp."
1021
1022 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1023 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1024 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1025 \f
1026 /* The format of the first PLT entry in an O32 executable. */
1027 static const bfd_vma mips_o32_exec_plt0_entry[] =
1028 {
1029 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1030 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1031 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1032 0x031cc023, /* subu $24, $24, $28 */
1033 0x03e07825, /* or t7, ra, zero */
1034 0x0018c082, /* srl $24, $24, 2 */
1035 0x0320f809, /* jalr $25 */
1036 0x2718fffe /* subu $24, $24, 2 */
1037 };
1038
1039 /* The format of the first PLT entry in an N32 executable. Different
1040 because gp ($28) is not available; we use t2 ($14) instead. */
1041 static const bfd_vma mips_n32_exec_plt0_entry[] =
1042 {
1043 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1044 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1045 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1046 0x030ec023, /* subu $24, $24, $14 */
1047 0x03e07825, /* or t7, ra, zero */
1048 0x0018c082, /* srl $24, $24, 2 */
1049 0x0320f809, /* jalr $25 */
1050 0x2718fffe /* subu $24, $24, 2 */
1051 };
1052
1053 /* The format of the first PLT entry in an N64 executable. Different
1054 from N32 because of the increased size of GOT entries. */
1055 static const bfd_vma mips_n64_exec_plt0_entry[] =
1056 {
1057 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1058 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1059 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1060 0x030ec023, /* subu $24, $24, $14 */
1061 0x03e07825, /* or t7, ra, zero */
1062 0x0018c0c2, /* srl $24, $24, 3 */
1063 0x0320f809, /* jalr $25 */
1064 0x2718fffe /* subu $24, $24, 2 */
1065 };
1066
1067 /* The format of the microMIPS first PLT entry in an O32 executable.
1068 We rely on v0 ($2) rather than t8 ($24) to contain the address
1069 of the GOTPLT entry handled, so this stub may only be used when
1070 all the subsequent PLT entries are microMIPS code too.
1071
1072 The trailing NOP is for alignment and correct disassembly only. */
1073 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1074 {
1075 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1076 0xff23, 0x0000, /* lw $25, 0($3) */
1077 0x0535, /* subu $2, $2, $3 */
1078 0x2525, /* srl $2, $2, 2 */
1079 0x3302, 0xfffe, /* subu $24, $2, 2 */
1080 0x0dff, /* move $15, $31 */
1081 0x45f9, /* jalrs $25 */
1082 0x0f83, /* move $28, $3 */
1083 0x0c00 /* nop */
1084 };
1085
1086 /* The format of the microMIPS first PLT entry in an O32 executable
1087 in the insn32 mode. */
1088 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1089 {
1090 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1091 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1092 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1093 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1094 0x001f, 0x7a90, /* or $15, $31, zero */
1095 0x0318, 0x1040, /* srl $24, $24, 2 */
1096 0x03f9, 0x0f3c, /* jalr $25 */
1097 0x3318, 0xfffe /* subu $24, $24, 2 */
1098 };
1099
1100 /* The format of subsequent standard PLT entries. */
1101 static const bfd_vma mips_exec_plt_entry[] =
1102 {
1103 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1104 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1105 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1106 0x03200008 /* jr $25 */
1107 };
1108
1109 /* In the following PLT entry the JR and ADDIU instructions will
1110 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1111 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1112 static const bfd_vma mipsr6_exec_plt_entry[] =
1113 {
1114 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1115 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1116 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1117 0x03200009 /* jr $25 */
1118 };
1119
1120 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1121 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1122 directly addressable. */
1123 static const bfd_vma mips16_o32_exec_plt_entry[] =
1124 {
1125 0xb203, /* lw $2, 12($pc) */
1126 0x9a60, /* lw $3, 0($2) */
1127 0x651a, /* move $24, $2 */
1128 0xeb00, /* jr $3 */
1129 0x653b, /* move $25, $3 */
1130 0x6500, /* nop */
1131 0x0000, 0x0000 /* .word (.got.plt entry) */
1132 };
1133
1134 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1135 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1136 static const bfd_vma micromips_o32_exec_plt_entry[] =
1137 {
1138 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1139 0xff22, 0x0000, /* lw $25, 0($2) */
1140 0x4599, /* jr $25 */
1141 0x0f02 /* move $24, $2 */
1142 };
1143
1144 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1145 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1146 {
1147 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1148 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1149 0x0019, 0x0f3c, /* jr $25 */
1150 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1151 };
1152
1153 /* The format of the first PLT entry in a VxWorks executable. */
1154 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1155 {
1156 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1157 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1158 0x8f390008, /* lw t9, 8(t9) */
1159 0x00000000, /* nop */
1160 0x03200008, /* jr t9 */
1161 0x00000000 /* nop */
1162 };
1163
1164 /* The format of subsequent PLT entries. */
1165 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1166 {
1167 0x10000000, /* b .PLT_resolver */
1168 0x24180000, /* li t8, <pltindex> */
1169 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1170 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1171 0x8f390000, /* lw t9, 0(t9) */
1172 0x00000000, /* nop */
1173 0x03200008, /* jr t9 */
1174 0x00000000 /* nop */
1175 };
1176
1177 /* The format of the first PLT entry in a VxWorks shared object. */
1178 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1179 {
1180 0x8f990008, /* lw t9, 8(gp) */
1181 0x00000000, /* nop */
1182 0x03200008, /* jr t9 */
1183 0x00000000, /* nop */
1184 0x00000000, /* nop */
1185 0x00000000 /* nop */
1186 };
1187
1188 /* The format of subsequent PLT entries. */
1189 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1190 {
1191 0x10000000, /* b .PLT_resolver */
1192 0x24180000 /* li t8, <pltindex> */
1193 };
1194 \f
1195 /* microMIPS 32-bit opcode helper installer. */
1196
1197 static void
1198 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1199 {
1200 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1201 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1202 }
1203
1204 /* microMIPS 32-bit opcode helper retriever. */
1205
1206 static bfd_vma
1207 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1208 {
1209 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1210 }
1211 \f
1212 /* Look up an entry in a MIPS ELF linker hash table. */
1213
1214 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1215 ((struct mips_elf_link_hash_entry *) \
1216 elf_link_hash_lookup (&(table)->root, (string), (create), \
1217 (copy), (follow)))
1218
1219 /* Traverse a MIPS ELF linker hash table. */
1220
1221 #define mips_elf_link_hash_traverse(table, func, info) \
1222 (elf_link_hash_traverse \
1223 (&(table)->root, \
1224 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1225 (info)))
1226
1227 /* Find the base offsets for thread-local storage in this object,
1228 for GD/LD and IE/LE respectively. */
1229
1230 #define TP_OFFSET 0x7000
1231 #define DTP_OFFSET 0x8000
1232
1233 static bfd_vma
1234 dtprel_base (struct bfd_link_info *info)
1235 {
1236 /* If tls_sec is NULL, we should have signalled an error already. */
1237 if (elf_hash_table (info)->tls_sec == NULL)
1238 return 0;
1239 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1240 }
1241
1242 static bfd_vma
1243 tprel_base (struct bfd_link_info *info)
1244 {
1245 /* If tls_sec is NULL, we should have signalled an error already. */
1246 if (elf_hash_table (info)->tls_sec == NULL)
1247 return 0;
1248 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1249 }
1250
1251 /* Create an entry in a MIPS ELF linker hash table. */
1252
1253 static struct bfd_hash_entry *
1254 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1255 struct bfd_hash_table *table, const char *string)
1256 {
1257 struct mips_elf_link_hash_entry *ret =
1258 (struct mips_elf_link_hash_entry *) entry;
1259
1260 /* Allocate the structure if it has not already been allocated by a
1261 subclass. */
1262 if (ret == NULL)
1263 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1264 if (ret == NULL)
1265 return (struct bfd_hash_entry *) ret;
1266
1267 /* Call the allocation method of the superclass. */
1268 ret = ((struct mips_elf_link_hash_entry *)
1269 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1270 table, string));
1271 if (ret != NULL)
1272 {
1273 /* Set local fields. */
1274 memset (&ret->esym, 0, sizeof (EXTR));
1275 /* We use -2 as a marker to indicate that the information has
1276 not been set. -1 means there is no associated ifd. */
1277 ret->esym.ifd = -2;
1278 ret->la25_stub = 0;
1279 ret->possibly_dynamic_relocs = 0;
1280 ret->fn_stub = NULL;
1281 ret->call_stub = NULL;
1282 ret->call_fp_stub = NULL;
1283 ret->global_got_area = GGA_NONE;
1284 ret->got_only_for_calls = TRUE;
1285 ret->readonly_reloc = FALSE;
1286 ret->has_static_relocs = FALSE;
1287 ret->no_fn_stub = FALSE;
1288 ret->need_fn_stub = FALSE;
1289 ret->has_nonpic_branches = FALSE;
1290 ret->needs_lazy_stub = FALSE;
1291 ret->use_plt_entry = FALSE;
1292 }
1293
1294 return (struct bfd_hash_entry *) ret;
1295 }
1296
1297 /* Allocate MIPS ELF private object data. */
1298
1299 bfd_boolean
1300 _bfd_mips_elf_mkobject (bfd *abfd)
1301 {
1302 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1303 MIPS_ELF_DATA);
1304 }
1305
1306 bfd_boolean
1307 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1308 {
1309 if (!sec->used_by_bfd)
1310 {
1311 struct _mips_elf_section_data *sdata;
1312 bfd_size_type amt = sizeof (*sdata);
1313
1314 sdata = bfd_zalloc (abfd, amt);
1315 if (sdata == NULL)
1316 return FALSE;
1317 sec->used_by_bfd = sdata;
1318 }
1319
1320 return _bfd_elf_new_section_hook (abfd, sec);
1321 }
1322 \f
1323 /* Read ECOFF debugging information from a .mdebug section into a
1324 ecoff_debug_info structure. */
1325
1326 bfd_boolean
1327 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1328 struct ecoff_debug_info *debug)
1329 {
1330 HDRR *symhdr;
1331 const struct ecoff_debug_swap *swap;
1332 char *ext_hdr;
1333
1334 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1335 memset (debug, 0, sizeof (*debug));
1336
1337 ext_hdr = bfd_malloc (swap->external_hdr_size);
1338 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1339 goto error_return;
1340
1341 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1342 swap->external_hdr_size))
1343 goto error_return;
1344
1345 symhdr = &debug->symbolic_header;
1346 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1347
1348 /* The symbolic header contains absolute file offsets and sizes to
1349 read. */
1350 #define READ(ptr, offset, count, size, type) \
1351 if (symhdr->count == 0) \
1352 debug->ptr = NULL; \
1353 else \
1354 { \
1355 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1356 debug->ptr = bfd_malloc (amt); \
1357 if (debug->ptr == NULL) \
1358 goto error_return; \
1359 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1360 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1361 goto error_return; \
1362 }
1363
1364 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1365 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1366 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1367 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1368 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1369 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1370 union aux_ext *);
1371 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1372 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1373 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1374 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1375 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1376 #undef READ
1377
1378 debug->fdr = NULL;
1379
1380 return TRUE;
1381
1382 error_return:
1383 if (ext_hdr != NULL)
1384 free (ext_hdr);
1385 if (debug->line != NULL)
1386 free (debug->line);
1387 if (debug->external_dnr != NULL)
1388 free (debug->external_dnr);
1389 if (debug->external_pdr != NULL)
1390 free (debug->external_pdr);
1391 if (debug->external_sym != NULL)
1392 free (debug->external_sym);
1393 if (debug->external_opt != NULL)
1394 free (debug->external_opt);
1395 if (debug->external_aux != NULL)
1396 free (debug->external_aux);
1397 if (debug->ss != NULL)
1398 free (debug->ss);
1399 if (debug->ssext != NULL)
1400 free (debug->ssext);
1401 if (debug->external_fdr != NULL)
1402 free (debug->external_fdr);
1403 if (debug->external_rfd != NULL)
1404 free (debug->external_rfd);
1405 if (debug->external_ext != NULL)
1406 free (debug->external_ext);
1407 return FALSE;
1408 }
1409 \f
1410 /* Swap RPDR (runtime procedure table entry) for output. */
1411
1412 static void
1413 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1414 {
1415 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1416 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1417 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1418 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1419 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1420 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1421
1422 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1423 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1424
1425 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1426 }
1427
1428 /* Create a runtime procedure table from the .mdebug section. */
1429
1430 static bfd_boolean
1431 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1432 struct bfd_link_info *info, asection *s,
1433 struct ecoff_debug_info *debug)
1434 {
1435 const struct ecoff_debug_swap *swap;
1436 HDRR *hdr = &debug->symbolic_header;
1437 RPDR *rpdr, *rp;
1438 struct rpdr_ext *erp;
1439 void *rtproc;
1440 struct pdr_ext *epdr;
1441 struct sym_ext *esym;
1442 char *ss, **sv;
1443 char *str;
1444 bfd_size_type size;
1445 bfd_size_type count;
1446 unsigned long sindex;
1447 unsigned long i;
1448 PDR pdr;
1449 SYMR sym;
1450 const char *no_name_func = _("static procedure (no name)");
1451
1452 epdr = NULL;
1453 rpdr = NULL;
1454 esym = NULL;
1455 ss = NULL;
1456 sv = NULL;
1457
1458 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1459
1460 sindex = strlen (no_name_func) + 1;
1461 count = hdr->ipdMax;
1462 if (count > 0)
1463 {
1464 size = swap->external_pdr_size;
1465
1466 epdr = bfd_malloc (size * count);
1467 if (epdr == NULL)
1468 goto error_return;
1469
1470 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1471 goto error_return;
1472
1473 size = sizeof (RPDR);
1474 rp = rpdr = bfd_malloc (size * count);
1475 if (rpdr == NULL)
1476 goto error_return;
1477
1478 size = sizeof (char *);
1479 sv = bfd_malloc (size * count);
1480 if (sv == NULL)
1481 goto error_return;
1482
1483 count = hdr->isymMax;
1484 size = swap->external_sym_size;
1485 esym = bfd_malloc (size * count);
1486 if (esym == NULL)
1487 goto error_return;
1488
1489 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1490 goto error_return;
1491
1492 count = hdr->issMax;
1493 ss = bfd_malloc (count);
1494 if (ss == NULL)
1495 goto error_return;
1496 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1497 goto error_return;
1498
1499 count = hdr->ipdMax;
1500 for (i = 0; i < (unsigned long) count; i++, rp++)
1501 {
1502 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1503 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1504 rp->adr = sym.value;
1505 rp->regmask = pdr.regmask;
1506 rp->regoffset = pdr.regoffset;
1507 rp->fregmask = pdr.fregmask;
1508 rp->fregoffset = pdr.fregoffset;
1509 rp->frameoffset = pdr.frameoffset;
1510 rp->framereg = pdr.framereg;
1511 rp->pcreg = pdr.pcreg;
1512 rp->irpss = sindex;
1513 sv[i] = ss + sym.iss;
1514 sindex += strlen (sv[i]) + 1;
1515 }
1516 }
1517
1518 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1519 size = BFD_ALIGN (size, 16);
1520 rtproc = bfd_alloc (abfd, size);
1521 if (rtproc == NULL)
1522 {
1523 mips_elf_hash_table (info)->procedure_count = 0;
1524 goto error_return;
1525 }
1526
1527 mips_elf_hash_table (info)->procedure_count = count + 2;
1528
1529 erp = rtproc;
1530 memset (erp, 0, sizeof (struct rpdr_ext));
1531 erp++;
1532 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1533 strcpy (str, no_name_func);
1534 str += strlen (no_name_func) + 1;
1535 for (i = 0; i < count; i++)
1536 {
1537 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1538 strcpy (str, sv[i]);
1539 str += strlen (sv[i]) + 1;
1540 }
1541 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1542
1543 /* Set the size and contents of .rtproc section. */
1544 s->size = size;
1545 s->contents = rtproc;
1546
1547 /* Skip this section later on (I don't think this currently
1548 matters, but someday it might). */
1549 s->map_head.link_order = NULL;
1550
1551 if (epdr != NULL)
1552 free (epdr);
1553 if (rpdr != NULL)
1554 free (rpdr);
1555 if (esym != NULL)
1556 free (esym);
1557 if (ss != NULL)
1558 free (ss);
1559 if (sv != NULL)
1560 free (sv);
1561
1562 return TRUE;
1563
1564 error_return:
1565 if (epdr != NULL)
1566 free (epdr);
1567 if (rpdr != NULL)
1568 free (rpdr);
1569 if (esym != NULL)
1570 free (esym);
1571 if (ss != NULL)
1572 free (ss);
1573 if (sv != NULL)
1574 free (sv);
1575 return FALSE;
1576 }
1577 \f
1578 /* We're going to create a stub for H. Create a symbol for the stub's
1579 value and size, to help make the disassembly easier to read. */
1580
1581 static bfd_boolean
1582 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1583 struct mips_elf_link_hash_entry *h,
1584 const char *prefix, asection *s, bfd_vma value,
1585 bfd_vma size)
1586 {
1587 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1588 struct bfd_link_hash_entry *bh;
1589 struct elf_link_hash_entry *elfh;
1590 char *name;
1591 bfd_boolean res;
1592
1593 if (micromips_p)
1594 value |= 1;
1595
1596 /* Create a new symbol. */
1597 name = concat (prefix, h->root.root.root.string, NULL);
1598 bh = NULL;
1599 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1600 BSF_LOCAL, s, value, NULL,
1601 TRUE, FALSE, &bh);
1602 free (name);
1603 if (! res)
1604 return FALSE;
1605
1606 /* Make it a local function. */
1607 elfh = (struct elf_link_hash_entry *) bh;
1608 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1609 elfh->size = size;
1610 elfh->forced_local = 1;
1611 if (micromips_p)
1612 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1613 return TRUE;
1614 }
1615
1616 /* We're about to redefine H. Create a symbol to represent H's
1617 current value and size, to help make the disassembly easier
1618 to read. */
1619
1620 static bfd_boolean
1621 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1622 struct mips_elf_link_hash_entry *h,
1623 const char *prefix)
1624 {
1625 struct bfd_link_hash_entry *bh;
1626 struct elf_link_hash_entry *elfh;
1627 char *name;
1628 asection *s;
1629 bfd_vma value;
1630 bfd_boolean res;
1631
1632 /* Read the symbol's value. */
1633 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1634 || h->root.root.type == bfd_link_hash_defweak);
1635 s = h->root.root.u.def.section;
1636 value = h->root.root.u.def.value;
1637
1638 /* Create a new symbol. */
1639 name = concat (prefix, h->root.root.root.string, NULL);
1640 bh = NULL;
1641 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1642 BSF_LOCAL, s, value, NULL,
1643 TRUE, FALSE, &bh);
1644 free (name);
1645 if (! res)
1646 return FALSE;
1647
1648 /* Make it local and copy the other attributes from H. */
1649 elfh = (struct elf_link_hash_entry *) bh;
1650 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1651 elfh->other = h->root.other;
1652 elfh->size = h->root.size;
1653 elfh->forced_local = 1;
1654 return TRUE;
1655 }
1656
1657 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1658 function rather than to a hard-float stub. */
1659
1660 static bfd_boolean
1661 section_allows_mips16_refs_p (asection *section)
1662 {
1663 const char *name;
1664
1665 name = bfd_get_section_name (section->owner, section);
1666 return (FN_STUB_P (name)
1667 || CALL_STUB_P (name)
1668 || CALL_FP_STUB_P (name)
1669 || strcmp (name, ".pdr") == 0);
1670 }
1671
1672 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1673 stub section of some kind. Return the R_SYMNDX of the target
1674 function, or 0 if we can't decide which function that is. */
1675
1676 static unsigned long
1677 mips16_stub_symndx (const struct elf_backend_data *bed,
1678 asection *sec ATTRIBUTE_UNUSED,
1679 const Elf_Internal_Rela *relocs,
1680 const Elf_Internal_Rela *relend)
1681 {
1682 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1683 const Elf_Internal_Rela *rel;
1684
1685 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1686 one in a compound relocation. */
1687 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1688 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1689 return ELF_R_SYM (sec->owner, rel->r_info);
1690
1691 /* Otherwise trust the first relocation, whatever its kind. This is
1692 the traditional behavior. */
1693 if (relocs < relend)
1694 return ELF_R_SYM (sec->owner, relocs->r_info);
1695
1696 return 0;
1697 }
1698
1699 /* Check the mips16 stubs for a particular symbol, and see if we can
1700 discard them. */
1701
1702 static void
1703 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1704 struct mips_elf_link_hash_entry *h)
1705 {
1706 /* Dynamic symbols must use the standard call interface, in case other
1707 objects try to call them. */
1708 if (h->fn_stub != NULL
1709 && h->root.dynindx != -1)
1710 {
1711 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1712 h->need_fn_stub = TRUE;
1713 }
1714
1715 if (h->fn_stub != NULL
1716 && ! h->need_fn_stub)
1717 {
1718 /* We don't need the fn_stub; the only references to this symbol
1719 are 16 bit calls. Clobber the size to 0 to prevent it from
1720 being included in the link. */
1721 h->fn_stub->size = 0;
1722 h->fn_stub->flags &= ~SEC_RELOC;
1723 h->fn_stub->reloc_count = 0;
1724 h->fn_stub->flags |= SEC_EXCLUDE;
1725 h->fn_stub->output_section = bfd_abs_section_ptr;
1726 }
1727
1728 if (h->call_stub != NULL
1729 && ELF_ST_IS_MIPS16 (h->root.other))
1730 {
1731 /* We don't need the call_stub; this is a 16 bit function, so
1732 calls from other 16 bit functions are OK. Clobber the size
1733 to 0 to prevent it from being included in the link. */
1734 h->call_stub->size = 0;
1735 h->call_stub->flags &= ~SEC_RELOC;
1736 h->call_stub->reloc_count = 0;
1737 h->call_stub->flags |= SEC_EXCLUDE;
1738 h->call_stub->output_section = bfd_abs_section_ptr;
1739 }
1740
1741 if (h->call_fp_stub != NULL
1742 && ELF_ST_IS_MIPS16 (h->root.other))
1743 {
1744 /* We don't need the call_stub; this is a 16 bit function, so
1745 calls from other 16 bit functions are OK. Clobber the size
1746 to 0 to prevent it from being included in the link. */
1747 h->call_fp_stub->size = 0;
1748 h->call_fp_stub->flags &= ~SEC_RELOC;
1749 h->call_fp_stub->reloc_count = 0;
1750 h->call_fp_stub->flags |= SEC_EXCLUDE;
1751 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1752 }
1753 }
1754
1755 /* Hashtable callbacks for mips_elf_la25_stubs. */
1756
1757 static hashval_t
1758 mips_elf_la25_stub_hash (const void *entry_)
1759 {
1760 const struct mips_elf_la25_stub *entry;
1761
1762 entry = (struct mips_elf_la25_stub *) entry_;
1763 return entry->h->root.root.u.def.section->id
1764 + entry->h->root.root.u.def.value;
1765 }
1766
1767 static int
1768 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1769 {
1770 const struct mips_elf_la25_stub *entry1, *entry2;
1771
1772 entry1 = (struct mips_elf_la25_stub *) entry1_;
1773 entry2 = (struct mips_elf_la25_stub *) entry2_;
1774 return ((entry1->h->root.root.u.def.section
1775 == entry2->h->root.root.u.def.section)
1776 && (entry1->h->root.root.u.def.value
1777 == entry2->h->root.root.u.def.value));
1778 }
1779
1780 /* Called by the linker to set up the la25 stub-creation code. FN is
1781 the linker's implementation of add_stub_function. Return true on
1782 success. */
1783
1784 bfd_boolean
1785 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1786 asection *(*fn) (const char *, asection *,
1787 asection *))
1788 {
1789 struct mips_elf_link_hash_table *htab;
1790
1791 htab = mips_elf_hash_table (info);
1792 if (htab == NULL)
1793 return FALSE;
1794
1795 htab->add_stub_section = fn;
1796 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1797 mips_elf_la25_stub_eq, NULL);
1798 if (htab->la25_stubs == NULL)
1799 return FALSE;
1800
1801 return TRUE;
1802 }
1803
1804 /* Return true if H is a locally-defined PIC function, in the sense
1805 that it or its fn_stub might need $25 to be valid on entry.
1806 Note that MIPS16 functions set up $gp using PC-relative instructions,
1807 so they themselves never need $25 to be valid. Only non-MIPS16
1808 entry points are of interest here. */
1809
1810 static bfd_boolean
1811 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1812 {
1813 return ((h->root.root.type == bfd_link_hash_defined
1814 || h->root.root.type == bfd_link_hash_defweak)
1815 && h->root.def_regular
1816 && !bfd_is_abs_section (h->root.root.u.def.section)
1817 && !bfd_is_und_section (h->root.root.u.def.section)
1818 && (!ELF_ST_IS_MIPS16 (h->root.other)
1819 || (h->fn_stub && h->need_fn_stub))
1820 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1821 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1822 }
1823
1824 /* Set *SEC to the input section that contains the target of STUB.
1825 Return the offset of the target from the start of that section. */
1826
1827 static bfd_vma
1828 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1829 asection **sec)
1830 {
1831 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1832 {
1833 BFD_ASSERT (stub->h->need_fn_stub);
1834 *sec = stub->h->fn_stub;
1835 return 0;
1836 }
1837 else
1838 {
1839 *sec = stub->h->root.root.u.def.section;
1840 return stub->h->root.root.u.def.value;
1841 }
1842 }
1843
1844 /* STUB describes an la25 stub that we have decided to implement
1845 by inserting an LUI/ADDIU pair before the target function.
1846 Create the section and redirect the function symbol to it. */
1847
1848 static bfd_boolean
1849 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1850 struct bfd_link_info *info)
1851 {
1852 struct mips_elf_link_hash_table *htab;
1853 char *name;
1854 asection *s, *input_section;
1855 unsigned int align;
1856
1857 htab = mips_elf_hash_table (info);
1858 if (htab == NULL)
1859 return FALSE;
1860
1861 /* Create a unique name for the new section. */
1862 name = bfd_malloc (11 + sizeof (".text.stub."));
1863 if (name == NULL)
1864 return FALSE;
1865 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1866
1867 /* Create the section. */
1868 mips_elf_get_la25_target (stub, &input_section);
1869 s = htab->add_stub_section (name, input_section,
1870 input_section->output_section);
1871 if (s == NULL)
1872 return FALSE;
1873
1874 /* Make sure that any padding goes before the stub. */
1875 align = input_section->alignment_power;
1876 if (!bfd_set_section_alignment (s->owner, s, align))
1877 return FALSE;
1878 if (align > 3)
1879 s->size = (1 << align) - 8;
1880
1881 /* Create a symbol for the stub. */
1882 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1883 stub->stub_section = s;
1884 stub->offset = s->size;
1885
1886 /* Allocate room for it. */
1887 s->size += 8;
1888 return TRUE;
1889 }
1890
1891 /* STUB describes an la25 stub that we have decided to implement
1892 with a separate trampoline. Allocate room for it and redirect
1893 the function symbol to it. */
1894
1895 static bfd_boolean
1896 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1897 struct bfd_link_info *info)
1898 {
1899 struct mips_elf_link_hash_table *htab;
1900 asection *s;
1901
1902 htab = mips_elf_hash_table (info);
1903 if (htab == NULL)
1904 return FALSE;
1905
1906 /* Create a trampoline section, if we haven't already. */
1907 s = htab->strampoline;
1908 if (s == NULL)
1909 {
1910 asection *input_section = stub->h->root.root.u.def.section;
1911 s = htab->add_stub_section (".text", NULL,
1912 input_section->output_section);
1913 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1914 return FALSE;
1915 htab->strampoline = s;
1916 }
1917
1918 /* Create a symbol for the stub. */
1919 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1920 stub->stub_section = s;
1921 stub->offset = s->size;
1922
1923 /* Allocate room for it. */
1924 s->size += 16;
1925 return TRUE;
1926 }
1927
1928 /* H describes a symbol that needs an la25 stub. Make sure that an
1929 appropriate stub exists and point H at it. */
1930
1931 static bfd_boolean
1932 mips_elf_add_la25_stub (struct bfd_link_info *info,
1933 struct mips_elf_link_hash_entry *h)
1934 {
1935 struct mips_elf_link_hash_table *htab;
1936 struct mips_elf_la25_stub search, *stub;
1937 bfd_boolean use_trampoline_p;
1938 asection *s;
1939 bfd_vma value;
1940 void **slot;
1941
1942 /* Describe the stub we want. */
1943 search.stub_section = NULL;
1944 search.offset = 0;
1945 search.h = h;
1946
1947 /* See if we've already created an equivalent stub. */
1948 htab = mips_elf_hash_table (info);
1949 if (htab == NULL)
1950 return FALSE;
1951
1952 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1953 if (slot == NULL)
1954 return FALSE;
1955
1956 stub = (struct mips_elf_la25_stub *) *slot;
1957 if (stub != NULL)
1958 {
1959 /* We can reuse the existing stub. */
1960 h->la25_stub = stub;
1961 return TRUE;
1962 }
1963
1964 /* Create a permanent copy of ENTRY and add it to the hash table. */
1965 stub = bfd_malloc (sizeof (search));
1966 if (stub == NULL)
1967 return FALSE;
1968 *stub = search;
1969 *slot = stub;
1970
1971 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1972 of the section and if we would need no more than 2 nops. */
1973 value = mips_elf_get_la25_target (stub, &s);
1974 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1975 value &= ~1;
1976 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1977
1978 h->la25_stub = stub;
1979 return (use_trampoline_p
1980 ? mips_elf_add_la25_trampoline (stub, info)
1981 : mips_elf_add_la25_intro (stub, info));
1982 }
1983
1984 /* A mips_elf_link_hash_traverse callback that is called before sizing
1985 sections. DATA points to a mips_htab_traverse_info structure. */
1986
1987 static bfd_boolean
1988 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1989 {
1990 struct mips_htab_traverse_info *hti;
1991
1992 hti = (struct mips_htab_traverse_info *) data;
1993 if (!bfd_link_relocatable (hti->info))
1994 mips_elf_check_mips16_stubs (hti->info, h);
1995
1996 if (mips_elf_local_pic_function_p (h))
1997 {
1998 /* PR 12845: If H is in a section that has been garbage
1999 collected it will have its output section set to *ABS*. */
2000 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2001 return TRUE;
2002
2003 /* H is a function that might need $25 to be valid on entry.
2004 If we're creating a non-PIC relocatable object, mark H as
2005 being PIC. If we're creating a non-relocatable object with
2006 non-PIC branches and jumps to H, make sure that H has an la25
2007 stub. */
2008 if (bfd_link_relocatable (hti->info))
2009 {
2010 if (!PIC_OBJECT_P (hti->output_bfd))
2011 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2012 }
2013 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2014 {
2015 hti->error = TRUE;
2016 return FALSE;
2017 }
2018 }
2019 return TRUE;
2020 }
2021 \f
2022 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2023 Most mips16 instructions are 16 bits, but these instructions
2024 are 32 bits.
2025
2026 The format of these instructions is:
2027
2028 +--------------+--------------------------------+
2029 | JALX | X| Imm 20:16 | Imm 25:21 |
2030 +--------------+--------------------------------+
2031 | Immediate 15:0 |
2032 +-----------------------------------------------+
2033
2034 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2035 Note that the immediate value in the first word is swapped.
2036
2037 When producing a relocatable object file, R_MIPS16_26 is
2038 handled mostly like R_MIPS_26. In particular, the addend is
2039 stored as a straight 26-bit value in a 32-bit instruction.
2040 (gas makes life simpler for itself by never adjusting a
2041 R_MIPS16_26 reloc to be against a section, so the addend is
2042 always zero). However, the 32 bit instruction is stored as 2
2043 16-bit values, rather than a single 32-bit value. In a
2044 big-endian file, the result is the same; in a little-endian
2045 file, the two 16-bit halves of the 32 bit value are swapped.
2046 This is so that a disassembler can recognize the jal
2047 instruction.
2048
2049 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2050 instruction stored as two 16-bit values. The addend A is the
2051 contents of the targ26 field. The calculation is the same as
2052 R_MIPS_26. When storing the calculated value, reorder the
2053 immediate value as shown above, and don't forget to store the
2054 value as two 16-bit values.
2055
2056 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2057 defined as
2058
2059 big-endian:
2060 +--------+----------------------+
2061 | | |
2062 | | targ26-16 |
2063 |31 26|25 0|
2064 +--------+----------------------+
2065
2066 little-endian:
2067 +----------+------+-------------+
2068 | | | |
2069 | sub1 | | sub2 |
2070 |0 9|10 15|16 31|
2071 +----------+--------------------+
2072 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2073 ((sub1 << 16) | sub2)).
2074
2075 When producing a relocatable object file, the calculation is
2076 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2077 When producing a fully linked file, the calculation is
2078 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2079 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2080
2081 The table below lists the other MIPS16 instruction relocations.
2082 Each one is calculated in the same way as the non-MIPS16 relocation
2083 given on the right, but using the extended MIPS16 layout of 16-bit
2084 immediate fields:
2085
2086 R_MIPS16_GPREL R_MIPS_GPREL16
2087 R_MIPS16_GOT16 R_MIPS_GOT16
2088 R_MIPS16_CALL16 R_MIPS_CALL16
2089 R_MIPS16_HI16 R_MIPS_HI16
2090 R_MIPS16_LO16 R_MIPS_LO16
2091
2092 A typical instruction will have a format like this:
2093
2094 +--------------+--------------------------------+
2095 | EXTEND | Imm 10:5 | Imm 15:11 |
2096 +--------------+--------------------------------+
2097 | Major | rx | ry | Imm 4:0 |
2098 +--------------+--------------------------------+
2099
2100 EXTEND is the five bit value 11110. Major is the instruction
2101 opcode.
2102
2103 All we need to do here is shuffle the bits appropriately.
2104 As above, the two 16-bit halves must be swapped on a
2105 little-endian system.
2106
2107 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2108 relocatable field is shifted by 1 rather than 2 and the same bit
2109 shuffling is done as with the relocations above. */
2110
2111 static inline bfd_boolean
2112 mips16_reloc_p (int r_type)
2113 {
2114 switch (r_type)
2115 {
2116 case R_MIPS16_26:
2117 case R_MIPS16_GPREL:
2118 case R_MIPS16_GOT16:
2119 case R_MIPS16_CALL16:
2120 case R_MIPS16_HI16:
2121 case R_MIPS16_LO16:
2122 case R_MIPS16_TLS_GD:
2123 case R_MIPS16_TLS_LDM:
2124 case R_MIPS16_TLS_DTPREL_HI16:
2125 case R_MIPS16_TLS_DTPREL_LO16:
2126 case R_MIPS16_TLS_GOTTPREL:
2127 case R_MIPS16_TLS_TPREL_HI16:
2128 case R_MIPS16_TLS_TPREL_LO16:
2129 case R_MIPS16_PC16_S1:
2130 return TRUE;
2131
2132 default:
2133 return FALSE;
2134 }
2135 }
2136
2137 /* Check if a microMIPS reloc. */
2138
2139 static inline bfd_boolean
2140 micromips_reloc_p (unsigned int r_type)
2141 {
2142 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2143 }
2144
2145 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2146 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2147 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2148
2149 static inline bfd_boolean
2150 micromips_reloc_shuffle_p (unsigned int r_type)
2151 {
2152 return (micromips_reloc_p (r_type)
2153 && r_type != R_MICROMIPS_PC7_S1
2154 && r_type != R_MICROMIPS_PC10_S1);
2155 }
2156
2157 static inline bfd_boolean
2158 got16_reloc_p (int r_type)
2159 {
2160 return (r_type == R_MIPS_GOT16
2161 || r_type == R_MIPS16_GOT16
2162 || r_type == R_MICROMIPS_GOT16);
2163 }
2164
2165 static inline bfd_boolean
2166 call16_reloc_p (int r_type)
2167 {
2168 return (r_type == R_MIPS_CALL16
2169 || r_type == R_MIPS16_CALL16
2170 || r_type == R_MICROMIPS_CALL16);
2171 }
2172
2173 static inline bfd_boolean
2174 got_disp_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2177 }
2178
2179 static inline bfd_boolean
2180 got_page_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2183 }
2184
2185 static inline bfd_boolean
2186 got_lo16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_hi16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2195 }
2196
2197 static inline bfd_boolean
2198 call_lo16_reloc_p (unsigned int r_type)
2199 {
2200 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2201 }
2202
2203 static inline bfd_boolean
2204 hi16_reloc_p (int r_type)
2205 {
2206 return (r_type == R_MIPS_HI16
2207 || r_type == R_MIPS16_HI16
2208 || r_type == R_MICROMIPS_HI16
2209 || r_type == R_MIPS_PCHI16);
2210 }
2211
2212 static inline bfd_boolean
2213 lo16_reloc_p (int r_type)
2214 {
2215 return (r_type == R_MIPS_LO16
2216 || r_type == R_MIPS16_LO16
2217 || r_type == R_MICROMIPS_LO16
2218 || r_type == R_MIPS_PCLO16);
2219 }
2220
2221 static inline bfd_boolean
2222 mips16_call_reloc_p (int r_type)
2223 {
2224 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2225 }
2226
2227 static inline bfd_boolean
2228 jal_reloc_p (int r_type)
2229 {
2230 return (r_type == R_MIPS_26
2231 || r_type == R_MIPS16_26
2232 || r_type == R_MICROMIPS_26_S1);
2233 }
2234
2235 static inline bfd_boolean
2236 b_reloc_p (int r_type)
2237 {
2238 return (r_type == R_MIPS_PC26_S2
2239 || r_type == R_MIPS_PC21_S2
2240 || r_type == R_MIPS_PC16
2241 || r_type == R_MIPS_GNU_REL16_S2
2242 || r_type == R_MIPS16_PC16_S1
2243 || r_type == R_MICROMIPS_PC16_S1
2244 || r_type == R_MICROMIPS_PC10_S1
2245 || r_type == R_MICROMIPS_PC7_S1);
2246 }
2247
2248 static inline bfd_boolean
2249 aligned_pcrel_reloc_p (int r_type)
2250 {
2251 return (r_type == R_MIPS_PC18_S3
2252 || r_type == R_MIPS_PC19_S2);
2253 }
2254
2255 static inline bfd_boolean
2256 branch_reloc_p (int r_type)
2257 {
2258 return (r_type == R_MIPS_26
2259 || r_type == R_MIPS_PC26_S2
2260 || r_type == R_MIPS_PC21_S2
2261 || r_type == R_MIPS_PC16
2262 || r_type == R_MIPS_GNU_REL16_S2);
2263 }
2264
2265 static inline bfd_boolean
2266 mips16_branch_reloc_p (int r_type)
2267 {
2268 return (r_type == R_MIPS16_26
2269 || r_type == R_MIPS16_PC16_S1);
2270 }
2271
2272 static inline bfd_boolean
2273 micromips_branch_reloc_p (int r_type)
2274 {
2275 return (r_type == R_MICROMIPS_26_S1
2276 || r_type == R_MICROMIPS_PC16_S1
2277 || r_type == R_MICROMIPS_PC10_S1
2278 || r_type == R_MICROMIPS_PC7_S1);
2279 }
2280
2281 static inline bfd_boolean
2282 tls_gd_reloc_p (unsigned int r_type)
2283 {
2284 return (r_type == R_MIPS_TLS_GD
2285 || r_type == R_MIPS16_TLS_GD
2286 || r_type == R_MICROMIPS_TLS_GD);
2287 }
2288
2289 static inline bfd_boolean
2290 tls_ldm_reloc_p (unsigned int r_type)
2291 {
2292 return (r_type == R_MIPS_TLS_LDM
2293 || r_type == R_MIPS16_TLS_LDM
2294 || r_type == R_MICROMIPS_TLS_LDM);
2295 }
2296
2297 static inline bfd_boolean
2298 tls_gottprel_reloc_p (unsigned int r_type)
2299 {
2300 return (r_type == R_MIPS_TLS_GOTTPREL
2301 || r_type == R_MIPS16_TLS_GOTTPREL
2302 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2303 }
2304
2305 void
2306 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2307 bfd_boolean jal_shuffle, bfd_byte *data)
2308 {
2309 bfd_vma first, second, val;
2310
2311 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2312 return;
2313
2314 /* Pick up the first and second halfwords of the instruction. */
2315 first = bfd_get_16 (abfd, data);
2316 second = bfd_get_16 (abfd, data + 2);
2317 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2318 val = first << 16 | second;
2319 else if (r_type != R_MIPS16_26)
2320 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2321 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2322 else
2323 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2324 | ((first & 0x1f) << 21) | second);
2325 bfd_put_32 (abfd, val, data);
2326 }
2327
2328 void
2329 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2330 bfd_boolean jal_shuffle, bfd_byte *data)
2331 {
2332 bfd_vma first, second, val;
2333
2334 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2335 return;
2336
2337 val = bfd_get_32 (abfd, data);
2338 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2339 {
2340 second = val & 0xffff;
2341 first = val >> 16;
2342 }
2343 else if (r_type != R_MIPS16_26)
2344 {
2345 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2346 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2347 }
2348 else
2349 {
2350 second = val & 0xffff;
2351 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2352 | ((val >> 21) & 0x1f);
2353 }
2354 bfd_put_16 (abfd, second, data + 2);
2355 bfd_put_16 (abfd, first, data);
2356 }
2357
2358 bfd_reloc_status_type
2359 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2360 arelent *reloc_entry, asection *input_section,
2361 bfd_boolean relocatable, void *data, bfd_vma gp)
2362 {
2363 bfd_vma relocation;
2364 bfd_signed_vma val;
2365 bfd_reloc_status_type status;
2366
2367 if (bfd_is_com_section (symbol->section))
2368 relocation = 0;
2369 else
2370 relocation = symbol->value;
2371
2372 relocation += symbol->section->output_section->vma;
2373 relocation += symbol->section->output_offset;
2374
2375 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2376 return bfd_reloc_outofrange;
2377
2378 /* Set val to the offset into the section or symbol. */
2379 val = reloc_entry->addend;
2380
2381 _bfd_mips_elf_sign_extend (val, 16);
2382
2383 /* Adjust val for the final section location and GP value. If we
2384 are producing relocatable output, we don't want to do this for
2385 an external symbol. */
2386 if (! relocatable
2387 || (symbol->flags & BSF_SECTION_SYM) != 0)
2388 val += relocation - gp;
2389
2390 if (reloc_entry->howto->partial_inplace)
2391 {
2392 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2393 (bfd_byte *) data
2394 + reloc_entry->address);
2395 if (status != bfd_reloc_ok)
2396 return status;
2397 }
2398 else
2399 reloc_entry->addend = val;
2400
2401 if (relocatable)
2402 reloc_entry->address += input_section->output_offset;
2403
2404 return bfd_reloc_ok;
2405 }
2406
2407 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2408 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2409 that contains the relocation field and DATA points to the start of
2410 INPUT_SECTION. */
2411
2412 struct mips_hi16
2413 {
2414 struct mips_hi16 *next;
2415 bfd_byte *data;
2416 asection *input_section;
2417 arelent rel;
2418 };
2419
2420 /* FIXME: This should not be a static variable. */
2421
2422 static struct mips_hi16 *mips_hi16_list;
2423
2424 /* A howto special_function for REL *HI16 relocations. We can only
2425 calculate the correct value once we've seen the partnering
2426 *LO16 relocation, so just save the information for later.
2427
2428 The ABI requires that the *LO16 immediately follow the *HI16.
2429 However, as a GNU extension, we permit an arbitrary number of
2430 *HI16s to be associated with a single *LO16. This significantly
2431 simplies the relocation handling in gcc. */
2432
2433 bfd_reloc_status_type
2434 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2435 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2436 asection *input_section, bfd *output_bfd,
2437 char **error_message ATTRIBUTE_UNUSED)
2438 {
2439 struct mips_hi16 *n;
2440
2441 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2442 return bfd_reloc_outofrange;
2443
2444 n = bfd_malloc (sizeof *n);
2445 if (n == NULL)
2446 return bfd_reloc_outofrange;
2447
2448 n->next = mips_hi16_list;
2449 n->data = data;
2450 n->input_section = input_section;
2451 n->rel = *reloc_entry;
2452 mips_hi16_list = n;
2453
2454 if (output_bfd != NULL)
2455 reloc_entry->address += input_section->output_offset;
2456
2457 return bfd_reloc_ok;
2458 }
2459
2460 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2461 like any other 16-bit relocation when applied to global symbols, but is
2462 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2463
2464 bfd_reloc_status_type
2465 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2470 || bfd_is_und_section (bfd_get_section (symbol))
2471 || bfd_is_com_section (bfd_get_section (symbol)))
2472 /* The relocation is against a global symbol. */
2473 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd,
2475 error_message);
2476
2477 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2478 input_section, output_bfd, error_message);
2479 }
2480
2481 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2482 is a straightforward 16 bit inplace relocation, but we must deal with
2483 any partnering high-part relocations as well. */
2484
2485 bfd_reloc_status_type
2486 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2487 void *data, asection *input_section,
2488 bfd *output_bfd, char **error_message)
2489 {
2490 bfd_vma vallo;
2491 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2492
2493 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2494 return bfd_reloc_outofrange;
2495
2496 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2497 location);
2498 vallo = bfd_get_32 (abfd, location);
2499 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2500 location);
2501
2502 while (mips_hi16_list != NULL)
2503 {
2504 bfd_reloc_status_type ret;
2505 struct mips_hi16 *hi;
2506
2507 hi = mips_hi16_list;
2508
2509 /* R_MIPS*_GOT16 relocations are something of a special case. We
2510 want to install the addend in the same way as for a R_MIPS*_HI16
2511 relocation (with a rightshift of 16). However, since GOT16
2512 relocations can also be used with global symbols, their howto
2513 has a rightshift of 0. */
2514 if (hi->rel.howto->type == R_MIPS_GOT16)
2515 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2516 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2517 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2518 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2519 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2520
2521 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2522 carry or borrow will induce a change of +1 or -1 in the high part. */
2523 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2524
2525 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2526 hi->input_section, output_bfd,
2527 error_message);
2528 if (ret != bfd_reloc_ok)
2529 return ret;
2530
2531 mips_hi16_list = hi->next;
2532 free (hi);
2533 }
2534
2535 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2536 input_section, output_bfd,
2537 error_message);
2538 }
2539
2540 /* A generic howto special_function. This calculates and installs the
2541 relocation itself, thus avoiding the oft-discussed problems in
2542 bfd_perform_relocation and bfd_install_relocation. */
2543
2544 bfd_reloc_status_type
2545 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2546 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2547 asection *input_section, bfd *output_bfd,
2548 char **error_message ATTRIBUTE_UNUSED)
2549 {
2550 bfd_signed_vma val;
2551 bfd_reloc_status_type status;
2552 bfd_boolean relocatable;
2553
2554 relocatable = (output_bfd != NULL);
2555
2556 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2557 return bfd_reloc_outofrange;
2558
2559 /* Build up the field adjustment in VAL. */
2560 val = 0;
2561 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2562 {
2563 /* Either we're calculating the final field value or we have a
2564 relocation against a section symbol. Add in the section's
2565 offset or address. */
2566 val += symbol->section->output_section->vma;
2567 val += symbol->section->output_offset;
2568 }
2569
2570 if (!relocatable)
2571 {
2572 /* We're calculating the final field value. Add in the symbol's value
2573 and, if pc-relative, subtract the address of the field itself. */
2574 val += symbol->value;
2575 if (reloc_entry->howto->pc_relative)
2576 {
2577 val -= input_section->output_section->vma;
2578 val -= input_section->output_offset;
2579 val -= reloc_entry->address;
2580 }
2581 }
2582
2583 /* VAL is now the final adjustment. If we're keeping this relocation
2584 in the output file, and if the relocation uses a separate addend,
2585 we just need to add VAL to that addend. Otherwise we need to add
2586 VAL to the relocation field itself. */
2587 if (relocatable && !reloc_entry->howto->partial_inplace)
2588 reloc_entry->addend += val;
2589 else
2590 {
2591 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2592
2593 /* Add in the separate addend, if any. */
2594 val += reloc_entry->addend;
2595
2596 /* Add VAL to the relocation field. */
2597 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2598 location);
2599 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2600 location);
2601 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2602 location);
2603
2604 if (status != bfd_reloc_ok)
2605 return status;
2606 }
2607
2608 if (relocatable)
2609 reloc_entry->address += input_section->output_offset;
2610
2611 return bfd_reloc_ok;
2612 }
2613 \f
2614 /* Swap an entry in a .gptab section. Note that these routines rely
2615 on the equivalence of the two elements of the union. */
2616
2617 static void
2618 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2619 Elf32_gptab *in)
2620 {
2621 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2622 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2623 }
2624
2625 static void
2626 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2627 Elf32_External_gptab *ex)
2628 {
2629 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2630 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2631 }
2632
2633 static void
2634 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2635 Elf32_External_compact_rel *ex)
2636 {
2637 H_PUT_32 (abfd, in->id1, ex->id1);
2638 H_PUT_32 (abfd, in->num, ex->num);
2639 H_PUT_32 (abfd, in->id2, ex->id2);
2640 H_PUT_32 (abfd, in->offset, ex->offset);
2641 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2642 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2643 }
2644
2645 static void
2646 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2647 Elf32_External_crinfo *ex)
2648 {
2649 unsigned long l;
2650
2651 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2652 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2653 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2654 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2655 H_PUT_32 (abfd, l, ex->info);
2656 H_PUT_32 (abfd, in->konst, ex->konst);
2657 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2658 }
2659 \f
2660 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2661 routines swap this structure in and out. They are used outside of
2662 BFD, so they are globally visible. */
2663
2664 void
2665 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2666 Elf32_RegInfo *in)
2667 {
2668 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2669 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2670 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2671 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2672 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2673 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2674 }
2675
2676 void
2677 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2678 Elf32_External_RegInfo *ex)
2679 {
2680 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2681 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2682 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2683 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2684 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2685 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2686 }
2687
2688 /* In the 64 bit ABI, the .MIPS.options section holds register
2689 information in an Elf64_Reginfo structure. These routines swap
2690 them in and out. They are globally visible because they are used
2691 outside of BFD. These routines are here so that gas can call them
2692 without worrying about whether the 64 bit ABI has been included. */
2693
2694 void
2695 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2696 Elf64_Internal_RegInfo *in)
2697 {
2698 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2699 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2700 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2701 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2702 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2703 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2704 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2705 }
2706
2707 void
2708 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2709 Elf64_External_RegInfo *ex)
2710 {
2711 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2712 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2713 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2714 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2715 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2716 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2717 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2718 }
2719
2720 /* Swap in an options header. */
2721
2722 void
2723 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2724 Elf_Internal_Options *in)
2725 {
2726 in->kind = H_GET_8 (abfd, ex->kind);
2727 in->size = H_GET_8 (abfd, ex->size);
2728 in->section = H_GET_16 (abfd, ex->section);
2729 in->info = H_GET_32 (abfd, ex->info);
2730 }
2731
2732 /* Swap out an options header. */
2733
2734 void
2735 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2736 Elf_External_Options *ex)
2737 {
2738 H_PUT_8 (abfd, in->kind, ex->kind);
2739 H_PUT_8 (abfd, in->size, ex->size);
2740 H_PUT_16 (abfd, in->section, ex->section);
2741 H_PUT_32 (abfd, in->info, ex->info);
2742 }
2743
2744 /* Swap in an abiflags structure. */
2745
2746 void
2747 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2748 const Elf_External_ABIFlags_v0 *ex,
2749 Elf_Internal_ABIFlags_v0 *in)
2750 {
2751 in->version = H_GET_16 (abfd, ex->version);
2752 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2753 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2754 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2755 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2756 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2757 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2758 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2759 in->ases = H_GET_32 (abfd, ex->ases);
2760 in->flags1 = H_GET_32 (abfd, ex->flags1);
2761 in->flags2 = H_GET_32 (abfd, ex->flags2);
2762 }
2763
2764 /* Swap out an abiflags structure. */
2765
2766 void
2767 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2768 const Elf_Internal_ABIFlags_v0 *in,
2769 Elf_External_ABIFlags_v0 *ex)
2770 {
2771 H_PUT_16 (abfd, in->version, ex->version);
2772 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2773 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2774 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2775 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2776 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2777 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2778 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2779 H_PUT_32 (abfd, in->ases, ex->ases);
2780 H_PUT_32 (abfd, in->flags1, ex->flags1);
2781 H_PUT_32 (abfd, in->flags2, ex->flags2);
2782 }
2783 \f
2784 /* This function is called via qsort() to sort the dynamic relocation
2785 entries by increasing r_symndx value. */
2786
2787 static int
2788 sort_dynamic_relocs (const void *arg1, const void *arg2)
2789 {
2790 Elf_Internal_Rela int_reloc1;
2791 Elf_Internal_Rela int_reloc2;
2792 int diff;
2793
2794 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2795 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2796
2797 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2798 if (diff != 0)
2799 return diff;
2800
2801 if (int_reloc1.r_offset < int_reloc2.r_offset)
2802 return -1;
2803 if (int_reloc1.r_offset > int_reloc2.r_offset)
2804 return 1;
2805 return 0;
2806 }
2807
2808 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2809
2810 static int
2811 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2812 const void *arg2 ATTRIBUTE_UNUSED)
2813 {
2814 #ifdef BFD64
2815 Elf_Internal_Rela int_reloc1[3];
2816 Elf_Internal_Rela int_reloc2[3];
2817
2818 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2819 (reldyn_sorting_bfd, arg1, int_reloc1);
2820 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2821 (reldyn_sorting_bfd, arg2, int_reloc2);
2822
2823 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2824 return -1;
2825 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2826 return 1;
2827
2828 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2829 return -1;
2830 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2831 return 1;
2832 return 0;
2833 #else
2834 abort ();
2835 #endif
2836 }
2837
2838
2839 /* This routine is used to write out ECOFF debugging external symbol
2840 information. It is called via mips_elf_link_hash_traverse. The
2841 ECOFF external symbol information must match the ELF external
2842 symbol information. Unfortunately, at this point we don't know
2843 whether a symbol is required by reloc information, so the two
2844 tables may wind up being different. We must sort out the external
2845 symbol information before we can set the final size of the .mdebug
2846 section, and we must set the size of the .mdebug section before we
2847 can relocate any sections, and we can't know which symbols are
2848 required by relocation until we relocate the sections.
2849 Fortunately, it is relatively unlikely that any symbol will be
2850 stripped but required by a reloc. In particular, it can not happen
2851 when generating a final executable. */
2852
2853 static bfd_boolean
2854 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2855 {
2856 struct extsym_info *einfo = data;
2857 bfd_boolean strip;
2858 asection *sec, *output_section;
2859
2860 if (h->root.indx == -2)
2861 strip = FALSE;
2862 else if ((h->root.def_dynamic
2863 || h->root.ref_dynamic
2864 || h->root.type == bfd_link_hash_new)
2865 && !h->root.def_regular
2866 && !h->root.ref_regular)
2867 strip = TRUE;
2868 else if (einfo->info->strip == strip_all
2869 || (einfo->info->strip == strip_some
2870 && bfd_hash_lookup (einfo->info->keep_hash,
2871 h->root.root.root.string,
2872 FALSE, FALSE) == NULL))
2873 strip = TRUE;
2874 else
2875 strip = FALSE;
2876
2877 if (strip)
2878 return TRUE;
2879
2880 if (h->esym.ifd == -2)
2881 {
2882 h->esym.jmptbl = 0;
2883 h->esym.cobol_main = 0;
2884 h->esym.weakext = 0;
2885 h->esym.reserved = 0;
2886 h->esym.ifd = ifdNil;
2887 h->esym.asym.value = 0;
2888 h->esym.asym.st = stGlobal;
2889
2890 if (h->root.root.type == bfd_link_hash_undefined
2891 || h->root.root.type == bfd_link_hash_undefweak)
2892 {
2893 const char *name;
2894
2895 /* Use undefined class. Also, set class and type for some
2896 special symbols. */
2897 name = h->root.root.root.string;
2898 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2899 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2900 {
2901 h->esym.asym.sc = scData;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value = 0;
2904 }
2905 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2906 {
2907 h->esym.asym.sc = scAbs;
2908 h->esym.asym.st = stLabel;
2909 h->esym.asym.value =
2910 mips_elf_hash_table (einfo->info)->procedure_count;
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h != NULL
3261 && h->dynindx != -1
3262 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3263 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3264 indx = h->dynindx;
3265
3266 if ((bfd_link_dll (info) || indx != 0)
3267 && (h == NULL
3268 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3269 || h->root.type != bfd_link_hash_undefweak))
3270 need_relocs = TRUE;
3271
3272 if (!need_relocs)
3273 return 0;
3274
3275 switch (tls_type)
3276 {
3277 case GOT_TLS_GD:
3278 return indx != 0 ? 2 : 1;
3279
3280 case GOT_TLS_IE:
3281 return 1;
3282
3283 case GOT_TLS_LDM:
3284 return bfd_link_dll (info) ? 1 : 0;
3285
3286 default:
3287 return 0;
3288 }
3289 }
3290
3291 /* Add the number of GOT entries and TLS relocations required by ENTRY
3292 to G. */
3293
3294 static void
3295 mips_elf_count_got_entry (struct bfd_link_info *info,
3296 struct mips_got_info *g,
3297 struct mips_got_entry *entry)
3298 {
3299 if (entry->tls_type)
3300 {
3301 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3302 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3303 entry->symndx < 0
3304 ? &entry->d.h->root : NULL);
3305 }
3306 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3307 g->local_gotno += 1;
3308 else
3309 g->global_gotno += 1;
3310 }
3311
3312 /* Output a simple dynamic relocation into SRELOC. */
3313
3314 static void
3315 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3316 asection *sreloc,
3317 unsigned long reloc_index,
3318 unsigned long indx,
3319 int r_type,
3320 bfd_vma offset)
3321 {
3322 Elf_Internal_Rela rel[3];
3323
3324 memset (rel, 0, sizeof (rel));
3325
3326 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3327 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3328
3329 if (ABI_64_P (output_bfd))
3330 {
3331 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3332 (output_bfd, &rel[0],
3333 (sreloc->contents
3334 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3335 }
3336 else
3337 bfd_elf32_swap_reloc_out
3338 (output_bfd, &rel[0],
3339 (sreloc->contents
3340 + reloc_index * sizeof (Elf32_External_Rel)));
3341 }
3342
3343 /* Initialize a set of TLS GOT entries for one symbol. */
3344
3345 static void
3346 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3347 struct mips_got_entry *entry,
3348 struct mips_elf_link_hash_entry *h,
3349 bfd_vma value)
3350 {
3351 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3352 struct mips_elf_link_hash_table *htab;
3353 int indx;
3354 asection *sreloc, *sgot;
3355 bfd_vma got_offset, got_offset2;
3356 bfd_boolean need_relocs = FALSE;
3357
3358 htab = mips_elf_hash_table (info);
3359 if (htab == NULL)
3360 return;
3361
3362 sgot = htab->root.sgot;
3363
3364 indx = 0;
3365 if (h != NULL
3366 && h->root.dynindx != -1
3367 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3368 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3369 indx = h->root.dynindx;
3370
3371 if (entry->tls_initialized)
3372 return;
3373
3374 if ((bfd_link_dll (info) || indx != 0)
3375 && (h == NULL
3376 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3377 || h->root.type != bfd_link_hash_undefweak))
3378 need_relocs = TRUE;
3379
3380 /* MINUS_ONE means the symbol is not defined in this object. It may not
3381 be defined at all; assume that the value doesn't matter in that
3382 case. Otherwise complain if we would use the value. */
3383 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3384 || h->root.root.type == bfd_link_hash_undefweak);
3385
3386 /* Emit necessary relocations. */
3387 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3388 got_offset = entry->gotidx;
3389
3390 switch (entry->tls_type)
3391 {
3392 case GOT_TLS_GD:
3393 /* General Dynamic. */
3394 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3395
3396 if (need_relocs)
3397 {
3398 mips_elf_output_dynamic_relocation
3399 (abfd, sreloc, sreloc->reloc_count++, indx,
3400 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3401 sgot->output_offset + sgot->output_section->vma + got_offset);
3402
3403 if (indx)
3404 mips_elf_output_dynamic_relocation
3405 (abfd, sreloc, sreloc->reloc_count++, indx,
3406 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3407 sgot->output_offset + sgot->output_section->vma + got_offset2);
3408 else
3409 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3410 sgot->contents + got_offset2);
3411 }
3412 else
3413 {
3414 MIPS_ELF_PUT_WORD (abfd, 1,
3415 sgot->contents + got_offset);
3416 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3417 sgot->contents + got_offset2);
3418 }
3419 break;
3420
3421 case GOT_TLS_IE:
3422 /* Initial Exec model. */
3423 if (need_relocs)
3424 {
3425 if (indx == 0)
3426 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3427 sgot->contents + got_offset);
3428 else
3429 MIPS_ELF_PUT_WORD (abfd, 0,
3430 sgot->contents + got_offset);
3431
3432 mips_elf_output_dynamic_relocation
3433 (abfd, sreloc, sreloc->reloc_count++, indx,
3434 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3435 sgot->output_offset + sgot->output_section->vma + got_offset);
3436 }
3437 else
3438 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3439 sgot->contents + got_offset);
3440 break;
3441
3442 case GOT_TLS_LDM:
3443 /* The initial offset is zero, and the LD offsets will include the
3444 bias by DTP_OFFSET. */
3445 MIPS_ELF_PUT_WORD (abfd, 0,
3446 sgot->contents + got_offset
3447 + MIPS_ELF_GOT_SIZE (abfd));
3448
3449 if (!bfd_link_dll (info))
3450 MIPS_ELF_PUT_WORD (abfd, 1,
3451 sgot->contents + got_offset);
3452 else
3453 mips_elf_output_dynamic_relocation
3454 (abfd, sreloc, sreloc->reloc_count++, indx,
3455 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3456 sgot->output_offset + sgot->output_section->vma + got_offset);
3457 break;
3458
3459 default:
3460 abort ();
3461 }
3462
3463 entry->tls_initialized = TRUE;
3464 }
3465
3466 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3467 for global symbol H. .got.plt comes before the GOT, so the offset
3468 will be negative. */
3469
3470 static bfd_vma
3471 mips_elf_gotplt_index (struct bfd_link_info *info,
3472 struct elf_link_hash_entry *h)
3473 {
3474 bfd_vma got_address, got_value;
3475 struct mips_elf_link_hash_table *htab;
3476
3477 htab = mips_elf_hash_table (info);
3478 BFD_ASSERT (htab != NULL);
3479
3480 BFD_ASSERT (h->plt.plist != NULL);
3481 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3482
3483 /* Calculate the address of the associated .got.plt entry. */
3484 got_address = (htab->root.sgotplt->output_section->vma
3485 + htab->root.sgotplt->output_offset
3486 + (h->plt.plist->gotplt_index
3487 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3488
3489 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3490 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3491 + htab->root.hgot->root.u.def.section->output_offset
3492 + htab->root.hgot->root.u.def.value);
3493
3494 return got_address - got_value;
3495 }
3496
3497 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3498 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3499 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3500 offset can be found. */
3501
3502 static bfd_vma
3503 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3504 bfd_vma value, unsigned long r_symndx,
3505 struct mips_elf_link_hash_entry *h, int r_type)
3506 {
3507 struct mips_elf_link_hash_table *htab;
3508 struct mips_got_entry *entry;
3509
3510 htab = mips_elf_hash_table (info);
3511 BFD_ASSERT (htab != NULL);
3512
3513 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3514 r_symndx, h, r_type);
3515 if (!entry)
3516 return MINUS_ONE;
3517
3518 if (entry->tls_type)
3519 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3520 return entry->gotidx;
3521 }
3522
3523 /* Return the GOT index of global symbol H in the primary GOT. */
3524
3525 static bfd_vma
3526 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3527 struct elf_link_hash_entry *h)
3528 {
3529 struct mips_elf_link_hash_table *htab;
3530 long global_got_dynindx;
3531 struct mips_got_info *g;
3532 bfd_vma got_index;
3533
3534 htab = mips_elf_hash_table (info);
3535 BFD_ASSERT (htab != NULL);
3536
3537 global_got_dynindx = 0;
3538 if (htab->global_gotsym != NULL)
3539 global_got_dynindx = htab->global_gotsym->dynindx;
3540
3541 /* Once we determine the global GOT entry with the lowest dynamic
3542 symbol table index, we must put all dynamic symbols with greater
3543 indices into the primary GOT. That makes it easy to calculate the
3544 GOT offset. */
3545 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3546 g = mips_elf_bfd_got (obfd, FALSE);
3547 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3548 * MIPS_ELF_GOT_SIZE (obfd));
3549 BFD_ASSERT (got_index < htab->root.sgot->size);
3550
3551 return got_index;
3552 }
3553
3554 /* Return the GOT index for the global symbol indicated by H, which is
3555 referenced by a relocation of type R_TYPE in IBFD. */
3556
3557 static bfd_vma
3558 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3559 struct elf_link_hash_entry *h, int r_type)
3560 {
3561 struct mips_elf_link_hash_table *htab;
3562 struct mips_got_info *g;
3563 struct mips_got_entry lookup, *entry;
3564 bfd_vma gotidx;
3565
3566 htab = mips_elf_hash_table (info);
3567 BFD_ASSERT (htab != NULL);
3568
3569 g = mips_elf_bfd_got (ibfd, FALSE);
3570 BFD_ASSERT (g);
3571
3572 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3573 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3574 return mips_elf_primary_global_got_index (obfd, info, h);
3575
3576 lookup.abfd = ibfd;
3577 lookup.symndx = -1;
3578 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3579 entry = htab_find (g->got_entries, &lookup);
3580 BFD_ASSERT (entry);
3581
3582 gotidx = entry->gotidx;
3583 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3584
3585 if (lookup.tls_type)
3586 {
3587 bfd_vma value = MINUS_ONE;
3588
3589 if ((h->root.type == bfd_link_hash_defined
3590 || h->root.type == bfd_link_hash_defweak)
3591 && h->root.u.def.section->output_section)
3592 value = (h->root.u.def.value
3593 + h->root.u.def.section->output_offset
3594 + h->root.u.def.section->output_section->vma);
3595
3596 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3597 }
3598 return gotidx;
3599 }
3600
3601 /* Find a GOT page entry that points to within 32KB of VALUE. These
3602 entries are supposed to be placed at small offsets in the GOT, i.e.,
3603 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3604 entry could be created. If OFFSETP is nonnull, use it to return the
3605 offset of the GOT entry from VALUE. */
3606
3607 static bfd_vma
3608 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3609 bfd_vma value, bfd_vma *offsetp)
3610 {
3611 bfd_vma page, got_index;
3612 struct mips_got_entry *entry;
3613
3614 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3615 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3616 NULL, R_MIPS_GOT_PAGE);
3617
3618 if (!entry)
3619 return MINUS_ONE;
3620
3621 got_index = entry->gotidx;
3622
3623 if (offsetp)
3624 *offsetp = value - entry->d.address;
3625
3626 return got_index;
3627 }
3628
3629 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3630 EXTERNAL is true if the relocation was originally against a global
3631 symbol that binds locally. */
3632
3633 static bfd_vma
3634 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3635 bfd_vma value, bfd_boolean external)
3636 {
3637 struct mips_got_entry *entry;
3638
3639 /* GOT16 relocations against local symbols are followed by a LO16
3640 relocation; those against global symbols are not. Thus if the
3641 symbol was originally local, the GOT16 relocation should load the
3642 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3643 if (! external)
3644 value = mips_elf_high (value) << 16;
3645
3646 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3647 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3648 same in all cases. */
3649 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3650 NULL, R_MIPS_GOT16);
3651 if (entry)
3652 return entry->gotidx;
3653 else
3654 return MINUS_ONE;
3655 }
3656
3657 /* Returns the offset for the entry at the INDEXth position
3658 in the GOT. */
3659
3660 static bfd_vma
3661 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3662 bfd *input_bfd, bfd_vma got_index)
3663 {
3664 struct mips_elf_link_hash_table *htab;
3665 asection *sgot;
3666 bfd_vma gp;
3667
3668 htab = mips_elf_hash_table (info);
3669 BFD_ASSERT (htab != NULL);
3670
3671 sgot = htab->root.sgot;
3672 gp = _bfd_get_gp_value (output_bfd)
3673 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3674
3675 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3676 }
3677
3678 /* Create and return a local GOT entry for VALUE, which was calculated
3679 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3680 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3681 instead. */
3682
3683 static struct mips_got_entry *
3684 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3685 bfd *ibfd, bfd_vma value,
3686 unsigned long r_symndx,
3687 struct mips_elf_link_hash_entry *h,
3688 int r_type)
3689 {
3690 struct mips_got_entry lookup, *entry;
3691 void **loc;
3692 struct mips_got_info *g;
3693 struct mips_elf_link_hash_table *htab;
3694 bfd_vma gotidx;
3695
3696 htab = mips_elf_hash_table (info);
3697 BFD_ASSERT (htab != NULL);
3698
3699 g = mips_elf_bfd_got (ibfd, FALSE);
3700 if (g == NULL)
3701 {
3702 g = mips_elf_bfd_got (abfd, FALSE);
3703 BFD_ASSERT (g != NULL);
3704 }
3705
3706 /* This function shouldn't be called for symbols that live in the global
3707 area of the GOT. */
3708 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3709
3710 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3711 if (lookup.tls_type)
3712 {
3713 lookup.abfd = ibfd;
3714 if (tls_ldm_reloc_p (r_type))
3715 {
3716 lookup.symndx = 0;
3717 lookup.d.addend = 0;
3718 }
3719 else if (h == NULL)
3720 {
3721 lookup.symndx = r_symndx;
3722 lookup.d.addend = 0;
3723 }
3724 else
3725 {
3726 lookup.symndx = -1;
3727 lookup.d.h = h;
3728 }
3729
3730 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3731 BFD_ASSERT (entry);
3732
3733 gotidx = entry->gotidx;
3734 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3735
3736 return entry;
3737 }
3738
3739 lookup.abfd = NULL;
3740 lookup.symndx = -1;
3741 lookup.d.address = value;
3742 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3743 if (!loc)
3744 return NULL;
3745
3746 entry = (struct mips_got_entry *) *loc;
3747 if (entry)
3748 return entry;
3749
3750 if (g->assigned_low_gotno > g->assigned_high_gotno)
3751 {
3752 /* We didn't allocate enough space in the GOT. */
3753 _bfd_error_handler
3754 (_("not enough GOT space for local GOT entries"));
3755 bfd_set_error (bfd_error_bad_value);
3756 return NULL;
3757 }
3758
3759 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3760 if (!entry)
3761 return NULL;
3762
3763 if (got16_reloc_p (r_type)
3764 || call16_reloc_p (r_type)
3765 || got_page_reloc_p (r_type)
3766 || got_disp_reloc_p (r_type))
3767 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3768 else
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3770
3771 *entry = lookup;
3772 *loc = entry;
3773
3774 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3775
3776 /* These GOT entries need a dynamic relocation on VxWorks. */
3777 if (htab->is_vxworks)
3778 {
3779 Elf_Internal_Rela outrel;
3780 asection *s;
3781 bfd_byte *rloc;
3782 bfd_vma got_address;
3783
3784 s = mips_elf_rel_dyn_section (info, FALSE);
3785 got_address = (htab->root.sgot->output_section->vma
3786 + htab->root.sgot->output_offset
3787 + entry->gotidx);
3788
3789 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3790 outrel.r_offset = got_address;
3791 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3792 outrel.r_addend = value;
3793 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3794 }
3795
3796 return entry;
3797 }
3798
3799 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3800 The number might be exact or a worst-case estimate, depending on how
3801 much information is available to elf_backend_omit_section_dynsym at
3802 the current linking stage. */
3803
3804 static bfd_size_type
3805 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3806 {
3807 bfd_size_type count;
3808
3809 count = 0;
3810 if (bfd_link_pic (info)
3811 || elf_hash_table (info)->is_relocatable_executable)
3812 {
3813 asection *p;
3814 const struct elf_backend_data *bed;
3815
3816 bed = get_elf_backend_data (output_bfd);
3817 for (p = output_bfd->sections; p ; p = p->next)
3818 if ((p->flags & SEC_EXCLUDE) == 0
3819 && (p->flags & SEC_ALLOC) != 0
3820 && elf_hash_table (info)->dynamic_relocs
3821 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3822 ++count;
3823 }
3824 return count;
3825 }
3826
3827 /* Sort the dynamic symbol table so that symbols that need GOT entries
3828 appear towards the end. */
3829
3830 static bfd_boolean
3831 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3832 {
3833 struct mips_elf_link_hash_table *htab;
3834 struct mips_elf_hash_sort_data hsd;
3835 struct mips_got_info *g;
3836
3837 htab = mips_elf_hash_table (info);
3838 BFD_ASSERT (htab != NULL);
3839
3840 if (htab->root.dynsymcount == 0)
3841 return TRUE;
3842
3843 g = htab->got_info;
3844 if (g == NULL)
3845 return TRUE;
3846
3847 hsd.low = NULL;
3848 hsd.max_unref_got_dynindx
3849 = hsd.min_got_dynindx
3850 = (htab->root.dynsymcount - g->reloc_only_gotno);
3851 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3852 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3853 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3854 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3855 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3856
3857 /* There should have been enough room in the symbol table to
3858 accommodate both the GOT and non-GOT symbols. */
3859 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3860 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3861 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3862 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3863
3864 /* Now we know which dynamic symbol has the lowest dynamic symbol
3865 table index in the GOT. */
3866 htab->global_gotsym = hsd.low;
3867
3868 return TRUE;
3869 }
3870
3871 /* If H needs a GOT entry, assign it the highest available dynamic
3872 index. Otherwise, assign it the lowest available dynamic
3873 index. */
3874
3875 static bfd_boolean
3876 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3877 {
3878 struct mips_elf_hash_sort_data *hsd = data;
3879
3880 /* Symbols without dynamic symbol table entries aren't interesting
3881 at all. */
3882 if (h->root.dynindx == -1)
3883 return TRUE;
3884
3885 switch (h->global_got_area)
3886 {
3887 case GGA_NONE:
3888 if (h->root.forced_local)
3889 h->root.dynindx = hsd->max_local_dynindx++;
3890 else
3891 h->root.dynindx = hsd->max_non_got_dynindx++;
3892 break;
3893
3894 case GGA_NORMAL:
3895 h->root.dynindx = --hsd->min_got_dynindx;
3896 hsd->low = (struct elf_link_hash_entry *) h;
3897 break;
3898
3899 case GGA_RELOC_ONLY:
3900 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3901 hsd->low = (struct elf_link_hash_entry *) h;
3902 h->root.dynindx = hsd->max_unref_got_dynindx++;
3903 break;
3904 }
3905
3906 return TRUE;
3907 }
3908
3909 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3910 (which is owned by the caller and shouldn't be added to the
3911 hash table directly). */
3912
3913 static bfd_boolean
3914 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3915 struct mips_got_entry *lookup)
3916 {
3917 struct mips_elf_link_hash_table *htab;
3918 struct mips_got_entry *entry;
3919 struct mips_got_info *g;
3920 void **loc, **bfd_loc;
3921
3922 /* Make sure there's a slot for this entry in the master GOT. */
3923 htab = mips_elf_hash_table (info);
3924 g = htab->got_info;
3925 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3926 if (!loc)
3927 return FALSE;
3928
3929 /* Populate the entry if it isn't already. */
3930 entry = (struct mips_got_entry *) *loc;
3931 if (!entry)
3932 {
3933 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3934 if (!entry)
3935 return FALSE;
3936
3937 lookup->tls_initialized = FALSE;
3938 lookup->gotidx = -1;
3939 *entry = *lookup;
3940 *loc = entry;
3941 }
3942
3943 /* Reuse the same GOT entry for the BFD's GOT. */
3944 g = mips_elf_bfd_got (abfd, TRUE);
3945 if (!g)
3946 return FALSE;
3947
3948 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3949 if (!bfd_loc)
3950 return FALSE;
3951
3952 if (!*bfd_loc)
3953 *bfd_loc = entry;
3954 return TRUE;
3955 }
3956
3957 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3958 entry for it. FOR_CALL is true if the caller is only interested in
3959 using the GOT entry for calls. */
3960
3961 static bfd_boolean
3962 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3963 bfd *abfd, struct bfd_link_info *info,
3964 bfd_boolean for_call, int r_type)
3965 {
3966 struct mips_elf_link_hash_table *htab;
3967 struct mips_elf_link_hash_entry *hmips;
3968 struct mips_got_entry entry;
3969 unsigned char tls_type;
3970
3971 htab = mips_elf_hash_table (info);
3972 BFD_ASSERT (htab != NULL);
3973
3974 hmips = (struct mips_elf_link_hash_entry *) h;
3975 if (!for_call)
3976 hmips->got_only_for_calls = FALSE;
3977
3978 /* A global symbol in the GOT must also be in the dynamic symbol
3979 table. */
3980 if (h->dynindx == -1)
3981 {
3982 switch (ELF_ST_VISIBILITY (h->other))
3983 {
3984 case STV_INTERNAL:
3985 case STV_HIDDEN:
3986 _bfd_mips_elf_hide_symbol (info, h, TRUE);
3987 break;
3988 }
3989 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3990 return FALSE;
3991 }
3992
3993 tls_type = mips_elf_reloc_tls_type (r_type);
3994 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3995 hmips->global_got_area = GGA_NORMAL;
3996
3997 entry.abfd = abfd;
3998 entry.symndx = -1;
3999 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4000 entry.tls_type = tls_type;
4001 return mips_elf_record_got_entry (info, abfd, &entry);
4002 }
4003
4004 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4005 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4006
4007 static bfd_boolean
4008 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4009 struct bfd_link_info *info, int r_type)
4010 {
4011 struct mips_elf_link_hash_table *htab;
4012 struct mips_got_info *g;
4013 struct mips_got_entry entry;
4014
4015 htab = mips_elf_hash_table (info);
4016 BFD_ASSERT (htab != NULL);
4017
4018 g = htab->got_info;
4019 BFD_ASSERT (g != NULL);
4020
4021 entry.abfd = abfd;
4022 entry.symndx = symndx;
4023 entry.d.addend = addend;
4024 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4025 return mips_elf_record_got_entry (info, abfd, &entry);
4026 }
4027
4028 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4029 H is the symbol's hash table entry, or null if SYMNDX is local
4030 to ABFD. */
4031
4032 static bfd_boolean
4033 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4034 long symndx, struct elf_link_hash_entry *h,
4035 bfd_signed_vma addend)
4036 {
4037 struct mips_elf_link_hash_table *htab;
4038 struct mips_got_info *g1, *g2;
4039 struct mips_got_page_ref lookup, *entry;
4040 void **loc, **bfd_loc;
4041
4042 htab = mips_elf_hash_table (info);
4043 BFD_ASSERT (htab != NULL);
4044
4045 g1 = htab->got_info;
4046 BFD_ASSERT (g1 != NULL);
4047
4048 if (h)
4049 {
4050 lookup.symndx = -1;
4051 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4052 }
4053 else
4054 {
4055 lookup.symndx = symndx;
4056 lookup.u.abfd = abfd;
4057 }
4058 lookup.addend = addend;
4059 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4060 if (loc == NULL)
4061 return FALSE;
4062
4063 entry = (struct mips_got_page_ref *) *loc;
4064 if (!entry)
4065 {
4066 entry = bfd_alloc (abfd, sizeof (*entry));
4067 if (!entry)
4068 return FALSE;
4069
4070 *entry = lookup;
4071 *loc = entry;
4072 }
4073
4074 /* Add the same entry to the BFD's GOT. */
4075 g2 = mips_elf_bfd_got (abfd, TRUE);
4076 if (!g2)
4077 return FALSE;
4078
4079 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4080 if (!bfd_loc)
4081 return FALSE;
4082
4083 if (!*bfd_loc)
4084 *bfd_loc = entry;
4085
4086 return TRUE;
4087 }
4088
4089 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4090
4091 static void
4092 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4093 unsigned int n)
4094 {
4095 asection *s;
4096 struct mips_elf_link_hash_table *htab;
4097
4098 htab = mips_elf_hash_table (info);
4099 BFD_ASSERT (htab != NULL);
4100
4101 s = mips_elf_rel_dyn_section (info, FALSE);
4102 BFD_ASSERT (s != NULL);
4103
4104 if (htab->is_vxworks)
4105 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4106 else
4107 {
4108 if (s->size == 0)
4109 {
4110 /* Make room for a null element. */
4111 s->size += MIPS_ELF_REL_SIZE (abfd);
4112 ++s->reloc_count;
4113 }
4114 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4115 }
4116 }
4117 \f
4118 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4119 mips_elf_traverse_got_arg structure. Count the number of GOT
4120 entries and TLS relocs. Set DATA->value to true if we need
4121 to resolve indirect or warning symbols and then recreate the GOT. */
4122
4123 static int
4124 mips_elf_check_recreate_got (void **entryp, void *data)
4125 {
4126 struct mips_got_entry *entry;
4127 struct mips_elf_traverse_got_arg *arg;
4128
4129 entry = (struct mips_got_entry *) *entryp;
4130 arg = (struct mips_elf_traverse_got_arg *) data;
4131 if (entry->abfd != NULL && entry->symndx == -1)
4132 {
4133 struct mips_elf_link_hash_entry *h;
4134
4135 h = entry->d.h;
4136 if (h->root.root.type == bfd_link_hash_indirect
4137 || h->root.root.type == bfd_link_hash_warning)
4138 {
4139 arg->value = TRUE;
4140 return 0;
4141 }
4142 }
4143 mips_elf_count_got_entry (arg->info, arg->g, entry);
4144 return 1;
4145 }
4146
4147 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4148 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4149 converting entries for indirect and warning symbols into entries
4150 for the target symbol. Set DATA->g to null on error. */
4151
4152 static int
4153 mips_elf_recreate_got (void **entryp, void *data)
4154 {
4155 struct mips_got_entry new_entry, *entry;
4156 struct mips_elf_traverse_got_arg *arg;
4157 void **slot;
4158
4159 entry = (struct mips_got_entry *) *entryp;
4160 arg = (struct mips_elf_traverse_got_arg *) data;
4161 if (entry->abfd != NULL
4162 && entry->symndx == -1
4163 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4164 || entry->d.h->root.root.type == bfd_link_hash_warning))
4165 {
4166 struct mips_elf_link_hash_entry *h;
4167
4168 new_entry = *entry;
4169 entry = &new_entry;
4170 h = entry->d.h;
4171 do
4172 {
4173 BFD_ASSERT (h->global_got_area == GGA_NONE);
4174 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4175 }
4176 while (h->root.root.type == bfd_link_hash_indirect
4177 || h->root.root.type == bfd_link_hash_warning);
4178 entry->d.h = h;
4179 }
4180 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4181 if (slot == NULL)
4182 {
4183 arg->g = NULL;
4184 return 0;
4185 }
4186 if (*slot == NULL)
4187 {
4188 if (entry == &new_entry)
4189 {
4190 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4191 if (!entry)
4192 {
4193 arg->g = NULL;
4194 return 0;
4195 }
4196 *entry = new_entry;
4197 }
4198 *slot = entry;
4199 mips_elf_count_got_entry (arg->info, arg->g, entry);
4200 }
4201 return 1;
4202 }
4203
4204 /* Return the maximum number of GOT page entries required for RANGE. */
4205
4206 static bfd_vma
4207 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4208 {
4209 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4210 }
4211
4212 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4213
4214 static bfd_boolean
4215 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4216 asection *sec, bfd_signed_vma addend)
4217 {
4218 struct mips_got_info *g = arg->g;
4219 struct mips_got_page_entry lookup, *entry;
4220 struct mips_got_page_range **range_ptr, *range;
4221 bfd_vma old_pages, new_pages;
4222 void **loc;
4223
4224 /* Find the mips_got_page_entry hash table entry for this section. */
4225 lookup.sec = sec;
4226 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4227 if (loc == NULL)
4228 return FALSE;
4229
4230 /* Create a mips_got_page_entry if this is the first time we've
4231 seen the section. */
4232 entry = (struct mips_got_page_entry *) *loc;
4233 if (!entry)
4234 {
4235 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4236 if (!entry)
4237 return FALSE;
4238
4239 entry->sec = sec;
4240 *loc = entry;
4241 }
4242
4243 /* Skip over ranges whose maximum extent cannot share a page entry
4244 with ADDEND. */
4245 range_ptr = &entry->ranges;
4246 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4247 range_ptr = &(*range_ptr)->next;
4248
4249 /* If we scanned to the end of the list, or found a range whose
4250 minimum extent cannot share a page entry with ADDEND, create
4251 a new singleton range. */
4252 range = *range_ptr;
4253 if (!range || addend < range->min_addend - 0xffff)
4254 {
4255 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4256 if (!range)
4257 return FALSE;
4258
4259 range->next = *range_ptr;
4260 range->min_addend = addend;
4261 range->max_addend = addend;
4262
4263 *range_ptr = range;
4264 entry->num_pages++;
4265 g->page_gotno++;
4266 return TRUE;
4267 }
4268
4269 /* Remember how many pages the old range contributed. */
4270 old_pages = mips_elf_pages_for_range (range);
4271
4272 /* Update the ranges. */
4273 if (addend < range->min_addend)
4274 range->min_addend = addend;
4275 else if (addend > range->max_addend)
4276 {
4277 if (range->next && addend >= range->next->min_addend - 0xffff)
4278 {
4279 old_pages += mips_elf_pages_for_range (range->next);
4280 range->max_addend = range->next->max_addend;
4281 range->next = range->next->next;
4282 }
4283 else
4284 range->max_addend = addend;
4285 }
4286
4287 /* Record any change in the total estimate. */
4288 new_pages = mips_elf_pages_for_range (range);
4289 if (old_pages != new_pages)
4290 {
4291 entry->num_pages += new_pages - old_pages;
4292 g->page_gotno += new_pages - old_pages;
4293 }
4294
4295 return TRUE;
4296 }
4297
4298 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4299 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4300 whether the page reference described by *REFP needs a GOT page entry,
4301 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4302
4303 static bfd_boolean
4304 mips_elf_resolve_got_page_ref (void **refp, void *data)
4305 {
4306 struct mips_got_page_ref *ref;
4307 struct mips_elf_traverse_got_arg *arg;
4308 struct mips_elf_link_hash_table *htab;
4309 asection *sec;
4310 bfd_vma addend;
4311
4312 ref = (struct mips_got_page_ref *) *refp;
4313 arg = (struct mips_elf_traverse_got_arg *) data;
4314 htab = mips_elf_hash_table (arg->info);
4315
4316 if (ref->symndx < 0)
4317 {
4318 struct mips_elf_link_hash_entry *h;
4319
4320 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4321 h = ref->u.h;
4322 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4323 return 1;
4324
4325 /* Ignore undefined symbols; we'll issue an error later if
4326 appropriate. */
4327 if (!((h->root.root.type == bfd_link_hash_defined
4328 || h->root.root.type == bfd_link_hash_defweak)
4329 && h->root.root.u.def.section))
4330 return 1;
4331
4332 sec = h->root.root.u.def.section;
4333 addend = h->root.root.u.def.value + ref->addend;
4334 }
4335 else
4336 {
4337 Elf_Internal_Sym *isym;
4338
4339 /* Read in the symbol. */
4340 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4341 ref->symndx);
4342 if (isym == NULL)
4343 {
4344 arg->g = NULL;
4345 return 0;
4346 }
4347
4348 /* Get the associated input section. */
4349 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4350 if (sec == NULL)
4351 {
4352 arg->g = NULL;
4353 return 0;
4354 }
4355
4356 /* If this is a mergable section, work out the section and offset
4357 of the merged data. For section symbols, the addend specifies
4358 of the offset _of_ the first byte in the data, otherwise it
4359 specifies the offset _from_ the first byte. */
4360 if (sec->flags & SEC_MERGE)
4361 {
4362 void *secinfo;
4363
4364 secinfo = elf_section_data (sec)->sec_info;
4365 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4366 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4367 isym->st_value + ref->addend);
4368 else
4369 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4370 isym->st_value) + ref->addend;
4371 }
4372 else
4373 addend = isym->st_value + ref->addend;
4374 }
4375 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4376 {
4377 arg->g = NULL;
4378 return 0;
4379 }
4380 return 1;
4381 }
4382
4383 /* If any entries in G->got_entries are for indirect or warning symbols,
4384 replace them with entries for the target symbol. Convert g->got_page_refs
4385 into got_page_entry structures and estimate the number of page entries
4386 that they require. */
4387
4388 static bfd_boolean
4389 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4390 struct mips_got_info *g)
4391 {
4392 struct mips_elf_traverse_got_arg tga;
4393 struct mips_got_info oldg;
4394
4395 oldg = *g;
4396
4397 tga.info = info;
4398 tga.g = g;
4399 tga.value = FALSE;
4400 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4401 if (tga.value)
4402 {
4403 *g = oldg;
4404 g->got_entries = htab_create (htab_size (oldg.got_entries),
4405 mips_elf_got_entry_hash,
4406 mips_elf_got_entry_eq, NULL);
4407 if (!g->got_entries)
4408 return FALSE;
4409
4410 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4411 if (!tga.g)
4412 return FALSE;
4413
4414 htab_delete (oldg.got_entries);
4415 }
4416
4417 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4418 mips_got_page_entry_eq, NULL);
4419 if (g->got_page_entries == NULL)
4420 return FALSE;
4421
4422 tga.info = info;
4423 tga.g = g;
4424 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4425
4426 return TRUE;
4427 }
4428
4429 /* Return true if a GOT entry for H should live in the local rather than
4430 global GOT area. */
4431
4432 static bfd_boolean
4433 mips_use_local_got_p (struct bfd_link_info *info,
4434 struct mips_elf_link_hash_entry *h)
4435 {
4436 /* Symbols that aren't in the dynamic symbol table must live in the
4437 local GOT. This includes symbols that are completely undefined
4438 and which therefore don't bind locally. We'll report undefined
4439 symbols later if appropriate. */
4440 if (h->root.dynindx == -1)
4441 return TRUE;
4442
4443 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4444 to the local GOT, as they would be implicitly relocated by the
4445 base address by the dynamic loader. */
4446 if (bfd_is_abs_symbol (&h->root.root))
4447 return FALSE;
4448
4449 /* Symbols that bind locally can (and in the case of forced-local
4450 symbols, must) live in the local GOT. */
4451 if (h->got_only_for_calls
4452 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4453 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4454 return TRUE;
4455
4456 /* If this is an executable that must provide a definition of the symbol,
4457 either though PLTs or copy relocations, then that address should go in
4458 the local rather than global GOT. */
4459 if (bfd_link_executable (info) && h->has_static_relocs)
4460 return TRUE;
4461
4462 return FALSE;
4463 }
4464
4465 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4466 link_info structure. Decide whether the hash entry needs an entry in
4467 the global part of the primary GOT, setting global_got_area accordingly.
4468 Count the number of global symbols that are in the primary GOT only
4469 because they have relocations against them (reloc_only_gotno). */
4470
4471 static int
4472 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4473 {
4474 struct bfd_link_info *info;
4475 struct mips_elf_link_hash_table *htab;
4476 struct mips_got_info *g;
4477
4478 info = (struct bfd_link_info *) data;
4479 htab = mips_elf_hash_table (info);
4480 g = htab->got_info;
4481 if (h->global_got_area != GGA_NONE)
4482 {
4483 /* Make a final decision about whether the symbol belongs in the
4484 local or global GOT. */
4485 if (mips_use_local_got_p (info, h))
4486 /* The symbol belongs in the local GOT. We no longer need this
4487 entry if it was only used for relocations; those relocations
4488 will be against the null or section symbol instead of H. */
4489 h->global_got_area = GGA_NONE;
4490 else if (htab->is_vxworks
4491 && h->got_only_for_calls
4492 && h->root.plt.plist->mips_offset != MINUS_ONE)
4493 /* On VxWorks, calls can refer directly to the .got.plt entry;
4494 they don't need entries in the regular GOT. .got.plt entries
4495 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4496 h->global_got_area = GGA_NONE;
4497 else if (h->global_got_area == GGA_RELOC_ONLY)
4498 {
4499 g->reloc_only_gotno++;
4500 g->global_gotno++;
4501 }
4502 }
4503 return 1;
4504 }
4505 \f
4506 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4507 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4508
4509 static int
4510 mips_elf_add_got_entry (void **entryp, void *data)
4511 {
4512 struct mips_got_entry *entry;
4513 struct mips_elf_traverse_got_arg *arg;
4514 void **slot;
4515
4516 entry = (struct mips_got_entry *) *entryp;
4517 arg = (struct mips_elf_traverse_got_arg *) data;
4518 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4519 if (!slot)
4520 {
4521 arg->g = NULL;
4522 return 0;
4523 }
4524 if (!*slot)
4525 {
4526 *slot = entry;
4527 mips_elf_count_got_entry (arg->info, arg->g, entry);
4528 }
4529 return 1;
4530 }
4531
4532 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4533 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4534
4535 static int
4536 mips_elf_add_got_page_entry (void **entryp, void *data)
4537 {
4538 struct mips_got_page_entry *entry;
4539 struct mips_elf_traverse_got_arg *arg;
4540 void **slot;
4541
4542 entry = (struct mips_got_page_entry *) *entryp;
4543 arg = (struct mips_elf_traverse_got_arg *) data;
4544 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4545 if (!slot)
4546 {
4547 arg->g = NULL;
4548 return 0;
4549 }
4550 if (!*slot)
4551 {
4552 *slot = entry;
4553 arg->g->page_gotno += entry->num_pages;
4554 }
4555 return 1;
4556 }
4557
4558 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4559 this would lead to overflow, 1 if they were merged successfully,
4560 and 0 if a merge failed due to lack of memory. (These values are chosen
4561 so that nonnegative return values can be returned by a htab_traverse
4562 callback.) */
4563
4564 static int
4565 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4566 struct mips_got_info *to,
4567 struct mips_elf_got_per_bfd_arg *arg)
4568 {
4569 struct mips_elf_traverse_got_arg tga;
4570 unsigned int estimate;
4571
4572 /* Work out how many page entries we would need for the combined GOT. */
4573 estimate = arg->max_pages;
4574 if (estimate >= from->page_gotno + to->page_gotno)
4575 estimate = from->page_gotno + to->page_gotno;
4576
4577 /* And conservatively estimate how many local and TLS entries
4578 would be needed. */
4579 estimate += from->local_gotno + to->local_gotno;
4580 estimate += from->tls_gotno + to->tls_gotno;
4581
4582 /* If we're merging with the primary got, any TLS relocations will
4583 come after the full set of global entries. Otherwise estimate those
4584 conservatively as well. */
4585 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4586 estimate += arg->global_count;
4587 else
4588 estimate += from->global_gotno + to->global_gotno;
4589
4590 /* Bail out if the combined GOT might be too big. */
4591 if (estimate > arg->max_count)
4592 return -1;
4593
4594 /* Transfer the bfd's got information from FROM to TO. */
4595 tga.info = arg->info;
4596 tga.g = to;
4597 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4598 if (!tga.g)
4599 return 0;
4600
4601 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4602 if (!tga.g)
4603 return 0;
4604
4605 mips_elf_replace_bfd_got (abfd, to);
4606 return 1;
4607 }
4608
4609 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4610 as possible of the primary got, since it doesn't require explicit
4611 dynamic relocations, but don't use bfds that would reference global
4612 symbols out of the addressable range. Failing the primary got,
4613 attempt to merge with the current got, or finish the current got
4614 and then make make the new got current. */
4615
4616 static bfd_boolean
4617 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4618 struct mips_elf_got_per_bfd_arg *arg)
4619 {
4620 unsigned int estimate;
4621 int result;
4622
4623 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4624 return FALSE;
4625
4626 /* Work out the number of page, local and TLS entries. */
4627 estimate = arg->max_pages;
4628 if (estimate > g->page_gotno)
4629 estimate = g->page_gotno;
4630 estimate += g->local_gotno + g->tls_gotno;
4631
4632 /* We place TLS GOT entries after both locals and globals. The globals
4633 for the primary GOT may overflow the normal GOT size limit, so be
4634 sure not to merge a GOT which requires TLS with the primary GOT in that
4635 case. This doesn't affect non-primary GOTs. */
4636 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4637
4638 if (estimate <= arg->max_count)
4639 {
4640 /* If we don't have a primary GOT, use it as
4641 a starting point for the primary GOT. */
4642 if (!arg->primary)
4643 {
4644 arg->primary = g;
4645 return TRUE;
4646 }
4647
4648 /* Try merging with the primary GOT. */
4649 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4650 if (result >= 0)
4651 return result;
4652 }
4653
4654 /* If we can merge with the last-created got, do it. */
4655 if (arg->current)
4656 {
4657 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4658 if (result >= 0)
4659 return result;
4660 }
4661
4662 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4663 fits; if it turns out that it doesn't, we'll get relocation
4664 overflows anyway. */
4665 g->next = arg->current;
4666 arg->current = g;
4667
4668 return TRUE;
4669 }
4670
4671 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4672 to GOTIDX, duplicating the entry if it has already been assigned
4673 an index in a different GOT. */
4674
4675 static bfd_boolean
4676 mips_elf_set_gotidx (void **entryp, long gotidx)
4677 {
4678 struct mips_got_entry *entry;
4679
4680 entry = (struct mips_got_entry *) *entryp;
4681 if (entry->gotidx > 0)
4682 {
4683 struct mips_got_entry *new_entry;
4684
4685 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4686 if (!new_entry)
4687 return FALSE;
4688
4689 *new_entry = *entry;
4690 *entryp = new_entry;
4691 entry = new_entry;
4692 }
4693 entry->gotidx = gotidx;
4694 return TRUE;
4695 }
4696
4697 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4698 mips_elf_traverse_got_arg in which DATA->value is the size of one
4699 GOT entry. Set DATA->g to null on failure. */
4700
4701 static int
4702 mips_elf_initialize_tls_index (void **entryp, void *data)
4703 {
4704 struct mips_got_entry *entry;
4705 struct mips_elf_traverse_got_arg *arg;
4706
4707 /* We're only interested in TLS symbols. */
4708 entry = (struct mips_got_entry *) *entryp;
4709 if (entry->tls_type == GOT_TLS_NONE)
4710 return 1;
4711
4712 arg = (struct mips_elf_traverse_got_arg *) data;
4713 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4714 {
4715 arg->g = NULL;
4716 return 0;
4717 }
4718
4719 /* Account for the entries we've just allocated. */
4720 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4721 return 1;
4722 }
4723
4724 /* A htab_traverse callback for GOT entries, where DATA points to a
4725 mips_elf_traverse_got_arg. Set the global_got_area of each global
4726 symbol to DATA->value. */
4727
4728 static int
4729 mips_elf_set_global_got_area (void **entryp, void *data)
4730 {
4731 struct mips_got_entry *entry;
4732 struct mips_elf_traverse_got_arg *arg;
4733
4734 entry = (struct mips_got_entry *) *entryp;
4735 arg = (struct mips_elf_traverse_got_arg *) data;
4736 if (entry->abfd != NULL
4737 && entry->symndx == -1
4738 && entry->d.h->global_got_area != GGA_NONE)
4739 entry->d.h->global_got_area = arg->value;
4740 return 1;
4741 }
4742
4743 /* A htab_traverse callback for secondary GOT entries, where DATA points
4744 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4745 and record the number of relocations they require. DATA->value is
4746 the size of one GOT entry. Set DATA->g to null on failure. */
4747
4748 static int
4749 mips_elf_set_global_gotidx (void **entryp, void *data)
4750 {
4751 struct mips_got_entry *entry;
4752 struct mips_elf_traverse_got_arg *arg;
4753
4754 entry = (struct mips_got_entry *) *entryp;
4755 arg = (struct mips_elf_traverse_got_arg *) data;
4756 if (entry->abfd != NULL
4757 && entry->symndx == -1
4758 && entry->d.h->global_got_area != GGA_NONE)
4759 {
4760 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4761 {
4762 arg->g = NULL;
4763 return 0;
4764 }
4765 arg->g->assigned_low_gotno += 1;
4766
4767 if (bfd_link_pic (arg->info)
4768 || (elf_hash_table (arg->info)->dynamic_sections_created
4769 && entry->d.h->root.def_dynamic
4770 && !entry->d.h->root.def_regular))
4771 arg->g->relocs += 1;
4772 }
4773
4774 return 1;
4775 }
4776
4777 /* A htab_traverse callback for GOT entries for which DATA is the
4778 bfd_link_info. Forbid any global symbols from having traditional
4779 lazy-binding stubs. */
4780
4781 static int
4782 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4783 {
4784 struct bfd_link_info *info;
4785 struct mips_elf_link_hash_table *htab;
4786 struct mips_got_entry *entry;
4787
4788 entry = (struct mips_got_entry *) *entryp;
4789 info = (struct bfd_link_info *) data;
4790 htab = mips_elf_hash_table (info);
4791 BFD_ASSERT (htab != NULL);
4792
4793 if (entry->abfd != NULL
4794 && entry->symndx == -1
4795 && entry->d.h->needs_lazy_stub)
4796 {
4797 entry->d.h->needs_lazy_stub = FALSE;
4798 htab->lazy_stub_count--;
4799 }
4800
4801 return 1;
4802 }
4803
4804 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4805 the primary GOT. */
4806 static bfd_vma
4807 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4808 {
4809 if (!g->next)
4810 return 0;
4811
4812 g = mips_elf_bfd_got (ibfd, FALSE);
4813 if (! g)
4814 return 0;
4815
4816 BFD_ASSERT (g->next);
4817
4818 g = g->next;
4819
4820 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4821 * MIPS_ELF_GOT_SIZE (abfd);
4822 }
4823
4824 /* Turn a single GOT that is too big for 16-bit addressing into
4825 a sequence of GOTs, each one 16-bit addressable. */
4826
4827 static bfd_boolean
4828 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4829 asection *got, bfd_size_type pages)
4830 {
4831 struct mips_elf_link_hash_table *htab;
4832 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4833 struct mips_elf_traverse_got_arg tga;
4834 struct mips_got_info *g, *gg;
4835 unsigned int assign, needed_relocs;
4836 bfd *dynobj, *ibfd;
4837
4838 dynobj = elf_hash_table (info)->dynobj;
4839 htab = mips_elf_hash_table (info);
4840 BFD_ASSERT (htab != NULL);
4841
4842 g = htab->got_info;
4843
4844 got_per_bfd_arg.obfd = abfd;
4845 got_per_bfd_arg.info = info;
4846 got_per_bfd_arg.current = NULL;
4847 got_per_bfd_arg.primary = NULL;
4848 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4849 / MIPS_ELF_GOT_SIZE (abfd))
4850 - htab->reserved_gotno);
4851 got_per_bfd_arg.max_pages = pages;
4852 /* The number of globals that will be included in the primary GOT.
4853 See the calls to mips_elf_set_global_got_area below for more
4854 information. */
4855 got_per_bfd_arg.global_count = g->global_gotno;
4856
4857 /* Try to merge the GOTs of input bfds together, as long as they
4858 don't seem to exceed the maximum GOT size, choosing one of them
4859 to be the primary GOT. */
4860 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4861 {
4862 gg = mips_elf_bfd_got (ibfd, FALSE);
4863 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4864 return FALSE;
4865 }
4866
4867 /* If we do not find any suitable primary GOT, create an empty one. */
4868 if (got_per_bfd_arg.primary == NULL)
4869 g->next = mips_elf_create_got_info (abfd);
4870 else
4871 g->next = got_per_bfd_arg.primary;
4872 g->next->next = got_per_bfd_arg.current;
4873
4874 /* GG is now the master GOT, and G is the primary GOT. */
4875 gg = g;
4876 g = g->next;
4877
4878 /* Map the output bfd to the primary got. That's what we're going
4879 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4880 didn't mark in check_relocs, and we want a quick way to find it.
4881 We can't just use gg->next because we're going to reverse the
4882 list. */
4883 mips_elf_replace_bfd_got (abfd, g);
4884
4885 /* Every symbol that is referenced in a dynamic relocation must be
4886 present in the primary GOT, so arrange for them to appear after
4887 those that are actually referenced. */
4888 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4889 g->global_gotno = gg->global_gotno;
4890
4891 tga.info = info;
4892 tga.value = GGA_RELOC_ONLY;
4893 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4894 tga.value = GGA_NORMAL;
4895 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4896
4897 /* Now go through the GOTs assigning them offset ranges.
4898 [assigned_low_gotno, local_gotno[ will be set to the range of local
4899 entries in each GOT. We can then compute the end of a GOT by
4900 adding local_gotno to global_gotno. We reverse the list and make
4901 it circular since then we'll be able to quickly compute the
4902 beginning of a GOT, by computing the end of its predecessor. To
4903 avoid special cases for the primary GOT, while still preserving
4904 assertions that are valid for both single- and multi-got links,
4905 we arrange for the main got struct to have the right number of
4906 global entries, but set its local_gotno such that the initial
4907 offset of the primary GOT is zero. Remember that the primary GOT
4908 will become the last item in the circular linked list, so it
4909 points back to the master GOT. */
4910 gg->local_gotno = -g->global_gotno;
4911 gg->global_gotno = g->global_gotno;
4912 gg->tls_gotno = 0;
4913 assign = 0;
4914 gg->next = gg;
4915
4916 do
4917 {
4918 struct mips_got_info *gn;
4919
4920 assign += htab->reserved_gotno;
4921 g->assigned_low_gotno = assign;
4922 g->local_gotno += assign;
4923 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4924 g->assigned_high_gotno = g->local_gotno - 1;
4925 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4926
4927 /* Take g out of the direct list, and push it onto the reversed
4928 list that gg points to. g->next is guaranteed to be nonnull after
4929 this operation, as required by mips_elf_initialize_tls_index. */
4930 gn = g->next;
4931 g->next = gg->next;
4932 gg->next = g;
4933
4934 /* Set up any TLS entries. We always place the TLS entries after
4935 all non-TLS entries. */
4936 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4937 tga.g = g;
4938 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4939 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4940 if (!tga.g)
4941 return FALSE;
4942 BFD_ASSERT (g->tls_assigned_gotno == assign);
4943
4944 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4945 g = gn;
4946
4947 /* Forbid global symbols in every non-primary GOT from having
4948 lazy-binding stubs. */
4949 if (g)
4950 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4951 }
4952 while (g);
4953
4954 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4955
4956 needed_relocs = 0;
4957 for (g = gg->next; g && g->next != gg; g = g->next)
4958 {
4959 unsigned int save_assign;
4960
4961 /* Assign offsets to global GOT entries and count how many
4962 relocations they need. */
4963 save_assign = g->assigned_low_gotno;
4964 g->assigned_low_gotno = g->local_gotno;
4965 tga.info = info;
4966 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4967 tga.g = g;
4968 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4969 if (!tga.g)
4970 return FALSE;
4971 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4972 g->assigned_low_gotno = save_assign;
4973
4974 if (bfd_link_pic (info))
4975 {
4976 g->relocs += g->local_gotno - g->assigned_low_gotno;
4977 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4978 + g->next->global_gotno
4979 + g->next->tls_gotno
4980 + htab->reserved_gotno);
4981 }
4982 needed_relocs += g->relocs;
4983 }
4984 needed_relocs += g->relocs;
4985
4986 if (needed_relocs)
4987 mips_elf_allocate_dynamic_relocations (dynobj, info,
4988 needed_relocs);
4989
4990 return TRUE;
4991 }
4992
4993 \f
4994 /* Returns the first relocation of type r_type found, beginning with
4995 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4996
4997 static const Elf_Internal_Rela *
4998 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4999 const Elf_Internal_Rela *relocation,
5000 const Elf_Internal_Rela *relend)
5001 {
5002 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5003
5004 while (relocation < relend)
5005 {
5006 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5007 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5008 return relocation;
5009
5010 ++relocation;
5011 }
5012
5013 /* We didn't find it. */
5014 return NULL;
5015 }
5016
5017 /* Return whether an input relocation is against a local symbol. */
5018
5019 static bfd_boolean
5020 mips_elf_local_relocation_p (bfd *input_bfd,
5021 const Elf_Internal_Rela *relocation,
5022 asection **local_sections)
5023 {
5024 unsigned long r_symndx;
5025 Elf_Internal_Shdr *symtab_hdr;
5026 size_t extsymoff;
5027
5028 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5029 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5030 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5031
5032 if (r_symndx < extsymoff)
5033 return TRUE;
5034 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5035 return TRUE;
5036
5037 return FALSE;
5038 }
5039 \f
5040 /* Sign-extend VALUE, which has the indicated number of BITS. */
5041
5042 bfd_vma
5043 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5044 {
5045 if (value & ((bfd_vma) 1 << (bits - 1)))
5046 /* VALUE is negative. */
5047 value |= ((bfd_vma) - 1) << bits;
5048
5049 return value;
5050 }
5051
5052 /* Return non-zero if the indicated VALUE has overflowed the maximum
5053 range expressible by a signed number with the indicated number of
5054 BITS. */
5055
5056 static bfd_boolean
5057 mips_elf_overflow_p (bfd_vma value, int bits)
5058 {
5059 bfd_signed_vma svalue = (bfd_signed_vma) value;
5060
5061 if (svalue > (1 << (bits - 1)) - 1)
5062 /* The value is too big. */
5063 return TRUE;
5064 else if (svalue < -(1 << (bits - 1)))
5065 /* The value is too small. */
5066 return TRUE;
5067
5068 /* All is well. */
5069 return FALSE;
5070 }
5071
5072 /* Calculate the %high function. */
5073
5074 static bfd_vma
5075 mips_elf_high (bfd_vma value)
5076 {
5077 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5078 }
5079
5080 /* Calculate the %higher function. */
5081
5082 static bfd_vma
5083 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5084 {
5085 #ifdef BFD64
5086 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5087 #else
5088 abort ();
5089 return MINUS_ONE;
5090 #endif
5091 }
5092
5093 /* Calculate the %highest function. */
5094
5095 static bfd_vma
5096 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5097 {
5098 #ifdef BFD64
5099 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5100 #else
5101 abort ();
5102 return MINUS_ONE;
5103 #endif
5104 }
5105 \f
5106 /* Create the .compact_rel section. */
5107
5108 static bfd_boolean
5109 mips_elf_create_compact_rel_section
5110 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5111 {
5112 flagword flags;
5113 register asection *s;
5114
5115 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5116 {
5117 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5118 | SEC_READONLY);
5119
5120 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5121 if (s == NULL
5122 || ! bfd_set_section_alignment (abfd, s,
5123 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5124 return FALSE;
5125
5126 s->size = sizeof (Elf32_External_compact_rel);
5127 }
5128
5129 return TRUE;
5130 }
5131
5132 /* Create the .got section to hold the global offset table. */
5133
5134 static bfd_boolean
5135 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5136 {
5137 flagword flags;
5138 register asection *s;
5139 struct elf_link_hash_entry *h;
5140 struct bfd_link_hash_entry *bh;
5141 struct mips_elf_link_hash_table *htab;
5142
5143 htab = mips_elf_hash_table (info);
5144 BFD_ASSERT (htab != NULL);
5145
5146 /* This function may be called more than once. */
5147 if (htab->root.sgot)
5148 return TRUE;
5149
5150 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5151 | SEC_LINKER_CREATED);
5152
5153 /* We have to use an alignment of 2**4 here because this is hardcoded
5154 in the function stub generation and in the linker script. */
5155 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5156 if (s == NULL
5157 || ! bfd_set_section_alignment (abfd, s, 4))
5158 return FALSE;
5159 htab->root.sgot = s;
5160
5161 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5162 linker script because we don't want to define the symbol if we
5163 are not creating a global offset table. */
5164 bh = NULL;
5165 if (! (_bfd_generic_link_add_one_symbol
5166 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5167 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5168 return FALSE;
5169
5170 h = (struct elf_link_hash_entry *) bh;
5171 h->non_elf = 0;
5172 h->def_regular = 1;
5173 h->type = STT_OBJECT;
5174 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5175 elf_hash_table (info)->hgot = h;
5176
5177 if (bfd_link_pic (info)
5178 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5179 return FALSE;
5180
5181 htab->got_info = mips_elf_create_got_info (abfd);
5182 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5183 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5184
5185 /* We also need a .got.plt section when generating PLTs. */
5186 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5187 SEC_ALLOC | SEC_LOAD
5188 | SEC_HAS_CONTENTS
5189 | SEC_IN_MEMORY
5190 | SEC_LINKER_CREATED);
5191 if (s == NULL)
5192 return FALSE;
5193 htab->root.sgotplt = s;
5194
5195 return TRUE;
5196 }
5197 \f
5198 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5199 __GOTT_INDEX__ symbols. These symbols are only special for
5200 shared objects; they are not used in executables. */
5201
5202 static bfd_boolean
5203 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5204 {
5205 return (mips_elf_hash_table (info)->is_vxworks
5206 && bfd_link_pic (info)
5207 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5208 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5209 }
5210
5211 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5212 require an la25 stub. See also mips_elf_local_pic_function_p,
5213 which determines whether the destination function ever requires a
5214 stub. */
5215
5216 static bfd_boolean
5217 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5218 bfd_boolean target_is_16_bit_code_p)
5219 {
5220 /* We specifically ignore branches and jumps from EF_PIC objects,
5221 where the onus is on the compiler or programmer to perform any
5222 necessary initialization of $25. Sometimes such initialization
5223 is unnecessary; for example, -mno-shared functions do not use
5224 the incoming value of $25, and may therefore be called directly. */
5225 if (PIC_OBJECT_P (input_bfd))
5226 return FALSE;
5227
5228 switch (r_type)
5229 {
5230 case R_MIPS_26:
5231 case R_MIPS_PC16:
5232 case R_MIPS_PC21_S2:
5233 case R_MIPS_PC26_S2:
5234 case R_MICROMIPS_26_S1:
5235 case R_MICROMIPS_PC7_S1:
5236 case R_MICROMIPS_PC10_S1:
5237 case R_MICROMIPS_PC16_S1:
5238 case R_MICROMIPS_PC23_S2:
5239 return TRUE;
5240
5241 case R_MIPS16_26:
5242 return !target_is_16_bit_code_p;
5243
5244 default:
5245 return FALSE;
5246 }
5247 }
5248 \f
5249 /* Obtain the field relocated by RELOCATION. */
5250
5251 static bfd_vma
5252 mips_elf_obtain_contents (reloc_howto_type *howto,
5253 const Elf_Internal_Rela *relocation,
5254 bfd *input_bfd, bfd_byte *contents)
5255 {
5256 bfd_vma x = 0;
5257 bfd_byte *location = contents + relocation->r_offset;
5258 unsigned int size = bfd_get_reloc_size (howto);
5259
5260 /* Obtain the bytes. */
5261 if (size != 0)
5262 x = bfd_get (8 * size, input_bfd, location);
5263
5264 return x;
5265 }
5266
5267 /* Store the field relocated by RELOCATION. */
5268
5269 static void
5270 mips_elf_store_contents (reloc_howto_type *howto,
5271 const Elf_Internal_Rela *relocation,
5272 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5273 {
5274 bfd_byte *location = contents + relocation->r_offset;
5275 unsigned int size = bfd_get_reloc_size (howto);
5276
5277 /* Put the value into the output. */
5278 if (size != 0)
5279 bfd_put (8 * size, input_bfd, x, location);
5280 }
5281
5282 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5283 RELOCATION described by HOWTO, with a move of 0 to the load target
5284 register, returning TRUE if that is successful and FALSE otherwise.
5285 If DOIT is FALSE, then only determine it patching is possible and
5286 return status without actually changing CONTENTS.
5287 */
5288
5289 static bfd_boolean
5290 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5291 const Elf_Internal_Rela *relocation,
5292 reloc_howto_type *howto, bfd_boolean doit)
5293 {
5294 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5295 bfd_byte *location = contents + relocation->r_offset;
5296 bfd_boolean nullified = TRUE;
5297 bfd_vma x;
5298
5299 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5300
5301 /* Obtain the current value. */
5302 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5303
5304 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5305 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5306 if (mips16_reloc_p (r_type)
5307 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5308 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5309 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5310 else if (micromips_reloc_p (r_type)
5311 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5312 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5313 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5314 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5315 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5316 else
5317 nullified = FALSE;
5318
5319 /* Put the value into the output. */
5320 if (doit && nullified)
5321 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5322
5323 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5324
5325 return nullified;
5326 }
5327
5328 /* Calculate the value produced by the RELOCATION (which comes from
5329 the INPUT_BFD). The ADDEND is the addend to use for this
5330 RELOCATION; RELOCATION->R_ADDEND is ignored.
5331
5332 The result of the relocation calculation is stored in VALUEP.
5333 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5334 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5335
5336 This function returns bfd_reloc_continue if the caller need take no
5337 further action regarding this relocation, bfd_reloc_notsupported if
5338 something goes dramatically wrong, bfd_reloc_overflow if an
5339 overflow occurs, and bfd_reloc_ok to indicate success. */
5340
5341 static bfd_reloc_status_type
5342 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5343 asection *input_section, bfd_byte *contents,
5344 struct bfd_link_info *info,
5345 const Elf_Internal_Rela *relocation,
5346 bfd_vma addend, reloc_howto_type *howto,
5347 Elf_Internal_Sym *local_syms,
5348 asection **local_sections, bfd_vma *valuep,
5349 const char **namep,
5350 bfd_boolean *cross_mode_jump_p,
5351 bfd_boolean save_addend)
5352 {
5353 /* The eventual value we will return. */
5354 bfd_vma value;
5355 /* The address of the symbol against which the relocation is
5356 occurring. */
5357 bfd_vma symbol = 0;
5358 /* The final GP value to be used for the relocatable, executable, or
5359 shared object file being produced. */
5360 bfd_vma gp;
5361 /* The place (section offset or address) of the storage unit being
5362 relocated. */
5363 bfd_vma p;
5364 /* The value of GP used to create the relocatable object. */
5365 bfd_vma gp0;
5366 /* The offset into the global offset table at which the address of
5367 the relocation entry symbol, adjusted by the addend, resides
5368 during execution. */
5369 bfd_vma g = MINUS_ONE;
5370 /* The section in which the symbol referenced by the relocation is
5371 located. */
5372 asection *sec = NULL;
5373 struct mips_elf_link_hash_entry *h = NULL;
5374 /* TRUE if the symbol referred to by this relocation is a local
5375 symbol. */
5376 bfd_boolean local_p, was_local_p;
5377 /* TRUE if the symbol referred to by this relocation is a section
5378 symbol. */
5379 bfd_boolean section_p = FALSE;
5380 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5381 bfd_boolean gp_disp_p = FALSE;
5382 /* TRUE if the symbol referred to by this relocation is
5383 "__gnu_local_gp". */
5384 bfd_boolean gnu_local_gp_p = FALSE;
5385 Elf_Internal_Shdr *symtab_hdr;
5386 size_t extsymoff;
5387 unsigned long r_symndx;
5388 int r_type;
5389 /* TRUE if overflow occurred during the calculation of the
5390 relocation value. */
5391 bfd_boolean overflowed_p;
5392 /* TRUE if this relocation refers to a MIPS16 function. */
5393 bfd_boolean target_is_16_bit_code_p = FALSE;
5394 bfd_boolean target_is_micromips_code_p = FALSE;
5395 struct mips_elf_link_hash_table *htab;
5396 bfd *dynobj;
5397 bfd_boolean resolved_to_zero;
5398
5399 dynobj = elf_hash_table (info)->dynobj;
5400 htab = mips_elf_hash_table (info);
5401 BFD_ASSERT (htab != NULL);
5402
5403 /* Parse the relocation. */
5404 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5405 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5406 p = (input_section->output_section->vma
5407 + input_section->output_offset
5408 + relocation->r_offset);
5409
5410 /* Assume that there will be no overflow. */
5411 overflowed_p = FALSE;
5412
5413 /* Figure out whether or not the symbol is local, and get the offset
5414 used in the array of hash table entries. */
5415 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5416 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5417 local_sections);
5418 was_local_p = local_p;
5419 if (! elf_bad_symtab (input_bfd))
5420 extsymoff = symtab_hdr->sh_info;
5421 else
5422 {
5423 /* The symbol table does not follow the rule that local symbols
5424 must come before globals. */
5425 extsymoff = 0;
5426 }
5427
5428 /* Figure out the value of the symbol. */
5429 if (local_p)
5430 {
5431 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5432 Elf_Internal_Sym *sym;
5433
5434 sym = local_syms + r_symndx;
5435 sec = local_sections[r_symndx];
5436
5437 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5438
5439 symbol = sec->output_section->vma + sec->output_offset;
5440 if (!section_p || (sec->flags & SEC_MERGE))
5441 symbol += sym->st_value;
5442 if ((sec->flags & SEC_MERGE) && section_p)
5443 {
5444 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5445 addend -= symbol;
5446 addend += sec->output_section->vma + sec->output_offset;
5447 }
5448
5449 /* MIPS16/microMIPS text labels should be treated as odd. */
5450 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5451 ++symbol;
5452
5453 /* Record the name of this symbol, for our caller. */
5454 *namep = bfd_elf_string_from_elf_section (input_bfd,
5455 symtab_hdr->sh_link,
5456 sym->st_name);
5457 if (*namep == NULL || **namep == '\0')
5458 *namep = bfd_section_name (input_bfd, sec);
5459
5460 /* For relocations against a section symbol and ones against no
5461 symbol (absolute relocations) infer the ISA mode from the addend. */
5462 if (section_p || r_symndx == STN_UNDEF)
5463 {
5464 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5465 target_is_micromips_code_p = (addend & 1) && micromips_p;
5466 }
5467 /* For relocations against an absolute symbol infer the ISA mode
5468 from the value of the symbol plus addend. */
5469 else if (bfd_is_abs_section (sec))
5470 {
5471 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5472 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5473 }
5474 /* Otherwise just use the regular symbol annotation available. */
5475 else
5476 {
5477 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5478 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5479 }
5480 }
5481 else
5482 {
5483 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5484
5485 /* For global symbols we look up the symbol in the hash-table. */
5486 h = ((struct mips_elf_link_hash_entry *)
5487 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5488 /* Find the real hash-table entry for this symbol. */
5489 while (h->root.root.type == bfd_link_hash_indirect
5490 || h->root.root.type == bfd_link_hash_warning)
5491 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5492
5493 /* Record the name of this symbol, for our caller. */
5494 *namep = h->root.root.root.string;
5495
5496 /* See if this is the special _gp_disp symbol. Note that such a
5497 symbol must always be a global symbol. */
5498 if (strcmp (*namep, "_gp_disp") == 0
5499 && ! NEWABI_P (input_bfd))
5500 {
5501 /* Relocations against _gp_disp are permitted only with
5502 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5503 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5504 return bfd_reloc_notsupported;
5505
5506 gp_disp_p = TRUE;
5507 }
5508 /* See if this is the special _gp symbol. Note that such a
5509 symbol must always be a global symbol. */
5510 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5511 gnu_local_gp_p = TRUE;
5512
5513
5514 /* If this symbol is defined, calculate its address. Note that
5515 _gp_disp is a magic symbol, always implicitly defined by the
5516 linker, so it's inappropriate to check to see whether or not
5517 its defined. */
5518 else if ((h->root.root.type == bfd_link_hash_defined
5519 || h->root.root.type == bfd_link_hash_defweak)
5520 && h->root.root.u.def.section)
5521 {
5522 sec = h->root.root.u.def.section;
5523 if (sec->output_section)
5524 symbol = (h->root.root.u.def.value
5525 + sec->output_section->vma
5526 + sec->output_offset);
5527 else
5528 symbol = h->root.root.u.def.value;
5529 }
5530 else if (h->root.root.type == bfd_link_hash_undefweak)
5531 /* We allow relocations against undefined weak symbols, giving
5532 it the value zero, so that you can undefined weak functions
5533 and check to see if they exist by looking at their
5534 addresses. */
5535 symbol = 0;
5536 else if (info->unresolved_syms_in_objects == RM_IGNORE
5537 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5538 symbol = 0;
5539 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5540 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5541 {
5542 /* If this is a dynamic link, we should have created a
5543 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5544 in _bfd_mips_elf_create_dynamic_sections.
5545 Otherwise, we should define the symbol with a value of 0.
5546 FIXME: It should probably get into the symbol table
5547 somehow as well. */
5548 BFD_ASSERT (! bfd_link_pic (info));
5549 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5550 symbol = 0;
5551 }
5552 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5553 {
5554 /* This is an optional symbol - an Irix specific extension to the
5555 ELF spec. Ignore it for now.
5556 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5557 than simply ignoring them, but we do not handle this for now.
5558 For information see the "64-bit ELF Object File Specification"
5559 which is available from here:
5560 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5561 symbol = 0;
5562 }
5563 else
5564 {
5565 bfd_boolean reject_undefined
5566 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5567 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5568
5569 (*info->callbacks->undefined_symbol)
5570 (info, h->root.root.root.string, input_bfd,
5571 input_section, relocation->r_offset, reject_undefined);
5572
5573 if (reject_undefined)
5574 return bfd_reloc_undefined;
5575
5576 symbol = 0;
5577 }
5578
5579 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5580 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5581 }
5582
5583 /* If this is a reference to a 16-bit function with a stub, we need
5584 to redirect the relocation to the stub unless:
5585
5586 (a) the relocation is for a MIPS16 JAL;
5587
5588 (b) the relocation is for a MIPS16 PIC call, and there are no
5589 non-MIPS16 uses of the GOT slot; or
5590
5591 (c) the section allows direct references to MIPS16 functions. */
5592 if (r_type != R_MIPS16_26
5593 && !bfd_link_relocatable (info)
5594 && ((h != NULL
5595 && h->fn_stub != NULL
5596 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5597 || (local_p
5598 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5599 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5600 && !section_allows_mips16_refs_p (input_section))
5601 {
5602 /* This is a 32- or 64-bit call to a 16-bit function. We should
5603 have already noticed that we were going to need the
5604 stub. */
5605 if (local_p)
5606 {
5607 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5608 value = 0;
5609 }
5610 else
5611 {
5612 BFD_ASSERT (h->need_fn_stub);
5613 if (h->la25_stub)
5614 {
5615 /* If a LA25 header for the stub itself exists, point to the
5616 prepended LUI/ADDIU sequence. */
5617 sec = h->la25_stub->stub_section;
5618 value = h->la25_stub->offset;
5619 }
5620 else
5621 {
5622 sec = h->fn_stub;
5623 value = 0;
5624 }
5625 }
5626
5627 symbol = sec->output_section->vma + sec->output_offset + value;
5628 /* The target is 16-bit, but the stub isn't. */
5629 target_is_16_bit_code_p = FALSE;
5630 }
5631 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5632 to a standard MIPS function, we need to redirect the call to the stub.
5633 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5634 indirect calls should use an indirect stub instead. */
5635 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5636 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5637 || (local_p
5638 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5639 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5640 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5641 {
5642 if (local_p)
5643 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5644 else
5645 {
5646 /* If both call_stub and call_fp_stub are defined, we can figure
5647 out which one to use by checking which one appears in the input
5648 file. */
5649 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5650 {
5651 asection *o;
5652
5653 sec = NULL;
5654 for (o = input_bfd->sections; o != NULL; o = o->next)
5655 {
5656 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5657 {
5658 sec = h->call_fp_stub;
5659 break;
5660 }
5661 }
5662 if (sec == NULL)
5663 sec = h->call_stub;
5664 }
5665 else if (h->call_stub != NULL)
5666 sec = h->call_stub;
5667 else
5668 sec = h->call_fp_stub;
5669 }
5670
5671 BFD_ASSERT (sec->size > 0);
5672 symbol = sec->output_section->vma + sec->output_offset;
5673 }
5674 /* If this is a direct call to a PIC function, redirect to the
5675 non-PIC stub. */
5676 else if (h != NULL && h->la25_stub
5677 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5678 target_is_16_bit_code_p))
5679 {
5680 symbol = (h->la25_stub->stub_section->output_section->vma
5681 + h->la25_stub->stub_section->output_offset
5682 + h->la25_stub->offset);
5683 if (ELF_ST_IS_MICROMIPS (h->root.other))
5684 symbol |= 1;
5685 }
5686 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5687 entry is used if a standard PLT entry has also been made. In this
5688 case the symbol will have been set by mips_elf_set_plt_sym_value
5689 to point to the standard PLT entry, so redirect to the compressed
5690 one. */
5691 else if ((mips16_branch_reloc_p (r_type)
5692 || micromips_branch_reloc_p (r_type))
5693 && !bfd_link_relocatable (info)
5694 && h != NULL
5695 && h->use_plt_entry
5696 && h->root.plt.plist->comp_offset != MINUS_ONE
5697 && h->root.plt.plist->mips_offset != MINUS_ONE)
5698 {
5699 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5700
5701 sec = htab->root.splt;
5702 symbol = (sec->output_section->vma
5703 + sec->output_offset
5704 + htab->plt_header_size
5705 + htab->plt_mips_offset
5706 + h->root.plt.plist->comp_offset
5707 + 1);
5708
5709 target_is_16_bit_code_p = !micromips_p;
5710 target_is_micromips_code_p = micromips_p;
5711 }
5712
5713 /* Make sure MIPS16 and microMIPS are not used together. */
5714 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5715 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5716 {
5717 _bfd_error_handler
5718 (_("MIPS16 and microMIPS functions cannot call each other"));
5719 return bfd_reloc_notsupported;
5720 }
5721
5722 /* Calls from 16-bit code to 32-bit code and vice versa require the
5723 mode change. However, we can ignore calls to undefined weak symbols,
5724 which should never be executed at runtime. This exception is important
5725 because the assembly writer may have "known" that any definition of the
5726 symbol would be 16-bit code, and that direct jumps were therefore
5727 acceptable. */
5728 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5729 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5730 && ((mips16_branch_reloc_p (r_type)
5731 && !target_is_16_bit_code_p)
5732 || (micromips_branch_reloc_p (r_type)
5733 && !target_is_micromips_code_p)
5734 || ((branch_reloc_p (r_type)
5735 || r_type == R_MIPS_JALR)
5736 && (target_is_16_bit_code_p
5737 || target_is_micromips_code_p))));
5738
5739 resolved_to_zero = (h != NULL
5740 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5741
5742 switch (r_type)
5743 {
5744 case R_MIPS16_CALL16:
5745 case R_MIPS16_GOT16:
5746 case R_MIPS_CALL16:
5747 case R_MIPS_GOT16:
5748 case R_MIPS_GOT_PAGE:
5749 case R_MIPS_GOT_DISP:
5750 case R_MIPS_GOT_LO16:
5751 case R_MIPS_CALL_LO16:
5752 case R_MICROMIPS_CALL16:
5753 case R_MICROMIPS_GOT16:
5754 case R_MICROMIPS_GOT_PAGE:
5755 case R_MICROMIPS_GOT_DISP:
5756 case R_MICROMIPS_GOT_LO16:
5757 case R_MICROMIPS_CALL_LO16:
5758 if (resolved_to_zero
5759 && !bfd_link_relocatable (info)
5760 && mips_elf_nullify_got_load (input_bfd, contents,
5761 relocation, howto, TRUE))
5762 return bfd_reloc_continue;
5763
5764 /* Fall through. */
5765 case R_MIPS_GOT_HI16:
5766 case R_MIPS_CALL_HI16:
5767 case R_MICROMIPS_GOT_HI16:
5768 case R_MICROMIPS_CALL_HI16:
5769 if (resolved_to_zero
5770 && htab->use_absolute_zero
5771 && bfd_link_pic (info))
5772 {
5773 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5774 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5775 FALSE, FALSE, FALSE);
5776 BFD_ASSERT (h != NULL);
5777 }
5778 break;
5779 }
5780
5781 local_p = (h == NULL || mips_use_local_got_p (info, h));
5782
5783 gp0 = _bfd_get_gp_value (input_bfd);
5784 gp = _bfd_get_gp_value (abfd);
5785 if (htab->got_info)
5786 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5787
5788 if (gnu_local_gp_p)
5789 symbol = gp;
5790
5791 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5792 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5793 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5794 if (got_page_reloc_p (r_type) && !local_p)
5795 {
5796 r_type = (micromips_reloc_p (r_type)
5797 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5798 addend = 0;
5799 }
5800
5801 /* If we haven't already determined the GOT offset, and we're going
5802 to need it, get it now. */
5803 switch (r_type)
5804 {
5805 case R_MIPS16_CALL16:
5806 case R_MIPS16_GOT16:
5807 case R_MIPS_CALL16:
5808 case R_MIPS_GOT16:
5809 case R_MIPS_GOT_DISP:
5810 case R_MIPS_GOT_HI16:
5811 case R_MIPS_CALL_HI16:
5812 case R_MIPS_GOT_LO16:
5813 case R_MIPS_CALL_LO16:
5814 case R_MICROMIPS_CALL16:
5815 case R_MICROMIPS_GOT16:
5816 case R_MICROMIPS_GOT_DISP:
5817 case R_MICROMIPS_GOT_HI16:
5818 case R_MICROMIPS_CALL_HI16:
5819 case R_MICROMIPS_GOT_LO16:
5820 case R_MICROMIPS_CALL_LO16:
5821 case R_MIPS_TLS_GD:
5822 case R_MIPS_TLS_GOTTPREL:
5823 case R_MIPS_TLS_LDM:
5824 case R_MIPS16_TLS_GD:
5825 case R_MIPS16_TLS_GOTTPREL:
5826 case R_MIPS16_TLS_LDM:
5827 case R_MICROMIPS_TLS_GD:
5828 case R_MICROMIPS_TLS_GOTTPREL:
5829 case R_MICROMIPS_TLS_LDM:
5830 /* Find the index into the GOT where this value is located. */
5831 if (tls_ldm_reloc_p (r_type))
5832 {
5833 g = mips_elf_local_got_index (abfd, input_bfd, info,
5834 0, 0, NULL, r_type);
5835 if (g == MINUS_ONE)
5836 return bfd_reloc_outofrange;
5837 }
5838 else if (!local_p)
5839 {
5840 /* On VxWorks, CALL relocations should refer to the .got.plt
5841 entry, which is initialized to point at the PLT stub. */
5842 if (htab->is_vxworks
5843 && (call_hi16_reloc_p (r_type)
5844 || call_lo16_reloc_p (r_type)
5845 || call16_reloc_p (r_type)))
5846 {
5847 BFD_ASSERT (addend == 0);
5848 BFD_ASSERT (h->root.needs_plt);
5849 g = mips_elf_gotplt_index (info, &h->root);
5850 }
5851 else
5852 {
5853 BFD_ASSERT (addend == 0);
5854 g = mips_elf_global_got_index (abfd, info, input_bfd,
5855 &h->root, r_type);
5856 if (!TLS_RELOC_P (r_type)
5857 && !elf_hash_table (info)->dynamic_sections_created)
5858 /* This is a static link. We must initialize the GOT entry. */
5859 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5860 }
5861 }
5862 else if (!htab->is_vxworks
5863 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5864 /* The calculation below does not involve "g". */
5865 break;
5866 else
5867 {
5868 g = mips_elf_local_got_index (abfd, input_bfd, info,
5869 symbol + addend, r_symndx, h, r_type);
5870 if (g == MINUS_ONE)
5871 return bfd_reloc_outofrange;
5872 }
5873
5874 /* Convert GOT indices to actual offsets. */
5875 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5876 break;
5877 }
5878
5879 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5880 symbols are resolved by the loader. Add them to .rela.dyn. */
5881 if (h != NULL && is_gott_symbol (info, &h->root))
5882 {
5883 Elf_Internal_Rela outrel;
5884 bfd_byte *loc;
5885 asection *s;
5886
5887 s = mips_elf_rel_dyn_section (info, FALSE);
5888 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5889
5890 outrel.r_offset = (input_section->output_section->vma
5891 + input_section->output_offset
5892 + relocation->r_offset);
5893 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5894 outrel.r_addend = addend;
5895 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5896
5897 /* If we've written this relocation for a readonly section,
5898 we need to set DF_TEXTREL again, so that we do not delete the
5899 DT_TEXTREL tag. */
5900 if (MIPS_ELF_READONLY_SECTION (input_section))
5901 info->flags |= DF_TEXTREL;
5902
5903 *valuep = 0;
5904 return bfd_reloc_ok;
5905 }
5906
5907 /* Figure out what kind of relocation is being performed. */
5908 switch (r_type)
5909 {
5910 case R_MIPS_NONE:
5911 return bfd_reloc_continue;
5912
5913 case R_MIPS_16:
5914 if (howto->partial_inplace)
5915 addend = _bfd_mips_elf_sign_extend (addend, 16);
5916 value = symbol + addend;
5917 overflowed_p = mips_elf_overflow_p (value, 16);
5918 break;
5919
5920 case R_MIPS_32:
5921 case R_MIPS_REL32:
5922 case R_MIPS_64:
5923 if ((bfd_link_pic (info)
5924 || (htab->root.dynamic_sections_created
5925 && h != NULL
5926 && h->root.def_dynamic
5927 && !h->root.def_regular
5928 && !h->has_static_relocs))
5929 && r_symndx != STN_UNDEF
5930 && (h == NULL
5931 || h->root.root.type != bfd_link_hash_undefweak
5932 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5933 && !resolved_to_zero))
5934 && (input_section->flags & SEC_ALLOC) != 0)
5935 {
5936 /* If we're creating a shared library, then we can't know
5937 where the symbol will end up. So, we create a relocation
5938 record in the output, and leave the job up to the dynamic
5939 linker. We must do the same for executable references to
5940 shared library symbols, unless we've decided to use copy
5941 relocs or PLTs instead. */
5942 value = addend;
5943 if (!mips_elf_create_dynamic_relocation (abfd,
5944 info,
5945 relocation,
5946 h,
5947 sec,
5948 symbol,
5949 &value,
5950 input_section))
5951 return bfd_reloc_undefined;
5952 }
5953 else
5954 {
5955 if (r_type != R_MIPS_REL32)
5956 value = symbol + addend;
5957 else
5958 value = addend;
5959 }
5960 value &= howto->dst_mask;
5961 break;
5962
5963 case R_MIPS_PC32:
5964 value = symbol + addend - p;
5965 value &= howto->dst_mask;
5966 break;
5967
5968 case R_MIPS16_26:
5969 /* The calculation for R_MIPS16_26 is just the same as for an
5970 R_MIPS_26. It's only the storage of the relocated field into
5971 the output file that's different. That's handled in
5972 mips_elf_perform_relocation. So, we just fall through to the
5973 R_MIPS_26 case here. */
5974 case R_MIPS_26:
5975 case R_MICROMIPS_26_S1:
5976 {
5977 unsigned int shift;
5978
5979 /* Shift is 2, unusually, for microMIPS JALX. */
5980 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5981
5982 if (howto->partial_inplace && !section_p)
5983 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5984 else
5985 value = addend;
5986 value += symbol;
5987
5988 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5989 be the correct ISA mode selector except for weak undefined
5990 symbols. */
5991 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5992 && (*cross_mode_jump_p
5993 ? (value & 3) != (r_type == R_MIPS_26)
5994 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5995 return bfd_reloc_outofrange;
5996
5997 value >>= shift;
5998 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5999 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6000 value &= howto->dst_mask;
6001 }
6002 break;
6003
6004 case R_MIPS_TLS_DTPREL_HI16:
6005 case R_MIPS16_TLS_DTPREL_HI16:
6006 case R_MICROMIPS_TLS_DTPREL_HI16:
6007 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6008 & howto->dst_mask);
6009 break;
6010
6011 case R_MIPS_TLS_DTPREL_LO16:
6012 case R_MIPS_TLS_DTPREL32:
6013 case R_MIPS_TLS_DTPREL64:
6014 case R_MIPS16_TLS_DTPREL_LO16:
6015 case R_MICROMIPS_TLS_DTPREL_LO16:
6016 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6017 break;
6018
6019 case R_MIPS_TLS_TPREL_HI16:
6020 case R_MIPS16_TLS_TPREL_HI16:
6021 case R_MICROMIPS_TLS_TPREL_HI16:
6022 value = (mips_elf_high (addend + symbol - tprel_base (info))
6023 & howto->dst_mask);
6024 break;
6025
6026 case R_MIPS_TLS_TPREL_LO16:
6027 case R_MIPS_TLS_TPREL32:
6028 case R_MIPS_TLS_TPREL64:
6029 case R_MIPS16_TLS_TPREL_LO16:
6030 case R_MICROMIPS_TLS_TPREL_LO16:
6031 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6032 break;
6033
6034 case R_MIPS_HI16:
6035 case R_MIPS16_HI16:
6036 case R_MICROMIPS_HI16:
6037 if (!gp_disp_p)
6038 {
6039 value = mips_elf_high (addend + symbol);
6040 value &= howto->dst_mask;
6041 }
6042 else
6043 {
6044 /* For MIPS16 ABI code we generate this sequence
6045 0: li $v0,%hi(_gp_disp)
6046 4: addiupc $v1,%lo(_gp_disp)
6047 8: sll $v0,16
6048 12: addu $v0,$v1
6049 14: move $gp,$v0
6050 So the offsets of hi and lo relocs are the same, but the
6051 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6052 ADDIUPC clears the low two bits of the instruction address,
6053 so the base is ($t9 + 4) & ~3. */
6054 if (r_type == R_MIPS16_HI16)
6055 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6056 /* The microMIPS .cpload sequence uses the same assembly
6057 instructions as the traditional psABI version, but the
6058 incoming $t9 has the low bit set. */
6059 else if (r_type == R_MICROMIPS_HI16)
6060 value = mips_elf_high (addend + gp - p - 1);
6061 else
6062 value = mips_elf_high (addend + gp - p);
6063 }
6064 break;
6065
6066 case R_MIPS_LO16:
6067 case R_MIPS16_LO16:
6068 case R_MICROMIPS_LO16:
6069 case R_MICROMIPS_HI0_LO16:
6070 if (!gp_disp_p)
6071 value = (symbol + addend) & howto->dst_mask;
6072 else
6073 {
6074 /* See the comment for R_MIPS16_HI16 above for the reason
6075 for this conditional. */
6076 if (r_type == R_MIPS16_LO16)
6077 value = addend + gp - (p & ~(bfd_vma) 0x3);
6078 else if (r_type == R_MICROMIPS_LO16
6079 || r_type == R_MICROMIPS_HI0_LO16)
6080 value = addend + gp - p + 3;
6081 else
6082 value = addend + gp - p + 4;
6083 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6084 for overflow. But, on, say, IRIX5, relocations against
6085 _gp_disp are normally generated from the .cpload
6086 pseudo-op. It generates code that normally looks like
6087 this:
6088
6089 lui $gp,%hi(_gp_disp)
6090 addiu $gp,$gp,%lo(_gp_disp)
6091 addu $gp,$gp,$t9
6092
6093 Here $t9 holds the address of the function being called,
6094 as required by the MIPS ELF ABI. The R_MIPS_LO16
6095 relocation can easily overflow in this situation, but the
6096 R_MIPS_HI16 relocation will handle the overflow.
6097 Therefore, we consider this a bug in the MIPS ABI, and do
6098 not check for overflow here. */
6099 }
6100 break;
6101
6102 case R_MIPS_LITERAL:
6103 case R_MICROMIPS_LITERAL:
6104 /* Because we don't merge literal sections, we can handle this
6105 just like R_MIPS_GPREL16. In the long run, we should merge
6106 shared literals, and then we will need to additional work
6107 here. */
6108
6109 /* Fall through. */
6110
6111 case R_MIPS16_GPREL:
6112 /* The R_MIPS16_GPREL performs the same calculation as
6113 R_MIPS_GPREL16, but stores the relocated bits in a different
6114 order. We don't need to do anything special here; the
6115 differences are handled in mips_elf_perform_relocation. */
6116 case R_MIPS_GPREL16:
6117 case R_MICROMIPS_GPREL7_S2:
6118 case R_MICROMIPS_GPREL16:
6119 /* Only sign-extend the addend if it was extracted from the
6120 instruction. If the addend was separate, leave it alone,
6121 otherwise we may lose significant bits. */
6122 if (howto->partial_inplace)
6123 addend = _bfd_mips_elf_sign_extend (addend, 16);
6124 value = symbol + addend - gp;
6125 /* If the symbol was local, any earlier relocatable links will
6126 have adjusted its addend with the gp offset, so compensate
6127 for that now. Don't do it for symbols forced local in this
6128 link, though, since they won't have had the gp offset applied
6129 to them before. */
6130 if (was_local_p)
6131 value += gp0;
6132 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6133 overflowed_p = mips_elf_overflow_p (value, 16);
6134 break;
6135
6136 case R_MIPS16_GOT16:
6137 case R_MIPS16_CALL16:
6138 case R_MIPS_GOT16:
6139 case R_MIPS_CALL16:
6140 case R_MICROMIPS_GOT16:
6141 case R_MICROMIPS_CALL16:
6142 /* VxWorks does not have separate local and global semantics for
6143 R_MIPS*_GOT16; every relocation evaluates to "G". */
6144 if (!htab->is_vxworks && local_p)
6145 {
6146 value = mips_elf_got16_entry (abfd, input_bfd, info,
6147 symbol + addend, !was_local_p);
6148 if (value == MINUS_ONE)
6149 return bfd_reloc_outofrange;
6150 value
6151 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6152 overflowed_p = mips_elf_overflow_p (value, 16);
6153 break;
6154 }
6155
6156 /* Fall through. */
6157
6158 case R_MIPS_TLS_GD:
6159 case R_MIPS_TLS_GOTTPREL:
6160 case R_MIPS_TLS_LDM:
6161 case R_MIPS_GOT_DISP:
6162 case R_MIPS16_TLS_GD:
6163 case R_MIPS16_TLS_GOTTPREL:
6164 case R_MIPS16_TLS_LDM:
6165 case R_MICROMIPS_TLS_GD:
6166 case R_MICROMIPS_TLS_GOTTPREL:
6167 case R_MICROMIPS_TLS_LDM:
6168 case R_MICROMIPS_GOT_DISP:
6169 value = g;
6170 overflowed_p = mips_elf_overflow_p (value, 16);
6171 break;
6172
6173 case R_MIPS_GPREL32:
6174 value = (addend + symbol + gp0 - gp);
6175 if (!save_addend)
6176 value &= howto->dst_mask;
6177 break;
6178
6179 case R_MIPS_PC16:
6180 case R_MIPS_GNU_REL16_S2:
6181 if (howto->partial_inplace)
6182 addend = _bfd_mips_elf_sign_extend (addend, 18);
6183
6184 /* No need to exclude weak undefined symbols here as they resolve
6185 to 0 and never set `*cross_mode_jump_p', so this alignment check
6186 will never trigger for them. */
6187 if (*cross_mode_jump_p
6188 ? ((symbol + addend) & 3) != 1
6189 : ((symbol + addend) & 3) != 0)
6190 return bfd_reloc_outofrange;
6191
6192 value = symbol + addend - p;
6193 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6194 overflowed_p = mips_elf_overflow_p (value, 18);
6195 value >>= howto->rightshift;
6196 value &= howto->dst_mask;
6197 break;
6198
6199 case R_MIPS16_PC16_S1:
6200 if (howto->partial_inplace)
6201 addend = _bfd_mips_elf_sign_extend (addend, 17);
6202
6203 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 && (*cross_mode_jump_p
6205 ? ((symbol + addend) & 3) != 0
6206 : ((symbol + addend) & 1) == 0))
6207 return bfd_reloc_outofrange;
6208
6209 value = symbol + addend - p;
6210 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6211 overflowed_p = mips_elf_overflow_p (value, 17);
6212 value >>= howto->rightshift;
6213 value &= howto->dst_mask;
6214 break;
6215
6216 case R_MIPS_PC21_S2:
6217 if (howto->partial_inplace)
6218 addend = _bfd_mips_elf_sign_extend (addend, 23);
6219
6220 if ((symbol + addend) & 3)
6221 return bfd_reloc_outofrange;
6222
6223 value = symbol + addend - p;
6224 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6225 overflowed_p = mips_elf_overflow_p (value, 23);
6226 value >>= howto->rightshift;
6227 value &= howto->dst_mask;
6228 break;
6229
6230 case R_MIPS_PC26_S2:
6231 if (howto->partial_inplace)
6232 addend = _bfd_mips_elf_sign_extend (addend, 28);
6233
6234 if ((symbol + addend) & 3)
6235 return bfd_reloc_outofrange;
6236
6237 value = symbol + addend - p;
6238 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6239 overflowed_p = mips_elf_overflow_p (value, 28);
6240 value >>= howto->rightshift;
6241 value &= howto->dst_mask;
6242 break;
6243
6244 case R_MIPS_PC18_S3:
6245 if (howto->partial_inplace)
6246 addend = _bfd_mips_elf_sign_extend (addend, 21);
6247
6248 if ((symbol + addend) & 7)
6249 return bfd_reloc_outofrange;
6250
6251 value = symbol + addend - ((p | 7) ^ 7);
6252 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6253 overflowed_p = mips_elf_overflow_p (value, 21);
6254 value >>= howto->rightshift;
6255 value &= howto->dst_mask;
6256 break;
6257
6258 case R_MIPS_PC19_S2:
6259 if (howto->partial_inplace)
6260 addend = _bfd_mips_elf_sign_extend (addend, 21);
6261
6262 if ((symbol + addend) & 3)
6263 return bfd_reloc_outofrange;
6264
6265 value = symbol + addend - p;
6266 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6267 overflowed_p = mips_elf_overflow_p (value, 21);
6268 value >>= howto->rightshift;
6269 value &= howto->dst_mask;
6270 break;
6271
6272 case R_MIPS_PCHI16:
6273 value = mips_elf_high (symbol + addend - p);
6274 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6275 overflowed_p = mips_elf_overflow_p (value, 16);
6276 value &= howto->dst_mask;
6277 break;
6278
6279 case R_MIPS_PCLO16:
6280 if (howto->partial_inplace)
6281 addend = _bfd_mips_elf_sign_extend (addend, 16);
6282 value = symbol + addend - p;
6283 value &= howto->dst_mask;
6284 break;
6285
6286 case R_MICROMIPS_PC7_S1:
6287 if (howto->partial_inplace)
6288 addend = _bfd_mips_elf_sign_extend (addend, 8);
6289
6290 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6291 && (*cross_mode_jump_p
6292 ? ((symbol + addend + 2) & 3) != 0
6293 : ((symbol + addend + 2) & 1) == 0))
6294 return bfd_reloc_outofrange;
6295
6296 value = symbol + addend - p;
6297 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6298 overflowed_p = mips_elf_overflow_p (value, 8);
6299 value >>= howto->rightshift;
6300 value &= howto->dst_mask;
6301 break;
6302
6303 case R_MICROMIPS_PC10_S1:
6304 if (howto->partial_inplace)
6305 addend = _bfd_mips_elf_sign_extend (addend, 11);
6306
6307 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6308 && (*cross_mode_jump_p
6309 ? ((symbol + addend + 2) & 3) != 0
6310 : ((symbol + addend + 2) & 1) == 0))
6311 return bfd_reloc_outofrange;
6312
6313 value = symbol + addend - p;
6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 overflowed_p = mips_elf_overflow_p (value, 11);
6316 value >>= howto->rightshift;
6317 value &= howto->dst_mask;
6318 break;
6319
6320 case R_MICROMIPS_PC16_S1:
6321 if (howto->partial_inplace)
6322 addend = _bfd_mips_elf_sign_extend (addend, 17);
6323
6324 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6325 && (*cross_mode_jump_p
6326 ? ((symbol + addend) & 3) != 0
6327 : ((symbol + addend) & 1) == 0))
6328 return bfd_reloc_outofrange;
6329
6330 value = symbol + addend - p;
6331 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6332 overflowed_p = mips_elf_overflow_p (value, 17);
6333 value >>= howto->rightshift;
6334 value &= howto->dst_mask;
6335 break;
6336
6337 case R_MICROMIPS_PC23_S2:
6338 if (howto->partial_inplace)
6339 addend = _bfd_mips_elf_sign_extend (addend, 25);
6340 value = symbol + addend - ((p | 3) ^ 3);
6341 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6342 overflowed_p = mips_elf_overflow_p (value, 25);
6343 value >>= howto->rightshift;
6344 value &= howto->dst_mask;
6345 break;
6346
6347 case R_MIPS_GOT_HI16:
6348 case R_MIPS_CALL_HI16:
6349 case R_MICROMIPS_GOT_HI16:
6350 case R_MICROMIPS_CALL_HI16:
6351 /* We're allowed to handle these two relocations identically.
6352 The dynamic linker is allowed to handle the CALL relocations
6353 differently by creating a lazy evaluation stub. */
6354 value = g;
6355 value = mips_elf_high (value);
6356 value &= howto->dst_mask;
6357 break;
6358
6359 case R_MIPS_GOT_LO16:
6360 case R_MIPS_CALL_LO16:
6361 case R_MICROMIPS_GOT_LO16:
6362 case R_MICROMIPS_CALL_LO16:
6363 value = g & howto->dst_mask;
6364 break;
6365
6366 case R_MIPS_GOT_PAGE:
6367 case R_MICROMIPS_GOT_PAGE:
6368 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6369 if (value == MINUS_ONE)
6370 return bfd_reloc_outofrange;
6371 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6372 overflowed_p = mips_elf_overflow_p (value, 16);
6373 break;
6374
6375 case R_MIPS_GOT_OFST:
6376 case R_MICROMIPS_GOT_OFST:
6377 if (local_p)
6378 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6379 else
6380 value = addend;
6381 overflowed_p = mips_elf_overflow_p (value, 16);
6382 break;
6383
6384 case R_MIPS_SUB:
6385 case R_MICROMIPS_SUB:
6386 value = symbol - addend;
6387 value &= howto->dst_mask;
6388 break;
6389
6390 case R_MIPS_HIGHER:
6391 case R_MICROMIPS_HIGHER:
6392 value = mips_elf_higher (addend + symbol);
6393 value &= howto->dst_mask;
6394 break;
6395
6396 case R_MIPS_HIGHEST:
6397 case R_MICROMIPS_HIGHEST:
6398 value = mips_elf_highest (addend + symbol);
6399 value &= howto->dst_mask;
6400 break;
6401
6402 case R_MIPS_SCN_DISP:
6403 case R_MICROMIPS_SCN_DISP:
6404 value = symbol + addend - sec->output_offset;
6405 value &= howto->dst_mask;
6406 break;
6407
6408 case R_MIPS_JALR:
6409 case R_MICROMIPS_JALR:
6410 /* This relocation is only a hint. In some cases, we optimize
6411 it into a bal instruction. But we don't try to optimize
6412 when the symbol does not resolve locally. */
6413 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6414 return bfd_reloc_continue;
6415 /* We can't optimize cross-mode jumps either. */
6416 if (*cross_mode_jump_p)
6417 return bfd_reloc_continue;
6418 value = symbol + addend;
6419 /* Neither we can non-instruction-aligned targets. */
6420 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6421 return bfd_reloc_continue;
6422 break;
6423
6424 case R_MIPS_PJUMP:
6425 case R_MIPS_GNU_VTINHERIT:
6426 case R_MIPS_GNU_VTENTRY:
6427 /* We don't do anything with these at present. */
6428 return bfd_reloc_continue;
6429
6430 default:
6431 /* An unrecognized relocation type. */
6432 return bfd_reloc_notsupported;
6433 }
6434
6435 /* Store the VALUE for our caller. */
6436 *valuep = value;
6437 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6438 }
6439
6440 /* It has been determined that the result of the RELOCATION is the
6441 VALUE. Use HOWTO to place VALUE into the output file at the
6442 appropriate position. The SECTION is the section to which the
6443 relocation applies.
6444 CROSS_MODE_JUMP_P is true if the relocation field
6445 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6446
6447 Returns FALSE if anything goes wrong. */
6448
6449 static bfd_boolean
6450 mips_elf_perform_relocation (struct bfd_link_info *info,
6451 reloc_howto_type *howto,
6452 const Elf_Internal_Rela *relocation,
6453 bfd_vma value, bfd *input_bfd,
6454 asection *input_section, bfd_byte *contents,
6455 bfd_boolean cross_mode_jump_p)
6456 {
6457 bfd_vma x;
6458 bfd_byte *location;
6459 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6460
6461 /* Figure out where the relocation is occurring. */
6462 location = contents + relocation->r_offset;
6463
6464 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6465
6466 /* Obtain the current value. */
6467 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6468
6469 /* Clear the field we are setting. */
6470 x &= ~howto->dst_mask;
6471
6472 /* Set the field. */
6473 x |= (value & howto->dst_mask);
6474
6475 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6476 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6477 {
6478 bfd_vma opcode = x >> 26;
6479
6480 if (r_type == R_MIPS16_26 ? opcode == 0x7
6481 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6482 : opcode == 0x1d)
6483 {
6484 info->callbacks->einfo
6485 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6486 input_bfd, input_section, relocation->r_offset);
6487 return TRUE;
6488 }
6489 }
6490 if (cross_mode_jump_p && jal_reloc_p (r_type))
6491 {
6492 bfd_boolean ok;
6493 bfd_vma opcode = x >> 26;
6494 bfd_vma jalx_opcode;
6495
6496 /* Check to see if the opcode is already JAL or JALX. */
6497 if (r_type == R_MIPS16_26)
6498 {
6499 ok = ((opcode == 0x6) || (opcode == 0x7));
6500 jalx_opcode = 0x7;
6501 }
6502 else if (r_type == R_MICROMIPS_26_S1)
6503 {
6504 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6505 jalx_opcode = 0x3c;
6506 }
6507 else
6508 {
6509 ok = ((opcode == 0x3) || (opcode == 0x1d));
6510 jalx_opcode = 0x1d;
6511 }
6512
6513 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6514 convert J or JALS to JALX. */
6515 if (!ok)
6516 {
6517 info->callbacks->einfo
6518 (_("%X%H: unsupported jump between ISA modes; "
6519 "consider recompiling with interlinking enabled\n"),
6520 input_bfd, input_section, relocation->r_offset);
6521 return TRUE;
6522 }
6523
6524 /* Make this the JALX opcode. */
6525 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6526 }
6527 else if (cross_mode_jump_p && b_reloc_p (r_type))
6528 {
6529 bfd_boolean ok = FALSE;
6530 bfd_vma opcode = x >> 16;
6531 bfd_vma jalx_opcode = 0;
6532 bfd_vma sign_bit = 0;
6533 bfd_vma addr;
6534 bfd_vma dest;
6535
6536 if (r_type == R_MICROMIPS_PC16_S1)
6537 {
6538 ok = opcode == 0x4060;
6539 jalx_opcode = 0x3c;
6540 sign_bit = 0x10000;
6541 value <<= 1;
6542 }
6543 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6544 {
6545 ok = opcode == 0x411;
6546 jalx_opcode = 0x1d;
6547 sign_bit = 0x20000;
6548 value <<= 2;
6549 }
6550
6551 if (ok && !bfd_link_pic (info))
6552 {
6553 addr = (input_section->output_section->vma
6554 + input_section->output_offset
6555 + relocation->r_offset
6556 + 4);
6557 dest = (addr
6558 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6559
6560 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6561 {
6562 info->callbacks->einfo
6563 (_("%X%H: cannot convert branch between ISA modes "
6564 "to JALX: relocation out of range\n"),
6565 input_bfd, input_section, relocation->r_offset);
6566 return TRUE;
6567 }
6568
6569 /* Make this the JALX opcode. */
6570 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6571 }
6572 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6573 {
6574 info->callbacks->einfo
6575 (_("%X%H: unsupported branch between ISA modes\n"),
6576 input_bfd, input_section, relocation->r_offset);
6577 return TRUE;
6578 }
6579 }
6580
6581 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6582 range. */
6583 if (!bfd_link_relocatable (info)
6584 && !cross_mode_jump_p
6585 && ((JAL_TO_BAL_P (input_bfd)
6586 && r_type == R_MIPS_26
6587 && (x >> 26) == 0x3) /* jal addr */
6588 || (JALR_TO_BAL_P (input_bfd)
6589 && r_type == R_MIPS_JALR
6590 && x == 0x0320f809) /* jalr t9 */
6591 || (JR_TO_B_P (input_bfd)
6592 && r_type == R_MIPS_JALR
6593 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6594 {
6595 bfd_vma addr;
6596 bfd_vma dest;
6597 bfd_signed_vma off;
6598
6599 addr = (input_section->output_section->vma
6600 + input_section->output_offset
6601 + relocation->r_offset
6602 + 4);
6603 if (r_type == R_MIPS_26)
6604 dest = (value << 2) | ((addr >> 28) << 28);
6605 else
6606 dest = value;
6607 off = dest - addr;
6608 if (off <= 0x1ffff && off >= -0x20000)
6609 {
6610 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6611 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6612 else
6613 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6614 }
6615 }
6616
6617 /* Put the value into the output. */
6618 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6619
6620 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6621 location);
6622
6623 return TRUE;
6624 }
6625 \f
6626 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6627 is the original relocation, which is now being transformed into a
6628 dynamic relocation. The ADDENDP is adjusted if necessary; the
6629 caller should store the result in place of the original addend. */
6630
6631 static bfd_boolean
6632 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6633 struct bfd_link_info *info,
6634 const Elf_Internal_Rela *rel,
6635 struct mips_elf_link_hash_entry *h,
6636 asection *sec, bfd_vma symbol,
6637 bfd_vma *addendp, asection *input_section)
6638 {
6639 Elf_Internal_Rela outrel[3];
6640 asection *sreloc;
6641 bfd *dynobj;
6642 int r_type;
6643 long indx;
6644 bfd_boolean defined_p;
6645 struct mips_elf_link_hash_table *htab;
6646
6647 htab = mips_elf_hash_table (info);
6648 BFD_ASSERT (htab != NULL);
6649
6650 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6651 dynobj = elf_hash_table (info)->dynobj;
6652 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6653 BFD_ASSERT (sreloc != NULL);
6654 BFD_ASSERT (sreloc->contents != NULL);
6655 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6656 < sreloc->size);
6657
6658 outrel[0].r_offset =
6659 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6660 if (ABI_64_P (output_bfd))
6661 {
6662 outrel[1].r_offset =
6663 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6664 outrel[2].r_offset =
6665 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6666 }
6667
6668 if (outrel[0].r_offset == MINUS_ONE)
6669 /* The relocation field has been deleted. */
6670 return TRUE;
6671
6672 if (outrel[0].r_offset == MINUS_TWO)
6673 {
6674 /* The relocation field has been converted into a relative value of
6675 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6676 the field to be fully relocated, so add in the symbol's value. */
6677 *addendp += symbol;
6678 return TRUE;
6679 }
6680
6681 /* We must now calculate the dynamic symbol table index to use
6682 in the relocation. */
6683 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6684 {
6685 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6686 indx = h->root.dynindx;
6687 if (SGI_COMPAT (output_bfd))
6688 defined_p = h->root.def_regular;
6689 else
6690 /* ??? glibc's ld.so just adds the final GOT entry to the
6691 relocation field. It therefore treats relocs against
6692 defined symbols in the same way as relocs against
6693 undefined symbols. */
6694 defined_p = FALSE;
6695 }
6696 else
6697 {
6698 if (sec != NULL && bfd_is_abs_section (sec))
6699 indx = 0;
6700 else if (sec == NULL || sec->owner == NULL)
6701 {
6702 bfd_set_error (bfd_error_bad_value);
6703 return FALSE;
6704 }
6705 else
6706 {
6707 indx = elf_section_data (sec->output_section)->dynindx;
6708 if (indx == 0)
6709 {
6710 asection *osec = htab->root.text_index_section;
6711 indx = elf_section_data (osec)->dynindx;
6712 }
6713 if (indx == 0)
6714 abort ();
6715 }
6716
6717 /* Instead of generating a relocation using the section
6718 symbol, we may as well make it a fully relative
6719 relocation. We want to avoid generating relocations to
6720 local symbols because we used to generate them
6721 incorrectly, without adding the original symbol value,
6722 which is mandated by the ABI for section symbols. In
6723 order to give dynamic loaders and applications time to
6724 phase out the incorrect use, we refrain from emitting
6725 section-relative relocations. It's not like they're
6726 useful, after all. This should be a bit more efficient
6727 as well. */
6728 /* ??? Although this behavior is compatible with glibc's ld.so,
6729 the ABI says that relocations against STN_UNDEF should have
6730 a symbol value of 0. Irix rld honors this, so relocations
6731 against STN_UNDEF have no effect. */
6732 if (!SGI_COMPAT (output_bfd))
6733 indx = 0;
6734 defined_p = TRUE;
6735 }
6736
6737 /* If the relocation was previously an absolute relocation and
6738 this symbol will not be referred to by the relocation, we must
6739 adjust it by the value we give it in the dynamic symbol table.
6740 Otherwise leave the job up to the dynamic linker. */
6741 if (defined_p && r_type != R_MIPS_REL32)
6742 *addendp += symbol;
6743
6744 if (htab->is_vxworks)
6745 /* VxWorks uses non-relative relocations for this. */
6746 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6747 else
6748 /* The relocation is always an REL32 relocation because we don't
6749 know where the shared library will wind up at load-time. */
6750 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6751 R_MIPS_REL32);
6752
6753 /* For strict adherence to the ABI specification, we should
6754 generate a R_MIPS_64 relocation record by itself before the
6755 _REL32/_64 record as well, such that the addend is read in as
6756 a 64-bit value (REL32 is a 32-bit relocation, after all).
6757 However, since none of the existing ELF64 MIPS dynamic
6758 loaders seems to care, we don't waste space with these
6759 artificial relocations. If this turns out to not be true,
6760 mips_elf_allocate_dynamic_relocation() should be tweaked so
6761 as to make room for a pair of dynamic relocations per
6762 invocation if ABI_64_P, and here we should generate an
6763 additional relocation record with R_MIPS_64 by itself for a
6764 NULL symbol before this relocation record. */
6765 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6766 ABI_64_P (output_bfd)
6767 ? R_MIPS_64
6768 : R_MIPS_NONE);
6769 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6770
6771 /* Adjust the output offset of the relocation to reference the
6772 correct location in the output file. */
6773 outrel[0].r_offset += (input_section->output_section->vma
6774 + input_section->output_offset);
6775 outrel[1].r_offset += (input_section->output_section->vma
6776 + input_section->output_offset);
6777 outrel[2].r_offset += (input_section->output_section->vma
6778 + input_section->output_offset);
6779
6780 /* Put the relocation back out. We have to use the special
6781 relocation outputter in the 64-bit case since the 64-bit
6782 relocation format is non-standard. */
6783 if (ABI_64_P (output_bfd))
6784 {
6785 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6786 (output_bfd, &outrel[0],
6787 (sreloc->contents
6788 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6789 }
6790 else if (htab->is_vxworks)
6791 {
6792 /* VxWorks uses RELA rather than REL dynamic relocations. */
6793 outrel[0].r_addend = *addendp;
6794 bfd_elf32_swap_reloca_out
6795 (output_bfd, &outrel[0],
6796 (sreloc->contents
6797 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6798 }
6799 else
6800 bfd_elf32_swap_reloc_out
6801 (output_bfd, &outrel[0],
6802 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6803
6804 /* We've now added another relocation. */
6805 ++sreloc->reloc_count;
6806
6807 /* Make sure the output section is writable. The dynamic linker
6808 will be writing to it. */
6809 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6810 |= SHF_WRITE;
6811
6812 /* On IRIX5, make an entry of compact relocation info. */
6813 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6814 {
6815 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6816 bfd_byte *cr;
6817
6818 if (scpt)
6819 {
6820 Elf32_crinfo cptrel;
6821
6822 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6823 cptrel.vaddr = (rel->r_offset
6824 + input_section->output_section->vma
6825 + input_section->output_offset);
6826 if (r_type == R_MIPS_REL32)
6827 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6828 else
6829 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6830 mips_elf_set_cr_dist2to (cptrel, 0);
6831 cptrel.konst = *addendp;
6832
6833 cr = (scpt->contents
6834 + sizeof (Elf32_External_compact_rel));
6835 mips_elf_set_cr_relvaddr (cptrel, 0);
6836 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6837 ((Elf32_External_crinfo *) cr
6838 + scpt->reloc_count));
6839 ++scpt->reloc_count;
6840 }
6841 }
6842
6843 /* If we've written this relocation for a readonly section,
6844 we need to set DF_TEXTREL again, so that we do not delete the
6845 DT_TEXTREL tag. */
6846 if (MIPS_ELF_READONLY_SECTION (input_section))
6847 info->flags |= DF_TEXTREL;
6848
6849 return TRUE;
6850 }
6851 \f
6852 /* Return the MACH for a MIPS e_flags value. */
6853
6854 unsigned long
6855 _bfd_elf_mips_mach (flagword flags)
6856 {
6857 switch (flags & EF_MIPS_MACH)
6858 {
6859 case E_MIPS_MACH_3900:
6860 return bfd_mach_mips3900;
6861
6862 case E_MIPS_MACH_4010:
6863 return bfd_mach_mips4010;
6864
6865 case E_MIPS_MACH_4100:
6866 return bfd_mach_mips4100;
6867
6868 case E_MIPS_MACH_4111:
6869 return bfd_mach_mips4111;
6870
6871 case E_MIPS_MACH_4120:
6872 return bfd_mach_mips4120;
6873
6874 case E_MIPS_MACH_4650:
6875 return bfd_mach_mips4650;
6876
6877 case E_MIPS_MACH_5400:
6878 return bfd_mach_mips5400;
6879
6880 case E_MIPS_MACH_5500:
6881 return bfd_mach_mips5500;
6882
6883 case E_MIPS_MACH_5900:
6884 return bfd_mach_mips5900;
6885
6886 case E_MIPS_MACH_9000:
6887 return bfd_mach_mips9000;
6888
6889 case E_MIPS_MACH_SB1:
6890 return bfd_mach_mips_sb1;
6891
6892 case E_MIPS_MACH_LS2E:
6893 return bfd_mach_mips_loongson_2e;
6894
6895 case E_MIPS_MACH_LS2F:
6896 return bfd_mach_mips_loongson_2f;
6897
6898 case E_MIPS_MACH_GS464:
6899 return bfd_mach_mips_gs464;
6900
6901 case E_MIPS_MACH_GS464E:
6902 return bfd_mach_mips_gs464e;
6903
6904 case E_MIPS_MACH_GS264E:
6905 return bfd_mach_mips_gs264e;
6906
6907 case E_MIPS_MACH_OCTEON3:
6908 return bfd_mach_mips_octeon3;
6909
6910 case E_MIPS_MACH_OCTEON2:
6911 return bfd_mach_mips_octeon2;
6912
6913 case E_MIPS_MACH_OCTEON:
6914 return bfd_mach_mips_octeon;
6915
6916 case E_MIPS_MACH_XLR:
6917 return bfd_mach_mips_xlr;
6918
6919 case E_MIPS_MACH_IAMR2:
6920 return bfd_mach_mips_interaptiv_mr2;
6921
6922 default:
6923 switch (flags & EF_MIPS_ARCH)
6924 {
6925 default:
6926 case E_MIPS_ARCH_1:
6927 return bfd_mach_mips3000;
6928
6929 case E_MIPS_ARCH_2:
6930 return bfd_mach_mips6000;
6931
6932 case E_MIPS_ARCH_3:
6933 return bfd_mach_mips4000;
6934
6935 case E_MIPS_ARCH_4:
6936 return bfd_mach_mips8000;
6937
6938 case E_MIPS_ARCH_5:
6939 return bfd_mach_mips5;
6940
6941 case E_MIPS_ARCH_32:
6942 return bfd_mach_mipsisa32;
6943
6944 case E_MIPS_ARCH_64:
6945 return bfd_mach_mipsisa64;
6946
6947 case E_MIPS_ARCH_32R2:
6948 return bfd_mach_mipsisa32r2;
6949
6950 case E_MIPS_ARCH_64R2:
6951 return bfd_mach_mipsisa64r2;
6952
6953 case E_MIPS_ARCH_32R6:
6954 return bfd_mach_mipsisa32r6;
6955
6956 case E_MIPS_ARCH_64R6:
6957 return bfd_mach_mipsisa64r6;
6958 }
6959 }
6960
6961 return 0;
6962 }
6963
6964 /* Return printable name for ABI. */
6965
6966 static INLINE char *
6967 elf_mips_abi_name (bfd *abfd)
6968 {
6969 flagword flags;
6970
6971 flags = elf_elfheader (abfd)->e_flags;
6972 switch (flags & EF_MIPS_ABI)
6973 {
6974 case 0:
6975 if (ABI_N32_P (abfd))
6976 return "N32";
6977 else if (ABI_64_P (abfd))
6978 return "64";
6979 else
6980 return "none";
6981 case E_MIPS_ABI_O32:
6982 return "O32";
6983 case E_MIPS_ABI_O64:
6984 return "O64";
6985 case E_MIPS_ABI_EABI32:
6986 return "EABI32";
6987 case E_MIPS_ABI_EABI64:
6988 return "EABI64";
6989 default:
6990 return "unknown abi";
6991 }
6992 }
6993 \f
6994 /* MIPS ELF uses two common sections. One is the usual one, and the
6995 other is for small objects. All the small objects are kept
6996 together, and then referenced via the gp pointer, which yields
6997 faster assembler code. This is what we use for the small common
6998 section. This approach is copied from ecoff.c. */
6999 static asection mips_elf_scom_section;
7000 static asymbol mips_elf_scom_symbol;
7001 static asymbol *mips_elf_scom_symbol_ptr;
7002
7003 /* MIPS ELF also uses an acommon section, which represents an
7004 allocated common symbol which may be overridden by a
7005 definition in a shared library. */
7006 static asection mips_elf_acom_section;
7007 static asymbol mips_elf_acom_symbol;
7008 static asymbol *mips_elf_acom_symbol_ptr;
7009
7010 /* This is used for both the 32-bit and the 64-bit ABI. */
7011
7012 void
7013 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7014 {
7015 elf_symbol_type *elfsym;
7016
7017 /* Handle the special MIPS section numbers that a symbol may use. */
7018 elfsym = (elf_symbol_type *) asym;
7019 switch (elfsym->internal_elf_sym.st_shndx)
7020 {
7021 case SHN_MIPS_ACOMMON:
7022 /* This section is used in a dynamically linked executable file.
7023 It is an allocated common section. The dynamic linker can
7024 either resolve these symbols to something in a shared
7025 library, or it can just leave them here. For our purposes,
7026 we can consider these symbols to be in a new section. */
7027 if (mips_elf_acom_section.name == NULL)
7028 {
7029 /* Initialize the acommon section. */
7030 mips_elf_acom_section.name = ".acommon";
7031 mips_elf_acom_section.flags = SEC_ALLOC;
7032 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7033 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7034 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7035 mips_elf_acom_symbol.name = ".acommon";
7036 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7037 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7038 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7039 }
7040 asym->section = &mips_elf_acom_section;
7041 break;
7042
7043 case SHN_COMMON:
7044 /* Common symbols less than the GP size are automatically
7045 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7046 if (asym->value > elf_gp_size (abfd)
7047 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7048 || IRIX_COMPAT (abfd) == ict_irix6)
7049 break;
7050 /* Fall through. */
7051 case SHN_MIPS_SCOMMON:
7052 if (mips_elf_scom_section.name == NULL)
7053 {
7054 /* Initialize the small common section. */
7055 mips_elf_scom_section.name = ".scommon";
7056 mips_elf_scom_section.flags = SEC_IS_COMMON;
7057 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7058 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7059 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7060 mips_elf_scom_symbol.name = ".scommon";
7061 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7062 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7063 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7064 }
7065 asym->section = &mips_elf_scom_section;
7066 asym->value = elfsym->internal_elf_sym.st_size;
7067 break;
7068
7069 case SHN_MIPS_SUNDEFINED:
7070 asym->section = bfd_und_section_ptr;
7071 break;
7072
7073 case SHN_MIPS_TEXT:
7074 {
7075 asection *section = bfd_get_section_by_name (abfd, ".text");
7076
7077 if (section != NULL)
7078 {
7079 asym->section = section;
7080 /* MIPS_TEXT is a bit special, the address is not an offset
7081 to the base of the .text section. So subtract the section
7082 base address to make it an offset. */
7083 asym->value -= section->vma;
7084 }
7085 }
7086 break;
7087
7088 case SHN_MIPS_DATA:
7089 {
7090 asection *section = bfd_get_section_by_name (abfd, ".data");
7091
7092 if (section != NULL)
7093 {
7094 asym->section = section;
7095 /* MIPS_DATA is a bit special, the address is not an offset
7096 to the base of the .data section. So subtract the section
7097 base address to make it an offset. */
7098 asym->value -= section->vma;
7099 }
7100 }
7101 break;
7102 }
7103
7104 /* If this is an odd-valued function symbol, assume it's a MIPS16
7105 or microMIPS one. */
7106 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7107 && (asym->value & 1) != 0)
7108 {
7109 asym->value--;
7110 if (MICROMIPS_P (abfd))
7111 elfsym->internal_elf_sym.st_other
7112 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7113 else
7114 elfsym->internal_elf_sym.st_other
7115 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7116 }
7117 }
7118 \f
7119 /* Implement elf_backend_eh_frame_address_size. This differs from
7120 the default in the way it handles EABI64.
7121
7122 EABI64 was originally specified as an LP64 ABI, and that is what
7123 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7124 historically accepted the combination of -mabi=eabi and -mlong32,
7125 and this ILP32 variation has become semi-official over time.
7126 Both forms use elf32 and have pointer-sized FDE addresses.
7127
7128 If an EABI object was generated by GCC 4.0 or above, it will have
7129 an empty .gcc_compiled_longXX section, where XX is the size of longs
7130 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7131 have no special marking to distinguish them from LP64 objects.
7132
7133 We don't want users of the official LP64 ABI to be punished for the
7134 existence of the ILP32 variant, but at the same time, we don't want
7135 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7136 We therefore take the following approach:
7137
7138 - If ABFD contains a .gcc_compiled_longXX section, use it to
7139 determine the pointer size.
7140
7141 - Otherwise check the type of the first relocation. Assume that
7142 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7143
7144 - Otherwise punt.
7145
7146 The second check is enough to detect LP64 objects generated by pre-4.0
7147 compilers because, in the kind of output generated by those compilers,
7148 the first relocation will be associated with either a CIE personality
7149 routine or an FDE start address. Furthermore, the compilers never
7150 used a special (non-pointer) encoding for this ABI.
7151
7152 Checking the relocation type should also be safe because there is no
7153 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7154 did so. */
7155
7156 unsigned int
7157 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7158 {
7159 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7160 return 8;
7161 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7162 {
7163 bfd_boolean long32_p, long64_p;
7164
7165 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7166 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7167 if (long32_p && long64_p)
7168 return 0;
7169 if (long32_p)
7170 return 4;
7171 if (long64_p)
7172 return 8;
7173
7174 if (sec->reloc_count > 0
7175 && elf_section_data (sec)->relocs != NULL
7176 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7177 == R_MIPS_64))
7178 return 8;
7179
7180 return 0;
7181 }
7182 return 4;
7183 }
7184 \f
7185 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7186 relocations against two unnamed section symbols to resolve to the
7187 same address. For example, if we have code like:
7188
7189 lw $4,%got_disp(.data)($gp)
7190 lw $25,%got_disp(.text)($gp)
7191 jalr $25
7192
7193 then the linker will resolve both relocations to .data and the program
7194 will jump there rather than to .text.
7195
7196 We can work around this problem by giving names to local section symbols.
7197 This is also what the MIPSpro tools do. */
7198
7199 bfd_boolean
7200 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7201 {
7202 return SGI_COMPAT (abfd);
7203 }
7204 \f
7205 /* Work over a section just before writing it out. This routine is
7206 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7207 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7208 a better way. */
7209
7210 bfd_boolean
7211 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7212 {
7213 if (hdr->sh_type == SHT_MIPS_REGINFO
7214 && hdr->sh_size > 0)
7215 {
7216 bfd_byte buf[4];
7217
7218 BFD_ASSERT (hdr->contents == NULL);
7219
7220 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7221 {
7222 _bfd_error_handler
7223 (_("%pB: incorrect `.reginfo' section size; "
7224 "expected %" PRIu64 ", got %" PRIu64),
7225 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7226 (uint64_t) hdr->sh_size);
7227 bfd_set_error (bfd_error_bad_value);
7228 return FALSE;
7229 }
7230
7231 if (bfd_seek (abfd,
7232 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7233 SEEK_SET) != 0)
7234 return FALSE;
7235 H_PUT_32 (abfd, elf_gp (abfd), buf);
7236 if (bfd_bwrite (buf, 4, abfd) != 4)
7237 return FALSE;
7238 }
7239
7240 if (hdr->sh_type == SHT_MIPS_OPTIONS
7241 && hdr->bfd_section != NULL
7242 && mips_elf_section_data (hdr->bfd_section) != NULL
7243 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7244 {
7245 bfd_byte *contents, *l, *lend;
7246
7247 /* We stored the section contents in the tdata field in the
7248 set_section_contents routine. We save the section contents
7249 so that we don't have to read them again.
7250 At this point we know that elf_gp is set, so we can look
7251 through the section contents to see if there is an
7252 ODK_REGINFO structure. */
7253
7254 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7255 l = contents;
7256 lend = contents + hdr->sh_size;
7257 while (l + sizeof (Elf_External_Options) <= lend)
7258 {
7259 Elf_Internal_Options intopt;
7260
7261 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7262 &intopt);
7263 if (intopt.size < sizeof (Elf_External_Options))
7264 {
7265 _bfd_error_handler
7266 /* xgettext:c-format */
7267 (_("%pB: warning: bad `%s' option size %u smaller than"
7268 " its header"),
7269 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7270 break;
7271 }
7272 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7273 {
7274 bfd_byte buf[8];
7275
7276 if (bfd_seek (abfd,
7277 (hdr->sh_offset
7278 + (l - contents)
7279 + sizeof (Elf_External_Options)
7280 + (sizeof (Elf64_External_RegInfo) - 8)),
7281 SEEK_SET) != 0)
7282 return FALSE;
7283 H_PUT_64 (abfd, elf_gp (abfd), buf);
7284 if (bfd_bwrite (buf, 8, abfd) != 8)
7285 return FALSE;
7286 }
7287 else if (intopt.kind == ODK_REGINFO)
7288 {
7289 bfd_byte buf[4];
7290
7291 if (bfd_seek (abfd,
7292 (hdr->sh_offset
7293 + (l - contents)
7294 + sizeof (Elf_External_Options)
7295 + (sizeof (Elf32_External_RegInfo) - 4)),
7296 SEEK_SET) != 0)
7297 return FALSE;
7298 H_PUT_32 (abfd, elf_gp (abfd), buf);
7299 if (bfd_bwrite (buf, 4, abfd) != 4)
7300 return FALSE;
7301 }
7302 l += intopt.size;
7303 }
7304 }
7305
7306 if (hdr->bfd_section != NULL)
7307 {
7308 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7309
7310 /* .sbss is not handled specially here because the GNU/Linux
7311 prelinker can convert .sbss from NOBITS to PROGBITS and
7312 changing it back to NOBITS breaks the binary. The entry in
7313 _bfd_mips_elf_special_sections will ensure the correct flags
7314 are set on .sbss if BFD creates it without reading it from an
7315 input file, and without special handling here the flags set
7316 on it in an input file will be followed. */
7317 if (strcmp (name, ".sdata") == 0
7318 || strcmp (name, ".lit8") == 0
7319 || strcmp (name, ".lit4") == 0)
7320 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7321 else if (strcmp (name, ".srdata") == 0)
7322 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7323 else if (strcmp (name, ".compact_rel") == 0)
7324 hdr->sh_flags = 0;
7325 else if (strcmp (name, ".rtproc") == 0)
7326 {
7327 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7328 {
7329 unsigned int adjust;
7330
7331 adjust = hdr->sh_size % hdr->sh_addralign;
7332 if (adjust != 0)
7333 hdr->sh_size += hdr->sh_addralign - adjust;
7334 }
7335 }
7336 }
7337
7338 return TRUE;
7339 }
7340
7341 /* Handle a MIPS specific section when reading an object file. This
7342 is called when elfcode.h finds a section with an unknown type.
7343 This routine supports both the 32-bit and 64-bit ELF ABI.
7344
7345 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7346 how to. */
7347
7348 bfd_boolean
7349 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7350 Elf_Internal_Shdr *hdr,
7351 const char *name,
7352 int shindex)
7353 {
7354 flagword flags = 0;
7355
7356 /* There ought to be a place to keep ELF backend specific flags, but
7357 at the moment there isn't one. We just keep track of the
7358 sections by their name, instead. Fortunately, the ABI gives
7359 suggested names for all the MIPS specific sections, so we will
7360 probably get away with this. */
7361 switch (hdr->sh_type)
7362 {
7363 case SHT_MIPS_LIBLIST:
7364 if (strcmp (name, ".liblist") != 0)
7365 return FALSE;
7366 break;
7367 case SHT_MIPS_MSYM:
7368 if (strcmp (name, ".msym") != 0)
7369 return FALSE;
7370 break;
7371 case SHT_MIPS_CONFLICT:
7372 if (strcmp (name, ".conflict") != 0)
7373 return FALSE;
7374 break;
7375 case SHT_MIPS_GPTAB:
7376 if (! CONST_STRNEQ (name, ".gptab."))
7377 return FALSE;
7378 break;
7379 case SHT_MIPS_UCODE:
7380 if (strcmp (name, ".ucode") != 0)
7381 return FALSE;
7382 break;
7383 case SHT_MIPS_DEBUG:
7384 if (strcmp (name, ".mdebug") != 0)
7385 return FALSE;
7386 flags = SEC_DEBUGGING;
7387 break;
7388 case SHT_MIPS_REGINFO:
7389 if (strcmp (name, ".reginfo") != 0
7390 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7391 return FALSE;
7392 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7393 break;
7394 case SHT_MIPS_IFACE:
7395 if (strcmp (name, ".MIPS.interfaces") != 0)
7396 return FALSE;
7397 break;
7398 case SHT_MIPS_CONTENT:
7399 if (! CONST_STRNEQ (name, ".MIPS.content"))
7400 return FALSE;
7401 break;
7402 case SHT_MIPS_OPTIONS:
7403 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7404 return FALSE;
7405 break;
7406 case SHT_MIPS_ABIFLAGS:
7407 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7408 return FALSE;
7409 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7410 break;
7411 case SHT_MIPS_DWARF:
7412 if (! CONST_STRNEQ (name, ".debug_")
7413 && ! CONST_STRNEQ (name, ".zdebug_"))
7414 return FALSE;
7415 break;
7416 case SHT_MIPS_SYMBOL_LIB:
7417 if (strcmp (name, ".MIPS.symlib") != 0)
7418 return FALSE;
7419 break;
7420 case SHT_MIPS_EVENTS:
7421 if (! CONST_STRNEQ (name, ".MIPS.events")
7422 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7423 return FALSE;
7424 break;
7425 default:
7426 break;
7427 }
7428
7429 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7430 return FALSE;
7431
7432 if (flags)
7433 {
7434 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7435 (bfd_get_section_flags (abfd,
7436 hdr->bfd_section)
7437 | flags)))
7438 return FALSE;
7439 }
7440
7441 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7442 {
7443 Elf_External_ABIFlags_v0 ext;
7444
7445 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7446 &ext, 0, sizeof ext))
7447 return FALSE;
7448 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7449 &mips_elf_tdata (abfd)->abiflags);
7450 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7451 return FALSE;
7452 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7453 }
7454
7455 /* FIXME: We should record sh_info for a .gptab section. */
7456
7457 /* For a .reginfo section, set the gp value in the tdata information
7458 from the contents of this section. We need the gp value while
7459 processing relocs, so we just get it now. The .reginfo section
7460 is not used in the 64-bit MIPS ELF ABI. */
7461 if (hdr->sh_type == SHT_MIPS_REGINFO)
7462 {
7463 Elf32_External_RegInfo ext;
7464 Elf32_RegInfo s;
7465
7466 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7467 &ext, 0, sizeof ext))
7468 return FALSE;
7469 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7470 elf_gp (abfd) = s.ri_gp_value;
7471 }
7472
7473 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7474 set the gp value based on what we find. We may see both
7475 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7476 they should agree. */
7477 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7478 {
7479 bfd_byte *contents, *l, *lend;
7480
7481 contents = bfd_malloc (hdr->sh_size);
7482 if (contents == NULL)
7483 return FALSE;
7484 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7485 0, hdr->sh_size))
7486 {
7487 free (contents);
7488 return FALSE;
7489 }
7490 l = contents;
7491 lend = contents + hdr->sh_size;
7492 while (l + sizeof (Elf_External_Options) <= lend)
7493 {
7494 Elf_Internal_Options intopt;
7495
7496 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7497 &intopt);
7498 if (intopt.size < sizeof (Elf_External_Options))
7499 {
7500 _bfd_error_handler
7501 /* xgettext:c-format */
7502 (_("%pB: warning: bad `%s' option size %u smaller than"
7503 " its header"),
7504 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7505 break;
7506 }
7507 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7508 {
7509 Elf64_Internal_RegInfo intreg;
7510
7511 bfd_mips_elf64_swap_reginfo_in
7512 (abfd,
7513 ((Elf64_External_RegInfo *)
7514 (l + sizeof (Elf_External_Options))),
7515 &intreg);
7516 elf_gp (abfd) = intreg.ri_gp_value;
7517 }
7518 else if (intopt.kind == ODK_REGINFO)
7519 {
7520 Elf32_RegInfo intreg;
7521
7522 bfd_mips_elf32_swap_reginfo_in
7523 (abfd,
7524 ((Elf32_External_RegInfo *)
7525 (l + sizeof (Elf_External_Options))),
7526 &intreg);
7527 elf_gp (abfd) = intreg.ri_gp_value;
7528 }
7529 l += intopt.size;
7530 }
7531 free (contents);
7532 }
7533
7534 return TRUE;
7535 }
7536
7537 /* Set the correct type for a MIPS ELF section. We do this by the
7538 section name, which is a hack, but ought to work. This routine is
7539 used by both the 32-bit and the 64-bit ABI. */
7540
7541 bfd_boolean
7542 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7543 {
7544 const char *name = bfd_get_section_name (abfd, sec);
7545
7546 if (strcmp (name, ".liblist") == 0)
7547 {
7548 hdr->sh_type = SHT_MIPS_LIBLIST;
7549 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7550 /* The sh_link field is set in final_write_processing. */
7551 }
7552 else if (strcmp (name, ".conflict") == 0)
7553 hdr->sh_type = SHT_MIPS_CONFLICT;
7554 else if (CONST_STRNEQ (name, ".gptab."))
7555 {
7556 hdr->sh_type = SHT_MIPS_GPTAB;
7557 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7558 /* The sh_info field is set in final_write_processing. */
7559 }
7560 else if (strcmp (name, ".ucode") == 0)
7561 hdr->sh_type = SHT_MIPS_UCODE;
7562 else if (strcmp (name, ".mdebug") == 0)
7563 {
7564 hdr->sh_type = SHT_MIPS_DEBUG;
7565 /* In a shared object on IRIX 5.3, the .mdebug section has an
7566 entsize of 0. FIXME: Does this matter? */
7567 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7568 hdr->sh_entsize = 0;
7569 else
7570 hdr->sh_entsize = 1;
7571 }
7572 else if (strcmp (name, ".reginfo") == 0)
7573 {
7574 hdr->sh_type = SHT_MIPS_REGINFO;
7575 /* In a shared object on IRIX 5.3, the .reginfo section has an
7576 entsize of 0x18. FIXME: Does this matter? */
7577 if (SGI_COMPAT (abfd))
7578 {
7579 if ((abfd->flags & DYNAMIC) != 0)
7580 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7581 else
7582 hdr->sh_entsize = 1;
7583 }
7584 else
7585 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7586 }
7587 else if (SGI_COMPAT (abfd)
7588 && (strcmp (name, ".hash") == 0
7589 || strcmp (name, ".dynamic") == 0
7590 || strcmp (name, ".dynstr") == 0))
7591 {
7592 if (SGI_COMPAT (abfd))
7593 hdr->sh_entsize = 0;
7594 #if 0
7595 /* This isn't how the IRIX6 linker behaves. */
7596 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7597 #endif
7598 }
7599 else if (strcmp (name, ".got") == 0
7600 || strcmp (name, ".srdata") == 0
7601 || strcmp (name, ".sdata") == 0
7602 || strcmp (name, ".sbss") == 0
7603 || strcmp (name, ".lit4") == 0
7604 || strcmp (name, ".lit8") == 0)
7605 hdr->sh_flags |= SHF_MIPS_GPREL;
7606 else if (strcmp (name, ".MIPS.interfaces") == 0)
7607 {
7608 hdr->sh_type = SHT_MIPS_IFACE;
7609 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7610 }
7611 else if (CONST_STRNEQ (name, ".MIPS.content"))
7612 {
7613 hdr->sh_type = SHT_MIPS_CONTENT;
7614 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7615 /* The sh_info field is set in final_write_processing. */
7616 }
7617 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7618 {
7619 hdr->sh_type = SHT_MIPS_OPTIONS;
7620 hdr->sh_entsize = 1;
7621 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7622 }
7623 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7624 {
7625 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7626 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7627 }
7628 else if (CONST_STRNEQ (name, ".debug_")
7629 || CONST_STRNEQ (name, ".zdebug_"))
7630 {
7631 hdr->sh_type = SHT_MIPS_DWARF;
7632
7633 /* Irix facilities such as libexc expect a single .debug_frame
7634 per executable, the system ones have NOSTRIP set and the linker
7635 doesn't merge sections with different flags so ... */
7636 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7637 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7638 }
7639 else if (strcmp (name, ".MIPS.symlib") == 0)
7640 {
7641 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7642 /* The sh_link and sh_info fields are set in
7643 final_write_processing. */
7644 }
7645 else if (CONST_STRNEQ (name, ".MIPS.events")
7646 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7647 {
7648 hdr->sh_type = SHT_MIPS_EVENTS;
7649 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7650 /* The sh_link field is set in final_write_processing. */
7651 }
7652 else if (strcmp (name, ".msym") == 0)
7653 {
7654 hdr->sh_type = SHT_MIPS_MSYM;
7655 hdr->sh_flags |= SHF_ALLOC;
7656 hdr->sh_entsize = 8;
7657 }
7658
7659 /* The generic elf_fake_sections will set up REL_HDR using the default
7660 kind of relocations. We used to set up a second header for the
7661 non-default kind of relocations here, but only NewABI would use
7662 these, and the IRIX ld doesn't like resulting empty RELA sections.
7663 Thus we create those header only on demand now. */
7664
7665 return TRUE;
7666 }
7667
7668 /* Given a BFD section, try to locate the corresponding ELF section
7669 index. This is used by both the 32-bit and the 64-bit ABI.
7670 Actually, it's not clear to me that the 64-bit ABI supports these,
7671 but for non-PIC objects we will certainly want support for at least
7672 the .scommon section. */
7673
7674 bfd_boolean
7675 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7676 asection *sec, int *retval)
7677 {
7678 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7679 {
7680 *retval = SHN_MIPS_SCOMMON;
7681 return TRUE;
7682 }
7683 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7684 {
7685 *retval = SHN_MIPS_ACOMMON;
7686 return TRUE;
7687 }
7688 return FALSE;
7689 }
7690 \f
7691 /* Hook called by the linker routine which adds symbols from an object
7692 file. We must handle the special MIPS section numbers here. */
7693
7694 bfd_boolean
7695 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7696 Elf_Internal_Sym *sym, const char **namep,
7697 flagword *flagsp ATTRIBUTE_UNUSED,
7698 asection **secp, bfd_vma *valp)
7699 {
7700 if (SGI_COMPAT (abfd)
7701 && (abfd->flags & DYNAMIC) != 0
7702 && strcmp (*namep, "_rld_new_interface") == 0)
7703 {
7704 /* Skip IRIX5 rld entry name. */
7705 *namep = NULL;
7706 return TRUE;
7707 }
7708
7709 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7710 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7711 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7712 a magic symbol resolved by the linker, we ignore this bogus definition
7713 of _gp_disp. New ABI objects do not suffer from this problem so this
7714 is not done for them. */
7715 if (!NEWABI_P(abfd)
7716 && (sym->st_shndx == SHN_ABS)
7717 && (strcmp (*namep, "_gp_disp") == 0))
7718 {
7719 *namep = NULL;
7720 return TRUE;
7721 }
7722
7723 switch (sym->st_shndx)
7724 {
7725 case SHN_COMMON:
7726 /* Common symbols less than the GP size are automatically
7727 treated as SHN_MIPS_SCOMMON symbols. */
7728 if (sym->st_size > elf_gp_size (abfd)
7729 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7730 || IRIX_COMPAT (abfd) == ict_irix6)
7731 break;
7732 /* Fall through. */
7733 case SHN_MIPS_SCOMMON:
7734 *secp = bfd_make_section_old_way (abfd, ".scommon");
7735 (*secp)->flags |= SEC_IS_COMMON;
7736 *valp = sym->st_size;
7737 break;
7738
7739 case SHN_MIPS_TEXT:
7740 /* This section is used in a shared object. */
7741 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7742 {
7743 asymbol *elf_text_symbol;
7744 asection *elf_text_section;
7745 bfd_size_type amt = sizeof (asection);
7746
7747 elf_text_section = bfd_zalloc (abfd, amt);
7748 if (elf_text_section == NULL)
7749 return FALSE;
7750
7751 amt = sizeof (asymbol);
7752 elf_text_symbol = bfd_zalloc (abfd, amt);
7753 if (elf_text_symbol == NULL)
7754 return FALSE;
7755
7756 /* Initialize the section. */
7757
7758 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7759 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7760
7761 elf_text_section->symbol = elf_text_symbol;
7762 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7763
7764 elf_text_section->name = ".text";
7765 elf_text_section->flags = SEC_NO_FLAGS;
7766 elf_text_section->output_section = NULL;
7767 elf_text_section->owner = abfd;
7768 elf_text_symbol->name = ".text";
7769 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7770 elf_text_symbol->section = elf_text_section;
7771 }
7772 /* This code used to do *secp = bfd_und_section_ptr if
7773 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7774 so I took it out. */
7775 *secp = mips_elf_tdata (abfd)->elf_text_section;
7776 break;
7777
7778 case SHN_MIPS_ACOMMON:
7779 /* Fall through. XXX Can we treat this as allocated data? */
7780 case SHN_MIPS_DATA:
7781 /* This section is used in a shared object. */
7782 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7783 {
7784 asymbol *elf_data_symbol;
7785 asection *elf_data_section;
7786 bfd_size_type amt = sizeof (asection);
7787
7788 elf_data_section = bfd_zalloc (abfd, amt);
7789 if (elf_data_section == NULL)
7790 return FALSE;
7791
7792 amt = sizeof (asymbol);
7793 elf_data_symbol = bfd_zalloc (abfd, amt);
7794 if (elf_data_symbol == NULL)
7795 return FALSE;
7796
7797 /* Initialize the section. */
7798
7799 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7800 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7801
7802 elf_data_section->symbol = elf_data_symbol;
7803 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7804
7805 elf_data_section->name = ".data";
7806 elf_data_section->flags = SEC_NO_FLAGS;
7807 elf_data_section->output_section = NULL;
7808 elf_data_section->owner = abfd;
7809 elf_data_symbol->name = ".data";
7810 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7811 elf_data_symbol->section = elf_data_section;
7812 }
7813 /* This code used to do *secp = bfd_und_section_ptr if
7814 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7815 so I took it out. */
7816 *secp = mips_elf_tdata (abfd)->elf_data_section;
7817 break;
7818
7819 case SHN_MIPS_SUNDEFINED:
7820 *secp = bfd_und_section_ptr;
7821 break;
7822 }
7823
7824 if (SGI_COMPAT (abfd)
7825 && ! bfd_link_pic (info)
7826 && info->output_bfd->xvec == abfd->xvec
7827 && strcmp (*namep, "__rld_obj_head") == 0)
7828 {
7829 struct elf_link_hash_entry *h;
7830 struct bfd_link_hash_entry *bh;
7831
7832 /* Mark __rld_obj_head as dynamic. */
7833 bh = NULL;
7834 if (! (_bfd_generic_link_add_one_symbol
7835 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7836 get_elf_backend_data (abfd)->collect, &bh)))
7837 return FALSE;
7838
7839 h = (struct elf_link_hash_entry *) bh;
7840 h->non_elf = 0;
7841 h->def_regular = 1;
7842 h->type = STT_OBJECT;
7843
7844 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7845 return FALSE;
7846
7847 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7848 mips_elf_hash_table (info)->rld_symbol = h;
7849 }
7850
7851 /* If this is a mips16 text symbol, add 1 to the value to make it
7852 odd. This will cause something like .word SYM to come up with
7853 the right value when it is loaded into the PC. */
7854 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7855 ++*valp;
7856
7857 return TRUE;
7858 }
7859
7860 /* This hook function is called before the linker writes out a global
7861 symbol. We mark symbols as small common if appropriate. This is
7862 also where we undo the increment of the value for a mips16 symbol. */
7863
7864 int
7865 _bfd_mips_elf_link_output_symbol_hook
7866 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7867 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7868 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7869 {
7870 /* If we see a common symbol, which implies a relocatable link, then
7871 if a symbol was small common in an input file, mark it as small
7872 common in the output file. */
7873 if (sym->st_shndx == SHN_COMMON
7874 && strcmp (input_sec->name, ".scommon") == 0)
7875 sym->st_shndx = SHN_MIPS_SCOMMON;
7876
7877 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7878 sym->st_value &= ~1;
7879
7880 return 1;
7881 }
7882 \f
7883 /* Functions for the dynamic linker. */
7884
7885 /* Create dynamic sections when linking against a dynamic object. */
7886
7887 bfd_boolean
7888 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7889 {
7890 struct elf_link_hash_entry *h;
7891 struct bfd_link_hash_entry *bh;
7892 flagword flags;
7893 register asection *s;
7894 const char * const *namep;
7895 struct mips_elf_link_hash_table *htab;
7896
7897 htab = mips_elf_hash_table (info);
7898 BFD_ASSERT (htab != NULL);
7899
7900 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7901 | SEC_LINKER_CREATED | SEC_READONLY);
7902
7903 /* The psABI requires a read-only .dynamic section, but the VxWorks
7904 EABI doesn't. */
7905 if (!htab->is_vxworks)
7906 {
7907 s = bfd_get_linker_section (abfd, ".dynamic");
7908 if (s != NULL)
7909 {
7910 if (! bfd_set_section_flags (abfd, s, flags))
7911 return FALSE;
7912 }
7913 }
7914
7915 /* We need to create .got section. */
7916 if (!mips_elf_create_got_section (abfd, info))
7917 return FALSE;
7918
7919 if (! mips_elf_rel_dyn_section (info, TRUE))
7920 return FALSE;
7921
7922 /* Create .stub section. */
7923 s = bfd_make_section_anyway_with_flags (abfd,
7924 MIPS_ELF_STUB_SECTION_NAME (abfd),
7925 flags | SEC_CODE);
7926 if (s == NULL
7927 || ! bfd_set_section_alignment (abfd, s,
7928 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7929 return FALSE;
7930 htab->sstubs = s;
7931
7932 if (!mips_elf_hash_table (info)->use_rld_obj_head
7933 && bfd_link_executable (info)
7934 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7935 {
7936 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7937 flags &~ (flagword) SEC_READONLY);
7938 if (s == NULL
7939 || ! bfd_set_section_alignment (abfd, s,
7940 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7941 return FALSE;
7942 }
7943
7944 /* On IRIX5, we adjust add some additional symbols and change the
7945 alignments of several sections. There is no ABI documentation
7946 indicating that this is necessary on IRIX6, nor any evidence that
7947 the linker takes such action. */
7948 if (IRIX_COMPAT (abfd) == ict_irix5)
7949 {
7950 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7951 {
7952 bh = NULL;
7953 if (! (_bfd_generic_link_add_one_symbol
7954 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7955 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7956 return FALSE;
7957
7958 h = (struct elf_link_hash_entry *) bh;
7959 h->mark = 1;
7960 h->non_elf = 0;
7961 h->def_regular = 1;
7962 h->type = STT_SECTION;
7963
7964 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7965 return FALSE;
7966 }
7967
7968 /* We need to create a .compact_rel section. */
7969 if (SGI_COMPAT (abfd))
7970 {
7971 if (!mips_elf_create_compact_rel_section (abfd, info))
7972 return FALSE;
7973 }
7974
7975 /* Change alignments of some sections. */
7976 s = bfd_get_linker_section (abfd, ".hash");
7977 if (s != NULL)
7978 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7979
7980 s = bfd_get_linker_section (abfd, ".dynsym");
7981 if (s != NULL)
7982 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7983
7984 s = bfd_get_linker_section (abfd, ".dynstr");
7985 if (s != NULL)
7986 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7987
7988 /* ??? */
7989 s = bfd_get_section_by_name (abfd, ".reginfo");
7990 if (s != NULL)
7991 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7992
7993 s = bfd_get_linker_section (abfd, ".dynamic");
7994 if (s != NULL)
7995 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7996 }
7997
7998 if (bfd_link_executable (info))
7999 {
8000 const char *name;
8001
8002 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8003 bh = NULL;
8004 if (!(_bfd_generic_link_add_one_symbol
8005 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8006 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8007 return FALSE;
8008
8009 h = (struct elf_link_hash_entry *) bh;
8010 h->non_elf = 0;
8011 h->def_regular = 1;
8012 h->type = STT_SECTION;
8013
8014 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8015 return FALSE;
8016
8017 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8018 {
8019 /* __rld_map is a four byte word located in the .data section
8020 and is filled in by the rtld to contain a pointer to
8021 the _r_debug structure. Its symbol value will be set in
8022 _bfd_mips_elf_finish_dynamic_symbol. */
8023 s = bfd_get_linker_section (abfd, ".rld_map");
8024 BFD_ASSERT (s != NULL);
8025
8026 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8027 bh = NULL;
8028 if (!(_bfd_generic_link_add_one_symbol
8029 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8030 get_elf_backend_data (abfd)->collect, &bh)))
8031 return FALSE;
8032
8033 h = (struct elf_link_hash_entry *) bh;
8034 h->non_elf = 0;
8035 h->def_regular = 1;
8036 h->type = STT_OBJECT;
8037
8038 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8039 return FALSE;
8040 mips_elf_hash_table (info)->rld_symbol = h;
8041 }
8042 }
8043
8044 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8045 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8046 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8047 return FALSE;
8048
8049 /* Do the usual VxWorks handling. */
8050 if (htab->is_vxworks
8051 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8052 return FALSE;
8053
8054 return TRUE;
8055 }
8056 \f
8057 /* Return true if relocation REL against section SEC is a REL rather than
8058 RELA relocation. RELOCS is the first relocation in the section and
8059 ABFD is the bfd that contains SEC. */
8060
8061 static bfd_boolean
8062 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8063 const Elf_Internal_Rela *relocs,
8064 const Elf_Internal_Rela *rel)
8065 {
8066 Elf_Internal_Shdr *rel_hdr;
8067 const struct elf_backend_data *bed;
8068
8069 /* To determine which flavor of relocation this is, we depend on the
8070 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8071 rel_hdr = elf_section_data (sec)->rel.hdr;
8072 if (rel_hdr == NULL)
8073 return FALSE;
8074 bed = get_elf_backend_data (abfd);
8075 return ((size_t) (rel - relocs)
8076 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8077 }
8078
8079 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8080 HOWTO is the relocation's howto and CONTENTS points to the contents
8081 of the section that REL is against. */
8082
8083 static bfd_vma
8084 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8085 reloc_howto_type *howto, bfd_byte *contents)
8086 {
8087 bfd_byte *location;
8088 unsigned int r_type;
8089 bfd_vma addend;
8090 bfd_vma bytes;
8091
8092 r_type = ELF_R_TYPE (abfd, rel->r_info);
8093 location = contents + rel->r_offset;
8094
8095 /* Get the addend, which is stored in the input file. */
8096 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8097 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8098 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8099
8100 addend = bytes & howto->src_mask;
8101
8102 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8103 accordingly. */
8104 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8105 addend <<= 1;
8106
8107 return addend;
8108 }
8109
8110 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8111 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8112 and update *ADDEND with the final addend. Return true on success
8113 or false if the LO16 could not be found. RELEND is the exclusive
8114 upper bound on the relocations for REL's section. */
8115
8116 static bfd_boolean
8117 mips_elf_add_lo16_rel_addend (bfd *abfd,
8118 const Elf_Internal_Rela *rel,
8119 const Elf_Internal_Rela *relend,
8120 bfd_byte *contents, bfd_vma *addend)
8121 {
8122 unsigned int r_type, lo16_type;
8123 const Elf_Internal_Rela *lo16_relocation;
8124 reloc_howto_type *lo16_howto;
8125 bfd_vma l;
8126
8127 r_type = ELF_R_TYPE (abfd, rel->r_info);
8128 if (mips16_reloc_p (r_type))
8129 lo16_type = R_MIPS16_LO16;
8130 else if (micromips_reloc_p (r_type))
8131 lo16_type = R_MICROMIPS_LO16;
8132 else if (r_type == R_MIPS_PCHI16)
8133 lo16_type = R_MIPS_PCLO16;
8134 else
8135 lo16_type = R_MIPS_LO16;
8136
8137 /* The combined value is the sum of the HI16 addend, left-shifted by
8138 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8139 code does a `lui' of the HI16 value, and then an `addiu' of the
8140 LO16 value.)
8141
8142 Scan ahead to find a matching LO16 relocation.
8143
8144 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8145 be immediately following. However, for the IRIX6 ABI, the next
8146 relocation may be a composed relocation consisting of several
8147 relocations for the same address. In that case, the R_MIPS_LO16
8148 relocation may occur as one of these. We permit a similar
8149 extension in general, as that is useful for GCC.
8150
8151 In some cases GCC dead code elimination removes the LO16 but keeps
8152 the corresponding HI16. This is strictly speaking a violation of
8153 the ABI but not immediately harmful. */
8154 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8155 if (lo16_relocation == NULL)
8156 return FALSE;
8157
8158 /* Obtain the addend kept there. */
8159 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8160 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8161
8162 l <<= lo16_howto->rightshift;
8163 l = _bfd_mips_elf_sign_extend (l, 16);
8164
8165 *addend <<= 16;
8166 *addend += l;
8167 return TRUE;
8168 }
8169
8170 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8171 store the contents in *CONTENTS on success. Assume that *CONTENTS
8172 already holds the contents if it is nonull on entry. */
8173
8174 static bfd_boolean
8175 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8176 {
8177 if (*contents)
8178 return TRUE;
8179
8180 /* Get cached copy if it exists. */
8181 if (elf_section_data (sec)->this_hdr.contents != NULL)
8182 {
8183 *contents = elf_section_data (sec)->this_hdr.contents;
8184 return TRUE;
8185 }
8186
8187 return bfd_malloc_and_get_section (abfd, sec, contents);
8188 }
8189
8190 /* Make a new PLT record to keep internal data. */
8191
8192 static struct plt_entry *
8193 mips_elf_make_plt_record (bfd *abfd)
8194 {
8195 struct plt_entry *entry;
8196
8197 entry = bfd_zalloc (abfd, sizeof (*entry));
8198 if (entry == NULL)
8199 return NULL;
8200
8201 entry->stub_offset = MINUS_ONE;
8202 entry->mips_offset = MINUS_ONE;
8203 entry->comp_offset = MINUS_ONE;
8204 entry->gotplt_index = MINUS_ONE;
8205 return entry;
8206 }
8207
8208 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8209 for PIC code, as otherwise there is no load-time relocation involved
8210 and local GOT entries whose value is zero at static link time will
8211 retain their value at load time. */
8212
8213 static bfd_boolean
8214 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8215 struct mips_elf_link_hash_table *htab,
8216 unsigned int r_type)
8217 {
8218 union
8219 {
8220 struct elf_link_hash_entry *eh;
8221 struct bfd_link_hash_entry *bh;
8222 }
8223 hzero;
8224
8225 BFD_ASSERT (!htab->use_absolute_zero);
8226 BFD_ASSERT (bfd_link_pic (info));
8227
8228 hzero.bh = NULL;
8229 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8230 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8231 NULL, FALSE, FALSE, &hzero.bh))
8232 return FALSE;
8233
8234 BFD_ASSERT (hzero.bh != NULL);
8235 hzero.eh->size = 0;
8236 hzero.eh->type = STT_NOTYPE;
8237 hzero.eh->other = STV_PROTECTED;
8238 hzero.eh->def_regular = 1;
8239 hzero.eh->non_elf = 0;
8240
8241 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8242 return FALSE;
8243
8244 htab->use_absolute_zero = TRUE;
8245
8246 return TRUE;
8247 }
8248
8249 /* Look through the relocs for a section during the first phase, and
8250 allocate space in the global offset table and record the need for
8251 standard MIPS and compressed procedure linkage table entries. */
8252
8253 bfd_boolean
8254 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8255 asection *sec, const Elf_Internal_Rela *relocs)
8256 {
8257 const char *name;
8258 bfd *dynobj;
8259 Elf_Internal_Shdr *symtab_hdr;
8260 struct elf_link_hash_entry **sym_hashes;
8261 size_t extsymoff;
8262 const Elf_Internal_Rela *rel;
8263 const Elf_Internal_Rela *rel_end;
8264 asection *sreloc;
8265 const struct elf_backend_data *bed;
8266 struct mips_elf_link_hash_table *htab;
8267 bfd_byte *contents;
8268 bfd_vma addend;
8269 reloc_howto_type *howto;
8270
8271 if (bfd_link_relocatable (info))
8272 return TRUE;
8273
8274 htab = mips_elf_hash_table (info);
8275 BFD_ASSERT (htab != NULL);
8276
8277 dynobj = elf_hash_table (info)->dynobj;
8278 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8279 sym_hashes = elf_sym_hashes (abfd);
8280 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8281
8282 bed = get_elf_backend_data (abfd);
8283 rel_end = relocs + sec->reloc_count;
8284
8285 /* Check for the mips16 stub sections. */
8286
8287 name = bfd_get_section_name (abfd, sec);
8288 if (FN_STUB_P (name))
8289 {
8290 unsigned long r_symndx;
8291
8292 /* Look at the relocation information to figure out which symbol
8293 this is for. */
8294
8295 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8296 if (r_symndx == 0)
8297 {
8298 _bfd_error_handler
8299 /* xgettext:c-format */
8300 (_("%pB: warning: cannot determine the target function for"
8301 " stub section `%s'"),
8302 abfd, name);
8303 bfd_set_error (bfd_error_bad_value);
8304 return FALSE;
8305 }
8306
8307 if (r_symndx < extsymoff
8308 || sym_hashes[r_symndx - extsymoff] == NULL)
8309 {
8310 asection *o;
8311
8312 /* This stub is for a local symbol. This stub will only be
8313 needed if there is some relocation in this BFD, other
8314 than a 16 bit function call, which refers to this symbol. */
8315 for (o = abfd->sections; o != NULL; o = o->next)
8316 {
8317 Elf_Internal_Rela *sec_relocs;
8318 const Elf_Internal_Rela *r, *rend;
8319
8320 /* We can ignore stub sections when looking for relocs. */
8321 if ((o->flags & SEC_RELOC) == 0
8322 || o->reloc_count == 0
8323 || section_allows_mips16_refs_p (o))
8324 continue;
8325
8326 sec_relocs
8327 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8328 info->keep_memory);
8329 if (sec_relocs == NULL)
8330 return FALSE;
8331
8332 rend = sec_relocs + o->reloc_count;
8333 for (r = sec_relocs; r < rend; r++)
8334 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8335 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8336 break;
8337
8338 if (elf_section_data (o)->relocs != sec_relocs)
8339 free (sec_relocs);
8340
8341 if (r < rend)
8342 break;
8343 }
8344
8345 if (o == NULL)
8346 {
8347 /* There is no non-call reloc for this stub, so we do
8348 not need it. Since this function is called before
8349 the linker maps input sections to output sections, we
8350 can easily discard it by setting the SEC_EXCLUDE
8351 flag. */
8352 sec->flags |= SEC_EXCLUDE;
8353 return TRUE;
8354 }
8355
8356 /* Record this stub in an array of local symbol stubs for
8357 this BFD. */
8358 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8359 {
8360 unsigned long symcount;
8361 asection **n;
8362 bfd_size_type amt;
8363
8364 if (elf_bad_symtab (abfd))
8365 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8366 else
8367 symcount = symtab_hdr->sh_info;
8368 amt = symcount * sizeof (asection *);
8369 n = bfd_zalloc (abfd, amt);
8370 if (n == NULL)
8371 return FALSE;
8372 mips_elf_tdata (abfd)->local_stubs = n;
8373 }
8374
8375 sec->flags |= SEC_KEEP;
8376 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8377
8378 /* We don't need to set mips16_stubs_seen in this case.
8379 That flag is used to see whether we need to look through
8380 the global symbol table for stubs. We don't need to set
8381 it here, because we just have a local stub. */
8382 }
8383 else
8384 {
8385 struct mips_elf_link_hash_entry *h;
8386
8387 h = ((struct mips_elf_link_hash_entry *)
8388 sym_hashes[r_symndx - extsymoff]);
8389
8390 while (h->root.root.type == bfd_link_hash_indirect
8391 || h->root.root.type == bfd_link_hash_warning)
8392 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8393
8394 /* H is the symbol this stub is for. */
8395
8396 /* If we already have an appropriate stub for this function, we
8397 don't need another one, so we can discard this one. Since
8398 this function is called before the linker maps input sections
8399 to output sections, we can easily discard it by setting the
8400 SEC_EXCLUDE flag. */
8401 if (h->fn_stub != NULL)
8402 {
8403 sec->flags |= SEC_EXCLUDE;
8404 return TRUE;
8405 }
8406
8407 sec->flags |= SEC_KEEP;
8408 h->fn_stub = sec;
8409 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8410 }
8411 }
8412 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8413 {
8414 unsigned long r_symndx;
8415 struct mips_elf_link_hash_entry *h;
8416 asection **loc;
8417
8418 /* Look at the relocation information to figure out which symbol
8419 this is for. */
8420
8421 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8422 if (r_symndx == 0)
8423 {
8424 _bfd_error_handler
8425 /* xgettext:c-format */
8426 (_("%pB: warning: cannot determine the target function for"
8427 " stub section `%s'"),
8428 abfd, name);
8429 bfd_set_error (bfd_error_bad_value);
8430 return FALSE;
8431 }
8432
8433 if (r_symndx < extsymoff
8434 || sym_hashes[r_symndx - extsymoff] == NULL)
8435 {
8436 asection *o;
8437
8438 /* This stub is for a local symbol. This stub will only be
8439 needed if there is some relocation (R_MIPS16_26) in this BFD
8440 that refers to this symbol. */
8441 for (o = abfd->sections; o != NULL; o = o->next)
8442 {
8443 Elf_Internal_Rela *sec_relocs;
8444 const Elf_Internal_Rela *r, *rend;
8445
8446 /* We can ignore stub sections when looking for relocs. */
8447 if ((o->flags & SEC_RELOC) == 0
8448 || o->reloc_count == 0
8449 || section_allows_mips16_refs_p (o))
8450 continue;
8451
8452 sec_relocs
8453 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8454 info->keep_memory);
8455 if (sec_relocs == NULL)
8456 return FALSE;
8457
8458 rend = sec_relocs + o->reloc_count;
8459 for (r = sec_relocs; r < rend; r++)
8460 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8461 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8462 break;
8463
8464 if (elf_section_data (o)->relocs != sec_relocs)
8465 free (sec_relocs);
8466
8467 if (r < rend)
8468 break;
8469 }
8470
8471 if (o == NULL)
8472 {
8473 /* There is no non-call reloc for this stub, so we do
8474 not need it. Since this function is called before
8475 the linker maps input sections to output sections, we
8476 can easily discard it by setting the SEC_EXCLUDE
8477 flag. */
8478 sec->flags |= SEC_EXCLUDE;
8479 return TRUE;
8480 }
8481
8482 /* Record this stub in an array of local symbol call_stubs for
8483 this BFD. */
8484 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8485 {
8486 unsigned long symcount;
8487 asection **n;
8488 bfd_size_type amt;
8489
8490 if (elf_bad_symtab (abfd))
8491 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8492 else
8493 symcount = symtab_hdr->sh_info;
8494 amt = symcount * sizeof (asection *);
8495 n = bfd_zalloc (abfd, amt);
8496 if (n == NULL)
8497 return FALSE;
8498 mips_elf_tdata (abfd)->local_call_stubs = n;
8499 }
8500
8501 sec->flags |= SEC_KEEP;
8502 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8503
8504 /* We don't need to set mips16_stubs_seen in this case.
8505 That flag is used to see whether we need to look through
8506 the global symbol table for stubs. We don't need to set
8507 it here, because we just have a local stub. */
8508 }
8509 else
8510 {
8511 h = ((struct mips_elf_link_hash_entry *)
8512 sym_hashes[r_symndx - extsymoff]);
8513
8514 /* H is the symbol this stub is for. */
8515
8516 if (CALL_FP_STUB_P (name))
8517 loc = &h->call_fp_stub;
8518 else
8519 loc = &h->call_stub;
8520
8521 /* If we already have an appropriate stub for this function, we
8522 don't need another one, so we can discard this one. Since
8523 this function is called before the linker maps input sections
8524 to output sections, we can easily discard it by setting the
8525 SEC_EXCLUDE flag. */
8526 if (*loc != NULL)
8527 {
8528 sec->flags |= SEC_EXCLUDE;
8529 return TRUE;
8530 }
8531
8532 sec->flags |= SEC_KEEP;
8533 *loc = sec;
8534 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8535 }
8536 }
8537
8538 sreloc = NULL;
8539 contents = NULL;
8540 for (rel = relocs; rel < rel_end; ++rel)
8541 {
8542 unsigned long r_symndx;
8543 unsigned int r_type;
8544 struct elf_link_hash_entry *h;
8545 bfd_boolean can_make_dynamic_p;
8546 bfd_boolean call_reloc_p;
8547 bfd_boolean constrain_symbol_p;
8548
8549 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8550 r_type = ELF_R_TYPE (abfd, rel->r_info);
8551
8552 if (r_symndx < extsymoff)
8553 h = NULL;
8554 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8555 {
8556 _bfd_error_handler
8557 /* xgettext:c-format */
8558 (_("%pB: malformed reloc detected for section %s"),
8559 abfd, name);
8560 bfd_set_error (bfd_error_bad_value);
8561 return FALSE;
8562 }
8563 else
8564 {
8565 h = sym_hashes[r_symndx - extsymoff];
8566 if (h != NULL)
8567 {
8568 while (h->root.type == bfd_link_hash_indirect
8569 || h->root.type == bfd_link_hash_warning)
8570 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8571 }
8572 }
8573
8574 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8575 relocation into a dynamic one. */
8576 can_make_dynamic_p = FALSE;
8577
8578 /* Set CALL_RELOC_P to true if the relocation is for a call,
8579 and if pointer equality therefore doesn't matter. */
8580 call_reloc_p = FALSE;
8581
8582 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8583 into account when deciding how to define the symbol.
8584 Relocations in nonallocatable sections such as .pdr and
8585 .debug* should have no effect. */
8586 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8587
8588 switch (r_type)
8589 {
8590 case R_MIPS_CALL16:
8591 case R_MIPS_CALL_HI16:
8592 case R_MIPS_CALL_LO16:
8593 case R_MIPS16_CALL16:
8594 case R_MICROMIPS_CALL16:
8595 case R_MICROMIPS_CALL_HI16:
8596 case R_MICROMIPS_CALL_LO16:
8597 call_reloc_p = TRUE;
8598 /* Fall through. */
8599
8600 case R_MIPS_GOT16:
8601 case R_MIPS_GOT_LO16:
8602 case R_MIPS_GOT_PAGE:
8603 case R_MIPS_GOT_DISP:
8604 case R_MIPS16_GOT16:
8605 case R_MICROMIPS_GOT16:
8606 case R_MICROMIPS_GOT_LO16:
8607 case R_MICROMIPS_GOT_PAGE:
8608 case R_MICROMIPS_GOT_DISP:
8609 /* If we have a symbol that will resolve to zero at static link
8610 time and it is used by a GOT relocation applied to code we
8611 cannot relax to an immediate zero load, then we will be using
8612 the special `__gnu_absolute_zero' symbol whose value is zero
8613 at dynamic load time. We ignore HI16-type GOT relocations at
8614 this stage, because their handling will depend entirely on
8615 the corresponding LO16-type GOT relocation. */
8616 if (!call_hi16_reloc_p (r_type)
8617 && h != NULL
8618 && bfd_link_pic (info)
8619 && !htab->use_absolute_zero
8620 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8621 {
8622 bfd_boolean rel_reloc;
8623
8624 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8625 return FALSE;
8626
8627 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8628 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8629
8630 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8631 FALSE))
8632 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8633 return FALSE;
8634 }
8635
8636 /* Fall through. */
8637 case R_MIPS_GOT_HI16:
8638 case R_MIPS_GOT_OFST:
8639 case R_MIPS_TLS_GOTTPREL:
8640 case R_MIPS_TLS_GD:
8641 case R_MIPS_TLS_LDM:
8642 case R_MIPS16_TLS_GOTTPREL:
8643 case R_MIPS16_TLS_GD:
8644 case R_MIPS16_TLS_LDM:
8645 case R_MICROMIPS_GOT_HI16:
8646 case R_MICROMIPS_GOT_OFST:
8647 case R_MICROMIPS_TLS_GOTTPREL:
8648 case R_MICROMIPS_TLS_GD:
8649 case R_MICROMIPS_TLS_LDM:
8650 if (dynobj == NULL)
8651 elf_hash_table (info)->dynobj = dynobj = abfd;
8652 if (!mips_elf_create_got_section (dynobj, info))
8653 return FALSE;
8654 if (htab->is_vxworks && !bfd_link_pic (info))
8655 {
8656 _bfd_error_handler
8657 /* xgettext:c-format */
8658 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8659 abfd, (uint64_t) rel->r_offset);
8660 bfd_set_error (bfd_error_bad_value);
8661 return FALSE;
8662 }
8663 can_make_dynamic_p = TRUE;
8664 break;
8665
8666 case R_MIPS_NONE:
8667 case R_MIPS_JALR:
8668 case R_MICROMIPS_JALR:
8669 /* These relocations have empty fields and are purely there to
8670 provide link information. The symbol value doesn't matter. */
8671 constrain_symbol_p = FALSE;
8672 break;
8673
8674 case R_MIPS_GPREL16:
8675 case R_MIPS_GPREL32:
8676 case R_MIPS16_GPREL:
8677 case R_MICROMIPS_GPREL16:
8678 /* GP-relative relocations always resolve to a definition in a
8679 regular input file, ignoring the one-definition rule. This is
8680 important for the GP setup sequence in NewABI code, which
8681 always resolves to a local function even if other relocations
8682 against the symbol wouldn't. */
8683 constrain_symbol_p = FALSE;
8684 break;
8685
8686 case R_MIPS_32:
8687 case R_MIPS_REL32:
8688 case R_MIPS_64:
8689 /* In VxWorks executables, references to external symbols
8690 must be handled using copy relocs or PLT entries; it is not
8691 possible to convert this relocation into a dynamic one.
8692
8693 For executables that use PLTs and copy-relocs, we have a
8694 choice between converting the relocation into a dynamic
8695 one or using copy relocations or PLT entries. It is
8696 usually better to do the former, unless the relocation is
8697 against a read-only section. */
8698 if ((bfd_link_pic (info)
8699 || (h != NULL
8700 && !htab->is_vxworks
8701 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8702 && !(!info->nocopyreloc
8703 && !PIC_OBJECT_P (abfd)
8704 && MIPS_ELF_READONLY_SECTION (sec))))
8705 && (sec->flags & SEC_ALLOC) != 0)
8706 {
8707 can_make_dynamic_p = TRUE;
8708 if (dynobj == NULL)
8709 elf_hash_table (info)->dynobj = dynobj = abfd;
8710 }
8711 break;
8712
8713 case R_MIPS_26:
8714 case R_MIPS_PC16:
8715 case R_MIPS_PC21_S2:
8716 case R_MIPS_PC26_S2:
8717 case R_MIPS16_26:
8718 case R_MIPS16_PC16_S1:
8719 case R_MICROMIPS_26_S1:
8720 case R_MICROMIPS_PC7_S1:
8721 case R_MICROMIPS_PC10_S1:
8722 case R_MICROMIPS_PC16_S1:
8723 case R_MICROMIPS_PC23_S2:
8724 call_reloc_p = TRUE;
8725 break;
8726 }
8727
8728 if (h)
8729 {
8730 if (constrain_symbol_p)
8731 {
8732 if (!can_make_dynamic_p)
8733 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8734
8735 if (!call_reloc_p)
8736 h->pointer_equality_needed = 1;
8737
8738 /* We must not create a stub for a symbol that has
8739 relocations related to taking the function's address.
8740 This doesn't apply to VxWorks, where CALL relocs refer
8741 to a .got.plt entry instead of a normal .got entry. */
8742 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8743 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8744 }
8745
8746 /* Relocations against the special VxWorks __GOTT_BASE__ and
8747 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8748 room for them in .rela.dyn. */
8749 if (is_gott_symbol (info, h))
8750 {
8751 if (sreloc == NULL)
8752 {
8753 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8754 if (sreloc == NULL)
8755 return FALSE;
8756 }
8757 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8758 if (MIPS_ELF_READONLY_SECTION (sec))
8759 /* We tell the dynamic linker that there are
8760 relocations against the text segment. */
8761 info->flags |= DF_TEXTREL;
8762 }
8763 }
8764 else if (call_lo16_reloc_p (r_type)
8765 || got_lo16_reloc_p (r_type)
8766 || got_disp_reloc_p (r_type)
8767 || (got16_reloc_p (r_type) && htab->is_vxworks))
8768 {
8769 /* We may need a local GOT entry for this relocation. We
8770 don't count R_MIPS_GOT_PAGE because we can estimate the
8771 maximum number of pages needed by looking at the size of
8772 the segment. Similar comments apply to R_MIPS*_GOT16 and
8773 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8774 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8775 R_MIPS_CALL_HI16 because these are always followed by an
8776 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8777 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8778 rel->r_addend, info, r_type))
8779 return FALSE;
8780 }
8781
8782 if (h != NULL
8783 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8784 ELF_ST_IS_MIPS16 (h->other)))
8785 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8786
8787 switch (r_type)
8788 {
8789 case R_MIPS_CALL16:
8790 case R_MIPS16_CALL16:
8791 case R_MICROMIPS_CALL16:
8792 if (h == NULL)
8793 {
8794 _bfd_error_handler
8795 /* xgettext:c-format */
8796 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8797 abfd, (uint64_t) rel->r_offset);
8798 bfd_set_error (bfd_error_bad_value);
8799 return FALSE;
8800 }
8801 /* Fall through. */
8802
8803 case R_MIPS_CALL_HI16:
8804 case R_MIPS_CALL_LO16:
8805 case R_MICROMIPS_CALL_HI16:
8806 case R_MICROMIPS_CALL_LO16:
8807 if (h != NULL)
8808 {
8809 /* Make sure there is room in the regular GOT to hold the
8810 function's address. We may eliminate it in favour of
8811 a .got.plt entry later; see mips_elf_count_got_symbols. */
8812 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8813 r_type))
8814 return FALSE;
8815
8816 /* We need a stub, not a plt entry for the undefined
8817 function. But we record it as if it needs plt. See
8818 _bfd_elf_adjust_dynamic_symbol. */
8819 h->needs_plt = 1;
8820 h->type = STT_FUNC;
8821 }
8822 break;
8823
8824 case R_MIPS_GOT_PAGE:
8825 case R_MICROMIPS_GOT_PAGE:
8826 case R_MIPS16_GOT16:
8827 case R_MIPS_GOT16:
8828 case R_MIPS_GOT_HI16:
8829 case R_MIPS_GOT_LO16:
8830 case R_MICROMIPS_GOT16:
8831 case R_MICROMIPS_GOT_HI16:
8832 case R_MICROMIPS_GOT_LO16:
8833 if (!h || got_page_reloc_p (r_type))
8834 {
8835 /* This relocation needs (or may need, if h != NULL) a
8836 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8837 know for sure until we know whether the symbol is
8838 preemptible. */
8839 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8840 {
8841 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8842 return FALSE;
8843 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8844 addend = mips_elf_read_rel_addend (abfd, rel,
8845 howto, contents);
8846 if (got16_reloc_p (r_type))
8847 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8848 contents, &addend);
8849 else
8850 addend <<= howto->rightshift;
8851 }
8852 else
8853 addend = rel->r_addend;
8854 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8855 h, addend))
8856 return FALSE;
8857
8858 if (h)
8859 {
8860 struct mips_elf_link_hash_entry *hmips =
8861 (struct mips_elf_link_hash_entry *) h;
8862
8863 /* This symbol is definitely not overridable. */
8864 if (hmips->root.def_regular
8865 && ! (bfd_link_pic (info) && ! info->symbolic
8866 && ! hmips->root.forced_local))
8867 h = NULL;
8868 }
8869 }
8870 /* If this is a global, overridable symbol, GOT_PAGE will
8871 decay to GOT_DISP, so we'll need a GOT entry for it. */
8872 /* Fall through. */
8873
8874 case R_MIPS_GOT_DISP:
8875 case R_MICROMIPS_GOT_DISP:
8876 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8877 FALSE, r_type))
8878 return FALSE;
8879 break;
8880
8881 case R_MIPS_TLS_GOTTPREL:
8882 case R_MIPS16_TLS_GOTTPREL:
8883 case R_MICROMIPS_TLS_GOTTPREL:
8884 if (bfd_link_pic (info))
8885 info->flags |= DF_STATIC_TLS;
8886 /* Fall through */
8887
8888 case R_MIPS_TLS_LDM:
8889 case R_MIPS16_TLS_LDM:
8890 case R_MICROMIPS_TLS_LDM:
8891 if (tls_ldm_reloc_p (r_type))
8892 {
8893 r_symndx = STN_UNDEF;
8894 h = NULL;
8895 }
8896 /* Fall through */
8897
8898 case R_MIPS_TLS_GD:
8899 case R_MIPS16_TLS_GD:
8900 case R_MICROMIPS_TLS_GD:
8901 /* This symbol requires a global offset table entry, or two
8902 for TLS GD relocations. */
8903 if (h != NULL)
8904 {
8905 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8906 FALSE, r_type))
8907 return FALSE;
8908 }
8909 else
8910 {
8911 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8912 rel->r_addend,
8913 info, r_type))
8914 return FALSE;
8915 }
8916 break;
8917
8918 case R_MIPS_32:
8919 case R_MIPS_REL32:
8920 case R_MIPS_64:
8921 /* In VxWorks executables, references to external symbols
8922 are handled using copy relocs or PLT stubs, so there's
8923 no need to add a .rela.dyn entry for this relocation. */
8924 if (can_make_dynamic_p)
8925 {
8926 if (sreloc == NULL)
8927 {
8928 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8929 if (sreloc == NULL)
8930 return FALSE;
8931 }
8932 if (bfd_link_pic (info) && h == NULL)
8933 {
8934 /* When creating a shared object, we must copy these
8935 reloc types into the output file as R_MIPS_REL32
8936 relocs. Make room for this reloc in .rel(a).dyn. */
8937 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8938 if (MIPS_ELF_READONLY_SECTION (sec))
8939 /* We tell the dynamic linker that there are
8940 relocations against the text segment. */
8941 info->flags |= DF_TEXTREL;
8942 }
8943 else
8944 {
8945 struct mips_elf_link_hash_entry *hmips;
8946
8947 /* For a shared object, we must copy this relocation
8948 unless the symbol turns out to be undefined and
8949 weak with non-default visibility, in which case
8950 it will be left as zero.
8951
8952 We could elide R_MIPS_REL32 for locally binding symbols
8953 in shared libraries, but do not yet do so.
8954
8955 For an executable, we only need to copy this
8956 reloc if the symbol is defined in a dynamic
8957 object. */
8958 hmips = (struct mips_elf_link_hash_entry *) h;
8959 ++hmips->possibly_dynamic_relocs;
8960 if (MIPS_ELF_READONLY_SECTION (sec))
8961 /* We need it to tell the dynamic linker if there
8962 are relocations against the text segment. */
8963 hmips->readonly_reloc = TRUE;
8964 }
8965 }
8966
8967 if (SGI_COMPAT (abfd))
8968 mips_elf_hash_table (info)->compact_rel_size +=
8969 sizeof (Elf32_External_crinfo);
8970 break;
8971
8972 case R_MIPS_26:
8973 case R_MIPS_GPREL16:
8974 case R_MIPS_LITERAL:
8975 case R_MIPS_GPREL32:
8976 case R_MICROMIPS_26_S1:
8977 case R_MICROMIPS_GPREL16:
8978 case R_MICROMIPS_LITERAL:
8979 case R_MICROMIPS_GPREL7_S2:
8980 if (SGI_COMPAT (abfd))
8981 mips_elf_hash_table (info)->compact_rel_size +=
8982 sizeof (Elf32_External_crinfo);
8983 break;
8984
8985 /* This relocation describes the C++ object vtable hierarchy.
8986 Reconstruct it for later use during GC. */
8987 case R_MIPS_GNU_VTINHERIT:
8988 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8989 return FALSE;
8990 break;
8991
8992 /* This relocation describes which C++ vtable entries are actually
8993 used. Record for later use during GC. */
8994 case R_MIPS_GNU_VTENTRY:
8995 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8996 return FALSE;
8997 break;
8998
8999 default:
9000 break;
9001 }
9002
9003 /* Record the need for a PLT entry. At this point we don't know
9004 yet if we are going to create a PLT in the first place, but
9005 we only record whether the relocation requires a standard MIPS
9006 or a compressed code entry anyway. If we don't make a PLT after
9007 all, then we'll just ignore these arrangements. Likewise if
9008 a PLT entry is not created because the symbol is satisfied
9009 locally. */
9010 if (h != NULL
9011 && (branch_reloc_p (r_type)
9012 || mips16_branch_reloc_p (r_type)
9013 || micromips_branch_reloc_p (r_type))
9014 && !SYMBOL_CALLS_LOCAL (info, h))
9015 {
9016 if (h->plt.plist == NULL)
9017 h->plt.plist = mips_elf_make_plt_record (abfd);
9018 if (h->plt.plist == NULL)
9019 return FALSE;
9020
9021 if (branch_reloc_p (r_type))
9022 h->plt.plist->need_mips = TRUE;
9023 else
9024 h->plt.plist->need_comp = TRUE;
9025 }
9026
9027 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9028 if there is one. We only need to handle global symbols here;
9029 we decide whether to keep or delete stubs for local symbols
9030 when processing the stub's relocations. */
9031 if (h != NULL
9032 && !mips16_call_reloc_p (r_type)
9033 && !section_allows_mips16_refs_p (sec))
9034 {
9035 struct mips_elf_link_hash_entry *mh;
9036
9037 mh = (struct mips_elf_link_hash_entry *) h;
9038 mh->need_fn_stub = TRUE;
9039 }
9040
9041 /* Refuse some position-dependent relocations when creating a
9042 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9043 not PIC, but we can create dynamic relocations and the result
9044 will be fine. Also do not refuse R_MIPS_LO16, which can be
9045 combined with R_MIPS_GOT16. */
9046 if (bfd_link_pic (info))
9047 {
9048 switch (r_type)
9049 {
9050 case R_MIPS16_HI16:
9051 case R_MIPS_HI16:
9052 case R_MIPS_HIGHER:
9053 case R_MIPS_HIGHEST:
9054 case R_MICROMIPS_HI16:
9055 case R_MICROMIPS_HIGHER:
9056 case R_MICROMIPS_HIGHEST:
9057 /* Don't refuse a high part relocation if it's against
9058 no symbol (e.g. part of a compound relocation). */
9059 if (r_symndx == STN_UNDEF)
9060 break;
9061
9062 /* Likewise an absolute symbol. */
9063 if (bfd_is_abs_symbol (&h->root))
9064 break;
9065
9066 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9067 and has a special meaning. */
9068 if (!NEWABI_P (abfd) && h != NULL
9069 && strcmp (h->root.root.string, "_gp_disp") == 0)
9070 break;
9071
9072 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9073 if (is_gott_symbol (info, h))
9074 break;
9075
9076 /* FALLTHROUGH */
9077
9078 case R_MIPS16_26:
9079 case R_MIPS_26:
9080 case R_MICROMIPS_26_S1:
9081 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
9082 info->callbacks->einfo
9083 /* xgettext:c-format */
9084 (_("%X%H: relocation %s against `%s' cannot be used"
9085 " when making a shared object; recompile with -fPIC\n"),
9086 abfd, sec, rel->r_offset, howto->name,
9087 (h) ? h->root.root.string : "a local symbol");
9088 break;
9089 default:
9090 break;
9091 }
9092 }
9093 }
9094
9095 return TRUE;
9096 }
9097 \f
9098 /* Allocate space for global sym dynamic relocs. */
9099
9100 static bfd_boolean
9101 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9102 {
9103 struct bfd_link_info *info = inf;
9104 bfd *dynobj;
9105 struct mips_elf_link_hash_entry *hmips;
9106 struct mips_elf_link_hash_table *htab;
9107
9108 htab = mips_elf_hash_table (info);
9109 BFD_ASSERT (htab != NULL);
9110
9111 dynobj = elf_hash_table (info)->dynobj;
9112 hmips = (struct mips_elf_link_hash_entry *) h;
9113
9114 /* VxWorks executables are handled elsewhere; we only need to
9115 allocate relocations in shared objects. */
9116 if (htab->is_vxworks && !bfd_link_pic (info))
9117 return TRUE;
9118
9119 /* Ignore indirect symbols. All relocations against such symbols
9120 will be redirected to the target symbol. */
9121 if (h->root.type == bfd_link_hash_indirect)
9122 return TRUE;
9123
9124 /* If this symbol is defined in a dynamic object, or we are creating
9125 a shared library, we will need to copy any R_MIPS_32 or
9126 R_MIPS_REL32 relocs against it into the output file. */
9127 if (! bfd_link_relocatable (info)
9128 && hmips->possibly_dynamic_relocs != 0
9129 && (h->root.type == bfd_link_hash_defweak
9130 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9131 || bfd_link_pic (info)))
9132 {
9133 bfd_boolean do_copy = TRUE;
9134
9135 if (h->root.type == bfd_link_hash_undefweak)
9136 {
9137 /* Do not copy relocations for undefined weak symbols that
9138 we are not going to export. */
9139 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9140 do_copy = FALSE;
9141
9142 /* Make sure undefined weak symbols are output as a dynamic
9143 symbol in PIEs. */
9144 else if (h->dynindx == -1 && !h->forced_local)
9145 {
9146 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9147 return FALSE;
9148 }
9149 }
9150
9151 if (do_copy)
9152 {
9153 /* Even though we don't directly need a GOT entry for this symbol,
9154 the SVR4 psABI requires it to have a dynamic symbol table
9155 index greater that DT_MIPS_GOTSYM if there are dynamic
9156 relocations against it.
9157
9158 VxWorks does not enforce the same mapping between the GOT
9159 and the symbol table, so the same requirement does not
9160 apply there. */
9161 if (!htab->is_vxworks)
9162 {
9163 if (hmips->global_got_area > GGA_RELOC_ONLY)
9164 hmips->global_got_area = GGA_RELOC_ONLY;
9165 hmips->got_only_for_calls = FALSE;
9166 }
9167
9168 mips_elf_allocate_dynamic_relocations
9169 (dynobj, info, hmips->possibly_dynamic_relocs);
9170 if (hmips->readonly_reloc)
9171 /* We tell the dynamic linker that there are relocations
9172 against the text segment. */
9173 info->flags |= DF_TEXTREL;
9174 }
9175 }
9176
9177 return TRUE;
9178 }
9179
9180 /* Adjust a symbol defined by a dynamic object and referenced by a
9181 regular object. The current definition is in some section of the
9182 dynamic object, but we're not including those sections. We have to
9183 change the definition to something the rest of the link can
9184 understand. */
9185
9186 bfd_boolean
9187 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9188 struct elf_link_hash_entry *h)
9189 {
9190 bfd *dynobj;
9191 struct mips_elf_link_hash_entry *hmips;
9192 struct mips_elf_link_hash_table *htab;
9193 asection *s, *srel;
9194
9195 htab = mips_elf_hash_table (info);
9196 BFD_ASSERT (htab != NULL);
9197
9198 dynobj = elf_hash_table (info)->dynobj;
9199 hmips = (struct mips_elf_link_hash_entry *) h;
9200
9201 /* Make sure we know what is going on here. */
9202 BFD_ASSERT (dynobj != NULL
9203 && (h->needs_plt
9204 || h->is_weakalias
9205 || (h->def_dynamic
9206 && h->ref_regular
9207 && !h->def_regular)));
9208
9209 hmips = (struct mips_elf_link_hash_entry *) h;
9210
9211 /* If there are call relocations against an externally-defined symbol,
9212 see whether we can create a MIPS lazy-binding stub for it. We can
9213 only do this if all references to the function are through call
9214 relocations, and in that case, the traditional lazy-binding stubs
9215 are much more efficient than PLT entries.
9216
9217 Traditional stubs are only available on SVR4 psABI-based systems;
9218 VxWorks always uses PLTs instead. */
9219 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9220 {
9221 if (! elf_hash_table (info)->dynamic_sections_created)
9222 return TRUE;
9223
9224 /* If this symbol is not defined in a regular file, then set
9225 the symbol to the stub location. This is required to make
9226 function pointers compare as equal between the normal
9227 executable and the shared library. */
9228 if (!h->def_regular
9229 && !bfd_is_abs_section (htab->sstubs->output_section))
9230 {
9231 hmips->needs_lazy_stub = TRUE;
9232 htab->lazy_stub_count++;
9233 return TRUE;
9234 }
9235 }
9236 /* As above, VxWorks requires PLT entries for externally-defined
9237 functions that are only accessed through call relocations.
9238
9239 Both VxWorks and non-VxWorks targets also need PLT entries if there
9240 are static-only relocations against an externally-defined function.
9241 This can technically occur for shared libraries if there are
9242 branches to the symbol, although it is unlikely that this will be
9243 used in practice due to the short ranges involved. It can occur
9244 for any relative or absolute relocation in executables; in that
9245 case, the PLT entry becomes the function's canonical address. */
9246 else if (((h->needs_plt && !hmips->no_fn_stub)
9247 || (h->type == STT_FUNC && hmips->has_static_relocs))
9248 && htab->use_plts_and_copy_relocs
9249 && !SYMBOL_CALLS_LOCAL (info, h)
9250 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9251 && h->root.type == bfd_link_hash_undefweak))
9252 {
9253 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9254 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9255
9256 /* If this is the first symbol to need a PLT entry, then make some
9257 basic setup. Also work out PLT entry sizes. We'll need them
9258 for PLT offset calculations. */
9259 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9260 {
9261 BFD_ASSERT (htab->root.sgotplt->size == 0);
9262 BFD_ASSERT (htab->plt_got_index == 0);
9263
9264 /* If we're using the PLT additions to the psABI, each PLT
9265 entry is 16 bytes and the PLT0 entry is 32 bytes.
9266 Encourage better cache usage by aligning. We do this
9267 lazily to avoid pessimizing traditional objects. */
9268 if (!htab->is_vxworks
9269 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9270 return FALSE;
9271
9272 /* Make sure that .got.plt is word-aligned. We do this lazily
9273 for the same reason as above. */
9274 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9275 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9276 return FALSE;
9277
9278 /* On non-VxWorks targets, the first two entries in .got.plt
9279 are reserved. */
9280 if (!htab->is_vxworks)
9281 htab->plt_got_index
9282 += (get_elf_backend_data (dynobj)->got_header_size
9283 / MIPS_ELF_GOT_SIZE (dynobj));
9284
9285 /* On VxWorks, also allocate room for the header's
9286 .rela.plt.unloaded entries. */
9287 if (htab->is_vxworks && !bfd_link_pic (info))
9288 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9289
9290 /* Now work out the sizes of individual PLT entries. */
9291 if (htab->is_vxworks && bfd_link_pic (info))
9292 htab->plt_mips_entry_size
9293 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9294 else if (htab->is_vxworks)
9295 htab->plt_mips_entry_size
9296 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9297 else if (newabi_p)
9298 htab->plt_mips_entry_size
9299 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9300 else if (!micromips_p)
9301 {
9302 htab->plt_mips_entry_size
9303 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9304 htab->plt_comp_entry_size
9305 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9306 }
9307 else if (htab->insn32)
9308 {
9309 htab->plt_mips_entry_size
9310 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9311 htab->plt_comp_entry_size
9312 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9313 }
9314 else
9315 {
9316 htab->plt_mips_entry_size
9317 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9318 htab->plt_comp_entry_size
9319 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9320 }
9321 }
9322
9323 if (h->plt.plist == NULL)
9324 h->plt.plist = mips_elf_make_plt_record (dynobj);
9325 if (h->plt.plist == NULL)
9326 return FALSE;
9327
9328 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9329 n32 or n64, so always use a standard entry there.
9330
9331 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9332 all MIPS16 calls will go via that stub, and there is no benefit
9333 to having a MIPS16 entry. And in the case of call_stub a
9334 standard entry actually has to be used as the stub ends with a J
9335 instruction. */
9336 if (newabi_p
9337 || htab->is_vxworks
9338 || hmips->call_stub
9339 || hmips->call_fp_stub)
9340 {
9341 h->plt.plist->need_mips = TRUE;
9342 h->plt.plist->need_comp = FALSE;
9343 }
9344
9345 /* Otherwise, if there are no direct calls to the function, we
9346 have a free choice of whether to use standard or compressed
9347 entries. Prefer microMIPS entries if the object is known to
9348 contain microMIPS code, so that it becomes possible to create
9349 pure microMIPS binaries. Prefer standard entries otherwise,
9350 because MIPS16 ones are no smaller and are usually slower. */
9351 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9352 {
9353 if (micromips_p)
9354 h->plt.plist->need_comp = TRUE;
9355 else
9356 h->plt.plist->need_mips = TRUE;
9357 }
9358
9359 if (h->plt.plist->need_mips)
9360 {
9361 h->plt.plist->mips_offset = htab->plt_mips_offset;
9362 htab->plt_mips_offset += htab->plt_mips_entry_size;
9363 }
9364 if (h->plt.plist->need_comp)
9365 {
9366 h->plt.plist->comp_offset = htab->plt_comp_offset;
9367 htab->plt_comp_offset += htab->plt_comp_entry_size;
9368 }
9369
9370 /* Reserve the corresponding .got.plt entry now too. */
9371 h->plt.plist->gotplt_index = htab->plt_got_index++;
9372
9373 /* If the output file has no definition of the symbol, set the
9374 symbol's value to the address of the stub. */
9375 if (!bfd_link_pic (info) && !h->def_regular)
9376 hmips->use_plt_entry = TRUE;
9377
9378 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9379 htab->root.srelplt->size += (htab->is_vxworks
9380 ? MIPS_ELF_RELA_SIZE (dynobj)
9381 : MIPS_ELF_REL_SIZE (dynobj));
9382
9383 /* Make room for the .rela.plt.unloaded relocations. */
9384 if (htab->is_vxworks && !bfd_link_pic (info))
9385 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9386
9387 /* All relocations against this symbol that could have been made
9388 dynamic will now refer to the PLT entry instead. */
9389 hmips->possibly_dynamic_relocs = 0;
9390
9391 return TRUE;
9392 }
9393
9394 /* If this is a weak symbol, and there is a real definition, the
9395 processor independent code will have arranged for us to see the
9396 real definition first, and we can just use the same value. */
9397 if (h->is_weakalias)
9398 {
9399 struct elf_link_hash_entry *def = weakdef (h);
9400 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9401 h->root.u.def.section = def->root.u.def.section;
9402 h->root.u.def.value = def->root.u.def.value;
9403 return TRUE;
9404 }
9405
9406 /* Otherwise, there is nothing further to do for symbols defined
9407 in regular objects. */
9408 if (h->def_regular)
9409 return TRUE;
9410
9411 /* There's also nothing more to do if we'll convert all relocations
9412 against this symbol into dynamic relocations. */
9413 if (!hmips->has_static_relocs)
9414 return TRUE;
9415
9416 /* We're now relying on copy relocations. Complain if we have
9417 some that we can't convert. */
9418 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9419 {
9420 _bfd_error_handler (_("non-dynamic relocations refer to "
9421 "dynamic symbol %s"),
9422 h->root.root.string);
9423 bfd_set_error (bfd_error_bad_value);
9424 return FALSE;
9425 }
9426
9427 /* We must allocate the symbol in our .dynbss section, which will
9428 become part of the .bss section of the executable. There will be
9429 an entry for this symbol in the .dynsym section. The dynamic
9430 object will contain position independent code, so all references
9431 from the dynamic object to this symbol will go through the global
9432 offset table. The dynamic linker will use the .dynsym entry to
9433 determine the address it must put in the global offset table, so
9434 both the dynamic object and the regular object will refer to the
9435 same memory location for the variable. */
9436
9437 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9438 {
9439 s = htab->root.sdynrelro;
9440 srel = htab->root.sreldynrelro;
9441 }
9442 else
9443 {
9444 s = htab->root.sdynbss;
9445 srel = htab->root.srelbss;
9446 }
9447 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9448 {
9449 if (htab->is_vxworks)
9450 srel->size += sizeof (Elf32_External_Rela);
9451 else
9452 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9453 h->needs_copy = 1;
9454 }
9455
9456 /* All relocations against this symbol that could have been made
9457 dynamic will now refer to the local copy instead. */
9458 hmips->possibly_dynamic_relocs = 0;
9459
9460 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9461 }
9462 \f
9463 /* This function is called after all the input files have been read,
9464 and the input sections have been assigned to output sections. We
9465 check for any mips16 stub sections that we can discard. */
9466
9467 bfd_boolean
9468 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9469 struct bfd_link_info *info)
9470 {
9471 asection *sect;
9472 struct mips_elf_link_hash_table *htab;
9473 struct mips_htab_traverse_info hti;
9474
9475 htab = mips_elf_hash_table (info);
9476 BFD_ASSERT (htab != NULL);
9477
9478 /* The .reginfo section has a fixed size. */
9479 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9480 if (sect != NULL)
9481 {
9482 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9483 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9484 }
9485
9486 /* The .MIPS.abiflags section has a fixed size. */
9487 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9488 if (sect != NULL)
9489 {
9490 bfd_set_section_size (output_bfd, sect,
9491 sizeof (Elf_External_ABIFlags_v0));
9492 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9493 }
9494
9495 hti.info = info;
9496 hti.output_bfd = output_bfd;
9497 hti.error = FALSE;
9498 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9499 mips_elf_check_symbols, &hti);
9500 if (hti.error)
9501 return FALSE;
9502
9503 return TRUE;
9504 }
9505
9506 /* If the link uses a GOT, lay it out and work out its size. */
9507
9508 static bfd_boolean
9509 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9510 {
9511 bfd *dynobj;
9512 asection *s;
9513 struct mips_got_info *g;
9514 bfd_size_type loadable_size = 0;
9515 bfd_size_type page_gotno;
9516 bfd *ibfd;
9517 struct mips_elf_traverse_got_arg tga;
9518 struct mips_elf_link_hash_table *htab;
9519
9520 htab = mips_elf_hash_table (info);
9521 BFD_ASSERT (htab != NULL);
9522
9523 s = htab->root.sgot;
9524 if (s == NULL)
9525 return TRUE;
9526
9527 dynobj = elf_hash_table (info)->dynobj;
9528 g = htab->got_info;
9529
9530 /* Allocate room for the reserved entries. VxWorks always reserves
9531 3 entries; other objects only reserve 2 entries. */
9532 BFD_ASSERT (g->assigned_low_gotno == 0);
9533 if (htab->is_vxworks)
9534 htab->reserved_gotno = 3;
9535 else
9536 htab->reserved_gotno = 2;
9537 g->local_gotno += htab->reserved_gotno;
9538 g->assigned_low_gotno = htab->reserved_gotno;
9539
9540 /* Decide which symbols need to go in the global part of the GOT and
9541 count the number of reloc-only GOT symbols. */
9542 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9543
9544 if (!mips_elf_resolve_final_got_entries (info, g))
9545 return FALSE;
9546
9547 /* Calculate the total loadable size of the output. That
9548 will give us the maximum number of GOT_PAGE entries
9549 required. */
9550 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9551 {
9552 asection *subsection;
9553
9554 for (subsection = ibfd->sections;
9555 subsection;
9556 subsection = subsection->next)
9557 {
9558 if ((subsection->flags & SEC_ALLOC) == 0)
9559 continue;
9560 loadable_size += ((subsection->size + 0xf)
9561 &~ (bfd_size_type) 0xf);
9562 }
9563 }
9564
9565 if (htab->is_vxworks)
9566 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9567 relocations against local symbols evaluate to "G", and the EABI does
9568 not include R_MIPS_GOT_PAGE. */
9569 page_gotno = 0;
9570 else
9571 /* Assume there are two loadable segments consisting of contiguous
9572 sections. Is 5 enough? */
9573 page_gotno = (loadable_size >> 16) + 5;
9574
9575 /* Choose the smaller of the two page estimates; both are intended to be
9576 conservative. */
9577 if (page_gotno > g->page_gotno)
9578 page_gotno = g->page_gotno;
9579
9580 g->local_gotno += page_gotno;
9581 g->assigned_high_gotno = g->local_gotno - 1;
9582
9583 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9584 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9585 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9586
9587 /* VxWorks does not support multiple GOTs. It initializes $gp to
9588 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9589 dynamic loader. */
9590 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9591 {
9592 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9593 return FALSE;
9594 }
9595 else
9596 {
9597 /* Record that all bfds use G. This also has the effect of freeing
9598 the per-bfd GOTs, which we no longer need. */
9599 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9600 if (mips_elf_bfd_got (ibfd, FALSE))
9601 mips_elf_replace_bfd_got (ibfd, g);
9602 mips_elf_replace_bfd_got (output_bfd, g);
9603
9604 /* Set up TLS entries. */
9605 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9606 tga.info = info;
9607 tga.g = g;
9608 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9609 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9610 if (!tga.g)
9611 return FALSE;
9612 BFD_ASSERT (g->tls_assigned_gotno
9613 == g->global_gotno + g->local_gotno + g->tls_gotno);
9614
9615 /* Each VxWorks GOT entry needs an explicit relocation. */
9616 if (htab->is_vxworks && bfd_link_pic (info))
9617 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9618
9619 /* Allocate room for the TLS relocations. */
9620 if (g->relocs)
9621 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9622 }
9623
9624 return TRUE;
9625 }
9626
9627 /* Estimate the size of the .MIPS.stubs section. */
9628
9629 static void
9630 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9631 {
9632 struct mips_elf_link_hash_table *htab;
9633 bfd_size_type dynsymcount;
9634
9635 htab = mips_elf_hash_table (info);
9636 BFD_ASSERT (htab != NULL);
9637
9638 if (htab->lazy_stub_count == 0)
9639 return;
9640
9641 /* IRIX rld assumes that a function stub isn't at the end of the .text
9642 section, so add a dummy entry to the end. */
9643 htab->lazy_stub_count++;
9644
9645 /* Get a worst-case estimate of the number of dynamic symbols needed.
9646 At this point, dynsymcount does not account for section symbols
9647 and count_section_dynsyms may overestimate the number that will
9648 be needed. */
9649 dynsymcount = (elf_hash_table (info)->dynsymcount
9650 + count_section_dynsyms (output_bfd, info));
9651
9652 /* Determine the size of one stub entry. There's no disadvantage
9653 from using microMIPS code here, so for the sake of pure-microMIPS
9654 binaries we prefer it whenever there's any microMIPS code in
9655 output produced at all. This has a benefit of stubs being
9656 shorter by 4 bytes each too, unless in the insn32 mode. */
9657 if (!MICROMIPS_P (output_bfd))
9658 htab->function_stub_size = (dynsymcount > 0x10000
9659 ? MIPS_FUNCTION_STUB_BIG_SIZE
9660 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9661 else if (htab->insn32)
9662 htab->function_stub_size = (dynsymcount > 0x10000
9663 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9664 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9665 else
9666 htab->function_stub_size = (dynsymcount > 0x10000
9667 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9668 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9669
9670 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9671 }
9672
9673 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9674 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9675 stub, allocate an entry in the stubs section. */
9676
9677 static bfd_boolean
9678 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9679 {
9680 struct mips_htab_traverse_info *hti = data;
9681 struct mips_elf_link_hash_table *htab;
9682 struct bfd_link_info *info;
9683 bfd *output_bfd;
9684
9685 info = hti->info;
9686 output_bfd = hti->output_bfd;
9687 htab = mips_elf_hash_table (info);
9688 BFD_ASSERT (htab != NULL);
9689
9690 if (h->needs_lazy_stub)
9691 {
9692 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9693 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9694 bfd_vma isa_bit = micromips_p;
9695
9696 BFD_ASSERT (htab->root.dynobj != NULL);
9697 if (h->root.plt.plist == NULL)
9698 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9699 if (h->root.plt.plist == NULL)
9700 {
9701 hti->error = TRUE;
9702 return FALSE;
9703 }
9704 h->root.root.u.def.section = htab->sstubs;
9705 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9706 h->root.plt.plist->stub_offset = htab->sstubs->size;
9707 h->root.other = other;
9708 htab->sstubs->size += htab->function_stub_size;
9709 }
9710 return TRUE;
9711 }
9712
9713 /* Allocate offsets in the stubs section to each symbol that needs one.
9714 Set the final size of the .MIPS.stub section. */
9715
9716 static bfd_boolean
9717 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9718 {
9719 bfd *output_bfd = info->output_bfd;
9720 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9721 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9722 bfd_vma isa_bit = micromips_p;
9723 struct mips_elf_link_hash_table *htab;
9724 struct mips_htab_traverse_info hti;
9725 struct elf_link_hash_entry *h;
9726 bfd *dynobj;
9727
9728 htab = mips_elf_hash_table (info);
9729 BFD_ASSERT (htab != NULL);
9730
9731 if (htab->lazy_stub_count == 0)
9732 return TRUE;
9733
9734 htab->sstubs->size = 0;
9735 hti.info = info;
9736 hti.output_bfd = output_bfd;
9737 hti.error = FALSE;
9738 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9739 if (hti.error)
9740 return FALSE;
9741 htab->sstubs->size += htab->function_stub_size;
9742 BFD_ASSERT (htab->sstubs->size
9743 == htab->lazy_stub_count * htab->function_stub_size);
9744
9745 dynobj = elf_hash_table (info)->dynobj;
9746 BFD_ASSERT (dynobj != NULL);
9747 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9748 if (h == NULL)
9749 return FALSE;
9750 h->root.u.def.value = isa_bit;
9751 h->other = other;
9752 h->type = STT_FUNC;
9753
9754 return TRUE;
9755 }
9756
9757 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9758 bfd_link_info. If H uses the address of a PLT entry as the value
9759 of the symbol, then set the entry in the symbol table now. Prefer
9760 a standard MIPS PLT entry. */
9761
9762 static bfd_boolean
9763 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9764 {
9765 struct bfd_link_info *info = data;
9766 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9767 struct mips_elf_link_hash_table *htab;
9768 unsigned int other;
9769 bfd_vma isa_bit;
9770 bfd_vma val;
9771
9772 htab = mips_elf_hash_table (info);
9773 BFD_ASSERT (htab != NULL);
9774
9775 if (h->use_plt_entry)
9776 {
9777 BFD_ASSERT (h->root.plt.plist != NULL);
9778 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9779 || h->root.plt.plist->comp_offset != MINUS_ONE);
9780
9781 val = htab->plt_header_size;
9782 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9783 {
9784 isa_bit = 0;
9785 val += h->root.plt.plist->mips_offset;
9786 other = 0;
9787 }
9788 else
9789 {
9790 isa_bit = 1;
9791 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9792 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9793 }
9794 val += isa_bit;
9795 /* For VxWorks, point at the PLT load stub rather than the lazy
9796 resolution stub; this stub will become the canonical function
9797 address. */
9798 if (htab->is_vxworks)
9799 val += 8;
9800
9801 h->root.root.u.def.section = htab->root.splt;
9802 h->root.root.u.def.value = val;
9803 h->root.other = other;
9804 }
9805
9806 return TRUE;
9807 }
9808
9809 /* Set the sizes of the dynamic sections. */
9810
9811 bfd_boolean
9812 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9813 struct bfd_link_info *info)
9814 {
9815 bfd *dynobj;
9816 asection *s, *sreldyn;
9817 bfd_boolean reltext;
9818 struct mips_elf_link_hash_table *htab;
9819
9820 htab = mips_elf_hash_table (info);
9821 BFD_ASSERT (htab != NULL);
9822 dynobj = elf_hash_table (info)->dynobj;
9823 BFD_ASSERT (dynobj != NULL);
9824
9825 if (elf_hash_table (info)->dynamic_sections_created)
9826 {
9827 /* Set the contents of the .interp section to the interpreter. */
9828 if (bfd_link_executable (info) && !info->nointerp)
9829 {
9830 s = bfd_get_linker_section (dynobj, ".interp");
9831 BFD_ASSERT (s != NULL);
9832 s->size
9833 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9834 s->contents
9835 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9836 }
9837
9838 /* Figure out the size of the PLT header if we know that we
9839 are using it. For the sake of cache alignment always use
9840 a standard header whenever any standard entries are present
9841 even if microMIPS entries are present as well. This also
9842 lets the microMIPS header rely on the value of $v0 only set
9843 by microMIPS entries, for a small size reduction.
9844
9845 Set symbol table entry values for symbols that use the
9846 address of their PLT entry now that we can calculate it.
9847
9848 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9849 haven't already in _bfd_elf_create_dynamic_sections. */
9850 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9851 {
9852 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9853 && !htab->plt_mips_offset);
9854 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9855 bfd_vma isa_bit = micromips_p;
9856 struct elf_link_hash_entry *h;
9857 bfd_vma size;
9858
9859 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9860 BFD_ASSERT (htab->root.sgotplt->size == 0);
9861 BFD_ASSERT (htab->root.splt->size == 0);
9862
9863 if (htab->is_vxworks && bfd_link_pic (info))
9864 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9865 else if (htab->is_vxworks)
9866 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9867 else if (ABI_64_P (output_bfd))
9868 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9869 else if (ABI_N32_P (output_bfd))
9870 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9871 else if (!micromips_p)
9872 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9873 else if (htab->insn32)
9874 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9875 else
9876 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9877
9878 htab->plt_header_is_comp = micromips_p;
9879 htab->plt_header_size = size;
9880 htab->root.splt->size = (size
9881 + htab->plt_mips_offset
9882 + htab->plt_comp_offset);
9883 htab->root.sgotplt->size = (htab->plt_got_index
9884 * MIPS_ELF_GOT_SIZE (dynobj));
9885
9886 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9887
9888 if (htab->root.hplt == NULL)
9889 {
9890 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9891 "_PROCEDURE_LINKAGE_TABLE_");
9892 htab->root.hplt = h;
9893 if (h == NULL)
9894 return FALSE;
9895 }
9896
9897 h = htab->root.hplt;
9898 h->root.u.def.value = isa_bit;
9899 h->other = other;
9900 h->type = STT_FUNC;
9901 }
9902 }
9903
9904 /* Allocate space for global sym dynamic relocs. */
9905 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9906
9907 mips_elf_estimate_stub_size (output_bfd, info);
9908
9909 if (!mips_elf_lay_out_got (output_bfd, info))
9910 return FALSE;
9911
9912 mips_elf_lay_out_lazy_stubs (info);
9913
9914 /* The check_relocs and adjust_dynamic_symbol entry points have
9915 determined the sizes of the various dynamic sections. Allocate
9916 memory for them. */
9917 reltext = FALSE;
9918 for (s = dynobj->sections; s != NULL; s = s->next)
9919 {
9920 const char *name;
9921
9922 /* It's OK to base decisions on the section name, because none
9923 of the dynobj section names depend upon the input files. */
9924 name = bfd_get_section_name (dynobj, s);
9925
9926 if ((s->flags & SEC_LINKER_CREATED) == 0)
9927 continue;
9928
9929 if (CONST_STRNEQ (name, ".rel"))
9930 {
9931 if (s->size != 0)
9932 {
9933 const char *outname;
9934 asection *target;
9935
9936 /* If this relocation section applies to a read only
9937 section, then we probably need a DT_TEXTREL entry.
9938 If the relocation section is .rel(a).dyn, we always
9939 assert a DT_TEXTREL entry rather than testing whether
9940 there exists a relocation to a read only section or
9941 not. */
9942 outname = bfd_get_section_name (output_bfd,
9943 s->output_section);
9944 target = bfd_get_section_by_name (output_bfd, outname + 4);
9945 if ((target != NULL
9946 && (target->flags & SEC_READONLY) != 0
9947 && (target->flags & SEC_ALLOC) != 0)
9948 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9949 reltext = TRUE;
9950
9951 /* We use the reloc_count field as a counter if we need
9952 to copy relocs into the output file. */
9953 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9954 s->reloc_count = 0;
9955
9956 /* If combreloc is enabled, elf_link_sort_relocs() will
9957 sort relocations, but in a different way than we do,
9958 and before we're done creating relocations. Also, it
9959 will move them around between input sections'
9960 relocation's contents, so our sorting would be
9961 broken, so don't let it run. */
9962 info->combreloc = 0;
9963 }
9964 }
9965 else if (bfd_link_executable (info)
9966 && ! mips_elf_hash_table (info)->use_rld_obj_head
9967 && CONST_STRNEQ (name, ".rld_map"))
9968 {
9969 /* We add a room for __rld_map. It will be filled in by the
9970 rtld to contain a pointer to the _r_debug structure. */
9971 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9972 }
9973 else if (SGI_COMPAT (output_bfd)
9974 && CONST_STRNEQ (name, ".compact_rel"))
9975 s->size += mips_elf_hash_table (info)->compact_rel_size;
9976 else if (s == htab->root.splt)
9977 {
9978 /* If the last PLT entry has a branch delay slot, allocate
9979 room for an extra nop to fill the delay slot. This is
9980 for CPUs without load interlocking. */
9981 if (! LOAD_INTERLOCKS_P (output_bfd)
9982 && ! htab->is_vxworks && s->size > 0)
9983 s->size += 4;
9984 }
9985 else if (! CONST_STRNEQ (name, ".init")
9986 && s != htab->root.sgot
9987 && s != htab->root.sgotplt
9988 && s != htab->sstubs
9989 && s != htab->root.sdynbss
9990 && s != htab->root.sdynrelro)
9991 {
9992 /* It's not one of our sections, so don't allocate space. */
9993 continue;
9994 }
9995
9996 if (s->size == 0)
9997 {
9998 s->flags |= SEC_EXCLUDE;
9999 continue;
10000 }
10001
10002 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10003 continue;
10004
10005 /* Allocate memory for the section contents. */
10006 s->contents = bfd_zalloc (dynobj, s->size);
10007 if (s->contents == NULL)
10008 {
10009 bfd_set_error (bfd_error_no_memory);
10010 return FALSE;
10011 }
10012 }
10013
10014 if (elf_hash_table (info)->dynamic_sections_created)
10015 {
10016 /* Add some entries to the .dynamic section. We fill in the
10017 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10018 must add the entries now so that we get the correct size for
10019 the .dynamic section. */
10020
10021 /* SGI object has the equivalence of DT_DEBUG in the
10022 DT_MIPS_RLD_MAP entry. This must come first because glibc
10023 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10024 may only look at the first one they see. */
10025 if (!bfd_link_pic (info)
10026 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10027 return FALSE;
10028
10029 if (bfd_link_executable (info)
10030 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10031 return FALSE;
10032
10033 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10034 used by the debugger. */
10035 if (bfd_link_executable (info)
10036 && !SGI_COMPAT (output_bfd)
10037 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10038 return FALSE;
10039
10040 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
10041 info->flags |= DF_TEXTREL;
10042
10043 if ((info->flags & DF_TEXTREL) != 0)
10044 {
10045 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10046 return FALSE;
10047
10048 /* Clear the DF_TEXTREL flag. It will be set again if we
10049 write out an actual text relocation; we may not, because
10050 at this point we do not know whether e.g. any .eh_frame
10051 absolute relocations have been converted to PC-relative. */
10052 info->flags &= ~DF_TEXTREL;
10053 }
10054
10055 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10056 return FALSE;
10057
10058 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10059 if (htab->is_vxworks)
10060 {
10061 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10062 use any of the DT_MIPS_* tags. */
10063 if (sreldyn && sreldyn->size > 0)
10064 {
10065 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10066 return FALSE;
10067
10068 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10069 return FALSE;
10070
10071 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10072 return FALSE;
10073 }
10074 }
10075 else
10076 {
10077 if (sreldyn && sreldyn->size > 0
10078 && !bfd_is_abs_section (sreldyn->output_section))
10079 {
10080 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10081 return FALSE;
10082
10083 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10084 return FALSE;
10085
10086 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10087 return FALSE;
10088 }
10089
10090 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10091 return FALSE;
10092
10093 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10094 return FALSE;
10095
10096 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10097 return FALSE;
10098
10099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10100 return FALSE;
10101
10102 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10103 return FALSE;
10104
10105 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10106 return FALSE;
10107
10108 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10109 return FALSE;
10110
10111 if (IRIX_COMPAT (dynobj) == ict_irix5
10112 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10113 return FALSE;
10114
10115 if (IRIX_COMPAT (dynobj) == ict_irix6
10116 && (bfd_get_section_by_name
10117 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10118 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10119 return FALSE;
10120 }
10121 if (htab->root.splt->size > 0)
10122 {
10123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10124 return FALSE;
10125
10126 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10127 return FALSE;
10128
10129 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10130 return FALSE;
10131
10132 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10133 return FALSE;
10134 }
10135 if (htab->is_vxworks
10136 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10137 return FALSE;
10138 }
10139
10140 return TRUE;
10141 }
10142 \f
10143 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10144 Adjust its R_ADDEND field so that it is correct for the output file.
10145 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10146 and sections respectively; both use symbol indexes. */
10147
10148 static void
10149 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10150 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10151 asection **local_sections, Elf_Internal_Rela *rel)
10152 {
10153 unsigned int r_type, r_symndx;
10154 Elf_Internal_Sym *sym;
10155 asection *sec;
10156
10157 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10158 {
10159 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10160 if (gprel16_reloc_p (r_type)
10161 || r_type == R_MIPS_GPREL32
10162 || literal_reloc_p (r_type))
10163 {
10164 rel->r_addend += _bfd_get_gp_value (input_bfd);
10165 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10166 }
10167
10168 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10169 sym = local_syms + r_symndx;
10170
10171 /* Adjust REL's addend to account for section merging. */
10172 if (!bfd_link_relocatable (info))
10173 {
10174 sec = local_sections[r_symndx];
10175 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10176 }
10177
10178 /* This would normally be done by the rela_normal code in elflink.c. */
10179 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10180 rel->r_addend += local_sections[r_symndx]->output_offset;
10181 }
10182 }
10183
10184 /* Handle relocations against symbols from removed linkonce sections,
10185 or sections discarded by a linker script. We use this wrapper around
10186 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10187 on 64-bit ELF targets. In this case for any relocation handled, which
10188 always be the first in a triplet, the remaining two have to be processed
10189 together with the first, even if they are R_MIPS_NONE. It is the symbol
10190 index referred by the first reloc that applies to all the three and the
10191 remaining two never refer to an object symbol. And it is the final
10192 relocation (the last non-null one) that determines the output field of
10193 the whole relocation so retrieve the corresponding howto structure for
10194 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10195
10196 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10197 and therefore requires to be pasted in a loop. It also defines a block
10198 and does not protect any of its arguments, hence the extra brackets. */
10199
10200 static void
10201 mips_reloc_against_discarded_section (bfd *output_bfd,
10202 struct bfd_link_info *info,
10203 bfd *input_bfd, asection *input_section,
10204 Elf_Internal_Rela **rel,
10205 const Elf_Internal_Rela **relend,
10206 bfd_boolean rel_reloc,
10207 reloc_howto_type *howto,
10208 bfd_byte *contents)
10209 {
10210 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10211 int count = bed->s->int_rels_per_ext_rel;
10212 unsigned int r_type;
10213 int i;
10214
10215 for (i = count - 1; i > 0; i--)
10216 {
10217 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10218 if (r_type != R_MIPS_NONE)
10219 {
10220 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10221 break;
10222 }
10223 }
10224 do
10225 {
10226 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10227 (*rel), count, (*relend),
10228 howto, i, contents);
10229 }
10230 while (0);
10231 }
10232
10233 /* Relocate a MIPS ELF section. */
10234
10235 bfd_boolean
10236 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10237 bfd *input_bfd, asection *input_section,
10238 bfd_byte *contents, Elf_Internal_Rela *relocs,
10239 Elf_Internal_Sym *local_syms,
10240 asection **local_sections)
10241 {
10242 Elf_Internal_Rela *rel;
10243 const Elf_Internal_Rela *relend;
10244 bfd_vma addend = 0;
10245 bfd_boolean use_saved_addend_p = FALSE;
10246
10247 relend = relocs + input_section->reloc_count;
10248 for (rel = relocs; rel < relend; ++rel)
10249 {
10250 const char *name;
10251 bfd_vma value = 0;
10252 reloc_howto_type *howto;
10253 bfd_boolean cross_mode_jump_p = FALSE;
10254 /* TRUE if the relocation is a RELA relocation, rather than a
10255 REL relocation. */
10256 bfd_boolean rela_relocation_p = TRUE;
10257 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10258 const char *msg;
10259 unsigned long r_symndx;
10260 asection *sec;
10261 Elf_Internal_Shdr *symtab_hdr;
10262 struct elf_link_hash_entry *h;
10263 bfd_boolean rel_reloc;
10264
10265 rel_reloc = (NEWABI_P (input_bfd)
10266 && mips_elf_rel_relocation_p (input_bfd, input_section,
10267 relocs, rel));
10268 /* Find the relocation howto for this relocation. */
10269 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10270
10271 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10272 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10273 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10274 {
10275 sec = local_sections[r_symndx];
10276 h = NULL;
10277 }
10278 else
10279 {
10280 unsigned long extsymoff;
10281
10282 extsymoff = 0;
10283 if (!elf_bad_symtab (input_bfd))
10284 extsymoff = symtab_hdr->sh_info;
10285 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10286 while (h->root.type == bfd_link_hash_indirect
10287 || h->root.type == bfd_link_hash_warning)
10288 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10289
10290 sec = NULL;
10291 if (h->root.type == bfd_link_hash_defined
10292 || h->root.type == bfd_link_hash_defweak)
10293 sec = h->root.u.def.section;
10294 }
10295
10296 if (sec != NULL && discarded_section (sec))
10297 {
10298 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10299 input_section, &rel, &relend,
10300 rel_reloc, howto, contents);
10301 continue;
10302 }
10303
10304 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10305 {
10306 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10307 64-bit code, but make sure all their addresses are in the
10308 lowermost or uppermost 32-bit section of the 64-bit address
10309 space. Thus, when they use an R_MIPS_64 they mean what is
10310 usually meant by R_MIPS_32, with the exception that the
10311 stored value is sign-extended to 64 bits. */
10312 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10313
10314 /* On big-endian systems, we need to lie about the position
10315 of the reloc. */
10316 if (bfd_big_endian (input_bfd))
10317 rel->r_offset += 4;
10318 }
10319
10320 if (!use_saved_addend_p)
10321 {
10322 /* If these relocations were originally of the REL variety,
10323 we must pull the addend out of the field that will be
10324 relocated. Otherwise, we simply use the contents of the
10325 RELA relocation. */
10326 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10327 relocs, rel))
10328 {
10329 rela_relocation_p = FALSE;
10330 addend = mips_elf_read_rel_addend (input_bfd, rel,
10331 howto, contents);
10332 if (hi16_reloc_p (r_type)
10333 || (got16_reloc_p (r_type)
10334 && mips_elf_local_relocation_p (input_bfd, rel,
10335 local_sections)))
10336 {
10337 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10338 contents, &addend))
10339 {
10340 if (h)
10341 name = h->root.root.string;
10342 else
10343 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10344 local_syms + r_symndx,
10345 sec);
10346 _bfd_error_handler
10347 /* xgettext:c-format */
10348 (_("%pB: can't find matching LO16 reloc against `%s'"
10349 " for %s at %#" PRIx64 " in section `%pA'"),
10350 input_bfd, name,
10351 howto->name, (uint64_t) rel->r_offset, input_section);
10352 }
10353 }
10354 else
10355 addend <<= howto->rightshift;
10356 }
10357 else
10358 addend = rel->r_addend;
10359 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10360 local_syms, local_sections, rel);
10361 }
10362
10363 if (bfd_link_relocatable (info))
10364 {
10365 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10366 && bfd_big_endian (input_bfd))
10367 rel->r_offset -= 4;
10368
10369 if (!rela_relocation_p && rel->r_addend)
10370 {
10371 addend += rel->r_addend;
10372 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10373 addend = mips_elf_high (addend);
10374 else if (r_type == R_MIPS_HIGHER)
10375 addend = mips_elf_higher (addend);
10376 else if (r_type == R_MIPS_HIGHEST)
10377 addend = mips_elf_highest (addend);
10378 else
10379 addend >>= howto->rightshift;
10380
10381 /* We use the source mask, rather than the destination
10382 mask because the place to which we are writing will be
10383 source of the addend in the final link. */
10384 addend &= howto->src_mask;
10385
10386 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10387 /* See the comment above about using R_MIPS_64 in the 32-bit
10388 ABI. Here, we need to update the addend. It would be
10389 possible to get away with just using the R_MIPS_32 reloc
10390 but for endianness. */
10391 {
10392 bfd_vma sign_bits;
10393 bfd_vma low_bits;
10394 bfd_vma high_bits;
10395
10396 if (addend & ((bfd_vma) 1 << 31))
10397 #ifdef BFD64
10398 sign_bits = ((bfd_vma) 1 << 32) - 1;
10399 #else
10400 sign_bits = -1;
10401 #endif
10402 else
10403 sign_bits = 0;
10404
10405 /* If we don't know that we have a 64-bit type,
10406 do two separate stores. */
10407 if (bfd_big_endian (input_bfd))
10408 {
10409 /* Store the sign-bits (which are most significant)
10410 first. */
10411 low_bits = sign_bits;
10412 high_bits = addend;
10413 }
10414 else
10415 {
10416 low_bits = addend;
10417 high_bits = sign_bits;
10418 }
10419 bfd_put_32 (input_bfd, low_bits,
10420 contents + rel->r_offset);
10421 bfd_put_32 (input_bfd, high_bits,
10422 contents + rel->r_offset + 4);
10423 continue;
10424 }
10425
10426 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10427 input_bfd, input_section,
10428 contents, FALSE))
10429 return FALSE;
10430 }
10431
10432 /* Go on to the next relocation. */
10433 continue;
10434 }
10435
10436 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10437 relocations for the same offset. In that case we are
10438 supposed to treat the output of each relocation as the addend
10439 for the next. */
10440 if (rel + 1 < relend
10441 && rel->r_offset == rel[1].r_offset
10442 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10443 use_saved_addend_p = TRUE;
10444 else
10445 use_saved_addend_p = FALSE;
10446
10447 /* Figure out what value we are supposed to relocate. */
10448 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10449 input_section, contents,
10450 info, rel, addend, howto,
10451 local_syms, local_sections,
10452 &value, &name, &cross_mode_jump_p,
10453 use_saved_addend_p))
10454 {
10455 case bfd_reloc_continue:
10456 /* There's nothing to do. */
10457 continue;
10458
10459 case bfd_reloc_undefined:
10460 /* mips_elf_calculate_relocation already called the
10461 undefined_symbol callback. There's no real point in
10462 trying to perform the relocation at this point, so we
10463 just skip ahead to the next relocation. */
10464 continue;
10465
10466 case bfd_reloc_notsupported:
10467 msg = _("internal error: unsupported relocation error");
10468 info->callbacks->warning
10469 (info, msg, name, input_bfd, input_section, rel->r_offset);
10470 return FALSE;
10471
10472 case bfd_reloc_overflow:
10473 if (use_saved_addend_p)
10474 /* Ignore overflow until we reach the last relocation for
10475 a given location. */
10476 ;
10477 else
10478 {
10479 struct mips_elf_link_hash_table *htab;
10480
10481 htab = mips_elf_hash_table (info);
10482 BFD_ASSERT (htab != NULL);
10483 BFD_ASSERT (name != NULL);
10484 if (!htab->small_data_overflow_reported
10485 && (gprel16_reloc_p (howto->type)
10486 || literal_reloc_p (howto->type)))
10487 {
10488 msg = _("small-data section exceeds 64KB;"
10489 " lower small-data size limit (see option -G)");
10490
10491 htab->small_data_overflow_reported = TRUE;
10492 (*info->callbacks->einfo) ("%P: %s\n", msg);
10493 }
10494 (*info->callbacks->reloc_overflow)
10495 (info, NULL, name, howto->name, (bfd_vma) 0,
10496 input_bfd, input_section, rel->r_offset);
10497 }
10498 break;
10499
10500 case bfd_reloc_ok:
10501 break;
10502
10503 case bfd_reloc_outofrange:
10504 msg = NULL;
10505 if (jal_reloc_p (howto->type))
10506 msg = (cross_mode_jump_p
10507 ? _("cannot convert a jump to JALX "
10508 "for a non-word-aligned address")
10509 : (howto->type == R_MIPS16_26
10510 ? _("jump to a non-word-aligned address")
10511 : _("jump to a non-instruction-aligned address")));
10512 else if (b_reloc_p (howto->type))
10513 msg = (cross_mode_jump_p
10514 ? _("cannot convert a branch to JALX "
10515 "for a non-word-aligned address")
10516 : _("branch to a non-instruction-aligned address"));
10517 else if (aligned_pcrel_reloc_p (howto->type))
10518 msg = _("PC-relative load from unaligned address");
10519 if (msg)
10520 {
10521 info->callbacks->einfo
10522 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10523 break;
10524 }
10525 /* Fall through. */
10526
10527 default:
10528 abort ();
10529 break;
10530 }
10531
10532 /* If we've got another relocation for the address, keep going
10533 until we reach the last one. */
10534 if (use_saved_addend_p)
10535 {
10536 addend = value;
10537 continue;
10538 }
10539
10540 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10541 /* See the comment above about using R_MIPS_64 in the 32-bit
10542 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10543 that calculated the right value. Now, however, we
10544 sign-extend the 32-bit result to 64-bits, and store it as a
10545 64-bit value. We are especially generous here in that we
10546 go to extreme lengths to support this usage on systems with
10547 only a 32-bit VMA. */
10548 {
10549 bfd_vma sign_bits;
10550 bfd_vma low_bits;
10551 bfd_vma high_bits;
10552
10553 if (value & ((bfd_vma) 1 << 31))
10554 #ifdef BFD64
10555 sign_bits = ((bfd_vma) 1 << 32) - 1;
10556 #else
10557 sign_bits = -1;
10558 #endif
10559 else
10560 sign_bits = 0;
10561
10562 /* If we don't know that we have a 64-bit type,
10563 do two separate stores. */
10564 if (bfd_big_endian (input_bfd))
10565 {
10566 /* Undo what we did above. */
10567 rel->r_offset -= 4;
10568 /* Store the sign-bits (which are most significant)
10569 first. */
10570 low_bits = sign_bits;
10571 high_bits = value;
10572 }
10573 else
10574 {
10575 low_bits = value;
10576 high_bits = sign_bits;
10577 }
10578 bfd_put_32 (input_bfd, low_bits,
10579 contents + rel->r_offset);
10580 bfd_put_32 (input_bfd, high_bits,
10581 contents + rel->r_offset + 4);
10582 continue;
10583 }
10584
10585 /* Actually perform the relocation. */
10586 if (! mips_elf_perform_relocation (info, howto, rel, value,
10587 input_bfd, input_section,
10588 contents, cross_mode_jump_p))
10589 return FALSE;
10590 }
10591
10592 return TRUE;
10593 }
10594 \f
10595 /* A function that iterates over each entry in la25_stubs and fills
10596 in the code for each one. DATA points to a mips_htab_traverse_info. */
10597
10598 static int
10599 mips_elf_create_la25_stub (void **slot, void *data)
10600 {
10601 struct mips_htab_traverse_info *hti;
10602 struct mips_elf_link_hash_table *htab;
10603 struct mips_elf_la25_stub *stub;
10604 asection *s;
10605 bfd_byte *loc;
10606 bfd_vma offset, target, target_high, target_low;
10607
10608 stub = (struct mips_elf_la25_stub *) *slot;
10609 hti = (struct mips_htab_traverse_info *) data;
10610 htab = mips_elf_hash_table (hti->info);
10611 BFD_ASSERT (htab != NULL);
10612
10613 /* Create the section contents, if we haven't already. */
10614 s = stub->stub_section;
10615 loc = s->contents;
10616 if (loc == NULL)
10617 {
10618 loc = bfd_malloc (s->size);
10619 if (loc == NULL)
10620 {
10621 hti->error = TRUE;
10622 return FALSE;
10623 }
10624 s->contents = loc;
10625 }
10626
10627 /* Work out where in the section this stub should go. */
10628 offset = stub->offset;
10629
10630 /* Work out the target address. */
10631 target = mips_elf_get_la25_target (stub, &s);
10632 target += s->output_section->vma + s->output_offset;
10633
10634 target_high = ((target + 0x8000) >> 16) & 0xffff;
10635 target_low = (target & 0xffff);
10636
10637 if (stub->stub_section != htab->strampoline)
10638 {
10639 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10640 of the section and write the two instructions at the end. */
10641 memset (loc, 0, offset);
10642 loc += offset;
10643 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10644 {
10645 bfd_put_micromips_32 (hti->output_bfd,
10646 LA25_LUI_MICROMIPS (target_high),
10647 loc);
10648 bfd_put_micromips_32 (hti->output_bfd,
10649 LA25_ADDIU_MICROMIPS (target_low),
10650 loc + 4);
10651 }
10652 else
10653 {
10654 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10655 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10656 }
10657 }
10658 else
10659 {
10660 /* This is trampoline. */
10661 loc += offset;
10662 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10663 {
10664 bfd_put_micromips_32 (hti->output_bfd,
10665 LA25_LUI_MICROMIPS (target_high), loc);
10666 bfd_put_micromips_32 (hti->output_bfd,
10667 LA25_J_MICROMIPS (target), loc + 4);
10668 bfd_put_micromips_32 (hti->output_bfd,
10669 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10670 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10671 }
10672 else
10673 {
10674 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10675 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10676 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10677 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10678 }
10679 }
10680 return TRUE;
10681 }
10682
10683 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10684 adjust it appropriately now. */
10685
10686 static void
10687 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10688 const char *name, Elf_Internal_Sym *sym)
10689 {
10690 /* The linker script takes care of providing names and values for
10691 these, but we must place them into the right sections. */
10692 static const char* const text_section_symbols[] = {
10693 "_ftext",
10694 "_etext",
10695 "__dso_displacement",
10696 "__elf_header",
10697 "__program_header_table",
10698 NULL
10699 };
10700
10701 static const char* const data_section_symbols[] = {
10702 "_fdata",
10703 "_edata",
10704 "_end",
10705 "_fbss",
10706 NULL
10707 };
10708
10709 const char* const *p;
10710 int i;
10711
10712 for (i = 0; i < 2; ++i)
10713 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10714 *p;
10715 ++p)
10716 if (strcmp (*p, name) == 0)
10717 {
10718 /* All of these symbols are given type STT_SECTION by the
10719 IRIX6 linker. */
10720 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10721 sym->st_other = STO_PROTECTED;
10722
10723 /* The IRIX linker puts these symbols in special sections. */
10724 if (i == 0)
10725 sym->st_shndx = SHN_MIPS_TEXT;
10726 else
10727 sym->st_shndx = SHN_MIPS_DATA;
10728
10729 break;
10730 }
10731 }
10732
10733 /* Finish up dynamic symbol handling. We set the contents of various
10734 dynamic sections here. */
10735
10736 bfd_boolean
10737 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10738 struct bfd_link_info *info,
10739 struct elf_link_hash_entry *h,
10740 Elf_Internal_Sym *sym)
10741 {
10742 bfd *dynobj;
10743 asection *sgot;
10744 struct mips_got_info *g, *gg;
10745 const char *name;
10746 int idx;
10747 struct mips_elf_link_hash_table *htab;
10748 struct mips_elf_link_hash_entry *hmips;
10749
10750 htab = mips_elf_hash_table (info);
10751 BFD_ASSERT (htab != NULL);
10752 dynobj = elf_hash_table (info)->dynobj;
10753 hmips = (struct mips_elf_link_hash_entry *) h;
10754
10755 BFD_ASSERT (!htab->is_vxworks);
10756
10757 if (h->plt.plist != NULL
10758 && (h->plt.plist->mips_offset != MINUS_ONE
10759 || h->plt.plist->comp_offset != MINUS_ONE))
10760 {
10761 /* We've decided to create a PLT entry for this symbol. */
10762 bfd_byte *loc;
10763 bfd_vma header_address, got_address;
10764 bfd_vma got_address_high, got_address_low, load;
10765 bfd_vma got_index;
10766 bfd_vma isa_bit;
10767
10768 got_index = h->plt.plist->gotplt_index;
10769
10770 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10771 BFD_ASSERT (h->dynindx != -1);
10772 BFD_ASSERT (htab->root.splt != NULL);
10773 BFD_ASSERT (got_index != MINUS_ONE);
10774 BFD_ASSERT (!h->def_regular);
10775
10776 /* Calculate the address of the PLT header. */
10777 isa_bit = htab->plt_header_is_comp;
10778 header_address = (htab->root.splt->output_section->vma
10779 + htab->root.splt->output_offset + isa_bit);
10780
10781 /* Calculate the address of the .got.plt entry. */
10782 got_address = (htab->root.sgotplt->output_section->vma
10783 + htab->root.sgotplt->output_offset
10784 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10785
10786 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10787 got_address_low = got_address & 0xffff;
10788
10789 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10790 cannot be loaded in two instructions. */
10791 if (ABI_64_P (output_bfd)
10792 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10793 {
10794 _bfd_error_handler
10795 /* xgettext:c-format */
10796 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10797 "supported; consider using `-Ttext-segment=...'"),
10798 output_bfd,
10799 htab->root.sgotplt->output_section,
10800 (int64_t) got_address);
10801 bfd_set_error (bfd_error_no_error);
10802 return FALSE;
10803 }
10804
10805 /* Initially point the .got.plt entry at the PLT header. */
10806 loc = (htab->root.sgotplt->contents
10807 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10808 if (ABI_64_P (output_bfd))
10809 bfd_put_64 (output_bfd, header_address, loc);
10810 else
10811 bfd_put_32 (output_bfd, header_address, loc);
10812
10813 /* Now handle the PLT itself. First the standard entry (the order
10814 does not matter, we just have to pick one). */
10815 if (h->plt.plist->mips_offset != MINUS_ONE)
10816 {
10817 const bfd_vma *plt_entry;
10818 bfd_vma plt_offset;
10819
10820 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10821
10822 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10823
10824 /* Find out where the .plt entry should go. */
10825 loc = htab->root.splt->contents + plt_offset;
10826
10827 /* Pick the load opcode. */
10828 load = MIPS_ELF_LOAD_WORD (output_bfd);
10829
10830 /* Fill in the PLT entry itself. */
10831
10832 if (MIPSR6_P (output_bfd))
10833 plt_entry = mipsr6_exec_plt_entry;
10834 else
10835 plt_entry = mips_exec_plt_entry;
10836 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10837 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10838 loc + 4);
10839
10840 if (! LOAD_INTERLOCKS_P (output_bfd))
10841 {
10842 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10843 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10844 }
10845 else
10846 {
10847 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10848 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10849 loc + 12);
10850 }
10851 }
10852
10853 /* Now the compressed entry. They come after any standard ones. */
10854 if (h->plt.plist->comp_offset != MINUS_ONE)
10855 {
10856 bfd_vma plt_offset;
10857
10858 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10859 + h->plt.plist->comp_offset);
10860
10861 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10862
10863 /* Find out where the .plt entry should go. */
10864 loc = htab->root.splt->contents + plt_offset;
10865
10866 /* Fill in the PLT entry itself. */
10867 if (!MICROMIPS_P (output_bfd))
10868 {
10869 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10870
10871 bfd_put_16 (output_bfd, plt_entry[0], loc);
10872 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10873 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10874 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10875 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10876 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10877 bfd_put_32 (output_bfd, got_address, loc + 12);
10878 }
10879 else if (htab->insn32)
10880 {
10881 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10882
10883 bfd_put_16 (output_bfd, plt_entry[0], loc);
10884 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10885 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10886 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10887 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10888 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10889 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10890 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10891 }
10892 else
10893 {
10894 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10895 bfd_signed_vma gotpc_offset;
10896 bfd_vma loc_address;
10897
10898 BFD_ASSERT (got_address % 4 == 0);
10899
10900 loc_address = (htab->root.splt->output_section->vma
10901 + htab->root.splt->output_offset + plt_offset);
10902 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10903
10904 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10905 if (gotpc_offset + 0x1000000 >= 0x2000000)
10906 {
10907 _bfd_error_handler
10908 /* xgettext:c-format */
10909 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10910 "beyond the range of ADDIUPC"),
10911 output_bfd,
10912 htab->root.sgotplt->output_section,
10913 (int64_t) gotpc_offset,
10914 htab->root.splt->output_section);
10915 bfd_set_error (bfd_error_no_error);
10916 return FALSE;
10917 }
10918 bfd_put_16 (output_bfd,
10919 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10920 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10921 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10922 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10923 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10924 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10925 }
10926 }
10927
10928 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10929 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10930 got_index - 2, h->dynindx,
10931 R_MIPS_JUMP_SLOT, got_address);
10932
10933 /* We distinguish between PLT entries and lazy-binding stubs by
10934 giving the former an st_other value of STO_MIPS_PLT. Set the
10935 flag and leave the value if there are any relocations in the
10936 binary where pointer equality matters. */
10937 sym->st_shndx = SHN_UNDEF;
10938 if (h->pointer_equality_needed)
10939 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10940 else
10941 {
10942 sym->st_value = 0;
10943 sym->st_other = 0;
10944 }
10945 }
10946
10947 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10948 {
10949 /* We've decided to create a lazy-binding stub. */
10950 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10951 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10952 bfd_vma stub_size = htab->function_stub_size;
10953 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10954 bfd_vma isa_bit = micromips_p;
10955 bfd_vma stub_big_size;
10956
10957 if (!micromips_p)
10958 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10959 else if (htab->insn32)
10960 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10961 else
10962 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10963
10964 /* This symbol has a stub. Set it up. */
10965
10966 BFD_ASSERT (h->dynindx != -1);
10967
10968 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10969
10970 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10971 sign extension at runtime in the stub, resulting in a negative
10972 index value. */
10973 if (h->dynindx & ~0x7fffffff)
10974 return FALSE;
10975
10976 /* Fill the stub. */
10977 if (micromips_p)
10978 {
10979 idx = 0;
10980 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10981 stub + idx);
10982 idx += 4;
10983 if (htab->insn32)
10984 {
10985 bfd_put_micromips_32 (output_bfd,
10986 STUB_MOVE32_MICROMIPS, stub + idx);
10987 idx += 4;
10988 }
10989 else
10990 {
10991 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10992 idx += 2;
10993 }
10994 if (stub_size == stub_big_size)
10995 {
10996 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10997
10998 bfd_put_micromips_32 (output_bfd,
10999 STUB_LUI_MICROMIPS (dynindx_hi),
11000 stub + idx);
11001 idx += 4;
11002 }
11003 if (htab->insn32)
11004 {
11005 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11006 stub + idx);
11007 idx += 4;
11008 }
11009 else
11010 {
11011 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11012 idx += 2;
11013 }
11014
11015 /* If a large stub is not required and sign extension is not a
11016 problem, then use legacy code in the stub. */
11017 if (stub_size == stub_big_size)
11018 bfd_put_micromips_32 (output_bfd,
11019 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11020 stub + idx);
11021 else if (h->dynindx & ~0x7fff)
11022 bfd_put_micromips_32 (output_bfd,
11023 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11024 stub + idx);
11025 else
11026 bfd_put_micromips_32 (output_bfd,
11027 STUB_LI16S_MICROMIPS (output_bfd,
11028 h->dynindx),
11029 stub + idx);
11030 }
11031 else
11032 {
11033 idx = 0;
11034 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11035 idx += 4;
11036 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11037 idx += 4;
11038 if (stub_size == stub_big_size)
11039 {
11040 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11041 stub + idx);
11042 idx += 4;
11043 }
11044 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11045 idx += 4;
11046
11047 /* If a large stub is not required and sign extension is not a
11048 problem, then use legacy code in the stub. */
11049 if (stub_size == stub_big_size)
11050 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11051 stub + idx);
11052 else if (h->dynindx & ~0x7fff)
11053 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11054 stub + idx);
11055 else
11056 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11057 stub + idx);
11058 }
11059
11060 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11061 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11062 stub, stub_size);
11063
11064 /* Mark the symbol as undefined. stub_offset != -1 occurs
11065 only for the referenced symbol. */
11066 sym->st_shndx = SHN_UNDEF;
11067
11068 /* The run-time linker uses the st_value field of the symbol
11069 to reset the global offset table entry for this external
11070 to its stub address when unlinking a shared object. */
11071 sym->st_value = (htab->sstubs->output_section->vma
11072 + htab->sstubs->output_offset
11073 + h->plt.plist->stub_offset
11074 + isa_bit);
11075 sym->st_other = other;
11076 }
11077
11078 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11079 refer to the stub, since only the stub uses the standard calling
11080 conventions. */
11081 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11082 {
11083 BFD_ASSERT (hmips->need_fn_stub);
11084 sym->st_value = (hmips->fn_stub->output_section->vma
11085 + hmips->fn_stub->output_offset);
11086 sym->st_size = hmips->fn_stub->size;
11087 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11088 }
11089
11090 BFD_ASSERT (h->dynindx != -1
11091 || h->forced_local);
11092
11093 sgot = htab->root.sgot;
11094 g = htab->got_info;
11095 BFD_ASSERT (g != NULL);
11096
11097 /* Run through the global symbol table, creating GOT entries for all
11098 the symbols that need them. */
11099 if (hmips->global_got_area != GGA_NONE)
11100 {
11101 bfd_vma offset;
11102 bfd_vma value;
11103
11104 value = sym->st_value;
11105 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11106 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11107 }
11108
11109 if (hmips->global_got_area != GGA_NONE && g->next)
11110 {
11111 struct mips_got_entry e, *p;
11112 bfd_vma entry;
11113 bfd_vma offset;
11114
11115 gg = g;
11116
11117 e.abfd = output_bfd;
11118 e.symndx = -1;
11119 e.d.h = hmips;
11120 e.tls_type = GOT_TLS_NONE;
11121
11122 for (g = g->next; g->next != gg; g = g->next)
11123 {
11124 if (g->got_entries
11125 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11126 &e)))
11127 {
11128 offset = p->gotidx;
11129 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11130 if (bfd_link_pic (info)
11131 || (elf_hash_table (info)->dynamic_sections_created
11132 && p->d.h != NULL
11133 && p->d.h->root.def_dynamic
11134 && !p->d.h->root.def_regular))
11135 {
11136 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11137 the various compatibility problems, it's easier to mock
11138 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11139 mips_elf_create_dynamic_relocation to calculate the
11140 appropriate addend. */
11141 Elf_Internal_Rela rel[3];
11142
11143 memset (rel, 0, sizeof (rel));
11144 if (ABI_64_P (output_bfd))
11145 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11146 else
11147 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11148 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11149
11150 entry = 0;
11151 if (! (mips_elf_create_dynamic_relocation
11152 (output_bfd, info, rel,
11153 e.d.h, NULL, sym->st_value, &entry, sgot)))
11154 return FALSE;
11155 }
11156 else
11157 entry = sym->st_value;
11158 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11159 }
11160 }
11161 }
11162
11163 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11164 name = h->root.root.string;
11165 if (h == elf_hash_table (info)->hdynamic
11166 || h == elf_hash_table (info)->hgot)
11167 sym->st_shndx = SHN_ABS;
11168 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11169 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11170 {
11171 sym->st_shndx = SHN_ABS;
11172 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11173 sym->st_value = 1;
11174 }
11175 else if (SGI_COMPAT (output_bfd))
11176 {
11177 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11178 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11179 {
11180 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11181 sym->st_other = STO_PROTECTED;
11182 sym->st_value = 0;
11183 sym->st_shndx = SHN_MIPS_DATA;
11184 }
11185 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11186 {
11187 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11188 sym->st_other = STO_PROTECTED;
11189 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11190 sym->st_shndx = SHN_ABS;
11191 }
11192 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11193 {
11194 if (h->type == STT_FUNC)
11195 sym->st_shndx = SHN_MIPS_TEXT;
11196 else if (h->type == STT_OBJECT)
11197 sym->st_shndx = SHN_MIPS_DATA;
11198 }
11199 }
11200
11201 /* Emit a copy reloc, if needed. */
11202 if (h->needs_copy)
11203 {
11204 asection *s;
11205 bfd_vma symval;
11206
11207 BFD_ASSERT (h->dynindx != -1);
11208 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11209
11210 s = mips_elf_rel_dyn_section (info, FALSE);
11211 symval = (h->root.u.def.section->output_section->vma
11212 + h->root.u.def.section->output_offset
11213 + h->root.u.def.value);
11214 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11215 h->dynindx, R_MIPS_COPY, symval);
11216 }
11217
11218 /* Handle the IRIX6-specific symbols. */
11219 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11220 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11221
11222 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11223 to treat compressed symbols like any other. */
11224 if (ELF_ST_IS_MIPS16 (sym->st_other))
11225 {
11226 BFD_ASSERT (sym->st_value & 1);
11227 sym->st_other -= STO_MIPS16;
11228 }
11229 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11230 {
11231 BFD_ASSERT (sym->st_value & 1);
11232 sym->st_other -= STO_MICROMIPS;
11233 }
11234
11235 return TRUE;
11236 }
11237
11238 /* Likewise, for VxWorks. */
11239
11240 bfd_boolean
11241 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11242 struct bfd_link_info *info,
11243 struct elf_link_hash_entry *h,
11244 Elf_Internal_Sym *sym)
11245 {
11246 bfd *dynobj;
11247 asection *sgot;
11248 struct mips_got_info *g;
11249 struct mips_elf_link_hash_table *htab;
11250 struct mips_elf_link_hash_entry *hmips;
11251
11252 htab = mips_elf_hash_table (info);
11253 BFD_ASSERT (htab != NULL);
11254 dynobj = elf_hash_table (info)->dynobj;
11255 hmips = (struct mips_elf_link_hash_entry *) h;
11256
11257 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11258 {
11259 bfd_byte *loc;
11260 bfd_vma plt_address, got_address, got_offset, branch_offset;
11261 Elf_Internal_Rela rel;
11262 static const bfd_vma *plt_entry;
11263 bfd_vma gotplt_index;
11264 bfd_vma plt_offset;
11265
11266 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11267 gotplt_index = h->plt.plist->gotplt_index;
11268
11269 BFD_ASSERT (h->dynindx != -1);
11270 BFD_ASSERT (htab->root.splt != NULL);
11271 BFD_ASSERT (gotplt_index != MINUS_ONE);
11272 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11273
11274 /* Calculate the address of the .plt entry. */
11275 plt_address = (htab->root.splt->output_section->vma
11276 + htab->root.splt->output_offset
11277 + plt_offset);
11278
11279 /* Calculate the address of the .got.plt entry. */
11280 got_address = (htab->root.sgotplt->output_section->vma
11281 + htab->root.sgotplt->output_offset
11282 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11283
11284 /* Calculate the offset of the .got.plt entry from
11285 _GLOBAL_OFFSET_TABLE_. */
11286 got_offset = mips_elf_gotplt_index (info, h);
11287
11288 /* Calculate the offset for the branch at the start of the PLT
11289 entry. The branch jumps to the beginning of .plt. */
11290 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11291
11292 /* Fill in the initial value of the .got.plt entry. */
11293 bfd_put_32 (output_bfd, plt_address,
11294 (htab->root.sgotplt->contents
11295 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11296
11297 /* Find out where the .plt entry should go. */
11298 loc = htab->root.splt->contents + plt_offset;
11299
11300 if (bfd_link_pic (info))
11301 {
11302 plt_entry = mips_vxworks_shared_plt_entry;
11303 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11304 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11305 }
11306 else
11307 {
11308 bfd_vma got_address_high, got_address_low;
11309
11310 plt_entry = mips_vxworks_exec_plt_entry;
11311 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11312 got_address_low = got_address & 0xffff;
11313
11314 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11315 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11316 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11317 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11318 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11319 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11320 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11321 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11322
11323 loc = (htab->srelplt2->contents
11324 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11325
11326 /* Emit a relocation for the .got.plt entry. */
11327 rel.r_offset = got_address;
11328 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11329 rel.r_addend = plt_offset;
11330 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11331
11332 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11333 loc += sizeof (Elf32_External_Rela);
11334 rel.r_offset = plt_address + 8;
11335 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11336 rel.r_addend = got_offset;
11337 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11338
11339 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11340 loc += sizeof (Elf32_External_Rela);
11341 rel.r_offset += 4;
11342 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11343 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11344 }
11345
11346 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11347 loc = (htab->root.srelplt->contents
11348 + gotplt_index * sizeof (Elf32_External_Rela));
11349 rel.r_offset = got_address;
11350 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11351 rel.r_addend = 0;
11352 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11353
11354 if (!h->def_regular)
11355 sym->st_shndx = SHN_UNDEF;
11356 }
11357
11358 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11359
11360 sgot = htab->root.sgot;
11361 g = htab->got_info;
11362 BFD_ASSERT (g != NULL);
11363
11364 /* See if this symbol has an entry in the GOT. */
11365 if (hmips->global_got_area != GGA_NONE)
11366 {
11367 bfd_vma offset;
11368 Elf_Internal_Rela outrel;
11369 bfd_byte *loc;
11370 asection *s;
11371
11372 /* Install the symbol value in the GOT. */
11373 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11374 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11375
11376 /* Add a dynamic relocation for it. */
11377 s = mips_elf_rel_dyn_section (info, FALSE);
11378 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11379 outrel.r_offset = (sgot->output_section->vma
11380 + sgot->output_offset
11381 + offset);
11382 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11383 outrel.r_addend = 0;
11384 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11385 }
11386
11387 /* Emit a copy reloc, if needed. */
11388 if (h->needs_copy)
11389 {
11390 Elf_Internal_Rela rel;
11391 asection *srel;
11392 bfd_byte *loc;
11393
11394 BFD_ASSERT (h->dynindx != -1);
11395
11396 rel.r_offset = (h->root.u.def.section->output_section->vma
11397 + h->root.u.def.section->output_offset
11398 + h->root.u.def.value);
11399 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11400 rel.r_addend = 0;
11401 if (h->root.u.def.section == htab->root.sdynrelro)
11402 srel = htab->root.sreldynrelro;
11403 else
11404 srel = htab->root.srelbss;
11405 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11406 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11407 ++srel->reloc_count;
11408 }
11409
11410 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11411 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11412 sym->st_value &= ~1;
11413
11414 return TRUE;
11415 }
11416
11417 /* Write out a plt0 entry to the beginning of .plt. */
11418
11419 static bfd_boolean
11420 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11421 {
11422 bfd_byte *loc;
11423 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11424 static const bfd_vma *plt_entry;
11425 struct mips_elf_link_hash_table *htab;
11426
11427 htab = mips_elf_hash_table (info);
11428 BFD_ASSERT (htab != NULL);
11429
11430 if (ABI_64_P (output_bfd))
11431 plt_entry = mips_n64_exec_plt0_entry;
11432 else if (ABI_N32_P (output_bfd))
11433 plt_entry = mips_n32_exec_plt0_entry;
11434 else if (!htab->plt_header_is_comp)
11435 plt_entry = mips_o32_exec_plt0_entry;
11436 else if (htab->insn32)
11437 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11438 else
11439 plt_entry = micromips_o32_exec_plt0_entry;
11440
11441 /* Calculate the value of .got.plt. */
11442 gotplt_value = (htab->root.sgotplt->output_section->vma
11443 + htab->root.sgotplt->output_offset);
11444 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11445 gotplt_value_low = gotplt_value & 0xffff;
11446
11447 /* The PLT sequence is not safe for N64 if .got.plt's address can
11448 not be loaded in two instructions. */
11449 if (ABI_64_P (output_bfd)
11450 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11451 {
11452 _bfd_error_handler
11453 /* xgettext:c-format */
11454 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11455 "supported; consider using `-Ttext-segment=...'"),
11456 output_bfd,
11457 htab->root.sgotplt->output_section,
11458 (int64_t) gotplt_value);
11459 bfd_set_error (bfd_error_no_error);
11460 return FALSE;
11461 }
11462
11463 /* Install the PLT header. */
11464 loc = htab->root.splt->contents;
11465 if (plt_entry == micromips_o32_exec_plt0_entry)
11466 {
11467 bfd_vma gotpc_offset;
11468 bfd_vma loc_address;
11469 size_t i;
11470
11471 BFD_ASSERT (gotplt_value % 4 == 0);
11472
11473 loc_address = (htab->root.splt->output_section->vma
11474 + htab->root.splt->output_offset);
11475 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11476
11477 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11478 if (gotpc_offset + 0x1000000 >= 0x2000000)
11479 {
11480 _bfd_error_handler
11481 /* xgettext:c-format */
11482 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11483 "beyond the range of ADDIUPC"),
11484 output_bfd,
11485 htab->root.sgotplt->output_section,
11486 (int64_t) gotpc_offset,
11487 htab->root.splt->output_section);
11488 bfd_set_error (bfd_error_no_error);
11489 return FALSE;
11490 }
11491 bfd_put_16 (output_bfd,
11492 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11493 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11494 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11495 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11496 }
11497 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11498 {
11499 size_t i;
11500
11501 bfd_put_16 (output_bfd, plt_entry[0], loc);
11502 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11503 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11504 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11505 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11506 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11507 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11508 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11509 }
11510 else
11511 {
11512 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11513 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11514 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11515 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11516 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11517 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11518 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11519 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11520 }
11521
11522 return TRUE;
11523 }
11524
11525 /* Install the PLT header for a VxWorks executable and finalize the
11526 contents of .rela.plt.unloaded. */
11527
11528 static void
11529 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11530 {
11531 Elf_Internal_Rela rela;
11532 bfd_byte *loc;
11533 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11534 static const bfd_vma *plt_entry;
11535 struct mips_elf_link_hash_table *htab;
11536
11537 htab = mips_elf_hash_table (info);
11538 BFD_ASSERT (htab != NULL);
11539
11540 plt_entry = mips_vxworks_exec_plt0_entry;
11541
11542 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11543 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11544 + htab->root.hgot->root.u.def.section->output_offset
11545 + htab->root.hgot->root.u.def.value);
11546
11547 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11548 got_value_low = got_value & 0xffff;
11549
11550 /* Calculate the address of the PLT header. */
11551 plt_address = (htab->root.splt->output_section->vma
11552 + htab->root.splt->output_offset);
11553
11554 /* Install the PLT header. */
11555 loc = htab->root.splt->contents;
11556 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11557 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11558 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11559 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11560 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11561 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11562
11563 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11564 loc = htab->srelplt2->contents;
11565 rela.r_offset = plt_address;
11566 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11567 rela.r_addend = 0;
11568 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11569 loc += sizeof (Elf32_External_Rela);
11570
11571 /* Output the relocation for the following addiu of
11572 %lo(_GLOBAL_OFFSET_TABLE_). */
11573 rela.r_offset += 4;
11574 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11575 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11576 loc += sizeof (Elf32_External_Rela);
11577
11578 /* Fix up the remaining relocations. They may have the wrong
11579 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11580 in which symbols were output. */
11581 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11582 {
11583 Elf_Internal_Rela rel;
11584
11585 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11586 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11587 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11588 loc += sizeof (Elf32_External_Rela);
11589
11590 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11591 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11592 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11593 loc += sizeof (Elf32_External_Rela);
11594
11595 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11596 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11597 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11598 loc += sizeof (Elf32_External_Rela);
11599 }
11600 }
11601
11602 /* Install the PLT header for a VxWorks shared library. */
11603
11604 static void
11605 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11606 {
11607 unsigned int i;
11608 struct mips_elf_link_hash_table *htab;
11609
11610 htab = mips_elf_hash_table (info);
11611 BFD_ASSERT (htab != NULL);
11612
11613 /* We just need to copy the entry byte-by-byte. */
11614 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11615 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11616 htab->root.splt->contents + i * 4);
11617 }
11618
11619 /* Finish up the dynamic sections. */
11620
11621 bfd_boolean
11622 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11623 struct bfd_link_info *info)
11624 {
11625 bfd *dynobj;
11626 asection *sdyn;
11627 asection *sgot;
11628 struct mips_got_info *gg, *g;
11629 struct mips_elf_link_hash_table *htab;
11630
11631 htab = mips_elf_hash_table (info);
11632 BFD_ASSERT (htab != NULL);
11633
11634 dynobj = elf_hash_table (info)->dynobj;
11635
11636 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11637
11638 sgot = htab->root.sgot;
11639 gg = htab->got_info;
11640
11641 if (elf_hash_table (info)->dynamic_sections_created)
11642 {
11643 bfd_byte *b;
11644 int dyn_to_skip = 0, dyn_skipped = 0;
11645
11646 BFD_ASSERT (sdyn != NULL);
11647 BFD_ASSERT (gg != NULL);
11648
11649 g = mips_elf_bfd_got (output_bfd, FALSE);
11650 BFD_ASSERT (g != NULL);
11651
11652 for (b = sdyn->contents;
11653 b < sdyn->contents + sdyn->size;
11654 b += MIPS_ELF_DYN_SIZE (dynobj))
11655 {
11656 Elf_Internal_Dyn dyn;
11657 const char *name;
11658 size_t elemsize;
11659 asection *s;
11660 bfd_boolean swap_out_p;
11661
11662 /* Read in the current dynamic entry. */
11663 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11664
11665 /* Assume that we're going to modify it and write it out. */
11666 swap_out_p = TRUE;
11667
11668 switch (dyn.d_tag)
11669 {
11670 case DT_RELENT:
11671 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11672 break;
11673
11674 case DT_RELAENT:
11675 BFD_ASSERT (htab->is_vxworks);
11676 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11677 break;
11678
11679 case DT_STRSZ:
11680 /* Rewrite DT_STRSZ. */
11681 dyn.d_un.d_val =
11682 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11683 break;
11684
11685 case DT_PLTGOT:
11686 s = htab->root.sgot;
11687 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11688 break;
11689
11690 case DT_MIPS_PLTGOT:
11691 s = htab->root.sgotplt;
11692 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11693 break;
11694
11695 case DT_MIPS_RLD_VERSION:
11696 dyn.d_un.d_val = 1; /* XXX */
11697 break;
11698
11699 case DT_MIPS_FLAGS:
11700 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11701 break;
11702
11703 case DT_MIPS_TIME_STAMP:
11704 {
11705 time_t t;
11706 time (&t);
11707 dyn.d_un.d_val = t;
11708 }
11709 break;
11710
11711 case DT_MIPS_ICHECKSUM:
11712 /* XXX FIXME: */
11713 swap_out_p = FALSE;
11714 break;
11715
11716 case DT_MIPS_IVERSION:
11717 /* XXX FIXME: */
11718 swap_out_p = FALSE;
11719 break;
11720
11721 case DT_MIPS_BASE_ADDRESS:
11722 s = output_bfd->sections;
11723 BFD_ASSERT (s != NULL);
11724 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11725 break;
11726
11727 case DT_MIPS_LOCAL_GOTNO:
11728 dyn.d_un.d_val = g->local_gotno;
11729 break;
11730
11731 case DT_MIPS_UNREFEXTNO:
11732 /* The index into the dynamic symbol table which is the
11733 entry of the first external symbol that is not
11734 referenced within the same object. */
11735 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11736 break;
11737
11738 case DT_MIPS_GOTSYM:
11739 if (htab->global_gotsym)
11740 {
11741 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11742 break;
11743 }
11744 /* In case if we don't have global got symbols we default
11745 to setting DT_MIPS_GOTSYM to the same value as
11746 DT_MIPS_SYMTABNO. */
11747 /* Fall through. */
11748
11749 case DT_MIPS_SYMTABNO:
11750 name = ".dynsym";
11751 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11752 s = bfd_get_linker_section (dynobj, name);
11753
11754 if (s != NULL)
11755 dyn.d_un.d_val = s->size / elemsize;
11756 else
11757 dyn.d_un.d_val = 0;
11758 break;
11759
11760 case DT_MIPS_HIPAGENO:
11761 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11762 break;
11763
11764 case DT_MIPS_RLD_MAP:
11765 {
11766 struct elf_link_hash_entry *h;
11767 h = mips_elf_hash_table (info)->rld_symbol;
11768 if (!h)
11769 {
11770 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11771 swap_out_p = FALSE;
11772 break;
11773 }
11774 s = h->root.u.def.section;
11775
11776 /* The MIPS_RLD_MAP tag stores the absolute address of the
11777 debug pointer. */
11778 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11779 + h->root.u.def.value);
11780 }
11781 break;
11782
11783 case DT_MIPS_RLD_MAP_REL:
11784 {
11785 struct elf_link_hash_entry *h;
11786 bfd_vma dt_addr, rld_addr;
11787 h = mips_elf_hash_table (info)->rld_symbol;
11788 if (!h)
11789 {
11790 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11791 swap_out_p = FALSE;
11792 break;
11793 }
11794 s = h->root.u.def.section;
11795
11796 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11797 pointer, relative to the address of the tag. */
11798 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11799 + (b - sdyn->contents));
11800 rld_addr = (s->output_section->vma + s->output_offset
11801 + h->root.u.def.value);
11802 dyn.d_un.d_ptr = rld_addr - dt_addr;
11803 }
11804 break;
11805
11806 case DT_MIPS_OPTIONS:
11807 s = (bfd_get_section_by_name
11808 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11809 dyn.d_un.d_ptr = s->vma;
11810 break;
11811
11812 case DT_PLTREL:
11813 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11814 if (htab->is_vxworks)
11815 dyn.d_un.d_val = DT_RELA;
11816 else
11817 dyn.d_un.d_val = DT_REL;
11818 break;
11819
11820 case DT_PLTRELSZ:
11821 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11822 dyn.d_un.d_val = htab->root.srelplt->size;
11823 break;
11824
11825 case DT_JMPREL:
11826 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11827 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11828 + htab->root.srelplt->output_offset);
11829 break;
11830
11831 case DT_TEXTREL:
11832 /* If we didn't need any text relocations after all, delete
11833 the dynamic tag. */
11834 if (!(info->flags & DF_TEXTREL))
11835 {
11836 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11837 swap_out_p = FALSE;
11838 }
11839 break;
11840
11841 case DT_FLAGS:
11842 /* If we didn't need any text relocations after all, clear
11843 DF_TEXTREL from DT_FLAGS. */
11844 if (!(info->flags & DF_TEXTREL))
11845 dyn.d_un.d_val &= ~DF_TEXTREL;
11846 else
11847 swap_out_p = FALSE;
11848 break;
11849
11850 default:
11851 swap_out_p = FALSE;
11852 if (htab->is_vxworks
11853 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11854 swap_out_p = TRUE;
11855 break;
11856 }
11857
11858 if (swap_out_p || dyn_skipped)
11859 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11860 (dynobj, &dyn, b - dyn_skipped);
11861
11862 if (dyn_to_skip)
11863 {
11864 dyn_skipped += dyn_to_skip;
11865 dyn_to_skip = 0;
11866 }
11867 }
11868
11869 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11870 if (dyn_skipped > 0)
11871 memset (b - dyn_skipped, 0, dyn_skipped);
11872 }
11873
11874 if (sgot != NULL && sgot->size > 0
11875 && !bfd_is_abs_section (sgot->output_section))
11876 {
11877 if (htab->is_vxworks)
11878 {
11879 /* The first entry of the global offset table points to the
11880 ".dynamic" section. The second is initialized by the
11881 loader and contains the shared library identifier.
11882 The third is also initialized by the loader and points
11883 to the lazy resolution stub. */
11884 MIPS_ELF_PUT_WORD (output_bfd,
11885 sdyn->output_offset + sdyn->output_section->vma,
11886 sgot->contents);
11887 MIPS_ELF_PUT_WORD (output_bfd, 0,
11888 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11889 MIPS_ELF_PUT_WORD (output_bfd, 0,
11890 sgot->contents
11891 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11892 }
11893 else
11894 {
11895 /* The first entry of the global offset table will be filled at
11896 runtime. The second entry will be used by some runtime loaders.
11897 This isn't the case of IRIX rld. */
11898 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11899 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11900 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11901 }
11902
11903 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11904 = MIPS_ELF_GOT_SIZE (output_bfd);
11905 }
11906
11907 /* Generate dynamic relocations for the non-primary gots. */
11908 if (gg != NULL && gg->next)
11909 {
11910 Elf_Internal_Rela rel[3];
11911 bfd_vma addend = 0;
11912
11913 memset (rel, 0, sizeof (rel));
11914 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11915
11916 for (g = gg->next; g->next != gg; g = g->next)
11917 {
11918 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11919 + g->next->tls_gotno;
11920
11921 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11922 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11923 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11924 sgot->contents
11925 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11926
11927 if (! bfd_link_pic (info))
11928 continue;
11929
11930 for (; got_index < g->local_gotno; got_index++)
11931 {
11932 if (got_index >= g->assigned_low_gotno
11933 && got_index <= g->assigned_high_gotno)
11934 continue;
11935
11936 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11937 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11938 if (!(mips_elf_create_dynamic_relocation
11939 (output_bfd, info, rel, NULL,
11940 bfd_abs_section_ptr,
11941 0, &addend, sgot)))
11942 return FALSE;
11943 BFD_ASSERT (addend == 0);
11944 }
11945 }
11946 }
11947
11948 /* The generation of dynamic relocations for the non-primary gots
11949 adds more dynamic relocations. We cannot count them until
11950 here. */
11951
11952 if (elf_hash_table (info)->dynamic_sections_created)
11953 {
11954 bfd_byte *b;
11955 bfd_boolean swap_out_p;
11956
11957 BFD_ASSERT (sdyn != NULL);
11958
11959 for (b = sdyn->contents;
11960 b < sdyn->contents + sdyn->size;
11961 b += MIPS_ELF_DYN_SIZE (dynobj))
11962 {
11963 Elf_Internal_Dyn dyn;
11964 asection *s;
11965
11966 /* Read in the current dynamic entry. */
11967 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11968
11969 /* Assume that we're going to modify it and write it out. */
11970 swap_out_p = TRUE;
11971
11972 switch (dyn.d_tag)
11973 {
11974 case DT_RELSZ:
11975 /* Reduce DT_RELSZ to account for any relocations we
11976 decided not to make. This is for the n64 irix rld,
11977 which doesn't seem to apply any relocations if there
11978 are trailing null entries. */
11979 s = mips_elf_rel_dyn_section (info, FALSE);
11980 dyn.d_un.d_val = (s->reloc_count
11981 * (ABI_64_P (output_bfd)
11982 ? sizeof (Elf64_Mips_External_Rel)
11983 : sizeof (Elf32_External_Rel)));
11984 /* Adjust the section size too. Tools like the prelinker
11985 can reasonably expect the values to the same. */
11986 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
11987 elf_section_data (s->output_section)->this_hdr.sh_size
11988 = dyn.d_un.d_val;
11989 break;
11990
11991 default:
11992 swap_out_p = FALSE;
11993 break;
11994 }
11995
11996 if (swap_out_p)
11997 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11998 (dynobj, &dyn, b);
11999 }
12000 }
12001
12002 {
12003 asection *s;
12004 Elf32_compact_rel cpt;
12005
12006 if (SGI_COMPAT (output_bfd))
12007 {
12008 /* Write .compact_rel section out. */
12009 s = bfd_get_linker_section (dynobj, ".compact_rel");
12010 if (s != NULL)
12011 {
12012 cpt.id1 = 1;
12013 cpt.num = s->reloc_count;
12014 cpt.id2 = 2;
12015 cpt.offset = (s->output_section->filepos
12016 + sizeof (Elf32_External_compact_rel));
12017 cpt.reserved0 = 0;
12018 cpt.reserved1 = 0;
12019 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12020 ((Elf32_External_compact_rel *)
12021 s->contents));
12022
12023 /* Clean up a dummy stub function entry in .text. */
12024 if (htab->sstubs != NULL)
12025 {
12026 file_ptr dummy_offset;
12027
12028 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12029 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12030 memset (htab->sstubs->contents + dummy_offset, 0,
12031 htab->function_stub_size);
12032 }
12033 }
12034 }
12035
12036 /* The psABI says that the dynamic relocations must be sorted in
12037 increasing order of r_symndx. The VxWorks EABI doesn't require
12038 this, and because the code below handles REL rather than RELA
12039 relocations, using it for VxWorks would be outright harmful. */
12040 if (!htab->is_vxworks)
12041 {
12042 s = mips_elf_rel_dyn_section (info, FALSE);
12043 if (s != NULL
12044 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12045 {
12046 reldyn_sorting_bfd = output_bfd;
12047
12048 if (ABI_64_P (output_bfd))
12049 qsort ((Elf64_External_Rel *) s->contents + 1,
12050 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12051 sort_dynamic_relocs_64);
12052 else
12053 qsort ((Elf32_External_Rel *) s->contents + 1,
12054 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12055 sort_dynamic_relocs);
12056 }
12057 }
12058 }
12059
12060 if (htab->root.splt && htab->root.splt->size > 0)
12061 {
12062 if (htab->is_vxworks)
12063 {
12064 if (bfd_link_pic (info))
12065 mips_vxworks_finish_shared_plt (output_bfd, info);
12066 else
12067 mips_vxworks_finish_exec_plt (output_bfd, info);
12068 }
12069 else
12070 {
12071 BFD_ASSERT (!bfd_link_pic (info));
12072 if (!mips_finish_exec_plt (output_bfd, info))
12073 return FALSE;
12074 }
12075 }
12076 return TRUE;
12077 }
12078
12079
12080 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12081
12082 static void
12083 mips_set_isa_flags (bfd *abfd)
12084 {
12085 flagword val;
12086
12087 switch (bfd_get_mach (abfd))
12088 {
12089 default:
12090 case bfd_mach_mips3000:
12091 val = E_MIPS_ARCH_1;
12092 break;
12093
12094 case bfd_mach_mips3900:
12095 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12096 break;
12097
12098 case bfd_mach_mips6000:
12099 val = E_MIPS_ARCH_2;
12100 break;
12101
12102 case bfd_mach_mips4010:
12103 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12104 break;
12105
12106 case bfd_mach_mips4000:
12107 case bfd_mach_mips4300:
12108 case bfd_mach_mips4400:
12109 case bfd_mach_mips4600:
12110 val = E_MIPS_ARCH_3;
12111 break;
12112
12113 case bfd_mach_mips4100:
12114 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12115 break;
12116
12117 case bfd_mach_mips4111:
12118 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12119 break;
12120
12121 case bfd_mach_mips4120:
12122 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12123 break;
12124
12125 case bfd_mach_mips4650:
12126 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12127 break;
12128
12129 case bfd_mach_mips5400:
12130 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12131 break;
12132
12133 case bfd_mach_mips5500:
12134 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12135 break;
12136
12137 case bfd_mach_mips5900:
12138 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12139 break;
12140
12141 case bfd_mach_mips9000:
12142 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12143 break;
12144
12145 case bfd_mach_mips5000:
12146 case bfd_mach_mips7000:
12147 case bfd_mach_mips8000:
12148 case bfd_mach_mips10000:
12149 case bfd_mach_mips12000:
12150 case bfd_mach_mips14000:
12151 case bfd_mach_mips16000:
12152 val = E_MIPS_ARCH_4;
12153 break;
12154
12155 case bfd_mach_mips5:
12156 val = E_MIPS_ARCH_5;
12157 break;
12158
12159 case bfd_mach_mips_loongson_2e:
12160 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12161 break;
12162
12163 case bfd_mach_mips_loongson_2f:
12164 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12165 break;
12166
12167 case bfd_mach_mips_sb1:
12168 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12169 break;
12170
12171 case bfd_mach_mips_gs464:
12172 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12173 break;
12174
12175 case bfd_mach_mips_gs464e:
12176 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12177 break;
12178
12179 case bfd_mach_mips_gs264e:
12180 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12181 break;
12182
12183 case bfd_mach_mips_octeon:
12184 case bfd_mach_mips_octeonp:
12185 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12186 break;
12187
12188 case bfd_mach_mips_octeon3:
12189 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12190 break;
12191
12192 case bfd_mach_mips_xlr:
12193 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12194 break;
12195
12196 case bfd_mach_mips_octeon2:
12197 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12198 break;
12199
12200 case bfd_mach_mipsisa32:
12201 val = E_MIPS_ARCH_32;
12202 break;
12203
12204 case bfd_mach_mipsisa64:
12205 val = E_MIPS_ARCH_64;
12206 break;
12207
12208 case bfd_mach_mipsisa32r2:
12209 case bfd_mach_mipsisa32r3:
12210 case bfd_mach_mipsisa32r5:
12211 val = E_MIPS_ARCH_32R2;
12212 break;
12213
12214 case bfd_mach_mips_interaptiv_mr2:
12215 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12216 break;
12217
12218 case bfd_mach_mipsisa64r2:
12219 case bfd_mach_mipsisa64r3:
12220 case bfd_mach_mipsisa64r5:
12221 val = E_MIPS_ARCH_64R2;
12222 break;
12223
12224 case bfd_mach_mipsisa32r6:
12225 val = E_MIPS_ARCH_32R6;
12226 break;
12227
12228 case bfd_mach_mipsisa64r6:
12229 val = E_MIPS_ARCH_64R6;
12230 break;
12231 }
12232 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12233 elf_elfheader (abfd)->e_flags |= val;
12234
12235 }
12236
12237
12238 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12239 Don't do so for code sections. We want to keep ordering of HI16/LO16
12240 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12241 relocs to be sorted. */
12242
12243 bfd_boolean
12244 _bfd_mips_elf_sort_relocs_p (asection *sec)
12245 {
12246 return (sec->flags & SEC_CODE) == 0;
12247 }
12248
12249
12250 /* The final processing done just before writing out a MIPS ELF object
12251 file. This gets the MIPS architecture right based on the machine
12252 number. This is used by both the 32-bit and the 64-bit ABI. */
12253
12254 void
12255 _bfd_mips_elf_final_write_processing (bfd *abfd,
12256 bfd_boolean linker ATTRIBUTE_UNUSED)
12257 {
12258 unsigned int i;
12259 Elf_Internal_Shdr **hdrpp;
12260 const char *name;
12261 asection *sec;
12262
12263 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12264 is nonzero. This is for compatibility with old objects, which used
12265 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12266 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12267 mips_set_isa_flags (abfd);
12268
12269 /* Set the sh_info field for .gptab sections and other appropriate
12270 info for each special section. */
12271 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12272 i < elf_numsections (abfd);
12273 i++, hdrpp++)
12274 {
12275 switch ((*hdrpp)->sh_type)
12276 {
12277 case SHT_MIPS_MSYM:
12278 case SHT_MIPS_LIBLIST:
12279 sec = bfd_get_section_by_name (abfd, ".dynstr");
12280 if (sec != NULL)
12281 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12282 break;
12283
12284 case SHT_MIPS_GPTAB:
12285 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12286 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12287 BFD_ASSERT (name != NULL
12288 && CONST_STRNEQ (name, ".gptab."));
12289 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12290 BFD_ASSERT (sec != NULL);
12291 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12292 break;
12293
12294 case SHT_MIPS_CONTENT:
12295 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12296 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12297 BFD_ASSERT (name != NULL
12298 && CONST_STRNEQ (name, ".MIPS.content"));
12299 sec = bfd_get_section_by_name (abfd,
12300 name + sizeof ".MIPS.content" - 1);
12301 BFD_ASSERT (sec != NULL);
12302 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12303 break;
12304
12305 case SHT_MIPS_SYMBOL_LIB:
12306 sec = bfd_get_section_by_name (abfd, ".dynsym");
12307 if (sec != NULL)
12308 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12309 sec = bfd_get_section_by_name (abfd, ".liblist");
12310 if (sec != NULL)
12311 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12312 break;
12313
12314 case SHT_MIPS_EVENTS:
12315 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12316 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12317 BFD_ASSERT (name != NULL);
12318 if (CONST_STRNEQ (name, ".MIPS.events"))
12319 sec = bfd_get_section_by_name (abfd,
12320 name + sizeof ".MIPS.events" - 1);
12321 else
12322 {
12323 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12324 sec = bfd_get_section_by_name (abfd,
12325 (name
12326 + sizeof ".MIPS.post_rel" - 1));
12327 }
12328 BFD_ASSERT (sec != NULL);
12329 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12330 break;
12331
12332 }
12333 }
12334 }
12335 \f
12336 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12337 segments. */
12338
12339 int
12340 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12341 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12342 {
12343 asection *s;
12344 int ret = 0;
12345
12346 /* See if we need a PT_MIPS_REGINFO segment. */
12347 s = bfd_get_section_by_name (abfd, ".reginfo");
12348 if (s && (s->flags & SEC_LOAD))
12349 ++ret;
12350
12351 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12352 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12353 ++ret;
12354
12355 /* See if we need a PT_MIPS_OPTIONS segment. */
12356 if (IRIX_COMPAT (abfd) == ict_irix6
12357 && bfd_get_section_by_name (abfd,
12358 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12359 ++ret;
12360
12361 /* See if we need a PT_MIPS_RTPROC segment. */
12362 if (IRIX_COMPAT (abfd) == ict_irix5
12363 && bfd_get_section_by_name (abfd, ".dynamic")
12364 && bfd_get_section_by_name (abfd, ".mdebug"))
12365 ++ret;
12366
12367 /* Allocate a PT_NULL header in dynamic objects. See
12368 _bfd_mips_elf_modify_segment_map for details. */
12369 if (!SGI_COMPAT (abfd)
12370 && bfd_get_section_by_name (abfd, ".dynamic"))
12371 ++ret;
12372
12373 return ret;
12374 }
12375
12376 /* Modify the segment map for an IRIX5 executable. */
12377
12378 bfd_boolean
12379 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12380 struct bfd_link_info *info)
12381 {
12382 asection *s;
12383 struct elf_segment_map *m, **pm;
12384 bfd_size_type amt;
12385
12386 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12387 segment. */
12388 s = bfd_get_section_by_name (abfd, ".reginfo");
12389 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12390 {
12391 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12392 if (m->p_type == PT_MIPS_REGINFO)
12393 break;
12394 if (m == NULL)
12395 {
12396 amt = sizeof *m;
12397 m = bfd_zalloc (abfd, amt);
12398 if (m == NULL)
12399 return FALSE;
12400
12401 m->p_type = PT_MIPS_REGINFO;
12402 m->count = 1;
12403 m->sections[0] = s;
12404
12405 /* We want to put it after the PHDR and INTERP segments. */
12406 pm = &elf_seg_map (abfd);
12407 while (*pm != NULL
12408 && ((*pm)->p_type == PT_PHDR
12409 || (*pm)->p_type == PT_INTERP))
12410 pm = &(*pm)->next;
12411
12412 m->next = *pm;
12413 *pm = m;
12414 }
12415 }
12416
12417 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12418 segment. */
12419 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12420 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12421 {
12422 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12423 if (m->p_type == PT_MIPS_ABIFLAGS)
12424 break;
12425 if (m == NULL)
12426 {
12427 amt = sizeof *m;
12428 m = bfd_zalloc (abfd, amt);
12429 if (m == NULL)
12430 return FALSE;
12431
12432 m->p_type = PT_MIPS_ABIFLAGS;
12433 m->count = 1;
12434 m->sections[0] = s;
12435
12436 /* We want to put it after the PHDR and INTERP segments. */
12437 pm = &elf_seg_map (abfd);
12438 while (*pm != NULL
12439 && ((*pm)->p_type == PT_PHDR
12440 || (*pm)->p_type == PT_INTERP))
12441 pm = &(*pm)->next;
12442
12443 m->next = *pm;
12444 *pm = m;
12445 }
12446 }
12447
12448 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12449 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12450 PT_MIPS_OPTIONS segment immediately following the program header
12451 table. */
12452 if (NEWABI_P (abfd)
12453 /* On non-IRIX6 new abi, we'll have already created a segment
12454 for this section, so don't create another. I'm not sure this
12455 is not also the case for IRIX 6, but I can't test it right
12456 now. */
12457 && IRIX_COMPAT (abfd) == ict_irix6)
12458 {
12459 for (s = abfd->sections; s; s = s->next)
12460 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12461 break;
12462
12463 if (s)
12464 {
12465 struct elf_segment_map *options_segment;
12466
12467 pm = &elf_seg_map (abfd);
12468 while (*pm != NULL
12469 && ((*pm)->p_type == PT_PHDR
12470 || (*pm)->p_type == PT_INTERP))
12471 pm = &(*pm)->next;
12472
12473 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12474 {
12475 amt = sizeof (struct elf_segment_map);
12476 options_segment = bfd_zalloc (abfd, amt);
12477 options_segment->next = *pm;
12478 options_segment->p_type = PT_MIPS_OPTIONS;
12479 options_segment->p_flags = PF_R;
12480 options_segment->p_flags_valid = TRUE;
12481 options_segment->count = 1;
12482 options_segment->sections[0] = s;
12483 *pm = options_segment;
12484 }
12485 }
12486 }
12487 else
12488 {
12489 if (IRIX_COMPAT (abfd) == ict_irix5)
12490 {
12491 /* If there are .dynamic and .mdebug sections, we make a room
12492 for the RTPROC header. FIXME: Rewrite without section names. */
12493 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12494 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12495 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12496 {
12497 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12498 if (m->p_type == PT_MIPS_RTPROC)
12499 break;
12500 if (m == NULL)
12501 {
12502 amt = sizeof *m;
12503 m = bfd_zalloc (abfd, amt);
12504 if (m == NULL)
12505 return FALSE;
12506
12507 m->p_type = PT_MIPS_RTPROC;
12508
12509 s = bfd_get_section_by_name (abfd, ".rtproc");
12510 if (s == NULL)
12511 {
12512 m->count = 0;
12513 m->p_flags = 0;
12514 m->p_flags_valid = 1;
12515 }
12516 else
12517 {
12518 m->count = 1;
12519 m->sections[0] = s;
12520 }
12521
12522 /* We want to put it after the DYNAMIC segment. */
12523 pm = &elf_seg_map (abfd);
12524 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12525 pm = &(*pm)->next;
12526 if (*pm != NULL)
12527 pm = &(*pm)->next;
12528
12529 m->next = *pm;
12530 *pm = m;
12531 }
12532 }
12533 }
12534 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12535 .dynstr, .dynsym, and .hash sections, and everything in
12536 between. */
12537 for (pm = &elf_seg_map (abfd); *pm != NULL;
12538 pm = &(*pm)->next)
12539 if ((*pm)->p_type == PT_DYNAMIC)
12540 break;
12541 m = *pm;
12542 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12543 glibc's dynamic linker has traditionally derived the number of
12544 tags from the p_filesz field, and sometimes allocates stack
12545 arrays of that size. An overly-big PT_DYNAMIC segment can
12546 be actively harmful in such cases. Making PT_DYNAMIC contain
12547 other sections can also make life hard for the prelinker,
12548 which might move one of the other sections to a different
12549 PT_LOAD segment. */
12550 if (SGI_COMPAT (abfd)
12551 && m != NULL
12552 && m->count == 1
12553 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12554 {
12555 static const char *sec_names[] =
12556 {
12557 ".dynamic", ".dynstr", ".dynsym", ".hash"
12558 };
12559 bfd_vma low, high;
12560 unsigned int i, c;
12561 struct elf_segment_map *n;
12562
12563 low = ~(bfd_vma) 0;
12564 high = 0;
12565 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12566 {
12567 s = bfd_get_section_by_name (abfd, sec_names[i]);
12568 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12569 {
12570 bfd_size_type sz;
12571
12572 if (low > s->vma)
12573 low = s->vma;
12574 sz = s->size;
12575 if (high < s->vma + sz)
12576 high = s->vma + sz;
12577 }
12578 }
12579
12580 c = 0;
12581 for (s = abfd->sections; s != NULL; s = s->next)
12582 if ((s->flags & SEC_LOAD) != 0
12583 && s->vma >= low
12584 && s->vma + s->size <= high)
12585 ++c;
12586
12587 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12588 n = bfd_zalloc (abfd, amt);
12589 if (n == NULL)
12590 return FALSE;
12591 *n = *m;
12592 n->count = c;
12593
12594 i = 0;
12595 for (s = abfd->sections; s != NULL; s = s->next)
12596 {
12597 if ((s->flags & SEC_LOAD) != 0
12598 && s->vma >= low
12599 && s->vma + s->size <= high)
12600 {
12601 n->sections[i] = s;
12602 ++i;
12603 }
12604 }
12605
12606 *pm = n;
12607 }
12608 }
12609
12610 /* Allocate a spare program header in dynamic objects so that tools
12611 like the prelinker can add an extra PT_LOAD entry.
12612
12613 If the prelinker needs to make room for a new PT_LOAD entry, its
12614 standard procedure is to move the first (read-only) sections into
12615 the new (writable) segment. However, the MIPS ABI requires
12616 .dynamic to be in a read-only segment, and the section will often
12617 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12618
12619 Although the prelinker could in principle move .dynamic to a
12620 writable segment, it seems better to allocate a spare program
12621 header instead, and avoid the need to move any sections.
12622 There is a long tradition of allocating spare dynamic tags,
12623 so allocating a spare program header seems like a natural
12624 extension.
12625
12626 If INFO is NULL, we may be copying an already prelinked binary
12627 with objcopy or strip, so do not add this header. */
12628 if (info != NULL
12629 && !SGI_COMPAT (abfd)
12630 && bfd_get_section_by_name (abfd, ".dynamic"))
12631 {
12632 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12633 if ((*pm)->p_type == PT_NULL)
12634 break;
12635 if (*pm == NULL)
12636 {
12637 m = bfd_zalloc (abfd, sizeof (*m));
12638 if (m == NULL)
12639 return FALSE;
12640
12641 m->p_type = PT_NULL;
12642 *pm = m;
12643 }
12644 }
12645
12646 return TRUE;
12647 }
12648 \f
12649 /* Return the section that should be marked against GC for a given
12650 relocation. */
12651
12652 asection *
12653 _bfd_mips_elf_gc_mark_hook (asection *sec,
12654 struct bfd_link_info *info,
12655 Elf_Internal_Rela *rel,
12656 struct elf_link_hash_entry *h,
12657 Elf_Internal_Sym *sym)
12658 {
12659 /* ??? Do mips16 stub sections need to be handled special? */
12660
12661 if (h != NULL)
12662 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12663 {
12664 case R_MIPS_GNU_VTINHERIT:
12665 case R_MIPS_GNU_VTENTRY:
12666 return NULL;
12667 }
12668
12669 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12670 }
12671
12672 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12673
12674 bfd_boolean
12675 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12676 elf_gc_mark_hook_fn gc_mark_hook)
12677 {
12678 bfd *sub;
12679
12680 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12681
12682 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12683 {
12684 asection *o;
12685
12686 if (! is_mips_elf (sub))
12687 continue;
12688
12689 for (o = sub->sections; o != NULL; o = o->next)
12690 if (!o->gc_mark
12691 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12692 (bfd_get_section_name (sub, o)))
12693 {
12694 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12695 return FALSE;
12696 }
12697 }
12698
12699 return TRUE;
12700 }
12701 \f
12702 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12703 hiding the old indirect symbol. Process additional relocation
12704 information. Also called for weakdefs, in which case we just let
12705 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12706
12707 void
12708 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12709 struct elf_link_hash_entry *dir,
12710 struct elf_link_hash_entry *ind)
12711 {
12712 struct mips_elf_link_hash_entry *dirmips, *indmips;
12713
12714 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12715
12716 dirmips = (struct mips_elf_link_hash_entry *) dir;
12717 indmips = (struct mips_elf_link_hash_entry *) ind;
12718 /* Any absolute non-dynamic relocations against an indirect or weak
12719 definition will be against the target symbol. */
12720 if (indmips->has_static_relocs)
12721 dirmips->has_static_relocs = TRUE;
12722
12723 if (ind->root.type != bfd_link_hash_indirect)
12724 return;
12725
12726 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12727 if (indmips->readonly_reloc)
12728 dirmips->readonly_reloc = TRUE;
12729 if (indmips->no_fn_stub)
12730 dirmips->no_fn_stub = TRUE;
12731 if (indmips->fn_stub)
12732 {
12733 dirmips->fn_stub = indmips->fn_stub;
12734 indmips->fn_stub = NULL;
12735 }
12736 if (indmips->need_fn_stub)
12737 {
12738 dirmips->need_fn_stub = TRUE;
12739 indmips->need_fn_stub = FALSE;
12740 }
12741 if (indmips->call_stub)
12742 {
12743 dirmips->call_stub = indmips->call_stub;
12744 indmips->call_stub = NULL;
12745 }
12746 if (indmips->call_fp_stub)
12747 {
12748 dirmips->call_fp_stub = indmips->call_fp_stub;
12749 indmips->call_fp_stub = NULL;
12750 }
12751 if (indmips->global_got_area < dirmips->global_got_area)
12752 dirmips->global_got_area = indmips->global_got_area;
12753 if (indmips->global_got_area < GGA_NONE)
12754 indmips->global_got_area = GGA_NONE;
12755 if (indmips->has_nonpic_branches)
12756 dirmips->has_nonpic_branches = TRUE;
12757 }
12758
12759 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12760 to hide it. It has to remain global (it will also be protected) so as to
12761 be assigned a global GOT entry, which will then remain unchanged at load
12762 time. */
12763
12764 void
12765 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12766 struct elf_link_hash_entry *entry,
12767 bfd_boolean force_local)
12768 {
12769 struct mips_elf_link_hash_table *htab;
12770
12771 htab = mips_elf_hash_table (info);
12772 BFD_ASSERT (htab != NULL);
12773 if (htab->use_absolute_zero
12774 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12775 return;
12776
12777 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12778 }
12779 \f
12780 #define PDR_SIZE 32
12781
12782 bfd_boolean
12783 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12784 struct bfd_link_info *info)
12785 {
12786 asection *o;
12787 bfd_boolean ret = FALSE;
12788 unsigned char *tdata;
12789 size_t i, skip;
12790
12791 o = bfd_get_section_by_name (abfd, ".pdr");
12792 if (! o)
12793 return FALSE;
12794 if (o->size == 0)
12795 return FALSE;
12796 if (o->size % PDR_SIZE != 0)
12797 return FALSE;
12798 if (o->output_section != NULL
12799 && bfd_is_abs_section (o->output_section))
12800 return FALSE;
12801
12802 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12803 if (! tdata)
12804 return FALSE;
12805
12806 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12807 info->keep_memory);
12808 if (!cookie->rels)
12809 {
12810 free (tdata);
12811 return FALSE;
12812 }
12813
12814 cookie->rel = cookie->rels;
12815 cookie->relend = cookie->rels + o->reloc_count;
12816
12817 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12818 {
12819 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12820 {
12821 tdata[i] = 1;
12822 skip ++;
12823 }
12824 }
12825
12826 if (skip != 0)
12827 {
12828 mips_elf_section_data (o)->u.tdata = tdata;
12829 if (o->rawsize == 0)
12830 o->rawsize = o->size;
12831 o->size -= skip * PDR_SIZE;
12832 ret = TRUE;
12833 }
12834 else
12835 free (tdata);
12836
12837 if (! info->keep_memory)
12838 free (cookie->rels);
12839
12840 return ret;
12841 }
12842
12843 bfd_boolean
12844 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12845 {
12846 if (strcmp (sec->name, ".pdr") == 0)
12847 return TRUE;
12848 return FALSE;
12849 }
12850
12851 bfd_boolean
12852 _bfd_mips_elf_write_section (bfd *output_bfd,
12853 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12854 asection *sec, bfd_byte *contents)
12855 {
12856 bfd_byte *to, *from, *end;
12857 int i;
12858
12859 if (strcmp (sec->name, ".pdr") != 0)
12860 return FALSE;
12861
12862 if (mips_elf_section_data (sec)->u.tdata == NULL)
12863 return FALSE;
12864
12865 to = contents;
12866 end = contents + sec->size;
12867 for (from = contents, i = 0;
12868 from < end;
12869 from += PDR_SIZE, i++)
12870 {
12871 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12872 continue;
12873 if (to != from)
12874 memcpy (to, from, PDR_SIZE);
12875 to += PDR_SIZE;
12876 }
12877 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12878 sec->output_offset, sec->size);
12879 return TRUE;
12880 }
12881 \f
12882 /* microMIPS code retains local labels for linker relaxation. Omit them
12883 from output by default for clarity. */
12884
12885 bfd_boolean
12886 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12887 {
12888 return _bfd_elf_is_local_label_name (abfd, sym->name);
12889 }
12890
12891 /* MIPS ELF uses a special find_nearest_line routine in order the
12892 handle the ECOFF debugging information. */
12893
12894 struct mips_elf_find_line
12895 {
12896 struct ecoff_debug_info d;
12897 struct ecoff_find_line i;
12898 };
12899
12900 bfd_boolean
12901 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12902 asection *section, bfd_vma offset,
12903 const char **filename_ptr,
12904 const char **functionname_ptr,
12905 unsigned int *line_ptr,
12906 unsigned int *discriminator_ptr)
12907 {
12908 asection *msec;
12909
12910 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12911 filename_ptr, functionname_ptr,
12912 line_ptr, discriminator_ptr,
12913 dwarf_debug_sections,
12914 ABI_64_P (abfd) ? 8 : 0,
12915 &elf_tdata (abfd)->dwarf2_find_line_info)
12916 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12917 filename_ptr, functionname_ptr,
12918 line_ptr))
12919 {
12920 /* PR 22789: If the function name or filename was not found through
12921 the debug information, then try an ordinary lookup instead. */
12922 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12923 || (filename_ptr != NULL && *filename_ptr == NULL))
12924 {
12925 /* Do not override already discovered names. */
12926 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12927 functionname_ptr = NULL;
12928
12929 if (filename_ptr != NULL && *filename_ptr != NULL)
12930 filename_ptr = NULL;
12931
12932 _bfd_elf_find_function (abfd, symbols, section, offset,
12933 filename_ptr, functionname_ptr);
12934 }
12935
12936 return TRUE;
12937 }
12938
12939 msec = bfd_get_section_by_name (abfd, ".mdebug");
12940 if (msec != NULL)
12941 {
12942 flagword origflags;
12943 struct mips_elf_find_line *fi;
12944 const struct ecoff_debug_swap * const swap =
12945 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12946
12947 /* If we are called during a link, mips_elf_final_link may have
12948 cleared the SEC_HAS_CONTENTS field. We force it back on here
12949 if appropriate (which it normally will be). */
12950 origflags = msec->flags;
12951 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12952 msec->flags |= SEC_HAS_CONTENTS;
12953
12954 fi = mips_elf_tdata (abfd)->find_line_info;
12955 if (fi == NULL)
12956 {
12957 bfd_size_type external_fdr_size;
12958 char *fraw_src;
12959 char *fraw_end;
12960 struct fdr *fdr_ptr;
12961 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12962
12963 fi = bfd_zalloc (abfd, amt);
12964 if (fi == NULL)
12965 {
12966 msec->flags = origflags;
12967 return FALSE;
12968 }
12969
12970 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12971 {
12972 msec->flags = origflags;
12973 return FALSE;
12974 }
12975
12976 /* Swap in the FDR information. */
12977 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12978 fi->d.fdr = bfd_alloc (abfd, amt);
12979 if (fi->d.fdr == NULL)
12980 {
12981 msec->flags = origflags;
12982 return FALSE;
12983 }
12984 external_fdr_size = swap->external_fdr_size;
12985 fdr_ptr = fi->d.fdr;
12986 fraw_src = (char *) fi->d.external_fdr;
12987 fraw_end = (fraw_src
12988 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12989 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12990 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12991
12992 mips_elf_tdata (abfd)->find_line_info = fi;
12993
12994 /* Note that we don't bother to ever free this information.
12995 find_nearest_line is either called all the time, as in
12996 objdump -l, so the information should be saved, or it is
12997 rarely called, as in ld error messages, so the memory
12998 wasted is unimportant. Still, it would probably be a
12999 good idea for free_cached_info to throw it away. */
13000 }
13001
13002 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13003 &fi->i, filename_ptr, functionname_ptr,
13004 line_ptr))
13005 {
13006 msec->flags = origflags;
13007 return TRUE;
13008 }
13009
13010 msec->flags = origflags;
13011 }
13012
13013 /* Fall back on the generic ELF find_nearest_line routine. */
13014
13015 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13016 filename_ptr, functionname_ptr,
13017 line_ptr, discriminator_ptr);
13018 }
13019
13020 bfd_boolean
13021 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13022 const char **filename_ptr,
13023 const char **functionname_ptr,
13024 unsigned int *line_ptr)
13025 {
13026 bfd_boolean found;
13027 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13028 functionname_ptr, line_ptr,
13029 & elf_tdata (abfd)->dwarf2_find_line_info);
13030 return found;
13031 }
13032
13033 \f
13034 /* When are writing out the .options or .MIPS.options section,
13035 remember the bytes we are writing out, so that we can install the
13036 GP value in the section_processing routine. */
13037
13038 bfd_boolean
13039 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13040 const void *location,
13041 file_ptr offset, bfd_size_type count)
13042 {
13043 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13044 {
13045 bfd_byte *c;
13046
13047 if (elf_section_data (section) == NULL)
13048 {
13049 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
13050 section->used_by_bfd = bfd_zalloc (abfd, amt);
13051 if (elf_section_data (section) == NULL)
13052 return FALSE;
13053 }
13054 c = mips_elf_section_data (section)->u.tdata;
13055 if (c == NULL)
13056 {
13057 c = bfd_zalloc (abfd, section->size);
13058 if (c == NULL)
13059 return FALSE;
13060 mips_elf_section_data (section)->u.tdata = c;
13061 }
13062
13063 memcpy (c + offset, location, count);
13064 }
13065
13066 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13067 count);
13068 }
13069
13070 /* This is almost identical to bfd_generic_get_... except that some
13071 MIPS relocations need to be handled specially. Sigh. */
13072
13073 bfd_byte *
13074 _bfd_elf_mips_get_relocated_section_contents
13075 (bfd *abfd,
13076 struct bfd_link_info *link_info,
13077 struct bfd_link_order *link_order,
13078 bfd_byte *data,
13079 bfd_boolean relocatable,
13080 asymbol **symbols)
13081 {
13082 /* Get enough memory to hold the stuff */
13083 bfd *input_bfd = link_order->u.indirect.section->owner;
13084 asection *input_section = link_order->u.indirect.section;
13085 bfd_size_type sz;
13086
13087 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13088 arelent **reloc_vector = NULL;
13089 long reloc_count;
13090
13091 if (reloc_size < 0)
13092 goto error_return;
13093
13094 reloc_vector = bfd_malloc (reloc_size);
13095 if (reloc_vector == NULL && reloc_size != 0)
13096 goto error_return;
13097
13098 /* read in the section */
13099 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13100 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13101 goto error_return;
13102
13103 reloc_count = bfd_canonicalize_reloc (input_bfd,
13104 input_section,
13105 reloc_vector,
13106 symbols);
13107 if (reloc_count < 0)
13108 goto error_return;
13109
13110 if (reloc_count > 0)
13111 {
13112 arelent **parent;
13113 /* for mips */
13114 int gp_found;
13115 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13116
13117 {
13118 struct bfd_hash_entry *h;
13119 struct bfd_link_hash_entry *lh;
13120 /* Skip all this stuff if we aren't mixing formats. */
13121 if (abfd && input_bfd
13122 && abfd->xvec == input_bfd->xvec)
13123 lh = 0;
13124 else
13125 {
13126 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13127 lh = (struct bfd_link_hash_entry *) h;
13128 }
13129 lookup:
13130 if (lh)
13131 {
13132 switch (lh->type)
13133 {
13134 case bfd_link_hash_undefined:
13135 case bfd_link_hash_undefweak:
13136 case bfd_link_hash_common:
13137 gp_found = 0;
13138 break;
13139 case bfd_link_hash_defined:
13140 case bfd_link_hash_defweak:
13141 gp_found = 1;
13142 gp = lh->u.def.value;
13143 break;
13144 case bfd_link_hash_indirect:
13145 case bfd_link_hash_warning:
13146 lh = lh->u.i.link;
13147 /* @@FIXME ignoring warning for now */
13148 goto lookup;
13149 case bfd_link_hash_new:
13150 default:
13151 abort ();
13152 }
13153 }
13154 else
13155 gp_found = 0;
13156 }
13157 /* end mips */
13158 for (parent = reloc_vector; *parent != NULL; parent++)
13159 {
13160 char *error_message = NULL;
13161 bfd_reloc_status_type r;
13162
13163 /* Specific to MIPS: Deal with relocation types that require
13164 knowing the gp of the output bfd. */
13165 asymbol *sym = *(*parent)->sym_ptr_ptr;
13166
13167 /* If we've managed to find the gp and have a special
13168 function for the relocation then go ahead, else default
13169 to the generic handling. */
13170 if (gp_found
13171 && (*parent)->howto->special_function
13172 == _bfd_mips_elf32_gprel16_reloc)
13173 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13174 input_section, relocatable,
13175 data, gp);
13176 else
13177 r = bfd_perform_relocation (input_bfd, *parent, data,
13178 input_section,
13179 relocatable ? abfd : NULL,
13180 &error_message);
13181
13182 if (relocatable)
13183 {
13184 asection *os = input_section->output_section;
13185
13186 /* A partial link, so keep the relocs */
13187 os->orelocation[os->reloc_count] = *parent;
13188 os->reloc_count++;
13189 }
13190
13191 if (r != bfd_reloc_ok)
13192 {
13193 switch (r)
13194 {
13195 case bfd_reloc_undefined:
13196 (*link_info->callbacks->undefined_symbol)
13197 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13198 input_bfd, input_section, (*parent)->address, TRUE);
13199 break;
13200 case bfd_reloc_dangerous:
13201 BFD_ASSERT (error_message != NULL);
13202 (*link_info->callbacks->reloc_dangerous)
13203 (link_info, error_message,
13204 input_bfd, input_section, (*parent)->address);
13205 break;
13206 case bfd_reloc_overflow:
13207 (*link_info->callbacks->reloc_overflow)
13208 (link_info, NULL,
13209 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13210 (*parent)->howto->name, (*parent)->addend,
13211 input_bfd, input_section, (*parent)->address);
13212 break;
13213 case bfd_reloc_outofrange:
13214 default:
13215 abort ();
13216 break;
13217 }
13218
13219 }
13220 }
13221 }
13222 if (reloc_vector != NULL)
13223 free (reloc_vector);
13224 return data;
13225
13226 error_return:
13227 if (reloc_vector != NULL)
13228 free (reloc_vector);
13229 return NULL;
13230 }
13231 \f
13232 static bfd_boolean
13233 mips_elf_relax_delete_bytes (bfd *abfd,
13234 asection *sec, bfd_vma addr, int count)
13235 {
13236 Elf_Internal_Shdr *symtab_hdr;
13237 unsigned int sec_shndx;
13238 bfd_byte *contents;
13239 Elf_Internal_Rela *irel, *irelend;
13240 Elf_Internal_Sym *isym;
13241 Elf_Internal_Sym *isymend;
13242 struct elf_link_hash_entry **sym_hashes;
13243 struct elf_link_hash_entry **end_hashes;
13244 struct elf_link_hash_entry **start_hashes;
13245 unsigned int symcount;
13246
13247 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13248 contents = elf_section_data (sec)->this_hdr.contents;
13249
13250 irel = elf_section_data (sec)->relocs;
13251 irelend = irel + sec->reloc_count;
13252
13253 /* Actually delete the bytes. */
13254 memmove (contents + addr, contents + addr + count,
13255 (size_t) (sec->size - addr - count));
13256 sec->size -= count;
13257
13258 /* Adjust all the relocs. */
13259 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13260 {
13261 /* Get the new reloc address. */
13262 if (irel->r_offset > addr)
13263 irel->r_offset -= count;
13264 }
13265
13266 BFD_ASSERT (addr % 2 == 0);
13267 BFD_ASSERT (count % 2 == 0);
13268
13269 /* Adjust the local symbols defined in this section. */
13270 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13271 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13272 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13273 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13274 isym->st_value -= count;
13275
13276 /* Now adjust the global symbols defined in this section. */
13277 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13278 - symtab_hdr->sh_info);
13279 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13280 end_hashes = sym_hashes + symcount;
13281
13282 for (; sym_hashes < end_hashes; sym_hashes++)
13283 {
13284 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13285
13286 if ((sym_hash->root.type == bfd_link_hash_defined
13287 || sym_hash->root.type == bfd_link_hash_defweak)
13288 && sym_hash->root.u.def.section == sec)
13289 {
13290 bfd_vma value = sym_hash->root.u.def.value;
13291
13292 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13293 value &= MINUS_TWO;
13294 if (value > addr)
13295 sym_hash->root.u.def.value -= count;
13296 }
13297 }
13298
13299 return TRUE;
13300 }
13301
13302
13303 /* Opcodes needed for microMIPS relaxation as found in
13304 opcodes/micromips-opc.c. */
13305
13306 struct opcode_descriptor {
13307 unsigned long match;
13308 unsigned long mask;
13309 };
13310
13311 /* The $ra register aka $31. */
13312
13313 #define RA 31
13314
13315 /* 32-bit instruction format register fields. */
13316
13317 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13318 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13319
13320 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13321
13322 #define OP16_VALID_REG(r) \
13323 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13324
13325
13326 /* 32-bit and 16-bit branches. */
13327
13328 static const struct opcode_descriptor b_insns_32[] = {
13329 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13330 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13331 { 0, 0 } /* End marker for find_match(). */
13332 };
13333
13334 static const struct opcode_descriptor bc_insn_32 =
13335 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13336
13337 static const struct opcode_descriptor bz_insn_32 =
13338 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13339
13340 static const struct opcode_descriptor bzal_insn_32 =
13341 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13342
13343 static const struct opcode_descriptor beq_insn_32 =
13344 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13345
13346 static const struct opcode_descriptor b_insn_16 =
13347 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13348
13349 static const struct opcode_descriptor bz_insn_16 =
13350 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13351
13352
13353 /* 32-bit and 16-bit branch EQ and NE zero. */
13354
13355 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13356 eq and second the ne. This convention is used when replacing a
13357 32-bit BEQ/BNE with the 16-bit version. */
13358
13359 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13360
13361 static const struct opcode_descriptor bz_rs_insns_32[] = {
13362 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13363 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13364 { 0, 0 } /* End marker for find_match(). */
13365 };
13366
13367 static const struct opcode_descriptor bz_rt_insns_32[] = {
13368 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13369 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13370 { 0, 0 } /* End marker for find_match(). */
13371 };
13372
13373 static const struct opcode_descriptor bzc_insns_32[] = {
13374 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13375 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13376 { 0, 0 } /* End marker for find_match(). */
13377 };
13378
13379 static const struct opcode_descriptor bz_insns_16[] = {
13380 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13381 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13382 { 0, 0 } /* End marker for find_match(). */
13383 };
13384
13385 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13386
13387 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13388 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13389
13390
13391 /* 32-bit instructions with a delay slot. */
13392
13393 static const struct opcode_descriptor jal_insn_32_bd16 =
13394 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13395
13396 static const struct opcode_descriptor jal_insn_32_bd32 =
13397 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13398
13399 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13400 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13401
13402 static const struct opcode_descriptor j_insn_32 =
13403 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13404
13405 static const struct opcode_descriptor jalr_insn_32 =
13406 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13407
13408 /* This table can be compacted, because no opcode replacement is made. */
13409
13410 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13411 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13412
13413 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13414 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13415
13416 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13417 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13418 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13419 { 0, 0 } /* End marker for find_match(). */
13420 };
13421
13422 /* This table can be compacted, because no opcode replacement is made. */
13423
13424 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13425 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13426
13427 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13428 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13429 { 0, 0 } /* End marker for find_match(). */
13430 };
13431
13432
13433 /* 16-bit instructions with a delay slot. */
13434
13435 static const struct opcode_descriptor jalr_insn_16_bd16 =
13436 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13437
13438 static const struct opcode_descriptor jalr_insn_16_bd32 =
13439 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13440
13441 static const struct opcode_descriptor jr_insn_16 =
13442 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13443
13444 #define JR16_REG(opcode) ((opcode) & 0x1f)
13445
13446 /* This table can be compacted, because no opcode replacement is made. */
13447
13448 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13449 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13450
13451 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13452 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13453 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13454 { 0, 0 } /* End marker for find_match(). */
13455 };
13456
13457
13458 /* LUI instruction. */
13459
13460 static const struct opcode_descriptor lui_insn =
13461 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13462
13463
13464 /* ADDIU instruction. */
13465
13466 static const struct opcode_descriptor addiu_insn =
13467 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13468
13469 static const struct opcode_descriptor addiupc_insn =
13470 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13471
13472 #define ADDIUPC_REG_FIELD(r) \
13473 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13474
13475
13476 /* Relaxable instructions in a JAL delay slot: MOVE. */
13477
13478 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13479 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13480 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13481 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13482
13483 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13484 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13485
13486 static const struct opcode_descriptor move_insns_32[] = {
13487 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13488 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13489 { 0, 0 } /* End marker for find_match(). */
13490 };
13491
13492 static const struct opcode_descriptor move_insn_16 =
13493 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13494
13495
13496 /* NOP instructions. */
13497
13498 static const struct opcode_descriptor nop_insn_32 =
13499 { /* "nop", "", */ 0x00000000, 0xffffffff };
13500
13501 static const struct opcode_descriptor nop_insn_16 =
13502 { /* "nop", "", */ 0x0c00, 0xffff };
13503
13504
13505 /* Instruction match support. */
13506
13507 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13508
13509 static int
13510 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13511 {
13512 unsigned long indx;
13513
13514 for (indx = 0; insn[indx].mask != 0; indx++)
13515 if (MATCH (opcode, insn[indx]))
13516 return indx;
13517
13518 return -1;
13519 }
13520
13521
13522 /* Branch and delay slot decoding support. */
13523
13524 /* If PTR points to what *might* be a 16-bit branch or jump, then
13525 return the minimum length of its delay slot, otherwise return 0.
13526 Non-zero results are not definitive as we might be checking against
13527 the second half of another instruction. */
13528
13529 static int
13530 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13531 {
13532 unsigned long opcode;
13533 int bdsize;
13534
13535 opcode = bfd_get_16 (abfd, ptr);
13536 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13537 /* 16-bit branch/jump with a 32-bit delay slot. */
13538 bdsize = 4;
13539 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13540 || find_match (opcode, ds_insns_16_bd16) >= 0)
13541 /* 16-bit branch/jump with a 16-bit delay slot. */
13542 bdsize = 2;
13543 else
13544 /* No delay slot. */
13545 bdsize = 0;
13546
13547 return bdsize;
13548 }
13549
13550 /* If PTR points to what *might* be a 32-bit branch or jump, then
13551 return the minimum length of its delay slot, otherwise return 0.
13552 Non-zero results are not definitive as we might be checking against
13553 the second half of another instruction. */
13554
13555 static int
13556 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13557 {
13558 unsigned long opcode;
13559 int bdsize;
13560
13561 opcode = bfd_get_micromips_32 (abfd, ptr);
13562 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13563 /* 32-bit branch/jump with a 32-bit delay slot. */
13564 bdsize = 4;
13565 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13566 /* 32-bit branch/jump with a 16-bit delay slot. */
13567 bdsize = 2;
13568 else
13569 /* No delay slot. */
13570 bdsize = 0;
13571
13572 return bdsize;
13573 }
13574
13575 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13576 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13577
13578 static bfd_boolean
13579 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13580 {
13581 unsigned long opcode;
13582
13583 opcode = bfd_get_16 (abfd, ptr);
13584 if (MATCH (opcode, b_insn_16)
13585 /* B16 */
13586 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13587 /* JR16 */
13588 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13589 /* BEQZ16, BNEZ16 */
13590 || (MATCH (opcode, jalr_insn_16_bd32)
13591 /* JALR16 */
13592 && reg != JR16_REG (opcode) && reg != RA))
13593 return TRUE;
13594
13595 return FALSE;
13596 }
13597
13598 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13599 then return TRUE, otherwise FALSE. */
13600
13601 static bfd_boolean
13602 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13603 {
13604 unsigned long opcode;
13605
13606 opcode = bfd_get_micromips_32 (abfd, ptr);
13607 if (MATCH (opcode, j_insn_32)
13608 /* J */
13609 || MATCH (opcode, bc_insn_32)
13610 /* BC1F, BC1T, BC2F, BC2T */
13611 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13612 /* JAL, JALX */
13613 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13614 /* BGEZ, BGTZ, BLEZ, BLTZ */
13615 || (MATCH (opcode, bzal_insn_32)
13616 /* BGEZAL, BLTZAL */
13617 && reg != OP32_SREG (opcode) && reg != RA)
13618 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13619 /* JALR, JALR.HB, BEQ, BNE */
13620 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13621 return TRUE;
13622
13623 return FALSE;
13624 }
13625
13626 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13627 IRELEND) at OFFSET indicate that there must be a compact branch there,
13628 then return TRUE, otherwise FALSE. */
13629
13630 static bfd_boolean
13631 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13632 const Elf_Internal_Rela *internal_relocs,
13633 const Elf_Internal_Rela *irelend)
13634 {
13635 const Elf_Internal_Rela *irel;
13636 unsigned long opcode;
13637
13638 opcode = bfd_get_micromips_32 (abfd, ptr);
13639 if (find_match (opcode, bzc_insns_32) < 0)
13640 return FALSE;
13641
13642 for (irel = internal_relocs; irel < irelend; irel++)
13643 if (irel->r_offset == offset
13644 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13645 return TRUE;
13646
13647 return FALSE;
13648 }
13649
13650 /* Bitsize checking. */
13651 #define IS_BITSIZE(val, N) \
13652 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13653 - (1ULL << ((N) - 1))) == (val))
13654
13655 \f
13656 bfd_boolean
13657 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13658 struct bfd_link_info *link_info,
13659 bfd_boolean *again)
13660 {
13661 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13662 Elf_Internal_Shdr *symtab_hdr;
13663 Elf_Internal_Rela *internal_relocs;
13664 Elf_Internal_Rela *irel, *irelend;
13665 bfd_byte *contents = NULL;
13666 Elf_Internal_Sym *isymbuf = NULL;
13667
13668 /* Assume nothing changes. */
13669 *again = FALSE;
13670
13671 /* We don't have to do anything for a relocatable link, if
13672 this section does not have relocs, or if this is not a
13673 code section. */
13674
13675 if (bfd_link_relocatable (link_info)
13676 || (sec->flags & SEC_RELOC) == 0
13677 || sec->reloc_count == 0
13678 || (sec->flags & SEC_CODE) == 0)
13679 return TRUE;
13680
13681 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13682
13683 /* Get a copy of the native relocations. */
13684 internal_relocs = (_bfd_elf_link_read_relocs
13685 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13686 link_info->keep_memory));
13687 if (internal_relocs == NULL)
13688 goto error_return;
13689
13690 /* Walk through them looking for relaxing opportunities. */
13691 irelend = internal_relocs + sec->reloc_count;
13692 for (irel = internal_relocs; irel < irelend; irel++)
13693 {
13694 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13695 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13696 bfd_boolean target_is_micromips_code_p;
13697 unsigned long opcode;
13698 bfd_vma symval;
13699 bfd_vma pcrval;
13700 bfd_byte *ptr;
13701 int fndopc;
13702
13703 /* The number of bytes to delete for relaxation and from where
13704 to delete these bytes starting at irel->r_offset. */
13705 int delcnt = 0;
13706 int deloff = 0;
13707
13708 /* If this isn't something that can be relaxed, then ignore
13709 this reloc. */
13710 if (r_type != R_MICROMIPS_HI16
13711 && r_type != R_MICROMIPS_PC16_S1
13712 && r_type != R_MICROMIPS_26_S1)
13713 continue;
13714
13715 /* Get the section contents if we haven't done so already. */
13716 if (contents == NULL)
13717 {
13718 /* Get cached copy if it exists. */
13719 if (elf_section_data (sec)->this_hdr.contents != NULL)
13720 contents = elf_section_data (sec)->this_hdr.contents;
13721 /* Go get them off disk. */
13722 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13723 goto error_return;
13724 }
13725 ptr = contents + irel->r_offset;
13726
13727 /* Read this BFD's local symbols if we haven't done so already. */
13728 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13729 {
13730 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13731 if (isymbuf == NULL)
13732 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13733 symtab_hdr->sh_info, 0,
13734 NULL, NULL, NULL);
13735 if (isymbuf == NULL)
13736 goto error_return;
13737 }
13738
13739 /* Get the value of the symbol referred to by the reloc. */
13740 if (r_symndx < symtab_hdr->sh_info)
13741 {
13742 /* A local symbol. */
13743 Elf_Internal_Sym *isym;
13744 asection *sym_sec;
13745
13746 isym = isymbuf + r_symndx;
13747 if (isym->st_shndx == SHN_UNDEF)
13748 sym_sec = bfd_und_section_ptr;
13749 else if (isym->st_shndx == SHN_ABS)
13750 sym_sec = bfd_abs_section_ptr;
13751 else if (isym->st_shndx == SHN_COMMON)
13752 sym_sec = bfd_com_section_ptr;
13753 else
13754 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13755 symval = (isym->st_value
13756 + sym_sec->output_section->vma
13757 + sym_sec->output_offset);
13758 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13759 }
13760 else
13761 {
13762 unsigned long indx;
13763 struct elf_link_hash_entry *h;
13764
13765 /* An external symbol. */
13766 indx = r_symndx - symtab_hdr->sh_info;
13767 h = elf_sym_hashes (abfd)[indx];
13768 BFD_ASSERT (h != NULL);
13769
13770 if (h->root.type != bfd_link_hash_defined
13771 && h->root.type != bfd_link_hash_defweak)
13772 /* This appears to be a reference to an undefined
13773 symbol. Just ignore it -- it will be caught by the
13774 regular reloc processing. */
13775 continue;
13776
13777 symval = (h->root.u.def.value
13778 + h->root.u.def.section->output_section->vma
13779 + h->root.u.def.section->output_offset);
13780 target_is_micromips_code_p = (!h->needs_plt
13781 && ELF_ST_IS_MICROMIPS (h->other));
13782 }
13783
13784
13785 /* For simplicity of coding, we are going to modify the
13786 section contents, the section relocs, and the BFD symbol
13787 table. We must tell the rest of the code not to free up this
13788 information. It would be possible to instead create a table
13789 of changes which have to be made, as is done in coff-mips.c;
13790 that would be more work, but would require less memory when
13791 the linker is run. */
13792
13793 /* Only 32-bit instructions relaxed. */
13794 if (irel->r_offset + 4 > sec->size)
13795 continue;
13796
13797 opcode = bfd_get_micromips_32 (abfd, ptr);
13798
13799 /* This is the pc-relative distance from the instruction the
13800 relocation is applied to, to the symbol referred. */
13801 pcrval = (symval
13802 - (sec->output_section->vma + sec->output_offset)
13803 - irel->r_offset);
13804
13805 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13806 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13807 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13808
13809 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13810
13811 where pcrval has first to be adjusted to apply against the LO16
13812 location (we make the adjustment later on, when we have figured
13813 out the offset). */
13814 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13815 {
13816 bfd_boolean bzc = FALSE;
13817 unsigned long nextopc;
13818 unsigned long reg;
13819 bfd_vma offset;
13820
13821 /* Give up if the previous reloc was a HI16 against this symbol
13822 too. */
13823 if (irel > internal_relocs
13824 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13825 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13826 continue;
13827
13828 /* Or if the next reloc is not a LO16 against this symbol. */
13829 if (irel + 1 >= irelend
13830 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13831 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13832 continue;
13833
13834 /* Or if the second next reloc is a LO16 against this symbol too. */
13835 if (irel + 2 >= irelend
13836 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13837 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13838 continue;
13839
13840 /* See if the LUI instruction *might* be in a branch delay slot.
13841 We check whether what looks like a 16-bit branch or jump is
13842 actually an immediate argument to a compact branch, and let
13843 it through if so. */
13844 if (irel->r_offset >= 2
13845 && check_br16_dslot (abfd, ptr - 2)
13846 && !(irel->r_offset >= 4
13847 && (bzc = check_relocated_bzc (abfd,
13848 ptr - 4, irel->r_offset - 4,
13849 internal_relocs, irelend))))
13850 continue;
13851 if (irel->r_offset >= 4
13852 && !bzc
13853 && check_br32_dslot (abfd, ptr - 4))
13854 continue;
13855
13856 reg = OP32_SREG (opcode);
13857
13858 /* We only relax adjacent instructions or ones separated with
13859 a branch or jump that has a delay slot. The branch or jump
13860 must not fiddle with the register used to hold the address.
13861 Subtract 4 for the LUI itself. */
13862 offset = irel[1].r_offset - irel[0].r_offset;
13863 switch (offset - 4)
13864 {
13865 case 0:
13866 break;
13867 case 2:
13868 if (check_br16 (abfd, ptr + 4, reg))
13869 break;
13870 continue;
13871 case 4:
13872 if (check_br32 (abfd, ptr + 4, reg))
13873 break;
13874 continue;
13875 default:
13876 continue;
13877 }
13878
13879 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13880
13881 /* Give up unless the same register is used with both
13882 relocations. */
13883 if (OP32_SREG (nextopc) != reg)
13884 continue;
13885
13886 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13887 and rounding up to take masking of the two LSBs into account. */
13888 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13889
13890 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13891 if (IS_BITSIZE (symval, 16))
13892 {
13893 /* Fix the relocation's type. */
13894 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13895
13896 /* Instructions using R_MICROMIPS_LO16 have the base or
13897 source register in bits 20:16. This register becomes $0
13898 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13899 nextopc &= ~0x001f0000;
13900 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13901 contents + irel[1].r_offset);
13902 }
13903
13904 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13905 We add 4 to take LUI deletion into account while checking
13906 the PC-relative distance. */
13907 else if (symval % 4 == 0
13908 && IS_BITSIZE (pcrval + 4, 25)
13909 && MATCH (nextopc, addiu_insn)
13910 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13911 && OP16_VALID_REG (OP32_TREG (nextopc)))
13912 {
13913 /* Fix the relocation's type. */
13914 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13915
13916 /* Replace ADDIU with the ADDIUPC version. */
13917 nextopc = (addiupc_insn.match
13918 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13919
13920 bfd_put_micromips_32 (abfd, nextopc,
13921 contents + irel[1].r_offset);
13922 }
13923
13924 /* Can't do anything, give up, sigh... */
13925 else
13926 continue;
13927
13928 /* Fix the relocation's type. */
13929 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13930
13931 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13932 delcnt = 4;
13933 deloff = 0;
13934 }
13935
13936 /* Compact branch relaxation -- due to the multitude of macros
13937 employed by the compiler/assembler, compact branches are not
13938 always generated. Obviously, this can/will be fixed elsewhere,
13939 but there is no drawback in double checking it here. */
13940 else if (r_type == R_MICROMIPS_PC16_S1
13941 && irel->r_offset + 5 < sec->size
13942 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13943 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13944 && ((!insn32
13945 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13946 nop_insn_16) ? 2 : 0))
13947 || (irel->r_offset + 7 < sec->size
13948 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13949 ptr + 4),
13950 nop_insn_32) ? 4 : 0))))
13951 {
13952 unsigned long reg;
13953
13954 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13955
13956 /* Replace BEQZ/BNEZ with the compact version. */
13957 opcode = (bzc_insns_32[fndopc].match
13958 | BZC32_REG_FIELD (reg)
13959 | (opcode & 0xffff)); /* Addend value. */
13960
13961 bfd_put_micromips_32 (abfd, opcode, ptr);
13962
13963 /* Delete the delay slot NOP: two or four bytes from
13964 irel->offset + 4; delcnt has already been set above. */
13965 deloff = 4;
13966 }
13967
13968 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13969 to check the distance from the next instruction, so subtract 2. */
13970 else if (!insn32
13971 && r_type == R_MICROMIPS_PC16_S1
13972 && IS_BITSIZE (pcrval - 2, 11)
13973 && find_match (opcode, b_insns_32) >= 0)
13974 {
13975 /* Fix the relocation's type. */
13976 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13977
13978 /* Replace the 32-bit opcode with a 16-bit opcode. */
13979 bfd_put_16 (abfd,
13980 (b_insn_16.match
13981 | (opcode & 0x3ff)), /* Addend value. */
13982 ptr);
13983
13984 /* Delete 2 bytes from irel->r_offset + 2. */
13985 delcnt = 2;
13986 deloff = 2;
13987 }
13988
13989 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13990 to check the distance from the next instruction, so subtract 2. */
13991 else if (!insn32
13992 && r_type == R_MICROMIPS_PC16_S1
13993 && IS_BITSIZE (pcrval - 2, 8)
13994 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13995 && OP16_VALID_REG (OP32_SREG (opcode)))
13996 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13997 && OP16_VALID_REG (OP32_TREG (opcode)))))
13998 {
13999 unsigned long reg;
14000
14001 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14002
14003 /* Fix the relocation's type. */
14004 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14005
14006 /* Replace the 32-bit opcode with a 16-bit opcode. */
14007 bfd_put_16 (abfd,
14008 (bz_insns_16[fndopc].match
14009 | BZ16_REG_FIELD (reg)
14010 | (opcode & 0x7f)), /* Addend value. */
14011 ptr);
14012
14013 /* Delete 2 bytes from irel->r_offset + 2. */
14014 delcnt = 2;
14015 deloff = 2;
14016 }
14017
14018 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14019 else if (!insn32
14020 && r_type == R_MICROMIPS_26_S1
14021 && target_is_micromips_code_p
14022 && irel->r_offset + 7 < sec->size
14023 && MATCH (opcode, jal_insn_32_bd32))
14024 {
14025 unsigned long n32opc;
14026 bfd_boolean relaxed = FALSE;
14027
14028 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14029
14030 if (MATCH (n32opc, nop_insn_32))
14031 {
14032 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14033 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14034
14035 relaxed = TRUE;
14036 }
14037 else if (find_match (n32opc, move_insns_32) >= 0)
14038 {
14039 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14040 bfd_put_16 (abfd,
14041 (move_insn_16.match
14042 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14043 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14044 ptr + 4);
14045
14046 relaxed = TRUE;
14047 }
14048 /* Other 32-bit instructions relaxable to 16-bit
14049 instructions will be handled here later. */
14050
14051 if (relaxed)
14052 {
14053 /* JAL with 32-bit delay slot that is changed to a JALS
14054 with 16-bit delay slot. */
14055 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14056
14057 /* Delete 2 bytes from irel->r_offset + 6. */
14058 delcnt = 2;
14059 deloff = 6;
14060 }
14061 }
14062
14063 if (delcnt != 0)
14064 {
14065 /* Note that we've changed the relocs, section contents, etc. */
14066 elf_section_data (sec)->relocs = internal_relocs;
14067 elf_section_data (sec)->this_hdr.contents = contents;
14068 symtab_hdr->contents = (unsigned char *) isymbuf;
14069
14070 /* Delete bytes depending on the delcnt and deloff. */
14071 if (!mips_elf_relax_delete_bytes (abfd, sec,
14072 irel->r_offset + deloff, delcnt))
14073 goto error_return;
14074
14075 /* That will change things, so we should relax again.
14076 Note that this is not required, and it may be slow. */
14077 *again = TRUE;
14078 }
14079 }
14080
14081 if (isymbuf != NULL
14082 && symtab_hdr->contents != (unsigned char *) isymbuf)
14083 {
14084 if (! link_info->keep_memory)
14085 free (isymbuf);
14086 else
14087 {
14088 /* Cache the symbols for elf_link_input_bfd. */
14089 symtab_hdr->contents = (unsigned char *) isymbuf;
14090 }
14091 }
14092
14093 if (contents != NULL
14094 && elf_section_data (sec)->this_hdr.contents != contents)
14095 {
14096 if (! link_info->keep_memory)
14097 free (contents);
14098 else
14099 {
14100 /* Cache the section contents for elf_link_input_bfd. */
14101 elf_section_data (sec)->this_hdr.contents = contents;
14102 }
14103 }
14104
14105 if (internal_relocs != NULL
14106 && elf_section_data (sec)->relocs != internal_relocs)
14107 free (internal_relocs);
14108
14109 return TRUE;
14110
14111 error_return:
14112 if (isymbuf != NULL
14113 && symtab_hdr->contents != (unsigned char *) isymbuf)
14114 free (isymbuf);
14115 if (contents != NULL
14116 && elf_section_data (sec)->this_hdr.contents != contents)
14117 free (contents);
14118 if (internal_relocs != NULL
14119 && elf_section_data (sec)->relocs != internal_relocs)
14120 free (internal_relocs);
14121
14122 return FALSE;
14123 }
14124 \f
14125 /* Create a MIPS ELF linker hash table. */
14126
14127 struct bfd_link_hash_table *
14128 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14129 {
14130 struct mips_elf_link_hash_table *ret;
14131 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14132
14133 ret = bfd_zmalloc (amt);
14134 if (ret == NULL)
14135 return NULL;
14136
14137 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14138 mips_elf_link_hash_newfunc,
14139 sizeof (struct mips_elf_link_hash_entry),
14140 MIPS_ELF_DATA))
14141 {
14142 free (ret);
14143 return NULL;
14144 }
14145 ret->root.init_plt_refcount.plist = NULL;
14146 ret->root.init_plt_offset.plist = NULL;
14147
14148 return &ret->root.root;
14149 }
14150
14151 /* Likewise, but indicate that the target is VxWorks. */
14152
14153 struct bfd_link_hash_table *
14154 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14155 {
14156 struct bfd_link_hash_table *ret;
14157
14158 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14159 if (ret)
14160 {
14161 struct mips_elf_link_hash_table *htab;
14162
14163 htab = (struct mips_elf_link_hash_table *) ret;
14164 htab->use_plts_and_copy_relocs = TRUE;
14165 htab->is_vxworks = TRUE;
14166 }
14167 return ret;
14168 }
14169
14170 /* A function that the linker calls if we are allowed to use PLTs
14171 and copy relocs. */
14172
14173 void
14174 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14175 {
14176 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14177 }
14178
14179 /* A function that the linker calls to select between all or only
14180 32-bit microMIPS instructions, and between making or ignoring
14181 branch relocation checks for invalid transitions between ISA modes.
14182 Also record whether we have been configured for a GNU target. */
14183
14184 void
14185 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14186 bfd_boolean ignore_branch_isa,
14187 bfd_boolean gnu_target)
14188 {
14189 mips_elf_hash_table (info)->insn32 = insn32;
14190 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14191 mips_elf_hash_table (info)->gnu_target = gnu_target;
14192 }
14193 \f
14194 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14195
14196 struct mips_mach_extension
14197 {
14198 unsigned long extension, base;
14199 };
14200
14201
14202 /* An array describing how BFD machines relate to one another. The entries
14203 are ordered topologically with MIPS I extensions listed last. */
14204
14205 static const struct mips_mach_extension mips_mach_extensions[] =
14206 {
14207 /* MIPS64r2 extensions. */
14208 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14209 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14210 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14211 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14212 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14213 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14214 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14215
14216 /* MIPS64 extensions. */
14217 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14218 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14219 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14220
14221 /* MIPS V extensions. */
14222 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14223
14224 /* R10000 extensions. */
14225 { bfd_mach_mips12000, bfd_mach_mips10000 },
14226 { bfd_mach_mips14000, bfd_mach_mips10000 },
14227 { bfd_mach_mips16000, bfd_mach_mips10000 },
14228
14229 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14230 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14231 better to allow vr5400 and vr5500 code to be merged anyway, since
14232 many libraries will just use the core ISA. Perhaps we could add
14233 some sort of ASE flag if this ever proves a problem. */
14234 { bfd_mach_mips5500, bfd_mach_mips5400 },
14235 { bfd_mach_mips5400, bfd_mach_mips5000 },
14236
14237 /* MIPS IV extensions. */
14238 { bfd_mach_mips5, bfd_mach_mips8000 },
14239 { bfd_mach_mips10000, bfd_mach_mips8000 },
14240 { bfd_mach_mips5000, bfd_mach_mips8000 },
14241 { bfd_mach_mips7000, bfd_mach_mips8000 },
14242 { bfd_mach_mips9000, bfd_mach_mips8000 },
14243
14244 /* VR4100 extensions. */
14245 { bfd_mach_mips4120, bfd_mach_mips4100 },
14246 { bfd_mach_mips4111, bfd_mach_mips4100 },
14247
14248 /* MIPS III extensions. */
14249 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14250 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14251 { bfd_mach_mips8000, bfd_mach_mips4000 },
14252 { bfd_mach_mips4650, bfd_mach_mips4000 },
14253 { bfd_mach_mips4600, bfd_mach_mips4000 },
14254 { bfd_mach_mips4400, bfd_mach_mips4000 },
14255 { bfd_mach_mips4300, bfd_mach_mips4000 },
14256 { bfd_mach_mips4100, bfd_mach_mips4000 },
14257 { bfd_mach_mips5900, bfd_mach_mips4000 },
14258
14259 /* MIPS32r3 extensions. */
14260 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14261
14262 /* MIPS32r2 extensions. */
14263 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14264
14265 /* MIPS32 extensions. */
14266 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14267
14268 /* MIPS II extensions. */
14269 { bfd_mach_mips4000, bfd_mach_mips6000 },
14270 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14271 { bfd_mach_mips4010, bfd_mach_mips6000 },
14272
14273 /* MIPS I extensions. */
14274 { bfd_mach_mips6000, bfd_mach_mips3000 },
14275 { bfd_mach_mips3900, bfd_mach_mips3000 }
14276 };
14277
14278 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14279
14280 static bfd_boolean
14281 mips_mach_extends_p (unsigned long base, unsigned long extension)
14282 {
14283 size_t i;
14284
14285 if (extension == base)
14286 return TRUE;
14287
14288 if (base == bfd_mach_mipsisa32
14289 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14290 return TRUE;
14291
14292 if (base == bfd_mach_mipsisa32r2
14293 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14294 return TRUE;
14295
14296 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14297 if (extension == mips_mach_extensions[i].extension)
14298 {
14299 extension = mips_mach_extensions[i].base;
14300 if (extension == base)
14301 return TRUE;
14302 }
14303
14304 return FALSE;
14305 }
14306
14307 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14308
14309 static unsigned long
14310 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14311 {
14312 switch (isa_ext)
14313 {
14314 case AFL_EXT_3900: return bfd_mach_mips3900;
14315 case AFL_EXT_4010: return bfd_mach_mips4010;
14316 case AFL_EXT_4100: return bfd_mach_mips4100;
14317 case AFL_EXT_4111: return bfd_mach_mips4111;
14318 case AFL_EXT_4120: return bfd_mach_mips4120;
14319 case AFL_EXT_4650: return bfd_mach_mips4650;
14320 case AFL_EXT_5400: return bfd_mach_mips5400;
14321 case AFL_EXT_5500: return bfd_mach_mips5500;
14322 case AFL_EXT_5900: return bfd_mach_mips5900;
14323 case AFL_EXT_10000: return bfd_mach_mips10000;
14324 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14325 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14326 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14327 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14328 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14329 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14330 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14331 default: return bfd_mach_mips3000;
14332 }
14333 }
14334
14335 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14336
14337 unsigned int
14338 bfd_mips_isa_ext (bfd *abfd)
14339 {
14340 switch (bfd_get_mach (abfd))
14341 {
14342 case bfd_mach_mips3900: return AFL_EXT_3900;
14343 case bfd_mach_mips4010: return AFL_EXT_4010;
14344 case bfd_mach_mips4100: return AFL_EXT_4100;
14345 case bfd_mach_mips4111: return AFL_EXT_4111;
14346 case bfd_mach_mips4120: return AFL_EXT_4120;
14347 case bfd_mach_mips4650: return AFL_EXT_4650;
14348 case bfd_mach_mips5400: return AFL_EXT_5400;
14349 case bfd_mach_mips5500: return AFL_EXT_5500;
14350 case bfd_mach_mips5900: return AFL_EXT_5900;
14351 case bfd_mach_mips10000: return AFL_EXT_10000;
14352 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14353 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14354 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14355 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14356 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14357 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14358 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14359 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14360 case bfd_mach_mips_interaptiv_mr2:
14361 return AFL_EXT_INTERAPTIV_MR2;
14362 default: return 0;
14363 }
14364 }
14365
14366 /* Encode ISA level and revision as a single value. */
14367 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14368
14369 /* Decode a single value into level and revision. */
14370 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14371 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14372
14373 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14374
14375 static void
14376 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14377 {
14378 int new_isa = 0;
14379 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14380 {
14381 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14382 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14383 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14384 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14385 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14386 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14387 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14388 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14389 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14390 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14391 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14392 default:
14393 _bfd_error_handler
14394 /* xgettext:c-format */
14395 (_("%pB: unknown architecture %s"),
14396 abfd, bfd_printable_name (abfd));
14397 }
14398
14399 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14400 {
14401 abiflags->isa_level = ISA_LEVEL (new_isa);
14402 abiflags->isa_rev = ISA_REV (new_isa);
14403 }
14404
14405 /* Update the isa_ext if ABFD describes a further extension. */
14406 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14407 bfd_get_mach (abfd)))
14408 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14409 }
14410
14411 /* Return true if the given ELF header flags describe a 32-bit binary. */
14412
14413 static bfd_boolean
14414 mips_32bit_flags_p (flagword flags)
14415 {
14416 return ((flags & EF_MIPS_32BITMODE) != 0
14417 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14418 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14419 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14420 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14421 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14422 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14423 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14424 }
14425
14426 /* Infer the content of the ABI flags based on the elf header. */
14427
14428 static void
14429 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14430 {
14431 obj_attribute *in_attr;
14432
14433 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14434 update_mips_abiflags_isa (abfd, abiflags);
14435
14436 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14437 abiflags->gpr_size = AFL_REG_32;
14438 else
14439 abiflags->gpr_size = AFL_REG_64;
14440
14441 abiflags->cpr1_size = AFL_REG_NONE;
14442
14443 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14444 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14445
14446 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14447 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14448 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14449 && abiflags->gpr_size == AFL_REG_32))
14450 abiflags->cpr1_size = AFL_REG_32;
14451 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14452 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14453 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14454 abiflags->cpr1_size = AFL_REG_64;
14455
14456 abiflags->cpr2_size = AFL_REG_NONE;
14457
14458 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14459 abiflags->ases |= AFL_ASE_MDMX;
14460 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14461 abiflags->ases |= AFL_ASE_MIPS16;
14462 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14463 abiflags->ases |= AFL_ASE_MICROMIPS;
14464
14465 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14466 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14467 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14468 && abiflags->isa_level >= 32
14469 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14470 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14471 }
14472
14473 /* We need to use a special link routine to handle the .reginfo and
14474 the .mdebug sections. We need to merge all instances of these
14475 sections together, not write them all out sequentially. */
14476
14477 bfd_boolean
14478 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14479 {
14480 asection *o;
14481 struct bfd_link_order *p;
14482 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14483 asection *rtproc_sec, *abiflags_sec;
14484 Elf32_RegInfo reginfo;
14485 struct ecoff_debug_info debug;
14486 struct mips_htab_traverse_info hti;
14487 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14488 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14489 HDRR *symhdr = &debug.symbolic_header;
14490 void *mdebug_handle = NULL;
14491 asection *s;
14492 EXTR esym;
14493 unsigned int i;
14494 bfd_size_type amt;
14495 struct mips_elf_link_hash_table *htab;
14496
14497 static const char * const secname[] =
14498 {
14499 ".text", ".init", ".fini", ".data",
14500 ".rodata", ".sdata", ".sbss", ".bss"
14501 };
14502 static const int sc[] =
14503 {
14504 scText, scInit, scFini, scData,
14505 scRData, scSData, scSBss, scBss
14506 };
14507
14508 htab = mips_elf_hash_table (info);
14509 BFD_ASSERT (htab != NULL);
14510
14511 /* Sort the dynamic symbols so that those with GOT entries come after
14512 those without. */
14513 if (!mips_elf_sort_hash_table (abfd, info))
14514 return FALSE;
14515
14516 /* Create any scheduled LA25 stubs. */
14517 hti.info = info;
14518 hti.output_bfd = abfd;
14519 hti.error = FALSE;
14520 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14521 if (hti.error)
14522 return FALSE;
14523
14524 /* Get a value for the GP register. */
14525 if (elf_gp (abfd) == 0)
14526 {
14527 struct bfd_link_hash_entry *h;
14528
14529 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14530 if (h != NULL && h->type == bfd_link_hash_defined)
14531 elf_gp (abfd) = (h->u.def.value
14532 + h->u.def.section->output_section->vma
14533 + h->u.def.section->output_offset);
14534 else if (htab->is_vxworks
14535 && (h = bfd_link_hash_lookup (info->hash,
14536 "_GLOBAL_OFFSET_TABLE_",
14537 FALSE, FALSE, TRUE))
14538 && h->type == bfd_link_hash_defined)
14539 elf_gp (abfd) = (h->u.def.section->output_section->vma
14540 + h->u.def.section->output_offset
14541 + h->u.def.value);
14542 else if (bfd_link_relocatable (info))
14543 {
14544 bfd_vma lo = MINUS_ONE;
14545
14546 /* Find the GP-relative section with the lowest offset. */
14547 for (o = abfd->sections; o != NULL; o = o->next)
14548 if (o->vma < lo
14549 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14550 lo = o->vma;
14551
14552 /* And calculate GP relative to that. */
14553 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14554 }
14555 else
14556 {
14557 /* If the relocate_section function needs to do a reloc
14558 involving the GP value, it should make a reloc_dangerous
14559 callback to warn that GP is not defined. */
14560 }
14561 }
14562
14563 /* Go through the sections and collect the .reginfo and .mdebug
14564 information. */
14565 abiflags_sec = NULL;
14566 reginfo_sec = NULL;
14567 mdebug_sec = NULL;
14568 gptab_data_sec = NULL;
14569 gptab_bss_sec = NULL;
14570 for (o = abfd->sections; o != NULL; o = o->next)
14571 {
14572 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14573 {
14574 /* We have found the .MIPS.abiflags section in the output file.
14575 Look through all the link_orders comprising it and remove them.
14576 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14577 for (p = o->map_head.link_order; p != NULL; p = p->next)
14578 {
14579 asection *input_section;
14580
14581 if (p->type != bfd_indirect_link_order)
14582 {
14583 if (p->type == bfd_data_link_order)
14584 continue;
14585 abort ();
14586 }
14587
14588 input_section = p->u.indirect.section;
14589
14590 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14591 elf_link_input_bfd ignores this section. */
14592 input_section->flags &= ~SEC_HAS_CONTENTS;
14593 }
14594
14595 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14596 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14597
14598 /* Skip this section later on (I don't think this currently
14599 matters, but someday it might). */
14600 o->map_head.link_order = NULL;
14601
14602 abiflags_sec = o;
14603 }
14604
14605 if (strcmp (o->name, ".reginfo") == 0)
14606 {
14607 memset (&reginfo, 0, sizeof reginfo);
14608
14609 /* We have found the .reginfo section in the output file.
14610 Look through all the link_orders comprising it and merge
14611 the information together. */
14612 for (p = o->map_head.link_order; p != NULL; p = p->next)
14613 {
14614 asection *input_section;
14615 bfd *input_bfd;
14616 Elf32_External_RegInfo ext;
14617 Elf32_RegInfo sub;
14618 bfd_size_type sz;
14619
14620 if (p->type != bfd_indirect_link_order)
14621 {
14622 if (p->type == bfd_data_link_order)
14623 continue;
14624 abort ();
14625 }
14626
14627 input_section = p->u.indirect.section;
14628 input_bfd = input_section->owner;
14629
14630 sz = (input_section->size < sizeof (ext)
14631 ? input_section->size : sizeof (ext));
14632 memset (&ext, 0, sizeof (ext));
14633 if (! bfd_get_section_contents (input_bfd, input_section,
14634 &ext, 0, sz))
14635 return FALSE;
14636
14637 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14638
14639 reginfo.ri_gprmask |= sub.ri_gprmask;
14640 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14641 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14642 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14643 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14644
14645 /* ri_gp_value is set by the function
14646 `_bfd_mips_elf_section_processing' when the section is
14647 finally written out. */
14648
14649 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14650 elf_link_input_bfd ignores this section. */
14651 input_section->flags &= ~SEC_HAS_CONTENTS;
14652 }
14653
14654 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14655 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14656
14657 /* Skip this section later on (I don't think this currently
14658 matters, but someday it might). */
14659 o->map_head.link_order = NULL;
14660
14661 reginfo_sec = o;
14662 }
14663
14664 if (strcmp (o->name, ".mdebug") == 0)
14665 {
14666 struct extsym_info einfo;
14667 bfd_vma last;
14668
14669 /* We have found the .mdebug section in the output file.
14670 Look through all the link_orders comprising it and merge
14671 the information together. */
14672 symhdr->magic = swap->sym_magic;
14673 /* FIXME: What should the version stamp be? */
14674 symhdr->vstamp = 0;
14675 symhdr->ilineMax = 0;
14676 symhdr->cbLine = 0;
14677 symhdr->idnMax = 0;
14678 symhdr->ipdMax = 0;
14679 symhdr->isymMax = 0;
14680 symhdr->ioptMax = 0;
14681 symhdr->iauxMax = 0;
14682 symhdr->issMax = 0;
14683 symhdr->issExtMax = 0;
14684 symhdr->ifdMax = 0;
14685 symhdr->crfd = 0;
14686 symhdr->iextMax = 0;
14687
14688 /* We accumulate the debugging information itself in the
14689 debug_info structure. */
14690 debug.line = NULL;
14691 debug.external_dnr = NULL;
14692 debug.external_pdr = NULL;
14693 debug.external_sym = NULL;
14694 debug.external_opt = NULL;
14695 debug.external_aux = NULL;
14696 debug.ss = NULL;
14697 debug.ssext = debug.ssext_end = NULL;
14698 debug.external_fdr = NULL;
14699 debug.external_rfd = NULL;
14700 debug.external_ext = debug.external_ext_end = NULL;
14701
14702 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14703 if (mdebug_handle == NULL)
14704 return FALSE;
14705
14706 esym.jmptbl = 0;
14707 esym.cobol_main = 0;
14708 esym.weakext = 0;
14709 esym.reserved = 0;
14710 esym.ifd = ifdNil;
14711 esym.asym.iss = issNil;
14712 esym.asym.st = stLocal;
14713 esym.asym.reserved = 0;
14714 esym.asym.index = indexNil;
14715 last = 0;
14716 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14717 {
14718 esym.asym.sc = sc[i];
14719 s = bfd_get_section_by_name (abfd, secname[i]);
14720 if (s != NULL)
14721 {
14722 esym.asym.value = s->vma;
14723 last = s->vma + s->size;
14724 }
14725 else
14726 esym.asym.value = last;
14727 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14728 secname[i], &esym))
14729 return FALSE;
14730 }
14731
14732 for (p = o->map_head.link_order; p != NULL; p = p->next)
14733 {
14734 asection *input_section;
14735 bfd *input_bfd;
14736 const struct ecoff_debug_swap *input_swap;
14737 struct ecoff_debug_info input_debug;
14738 char *eraw_src;
14739 char *eraw_end;
14740
14741 if (p->type != bfd_indirect_link_order)
14742 {
14743 if (p->type == bfd_data_link_order)
14744 continue;
14745 abort ();
14746 }
14747
14748 input_section = p->u.indirect.section;
14749 input_bfd = input_section->owner;
14750
14751 if (!is_mips_elf (input_bfd))
14752 {
14753 /* I don't know what a non MIPS ELF bfd would be
14754 doing with a .mdebug section, but I don't really
14755 want to deal with it. */
14756 continue;
14757 }
14758
14759 input_swap = (get_elf_backend_data (input_bfd)
14760 ->elf_backend_ecoff_debug_swap);
14761
14762 BFD_ASSERT (p->size == input_section->size);
14763
14764 /* The ECOFF linking code expects that we have already
14765 read in the debugging information and set up an
14766 ecoff_debug_info structure, so we do that now. */
14767 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14768 &input_debug))
14769 return FALSE;
14770
14771 if (! (bfd_ecoff_debug_accumulate
14772 (mdebug_handle, abfd, &debug, swap, input_bfd,
14773 &input_debug, input_swap, info)))
14774 return FALSE;
14775
14776 /* Loop through the external symbols. For each one with
14777 interesting information, try to find the symbol in
14778 the linker global hash table and save the information
14779 for the output external symbols. */
14780 eraw_src = input_debug.external_ext;
14781 eraw_end = (eraw_src
14782 + (input_debug.symbolic_header.iextMax
14783 * input_swap->external_ext_size));
14784 for (;
14785 eraw_src < eraw_end;
14786 eraw_src += input_swap->external_ext_size)
14787 {
14788 EXTR ext;
14789 const char *name;
14790 struct mips_elf_link_hash_entry *h;
14791
14792 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14793 if (ext.asym.sc == scNil
14794 || ext.asym.sc == scUndefined
14795 || ext.asym.sc == scSUndefined)
14796 continue;
14797
14798 name = input_debug.ssext + ext.asym.iss;
14799 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14800 name, FALSE, FALSE, TRUE);
14801 if (h == NULL || h->esym.ifd != -2)
14802 continue;
14803
14804 if (ext.ifd != -1)
14805 {
14806 BFD_ASSERT (ext.ifd
14807 < input_debug.symbolic_header.ifdMax);
14808 ext.ifd = input_debug.ifdmap[ext.ifd];
14809 }
14810
14811 h->esym = ext;
14812 }
14813
14814 /* Free up the information we just read. */
14815 free (input_debug.line);
14816 free (input_debug.external_dnr);
14817 free (input_debug.external_pdr);
14818 free (input_debug.external_sym);
14819 free (input_debug.external_opt);
14820 free (input_debug.external_aux);
14821 free (input_debug.ss);
14822 free (input_debug.ssext);
14823 free (input_debug.external_fdr);
14824 free (input_debug.external_rfd);
14825 free (input_debug.external_ext);
14826
14827 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14828 elf_link_input_bfd ignores this section. */
14829 input_section->flags &= ~SEC_HAS_CONTENTS;
14830 }
14831
14832 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14833 {
14834 /* Create .rtproc section. */
14835 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14836 if (rtproc_sec == NULL)
14837 {
14838 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14839 | SEC_LINKER_CREATED | SEC_READONLY);
14840
14841 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14842 ".rtproc",
14843 flags);
14844 if (rtproc_sec == NULL
14845 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14846 return FALSE;
14847 }
14848
14849 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14850 info, rtproc_sec,
14851 &debug))
14852 return FALSE;
14853 }
14854
14855 /* Build the external symbol information. */
14856 einfo.abfd = abfd;
14857 einfo.info = info;
14858 einfo.debug = &debug;
14859 einfo.swap = swap;
14860 einfo.failed = FALSE;
14861 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14862 mips_elf_output_extsym, &einfo);
14863 if (einfo.failed)
14864 return FALSE;
14865
14866 /* Set the size of the .mdebug section. */
14867 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14868
14869 /* Skip this section later on (I don't think this currently
14870 matters, but someday it might). */
14871 o->map_head.link_order = NULL;
14872
14873 mdebug_sec = o;
14874 }
14875
14876 if (CONST_STRNEQ (o->name, ".gptab."))
14877 {
14878 const char *subname;
14879 unsigned int c;
14880 Elf32_gptab *tab;
14881 Elf32_External_gptab *ext_tab;
14882 unsigned int j;
14883
14884 /* The .gptab.sdata and .gptab.sbss sections hold
14885 information describing how the small data area would
14886 change depending upon the -G switch. These sections
14887 not used in executables files. */
14888 if (! bfd_link_relocatable (info))
14889 {
14890 for (p = o->map_head.link_order; p != NULL; p = p->next)
14891 {
14892 asection *input_section;
14893
14894 if (p->type != bfd_indirect_link_order)
14895 {
14896 if (p->type == bfd_data_link_order)
14897 continue;
14898 abort ();
14899 }
14900
14901 input_section = p->u.indirect.section;
14902
14903 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14904 elf_link_input_bfd ignores this section. */
14905 input_section->flags &= ~SEC_HAS_CONTENTS;
14906 }
14907
14908 /* Skip this section later on (I don't think this
14909 currently matters, but someday it might). */
14910 o->map_head.link_order = NULL;
14911
14912 /* Really remove the section. */
14913 bfd_section_list_remove (abfd, o);
14914 --abfd->section_count;
14915
14916 continue;
14917 }
14918
14919 /* There is one gptab for initialized data, and one for
14920 uninitialized data. */
14921 if (strcmp (o->name, ".gptab.sdata") == 0)
14922 gptab_data_sec = o;
14923 else if (strcmp (o->name, ".gptab.sbss") == 0)
14924 gptab_bss_sec = o;
14925 else
14926 {
14927 _bfd_error_handler
14928 /* xgettext:c-format */
14929 (_("%pB: illegal section name `%pA'"), abfd, o);
14930 bfd_set_error (bfd_error_nonrepresentable_section);
14931 return FALSE;
14932 }
14933
14934 /* The linker script always combines .gptab.data and
14935 .gptab.sdata into .gptab.sdata, and likewise for
14936 .gptab.bss and .gptab.sbss. It is possible that there is
14937 no .sdata or .sbss section in the output file, in which
14938 case we must change the name of the output section. */
14939 subname = o->name + sizeof ".gptab" - 1;
14940 if (bfd_get_section_by_name (abfd, subname) == NULL)
14941 {
14942 if (o == gptab_data_sec)
14943 o->name = ".gptab.data";
14944 else
14945 o->name = ".gptab.bss";
14946 subname = o->name + sizeof ".gptab" - 1;
14947 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14948 }
14949
14950 /* Set up the first entry. */
14951 c = 1;
14952 amt = c * sizeof (Elf32_gptab);
14953 tab = bfd_malloc (amt);
14954 if (tab == NULL)
14955 return FALSE;
14956 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14957 tab[0].gt_header.gt_unused = 0;
14958
14959 /* Combine the input sections. */
14960 for (p = o->map_head.link_order; p != NULL; p = p->next)
14961 {
14962 asection *input_section;
14963 bfd *input_bfd;
14964 bfd_size_type size;
14965 unsigned long last;
14966 bfd_size_type gpentry;
14967
14968 if (p->type != bfd_indirect_link_order)
14969 {
14970 if (p->type == bfd_data_link_order)
14971 continue;
14972 abort ();
14973 }
14974
14975 input_section = p->u.indirect.section;
14976 input_bfd = input_section->owner;
14977
14978 /* Combine the gptab entries for this input section one
14979 by one. We know that the input gptab entries are
14980 sorted by ascending -G value. */
14981 size = input_section->size;
14982 last = 0;
14983 for (gpentry = sizeof (Elf32_External_gptab);
14984 gpentry < size;
14985 gpentry += sizeof (Elf32_External_gptab))
14986 {
14987 Elf32_External_gptab ext_gptab;
14988 Elf32_gptab int_gptab;
14989 unsigned long val;
14990 unsigned long add;
14991 bfd_boolean exact;
14992 unsigned int look;
14993
14994 if (! (bfd_get_section_contents
14995 (input_bfd, input_section, &ext_gptab, gpentry,
14996 sizeof (Elf32_External_gptab))))
14997 {
14998 free (tab);
14999 return FALSE;
15000 }
15001
15002 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15003 &int_gptab);
15004 val = int_gptab.gt_entry.gt_g_value;
15005 add = int_gptab.gt_entry.gt_bytes - last;
15006
15007 exact = FALSE;
15008 for (look = 1; look < c; look++)
15009 {
15010 if (tab[look].gt_entry.gt_g_value >= val)
15011 tab[look].gt_entry.gt_bytes += add;
15012
15013 if (tab[look].gt_entry.gt_g_value == val)
15014 exact = TRUE;
15015 }
15016
15017 if (! exact)
15018 {
15019 Elf32_gptab *new_tab;
15020 unsigned int max;
15021
15022 /* We need a new table entry. */
15023 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15024 new_tab = bfd_realloc (tab, amt);
15025 if (new_tab == NULL)
15026 {
15027 free (tab);
15028 return FALSE;
15029 }
15030 tab = new_tab;
15031 tab[c].gt_entry.gt_g_value = val;
15032 tab[c].gt_entry.gt_bytes = add;
15033
15034 /* Merge in the size for the next smallest -G
15035 value, since that will be implied by this new
15036 value. */
15037 max = 0;
15038 for (look = 1; look < c; look++)
15039 {
15040 if (tab[look].gt_entry.gt_g_value < val
15041 && (max == 0
15042 || (tab[look].gt_entry.gt_g_value
15043 > tab[max].gt_entry.gt_g_value)))
15044 max = look;
15045 }
15046 if (max != 0)
15047 tab[c].gt_entry.gt_bytes +=
15048 tab[max].gt_entry.gt_bytes;
15049
15050 ++c;
15051 }
15052
15053 last = int_gptab.gt_entry.gt_bytes;
15054 }
15055
15056 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15057 elf_link_input_bfd ignores this section. */
15058 input_section->flags &= ~SEC_HAS_CONTENTS;
15059 }
15060
15061 /* The table must be sorted by -G value. */
15062 if (c > 2)
15063 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15064
15065 /* Swap out the table. */
15066 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15067 ext_tab = bfd_alloc (abfd, amt);
15068 if (ext_tab == NULL)
15069 {
15070 free (tab);
15071 return FALSE;
15072 }
15073
15074 for (j = 0; j < c; j++)
15075 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15076 free (tab);
15077
15078 o->size = c * sizeof (Elf32_External_gptab);
15079 o->contents = (bfd_byte *) ext_tab;
15080
15081 /* Skip this section later on (I don't think this currently
15082 matters, but someday it might). */
15083 o->map_head.link_order = NULL;
15084 }
15085 }
15086
15087 /* Invoke the regular ELF backend linker to do all the work. */
15088 if (!bfd_elf_final_link (abfd, info))
15089 return FALSE;
15090
15091 /* Now write out the computed sections. */
15092
15093 if (abiflags_sec != NULL)
15094 {
15095 Elf_External_ABIFlags_v0 ext;
15096 Elf_Internal_ABIFlags_v0 *abiflags;
15097
15098 abiflags = &mips_elf_tdata (abfd)->abiflags;
15099
15100 /* Set up the abiflags if no valid input sections were found. */
15101 if (!mips_elf_tdata (abfd)->abiflags_valid)
15102 {
15103 infer_mips_abiflags (abfd, abiflags);
15104 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15105 }
15106 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15107 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15108 return FALSE;
15109 }
15110
15111 if (reginfo_sec != NULL)
15112 {
15113 Elf32_External_RegInfo ext;
15114
15115 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15116 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15117 return FALSE;
15118 }
15119
15120 if (mdebug_sec != NULL)
15121 {
15122 BFD_ASSERT (abfd->output_has_begun);
15123 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15124 swap, info,
15125 mdebug_sec->filepos))
15126 return FALSE;
15127
15128 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15129 }
15130
15131 if (gptab_data_sec != NULL)
15132 {
15133 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15134 gptab_data_sec->contents,
15135 0, gptab_data_sec->size))
15136 return FALSE;
15137 }
15138
15139 if (gptab_bss_sec != NULL)
15140 {
15141 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15142 gptab_bss_sec->contents,
15143 0, gptab_bss_sec->size))
15144 return FALSE;
15145 }
15146
15147 if (SGI_COMPAT (abfd))
15148 {
15149 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15150 if (rtproc_sec != NULL)
15151 {
15152 if (! bfd_set_section_contents (abfd, rtproc_sec,
15153 rtproc_sec->contents,
15154 0, rtproc_sec->size))
15155 return FALSE;
15156 }
15157 }
15158
15159 return TRUE;
15160 }
15161 \f
15162 /* Merge object file header flags from IBFD into OBFD. Raise an error
15163 if there are conflicting settings. */
15164
15165 static bfd_boolean
15166 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15167 {
15168 bfd *obfd = info->output_bfd;
15169 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15170 flagword old_flags;
15171 flagword new_flags;
15172 bfd_boolean ok;
15173
15174 new_flags = elf_elfheader (ibfd)->e_flags;
15175 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15176 old_flags = elf_elfheader (obfd)->e_flags;
15177
15178 /* Check flag compatibility. */
15179
15180 new_flags &= ~EF_MIPS_NOREORDER;
15181 old_flags &= ~EF_MIPS_NOREORDER;
15182
15183 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15184 doesn't seem to matter. */
15185 new_flags &= ~EF_MIPS_XGOT;
15186 old_flags &= ~EF_MIPS_XGOT;
15187
15188 /* MIPSpro generates ucode info in n64 objects. Again, we should
15189 just be able to ignore this. */
15190 new_flags &= ~EF_MIPS_UCODE;
15191 old_flags &= ~EF_MIPS_UCODE;
15192
15193 /* DSOs should only be linked with CPIC code. */
15194 if ((ibfd->flags & DYNAMIC) != 0)
15195 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15196
15197 if (new_flags == old_flags)
15198 return TRUE;
15199
15200 ok = TRUE;
15201
15202 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15203 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15204 {
15205 _bfd_error_handler
15206 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15207 ibfd);
15208 ok = TRUE;
15209 }
15210
15211 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15212 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15213 if (! (new_flags & EF_MIPS_PIC))
15214 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15215
15216 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15217 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15218
15219 /* Compare the ISAs. */
15220 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15221 {
15222 _bfd_error_handler
15223 (_("%pB: linking 32-bit code with 64-bit code"),
15224 ibfd);
15225 ok = FALSE;
15226 }
15227 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15228 {
15229 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15230 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15231 {
15232 /* Copy the architecture info from IBFD to OBFD. Also copy
15233 the 32-bit flag (if set) so that we continue to recognise
15234 OBFD as a 32-bit binary. */
15235 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15236 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15237 elf_elfheader (obfd)->e_flags
15238 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15239
15240 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15241 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15242
15243 /* Copy across the ABI flags if OBFD doesn't use them
15244 and if that was what caused us to treat IBFD as 32-bit. */
15245 if ((old_flags & EF_MIPS_ABI) == 0
15246 && mips_32bit_flags_p (new_flags)
15247 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15248 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15249 }
15250 else
15251 {
15252 /* The ISAs aren't compatible. */
15253 _bfd_error_handler
15254 /* xgettext:c-format */
15255 (_("%pB: linking %s module with previous %s modules"),
15256 ibfd,
15257 bfd_printable_name (ibfd),
15258 bfd_printable_name (obfd));
15259 ok = FALSE;
15260 }
15261 }
15262
15263 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15264 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15265
15266 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15267 does set EI_CLASS differently from any 32-bit ABI. */
15268 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15269 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15270 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15271 {
15272 /* Only error if both are set (to different values). */
15273 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15274 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15275 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15276 {
15277 _bfd_error_handler
15278 /* xgettext:c-format */
15279 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15280 ibfd,
15281 elf_mips_abi_name (ibfd),
15282 elf_mips_abi_name (obfd));
15283 ok = FALSE;
15284 }
15285 new_flags &= ~EF_MIPS_ABI;
15286 old_flags &= ~EF_MIPS_ABI;
15287 }
15288
15289 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15290 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15291 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15292 {
15293 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15294 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15295 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15296 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15297 int micro_mis = old_m16 && new_micro;
15298 int m16_mis = old_micro && new_m16;
15299
15300 if (m16_mis || micro_mis)
15301 {
15302 _bfd_error_handler
15303 /* xgettext:c-format */
15304 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15305 ibfd,
15306 m16_mis ? "MIPS16" : "microMIPS",
15307 m16_mis ? "microMIPS" : "MIPS16");
15308 ok = FALSE;
15309 }
15310
15311 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15312
15313 new_flags &= ~ EF_MIPS_ARCH_ASE;
15314 old_flags &= ~ EF_MIPS_ARCH_ASE;
15315 }
15316
15317 /* Compare NaN encodings. */
15318 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15319 {
15320 /* xgettext:c-format */
15321 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15322 ibfd,
15323 (new_flags & EF_MIPS_NAN2008
15324 ? "-mnan=2008" : "-mnan=legacy"),
15325 (old_flags & EF_MIPS_NAN2008
15326 ? "-mnan=2008" : "-mnan=legacy"));
15327 ok = FALSE;
15328 new_flags &= ~EF_MIPS_NAN2008;
15329 old_flags &= ~EF_MIPS_NAN2008;
15330 }
15331
15332 /* Compare FP64 state. */
15333 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15334 {
15335 /* xgettext:c-format */
15336 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15337 ibfd,
15338 (new_flags & EF_MIPS_FP64
15339 ? "-mfp64" : "-mfp32"),
15340 (old_flags & EF_MIPS_FP64
15341 ? "-mfp64" : "-mfp32"));
15342 ok = FALSE;
15343 new_flags &= ~EF_MIPS_FP64;
15344 old_flags &= ~EF_MIPS_FP64;
15345 }
15346
15347 /* Warn about any other mismatches */
15348 if (new_flags != old_flags)
15349 {
15350 /* xgettext:c-format */
15351 _bfd_error_handler
15352 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15353 "(%#x)"),
15354 ibfd, new_flags, old_flags);
15355 ok = FALSE;
15356 }
15357
15358 return ok;
15359 }
15360
15361 /* Merge object attributes from IBFD into OBFD. Raise an error if
15362 there are conflicting attributes. */
15363 static bfd_boolean
15364 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15365 {
15366 bfd *obfd = info->output_bfd;
15367 obj_attribute *in_attr;
15368 obj_attribute *out_attr;
15369 bfd *abi_fp_bfd;
15370 bfd *abi_msa_bfd;
15371
15372 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15373 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15374 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15375 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15376
15377 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15378 if (!abi_msa_bfd
15379 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15380 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15381
15382 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15383 {
15384 /* This is the first object. Copy the attributes. */
15385 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15386
15387 /* Use the Tag_null value to indicate the attributes have been
15388 initialized. */
15389 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15390
15391 return TRUE;
15392 }
15393
15394 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15395 non-conflicting ones. */
15396 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15397 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15398 {
15399 int out_fp, in_fp;
15400
15401 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15402 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15403 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15404 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15405 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15406 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15407 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15408 || in_fp == Val_GNU_MIPS_ABI_FP_64
15409 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15410 {
15411 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15412 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15413 }
15414 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15415 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15416 || out_fp == Val_GNU_MIPS_ABI_FP_64
15417 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15418 /* Keep the current setting. */;
15419 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15420 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15421 {
15422 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15423 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15424 }
15425 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15426 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15427 /* Keep the current setting. */;
15428 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15429 {
15430 const char *out_string, *in_string;
15431
15432 out_string = _bfd_mips_fp_abi_string (out_fp);
15433 in_string = _bfd_mips_fp_abi_string (in_fp);
15434 /* First warn about cases involving unrecognised ABIs. */
15435 if (!out_string && !in_string)
15436 /* xgettext:c-format */
15437 _bfd_error_handler
15438 (_("warning: %pB uses unknown floating point ABI %d "
15439 "(set by %pB), %pB uses unknown floating point ABI %d"),
15440 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15441 else if (!out_string)
15442 _bfd_error_handler
15443 /* xgettext:c-format */
15444 (_("warning: %pB uses unknown floating point ABI %d "
15445 "(set by %pB), %pB uses %s"),
15446 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15447 else if (!in_string)
15448 _bfd_error_handler
15449 /* xgettext:c-format */
15450 (_("warning: %pB uses %s (set by %pB), "
15451 "%pB uses unknown floating point ABI %d"),
15452 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15453 else
15454 {
15455 /* If one of the bfds is soft-float, the other must be
15456 hard-float. The exact choice of hard-float ABI isn't
15457 really relevant to the error message. */
15458 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15459 out_string = "-mhard-float";
15460 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15461 in_string = "-mhard-float";
15462 _bfd_error_handler
15463 /* xgettext:c-format */
15464 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15465 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15466 }
15467 }
15468 }
15469
15470 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15471 non-conflicting ones. */
15472 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15473 {
15474 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15475 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15476 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15477 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15478 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15479 {
15480 case Val_GNU_MIPS_ABI_MSA_128:
15481 _bfd_error_handler
15482 /* xgettext:c-format */
15483 (_("warning: %pB uses %s (set by %pB), "
15484 "%pB uses unknown MSA ABI %d"),
15485 obfd, "-mmsa", abi_msa_bfd,
15486 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15487 break;
15488
15489 default:
15490 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15491 {
15492 case Val_GNU_MIPS_ABI_MSA_128:
15493 _bfd_error_handler
15494 /* xgettext:c-format */
15495 (_("warning: %pB uses unknown MSA ABI %d "
15496 "(set by %pB), %pB uses %s"),
15497 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15498 abi_msa_bfd, ibfd, "-mmsa");
15499 break;
15500
15501 default:
15502 _bfd_error_handler
15503 /* xgettext:c-format */
15504 (_("warning: %pB uses unknown MSA ABI %d "
15505 "(set by %pB), %pB uses unknown MSA ABI %d"),
15506 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15507 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15508 break;
15509 }
15510 }
15511 }
15512
15513 /* Merge Tag_compatibility attributes and any common GNU ones. */
15514 return _bfd_elf_merge_object_attributes (ibfd, info);
15515 }
15516
15517 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15518 there are conflicting settings. */
15519
15520 static bfd_boolean
15521 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15522 {
15523 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15524 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15525 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15526
15527 /* Update the output abiflags fp_abi using the computed fp_abi. */
15528 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15529
15530 #define max(a, b) ((a) > (b) ? (a) : (b))
15531 /* Merge abiflags. */
15532 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15533 in_tdata->abiflags.isa_level);
15534 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15535 in_tdata->abiflags.isa_rev);
15536 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15537 in_tdata->abiflags.gpr_size);
15538 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15539 in_tdata->abiflags.cpr1_size);
15540 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15541 in_tdata->abiflags.cpr2_size);
15542 #undef max
15543 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15544 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15545
15546 return TRUE;
15547 }
15548
15549 /* Merge backend specific data from an object file to the output
15550 object file when linking. */
15551
15552 bfd_boolean
15553 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15554 {
15555 bfd *obfd = info->output_bfd;
15556 struct mips_elf_obj_tdata *out_tdata;
15557 struct mips_elf_obj_tdata *in_tdata;
15558 bfd_boolean null_input_bfd = TRUE;
15559 asection *sec;
15560 bfd_boolean ok;
15561
15562 /* Check if we have the same endianness. */
15563 if (! _bfd_generic_verify_endian_match (ibfd, info))
15564 {
15565 _bfd_error_handler
15566 (_("%pB: endianness incompatible with that of the selected emulation"),
15567 ibfd);
15568 return FALSE;
15569 }
15570
15571 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15572 return TRUE;
15573
15574 in_tdata = mips_elf_tdata (ibfd);
15575 out_tdata = mips_elf_tdata (obfd);
15576
15577 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15578 {
15579 _bfd_error_handler
15580 (_("%pB: ABI is incompatible with that of the selected emulation"),
15581 ibfd);
15582 return FALSE;
15583 }
15584
15585 /* Check to see if the input BFD actually contains any sections. If not,
15586 then it has no attributes, and its flags may not have been initialized
15587 either, but it cannot actually cause any incompatibility. */
15588 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15589 {
15590 /* Ignore synthetic sections and empty .text, .data and .bss sections
15591 which are automatically generated by gas. Also ignore fake
15592 (s)common sections, since merely defining a common symbol does
15593 not affect compatibility. */
15594 if ((sec->flags & SEC_IS_COMMON) == 0
15595 && strcmp (sec->name, ".reginfo")
15596 && strcmp (sec->name, ".mdebug")
15597 && (sec->size != 0
15598 || (strcmp (sec->name, ".text")
15599 && strcmp (sec->name, ".data")
15600 && strcmp (sec->name, ".bss"))))
15601 {
15602 null_input_bfd = FALSE;
15603 break;
15604 }
15605 }
15606 if (null_input_bfd)
15607 return TRUE;
15608
15609 /* Populate abiflags using existing information. */
15610 if (in_tdata->abiflags_valid)
15611 {
15612 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15613 Elf_Internal_ABIFlags_v0 in_abiflags;
15614 Elf_Internal_ABIFlags_v0 abiflags;
15615
15616 /* Set up the FP ABI attribute from the abiflags if it is not already
15617 set. */
15618 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15619 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15620
15621 infer_mips_abiflags (ibfd, &abiflags);
15622 in_abiflags = in_tdata->abiflags;
15623
15624 /* It is not possible to infer the correct ISA revision
15625 for R3 or R5 so drop down to R2 for the checks. */
15626 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15627 in_abiflags.isa_rev = 2;
15628
15629 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15630 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15631 _bfd_error_handler
15632 (_("%pB: warning: inconsistent ISA between e_flags and "
15633 ".MIPS.abiflags"), ibfd);
15634 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15635 && in_abiflags.fp_abi != abiflags.fp_abi)
15636 _bfd_error_handler
15637 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15638 ".MIPS.abiflags"), ibfd);
15639 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15640 _bfd_error_handler
15641 (_("%pB: warning: inconsistent ASEs between e_flags and "
15642 ".MIPS.abiflags"), ibfd);
15643 /* The isa_ext is allowed to be an extension of what can be inferred
15644 from e_flags. */
15645 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15646 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15647 _bfd_error_handler
15648 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15649 ".MIPS.abiflags"), ibfd);
15650 if (in_abiflags.flags2 != 0)
15651 _bfd_error_handler
15652 (_("%pB: warning: unexpected flag in the flags2 field of "
15653 ".MIPS.abiflags (0x%lx)"), ibfd,
15654 in_abiflags.flags2);
15655 }
15656 else
15657 {
15658 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15659 in_tdata->abiflags_valid = TRUE;
15660 }
15661
15662 if (!out_tdata->abiflags_valid)
15663 {
15664 /* Copy input abiflags if output abiflags are not already valid. */
15665 out_tdata->abiflags = in_tdata->abiflags;
15666 out_tdata->abiflags_valid = TRUE;
15667 }
15668
15669 if (! elf_flags_init (obfd))
15670 {
15671 elf_flags_init (obfd) = TRUE;
15672 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15673 elf_elfheader (obfd)->e_ident[EI_CLASS]
15674 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15675
15676 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15677 && (bfd_get_arch_info (obfd)->the_default
15678 || mips_mach_extends_p (bfd_get_mach (obfd),
15679 bfd_get_mach (ibfd))))
15680 {
15681 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15682 bfd_get_mach (ibfd)))
15683 return FALSE;
15684
15685 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15686 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15687 }
15688
15689 ok = TRUE;
15690 }
15691 else
15692 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15693
15694 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15695
15696 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15697
15698 if (!ok)
15699 {
15700 bfd_set_error (bfd_error_bad_value);
15701 return FALSE;
15702 }
15703
15704 return TRUE;
15705 }
15706
15707 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15708
15709 bfd_boolean
15710 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15711 {
15712 BFD_ASSERT (!elf_flags_init (abfd)
15713 || elf_elfheader (abfd)->e_flags == flags);
15714
15715 elf_elfheader (abfd)->e_flags = flags;
15716 elf_flags_init (abfd) = TRUE;
15717 return TRUE;
15718 }
15719
15720 char *
15721 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15722 {
15723 switch (dtag)
15724 {
15725 default: return "";
15726 case DT_MIPS_RLD_VERSION:
15727 return "MIPS_RLD_VERSION";
15728 case DT_MIPS_TIME_STAMP:
15729 return "MIPS_TIME_STAMP";
15730 case DT_MIPS_ICHECKSUM:
15731 return "MIPS_ICHECKSUM";
15732 case DT_MIPS_IVERSION:
15733 return "MIPS_IVERSION";
15734 case DT_MIPS_FLAGS:
15735 return "MIPS_FLAGS";
15736 case DT_MIPS_BASE_ADDRESS:
15737 return "MIPS_BASE_ADDRESS";
15738 case DT_MIPS_MSYM:
15739 return "MIPS_MSYM";
15740 case DT_MIPS_CONFLICT:
15741 return "MIPS_CONFLICT";
15742 case DT_MIPS_LIBLIST:
15743 return "MIPS_LIBLIST";
15744 case DT_MIPS_LOCAL_GOTNO:
15745 return "MIPS_LOCAL_GOTNO";
15746 case DT_MIPS_CONFLICTNO:
15747 return "MIPS_CONFLICTNO";
15748 case DT_MIPS_LIBLISTNO:
15749 return "MIPS_LIBLISTNO";
15750 case DT_MIPS_SYMTABNO:
15751 return "MIPS_SYMTABNO";
15752 case DT_MIPS_UNREFEXTNO:
15753 return "MIPS_UNREFEXTNO";
15754 case DT_MIPS_GOTSYM:
15755 return "MIPS_GOTSYM";
15756 case DT_MIPS_HIPAGENO:
15757 return "MIPS_HIPAGENO";
15758 case DT_MIPS_RLD_MAP:
15759 return "MIPS_RLD_MAP";
15760 case DT_MIPS_RLD_MAP_REL:
15761 return "MIPS_RLD_MAP_REL";
15762 case DT_MIPS_DELTA_CLASS:
15763 return "MIPS_DELTA_CLASS";
15764 case DT_MIPS_DELTA_CLASS_NO:
15765 return "MIPS_DELTA_CLASS_NO";
15766 case DT_MIPS_DELTA_INSTANCE:
15767 return "MIPS_DELTA_INSTANCE";
15768 case DT_MIPS_DELTA_INSTANCE_NO:
15769 return "MIPS_DELTA_INSTANCE_NO";
15770 case DT_MIPS_DELTA_RELOC:
15771 return "MIPS_DELTA_RELOC";
15772 case DT_MIPS_DELTA_RELOC_NO:
15773 return "MIPS_DELTA_RELOC_NO";
15774 case DT_MIPS_DELTA_SYM:
15775 return "MIPS_DELTA_SYM";
15776 case DT_MIPS_DELTA_SYM_NO:
15777 return "MIPS_DELTA_SYM_NO";
15778 case DT_MIPS_DELTA_CLASSSYM:
15779 return "MIPS_DELTA_CLASSSYM";
15780 case DT_MIPS_DELTA_CLASSSYM_NO:
15781 return "MIPS_DELTA_CLASSSYM_NO";
15782 case DT_MIPS_CXX_FLAGS:
15783 return "MIPS_CXX_FLAGS";
15784 case DT_MIPS_PIXIE_INIT:
15785 return "MIPS_PIXIE_INIT";
15786 case DT_MIPS_SYMBOL_LIB:
15787 return "MIPS_SYMBOL_LIB";
15788 case DT_MIPS_LOCALPAGE_GOTIDX:
15789 return "MIPS_LOCALPAGE_GOTIDX";
15790 case DT_MIPS_LOCAL_GOTIDX:
15791 return "MIPS_LOCAL_GOTIDX";
15792 case DT_MIPS_HIDDEN_GOTIDX:
15793 return "MIPS_HIDDEN_GOTIDX";
15794 case DT_MIPS_PROTECTED_GOTIDX:
15795 return "MIPS_PROTECTED_GOT_IDX";
15796 case DT_MIPS_OPTIONS:
15797 return "MIPS_OPTIONS";
15798 case DT_MIPS_INTERFACE:
15799 return "MIPS_INTERFACE";
15800 case DT_MIPS_DYNSTR_ALIGN:
15801 return "DT_MIPS_DYNSTR_ALIGN";
15802 case DT_MIPS_INTERFACE_SIZE:
15803 return "DT_MIPS_INTERFACE_SIZE";
15804 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15805 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15806 case DT_MIPS_PERF_SUFFIX:
15807 return "DT_MIPS_PERF_SUFFIX";
15808 case DT_MIPS_COMPACT_SIZE:
15809 return "DT_MIPS_COMPACT_SIZE";
15810 case DT_MIPS_GP_VALUE:
15811 return "DT_MIPS_GP_VALUE";
15812 case DT_MIPS_AUX_DYNAMIC:
15813 return "DT_MIPS_AUX_DYNAMIC";
15814 case DT_MIPS_PLTGOT:
15815 return "DT_MIPS_PLTGOT";
15816 case DT_MIPS_RWPLT:
15817 return "DT_MIPS_RWPLT";
15818 }
15819 }
15820
15821 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15822 not known. */
15823
15824 const char *
15825 _bfd_mips_fp_abi_string (int fp)
15826 {
15827 switch (fp)
15828 {
15829 /* These strings aren't translated because they're simply
15830 option lists. */
15831 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15832 return "-mdouble-float";
15833
15834 case Val_GNU_MIPS_ABI_FP_SINGLE:
15835 return "-msingle-float";
15836
15837 case Val_GNU_MIPS_ABI_FP_SOFT:
15838 return "-msoft-float";
15839
15840 case Val_GNU_MIPS_ABI_FP_OLD_64:
15841 return _("-mips32r2 -mfp64 (12 callee-saved)");
15842
15843 case Val_GNU_MIPS_ABI_FP_XX:
15844 return "-mfpxx";
15845
15846 case Val_GNU_MIPS_ABI_FP_64:
15847 return "-mgp32 -mfp64";
15848
15849 case Val_GNU_MIPS_ABI_FP_64A:
15850 return "-mgp32 -mfp64 -mno-odd-spreg";
15851
15852 default:
15853 return 0;
15854 }
15855 }
15856
15857 static void
15858 print_mips_ases (FILE *file, unsigned int mask)
15859 {
15860 if (mask & AFL_ASE_DSP)
15861 fputs ("\n\tDSP ASE", file);
15862 if (mask & AFL_ASE_DSPR2)
15863 fputs ("\n\tDSP R2 ASE", file);
15864 if (mask & AFL_ASE_DSPR3)
15865 fputs ("\n\tDSP R3 ASE", file);
15866 if (mask & AFL_ASE_EVA)
15867 fputs ("\n\tEnhanced VA Scheme", file);
15868 if (mask & AFL_ASE_MCU)
15869 fputs ("\n\tMCU (MicroController) ASE", file);
15870 if (mask & AFL_ASE_MDMX)
15871 fputs ("\n\tMDMX ASE", file);
15872 if (mask & AFL_ASE_MIPS3D)
15873 fputs ("\n\tMIPS-3D ASE", file);
15874 if (mask & AFL_ASE_MT)
15875 fputs ("\n\tMT ASE", file);
15876 if (mask & AFL_ASE_SMARTMIPS)
15877 fputs ("\n\tSmartMIPS ASE", file);
15878 if (mask & AFL_ASE_VIRT)
15879 fputs ("\n\tVZ ASE", file);
15880 if (mask & AFL_ASE_MSA)
15881 fputs ("\n\tMSA ASE", file);
15882 if (mask & AFL_ASE_MIPS16)
15883 fputs ("\n\tMIPS16 ASE", file);
15884 if (mask & AFL_ASE_MICROMIPS)
15885 fputs ("\n\tMICROMIPS ASE", file);
15886 if (mask & AFL_ASE_XPA)
15887 fputs ("\n\tXPA ASE", file);
15888 if (mask & AFL_ASE_MIPS16E2)
15889 fputs ("\n\tMIPS16e2 ASE", file);
15890 if (mask & AFL_ASE_CRC)
15891 fputs ("\n\tCRC ASE", file);
15892 if (mask & AFL_ASE_GINV)
15893 fputs ("\n\tGINV ASE", file);
15894 if (mask & AFL_ASE_LOONGSON_MMI)
15895 fputs ("\n\tLoongson MMI ASE", file);
15896 if (mask & AFL_ASE_LOONGSON_CAM)
15897 fputs ("\n\tLoongson CAM ASE", file);
15898 if (mask & AFL_ASE_LOONGSON_EXT)
15899 fputs ("\n\tLoongson EXT ASE", file);
15900 if (mask & AFL_ASE_LOONGSON_EXT2)
15901 fputs ("\n\tLoongson EXT2 ASE", file);
15902 if (mask == 0)
15903 fprintf (file, "\n\t%s", _("None"));
15904 else if ((mask & ~AFL_ASE_MASK) != 0)
15905 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15906 }
15907
15908 static void
15909 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15910 {
15911 switch (isa_ext)
15912 {
15913 case 0:
15914 fputs (_("None"), file);
15915 break;
15916 case AFL_EXT_XLR:
15917 fputs ("RMI XLR", file);
15918 break;
15919 case AFL_EXT_OCTEON3:
15920 fputs ("Cavium Networks Octeon3", file);
15921 break;
15922 case AFL_EXT_OCTEON2:
15923 fputs ("Cavium Networks Octeon2", file);
15924 break;
15925 case AFL_EXT_OCTEONP:
15926 fputs ("Cavium Networks OcteonP", file);
15927 break;
15928 case AFL_EXT_OCTEON:
15929 fputs ("Cavium Networks Octeon", file);
15930 break;
15931 case AFL_EXT_5900:
15932 fputs ("Toshiba R5900", file);
15933 break;
15934 case AFL_EXT_4650:
15935 fputs ("MIPS R4650", file);
15936 break;
15937 case AFL_EXT_4010:
15938 fputs ("LSI R4010", file);
15939 break;
15940 case AFL_EXT_4100:
15941 fputs ("NEC VR4100", file);
15942 break;
15943 case AFL_EXT_3900:
15944 fputs ("Toshiba R3900", file);
15945 break;
15946 case AFL_EXT_10000:
15947 fputs ("MIPS R10000", file);
15948 break;
15949 case AFL_EXT_SB1:
15950 fputs ("Broadcom SB-1", file);
15951 break;
15952 case AFL_EXT_4111:
15953 fputs ("NEC VR4111/VR4181", file);
15954 break;
15955 case AFL_EXT_4120:
15956 fputs ("NEC VR4120", file);
15957 break;
15958 case AFL_EXT_5400:
15959 fputs ("NEC VR5400", file);
15960 break;
15961 case AFL_EXT_5500:
15962 fputs ("NEC VR5500", file);
15963 break;
15964 case AFL_EXT_LOONGSON_2E:
15965 fputs ("ST Microelectronics Loongson 2E", file);
15966 break;
15967 case AFL_EXT_LOONGSON_2F:
15968 fputs ("ST Microelectronics Loongson 2F", file);
15969 break;
15970 case AFL_EXT_INTERAPTIV_MR2:
15971 fputs ("Imagination interAptiv MR2", file);
15972 break;
15973 default:
15974 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15975 break;
15976 }
15977 }
15978
15979 static void
15980 print_mips_fp_abi_value (FILE *file, int val)
15981 {
15982 switch (val)
15983 {
15984 case Val_GNU_MIPS_ABI_FP_ANY:
15985 fprintf (file, _("Hard or soft float\n"));
15986 break;
15987 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15988 fprintf (file, _("Hard float (double precision)\n"));
15989 break;
15990 case Val_GNU_MIPS_ABI_FP_SINGLE:
15991 fprintf (file, _("Hard float (single precision)\n"));
15992 break;
15993 case Val_GNU_MIPS_ABI_FP_SOFT:
15994 fprintf (file, _("Soft float\n"));
15995 break;
15996 case Val_GNU_MIPS_ABI_FP_OLD_64:
15997 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15998 break;
15999 case Val_GNU_MIPS_ABI_FP_XX:
16000 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16001 break;
16002 case Val_GNU_MIPS_ABI_FP_64:
16003 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16004 break;
16005 case Val_GNU_MIPS_ABI_FP_64A:
16006 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16007 break;
16008 default:
16009 fprintf (file, "??? (%d)\n", val);
16010 break;
16011 }
16012 }
16013
16014 static int
16015 get_mips_reg_size (int reg_size)
16016 {
16017 return (reg_size == AFL_REG_NONE) ? 0
16018 : (reg_size == AFL_REG_32) ? 32
16019 : (reg_size == AFL_REG_64) ? 64
16020 : (reg_size == AFL_REG_128) ? 128
16021 : -1;
16022 }
16023
16024 bfd_boolean
16025 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16026 {
16027 FILE *file = ptr;
16028
16029 BFD_ASSERT (abfd != NULL && ptr != NULL);
16030
16031 /* Print normal ELF private data. */
16032 _bfd_elf_print_private_bfd_data (abfd, ptr);
16033
16034 /* xgettext:c-format */
16035 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16036
16037 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16038 fprintf (file, _(" [abi=O32]"));
16039 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16040 fprintf (file, _(" [abi=O64]"));
16041 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16042 fprintf (file, _(" [abi=EABI32]"));
16043 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16044 fprintf (file, _(" [abi=EABI64]"));
16045 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16046 fprintf (file, _(" [abi unknown]"));
16047 else if (ABI_N32_P (abfd))
16048 fprintf (file, _(" [abi=N32]"));
16049 else if (ABI_64_P (abfd))
16050 fprintf (file, _(" [abi=64]"));
16051 else
16052 fprintf (file, _(" [no abi set]"));
16053
16054 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16055 fprintf (file, " [mips1]");
16056 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16057 fprintf (file, " [mips2]");
16058 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16059 fprintf (file, " [mips3]");
16060 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16061 fprintf (file, " [mips4]");
16062 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16063 fprintf (file, " [mips5]");
16064 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16065 fprintf (file, " [mips32]");
16066 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16067 fprintf (file, " [mips64]");
16068 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16069 fprintf (file, " [mips32r2]");
16070 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16071 fprintf (file, " [mips64r2]");
16072 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16073 fprintf (file, " [mips32r6]");
16074 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16075 fprintf (file, " [mips64r6]");
16076 else
16077 fprintf (file, _(" [unknown ISA]"));
16078
16079 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16080 fprintf (file, " [mdmx]");
16081
16082 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16083 fprintf (file, " [mips16]");
16084
16085 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16086 fprintf (file, " [micromips]");
16087
16088 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16089 fprintf (file, " [nan2008]");
16090
16091 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16092 fprintf (file, " [old fp64]");
16093
16094 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16095 fprintf (file, " [32bitmode]");
16096 else
16097 fprintf (file, _(" [not 32bitmode]"));
16098
16099 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16100 fprintf (file, " [noreorder]");
16101
16102 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16103 fprintf (file, " [PIC]");
16104
16105 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16106 fprintf (file, " [CPIC]");
16107
16108 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16109 fprintf (file, " [XGOT]");
16110
16111 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16112 fprintf (file, " [UCODE]");
16113
16114 fputc ('\n', file);
16115
16116 if (mips_elf_tdata (abfd)->abiflags_valid)
16117 {
16118 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16119 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16120 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16121 if (abiflags->isa_rev > 1)
16122 fprintf (file, "r%d", abiflags->isa_rev);
16123 fprintf (file, "\nGPR size: %d",
16124 get_mips_reg_size (abiflags->gpr_size));
16125 fprintf (file, "\nCPR1 size: %d",
16126 get_mips_reg_size (abiflags->cpr1_size));
16127 fprintf (file, "\nCPR2 size: %d",
16128 get_mips_reg_size (abiflags->cpr2_size));
16129 fputs ("\nFP ABI: ", file);
16130 print_mips_fp_abi_value (file, abiflags->fp_abi);
16131 fputs ("ISA Extension: ", file);
16132 print_mips_isa_ext (file, abiflags->isa_ext);
16133 fputs ("\nASEs:", file);
16134 print_mips_ases (file, abiflags->ases);
16135 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16136 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16137 fputc ('\n', file);
16138 }
16139
16140 return TRUE;
16141 }
16142
16143 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16144 {
16145 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16146 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16147 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16148 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16149 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16150 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16151 { NULL, 0, 0, 0, 0 }
16152 };
16153
16154 /* Merge non visibility st_other attributes. Ensure that the
16155 STO_OPTIONAL flag is copied into h->other, even if this is not a
16156 definiton of the symbol. */
16157 void
16158 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16159 const Elf_Internal_Sym *isym,
16160 bfd_boolean definition,
16161 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16162 {
16163 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16164 {
16165 unsigned char other;
16166
16167 other = (definition ? isym->st_other : h->other);
16168 other &= ~ELF_ST_VISIBILITY (-1);
16169 h->other = other | ELF_ST_VISIBILITY (h->other);
16170 }
16171
16172 if (!definition
16173 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16174 h->other |= STO_OPTIONAL;
16175 }
16176
16177 /* Decide whether an undefined symbol is special and can be ignored.
16178 This is the case for OPTIONAL symbols on IRIX. */
16179 bfd_boolean
16180 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16181 {
16182 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16183 }
16184
16185 bfd_boolean
16186 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16187 {
16188 return (sym->st_shndx == SHN_COMMON
16189 || sym->st_shndx == SHN_MIPS_ACOMMON
16190 || sym->st_shndx == SHN_MIPS_SCOMMON);
16191 }
16192
16193 /* Return address for Ith PLT stub in section PLT, for relocation REL
16194 or (bfd_vma) -1 if it should not be included. */
16195
16196 bfd_vma
16197 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16198 const arelent *rel ATTRIBUTE_UNUSED)
16199 {
16200 return (plt->vma
16201 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16202 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16203 }
16204
16205 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16206 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16207 and .got.plt and also the slots may be of a different size each we walk
16208 the PLT manually fetching instructions and matching them against known
16209 patterns. To make things easier standard MIPS slots, if any, always come
16210 first. As we don't create proper ELF symbols we use the UDATA.I member
16211 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16212 with the ST_OTHER member of the ELF symbol. */
16213
16214 long
16215 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16216 long symcount ATTRIBUTE_UNUSED,
16217 asymbol **syms ATTRIBUTE_UNUSED,
16218 long dynsymcount, asymbol **dynsyms,
16219 asymbol **ret)
16220 {
16221 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16222 static const char microsuffix[] = "@micromipsplt";
16223 static const char m16suffix[] = "@mips16plt";
16224 static const char mipssuffix[] = "@plt";
16225
16226 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16227 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16228 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16229 Elf_Internal_Shdr *hdr;
16230 bfd_byte *plt_data;
16231 bfd_vma plt_offset;
16232 unsigned int other;
16233 bfd_vma entry_size;
16234 bfd_vma plt0_size;
16235 asection *relplt;
16236 bfd_vma opcode;
16237 asection *plt;
16238 asymbol *send;
16239 size_t size;
16240 char *names;
16241 long counti;
16242 arelent *p;
16243 asymbol *s;
16244 char *nend;
16245 long count;
16246 long pi;
16247 long i;
16248 long n;
16249
16250 *ret = NULL;
16251
16252 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16253 return 0;
16254
16255 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16256 if (relplt == NULL)
16257 return 0;
16258
16259 hdr = &elf_section_data (relplt)->this_hdr;
16260 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16261 return 0;
16262
16263 plt = bfd_get_section_by_name (abfd, ".plt");
16264 if (plt == NULL)
16265 return 0;
16266
16267 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16268 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16269 return -1;
16270 p = relplt->relocation;
16271
16272 /* Calculating the exact amount of space required for symbols would
16273 require two passes over the PLT, so just pessimise assuming two
16274 PLT slots per relocation. */
16275 count = relplt->size / hdr->sh_entsize;
16276 counti = count * bed->s->int_rels_per_ext_rel;
16277 size = 2 * count * sizeof (asymbol);
16278 size += count * (sizeof (mipssuffix) +
16279 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16280 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16281 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16282
16283 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16284 size += sizeof (asymbol) + sizeof (pltname);
16285
16286 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16287 return -1;
16288
16289 if (plt->size < 16)
16290 return -1;
16291
16292 s = *ret = bfd_malloc (size);
16293 if (s == NULL)
16294 return -1;
16295 send = s + 2 * count + 1;
16296
16297 names = (char *) send;
16298 nend = (char *) s + size;
16299 n = 0;
16300
16301 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16302 if (opcode == 0x3302fffe)
16303 {
16304 if (!micromips_p)
16305 return -1;
16306 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16307 other = STO_MICROMIPS;
16308 }
16309 else if (opcode == 0x0398c1d0)
16310 {
16311 if (!micromips_p)
16312 return -1;
16313 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16314 other = STO_MICROMIPS;
16315 }
16316 else
16317 {
16318 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16319 other = 0;
16320 }
16321
16322 s->the_bfd = abfd;
16323 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16324 s->section = plt;
16325 s->value = 0;
16326 s->name = names;
16327 s->udata.i = other;
16328 memcpy (names, pltname, sizeof (pltname));
16329 names += sizeof (pltname);
16330 ++s, ++n;
16331
16332 pi = 0;
16333 for (plt_offset = plt0_size;
16334 plt_offset + 8 <= plt->size && s < send;
16335 plt_offset += entry_size)
16336 {
16337 bfd_vma gotplt_addr;
16338 const char *suffix;
16339 bfd_vma gotplt_hi;
16340 bfd_vma gotplt_lo;
16341 size_t suffixlen;
16342
16343 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16344
16345 /* Check if the second word matches the expected MIPS16 instruction. */
16346 if (opcode == 0x651aeb00)
16347 {
16348 if (micromips_p)
16349 return -1;
16350 /* Truncated table??? */
16351 if (plt_offset + 16 > plt->size)
16352 break;
16353 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16354 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16355 suffixlen = sizeof (m16suffix);
16356 suffix = m16suffix;
16357 other = STO_MIPS16;
16358 }
16359 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16360 else if (opcode == 0xff220000)
16361 {
16362 if (!micromips_p)
16363 return -1;
16364 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16365 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16366 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16367 gotplt_lo <<= 2;
16368 gotplt_addr = gotplt_hi + gotplt_lo;
16369 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16370 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16371 suffixlen = sizeof (microsuffix);
16372 suffix = microsuffix;
16373 other = STO_MICROMIPS;
16374 }
16375 /* Likewise the expected microMIPS instruction (insn32 mode). */
16376 else if ((opcode & 0xffff0000) == 0xff2f0000)
16377 {
16378 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16379 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16380 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16381 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16382 gotplt_addr = gotplt_hi + gotplt_lo;
16383 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16384 suffixlen = sizeof (microsuffix);
16385 suffix = microsuffix;
16386 other = STO_MICROMIPS;
16387 }
16388 /* Otherwise assume standard MIPS code. */
16389 else
16390 {
16391 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16392 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16393 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16394 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16395 gotplt_addr = gotplt_hi + gotplt_lo;
16396 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16397 suffixlen = sizeof (mipssuffix);
16398 suffix = mipssuffix;
16399 other = 0;
16400 }
16401 /* Truncated table??? */
16402 if (plt_offset + entry_size > plt->size)
16403 break;
16404
16405 for (i = 0;
16406 i < count && p[pi].address != gotplt_addr;
16407 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16408
16409 if (i < count)
16410 {
16411 size_t namelen;
16412 size_t len;
16413
16414 *s = **p[pi].sym_ptr_ptr;
16415 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16416 we are defining a symbol, ensure one of them is set. */
16417 if ((s->flags & BSF_LOCAL) == 0)
16418 s->flags |= BSF_GLOBAL;
16419 s->flags |= BSF_SYNTHETIC;
16420 s->section = plt;
16421 s->value = plt_offset;
16422 s->name = names;
16423 s->udata.i = other;
16424
16425 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16426 namelen = len + suffixlen;
16427 if (names + namelen > nend)
16428 break;
16429
16430 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16431 names += len;
16432 memcpy (names, suffix, suffixlen);
16433 names += suffixlen;
16434
16435 ++s, ++n;
16436 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16437 }
16438 }
16439
16440 free (plt_data);
16441
16442 return n;
16443 }
16444
16445 /* Return the ABI flags associated with ABFD if available. */
16446
16447 Elf_Internal_ABIFlags_v0 *
16448 bfd_mips_elf_get_abiflags (bfd *abfd)
16449 {
16450 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16451
16452 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16453 }
16454
16455 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16456 field. Taken from `libc-abis.h' generated at GNU libc build time.
16457 Using a MIPS_ prefix as other libc targets use different values. */
16458 enum
16459 {
16460 MIPS_LIBC_ABI_DEFAULT = 0,
16461 MIPS_LIBC_ABI_MIPS_PLT,
16462 MIPS_LIBC_ABI_UNIQUE,
16463 MIPS_LIBC_ABI_MIPS_O32_FP64,
16464 MIPS_LIBC_ABI_ABSOLUTE,
16465 MIPS_LIBC_ABI_MAX
16466 };
16467
16468 void
16469 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16470 {
16471 struct mips_elf_link_hash_table *htab = NULL;
16472 Elf_Internal_Ehdr *i_ehdrp;
16473
16474 i_ehdrp = elf_elfheader (abfd);
16475 if (link_info)
16476 {
16477 htab = mips_elf_hash_table (link_info);
16478 BFD_ASSERT (htab != NULL);
16479 }
16480
16481 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16482 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16483
16484 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16485 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16486 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16487
16488 /* Mark that we need support for absolute symbols in the dynamic loader. */
16489 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16490 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16491
16492 _bfd_elf_post_process_headers (abfd, link_info);
16493 }
16494
16495 int
16496 _bfd_mips_elf_compact_eh_encoding
16497 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16498 {
16499 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16500 }
16501
16502 /* Return the opcode for can't unwind. */
16503
16504 int
16505 _bfd_mips_elf_cant_unwind_opcode
16506 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16507 {
16508 return COMPACT_EH_CANT_UNWIND_OPCODE;
16509 }
This page took 0.387602 seconds and 4 git commands to generate.