a3448491eb9ac188a6ed1b5935541fd4826c49b7
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67
68 /* The TLS types included in this GOT entry (specifically, GD and
69 IE). The GD and IE flags can be added as we encounter new
70 relocations. LDM can also be set; it will always be alone, not
71 combined with any GD or IE flags. An LDM GOT entry will be
72 a local symbol entry with r_symndx == 0. */
73 unsigned char tls_type;
74
75 /* The offset from the beginning of the .got section to the entry
76 corresponding to this symbol+addend. If it's a global symbol
77 whose offset is yet to be decided, it's going to be -1. */
78 long gotidx;
79 };
80
81 /* This structure is used to hold .got information when linking. */
82
83 struct mips_got_info
84 {
85 /* The global symbol in the GOT with the lowest index in the dynamic
86 symbol table. */
87 struct elf_link_hash_entry *global_gotsym;
88 /* The number of global .got entries. */
89 unsigned int global_gotno;
90 /* The number of .got slots used for TLS. */
91 unsigned int tls_gotno;
92 /* The first unused TLS .got entry. Used only during
93 mips_elf_initialize_tls_index. */
94 unsigned int tls_assigned_gotno;
95 /* The number of local .got entries. */
96 unsigned int local_gotno;
97 /* The number of local .got entries we have used. */
98 unsigned int assigned_gotno;
99 /* A hash table holding members of the got. */
100 struct htab *got_entries;
101 /* A hash table mapping input bfds to other mips_got_info. NULL
102 unless multi-got was necessary. */
103 struct htab *bfd2got;
104 /* In multi-got links, a pointer to the next got (err, rather, most
105 of the time, it points to the previous got). */
106 struct mips_got_info *next;
107 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
108 for none, or MINUS_TWO for not yet assigned. This is needed
109 because a single-GOT link may have multiple hash table entries
110 for the LDM. It does not get initialized in multi-GOT mode. */
111 bfd_vma tls_ldm_offset;
112 };
113
114 /* Map an input bfd to a got in a multi-got link. */
115
116 struct mips_elf_bfd2got_hash {
117 bfd *bfd;
118 struct mips_got_info *g;
119 };
120
121 /* Structure passed when traversing the bfd2got hash table, used to
122 create and merge bfd's gots. */
123
124 struct mips_elf_got_per_bfd_arg
125 {
126 /* A hashtable that maps bfds to gots. */
127 htab_t bfd2got;
128 /* The output bfd. */
129 bfd *obfd;
130 /* The link information. */
131 struct bfd_link_info *info;
132 /* A pointer to the primary got, i.e., the one that's going to get
133 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
134 DT_MIPS_GOTSYM. */
135 struct mips_got_info *primary;
136 /* A non-primary got we're trying to merge with other input bfd's
137 gots. */
138 struct mips_got_info *current;
139 /* The maximum number of got entries that can be addressed with a
140 16-bit offset. */
141 unsigned int max_count;
142 /* The number of local and global entries in the primary got. */
143 unsigned int primary_count;
144 /* The number of local and global entries in the current got. */
145 unsigned int current_count;
146 /* The total number of global entries which will live in the
147 primary got and be automatically relocated. This includes
148 those not referenced by the primary GOT but included in
149 the "master" GOT. */
150 unsigned int global_count;
151 };
152
153 /* Another structure used to pass arguments for got entries traversal. */
154
155 struct mips_elf_set_global_got_offset_arg
156 {
157 struct mips_got_info *g;
158 int value;
159 unsigned int needed_relocs;
160 struct bfd_link_info *info;
161 };
162
163 /* A structure used to count TLS relocations or GOT entries, for GOT
164 entry or ELF symbol table traversal. */
165
166 struct mips_elf_count_tls_arg
167 {
168 struct bfd_link_info *info;
169 unsigned int needed;
170 };
171
172 struct _mips_elf_section_data
173 {
174 struct bfd_elf_section_data elf;
175 union
176 {
177 struct mips_got_info *got_info;
178 bfd_byte *tdata;
179 } u;
180 };
181
182 #define mips_elf_section_data(sec) \
183 ((struct _mips_elf_section_data *) elf_section_data (sec))
184
185 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
186 the dynamic symbols. */
187
188 struct mips_elf_hash_sort_data
189 {
190 /* The symbol in the global GOT with the lowest dynamic symbol table
191 index. */
192 struct elf_link_hash_entry *low;
193 /* The least dynamic symbol table index corresponding to a non-TLS
194 symbol with a GOT entry. */
195 long min_got_dynindx;
196 /* The greatest dynamic symbol table index corresponding to a symbol
197 with a GOT entry that is not referenced (e.g., a dynamic symbol
198 with dynamic relocations pointing to it from non-primary GOTs). */
199 long max_unref_got_dynindx;
200 /* The greatest dynamic symbol table index not corresponding to a
201 symbol without a GOT entry. */
202 long max_non_got_dynindx;
203 };
204
205 /* The MIPS ELF linker needs additional information for each symbol in
206 the global hash table. */
207
208 struct mips_elf_link_hash_entry
209 {
210 struct elf_link_hash_entry root;
211
212 /* External symbol information. */
213 EXTR esym;
214
215 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
216 this symbol. */
217 unsigned int possibly_dynamic_relocs;
218
219 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
220 a readonly section. */
221 bfd_boolean readonly_reloc;
222
223 /* We must not create a stub for a symbol that has relocations
224 related to taking the function's address, i.e. any but
225 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
226 p. 4-20. */
227 bfd_boolean no_fn_stub;
228
229 /* If there is a stub that 32 bit functions should use to call this
230 16 bit function, this points to the section containing the stub. */
231 asection *fn_stub;
232
233 /* Whether we need the fn_stub; this is set if this symbol appears
234 in any relocs other than a 16 bit call. */
235 bfd_boolean need_fn_stub;
236
237 /* If there is a stub that 16 bit functions should use to call this
238 32 bit function, this points to the section containing the stub. */
239 asection *call_stub;
240
241 /* This is like the call_stub field, but it is used if the function
242 being called returns a floating point value. */
243 asection *call_fp_stub;
244
245 /* Are we forced local? This will only be set if we have converted
246 the initial global GOT entry to a local GOT entry. */
247 bfd_boolean forced_local;
248
249 #define GOT_NORMAL 0
250 #define GOT_TLS_GD 1
251 #define GOT_TLS_LDM 2
252 #define GOT_TLS_IE 4
253 #define GOT_TLS_OFFSET_DONE 0x40
254 #define GOT_TLS_DONE 0x80
255 unsigned char tls_type;
256 /* This is only used in single-GOT mode; in multi-GOT mode there
257 is one mips_got_entry per GOT entry, so the offset is stored
258 there. In single-GOT mode there may be many mips_got_entry
259 structures all referring to the same GOT slot. It might be
260 possible to use root.got.offset instead, but that field is
261 overloaded already. */
262 bfd_vma tls_got_offset;
263 };
264
265 /* MIPS ELF linker hash table. */
266
267 struct mips_elf_link_hash_table
268 {
269 struct elf_link_hash_table root;
270 #if 0
271 /* We no longer use this. */
272 /* String section indices for the dynamic section symbols. */
273 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
274 #endif
275 /* The number of .rtproc entries. */
276 bfd_size_type procedure_count;
277 /* The size of the .compact_rel section (if SGI_COMPAT). */
278 bfd_size_type compact_rel_size;
279 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
280 entry is set to the address of __rld_obj_head as in IRIX5. */
281 bfd_boolean use_rld_obj_head;
282 /* This is the value of the __rld_map or __rld_obj_head symbol. */
283 bfd_vma rld_value;
284 /* This is set if we see any mips16 stub sections. */
285 bfd_boolean mips16_stubs_seen;
286 };
287
288 #define TLS_RELOC_P(r_type) \
289 (r_type == R_MIPS_TLS_DTPMOD32 \
290 || r_type == R_MIPS_TLS_DTPMOD64 \
291 || r_type == R_MIPS_TLS_DTPREL32 \
292 || r_type == R_MIPS_TLS_DTPREL64 \
293 || r_type == R_MIPS_TLS_GD \
294 || r_type == R_MIPS_TLS_LDM \
295 || r_type == R_MIPS_TLS_DTPREL_HI16 \
296 || r_type == R_MIPS_TLS_DTPREL_LO16 \
297 || r_type == R_MIPS_TLS_GOTTPREL \
298 || r_type == R_MIPS_TLS_TPREL32 \
299 || r_type == R_MIPS_TLS_TPREL64 \
300 || r_type == R_MIPS_TLS_TPREL_HI16 \
301 || r_type == R_MIPS_TLS_TPREL_LO16)
302
303 /* Structure used to pass information to mips_elf_output_extsym. */
304
305 struct extsym_info
306 {
307 bfd *abfd;
308 struct bfd_link_info *info;
309 struct ecoff_debug_info *debug;
310 const struct ecoff_debug_swap *swap;
311 bfd_boolean failed;
312 };
313
314 /* The names of the runtime procedure table symbols used on IRIX5. */
315
316 static const char * const mips_elf_dynsym_rtproc_names[] =
317 {
318 "_procedure_table",
319 "_procedure_string_table",
320 "_procedure_table_size",
321 NULL
322 };
323
324 /* These structures are used to generate the .compact_rel section on
325 IRIX5. */
326
327 typedef struct
328 {
329 unsigned long id1; /* Always one? */
330 unsigned long num; /* Number of compact relocation entries. */
331 unsigned long id2; /* Always two? */
332 unsigned long offset; /* The file offset of the first relocation. */
333 unsigned long reserved0; /* Zero? */
334 unsigned long reserved1; /* Zero? */
335 } Elf32_compact_rel;
336
337 typedef struct
338 {
339 bfd_byte id1[4];
340 bfd_byte num[4];
341 bfd_byte id2[4];
342 bfd_byte offset[4];
343 bfd_byte reserved0[4];
344 bfd_byte reserved1[4];
345 } Elf32_External_compact_rel;
346
347 typedef struct
348 {
349 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
350 unsigned int rtype : 4; /* Relocation types. See below. */
351 unsigned int dist2to : 8;
352 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
353 unsigned long konst; /* KONST field. See below. */
354 unsigned long vaddr; /* VADDR to be relocated. */
355 } Elf32_crinfo;
356
357 typedef struct
358 {
359 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
360 unsigned int rtype : 4; /* Relocation types. See below. */
361 unsigned int dist2to : 8;
362 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
363 unsigned long konst; /* KONST field. See below. */
364 } Elf32_crinfo2;
365
366 typedef struct
367 {
368 bfd_byte info[4];
369 bfd_byte konst[4];
370 bfd_byte vaddr[4];
371 } Elf32_External_crinfo;
372
373 typedef struct
374 {
375 bfd_byte info[4];
376 bfd_byte konst[4];
377 } Elf32_External_crinfo2;
378
379 /* These are the constants used to swap the bitfields in a crinfo. */
380
381 #define CRINFO_CTYPE (0x1)
382 #define CRINFO_CTYPE_SH (31)
383 #define CRINFO_RTYPE (0xf)
384 #define CRINFO_RTYPE_SH (27)
385 #define CRINFO_DIST2TO (0xff)
386 #define CRINFO_DIST2TO_SH (19)
387 #define CRINFO_RELVADDR (0x7ffff)
388 #define CRINFO_RELVADDR_SH (0)
389
390 /* A compact relocation info has long (3 words) or short (2 words)
391 formats. A short format doesn't have VADDR field and relvaddr
392 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
393 #define CRF_MIPS_LONG 1
394 #define CRF_MIPS_SHORT 0
395
396 /* There are 4 types of compact relocation at least. The value KONST
397 has different meaning for each type:
398
399 (type) (konst)
400 CT_MIPS_REL32 Address in data
401 CT_MIPS_WORD Address in word (XXX)
402 CT_MIPS_GPHI_LO GP - vaddr
403 CT_MIPS_JMPAD Address to jump
404 */
405
406 #define CRT_MIPS_REL32 0xa
407 #define CRT_MIPS_WORD 0xb
408 #define CRT_MIPS_GPHI_LO 0xc
409 #define CRT_MIPS_JMPAD 0xd
410
411 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
412 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
413 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
414 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
415 \f
416 /* The structure of the runtime procedure descriptor created by the
417 loader for use by the static exception system. */
418
419 typedef struct runtime_pdr {
420 bfd_vma adr; /* Memory address of start of procedure. */
421 long regmask; /* Save register mask. */
422 long regoffset; /* Save register offset. */
423 long fregmask; /* Save floating point register mask. */
424 long fregoffset; /* Save floating point register offset. */
425 long frameoffset; /* Frame size. */
426 short framereg; /* Frame pointer register. */
427 short pcreg; /* Offset or reg of return pc. */
428 long irpss; /* Index into the runtime string table. */
429 long reserved;
430 struct exception_info *exception_info;/* Pointer to exception array. */
431 } RPDR, *pRPDR;
432 #define cbRPDR sizeof (RPDR)
433 #define rpdNil ((pRPDR) 0)
434 \f
435 static struct mips_got_entry *mips_elf_create_local_got_entry
436 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma, unsigned long,
437 struct mips_elf_link_hash_entry *, int);
438 static bfd_boolean mips_elf_sort_hash_table_f
439 (struct mips_elf_link_hash_entry *, void *);
440 static bfd_vma mips_elf_high
441 (bfd_vma);
442 static bfd_boolean mips_elf_stub_section_p
443 (bfd *, asection *);
444 static bfd_boolean mips_elf_create_dynamic_relocation
445 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
446 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
447 bfd_vma *, asection *);
448 static hashval_t mips_elf_got_entry_hash
449 (const void *);
450 static bfd_vma mips_elf_adjust_gp
451 (bfd *, struct mips_got_info *, bfd *);
452 static struct mips_got_info *mips_elf_got_for_ibfd
453 (struct mips_got_info *, bfd *);
454
455 /* This will be used when we sort the dynamic relocation records. */
456 static bfd *reldyn_sorting_bfd;
457
458 /* Nonzero if ABFD is using the N32 ABI. */
459
460 #define ABI_N32_P(abfd) \
461 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
462
463 /* Nonzero if ABFD is using the N64 ABI. */
464 #define ABI_64_P(abfd) \
465 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
466
467 /* Nonzero if ABFD is using NewABI conventions. */
468 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
469
470 /* The IRIX compatibility level we are striving for. */
471 #define IRIX_COMPAT(abfd) \
472 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
473
474 /* Whether we are trying to be compatible with IRIX at all. */
475 #define SGI_COMPAT(abfd) \
476 (IRIX_COMPAT (abfd) != ict_none)
477
478 /* The name of the options section. */
479 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
480 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
481
482 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
483 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
484 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
485 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
486
487 /* The name of the stub section. */
488 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
489
490 /* The size of an external REL relocation. */
491 #define MIPS_ELF_REL_SIZE(abfd) \
492 (get_elf_backend_data (abfd)->s->sizeof_rel)
493
494 /* The size of an external dynamic table entry. */
495 #define MIPS_ELF_DYN_SIZE(abfd) \
496 (get_elf_backend_data (abfd)->s->sizeof_dyn)
497
498 /* The size of a GOT entry. */
499 #define MIPS_ELF_GOT_SIZE(abfd) \
500 (get_elf_backend_data (abfd)->s->arch_size / 8)
501
502 /* The size of a symbol-table entry. */
503 #define MIPS_ELF_SYM_SIZE(abfd) \
504 (get_elf_backend_data (abfd)->s->sizeof_sym)
505
506 /* The default alignment for sections, as a power of two. */
507 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
508 (get_elf_backend_data (abfd)->s->log_file_align)
509
510 /* Get word-sized data. */
511 #define MIPS_ELF_GET_WORD(abfd, ptr) \
512 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
513
514 /* Put out word-sized data. */
515 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
516 (ABI_64_P (abfd) \
517 ? bfd_put_64 (abfd, val, ptr) \
518 : bfd_put_32 (abfd, val, ptr))
519
520 /* Add a dynamic symbol table-entry. */
521 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
522 _bfd_elf_add_dynamic_entry (info, tag, val)
523
524 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
526
527 /* Determine whether the internal relocation of index REL_IDX is REL
528 (zero) or RELA (non-zero). The assumption is that, if there are
529 two relocation sections for this section, one of them is REL and
530 the other is RELA. If the index of the relocation we're testing is
531 in range for the first relocation section, check that the external
532 relocation size is that for RELA. It is also assumed that, if
533 rel_idx is not in range for the first section, and this first
534 section contains REL relocs, then the relocation is in the second
535 section, that is RELA. */
536 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
537 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
538 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
539 > (bfd_vma)(rel_idx)) \
540 == (elf_section_data (sec)->rel_hdr.sh_entsize \
541 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
542 : sizeof (Elf32_External_Rela))))
543
544 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
545 from smaller values. Start with zero, widen, *then* decrement. */
546 #define MINUS_ONE (((bfd_vma)0) - 1)
547 #define MINUS_TWO (((bfd_vma)0) - 2)
548
549 /* The number of local .got entries we reserve. */
550 #define MIPS_RESERVED_GOTNO (2)
551
552 /* The offset of $gp from the beginning of the .got section. */
553 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
554
555 /* The maximum size of the GOT for it to be addressable using 16-bit
556 offsets from $gp. */
557 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
558
559 /* Instructions which appear in a stub. */
560 #define STUB_LW(abfd) \
561 ((ABI_64_P (abfd) \
562 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
563 : 0x8f998010)) /* lw t9,0x8010(gp) */
564 #define STUB_MOVE(abfd) \
565 ((ABI_64_P (abfd) \
566 ? 0x03e0782d /* daddu t7,ra */ \
567 : 0x03e07821)) /* addu t7,ra */
568 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
569 #define STUB_LI16(abfd) \
570 ((ABI_64_P (abfd) \
571 ? 0x64180000 /* daddiu t8,zero,0 */ \
572 : 0x24180000)) /* addiu t8,zero,0 */
573 #define MIPS_FUNCTION_STUB_SIZE (16)
574
575 /* The name of the dynamic interpreter. This is put in the .interp
576 section. */
577
578 #define ELF_DYNAMIC_INTERPRETER(abfd) \
579 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
580 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
581 : "/usr/lib/libc.so.1")
582
583 #ifdef BFD64
584 #define MNAME(bfd,pre,pos) \
585 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
586 #define ELF_R_SYM(bfd, i) \
587 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
588 #define ELF_R_TYPE(bfd, i) \
589 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
590 #define ELF_R_INFO(bfd, s, t) \
591 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
592 #else
593 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
594 #define ELF_R_SYM(bfd, i) \
595 (ELF32_R_SYM (i))
596 #define ELF_R_TYPE(bfd, i) \
597 (ELF32_R_TYPE (i))
598 #define ELF_R_INFO(bfd, s, t) \
599 (ELF32_R_INFO (s, t))
600 #endif
601 \f
602 /* The mips16 compiler uses a couple of special sections to handle
603 floating point arguments.
604
605 Section names that look like .mips16.fn.FNNAME contain stubs that
606 copy floating point arguments from the fp regs to the gp regs and
607 then jump to FNNAME. If any 32 bit function calls FNNAME, the
608 call should be redirected to the stub instead. If no 32 bit
609 function calls FNNAME, the stub should be discarded. We need to
610 consider any reference to the function, not just a call, because
611 if the address of the function is taken we will need the stub,
612 since the address might be passed to a 32 bit function.
613
614 Section names that look like .mips16.call.FNNAME contain stubs
615 that copy floating point arguments from the gp regs to the fp
616 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
617 then any 16 bit function that calls FNNAME should be redirected
618 to the stub instead. If FNNAME is not a 32 bit function, the
619 stub should be discarded.
620
621 .mips16.call.fp.FNNAME sections are similar, but contain stubs
622 which call FNNAME and then copy the return value from the fp regs
623 to the gp regs. These stubs store the return value in $18 while
624 calling FNNAME; any function which might call one of these stubs
625 must arrange to save $18 around the call. (This case is not
626 needed for 32 bit functions that call 16 bit functions, because
627 16 bit functions always return floating point values in both
628 $f0/$f1 and $2/$3.)
629
630 Note that in all cases FNNAME might be defined statically.
631 Therefore, FNNAME is not used literally. Instead, the relocation
632 information will indicate which symbol the section is for.
633
634 We record any stubs that we find in the symbol table. */
635
636 #define FN_STUB ".mips16.fn."
637 #define CALL_STUB ".mips16.call."
638 #define CALL_FP_STUB ".mips16.call.fp."
639 \f
640 /* Look up an entry in a MIPS ELF linker hash table. */
641
642 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
643 ((struct mips_elf_link_hash_entry *) \
644 elf_link_hash_lookup (&(table)->root, (string), (create), \
645 (copy), (follow)))
646
647 /* Traverse a MIPS ELF linker hash table. */
648
649 #define mips_elf_link_hash_traverse(table, func, info) \
650 (elf_link_hash_traverse \
651 (&(table)->root, \
652 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
653 (info)))
654
655 /* Get the MIPS ELF linker hash table from a link_info structure. */
656
657 #define mips_elf_hash_table(p) \
658 ((struct mips_elf_link_hash_table *) ((p)->hash))
659
660 /* Find the base offsets for thread-local storage in this object,
661 for GD/LD and IE/LE respectively. */
662
663 #define TP_OFFSET 0x7000
664 #define DTP_OFFSET 0x8000
665
666 static bfd_vma
667 dtprel_base (struct bfd_link_info *info)
668 {
669 /* If tls_sec is NULL, we should have signalled an error already. */
670 if (elf_hash_table (info)->tls_sec == NULL)
671 return 0;
672 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
673 }
674
675 static bfd_vma
676 tprel_base (struct bfd_link_info *info)
677 {
678 /* If tls_sec is NULL, we should have signalled an error already. */
679 if (elf_hash_table (info)->tls_sec == NULL)
680 return 0;
681 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
682 }
683
684 /* Create an entry in a MIPS ELF linker hash table. */
685
686 static struct bfd_hash_entry *
687 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
688 struct bfd_hash_table *table, const char *string)
689 {
690 struct mips_elf_link_hash_entry *ret =
691 (struct mips_elf_link_hash_entry *) entry;
692
693 /* Allocate the structure if it has not already been allocated by a
694 subclass. */
695 if (ret == NULL)
696 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
697 if (ret == NULL)
698 return (struct bfd_hash_entry *) ret;
699
700 /* Call the allocation method of the superclass. */
701 ret = ((struct mips_elf_link_hash_entry *)
702 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
703 table, string));
704 if (ret != NULL)
705 {
706 /* Set local fields. */
707 memset (&ret->esym, 0, sizeof (EXTR));
708 /* We use -2 as a marker to indicate that the information has
709 not been set. -1 means there is no associated ifd. */
710 ret->esym.ifd = -2;
711 ret->possibly_dynamic_relocs = 0;
712 ret->readonly_reloc = FALSE;
713 ret->no_fn_stub = FALSE;
714 ret->fn_stub = NULL;
715 ret->need_fn_stub = FALSE;
716 ret->call_stub = NULL;
717 ret->call_fp_stub = NULL;
718 ret->forced_local = FALSE;
719 ret->tls_type = GOT_NORMAL;
720 }
721
722 return (struct bfd_hash_entry *) ret;
723 }
724
725 bfd_boolean
726 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
727 {
728 struct _mips_elf_section_data *sdata;
729 bfd_size_type amt = sizeof (*sdata);
730
731 sdata = bfd_zalloc (abfd, amt);
732 if (sdata == NULL)
733 return FALSE;
734 sec->used_by_bfd = sdata;
735
736 return _bfd_elf_new_section_hook (abfd, sec);
737 }
738 \f
739 /* Read ECOFF debugging information from a .mdebug section into a
740 ecoff_debug_info structure. */
741
742 bfd_boolean
743 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
744 struct ecoff_debug_info *debug)
745 {
746 HDRR *symhdr;
747 const struct ecoff_debug_swap *swap;
748 char *ext_hdr;
749
750 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
751 memset (debug, 0, sizeof (*debug));
752
753 ext_hdr = bfd_malloc (swap->external_hdr_size);
754 if (ext_hdr == NULL && swap->external_hdr_size != 0)
755 goto error_return;
756
757 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
758 swap->external_hdr_size))
759 goto error_return;
760
761 symhdr = &debug->symbolic_header;
762 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
763
764 /* The symbolic header contains absolute file offsets and sizes to
765 read. */
766 #define READ(ptr, offset, count, size, type) \
767 if (symhdr->count == 0) \
768 debug->ptr = NULL; \
769 else \
770 { \
771 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
772 debug->ptr = bfd_malloc (amt); \
773 if (debug->ptr == NULL) \
774 goto error_return; \
775 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
776 || bfd_bread (debug->ptr, amt, abfd) != amt) \
777 goto error_return; \
778 }
779
780 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
781 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
782 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
783 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
784 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
785 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
786 union aux_ext *);
787 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
788 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
789 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
790 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
791 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
792 #undef READ
793
794 debug->fdr = NULL;
795
796 return TRUE;
797
798 error_return:
799 if (ext_hdr != NULL)
800 free (ext_hdr);
801 if (debug->line != NULL)
802 free (debug->line);
803 if (debug->external_dnr != NULL)
804 free (debug->external_dnr);
805 if (debug->external_pdr != NULL)
806 free (debug->external_pdr);
807 if (debug->external_sym != NULL)
808 free (debug->external_sym);
809 if (debug->external_opt != NULL)
810 free (debug->external_opt);
811 if (debug->external_aux != NULL)
812 free (debug->external_aux);
813 if (debug->ss != NULL)
814 free (debug->ss);
815 if (debug->ssext != NULL)
816 free (debug->ssext);
817 if (debug->external_fdr != NULL)
818 free (debug->external_fdr);
819 if (debug->external_rfd != NULL)
820 free (debug->external_rfd);
821 if (debug->external_ext != NULL)
822 free (debug->external_ext);
823 return FALSE;
824 }
825 \f
826 /* Swap RPDR (runtime procedure table entry) for output. */
827
828 static void
829 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
830 {
831 H_PUT_S32 (abfd, in->adr, ex->p_adr);
832 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
833 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
834 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
835 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
836 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
837
838 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
839 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
840
841 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
842 }
843
844 /* Create a runtime procedure table from the .mdebug section. */
845
846 static bfd_boolean
847 mips_elf_create_procedure_table (void *handle, bfd *abfd,
848 struct bfd_link_info *info, asection *s,
849 struct ecoff_debug_info *debug)
850 {
851 const struct ecoff_debug_swap *swap;
852 HDRR *hdr = &debug->symbolic_header;
853 RPDR *rpdr, *rp;
854 struct rpdr_ext *erp;
855 void *rtproc;
856 struct pdr_ext *epdr;
857 struct sym_ext *esym;
858 char *ss, **sv;
859 char *str;
860 bfd_size_type size;
861 bfd_size_type count;
862 unsigned long sindex;
863 unsigned long i;
864 PDR pdr;
865 SYMR sym;
866 const char *no_name_func = _("static procedure (no name)");
867
868 epdr = NULL;
869 rpdr = NULL;
870 esym = NULL;
871 ss = NULL;
872 sv = NULL;
873
874 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
875
876 sindex = strlen (no_name_func) + 1;
877 count = hdr->ipdMax;
878 if (count > 0)
879 {
880 size = swap->external_pdr_size;
881
882 epdr = bfd_malloc (size * count);
883 if (epdr == NULL)
884 goto error_return;
885
886 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
887 goto error_return;
888
889 size = sizeof (RPDR);
890 rp = rpdr = bfd_malloc (size * count);
891 if (rpdr == NULL)
892 goto error_return;
893
894 size = sizeof (char *);
895 sv = bfd_malloc (size * count);
896 if (sv == NULL)
897 goto error_return;
898
899 count = hdr->isymMax;
900 size = swap->external_sym_size;
901 esym = bfd_malloc (size * count);
902 if (esym == NULL)
903 goto error_return;
904
905 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
906 goto error_return;
907
908 count = hdr->issMax;
909 ss = bfd_malloc (count);
910 if (ss == NULL)
911 goto error_return;
912 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
913 goto error_return;
914
915 count = hdr->ipdMax;
916 for (i = 0; i < (unsigned long) count; i++, rp++)
917 {
918 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
919 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
920 rp->adr = sym.value;
921 rp->regmask = pdr.regmask;
922 rp->regoffset = pdr.regoffset;
923 rp->fregmask = pdr.fregmask;
924 rp->fregoffset = pdr.fregoffset;
925 rp->frameoffset = pdr.frameoffset;
926 rp->framereg = pdr.framereg;
927 rp->pcreg = pdr.pcreg;
928 rp->irpss = sindex;
929 sv[i] = ss + sym.iss;
930 sindex += strlen (sv[i]) + 1;
931 }
932 }
933
934 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
935 size = BFD_ALIGN (size, 16);
936 rtproc = bfd_alloc (abfd, size);
937 if (rtproc == NULL)
938 {
939 mips_elf_hash_table (info)->procedure_count = 0;
940 goto error_return;
941 }
942
943 mips_elf_hash_table (info)->procedure_count = count + 2;
944
945 erp = rtproc;
946 memset (erp, 0, sizeof (struct rpdr_ext));
947 erp++;
948 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
949 strcpy (str, no_name_func);
950 str += strlen (no_name_func) + 1;
951 for (i = 0; i < count; i++)
952 {
953 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
954 strcpy (str, sv[i]);
955 str += strlen (sv[i]) + 1;
956 }
957 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
958
959 /* Set the size and contents of .rtproc section. */
960 s->size = size;
961 s->contents = rtproc;
962
963 /* Skip this section later on (I don't think this currently
964 matters, but someday it might). */
965 s->map_head.link_order = NULL;
966
967 if (epdr != NULL)
968 free (epdr);
969 if (rpdr != NULL)
970 free (rpdr);
971 if (esym != NULL)
972 free (esym);
973 if (ss != NULL)
974 free (ss);
975 if (sv != NULL)
976 free (sv);
977
978 return TRUE;
979
980 error_return:
981 if (epdr != NULL)
982 free (epdr);
983 if (rpdr != NULL)
984 free (rpdr);
985 if (esym != NULL)
986 free (esym);
987 if (ss != NULL)
988 free (ss);
989 if (sv != NULL)
990 free (sv);
991 return FALSE;
992 }
993
994 /* Check the mips16 stubs for a particular symbol, and see if we can
995 discard them. */
996
997 static bfd_boolean
998 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
999 void *data ATTRIBUTE_UNUSED)
1000 {
1001 if (h->root.root.type == bfd_link_hash_warning)
1002 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1003
1004 if (h->fn_stub != NULL
1005 && ! h->need_fn_stub)
1006 {
1007 /* We don't need the fn_stub; the only references to this symbol
1008 are 16 bit calls. Clobber the size to 0 to prevent it from
1009 being included in the link. */
1010 h->fn_stub->size = 0;
1011 h->fn_stub->flags &= ~SEC_RELOC;
1012 h->fn_stub->reloc_count = 0;
1013 h->fn_stub->flags |= SEC_EXCLUDE;
1014 }
1015
1016 if (h->call_stub != NULL
1017 && h->root.other == STO_MIPS16)
1018 {
1019 /* We don't need the call_stub; this is a 16 bit function, so
1020 calls from other 16 bit functions are OK. Clobber the size
1021 to 0 to prevent it from being included in the link. */
1022 h->call_stub->size = 0;
1023 h->call_stub->flags &= ~SEC_RELOC;
1024 h->call_stub->reloc_count = 0;
1025 h->call_stub->flags |= SEC_EXCLUDE;
1026 }
1027
1028 if (h->call_fp_stub != NULL
1029 && h->root.other == STO_MIPS16)
1030 {
1031 /* We don't need the call_stub; this is a 16 bit function, so
1032 calls from other 16 bit functions are OK. Clobber the size
1033 to 0 to prevent it from being included in the link. */
1034 h->call_fp_stub->size = 0;
1035 h->call_fp_stub->flags &= ~SEC_RELOC;
1036 h->call_fp_stub->reloc_count = 0;
1037 h->call_fp_stub->flags |= SEC_EXCLUDE;
1038 }
1039
1040 return TRUE;
1041 }
1042 \f
1043 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1044 Most mips16 instructions are 16 bits, but these instructions
1045 are 32 bits.
1046
1047 The format of these instructions is:
1048
1049 +--------------+--------------------------------+
1050 | JALX | X| Imm 20:16 | Imm 25:21 |
1051 +--------------+--------------------------------+
1052 | Immediate 15:0 |
1053 +-----------------------------------------------+
1054
1055 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1056 Note that the immediate value in the first word is swapped.
1057
1058 When producing a relocatable object file, R_MIPS16_26 is
1059 handled mostly like R_MIPS_26. In particular, the addend is
1060 stored as a straight 26-bit value in a 32-bit instruction.
1061 (gas makes life simpler for itself by never adjusting a
1062 R_MIPS16_26 reloc to be against a section, so the addend is
1063 always zero). However, the 32 bit instruction is stored as 2
1064 16-bit values, rather than a single 32-bit value. In a
1065 big-endian file, the result is the same; in a little-endian
1066 file, the two 16-bit halves of the 32 bit value are swapped.
1067 This is so that a disassembler can recognize the jal
1068 instruction.
1069
1070 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1071 instruction stored as two 16-bit values. The addend A is the
1072 contents of the targ26 field. The calculation is the same as
1073 R_MIPS_26. When storing the calculated value, reorder the
1074 immediate value as shown above, and don't forget to store the
1075 value as two 16-bit values.
1076
1077 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1078 defined as
1079
1080 big-endian:
1081 +--------+----------------------+
1082 | | |
1083 | | targ26-16 |
1084 |31 26|25 0|
1085 +--------+----------------------+
1086
1087 little-endian:
1088 +----------+------+-------------+
1089 | | | |
1090 | sub1 | | sub2 |
1091 |0 9|10 15|16 31|
1092 +----------+--------------------+
1093 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1094 ((sub1 << 16) | sub2)).
1095
1096 When producing a relocatable object file, the calculation is
1097 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1098 When producing a fully linked file, the calculation is
1099 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1100 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1101
1102 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1103 mode. A typical instruction will have a format like this:
1104
1105 +--------------+--------------------------------+
1106 | EXTEND | Imm 10:5 | Imm 15:11 |
1107 +--------------+--------------------------------+
1108 | Major | rx | ry | Imm 4:0 |
1109 +--------------+--------------------------------+
1110
1111 EXTEND is the five bit value 11110. Major is the instruction
1112 opcode.
1113
1114 This is handled exactly like R_MIPS_GPREL16, except that the
1115 addend is retrieved and stored as shown in this diagram; that
1116 is, the Imm fields above replace the V-rel16 field.
1117
1118 All we need to do here is shuffle the bits appropriately. As
1119 above, the two 16-bit halves must be swapped on a
1120 little-endian system.
1121
1122 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1123 access data when neither GP-relative nor PC-relative addressing
1124 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1125 except that the addend is retrieved and stored as shown above
1126 for R_MIPS16_GPREL.
1127 */
1128 void
1129 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1130 bfd_boolean jal_shuffle, bfd_byte *data)
1131 {
1132 bfd_vma extend, insn, val;
1133
1134 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1135 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1136 return;
1137
1138 /* Pick up the mips16 extend instruction and the real instruction. */
1139 extend = bfd_get_16 (abfd, data);
1140 insn = bfd_get_16 (abfd, data + 2);
1141 if (r_type == R_MIPS16_26)
1142 {
1143 if (jal_shuffle)
1144 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1145 | ((extend & 0x1f) << 21) | insn;
1146 else
1147 val = extend << 16 | insn;
1148 }
1149 else
1150 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1151 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1152 bfd_put_32 (abfd, val, data);
1153 }
1154
1155 void
1156 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1157 bfd_boolean jal_shuffle, bfd_byte *data)
1158 {
1159 bfd_vma extend, insn, val;
1160
1161 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1162 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1163 return;
1164
1165 val = bfd_get_32 (abfd, data);
1166 if (r_type == R_MIPS16_26)
1167 {
1168 if (jal_shuffle)
1169 {
1170 insn = val & 0xffff;
1171 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1172 | ((val >> 21) & 0x1f);
1173 }
1174 else
1175 {
1176 insn = val & 0xffff;
1177 extend = val >> 16;
1178 }
1179 }
1180 else
1181 {
1182 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1183 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1184 }
1185 bfd_put_16 (abfd, insn, data + 2);
1186 bfd_put_16 (abfd, extend, data);
1187 }
1188
1189 bfd_reloc_status_type
1190 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1191 arelent *reloc_entry, asection *input_section,
1192 bfd_boolean relocatable, void *data, bfd_vma gp)
1193 {
1194 bfd_vma relocation;
1195 bfd_signed_vma val;
1196 bfd_reloc_status_type status;
1197
1198 if (bfd_is_com_section (symbol->section))
1199 relocation = 0;
1200 else
1201 relocation = symbol->value;
1202
1203 relocation += symbol->section->output_section->vma;
1204 relocation += symbol->section->output_offset;
1205
1206 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1207 return bfd_reloc_outofrange;
1208
1209 /* Set val to the offset into the section or symbol. */
1210 val = reloc_entry->addend;
1211
1212 _bfd_mips_elf_sign_extend (val, 16);
1213
1214 /* Adjust val for the final section location and GP value. If we
1215 are producing relocatable output, we don't want to do this for
1216 an external symbol. */
1217 if (! relocatable
1218 || (symbol->flags & BSF_SECTION_SYM) != 0)
1219 val += relocation - gp;
1220
1221 if (reloc_entry->howto->partial_inplace)
1222 {
1223 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1224 (bfd_byte *) data
1225 + reloc_entry->address);
1226 if (status != bfd_reloc_ok)
1227 return status;
1228 }
1229 else
1230 reloc_entry->addend = val;
1231
1232 if (relocatable)
1233 reloc_entry->address += input_section->output_offset;
1234
1235 return bfd_reloc_ok;
1236 }
1237
1238 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1239 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1240 that contains the relocation field and DATA points to the start of
1241 INPUT_SECTION. */
1242
1243 struct mips_hi16
1244 {
1245 struct mips_hi16 *next;
1246 bfd_byte *data;
1247 asection *input_section;
1248 arelent rel;
1249 };
1250
1251 /* FIXME: This should not be a static variable. */
1252
1253 static struct mips_hi16 *mips_hi16_list;
1254
1255 /* A howto special_function for REL *HI16 relocations. We can only
1256 calculate the correct value once we've seen the partnering
1257 *LO16 relocation, so just save the information for later.
1258
1259 The ABI requires that the *LO16 immediately follow the *HI16.
1260 However, as a GNU extension, we permit an arbitrary number of
1261 *HI16s to be associated with a single *LO16. This significantly
1262 simplies the relocation handling in gcc. */
1263
1264 bfd_reloc_status_type
1265 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1266 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1267 asection *input_section, bfd *output_bfd,
1268 char **error_message ATTRIBUTE_UNUSED)
1269 {
1270 struct mips_hi16 *n;
1271
1272 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1273 return bfd_reloc_outofrange;
1274
1275 n = bfd_malloc (sizeof *n);
1276 if (n == NULL)
1277 return bfd_reloc_outofrange;
1278
1279 n->next = mips_hi16_list;
1280 n->data = data;
1281 n->input_section = input_section;
1282 n->rel = *reloc_entry;
1283 mips_hi16_list = n;
1284
1285 if (output_bfd != NULL)
1286 reloc_entry->address += input_section->output_offset;
1287
1288 return bfd_reloc_ok;
1289 }
1290
1291 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1292 like any other 16-bit relocation when applied to global symbols, but is
1293 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1294
1295 bfd_reloc_status_type
1296 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1297 void *data, asection *input_section,
1298 bfd *output_bfd, char **error_message)
1299 {
1300 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1301 || bfd_is_und_section (bfd_get_section (symbol))
1302 || bfd_is_com_section (bfd_get_section (symbol)))
1303 /* The relocation is against a global symbol. */
1304 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1305 input_section, output_bfd,
1306 error_message);
1307
1308 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1309 input_section, output_bfd, error_message);
1310 }
1311
1312 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1313 is a straightforward 16 bit inplace relocation, but we must deal with
1314 any partnering high-part relocations as well. */
1315
1316 bfd_reloc_status_type
1317 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1318 void *data, asection *input_section,
1319 bfd *output_bfd, char **error_message)
1320 {
1321 bfd_vma vallo;
1322 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1323
1324 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1325 return bfd_reloc_outofrange;
1326
1327 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1328 location);
1329 vallo = bfd_get_32 (abfd, location);
1330 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1331 location);
1332
1333 while (mips_hi16_list != NULL)
1334 {
1335 bfd_reloc_status_type ret;
1336 struct mips_hi16 *hi;
1337
1338 hi = mips_hi16_list;
1339
1340 /* R_MIPS_GOT16 relocations are something of a special case. We
1341 want to install the addend in the same way as for a R_MIPS_HI16
1342 relocation (with a rightshift of 16). However, since GOT16
1343 relocations can also be used with global symbols, their howto
1344 has a rightshift of 0. */
1345 if (hi->rel.howto->type == R_MIPS_GOT16)
1346 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1347
1348 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1349 carry or borrow will induce a change of +1 or -1 in the high part. */
1350 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1351
1352 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1353 hi->input_section, output_bfd,
1354 error_message);
1355 if (ret != bfd_reloc_ok)
1356 return ret;
1357
1358 mips_hi16_list = hi->next;
1359 free (hi);
1360 }
1361
1362 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1363 input_section, output_bfd,
1364 error_message);
1365 }
1366
1367 /* A generic howto special_function. This calculates and installs the
1368 relocation itself, thus avoiding the oft-discussed problems in
1369 bfd_perform_relocation and bfd_install_relocation. */
1370
1371 bfd_reloc_status_type
1372 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1373 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1374 asection *input_section, bfd *output_bfd,
1375 char **error_message ATTRIBUTE_UNUSED)
1376 {
1377 bfd_signed_vma val;
1378 bfd_reloc_status_type status;
1379 bfd_boolean relocatable;
1380
1381 relocatable = (output_bfd != NULL);
1382
1383 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1384 return bfd_reloc_outofrange;
1385
1386 /* Build up the field adjustment in VAL. */
1387 val = 0;
1388 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1389 {
1390 /* Either we're calculating the final field value or we have a
1391 relocation against a section symbol. Add in the section's
1392 offset or address. */
1393 val += symbol->section->output_section->vma;
1394 val += symbol->section->output_offset;
1395 }
1396
1397 if (!relocatable)
1398 {
1399 /* We're calculating the final field value. Add in the symbol's value
1400 and, if pc-relative, subtract the address of the field itself. */
1401 val += symbol->value;
1402 if (reloc_entry->howto->pc_relative)
1403 {
1404 val -= input_section->output_section->vma;
1405 val -= input_section->output_offset;
1406 val -= reloc_entry->address;
1407 }
1408 }
1409
1410 /* VAL is now the final adjustment. If we're keeping this relocation
1411 in the output file, and if the relocation uses a separate addend,
1412 we just need to add VAL to that addend. Otherwise we need to add
1413 VAL to the relocation field itself. */
1414 if (relocatable && !reloc_entry->howto->partial_inplace)
1415 reloc_entry->addend += val;
1416 else
1417 {
1418 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1419
1420 /* Add in the separate addend, if any. */
1421 val += reloc_entry->addend;
1422
1423 /* Add VAL to the relocation field. */
1424 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1425 location);
1426 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1427 location);
1428 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1429 location);
1430
1431 if (status != bfd_reloc_ok)
1432 return status;
1433 }
1434
1435 if (relocatable)
1436 reloc_entry->address += input_section->output_offset;
1437
1438 return bfd_reloc_ok;
1439 }
1440 \f
1441 /* Swap an entry in a .gptab section. Note that these routines rely
1442 on the equivalence of the two elements of the union. */
1443
1444 static void
1445 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1446 Elf32_gptab *in)
1447 {
1448 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1449 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1450 }
1451
1452 static void
1453 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1454 Elf32_External_gptab *ex)
1455 {
1456 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1457 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1458 }
1459
1460 static void
1461 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1462 Elf32_External_compact_rel *ex)
1463 {
1464 H_PUT_32 (abfd, in->id1, ex->id1);
1465 H_PUT_32 (abfd, in->num, ex->num);
1466 H_PUT_32 (abfd, in->id2, ex->id2);
1467 H_PUT_32 (abfd, in->offset, ex->offset);
1468 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1469 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1470 }
1471
1472 static void
1473 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1474 Elf32_External_crinfo *ex)
1475 {
1476 unsigned long l;
1477
1478 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1479 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1480 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1481 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1482 H_PUT_32 (abfd, l, ex->info);
1483 H_PUT_32 (abfd, in->konst, ex->konst);
1484 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1485 }
1486 \f
1487 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1488 routines swap this structure in and out. They are used outside of
1489 BFD, so they are globally visible. */
1490
1491 void
1492 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1493 Elf32_RegInfo *in)
1494 {
1495 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1496 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1497 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1498 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1499 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1500 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1501 }
1502
1503 void
1504 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1505 Elf32_External_RegInfo *ex)
1506 {
1507 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1508 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1509 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1510 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1511 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1512 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1513 }
1514
1515 /* In the 64 bit ABI, the .MIPS.options section holds register
1516 information in an Elf64_Reginfo structure. These routines swap
1517 them in and out. They are globally visible because they are used
1518 outside of BFD. These routines are here so that gas can call them
1519 without worrying about whether the 64 bit ABI has been included. */
1520
1521 void
1522 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1523 Elf64_Internal_RegInfo *in)
1524 {
1525 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1526 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1527 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1528 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1529 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1530 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1531 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1532 }
1533
1534 void
1535 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1536 Elf64_External_RegInfo *ex)
1537 {
1538 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1539 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1540 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1541 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1542 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1543 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1544 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1545 }
1546
1547 /* Swap in an options header. */
1548
1549 void
1550 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1551 Elf_Internal_Options *in)
1552 {
1553 in->kind = H_GET_8 (abfd, ex->kind);
1554 in->size = H_GET_8 (abfd, ex->size);
1555 in->section = H_GET_16 (abfd, ex->section);
1556 in->info = H_GET_32 (abfd, ex->info);
1557 }
1558
1559 /* Swap out an options header. */
1560
1561 void
1562 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1563 Elf_External_Options *ex)
1564 {
1565 H_PUT_8 (abfd, in->kind, ex->kind);
1566 H_PUT_8 (abfd, in->size, ex->size);
1567 H_PUT_16 (abfd, in->section, ex->section);
1568 H_PUT_32 (abfd, in->info, ex->info);
1569 }
1570 \f
1571 /* This function is called via qsort() to sort the dynamic relocation
1572 entries by increasing r_symndx value. */
1573
1574 static int
1575 sort_dynamic_relocs (const void *arg1, const void *arg2)
1576 {
1577 Elf_Internal_Rela int_reloc1;
1578 Elf_Internal_Rela int_reloc2;
1579
1580 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1581 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1582
1583 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1584 }
1585
1586 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1587
1588 static int
1589 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1590 const void *arg2 ATTRIBUTE_UNUSED)
1591 {
1592 #ifdef BFD64
1593 Elf_Internal_Rela int_reloc1[3];
1594 Elf_Internal_Rela int_reloc2[3];
1595
1596 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1597 (reldyn_sorting_bfd, arg1, int_reloc1);
1598 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1599 (reldyn_sorting_bfd, arg2, int_reloc2);
1600
1601 return (ELF64_R_SYM (int_reloc1[0].r_info)
1602 - ELF64_R_SYM (int_reloc2[0].r_info));
1603 #else
1604 abort ();
1605 #endif
1606 }
1607
1608
1609 /* This routine is used to write out ECOFF debugging external symbol
1610 information. It is called via mips_elf_link_hash_traverse. The
1611 ECOFF external symbol information must match the ELF external
1612 symbol information. Unfortunately, at this point we don't know
1613 whether a symbol is required by reloc information, so the two
1614 tables may wind up being different. We must sort out the external
1615 symbol information before we can set the final size of the .mdebug
1616 section, and we must set the size of the .mdebug section before we
1617 can relocate any sections, and we can't know which symbols are
1618 required by relocation until we relocate the sections.
1619 Fortunately, it is relatively unlikely that any symbol will be
1620 stripped but required by a reloc. In particular, it can not happen
1621 when generating a final executable. */
1622
1623 static bfd_boolean
1624 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1625 {
1626 struct extsym_info *einfo = data;
1627 bfd_boolean strip;
1628 asection *sec, *output_section;
1629
1630 if (h->root.root.type == bfd_link_hash_warning)
1631 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1632
1633 if (h->root.indx == -2)
1634 strip = FALSE;
1635 else if ((h->root.def_dynamic
1636 || h->root.ref_dynamic
1637 || h->root.type == bfd_link_hash_new)
1638 && !h->root.def_regular
1639 && !h->root.ref_regular)
1640 strip = TRUE;
1641 else if (einfo->info->strip == strip_all
1642 || (einfo->info->strip == strip_some
1643 && bfd_hash_lookup (einfo->info->keep_hash,
1644 h->root.root.root.string,
1645 FALSE, FALSE) == NULL))
1646 strip = TRUE;
1647 else
1648 strip = FALSE;
1649
1650 if (strip)
1651 return TRUE;
1652
1653 if (h->esym.ifd == -2)
1654 {
1655 h->esym.jmptbl = 0;
1656 h->esym.cobol_main = 0;
1657 h->esym.weakext = 0;
1658 h->esym.reserved = 0;
1659 h->esym.ifd = ifdNil;
1660 h->esym.asym.value = 0;
1661 h->esym.asym.st = stGlobal;
1662
1663 if (h->root.root.type == bfd_link_hash_undefined
1664 || h->root.root.type == bfd_link_hash_undefweak)
1665 {
1666 const char *name;
1667
1668 /* Use undefined class. Also, set class and type for some
1669 special symbols. */
1670 name = h->root.root.root.string;
1671 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1672 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1673 {
1674 h->esym.asym.sc = scData;
1675 h->esym.asym.st = stLabel;
1676 h->esym.asym.value = 0;
1677 }
1678 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1679 {
1680 h->esym.asym.sc = scAbs;
1681 h->esym.asym.st = stLabel;
1682 h->esym.asym.value =
1683 mips_elf_hash_table (einfo->info)->procedure_count;
1684 }
1685 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1686 {
1687 h->esym.asym.sc = scAbs;
1688 h->esym.asym.st = stLabel;
1689 h->esym.asym.value = elf_gp (einfo->abfd);
1690 }
1691 else
1692 h->esym.asym.sc = scUndefined;
1693 }
1694 else if (h->root.root.type != bfd_link_hash_defined
1695 && h->root.root.type != bfd_link_hash_defweak)
1696 h->esym.asym.sc = scAbs;
1697 else
1698 {
1699 const char *name;
1700
1701 sec = h->root.root.u.def.section;
1702 output_section = sec->output_section;
1703
1704 /* When making a shared library and symbol h is the one from
1705 the another shared library, OUTPUT_SECTION may be null. */
1706 if (output_section == NULL)
1707 h->esym.asym.sc = scUndefined;
1708 else
1709 {
1710 name = bfd_section_name (output_section->owner, output_section);
1711
1712 if (strcmp (name, ".text") == 0)
1713 h->esym.asym.sc = scText;
1714 else if (strcmp (name, ".data") == 0)
1715 h->esym.asym.sc = scData;
1716 else if (strcmp (name, ".sdata") == 0)
1717 h->esym.asym.sc = scSData;
1718 else if (strcmp (name, ".rodata") == 0
1719 || strcmp (name, ".rdata") == 0)
1720 h->esym.asym.sc = scRData;
1721 else if (strcmp (name, ".bss") == 0)
1722 h->esym.asym.sc = scBss;
1723 else if (strcmp (name, ".sbss") == 0)
1724 h->esym.asym.sc = scSBss;
1725 else if (strcmp (name, ".init") == 0)
1726 h->esym.asym.sc = scInit;
1727 else if (strcmp (name, ".fini") == 0)
1728 h->esym.asym.sc = scFini;
1729 else
1730 h->esym.asym.sc = scAbs;
1731 }
1732 }
1733
1734 h->esym.asym.reserved = 0;
1735 h->esym.asym.index = indexNil;
1736 }
1737
1738 if (h->root.root.type == bfd_link_hash_common)
1739 h->esym.asym.value = h->root.root.u.c.size;
1740 else if (h->root.root.type == bfd_link_hash_defined
1741 || h->root.root.type == bfd_link_hash_defweak)
1742 {
1743 if (h->esym.asym.sc == scCommon)
1744 h->esym.asym.sc = scBss;
1745 else if (h->esym.asym.sc == scSCommon)
1746 h->esym.asym.sc = scSBss;
1747
1748 sec = h->root.root.u.def.section;
1749 output_section = sec->output_section;
1750 if (output_section != NULL)
1751 h->esym.asym.value = (h->root.root.u.def.value
1752 + sec->output_offset
1753 + output_section->vma);
1754 else
1755 h->esym.asym.value = 0;
1756 }
1757 else if (h->root.needs_plt)
1758 {
1759 struct mips_elf_link_hash_entry *hd = h;
1760 bfd_boolean no_fn_stub = h->no_fn_stub;
1761
1762 while (hd->root.root.type == bfd_link_hash_indirect)
1763 {
1764 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1765 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1766 }
1767
1768 if (!no_fn_stub)
1769 {
1770 /* Set type and value for a symbol with a function stub. */
1771 h->esym.asym.st = stProc;
1772 sec = hd->root.root.u.def.section;
1773 if (sec == NULL)
1774 h->esym.asym.value = 0;
1775 else
1776 {
1777 output_section = sec->output_section;
1778 if (output_section != NULL)
1779 h->esym.asym.value = (hd->root.plt.offset
1780 + sec->output_offset
1781 + output_section->vma);
1782 else
1783 h->esym.asym.value = 0;
1784 }
1785 }
1786 }
1787
1788 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1789 h->root.root.root.string,
1790 &h->esym))
1791 {
1792 einfo->failed = TRUE;
1793 return FALSE;
1794 }
1795
1796 return TRUE;
1797 }
1798
1799 /* A comparison routine used to sort .gptab entries. */
1800
1801 static int
1802 gptab_compare (const void *p1, const void *p2)
1803 {
1804 const Elf32_gptab *a1 = p1;
1805 const Elf32_gptab *a2 = p2;
1806
1807 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1808 }
1809 \f
1810 /* Functions to manage the got entry hash table. */
1811
1812 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1813 hash number. */
1814
1815 static INLINE hashval_t
1816 mips_elf_hash_bfd_vma (bfd_vma addr)
1817 {
1818 #ifdef BFD64
1819 return addr + (addr >> 32);
1820 #else
1821 return addr;
1822 #endif
1823 }
1824
1825 /* got_entries only match if they're identical, except for gotidx, so
1826 use all fields to compute the hash, and compare the appropriate
1827 union members. */
1828
1829 static hashval_t
1830 mips_elf_got_entry_hash (const void *entry_)
1831 {
1832 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1833
1834 return entry->symndx
1835 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1836 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1837 : entry->abfd->id
1838 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1839 : entry->d.h->root.root.root.hash));
1840 }
1841
1842 static int
1843 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1844 {
1845 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1846 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1847
1848 /* An LDM entry can only match another LDM entry. */
1849 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1850 return 0;
1851
1852 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1853 && (! e1->abfd ? e1->d.address == e2->d.address
1854 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1855 : e1->d.h == e2->d.h);
1856 }
1857
1858 /* multi_got_entries are still a match in the case of global objects,
1859 even if the input bfd in which they're referenced differs, so the
1860 hash computation and compare functions are adjusted
1861 accordingly. */
1862
1863 static hashval_t
1864 mips_elf_multi_got_entry_hash (const void *entry_)
1865 {
1866 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1867
1868 return entry->symndx
1869 + (! entry->abfd
1870 ? mips_elf_hash_bfd_vma (entry->d.address)
1871 : entry->symndx >= 0
1872 ? ((entry->tls_type & GOT_TLS_LDM)
1873 ? (GOT_TLS_LDM << 17)
1874 : (entry->abfd->id
1875 + mips_elf_hash_bfd_vma (entry->d.addend)))
1876 : entry->d.h->root.root.root.hash);
1877 }
1878
1879 static int
1880 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1881 {
1882 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1883 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1884
1885 /* Any two LDM entries match. */
1886 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
1887 return 1;
1888
1889 /* Nothing else matches an LDM entry. */
1890 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1891 return 0;
1892
1893 return e1->symndx == e2->symndx
1894 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1895 : e1->abfd == NULL || e2->abfd == NULL
1896 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1897 : e1->d.h == e2->d.h);
1898 }
1899 \f
1900 /* Returns the dynamic relocation section for DYNOBJ. */
1901
1902 static asection *
1903 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1904 {
1905 static const char dname[] = ".rel.dyn";
1906 asection *sreloc;
1907
1908 sreloc = bfd_get_section_by_name (dynobj, dname);
1909 if (sreloc == NULL && create_p)
1910 {
1911 sreloc = bfd_make_section_with_flags (dynobj, dname,
1912 (SEC_ALLOC
1913 | SEC_LOAD
1914 | SEC_HAS_CONTENTS
1915 | SEC_IN_MEMORY
1916 | SEC_LINKER_CREATED
1917 | SEC_READONLY));
1918 if (sreloc == NULL
1919 || ! bfd_set_section_alignment (dynobj, sreloc,
1920 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1921 return NULL;
1922 }
1923 return sreloc;
1924 }
1925
1926 /* Returns the GOT section for ABFD. */
1927
1928 static asection *
1929 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1930 {
1931 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1932 if (sgot == NULL
1933 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1934 return NULL;
1935 return sgot;
1936 }
1937
1938 /* Returns the GOT information associated with the link indicated by
1939 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1940 section. */
1941
1942 static struct mips_got_info *
1943 mips_elf_got_info (bfd *abfd, asection **sgotp)
1944 {
1945 asection *sgot;
1946 struct mips_got_info *g;
1947
1948 sgot = mips_elf_got_section (abfd, TRUE);
1949 BFD_ASSERT (sgot != NULL);
1950 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1951 g = mips_elf_section_data (sgot)->u.got_info;
1952 BFD_ASSERT (g != NULL);
1953
1954 if (sgotp)
1955 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1956
1957 return g;
1958 }
1959
1960 /* Count the number of relocations needed for a TLS GOT entry, with
1961 access types from TLS_TYPE, and symbol H (or a local symbol if H
1962 is NULL). */
1963
1964 static int
1965 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
1966 struct elf_link_hash_entry *h)
1967 {
1968 int indx = 0;
1969 int ret = 0;
1970 bfd_boolean need_relocs = FALSE;
1971 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
1972
1973 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1974 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
1975 indx = h->dynindx;
1976
1977 if ((info->shared || indx != 0)
1978 && (h == NULL
1979 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1980 || h->root.type != bfd_link_hash_undefweak))
1981 need_relocs = TRUE;
1982
1983 if (!need_relocs)
1984 return FALSE;
1985
1986 if (tls_type & GOT_TLS_GD)
1987 {
1988 ret++;
1989 if (indx != 0)
1990 ret++;
1991 }
1992
1993 if (tls_type & GOT_TLS_IE)
1994 ret++;
1995
1996 if ((tls_type & GOT_TLS_LDM) && info->shared)
1997 ret++;
1998
1999 return ret;
2000 }
2001
2002 /* Count the number of TLS relocations required for the GOT entry in
2003 ARG1, if it describes a local symbol. */
2004
2005 static int
2006 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2007 {
2008 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2009 struct mips_elf_count_tls_arg *arg = arg2;
2010
2011 if (entry->abfd != NULL && entry->symndx != -1)
2012 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2013
2014 return 1;
2015 }
2016
2017 /* Count the number of TLS GOT entries required for the global (or
2018 forced-local) symbol in ARG1. */
2019
2020 static int
2021 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2022 {
2023 struct mips_elf_link_hash_entry *hm
2024 = (struct mips_elf_link_hash_entry *) arg1;
2025 struct mips_elf_count_tls_arg *arg = arg2;
2026
2027 if (hm->tls_type & GOT_TLS_GD)
2028 arg->needed += 2;
2029 if (hm->tls_type & GOT_TLS_IE)
2030 arg->needed += 1;
2031
2032 return 1;
2033 }
2034
2035 /* Count the number of TLS relocations required for the global (or
2036 forced-local) symbol in ARG1. */
2037
2038 static int
2039 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2040 {
2041 struct mips_elf_link_hash_entry *hm
2042 = (struct mips_elf_link_hash_entry *) arg1;
2043 struct mips_elf_count_tls_arg *arg = arg2;
2044
2045 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2046
2047 return 1;
2048 }
2049
2050 /* Output a simple dynamic relocation into SRELOC. */
2051
2052 static void
2053 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2054 asection *sreloc,
2055 unsigned long indx,
2056 int r_type,
2057 bfd_vma offset)
2058 {
2059 Elf_Internal_Rela rel[3];
2060
2061 memset (rel, 0, sizeof (rel));
2062
2063 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2064 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2065
2066 if (ABI_64_P (output_bfd))
2067 {
2068 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2069 (output_bfd, &rel[0],
2070 (sreloc->contents
2071 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2072 }
2073 else
2074 bfd_elf32_swap_reloc_out
2075 (output_bfd, &rel[0],
2076 (sreloc->contents
2077 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2078 ++sreloc->reloc_count;
2079 }
2080
2081 /* Initialize a set of TLS GOT entries for one symbol. */
2082
2083 static void
2084 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2085 unsigned char *tls_type_p,
2086 struct bfd_link_info *info,
2087 struct mips_elf_link_hash_entry *h,
2088 bfd_vma value)
2089 {
2090 int indx;
2091 asection *sreloc, *sgot;
2092 bfd_vma offset, offset2;
2093 bfd *dynobj;
2094 bfd_boolean need_relocs = FALSE;
2095
2096 dynobj = elf_hash_table (info)->dynobj;
2097 sgot = mips_elf_got_section (dynobj, FALSE);
2098
2099 indx = 0;
2100 if (h != NULL)
2101 {
2102 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2103
2104 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2105 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2106 indx = h->root.dynindx;
2107 }
2108
2109 if (*tls_type_p & GOT_TLS_DONE)
2110 return;
2111
2112 if ((info->shared || indx != 0)
2113 && (h == NULL
2114 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2115 || h->root.type != bfd_link_hash_undefweak))
2116 need_relocs = TRUE;
2117
2118 /* MINUS_ONE means the symbol is not defined in this object. It may not
2119 be defined at all; assume that the value doesn't matter in that
2120 case. Otherwise complain if we would use the value. */
2121 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2122 || h->root.root.type == bfd_link_hash_undefweak);
2123
2124 /* Emit necessary relocations. */
2125 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
2126
2127 /* General Dynamic. */
2128 if (*tls_type_p & GOT_TLS_GD)
2129 {
2130 offset = got_offset;
2131 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2132
2133 if (need_relocs)
2134 {
2135 mips_elf_output_dynamic_relocation
2136 (abfd, sreloc, indx,
2137 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2138 sgot->output_offset + sgot->output_section->vma + offset);
2139
2140 if (indx)
2141 mips_elf_output_dynamic_relocation
2142 (abfd, sreloc, indx,
2143 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2144 sgot->output_offset + sgot->output_section->vma + offset2);
2145 else
2146 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2147 sgot->contents + offset2);
2148 }
2149 else
2150 {
2151 MIPS_ELF_PUT_WORD (abfd, 1,
2152 sgot->contents + offset);
2153 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2154 sgot->contents + offset2);
2155 }
2156
2157 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2158 }
2159
2160 /* Initial Exec model. */
2161 if (*tls_type_p & GOT_TLS_IE)
2162 {
2163 offset = got_offset;
2164
2165 if (need_relocs)
2166 {
2167 if (indx == 0)
2168 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2169 sgot->contents + offset);
2170 else
2171 MIPS_ELF_PUT_WORD (abfd, 0,
2172 sgot->contents + offset);
2173
2174 mips_elf_output_dynamic_relocation
2175 (abfd, sreloc, indx,
2176 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2177 sgot->output_offset + sgot->output_section->vma + offset);
2178 }
2179 else
2180 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2181 sgot->contents + offset);
2182 }
2183
2184 if (*tls_type_p & GOT_TLS_LDM)
2185 {
2186 /* The initial offset is zero, and the LD offsets will include the
2187 bias by DTP_OFFSET. */
2188 MIPS_ELF_PUT_WORD (abfd, 0,
2189 sgot->contents + got_offset
2190 + MIPS_ELF_GOT_SIZE (abfd));
2191
2192 if (!info->shared)
2193 MIPS_ELF_PUT_WORD (abfd, 1,
2194 sgot->contents + got_offset);
2195 else
2196 mips_elf_output_dynamic_relocation
2197 (abfd, sreloc, indx,
2198 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2199 sgot->output_offset + sgot->output_section->vma + got_offset);
2200 }
2201
2202 *tls_type_p |= GOT_TLS_DONE;
2203 }
2204
2205 /* Return the GOT index to use for a relocation of type R_TYPE against
2206 a symbol accessed using TLS_TYPE models. The GOT entries for this
2207 symbol in this GOT start at GOT_INDEX. This function initializes the
2208 GOT entries and corresponding relocations. */
2209
2210 static bfd_vma
2211 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2212 int r_type, struct bfd_link_info *info,
2213 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2214 {
2215 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2216 || r_type == R_MIPS_TLS_LDM);
2217
2218 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2219
2220 if (r_type == R_MIPS_TLS_GOTTPREL)
2221 {
2222 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2223 if (*tls_type & GOT_TLS_GD)
2224 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2225 else
2226 return got_index;
2227 }
2228
2229 if (r_type == R_MIPS_TLS_GD)
2230 {
2231 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2232 return got_index;
2233 }
2234
2235 if (r_type == R_MIPS_TLS_LDM)
2236 {
2237 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2238 return got_index;
2239 }
2240
2241 return got_index;
2242 }
2243
2244 /* Returns the GOT offset at which the indicated address can be found.
2245 If there is not yet a GOT entry for this value, create one. If
2246 R_SYMNDX refers to a TLS symbol, create a TLS GOT entry instead.
2247 Returns -1 if no satisfactory GOT offset can be found. */
2248
2249 static bfd_vma
2250 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2251 bfd_vma value, unsigned long r_symndx,
2252 struct mips_elf_link_hash_entry *h, int r_type)
2253 {
2254 asection *sgot;
2255 struct mips_got_info *g;
2256 struct mips_got_entry *entry;
2257
2258 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2259
2260 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value,
2261 r_symndx, h, r_type);
2262 if (!entry)
2263 return MINUS_ONE;
2264
2265 if (TLS_RELOC_P (r_type))
2266 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, r_type,
2267 info, h, value);
2268 else
2269 return entry->gotidx;
2270 }
2271
2272 /* Returns the GOT index for the global symbol indicated by H. */
2273
2274 static bfd_vma
2275 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2276 int r_type, struct bfd_link_info *info)
2277 {
2278 bfd_vma index;
2279 asection *sgot;
2280 struct mips_got_info *g, *gg;
2281 long global_got_dynindx = 0;
2282
2283 gg = g = mips_elf_got_info (abfd, &sgot);
2284 if (g->bfd2got && ibfd)
2285 {
2286 struct mips_got_entry e, *p;
2287
2288 BFD_ASSERT (h->dynindx >= 0);
2289
2290 g = mips_elf_got_for_ibfd (g, ibfd);
2291 if (g->next != gg || TLS_RELOC_P (r_type))
2292 {
2293 e.abfd = ibfd;
2294 e.symndx = -1;
2295 e.d.h = (struct mips_elf_link_hash_entry *)h;
2296 e.tls_type = 0;
2297
2298 p = htab_find (g->got_entries, &e);
2299
2300 BFD_ASSERT (p->gotidx > 0);
2301
2302 if (TLS_RELOC_P (r_type))
2303 {
2304 bfd_vma value = MINUS_ONE;
2305 if ((h->root.type == bfd_link_hash_defined
2306 || h->root.type == bfd_link_hash_defweak)
2307 && h->root.u.def.section->output_section)
2308 value = (h->root.u.def.value
2309 + h->root.u.def.section->output_offset
2310 + h->root.u.def.section->output_section->vma);
2311
2312 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2313 info, e.d.h, value);
2314 }
2315 else
2316 return p->gotidx;
2317 }
2318 }
2319
2320 if (gg->global_gotsym != NULL)
2321 global_got_dynindx = gg->global_gotsym->dynindx;
2322
2323 if (TLS_RELOC_P (r_type))
2324 {
2325 struct mips_elf_link_hash_entry *hm
2326 = (struct mips_elf_link_hash_entry *) h;
2327 bfd_vma value = MINUS_ONE;
2328
2329 if ((h->root.type == bfd_link_hash_defined
2330 || h->root.type == bfd_link_hash_defweak)
2331 && h->root.u.def.section->output_section)
2332 value = (h->root.u.def.value
2333 + h->root.u.def.section->output_offset
2334 + h->root.u.def.section->output_section->vma);
2335
2336 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2337 r_type, info, hm, value);
2338 }
2339 else
2340 {
2341 /* Once we determine the global GOT entry with the lowest dynamic
2342 symbol table index, we must put all dynamic symbols with greater
2343 indices into the GOT. That makes it easy to calculate the GOT
2344 offset. */
2345 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2346 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2347 * MIPS_ELF_GOT_SIZE (abfd));
2348 }
2349 BFD_ASSERT (index < sgot->size);
2350
2351 return index;
2352 }
2353
2354 /* Find a GOT entry that is within 32KB of the VALUE. These entries
2355 are supposed to be placed at small offsets in the GOT, i.e.,
2356 within 32KB of GP. Return the index into the GOT for this page,
2357 and store the offset from this entry to the desired address in
2358 OFFSETP, if it is non-NULL. */
2359
2360 static bfd_vma
2361 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2362 bfd_vma value, bfd_vma *offsetp)
2363 {
2364 asection *sgot;
2365 struct mips_got_info *g;
2366 bfd_vma index;
2367 struct mips_got_entry *entry;
2368
2369 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2370
2371 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
2372 (value + 0x8000)
2373 & (~(bfd_vma)0xffff), 0,
2374 NULL, R_MIPS_GOT_PAGE);
2375
2376 if (!entry)
2377 return MINUS_ONE;
2378
2379 index = entry->gotidx;
2380
2381 if (offsetp)
2382 *offsetp = value - entry->d.address;
2383
2384 return index;
2385 }
2386
2387 /* Find a GOT entry whose higher-order 16 bits are the same as those
2388 for value. Return the index into the GOT for this entry. */
2389
2390 static bfd_vma
2391 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2392 bfd_vma value, bfd_boolean external)
2393 {
2394 asection *sgot;
2395 struct mips_got_info *g;
2396 struct mips_got_entry *entry;
2397
2398 if (! external)
2399 {
2400 /* Although the ABI says that it is "the high-order 16 bits" that we
2401 want, it is really the %high value. The complete value is
2402 calculated with a `addiu' of a LO16 relocation, just as with a
2403 HI16/LO16 pair. */
2404 value = mips_elf_high (value) << 16;
2405 }
2406
2407 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2408
2409 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value, 0, NULL,
2410 R_MIPS_GOT16);
2411 if (entry)
2412 return entry->gotidx;
2413 else
2414 return MINUS_ONE;
2415 }
2416
2417 /* Returns the offset for the entry at the INDEXth position
2418 in the GOT. */
2419
2420 static bfd_vma
2421 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2422 bfd *input_bfd, bfd_vma index)
2423 {
2424 asection *sgot;
2425 bfd_vma gp;
2426 struct mips_got_info *g;
2427
2428 g = mips_elf_got_info (dynobj, &sgot);
2429 gp = _bfd_get_gp_value (output_bfd)
2430 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2431
2432 return sgot->output_section->vma + sgot->output_offset + index - gp;
2433 }
2434
2435 /* Create a local GOT entry for VALUE. Return the index of the entry,
2436 or -1 if it could not be created. If R_SYMNDX refers to a TLS symbol,
2437 create a TLS entry instead. */
2438
2439 static struct mips_got_entry *
2440 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
2441 struct mips_got_info *gg,
2442 asection *sgot, bfd_vma value,
2443 unsigned long r_symndx,
2444 struct mips_elf_link_hash_entry *h,
2445 int r_type)
2446 {
2447 struct mips_got_entry entry, **loc;
2448 struct mips_got_info *g;
2449
2450 entry.abfd = NULL;
2451 entry.symndx = -1;
2452 entry.d.address = value;
2453 entry.tls_type = 0;
2454
2455 g = mips_elf_got_for_ibfd (gg, ibfd);
2456 if (g == NULL)
2457 {
2458 g = mips_elf_got_for_ibfd (gg, abfd);
2459 BFD_ASSERT (g != NULL);
2460 }
2461
2462 /* We might have a symbol, H, if it has been forced local. Use the
2463 global entry then. It doesn't matter whether an entry is local
2464 or global for TLS, since the dynamic linker does not
2465 automatically relocate TLS GOT entries. */
2466 BFD_ASSERT (h == NULL || h->root.forced_local);
2467 if (TLS_RELOC_P (r_type))
2468 {
2469 struct mips_got_entry *p;
2470
2471 entry.abfd = ibfd;
2472 if (r_type == R_MIPS_TLS_LDM)
2473 {
2474 entry.tls_type = GOT_TLS_LDM;
2475 entry.symndx = 0;
2476 entry.d.addend = 0;
2477 }
2478 else if (h == NULL)
2479 {
2480 entry.symndx = r_symndx;
2481 entry.d.addend = 0;
2482 }
2483 else
2484 entry.d.h = h;
2485
2486 p = (struct mips_got_entry *)
2487 htab_find (g->got_entries, &entry);
2488
2489 BFD_ASSERT (p);
2490 return p;
2491 }
2492
2493 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2494 INSERT);
2495 if (*loc)
2496 return *loc;
2497
2498 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2499 entry.tls_type = 0;
2500
2501 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2502
2503 if (! *loc)
2504 return NULL;
2505
2506 memcpy (*loc, &entry, sizeof entry);
2507
2508 if (g->assigned_gotno >= g->local_gotno)
2509 {
2510 (*loc)->gotidx = -1;
2511 /* We didn't allocate enough space in the GOT. */
2512 (*_bfd_error_handler)
2513 (_("not enough GOT space for local GOT entries"));
2514 bfd_set_error (bfd_error_bad_value);
2515 return NULL;
2516 }
2517
2518 MIPS_ELF_PUT_WORD (abfd, value,
2519 (sgot->contents + entry.gotidx));
2520
2521 return *loc;
2522 }
2523
2524 /* Sort the dynamic symbol table so that symbols that need GOT entries
2525 appear towards the end. This reduces the amount of GOT space
2526 required. MAX_LOCAL is used to set the number of local symbols
2527 known to be in the dynamic symbol table. During
2528 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2529 section symbols are added and the count is higher. */
2530
2531 static bfd_boolean
2532 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2533 {
2534 struct mips_elf_hash_sort_data hsd;
2535 struct mips_got_info *g;
2536 bfd *dynobj;
2537
2538 dynobj = elf_hash_table (info)->dynobj;
2539
2540 g = mips_elf_got_info (dynobj, NULL);
2541
2542 hsd.low = NULL;
2543 hsd.max_unref_got_dynindx =
2544 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2545 /* In the multi-got case, assigned_gotno of the master got_info
2546 indicate the number of entries that aren't referenced in the
2547 primary GOT, but that must have entries because there are
2548 dynamic relocations that reference it. Since they aren't
2549 referenced, we move them to the end of the GOT, so that they
2550 don't prevent other entries that are referenced from getting
2551 too large offsets. */
2552 - (g->next ? g->assigned_gotno : 0);
2553 hsd.max_non_got_dynindx = max_local;
2554 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2555 elf_hash_table (info)),
2556 mips_elf_sort_hash_table_f,
2557 &hsd);
2558
2559 /* There should have been enough room in the symbol table to
2560 accommodate both the GOT and non-GOT symbols. */
2561 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2562 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2563 <= elf_hash_table (info)->dynsymcount);
2564
2565 /* Now we know which dynamic symbol has the lowest dynamic symbol
2566 table index in the GOT. */
2567 g->global_gotsym = hsd.low;
2568
2569 return TRUE;
2570 }
2571
2572 /* If H needs a GOT entry, assign it the highest available dynamic
2573 index. Otherwise, assign it the lowest available dynamic
2574 index. */
2575
2576 static bfd_boolean
2577 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2578 {
2579 struct mips_elf_hash_sort_data *hsd = data;
2580
2581 if (h->root.root.type == bfd_link_hash_warning)
2582 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2583
2584 /* Symbols without dynamic symbol table entries aren't interesting
2585 at all. */
2586 if (h->root.dynindx == -1)
2587 return TRUE;
2588
2589 /* Global symbols that need GOT entries that are not explicitly
2590 referenced are marked with got offset 2. Those that are
2591 referenced get a 1, and those that don't need GOT entries get
2592 -1. */
2593 if (h->root.got.offset == 2)
2594 {
2595 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2596
2597 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2598 hsd->low = (struct elf_link_hash_entry *) h;
2599 h->root.dynindx = hsd->max_unref_got_dynindx++;
2600 }
2601 else if (h->root.got.offset != 1)
2602 h->root.dynindx = hsd->max_non_got_dynindx++;
2603 else
2604 {
2605 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2606
2607 h->root.dynindx = --hsd->min_got_dynindx;
2608 hsd->low = (struct elf_link_hash_entry *) h;
2609 }
2610
2611 return TRUE;
2612 }
2613
2614 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2615 symbol table index lower than any we've seen to date, record it for
2616 posterity. */
2617
2618 static bfd_boolean
2619 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2620 bfd *abfd, struct bfd_link_info *info,
2621 struct mips_got_info *g,
2622 unsigned char tls_flag)
2623 {
2624 struct mips_got_entry entry, **loc;
2625
2626 /* A global symbol in the GOT must also be in the dynamic symbol
2627 table. */
2628 if (h->dynindx == -1)
2629 {
2630 switch (ELF_ST_VISIBILITY (h->other))
2631 {
2632 case STV_INTERNAL:
2633 case STV_HIDDEN:
2634 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2635 break;
2636 }
2637 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2638 return FALSE;
2639 }
2640
2641 entry.abfd = abfd;
2642 entry.symndx = -1;
2643 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2644 entry.tls_type = 0;
2645
2646 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2647 INSERT);
2648
2649 /* If we've already marked this entry as needing GOT space, we don't
2650 need to do it again. */
2651 if (*loc)
2652 {
2653 (*loc)->tls_type |= tls_flag;
2654 return TRUE;
2655 }
2656
2657 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2658
2659 if (! *loc)
2660 return FALSE;
2661
2662 entry.gotidx = -1;
2663 entry.tls_type = tls_flag;
2664
2665 memcpy (*loc, &entry, sizeof entry);
2666
2667 if (h->got.offset != MINUS_ONE)
2668 return TRUE;
2669
2670 /* By setting this to a value other than -1, we are indicating that
2671 there needs to be a GOT entry for H. Avoid using zero, as the
2672 generic ELF copy_indirect_symbol tests for <= 0. */
2673 if (tls_flag == 0)
2674 h->got.offset = 1;
2675
2676 return TRUE;
2677 }
2678
2679 /* Reserve space in G for a GOT entry containing the value of symbol
2680 SYMNDX in input bfd ABDF, plus ADDEND. */
2681
2682 static bfd_boolean
2683 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2684 struct mips_got_info *g,
2685 unsigned char tls_flag)
2686 {
2687 struct mips_got_entry entry, **loc;
2688
2689 entry.abfd = abfd;
2690 entry.symndx = symndx;
2691 entry.d.addend = addend;
2692 entry.tls_type = tls_flag;
2693 loc = (struct mips_got_entry **)
2694 htab_find_slot (g->got_entries, &entry, INSERT);
2695
2696 if (*loc)
2697 {
2698 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2699 {
2700 g->tls_gotno += 2;
2701 (*loc)->tls_type |= tls_flag;
2702 }
2703 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2704 {
2705 g->tls_gotno += 1;
2706 (*loc)->tls_type |= tls_flag;
2707 }
2708 return TRUE;
2709 }
2710
2711 if (tls_flag != 0)
2712 {
2713 entry.gotidx = -1;
2714 entry.tls_type = tls_flag;
2715 if (tls_flag == GOT_TLS_IE)
2716 g->tls_gotno += 1;
2717 else if (tls_flag == GOT_TLS_GD)
2718 g->tls_gotno += 2;
2719 else if (g->tls_ldm_offset == MINUS_ONE)
2720 {
2721 g->tls_ldm_offset = MINUS_TWO;
2722 g->tls_gotno += 2;
2723 }
2724 }
2725 else
2726 {
2727 entry.gotidx = g->local_gotno++;
2728 entry.tls_type = 0;
2729 }
2730
2731 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2732
2733 if (! *loc)
2734 return FALSE;
2735
2736 memcpy (*loc, &entry, sizeof entry);
2737
2738 return TRUE;
2739 }
2740 \f
2741 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2742
2743 static hashval_t
2744 mips_elf_bfd2got_entry_hash (const void *entry_)
2745 {
2746 const struct mips_elf_bfd2got_hash *entry
2747 = (struct mips_elf_bfd2got_hash *)entry_;
2748
2749 return entry->bfd->id;
2750 }
2751
2752 /* Check whether two hash entries have the same bfd. */
2753
2754 static int
2755 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2756 {
2757 const struct mips_elf_bfd2got_hash *e1
2758 = (const struct mips_elf_bfd2got_hash *)entry1;
2759 const struct mips_elf_bfd2got_hash *e2
2760 = (const struct mips_elf_bfd2got_hash *)entry2;
2761
2762 return e1->bfd == e2->bfd;
2763 }
2764
2765 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2766 be the master GOT data. */
2767
2768 static struct mips_got_info *
2769 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2770 {
2771 struct mips_elf_bfd2got_hash e, *p;
2772
2773 if (! g->bfd2got)
2774 return g;
2775
2776 e.bfd = ibfd;
2777 p = htab_find (g->bfd2got, &e);
2778 return p ? p->g : NULL;
2779 }
2780
2781 /* Create one separate got for each bfd that has entries in the global
2782 got, such that we can tell how many local and global entries each
2783 bfd requires. */
2784
2785 static int
2786 mips_elf_make_got_per_bfd (void **entryp, void *p)
2787 {
2788 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2789 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2790 htab_t bfd2got = arg->bfd2got;
2791 struct mips_got_info *g;
2792 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2793 void **bfdgotp;
2794
2795 /* Find the got_info for this GOT entry's input bfd. Create one if
2796 none exists. */
2797 bfdgot_entry.bfd = entry->abfd;
2798 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2799 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2800
2801 if (bfdgot != NULL)
2802 g = bfdgot->g;
2803 else
2804 {
2805 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2806 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2807
2808 if (bfdgot == NULL)
2809 {
2810 arg->obfd = 0;
2811 return 0;
2812 }
2813
2814 *bfdgotp = bfdgot;
2815
2816 bfdgot->bfd = entry->abfd;
2817 bfdgot->g = g = (struct mips_got_info *)
2818 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2819 if (g == NULL)
2820 {
2821 arg->obfd = 0;
2822 return 0;
2823 }
2824
2825 g->global_gotsym = NULL;
2826 g->global_gotno = 0;
2827 g->local_gotno = 0;
2828 g->assigned_gotno = -1;
2829 g->tls_gotno = 0;
2830 g->tls_assigned_gotno = 0;
2831 g->tls_ldm_offset = MINUS_ONE;
2832 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2833 mips_elf_multi_got_entry_eq, NULL);
2834 if (g->got_entries == NULL)
2835 {
2836 arg->obfd = 0;
2837 return 0;
2838 }
2839
2840 g->bfd2got = NULL;
2841 g->next = NULL;
2842 }
2843
2844 /* Insert the GOT entry in the bfd's got entry hash table. */
2845 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2846 if (*entryp != NULL)
2847 return 1;
2848
2849 *entryp = entry;
2850
2851 if (entry->tls_type)
2852 {
2853 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
2854 g->tls_gotno += 2;
2855 if (entry->tls_type & GOT_TLS_IE)
2856 g->tls_gotno += 1;
2857 }
2858 else if (entry->symndx >= 0 || entry->d.h->forced_local)
2859 ++g->local_gotno;
2860 else
2861 ++g->global_gotno;
2862
2863 return 1;
2864 }
2865
2866 /* Attempt to merge gots of different input bfds. Try to use as much
2867 as possible of the primary got, since it doesn't require explicit
2868 dynamic relocations, but don't use bfds that would reference global
2869 symbols out of the addressable range. Failing the primary got,
2870 attempt to merge with the current got, or finish the current got
2871 and then make make the new got current. */
2872
2873 static int
2874 mips_elf_merge_gots (void **bfd2got_, void *p)
2875 {
2876 struct mips_elf_bfd2got_hash *bfd2got
2877 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2878 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2879 unsigned int lcount = bfd2got->g->local_gotno;
2880 unsigned int gcount = bfd2got->g->global_gotno;
2881 unsigned int tcount = bfd2got->g->tls_gotno;
2882 unsigned int maxcnt = arg->max_count;
2883 bfd_boolean too_many_for_tls = FALSE;
2884
2885 /* We place TLS GOT entries after both locals and globals. The globals
2886 for the primary GOT may overflow the normal GOT size limit, so be
2887 sure not to merge a GOT which requires TLS with the primary GOT in that
2888 case. This doesn't affect non-primary GOTs. */
2889 if (tcount > 0)
2890 {
2891 unsigned int primary_total = lcount + tcount + arg->global_count;
2892 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
2893 >= MIPS_ELF_GOT_MAX_SIZE (bfd2got->bfd))
2894 too_many_for_tls = TRUE;
2895 }
2896
2897 /* If we don't have a primary GOT and this is not too big, use it as
2898 a starting point for the primary GOT. */
2899 if (! arg->primary && lcount + gcount + tcount <= maxcnt
2900 && ! too_many_for_tls)
2901 {
2902 arg->primary = bfd2got->g;
2903 arg->primary_count = lcount + gcount;
2904 }
2905 /* If it looks like we can merge this bfd's entries with those of
2906 the primary, merge them. The heuristics is conservative, but we
2907 don't have to squeeze it too hard. */
2908 else if (arg->primary && ! too_many_for_tls
2909 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
2910 {
2911 struct mips_got_info *g = bfd2got->g;
2912 int old_lcount = arg->primary->local_gotno;
2913 int old_gcount = arg->primary->global_gotno;
2914 int old_tcount = arg->primary->tls_gotno;
2915
2916 bfd2got->g = arg->primary;
2917
2918 htab_traverse (g->got_entries,
2919 mips_elf_make_got_per_bfd,
2920 arg);
2921 if (arg->obfd == NULL)
2922 return 0;
2923
2924 htab_delete (g->got_entries);
2925 /* We don't have to worry about releasing memory of the actual
2926 got entries, since they're all in the master got_entries hash
2927 table anyway. */
2928
2929 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2930 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2931 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
2932
2933 arg->primary_count = arg->primary->local_gotno
2934 + arg->primary->global_gotno + arg->primary->tls_gotno;
2935 }
2936 /* If we can merge with the last-created got, do it. */
2937 else if (arg->current
2938 && arg->current_count + lcount + gcount + tcount <= maxcnt)
2939 {
2940 struct mips_got_info *g = bfd2got->g;
2941 int old_lcount = arg->current->local_gotno;
2942 int old_gcount = arg->current->global_gotno;
2943 int old_tcount = arg->current->tls_gotno;
2944
2945 bfd2got->g = arg->current;
2946
2947 htab_traverse (g->got_entries,
2948 mips_elf_make_got_per_bfd,
2949 arg);
2950 if (arg->obfd == NULL)
2951 return 0;
2952
2953 htab_delete (g->got_entries);
2954
2955 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2956 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2957 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
2958
2959 arg->current_count = arg->current->local_gotno
2960 + arg->current->global_gotno + arg->current->tls_gotno;
2961 }
2962 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2963 fits; if it turns out that it doesn't, we'll get relocation
2964 overflows anyway. */
2965 else
2966 {
2967 bfd2got->g->next = arg->current;
2968 arg->current = bfd2got->g;
2969
2970 arg->current_count = lcount + gcount + 2 * tcount;
2971 }
2972
2973 return 1;
2974 }
2975
2976 /* Set the TLS GOT index for the GOT entry in ENTRYP. */
2977
2978 static int
2979 mips_elf_initialize_tls_index (void **entryp, void *p)
2980 {
2981 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2982 struct mips_got_info *g = p;
2983
2984 /* We're only interested in TLS symbols. */
2985 if (entry->tls_type == 0)
2986 return 1;
2987
2988 if (entry->symndx == -1)
2989 {
2990 /* There may be multiple mips_got_entry structs for a global variable
2991 if there is just one GOT. Just do this once. */
2992 if (g->next == NULL)
2993 {
2994 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
2995 return 1;
2996 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
2997 }
2998 }
2999 else if (entry->tls_type & GOT_TLS_LDM)
3000 {
3001 /* Similarly, there may be multiple structs for the LDM entry. */
3002 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3003 {
3004 entry->gotidx = g->tls_ldm_offset;
3005 return 1;
3006 }
3007 }
3008
3009 /* Initialize the GOT offset. */
3010 entry->gotidx = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3011 if (g->next == NULL && entry->symndx == -1)
3012 entry->d.h->tls_got_offset = entry->gotidx;
3013
3014 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3015 g->tls_assigned_gotno += 2;
3016 if (entry->tls_type & GOT_TLS_IE)
3017 g->tls_assigned_gotno += 1;
3018
3019 if (entry->tls_type & GOT_TLS_LDM)
3020 g->tls_ldm_offset = entry->gotidx;
3021
3022 return 1;
3023 }
3024
3025 /* If passed a NULL mips_got_info in the argument, set the marker used
3026 to tell whether a global symbol needs a got entry (in the primary
3027 got) to the given VALUE.
3028
3029 If passed a pointer G to a mips_got_info in the argument (it must
3030 not be the primary GOT), compute the offset from the beginning of
3031 the (primary) GOT section to the entry in G corresponding to the
3032 global symbol. G's assigned_gotno must contain the index of the
3033 first available global GOT entry in G. VALUE must contain the size
3034 of a GOT entry in bytes. For each global GOT entry that requires a
3035 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3036 marked as not eligible for lazy resolution through a function
3037 stub. */
3038 static int
3039 mips_elf_set_global_got_offset (void **entryp, void *p)
3040 {
3041 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3042 struct mips_elf_set_global_got_offset_arg *arg
3043 = (struct mips_elf_set_global_got_offset_arg *)p;
3044 struct mips_got_info *g = arg->g;
3045
3046 if (g && entry->tls_type != GOT_NORMAL)
3047 arg->needed_relocs +=
3048 mips_tls_got_relocs (arg->info, entry->tls_type,
3049 entry->symndx == -1 ? &entry->d.h->root : NULL);
3050
3051 if (entry->abfd != NULL && entry->symndx == -1
3052 && entry->d.h->root.dynindx != -1
3053 && entry->d.h->tls_type == GOT_NORMAL)
3054 {
3055 if (g)
3056 {
3057 BFD_ASSERT (g->global_gotsym == NULL);
3058
3059 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3060 if (arg->info->shared
3061 || (elf_hash_table (arg->info)->dynamic_sections_created
3062 && entry->d.h->root.def_dynamic
3063 && !entry->d.h->root.def_regular))
3064 ++arg->needed_relocs;
3065 }
3066 else
3067 entry->d.h->root.got.offset = arg->value;
3068 }
3069
3070 return 1;
3071 }
3072
3073 /* Mark any global symbols referenced in the GOT we are iterating over
3074 as inelligible for lazy resolution stubs. */
3075 static int
3076 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3077 {
3078 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3079
3080 if (entry->abfd != NULL
3081 && entry->symndx == -1
3082 && entry->d.h->root.dynindx != -1)
3083 entry->d.h->no_fn_stub = TRUE;
3084
3085 return 1;
3086 }
3087
3088 /* Follow indirect and warning hash entries so that each got entry
3089 points to the final symbol definition. P must point to a pointer
3090 to the hash table we're traversing. Since this traversal may
3091 modify the hash table, we set this pointer to NULL to indicate
3092 we've made a potentially-destructive change to the hash table, so
3093 the traversal must be restarted. */
3094 static int
3095 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3096 {
3097 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3098 htab_t got_entries = *(htab_t *)p;
3099
3100 if (entry->abfd != NULL && entry->symndx == -1)
3101 {
3102 struct mips_elf_link_hash_entry *h = entry->d.h;
3103
3104 while (h->root.root.type == bfd_link_hash_indirect
3105 || h->root.root.type == bfd_link_hash_warning)
3106 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3107
3108 if (entry->d.h == h)
3109 return 1;
3110
3111 entry->d.h = h;
3112
3113 /* If we can't find this entry with the new bfd hash, re-insert
3114 it, and get the traversal restarted. */
3115 if (! htab_find (got_entries, entry))
3116 {
3117 htab_clear_slot (got_entries, entryp);
3118 entryp = htab_find_slot (got_entries, entry, INSERT);
3119 if (! *entryp)
3120 *entryp = entry;
3121 /* Abort the traversal, since the whole table may have
3122 moved, and leave it up to the parent to restart the
3123 process. */
3124 *(htab_t *)p = NULL;
3125 return 0;
3126 }
3127 /* We might want to decrement the global_gotno count, but it's
3128 either too early or too late for that at this point. */
3129 }
3130
3131 return 1;
3132 }
3133
3134 /* Turn indirect got entries in a got_entries table into their final
3135 locations. */
3136 static void
3137 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3138 {
3139 htab_t got_entries;
3140
3141 do
3142 {
3143 got_entries = g->got_entries;
3144
3145 htab_traverse (got_entries,
3146 mips_elf_resolve_final_got_entry,
3147 &got_entries);
3148 }
3149 while (got_entries == NULL);
3150 }
3151
3152 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3153 the primary GOT. */
3154 static bfd_vma
3155 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3156 {
3157 if (g->bfd2got == NULL)
3158 return 0;
3159
3160 g = mips_elf_got_for_ibfd (g, ibfd);
3161 if (! g)
3162 return 0;
3163
3164 BFD_ASSERT (g->next);
3165
3166 g = g->next;
3167
3168 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3169 * MIPS_ELF_GOT_SIZE (abfd);
3170 }
3171
3172 /* Turn a single GOT that is too big for 16-bit addressing into
3173 a sequence of GOTs, each one 16-bit addressable. */
3174
3175 static bfd_boolean
3176 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3177 struct mips_got_info *g, asection *got,
3178 bfd_size_type pages)
3179 {
3180 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3181 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3182 struct mips_got_info *gg;
3183 unsigned int assign;
3184
3185 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3186 mips_elf_bfd2got_entry_eq, NULL);
3187 if (g->bfd2got == NULL)
3188 return FALSE;
3189
3190 got_per_bfd_arg.bfd2got = g->bfd2got;
3191 got_per_bfd_arg.obfd = abfd;
3192 got_per_bfd_arg.info = info;
3193
3194 /* Count how many GOT entries each input bfd requires, creating a
3195 map from bfd to got info while at that. */
3196 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3197 if (got_per_bfd_arg.obfd == NULL)
3198 return FALSE;
3199
3200 got_per_bfd_arg.current = NULL;
3201 got_per_bfd_arg.primary = NULL;
3202 /* Taking out PAGES entries is a worst-case estimate. We could
3203 compute the maximum number of pages that each separate input bfd
3204 uses, but it's probably not worth it. */
3205 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
3206 / MIPS_ELF_GOT_SIZE (abfd))
3207 - MIPS_RESERVED_GOTNO - pages);
3208 /* The number of globals that will be included in the primary GOT.
3209 See the calls to mips_elf_set_global_got_offset below for more
3210 information. */
3211 got_per_bfd_arg.global_count = g->global_gotno;
3212
3213 /* Try to merge the GOTs of input bfds together, as long as they
3214 don't seem to exceed the maximum GOT size, choosing one of them
3215 to be the primary GOT. */
3216 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3217 if (got_per_bfd_arg.obfd == NULL)
3218 return FALSE;
3219
3220 /* If we do not find any suitable primary GOT, create an empty one. */
3221 if (got_per_bfd_arg.primary == NULL)
3222 {
3223 g->next = (struct mips_got_info *)
3224 bfd_alloc (abfd, sizeof (struct mips_got_info));
3225 if (g->next == NULL)
3226 return FALSE;
3227
3228 g->next->global_gotsym = NULL;
3229 g->next->global_gotno = 0;
3230 g->next->local_gotno = 0;
3231 g->next->tls_gotno = 0;
3232 g->next->assigned_gotno = 0;
3233 g->next->tls_assigned_gotno = 0;
3234 g->next->tls_ldm_offset = MINUS_ONE;
3235 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3236 mips_elf_multi_got_entry_eq,
3237 NULL);
3238 if (g->next->got_entries == NULL)
3239 return FALSE;
3240 g->next->bfd2got = NULL;
3241 }
3242 else
3243 g->next = got_per_bfd_arg.primary;
3244 g->next->next = got_per_bfd_arg.current;
3245
3246 /* GG is now the master GOT, and G is the primary GOT. */
3247 gg = g;
3248 g = g->next;
3249
3250 /* Map the output bfd to the primary got. That's what we're going
3251 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3252 didn't mark in check_relocs, and we want a quick way to find it.
3253 We can't just use gg->next because we're going to reverse the
3254 list. */
3255 {
3256 struct mips_elf_bfd2got_hash *bfdgot;
3257 void **bfdgotp;
3258
3259 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3260 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3261
3262 if (bfdgot == NULL)
3263 return FALSE;
3264
3265 bfdgot->bfd = abfd;
3266 bfdgot->g = g;
3267 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3268
3269 BFD_ASSERT (*bfdgotp == NULL);
3270 *bfdgotp = bfdgot;
3271 }
3272
3273 /* The IRIX dynamic linker requires every symbol that is referenced
3274 in a dynamic relocation to be present in the primary GOT, so
3275 arrange for them to appear after those that are actually
3276 referenced.
3277
3278 GNU/Linux could very well do without it, but it would slow down
3279 the dynamic linker, since it would have to resolve every dynamic
3280 symbol referenced in other GOTs more than once, without help from
3281 the cache. Also, knowing that every external symbol has a GOT
3282 helps speed up the resolution of local symbols too, so GNU/Linux
3283 follows IRIX's practice.
3284
3285 The number 2 is used by mips_elf_sort_hash_table_f to count
3286 global GOT symbols that are unreferenced in the primary GOT, with
3287 an initial dynamic index computed from gg->assigned_gotno, where
3288 the number of unreferenced global entries in the primary GOT is
3289 preserved. */
3290 if (1)
3291 {
3292 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3293 g->global_gotno = gg->global_gotno;
3294 set_got_offset_arg.value = 2;
3295 }
3296 else
3297 {
3298 /* This could be used for dynamic linkers that don't optimize
3299 symbol resolution while applying relocations so as to use
3300 primary GOT entries or assuming the symbol is locally-defined.
3301 With this code, we assign lower dynamic indices to global
3302 symbols that are not referenced in the primary GOT, so that
3303 their entries can be omitted. */
3304 gg->assigned_gotno = 0;
3305 set_got_offset_arg.value = -1;
3306 }
3307
3308 /* Reorder dynamic symbols as described above (which behavior
3309 depends on the setting of VALUE). */
3310 set_got_offset_arg.g = NULL;
3311 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3312 &set_got_offset_arg);
3313 set_got_offset_arg.value = 1;
3314 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3315 &set_got_offset_arg);
3316 if (! mips_elf_sort_hash_table (info, 1))
3317 return FALSE;
3318
3319 /* Now go through the GOTs assigning them offset ranges.
3320 [assigned_gotno, local_gotno[ will be set to the range of local
3321 entries in each GOT. We can then compute the end of a GOT by
3322 adding local_gotno to global_gotno. We reverse the list and make
3323 it circular since then we'll be able to quickly compute the
3324 beginning of a GOT, by computing the end of its predecessor. To
3325 avoid special cases for the primary GOT, while still preserving
3326 assertions that are valid for both single- and multi-got links,
3327 we arrange for the main got struct to have the right number of
3328 global entries, but set its local_gotno such that the initial
3329 offset of the primary GOT is zero. Remember that the primary GOT
3330 will become the last item in the circular linked list, so it
3331 points back to the master GOT. */
3332 gg->local_gotno = -g->global_gotno;
3333 gg->global_gotno = g->global_gotno;
3334 gg->tls_gotno = 0;
3335 assign = 0;
3336 gg->next = gg;
3337
3338 do
3339 {
3340 struct mips_got_info *gn;
3341
3342 assign += MIPS_RESERVED_GOTNO;
3343 g->assigned_gotno = assign;
3344 g->local_gotno += assign + pages;
3345 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3346
3347 /* Set up any TLS entries. We always place the TLS entries after
3348 all non-TLS entries. */
3349 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3350 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3351
3352 /* Take g out of the direct list, and push it onto the reversed
3353 list that gg points to. */
3354 gn = g->next;
3355 g->next = gg->next;
3356 gg->next = g;
3357 g = gn;
3358
3359 /* Mark global symbols in every non-primary GOT as ineligible for
3360 stubs. */
3361 if (g)
3362 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3363 }
3364 while (g);
3365
3366 got->size = (gg->next->local_gotno
3367 + gg->next->global_gotno
3368 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3369
3370 return TRUE;
3371 }
3372
3373 \f
3374 /* Returns the first relocation of type r_type found, beginning with
3375 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3376
3377 static const Elf_Internal_Rela *
3378 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3379 const Elf_Internal_Rela *relocation,
3380 const Elf_Internal_Rela *relend)
3381 {
3382 while (relocation < relend)
3383 {
3384 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3385 return relocation;
3386
3387 ++relocation;
3388 }
3389
3390 /* We didn't find it. */
3391 bfd_set_error (bfd_error_bad_value);
3392 return NULL;
3393 }
3394
3395 /* Return whether a relocation is against a local symbol. */
3396
3397 static bfd_boolean
3398 mips_elf_local_relocation_p (bfd *input_bfd,
3399 const Elf_Internal_Rela *relocation,
3400 asection **local_sections,
3401 bfd_boolean check_forced)
3402 {
3403 unsigned long r_symndx;
3404 Elf_Internal_Shdr *symtab_hdr;
3405 struct mips_elf_link_hash_entry *h;
3406 size_t extsymoff;
3407
3408 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3409 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3410 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3411
3412 if (r_symndx < extsymoff)
3413 return TRUE;
3414 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3415 return TRUE;
3416
3417 if (check_forced)
3418 {
3419 /* Look up the hash table to check whether the symbol
3420 was forced local. */
3421 h = (struct mips_elf_link_hash_entry *)
3422 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3423 /* Find the real hash-table entry for this symbol. */
3424 while (h->root.root.type == bfd_link_hash_indirect
3425 || h->root.root.type == bfd_link_hash_warning)
3426 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3427 if (h->root.forced_local)
3428 return TRUE;
3429 }
3430
3431 return FALSE;
3432 }
3433 \f
3434 /* Sign-extend VALUE, which has the indicated number of BITS. */
3435
3436 bfd_vma
3437 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3438 {
3439 if (value & ((bfd_vma) 1 << (bits - 1)))
3440 /* VALUE is negative. */
3441 value |= ((bfd_vma) - 1) << bits;
3442
3443 return value;
3444 }
3445
3446 /* Return non-zero if the indicated VALUE has overflowed the maximum
3447 range expressible by a signed number with the indicated number of
3448 BITS. */
3449
3450 static bfd_boolean
3451 mips_elf_overflow_p (bfd_vma value, int bits)
3452 {
3453 bfd_signed_vma svalue = (bfd_signed_vma) value;
3454
3455 if (svalue > (1 << (bits - 1)) - 1)
3456 /* The value is too big. */
3457 return TRUE;
3458 else if (svalue < -(1 << (bits - 1)))
3459 /* The value is too small. */
3460 return TRUE;
3461
3462 /* All is well. */
3463 return FALSE;
3464 }
3465
3466 /* Calculate the %high function. */
3467
3468 static bfd_vma
3469 mips_elf_high (bfd_vma value)
3470 {
3471 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3472 }
3473
3474 /* Calculate the %higher function. */
3475
3476 static bfd_vma
3477 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3478 {
3479 #ifdef BFD64
3480 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3481 #else
3482 abort ();
3483 return MINUS_ONE;
3484 #endif
3485 }
3486
3487 /* Calculate the %highest function. */
3488
3489 static bfd_vma
3490 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3491 {
3492 #ifdef BFD64
3493 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3494 #else
3495 abort ();
3496 return MINUS_ONE;
3497 #endif
3498 }
3499 \f
3500 /* Create the .compact_rel section. */
3501
3502 static bfd_boolean
3503 mips_elf_create_compact_rel_section
3504 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3505 {
3506 flagword flags;
3507 register asection *s;
3508
3509 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3510 {
3511 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3512 | SEC_READONLY);
3513
3514 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3515 if (s == NULL
3516 || ! bfd_set_section_alignment (abfd, s,
3517 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3518 return FALSE;
3519
3520 s->size = sizeof (Elf32_External_compact_rel);
3521 }
3522
3523 return TRUE;
3524 }
3525
3526 /* Create the .got section to hold the global offset table. */
3527
3528 static bfd_boolean
3529 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3530 bfd_boolean maybe_exclude)
3531 {
3532 flagword flags;
3533 register asection *s;
3534 struct elf_link_hash_entry *h;
3535 struct bfd_link_hash_entry *bh;
3536 struct mips_got_info *g;
3537 bfd_size_type amt;
3538
3539 /* This function may be called more than once. */
3540 s = mips_elf_got_section (abfd, TRUE);
3541 if (s)
3542 {
3543 if (! maybe_exclude)
3544 s->flags &= ~SEC_EXCLUDE;
3545 return TRUE;
3546 }
3547
3548 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3549 | SEC_LINKER_CREATED);
3550
3551 if (maybe_exclude)
3552 flags |= SEC_EXCLUDE;
3553
3554 /* We have to use an alignment of 2**4 here because this is hardcoded
3555 in the function stub generation and in the linker script. */
3556 s = bfd_make_section_with_flags (abfd, ".got", flags);
3557 if (s == NULL
3558 || ! bfd_set_section_alignment (abfd, s, 4))
3559 return FALSE;
3560
3561 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3562 linker script because we don't want to define the symbol if we
3563 are not creating a global offset table. */
3564 bh = NULL;
3565 if (! (_bfd_generic_link_add_one_symbol
3566 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3567 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3568 return FALSE;
3569
3570 h = (struct elf_link_hash_entry *) bh;
3571 h->non_elf = 0;
3572 h->def_regular = 1;
3573 h->type = STT_OBJECT;
3574
3575 if (info->shared
3576 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3577 return FALSE;
3578
3579 amt = sizeof (struct mips_got_info);
3580 g = bfd_alloc (abfd, amt);
3581 if (g == NULL)
3582 return FALSE;
3583 g->global_gotsym = NULL;
3584 g->global_gotno = 0;
3585 g->tls_gotno = 0;
3586 g->local_gotno = MIPS_RESERVED_GOTNO;
3587 g->assigned_gotno = MIPS_RESERVED_GOTNO;
3588 g->bfd2got = NULL;
3589 g->next = NULL;
3590 g->tls_ldm_offset = MINUS_ONE;
3591 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3592 mips_elf_got_entry_eq, NULL);
3593 if (g->got_entries == NULL)
3594 return FALSE;
3595 mips_elf_section_data (s)->u.got_info = g;
3596 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3597 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3598
3599 return TRUE;
3600 }
3601 \f
3602 /* Calculate the value produced by the RELOCATION (which comes from
3603 the INPUT_BFD). The ADDEND is the addend to use for this
3604 RELOCATION; RELOCATION->R_ADDEND is ignored.
3605
3606 The result of the relocation calculation is stored in VALUEP.
3607 REQUIRE_JALXP indicates whether or not the opcode used with this
3608 relocation must be JALX.
3609
3610 This function returns bfd_reloc_continue if the caller need take no
3611 further action regarding this relocation, bfd_reloc_notsupported if
3612 something goes dramatically wrong, bfd_reloc_overflow if an
3613 overflow occurs, and bfd_reloc_ok to indicate success. */
3614
3615 static bfd_reloc_status_type
3616 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3617 asection *input_section,
3618 struct bfd_link_info *info,
3619 const Elf_Internal_Rela *relocation,
3620 bfd_vma addend, reloc_howto_type *howto,
3621 Elf_Internal_Sym *local_syms,
3622 asection **local_sections, bfd_vma *valuep,
3623 const char **namep, bfd_boolean *require_jalxp,
3624 bfd_boolean save_addend)
3625 {
3626 /* The eventual value we will return. */
3627 bfd_vma value;
3628 /* The address of the symbol against which the relocation is
3629 occurring. */
3630 bfd_vma symbol = 0;
3631 /* The final GP value to be used for the relocatable, executable, or
3632 shared object file being produced. */
3633 bfd_vma gp = MINUS_ONE;
3634 /* The place (section offset or address) of the storage unit being
3635 relocated. */
3636 bfd_vma p;
3637 /* The value of GP used to create the relocatable object. */
3638 bfd_vma gp0 = MINUS_ONE;
3639 /* The offset into the global offset table at which the address of
3640 the relocation entry symbol, adjusted by the addend, resides
3641 during execution. */
3642 bfd_vma g = MINUS_ONE;
3643 /* The section in which the symbol referenced by the relocation is
3644 located. */
3645 asection *sec = NULL;
3646 struct mips_elf_link_hash_entry *h = NULL;
3647 /* TRUE if the symbol referred to by this relocation is a local
3648 symbol. */
3649 bfd_boolean local_p, was_local_p;
3650 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3651 bfd_boolean gp_disp_p = FALSE;
3652 /* TRUE if the symbol referred to by this relocation is
3653 "__gnu_local_gp". */
3654 bfd_boolean gnu_local_gp_p = FALSE;
3655 Elf_Internal_Shdr *symtab_hdr;
3656 size_t extsymoff;
3657 unsigned long r_symndx;
3658 int r_type;
3659 /* TRUE if overflow occurred during the calculation of the
3660 relocation value. */
3661 bfd_boolean overflowed_p;
3662 /* TRUE if this relocation refers to a MIPS16 function. */
3663 bfd_boolean target_is_16_bit_code_p = FALSE;
3664
3665 /* Parse the relocation. */
3666 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3667 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3668 p = (input_section->output_section->vma
3669 + input_section->output_offset
3670 + relocation->r_offset);
3671
3672 /* Assume that there will be no overflow. */
3673 overflowed_p = FALSE;
3674
3675 /* Figure out whether or not the symbol is local, and get the offset
3676 used in the array of hash table entries. */
3677 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3678 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3679 local_sections, FALSE);
3680 was_local_p = local_p;
3681 if (! elf_bad_symtab (input_bfd))
3682 extsymoff = symtab_hdr->sh_info;
3683 else
3684 {
3685 /* The symbol table does not follow the rule that local symbols
3686 must come before globals. */
3687 extsymoff = 0;
3688 }
3689
3690 /* Figure out the value of the symbol. */
3691 if (local_p)
3692 {
3693 Elf_Internal_Sym *sym;
3694
3695 sym = local_syms + r_symndx;
3696 sec = local_sections[r_symndx];
3697
3698 symbol = sec->output_section->vma + sec->output_offset;
3699 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3700 || (sec->flags & SEC_MERGE))
3701 symbol += sym->st_value;
3702 if ((sec->flags & SEC_MERGE)
3703 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3704 {
3705 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3706 addend -= symbol;
3707 addend += sec->output_section->vma + sec->output_offset;
3708 }
3709
3710 /* MIPS16 text labels should be treated as odd. */
3711 if (sym->st_other == STO_MIPS16)
3712 ++symbol;
3713
3714 /* Record the name of this symbol, for our caller. */
3715 *namep = bfd_elf_string_from_elf_section (input_bfd,
3716 symtab_hdr->sh_link,
3717 sym->st_name);
3718 if (*namep == '\0')
3719 *namep = bfd_section_name (input_bfd, sec);
3720
3721 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3722 }
3723 else
3724 {
3725 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3726
3727 /* For global symbols we look up the symbol in the hash-table. */
3728 h = ((struct mips_elf_link_hash_entry *)
3729 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3730 /* Find the real hash-table entry for this symbol. */
3731 while (h->root.root.type == bfd_link_hash_indirect
3732 || h->root.root.type == bfd_link_hash_warning)
3733 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3734
3735 /* Record the name of this symbol, for our caller. */
3736 *namep = h->root.root.root.string;
3737
3738 /* See if this is the special _gp_disp symbol. Note that such a
3739 symbol must always be a global symbol. */
3740 if (strcmp (*namep, "_gp_disp") == 0
3741 && ! NEWABI_P (input_bfd))
3742 {
3743 /* Relocations against _gp_disp are permitted only with
3744 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3745 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3746 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3747 return bfd_reloc_notsupported;
3748
3749 gp_disp_p = TRUE;
3750 }
3751 /* See if this is the special _gp symbol. Note that such a
3752 symbol must always be a global symbol. */
3753 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3754 gnu_local_gp_p = TRUE;
3755
3756
3757 /* If this symbol is defined, calculate its address. Note that
3758 _gp_disp is a magic symbol, always implicitly defined by the
3759 linker, so it's inappropriate to check to see whether or not
3760 its defined. */
3761 else if ((h->root.root.type == bfd_link_hash_defined
3762 || h->root.root.type == bfd_link_hash_defweak)
3763 && h->root.root.u.def.section)
3764 {
3765 sec = h->root.root.u.def.section;
3766 if (sec->output_section)
3767 symbol = (h->root.root.u.def.value
3768 + sec->output_section->vma
3769 + sec->output_offset);
3770 else
3771 symbol = h->root.root.u.def.value;
3772 }
3773 else if (h->root.root.type == bfd_link_hash_undefweak)
3774 /* We allow relocations against undefined weak symbols, giving
3775 it the value zero, so that you can undefined weak functions
3776 and check to see if they exist by looking at their
3777 addresses. */
3778 symbol = 0;
3779 else if (info->unresolved_syms_in_objects == RM_IGNORE
3780 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3781 symbol = 0;
3782 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3783 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
3784 {
3785 /* If this is a dynamic link, we should have created a
3786 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3787 in in _bfd_mips_elf_create_dynamic_sections.
3788 Otherwise, we should define the symbol with a value of 0.
3789 FIXME: It should probably get into the symbol table
3790 somehow as well. */
3791 BFD_ASSERT (! info->shared);
3792 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3793 symbol = 0;
3794 }
3795 else
3796 {
3797 if (! ((*info->callbacks->undefined_symbol)
3798 (info, h->root.root.root.string, input_bfd,
3799 input_section, relocation->r_offset,
3800 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3801 || ELF_ST_VISIBILITY (h->root.other))))
3802 return bfd_reloc_undefined;
3803 symbol = 0;
3804 }
3805
3806 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3807 }
3808
3809 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3810 need to redirect the call to the stub, unless we're already *in*
3811 a stub. */
3812 if (r_type != R_MIPS16_26 && !info->relocatable
3813 && ((h != NULL && h->fn_stub != NULL)
3814 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3815 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3816 && !mips_elf_stub_section_p (input_bfd, input_section))
3817 {
3818 /* This is a 32- or 64-bit call to a 16-bit function. We should
3819 have already noticed that we were going to need the
3820 stub. */
3821 if (local_p)
3822 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3823 else
3824 {
3825 BFD_ASSERT (h->need_fn_stub);
3826 sec = h->fn_stub;
3827 }
3828
3829 symbol = sec->output_section->vma + sec->output_offset;
3830 }
3831 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3832 need to redirect the call to the stub. */
3833 else if (r_type == R_MIPS16_26 && !info->relocatable
3834 && h != NULL
3835 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3836 && !target_is_16_bit_code_p)
3837 {
3838 /* If both call_stub and call_fp_stub are defined, we can figure
3839 out which one to use by seeing which one appears in the input
3840 file. */
3841 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3842 {
3843 asection *o;
3844
3845 sec = NULL;
3846 for (o = input_bfd->sections; o != NULL; o = o->next)
3847 {
3848 if (strncmp (bfd_get_section_name (input_bfd, o),
3849 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3850 {
3851 sec = h->call_fp_stub;
3852 break;
3853 }
3854 }
3855 if (sec == NULL)
3856 sec = h->call_stub;
3857 }
3858 else if (h->call_stub != NULL)
3859 sec = h->call_stub;
3860 else
3861 sec = h->call_fp_stub;
3862
3863 BFD_ASSERT (sec->size > 0);
3864 symbol = sec->output_section->vma + sec->output_offset;
3865 }
3866
3867 /* Calls from 16-bit code to 32-bit code and vice versa require the
3868 special jalx instruction. */
3869 *require_jalxp = (!info->relocatable
3870 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3871 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3872
3873 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3874 local_sections, TRUE);
3875
3876 /* If we haven't already determined the GOT offset, or the GP value,
3877 and we're going to need it, get it now. */
3878 switch (r_type)
3879 {
3880 case R_MIPS_GOT_PAGE:
3881 case R_MIPS_GOT_OFST:
3882 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3883 bind locally. */
3884 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3885 if (local_p || r_type == R_MIPS_GOT_OFST)
3886 break;
3887 /* Fall through. */
3888
3889 case R_MIPS_CALL16:
3890 case R_MIPS_GOT16:
3891 case R_MIPS_GOT_DISP:
3892 case R_MIPS_GOT_HI16:
3893 case R_MIPS_CALL_HI16:
3894 case R_MIPS_GOT_LO16:
3895 case R_MIPS_CALL_LO16:
3896 case R_MIPS_TLS_GD:
3897 case R_MIPS_TLS_GOTTPREL:
3898 case R_MIPS_TLS_LDM:
3899 /* Find the index into the GOT where this value is located. */
3900 if (r_type == R_MIPS_TLS_LDM)
3901 {
3902 g = mips_elf_local_got_index (abfd, input_bfd, info, 0, 0, NULL,
3903 r_type);
3904 if (g == MINUS_ONE)
3905 return bfd_reloc_outofrange;
3906 }
3907 else if (!local_p)
3908 {
3909 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3910 GOT_PAGE relocation that decays to GOT_DISP because the
3911 symbol turns out to be global. The addend is then added
3912 as GOT_OFST. */
3913 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3914 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3915 input_bfd,
3916 (struct elf_link_hash_entry *) h,
3917 r_type, info);
3918 if (h->tls_type == GOT_NORMAL
3919 && (! elf_hash_table(info)->dynamic_sections_created
3920 || (info->shared
3921 && (info->symbolic || h->root.forced_local)
3922 && h->root.def_regular)))
3923 {
3924 /* This is a static link or a -Bsymbolic link. The
3925 symbol is defined locally, or was forced to be local.
3926 We must initialize this entry in the GOT. */
3927 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3928 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3929 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3930 }
3931 }
3932 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3933 /* There's no need to create a local GOT entry here; the
3934 calculation for a local GOT16 entry does not involve G. */
3935 break;
3936 else
3937 {
3938 g = mips_elf_local_got_index (abfd, input_bfd,
3939 info, symbol + addend, r_symndx, h,
3940 r_type);
3941 if (g == MINUS_ONE)
3942 return bfd_reloc_outofrange;
3943 }
3944
3945 /* Convert GOT indices to actual offsets. */
3946 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3947 abfd, input_bfd, g);
3948 break;
3949
3950 case R_MIPS_HI16:
3951 case R_MIPS_LO16:
3952 case R_MIPS_GPREL16:
3953 case R_MIPS_GPREL32:
3954 case R_MIPS_LITERAL:
3955 case R_MIPS16_HI16:
3956 case R_MIPS16_LO16:
3957 case R_MIPS16_GPREL:
3958 gp0 = _bfd_get_gp_value (input_bfd);
3959 gp = _bfd_get_gp_value (abfd);
3960 if (elf_hash_table (info)->dynobj)
3961 gp += mips_elf_adjust_gp (abfd,
3962 mips_elf_got_info
3963 (elf_hash_table (info)->dynobj, NULL),
3964 input_bfd);
3965 break;
3966
3967 default:
3968 break;
3969 }
3970
3971 if (gnu_local_gp_p)
3972 symbol = gp;
3973
3974 /* Figure out what kind of relocation is being performed. */
3975 switch (r_type)
3976 {
3977 case R_MIPS_NONE:
3978 return bfd_reloc_continue;
3979
3980 case R_MIPS_16:
3981 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3982 overflowed_p = mips_elf_overflow_p (value, 16);
3983 break;
3984
3985 case R_MIPS_32:
3986 case R_MIPS_REL32:
3987 case R_MIPS_64:
3988 if ((info->shared
3989 || (elf_hash_table (info)->dynamic_sections_created
3990 && h != NULL
3991 && h->root.def_dynamic
3992 && !h->root.def_regular))
3993 && r_symndx != 0
3994 && (input_section->flags & SEC_ALLOC) != 0)
3995 {
3996 /* If we're creating a shared library, or this relocation is
3997 against a symbol in a shared library, then we can't know
3998 where the symbol will end up. So, we create a relocation
3999 record in the output, and leave the job up to the dynamic
4000 linker. */
4001 value = addend;
4002 if (!mips_elf_create_dynamic_relocation (abfd,
4003 info,
4004 relocation,
4005 h,
4006 sec,
4007 symbol,
4008 &value,
4009 input_section))
4010 return bfd_reloc_undefined;
4011 }
4012 else
4013 {
4014 if (r_type != R_MIPS_REL32)
4015 value = symbol + addend;
4016 else
4017 value = addend;
4018 }
4019 value &= howto->dst_mask;
4020 break;
4021
4022 case R_MIPS_PC32:
4023 value = symbol + addend - p;
4024 value &= howto->dst_mask;
4025 break;
4026
4027 case R_MIPS_GNU_REL16_S2:
4028 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4029 overflowed_p = mips_elf_overflow_p (value, 18);
4030 value = (value >> 2) & howto->dst_mask;
4031 break;
4032
4033 case R_MIPS16_26:
4034 /* The calculation for R_MIPS16_26 is just the same as for an
4035 R_MIPS_26. It's only the storage of the relocated field into
4036 the output file that's different. That's handled in
4037 mips_elf_perform_relocation. So, we just fall through to the
4038 R_MIPS_26 case here. */
4039 case R_MIPS_26:
4040 if (local_p)
4041 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4042 else
4043 {
4044 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4045 if (h->root.root.type != bfd_link_hash_undefweak)
4046 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4047 }
4048 value &= howto->dst_mask;
4049 break;
4050
4051 case R_MIPS_TLS_DTPREL_HI16:
4052 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4053 & howto->dst_mask);
4054 break;
4055
4056 case R_MIPS_TLS_DTPREL_LO16:
4057 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4058 break;
4059
4060 case R_MIPS_TLS_TPREL_HI16:
4061 value = (mips_elf_high (addend + symbol - tprel_base (info))
4062 & howto->dst_mask);
4063 break;
4064
4065 case R_MIPS_TLS_TPREL_LO16:
4066 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4067 break;
4068
4069 case R_MIPS_HI16:
4070 case R_MIPS16_HI16:
4071 if (!gp_disp_p)
4072 {
4073 value = mips_elf_high (addend + symbol);
4074 value &= howto->dst_mask;
4075 }
4076 else
4077 {
4078 /* For MIPS16 ABI code we generate this sequence
4079 0: li $v0,%hi(_gp_disp)
4080 4: addiupc $v1,%lo(_gp_disp)
4081 8: sll $v0,16
4082 12: addu $v0,$v1
4083 14: move $gp,$v0
4084 So the offsets of hi and lo relocs are the same, but the
4085 $pc is four higher than $t9 would be, so reduce
4086 both reloc addends by 4. */
4087 if (r_type == R_MIPS16_HI16)
4088 value = mips_elf_high (addend + gp - p - 4);
4089 else
4090 value = mips_elf_high (addend + gp - p);
4091 overflowed_p = mips_elf_overflow_p (value, 16);
4092 }
4093 break;
4094
4095 case R_MIPS_LO16:
4096 case R_MIPS16_LO16:
4097 if (!gp_disp_p)
4098 value = (symbol + addend) & howto->dst_mask;
4099 else
4100 {
4101 /* See the comment for R_MIPS16_HI16 above for the reason
4102 for this conditional. */
4103 if (r_type == R_MIPS16_LO16)
4104 value = addend + gp - p;
4105 else
4106 value = addend + gp - p + 4;
4107 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4108 for overflow. But, on, say, IRIX5, relocations against
4109 _gp_disp are normally generated from the .cpload
4110 pseudo-op. It generates code that normally looks like
4111 this:
4112
4113 lui $gp,%hi(_gp_disp)
4114 addiu $gp,$gp,%lo(_gp_disp)
4115 addu $gp,$gp,$t9
4116
4117 Here $t9 holds the address of the function being called,
4118 as required by the MIPS ELF ABI. The R_MIPS_LO16
4119 relocation can easily overflow in this situation, but the
4120 R_MIPS_HI16 relocation will handle the overflow.
4121 Therefore, we consider this a bug in the MIPS ABI, and do
4122 not check for overflow here. */
4123 }
4124 break;
4125
4126 case R_MIPS_LITERAL:
4127 /* Because we don't merge literal sections, we can handle this
4128 just like R_MIPS_GPREL16. In the long run, we should merge
4129 shared literals, and then we will need to additional work
4130 here. */
4131
4132 /* Fall through. */
4133
4134 case R_MIPS16_GPREL:
4135 /* The R_MIPS16_GPREL performs the same calculation as
4136 R_MIPS_GPREL16, but stores the relocated bits in a different
4137 order. We don't need to do anything special here; the
4138 differences are handled in mips_elf_perform_relocation. */
4139 case R_MIPS_GPREL16:
4140 /* Only sign-extend the addend if it was extracted from the
4141 instruction. If the addend was separate, leave it alone,
4142 otherwise we may lose significant bits. */
4143 if (howto->partial_inplace)
4144 addend = _bfd_mips_elf_sign_extend (addend, 16);
4145 value = symbol + addend - gp;
4146 /* If the symbol was local, any earlier relocatable links will
4147 have adjusted its addend with the gp offset, so compensate
4148 for that now. Don't do it for symbols forced local in this
4149 link, though, since they won't have had the gp offset applied
4150 to them before. */
4151 if (was_local_p)
4152 value += gp0;
4153 overflowed_p = mips_elf_overflow_p (value, 16);
4154 break;
4155
4156 case R_MIPS_GOT16:
4157 case R_MIPS_CALL16:
4158 if (local_p)
4159 {
4160 bfd_boolean forced;
4161
4162 /* The special case is when the symbol is forced to be local. We
4163 need the full address in the GOT since no R_MIPS_LO16 relocation
4164 follows. */
4165 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4166 local_sections, FALSE);
4167 value = mips_elf_got16_entry (abfd, input_bfd, info,
4168 symbol + addend, forced);
4169 if (value == MINUS_ONE)
4170 return bfd_reloc_outofrange;
4171 value
4172 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
4173 abfd, input_bfd, value);
4174 overflowed_p = mips_elf_overflow_p (value, 16);
4175 break;
4176 }
4177
4178 /* Fall through. */
4179
4180 case R_MIPS_TLS_GD:
4181 case R_MIPS_TLS_GOTTPREL:
4182 case R_MIPS_TLS_LDM:
4183 case R_MIPS_GOT_DISP:
4184 got_disp:
4185 value = g;
4186 overflowed_p = mips_elf_overflow_p (value, 16);
4187 break;
4188
4189 case R_MIPS_GPREL32:
4190 value = (addend + symbol + gp0 - gp);
4191 if (!save_addend)
4192 value &= howto->dst_mask;
4193 break;
4194
4195 case R_MIPS_PC16:
4196 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
4197 overflowed_p = mips_elf_overflow_p (value, 16);
4198 break;
4199
4200 case R_MIPS_GOT_HI16:
4201 case R_MIPS_CALL_HI16:
4202 /* We're allowed to handle these two relocations identically.
4203 The dynamic linker is allowed to handle the CALL relocations
4204 differently by creating a lazy evaluation stub. */
4205 value = g;
4206 value = mips_elf_high (value);
4207 value &= howto->dst_mask;
4208 break;
4209
4210 case R_MIPS_GOT_LO16:
4211 case R_MIPS_CALL_LO16:
4212 value = g & howto->dst_mask;
4213 break;
4214
4215 case R_MIPS_GOT_PAGE:
4216 /* GOT_PAGE relocations that reference non-local symbols decay
4217 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4218 0. */
4219 if (! local_p)
4220 goto got_disp;
4221 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4222 if (value == MINUS_ONE)
4223 return bfd_reloc_outofrange;
4224 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
4225 abfd, input_bfd, value);
4226 overflowed_p = mips_elf_overflow_p (value, 16);
4227 break;
4228
4229 case R_MIPS_GOT_OFST:
4230 if (local_p)
4231 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4232 else
4233 value = addend;
4234 overflowed_p = mips_elf_overflow_p (value, 16);
4235 break;
4236
4237 case R_MIPS_SUB:
4238 value = symbol - addend;
4239 value &= howto->dst_mask;
4240 break;
4241
4242 case R_MIPS_HIGHER:
4243 value = mips_elf_higher (addend + symbol);
4244 value &= howto->dst_mask;
4245 break;
4246
4247 case R_MIPS_HIGHEST:
4248 value = mips_elf_highest (addend + symbol);
4249 value &= howto->dst_mask;
4250 break;
4251
4252 case R_MIPS_SCN_DISP:
4253 value = symbol + addend - sec->output_offset;
4254 value &= howto->dst_mask;
4255 break;
4256
4257 case R_MIPS_JALR:
4258 /* This relocation is only a hint. In some cases, we optimize
4259 it into a bal instruction. But we don't try to optimize
4260 branches to the PLT; that will wind up wasting time. */
4261 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4262 return bfd_reloc_continue;
4263 value = symbol + addend;
4264 break;
4265
4266 case R_MIPS_PJUMP:
4267 case R_MIPS_GNU_VTINHERIT:
4268 case R_MIPS_GNU_VTENTRY:
4269 /* We don't do anything with these at present. */
4270 return bfd_reloc_continue;
4271
4272 default:
4273 /* An unrecognized relocation type. */
4274 return bfd_reloc_notsupported;
4275 }
4276
4277 /* Store the VALUE for our caller. */
4278 *valuep = value;
4279 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4280 }
4281
4282 /* Obtain the field relocated by RELOCATION. */
4283
4284 static bfd_vma
4285 mips_elf_obtain_contents (reloc_howto_type *howto,
4286 const Elf_Internal_Rela *relocation,
4287 bfd *input_bfd, bfd_byte *contents)
4288 {
4289 bfd_vma x;
4290 bfd_byte *location = contents + relocation->r_offset;
4291
4292 /* Obtain the bytes. */
4293 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4294
4295 return x;
4296 }
4297
4298 /* It has been determined that the result of the RELOCATION is the
4299 VALUE. Use HOWTO to place VALUE into the output file at the
4300 appropriate position. The SECTION is the section to which the
4301 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4302 for the relocation must be either JAL or JALX, and it is
4303 unconditionally converted to JALX.
4304
4305 Returns FALSE if anything goes wrong. */
4306
4307 static bfd_boolean
4308 mips_elf_perform_relocation (struct bfd_link_info *info,
4309 reloc_howto_type *howto,
4310 const Elf_Internal_Rela *relocation,
4311 bfd_vma value, bfd *input_bfd,
4312 asection *input_section, bfd_byte *contents,
4313 bfd_boolean require_jalx)
4314 {
4315 bfd_vma x;
4316 bfd_byte *location;
4317 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4318
4319 /* Figure out where the relocation is occurring. */
4320 location = contents + relocation->r_offset;
4321
4322 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4323
4324 /* Obtain the current value. */
4325 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4326
4327 /* Clear the field we are setting. */
4328 x &= ~howto->dst_mask;
4329
4330 /* Set the field. */
4331 x |= (value & howto->dst_mask);
4332
4333 /* If required, turn JAL into JALX. */
4334 if (require_jalx)
4335 {
4336 bfd_boolean ok;
4337 bfd_vma opcode = x >> 26;
4338 bfd_vma jalx_opcode;
4339
4340 /* Check to see if the opcode is already JAL or JALX. */
4341 if (r_type == R_MIPS16_26)
4342 {
4343 ok = ((opcode == 0x6) || (opcode == 0x7));
4344 jalx_opcode = 0x7;
4345 }
4346 else
4347 {
4348 ok = ((opcode == 0x3) || (opcode == 0x1d));
4349 jalx_opcode = 0x1d;
4350 }
4351
4352 /* If the opcode is not JAL or JALX, there's a problem. */
4353 if (!ok)
4354 {
4355 (*_bfd_error_handler)
4356 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4357 input_bfd,
4358 input_section,
4359 (unsigned long) relocation->r_offset);
4360 bfd_set_error (bfd_error_bad_value);
4361 return FALSE;
4362 }
4363
4364 /* Make this the JALX opcode. */
4365 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4366 }
4367
4368 /* On the RM9000, bal is faster than jal, because bal uses branch
4369 prediction hardware. If we are linking for the RM9000, and we
4370 see jal, and bal fits, use it instead. Note that this
4371 transformation should be safe for all architectures. */
4372 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4373 && !info->relocatable
4374 && !require_jalx
4375 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4376 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4377 {
4378 bfd_vma addr;
4379 bfd_vma dest;
4380 bfd_signed_vma off;
4381
4382 addr = (input_section->output_section->vma
4383 + input_section->output_offset
4384 + relocation->r_offset
4385 + 4);
4386 if (r_type == R_MIPS_26)
4387 dest = (value << 2) | ((addr >> 28) << 28);
4388 else
4389 dest = value;
4390 off = dest - addr;
4391 if (off <= 0x1ffff && off >= -0x20000)
4392 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4393 }
4394
4395 /* Put the value into the output. */
4396 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4397
4398 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4399 location);
4400
4401 return TRUE;
4402 }
4403
4404 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4405
4406 static bfd_boolean
4407 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4408 {
4409 const char *name = bfd_get_section_name (abfd, section);
4410
4411 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4412 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4413 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4414 }
4415 \f
4416 /* Add room for N relocations to the .rel.dyn section in ABFD. */
4417
4418 static void
4419 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
4420 {
4421 asection *s;
4422
4423 s = mips_elf_rel_dyn_section (abfd, FALSE);
4424 BFD_ASSERT (s != NULL);
4425
4426 if (s->size == 0)
4427 {
4428 /* Make room for a null element. */
4429 s->size += MIPS_ELF_REL_SIZE (abfd);
4430 ++s->reloc_count;
4431 }
4432 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4433 }
4434
4435 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4436 is the original relocation, which is now being transformed into a
4437 dynamic relocation. The ADDENDP is adjusted if necessary; the
4438 caller should store the result in place of the original addend. */
4439
4440 static bfd_boolean
4441 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4442 struct bfd_link_info *info,
4443 const Elf_Internal_Rela *rel,
4444 struct mips_elf_link_hash_entry *h,
4445 asection *sec, bfd_vma symbol,
4446 bfd_vma *addendp, asection *input_section)
4447 {
4448 Elf_Internal_Rela outrel[3];
4449 asection *sreloc;
4450 bfd *dynobj;
4451 int r_type;
4452 long indx;
4453 bfd_boolean defined_p;
4454
4455 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4456 dynobj = elf_hash_table (info)->dynobj;
4457 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
4458 BFD_ASSERT (sreloc != NULL);
4459 BFD_ASSERT (sreloc->contents != NULL);
4460 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4461 < sreloc->size);
4462
4463 outrel[0].r_offset =
4464 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4465 outrel[1].r_offset =
4466 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4467 outrel[2].r_offset =
4468 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4469
4470 if (outrel[0].r_offset == MINUS_ONE)
4471 /* The relocation field has been deleted. */
4472 return TRUE;
4473
4474 if (outrel[0].r_offset == MINUS_TWO)
4475 {
4476 /* The relocation field has been converted into a relative value of
4477 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4478 the field to be fully relocated, so add in the symbol's value. */
4479 *addendp += symbol;
4480 return TRUE;
4481 }
4482
4483 /* We must now calculate the dynamic symbol table index to use
4484 in the relocation. */
4485 if (h != NULL
4486 && (!h->root.def_regular
4487 || (info->shared && !info->symbolic && !h->root.forced_local)))
4488 {
4489 indx = h->root.dynindx;
4490 if (SGI_COMPAT (output_bfd))
4491 defined_p = h->root.def_regular;
4492 else
4493 /* ??? glibc's ld.so just adds the final GOT entry to the
4494 relocation field. It therefore treats relocs against
4495 defined symbols in the same way as relocs against
4496 undefined symbols. */
4497 defined_p = FALSE;
4498 }
4499 else
4500 {
4501 if (sec != NULL && bfd_is_abs_section (sec))
4502 indx = 0;
4503 else if (sec == NULL || sec->owner == NULL)
4504 {
4505 bfd_set_error (bfd_error_bad_value);
4506 return FALSE;
4507 }
4508 else
4509 {
4510 indx = elf_section_data (sec->output_section)->dynindx;
4511 if (indx == 0)
4512 abort ();
4513 }
4514
4515 /* Instead of generating a relocation using the section
4516 symbol, we may as well make it a fully relative
4517 relocation. We want to avoid generating relocations to
4518 local symbols because we used to generate them
4519 incorrectly, without adding the original symbol value,
4520 which is mandated by the ABI for section symbols. In
4521 order to give dynamic loaders and applications time to
4522 phase out the incorrect use, we refrain from emitting
4523 section-relative relocations. It's not like they're
4524 useful, after all. This should be a bit more efficient
4525 as well. */
4526 /* ??? Although this behavior is compatible with glibc's ld.so,
4527 the ABI says that relocations against STN_UNDEF should have
4528 a symbol value of 0. Irix rld honors this, so relocations
4529 against STN_UNDEF have no effect. */
4530 if (!SGI_COMPAT (output_bfd))
4531 indx = 0;
4532 defined_p = TRUE;
4533 }
4534
4535 /* If the relocation was previously an absolute relocation and
4536 this symbol will not be referred to by the relocation, we must
4537 adjust it by the value we give it in the dynamic symbol table.
4538 Otherwise leave the job up to the dynamic linker. */
4539 if (defined_p && r_type != R_MIPS_REL32)
4540 *addendp += symbol;
4541
4542 /* The relocation is always an REL32 relocation because we don't
4543 know where the shared library will wind up at load-time. */
4544 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4545 R_MIPS_REL32);
4546 /* For strict adherence to the ABI specification, we should
4547 generate a R_MIPS_64 relocation record by itself before the
4548 _REL32/_64 record as well, such that the addend is read in as
4549 a 64-bit value (REL32 is a 32-bit relocation, after all).
4550 However, since none of the existing ELF64 MIPS dynamic
4551 loaders seems to care, we don't waste space with these
4552 artificial relocations. If this turns out to not be true,
4553 mips_elf_allocate_dynamic_relocation() should be tweaked so
4554 as to make room for a pair of dynamic relocations per
4555 invocation if ABI_64_P, and here we should generate an
4556 additional relocation record with R_MIPS_64 by itself for a
4557 NULL symbol before this relocation record. */
4558 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4559 ABI_64_P (output_bfd)
4560 ? R_MIPS_64
4561 : R_MIPS_NONE);
4562 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4563
4564 /* Adjust the output offset of the relocation to reference the
4565 correct location in the output file. */
4566 outrel[0].r_offset += (input_section->output_section->vma
4567 + input_section->output_offset);
4568 outrel[1].r_offset += (input_section->output_section->vma
4569 + input_section->output_offset);
4570 outrel[2].r_offset += (input_section->output_section->vma
4571 + input_section->output_offset);
4572
4573 /* Put the relocation back out. We have to use the special
4574 relocation outputter in the 64-bit case since the 64-bit
4575 relocation format is non-standard. */
4576 if (ABI_64_P (output_bfd))
4577 {
4578 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4579 (output_bfd, &outrel[0],
4580 (sreloc->contents
4581 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4582 }
4583 else
4584 bfd_elf32_swap_reloc_out
4585 (output_bfd, &outrel[0],
4586 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4587
4588 /* We've now added another relocation. */
4589 ++sreloc->reloc_count;
4590
4591 /* Make sure the output section is writable. The dynamic linker
4592 will be writing to it. */
4593 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4594 |= SHF_WRITE;
4595
4596 /* On IRIX5, make an entry of compact relocation info. */
4597 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4598 {
4599 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4600 bfd_byte *cr;
4601
4602 if (scpt)
4603 {
4604 Elf32_crinfo cptrel;
4605
4606 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4607 cptrel.vaddr = (rel->r_offset
4608 + input_section->output_section->vma
4609 + input_section->output_offset);
4610 if (r_type == R_MIPS_REL32)
4611 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4612 else
4613 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4614 mips_elf_set_cr_dist2to (cptrel, 0);
4615 cptrel.konst = *addendp;
4616
4617 cr = (scpt->contents
4618 + sizeof (Elf32_External_compact_rel));
4619 mips_elf_set_cr_relvaddr (cptrel, 0);
4620 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4621 ((Elf32_External_crinfo *) cr
4622 + scpt->reloc_count));
4623 ++scpt->reloc_count;
4624 }
4625 }
4626
4627 return TRUE;
4628 }
4629 \f
4630 /* Return the MACH for a MIPS e_flags value. */
4631
4632 unsigned long
4633 _bfd_elf_mips_mach (flagword flags)
4634 {
4635 switch (flags & EF_MIPS_MACH)
4636 {
4637 case E_MIPS_MACH_3900:
4638 return bfd_mach_mips3900;
4639
4640 case E_MIPS_MACH_4010:
4641 return bfd_mach_mips4010;
4642
4643 case E_MIPS_MACH_4100:
4644 return bfd_mach_mips4100;
4645
4646 case E_MIPS_MACH_4111:
4647 return bfd_mach_mips4111;
4648
4649 case E_MIPS_MACH_4120:
4650 return bfd_mach_mips4120;
4651
4652 case E_MIPS_MACH_4650:
4653 return bfd_mach_mips4650;
4654
4655 case E_MIPS_MACH_5400:
4656 return bfd_mach_mips5400;
4657
4658 case E_MIPS_MACH_5500:
4659 return bfd_mach_mips5500;
4660
4661 case E_MIPS_MACH_9000:
4662 return bfd_mach_mips9000;
4663
4664 case E_MIPS_MACH_SB1:
4665 return bfd_mach_mips_sb1;
4666
4667 default:
4668 switch (flags & EF_MIPS_ARCH)
4669 {
4670 default:
4671 case E_MIPS_ARCH_1:
4672 return bfd_mach_mips3000;
4673 break;
4674
4675 case E_MIPS_ARCH_2:
4676 return bfd_mach_mips6000;
4677 break;
4678
4679 case E_MIPS_ARCH_3:
4680 return bfd_mach_mips4000;
4681 break;
4682
4683 case E_MIPS_ARCH_4:
4684 return bfd_mach_mips8000;
4685 break;
4686
4687 case E_MIPS_ARCH_5:
4688 return bfd_mach_mips5;
4689 break;
4690
4691 case E_MIPS_ARCH_32:
4692 return bfd_mach_mipsisa32;
4693 break;
4694
4695 case E_MIPS_ARCH_64:
4696 return bfd_mach_mipsisa64;
4697 break;
4698
4699 case E_MIPS_ARCH_32R2:
4700 return bfd_mach_mipsisa32r2;
4701 break;
4702
4703 case E_MIPS_ARCH_64R2:
4704 return bfd_mach_mipsisa64r2;
4705 break;
4706 }
4707 }
4708
4709 return 0;
4710 }
4711
4712 /* Return printable name for ABI. */
4713
4714 static INLINE char *
4715 elf_mips_abi_name (bfd *abfd)
4716 {
4717 flagword flags;
4718
4719 flags = elf_elfheader (abfd)->e_flags;
4720 switch (flags & EF_MIPS_ABI)
4721 {
4722 case 0:
4723 if (ABI_N32_P (abfd))
4724 return "N32";
4725 else if (ABI_64_P (abfd))
4726 return "64";
4727 else
4728 return "none";
4729 case E_MIPS_ABI_O32:
4730 return "O32";
4731 case E_MIPS_ABI_O64:
4732 return "O64";
4733 case E_MIPS_ABI_EABI32:
4734 return "EABI32";
4735 case E_MIPS_ABI_EABI64:
4736 return "EABI64";
4737 default:
4738 return "unknown abi";
4739 }
4740 }
4741 \f
4742 /* MIPS ELF uses two common sections. One is the usual one, and the
4743 other is for small objects. All the small objects are kept
4744 together, and then referenced via the gp pointer, which yields
4745 faster assembler code. This is what we use for the small common
4746 section. This approach is copied from ecoff.c. */
4747 static asection mips_elf_scom_section;
4748 static asymbol mips_elf_scom_symbol;
4749 static asymbol *mips_elf_scom_symbol_ptr;
4750
4751 /* MIPS ELF also uses an acommon section, which represents an
4752 allocated common symbol which may be overridden by a
4753 definition in a shared library. */
4754 static asection mips_elf_acom_section;
4755 static asymbol mips_elf_acom_symbol;
4756 static asymbol *mips_elf_acom_symbol_ptr;
4757
4758 /* Handle the special MIPS section numbers that a symbol may use.
4759 This is used for both the 32-bit and the 64-bit ABI. */
4760
4761 void
4762 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4763 {
4764 elf_symbol_type *elfsym;
4765
4766 elfsym = (elf_symbol_type *) asym;
4767 switch (elfsym->internal_elf_sym.st_shndx)
4768 {
4769 case SHN_MIPS_ACOMMON:
4770 /* This section is used in a dynamically linked executable file.
4771 It is an allocated common section. The dynamic linker can
4772 either resolve these symbols to something in a shared
4773 library, or it can just leave them here. For our purposes,
4774 we can consider these symbols to be in a new section. */
4775 if (mips_elf_acom_section.name == NULL)
4776 {
4777 /* Initialize the acommon section. */
4778 mips_elf_acom_section.name = ".acommon";
4779 mips_elf_acom_section.flags = SEC_ALLOC;
4780 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4781 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4782 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4783 mips_elf_acom_symbol.name = ".acommon";
4784 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4785 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4786 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4787 }
4788 asym->section = &mips_elf_acom_section;
4789 break;
4790
4791 case SHN_COMMON:
4792 /* Common symbols less than the GP size are automatically
4793 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4794 if (asym->value > elf_gp_size (abfd)
4795 || IRIX_COMPAT (abfd) == ict_irix6)
4796 break;
4797 /* Fall through. */
4798 case SHN_MIPS_SCOMMON:
4799 if (mips_elf_scom_section.name == NULL)
4800 {
4801 /* Initialize the small common section. */
4802 mips_elf_scom_section.name = ".scommon";
4803 mips_elf_scom_section.flags = SEC_IS_COMMON;
4804 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4805 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4806 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4807 mips_elf_scom_symbol.name = ".scommon";
4808 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4809 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4810 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4811 }
4812 asym->section = &mips_elf_scom_section;
4813 asym->value = elfsym->internal_elf_sym.st_size;
4814 break;
4815
4816 case SHN_MIPS_SUNDEFINED:
4817 asym->section = bfd_und_section_ptr;
4818 break;
4819
4820 case SHN_MIPS_TEXT:
4821 {
4822 asection *section = bfd_get_section_by_name (abfd, ".text");
4823
4824 BFD_ASSERT (SGI_COMPAT (abfd));
4825 if (section != NULL)
4826 {
4827 asym->section = section;
4828 /* MIPS_TEXT is a bit special, the address is not an offset
4829 to the base of the .text section. So substract the section
4830 base address to make it an offset. */
4831 asym->value -= section->vma;
4832 }
4833 }
4834 break;
4835
4836 case SHN_MIPS_DATA:
4837 {
4838 asection *section = bfd_get_section_by_name (abfd, ".data");
4839
4840 BFD_ASSERT (SGI_COMPAT (abfd));
4841 if (section != NULL)
4842 {
4843 asym->section = section;
4844 /* MIPS_DATA is a bit special, the address is not an offset
4845 to the base of the .data section. So substract the section
4846 base address to make it an offset. */
4847 asym->value -= section->vma;
4848 }
4849 }
4850 break;
4851 }
4852 }
4853 \f
4854 /* Implement elf_backend_eh_frame_address_size. This differs from
4855 the default in the way it handles EABI64.
4856
4857 EABI64 was originally specified as an LP64 ABI, and that is what
4858 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4859 historically accepted the combination of -mabi=eabi and -mlong32,
4860 and this ILP32 variation has become semi-official over time.
4861 Both forms use elf32 and have pointer-sized FDE addresses.
4862
4863 If an EABI object was generated by GCC 4.0 or above, it will have
4864 an empty .gcc_compiled_longXX section, where XX is the size of longs
4865 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4866 have no special marking to distinguish them from LP64 objects.
4867
4868 We don't want users of the official LP64 ABI to be punished for the
4869 existence of the ILP32 variant, but at the same time, we don't want
4870 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4871 We therefore take the following approach:
4872
4873 - If ABFD contains a .gcc_compiled_longXX section, use it to
4874 determine the pointer size.
4875
4876 - Otherwise check the type of the first relocation. Assume that
4877 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4878
4879 - Otherwise punt.
4880
4881 The second check is enough to detect LP64 objects generated by pre-4.0
4882 compilers because, in the kind of output generated by those compilers,
4883 the first relocation will be associated with either a CIE personality
4884 routine or an FDE start address. Furthermore, the compilers never
4885 used a special (non-pointer) encoding for this ABI.
4886
4887 Checking the relocation type should also be safe because there is no
4888 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4889 did so. */
4890
4891 unsigned int
4892 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
4893 {
4894 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4895 return 8;
4896 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
4897 {
4898 bfd_boolean long32_p, long64_p;
4899
4900 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
4901 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
4902 if (long32_p && long64_p)
4903 return 0;
4904 if (long32_p)
4905 return 4;
4906 if (long64_p)
4907 return 8;
4908
4909 if (sec->reloc_count > 0
4910 && elf_section_data (sec)->relocs != NULL
4911 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
4912 == R_MIPS_64))
4913 return 8;
4914
4915 return 0;
4916 }
4917 return 4;
4918 }
4919 \f
4920 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4921 relocations against two unnamed section symbols to resolve to the
4922 same address. For example, if we have code like:
4923
4924 lw $4,%got_disp(.data)($gp)
4925 lw $25,%got_disp(.text)($gp)
4926 jalr $25
4927
4928 then the linker will resolve both relocations to .data and the program
4929 will jump there rather than to .text.
4930
4931 We can work around this problem by giving names to local section symbols.
4932 This is also what the MIPSpro tools do. */
4933
4934 bfd_boolean
4935 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4936 {
4937 return SGI_COMPAT (abfd);
4938 }
4939 \f
4940 /* Work over a section just before writing it out. This routine is
4941 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4942 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4943 a better way. */
4944
4945 bfd_boolean
4946 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4947 {
4948 if (hdr->sh_type == SHT_MIPS_REGINFO
4949 && hdr->sh_size > 0)
4950 {
4951 bfd_byte buf[4];
4952
4953 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4954 BFD_ASSERT (hdr->contents == NULL);
4955
4956 if (bfd_seek (abfd,
4957 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4958 SEEK_SET) != 0)
4959 return FALSE;
4960 H_PUT_32 (abfd, elf_gp (abfd), buf);
4961 if (bfd_bwrite (buf, 4, abfd) != 4)
4962 return FALSE;
4963 }
4964
4965 if (hdr->sh_type == SHT_MIPS_OPTIONS
4966 && hdr->bfd_section != NULL
4967 && mips_elf_section_data (hdr->bfd_section) != NULL
4968 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4969 {
4970 bfd_byte *contents, *l, *lend;
4971
4972 /* We stored the section contents in the tdata field in the
4973 set_section_contents routine. We save the section contents
4974 so that we don't have to read them again.
4975 At this point we know that elf_gp is set, so we can look
4976 through the section contents to see if there is an
4977 ODK_REGINFO structure. */
4978
4979 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4980 l = contents;
4981 lend = contents + hdr->sh_size;
4982 while (l + sizeof (Elf_External_Options) <= lend)
4983 {
4984 Elf_Internal_Options intopt;
4985
4986 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4987 &intopt);
4988 if (intopt.size < sizeof (Elf_External_Options))
4989 {
4990 (*_bfd_error_handler)
4991 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
4992 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
4993 break;
4994 }
4995 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4996 {
4997 bfd_byte buf[8];
4998
4999 if (bfd_seek (abfd,
5000 (hdr->sh_offset
5001 + (l - contents)
5002 + sizeof (Elf_External_Options)
5003 + (sizeof (Elf64_External_RegInfo) - 8)),
5004 SEEK_SET) != 0)
5005 return FALSE;
5006 H_PUT_64 (abfd, elf_gp (abfd), buf);
5007 if (bfd_bwrite (buf, 8, abfd) != 8)
5008 return FALSE;
5009 }
5010 else if (intopt.kind == ODK_REGINFO)
5011 {
5012 bfd_byte buf[4];
5013
5014 if (bfd_seek (abfd,
5015 (hdr->sh_offset
5016 + (l - contents)
5017 + sizeof (Elf_External_Options)
5018 + (sizeof (Elf32_External_RegInfo) - 4)),
5019 SEEK_SET) != 0)
5020 return FALSE;
5021 H_PUT_32 (abfd, elf_gp (abfd), buf);
5022 if (bfd_bwrite (buf, 4, abfd) != 4)
5023 return FALSE;
5024 }
5025 l += intopt.size;
5026 }
5027 }
5028
5029 if (hdr->bfd_section != NULL)
5030 {
5031 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5032
5033 if (strcmp (name, ".sdata") == 0
5034 || strcmp (name, ".lit8") == 0
5035 || strcmp (name, ".lit4") == 0)
5036 {
5037 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5038 hdr->sh_type = SHT_PROGBITS;
5039 }
5040 else if (strcmp (name, ".sbss") == 0)
5041 {
5042 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5043 hdr->sh_type = SHT_NOBITS;
5044 }
5045 else if (strcmp (name, ".srdata") == 0)
5046 {
5047 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5048 hdr->sh_type = SHT_PROGBITS;
5049 }
5050 else if (strcmp (name, ".compact_rel") == 0)
5051 {
5052 hdr->sh_flags = 0;
5053 hdr->sh_type = SHT_PROGBITS;
5054 }
5055 else if (strcmp (name, ".rtproc") == 0)
5056 {
5057 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5058 {
5059 unsigned int adjust;
5060
5061 adjust = hdr->sh_size % hdr->sh_addralign;
5062 if (adjust != 0)
5063 hdr->sh_size += hdr->sh_addralign - adjust;
5064 }
5065 }
5066 }
5067
5068 return TRUE;
5069 }
5070
5071 /* Handle a MIPS specific section when reading an object file. This
5072 is called when elfcode.h finds a section with an unknown type.
5073 This routine supports both the 32-bit and 64-bit ELF ABI.
5074
5075 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5076 how to. */
5077
5078 bfd_boolean
5079 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5080 Elf_Internal_Shdr *hdr,
5081 const char *name,
5082 int shindex)
5083 {
5084 flagword flags = 0;
5085
5086 /* There ought to be a place to keep ELF backend specific flags, but
5087 at the moment there isn't one. We just keep track of the
5088 sections by their name, instead. Fortunately, the ABI gives
5089 suggested names for all the MIPS specific sections, so we will
5090 probably get away with this. */
5091 switch (hdr->sh_type)
5092 {
5093 case SHT_MIPS_LIBLIST:
5094 if (strcmp (name, ".liblist") != 0)
5095 return FALSE;
5096 break;
5097 case SHT_MIPS_MSYM:
5098 if (strcmp (name, ".msym") != 0)
5099 return FALSE;
5100 break;
5101 case SHT_MIPS_CONFLICT:
5102 if (strcmp (name, ".conflict") != 0)
5103 return FALSE;
5104 break;
5105 case SHT_MIPS_GPTAB:
5106 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
5107 return FALSE;
5108 break;
5109 case SHT_MIPS_UCODE:
5110 if (strcmp (name, ".ucode") != 0)
5111 return FALSE;
5112 break;
5113 case SHT_MIPS_DEBUG:
5114 if (strcmp (name, ".mdebug") != 0)
5115 return FALSE;
5116 flags = SEC_DEBUGGING;
5117 break;
5118 case SHT_MIPS_REGINFO:
5119 if (strcmp (name, ".reginfo") != 0
5120 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5121 return FALSE;
5122 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5123 break;
5124 case SHT_MIPS_IFACE:
5125 if (strcmp (name, ".MIPS.interfaces") != 0)
5126 return FALSE;
5127 break;
5128 case SHT_MIPS_CONTENT:
5129 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5130 return FALSE;
5131 break;
5132 case SHT_MIPS_OPTIONS:
5133 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5134 return FALSE;
5135 break;
5136 case SHT_MIPS_DWARF:
5137 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
5138 return FALSE;
5139 break;
5140 case SHT_MIPS_SYMBOL_LIB:
5141 if (strcmp (name, ".MIPS.symlib") != 0)
5142 return FALSE;
5143 break;
5144 case SHT_MIPS_EVENTS:
5145 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5146 && strncmp (name, ".MIPS.post_rel",
5147 sizeof ".MIPS.post_rel" - 1) != 0)
5148 return FALSE;
5149 break;
5150 default:
5151 break;
5152 }
5153
5154 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5155 return FALSE;
5156
5157 if (flags)
5158 {
5159 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5160 (bfd_get_section_flags (abfd,
5161 hdr->bfd_section)
5162 | flags)))
5163 return FALSE;
5164 }
5165
5166 /* FIXME: We should record sh_info for a .gptab section. */
5167
5168 /* For a .reginfo section, set the gp value in the tdata information
5169 from the contents of this section. We need the gp value while
5170 processing relocs, so we just get it now. The .reginfo section
5171 is not used in the 64-bit MIPS ELF ABI. */
5172 if (hdr->sh_type == SHT_MIPS_REGINFO)
5173 {
5174 Elf32_External_RegInfo ext;
5175 Elf32_RegInfo s;
5176
5177 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5178 &ext, 0, sizeof ext))
5179 return FALSE;
5180 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5181 elf_gp (abfd) = s.ri_gp_value;
5182 }
5183
5184 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5185 set the gp value based on what we find. We may see both
5186 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5187 they should agree. */
5188 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5189 {
5190 bfd_byte *contents, *l, *lend;
5191
5192 contents = bfd_malloc (hdr->sh_size);
5193 if (contents == NULL)
5194 return FALSE;
5195 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5196 0, hdr->sh_size))
5197 {
5198 free (contents);
5199 return FALSE;
5200 }
5201 l = contents;
5202 lend = contents + hdr->sh_size;
5203 while (l + sizeof (Elf_External_Options) <= lend)
5204 {
5205 Elf_Internal_Options intopt;
5206
5207 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5208 &intopt);
5209 if (intopt.size < sizeof (Elf_External_Options))
5210 {
5211 (*_bfd_error_handler)
5212 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5213 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5214 break;
5215 }
5216 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5217 {
5218 Elf64_Internal_RegInfo intreg;
5219
5220 bfd_mips_elf64_swap_reginfo_in
5221 (abfd,
5222 ((Elf64_External_RegInfo *)
5223 (l + sizeof (Elf_External_Options))),
5224 &intreg);
5225 elf_gp (abfd) = intreg.ri_gp_value;
5226 }
5227 else if (intopt.kind == ODK_REGINFO)
5228 {
5229 Elf32_RegInfo intreg;
5230
5231 bfd_mips_elf32_swap_reginfo_in
5232 (abfd,
5233 ((Elf32_External_RegInfo *)
5234 (l + sizeof (Elf_External_Options))),
5235 &intreg);
5236 elf_gp (abfd) = intreg.ri_gp_value;
5237 }
5238 l += intopt.size;
5239 }
5240 free (contents);
5241 }
5242
5243 return TRUE;
5244 }
5245
5246 /* Set the correct type for a MIPS ELF section. We do this by the
5247 section name, which is a hack, but ought to work. This routine is
5248 used by both the 32-bit and the 64-bit ABI. */
5249
5250 bfd_boolean
5251 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5252 {
5253 register const char *name;
5254 unsigned int sh_type;
5255
5256 name = bfd_get_section_name (abfd, sec);
5257 sh_type = hdr->sh_type;
5258
5259 if (strcmp (name, ".liblist") == 0)
5260 {
5261 hdr->sh_type = SHT_MIPS_LIBLIST;
5262 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5263 /* The sh_link field is set in final_write_processing. */
5264 }
5265 else if (strcmp (name, ".conflict") == 0)
5266 hdr->sh_type = SHT_MIPS_CONFLICT;
5267 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5268 {
5269 hdr->sh_type = SHT_MIPS_GPTAB;
5270 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5271 /* The sh_info field is set in final_write_processing. */
5272 }
5273 else if (strcmp (name, ".ucode") == 0)
5274 hdr->sh_type = SHT_MIPS_UCODE;
5275 else if (strcmp (name, ".mdebug") == 0)
5276 {
5277 hdr->sh_type = SHT_MIPS_DEBUG;
5278 /* In a shared object on IRIX 5.3, the .mdebug section has an
5279 entsize of 0. FIXME: Does this matter? */
5280 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5281 hdr->sh_entsize = 0;
5282 else
5283 hdr->sh_entsize = 1;
5284 }
5285 else if (strcmp (name, ".reginfo") == 0)
5286 {
5287 hdr->sh_type = SHT_MIPS_REGINFO;
5288 /* In a shared object on IRIX 5.3, the .reginfo section has an
5289 entsize of 0x18. FIXME: Does this matter? */
5290 if (SGI_COMPAT (abfd))
5291 {
5292 if ((abfd->flags & DYNAMIC) != 0)
5293 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5294 else
5295 hdr->sh_entsize = 1;
5296 }
5297 else
5298 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5299 }
5300 else if (SGI_COMPAT (abfd)
5301 && (strcmp (name, ".hash") == 0
5302 || strcmp (name, ".dynamic") == 0
5303 || strcmp (name, ".dynstr") == 0))
5304 {
5305 if (SGI_COMPAT (abfd))
5306 hdr->sh_entsize = 0;
5307 #if 0
5308 /* This isn't how the IRIX6 linker behaves. */
5309 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5310 #endif
5311 }
5312 else if (strcmp (name, ".got") == 0
5313 || strcmp (name, ".srdata") == 0
5314 || strcmp (name, ".sdata") == 0
5315 || strcmp (name, ".sbss") == 0
5316 || strcmp (name, ".lit4") == 0
5317 || strcmp (name, ".lit8") == 0)
5318 hdr->sh_flags |= SHF_MIPS_GPREL;
5319 else if (strcmp (name, ".MIPS.interfaces") == 0)
5320 {
5321 hdr->sh_type = SHT_MIPS_IFACE;
5322 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5323 }
5324 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5325 {
5326 hdr->sh_type = SHT_MIPS_CONTENT;
5327 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5328 /* The sh_info field is set in final_write_processing. */
5329 }
5330 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5331 {
5332 hdr->sh_type = SHT_MIPS_OPTIONS;
5333 hdr->sh_entsize = 1;
5334 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5335 }
5336 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5337 hdr->sh_type = SHT_MIPS_DWARF;
5338 else if (strcmp (name, ".MIPS.symlib") == 0)
5339 {
5340 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5341 /* The sh_link and sh_info fields are set in
5342 final_write_processing. */
5343 }
5344 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5345 || strncmp (name, ".MIPS.post_rel",
5346 sizeof ".MIPS.post_rel" - 1) == 0)
5347 {
5348 hdr->sh_type = SHT_MIPS_EVENTS;
5349 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5350 /* The sh_link field is set in final_write_processing. */
5351 }
5352 else if (strcmp (name, ".msym") == 0)
5353 {
5354 hdr->sh_type = SHT_MIPS_MSYM;
5355 hdr->sh_flags |= SHF_ALLOC;
5356 hdr->sh_entsize = 8;
5357 }
5358
5359 /* In the unlikely event a special section is empty it has to lose its
5360 special meaning. This may happen e.g. when using `strip' with the
5361 "--only-keep-debug" option. */
5362 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5363 hdr->sh_type = sh_type;
5364
5365 /* The generic elf_fake_sections will set up REL_HDR using the default
5366 kind of relocations. We used to set up a second header for the
5367 non-default kind of relocations here, but only NewABI would use
5368 these, and the IRIX ld doesn't like resulting empty RELA sections.
5369 Thus we create those header only on demand now. */
5370
5371 return TRUE;
5372 }
5373
5374 /* Given a BFD section, try to locate the corresponding ELF section
5375 index. This is used by both the 32-bit and the 64-bit ABI.
5376 Actually, it's not clear to me that the 64-bit ABI supports these,
5377 but for non-PIC objects we will certainly want support for at least
5378 the .scommon section. */
5379
5380 bfd_boolean
5381 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5382 asection *sec, int *retval)
5383 {
5384 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5385 {
5386 *retval = SHN_MIPS_SCOMMON;
5387 return TRUE;
5388 }
5389 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5390 {
5391 *retval = SHN_MIPS_ACOMMON;
5392 return TRUE;
5393 }
5394 return FALSE;
5395 }
5396 \f
5397 /* Hook called by the linker routine which adds symbols from an object
5398 file. We must handle the special MIPS section numbers here. */
5399
5400 bfd_boolean
5401 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5402 Elf_Internal_Sym *sym, const char **namep,
5403 flagword *flagsp ATTRIBUTE_UNUSED,
5404 asection **secp, bfd_vma *valp)
5405 {
5406 if (SGI_COMPAT (abfd)
5407 && (abfd->flags & DYNAMIC) != 0
5408 && strcmp (*namep, "_rld_new_interface") == 0)
5409 {
5410 /* Skip IRIX5 rld entry name. */
5411 *namep = NULL;
5412 return TRUE;
5413 }
5414
5415 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5416 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5417 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5418 a magic symbol resolved by the linker, we ignore this bogus definition
5419 of _gp_disp. New ABI objects do not suffer from this problem so this
5420 is not done for them. */
5421 if (!NEWABI_P(abfd)
5422 && (sym->st_shndx == SHN_ABS)
5423 && (strcmp (*namep, "_gp_disp") == 0))
5424 {
5425 *namep = NULL;
5426 return TRUE;
5427 }
5428
5429 switch (sym->st_shndx)
5430 {
5431 case SHN_COMMON:
5432 /* Common symbols less than the GP size are automatically
5433 treated as SHN_MIPS_SCOMMON symbols. */
5434 if (sym->st_size > elf_gp_size (abfd)
5435 || IRIX_COMPAT (abfd) == ict_irix6)
5436 break;
5437 /* Fall through. */
5438 case SHN_MIPS_SCOMMON:
5439 *secp = bfd_make_section_old_way (abfd, ".scommon");
5440 (*secp)->flags |= SEC_IS_COMMON;
5441 *valp = sym->st_size;
5442 break;
5443
5444 case SHN_MIPS_TEXT:
5445 /* This section is used in a shared object. */
5446 if (elf_tdata (abfd)->elf_text_section == NULL)
5447 {
5448 asymbol *elf_text_symbol;
5449 asection *elf_text_section;
5450 bfd_size_type amt = sizeof (asection);
5451
5452 elf_text_section = bfd_zalloc (abfd, amt);
5453 if (elf_text_section == NULL)
5454 return FALSE;
5455
5456 amt = sizeof (asymbol);
5457 elf_text_symbol = bfd_zalloc (abfd, amt);
5458 if (elf_text_symbol == NULL)
5459 return FALSE;
5460
5461 /* Initialize the section. */
5462
5463 elf_tdata (abfd)->elf_text_section = elf_text_section;
5464 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5465
5466 elf_text_section->symbol = elf_text_symbol;
5467 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5468
5469 elf_text_section->name = ".text";
5470 elf_text_section->flags = SEC_NO_FLAGS;
5471 elf_text_section->output_section = NULL;
5472 elf_text_section->owner = abfd;
5473 elf_text_symbol->name = ".text";
5474 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5475 elf_text_symbol->section = elf_text_section;
5476 }
5477 /* This code used to do *secp = bfd_und_section_ptr if
5478 info->shared. I don't know why, and that doesn't make sense,
5479 so I took it out. */
5480 *secp = elf_tdata (abfd)->elf_text_section;
5481 break;
5482
5483 case SHN_MIPS_ACOMMON:
5484 /* Fall through. XXX Can we treat this as allocated data? */
5485 case SHN_MIPS_DATA:
5486 /* This section is used in a shared object. */
5487 if (elf_tdata (abfd)->elf_data_section == NULL)
5488 {
5489 asymbol *elf_data_symbol;
5490 asection *elf_data_section;
5491 bfd_size_type amt = sizeof (asection);
5492
5493 elf_data_section = bfd_zalloc (abfd, amt);
5494 if (elf_data_section == NULL)
5495 return FALSE;
5496
5497 amt = sizeof (asymbol);
5498 elf_data_symbol = bfd_zalloc (abfd, amt);
5499 if (elf_data_symbol == NULL)
5500 return FALSE;
5501
5502 /* Initialize the section. */
5503
5504 elf_tdata (abfd)->elf_data_section = elf_data_section;
5505 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5506
5507 elf_data_section->symbol = elf_data_symbol;
5508 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5509
5510 elf_data_section->name = ".data";
5511 elf_data_section->flags = SEC_NO_FLAGS;
5512 elf_data_section->output_section = NULL;
5513 elf_data_section->owner = abfd;
5514 elf_data_symbol->name = ".data";
5515 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5516 elf_data_symbol->section = elf_data_section;
5517 }
5518 /* This code used to do *secp = bfd_und_section_ptr if
5519 info->shared. I don't know why, and that doesn't make sense,
5520 so I took it out. */
5521 *secp = elf_tdata (abfd)->elf_data_section;
5522 break;
5523
5524 case SHN_MIPS_SUNDEFINED:
5525 *secp = bfd_und_section_ptr;
5526 break;
5527 }
5528
5529 if (SGI_COMPAT (abfd)
5530 && ! info->shared
5531 && info->hash->creator == abfd->xvec
5532 && strcmp (*namep, "__rld_obj_head") == 0)
5533 {
5534 struct elf_link_hash_entry *h;
5535 struct bfd_link_hash_entry *bh;
5536
5537 /* Mark __rld_obj_head as dynamic. */
5538 bh = NULL;
5539 if (! (_bfd_generic_link_add_one_symbol
5540 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5541 get_elf_backend_data (abfd)->collect, &bh)))
5542 return FALSE;
5543
5544 h = (struct elf_link_hash_entry *) bh;
5545 h->non_elf = 0;
5546 h->def_regular = 1;
5547 h->type = STT_OBJECT;
5548
5549 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5550 return FALSE;
5551
5552 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5553 }
5554
5555 /* If this is a mips16 text symbol, add 1 to the value to make it
5556 odd. This will cause something like .word SYM to come up with
5557 the right value when it is loaded into the PC. */
5558 if (sym->st_other == STO_MIPS16)
5559 ++*valp;
5560
5561 return TRUE;
5562 }
5563
5564 /* This hook function is called before the linker writes out a global
5565 symbol. We mark symbols as small common if appropriate. This is
5566 also where we undo the increment of the value for a mips16 symbol. */
5567
5568 bfd_boolean
5569 _bfd_mips_elf_link_output_symbol_hook
5570 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5571 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5572 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5573 {
5574 /* If we see a common symbol, which implies a relocatable link, then
5575 if a symbol was small common in an input file, mark it as small
5576 common in the output file. */
5577 if (sym->st_shndx == SHN_COMMON
5578 && strcmp (input_sec->name, ".scommon") == 0)
5579 sym->st_shndx = SHN_MIPS_SCOMMON;
5580
5581 if (sym->st_other == STO_MIPS16)
5582 sym->st_value &= ~1;
5583
5584 return TRUE;
5585 }
5586 \f
5587 /* Functions for the dynamic linker. */
5588
5589 /* Create dynamic sections when linking against a dynamic object. */
5590
5591 bfd_boolean
5592 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5593 {
5594 struct elf_link_hash_entry *h;
5595 struct bfd_link_hash_entry *bh;
5596 flagword flags;
5597 register asection *s;
5598 const char * const *namep;
5599
5600 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5601 | SEC_LINKER_CREATED | SEC_READONLY);
5602
5603 /* Mips ABI requests the .dynamic section to be read only. */
5604 s = bfd_get_section_by_name (abfd, ".dynamic");
5605 if (s != NULL)
5606 {
5607 if (! bfd_set_section_flags (abfd, s, flags))
5608 return FALSE;
5609 }
5610
5611 /* We need to create .got section. */
5612 if (! mips_elf_create_got_section (abfd, info, FALSE))
5613 return FALSE;
5614
5615 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
5616 return FALSE;
5617
5618 /* Create .stub section. */
5619 if (bfd_get_section_by_name (abfd,
5620 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5621 {
5622 s = bfd_make_section_with_flags (abfd,
5623 MIPS_ELF_STUB_SECTION_NAME (abfd),
5624 flags | SEC_CODE);
5625 if (s == NULL
5626 || ! bfd_set_section_alignment (abfd, s,
5627 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5628 return FALSE;
5629 }
5630
5631 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5632 && !info->shared
5633 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5634 {
5635 s = bfd_make_section_with_flags (abfd, ".rld_map",
5636 flags &~ (flagword) SEC_READONLY);
5637 if (s == NULL
5638 || ! bfd_set_section_alignment (abfd, s,
5639 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5640 return FALSE;
5641 }
5642
5643 /* On IRIX5, we adjust add some additional symbols and change the
5644 alignments of several sections. There is no ABI documentation
5645 indicating that this is necessary on IRIX6, nor any evidence that
5646 the linker takes such action. */
5647 if (IRIX_COMPAT (abfd) == ict_irix5)
5648 {
5649 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5650 {
5651 bh = NULL;
5652 if (! (_bfd_generic_link_add_one_symbol
5653 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5654 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5655 return FALSE;
5656
5657 h = (struct elf_link_hash_entry *) bh;
5658 h->non_elf = 0;
5659 h->def_regular = 1;
5660 h->type = STT_SECTION;
5661
5662 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5663 return FALSE;
5664 }
5665
5666 /* We need to create a .compact_rel section. */
5667 if (SGI_COMPAT (abfd))
5668 {
5669 if (!mips_elf_create_compact_rel_section (abfd, info))
5670 return FALSE;
5671 }
5672
5673 /* Change alignments of some sections. */
5674 s = bfd_get_section_by_name (abfd, ".hash");
5675 if (s != NULL)
5676 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5677 s = bfd_get_section_by_name (abfd, ".dynsym");
5678 if (s != NULL)
5679 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5680 s = bfd_get_section_by_name (abfd, ".dynstr");
5681 if (s != NULL)
5682 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5683 s = bfd_get_section_by_name (abfd, ".reginfo");
5684 if (s != NULL)
5685 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5686 s = bfd_get_section_by_name (abfd, ".dynamic");
5687 if (s != NULL)
5688 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5689 }
5690
5691 if (!info->shared)
5692 {
5693 const char *name;
5694
5695 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5696 bh = NULL;
5697 if (!(_bfd_generic_link_add_one_symbol
5698 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5699 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5700 return FALSE;
5701
5702 h = (struct elf_link_hash_entry *) bh;
5703 h->non_elf = 0;
5704 h->def_regular = 1;
5705 h->type = STT_SECTION;
5706
5707 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5708 return FALSE;
5709
5710 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5711 {
5712 /* __rld_map is a four byte word located in the .data section
5713 and is filled in by the rtld to contain a pointer to
5714 the _r_debug structure. Its symbol value will be set in
5715 _bfd_mips_elf_finish_dynamic_symbol. */
5716 s = bfd_get_section_by_name (abfd, ".rld_map");
5717 BFD_ASSERT (s != NULL);
5718
5719 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5720 bh = NULL;
5721 if (!(_bfd_generic_link_add_one_symbol
5722 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
5723 get_elf_backend_data (abfd)->collect, &bh)))
5724 return FALSE;
5725
5726 h = (struct elf_link_hash_entry *) bh;
5727 h->non_elf = 0;
5728 h->def_regular = 1;
5729 h->type = STT_OBJECT;
5730
5731 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5732 return FALSE;
5733 }
5734 }
5735
5736 return TRUE;
5737 }
5738 \f
5739 /* Look through the relocs for a section during the first phase, and
5740 allocate space in the global offset table. */
5741
5742 bfd_boolean
5743 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5744 asection *sec, const Elf_Internal_Rela *relocs)
5745 {
5746 const char *name;
5747 bfd *dynobj;
5748 Elf_Internal_Shdr *symtab_hdr;
5749 struct elf_link_hash_entry **sym_hashes;
5750 struct mips_got_info *g;
5751 size_t extsymoff;
5752 const Elf_Internal_Rela *rel;
5753 const Elf_Internal_Rela *rel_end;
5754 asection *sgot;
5755 asection *sreloc;
5756 const struct elf_backend_data *bed;
5757
5758 if (info->relocatable)
5759 return TRUE;
5760
5761 dynobj = elf_hash_table (info)->dynobj;
5762 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5763 sym_hashes = elf_sym_hashes (abfd);
5764 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5765
5766 /* Check for the mips16 stub sections. */
5767
5768 name = bfd_get_section_name (abfd, sec);
5769 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5770 {
5771 unsigned long r_symndx;
5772
5773 /* Look at the relocation information to figure out which symbol
5774 this is for. */
5775
5776 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5777
5778 if (r_symndx < extsymoff
5779 || sym_hashes[r_symndx - extsymoff] == NULL)
5780 {
5781 asection *o;
5782
5783 /* This stub is for a local symbol. This stub will only be
5784 needed if there is some relocation in this BFD, other
5785 than a 16 bit function call, which refers to this symbol. */
5786 for (o = abfd->sections; o != NULL; o = o->next)
5787 {
5788 Elf_Internal_Rela *sec_relocs;
5789 const Elf_Internal_Rela *r, *rend;
5790
5791 /* We can ignore stub sections when looking for relocs. */
5792 if ((o->flags & SEC_RELOC) == 0
5793 || o->reloc_count == 0
5794 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5795 sizeof FN_STUB - 1) == 0
5796 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5797 sizeof CALL_STUB - 1) == 0
5798 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5799 sizeof CALL_FP_STUB - 1) == 0)
5800 continue;
5801
5802 sec_relocs
5803 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5804 info->keep_memory);
5805 if (sec_relocs == NULL)
5806 return FALSE;
5807
5808 rend = sec_relocs + o->reloc_count;
5809 for (r = sec_relocs; r < rend; r++)
5810 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5811 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5812 break;
5813
5814 if (elf_section_data (o)->relocs != sec_relocs)
5815 free (sec_relocs);
5816
5817 if (r < rend)
5818 break;
5819 }
5820
5821 if (o == NULL)
5822 {
5823 /* There is no non-call reloc for this stub, so we do
5824 not need it. Since this function is called before
5825 the linker maps input sections to output sections, we
5826 can easily discard it by setting the SEC_EXCLUDE
5827 flag. */
5828 sec->flags |= SEC_EXCLUDE;
5829 return TRUE;
5830 }
5831
5832 /* Record this stub in an array of local symbol stubs for
5833 this BFD. */
5834 if (elf_tdata (abfd)->local_stubs == NULL)
5835 {
5836 unsigned long symcount;
5837 asection **n;
5838 bfd_size_type amt;
5839
5840 if (elf_bad_symtab (abfd))
5841 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5842 else
5843 symcount = symtab_hdr->sh_info;
5844 amt = symcount * sizeof (asection *);
5845 n = bfd_zalloc (abfd, amt);
5846 if (n == NULL)
5847 return FALSE;
5848 elf_tdata (abfd)->local_stubs = n;
5849 }
5850
5851 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5852
5853 /* We don't need to set mips16_stubs_seen in this case.
5854 That flag is used to see whether we need to look through
5855 the global symbol table for stubs. We don't need to set
5856 it here, because we just have a local stub. */
5857 }
5858 else
5859 {
5860 struct mips_elf_link_hash_entry *h;
5861
5862 h = ((struct mips_elf_link_hash_entry *)
5863 sym_hashes[r_symndx - extsymoff]);
5864
5865 while (h->root.root.type == bfd_link_hash_indirect
5866 || h->root.root.type == bfd_link_hash_warning)
5867 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5868
5869 /* H is the symbol this stub is for. */
5870
5871 h->fn_stub = sec;
5872 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5873 }
5874 }
5875 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5876 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5877 {
5878 unsigned long r_symndx;
5879 struct mips_elf_link_hash_entry *h;
5880 asection **loc;
5881
5882 /* Look at the relocation information to figure out which symbol
5883 this is for. */
5884
5885 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5886
5887 if (r_symndx < extsymoff
5888 || sym_hashes[r_symndx - extsymoff] == NULL)
5889 {
5890 /* This stub was actually built for a static symbol defined
5891 in the same file. We assume that all static symbols in
5892 mips16 code are themselves mips16, so we can simply
5893 discard this stub. Since this function is called before
5894 the linker maps input sections to output sections, we can
5895 easily discard it by setting the SEC_EXCLUDE flag. */
5896 sec->flags |= SEC_EXCLUDE;
5897 return TRUE;
5898 }
5899
5900 h = ((struct mips_elf_link_hash_entry *)
5901 sym_hashes[r_symndx - extsymoff]);
5902
5903 /* H is the symbol this stub is for. */
5904
5905 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5906 loc = &h->call_fp_stub;
5907 else
5908 loc = &h->call_stub;
5909
5910 /* If we already have an appropriate stub for this function, we
5911 don't need another one, so we can discard this one. Since
5912 this function is called before the linker maps input sections
5913 to output sections, we can easily discard it by setting the
5914 SEC_EXCLUDE flag. We can also discard this section if we
5915 happen to already know that this is a mips16 function; it is
5916 not necessary to check this here, as it is checked later, but
5917 it is slightly faster to check now. */
5918 if (*loc != NULL || h->root.other == STO_MIPS16)
5919 {
5920 sec->flags |= SEC_EXCLUDE;
5921 return TRUE;
5922 }
5923
5924 *loc = sec;
5925 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5926 }
5927
5928 if (dynobj == NULL)
5929 {
5930 sgot = NULL;
5931 g = NULL;
5932 }
5933 else
5934 {
5935 sgot = mips_elf_got_section (dynobj, FALSE);
5936 if (sgot == NULL)
5937 g = NULL;
5938 else
5939 {
5940 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5941 g = mips_elf_section_data (sgot)->u.got_info;
5942 BFD_ASSERT (g != NULL);
5943 }
5944 }
5945
5946 sreloc = NULL;
5947 bed = get_elf_backend_data (abfd);
5948 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5949 for (rel = relocs; rel < rel_end; ++rel)
5950 {
5951 unsigned long r_symndx;
5952 unsigned int r_type;
5953 struct elf_link_hash_entry *h;
5954
5955 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5956 r_type = ELF_R_TYPE (abfd, rel->r_info);
5957
5958 if (r_symndx < extsymoff)
5959 h = NULL;
5960 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5961 {
5962 (*_bfd_error_handler)
5963 (_("%B: Malformed reloc detected for section %s"),
5964 abfd, name);
5965 bfd_set_error (bfd_error_bad_value);
5966 return FALSE;
5967 }
5968 else
5969 {
5970 h = sym_hashes[r_symndx - extsymoff];
5971
5972 /* This may be an indirect symbol created because of a version. */
5973 if (h != NULL)
5974 {
5975 while (h->root.type == bfd_link_hash_indirect)
5976 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5977 }
5978 }
5979
5980 /* Some relocs require a global offset table. */
5981 if (dynobj == NULL || sgot == NULL)
5982 {
5983 switch (r_type)
5984 {
5985 case R_MIPS_GOT16:
5986 case R_MIPS_CALL16:
5987 case R_MIPS_CALL_HI16:
5988 case R_MIPS_CALL_LO16:
5989 case R_MIPS_GOT_HI16:
5990 case R_MIPS_GOT_LO16:
5991 case R_MIPS_GOT_PAGE:
5992 case R_MIPS_GOT_OFST:
5993 case R_MIPS_GOT_DISP:
5994 case R_MIPS_TLS_GD:
5995 case R_MIPS_TLS_LDM:
5996 if (dynobj == NULL)
5997 elf_hash_table (info)->dynobj = dynobj = abfd;
5998 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5999 return FALSE;
6000 g = mips_elf_got_info (dynobj, &sgot);
6001 break;
6002
6003 case R_MIPS_32:
6004 case R_MIPS_REL32:
6005 case R_MIPS_64:
6006 if (dynobj == NULL
6007 && (info->shared || h != NULL)
6008 && (sec->flags & SEC_ALLOC) != 0)
6009 elf_hash_table (info)->dynobj = dynobj = abfd;
6010 break;
6011
6012 default:
6013 break;
6014 }
6015 }
6016
6017 if (!h && (r_type == R_MIPS_CALL_LO16
6018 || r_type == R_MIPS_GOT_LO16
6019 || r_type == R_MIPS_GOT_DISP))
6020 {
6021 /* We may need a local GOT entry for this relocation. We
6022 don't count R_MIPS_GOT_PAGE because we can estimate the
6023 maximum number of pages needed by looking at the size of
6024 the segment. Similar comments apply to R_MIPS_GOT16 and
6025 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
6026 R_MIPS_CALL_HI16 because these are always followed by an
6027 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6028 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6029 rel->r_addend, g, 0))
6030 return FALSE;
6031 }
6032
6033 switch (r_type)
6034 {
6035 case R_MIPS_CALL16:
6036 if (h == NULL)
6037 {
6038 (*_bfd_error_handler)
6039 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6040 abfd, (unsigned long) rel->r_offset);
6041 bfd_set_error (bfd_error_bad_value);
6042 return FALSE;
6043 }
6044 /* Fall through. */
6045
6046 case R_MIPS_CALL_HI16:
6047 case R_MIPS_CALL_LO16:
6048 if (h != NULL)
6049 {
6050 /* This symbol requires a global offset table entry. */
6051 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6052 return FALSE;
6053
6054 /* We need a stub, not a plt entry for the undefined
6055 function. But we record it as if it needs plt. See
6056 _bfd_elf_adjust_dynamic_symbol. */
6057 h->needs_plt = 1;
6058 h->type = STT_FUNC;
6059 }
6060 break;
6061
6062 case R_MIPS_GOT_PAGE:
6063 /* If this is a global, overridable symbol, GOT_PAGE will
6064 decay to GOT_DISP, so we'll need a GOT entry for it. */
6065 if (h == NULL)
6066 break;
6067 else
6068 {
6069 struct mips_elf_link_hash_entry *hmips =
6070 (struct mips_elf_link_hash_entry *) h;
6071
6072 while (hmips->root.root.type == bfd_link_hash_indirect
6073 || hmips->root.root.type == bfd_link_hash_warning)
6074 hmips = (struct mips_elf_link_hash_entry *)
6075 hmips->root.root.u.i.link;
6076
6077 if (hmips->root.def_regular
6078 && ! (info->shared && ! info->symbolic
6079 && ! hmips->root.forced_local))
6080 break;
6081 }
6082 /* Fall through. */
6083
6084 case R_MIPS_GOT16:
6085 case R_MIPS_GOT_HI16:
6086 case R_MIPS_GOT_LO16:
6087 case R_MIPS_GOT_DISP:
6088 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6089 return FALSE;
6090 break;
6091
6092 case R_MIPS_TLS_GOTTPREL:
6093 if (info->shared)
6094 info->flags |= DF_STATIC_TLS;
6095 /* Fall through */
6096
6097 case R_MIPS_TLS_LDM:
6098 if (r_type == R_MIPS_TLS_LDM)
6099 {
6100 r_symndx = 0;
6101 h = NULL;
6102 }
6103 /* Fall through */
6104
6105 case R_MIPS_TLS_GD:
6106 /* This symbol requires a global offset table entry, or two
6107 for TLS GD relocations. */
6108 {
6109 unsigned char flag = (r_type == R_MIPS_TLS_GD
6110 ? GOT_TLS_GD
6111 : r_type == R_MIPS_TLS_LDM
6112 ? GOT_TLS_LDM
6113 : GOT_TLS_IE);
6114 if (h != NULL)
6115 {
6116 struct mips_elf_link_hash_entry *hmips =
6117 (struct mips_elf_link_hash_entry *) h;
6118 hmips->tls_type |= flag;
6119
6120 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6121 return FALSE;
6122 }
6123 else
6124 {
6125 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6126
6127 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6128 rel->r_addend, g, flag))
6129 return FALSE;
6130 }
6131 }
6132 break;
6133
6134 case R_MIPS_32:
6135 case R_MIPS_REL32:
6136 case R_MIPS_64:
6137 if ((info->shared || h != NULL)
6138 && (sec->flags & SEC_ALLOC) != 0)
6139 {
6140 if (sreloc == NULL)
6141 {
6142 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
6143 if (sreloc == NULL)
6144 return FALSE;
6145 }
6146 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
6147 if (info->shared)
6148 {
6149 /* When creating a shared object, we must copy these
6150 reloc types into the output file as R_MIPS_REL32
6151 relocs. We make room for this reloc in the
6152 .rel.dyn reloc section. */
6153 mips_elf_allocate_dynamic_relocations (dynobj, 1);
6154 if ((sec->flags & MIPS_READONLY_SECTION)
6155 == MIPS_READONLY_SECTION)
6156 /* We tell the dynamic linker that there are
6157 relocations against the text segment. */
6158 info->flags |= DF_TEXTREL;
6159 }
6160 else
6161 {
6162 struct mips_elf_link_hash_entry *hmips;
6163
6164 /* We only need to copy this reloc if the symbol is
6165 defined in a dynamic object. */
6166 hmips = (struct mips_elf_link_hash_entry *) h;
6167 ++hmips->possibly_dynamic_relocs;
6168 if ((sec->flags & MIPS_READONLY_SECTION)
6169 == MIPS_READONLY_SECTION)
6170 /* We need it to tell the dynamic linker if there
6171 are relocations against the text segment. */
6172 hmips->readonly_reloc = TRUE;
6173 }
6174
6175 /* Even though we don't directly need a GOT entry for
6176 this symbol, a symbol must have a dynamic symbol
6177 table index greater that DT_MIPS_GOTSYM if there are
6178 dynamic relocations against it. */
6179 if (h != NULL)
6180 {
6181 if (dynobj == NULL)
6182 elf_hash_table (info)->dynobj = dynobj = abfd;
6183 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6184 return FALSE;
6185 g = mips_elf_got_info (dynobj, &sgot);
6186 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6187 return FALSE;
6188 }
6189 }
6190
6191 if (SGI_COMPAT (abfd))
6192 mips_elf_hash_table (info)->compact_rel_size +=
6193 sizeof (Elf32_External_crinfo);
6194 break;
6195
6196 case R_MIPS_26:
6197 case R_MIPS_GPREL16:
6198 case R_MIPS_LITERAL:
6199 case R_MIPS_GPREL32:
6200 if (SGI_COMPAT (abfd))
6201 mips_elf_hash_table (info)->compact_rel_size +=
6202 sizeof (Elf32_External_crinfo);
6203 break;
6204
6205 /* This relocation describes the C++ object vtable hierarchy.
6206 Reconstruct it for later use during GC. */
6207 case R_MIPS_GNU_VTINHERIT:
6208 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6209 return FALSE;
6210 break;
6211
6212 /* This relocation describes which C++ vtable entries are actually
6213 used. Record for later use during GC. */
6214 case R_MIPS_GNU_VTENTRY:
6215 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6216 return FALSE;
6217 break;
6218
6219 default:
6220 break;
6221 }
6222
6223 /* We must not create a stub for a symbol that has relocations
6224 related to taking the function's address. */
6225 switch (r_type)
6226 {
6227 default:
6228 if (h != NULL)
6229 {
6230 struct mips_elf_link_hash_entry *mh;
6231
6232 mh = (struct mips_elf_link_hash_entry *) h;
6233 mh->no_fn_stub = TRUE;
6234 }
6235 break;
6236 case R_MIPS_CALL16:
6237 case R_MIPS_CALL_HI16:
6238 case R_MIPS_CALL_LO16:
6239 case R_MIPS_JALR:
6240 break;
6241 }
6242
6243 /* If this reloc is not a 16 bit call, and it has a global
6244 symbol, then we will need the fn_stub if there is one.
6245 References from a stub section do not count. */
6246 if (h != NULL
6247 && r_type != R_MIPS16_26
6248 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6249 sizeof FN_STUB - 1) != 0
6250 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6251 sizeof CALL_STUB - 1) != 0
6252 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6253 sizeof CALL_FP_STUB - 1) != 0)
6254 {
6255 struct mips_elf_link_hash_entry *mh;
6256
6257 mh = (struct mips_elf_link_hash_entry *) h;
6258 mh->need_fn_stub = TRUE;
6259 }
6260 }
6261
6262 return TRUE;
6263 }
6264 \f
6265 bfd_boolean
6266 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6267 struct bfd_link_info *link_info,
6268 bfd_boolean *again)
6269 {
6270 Elf_Internal_Rela *internal_relocs;
6271 Elf_Internal_Rela *irel, *irelend;
6272 Elf_Internal_Shdr *symtab_hdr;
6273 bfd_byte *contents = NULL;
6274 size_t extsymoff;
6275 bfd_boolean changed_contents = FALSE;
6276 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6277 Elf_Internal_Sym *isymbuf = NULL;
6278
6279 /* We are not currently changing any sizes, so only one pass. */
6280 *again = FALSE;
6281
6282 if (link_info->relocatable)
6283 return TRUE;
6284
6285 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6286 link_info->keep_memory);
6287 if (internal_relocs == NULL)
6288 return TRUE;
6289
6290 irelend = internal_relocs + sec->reloc_count
6291 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6292 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6293 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6294
6295 for (irel = internal_relocs; irel < irelend; irel++)
6296 {
6297 bfd_vma symval;
6298 bfd_signed_vma sym_offset;
6299 unsigned int r_type;
6300 unsigned long r_symndx;
6301 asection *sym_sec;
6302 unsigned long instruction;
6303
6304 /* Turn jalr into bgezal, and jr into beq, if they're marked
6305 with a JALR relocation, that indicate where they jump to.
6306 This saves some pipeline bubbles. */
6307 r_type = ELF_R_TYPE (abfd, irel->r_info);
6308 if (r_type != R_MIPS_JALR)
6309 continue;
6310
6311 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6312 /* Compute the address of the jump target. */
6313 if (r_symndx >= extsymoff)
6314 {
6315 struct mips_elf_link_hash_entry *h
6316 = ((struct mips_elf_link_hash_entry *)
6317 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6318
6319 while (h->root.root.type == bfd_link_hash_indirect
6320 || h->root.root.type == bfd_link_hash_warning)
6321 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6322
6323 /* If a symbol is undefined, or if it may be overridden,
6324 skip it. */
6325 if (! ((h->root.root.type == bfd_link_hash_defined
6326 || h->root.root.type == bfd_link_hash_defweak)
6327 && h->root.root.u.def.section)
6328 || (link_info->shared && ! link_info->symbolic
6329 && !h->root.forced_local))
6330 continue;
6331
6332 sym_sec = h->root.root.u.def.section;
6333 if (sym_sec->output_section)
6334 symval = (h->root.root.u.def.value
6335 + sym_sec->output_section->vma
6336 + sym_sec->output_offset);
6337 else
6338 symval = h->root.root.u.def.value;
6339 }
6340 else
6341 {
6342 Elf_Internal_Sym *isym;
6343
6344 /* Read this BFD's symbols if we haven't done so already. */
6345 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6346 {
6347 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6348 if (isymbuf == NULL)
6349 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6350 symtab_hdr->sh_info, 0,
6351 NULL, NULL, NULL);
6352 if (isymbuf == NULL)
6353 goto relax_return;
6354 }
6355
6356 isym = isymbuf + r_symndx;
6357 if (isym->st_shndx == SHN_UNDEF)
6358 continue;
6359 else if (isym->st_shndx == SHN_ABS)
6360 sym_sec = bfd_abs_section_ptr;
6361 else if (isym->st_shndx == SHN_COMMON)
6362 sym_sec = bfd_com_section_ptr;
6363 else
6364 sym_sec
6365 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6366 symval = isym->st_value
6367 + sym_sec->output_section->vma
6368 + sym_sec->output_offset;
6369 }
6370
6371 /* Compute branch offset, from delay slot of the jump to the
6372 branch target. */
6373 sym_offset = (symval + irel->r_addend)
6374 - (sec_start + irel->r_offset + 4);
6375
6376 /* Branch offset must be properly aligned. */
6377 if ((sym_offset & 3) != 0)
6378 continue;
6379
6380 sym_offset >>= 2;
6381
6382 /* Check that it's in range. */
6383 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6384 continue;
6385
6386 /* Get the section contents if we haven't done so already. */
6387 if (contents == NULL)
6388 {
6389 /* Get cached copy if it exists. */
6390 if (elf_section_data (sec)->this_hdr.contents != NULL)
6391 contents = elf_section_data (sec)->this_hdr.contents;
6392 else
6393 {
6394 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6395 goto relax_return;
6396 }
6397 }
6398
6399 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6400
6401 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6402 if ((instruction & 0xfc1fffff) == 0x0000f809)
6403 instruction = 0x04110000;
6404 /* If it was jr <reg>, turn it into b <target>. */
6405 else if ((instruction & 0xfc1fffff) == 0x00000008)
6406 instruction = 0x10000000;
6407 else
6408 continue;
6409
6410 instruction |= (sym_offset & 0xffff);
6411 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6412 changed_contents = TRUE;
6413 }
6414
6415 if (contents != NULL
6416 && elf_section_data (sec)->this_hdr.contents != contents)
6417 {
6418 if (!changed_contents && !link_info->keep_memory)
6419 free (contents);
6420 else
6421 {
6422 /* Cache the section contents for elf_link_input_bfd. */
6423 elf_section_data (sec)->this_hdr.contents = contents;
6424 }
6425 }
6426 return TRUE;
6427
6428 relax_return:
6429 if (contents != NULL
6430 && elf_section_data (sec)->this_hdr.contents != contents)
6431 free (contents);
6432 return FALSE;
6433 }
6434 \f
6435 /* Adjust a symbol defined by a dynamic object and referenced by a
6436 regular object. The current definition is in some section of the
6437 dynamic object, but we're not including those sections. We have to
6438 change the definition to something the rest of the link can
6439 understand. */
6440
6441 bfd_boolean
6442 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6443 struct elf_link_hash_entry *h)
6444 {
6445 bfd *dynobj;
6446 struct mips_elf_link_hash_entry *hmips;
6447 asection *s;
6448
6449 dynobj = elf_hash_table (info)->dynobj;
6450
6451 /* Make sure we know what is going on here. */
6452 BFD_ASSERT (dynobj != NULL
6453 && (h->needs_plt
6454 || h->u.weakdef != NULL
6455 || (h->def_dynamic
6456 && h->ref_regular
6457 && !h->def_regular)));
6458
6459 /* If this symbol is defined in a dynamic object, we need to copy
6460 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6461 file. */
6462 hmips = (struct mips_elf_link_hash_entry *) h;
6463 if (! info->relocatable
6464 && hmips->possibly_dynamic_relocs != 0
6465 && (h->root.type == bfd_link_hash_defweak
6466 || !h->def_regular))
6467 {
6468 mips_elf_allocate_dynamic_relocations (dynobj,
6469 hmips->possibly_dynamic_relocs);
6470 if (hmips->readonly_reloc)
6471 /* We tell the dynamic linker that there are relocations
6472 against the text segment. */
6473 info->flags |= DF_TEXTREL;
6474 }
6475
6476 /* For a function, create a stub, if allowed. */
6477 if (! hmips->no_fn_stub
6478 && h->needs_plt)
6479 {
6480 if (! elf_hash_table (info)->dynamic_sections_created)
6481 return TRUE;
6482
6483 /* If this symbol is not defined in a regular file, then set
6484 the symbol to the stub location. This is required to make
6485 function pointers compare as equal between the normal
6486 executable and the shared library. */
6487 if (!h->def_regular)
6488 {
6489 /* We need .stub section. */
6490 s = bfd_get_section_by_name (dynobj,
6491 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6492 BFD_ASSERT (s != NULL);
6493
6494 h->root.u.def.section = s;
6495 h->root.u.def.value = s->size;
6496
6497 /* XXX Write this stub address somewhere. */
6498 h->plt.offset = s->size;
6499
6500 /* Make room for this stub code. */
6501 s->size += MIPS_FUNCTION_STUB_SIZE;
6502
6503 /* The last half word of the stub will be filled with the index
6504 of this symbol in .dynsym section. */
6505 return TRUE;
6506 }
6507 }
6508 else if ((h->type == STT_FUNC)
6509 && !h->needs_plt)
6510 {
6511 /* This will set the entry for this symbol in the GOT to 0, and
6512 the dynamic linker will take care of this. */
6513 h->root.u.def.value = 0;
6514 return TRUE;
6515 }
6516
6517 /* If this is a weak symbol, and there is a real definition, the
6518 processor independent code will have arranged for us to see the
6519 real definition first, and we can just use the same value. */
6520 if (h->u.weakdef != NULL)
6521 {
6522 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6523 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6524 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6525 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6526 return TRUE;
6527 }
6528
6529 /* This is a reference to a symbol defined by a dynamic object which
6530 is not a function. */
6531
6532 return TRUE;
6533 }
6534 \f
6535 /* This function is called after all the input files have been read,
6536 and the input sections have been assigned to output sections. We
6537 check for any mips16 stub sections that we can discard. */
6538
6539 bfd_boolean
6540 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
6541 struct bfd_link_info *info)
6542 {
6543 asection *ri;
6544
6545 bfd *dynobj;
6546 asection *s;
6547 struct mips_got_info *g;
6548 int i;
6549 bfd_size_type loadable_size = 0;
6550 bfd_size_type local_gotno;
6551 bfd *sub;
6552 struct mips_elf_count_tls_arg count_tls_arg;
6553
6554 /* The .reginfo section has a fixed size. */
6555 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
6556 if (ri != NULL)
6557 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
6558
6559 if (! (info->relocatable
6560 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
6561 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
6562 mips_elf_check_mips16_stubs, NULL);
6563
6564 dynobj = elf_hash_table (info)->dynobj;
6565 if (dynobj == NULL)
6566 /* Relocatable links don't have it. */
6567 return TRUE;
6568
6569 g = mips_elf_got_info (dynobj, &s);
6570 if (s == NULL)
6571 return TRUE;
6572
6573 /* Calculate the total loadable size of the output. That
6574 will give us the maximum number of GOT_PAGE entries
6575 required. */
6576 for (sub = info->input_bfds; sub; sub = sub->link_next)
6577 {
6578 asection *subsection;
6579
6580 for (subsection = sub->sections;
6581 subsection;
6582 subsection = subsection->next)
6583 {
6584 if ((subsection->flags & SEC_ALLOC) == 0)
6585 continue;
6586 loadable_size += ((subsection->size + 0xf)
6587 &~ (bfd_size_type) 0xf);
6588 }
6589 }
6590
6591 /* There has to be a global GOT entry for every symbol with
6592 a dynamic symbol table index of DT_MIPS_GOTSYM or
6593 higher. Therefore, it make sense to put those symbols
6594 that need GOT entries at the end of the symbol table. We
6595 do that here. */
6596 if (! mips_elf_sort_hash_table (info, 1))
6597 return FALSE;
6598
6599 if (g->global_gotsym != NULL)
6600 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
6601 else
6602 /* If there are no global symbols, or none requiring
6603 relocations, then GLOBAL_GOTSYM will be NULL. */
6604 i = 0;
6605
6606 /* In the worst case, we'll get one stub per dynamic symbol, plus
6607 one to account for the dummy entry at the end required by IRIX
6608 rld. */
6609 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
6610
6611 /* Assume there are two loadable segments consisting of
6612 contiguous sections. Is 5 enough? */
6613 local_gotno = (loadable_size >> 16) + 5;
6614
6615 g->local_gotno += local_gotno;
6616 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
6617
6618 g->global_gotno = i;
6619 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
6620
6621 /* We need to calculate tls_gotno for global symbols at this point
6622 instead of building it up earlier, to avoid doublecounting
6623 entries for one global symbol from multiple input files. */
6624 count_tls_arg.info = info;
6625 count_tls_arg.needed = 0;
6626 elf_link_hash_traverse (elf_hash_table (info),
6627 mips_elf_count_global_tls_entries,
6628 &count_tls_arg);
6629 g->tls_gotno += count_tls_arg.needed;
6630 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
6631
6632 mips_elf_resolve_final_got_entries (g);
6633
6634 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd))
6635 {
6636 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
6637 return FALSE;
6638 }
6639 else
6640 {
6641 /* Set up TLS entries for the first GOT. */
6642 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
6643 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
6644 }
6645
6646 return TRUE;
6647 }
6648
6649 /* Set the sizes of the dynamic sections. */
6650
6651 bfd_boolean
6652 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
6653 struct bfd_link_info *info)
6654 {
6655 bfd *dynobj;
6656 asection *s;
6657 bfd_boolean reltext;
6658
6659 dynobj = elf_hash_table (info)->dynobj;
6660 BFD_ASSERT (dynobj != NULL);
6661
6662 if (elf_hash_table (info)->dynamic_sections_created)
6663 {
6664 /* Set the contents of the .interp section to the interpreter. */
6665 if (info->executable)
6666 {
6667 s = bfd_get_section_by_name (dynobj, ".interp");
6668 BFD_ASSERT (s != NULL);
6669 s->size
6670 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
6671 s->contents
6672 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
6673 }
6674 }
6675
6676 /* The check_relocs and adjust_dynamic_symbol entry points have
6677 determined the sizes of the various dynamic sections. Allocate
6678 memory for them. */
6679 reltext = FALSE;
6680 for (s = dynobj->sections; s != NULL; s = s->next)
6681 {
6682 const char *name;
6683
6684 /* It's OK to base decisions on the section name, because none
6685 of the dynobj section names depend upon the input files. */
6686 name = bfd_get_section_name (dynobj, s);
6687
6688 if ((s->flags & SEC_LINKER_CREATED) == 0)
6689 continue;
6690
6691 if (strncmp (name, ".rel", 4) == 0)
6692 {
6693 if (s->size != 0)
6694 {
6695 const char *outname;
6696 asection *target;
6697
6698 /* If this relocation section applies to a read only
6699 section, then we probably need a DT_TEXTREL entry.
6700 If the relocation section is .rel.dyn, we always
6701 assert a DT_TEXTREL entry rather than testing whether
6702 there exists a relocation to a read only section or
6703 not. */
6704 outname = bfd_get_section_name (output_bfd,
6705 s->output_section);
6706 target = bfd_get_section_by_name (output_bfd, outname + 4);
6707 if ((target != NULL
6708 && (target->flags & SEC_READONLY) != 0
6709 && (target->flags & SEC_ALLOC) != 0)
6710 || strcmp (outname, ".rel.dyn") == 0)
6711 reltext = TRUE;
6712
6713 /* We use the reloc_count field as a counter if we need
6714 to copy relocs into the output file. */
6715 if (strcmp (name, ".rel.dyn") != 0)
6716 s->reloc_count = 0;
6717
6718 /* If combreloc is enabled, elf_link_sort_relocs() will
6719 sort relocations, but in a different way than we do,
6720 and before we're done creating relocations. Also, it
6721 will move them around between input sections'
6722 relocation's contents, so our sorting would be
6723 broken, so don't let it run. */
6724 info->combreloc = 0;
6725 }
6726 }
6727 else if (strncmp (name, ".got", 4) == 0)
6728 {
6729 /* _bfd_mips_elf_always_size_sections() has already done
6730 most of the work, but some symbols may have been mapped
6731 to versions that we must now resolve in the got_entries
6732 hash tables. */
6733 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6734 struct mips_got_info *g = gg;
6735 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6736 unsigned int needed_relocs = 0;
6737
6738 if (gg->next)
6739 {
6740 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6741 set_got_offset_arg.info = info;
6742
6743 /* NOTE 2005-02-03: How can this call, or the next, ever
6744 find any indirect entries to resolve? They were all
6745 resolved in mips_elf_multi_got. */
6746 mips_elf_resolve_final_got_entries (gg);
6747 for (g = gg->next; g && g->next != gg; g = g->next)
6748 {
6749 unsigned int save_assign;
6750
6751 mips_elf_resolve_final_got_entries (g);
6752
6753 /* Assign offsets to global GOT entries. */
6754 save_assign = g->assigned_gotno;
6755 g->assigned_gotno = g->local_gotno;
6756 set_got_offset_arg.g = g;
6757 set_got_offset_arg.needed_relocs = 0;
6758 htab_traverse (g->got_entries,
6759 mips_elf_set_global_got_offset,
6760 &set_got_offset_arg);
6761 needed_relocs += set_got_offset_arg.needed_relocs;
6762 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6763 <= g->global_gotno);
6764
6765 g->assigned_gotno = save_assign;
6766 if (info->shared)
6767 {
6768 needed_relocs += g->local_gotno - g->assigned_gotno;
6769 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6770 + g->next->global_gotno
6771 + g->next->tls_gotno
6772 + MIPS_RESERVED_GOTNO);
6773 }
6774 }
6775 }
6776 else
6777 {
6778 struct mips_elf_count_tls_arg arg;
6779 arg.info = info;
6780 arg.needed = 0;
6781
6782 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
6783 &arg);
6784 elf_link_hash_traverse (elf_hash_table (info),
6785 mips_elf_count_global_tls_relocs,
6786 &arg);
6787
6788 needed_relocs += arg.needed;
6789 }
6790
6791 if (needed_relocs)
6792 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6793 }
6794 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6795 {
6796 /* IRIX rld assumes that the function stub isn't at the end
6797 of .text section. So put a dummy. XXX */
6798 s->size += MIPS_FUNCTION_STUB_SIZE;
6799 }
6800 else if (! info->shared
6801 && ! mips_elf_hash_table (info)->use_rld_obj_head
6802 && strncmp (name, ".rld_map", 8) == 0)
6803 {
6804 /* We add a room for __rld_map. It will be filled in by the
6805 rtld to contain a pointer to the _r_debug structure. */
6806 s->size += 4;
6807 }
6808 else if (SGI_COMPAT (output_bfd)
6809 && strncmp (name, ".compact_rel", 12) == 0)
6810 s->size += mips_elf_hash_table (info)->compact_rel_size;
6811 else if (strncmp (name, ".init", 5) != 0)
6812 {
6813 /* It's not one of our sections, so don't allocate space. */
6814 continue;
6815 }
6816
6817 if (s->size == 0)
6818 {
6819 s->flags |= SEC_EXCLUDE;
6820 continue;
6821 }
6822
6823 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6824 continue;
6825
6826 /* Allocate memory for the section contents. */
6827 s->contents = bfd_zalloc (dynobj, s->size);
6828 if (s->contents == NULL)
6829 {
6830 bfd_set_error (bfd_error_no_memory);
6831 return FALSE;
6832 }
6833 }
6834
6835 if (elf_hash_table (info)->dynamic_sections_created)
6836 {
6837 /* Add some entries to the .dynamic section. We fill in the
6838 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6839 must add the entries now so that we get the correct size for
6840 the .dynamic section. The DT_DEBUG entry is filled in by the
6841 dynamic linker and used by the debugger. */
6842 if (! info->shared)
6843 {
6844 /* SGI object has the equivalence of DT_DEBUG in the
6845 DT_MIPS_RLD_MAP entry. */
6846 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6847 return FALSE;
6848 if (!SGI_COMPAT (output_bfd))
6849 {
6850 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6851 return FALSE;
6852 }
6853 }
6854 else
6855 {
6856 /* Shared libraries on traditional mips have DT_DEBUG. */
6857 if (!SGI_COMPAT (output_bfd))
6858 {
6859 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6860 return FALSE;
6861 }
6862 }
6863
6864 if (reltext && SGI_COMPAT (output_bfd))
6865 info->flags |= DF_TEXTREL;
6866
6867 if ((info->flags & DF_TEXTREL) != 0)
6868 {
6869 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6870 return FALSE;
6871 }
6872
6873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6874 return FALSE;
6875
6876 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6877 {
6878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6879 return FALSE;
6880
6881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6882 return FALSE;
6883
6884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6885 return FALSE;
6886 }
6887
6888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6889 return FALSE;
6890
6891 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6892 return FALSE;
6893
6894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6895 return FALSE;
6896
6897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6898 return FALSE;
6899
6900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6901 return FALSE;
6902
6903 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6904 return FALSE;
6905
6906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6907 return FALSE;
6908
6909 if (IRIX_COMPAT (dynobj) == ict_irix5
6910 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6911 return FALSE;
6912
6913 if (IRIX_COMPAT (dynobj) == ict_irix6
6914 && (bfd_get_section_by_name
6915 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6916 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6917 return FALSE;
6918 }
6919
6920 return TRUE;
6921 }
6922 \f
6923 /* Relocate a MIPS ELF section. */
6924
6925 bfd_boolean
6926 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6927 bfd *input_bfd, asection *input_section,
6928 bfd_byte *contents, Elf_Internal_Rela *relocs,
6929 Elf_Internal_Sym *local_syms,
6930 asection **local_sections)
6931 {
6932 Elf_Internal_Rela *rel;
6933 const Elf_Internal_Rela *relend;
6934 bfd_vma addend = 0;
6935 bfd_boolean use_saved_addend_p = FALSE;
6936 const struct elf_backend_data *bed;
6937
6938 bed = get_elf_backend_data (output_bfd);
6939 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6940 for (rel = relocs; rel < relend; ++rel)
6941 {
6942 const char *name;
6943 bfd_vma value = 0;
6944 reloc_howto_type *howto;
6945 bfd_boolean require_jalx;
6946 /* TRUE if the relocation is a RELA relocation, rather than a
6947 REL relocation. */
6948 bfd_boolean rela_relocation_p = TRUE;
6949 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6950 const char *msg;
6951
6952 /* Find the relocation howto for this relocation. */
6953 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6954 {
6955 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6956 64-bit code, but make sure all their addresses are in the
6957 lowermost or uppermost 32-bit section of the 64-bit address
6958 space. Thus, when they use an R_MIPS_64 they mean what is
6959 usually meant by R_MIPS_32, with the exception that the
6960 stored value is sign-extended to 64 bits. */
6961 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6962
6963 /* On big-endian systems, we need to lie about the position
6964 of the reloc. */
6965 if (bfd_big_endian (input_bfd))
6966 rel->r_offset += 4;
6967 }
6968 else
6969 /* NewABI defaults to RELA relocations. */
6970 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6971 NEWABI_P (input_bfd)
6972 && (MIPS_RELOC_RELA_P
6973 (input_bfd, input_section,
6974 rel - relocs)));
6975
6976 if (!use_saved_addend_p)
6977 {
6978 Elf_Internal_Shdr *rel_hdr;
6979
6980 /* If these relocations were originally of the REL variety,
6981 we must pull the addend out of the field that will be
6982 relocated. Otherwise, we simply use the contents of the
6983 RELA relocation. To determine which flavor or relocation
6984 this is, we depend on the fact that the INPUT_SECTION's
6985 REL_HDR is read before its REL_HDR2. */
6986 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6987 if ((size_t) (rel - relocs)
6988 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6989 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6990 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6991 {
6992 bfd_byte *location = contents + rel->r_offset;
6993
6994 /* Note that this is a REL relocation. */
6995 rela_relocation_p = FALSE;
6996
6997 /* Get the addend, which is stored in the input file. */
6998 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
6999 location);
7000 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7001 contents);
7002 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7003 location);
7004
7005 addend &= howto->src_mask;
7006
7007 /* For some kinds of relocations, the ADDEND is a
7008 combination of the addend stored in two different
7009 relocations. */
7010 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7011 || (r_type == R_MIPS_GOT16
7012 && mips_elf_local_relocation_p (input_bfd, rel,
7013 local_sections, FALSE)))
7014 {
7015 bfd_vma l;
7016 const Elf_Internal_Rela *lo16_relocation;
7017 reloc_howto_type *lo16_howto;
7018 bfd_byte *lo16_location;
7019 int lo16_type;
7020
7021 if (r_type == R_MIPS16_HI16)
7022 lo16_type = R_MIPS16_LO16;
7023 else
7024 lo16_type = R_MIPS_LO16;
7025
7026 /* The combined value is the sum of the HI16 addend,
7027 left-shifted by sixteen bits, and the LO16
7028 addend, sign extended. (Usually, the code does
7029 a `lui' of the HI16 value, and then an `addiu' of
7030 the LO16 value.)
7031
7032 Scan ahead to find a matching LO16 relocation.
7033
7034 According to the MIPS ELF ABI, the R_MIPS_LO16
7035 relocation must be immediately following.
7036 However, for the IRIX6 ABI, the next relocation
7037 may be a composed relocation consisting of
7038 several relocations for the same address. In
7039 that case, the R_MIPS_LO16 relocation may occur
7040 as one of these. We permit a similar extension
7041 in general, as that is useful for GCC. */
7042 lo16_relocation = mips_elf_next_relocation (input_bfd,
7043 lo16_type,
7044 rel, relend);
7045 if (lo16_relocation == NULL)
7046 return FALSE;
7047
7048 lo16_location = contents + lo16_relocation->r_offset;
7049
7050 /* Obtain the addend kept there. */
7051 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7052 lo16_type, FALSE);
7053 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7054 lo16_location);
7055 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7056 input_bfd, contents);
7057 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7058 lo16_location);
7059 l &= lo16_howto->src_mask;
7060 l <<= lo16_howto->rightshift;
7061 l = _bfd_mips_elf_sign_extend (l, 16);
7062
7063 addend <<= 16;
7064
7065 /* Compute the combined addend. */
7066 addend += l;
7067 }
7068 else
7069 addend <<= howto->rightshift;
7070 }
7071 else
7072 addend = rel->r_addend;
7073 }
7074
7075 if (info->relocatable)
7076 {
7077 Elf_Internal_Sym *sym;
7078 unsigned long r_symndx;
7079
7080 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7081 && bfd_big_endian (input_bfd))
7082 rel->r_offset -= 4;
7083
7084 /* Since we're just relocating, all we need to do is copy
7085 the relocations back out to the object file, unless
7086 they're against a section symbol, in which case we need
7087 to adjust by the section offset, or unless they're GP
7088 relative in which case we need to adjust by the amount
7089 that we're adjusting GP in this relocatable object. */
7090
7091 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
7092 FALSE))
7093 /* There's nothing to do for non-local relocations. */
7094 continue;
7095
7096 if (r_type == R_MIPS16_GPREL
7097 || r_type == R_MIPS_GPREL16
7098 || r_type == R_MIPS_GPREL32
7099 || r_type == R_MIPS_LITERAL)
7100 addend -= (_bfd_get_gp_value (output_bfd)
7101 - _bfd_get_gp_value (input_bfd));
7102
7103 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7104 sym = local_syms + r_symndx;
7105 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7106 /* Adjust the addend appropriately. */
7107 addend += local_sections[r_symndx]->output_offset;
7108
7109 if (rela_relocation_p)
7110 /* If this is a RELA relocation, just update the addend. */
7111 rel->r_addend = addend;
7112 else
7113 {
7114 if (r_type == R_MIPS_HI16
7115 || r_type == R_MIPS_GOT16)
7116 addend = mips_elf_high (addend);
7117 else if (r_type == R_MIPS_HIGHER)
7118 addend = mips_elf_higher (addend);
7119 else if (r_type == R_MIPS_HIGHEST)
7120 addend = mips_elf_highest (addend);
7121 else
7122 addend >>= howto->rightshift;
7123
7124 /* We use the source mask, rather than the destination
7125 mask because the place to which we are writing will be
7126 source of the addend in the final link. */
7127 addend &= howto->src_mask;
7128
7129 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7130 /* See the comment above about using R_MIPS_64 in the 32-bit
7131 ABI. Here, we need to update the addend. It would be
7132 possible to get away with just using the R_MIPS_32 reloc
7133 but for endianness. */
7134 {
7135 bfd_vma sign_bits;
7136 bfd_vma low_bits;
7137 bfd_vma high_bits;
7138
7139 if (addend & ((bfd_vma) 1 << 31))
7140 #ifdef BFD64
7141 sign_bits = ((bfd_vma) 1 << 32) - 1;
7142 #else
7143 sign_bits = -1;
7144 #endif
7145 else
7146 sign_bits = 0;
7147
7148 /* If we don't know that we have a 64-bit type,
7149 do two separate stores. */
7150 if (bfd_big_endian (input_bfd))
7151 {
7152 /* Store the sign-bits (which are most significant)
7153 first. */
7154 low_bits = sign_bits;
7155 high_bits = addend;
7156 }
7157 else
7158 {
7159 low_bits = addend;
7160 high_bits = sign_bits;
7161 }
7162 bfd_put_32 (input_bfd, low_bits,
7163 contents + rel->r_offset);
7164 bfd_put_32 (input_bfd, high_bits,
7165 contents + rel->r_offset + 4);
7166 continue;
7167 }
7168
7169 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7170 input_bfd, input_section,
7171 contents, FALSE))
7172 return FALSE;
7173 }
7174
7175 /* Go on to the next relocation. */
7176 continue;
7177 }
7178
7179 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7180 relocations for the same offset. In that case we are
7181 supposed to treat the output of each relocation as the addend
7182 for the next. */
7183 if (rel + 1 < relend
7184 && rel->r_offset == rel[1].r_offset
7185 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7186 use_saved_addend_p = TRUE;
7187 else
7188 use_saved_addend_p = FALSE;
7189
7190 /* Figure out what value we are supposed to relocate. */
7191 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7192 input_section, info, rel,
7193 addend, howto, local_syms,
7194 local_sections, &value,
7195 &name, &require_jalx,
7196 use_saved_addend_p))
7197 {
7198 case bfd_reloc_continue:
7199 /* There's nothing to do. */
7200 continue;
7201
7202 case bfd_reloc_undefined:
7203 /* mips_elf_calculate_relocation already called the
7204 undefined_symbol callback. There's no real point in
7205 trying to perform the relocation at this point, so we
7206 just skip ahead to the next relocation. */
7207 continue;
7208
7209 case bfd_reloc_notsupported:
7210 msg = _("internal error: unsupported relocation error");
7211 info->callbacks->warning
7212 (info, msg, name, input_bfd, input_section, rel->r_offset);
7213 return FALSE;
7214
7215 case bfd_reloc_overflow:
7216 if (use_saved_addend_p)
7217 /* Ignore overflow until we reach the last relocation for
7218 a given location. */
7219 ;
7220 else
7221 {
7222 BFD_ASSERT (name != NULL);
7223 if (! ((*info->callbacks->reloc_overflow)
7224 (info, NULL, name, howto->name, (bfd_vma) 0,
7225 input_bfd, input_section, rel->r_offset)))
7226 return FALSE;
7227 }
7228 break;
7229
7230 case bfd_reloc_ok:
7231 break;
7232
7233 default:
7234 abort ();
7235 break;
7236 }
7237
7238 /* If we've got another relocation for the address, keep going
7239 until we reach the last one. */
7240 if (use_saved_addend_p)
7241 {
7242 addend = value;
7243 continue;
7244 }
7245
7246 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7247 /* See the comment above about using R_MIPS_64 in the 32-bit
7248 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7249 that calculated the right value. Now, however, we
7250 sign-extend the 32-bit result to 64-bits, and store it as a
7251 64-bit value. We are especially generous here in that we
7252 go to extreme lengths to support this usage on systems with
7253 only a 32-bit VMA. */
7254 {
7255 bfd_vma sign_bits;
7256 bfd_vma low_bits;
7257 bfd_vma high_bits;
7258
7259 if (value & ((bfd_vma) 1 << 31))
7260 #ifdef BFD64
7261 sign_bits = ((bfd_vma) 1 << 32) - 1;
7262 #else
7263 sign_bits = -1;
7264 #endif
7265 else
7266 sign_bits = 0;
7267
7268 /* If we don't know that we have a 64-bit type,
7269 do two separate stores. */
7270 if (bfd_big_endian (input_bfd))
7271 {
7272 /* Undo what we did above. */
7273 rel->r_offset -= 4;
7274 /* Store the sign-bits (which are most significant)
7275 first. */
7276 low_bits = sign_bits;
7277 high_bits = value;
7278 }
7279 else
7280 {
7281 low_bits = value;
7282 high_bits = sign_bits;
7283 }
7284 bfd_put_32 (input_bfd, low_bits,
7285 contents + rel->r_offset);
7286 bfd_put_32 (input_bfd, high_bits,
7287 contents + rel->r_offset + 4);
7288 continue;
7289 }
7290
7291 /* Actually perform the relocation. */
7292 if (! mips_elf_perform_relocation (info, howto, rel, value,
7293 input_bfd, input_section,
7294 contents, require_jalx))
7295 return FALSE;
7296 }
7297
7298 return TRUE;
7299 }
7300 \f
7301 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7302 adjust it appropriately now. */
7303
7304 static void
7305 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7306 const char *name, Elf_Internal_Sym *sym)
7307 {
7308 /* The linker script takes care of providing names and values for
7309 these, but we must place them into the right sections. */
7310 static const char* const text_section_symbols[] = {
7311 "_ftext",
7312 "_etext",
7313 "__dso_displacement",
7314 "__elf_header",
7315 "__program_header_table",
7316 NULL
7317 };
7318
7319 static const char* const data_section_symbols[] = {
7320 "_fdata",
7321 "_edata",
7322 "_end",
7323 "_fbss",
7324 NULL
7325 };
7326
7327 const char* const *p;
7328 int i;
7329
7330 for (i = 0; i < 2; ++i)
7331 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7332 *p;
7333 ++p)
7334 if (strcmp (*p, name) == 0)
7335 {
7336 /* All of these symbols are given type STT_SECTION by the
7337 IRIX6 linker. */
7338 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7339 sym->st_other = STO_PROTECTED;
7340
7341 /* The IRIX linker puts these symbols in special sections. */
7342 if (i == 0)
7343 sym->st_shndx = SHN_MIPS_TEXT;
7344 else
7345 sym->st_shndx = SHN_MIPS_DATA;
7346
7347 break;
7348 }
7349 }
7350
7351 /* Finish up dynamic symbol handling. We set the contents of various
7352 dynamic sections here. */
7353
7354 bfd_boolean
7355 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
7356 struct bfd_link_info *info,
7357 struct elf_link_hash_entry *h,
7358 Elf_Internal_Sym *sym)
7359 {
7360 bfd *dynobj;
7361 asection *sgot;
7362 struct mips_got_info *g, *gg;
7363 const char *name;
7364
7365 dynobj = elf_hash_table (info)->dynobj;
7366
7367 if (h->plt.offset != MINUS_ONE)
7368 {
7369 asection *s;
7370 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
7371
7372 /* This symbol has a stub. Set it up. */
7373
7374 BFD_ASSERT (h->dynindx != -1);
7375
7376 s = bfd_get_section_by_name (dynobj,
7377 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7378 BFD_ASSERT (s != NULL);
7379
7380 /* FIXME: Can h->dynindx be more than 64K? */
7381 if (h->dynindx & 0xffff0000)
7382 return FALSE;
7383
7384 /* Fill the stub. */
7385 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
7386 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
7387 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
7388 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
7389
7390 BFD_ASSERT (h->plt.offset <= s->size);
7391 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
7392
7393 /* Mark the symbol as undefined. plt.offset != -1 occurs
7394 only for the referenced symbol. */
7395 sym->st_shndx = SHN_UNDEF;
7396
7397 /* The run-time linker uses the st_value field of the symbol
7398 to reset the global offset table entry for this external
7399 to its stub address when unlinking a shared object. */
7400 sym->st_value = (s->output_section->vma + s->output_offset
7401 + h->plt.offset);
7402 }
7403
7404 BFD_ASSERT (h->dynindx != -1
7405 || h->forced_local);
7406
7407 sgot = mips_elf_got_section (dynobj, FALSE);
7408 BFD_ASSERT (sgot != NULL);
7409 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
7410 g = mips_elf_section_data (sgot)->u.got_info;
7411 BFD_ASSERT (g != NULL);
7412
7413 /* Run through the global symbol table, creating GOT entries for all
7414 the symbols that need them. */
7415 if (g->global_gotsym != NULL
7416 && h->dynindx >= g->global_gotsym->dynindx)
7417 {
7418 bfd_vma offset;
7419 bfd_vma value;
7420
7421 value = sym->st_value;
7422 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
7423 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
7424 }
7425
7426 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
7427 {
7428 struct mips_got_entry e, *p;
7429 bfd_vma entry;
7430 bfd_vma offset;
7431
7432 gg = g;
7433
7434 e.abfd = output_bfd;
7435 e.symndx = -1;
7436 e.d.h = (struct mips_elf_link_hash_entry *)h;
7437 e.tls_type = 0;
7438
7439 for (g = g->next; g->next != gg; g = g->next)
7440 {
7441 if (g->got_entries
7442 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
7443 &e)))
7444 {
7445 offset = p->gotidx;
7446 if (info->shared
7447 || (elf_hash_table (info)->dynamic_sections_created
7448 && p->d.h != NULL
7449 && p->d.h->root.def_dynamic
7450 && !p->d.h->root.def_regular))
7451 {
7452 /* Create an R_MIPS_REL32 relocation for this entry. Due to
7453 the various compatibility problems, it's easier to mock
7454 up an R_MIPS_32 or R_MIPS_64 relocation and leave
7455 mips_elf_create_dynamic_relocation to calculate the
7456 appropriate addend. */
7457 Elf_Internal_Rela rel[3];
7458
7459 memset (rel, 0, sizeof (rel));
7460 if (ABI_64_P (output_bfd))
7461 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
7462 else
7463 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
7464 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
7465
7466 entry = 0;
7467 if (! (mips_elf_create_dynamic_relocation
7468 (output_bfd, info, rel,
7469 e.d.h, NULL, sym->st_value, &entry, sgot)))
7470 return FALSE;
7471 }
7472 else
7473 entry = sym->st_value;
7474 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
7475 }
7476 }
7477 }
7478
7479 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
7480 name = h->root.root.string;
7481 if (strcmp (name, "_DYNAMIC") == 0
7482 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
7483 sym->st_shndx = SHN_ABS;
7484 else if (strcmp (name, "_DYNAMIC_LINK") == 0
7485 || strcmp (name, "_DYNAMIC_LINKING") == 0)
7486 {
7487 sym->st_shndx = SHN_ABS;
7488 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7489 sym->st_value = 1;
7490 }
7491 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
7492 {
7493 sym->st_shndx = SHN_ABS;
7494 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7495 sym->st_value = elf_gp (output_bfd);
7496 }
7497 else if (SGI_COMPAT (output_bfd))
7498 {
7499 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
7500 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
7501 {
7502 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7503 sym->st_other = STO_PROTECTED;
7504 sym->st_value = 0;
7505 sym->st_shndx = SHN_MIPS_DATA;
7506 }
7507 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
7508 {
7509 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7510 sym->st_other = STO_PROTECTED;
7511 sym->st_value = mips_elf_hash_table (info)->procedure_count;
7512 sym->st_shndx = SHN_ABS;
7513 }
7514 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
7515 {
7516 if (h->type == STT_FUNC)
7517 sym->st_shndx = SHN_MIPS_TEXT;
7518 else if (h->type == STT_OBJECT)
7519 sym->st_shndx = SHN_MIPS_DATA;
7520 }
7521 }
7522
7523 /* Handle the IRIX6-specific symbols. */
7524 if (IRIX_COMPAT (output_bfd) == ict_irix6)
7525 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
7526
7527 if (! info->shared)
7528 {
7529 if (! mips_elf_hash_table (info)->use_rld_obj_head
7530 && (strcmp (name, "__rld_map") == 0
7531 || strcmp (name, "__RLD_MAP") == 0))
7532 {
7533 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
7534 BFD_ASSERT (s != NULL);
7535 sym->st_value = s->output_section->vma + s->output_offset;
7536 bfd_put_32 (output_bfd, 0, s->contents);
7537 if (mips_elf_hash_table (info)->rld_value == 0)
7538 mips_elf_hash_table (info)->rld_value = sym->st_value;
7539 }
7540 else if (mips_elf_hash_table (info)->use_rld_obj_head
7541 && strcmp (name, "__rld_obj_head") == 0)
7542 {
7543 /* IRIX6 does not use a .rld_map section. */
7544 if (IRIX_COMPAT (output_bfd) == ict_irix5
7545 || IRIX_COMPAT (output_bfd) == ict_none)
7546 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
7547 != NULL);
7548 mips_elf_hash_table (info)->rld_value = sym->st_value;
7549 }
7550 }
7551
7552 /* If this is a mips16 symbol, force the value to be even. */
7553 if (sym->st_other == STO_MIPS16)
7554 sym->st_value &= ~1;
7555
7556 return TRUE;
7557 }
7558
7559 /* Finish up the dynamic sections. */
7560
7561 bfd_boolean
7562 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
7563 struct bfd_link_info *info)
7564 {
7565 bfd *dynobj;
7566 asection *sdyn;
7567 asection *sgot;
7568 struct mips_got_info *gg, *g;
7569
7570 dynobj = elf_hash_table (info)->dynobj;
7571
7572 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
7573
7574 sgot = mips_elf_got_section (dynobj, FALSE);
7575 if (sgot == NULL)
7576 gg = g = NULL;
7577 else
7578 {
7579 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
7580 gg = mips_elf_section_data (sgot)->u.got_info;
7581 BFD_ASSERT (gg != NULL);
7582 g = mips_elf_got_for_ibfd (gg, output_bfd);
7583 BFD_ASSERT (g != NULL);
7584 }
7585
7586 if (elf_hash_table (info)->dynamic_sections_created)
7587 {
7588 bfd_byte *b;
7589
7590 BFD_ASSERT (sdyn != NULL);
7591 BFD_ASSERT (g != NULL);
7592
7593 for (b = sdyn->contents;
7594 b < sdyn->contents + sdyn->size;
7595 b += MIPS_ELF_DYN_SIZE (dynobj))
7596 {
7597 Elf_Internal_Dyn dyn;
7598 const char *name;
7599 size_t elemsize;
7600 asection *s;
7601 bfd_boolean swap_out_p;
7602
7603 /* Read in the current dynamic entry. */
7604 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7605
7606 /* Assume that we're going to modify it and write it out. */
7607 swap_out_p = TRUE;
7608
7609 switch (dyn.d_tag)
7610 {
7611 case DT_RELENT:
7612 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7613 BFD_ASSERT (s != NULL);
7614 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
7615 break;
7616
7617 case DT_STRSZ:
7618 /* Rewrite DT_STRSZ. */
7619 dyn.d_un.d_val =
7620 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7621 break;
7622
7623 case DT_PLTGOT:
7624 name = ".got";
7625 s = bfd_get_section_by_name (output_bfd, name);
7626 BFD_ASSERT (s != NULL);
7627 dyn.d_un.d_ptr = s->vma;
7628 break;
7629
7630 case DT_MIPS_RLD_VERSION:
7631 dyn.d_un.d_val = 1; /* XXX */
7632 break;
7633
7634 case DT_MIPS_FLAGS:
7635 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
7636 break;
7637
7638 case DT_MIPS_TIME_STAMP:
7639 {
7640 time_t t;
7641 time (&t);
7642 dyn.d_un.d_val = t;
7643 }
7644 break;
7645
7646 case DT_MIPS_ICHECKSUM:
7647 /* XXX FIXME: */
7648 swap_out_p = FALSE;
7649 break;
7650
7651 case DT_MIPS_IVERSION:
7652 /* XXX FIXME: */
7653 swap_out_p = FALSE;
7654 break;
7655
7656 case DT_MIPS_BASE_ADDRESS:
7657 s = output_bfd->sections;
7658 BFD_ASSERT (s != NULL);
7659 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7660 break;
7661
7662 case DT_MIPS_LOCAL_GOTNO:
7663 dyn.d_un.d_val = g->local_gotno;
7664 break;
7665
7666 case DT_MIPS_UNREFEXTNO:
7667 /* The index into the dynamic symbol table which is the
7668 entry of the first external symbol that is not
7669 referenced within the same object. */
7670 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7671 break;
7672
7673 case DT_MIPS_GOTSYM:
7674 if (gg->global_gotsym)
7675 {
7676 dyn.d_un.d_val = gg->global_gotsym->dynindx;
7677 break;
7678 }
7679 /* In case if we don't have global got symbols we default
7680 to setting DT_MIPS_GOTSYM to the same value as
7681 DT_MIPS_SYMTABNO, so we just fall through. */
7682
7683 case DT_MIPS_SYMTABNO:
7684 name = ".dynsym";
7685 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7686 s = bfd_get_section_by_name (output_bfd, name);
7687 BFD_ASSERT (s != NULL);
7688
7689 dyn.d_un.d_val = s->size / elemsize;
7690 break;
7691
7692 case DT_MIPS_HIPAGENO:
7693 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7694 break;
7695
7696 case DT_MIPS_RLD_MAP:
7697 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7698 break;
7699
7700 case DT_MIPS_OPTIONS:
7701 s = (bfd_get_section_by_name
7702 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7703 dyn.d_un.d_ptr = s->vma;
7704 break;
7705
7706 default:
7707 swap_out_p = FALSE;
7708 break;
7709 }
7710
7711 if (swap_out_p)
7712 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7713 (dynobj, &dyn, b);
7714 }
7715 }
7716
7717 /* The first entry of the global offset table will be filled at
7718 runtime. The second entry will be used by some runtime loaders.
7719 This isn't the case of IRIX rld. */
7720 if (sgot != NULL && sgot->size > 0)
7721 {
7722 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
7723 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
7724 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7725 }
7726
7727 if (sgot != NULL)
7728 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7729 = MIPS_ELF_GOT_SIZE (output_bfd);
7730
7731 /* Generate dynamic relocations for the non-primary gots. */
7732 if (gg != NULL && gg->next)
7733 {
7734 Elf_Internal_Rela rel[3];
7735 bfd_vma addend = 0;
7736
7737 memset (rel, 0, sizeof (rel));
7738 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7739
7740 for (g = gg->next; g->next != gg; g = g->next)
7741 {
7742 bfd_vma index = g->next->local_gotno + g->next->global_gotno
7743 + g->next->tls_gotno;
7744
7745 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
7746 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7747 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
7748 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7749
7750 if (! info->shared)
7751 continue;
7752
7753 while (index < g->assigned_gotno)
7754 {
7755 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7756 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7757 if (!(mips_elf_create_dynamic_relocation
7758 (output_bfd, info, rel, NULL,
7759 bfd_abs_section_ptr,
7760 0, &addend, sgot)))
7761 return FALSE;
7762 BFD_ASSERT (addend == 0);
7763 }
7764 }
7765 }
7766
7767 /* The generation of dynamic relocations for the non-primary gots
7768 adds more dynamic relocations. We cannot count them until
7769 here. */
7770
7771 if (elf_hash_table (info)->dynamic_sections_created)
7772 {
7773 bfd_byte *b;
7774 bfd_boolean swap_out_p;
7775
7776 BFD_ASSERT (sdyn != NULL);
7777
7778 for (b = sdyn->contents;
7779 b < sdyn->contents + sdyn->size;
7780 b += MIPS_ELF_DYN_SIZE (dynobj))
7781 {
7782 Elf_Internal_Dyn dyn;
7783 asection *s;
7784
7785 /* Read in the current dynamic entry. */
7786 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7787
7788 /* Assume that we're going to modify it and write it out. */
7789 swap_out_p = TRUE;
7790
7791 switch (dyn.d_tag)
7792 {
7793 case DT_RELSZ:
7794 /* Reduce DT_RELSZ to account for any relocations we
7795 decided not to make. This is for the n64 irix rld,
7796 which doesn't seem to apply any relocations if there
7797 are trailing null entries. */
7798 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7799 dyn.d_un.d_val = (s->reloc_count
7800 * (ABI_64_P (output_bfd)
7801 ? sizeof (Elf64_Mips_External_Rel)
7802 : sizeof (Elf32_External_Rel)));
7803 break;
7804
7805 default:
7806 swap_out_p = FALSE;
7807 break;
7808 }
7809
7810 if (swap_out_p)
7811 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7812 (dynobj, &dyn, b);
7813 }
7814 }
7815
7816 {
7817 asection *s;
7818 Elf32_compact_rel cpt;
7819
7820 if (SGI_COMPAT (output_bfd))
7821 {
7822 /* Write .compact_rel section out. */
7823 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7824 if (s != NULL)
7825 {
7826 cpt.id1 = 1;
7827 cpt.num = s->reloc_count;
7828 cpt.id2 = 2;
7829 cpt.offset = (s->output_section->filepos
7830 + sizeof (Elf32_External_compact_rel));
7831 cpt.reserved0 = 0;
7832 cpt.reserved1 = 0;
7833 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7834 ((Elf32_External_compact_rel *)
7835 s->contents));
7836
7837 /* Clean up a dummy stub function entry in .text. */
7838 s = bfd_get_section_by_name (dynobj,
7839 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7840 if (s != NULL)
7841 {
7842 file_ptr dummy_offset;
7843
7844 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7845 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
7846 memset (s->contents + dummy_offset, 0,
7847 MIPS_FUNCTION_STUB_SIZE);
7848 }
7849 }
7850 }
7851
7852 /* We need to sort the entries of the dynamic relocation section. */
7853
7854 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7855
7856 if (s != NULL
7857 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7858 {
7859 reldyn_sorting_bfd = output_bfd;
7860
7861 if (ABI_64_P (output_bfd))
7862 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7863 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7864 else
7865 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7866 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7867 }
7868 }
7869
7870 return TRUE;
7871 }
7872
7873
7874 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7875
7876 static void
7877 mips_set_isa_flags (bfd *abfd)
7878 {
7879 flagword val;
7880
7881 switch (bfd_get_mach (abfd))
7882 {
7883 default:
7884 case bfd_mach_mips3000:
7885 val = E_MIPS_ARCH_1;
7886 break;
7887
7888 case bfd_mach_mips3900:
7889 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7890 break;
7891
7892 case bfd_mach_mips6000:
7893 val = E_MIPS_ARCH_2;
7894 break;
7895
7896 case bfd_mach_mips4000:
7897 case bfd_mach_mips4300:
7898 case bfd_mach_mips4400:
7899 case bfd_mach_mips4600:
7900 val = E_MIPS_ARCH_3;
7901 break;
7902
7903 case bfd_mach_mips4010:
7904 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7905 break;
7906
7907 case bfd_mach_mips4100:
7908 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7909 break;
7910
7911 case bfd_mach_mips4111:
7912 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7913 break;
7914
7915 case bfd_mach_mips4120:
7916 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7917 break;
7918
7919 case bfd_mach_mips4650:
7920 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7921 break;
7922
7923 case bfd_mach_mips5400:
7924 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7925 break;
7926
7927 case bfd_mach_mips5500:
7928 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7929 break;
7930
7931 case bfd_mach_mips9000:
7932 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7933 break;
7934
7935 case bfd_mach_mips5000:
7936 case bfd_mach_mips7000:
7937 case bfd_mach_mips8000:
7938 case bfd_mach_mips10000:
7939 case bfd_mach_mips12000:
7940 val = E_MIPS_ARCH_4;
7941 break;
7942
7943 case bfd_mach_mips5:
7944 val = E_MIPS_ARCH_5;
7945 break;
7946
7947 case bfd_mach_mips_sb1:
7948 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7949 break;
7950
7951 case bfd_mach_mipsisa32:
7952 val = E_MIPS_ARCH_32;
7953 break;
7954
7955 case bfd_mach_mipsisa64:
7956 val = E_MIPS_ARCH_64;
7957 break;
7958
7959 case bfd_mach_mipsisa32r2:
7960 val = E_MIPS_ARCH_32R2;
7961 break;
7962
7963 case bfd_mach_mipsisa64r2:
7964 val = E_MIPS_ARCH_64R2;
7965 break;
7966 }
7967 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7968 elf_elfheader (abfd)->e_flags |= val;
7969
7970 }
7971
7972
7973 /* The final processing done just before writing out a MIPS ELF object
7974 file. This gets the MIPS architecture right based on the machine
7975 number. This is used by both the 32-bit and the 64-bit ABI. */
7976
7977 void
7978 _bfd_mips_elf_final_write_processing (bfd *abfd,
7979 bfd_boolean linker ATTRIBUTE_UNUSED)
7980 {
7981 unsigned int i;
7982 Elf_Internal_Shdr **hdrpp;
7983 const char *name;
7984 asection *sec;
7985
7986 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7987 is nonzero. This is for compatibility with old objects, which used
7988 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7989 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7990 mips_set_isa_flags (abfd);
7991
7992 /* Set the sh_info field for .gptab sections and other appropriate
7993 info for each special section. */
7994 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7995 i < elf_numsections (abfd);
7996 i++, hdrpp++)
7997 {
7998 switch ((*hdrpp)->sh_type)
7999 {
8000 case SHT_MIPS_MSYM:
8001 case SHT_MIPS_LIBLIST:
8002 sec = bfd_get_section_by_name (abfd, ".dynstr");
8003 if (sec != NULL)
8004 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8005 break;
8006
8007 case SHT_MIPS_GPTAB:
8008 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8009 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8010 BFD_ASSERT (name != NULL
8011 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
8012 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
8013 BFD_ASSERT (sec != NULL);
8014 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8015 break;
8016
8017 case SHT_MIPS_CONTENT:
8018 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8019 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8020 BFD_ASSERT (name != NULL
8021 && strncmp (name, ".MIPS.content",
8022 sizeof ".MIPS.content" - 1) == 0);
8023 sec = bfd_get_section_by_name (abfd,
8024 name + sizeof ".MIPS.content" - 1);
8025 BFD_ASSERT (sec != NULL);
8026 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8027 break;
8028
8029 case SHT_MIPS_SYMBOL_LIB:
8030 sec = bfd_get_section_by_name (abfd, ".dynsym");
8031 if (sec != NULL)
8032 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8033 sec = bfd_get_section_by_name (abfd, ".liblist");
8034 if (sec != NULL)
8035 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8036 break;
8037
8038 case SHT_MIPS_EVENTS:
8039 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8040 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8041 BFD_ASSERT (name != NULL);
8042 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
8043 sec = bfd_get_section_by_name (abfd,
8044 name + sizeof ".MIPS.events" - 1);
8045 else
8046 {
8047 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
8048 sizeof ".MIPS.post_rel" - 1) == 0);
8049 sec = bfd_get_section_by_name (abfd,
8050 (name
8051 + sizeof ".MIPS.post_rel" - 1));
8052 }
8053 BFD_ASSERT (sec != NULL);
8054 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8055 break;
8056
8057 }
8058 }
8059 }
8060 \f
8061 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
8062 segments. */
8063
8064 int
8065 _bfd_mips_elf_additional_program_headers (bfd *abfd)
8066 {
8067 asection *s;
8068 int ret = 0;
8069
8070 /* See if we need a PT_MIPS_REGINFO segment. */
8071 s = bfd_get_section_by_name (abfd, ".reginfo");
8072 if (s && (s->flags & SEC_LOAD))
8073 ++ret;
8074
8075 /* See if we need a PT_MIPS_OPTIONS segment. */
8076 if (IRIX_COMPAT (abfd) == ict_irix6
8077 && bfd_get_section_by_name (abfd,
8078 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
8079 ++ret;
8080
8081 /* See if we need a PT_MIPS_RTPROC segment. */
8082 if (IRIX_COMPAT (abfd) == ict_irix5
8083 && bfd_get_section_by_name (abfd, ".dynamic")
8084 && bfd_get_section_by_name (abfd, ".mdebug"))
8085 ++ret;
8086
8087 return ret;
8088 }
8089
8090 /* Modify the segment map for an IRIX5 executable. */
8091
8092 bfd_boolean
8093 _bfd_mips_elf_modify_segment_map (bfd *abfd,
8094 struct bfd_link_info *info ATTRIBUTE_UNUSED)
8095 {
8096 asection *s;
8097 struct elf_segment_map *m, **pm;
8098 bfd_size_type amt;
8099
8100 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
8101 segment. */
8102 s = bfd_get_section_by_name (abfd, ".reginfo");
8103 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8104 {
8105 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8106 if (m->p_type == PT_MIPS_REGINFO)
8107 break;
8108 if (m == NULL)
8109 {
8110 amt = sizeof *m;
8111 m = bfd_zalloc (abfd, amt);
8112 if (m == NULL)
8113 return FALSE;
8114
8115 m->p_type = PT_MIPS_REGINFO;
8116 m->count = 1;
8117 m->sections[0] = s;
8118
8119 /* We want to put it after the PHDR and INTERP segments. */
8120 pm = &elf_tdata (abfd)->segment_map;
8121 while (*pm != NULL
8122 && ((*pm)->p_type == PT_PHDR
8123 || (*pm)->p_type == PT_INTERP))
8124 pm = &(*pm)->next;
8125
8126 m->next = *pm;
8127 *pm = m;
8128 }
8129 }
8130
8131 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
8132 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
8133 PT_MIPS_OPTIONS segment immediately following the program header
8134 table. */
8135 if (NEWABI_P (abfd)
8136 /* On non-IRIX6 new abi, we'll have already created a segment
8137 for this section, so don't create another. I'm not sure this
8138 is not also the case for IRIX 6, but I can't test it right
8139 now. */
8140 && IRIX_COMPAT (abfd) == ict_irix6)
8141 {
8142 for (s = abfd->sections; s; s = s->next)
8143 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
8144 break;
8145
8146 if (s)
8147 {
8148 struct elf_segment_map *options_segment;
8149
8150 pm = &elf_tdata (abfd)->segment_map;
8151 while (*pm != NULL
8152 && ((*pm)->p_type == PT_PHDR
8153 || (*pm)->p_type == PT_INTERP))
8154 pm = &(*pm)->next;
8155
8156 amt = sizeof (struct elf_segment_map);
8157 options_segment = bfd_zalloc (abfd, amt);
8158 options_segment->next = *pm;
8159 options_segment->p_type = PT_MIPS_OPTIONS;
8160 options_segment->p_flags = PF_R;
8161 options_segment->p_flags_valid = TRUE;
8162 options_segment->count = 1;
8163 options_segment->sections[0] = s;
8164 *pm = options_segment;
8165 }
8166 }
8167 else
8168 {
8169 if (IRIX_COMPAT (abfd) == ict_irix5)
8170 {
8171 /* If there are .dynamic and .mdebug sections, we make a room
8172 for the RTPROC header. FIXME: Rewrite without section names. */
8173 if (bfd_get_section_by_name (abfd, ".interp") == NULL
8174 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
8175 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
8176 {
8177 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8178 if (m->p_type == PT_MIPS_RTPROC)
8179 break;
8180 if (m == NULL)
8181 {
8182 amt = sizeof *m;
8183 m = bfd_zalloc (abfd, amt);
8184 if (m == NULL)
8185 return FALSE;
8186
8187 m->p_type = PT_MIPS_RTPROC;
8188
8189 s = bfd_get_section_by_name (abfd, ".rtproc");
8190 if (s == NULL)
8191 {
8192 m->count = 0;
8193 m->p_flags = 0;
8194 m->p_flags_valid = 1;
8195 }
8196 else
8197 {
8198 m->count = 1;
8199 m->sections[0] = s;
8200 }
8201
8202 /* We want to put it after the DYNAMIC segment. */
8203 pm = &elf_tdata (abfd)->segment_map;
8204 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
8205 pm = &(*pm)->next;
8206 if (*pm != NULL)
8207 pm = &(*pm)->next;
8208
8209 m->next = *pm;
8210 *pm = m;
8211 }
8212 }
8213 }
8214 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
8215 .dynstr, .dynsym, and .hash sections, and everything in
8216 between. */
8217 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
8218 pm = &(*pm)->next)
8219 if ((*pm)->p_type == PT_DYNAMIC)
8220 break;
8221 m = *pm;
8222 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
8223 {
8224 /* For a normal mips executable the permissions for the PT_DYNAMIC
8225 segment are read, write and execute. We do that here since
8226 the code in elf.c sets only the read permission. This matters
8227 sometimes for the dynamic linker. */
8228 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
8229 {
8230 m->p_flags = PF_R | PF_W | PF_X;
8231 m->p_flags_valid = 1;
8232 }
8233 }
8234 if (m != NULL
8235 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
8236 {
8237 static const char *sec_names[] =
8238 {
8239 ".dynamic", ".dynstr", ".dynsym", ".hash"
8240 };
8241 bfd_vma low, high;
8242 unsigned int i, c;
8243 struct elf_segment_map *n;
8244
8245 low = ~(bfd_vma) 0;
8246 high = 0;
8247 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
8248 {
8249 s = bfd_get_section_by_name (abfd, sec_names[i]);
8250 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8251 {
8252 bfd_size_type sz;
8253
8254 if (low > s->vma)
8255 low = s->vma;
8256 sz = s->size;
8257 if (high < s->vma + sz)
8258 high = s->vma + sz;
8259 }
8260 }
8261
8262 c = 0;
8263 for (s = abfd->sections; s != NULL; s = s->next)
8264 if ((s->flags & SEC_LOAD) != 0
8265 && s->vma >= low
8266 && s->vma + s->size <= high)
8267 ++c;
8268
8269 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
8270 n = bfd_zalloc (abfd, amt);
8271 if (n == NULL)
8272 return FALSE;
8273 *n = *m;
8274 n->count = c;
8275
8276 i = 0;
8277 for (s = abfd->sections; s != NULL; s = s->next)
8278 {
8279 if ((s->flags & SEC_LOAD) != 0
8280 && s->vma >= low
8281 && s->vma + s->size <= high)
8282 {
8283 n->sections[i] = s;
8284 ++i;
8285 }
8286 }
8287
8288 *pm = n;
8289 }
8290 }
8291
8292 return TRUE;
8293 }
8294 \f
8295 /* Return the section that should be marked against GC for a given
8296 relocation. */
8297
8298 asection *
8299 _bfd_mips_elf_gc_mark_hook (asection *sec,
8300 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8301 Elf_Internal_Rela *rel,
8302 struct elf_link_hash_entry *h,
8303 Elf_Internal_Sym *sym)
8304 {
8305 /* ??? Do mips16 stub sections need to be handled special? */
8306
8307 if (h != NULL)
8308 {
8309 switch (ELF_R_TYPE (sec->owner, rel->r_info))
8310 {
8311 case R_MIPS_GNU_VTINHERIT:
8312 case R_MIPS_GNU_VTENTRY:
8313 break;
8314
8315 default:
8316 switch (h->root.type)
8317 {
8318 case bfd_link_hash_defined:
8319 case bfd_link_hash_defweak:
8320 return h->root.u.def.section;
8321
8322 case bfd_link_hash_common:
8323 return h->root.u.c.p->section;
8324
8325 default:
8326 break;
8327 }
8328 }
8329 }
8330 else
8331 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
8332
8333 return NULL;
8334 }
8335
8336 /* Update the got entry reference counts for the section being removed. */
8337
8338 bfd_boolean
8339 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
8340 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8341 asection *sec ATTRIBUTE_UNUSED,
8342 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
8343 {
8344 #if 0
8345 Elf_Internal_Shdr *symtab_hdr;
8346 struct elf_link_hash_entry **sym_hashes;
8347 bfd_signed_vma *local_got_refcounts;
8348 const Elf_Internal_Rela *rel, *relend;
8349 unsigned long r_symndx;
8350 struct elf_link_hash_entry *h;
8351
8352 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8353 sym_hashes = elf_sym_hashes (abfd);
8354 local_got_refcounts = elf_local_got_refcounts (abfd);
8355
8356 relend = relocs + sec->reloc_count;
8357 for (rel = relocs; rel < relend; rel++)
8358 switch (ELF_R_TYPE (abfd, rel->r_info))
8359 {
8360 case R_MIPS_GOT16:
8361 case R_MIPS_CALL16:
8362 case R_MIPS_CALL_HI16:
8363 case R_MIPS_CALL_LO16:
8364 case R_MIPS_GOT_HI16:
8365 case R_MIPS_GOT_LO16:
8366 case R_MIPS_GOT_DISP:
8367 case R_MIPS_GOT_PAGE:
8368 case R_MIPS_GOT_OFST:
8369 /* ??? It would seem that the existing MIPS code does no sort
8370 of reference counting or whatnot on its GOT and PLT entries,
8371 so it is not possible to garbage collect them at this time. */
8372 break;
8373
8374 default:
8375 break;
8376 }
8377 #endif
8378
8379 return TRUE;
8380 }
8381 \f
8382 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8383 hiding the old indirect symbol. Process additional relocation
8384 information. Also called for weakdefs, in which case we just let
8385 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8386
8387 void
8388 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
8389 struct elf_link_hash_entry *dir,
8390 struct elf_link_hash_entry *ind)
8391 {
8392 struct mips_elf_link_hash_entry *dirmips, *indmips;
8393
8394 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
8395
8396 if (ind->root.type != bfd_link_hash_indirect)
8397 return;
8398
8399 dirmips = (struct mips_elf_link_hash_entry *) dir;
8400 indmips = (struct mips_elf_link_hash_entry *) ind;
8401 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8402 if (indmips->readonly_reloc)
8403 dirmips->readonly_reloc = TRUE;
8404 if (indmips->no_fn_stub)
8405 dirmips->no_fn_stub = TRUE;
8406
8407 if (dirmips->tls_type == 0)
8408 dirmips->tls_type = indmips->tls_type;
8409 }
8410
8411 void
8412 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
8413 struct elf_link_hash_entry *entry,
8414 bfd_boolean force_local)
8415 {
8416 bfd *dynobj;
8417 asection *got;
8418 struct mips_got_info *g;
8419 struct mips_elf_link_hash_entry *h;
8420
8421 h = (struct mips_elf_link_hash_entry *) entry;
8422 if (h->forced_local)
8423 return;
8424 h->forced_local = force_local;
8425
8426 dynobj = elf_hash_table (info)->dynobj;
8427 if (dynobj != NULL && force_local && h->root.type != STT_TLS
8428 && (got = mips_elf_got_section (dynobj, FALSE)) != NULL
8429 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
8430 {
8431 if (g->next)
8432 {
8433 struct mips_got_entry e;
8434 struct mips_got_info *gg = g;
8435
8436 /* Since we're turning what used to be a global symbol into a
8437 local one, bump up the number of local entries of each GOT
8438 that had an entry for it. This will automatically decrease
8439 the number of global entries, since global_gotno is actually
8440 the upper limit of global entries. */
8441 e.abfd = dynobj;
8442 e.symndx = -1;
8443 e.d.h = h;
8444 e.tls_type = 0;
8445
8446 for (g = g->next; g != gg; g = g->next)
8447 if (htab_find (g->got_entries, &e))
8448 {
8449 BFD_ASSERT (g->global_gotno > 0);
8450 g->local_gotno++;
8451 g->global_gotno--;
8452 }
8453
8454 /* If this was a global symbol forced into the primary GOT, we
8455 no longer need an entry for it. We can't release the entry
8456 at this point, but we must at least stop counting it as one
8457 of the symbols that required a forced got entry. */
8458 if (h->root.got.offset == 2)
8459 {
8460 BFD_ASSERT (gg->assigned_gotno > 0);
8461 gg->assigned_gotno--;
8462 }
8463 }
8464 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
8465 /* If we haven't got through GOT allocation yet, just bump up the
8466 number of local entries, as this symbol won't be counted as
8467 global. */
8468 g->local_gotno++;
8469 else if (h->root.got.offset == 1)
8470 {
8471 /* If we're past non-multi-GOT allocation and this symbol had
8472 been marked for a global got entry, give it a local entry
8473 instead. */
8474 BFD_ASSERT (g->global_gotno > 0);
8475 g->local_gotno++;
8476 g->global_gotno--;
8477 }
8478 }
8479
8480 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
8481 }
8482 \f
8483 #define PDR_SIZE 32
8484
8485 bfd_boolean
8486 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
8487 struct bfd_link_info *info)
8488 {
8489 asection *o;
8490 bfd_boolean ret = FALSE;
8491 unsigned char *tdata;
8492 size_t i, skip;
8493
8494 o = bfd_get_section_by_name (abfd, ".pdr");
8495 if (! o)
8496 return FALSE;
8497 if (o->size == 0)
8498 return FALSE;
8499 if (o->size % PDR_SIZE != 0)
8500 return FALSE;
8501 if (o->output_section != NULL
8502 && bfd_is_abs_section (o->output_section))
8503 return FALSE;
8504
8505 tdata = bfd_zmalloc (o->size / PDR_SIZE);
8506 if (! tdata)
8507 return FALSE;
8508
8509 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8510 info->keep_memory);
8511 if (!cookie->rels)
8512 {
8513 free (tdata);
8514 return FALSE;
8515 }
8516
8517 cookie->rel = cookie->rels;
8518 cookie->relend = cookie->rels + o->reloc_count;
8519
8520 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
8521 {
8522 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
8523 {
8524 tdata[i] = 1;
8525 skip ++;
8526 }
8527 }
8528
8529 if (skip != 0)
8530 {
8531 mips_elf_section_data (o)->u.tdata = tdata;
8532 o->size -= skip * PDR_SIZE;
8533 ret = TRUE;
8534 }
8535 else
8536 free (tdata);
8537
8538 if (! info->keep_memory)
8539 free (cookie->rels);
8540
8541 return ret;
8542 }
8543
8544 bfd_boolean
8545 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
8546 {
8547 if (strcmp (sec->name, ".pdr") == 0)
8548 return TRUE;
8549 return FALSE;
8550 }
8551
8552 bfd_boolean
8553 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
8554 bfd_byte *contents)
8555 {
8556 bfd_byte *to, *from, *end;
8557 int i;
8558
8559 if (strcmp (sec->name, ".pdr") != 0)
8560 return FALSE;
8561
8562 if (mips_elf_section_data (sec)->u.tdata == NULL)
8563 return FALSE;
8564
8565 to = contents;
8566 end = contents + sec->size;
8567 for (from = contents, i = 0;
8568 from < end;
8569 from += PDR_SIZE, i++)
8570 {
8571 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
8572 continue;
8573 if (to != from)
8574 memcpy (to, from, PDR_SIZE);
8575 to += PDR_SIZE;
8576 }
8577 bfd_set_section_contents (output_bfd, sec->output_section, contents,
8578 sec->output_offset, sec->size);
8579 return TRUE;
8580 }
8581 \f
8582 /* MIPS ELF uses a special find_nearest_line routine in order the
8583 handle the ECOFF debugging information. */
8584
8585 struct mips_elf_find_line
8586 {
8587 struct ecoff_debug_info d;
8588 struct ecoff_find_line i;
8589 };
8590
8591 bfd_boolean
8592 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
8593 asymbol **symbols, bfd_vma offset,
8594 const char **filename_ptr,
8595 const char **functionname_ptr,
8596 unsigned int *line_ptr)
8597 {
8598 asection *msec;
8599
8600 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
8601 filename_ptr, functionname_ptr,
8602 line_ptr))
8603 return TRUE;
8604
8605 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
8606 filename_ptr, functionname_ptr,
8607 line_ptr, ABI_64_P (abfd) ? 8 : 0,
8608 &elf_tdata (abfd)->dwarf2_find_line_info))
8609 return TRUE;
8610
8611 msec = bfd_get_section_by_name (abfd, ".mdebug");
8612 if (msec != NULL)
8613 {
8614 flagword origflags;
8615 struct mips_elf_find_line *fi;
8616 const struct ecoff_debug_swap * const swap =
8617 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8618
8619 /* If we are called during a link, mips_elf_final_link may have
8620 cleared the SEC_HAS_CONTENTS field. We force it back on here
8621 if appropriate (which it normally will be). */
8622 origflags = msec->flags;
8623 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
8624 msec->flags |= SEC_HAS_CONTENTS;
8625
8626 fi = elf_tdata (abfd)->find_line_info;
8627 if (fi == NULL)
8628 {
8629 bfd_size_type external_fdr_size;
8630 char *fraw_src;
8631 char *fraw_end;
8632 struct fdr *fdr_ptr;
8633 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8634
8635 fi = bfd_zalloc (abfd, amt);
8636 if (fi == NULL)
8637 {
8638 msec->flags = origflags;
8639 return FALSE;
8640 }
8641
8642 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8643 {
8644 msec->flags = origflags;
8645 return FALSE;
8646 }
8647
8648 /* Swap in the FDR information. */
8649 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
8650 fi->d.fdr = bfd_alloc (abfd, amt);
8651 if (fi->d.fdr == NULL)
8652 {
8653 msec->flags = origflags;
8654 return FALSE;
8655 }
8656 external_fdr_size = swap->external_fdr_size;
8657 fdr_ptr = fi->d.fdr;
8658 fraw_src = (char *) fi->d.external_fdr;
8659 fraw_end = (fraw_src
8660 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8661 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
8662 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
8663
8664 elf_tdata (abfd)->find_line_info = fi;
8665
8666 /* Note that we don't bother to ever free this information.
8667 find_nearest_line is either called all the time, as in
8668 objdump -l, so the information should be saved, or it is
8669 rarely called, as in ld error messages, so the memory
8670 wasted is unimportant. Still, it would probably be a
8671 good idea for free_cached_info to throw it away. */
8672 }
8673
8674 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8675 &fi->i, filename_ptr, functionname_ptr,
8676 line_ptr))
8677 {
8678 msec->flags = origflags;
8679 return TRUE;
8680 }
8681
8682 msec->flags = origflags;
8683 }
8684
8685 /* Fall back on the generic ELF find_nearest_line routine. */
8686
8687 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8688 filename_ptr, functionname_ptr,
8689 line_ptr);
8690 }
8691
8692 bfd_boolean
8693 _bfd_mips_elf_find_inliner_info (bfd *abfd,
8694 const char **filename_ptr,
8695 const char **functionname_ptr,
8696 unsigned int *line_ptr)
8697 {
8698 bfd_boolean found;
8699 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8700 functionname_ptr, line_ptr,
8701 & elf_tdata (abfd)->dwarf2_find_line_info);
8702 return found;
8703 }
8704
8705 \f
8706 /* When are writing out the .options or .MIPS.options section,
8707 remember the bytes we are writing out, so that we can install the
8708 GP value in the section_processing routine. */
8709
8710 bfd_boolean
8711 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
8712 const void *location,
8713 file_ptr offset, bfd_size_type count)
8714 {
8715 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
8716 {
8717 bfd_byte *c;
8718
8719 if (elf_section_data (section) == NULL)
8720 {
8721 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8722 section->used_by_bfd = bfd_zalloc (abfd, amt);
8723 if (elf_section_data (section) == NULL)
8724 return FALSE;
8725 }
8726 c = mips_elf_section_data (section)->u.tdata;
8727 if (c == NULL)
8728 {
8729 c = bfd_zalloc (abfd, section->size);
8730 if (c == NULL)
8731 return FALSE;
8732 mips_elf_section_data (section)->u.tdata = c;
8733 }
8734
8735 memcpy (c + offset, location, count);
8736 }
8737
8738 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8739 count);
8740 }
8741
8742 /* This is almost identical to bfd_generic_get_... except that some
8743 MIPS relocations need to be handled specially. Sigh. */
8744
8745 bfd_byte *
8746 _bfd_elf_mips_get_relocated_section_contents
8747 (bfd *abfd,
8748 struct bfd_link_info *link_info,
8749 struct bfd_link_order *link_order,
8750 bfd_byte *data,
8751 bfd_boolean relocatable,
8752 asymbol **symbols)
8753 {
8754 /* Get enough memory to hold the stuff */
8755 bfd *input_bfd = link_order->u.indirect.section->owner;
8756 asection *input_section = link_order->u.indirect.section;
8757 bfd_size_type sz;
8758
8759 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8760 arelent **reloc_vector = NULL;
8761 long reloc_count;
8762
8763 if (reloc_size < 0)
8764 goto error_return;
8765
8766 reloc_vector = bfd_malloc (reloc_size);
8767 if (reloc_vector == NULL && reloc_size != 0)
8768 goto error_return;
8769
8770 /* read in the section */
8771 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
8772 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
8773 goto error_return;
8774
8775 reloc_count = bfd_canonicalize_reloc (input_bfd,
8776 input_section,
8777 reloc_vector,
8778 symbols);
8779 if (reloc_count < 0)
8780 goto error_return;
8781
8782 if (reloc_count > 0)
8783 {
8784 arelent **parent;
8785 /* for mips */
8786 int gp_found;
8787 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8788
8789 {
8790 struct bfd_hash_entry *h;
8791 struct bfd_link_hash_entry *lh;
8792 /* Skip all this stuff if we aren't mixing formats. */
8793 if (abfd && input_bfd
8794 && abfd->xvec == input_bfd->xvec)
8795 lh = 0;
8796 else
8797 {
8798 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
8799 lh = (struct bfd_link_hash_entry *) h;
8800 }
8801 lookup:
8802 if (lh)
8803 {
8804 switch (lh->type)
8805 {
8806 case bfd_link_hash_undefined:
8807 case bfd_link_hash_undefweak:
8808 case bfd_link_hash_common:
8809 gp_found = 0;
8810 break;
8811 case bfd_link_hash_defined:
8812 case bfd_link_hash_defweak:
8813 gp_found = 1;
8814 gp = lh->u.def.value;
8815 break;
8816 case bfd_link_hash_indirect:
8817 case bfd_link_hash_warning:
8818 lh = lh->u.i.link;
8819 /* @@FIXME ignoring warning for now */
8820 goto lookup;
8821 case bfd_link_hash_new:
8822 default:
8823 abort ();
8824 }
8825 }
8826 else
8827 gp_found = 0;
8828 }
8829 /* end mips */
8830 for (parent = reloc_vector; *parent != NULL; parent++)
8831 {
8832 char *error_message = NULL;
8833 bfd_reloc_status_type r;
8834
8835 /* Specific to MIPS: Deal with relocation types that require
8836 knowing the gp of the output bfd. */
8837 asymbol *sym = *(*parent)->sym_ptr_ptr;
8838
8839 /* If we've managed to find the gp and have a special
8840 function for the relocation then go ahead, else default
8841 to the generic handling. */
8842 if (gp_found
8843 && (*parent)->howto->special_function
8844 == _bfd_mips_elf32_gprel16_reloc)
8845 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8846 input_section, relocatable,
8847 data, gp);
8848 else
8849 r = bfd_perform_relocation (input_bfd, *parent, data,
8850 input_section,
8851 relocatable ? abfd : NULL,
8852 &error_message);
8853
8854 if (relocatable)
8855 {
8856 asection *os = input_section->output_section;
8857
8858 /* A partial link, so keep the relocs */
8859 os->orelocation[os->reloc_count] = *parent;
8860 os->reloc_count++;
8861 }
8862
8863 if (r != bfd_reloc_ok)
8864 {
8865 switch (r)
8866 {
8867 case bfd_reloc_undefined:
8868 if (!((*link_info->callbacks->undefined_symbol)
8869 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8870 input_bfd, input_section, (*parent)->address,
8871 TRUE)))
8872 goto error_return;
8873 break;
8874 case bfd_reloc_dangerous:
8875 BFD_ASSERT (error_message != NULL);
8876 if (!((*link_info->callbacks->reloc_dangerous)
8877 (link_info, error_message, input_bfd, input_section,
8878 (*parent)->address)))
8879 goto error_return;
8880 break;
8881 case bfd_reloc_overflow:
8882 if (!((*link_info->callbacks->reloc_overflow)
8883 (link_info, NULL,
8884 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8885 (*parent)->howto->name, (*parent)->addend,
8886 input_bfd, input_section, (*parent)->address)))
8887 goto error_return;
8888 break;
8889 case bfd_reloc_outofrange:
8890 default:
8891 abort ();
8892 break;
8893 }
8894
8895 }
8896 }
8897 }
8898 if (reloc_vector != NULL)
8899 free (reloc_vector);
8900 return data;
8901
8902 error_return:
8903 if (reloc_vector != NULL)
8904 free (reloc_vector);
8905 return NULL;
8906 }
8907 \f
8908 /* Create a MIPS ELF linker hash table. */
8909
8910 struct bfd_link_hash_table *
8911 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8912 {
8913 struct mips_elf_link_hash_table *ret;
8914 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8915
8916 ret = bfd_malloc (amt);
8917 if (ret == NULL)
8918 return NULL;
8919
8920 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8921 mips_elf_link_hash_newfunc))
8922 {
8923 free (ret);
8924 return NULL;
8925 }
8926
8927 #if 0
8928 /* We no longer use this. */
8929 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8930 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8931 #endif
8932 ret->procedure_count = 0;
8933 ret->compact_rel_size = 0;
8934 ret->use_rld_obj_head = FALSE;
8935 ret->rld_value = 0;
8936 ret->mips16_stubs_seen = FALSE;
8937
8938 return &ret->root.root;
8939 }
8940 \f
8941 /* We need to use a special link routine to handle the .reginfo and
8942 the .mdebug sections. We need to merge all instances of these
8943 sections together, not write them all out sequentially. */
8944
8945 bfd_boolean
8946 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8947 {
8948 asection *o;
8949 struct bfd_link_order *p;
8950 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8951 asection *rtproc_sec;
8952 Elf32_RegInfo reginfo;
8953 struct ecoff_debug_info debug;
8954 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8955 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
8956 HDRR *symhdr = &debug.symbolic_header;
8957 void *mdebug_handle = NULL;
8958 asection *s;
8959 EXTR esym;
8960 unsigned int i;
8961 bfd_size_type amt;
8962
8963 static const char * const secname[] =
8964 {
8965 ".text", ".init", ".fini", ".data",
8966 ".rodata", ".sdata", ".sbss", ".bss"
8967 };
8968 static const int sc[] =
8969 {
8970 scText, scInit, scFini, scData,
8971 scRData, scSData, scSBss, scBss
8972 };
8973
8974 /* We'd carefully arranged the dynamic symbol indices, and then the
8975 generic size_dynamic_sections renumbered them out from under us.
8976 Rather than trying somehow to prevent the renumbering, just do
8977 the sort again. */
8978 if (elf_hash_table (info)->dynamic_sections_created)
8979 {
8980 bfd *dynobj;
8981 asection *got;
8982 struct mips_got_info *g;
8983 bfd_size_type dynsecsymcount;
8984
8985 /* When we resort, we must tell mips_elf_sort_hash_table what
8986 the lowest index it may use is. That's the number of section
8987 symbols we're going to add. The generic ELF linker only
8988 adds these symbols when building a shared object. Note that
8989 we count the sections after (possibly) removing the .options
8990 section above. */
8991
8992 dynsecsymcount = 0;
8993 if (info->shared)
8994 {
8995 asection * p;
8996
8997 for (p = abfd->sections; p ; p = p->next)
8998 if ((p->flags & SEC_EXCLUDE) == 0
8999 && (p->flags & SEC_ALLOC) != 0
9000 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
9001 ++ dynsecsymcount;
9002 }
9003
9004 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
9005 return FALSE;
9006
9007 /* Make sure we didn't grow the global .got region. */
9008 dynobj = elf_hash_table (info)->dynobj;
9009 got = mips_elf_got_section (dynobj, FALSE);
9010 g = mips_elf_section_data (got)->u.got_info;
9011
9012 if (g->global_gotsym != NULL)
9013 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
9014 - g->global_gotsym->dynindx)
9015 <= g->global_gotno);
9016 }
9017
9018 /* Get a value for the GP register. */
9019 if (elf_gp (abfd) == 0)
9020 {
9021 struct bfd_link_hash_entry *h;
9022
9023 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9024 if (h != NULL && h->type == bfd_link_hash_defined)
9025 elf_gp (abfd) = (h->u.def.value
9026 + h->u.def.section->output_section->vma
9027 + h->u.def.section->output_offset);
9028 else if (info->relocatable)
9029 {
9030 bfd_vma lo = MINUS_ONE;
9031
9032 /* Find the GP-relative section with the lowest offset. */
9033 for (o = abfd->sections; o != NULL; o = o->next)
9034 if (o->vma < lo
9035 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
9036 lo = o->vma;
9037
9038 /* And calculate GP relative to that. */
9039 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
9040 }
9041 else
9042 {
9043 /* If the relocate_section function needs to do a reloc
9044 involving the GP value, it should make a reloc_dangerous
9045 callback to warn that GP is not defined. */
9046 }
9047 }
9048
9049 /* Go through the sections and collect the .reginfo and .mdebug
9050 information. */
9051 reginfo_sec = NULL;
9052 mdebug_sec = NULL;
9053 gptab_data_sec = NULL;
9054 gptab_bss_sec = NULL;
9055 for (o = abfd->sections; o != NULL; o = o->next)
9056 {
9057 if (strcmp (o->name, ".reginfo") == 0)
9058 {
9059 memset (&reginfo, 0, sizeof reginfo);
9060
9061 /* We have found the .reginfo section in the output file.
9062 Look through all the link_orders comprising it and merge
9063 the information together. */
9064 for (p = o->map_head.link_order; p != NULL; p = p->next)
9065 {
9066 asection *input_section;
9067 bfd *input_bfd;
9068 Elf32_External_RegInfo ext;
9069 Elf32_RegInfo sub;
9070
9071 if (p->type != bfd_indirect_link_order)
9072 {
9073 if (p->type == bfd_data_link_order)
9074 continue;
9075 abort ();
9076 }
9077
9078 input_section = p->u.indirect.section;
9079 input_bfd = input_section->owner;
9080
9081 if (! bfd_get_section_contents (input_bfd, input_section,
9082 &ext, 0, sizeof ext))
9083 return FALSE;
9084
9085 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
9086
9087 reginfo.ri_gprmask |= sub.ri_gprmask;
9088 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
9089 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
9090 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
9091 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
9092
9093 /* ri_gp_value is set by the function
9094 mips_elf32_section_processing when the section is
9095 finally written out. */
9096
9097 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9098 elf_link_input_bfd ignores this section. */
9099 input_section->flags &= ~SEC_HAS_CONTENTS;
9100 }
9101
9102 /* Size has been set in _bfd_mips_elf_always_size_sections. */
9103 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
9104
9105 /* Skip this section later on (I don't think this currently
9106 matters, but someday it might). */
9107 o->map_head.link_order = NULL;
9108
9109 reginfo_sec = o;
9110 }
9111
9112 if (strcmp (o->name, ".mdebug") == 0)
9113 {
9114 struct extsym_info einfo;
9115 bfd_vma last;
9116
9117 /* We have found the .mdebug section in the output file.
9118 Look through all the link_orders comprising it and merge
9119 the information together. */
9120 symhdr->magic = swap->sym_magic;
9121 /* FIXME: What should the version stamp be? */
9122 symhdr->vstamp = 0;
9123 symhdr->ilineMax = 0;
9124 symhdr->cbLine = 0;
9125 symhdr->idnMax = 0;
9126 symhdr->ipdMax = 0;
9127 symhdr->isymMax = 0;
9128 symhdr->ioptMax = 0;
9129 symhdr->iauxMax = 0;
9130 symhdr->issMax = 0;
9131 symhdr->issExtMax = 0;
9132 symhdr->ifdMax = 0;
9133 symhdr->crfd = 0;
9134 symhdr->iextMax = 0;
9135
9136 /* We accumulate the debugging information itself in the
9137 debug_info structure. */
9138 debug.line = NULL;
9139 debug.external_dnr = NULL;
9140 debug.external_pdr = NULL;
9141 debug.external_sym = NULL;
9142 debug.external_opt = NULL;
9143 debug.external_aux = NULL;
9144 debug.ss = NULL;
9145 debug.ssext = debug.ssext_end = NULL;
9146 debug.external_fdr = NULL;
9147 debug.external_rfd = NULL;
9148 debug.external_ext = debug.external_ext_end = NULL;
9149
9150 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9151 if (mdebug_handle == NULL)
9152 return FALSE;
9153
9154 esym.jmptbl = 0;
9155 esym.cobol_main = 0;
9156 esym.weakext = 0;
9157 esym.reserved = 0;
9158 esym.ifd = ifdNil;
9159 esym.asym.iss = issNil;
9160 esym.asym.st = stLocal;
9161 esym.asym.reserved = 0;
9162 esym.asym.index = indexNil;
9163 last = 0;
9164 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
9165 {
9166 esym.asym.sc = sc[i];
9167 s = bfd_get_section_by_name (abfd, secname[i]);
9168 if (s != NULL)
9169 {
9170 esym.asym.value = s->vma;
9171 last = s->vma + s->size;
9172 }
9173 else
9174 esym.asym.value = last;
9175 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
9176 secname[i], &esym))
9177 return FALSE;
9178 }
9179
9180 for (p = o->map_head.link_order; p != NULL; p = p->next)
9181 {
9182 asection *input_section;
9183 bfd *input_bfd;
9184 const struct ecoff_debug_swap *input_swap;
9185 struct ecoff_debug_info input_debug;
9186 char *eraw_src;
9187 char *eraw_end;
9188
9189 if (p->type != bfd_indirect_link_order)
9190 {
9191 if (p->type == bfd_data_link_order)
9192 continue;
9193 abort ();
9194 }
9195
9196 input_section = p->u.indirect.section;
9197 input_bfd = input_section->owner;
9198
9199 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
9200 || (get_elf_backend_data (input_bfd)
9201 ->elf_backend_ecoff_debug_swap) == NULL)
9202 {
9203 /* I don't know what a non MIPS ELF bfd would be
9204 doing with a .mdebug section, but I don't really
9205 want to deal with it. */
9206 continue;
9207 }
9208
9209 input_swap = (get_elf_backend_data (input_bfd)
9210 ->elf_backend_ecoff_debug_swap);
9211
9212 BFD_ASSERT (p->size == input_section->size);
9213
9214 /* The ECOFF linking code expects that we have already
9215 read in the debugging information and set up an
9216 ecoff_debug_info structure, so we do that now. */
9217 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
9218 &input_debug))
9219 return FALSE;
9220
9221 if (! (bfd_ecoff_debug_accumulate
9222 (mdebug_handle, abfd, &debug, swap, input_bfd,
9223 &input_debug, input_swap, info)))
9224 return FALSE;
9225
9226 /* Loop through the external symbols. For each one with
9227 interesting information, try to find the symbol in
9228 the linker global hash table and save the information
9229 for the output external symbols. */
9230 eraw_src = input_debug.external_ext;
9231 eraw_end = (eraw_src
9232 + (input_debug.symbolic_header.iextMax
9233 * input_swap->external_ext_size));
9234 for (;
9235 eraw_src < eraw_end;
9236 eraw_src += input_swap->external_ext_size)
9237 {
9238 EXTR ext;
9239 const char *name;
9240 struct mips_elf_link_hash_entry *h;
9241
9242 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
9243 if (ext.asym.sc == scNil
9244 || ext.asym.sc == scUndefined
9245 || ext.asym.sc == scSUndefined)
9246 continue;
9247
9248 name = input_debug.ssext + ext.asym.iss;
9249 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
9250 name, FALSE, FALSE, TRUE);
9251 if (h == NULL || h->esym.ifd != -2)
9252 continue;
9253
9254 if (ext.ifd != -1)
9255 {
9256 BFD_ASSERT (ext.ifd
9257 < input_debug.symbolic_header.ifdMax);
9258 ext.ifd = input_debug.ifdmap[ext.ifd];
9259 }
9260
9261 h->esym = ext;
9262 }
9263
9264 /* Free up the information we just read. */
9265 free (input_debug.line);
9266 free (input_debug.external_dnr);
9267 free (input_debug.external_pdr);
9268 free (input_debug.external_sym);
9269 free (input_debug.external_opt);
9270 free (input_debug.external_aux);
9271 free (input_debug.ss);
9272 free (input_debug.ssext);
9273 free (input_debug.external_fdr);
9274 free (input_debug.external_rfd);
9275 free (input_debug.external_ext);
9276
9277 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9278 elf_link_input_bfd ignores this section. */
9279 input_section->flags &= ~SEC_HAS_CONTENTS;
9280 }
9281
9282 if (SGI_COMPAT (abfd) && info->shared)
9283 {
9284 /* Create .rtproc section. */
9285 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9286 if (rtproc_sec == NULL)
9287 {
9288 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
9289 | SEC_LINKER_CREATED | SEC_READONLY);
9290
9291 rtproc_sec = bfd_make_section_with_flags (abfd,
9292 ".rtproc",
9293 flags);
9294 if (rtproc_sec == NULL
9295 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
9296 return FALSE;
9297 }
9298
9299 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
9300 info, rtproc_sec,
9301 &debug))
9302 return FALSE;
9303 }
9304
9305 /* Build the external symbol information. */
9306 einfo.abfd = abfd;
9307 einfo.info = info;
9308 einfo.debug = &debug;
9309 einfo.swap = swap;
9310 einfo.failed = FALSE;
9311 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9312 mips_elf_output_extsym, &einfo);
9313 if (einfo.failed)
9314 return FALSE;
9315
9316 /* Set the size of the .mdebug section. */
9317 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
9318
9319 /* Skip this section later on (I don't think this currently
9320 matters, but someday it might). */
9321 o->map_head.link_order = NULL;
9322
9323 mdebug_sec = o;
9324 }
9325
9326 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
9327 {
9328 const char *subname;
9329 unsigned int c;
9330 Elf32_gptab *tab;
9331 Elf32_External_gptab *ext_tab;
9332 unsigned int j;
9333
9334 /* The .gptab.sdata and .gptab.sbss sections hold
9335 information describing how the small data area would
9336 change depending upon the -G switch. These sections
9337 not used in executables files. */
9338 if (! info->relocatable)
9339 {
9340 for (p = o->map_head.link_order; p != NULL; p = p->next)
9341 {
9342 asection *input_section;
9343
9344 if (p->type != bfd_indirect_link_order)
9345 {
9346 if (p->type == bfd_data_link_order)
9347 continue;
9348 abort ();
9349 }
9350
9351 input_section = p->u.indirect.section;
9352
9353 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9354 elf_link_input_bfd ignores this section. */
9355 input_section->flags &= ~SEC_HAS_CONTENTS;
9356 }
9357
9358 /* Skip this section later on (I don't think this
9359 currently matters, but someday it might). */
9360 o->map_head.link_order = NULL;
9361
9362 /* Really remove the section. */
9363 bfd_section_list_remove (abfd, o);
9364 --abfd->section_count;
9365
9366 continue;
9367 }
9368
9369 /* There is one gptab for initialized data, and one for
9370 uninitialized data. */
9371 if (strcmp (o->name, ".gptab.sdata") == 0)
9372 gptab_data_sec = o;
9373 else if (strcmp (o->name, ".gptab.sbss") == 0)
9374 gptab_bss_sec = o;
9375 else
9376 {
9377 (*_bfd_error_handler)
9378 (_("%s: illegal section name `%s'"),
9379 bfd_get_filename (abfd), o->name);
9380 bfd_set_error (bfd_error_nonrepresentable_section);
9381 return FALSE;
9382 }
9383
9384 /* The linker script always combines .gptab.data and
9385 .gptab.sdata into .gptab.sdata, and likewise for
9386 .gptab.bss and .gptab.sbss. It is possible that there is
9387 no .sdata or .sbss section in the output file, in which
9388 case we must change the name of the output section. */
9389 subname = o->name + sizeof ".gptab" - 1;
9390 if (bfd_get_section_by_name (abfd, subname) == NULL)
9391 {
9392 if (o == gptab_data_sec)
9393 o->name = ".gptab.data";
9394 else
9395 o->name = ".gptab.bss";
9396 subname = o->name + sizeof ".gptab" - 1;
9397 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
9398 }
9399
9400 /* Set up the first entry. */
9401 c = 1;
9402 amt = c * sizeof (Elf32_gptab);
9403 tab = bfd_malloc (amt);
9404 if (tab == NULL)
9405 return FALSE;
9406 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
9407 tab[0].gt_header.gt_unused = 0;
9408
9409 /* Combine the input sections. */
9410 for (p = o->map_head.link_order; p != NULL; p = p->next)
9411 {
9412 asection *input_section;
9413 bfd *input_bfd;
9414 bfd_size_type size;
9415 unsigned long last;
9416 bfd_size_type gpentry;
9417
9418 if (p->type != bfd_indirect_link_order)
9419 {
9420 if (p->type == bfd_data_link_order)
9421 continue;
9422 abort ();
9423 }
9424
9425 input_section = p->u.indirect.section;
9426 input_bfd = input_section->owner;
9427
9428 /* Combine the gptab entries for this input section one
9429 by one. We know that the input gptab entries are
9430 sorted by ascending -G value. */
9431 size = input_section->size;
9432 last = 0;
9433 for (gpentry = sizeof (Elf32_External_gptab);
9434 gpentry < size;
9435 gpentry += sizeof (Elf32_External_gptab))
9436 {
9437 Elf32_External_gptab ext_gptab;
9438 Elf32_gptab int_gptab;
9439 unsigned long val;
9440 unsigned long add;
9441 bfd_boolean exact;
9442 unsigned int look;
9443
9444 if (! (bfd_get_section_contents
9445 (input_bfd, input_section, &ext_gptab, gpentry,
9446 sizeof (Elf32_External_gptab))))
9447 {
9448 free (tab);
9449 return FALSE;
9450 }
9451
9452 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
9453 &int_gptab);
9454 val = int_gptab.gt_entry.gt_g_value;
9455 add = int_gptab.gt_entry.gt_bytes - last;
9456
9457 exact = FALSE;
9458 for (look = 1; look < c; look++)
9459 {
9460 if (tab[look].gt_entry.gt_g_value >= val)
9461 tab[look].gt_entry.gt_bytes += add;
9462
9463 if (tab[look].gt_entry.gt_g_value == val)
9464 exact = TRUE;
9465 }
9466
9467 if (! exact)
9468 {
9469 Elf32_gptab *new_tab;
9470 unsigned int max;
9471
9472 /* We need a new table entry. */
9473 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9474 new_tab = bfd_realloc (tab, amt);
9475 if (new_tab == NULL)
9476 {
9477 free (tab);
9478 return FALSE;
9479 }
9480 tab = new_tab;
9481 tab[c].gt_entry.gt_g_value = val;
9482 tab[c].gt_entry.gt_bytes = add;
9483
9484 /* Merge in the size for the next smallest -G
9485 value, since that will be implied by this new
9486 value. */
9487 max = 0;
9488 for (look = 1; look < c; look++)
9489 {
9490 if (tab[look].gt_entry.gt_g_value < val
9491 && (max == 0
9492 || (tab[look].gt_entry.gt_g_value
9493 > tab[max].gt_entry.gt_g_value)))
9494 max = look;
9495 }
9496 if (max != 0)
9497 tab[c].gt_entry.gt_bytes +=
9498 tab[max].gt_entry.gt_bytes;
9499
9500 ++c;
9501 }
9502
9503 last = int_gptab.gt_entry.gt_bytes;
9504 }
9505
9506 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9507 elf_link_input_bfd ignores this section. */
9508 input_section->flags &= ~SEC_HAS_CONTENTS;
9509 }
9510
9511 /* The table must be sorted by -G value. */
9512 if (c > 2)
9513 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
9514
9515 /* Swap out the table. */
9516 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9517 ext_tab = bfd_alloc (abfd, amt);
9518 if (ext_tab == NULL)
9519 {
9520 free (tab);
9521 return FALSE;
9522 }
9523
9524 for (j = 0; j < c; j++)
9525 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
9526 free (tab);
9527
9528 o->size = c * sizeof (Elf32_External_gptab);
9529 o->contents = (bfd_byte *) ext_tab;
9530
9531 /* Skip this section later on (I don't think this currently
9532 matters, but someday it might). */
9533 o->map_head.link_order = NULL;
9534 }
9535 }
9536
9537 /* Invoke the regular ELF backend linker to do all the work. */
9538 if (!bfd_elf_final_link (abfd, info))
9539 return FALSE;
9540
9541 /* Now write out the computed sections. */
9542
9543 if (reginfo_sec != NULL)
9544 {
9545 Elf32_External_RegInfo ext;
9546
9547 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9548 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
9549 return FALSE;
9550 }
9551
9552 if (mdebug_sec != NULL)
9553 {
9554 BFD_ASSERT (abfd->output_has_begun);
9555 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
9556 swap, info,
9557 mdebug_sec->filepos))
9558 return FALSE;
9559
9560 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9561 }
9562
9563 if (gptab_data_sec != NULL)
9564 {
9565 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9566 gptab_data_sec->contents,
9567 0, gptab_data_sec->size))
9568 return FALSE;
9569 }
9570
9571 if (gptab_bss_sec != NULL)
9572 {
9573 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9574 gptab_bss_sec->contents,
9575 0, gptab_bss_sec->size))
9576 return FALSE;
9577 }
9578
9579 if (SGI_COMPAT (abfd))
9580 {
9581 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9582 if (rtproc_sec != NULL)
9583 {
9584 if (! bfd_set_section_contents (abfd, rtproc_sec,
9585 rtproc_sec->contents,
9586 0, rtproc_sec->size))
9587 return FALSE;
9588 }
9589 }
9590
9591 return TRUE;
9592 }
9593 \f
9594 /* Structure for saying that BFD machine EXTENSION extends BASE. */
9595
9596 struct mips_mach_extension {
9597 unsigned long extension, base;
9598 };
9599
9600
9601 /* An array describing how BFD machines relate to one another. The entries
9602 are ordered topologically with MIPS I extensions listed last. */
9603
9604 static const struct mips_mach_extension mips_mach_extensions[] = {
9605 /* MIPS64 extensions. */
9606 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
9607 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9608
9609 /* MIPS V extensions. */
9610 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9611
9612 /* R10000 extensions. */
9613 { bfd_mach_mips12000, bfd_mach_mips10000 },
9614
9615 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9616 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9617 better to allow vr5400 and vr5500 code to be merged anyway, since
9618 many libraries will just use the core ISA. Perhaps we could add
9619 some sort of ASE flag if this ever proves a problem. */
9620 { bfd_mach_mips5500, bfd_mach_mips5400 },
9621 { bfd_mach_mips5400, bfd_mach_mips5000 },
9622
9623 /* MIPS IV extensions. */
9624 { bfd_mach_mips5, bfd_mach_mips8000 },
9625 { bfd_mach_mips10000, bfd_mach_mips8000 },
9626 { bfd_mach_mips5000, bfd_mach_mips8000 },
9627 { bfd_mach_mips7000, bfd_mach_mips8000 },
9628 { bfd_mach_mips9000, bfd_mach_mips8000 },
9629
9630 /* VR4100 extensions. */
9631 { bfd_mach_mips4120, bfd_mach_mips4100 },
9632 { bfd_mach_mips4111, bfd_mach_mips4100 },
9633
9634 /* MIPS III extensions. */
9635 { bfd_mach_mips8000, bfd_mach_mips4000 },
9636 { bfd_mach_mips4650, bfd_mach_mips4000 },
9637 { bfd_mach_mips4600, bfd_mach_mips4000 },
9638 { bfd_mach_mips4400, bfd_mach_mips4000 },
9639 { bfd_mach_mips4300, bfd_mach_mips4000 },
9640 { bfd_mach_mips4100, bfd_mach_mips4000 },
9641 { bfd_mach_mips4010, bfd_mach_mips4000 },
9642
9643 /* MIPS32 extensions. */
9644 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9645
9646 /* MIPS II extensions. */
9647 { bfd_mach_mips4000, bfd_mach_mips6000 },
9648 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9649
9650 /* MIPS I extensions. */
9651 { bfd_mach_mips6000, bfd_mach_mips3000 },
9652 { bfd_mach_mips3900, bfd_mach_mips3000 }
9653 };
9654
9655
9656 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9657
9658 static bfd_boolean
9659 mips_mach_extends_p (unsigned long base, unsigned long extension)
9660 {
9661 size_t i;
9662
9663 if (extension == base)
9664 return TRUE;
9665
9666 if (base == bfd_mach_mipsisa32
9667 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
9668 return TRUE;
9669
9670 if (base == bfd_mach_mipsisa32r2
9671 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
9672 return TRUE;
9673
9674 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
9675 if (extension == mips_mach_extensions[i].extension)
9676 {
9677 extension = mips_mach_extensions[i].base;
9678 if (extension == base)
9679 return TRUE;
9680 }
9681
9682 return FALSE;
9683 }
9684
9685
9686 /* Return true if the given ELF header flags describe a 32-bit binary. */
9687
9688 static bfd_boolean
9689 mips_32bit_flags_p (flagword flags)
9690 {
9691 return ((flags & EF_MIPS_32BITMODE) != 0
9692 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9693 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9694 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9695 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9696 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9697 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
9698 }
9699
9700
9701 /* Merge backend specific data from an object file to the output
9702 object file when linking. */
9703
9704 bfd_boolean
9705 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
9706 {
9707 flagword old_flags;
9708 flagword new_flags;
9709 bfd_boolean ok;
9710 bfd_boolean null_input_bfd = TRUE;
9711 asection *sec;
9712
9713 /* Check if we have the same endianess */
9714 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9715 {
9716 (*_bfd_error_handler)
9717 (_("%B: endianness incompatible with that of the selected emulation"),
9718 ibfd);
9719 return FALSE;
9720 }
9721
9722 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9723 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
9724 return TRUE;
9725
9726 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9727 {
9728 (*_bfd_error_handler)
9729 (_("%B: ABI is incompatible with that of the selected emulation"),
9730 ibfd);
9731 return FALSE;
9732 }
9733
9734 new_flags = elf_elfheader (ibfd)->e_flags;
9735 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9736 old_flags = elf_elfheader (obfd)->e_flags;
9737
9738 if (! elf_flags_init (obfd))
9739 {
9740 elf_flags_init (obfd) = TRUE;
9741 elf_elfheader (obfd)->e_flags = new_flags;
9742 elf_elfheader (obfd)->e_ident[EI_CLASS]
9743 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9744
9745 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9746 && bfd_get_arch_info (obfd)->the_default)
9747 {
9748 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9749 bfd_get_mach (ibfd)))
9750 return FALSE;
9751 }
9752
9753 return TRUE;
9754 }
9755
9756 /* Check flag compatibility. */
9757
9758 new_flags &= ~EF_MIPS_NOREORDER;
9759 old_flags &= ~EF_MIPS_NOREORDER;
9760
9761 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9762 doesn't seem to matter. */
9763 new_flags &= ~EF_MIPS_XGOT;
9764 old_flags &= ~EF_MIPS_XGOT;
9765
9766 /* MIPSpro generates ucode info in n64 objects. Again, we should
9767 just be able to ignore this. */
9768 new_flags &= ~EF_MIPS_UCODE;
9769 old_flags &= ~EF_MIPS_UCODE;
9770
9771 if (new_flags == old_flags)
9772 return TRUE;
9773
9774 /* Check to see if the input BFD actually contains any sections.
9775 If not, its flags may not have been initialised either, but it cannot
9776 actually cause any incompatibility. */
9777 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9778 {
9779 /* Ignore synthetic sections and empty .text, .data and .bss sections
9780 which are automatically generated by gas. */
9781 if (strcmp (sec->name, ".reginfo")
9782 && strcmp (sec->name, ".mdebug")
9783 && (sec->size != 0
9784 || (strcmp (sec->name, ".text")
9785 && strcmp (sec->name, ".data")
9786 && strcmp (sec->name, ".bss"))))
9787 {
9788 null_input_bfd = FALSE;
9789 break;
9790 }
9791 }
9792 if (null_input_bfd)
9793 return TRUE;
9794
9795 ok = TRUE;
9796
9797 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9798 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
9799 {
9800 (*_bfd_error_handler)
9801 (_("%B: warning: linking PIC files with non-PIC files"),
9802 ibfd);
9803 ok = TRUE;
9804 }
9805
9806 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9807 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9808 if (! (new_flags & EF_MIPS_PIC))
9809 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9810
9811 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9812 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9813
9814 /* Compare the ISAs. */
9815 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9816 {
9817 (*_bfd_error_handler)
9818 (_("%B: linking 32-bit code with 64-bit code"),
9819 ibfd);
9820 ok = FALSE;
9821 }
9822 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9823 {
9824 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9825 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9826 {
9827 /* Copy the architecture info from IBFD to OBFD. Also copy
9828 the 32-bit flag (if set) so that we continue to recognise
9829 OBFD as a 32-bit binary. */
9830 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9831 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9832 elf_elfheader (obfd)->e_flags
9833 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9834
9835 /* Copy across the ABI flags if OBFD doesn't use them
9836 and if that was what caused us to treat IBFD as 32-bit. */
9837 if ((old_flags & EF_MIPS_ABI) == 0
9838 && mips_32bit_flags_p (new_flags)
9839 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9840 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9841 }
9842 else
9843 {
9844 /* The ISAs aren't compatible. */
9845 (*_bfd_error_handler)
9846 (_("%B: linking %s module with previous %s modules"),
9847 ibfd,
9848 bfd_printable_name (ibfd),
9849 bfd_printable_name (obfd));
9850 ok = FALSE;
9851 }
9852 }
9853
9854 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9855 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9856
9857 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9858 does set EI_CLASS differently from any 32-bit ABI. */
9859 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9860 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9861 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9862 {
9863 /* Only error if both are set (to different values). */
9864 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9865 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9866 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9867 {
9868 (*_bfd_error_handler)
9869 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9870 ibfd,
9871 elf_mips_abi_name (ibfd),
9872 elf_mips_abi_name (obfd));
9873 ok = FALSE;
9874 }
9875 new_flags &= ~EF_MIPS_ABI;
9876 old_flags &= ~EF_MIPS_ABI;
9877 }
9878
9879 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9880 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9881 {
9882 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9883
9884 new_flags &= ~ EF_MIPS_ARCH_ASE;
9885 old_flags &= ~ EF_MIPS_ARCH_ASE;
9886 }
9887
9888 /* Warn about any other mismatches */
9889 if (new_flags != old_flags)
9890 {
9891 (*_bfd_error_handler)
9892 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9893 ibfd, (unsigned long) new_flags,
9894 (unsigned long) old_flags);
9895 ok = FALSE;
9896 }
9897
9898 if (! ok)
9899 {
9900 bfd_set_error (bfd_error_bad_value);
9901 return FALSE;
9902 }
9903
9904 return TRUE;
9905 }
9906
9907 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9908
9909 bfd_boolean
9910 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9911 {
9912 BFD_ASSERT (!elf_flags_init (abfd)
9913 || elf_elfheader (abfd)->e_flags == flags);
9914
9915 elf_elfheader (abfd)->e_flags = flags;
9916 elf_flags_init (abfd) = TRUE;
9917 return TRUE;
9918 }
9919
9920 bfd_boolean
9921 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9922 {
9923 FILE *file = ptr;
9924
9925 BFD_ASSERT (abfd != NULL && ptr != NULL);
9926
9927 /* Print normal ELF private data. */
9928 _bfd_elf_print_private_bfd_data (abfd, ptr);
9929
9930 /* xgettext:c-format */
9931 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9932
9933 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9934 fprintf (file, _(" [abi=O32]"));
9935 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9936 fprintf (file, _(" [abi=O64]"));
9937 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9938 fprintf (file, _(" [abi=EABI32]"));
9939 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9940 fprintf (file, _(" [abi=EABI64]"));
9941 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9942 fprintf (file, _(" [abi unknown]"));
9943 else if (ABI_N32_P (abfd))
9944 fprintf (file, _(" [abi=N32]"));
9945 else if (ABI_64_P (abfd))
9946 fprintf (file, _(" [abi=64]"));
9947 else
9948 fprintf (file, _(" [no abi set]"));
9949
9950 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9951 fprintf (file, _(" [mips1]"));
9952 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9953 fprintf (file, _(" [mips2]"));
9954 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9955 fprintf (file, _(" [mips3]"));
9956 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9957 fprintf (file, _(" [mips4]"));
9958 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9959 fprintf (file, _(" [mips5]"));
9960 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9961 fprintf (file, _(" [mips32]"));
9962 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9963 fprintf (file, _(" [mips64]"));
9964 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9965 fprintf (file, _(" [mips32r2]"));
9966 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9967 fprintf (file, _(" [mips64r2]"));
9968 else
9969 fprintf (file, _(" [unknown ISA]"));
9970
9971 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9972 fprintf (file, _(" [mdmx]"));
9973
9974 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9975 fprintf (file, _(" [mips16]"));
9976
9977 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9978 fprintf (file, _(" [32bitmode]"));
9979 else
9980 fprintf (file, _(" [not 32bitmode]"));
9981
9982 fputc ('\n', file);
9983
9984 return TRUE;
9985 }
9986
9987 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
9988 {
9989 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9990 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9991 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9992 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9993 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9994 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9995 { NULL, 0, 0, 0, 0 }
9996 };
This page took 0.296147 seconds and 4 git commands to generate.