sim: bfin: only regen linux-fixed-code.h in maintainer mode
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993-2013 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/ecoff.h"
44 #include "coff/mips.h"
45
46 #include "hashtab.h"
47
48 /* Types of TLS GOT entry. */
49 enum mips_got_tls_type {
50 GOT_TLS_NONE,
51 GOT_TLS_GD,
52 GOT_TLS_LDM,
53 GOT_TLS_IE
54 };
55
56 /* This structure is used to hold information about one GOT entry.
57 There are four types of entry:
58
59 (1) an absolute address
60 requires: abfd == NULL
61 fields: d.address
62
63 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
64 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
65 fields: abfd, symndx, d.addend, tls_type
66
67 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
68 requires: abfd != NULL, symndx == -1
69 fields: d.h, tls_type
70
71 (4) a TLS LDM slot
72 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
73 fields: none; there's only one of these per GOT. */
74 struct mips_got_entry
75 {
76 /* One input bfd that needs the GOT entry. */
77 bfd *abfd;
78 /* The index of the symbol, as stored in the relocation r_info, if
79 we have a local symbol; -1 otherwise. */
80 long symndx;
81 union
82 {
83 /* If abfd == NULL, an address that must be stored in the got. */
84 bfd_vma address;
85 /* If abfd != NULL && symndx != -1, the addend of the relocation
86 that should be added to the symbol value. */
87 bfd_vma addend;
88 /* If abfd != NULL && symndx == -1, the hash table entry
89 corresponding to a symbol in the GOT. The symbol's entry
90 is in the local area if h->global_got_area is GGA_NONE,
91 otherwise it is in the global area. */
92 struct mips_elf_link_hash_entry *h;
93 } d;
94
95 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
96 symbol entry with r_symndx == 0. */
97 unsigned char tls_type;
98
99 /* True if we have filled in the GOT contents for a TLS entry,
100 and created the associated relocations. */
101 unsigned char tls_initialized;
102
103 /* The offset from the beginning of the .got section to the entry
104 corresponding to this symbol+addend. If it's a global symbol
105 whose offset is yet to be decided, it's going to be -1. */
106 long gotidx;
107 };
108
109 /* This structure represents a GOT page reference from an input bfd.
110 Each instance represents a symbol + ADDEND, where the representation
111 of the symbol depends on whether it is local to the input bfd.
112 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
113 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
114
115 Page references with SYMNDX >= 0 always become page references
116 in the output. Page references with SYMNDX < 0 only become page
117 references if the symbol binds locally; in other cases, the page
118 reference decays to a global GOT reference. */
119 struct mips_got_page_ref
120 {
121 long symndx;
122 union
123 {
124 struct mips_elf_link_hash_entry *h;
125 bfd *abfd;
126 } u;
127 bfd_vma addend;
128 };
129
130 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
131 The structures form a non-overlapping list that is sorted by increasing
132 MIN_ADDEND. */
133 struct mips_got_page_range
134 {
135 struct mips_got_page_range *next;
136 bfd_signed_vma min_addend;
137 bfd_signed_vma max_addend;
138 };
139
140 /* This structure describes the range of addends that are applied to page
141 relocations against a given section. */
142 struct mips_got_page_entry
143 {
144 /* The section that these entries are based on. */
145 asection *sec;
146 /* The ranges for this page entry. */
147 struct mips_got_page_range *ranges;
148 /* The maximum number of page entries needed for RANGES. */
149 bfd_vma num_pages;
150 };
151
152 /* This structure is used to hold .got information when linking. */
153
154 struct mips_got_info
155 {
156 /* The number of global .got entries. */
157 unsigned int global_gotno;
158 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
159 unsigned int reloc_only_gotno;
160 /* The number of .got slots used for TLS. */
161 unsigned int tls_gotno;
162 /* The first unused TLS .got entry. Used only during
163 mips_elf_initialize_tls_index. */
164 unsigned int tls_assigned_gotno;
165 /* The number of local .got entries, eventually including page entries. */
166 unsigned int local_gotno;
167 /* The maximum number of page entries needed. */
168 unsigned int page_gotno;
169 /* The number of relocations needed for the GOT entries. */
170 unsigned int relocs;
171 /* The number of local .got entries we have used. */
172 unsigned int assigned_gotno;
173 /* A hash table holding members of the got. */
174 struct htab *got_entries;
175 /* A hash table holding mips_got_page_ref structures. */
176 struct htab *got_page_refs;
177 /* A hash table of mips_got_page_entry structures. */
178 struct htab *got_page_entries;
179 /* In multi-got links, a pointer to the next got (err, rather, most
180 of the time, it points to the previous got). */
181 struct mips_got_info *next;
182 };
183
184 /* Structure passed when merging bfds' gots. */
185
186 struct mips_elf_got_per_bfd_arg
187 {
188 /* The output bfd. */
189 bfd *obfd;
190 /* The link information. */
191 struct bfd_link_info *info;
192 /* A pointer to the primary got, i.e., the one that's going to get
193 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
194 DT_MIPS_GOTSYM. */
195 struct mips_got_info *primary;
196 /* A non-primary got we're trying to merge with other input bfd's
197 gots. */
198 struct mips_got_info *current;
199 /* The maximum number of got entries that can be addressed with a
200 16-bit offset. */
201 unsigned int max_count;
202 /* The maximum number of page entries needed by each got. */
203 unsigned int max_pages;
204 /* The total number of global entries which will live in the
205 primary got and be automatically relocated. This includes
206 those not referenced by the primary GOT but included in
207 the "master" GOT. */
208 unsigned int global_count;
209 };
210
211 /* A structure used to pass information to htab_traverse callbacks
212 when laying out the GOT. */
213
214 struct mips_elf_traverse_got_arg
215 {
216 struct bfd_link_info *info;
217 struct mips_got_info *g;
218 int value;
219 };
220
221 struct _mips_elf_section_data
222 {
223 struct bfd_elf_section_data elf;
224 union
225 {
226 bfd_byte *tdata;
227 } u;
228 };
229
230 #define mips_elf_section_data(sec) \
231 ((struct _mips_elf_section_data *) elf_section_data (sec))
232
233 #define is_mips_elf(bfd) \
234 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
235 && elf_tdata (bfd) != NULL \
236 && elf_object_id (bfd) == MIPS_ELF_DATA)
237
238 /* The ABI says that every symbol used by dynamic relocations must have
239 a global GOT entry. Among other things, this provides the dynamic
240 linker with a free, directly-indexed cache. The GOT can therefore
241 contain symbols that are not referenced by GOT relocations themselves
242 (in other words, it may have symbols that are not referenced by things
243 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
244
245 GOT relocations are less likely to overflow if we put the associated
246 GOT entries towards the beginning. We therefore divide the global
247 GOT entries into two areas: "normal" and "reloc-only". Entries in
248 the first area can be used for both dynamic relocations and GP-relative
249 accesses, while those in the "reloc-only" area are for dynamic
250 relocations only.
251
252 These GGA_* ("Global GOT Area") values are organised so that lower
253 values are more general than higher values. Also, non-GGA_NONE
254 values are ordered by the position of the area in the GOT. */
255 #define GGA_NORMAL 0
256 #define GGA_RELOC_ONLY 1
257 #define GGA_NONE 2
258
259 /* Information about a non-PIC interface to a PIC function. There are
260 two ways of creating these interfaces. The first is to add:
261
262 lui $25,%hi(func)
263 addiu $25,$25,%lo(func)
264
265 immediately before a PIC function "func". The second is to add:
266
267 lui $25,%hi(func)
268 j func
269 addiu $25,$25,%lo(func)
270
271 to a separate trampoline section.
272
273 Stubs of the first kind go in a new section immediately before the
274 target function. Stubs of the second kind go in a single section
275 pointed to by the hash table's "strampoline" field. */
276 struct mips_elf_la25_stub {
277 /* The generated section that contains this stub. */
278 asection *stub_section;
279
280 /* The offset of the stub from the start of STUB_SECTION. */
281 bfd_vma offset;
282
283 /* One symbol for the original function. Its location is available
284 in H->root.root.u.def. */
285 struct mips_elf_link_hash_entry *h;
286 };
287
288 /* Macros for populating a mips_elf_la25_stub. */
289
290 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
291 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
292 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
293 #define LA25_LUI_MICROMIPS(VAL) \
294 (0x41b90000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J_MICROMIPS(VAL) \
296 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
297 #define LA25_ADDIU_MICROMIPS(VAL) \
298 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
299
300 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
301 the dynamic symbols. */
302
303 struct mips_elf_hash_sort_data
304 {
305 /* The symbol in the global GOT with the lowest dynamic symbol table
306 index. */
307 struct elf_link_hash_entry *low;
308 /* The least dynamic symbol table index corresponding to a non-TLS
309 symbol with a GOT entry. */
310 long min_got_dynindx;
311 /* The greatest dynamic symbol table index corresponding to a symbol
312 with a GOT entry that is not referenced (e.g., a dynamic symbol
313 with dynamic relocations pointing to it from non-primary GOTs). */
314 long max_unref_got_dynindx;
315 /* The greatest dynamic symbol table index not corresponding to a
316 symbol without a GOT entry. */
317 long max_non_got_dynindx;
318 };
319
320 /* The MIPS ELF linker needs additional information for each symbol in
321 the global hash table. */
322
323 struct mips_elf_link_hash_entry
324 {
325 struct elf_link_hash_entry root;
326
327 /* External symbol information. */
328 EXTR esym;
329
330 /* The la25 stub we have created for ths symbol, if any. */
331 struct mips_elf_la25_stub *la25_stub;
332
333 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
334 this symbol. */
335 unsigned int possibly_dynamic_relocs;
336
337 /* If there is a stub that 32 bit functions should use to call this
338 16 bit function, this points to the section containing the stub. */
339 asection *fn_stub;
340
341 /* If there is a stub that 16 bit functions should use to call this
342 32 bit function, this points to the section containing the stub. */
343 asection *call_stub;
344
345 /* This is like the call_stub field, but it is used if the function
346 being called returns a floating point value. */
347 asection *call_fp_stub;
348
349 /* The highest GGA_* value that satisfies all references to this symbol. */
350 unsigned int global_got_area : 2;
351
352 /* True if all GOT relocations against this symbol are for calls. This is
353 a looser condition than no_fn_stub below, because there may be other
354 non-call non-GOT relocations against the symbol. */
355 unsigned int got_only_for_calls : 1;
356
357 /* True if one of the relocations described by possibly_dynamic_relocs
358 is against a readonly section. */
359 unsigned int readonly_reloc : 1;
360
361 /* True if there is a relocation against this symbol that must be
362 resolved by the static linker (in other words, if the relocation
363 cannot possibly be made dynamic). */
364 unsigned int has_static_relocs : 1;
365
366 /* True if we must not create a .MIPS.stubs entry for this symbol.
367 This is set, for example, if there are relocations related to
368 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
369 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
370 unsigned int no_fn_stub : 1;
371
372 /* Whether we need the fn_stub; this is true if this symbol appears
373 in any relocs other than a 16 bit call. */
374 unsigned int need_fn_stub : 1;
375
376 /* True if this symbol is referenced by branch relocations from
377 any non-PIC input file. This is used to determine whether an
378 la25 stub is required. */
379 unsigned int has_nonpic_branches : 1;
380
381 /* Does this symbol need a traditional MIPS lazy-binding stub
382 (as opposed to a PLT entry)? */
383 unsigned int needs_lazy_stub : 1;
384 };
385
386 /* MIPS ELF linker hash table. */
387
388 struct mips_elf_link_hash_table
389 {
390 struct elf_link_hash_table root;
391
392 /* The number of .rtproc entries. */
393 bfd_size_type procedure_count;
394
395 /* The size of the .compact_rel section (if SGI_COMPAT). */
396 bfd_size_type compact_rel_size;
397
398 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
399 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
400 bfd_boolean use_rld_obj_head;
401
402 /* The __rld_map or __rld_obj_head symbol. */
403 struct elf_link_hash_entry *rld_symbol;
404
405 /* This is set if we see any mips16 stub sections. */
406 bfd_boolean mips16_stubs_seen;
407
408 /* True if we can generate copy relocs and PLTs. */
409 bfd_boolean use_plts_and_copy_relocs;
410
411 /* True if we're generating code for VxWorks. */
412 bfd_boolean is_vxworks;
413
414 /* True if we already reported the small-data section overflow. */
415 bfd_boolean small_data_overflow_reported;
416
417 /* Shortcuts to some dynamic sections, or NULL if they are not
418 being used. */
419 asection *srelbss;
420 asection *sdynbss;
421 asection *srelplt;
422 asection *srelplt2;
423 asection *sgotplt;
424 asection *splt;
425 asection *sstubs;
426 asection *sgot;
427
428 /* The master GOT information. */
429 struct mips_got_info *got_info;
430
431 /* The global symbol in the GOT with the lowest index in the dynamic
432 symbol table. */
433 struct elf_link_hash_entry *global_gotsym;
434
435 /* The size of the PLT header in bytes. */
436 bfd_vma plt_header_size;
437
438 /* The size of a PLT entry in bytes. */
439 bfd_vma plt_entry_size;
440
441 /* The number of functions that need a lazy-binding stub. */
442 bfd_vma lazy_stub_count;
443
444 /* The size of a function stub entry in bytes. */
445 bfd_vma function_stub_size;
446
447 /* The number of reserved entries at the beginning of the GOT. */
448 unsigned int reserved_gotno;
449
450 /* The section used for mips_elf_la25_stub trampolines.
451 See the comment above that structure for details. */
452 asection *strampoline;
453
454 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
455 pairs. */
456 htab_t la25_stubs;
457
458 /* A function FN (NAME, IS, OS) that creates a new input section
459 called NAME and links it to output section OS. If IS is nonnull,
460 the new section should go immediately before it, otherwise it
461 should go at the (current) beginning of OS.
462
463 The function returns the new section on success, otherwise it
464 returns null. */
465 asection *(*add_stub_section) (const char *, asection *, asection *);
466
467 /* Small local sym cache. */
468 struct sym_cache sym_cache;
469 };
470
471 /* Get the MIPS ELF linker hash table from a link_info structure. */
472
473 #define mips_elf_hash_table(p) \
474 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
475 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
476
477 /* A structure used to communicate with htab_traverse callbacks. */
478 struct mips_htab_traverse_info
479 {
480 /* The usual link-wide information. */
481 struct bfd_link_info *info;
482 bfd *output_bfd;
483
484 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
485 bfd_boolean error;
486 };
487
488 /* MIPS ELF private object data. */
489
490 struct mips_elf_obj_tdata
491 {
492 /* Generic ELF private object data. */
493 struct elf_obj_tdata root;
494
495 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
496 bfd *abi_fp_bfd;
497
498 /* The GOT requirements of input bfds. */
499 struct mips_got_info *got;
500
501 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
502 included directly in this one, but there's no point to wasting
503 the memory just for the infrequently called find_nearest_line. */
504 struct mips_elf_find_line *find_line_info;
505
506 /* An array of stub sections indexed by symbol number. */
507 asection **local_stubs;
508 asection **local_call_stubs;
509
510 /* The Irix 5 support uses two virtual sections, which represent
511 text/data symbols defined in dynamic objects. */
512 asymbol *elf_data_symbol;
513 asymbol *elf_text_symbol;
514 asection *elf_data_section;
515 asection *elf_text_section;
516 };
517
518 /* Get MIPS ELF private object data from BFD's tdata. */
519
520 #define mips_elf_tdata(bfd) \
521 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
522
523 #define TLS_RELOC_P(r_type) \
524 (r_type == R_MIPS_TLS_DTPMOD32 \
525 || r_type == R_MIPS_TLS_DTPMOD64 \
526 || r_type == R_MIPS_TLS_DTPREL32 \
527 || r_type == R_MIPS_TLS_DTPREL64 \
528 || r_type == R_MIPS_TLS_GD \
529 || r_type == R_MIPS_TLS_LDM \
530 || r_type == R_MIPS_TLS_DTPREL_HI16 \
531 || r_type == R_MIPS_TLS_DTPREL_LO16 \
532 || r_type == R_MIPS_TLS_GOTTPREL \
533 || r_type == R_MIPS_TLS_TPREL32 \
534 || r_type == R_MIPS_TLS_TPREL64 \
535 || r_type == R_MIPS_TLS_TPREL_HI16 \
536 || r_type == R_MIPS_TLS_TPREL_LO16 \
537 || r_type == R_MIPS16_TLS_GD \
538 || r_type == R_MIPS16_TLS_LDM \
539 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
540 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
541 || r_type == R_MIPS16_TLS_GOTTPREL \
542 || r_type == R_MIPS16_TLS_TPREL_HI16 \
543 || r_type == R_MIPS16_TLS_TPREL_LO16 \
544 || r_type == R_MICROMIPS_TLS_GD \
545 || r_type == R_MICROMIPS_TLS_LDM \
546 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
547 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
548 || r_type == R_MICROMIPS_TLS_GOTTPREL \
549 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
550 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
551
552 /* Structure used to pass information to mips_elf_output_extsym. */
553
554 struct extsym_info
555 {
556 bfd *abfd;
557 struct bfd_link_info *info;
558 struct ecoff_debug_info *debug;
559 const struct ecoff_debug_swap *swap;
560 bfd_boolean failed;
561 };
562
563 /* The names of the runtime procedure table symbols used on IRIX5. */
564
565 static const char * const mips_elf_dynsym_rtproc_names[] =
566 {
567 "_procedure_table",
568 "_procedure_string_table",
569 "_procedure_table_size",
570 NULL
571 };
572
573 /* These structures are used to generate the .compact_rel section on
574 IRIX5. */
575
576 typedef struct
577 {
578 unsigned long id1; /* Always one? */
579 unsigned long num; /* Number of compact relocation entries. */
580 unsigned long id2; /* Always two? */
581 unsigned long offset; /* The file offset of the first relocation. */
582 unsigned long reserved0; /* Zero? */
583 unsigned long reserved1; /* Zero? */
584 } Elf32_compact_rel;
585
586 typedef struct
587 {
588 bfd_byte id1[4];
589 bfd_byte num[4];
590 bfd_byte id2[4];
591 bfd_byte offset[4];
592 bfd_byte reserved0[4];
593 bfd_byte reserved1[4];
594 } Elf32_External_compact_rel;
595
596 typedef struct
597 {
598 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
599 unsigned int rtype : 4; /* Relocation types. See below. */
600 unsigned int dist2to : 8;
601 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
602 unsigned long konst; /* KONST field. See below. */
603 unsigned long vaddr; /* VADDR to be relocated. */
604 } Elf32_crinfo;
605
606 typedef struct
607 {
608 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
609 unsigned int rtype : 4; /* Relocation types. See below. */
610 unsigned int dist2to : 8;
611 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
612 unsigned long konst; /* KONST field. See below. */
613 } Elf32_crinfo2;
614
615 typedef struct
616 {
617 bfd_byte info[4];
618 bfd_byte konst[4];
619 bfd_byte vaddr[4];
620 } Elf32_External_crinfo;
621
622 typedef struct
623 {
624 bfd_byte info[4];
625 bfd_byte konst[4];
626 } Elf32_External_crinfo2;
627
628 /* These are the constants used to swap the bitfields in a crinfo. */
629
630 #define CRINFO_CTYPE (0x1)
631 #define CRINFO_CTYPE_SH (31)
632 #define CRINFO_RTYPE (0xf)
633 #define CRINFO_RTYPE_SH (27)
634 #define CRINFO_DIST2TO (0xff)
635 #define CRINFO_DIST2TO_SH (19)
636 #define CRINFO_RELVADDR (0x7ffff)
637 #define CRINFO_RELVADDR_SH (0)
638
639 /* A compact relocation info has long (3 words) or short (2 words)
640 formats. A short format doesn't have VADDR field and relvaddr
641 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
642 #define CRF_MIPS_LONG 1
643 #define CRF_MIPS_SHORT 0
644
645 /* There are 4 types of compact relocation at least. The value KONST
646 has different meaning for each type:
647
648 (type) (konst)
649 CT_MIPS_REL32 Address in data
650 CT_MIPS_WORD Address in word (XXX)
651 CT_MIPS_GPHI_LO GP - vaddr
652 CT_MIPS_JMPAD Address to jump
653 */
654
655 #define CRT_MIPS_REL32 0xa
656 #define CRT_MIPS_WORD 0xb
657 #define CRT_MIPS_GPHI_LO 0xc
658 #define CRT_MIPS_JMPAD 0xd
659
660 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
661 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
662 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
663 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
664 \f
665 /* The structure of the runtime procedure descriptor created by the
666 loader for use by the static exception system. */
667
668 typedef struct runtime_pdr {
669 bfd_vma adr; /* Memory address of start of procedure. */
670 long regmask; /* Save register mask. */
671 long regoffset; /* Save register offset. */
672 long fregmask; /* Save floating point register mask. */
673 long fregoffset; /* Save floating point register offset. */
674 long frameoffset; /* Frame size. */
675 short framereg; /* Frame pointer register. */
676 short pcreg; /* Offset or reg of return pc. */
677 long irpss; /* Index into the runtime string table. */
678 long reserved;
679 struct exception_info *exception_info;/* Pointer to exception array. */
680 } RPDR, *pRPDR;
681 #define cbRPDR sizeof (RPDR)
682 #define rpdNil ((pRPDR) 0)
683 \f
684 static struct mips_got_entry *mips_elf_create_local_got_entry
685 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
686 struct mips_elf_link_hash_entry *, int);
687 static bfd_boolean mips_elf_sort_hash_table_f
688 (struct mips_elf_link_hash_entry *, void *);
689 static bfd_vma mips_elf_high
690 (bfd_vma);
691 static bfd_boolean mips_elf_create_dynamic_relocation
692 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
693 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
694 bfd_vma *, asection *);
695 static bfd_vma mips_elf_adjust_gp
696 (bfd *, struct mips_got_info *, bfd *);
697
698 /* This will be used when we sort the dynamic relocation records. */
699 static bfd *reldyn_sorting_bfd;
700
701 /* True if ABFD is for CPUs with load interlocking that include
702 non-MIPS1 CPUs and R3900. */
703 #define LOAD_INTERLOCKS_P(abfd) \
704 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
705 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
706
707 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
708 This should be safe for all architectures. We enable this predicate
709 for RM9000 for now. */
710 #define JAL_TO_BAL_P(abfd) \
711 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
712
713 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
714 This should be safe for all architectures. We enable this predicate for
715 all CPUs. */
716 #define JALR_TO_BAL_P(abfd) 1
717
718 /* True if ABFD is for CPUs that are faster if JR is converted to B.
719 This should be safe for all architectures. We enable this predicate for
720 all CPUs. */
721 #define JR_TO_B_P(abfd) 1
722
723 /* True if ABFD is a PIC object. */
724 #define PIC_OBJECT_P(abfd) \
725 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
726
727 /* Nonzero if ABFD is using the N32 ABI. */
728 #define ABI_N32_P(abfd) \
729 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
730
731 /* Nonzero if ABFD is using the N64 ABI. */
732 #define ABI_64_P(abfd) \
733 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
734
735 /* Nonzero if ABFD is using NewABI conventions. */
736 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
737
738 /* Nonzero if ABFD has microMIPS code. */
739 #define MICROMIPS_P(abfd) \
740 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
741
742 /* The IRIX compatibility level we are striving for. */
743 #define IRIX_COMPAT(abfd) \
744 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
745
746 /* Whether we are trying to be compatible with IRIX at all. */
747 #define SGI_COMPAT(abfd) \
748 (IRIX_COMPAT (abfd) != ict_none)
749
750 /* The name of the options section. */
751 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
752 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
753
754 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
755 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
756 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
757 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
758
759 /* Whether the section is readonly. */
760 #define MIPS_ELF_READONLY_SECTION(sec) \
761 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
762 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
763
764 /* The name of the stub section. */
765 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
766
767 /* The size of an external REL relocation. */
768 #define MIPS_ELF_REL_SIZE(abfd) \
769 (get_elf_backend_data (abfd)->s->sizeof_rel)
770
771 /* The size of an external RELA relocation. */
772 #define MIPS_ELF_RELA_SIZE(abfd) \
773 (get_elf_backend_data (abfd)->s->sizeof_rela)
774
775 /* The size of an external dynamic table entry. */
776 #define MIPS_ELF_DYN_SIZE(abfd) \
777 (get_elf_backend_data (abfd)->s->sizeof_dyn)
778
779 /* The size of a GOT entry. */
780 #define MIPS_ELF_GOT_SIZE(abfd) \
781 (get_elf_backend_data (abfd)->s->arch_size / 8)
782
783 /* The size of the .rld_map section. */
784 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
785 (get_elf_backend_data (abfd)->s->arch_size / 8)
786
787 /* The size of a symbol-table entry. */
788 #define MIPS_ELF_SYM_SIZE(abfd) \
789 (get_elf_backend_data (abfd)->s->sizeof_sym)
790
791 /* The default alignment for sections, as a power of two. */
792 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
793 (get_elf_backend_data (abfd)->s->log_file_align)
794
795 /* Get word-sized data. */
796 #define MIPS_ELF_GET_WORD(abfd, ptr) \
797 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
798
799 /* Put out word-sized data. */
800 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
801 (ABI_64_P (abfd) \
802 ? bfd_put_64 (abfd, val, ptr) \
803 : bfd_put_32 (abfd, val, ptr))
804
805 /* The opcode for word-sized loads (LW or LD). */
806 #define MIPS_ELF_LOAD_WORD(abfd) \
807 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
808
809 /* Add a dynamic symbol table-entry. */
810 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
811 _bfd_elf_add_dynamic_entry (info, tag, val)
812
813 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
814 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
815
816 /* The name of the dynamic relocation section. */
817 #define MIPS_ELF_REL_DYN_NAME(INFO) \
818 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
819
820 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
821 from smaller values. Start with zero, widen, *then* decrement. */
822 #define MINUS_ONE (((bfd_vma)0) - 1)
823 #define MINUS_TWO (((bfd_vma)0) - 2)
824
825 /* The value to write into got[1] for SVR4 targets, to identify it is
826 a GNU object. The dynamic linker can then use got[1] to store the
827 module pointer. */
828 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
829 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
830
831 /* The offset of $gp from the beginning of the .got section. */
832 #define ELF_MIPS_GP_OFFSET(INFO) \
833 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
834
835 /* The maximum size of the GOT for it to be addressable using 16-bit
836 offsets from $gp. */
837 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
838
839 /* Instructions which appear in a stub. */
840 #define STUB_LW(abfd) \
841 ((ABI_64_P (abfd) \
842 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
843 : 0x8f998010)) /* lw t9,0x8010(gp) */
844 #define STUB_MOVE(abfd) \
845 ((ABI_64_P (abfd) \
846 ? 0x03e0782d /* daddu t7,ra */ \
847 : 0x03e07821)) /* addu t7,ra */
848 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
849 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
850 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
851 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
852 #define STUB_LI16S(abfd, VAL) \
853 ((ABI_64_P (abfd) \
854 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
855 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
856
857 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
858 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
859
860 /* The name of the dynamic interpreter. This is put in the .interp
861 section. */
862
863 #define ELF_DYNAMIC_INTERPRETER(abfd) \
864 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
865 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
866 : "/usr/lib/libc.so.1")
867
868 #ifdef BFD64
869 #define MNAME(bfd,pre,pos) \
870 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
871 #define ELF_R_SYM(bfd, i) \
872 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
873 #define ELF_R_TYPE(bfd, i) \
874 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
875 #define ELF_R_INFO(bfd, s, t) \
876 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
877 #else
878 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
879 #define ELF_R_SYM(bfd, i) \
880 (ELF32_R_SYM (i))
881 #define ELF_R_TYPE(bfd, i) \
882 (ELF32_R_TYPE (i))
883 #define ELF_R_INFO(bfd, s, t) \
884 (ELF32_R_INFO (s, t))
885 #endif
886 \f
887 /* The mips16 compiler uses a couple of special sections to handle
888 floating point arguments.
889
890 Section names that look like .mips16.fn.FNNAME contain stubs that
891 copy floating point arguments from the fp regs to the gp regs and
892 then jump to FNNAME. If any 32 bit function calls FNNAME, the
893 call should be redirected to the stub instead. If no 32 bit
894 function calls FNNAME, the stub should be discarded. We need to
895 consider any reference to the function, not just a call, because
896 if the address of the function is taken we will need the stub,
897 since the address might be passed to a 32 bit function.
898
899 Section names that look like .mips16.call.FNNAME contain stubs
900 that copy floating point arguments from the gp regs to the fp
901 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
902 then any 16 bit function that calls FNNAME should be redirected
903 to the stub instead. If FNNAME is not a 32 bit function, the
904 stub should be discarded.
905
906 .mips16.call.fp.FNNAME sections are similar, but contain stubs
907 which call FNNAME and then copy the return value from the fp regs
908 to the gp regs. These stubs store the return value in $18 while
909 calling FNNAME; any function which might call one of these stubs
910 must arrange to save $18 around the call. (This case is not
911 needed for 32 bit functions that call 16 bit functions, because
912 16 bit functions always return floating point values in both
913 $f0/$f1 and $2/$3.)
914
915 Note that in all cases FNNAME might be defined statically.
916 Therefore, FNNAME is not used literally. Instead, the relocation
917 information will indicate which symbol the section is for.
918
919 We record any stubs that we find in the symbol table. */
920
921 #define FN_STUB ".mips16.fn."
922 #define CALL_STUB ".mips16.call."
923 #define CALL_FP_STUB ".mips16.call.fp."
924
925 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
926 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
927 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
928 \f
929 /* The format of the first PLT entry in an O32 executable. */
930 static const bfd_vma mips_o32_exec_plt0_entry[] =
931 {
932 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
933 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
934 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
935 0x031cc023, /* subu $24, $24, $28 */
936 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
937 0x0018c082, /* srl $24, $24, 2 */
938 0x0320f809, /* jalr $25 */
939 0x2718fffe /* subu $24, $24, 2 */
940 };
941
942 /* The format of the first PLT entry in an N32 executable. Different
943 because gp ($28) is not available; we use t2 ($14) instead. */
944 static const bfd_vma mips_n32_exec_plt0_entry[] =
945 {
946 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
947 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
948 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
949 0x030ec023, /* subu $24, $24, $14 */
950 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
951 0x0018c082, /* srl $24, $24, 2 */
952 0x0320f809, /* jalr $25 */
953 0x2718fffe /* subu $24, $24, 2 */
954 };
955
956 /* The format of the first PLT entry in an N64 executable. Different
957 from N32 because of the increased size of GOT entries. */
958 static const bfd_vma mips_n64_exec_plt0_entry[] =
959 {
960 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
961 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
962 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
963 0x030ec023, /* subu $24, $24, $14 */
964 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
965 0x0018c0c2, /* srl $24, $24, 3 */
966 0x0320f809, /* jalr $25 */
967 0x2718fffe /* subu $24, $24, 2 */
968 };
969
970 /* The format of subsequent PLT entries. */
971 static const bfd_vma mips_exec_plt_entry[] =
972 {
973 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
974 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
975 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
976 0x03200008 /* jr $25 */
977 };
978
979 /* The format of the first PLT entry in a VxWorks executable. */
980 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
981 {
982 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
983 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
984 0x8f390008, /* lw t9, 8(t9) */
985 0x00000000, /* nop */
986 0x03200008, /* jr t9 */
987 0x00000000 /* nop */
988 };
989
990 /* The format of subsequent PLT entries. */
991 static const bfd_vma mips_vxworks_exec_plt_entry[] =
992 {
993 0x10000000, /* b .PLT_resolver */
994 0x24180000, /* li t8, <pltindex> */
995 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
996 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
997 0x8f390000, /* lw t9, 0(t9) */
998 0x00000000, /* nop */
999 0x03200008, /* jr t9 */
1000 0x00000000 /* nop */
1001 };
1002
1003 /* The format of the first PLT entry in a VxWorks shared object. */
1004 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1005 {
1006 0x8f990008, /* lw t9, 8(gp) */
1007 0x00000000, /* nop */
1008 0x03200008, /* jr t9 */
1009 0x00000000, /* nop */
1010 0x00000000, /* nop */
1011 0x00000000 /* nop */
1012 };
1013
1014 /* The format of subsequent PLT entries. */
1015 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1016 {
1017 0x10000000, /* b .PLT_resolver */
1018 0x24180000 /* li t8, <pltindex> */
1019 };
1020 \f
1021 /* microMIPS 32-bit opcode helper installer. */
1022
1023 static void
1024 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1025 {
1026 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1027 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1028 }
1029
1030 /* microMIPS 32-bit opcode helper retriever. */
1031
1032 static bfd_vma
1033 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1034 {
1035 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1036 }
1037 \f
1038 /* Look up an entry in a MIPS ELF linker hash table. */
1039
1040 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1041 ((struct mips_elf_link_hash_entry *) \
1042 elf_link_hash_lookup (&(table)->root, (string), (create), \
1043 (copy), (follow)))
1044
1045 /* Traverse a MIPS ELF linker hash table. */
1046
1047 #define mips_elf_link_hash_traverse(table, func, info) \
1048 (elf_link_hash_traverse \
1049 (&(table)->root, \
1050 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1051 (info)))
1052
1053 /* Find the base offsets for thread-local storage in this object,
1054 for GD/LD and IE/LE respectively. */
1055
1056 #define TP_OFFSET 0x7000
1057 #define DTP_OFFSET 0x8000
1058
1059 static bfd_vma
1060 dtprel_base (struct bfd_link_info *info)
1061 {
1062 /* If tls_sec is NULL, we should have signalled an error already. */
1063 if (elf_hash_table (info)->tls_sec == NULL)
1064 return 0;
1065 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1066 }
1067
1068 static bfd_vma
1069 tprel_base (struct bfd_link_info *info)
1070 {
1071 /* If tls_sec is NULL, we should have signalled an error already. */
1072 if (elf_hash_table (info)->tls_sec == NULL)
1073 return 0;
1074 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1075 }
1076
1077 /* Create an entry in a MIPS ELF linker hash table. */
1078
1079 static struct bfd_hash_entry *
1080 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1081 struct bfd_hash_table *table, const char *string)
1082 {
1083 struct mips_elf_link_hash_entry *ret =
1084 (struct mips_elf_link_hash_entry *) entry;
1085
1086 /* Allocate the structure if it has not already been allocated by a
1087 subclass. */
1088 if (ret == NULL)
1089 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1090 if (ret == NULL)
1091 return (struct bfd_hash_entry *) ret;
1092
1093 /* Call the allocation method of the superclass. */
1094 ret = ((struct mips_elf_link_hash_entry *)
1095 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1096 table, string));
1097 if (ret != NULL)
1098 {
1099 /* Set local fields. */
1100 memset (&ret->esym, 0, sizeof (EXTR));
1101 /* We use -2 as a marker to indicate that the information has
1102 not been set. -1 means there is no associated ifd. */
1103 ret->esym.ifd = -2;
1104 ret->la25_stub = 0;
1105 ret->possibly_dynamic_relocs = 0;
1106 ret->fn_stub = NULL;
1107 ret->call_stub = NULL;
1108 ret->call_fp_stub = NULL;
1109 ret->global_got_area = GGA_NONE;
1110 ret->got_only_for_calls = TRUE;
1111 ret->readonly_reloc = FALSE;
1112 ret->has_static_relocs = FALSE;
1113 ret->no_fn_stub = FALSE;
1114 ret->need_fn_stub = FALSE;
1115 ret->has_nonpic_branches = FALSE;
1116 ret->needs_lazy_stub = FALSE;
1117 }
1118
1119 return (struct bfd_hash_entry *) ret;
1120 }
1121
1122 /* Allocate MIPS ELF private object data. */
1123
1124 bfd_boolean
1125 _bfd_mips_elf_mkobject (bfd *abfd)
1126 {
1127 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1128 MIPS_ELF_DATA);
1129 }
1130
1131 bfd_boolean
1132 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1133 {
1134 if (!sec->used_by_bfd)
1135 {
1136 struct _mips_elf_section_data *sdata;
1137 bfd_size_type amt = sizeof (*sdata);
1138
1139 sdata = bfd_zalloc (abfd, amt);
1140 if (sdata == NULL)
1141 return FALSE;
1142 sec->used_by_bfd = sdata;
1143 }
1144
1145 return _bfd_elf_new_section_hook (abfd, sec);
1146 }
1147 \f
1148 /* Read ECOFF debugging information from a .mdebug section into a
1149 ecoff_debug_info structure. */
1150
1151 bfd_boolean
1152 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1153 struct ecoff_debug_info *debug)
1154 {
1155 HDRR *symhdr;
1156 const struct ecoff_debug_swap *swap;
1157 char *ext_hdr;
1158
1159 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1160 memset (debug, 0, sizeof (*debug));
1161
1162 ext_hdr = bfd_malloc (swap->external_hdr_size);
1163 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1164 goto error_return;
1165
1166 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1167 swap->external_hdr_size))
1168 goto error_return;
1169
1170 symhdr = &debug->symbolic_header;
1171 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1172
1173 /* The symbolic header contains absolute file offsets and sizes to
1174 read. */
1175 #define READ(ptr, offset, count, size, type) \
1176 if (symhdr->count == 0) \
1177 debug->ptr = NULL; \
1178 else \
1179 { \
1180 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1181 debug->ptr = bfd_malloc (amt); \
1182 if (debug->ptr == NULL) \
1183 goto error_return; \
1184 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1185 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1186 goto error_return; \
1187 }
1188
1189 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1190 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1191 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1192 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1193 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1194 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1195 union aux_ext *);
1196 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1197 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1198 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1199 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1200 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1201 #undef READ
1202
1203 debug->fdr = NULL;
1204
1205 return TRUE;
1206
1207 error_return:
1208 if (ext_hdr != NULL)
1209 free (ext_hdr);
1210 if (debug->line != NULL)
1211 free (debug->line);
1212 if (debug->external_dnr != NULL)
1213 free (debug->external_dnr);
1214 if (debug->external_pdr != NULL)
1215 free (debug->external_pdr);
1216 if (debug->external_sym != NULL)
1217 free (debug->external_sym);
1218 if (debug->external_opt != NULL)
1219 free (debug->external_opt);
1220 if (debug->external_aux != NULL)
1221 free (debug->external_aux);
1222 if (debug->ss != NULL)
1223 free (debug->ss);
1224 if (debug->ssext != NULL)
1225 free (debug->ssext);
1226 if (debug->external_fdr != NULL)
1227 free (debug->external_fdr);
1228 if (debug->external_rfd != NULL)
1229 free (debug->external_rfd);
1230 if (debug->external_ext != NULL)
1231 free (debug->external_ext);
1232 return FALSE;
1233 }
1234 \f
1235 /* Swap RPDR (runtime procedure table entry) for output. */
1236
1237 static void
1238 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1239 {
1240 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1241 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1242 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1243 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1244 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1245 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1246
1247 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1248 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1249
1250 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1251 }
1252
1253 /* Create a runtime procedure table from the .mdebug section. */
1254
1255 static bfd_boolean
1256 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1257 struct bfd_link_info *info, asection *s,
1258 struct ecoff_debug_info *debug)
1259 {
1260 const struct ecoff_debug_swap *swap;
1261 HDRR *hdr = &debug->symbolic_header;
1262 RPDR *rpdr, *rp;
1263 struct rpdr_ext *erp;
1264 void *rtproc;
1265 struct pdr_ext *epdr;
1266 struct sym_ext *esym;
1267 char *ss, **sv;
1268 char *str;
1269 bfd_size_type size;
1270 bfd_size_type count;
1271 unsigned long sindex;
1272 unsigned long i;
1273 PDR pdr;
1274 SYMR sym;
1275 const char *no_name_func = _("static procedure (no name)");
1276
1277 epdr = NULL;
1278 rpdr = NULL;
1279 esym = NULL;
1280 ss = NULL;
1281 sv = NULL;
1282
1283 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1284
1285 sindex = strlen (no_name_func) + 1;
1286 count = hdr->ipdMax;
1287 if (count > 0)
1288 {
1289 size = swap->external_pdr_size;
1290
1291 epdr = bfd_malloc (size * count);
1292 if (epdr == NULL)
1293 goto error_return;
1294
1295 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1296 goto error_return;
1297
1298 size = sizeof (RPDR);
1299 rp = rpdr = bfd_malloc (size * count);
1300 if (rpdr == NULL)
1301 goto error_return;
1302
1303 size = sizeof (char *);
1304 sv = bfd_malloc (size * count);
1305 if (sv == NULL)
1306 goto error_return;
1307
1308 count = hdr->isymMax;
1309 size = swap->external_sym_size;
1310 esym = bfd_malloc (size * count);
1311 if (esym == NULL)
1312 goto error_return;
1313
1314 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1315 goto error_return;
1316
1317 count = hdr->issMax;
1318 ss = bfd_malloc (count);
1319 if (ss == NULL)
1320 goto error_return;
1321 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1322 goto error_return;
1323
1324 count = hdr->ipdMax;
1325 for (i = 0; i < (unsigned long) count; i++, rp++)
1326 {
1327 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1328 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1329 rp->adr = sym.value;
1330 rp->regmask = pdr.regmask;
1331 rp->regoffset = pdr.regoffset;
1332 rp->fregmask = pdr.fregmask;
1333 rp->fregoffset = pdr.fregoffset;
1334 rp->frameoffset = pdr.frameoffset;
1335 rp->framereg = pdr.framereg;
1336 rp->pcreg = pdr.pcreg;
1337 rp->irpss = sindex;
1338 sv[i] = ss + sym.iss;
1339 sindex += strlen (sv[i]) + 1;
1340 }
1341 }
1342
1343 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1344 size = BFD_ALIGN (size, 16);
1345 rtproc = bfd_alloc (abfd, size);
1346 if (rtproc == NULL)
1347 {
1348 mips_elf_hash_table (info)->procedure_count = 0;
1349 goto error_return;
1350 }
1351
1352 mips_elf_hash_table (info)->procedure_count = count + 2;
1353
1354 erp = rtproc;
1355 memset (erp, 0, sizeof (struct rpdr_ext));
1356 erp++;
1357 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1358 strcpy (str, no_name_func);
1359 str += strlen (no_name_func) + 1;
1360 for (i = 0; i < count; i++)
1361 {
1362 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1363 strcpy (str, sv[i]);
1364 str += strlen (sv[i]) + 1;
1365 }
1366 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1367
1368 /* Set the size and contents of .rtproc section. */
1369 s->size = size;
1370 s->contents = rtproc;
1371
1372 /* Skip this section later on (I don't think this currently
1373 matters, but someday it might). */
1374 s->map_head.link_order = NULL;
1375
1376 if (epdr != NULL)
1377 free (epdr);
1378 if (rpdr != NULL)
1379 free (rpdr);
1380 if (esym != NULL)
1381 free (esym);
1382 if (ss != NULL)
1383 free (ss);
1384 if (sv != NULL)
1385 free (sv);
1386
1387 return TRUE;
1388
1389 error_return:
1390 if (epdr != NULL)
1391 free (epdr);
1392 if (rpdr != NULL)
1393 free (rpdr);
1394 if (esym != NULL)
1395 free (esym);
1396 if (ss != NULL)
1397 free (ss);
1398 if (sv != NULL)
1399 free (sv);
1400 return FALSE;
1401 }
1402 \f
1403 /* We're going to create a stub for H. Create a symbol for the stub's
1404 value and size, to help make the disassembly easier to read. */
1405
1406 static bfd_boolean
1407 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1408 struct mips_elf_link_hash_entry *h,
1409 const char *prefix, asection *s, bfd_vma value,
1410 bfd_vma size)
1411 {
1412 struct bfd_link_hash_entry *bh;
1413 struct elf_link_hash_entry *elfh;
1414 const char *name;
1415
1416 if (ELF_ST_IS_MICROMIPS (h->root.other))
1417 value |= 1;
1418
1419 /* Create a new symbol. */
1420 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1421 bh = NULL;
1422 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1423 BSF_LOCAL, s, value, NULL,
1424 TRUE, FALSE, &bh))
1425 return FALSE;
1426
1427 /* Make it a local function. */
1428 elfh = (struct elf_link_hash_entry *) bh;
1429 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1430 elfh->size = size;
1431 elfh->forced_local = 1;
1432 return TRUE;
1433 }
1434
1435 /* We're about to redefine H. Create a symbol to represent H's
1436 current value and size, to help make the disassembly easier
1437 to read. */
1438
1439 static bfd_boolean
1440 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1441 struct mips_elf_link_hash_entry *h,
1442 const char *prefix)
1443 {
1444 struct bfd_link_hash_entry *bh;
1445 struct elf_link_hash_entry *elfh;
1446 const char *name;
1447 asection *s;
1448 bfd_vma value;
1449
1450 /* Read the symbol's value. */
1451 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1452 || h->root.root.type == bfd_link_hash_defweak);
1453 s = h->root.root.u.def.section;
1454 value = h->root.root.u.def.value;
1455
1456 /* Create a new symbol. */
1457 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1458 bh = NULL;
1459 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1460 BSF_LOCAL, s, value, NULL,
1461 TRUE, FALSE, &bh))
1462 return FALSE;
1463
1464 /* Make it local and copy the other attributes from H. */
1465 elfh = (struct elf_link_hash_entry *) bh;
1466 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1467 elfh->other = h->root.other;
1468 elfh->size = h->root.size;
1469 elfh->forced_local = 1;
1470 return TRUE;
1471 }
1472
1473 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1474 function rather than to a hard-float stub. */
1475
1476 static bfd_boolean
1477 section_allows_mips16_refs_p (asection *section)
1478 {
1479 const char *name;
1480
1481 name = bfd_get_section_name (section->owner, section);
1482 return (FN_STUB_P (name)
1483 || CALL_STUB_P (name)
1484 || CALL_FP_STUB_P (name)
1485 || strcmp (name, ".pdr") == 0);
1486 }
1487
1488 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1489 stub section of some kind. Return the R_SYMNDX of the target
1490 function, or 0 if we can't decide which function that is. */
1491
1492 static unsigned long
1493 mips16_stub_symndx (const struct elf_backend_data *bed,
1494 asection *sec ATTRIBUTE_UNUSED,
1495 const Elf_Internal_Rela *relocs,
1496 const Elf_Internal_Rela *relend)
1497 {
1498 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1499 const Elf_Internal_Rela *rel;
1500
1501 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1502 one in a compound relocation. */
1503 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1504 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1505 return ELF_R_SYM (sec->owner, rel->r_info);
1506
1507 /* Otherwise trust the first relocation, whatever its kind. This is
1508 the traditional behavior. */
1509 if (relocs < relend)
1510 return ELF_R_SYM (sec->owner, relocs->r_info);
1511
1512 return 0;
1513 }
1514
1515 /* Check the mips16 stubs for a particular symbol, and see if we can
1516 discard them. */
1517
1518 static void
1519 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1520 struct mips_elf_link_hash_entry *h)
1521 {
1522 /* Dynamic symbols must use the standard call interface, in case other
1523 objects try to call them. */
1524 if (h->fn_stub != NULL
1525 && h->root.dynindx != -1)
1526 {
1527 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1528 h->need_fn_stub = TRUE;
1529 }
1530
1531 if (h->fn_stub != NULL
1532 && ! h->need_fn_stub)
1533 {
1534 /* We don't need the fn_stub; the only references to this symbol
1535 are 16 bit calls. Clobber the size to 0 to prevent it from
1536 being included in the link. */
1537 h->fn_stub->size = 0;
1538 h->fn_stub->flags &= ~SEC_RELOC;
1539 h->fn_stub->reloc_count = 0;
1540 h->fn_stub->flags |= SEC_EXCLUDE;
1541 }
1542
1543 if (h->call_stub != NULL
1544 && ELF_ST_IS_MIPS16 (h->root.other))
1545 {
1546 /* We don't need the call_stub; this is a 16 bit function, so
1547 calls from other 16 bit functions are OK. Clobber the size
1548 to 0 to prevent it from being included in the link. */
1549 h->call_stub->size = 0;
1550 h->call_stub->flags &= ~SEC_RELOC;
1551 h->call_stub->reloc_count = 0;
1552 h->call_stub->flags |= SEC_EXCLUDE;
1553 }
1554
1555 if (h->call_fp_stub != NULL
1556 && ELF_ST_IS_MIPS16 (h->root.other))
1557 {
1558 /* We don't need the call_stub; this is a 16 bit function, so
1559 calls from other 16 bit functions are OK. Clobber the size
1560 to 0 to prevent it from being included in the link. */
1561 h->call_fp_stub->size = 0;
1562 h->call_fp_stub->flags &= ~SEC_RELOC;
1563 h->call_fp_stub->reloc_count = 0;
1564 h->call_fp_stub->flags |= SEC_EXCLUDE;
1565 }
1566 }
1567
1568 /* Hashtable callbacks for mips_elf_la25_stubs. */
1569
1570 static hashval_t
1571 mips_elf_la25_stub_hash (const void *entry_)
1572 {
1573 const struct mips_elf_la25_stub *entry;
1574
1575 entry = (struct mips_elf_la25_stub *) entry_;
1576 return entry->h->root.root.u.def.section->id
1577 + entry->h->root.root.u.def.value;
1578 }
1579
1580 static int
1581 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1582 {
1583 const struct mips_elf_la25_stub *entry1, *entry2;
1584
1585 entry1 = (struct mips_elf_la25_stub *) entry1_;
1586 entry2 = (struct mips_elf_la25_stub *) entry2_;
1587 return ((entry1->h->root.root.u.def.section
1588 == entry2->h->root.root.u.def.section)
1589 && (entry1->h->root.root.u.def.value
1590 == entry2->h->root.root.u.def.value));
1591 }
1592
1593 /* Called by the linker to set up the la25 stub-creation code. FN is
1594 the linker's implementation of add_stub_function. Return true on
1595 success. */
1596
1597 bfd_boolean
1598 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1599 asection *(*fn) (const char *, asection *,
1600 asection *))
1601 {
1602 struct mips_elf_link_hash_table *htab;
1603
1604 htab = mips_elf_hash_table (info);
1605 if (htab == NULL)
1606 return FALSE;
1607
1608 htab->add_stub_section = fn;
1609 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1610 mips_elf_la25_stub_eq, NULL);
1611 if (htab->la25_stubs == NULL)
1612 return FALSE;
1613
1614 return TRUE;
1615 }
1616
1617 /* Return true if H is a locally-defined PIC function, in the sense
1618 that it or its fn_stub might need $25 to be valid on entry.
1619 Note that MIPS16 functions set up $gp using PC-relative instructions,
1620 so they themselves never need $25 to be valid. Only non-MIPS16
1621 entry points are of interest here. */
1622
1623 static bfd_boolean
1624 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1625 {
1626 return ((h->root.root.type == bfd_link_hash_defined
1627 || h->root.root.type == bfd_link_hash_defweak)
1628 && h->root.def_regular
1629 && !bfd_is_abs_section (h->root.root.u.def.section)
1630 && (!ELF_ST_IS_MIPS16 (h->root.other)
1631 || (h->fn_stub && h->need_fn_stub))
1632 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1633 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1634 }
1635
1636 /* Set *SEC to the input section that contains the target of STUB.
1637 Return the offset of the target from the start of that section. */
1638
1639 static bfd_vma
1640 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1641 asection **sec)
1642 {
1643 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1644 {
1645 BFD_ASSERT (stub->h->need_fn_stub);
1646 *sec = stub->h->fn_stub;
1647 return 0;
1648 }
1649 else
1650 {
1651 *sec = stub->h->root.root.u.def.section;
1652 return stub->h->root.root.u.def.value;
1653 }
1654 }
1655
1656 /* STUB describes an la25 stub that we have decided to implement
1657 by inserting an LUI/ADDIU pair before the target function.
1658 Create the section and redirect the function symbol to it. */
1659
1660 static bfd_boolean
1661 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1662 struct bfd_link_info *info)
1663 {
1664 struct mips_elf_link_hash_table *htab;
1665 char *name;
1666 asection *s, *input_section;
1667 unsigned int align;
1668
1669 htab = mips_elf_hash_table (info);
1670 if (htab == NULL)
1671 return FALSE;
1672
1673 /* Create a unique name for the new section. */
1674 name = bfd_malloc (11 + sizeof (".text.stub."));
1675 if (name == NULL)
1676 return FALSE;
1677 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1678
1679 /* Create the section. */
1680 mips_elf_get_la25_target (stub, &input_section);
1681 s = htab->add_stub_section (name, input_section,
1682 input_section->output_section);
1683 if (s == NULL)
1684 return FALSE;
1685
1686 /* Make sure that any padding goes before the stub. */
1687 align = input_section->alignment_power;
1688 if (!bfd_set_section_alignment (s->owner, s, align))
1689 return FALSE;
1690 if (align > 3)
1691 s->size = (1 << align) - 8;
1692
1693 /* Create a symbol for the stub. */
1694 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1695 stub->stub_section = s;
1696 stub->offset = s->size;
1697
1698 /* Allocate room for it. */
1699 s->size += 8;
1700 return TRUE;
1701 }
1702
1703 /* STUB describes an la25 stub that we have decided to implement
1704 with a separate trampoline. Allocate room for it and redirect
1705 the function symbol to it. */
1706
1707 static bfd_boolean
1708 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1709 struct bfd_link_info *info)
1710 {
1711 struct mips_elf_link_hash_table *htab;
1712 asection *s;
1713
1714 htab = mips_elf_hash_table (info);
1715 if (htab == NULL)
1716 return FALSE;
1717
1718 /* Create a trampoline section, if we haven't already. */
1719 s = htab->strampoline;
1720 if (s == NULL)
1721 {
1722 asection *input_section = stub->h->root.root.u.def.section;
1723 s = htab->add_stub_section (".text", NULL,
1724 input_section->output_section);
1725 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1726 return FALSE;
1727 htab->strampoline = s;
1728 }
1729
1730 /* Create a symbol for the stub. */
1731 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1732 stub->stub_section = s;
1733 stub->offset = s->size;
1734
1735 /* Allocate room for it. */
1736 s->size += 16;
1737 return TRUE;
1738 }
1739
1740 /* H describes a symbol that needs an la25 stub. Make sure that an
1741 appropriate stub exists and point H at it. */
1742
1743 static bfd_boolean
1744 mips_elf_add_la25_stub (struct bfd_link_info *info,
1745 struct mips_elf_link_hash_entry *h)
1746 {
1747 struct mips_elf_link_hash_table *htab;
1748 struct mips_elf_la25_stub search, *stub;
1749 bfd_boolean use_trampoline_p;
1750 asection *s;
1751 bfd_vma value;
1752 void **slot;
1753
1754 /* Describe the stub we want. */
1755 search.stub_section = NULL;
1756 search.offset = 0;
1757 search.h = h;
1758
1759 /* See if we've already created an equivalent stub. */
1760 htab = mips_elf_hash_table (info);
1761 if (htab == NULL)
1762 return FALSE;
1763
1764 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1765 if (slot == NULL)
1766 return FALSE;
1767
1768 stub = (struct mips_elf_la25_stub *) *slot;
1769 if (stub != NULL)
1770 {
1771 /* We can reuse the existing stub. */
1772 h->la25_stub = stub;
1773 return TRUE;
1774 }
1775
1776 /* Create a permanent copy of ENTRY and add it to the hash table. */
1777 stub = bfd_malloc (sizeof (search));
1778 if (stub == NULL)
1779 return FALSE;
1780 *stub = search;
1781 *slot = stub;
1782
1783 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1784 of the section and if we would need no more than 2 nops. */
1785 value = mips_elf_get_la25_target (stub, &s);
1786 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1787
1788 h->la25_stub = stub;
1789 return (use_trampoline_p
1790 ? mips_elf_add_la25_trampoline (stub, info)
1791 : mips_elf_add_la25_intro (stub, info));
1792 }
1793
1794 /* A mips_elf_link_hash_traverse callback that is called before sizing
1795 sections. DATA points to a mips_htab_traverse_info structure. */
1796
1797 static bfd_boolean
1798 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1799 {
1800 struct mips_htab_traverse_info *hti;
1801
1802 hti = (struct mips_htab_traverse_info *) data;
1803 if (!hti->info->relocatable)
1804 mips_elf_check_mips16_stubs (hti->info, h);
1805
1806 if (mips_elf_local_pic_function_p (h))
1807 {
1808 /* PR 12845: If H is in a section that has been garbage
1809 collected it will have its output section set to *ABS*. */
1810 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1811 return TRUE;
1812
1813 /* H is a function that might need $25 to be valid on entry.
1814 If we're creating a non-PIC relocatable object, mark H as
1815 being PIC. If we're creating a non-relocatable object with
1816 non-PIC branches and jumps to H, make sure that H has an la25
1817 stub. */
1818 if (hti->info->relocatable)
1819 {
1820 if (!PIC_OBJECT_P (hti->output_bfd))
1821 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1822 }
1823 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1824 {
1825 hti->error = TRUE;
1826 return FALSE;
1827 }
1828 }
1829 return TRUE;
1830 }
1831 \f
1832 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1833 Most mips16 instructions are 16 bits, but these instructions
1834 are 32 bits.
1835
1836 The format of these instructions is:
1837
1838 +--------------+--------------------------------+
1839 | JALX | X| Imm 20:16 | Imm 25:21 |
1840 +--------------+--------------------------------+
1841 | Immediate 15:0 |
1842 +-----------------------------------------------+
1843
1844 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1845 Note that the immediate value in the first word is swapped.
1846
1847 When producing a relocatable object file, R_MIPS16_26 is
1848 handled mostly like R_MIPS_26. In particular, the addend is
1849 stored as a straight 26-bit value in a 32-bit instruction.
1850 (gas makes life simpler for itself by never adjusting a
1851 R_MIPS16_26 reloc to be against a section, so the addend is
1852 always zero). However, the 32 bit instruction is stored as 2
1853 16-bit values, rather than a single 32-bit value. In a
1854 big-endian file, the result is the same; in a little-endian
1855 file, the two 16-bit halves of the 32 bit value are swapped.
1856 This is so that a disassembler can recognize the jal
1857 instruction.
1858
1859 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1860 instruction stored as two 16-bit values. The addend A is the
1861 contents of the targ26 field. The calculation is the same as
1862 R_MIPS_26. When storing the calculated value, reorder the
1863 immediate value as shown above, and don't forget to store the
1864 value as two 16-bit values.
1865
1866 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1867 defined as
1868
1869 big-endian:
1870 +--------+----------------------+
1871 | | |
1872 | | targ26-16 |
1873 |31 26|25 0|
1874 +--------+----------------------+
1875
1876 little-endian:
1877 +----------+------+-------------+
1878 | | | |
1879 | sub1 | | sub2 |
1880 |0 9|10 15|16 31|
1881 +----------+--------------------+
1882 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1883 ((sub1 << 16) | sub2)).
1884
1885 When producing a relocatable object file, the calculation is
1886 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1887 When producing a fully linked file, the calculation is
1888 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1889 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1890
1891 The table below lists the other MIPS16 instruction relocations.
1892 Each one is calculated in the same way as the non-MIPS16 relocation
1893 given on the right, but using the extended MIPS16 layout of 16-bit
1894 immediate fields:
1895
1896 R_MIPS16_GPREL R_MIPS_GPREL16
1897 R_MIPS16_GOT16 R_MIPS_GOT16
1898 R_MIPS16_CALL16 R_MIPS_CALL16
1899 R_MIPS16_HI16 R_MIPS_HI16
1900 R_MIPS16_LO16 R_MIPS_LO16
1901
1902 A typical instruction will have a format like this:
1903
1904 +--------------+--------------------------------+
1905 | EXTEND | Imm 10:5 | Imm 15:11 |
1906 +--------------+--------------------------------+
1907 | Major | rx | ry | Imm 4:0 |
1908 +--------------+--------------------------------+
1909
1910 EXTEND is the five bit value 11110. Major is the instruction
1911 opcode.
1912
1913 All we need to do here is shuffle the bits appropriately.
1914 As above, the two 16-bit halves must be swapped on a
1915 little-endian system. */
1916
1917 static inline bfd_boolean
1918 mips16_reloc_p (int r_type)
1919 {
1920 switch (r_type)
1921 {
1922 case R_MIPS16_26:
1923 case R_MIPS16_GPREL:
1924 case R_MIPS16_GOT16:
1925 case R_MIPS16_CALL16:
1926 case R_MIPS16_HI16:
1927 case R_MIPS16_LO16:
1928 case R_MIPS16_TLS_GD:
1929 case R_MIPS16_TLS_LDM:
1930 case R_MIPS16_TLS_DTPREL_HI16:
1931 case R_MIPS16_TLS_DTPREL_LO16:
1932 case R_MIPS16_TLS_GOTTPREL:
1933 case R_MIPS16_TLS_TPREL_HI16:
1934 case R_MIPS16_TLS_TPREL_LO16:
1935 return TRUE;
1936
1937 default:
1938 return FALSE;
1939 }
1940 }
1941
1942 /* Check if a microMIPS reloc. */
1943
1944 static inline bfd_boolean
1945 micromips_reloc_p (unsigned int r_type)
1946 {
1947 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1948 }
1949
1950 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1951 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1952 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1953
1954 static inline bfd_boolean
1955 micromips_reloc_shuffle_p (unsigned int r_type)
1956 {
1957 return (micromips_reloc_p (r_type)
1958 && r_type != R_MICROMIPS_PC7_S1
1959 && r_type != R_MICROMIPS_PC10_S1);
1960 }
1961
1962 static inline bfd_boolean
1963 got16_reloc_p (int r_type)
1964 {
1965 return (r_type == R_MIPS_GOT16
1966 || r_type == R_MIPS16_GOT16
1967 || r_type == R_MICROMIPS_GOT16);
1968 }
1969
1970 static inline bfd_boolean
1971 call16_reloc_p (int r_type)
1972 {
1973 return (r_type == R_MIPS_CALL16
1974 || r_type == R_MIPS16_CALL16
1975 || r_type == R_MICROMIPS_CALL16);
1976 }
1977
1978 static inline bfd_boolean
1979 got_disp_reloc_p (unsigned int r_type)
1980 {
1981 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1982 }
1983
1984 static inline bfd_boolean
1985 got_page_reloc_p (unsigned int r_type)
1986 {
1987 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1988 }
1989
1990 static inline bfd_boolean
1991 got_ofst_reloc_p (unsigned int r_type)
1992 {
1993 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1994 }
1995
1996 static inline bfd_boolean
1997 got_hi16_reloc_p (unsigned int r_type)
1998 {
1999 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2000 }
2001
2002 static inline bfd_boolean
2003 got_lo16_reloc_p (unsigned int r_type)
2004 {
2005 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2006 }
2007
2008 static inline bfd_boolean
2009 call_hi16_reloc_p (unsigned int r_type)
2010 {
2011 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2012 }
2013
2014 static inline bfd_boolean
2015 call_lo16_reloc_p (unsigned int r_type)
2016 {
2017 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2018 }
2019
2020 static inline bfd_boolean
2021 hi16_reloc_p (int r_type)
2022 {
2023 return (r_type == R_MIPS_HI16
2024 || r_type == R_MIPS16_HI16
2025 || r_type == R_MICROMIPS_HI16);
2026 }
2027
2028 static inline bfd_boolean
2029 lo16_reloc_p (int r_type)
2030 {
2031 return (r_type == R_MIPS_LO16
2032 || r_type == R_MIPS16_LO16
2033 || r_type == R_MICROMIPS_LO16);
2034 }
2035
2036 static inline bfd_boolean
2037 mips16_call_reloc_p (int r_type)
2038 {
2039 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2040 }
2041
2042 static inline bfd_boolean
2043 jal_reloc_p (int r_type)
2044 {
2045 return (r_type == R_MIPS_26
2046 || r_type == R_MIPS16_26
2047 || r_type == R_MICROMIPS_26_S1);
2048 }
2049
2050 static inline bfd_boolean
2051 micromips_branch_reloc_p (int r_type)
2052 {
2053 return (r_type == R_MICROMIPS_26_S1
2054 || r_type == R_MICROMIPS_PC16_S1
2055 || r_type == R_MICROMIPS_PC10_S1
2056 || r_type == R_MICROMIPS_PC7_S1);
2057 }
2058
2059 static inline bfd_boolean
2060 tls_gd_reloc_p (unsigned int r_type)
2061 {
2062 return (r_type == R_MIPS_TLS_GD
2063 || r_type == R_MIPS16_TLS_GD
2064 || r_type == R_MICROMIPS_TLS_GD);
2065 }
2066
2067 static inline bfd_boolean
2068 tls_ldm_reloc_p (unsigned int r_type)
2069 {
2070 return (r_type == R_MIPS_TLS_LDM
2071 || r_type == R_MIPS16_TLS_LDM
2072 || r_type == R_MICROMIPS_TLS_LDM);
2073 }
2074
2075 static inline bfd_boolean
2076 tls_gottprel_reloc_p (unsigned int r_type)
2077 {
2078 return (r_type == R_MIPS_TLS_GOTTPREL
2079 || r_type == R_MIPS16_TLS_GOTTPREL
2080 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2081 }
2082
2083 void
2084 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2085 bfd_boolean jal_shuffle, bfd_byte *data)
2086 {
2087 bfd_vma first, second, val;
2088
2089 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2090 return;
2091
2092 /* Pick up the first and second halfwords of the instruction. */
2093 first = bfd_get_16 (abfd, data);
2094 second = bfd_get_16 (abfd, data + 2);
2095 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2096 val = first << 16 | second;
2097 else if (r_type != R_MIPS16_26)
2098 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2099 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2100 else
2101 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2102 | ((first & 0x1f) << 21) | second);
2103 bfd_put_32 (abfd, val, data);
2104 }
2105
2106 void
2107 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2108 bfd_boolean jal_shuffle, bfd_byte *data)
2109 {
2110 bfd_vma first, second, val;
2111
2112 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2113 return;
2114
2115 val = bfd_get_32 (abfd, data);
2116 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2117 {
2118 second = val & 0xffff;
2119 first = val >> 16;
2120 }
2121 else if (r_type != R_MIPS16_26)
2122 {
2123 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2124 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2125 }
2126 else
2127 {
2128 second = val & 0xffff;
2129 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2130 | ((val >> 21) & 0x1f);
2131 }
2132 bfd_put_16 (abfd, second, data + 2);
2133 bfd_put_16 (abfd, first, data);
2134 }
2135
2136 bfd_reloc_status_type
2137 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2138 arelent *reloc_entry, asection *input_section,
2139 bfd_boolean relocatable, void *data, bfd_vma gp)
2140 {
2141 bfd_vma relocation;
2142 bfd_signed_vma val;
2143 bfd_reloc_status_type status;
2144
2145 if (bfd_is_com_section (symbol->section))
2146 relocation = 0;
2147 else
2148 relocation = symbol->value;
2149
2150 relocation += symbol->section->output_section->vma;
2151 relocation += symbol->section->output_offset;
2152
2153 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2154 return bfd_reloc_outofrange;
2155
2156 /* Set val to the offset into the section or symbol. */
2157 val = reloc_entry->addend;
2158
2159 _bfd_mips_elf_sign_extend (val, 16);
2160
2161 /* Adjust val for the final section location and GP value. If we
2162 are producing relocatable output, we don't want to do this for
2163 an external symbol. */
2164 if (! relocatable
2165 || (symbol->flags & BSF_SECTION_SYM) != 0)
2166 val += relocation - gp;
2167
2168 if (reloc_entry->howto->partial_inplace)
2169 {
2170 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2171 (bfd_byte *) data
2172 + reloc_entry->address);
2173 if (status != bfd_reloc_ok)
2174 return status;
2175 }
2176 else
2177 reloc_entry->addend = val;
2178
2179 if (relocatable)
2180 reloc_entry->address += input_section->output_offset;
2181
2182 return bfd_reloc_ok;
2183 }
2184
2185 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2186 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2187 that contains the relocation field and DATA points to the start of
2188 INPUT_SECTION. */
2189
2190 struct mips_hi16
2191 {
2192 struct mips_hi16 *next;
2193 bfd_byte *data;
2194 asection *input_section;
2195 arelent rel;
2196 };
2197
2198 /* FIXME: This should not be a static variable. */
2199
2200 static struct mips_hi16 *mips_hi16_list;
2201
2202 /* A howto special_function for REL *HI16 relocations. We can only
2203 calculate the correct value once we've seen the partnering
2204 *LO16 relocation, so just save the information for later.
2205
2206 The ABI requires that the *LO16 immediately follow the *HI16.
2207 However, as a GNU extension, we permit an arbitrary number of
2208 *HI16s to be associated with a single *LO16. This significantly
2209 simplies the relocation handling in gcc. */
2210
2211 bfd_reloc_status_type
2212 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2213 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2214 asection *input_section, bfd *output_bfd,
2215 char **error_message ATTRIBUTE_UNUSED)
2216 {
2217 struct mips_hi16 *n;
2218
2219 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2220 return bfd_reloc_outofrange;
2221
2222 n = bfd_malloc (sizeof *n);
2223 if (n == NULL)
2224 return bfd_reloc_outofrange;
2225
2226 n->next = mips_hi16_list;
2227 n->data = data;
2228 n->input_section = input_section;
2229 n->rel = *reloc_entry;
2230 mips_hi16_list = n;
2231
2232 if (output_bfd != NULL)
2233 reloc_entry->address += input_section->output_offset;
2234
2235 return bfd_reloc_ok;
2236 }
2237
2238 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2239 like any other 16-bit relocation when applied to global symbols, but is
2240 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2241
2242 bfd_reloc_status_type
2243 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2244 void *data, asection *input_section,
2245 bfd *output_bfd, char **error_message)
2246 {
2247 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2248 || bfd_is_und_section (bfd_get_section (symbol))
2249 || bfd_is_com_section (bfd_get_section (symbol)))
2250 /* The relocation is against a global symbol. */
2251 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2252 input_section, output_bfd,
2253 error_message);
2254
2255 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2256 input_section, output_bfd, error_message);
2257 }
2258
2259 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2260 is a straightforward 16 bit inplace relocation, but we must deal with
2261 any partnering high-part relocations as well. */
2262
2263 bfd_reloc_status_type
2264 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2265 void *data, asection *input_section,
2266 bfd *output_bfd, char **error_message)
2267 {
2268 bfd_vma vallo;
2269 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2270
2271 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2272 return bfd_reloc_outofrange;
2273
2274 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2275 location);
2276 vallo = bfd_get_32 (abfd, location);
2277 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2278 location);
2279
2280 while (mips_hi16_list != NULL)
2281 {
2282 bfd_reloc_status_type ret;
2283 struct mips_hi16 *hi;
2284
2285 hi = mips_hi16_list;
2286
2287 /* R_MIPS*_GOT16 relocations are something of a special case. We
2288 want to install the addend in the same way as for a R_MIPS*_HI16
2289 relocation (with a rightshift of 16). However, since GOT16
2290 relocations can also be used with global symbols, their howto
2291 has a rightshift of 0. */
2292 if (hi->rel.howto->type == R_MIPS_GOT16)
2293 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2294 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2295 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2296 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2297 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2298
2299 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2300 carry or borrow will induce a change of +1 or -1 in the high part. */
2301 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2302
2303 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2304 hi->input_section, output_bfd,
2305 error_message);
2306 if (ret != bfd_reloc_ok)
2307 return ret;
2308
2309 mips_hi16_list = hi->next;
2310 free (hi);
2311 }
2312
2313 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2314 input_section, output_bfd,
2315 error_message);
2316 }
2317
2318 /* A generic howto special_function. This calculates and installs the
2319 relocation itself, thus avoiding the oft-discussed problems in
2320 bfd_perform_relocation and bfd_install_relocation. */
2321
2322 bfd_reloc_status_type
2323 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2324 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2325 asection *input_section, bfd *output_bfd,
2326 char **error_message ATTRIBUTE_UNUSED)
2327 {
2328 bfd_signed_vma val;
2329 bfd_reloc_status_type status;
2330 bfd_boolean relocatable;
2331
2332 relocatable = (output_bfd != NULL);
2333
2334 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2335 return bfd_reloc_outofrange;
2336
2337 /* Build up the field adjustment in VAL. */
2338 val = 0;
2339 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2340 {
2341 /* Either we're calculating the final field value or we have a
2342 relocation against a section symbol. Add in the section's
2343 offset or address. */
2344 val += symbol->section->output_section->vma;
2345 val += symbol->section->output_offset;
2346 }
2347
2348 if (!relocatable)
2349 {
2350 /* We're calculating the final field value. Add in the symbol's value
2351 and, if pc-relative, subtract the address of the field itself. */
2352 val += symbol->value;
2353 if (reloc_entry->howto->pc_relative)
2354 {
2355 val -= input_section->output_section->vma;
2356 val -= input_section->output_offset;
2357 val -= reloc_entry->address;
2358 }
2359 }
2360
2361 /* VAL is now the final adjustment. If we're keeping this relocation
2362 in the output file, and if the relocation uses a separate addend,
2363 we just need to add VAL to that addend. Otherwise we need to add
2364 VAL to the relocation field itself. */
2365 if (relocatable && !reloc_entry->howto->partial_inplace)
2366 reloc_entry->addend += val;
2367 else
2368 {
2369 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2370
2371 /* Add in the separate addend, if any. */
2372 val += reloc_entry->addend;
2373
2374 /* Add VAL to the relocation field. */
2375 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2376 location);
2377 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2378 location);
2379 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2380 location);
2381
2382 if (status != bfd_reloc_ok)
2383 return status;
2384 }
2385
2386 if (relocatable)
2387 reloc_entry->address += input_section->output_offset;
2388
2389 return bfd_reloc_ok;
2390 }
2391 \f
2392 /* Swap an entry in a .gptab section. Note that these routines rely
2393 on the equivalence of the two elements of the union. */
2394
2395 static void
2396 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2397 Elf32_gptab *in)
2398 {
2399 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2400 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2401 }
2402
2403 static void
2404 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2405 Elf32_External_gptab *ex)
2406 {
2407 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2408 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2409 }
2410
2411 static void
2412 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2413 Elf32_External_compact_rel *ex)
2414 {
2415 H_PUT_32 (abfd, in->id1, ex->id1);
2416 H_PUT_32 (abfd, in->num, ex->num);
2417 H_PUT_32 (abfd, in->id2, ex->id2);
2418 H_PUT_32 (abfd, in->offset, ex->offset);
2419 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2420 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2421 }
2422
2423 static void
2424 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2425 Elf32_External_crinfo *ex)
2426 {
2427 unsigned long l;
2428
2429 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2430 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2431 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2432 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2433 H_PUT_32 (abfd, l, ex->info);
2434 H_PUT_32 (abfd, in->konst, ex->konst);
2435 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2436 }
2437 \f
2438 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2439 routines swap this structure in and out. They are used outside of
2440 BFD, so they are globally visible. */
2441
2442 void
2443 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2444 Elf32_RegInfo *in)
2445 {
2446 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2447 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2448 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2449 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2450 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2451 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2452 }
2453
2454 void
2455 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2456 Elf32_External_RegInfo *ex)
2457 {
2458 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2459 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2460 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2461 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2462 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2463 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2464 }
2465
2466 /* In the 64 bit ABI, the .MIPS.options section holds register
2467 information in an Elf64_Reginfo structure. These routines swap
2468 them in and out. They are globally visible because they are used
2469 outside of BFD. These routines are here so that gas can call them
2470 without worrying about whether the 64 bit ABI has been included. */
2471
2472 void
2473 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2474 Elf64_Internal_RegInfo *in)
2475 {
2476 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2477 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2478 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2479 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2480 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2481 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2482 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2483 }
2484
2485 void
2486 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2487 Elf64_External_RegInfo *ex)
2488 {
2489 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2490 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2491 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2492 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2493 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2494 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2495 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2496 }
2497
2498 /* Swap in an options header. */
2499
2500 void
2501 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2502 Elf_Internal_Options *in)
2503 {
2504 in->kind = H_GET_8 (abfd, ex->kind);
2505 in->size = H_GET_8 (abfd, ex->size);
2506 in->section = H_GET_16 (abfd, ex->section);
2507 in->info = H_GET_32 (abfd, ex->info);
2508 }
2509
2510 /* Swap out an options header. */
2511
2512 void
2513 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2514 Elf_External_Options *ex)
2515 {
2516 H_PUT_8 (abfd, in->kind, ex->kind);
2517 H_PUT_8 (abfd, in->size, ex->size);
2518 H_PUT_16 (abfd, in->section, ex->section);
2519 H_PUT_32 (abfd, in->info, ex->info);
2520 }
2521 \f
2522 /* This function is called via qsort() to sort the dynamic relocation
2523 entries by increasing r_symndx value. */
2524
2525 static int
2526 sort_dynamic_relocs (const void *arg1, const void *arg2)
2527 {
2528 Elf_Internal_Rela int_reloc1;
2529 Elf_Internal_Rela int_reloc2;
2530 int diff;
2531
2532 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2533 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2534
2535 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2536 if (diff != 0)
2537 return diff;
2538
2539 if (int_reloc1.r_offset < int_reloc2.r_offset)
2540 return -1;
2541 if (int_reloc1.r_offset > int_reloc2.r_offset)
2542 return 1;
2543 return 0;
2544 }
2545
2546 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2547
2548 static int
2549 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2550 const void *arg2 ATTRIBUTE_UNUSED)
2551 {
2552 #ifdef BFD64
2553 Elf_Internal_Rela int_reloc1[3];
2554 Elf_Internal_Rela int_reloc2[3];
2555
2556 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2557 (reldyn_sorting_bfd, arg1, int_reloc1);
2558 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2559 (reldyn_sorting_bfd, arg2, int_reloc2);
2560
2561 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2562 return -1;
2563 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2564 return 1;
2565
2566 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2567 return -1;
2568 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2569 return 1;
2570 return 0;
2571 #else
2572 abort ();
2573 #endif
2574 }
2575
2576
2577 /* This routine is used to write out ECOFF debugging external symbol
2578 information. It is called via mips_elf_link_hash_traverse. The
2579 ECOFF external symbol information must match the ELF external
2580 symbol information. Unfortunately, at this point we don't know
2581 whether a symbol is required by reloc information, so the two
2582 tables may wind up being different. We must sort out the external
2583 symbol information before we can set the final size of the .mdebug
2584 section, and we must set the size of the .mdebug section before we
2585 can relocate any sections, and we can't know which symbols are
2586 required by relocation until we relocate the sections.
2587 Fortunately, it is relatively unlikely that any symbol will be
2588 stripped but required by a reloc. In particular, it can not happen
2589 when generating a final executable. */
2590
2591 static bfd_boolean
2592 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2593 {
2594 struct extsym_info *einfo = data;
2595 bfd_boolean strip;
2596 asection *sec, *output_section;
2597
2598 if (h->root.indx == -2)
2599 strip = FALSE;
2600 else if ((h->root.def_dynamic
2601 || h->root.ref_dynamic
2602 || h->root.type == bfd_link_hash_new)
2603 && !h->root.def_regular
2604 && !h->root.ref_regular)
2605 strip = TRUE;
2606 else if (einfo->info->strip == strip_all
2607 || (einfo->info->strip == strip_some
2608 && bfd_hash_lookup (einfo->info->keep_hash,
2609 h->root.root.root.string,
2610 FALSE, FALSE) == NULL))
2611 strip = TRUE;
2612 else
2613 strip = FALSE;
2614
2615 if (strip)
2616 return TRUE;
2617
2618 if (h->esym.ifd == -2)
2619 {
2620 h->esym.jmptbl = 0;
2621 h->esym.cobol_main = 0;
2622 h->esym.weakext = 0;
2623 h->esym.reserved = 0;
2624 h->esym.ifd = ifdNil;
2625 h->esym.asym.value = 0;
2626 h->esym.asym.st = stGlobal;
2627
2628 if (h->root.root.type == bfd_link_hash_undefined
2629 || h->root.root.type == bfd_link_hash_undefweak)
2630 {
2631 const char *name;
2632
2633 /* Use undefined class. Also, set class and type for some
2634 special symbols. */
2635 name = h->root.root.root.string;
2636 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2637 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2638 {
2639 h->esym.asym.sc = scData;
2640 h->esym.asym.st = stLabel;
2641 h->esym.asym.value = 0;
2642 }
2643 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2644 {
2645 h->esym.asym.sc = scAbs;
2646 h->esym.asym.st = stLabel;
2647 h->esym.asym.value =
2648 mips_elf_hash_table (einfo->info)->procedure_count;
2649 }
2650 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2651 {
2652 h->esym.asym.sc = scAbs;
2653 h->esym.asym.st = stLabel;
2654 h->esym.asym.value = elf_gp (einfo->abfd);
2655 }
2656 else
2657 h->esym.asym.sc = scUndefined;
2658 }
2659 else if (h->root.root.type != bfd_link_hash_defined
2660 && h->root.root.type != bfd_link_hash_defweak)
2661 h->esym.asym.sc = scAbs;
2662 else
2663 {
2664 const char *name;
2665
2666 sec = h->root.root.u.def.section;
2667 output_section = sec->output_section;
2668
2669 /* When making a shared library and symbol h is the one from
2670 the another shared library, OUTPUT_SECTION may be null. */
2671 if (output_section == NULL)
2672 h->esym.asym.sc = scUndefined;
2673 else
2674 {
2675 name = bfd_section_name (output_section->owner, output_section);
2676
2677 if (strcmp (name, ".text") == 0)
2678 h->esym.asym.sc = scText;
2679 else if (strcmp (name, ".data") == 0)
2680 h->esym.asym.sc = scData;
2681 else if (strcmp (name, ".sdata") == 0)
2682 h->esym.asym.sc = scSData;
2683 else if (strcmp (name, ".rodata") == 0
2684 || strcmp (name, ".rdata") == 0)
2685 h->esym.asym.sc = scRData;
2686 else if (strcmp (name, ".bss") == 0)
2687 h->esym.asym.sc = scBss;
2688 else if (strcmp (name, ".sbss") == 0)
2689 h->esym.asym.sc = scSBss;
2690 else if (strcmp (name, ".init") == 0)
2691 h->esym.asym.sc = scInit;
2692 else if (strcmp (name, ".fini") == 0)
2693 h->esym.asym.sc = scFini;
2694 else
2695 h->esym.asym.sc = scAbs;
2696 }
2697 }
2698
2699 h->esym.asym.reserved = 0;
2700 h->esym.asym.index = indexNil;
2701 }
2702
2703 if (h->root.root.type == bfd_link_hash_common)
2704 h->esym.asym.value = h->root.root.u.c.size;
2705 else if (h->root.root.type == bfd_link_hash_defined
2706 || h->root.root.type == bfd_link_hash_defweak)
2707 {
2708 if (h->esym.asym.sc == scCommon)
2709 h->esym.asym.sc = scBss;
2710 else if (h->esym.asym.sc == scSCommon)
2711 h->esym.asym.sc = scSBss;
2712
2713 sec = h->root.root.u.def.section;
2714 output_section = sec->output_section;
2715 if (output_section != NULL)
2716 h->esym.asym.value = (h->root.root.u.def.value
2717 + sec->output_offset
2718 + output_section->vma);
2719 else
2720 h->esym.asym.value = 0;
2721 }
2722 else
2723 {
2724 struct mips_elf_link_hash_entry *hd = h;
2725
2726 while (hd->root.root.type == bfd_link_hash_indirect)
2727 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2728
2729 if (hd->needs_lazy_stub)
2730 {
2731 /* Set type and value for a symbol with a function stub. */
2732 h->esym.asym.st = stProc;
2733 sec = hd->root.root.u.def.section;
2734 if (sec == NULL)
2735 h->esym.asym.value = 0;
2736 else
2737 {
2738 output_section = sec->output_section;
2739 if (output_section != NULL)
2740 h->esym.asym.value = (hd->root.plt.offset
2741 + sec->output_offset
2742 + output_section->vma);
2743 else
2744 h->esym.asym.value = 0;
2745 }
2746 }
2747 }
2748
2749 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2750 h->root.root.root.string,
2751 &h->esym))
2752 {
2753 einfo->failed = TRUE;
2754 return FALSE;
2755 }
2756
2757 return TRUE;
2758 }
2759
2760 /* A comparison routine used to sort .gptab entries. */
2761
2762 static int
2763 gptab_compare (const void *p1, const void *p2)
2764 {
2765 const Elf32_gptab *a1 = p1;
2766 const Elf32_gptab *a2 = p2;
2767
2768 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2769 }
2770 \f
2771 /* Functions to manage the got entry hash table. */
2772
2773 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2774 hash number. */
2775
2776 static INLINE hashval_t
2777 mips_elf_hash_bfd_vma (bfd_vma addr)
2778 {
2779 #ifdef BFD64
2780 return addr + (addr >> 32);
2781 #else
2782 return addr;
2783 #endif
2784 }
2785
2786 static hashval_t
2787 mips_elf_got_entry_hash (const void *entry_)
2788 {
2789 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2790
2791 return (entry->symndx
2792 + ((entry->tls_type == GOT_TLS_LDM) << 18)
2793 + (entry->tls_type == GOT_TLS_LDM ? 0
2794 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2795 : entry->symndx >= 0 ? (entry->abfd->id
2796 + mips_elf_hash_bfd_vma (entry->d.addend))
2797 : entry->d.h->root.root.root.hash));
2798 }
2799
2800 static int
2801 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2802 {
2803 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2804 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2805
2806 return (e1->symndx == e2->symndx
2807 && e1->tls_type == e2->tls_type
2808 && (e1->tls_type == GOT_TLS_LDM ? TRUE
2809 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2810 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2811 && e1->d.addend == e2->d.addend)
2812 : e2->abfd && e1->d.h == e2->d.h));
2813 }
2814
2815 static hashval_t
2816 mips_got_page_ref_hash (const void *ref_)
2817 {
2818 const struct mips_got_page_ref *ref;
2819
2820 ref = (const struct mips_got_page_ref *) ref_;
2821 return ((ref->symndx >= 0
2822 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
2823 : ref->u.h->root.root.root.hash)
2824 + mips_elf_hash_bfd_vma (ref->addend));
2825 }
2826
2827 static int
2828 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
2829 {
2830 const struct mips_got_page_ref *ref1, *ref2;
2831
2832 ref1 = (const struct mips_got_page_ref *) ref1_;
2833 ref2 = (const struct mips_got_page_ref *) ref2_;
2834 return (ref1->symndx == ref2->symndx
2835 && (ref1->symndx < 0
2836 ? ref1->u.h == ref2->u.h
2837 : ref1->u.abfd == ref2->u.abfd)
2838 && ref1->addend == ref2->addend);
2839 }
2840
2841 static hashval_t
2842 mips_got_page_entry_hash (const void *entry_)
2843 {
2844 const struct mips_got_page_entry *entry;
2845
2846 entry = (const struct mips_got_page_entry *) entry_;
2847 return entry->sec->id;
2848 }
2849
2850 static int
2851 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2852 {
2853 const struct mips_got_page_entry *entry1, *entry2;
2854
2855 entry1 = (const struct mips_got_page_entry *) entry1_;
2856 entry2 = (const struct mips_got_page_entry *) entry2_;
2857 return entry1->sec == entry2->sec;
2858 }
2859 \f
2860 /* Create and return a new mips_got_info structure. */
2861
2862 static struct mips_got_info *
2863 mips_elf_create_got_info (bfd *abfd)
2864 {
2865 struct mips_got_info *g;
2866
2867 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2868 if (g == NULL)
2869 return NULL;
2870
2871 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2872 mips_elf_got_entry_eq, NULL);
2873 if (g->got_entries == NULL)
2874 return NULL;
2875
2876 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
2877 mips_got_page_ref_eq, NULL);
2878 if (g->got_page_refs == NULL)
2879 return NULL;
2880
2881 return g;
2882 }
2883
2884 /* Return the GOT info for input bfd ABFD, trying to create a new one if
2885 CREATE_P and if ABFD doesn't already have a GOT. */
2886
2887 static struct mips_got_info *
2888 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
2889 {
2890 struct mips_elf_obj_tdata *tdata;
2891
2892 if (!is_mips_elf (abfd))
2893 return NULL;
2894
2895 tdata = mips_elf_tdata (abfd);
2896 if (!tdata->got && create_p)
2897 tdata->got = mips_elf_create_got_info (abfd);
2898 return tdata->got;
2899 }
2900
2901 /* Record that ABFD should use output GOT G. */
2902
2903 static void
2904 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
2905 {
2906 struct mips_elf_obj_tdata *tdata;
2907
2908 BFD_ASSERT (is_mips_elf (abfd));
2909 tdata = mips_elf_tdata (abfd);
2910 if (tdata->got)
2911 {
2912 /* The GOT structure itself and the hash table entries are
2913 allocated to a bfd, but the hash tables aren't. */
2914 htab_delete (tdata->got->got_entries);
2915 htab_delete (tdata->got->got_page_refs);
2916 if (tdata->got->got_page_entries)
2917 htab_delete (tdata->got->got_page_entries);
2918 }
2919 tdata->got = g;
2920 }
2921
2922 /* Return the dynamic relocation section. If it doesn't exist, try to
2923 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2924 if creation fails. */
2925
2926 static asection *
2927 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2928 {
2929 const char *dname;
2930 asection *sreloc;
2931 bfd *dynobj;
2932
2933 dname = MIPS_ELF_REL_DYN_NAME (info);
2934 dynobj = elf_hash_table (info)->dynobj;
2935 sreloc = bfd_get_linker_section (dynobj, dname);
2936 if (sreloc == NULL && create_p)
2937 {
2938 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2939 (SEC_ALLOC
2940 | SEC_LOAD
2941 | SEC_HAS_CONTENTS
2942 | SEC_IN_MEMORY
2943 | SEC_LINKER_CREATED
2944 | SEC_READONLY));
2945 if (sreloc == NULL
2946 || ! bfd_set_section_alignment (dynobj, sreloc,
2947 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2948 return NULL;
2949 }
2950 return sreloc;
2951 }
2952
2953 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2954
2955 static int
2956 mips_elf_reloc_tls_type (unsigned int r_type)
2957 {
2958 if (tls_gd_reloc_p (r_type))
2959 return GOT_TLS_GD;
2960
2961 if (tls_ldm_reloc_p (r_type))
2962 return GOT_TLS_LDM;
2963
2964 if (tls_gottprel_reloc_p (r_type))
2965 return GOT_TLS_IE;
2966
2967 return GOT_TLS_NONE;
2968 }
2969
2970 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
2971
2972 static int
2973 mips_tls_got_entries (unsigned int type)
2974 {
2975 switch (type)
2976 {
2977 case GOT_TLS_GD:
2978 case GOT_TLS_LDM:
2979 return 2;
2980
2981 case GOT_TLS_IE:
2982 return 1;
2983
2984 case GOT_TLS_NONE:
2985 return 0;
2986 }
2987 abort ();
2988 }
2989
2990 /* Count the number of relocations needed for a TLS GOT entry, with
2991 access types from TLS_TYPE, and symbol H (or a local symbol if H
2992 is NULL). */
2993
2994 static int
2995 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2996 struct elf_link_hash_entry *h)
2997 {
2998 int indx = 0;
2999 bfd_boolean need_relocs = FALSE;
3000 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3001
3002 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3003 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3004 indx = h->dynindx;
3005
3006 if ((info->shared || indx != 0)
3007 && (h == NULL
3008 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3009 || h->root.type != bfd_link_hash_undefweak))
3010 need_relocs = TRUE;
3011
3012 if (!need_relocs)
3013 return 0;
3014
3015 switch (tls_type)
3016 {
3017 case GOT_TLS_GD:
3018 return indx != 0 ? 2 : 1;
3019
3020 case GOT_TLS_IE:
3021 return 1;
3022
3023 case GOT_TLS_LDM:
3024 return info->shared ? 1 : 0;
3025
3026 default:
3027 return 0;
3028 }
3029 }
3030
3031 /* Add the number of GOT entries and TLS relocations required by ENTRY
3032 to G. */
3033
3034 static void
3035 mips_elf_count_got_entry (struct bfd_link_info *info,
3036 struct mips_got_info *g,
3037 struct mips_got_entry *entry)
3038 {
3039 if (entry->tls_type)
3040 {
3041 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3042 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3043 entry->symndx < 0
3044 ? &entry->d.h->root : NULL);
3045 }
3046 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3047 g->local_gotno += 1;
3048 else
3049 g->global_gotno += 1;
3050 }
3051
3052 /* Output a simple dynamic relocation into SRELOC. */
3053
3054 static void
3055 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3056 asection *sreloc,
3057 unsigned long reloc_index,
3058 unsigned long indx,
3059 int r_type,
3060 bfd_vma offset)
3061 {
3062 Elf_Internal_Rela rel[3];
3063
3064 memset (rel, 0, sizeof (rel));
3065
3066 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3067 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3068
3069 if (ABI_64_P (output_bfd))
3070 {
3071 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3072 (output_bfd, &rel[0],
3073 (sreloc->contents
3074 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3075 }
3076 else
3077 bfd_elf32_swap_reloc_out
3078 (output_bfd, &rel[0],
3079 (sreloc->contents
3080 + reloc_index * sizeof (Elf32_External_Rel)));
3081 }
3082
3083 /* Initialize a set of TLS GOT entries for one symbol. */
3084
3085 static void
3086 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3087 struct mips_got_entry *entry,
3088 struct mips_elf_link_hash_entry *h,
3089 bfd_vma value)
3090 {
3091 struct mips_elf_link_hash_table *htab;
3092 int indx;
3093 asection *sreloc, *sgot;
3094 bfd_vma got_offset, got_offset2;
3095 bfd_boolean need_relocs = FALSE;
3096
3097 htab = mips_elf_hash_table (info);
3098 if (htab == NULL)
3099 return;
3100
3101 sgot = htab->sgot;
3102
3103 indx = 0;
3104 if (h != NULL)
3105 {
3106 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3107
3108 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3109 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3110 indx = h->root.dynindx;
3111 }
3112
3113 if (entry->tls_initialized)
3114 return;
3115
3116 if ((info->shared || indx != 0)
3117 && (h == NULL
3118 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3119 || h->root.type != bfd_link_hash_undefweak))
3120 need_relocs = TRUE;
3121
3122 /* MINUS_ONE means the symbol is not defined in this object. It may not
3123 be defined at all; assume that the value doesn't matter in that
3124 case. Otherwise complain if we would use the value. */
3125 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3126 || h->root.root.type == bfd_link_hash_undefweak);
3127
3128 /* Emit necessary relocations. */
3129 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3130 got_offset = entry->gotidx;
3131
3132 switch (entry->tls_type)
3133 {
3134 case GOT_TLS_GD:
3135 /* General Dynamic. */
3136 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3137
3138 if (need_relocs)
3139 {
3140 mips_elf_output_dynamic_relocation
3141 (abfd, sreloc, sreloc->reloc_count++, indx,
3142 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3143 sgot->output_offset + sgot->output_section->vma + got_offset);
3144
3145 if (indx)
3146 mips_elf_output_dynamic_relocation
3147 (abfd, sreloc, sreloc->reloc_count++, indx,
3148 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3149 sgot->output_offset + sgot->output_section->vma + got_offset2);
3150 else
3151 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3152 sgot->contents + got_offset2);
3153 }
3154 else
3155 {
3156 MIPS_ELF_PUT_WORD (abfd, 1,
3157 sgot->contents + got_offset);
3158 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3159 sgot->contents + got_offset2);
3160 }
3161 break;
3162
3163 case GOT_TLS_IE:
3164 /* Initial Exec model. */
3165 if (need_relocs)
3166 {
3167 if (indx == 0)
3168 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3169 sgot->contents + got_offset);
3170 else
3171 MIPS_ELF_PUT_WORD (abfd, 0,
3172 sgot->contents + got_offset);
3173
3174 mips_elf_output_dynamic_relocation
3175 (abfd, sreloc, sreloc->reloc_count++, indx,
3176 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3177 sgot->output_offset + sgot->output_section->vma + got_offset);
3178 }
3179 else
3180 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3181 sgot->contents + got_offset);
3182 break;
3183
3184 case GOT_TLS_LDM:
3185 /* The initial offset is zero, and the LD offsets will include the
3186 bias by DTP_OFFSET. */
3187 MIPS_ELF_PUT_WORD (abfd, 0,
3188 sgot->contents + got_offset
3189 + MIPS_ELF_GOT_SIZE (abfd));
3190
3191 if (!info->shared)
3192 MIPS_ELF_PUT_WORD (abfd, 1,
3193 sgot->contents + got_offset);
3194 else
3195 mips_elf_output_dynamic_relocation
3196 (abfd, sreloc, sreloc->reloc_count++, indx,
3197 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3198 sgot->output_offset + sgot->output_section->vma + got_offset);
3199 break;
3200
3201 default:
3202 abort ();
3203 }
3204
3205 entry->tls_initialized = TRUE;
3206 }
3207
3208 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3209 for global symbol H. .got.plt comes before the GOT, so the offset
3210 will be negative. */
3211
3212 static bfd_vma
3213 mips_elf_gotplt_index (struct bfd_link_info *info,
3214 struct elf_link_hash_entry *h)
3215 {
3216 bfd_vma plt_index, got_address, got_value;
3217 struct mips_elf_link_hash_table *htab;
3218
3219 htab = mips_elf_hash_table (info);
3220 BFD_ASSERT (htab != NULL);
3221
3222 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3223
3224 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3225 section starts with reserved entries. */
3226 BFD_ASSERT (htab->is_vxworks);
3227
3228 /* Calculate the index of the symbol's PLT entry. */
3229 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3230
3231 /* Calculate the address of the associated .got.plt entry. */
3232 got_address = (htab->sgotplt->output_section->vma
3233 + htab->sgotplt->output_offset
3234 + plt_index * 4);
3235
3236 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3237 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3238 + htab->root.hgot->root.u.def.section->output_offset
3239 + htab->root.hgot->root.u.def.value);
3240
3241 return got_address - got_value;
3242 }
3243
3244 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3245 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3246 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3247 offset can be found. */
3248
3249 static bfd_vma
3250 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3251 bfd_vma value, unsigned long r_symndx,
3252 struct mips_elf_link_hash_entry *h, int r_type)
3253 {
3254 struct mips_elf_link_hash_table *htab;
3255 struct mips_got_entry *entry;
3256
3257 htab = mips_elf_hash_table (info);
3258 BFD_ASSERT (htab != NULL);
3259
3260 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3261 r_symndx, h, r_type);
3262 if (!entry)
3263 return MINUS_ONE;
3264
3265 if (entry->tls_type)
3266 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3267 return entry->gotidx;
3268 }
3269
3270 /* Return the GOT index of global symbol H in the primary GOT. */
3271
3272 static bfd_vma
3273 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3274 struct elf_link_hash_entry *h)
3275 {
3276 struct mips_elf_link_hash_table *htab;
3277 long global_got_dynindx;
3278 struct mips_got_info *g;
3279 bfd_vma got_index;
3280
3281 htab = mips_elf_hash_table (info);
3282 BFD_ASSERT (htab != NULL);
3283
3284 global_got_dynindx = 0;
3285 if (htab->global_gotsym != NULL)
3286 global_got_dynindx = htab->global_gotsym->dynindx;
3287
3288 /* Once we determine the global GOT entry with the lowest dynamic
3289 symbol table index, we must put all dynamic symbols with greater
3290 indices into the primary GOT. That makes it easy to calculate the
3291 GOT offset. */
3292 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3293 g = mips_elf_bfd_got (obfd, FALSE);
3294 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3295 * MIPS_ELF_GOT_SIZE (obfd));
3296 BFD_ASSERT (got_index < htab->sgot->size);
3297
3298 return got_index;
3299 }
3300
3301 /* Return the GOT index for the global symbol indicated by H, which is
3302 referenced by a relocation of type R_TYPE in IBFD. */
3303
3304 static bfd_vma
3305 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3306 struct elf_link_hash_entry *h, int r_type)
3307 {
3308 struct mips_elf_link_hash_table *htab;
3309 struct mips_got_info *g;
3310 struct mips_got_entry lookup, *entry;
3311 bfd_vma gotidx;
3312
3313 htab = mips_elf_hash_table (info);
3314 BFD_ASSERT (htab != NULL);
3315
3316 g = mips_elf_bfd_got (ibfd, FALSE);
3317 BFD_ASSERT (g);
3318
3319 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3320 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3321 return mips_elf_primary_global_got_index (obfd, info, h);
3322
3323 lookup.abfd = ibfd;
3324 lookup.symndx = -1;
3325 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3326 entry = htab_find (g->got_entries, &lookup);
3327 BFD_ASSERT (entry);
3328
3329 gotidx = entry->gotidx;
3330 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3331
3332 if (lookup.tls_type)
3333 {
3334 bfd_vma value = MINUS_ONE;
3335
3336 if ((h->root.type == bfd_link_hash_defined
3337 || h->root.type == bfd_link_hash_defweak)
3338 && h->root.u.def.section->output_section)
3339 value = (h->root.u.def.value
3340 + h->root.u.def.section->output_offset
3341 + h->root.u.def.section->output_section->vma);
3342
3343 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3344 }
3345 return gotidx;
3346 }
3347
3348 /* Find a GOT page entry that points to within 32KB of VALUE. These
3349 entries are supposed to be placed at small offsets in the GOT, i.e.,
3350 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3351 entry could be created. If OFFSETP is nonnull, use it to return the
3352 offset of the GOT entry from VALUE. */
3353
3354 static bfd_vma
3355 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3356 bfd_vma value, bfd_vma *offsetp)
3357 {
3358 bfd_vma page, got_index;
3359 struct mips_got_entry *entry;
3360
3361 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3362 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3363 NULL, R_MIPS_GOT_PAGE);
3364
3365 if (!entry)
3366 return MINUS_ONE;
3367
3368 got_index = entry->gotidx;
3369
3370 if (offsetp)
3371 *offsetp = value - entry->d.address;
3372
3373 return got_index;
3374 }
3375
3376 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3377 EXTERNAL is true if the relocation was originally against a global
3378 symbol that binds locally. */
3379
3380 static bfd_vma
3381 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3382 bfd_vma value, bfd_boolean external)
3383 {
3384 struct mips_got_entry *entry;
3385
3386 /* GOT16 relocations against local symbols are followed by a LO16
3387 relocation; those against global symbols are not. Thus if the
3388 symbol was originally local, the GOT16 relocation should load the
3389 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3390 if (! external)
3391 value = mips_elf_high (value) << 16;
3392
3393 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3394 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3395 same in all cases. */
3396 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3397 NULL, R_MIPS_GOT16);
3398 if (entry)
3399 return entry->gotidx;
3400 else
3401 return MINUS_ONE;
3402 }
3403
3404 /* Returns the offset for the entry at the INDEXth position
3405 in the GOT. */
3406
3407 static bfd_vma
3408 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3409 bfd *input_bfd, bfd_vma got_index)
3410 {
3411 struct mips_elf_link_hash_table *htab;
3412 asection *sgot;
3413 bfd_vma gp;
3414
3415 htab = mips_elf_hash_table (info);
3416 BFD_ASSERT (htab != NULL);
3417
3418 sgot = htab->sgot;
3419 gp = _bfd_get_gp_value (output_bfd)
3420 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3421
3422 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3423 }
3424
3425 /* Create and return a local GOT entry for VALUE, which was calculated
3426 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3427 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3428 instead. */
3429
3430 static struct mips_got_entry *
3431 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3432 bfd *ibfd, bfd_vma value,
3433 unsigned long r_symndx,
3434 struct mips_elf_link_hash_entry *h,
3435 int r_type)
3436 {
3437 struct mips_got_entry lookup, *entry;
3438 void **loc;
3439 struct mips_got_info *g;
3440 struct mips_elf_link_hash_table *htab;
3441 bfd_vma gotidx;
3442
3443 htab = mips_elf_hash_table (info);
3444 BFD_ASSERT (htab != NULL);
3445
3446 g = mips_elf_bfd_got (ibfd, FALSE);
3447 if (g == NULL)
3448 {
3449 g = mips_elf_bfd_got (abfd, FALSE);
3450 BFD_ASSERT (g != NULL);
3451 }
3452
3453 /* This function shouldn't be called for symbols that live in the global
3454 area of the GOT. */
3455 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3456
3457 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3458 if (lookup.tls_type)
3459 {
3460 lookup.abfd = ibfd;
3461 if (tls_ldm_reloc_p (r_type))
3462 {
3463 lookup.symndx = 0;
3464 lookup.d.addend = 0;
3465 }
3466 else if (h == NULL)
3467 {
3468 lookup.symndx = r_symndx;
3469 lookup.d.addend = 0;
3470 }
3471 else
3472 {
3473 lookup.symndx = -1;
3474 lookup.d.h = h;
3475 }
3476
3477 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3478 BFD_ASSERT (entry);
3479
3480 gotidx = entry->gotidx;
3481 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3482
3483 return entry;
3484 }
3485
3486 lookup.abfd = NULL;
3487 lookup.symndx = -1;
3488 lookup.d.address = value;
3489 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3490 if (!loc)
3491 return NULL;
3492
3493 entry = (struct mips_got_entry *) *loc;
3494 if (entry)
3495 return entry;
3496
3497 if (g->assigned_gotno >= g->local_gotno)
3498 {
3499 /* We didn't allocate enough space in the GOT. */
3500 (*_bfd_error_handler)
3501 (_("not enough GOT space for local GOT entries"));
3502 bfd_set_error (bfd_error_bad_value);
3503 return NULL;
3504 }
3505
3506 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3507 if (!entry)
3508 return NULL;
3509
3510 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3511 *entry = lookup;
3512 *loc = entry;
3513
3514 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3515
3516 /* These GOT entries need a dynamic relocation on VxWorks. */
3517 if (htab->is_vxworks)
3518 {
3519 Elf_Internal_Rela outrel;
3520 asection *s;
3521 bfd_byte *rloc;
3522 bfd_vma got_address;
3523
3524 s = mips_elf_rel_dyn_section (info, FALSE);
3525 got_address = (htab->sgot->output_section->vma
3526 + htab->sgot->output_offset
3527 + entry->gotidx);
3528
3529 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3530 outrel.r_offset = got_address;
3531 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3532 outrel.r_addend = value;
3533 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3534 }
3535
3536 return entry;
3537 }
3538
3539 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3540 The number might be exact or a worst-case estimate, depending on how
3541 much information is available to elf_backend_omit_section_dynsym at
3542 the current linking stage. */
3543
3544 static bfd_size_type
3545 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3546 {
3547 bfd_size_type count;
3548
3549 count = 0;
3550 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3551 {
3552 asection *p;
3553 const struct elf_backend_data *bed;
3554
3555 bed = get_elf_backend_data (output_bfd);
3556 for (p = output_bfd->sections; p ; p = p->next)
3557 if ((p->flags & SEC_EXCLUDE) == 0
3558 && (p->flags & SEC_ALLOC) != 0
3559 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3560 ++count;
3561 }
3562 return count;
3563 }
3564
3565 /* Sort the dynamic symbol table so that symbols that need GOT entries
3566 appear towards the end. */
3567
3568 static bfd_boolean
3569 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3570 {
3571 struct mips_elf_link_hash_table *htab;
3572 struct mips_elf_hash_sort_data hsd;
3573 struct mips_got_info *g;
3574
3575 if (elf_hash_table (info)->dynsymcount == 0)
3576 return TRUE;
3577
3578 htab = mips_elf_hash_table (info);
3579 BFD_ASSERT (htab != NULL);
3580
3581 g = htab->got_info;
3582 if (g == NULL)
3583 return TRUE;
3584
3585 hsd.low = NULL;
3586 hsd.max_unref_got_dynindx
3587 = hsd.min_got_dynindx
3588 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3589 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3590 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3591 elf_hash_table (info)),
3592 mips_elf_sort_hash_table_f,
3593 &hsd);
3594
3595 /* There should have been enough room in the symbol table to
3596 accommodate both the GOT and non-GOT symbols. */
3597 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3598 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3599 == elf_hash_table (info)->dynsymcount);
3600 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3601 == g->global_gotno);
3602
3603 /* Now we know which dynamic symbol has the lowest dynamic symbol
3604 table index in the GOT. */
3605 htab->global_gotsym = hsd.low;
3606
3607 return TRUE;
3608 }
3609
3610 /* If H needs a GOT entry, assign it the highest available dynamic
3611 index. Otherwise, assign it the lowest available dynamic
3612 index. */
3613
3614 static bfd_boolean
3615 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3616 {
3617 struct mips_elf_hash_sort_data *hsd = data;
3618
3619 /* Symbols without dynamic symbol table entries aren't interesting
3620 at all. */
3621 if (h->root.dynindx == -1)
3622 return TRUE;
3623
3624 switch (h->global_got_area)
3625 {
3626 case GGA_NONE:
3627 h->root.dynindx = hsd->max_non_got_dynindx++;
3628 break;
3629
3630 case GGA_NORMAL:
3631 h->root.dynindx = --hsd->min_got_dynindx;
3632 hsd->low = (struct elf_link_hash_entry *) h;
3633 break;
3634
3635 case GGA_RELOC_ONLY:
3636 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3637 hsd->low = (struct elf_link_hash_entry *) h;
3638 h->root.dynindx = hsd->max_unref_got_dynindx++;
3639 break;
3640 }
3641
3642 return TRUE;
3643 }
3644
3645 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3646 (which is owned by the caller and shouldn't be added to the
3647 hash table directly). */
3648
3649 static bfd_boolean
3650 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3651 struct mips_got_entry *lookup)
3652 {
3653 struct mips_elf_link_hash_table *htab;
3654 struct mips_got_entry *entry;
3655 struct mips_got_info *g;
3656 void **loc, **bfd_loc;
3657
3658 /* Make sure there's a slot for this entry in the master GOT. */
3659 htab = mips_elf_hash_table (info);
3660 g = htab->got_info;
3661 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3662 if (!loc)
3663 return FALSE;
3664
3665 /* Populate the entry if it isn't already. */
3666 entry = (struct mips_got_entry *) *loc;
3667 if (!entry)
3668 {
3669 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3670 if (!entry)
3671 return FALSE;
3672
3673 lookup->tls_initialized = FALSE;
3674 lookup->gotidx = -1;
3675 *entry = *lookup;
3676 *loc = entry;
3677 }
3678
3679 /* Reuse the same GOT entry for the BFD's GOT. */
3680 g = mips_elf_bfd_got (abfd, TRUE);
3681 if (!g)
3682 return FALSE;
3683
3684 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3685 if (!bfd_loc)
3686 return FALSE;
3687
3688 if (!*bfd_loc)
3689 *bfd_loc = entry;
3690 return TRUE;
3691 }
3692
3693 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3694 entry for it. FOR_CALL is true if the caller is only interested in
3695 using the GOT entry for calls. */
3696
3697 static bfd_boolean
3698 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3699 bfd *abfd, struct bfd_link_info *info,
3700 bfd_boolean for_call, int r_type)
3701 {
3702 struct mips_elf_link_hash_table *htab;
3703 struct mips_elf_link_hash_entry *hmips;
3704 struct mips_got_entry entry;
3705 unsigned char tls_type;
3706
3707 htab = mips_elf_hash_table (info);
3708 BFD_ASSERT (htab != NULL);
3709
3710 hmips = (struct mips_elf_link_hash_entry *) h;
3711 if (!for_call)
3712 hmips->got_only_for_calls = FALSE;
3713
3714 /* A global symbol in the GOT must also be in the dynamic symbol
3715 table. */
3716 if (h->dynindx == -1)
3717 {
3718 switch (ELF_ST_VISIBILITY (h->other))
3719 {
3720 case STV_INTERNAL:
3721 case STV_HIDDEN:
3722 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3723 break;
3724 }
3725 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3726 return FALSE;
3727 }
3728
3729 tls_type = mips_elf_reloc_tls_type (r_type);
3730 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3731 hmips->global_got_area = GGA_NORMAL;
3732
3733 entry.abfd = abfd;
3734 entry.symndx = -1;
3735 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3736 entry.tls_type = tls_type;
3737 return mips_elf_record_got_entry (info, abfd, &entry);
3738 }
3739
3740 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3741 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3742
3743 static bfd_boolean
3744 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3745 struct bfd_link_info *info, int r_type)
3746 {
3747 struct mips_elf_link_hash_table *htab;
3748 struct mips_got_info *g;
3749 struct mips_got_entry entry;
3750
3751 htab = mips_elf_hash_table (info);
3752 BFD_ASSERT (htab != NULL);
3753
3754 g = htab->got_info;
3755 BFD_ASSERT (g != NULL);
3756
3757 entry.abfd = abfd;
3758 entry.symndx = symndx;
3759 entry.d.addend = addend;
3760 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3761 return mips_elf_record_got_entry (info, abfd, &entry);
3762 }
3763
3764 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3765 H is the symbol's hash table entry, or null if SYMNDX is local
3766 to ABFD. */
3767
3768 static bfd_boolean
3769 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3770 long symndx, struct elf_link_hash_entry *h,
3771 bfd_signed_vma addend)
3772 {
3773 struct mips_elf_link_hash_table *htab;
3774 struct mips_got_info *g1, *g2;
3775 struct mips_got_page_ref lookup, *entry;
3776 void **loc, **bfd_loc;
3777
3778 htab = mips_elf_hash_table (info);
3779 BFD_ASSERT (htab != NULL);
3780
3781 g1 = htab->got_info;
3782 BFD_ASSERT (g1 != NULL);
3783
3784 if (h)
3785 {
3786 lookup.symndx = -1;
3787 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
3788 }
3789 else
3790 {
3791 lookup.symndx = symndx;
3792 lookup.u.abfd = abfd;
3793 }
3794 lookup.addend = addend;
3795 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
3796 if (loc == NULL)
3797 return FALSE;
3798
3799 entry = (struct mips_got_page_ref *) *loc;
3800 if (!entry)
3801 {
3802 entry = bfd_alloc (abfd, sizeof (*entry));
3803 if (!entry)
3804 return FALSE;
3805
3806 *entry = lookup;
3807 *loc = entry;
3808 }
3809
3810 /* Add the same entry to the BFD's GOT. */
3811 g2 = mips_elf_bfd_got (abfd, TRUE);
3812 if (!g2)
3813 return FALSE;
3814
3815 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
3816 if (!bfd_loc)
3817 return FALSE;
3818
3819 if (!*bfd_loc)
3820 *bfd_loc = entry;
3821
3822 return TRUE;
3823 }
3824
3825 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3826
3827 static void
3828 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3829 unsigned int n)
3830 {
3831 asection *s;
3832 struct mips_elf_link_hash_table *htab;
3833
3834 htab = mips_elf_hash_table (info);
3835 BFD_ASSERT (htab != NULL);
3836
3837 s = mips_elf_rel_dyn_section (info, FALSE);
3838 BFD_ASSERT (s != NULL);
3839
3840 if (htab->is_vxworks)
3841 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3842 else
3843 {
3844 if (s->size == 0)
3845 {
3846 /* Make room for a null element. */
3847 s->size += MIPS_ELF_REL_SIZE (abfd);
3848 ++s->reloc_count;
3849 }
3850 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3851 }
3852 }
3853 \f
3854 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3855 mips_elf_traverse_got_arg structure. Count the number of GOT
3856 entries and TLS relocs. Set DATA->value to true if we need
3857 to resolve indirect or warning symbols and then recreate the GOT. */
3858
3859 static int
3860 mips_elf_check_recreate_got (void **entryp, void *data)
3861 {
3862 struct mips_got_entry *entry;
3863 struct mips_elf_traverse_got_arg *arg;
3864
3865 entry = (struct mips_got_entry *) *entryp;
3866 arg = (struct mips_elf_traverse_got_arg *) data;
3867 if (entry->abfd != NULL && entry->symndx == -1)
3868 {
3869 struct mips_elf_link_hash_entry *h;
3870
3871 h = entry->d.h;
3872 if (h->root.root.type == bfd_link_hash_indirect
3873 || h->root.root.type == bfd_link_hash_warning)
3874 {
3875 arg->value = TRUE;
3876 return 0;
3877 }
3878 }
3879 mips_elf_count_got_entry (arg->info, arg->g, entry);
3880 return 1;
3881 }
3882
3883 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3884 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
3885 converting entries for indirect and warning symbols into entries
3886 for the target symbol. Set DATA->g to null on error. */
3887
3888 static int
3889 mips_elf_recreate_got (void **entryp, void *data)
3890 {
3891 struct mips_got_entry new_entry, *entry;
3892 struct mips_elf_traverse_got_arg *arg;
3893 void **slot;
3894
3895 entry = (struct mips_got_entry *) *entryp;
3896 arg = (struct mips_elf_traverse_got_arg *) data;
3897 if (entry->abfd != NULL
3898 && entry->symndx == -1
3899 && (entry->d.h->root.root.type == bfd_link_hash_indirect
3900 || entry->d.h->root.root.type == bfd_link_hash_warning))
3901 {
3902 struct mips_elf_link_hash_entry *h;
3903
3904 new_entry = *entry;
3905 entry = &new_entry;
3906 h = entry->d.h;
3907 do
3908 {
3909 BFD_ASSERT (h->global_got_area == GGA_NONE);
3910 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3911 }
3912 while (h->root.root.type == bfd_link_hash_indirect
3913 || h->root.root.type == bfd_link_hash_warning);
3914 entry->d.h = h;
3915 }
3916 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
3917 if (slot == NULL)
3918 {
3919 arg->g = NULL;
3920 return 0;
3921 }
3922 if (*slot == NULL)
3923 {
3924 if (entry == &new_entry)
3925 {
3926 entry = bfd_alloc (entry->abfd, sizeof (*entry));
3927 if (!entry)
3928 {
3929 arg->g = NULL;
3930 return 0;
3931 }
3932 *entry = new_entry;
3933 }
3934 *slot = entry;
3935 mips_elf_count_got_entry (arg->info, arg->g, entry);
3936 }
3937 return 1;
3938 }
3939
3940 /* Return the maximum number of GOT page entries required for RANGE. */
3941
3942 static bfd_vma
3943 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3944 {
3945 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3946 }
3947
3948 /* Record that G requires a page entry that can reach SEC + ADDEND. */
3949
3950 static bfd_boolean
3951 mips_elf_record_got_page_entry (struct mips_got_info *g,
3952 asection *sec, bfd_signed_vma addend)
3953 {
3954 struct mips_got_page_entry lookup, *entry;
3955 struct mips_got_page_range **range_ptr, *range;
3956 bfd_vma old_pages, new_pages;
3957 void **loc;
3958
3959 /* Find the mips_got_page_entry hash table entry for this section. */
3960 lookup.sec = sec;
3961 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3962 if (loc == NULL)
3963 return FALSE;
3964
3965 /* Create a mips_got_page_entry if this is the first time we've
3966 seen the section. */
3967 entry = (struct mips_got_page_entry *) *loc;
3968 if (!entry)
3969 {
3970 entry = bfd_zalloc (sec->owner, sizeof (*entry));
3971 if (!entry)
3972 return FALSE;
3973
3974 entry->sec = sec;
3975 *loc = entry;
3976 }
3977
3978 /* Skip over ranges whose maximum extent cannot share a page entry
3979 with ADDEND. */
3980 range_ptr = &entry->ranges;
3981 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3982 range_ptr = &(*range_ptr)->next;
3983
3984 /* If we scanned to the end of the list, or found a range whose
3985 minimum extent cannot share a page entry with ADDEND, create
3986 a new singleton range. */
3987 range = *range_ptr;
3988 if (!range || addend < range->min_addend - 0xffff)
3989 {
3990 range = bfd_zalloc (sec->owner, sizeof (*range));
3991 if (!range)
3992 return FALSE;
3993
3994 range->next = *range_ptr;
3995 range->min_addend = addend;
3996 range->max_addend = addend;
3997
3998 *range_ptr = range;
3999 entry->num_pages++;
4000 g->page_gotno++;
4001 return TRUE;
4002 }
4003
4004 /* Remember how many pages the old range contributed. */
4005 old_pages = mips_elf_pages_for_range (range);
4006
4007 /* Update the ranges. */
4008 if (addend < range->min_addend)
4009 range->min_addend = addend;
4010 else if (addend > range->max_addend)
4011 {
4012 if (range->next && addend >= range->next->min_addend - 0xffff)
4013 {
4014 old_pages += mips_elf_pages_for_range (range->next);
4015 range->max_addend = range->next->max_addend;
4016 range->next = range->next->next;
4017 }
4018 else
4019 range->max_addend = addend;
4020 }
4021
4022 /* Record any change in the total estimate. */
4023 new_pages = mips_elf_pages_for_range (range);
4024 if (old_pages != new_pages)
4025 {
4026 entry->num_pages += new_pages - old_pages;
4027 g->page_gotno += new_pages - old_pages;
4028 }
4029
4030 return TRUE;
4031 }
4032
4033 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4034 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4035 whether the page reference described by *REFP needs a GOT page entry,
4036 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4037
4038 static bfd_boolean
4039 mips_elf_resolve_got_page_ref (void **refp, void *data)
4040 {
4041 struct mips_got_page_ref *ref;
4042 struct mips_elf_traverse_got_arg *arg;
4043 struct mips_elf_link_hash_table *htab;
4044 asection *sec;
4045 bfd_vma addend;
4046
4047 ref = (struct mips_got_page_ref *) *refp;
4048 arg = (struct mips_elf_traverse_got_arg *) data;
4049 htab = mips_elf_hash_table (arg->info);
4050
4051 if (ref->symndx < 0)
4052 {
4053 struct mips_elf_link_hash_entry *h;
4054
4055 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4056 h = ref->u.h;
4057 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4058 return 1;
4059
4060 /* Ignore undefined symbols; we'll issue an error later if
4061 appropriate. */
4062 if (!((h->root.root.type == bfd_link_hash_defined
4063 || h->root.root.type == bfd_link_hash_defweak)
4064 && h->root.root.u.def.section))
4065 return 1;
4066
4067 sec = h->root.root.u.def.section;
4068 addend = h->root.root.u.def.value + ref->addend;
4069 }
4070 else
4071 {
4072 Elf_Internal_Sym *isym;
4073
4074 /* Read in the symbol. */
4075 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4076 ref->symndx);
4077 if (isym == NULL)
4078 {
4079 arg->g = NULL;
4080 return 0;
4081 }
4082
4083 /* Get the associated input section. */
4084 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4085 if (sec == NULL)
4086 {
4087 arg->g = NULL;
4088 return 0;
4089 }
4090
4091 /* If this is a mergable section, work out the section and offset
4092 of the merged data. For section symbols, the addend specifies
4093 of the offset _of_ the first byte in the data, otherwise it
4094 specifies the offset _from_ the first byte. */
4095 if (sec->flags & SEC_MERGE)
4096 {
4097 void *secinfo;
4098
4099 secinfo = elf_section_data (sec)->sec_info;
4100 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4101 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4102 isym->st_value + ref->addend);
4103 else
4104 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4105 isym->st_value) + ref->addend;
4106 }
4107 else
4108 addend = isym->st_value + ref->addend;
4109 }
4110 if (!mips_elf_record_got_page_entry (arg->g, sec, addend))
4111 {
4112 arg->g = NULL;
4113 return 0;
4114 }
4115 return 1;
4116 }
4117
4118 /* If any entries in G->got_entries are for indirect or warning symbols,
4119 replace them with entries for the target symbol. Convert g->got_page_refs
4120 into got_page_entry structures and estimate the number of page entries
4121 that they require. */
4122
4123 static bfd_boolean
4124 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4125 struct mips_got_info *g)
4126 {
4127 struct mips_elf_traverse_got_arg tga;
4128 struct mips_got_info oldg;
4129
4130 oldg = *g;
4131
4132 tga.info = info;
4133 tga.g = g;
4134 tga.value = FALSE;
4135 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4136 if (tga.value)
4137 {
4138 *g = oldg;
4139 g->got_entries = htab_create (htab_size (oldg.got_entries),
4140 mips_elf_got_entry_hash,
4141 mips_elf_got_entry_eq, NULL);
4142 if (!g->got_entries)
4143 return FALSE;
4144
4145 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4146 if (!tga.g)
4147 return FALSE;
4148
4149 htab_delete (oldg.got_entries);
4150 }
4151
4152 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4153 mips_got_page_entry_eq, NULL);
4154 if (g->got_page_entries == NULL)
4155 return FALSE;
4156
4157 tga.info = info;
4158 tga.g = g;
4159 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4160
4161 return TRUE;
4162 }
4163
4164 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4165 link_info structure. Decide whether the hash entry needs an entry in
4166 the global part of the primary GOT, setting global_got_area accordingly.
4167 Count the number of global symbols that are in the primary GOT only
4168 because they have relocations against them (reloc_only_gotno). */
4169
4170 static int
4171 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4172 {
4173 struct bfd_link_info *info;
4174 struct mips_elf_link_hash_table *htab;
4175 struct mips_got_info *g;
4176
4177 info = (struct bfd_link_info *) data;
4178 htab = mips_elf_hash_table (info);
4179 g = htab->got_info;
4180 if (h->global_got_area != GGA_NONE)
4181 {
4182 /* Make a final decision about whether the symbol belongs in the
4183 local or global GOT. Symbols that bind locally can (and in the
4184 case of forced-local symbols, must) live in the local GOT.
4185 Those that are aren't in the dynamic symbol table must also
4186 live in the local GOT.
4187
4188 Note that the former condition does not always imply the
4189 latter: symbols do not bind locally if they are completely
4190 undefined. We'll report undefined symbols later if appropriate. */
4191 if (h->root.dynindx == -1
4192 || (h->got_only_for_calls
4193 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4194 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4195 /* The symbol belongs in the local GOT. We no longer need this
4196 entry if it was only used for relocations; those relocations
4197 will be against the null or section symbol instead of H. */
4198 h->global_got_area = GGA_NONE;
4199 else if (htab->is_vxworks
4200 && h->got_only_for_calls
4201 && h->root.plt.offset != MINUS_ONE)
4202 /* On VxWorks, calls can refer directly to the .got.plt entry;
4203 they don't need entries in the regular GOT. .got.plt entries
4204 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4205 h->global_got_area = GGA_NONE;
4206 else if (h->global_got_area == GGA_RELOC_ONLY)
4207 {
4208 g->reloc_only_gotno++;
4209 g->global_gotno++;
4210 }
4211 }
4212 return 1;
4213 }
4214 \f
4215 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4216 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4217
4218 static int
4219 mips_elf_add_got_entry (void **entryp, void *data)
4220 {
4221 struct mips_got_entry *entry;
4222 struct mips_elf_traverse_got_arg *arg;
4223 void **slot;
4224
4225 entry = (struct mips_got_entry *) *entryp;
4226 arg = (struct mips_elf_traverse_got_arg *) data;
4227 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4228 if (!slot)
4229 {
4230 arg->g = NULL;
4231 return 0;
4232 }
4233 if (!*slot)
4234 {
4235 *slot = entry;
4236 mips_elf_count_got_entry (arg->info, arg->g, entry);
4237 }
4238 return 1;
4239 }
4240
4241 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4242 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4243
4244 static int
4245 mips_elf_add_got_page_entry (void **entryp, void *data)
4246 {
4247 struct mips_got_page_entry *entry;
4248 struct mips_elf_traverse_got_arg *arg;
4249 void **slot;
4250
4251 entry = (struct mips_got_page_entry *) *entryp;
4252 arg = (struct mips_elf_traverse_got_arg *) data;
4253 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4254 if (!slot)
4255 {
4256 arg->g = NULL;
4257 return 0;
4258 }
4259 if (!*slot)
4260 {
4261 *slot = entry;
4262 arg->g->page_gotno += entry->num_pages;
4263 }
4264 return 1;
4265 }
4266
4267 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4268 this would lead to overflow, 1 if they were merged successfully,
4269 and 0 if a merge failed due to lack of memory. (These values are chosen
4270 so that nonnegative return values can be returned by a htab_traverse
4271 callback.) */
4272
4273 static int
4274 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4275 struct mips_got_info *to,
4276 struct mips_elf_got_per_bfd_arg *arg)
4277 {
4278 struct mips_elf_traverse_got_arg tga;
4279 unsigned int estimate;
4280
4281 /* Work out how many page entries we would need for the combined GOT. */
4282 estimate = arg->max_pages;
4283 if (estimate >= from->page_gotno + to->page_gotno)
4284 estimate = from->page_gotno + to->page_gotno;
4285
4286 /* And conservatively estimate how many local and TLS entries
4287 would be needed. */
4288 estimate += from->local_gotno + to->local_gotno;
4289 estimate += from->tls_gotno + to->tls_gotno;
4290
4291 /* If we're merging with the primary got, any TLS relocations will
4292 come after the full set of global entries. Otherwise estimate those
4293 conservatively as well. */
4294 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4295 estimate += arg->global_count;
4296 else
4297 estimate += from->global_gotno + to->global_gotno;
4298
4299 /* Bail out if the combined GOT might be too big. */
4300 if (estimate > arg->max_count)
4301 return -1;
4302
4303 /* Transfer the bfd's got information from FROM to TO. */
4304 tga.info = arg->info;
4305 tga.g = to;
4306 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4307 if (!tga.g)
4308 return 0;
4309
4310 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4311 if (!tga.g)
4312 return 0;
4313
4314 mips_elf_replace_bfd_got (abfd, to);
4315 return 1;
4316 }
4317
4318 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4319 as possible of the primary got, since it doesn't require explicit
4320 dynamic relocations, but don't use bfds that would reference global
4321 symbols out of the addressable range. Failing the primary got,
4322 attempt to merge with the current got, or finish the current got
4323 and then make make the new got current. */
4324
4325 static bfd_boolean
4326 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4327 struct mips_elf_got_per_bfd_arg *arg)
4328 {
4329 unsigned int estimate;
4330 int result;
4331
4332 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4333 return FALSE;
4334
4335 /* Work out the number of page, local and TLS entries. */
4336 estimate = arg->max_pages;
4337 if (estimate > g->page_gotno)
4338 estimate = g->page_gotno;
4339 estimate += g->local_gotno + g->tls_gotno;
4340
4341 /* We place TLS GOT entries after both locals and globals. The globals
4342 for the primary GOT may overflow the normal GOT size limit, so be
4343 sure not to merge a GOT which requires TLS with the primary GOT in that
4344 case. This doesn't affect non-primary GOTs. */
4345 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4346
4347 if (estimate <= arg->max_count)
4348 {
4349 /* If we don't have a primary GOT, use it as
4350 a starting point for the primary GOT. */
4351 if (!arg->primary)
4352 {
4353 arg->primary = g;
4354 return TRUE;
4355 }
4356
4357 /* Try merging with the primary GOT. */
4358 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4359 if (result >= 0)
4360 return result;
4361 }
4362
4363 /* If we can merge with the last-created got, do it. */
4364 if (arg->current)
4365 {
4366 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4367 if (result >= 0)
4368 return result;
4369 }
4370
4371 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4372 fits; if it turns out that it doesn't, we'll get relocation
4373 overflows anyway. */
4374 g->next = arg->current;
4375 arg->current = g;
4376
4377 return TRUE;
4378 }
4379
4380 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4381 to GOTIDX, duplicating the entry if it has already been assigned
4382 an index in a different GOT. */
4383
4384 static bfd_boolean
4385 mips_elf_set_gotidx (void **entryp, long gotidx)
4386 {
4387 struct mips_got_entry *entry;
4388
4389 entry = (struct mips_got_entry *) *entryp;
4390 if (entry->gotidx > 0)
4391 {
4392 struct mips_got_entry *new_entry;
4393
4394 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4395 if (!new_entry)
4396 return FALSE;
4397
4398 *new_entry = *entry;
4399 *entryp = new_entry;
4400 entry = new_entry;
4401 }
4402 entry->gotidx = gotidx;
4403 return TRUE;
4404 }
4405
4406 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4407 mips_elf_traverse_got_arg in which DATA->value is the size of one
4408 GOT entry. Set DATA->g to null on failure. */
4409
4410 static int
4411 mips_elf_initialize_tls_index (void **entryp, void *data)
4412 {
4413 struct mips_got_entry *entry;
4414 struct mips_elf_traverse_got_arg *arg;
4415
4416 /* We're only interested in TLS symbols. */
4417 entry = (struct mips_got_entry *) *entryp;
4418 if (entry->tls_type == GOT_TLS_NONE)
4419 return 1;
4420
4421 arg = (struct mips_elf_traverse_got_arg *) data;
4422 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4423 {
4424 arg->g = NULL;
4425 return 0;
4426 }
4427
4428 /* Account for the entries we've just allocated. */
4429 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4430 return 1;
4431 }
4432
4433 /* A htab_traverse callback for GOT entries, where DATA points to a
4434 mips_elf_traverse_got_arg. Set the global_got_area of each global
4435 symbol to DATA->value. */
4436
4437 static int
4438 mips_elf_set_global_got_area (void **entryp, void *data)
4439 {
4440 struct mips_got_entry *entry;
4441 struct mips_elf_traverse_got_arg *arg;
4442
4443 entry = (struct mips_got_entry *) *entryp;
4444 arg = (struct mips_elf_traverse_got_arg *) data;
4445 if (entry->abfd != NULL
4446 && entry->symndx == -1
4447 && entry->d.h->global_got_area != GGA_NONE)
4448 entry->d.h->global_got_area = arg->value;
4449 return 1;
4450 }
4451
4452 /* A htab_traverse callback for secondary GOT entries, where DATA points
4453 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4454 and record the number of relocations they require. DATA->value is
4455 the size of one GOT entry. Set DATA->g to null on failure. */
4456
4457 static int
4458 mips_elf_set_global_gotidx (void **entryp, void *data)
4459 {
4460 struct mips_got_entry *entry;
4461 struct mips_elf_traverse_got_arg *arg;
4462
4463 entry = (struct mips_got_entry *) *entryp;
4464 arg = (struct mips_elf_traverse_got_arg *) data;
4465 if (entry->abfd != NULL
4466 && entry->symndx == -1
4467 && entry->d.h->global_got_area != GGA_NONE)
4468 {
4469 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4470 {
4471 arg->g = NULL;
4472 return 0;
4473 }
4474 arg->g->assigned_gotno += 1;
4475
4476 if (arg->info->shared
4477 || (elf_hash_table (arg->info)->dynamic_sections_created
4478 && entry->d.h->root.def_dynamic
4479 && !entry->d.h->root.def_regular))
4480 arg->g->relocs += 1;
4481 }
4482
4483 return 1;
4484 }
4485
4486 /* A htab_traverse callback for GOT entries for which DATA is the
4487 bfd_link_info. Forbid any global symbols from having traditional
4488 lazy-binding stubs. */
4489
4490 static int
4491 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4492 {
4493 struct bfd_link_info *info;
4494 struct mips_elf_link_hash_table *htab;
4495 struct mips_got_entry *entry;
4496
4497 entry = (struct mips_got_entry *) *entryp;
4498 info = (struct bfd_link_info *) data;
4499 htab = mips_elf_hash_table (info);
4500 BFD_ASSERT (htab != NULL);
4501
4502 if (entry->abfd != NULL
4503 && entry->symndx == -1
4504 && entry->d.h->needs_lazy_stub)
4505 {
4506 entry->d.h->needs_lazy_stub = FALSE;
4507 htab->lazy_stub_count--;
4508 }
4509
4510 return 1;
4511 }
4512
4513 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4514 the primary GOT. */
4515 static bfd_vma
4516 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4517 {
4518 if (!g->next)
4519 return 0;
4520
4521 g = mips_elf_bfd_got (ibfd, FALSE);
4522 if (! g)
4523 return 0;
4524
4525 BFD_ASSERT (g->next);
4526
4527 g = g->next;
4528
4529 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4530 * MIPS_ELF_GOT_SIZE (abfd);
4531 }
4532
4533 /* Turn a single GOT that is too big for 16-bit addressing into
4534 a sequence of GOTs, each one 16-bit addressable. */
4535
4536 static bfd_boolean
4537 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4538 asection *got, bfd_size_type pages)
4539 {
4540 struct mips_elf_link_hash_table *htab;
4541 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4542 struct mips_elf_traverse_got_arg tga;
4543 struct mips_got_info *g, *gg;
4544 unsigned int assign, needed_relocs;
4545 bfd *dynobj, *ibfd;
4546
4547 dynobj = elf_hash_table (info)->dynobj;
4548 htab = mips_elf_hash_table (info);
4549 BFD_ASSERT (htab != NULL);
4550
4551 g = htab->got_info;
4552
4553 got_per_bfd_arg.obfd = abfd;
4554 got_per_bfd_arg.info = info;
4555 got_per_bfd_arg.current = NULL;
4556 got_per_bfd_arg.primary = NULL;
4557 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4558 / MIPS_ELF_GOT_SIZE (abfd))
4559 - htab->reserved_gotno);
4560 got_per_bfd_arg.max_pages = pages;
4561 /* The number of globals that will be included in the primary GOT.
4562 See the calls to mips_elf_set_global_got_area below for more
4563 information. */
4564 got_per_bfd_arg.global_count = g->global_gotno;
4565
4566 /* Try to merge the GOTs of input bfds together, as long as they
4567 don't seem to exceed the maximum GOT size, choosing one of them
4568 to be the primary GOT. */
4569 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4570 {
4571 gg = mips_elf_bfd_got (ibfd, FALSE);
4572 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4573 return FALSE;
4574 }
4575
4576 /* If we do not find any suitable primary GOT, create an empty one. */
4577 if (got_per_bfd_arg.primary == NULL)
4578 g->next = mips_elf_create_got_info (abfd);
4579 else
4580 g->next = got_per_bfd_arg.primary;
4581 g->next->next = got_per_bfd_arg.current;
4582
4583 /* GG is now the master GOT, and G is the primary GOT. */
4584 gg = g;
4585 g = g->next;
4586
4587 /* Map the output bfd to the primary got. That's what we're going
4588 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4589 didn't mark in check_relocs, and we want a quick way to find it.
4590 We can't just use gg->next because we're going to reverse the
4591 list. */
4592 mips_elf_replace_bfd_got (abfd, g);
4593
4594 /* Every symbol that is referenced in a dynamic relocation must be
4595 present in the primary GOT, so arrange for them to appear after
4596 those that are actually referenced. */
4597 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4598 g->global_gotno = gg->global_gotno;
4599
4600 tga.info = info;
4601 tga.value = GGA_RELOC_ONLY;
4602 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4603 tga.value = GGA_NORMAL;
4604 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4605
4606 /* Now go through the GOTs assigning them offset ranges.
4607 [assigned_gotno, local_gotno[ will be set to the range of local
4608 entries in each GOT. We can then compute the end of a GOT by
4609 adding local_gotno to global_gotno. We reverse the list and make
4610 it circular since then we'll be able to quickly compute the
4611 beginning of a GOT, by computing the end of its predecessor. To
4612 avoid special cases for the primary GOT, while still preserving
4613 assertions that are valid for both single- and multi-got links,
4614 we arrange for the main got struct to have the right number of
4615 global entries, but set its local_gotno such that the initial
4616 offset of the primary GOT is zero. Remember that the primary GOT
4617 will become the last item in the circular linked list, so it
4618 points back to the master GOT. */
4619 gg->local_gotno = -g->global_gotno;
4620 gg->global_gotno = g->global_gotno;
4621 gg->tls_gotno = 0;
4622 assign = 0;
4623 gg->next = gg;
4624
4625 do
4626 {
4627 struct mips_got_info *gn;
4628
4629 assign += htab->reserved_gotno;
4630 g->assigned_gotno = assign;
4631 g->local_gotno += assign;
4632 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4633 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4634
4635 /* Take g out of the direct list, and push it onto the reversed
4636 list that gg points to. g->next is guaranteed to be nonnull after
4637 this operation, as required by mips_elf_initialize_tls_index. */
4638 gn = g->next;
4639 g->next = gg->next;
4640 gg->next = g;
4641
4642 /* Set up any TLS entries. We always place the TLS entries after
4643 all non-TLS entries. */
4644 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4645 tga.g = g;
4646 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4647 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4648 if (!tga.g)
4649 return FALSE;
4650 BFD_ASSERT (g->tls_assigned_gotno == assign);
4651
4652 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4653 g = gn;
4654
4655 /* Forbid global symbols in every non-primary GOT from having
4656 lazy-binding stubs. */
4657 if (g)
4658 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4659 }
4660 while (g);
4661
4662 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4663
4664 needed_relocs = 0;
4665 for (g = gg->next; g && g->next != gg; g = g->next)
4666 {
4667 unsigned int save_assign;
4668
4669 /* Assign offsets to global GOT entries and count how many
4670 relocations they need. */
4671 save_assign = g->assigned_gotno;
4672 g->assigned_gotno = g->local_gotno;
4673 tga.info = info;
4674 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4675 tga.g = g;
4676 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4677 if (!tga.g)
4678 return FALSE;
4679 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
4680 g->assigned_gotno = save_assign;
4681
4682 if (info->shared)
4683 {
4684 g->relocs += g->local_gotno - g->assigned_gotno;
4685 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4686 + g->next->global_gotno
4687 + g->next->tls_gotno
4688 + htab->reserved_gotno);
4689 }
4690 needed_relocs += g->relocs;
4691 }
4692 needed_relocs += g->relocs;
4693
4694 if (needed_relocs)
4695 mips_elf_allocate_dynamic_relocations (dynobj, info,
4696 needed_relocs);
4697
4698 return TRUE;
4699 }
4700
4701 \f
4702 /* Returns the first relocation of type r_type found, beginning with
4703 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4704
4705 static const Elf_Internal_Rela *
4706 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4707 const Elf_Internal_Rela *relocation,
4708 const Elf_Internal_Rela *relend)
4709 {
4710 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4711
4712 while (relocation < relend)
4713 {
4714 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4715 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4716 return relocation;
4717
4718 ++relocation;
4719 }
4720
4721 /* We didn't find it. */
4722 return NULL;
4723 }
4724
4725 /* Return whether an input relocation is against a local symbol. */
4726
4727 static bfd_boolean
4728 mips_elf_local_relocation_p (bfd *input_bfd,
4729 const Elf_Internal_Rela *relocation,
4730 asection **local_sections)
4731 {
4732 unsigned long r_symndx;
4733 Elf_Internal_Shdr *symtab_hdr;
4734 size_t extsymoff;
4735
4736 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4737 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4738 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4739
4740 if (r_symndx < extsymoff)
4741 return TRUE;
4742 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4743 return TRUE;
4744
4745 return FALSE;
4746 }
4747 \f
4748 /* Sign-extend VALUE, which has the indicated number of BITS. */
4749
4750 bfd_vma
4751 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4752 {
4753 if (value & ((bfd_vma) 1 << (bits - 1)))
4754 /* VALUE is negative. */
4755 value |= ((bfd_vma) - 1) << bits;
4756
4757 return value;
4758 }
4759
4760 /* Return non-zero if the indicated VALUE has overflowed the maximum
4761 range expressible by a signed number with the indicated number of
4762 BITS. */
4763
4764 static bfd_boolean
4765 mips_elf_overflow_p (bfd_vma value, int bits)
4766 {
4767 bfd_signed_vma svalue = (bfd_signed_vma) value;
4768
4769 if (svalue > (1 << (bits - 1)) - 1)
4770 /* The value is too big. */
4771 return TRUE;
4772 else if (svalue < -(1 << (bits - 1)))
4773 /* The value is too small. */
4774 return TRUE;
4775
4776 /* All is well. */
4777 return FALSE;
4778 }
4779
4780 /* Calculate the %high function. */
4781
4782 static bfd_vma
4783 mips_elf_high (bfd_vma value)
4784 {
4785 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4786 }
4787
4788 /* Calculate the %higher function. */
4789
4790 static bfd_vma
4791 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4792 {
4793 #ifdef BFD64
4794 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4795 #else
4796 abort ();
4797 return MINUS_ONE;
4798 #endif
4799 }
4800
4801 /* Calculate the %highest function. */
4802
4803 static bfd_vma
4804 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4805 {
4806 #ifdef BFD64
4807 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4808 #else
4809 abort ();
4810 return MINUS_ONE;
4811 #endif
4812 }
4813 \f
4814 /* Create the .compact_rel section. */
4815
4816 static bfd_boolean
4817 mips_elf_create_compact_rel_section
4818 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4819 {
4820 flagword flags;
4821 register asection *s;
4822
4823 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4824 {
4825 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4826 | SEC_READONLY);
4827
4828 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4829 if (s == NULL
4830 || ! bfd_set_section_alignment (abfd, s,
4831 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4832 return FALSE;
4833
4834 s->size = sizeof (Elf32_External_compact_rel);
4835 }
4836
4837 return TRUE;
4838 }
4839
4840 /* Create the .got section to hold the global offset table. */
4841
4842 static bfd_boolean
4843 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4844 {
4845 flagword flags;
4846 register asection *s;
4847 struct elf_link_hash_entry *h;
4848 struct bfd_link_hash_entry *bh;
4849 struct mips_elf_link_hash_table *htab;
4850
4851 htab = mips_elf_hash_table (info);
4852 BFD_ASSERT (htab != NULL);
4853
4854 /* This function may be called more than once. */
4855 if (htab->sgot)
4856 return TRUE;
4857
4858 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4859 | SEC_LINKER_CREATED);
4860
4861 /* We have to use an alignment of 2**4 here because this is hardcoded
4862 in the function stub generation and in the linker script. */
4863 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4864 if (s == NULL
4865 || ! bfd_set_section_alignment (abfd, s, 4))
4866 return FALSE;
4867 htab->sgot = s;
4868
4869 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4870 linker script because we don't want to define the symbol if we
4871 are not creating a global offset table. */
4872 bh = NULL;
4873 if (! (_bfd_generic_link_add_one_symbol
4874 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4875 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4876 return FALSE;
4877
4878 h = (struct elf_link_hash_entry *) bh;
4879 h->non_elf = 0;
4880 h->def_regular = 1;
4881 h->type = STT_OBJECT;
4882 elf_hash_table (info)->hgot = h;
4883
4884 if (info->shared
4885 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4886 return FALSE;
4887
4888 htab->got_info = mips_elf_create_got_info (abfd);
4889 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4890 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4891
4892 /* We also need a .got.plt section when generating PLTs. */
4893 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4894 SEC_ALLOC | SEC_LOAD
4895 | SEC_HAS_CONTENTS
4896 | SEC_IN_MEMORY
4897 | SEC_LINKER_CREATED);
4898 if (s == NULL)
4899 return FALSE;
4900 htab->sgotplt = s;
4901
4902 return TRUE;
4903 }
4904 \f
4905 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4906 __GOTT_INDEX__ symbols. These symbols are only special for
4907 shared objects; they are not used in executables. */
4908
4909 static bfd_boolean
4910 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4911 {
4912 return (mips_elf_hash_table (info)->is_vxworks
4913 && info->shared
4914 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4915 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4916 }
4917
4918 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4919 require an la25 stub. See also mips_elf_local_pic_function_p,
4920 which determines whether the destination function ever requires a
4921 stub. */
4922
4923 static bfd_boolean
4924 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4925 bfd_boolean target_is_16_bit_code_p)
4926 {
4927 /* We specifically ignore branches and jumps from EF_PIC objects,
4928 where the onus is on the compiler or programmer to perform any
4929 necessary initialization of $25. Sometimes such initialization
4930 is unnecessary; for example, -mno-shared functions do not use
4931 the incoming value of $25, and may therefore be called directly. */
4932 if (PIC_OBJECT_P (input_bfd))
4933 return FALSE;
4934
4935 switch (r_type)
4936 {
4937 case R_MIPS_26:
4938 case R_MIPS_PC16:
4939 case R_MICROMIPS_26_S1:
4940 case R_MICROMIPS_PC7_S1:
4941 case R_MICROMIPS_PC10_S1:
4942 case R_MICROMIPS_PC16_S1:
4943 case R_MICROMIPS_PC23_S2:
4944 return TRUE;
4945
4946 case R_MIPS16_26:
4947 return !target_is_16_bit_code_p;
4948
4949 default:
4950 return FALSE;
4951 }
4952 }
4953 \f
4954 /* Calculate the value produced by the RELOCATION (which comes from
4955 the INPUT_BFD). The ADDEND is the addend to use for this
4956 RELOCATION; RELOCATION->R_ADDEND is ignored.
4957
4958 The result of the relocation calculation is stored in VALUEP.
4959 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4960 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4961
4962 This function returns bfd_reloc_continue if the caller need take no
4963 further action regarding this relocation, bfd_reloc_notsupported if
4964 something goes dramatically wrong, bfd_reloc_overflow if an
4965 overflow occurs, and bfd_reloc_ok to indicate success. */
4966
4967 static bfd_reloc_status_type
4968 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4969 asection *input_section,
4970 struct bfd_link_info *info,
4971 const Elf_Internal_Rela *relocation,
4972 bfd_vma addend, reloc_howto_type *howto,
4973 Elf_Internal_Sym *local_syms,
4974 asection **local_sections, bfd_vma *valuep,
4975 const char **namep,
4976 bfd_boolean *cross_mode_jump_p,
4977 bfd_boolean save_addend)
4978 {
4979 /* The eventual value we will return. */
4980 bfd_vma value;
4981 /* The address of the symbol against which the relocation is
4982 occurring. */
4983 bfd_vma symbol = 0;
4984 /* The final GP value to be used for the relocatable, executable, or
4985 shared object file being produced. */
4986 bfd_vma gp;
4987 /* The place (section offset or address) of the storage unit being
4988 relocated. */
4989 bfd_vma p;
4990 /* The value of GP used to create the relocatable object. */
4991 bfd_vma gp0;
4992 /* The offset into the global offset table at which the address of
4993 the relocation entry symbol, adjusted by the addend, resides
4994 during execution. */
4995 bfd_vma g = MINUS_ONE;
4996 /* The section in which the symbol referenced by the relocation is
4997 located. */
4998 asection *sec = NULL;
4999 struct mips_elf_link_hash_entry *h = NULL;
5000 /* TRUE if the symbol referred to by this relocation is a local
5001 symbol. */
5002 bfd_boolean local_p, was_local_p;
5003 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5004 bfd_boolean gp_disp_p = FALSE;
5005 /* TRUE if the symbol referred to by this relocation is
5006 "__gnu_local_gp". */
5007 bfd_boolean gnu_local_gp_p = FALSE;
5008 Elf_Internal_Shdr *symtab_hdr;
5009 size_t extsymoff;
5010 unsigned long r_symndx;
5011 int r_type;
5012 /* TRUE if overflow occurred during the calculation of the
5013 relocation value. */
5014 bfd_boolean overflowed_p;
5015 /* TRUE if this relocation refers to a MIPS16 function. */
5016 bfd_boolean target_is_16_bit_code_p = FALSE;
5017 bfd_boolean target_is_micromips_code_p = FALSE;
5018 struct mips_elf_link_hash_table *htab;
5019 bfd *dynobj;
5020
5021 dynobj = elf_hash_table (info)->dynobj;
5022 htab = mips_elf_hash_table (info);
5023 BFD_ASSERT (htab != NULL);
5024
5025 /* Parse the relocation. */
5026 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5027 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5028 p = (input_section->output_section->vma
5029 + input_section->output_offset
5030 + relocation->r_offset);
5031
5032 /* Assume that there will be no overflow. */
5033 overflowed_p = FALSE;
5034
5035 /* Figure out whether or not the symbol is local, and get the offset
5036 used in the array of hash table entries. */
5037 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5038 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5039 local_sections);
5040 was_local_p = local_p;
5041 if (! elf_bad_symtab (input_bfd))
5042 extsymoff = symtab_hdr->sh_info;
5043 else
5044 {
5045 /* The symbol table does not follow the rule that local symbols
5046 must come before globals. */
5047 extsymoff = 0;
5048 }
5049
5050 /* Figure out the value of the symbol. */
5051 if (local_p)
5052 {
5053 Elf_Internal_Sym *sym;
5054
5055 sym = local_syms + r_symndx;
5056 sec = local_sections[r_symndx];
5057
5058 symbol = sec->output_section->vma + sec->output_offset;
5059 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5060 || (sec->flags & SEC_MERGE))
5061 symbol += sym->st_value;
5062 if ((sec->flags & SEC_MERGE)
5063 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5064 {
5065 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5066 addend -= symbol;
5067 addend += sec->output_section->vma + sec->output_offset;
5068 }
5069
5070 /* MIPS16/microMIPS text labels should be treated as odd. */
5071 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5072 ++symbol;
5073
5074 /* Record the name of this symbol, for our caller. */
5075 *namep = bfd_elf_string_from_elf_section (input_bfd,
5076 symtab_hdr->sh_link,
5077 sym->st_name);
5078 if (*namep == '\0')
5079 *namep = bfd_section_name (input_bfd, sec);
5080
5081 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5082 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5083 }
5084 else
5085 {
5086 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5087
5088 /* For global symbols we look up the symbol in the hash-table. */
5089 h = ((struct mips_elf_link_hash_entry *)
5090 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5091 /* Find the real hash-table entry for this symbol. */
5092 while (h->root.root.type == bfd_link_hash_indirect
5093 || h->root.root.type == bfd_link_hash_warning)
5094 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5095
5096 /* Record the name of this symbol, for our caller. */
5097 *namep = h->root.root.root.string;
5098
5099 /* See if this is the special _gp_disp symbol. Note that such a
5100 symbol must always be a global symbol. */
5101 if (strcmp (*namep, "_gp_disp") == 0
5102 && ! NEWABI_P (input_bfd))
5103 {
5104 /* Relocations against _gp_disp are permitted only with
5105 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5106 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5107 return bfd_reloc_notsupported;
5108
5109 gp_disp_p = TRUE;
5110 }
5111 /* See if this is the special _gp symbol. Note that such a
5112 symbol must always be a global symbol. */
5113 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5114 gnu_local_gp_p = TRUE;
5115
5116
5117 /* If this symbol is defined, calculate its address. Note that
5118 _gp_disp is a magic symbol, always implicitly defined by the
5119 linker, so it's inappropriate to check to see whether or not
5120 its defined. */
5121 else if ((h->root.root.type == bfd_link_hash_defined
5122 || h->root.root.type == bfd_link_hash_defweak)
5123 && h->root.root.u.def.section)
5124 {
5125 sec = h->root.root.u.def.section;
5126 if (sec->output_section)
5127 symbol = (h->root.root.u.def.value
5128 + sec->output_section->vma
5129 + sec->output_offset);
5130 else
5131 symbol = h->root.root.u.def.value;
5132 }
5133 else if (h->root.root.type == bfd_link_hash_undefweak)
5134 /* We allow relocations against undefined weak symbols, giving
5135 it the value zero, so that you can undefined weak functions
5136 and check to see if they exist by looking at their
5137 addresses. */
5138 symbol = 0;
5139 else if (info->unresolved_syms_in_objects == RM_IGNORE
5140 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5141 symbol = 0;
5142 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5143 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5144 {
5145 /* If this is a dynamic link, we should have created a
5146 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5147 in in _bfd_mips_elf_create_dynamic_sections.
5148 Otherwise, we should define the symbol with a value of 0.
5149 FIXME: It should probably get into the symbol table
5150 somehow as well. */
5151 BFD_ASSERT (! info->shared);
5152 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5153 symbol = 0;
5154 }
5155 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5156 {
5157 /* This is an optional symbol - an Irix specific extension to the
5158 ELF spec. Ignore it for now.
5159 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5160 than simply ignoring them, but we do not handle this for now.
5161 For information see the "64-bit ELF Object File Specification"
5162 which is available from here:
5163 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5164 symbol = 0;
5165 }
5166 else if ((*info->callbacks->undefined_symbol)
5167 (info, h->root.root.root.string, input_bfd,
5168 input_section, relocation->r_offset,
5169 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5170 || ELF_ST_VISIBILITY (h->root.other)))
5171 {
5172 return bfd_reloc_undefined;
5173 }
5174 else
5175 {
5176 return bfd_reloc_notsupported;
5177 }
5178
5179 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5180 /* If the output section is the PLT section,
5181 then the target is not microMIPS. */
5182 target_is_micromips_code_p = (htab->splt != sec
5183 && ELF_ST_IS_MICROMIPS (h->root.other));
5184 }
5185
5186 /* If this is a reference to a 16-bit function with a stub, we need
5187 to redirect the relocation to the stub unless:
5188
5189 (a) the relocation is for a MIPS16 JAL;
5190
5191 (b) the relocation is for a MIPS16 PIC call, and there are no
5192 non-MIPS16 uses of the GOT slot; or
5193
5194 (c) the section allows direct references to MIPS16 functions. */
5195 if (r_type != R_MIPS16_26
5196 && !info->relocatable
5197 && ((h != NULL
5198 && h->fn_stub != NULL
5199 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5200 || (local_p
5201 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5202 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5203 && !section_allows_mips16_refs_p (input_section))
5204 {
5205 /* This is a 32- or 64-bit call to a 16-bit function. We should
5206 have already noticed that we were going to need the
5207 stub. */
5208 if (local_p)
5209 {
5210 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5211 value = 0;
5212 }
5213 else
5214 {
5215 BFD_ASSERT (h->need_fn_stub);
5216 if (h->la25_stub)
5217 {
5218 /* If a LA25 header for the stub itself exists, point to the
5219 prepended LUI/ADDIU sequence. */
5220 sec = h->la25_stub->stub_section;
5221 value = h->la25_stub->offset;
5222 }
5223 else
5224 {
5225 sec = h->fn_stub;
5226 value = 0;
5227 }
5228 }
5229
5230 symbol = sec->output_section->vma + sec->output_offset + value;
5231 /* The target is 16-bit, but the stub isn't. */
5232 target_is_16_bit_code_p = FALSE;
5233 }
5234 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5235 need to redirect the call to the stub. Note that we specifically
5236 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5237 use an indirect stub instead. */
5238 else if (r_type == R_MIPS16_26 && !info->relocatable
5239 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5240 || (local_p
5241 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5242 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5243 && !target_is_16_bit_code_p)
5244 {
5245 if (local_p)
5246 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5247 else
5248 {
5249 /* If both call_stub and call_fp_stub are defined, we can figure
5250 out which one to use by checking which one appears in the input
5251 file. */
5252 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5253 {
5254 asection *o;
5255
5256 sec = NULL;
5257 for (o = input_bfd->sections; o != NULL; o = o->next)
5258 {
5259 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5260 {
5261 sec = h->call_fp_stub;
5262 break;
5263 }
5264 }
5265 if (sec == NULL)
5266 sec = h->call_stub;
5267 }
5268 else if (h->call_stub != NULL)
5269 sec = h->call_stub;
5270 else
5271 sec = h->call_fp_stub;
5272 }
5273
5274 BFD_ASSERT (sec->size > 0);
5275 symbol = sec->output_section->vma + sec->output_offset;
5276 }
5277 /* If this is a direct call to a PIC function, redirect to the
5278 non-PIC stub. */
5279 else if (h != NULL && h->la25_stub
5280 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5281 target_is_16_bit_code_p))
5282 symbol = (h->la25_stub->stub_section->output_section->vma
5283 + h->la25_stub->stub_section->output_offset
5284 + h->la25_stub->offset);
5285
5286 /* Make sure MIPS16 and microMIPS are not used together. */
5287 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5288 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5289 {
5290 (*_bfd_error_handler)
5291 (_("MIPS16 and microMIPS functions cannot call each other"));
5292 return bfd_reloc_notsupported;
5293 }
5294
5295 /* Calls from 16-bit code to 32-bit code and vice versa require the
5296 mode change. However, we can ignore calls to undefined weak symbols,
5297 which should never be executed at runtime. This exception is important
5298 because the assembly writer may have "known" that any definition of the
5299 symbol would be 16-bit code, and that direct jumps were therefore
5300 acceptable. */
5301 *cross_mode_jump_p = (!info->relocatable
5302 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5303 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5304 || (r_type == R_MICROMIPS_26_S1
5305 && !target_is_micromips_code_p)
5306 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5307 && (target_is_16_bit_code_p
5308 || target_is_micromips_code_p))));
5309
5310 local_p = (h == NULL
5311 || (h->got_only_for_calls
5312 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5313 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5314
5315 gp0 = _bfd_get_gp_value (input_bfd);
5316 gp = _bfd_get_gp_value (abfd);
5317 if (htab->got_info)
5318 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5319
5320 if (gnu_local_gp_p)
5321 symbol = gp;
5322
5323 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5324 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5325 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5326 if (got_page_reloc_p (r_type) && !local_p)
5327 {
5328 r_type = (micromips_reloc_p (r_type)
5329 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5330 addend = 0;
5331 }
5332
5333 /* If we haven't already determined the GOT offset, and we're going
5334 to need it, get it now. */
5335 switch (r_type)
5336 {
5337 case R_MIPS16_CALL16:
5338 case R_MIPS16_GOT16:
5339 case R_MIPS_CALL16:
5340 case R_MIPS_GOT16:
5341 case R_MIPS_GOT_DISP:
5342 case R_MIPS_GOT_HI16:
5343 case R_MIPS_CALL_HI16:
5344 case R_MIPS_GOT_LO16:
5345 case R_MIPS_CALL_LO16:
5346 case R_MICROMIPS_CALL16:
5347 case R_MICROMIPS_GOT16:
5348 case R_MICROMIPS_GOT_DISP:
5349 case R_MICROMIPS_GOT_HI16:
5350 case R_MICROMIPS_CALL_HI16:
5351 case R_MICROMIPS_GOT_LO16:
5352 case R_MICROMIPS_CALL_LO16:
5353 case R_MIPS_TLS_GD:
5354 case R_MIPS_TLS_GOTTPREL:
5355 case R_MIPS_TLS_LDM:
5356 case R_MIPS16_TLS_GD:
5357 case R_MIPS16_TLS_GOTTPREL:
5358 case R_MIPS16_TLS_LDM:
5359 case R_MICROMIPS_TLS_GD:
5360 case R_MICROMIPS_TLS_GOTTPREL:
5361 case R_MICROMIPS_TLS_LDM:
5362 /* Find the index into the GOT where this value is located. */
5363 if (tls_ldm_reloc_p (r_type))
5364 {
5365 g = mips_elf_local_got_index (abfd, input_bfd, info,
5366 0, 0, NULL, r_type);
5367 if (g == MINUS_ONE)
5368 return bfd_reloc_outofrange;
5369 }
5370 else if (!local_p)
5371 {
5372 /* On VxWorks, CALL relocations should refer to the .got.plt
5373 entry, which is initialized to point at the PLT stub. */
5374 if (htab->is_vxworks
5375 && (call_hi16_reloc_p (r_type)
5376 || call_lo16_reloc_p (r_type)
5377 || call16_reloc_p (r_type)))
5378 {
5379 BFD_ASSERT (addend == 0);
5380 BFD_ASSERT (h->root.needs_plt);
5381 g = mips_elf_gotplt_index (info, &h->root);
5382 }
5383 else
5384 {
5385 BFD_ASSERT (addend == 0);
5386 g = mips_elf_global_got_index (abfd, info, input_bfd,
5387 &h->root, r_type);
5388 if (!TLS_RELOC_P (r_type)
5389 && !elf_hash_table (info)->dynamic_sections_created)
5390 /* This is a static link. We must initialize the GOT entry. */
5391 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5392 }
5393 }
5394 else if (!htab->is_vxworks
5395 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5396 /* The calculation below does not involve "g". */
5397 break;
5398 else
5399 {
5400 g = mips_elf_local_got_index (abfd, input_bfd, info,
5401 symbol + addend, r_symndx, h, r_type);
5402 if (g == MINUS_ONE)
5403 return bfd_reloc_outofrange;
5404 }
5405
5406 /* Convert GOT indices to actual offsets. */
5407 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5408 break;
5409 }
5410
5411 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5412 symbols are resolved by the loader. Add them to .rela.dyn. */
5413 if (h != NULL && is_gott_symbol (info, &h->root))
5414 {
5415 Elf_Internal_Rela outrel;
5416 bfd_byte *loc;
5417 asection *s;
5418
5419 s = mips_elf_rel_dyn_section (info, FALSE);
5420 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5421
5422 outrel.r_offset = (input_section->output_section->vma
5423 + input_section->output_offset
5424 + relocation->r_offset);
5425 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5426 outrel.r_addend = addend;
5427 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5428
5429 /* If we've written this relocation for a readonly section,
5430 we need to set DF_TEXTREL again, so that we do not delete the
5431 DT_TEXTREL tag. */
5432 if (MIPS_ELF_READONLY_SECTION (input_section))
5433 info->flags |= DF_TEXTREL;
5434
5435 *valuep = 0;
5436 return bfd_reloc_ok;
5437 }
5438
5439 /* Figure out what kind of relocation is being performed. */
5440 switch (r_type)
5441 {
5442 case R_MIPS_NONE:
5443 return bfd_reloc_continue;
5444
5445 case R_MIPS_16:
5446 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5447 overflowed_p = mips_elf_overflow_p (value, 16);
5448 break;
5449
5450 case R_MIPS_32:
5451 case R_MIPS_REL32:
5452 case R_MIPS_64:
5453 if ((info->shared
5454 || (htab->root.dynamic_sections_created
5455 && h != NULL
5456 && h->root.def_dynamic
5457 && !h->root.def_regular
5458 && !h->has_static_relocs))
5459 && r_symndx != STN_UNDEF
5460 && (h == NULL
5461 || h->root.root.type != bfd_link_hash_undefweak
5462 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5463 && (input_section->flags & SEC_ALLOC) != 0)
5464 {
5465 /* If we're creating a shared library, then we can't know
5466 where the symbol will end up. So, we create a relocation
5467 record in the output, and leave the job up to the dynamic
5468 linker. We must do the same for executable references to
5469 shared library symbols, unless we've decided to use copy
5470 relocs or PLTs instead. */
5471 value = addend;
5472 if (!mips_elf_create_dynamic_relocation (abfd,
5473 info,
5474 relocation,
5475 h,
5476 sec,
5477 symbol,
5478 &value,
5479 input_section))
5480 return bfd_reloc_undefined;
5481 }
5482 else
5483 {
5484 if (r_type != R_MIPS_REL32)
5485 value = symbol + addend;
5486 else
5487 value = addend;
5488 }
5489 value &= howto->dst_mask;
5490 break;
5491
5492 case R_MIPS_PC32:
5493 value = symbol + addend - p;
5494 value &= howto->dst_mask;
5495 break;
5496
5497 case R_MIPS16_26:
5498 /* The calculation for R_MIPS16_26 is just the same as for an
5499 R_MIPS_26. It's only the storage of the relocated field into
5500 the output file that's different. That's handled in
5501 mips_elf_perform_relocation. So, we just fall through to the
5502 R_MIPS_26 case here. */
5503 case R_MIPS_26:
5504 case R_MICROMIPS_26_S1:
5505 {
5506 unsigned int shift;
5507
5508 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5509 the correct ISA mode selector and bit 1 must be 0. */
5510 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5511 return bfd_reloc_outofrange;
5512
5513 /* Shift is 2, unusually, for microMIPS JALX. */
5514 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5515
5516 if (was_local_p)
5517 value = addend | ((p + 4) & (0xfc000000 << shift));
5518 else
5519 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5520 value = (value + symbol) >> shift;
5521 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5522 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5523 value &= howto->dst_mask;
5524 }
5525 break;
5526
5527 case R_MIPS_TLS_DTPREL_HI16:
5528 case R_MIPS16_TLS_DTPREL_HI16:
5529 case R_MICROMIPS_TLS_DTPREL_HI16:
5530 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5531 & howto->dst_mask);
5532 break;
5533
5534 case R_MIPS_TLS_DTPREL_LO16:
5535 case R_MIPS_TLS_DTPREL32:
5536 case R_MIPS_TLS_DTPREL64:
5537 case R_MIPS16_TLS_DTPREL_LO16:
5538 case R_MICROMIPS_TLS_DTPREL_LO16:
5539 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5540 break;
5541
5542 case R_MIPS_TLS_TPREL_HI16:
5543 case R_MIPS16_TLS_TPREL_HI16:
5544 case R_MICROMIPS_TLS_TPREL_HI16:
5545 value = (mips_elf_high (addend + symbol - tprel_base (info))
5546 & howto->dst_mask);
5547 break;
5548
5549 case R_MIPS_TLS_TPREL_LO16:
5550 case R_MIPS_TLS_TPREL32:
5551 case R_MIPS_TLS_TPREL64:
5552 case R_MIPS16_TLS_TPREL_LO16:
5553 case R_MICROMIPS_TLS_TPREL_LO16:
5554 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5555 break;
5556
5557 case R_MIPS_HI16:
5558 case R_MIPS16_HI16:
5559 case R_MICROMIPS_HI16:
5560 if (!gp_disp_p)
5561 {
5562 value = mips_elf_high (addend + symbol);
5563 value &= howto->dst_mask;
5564 }
5565 else
5566 {
5567 /* For MIPS16 ABI code we generate this sequence
5568 0: li $v0,%hi(_gp_disp)
5569 4: addiupc $v1,%lo(_gp_disp)
5570 8: sll $v0,16
5571 12: addu $v0,$v1
5572 14: move $gp,$v0
5573 So the offsets of hi and lo relocs are the same, but the
5574 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5575 ADDIUPC clears the low two bits of the instruction address,
5576 so the base is ($t9 + 4) & ~3. */
5577 if (r_type == R_MIPS16_HI16)
5578 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5579 /* The microMIPS .cpload sequence uses the same assembly
5580 instructions as the traditional psABI version, but the
5581 incoming $t9 has the low bit set. */
5582 else if (r_type == R_MICROMIPS_HI16)
5583 value = mips_elf_high (addend + gp - p - 1);
5584 else
5585 value = mips_elf_high (addend + gp - p);
5586 overflowed_p = mips_elf_overflow_p (value, 16);
5587 }
5588 break;
5589
5590 case R_MIPS_LO16:
5591 case R_MIPS16_LO16:
5592 case R_MICROMIPS_LO16:
5593 case R_MICROMIPS_HI0_LO16:
5594 if (!gp_disp_p)
5595 value = (symbol + addend) & howto->dst_mask;
5596 else
5597 {
5598 /* See the comment for R_MIPS16_HI16 above for the reason
5599 for this conditional. */
5600 if (r_type == R_MIPS16_LO16)
5601 value = addend + gp - (p & ~(bfd_vma) 0x3);
5602 else if (r_type == R_MICROMIPS_LO16
5603 || r_type == R_MICROMIPS_HI0_LO16)
5604 value = addend + gp - p + 3;
5605 else
5606 value = addend + gp - p + 4;
5607 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5608 for overflow. But, on, say, IRIX5, relocations against
5609 _gp_disp are normally generated from the .cpload
5610 pseudo-op. It generates code that normally looks like
5611 this:
5612
5613 lui $gp,%hi(_gp_disp)
5614 addiu $gp,$gp,%lo(_gp_disp)
5615 addu $gp,$gp,$t9
5616
5617 Here $t9 holds the address of the function being called,
5618 as required by the MIPS ELF ABI. The R_MIPS_LO16
5619 relocation can easily overflow in this situation, but the
5620 R_MIPS_HI16 relocation will handle the overflow.
5621 Therefore, we consider this a bug in the MIPS ABI, and do
5622 not check for overflow here. */
5623 }
5624 break;
5625
5626 case R_MIPS_LITERAL:
5627 case R_MICROMIPS_LITERAL:
5628 /* Because we don't merge literal sections, we can handle this
5629 just like R_MIPS_GPREL16. In the long run, we should merge
5630 shared literals, and then we will need to additional work
5631 here. */
5632
5633 /* Fall through. */
5634
5635 case R_MIPS16_GPREL:
5636 /* The R_MIPS16_GPREL performs the same calculation as
5637 R_MIPS_GPREL16, but stores the relocated bits in a different
5638 order. We don't need to do anything special here; the
5639 differences are handled in mips_elf_perform_relocation. */
5640 case R_MIPS_GPREL16:
5641 case R_MICROMIPS_GPREL7_S2:
5642 case R_MICROMIPS_GPREL16:
5643 /* Only sign-extend the addend if it was extracted from the
5644 instruction. If the addend was separate, leave it alone,
5645 otherwise we may lose significant bits. */
5646 if (howto->partial_inplace)
5647 addend = _bfd_mips_elf_sign_extend (addend, 16);
5648 value = symbol + addend - gp;
5649 /* If the symbol was local, any earlier relocatable links will
5650 have adjusted its addend with the gp offset, so compensate
5651 for that now. Don't do it for symbols forced local in this
5652 link, though, since they won't have had the gp offset applied
5653 to them before. */
5654 if (was_local_p)
5655 value += gp0;
5656 overflowed_p = mips_elf_overflow_p (value, 16);
5657 break;
5658
5659 case R_MIPS16_GOT16:
5660 case R_MIPS16_CALL16:
5661 case R_MIPS_GOT16:
5662 case R_MIPS_CALL16:
5663 case R_MICROMIPS_GOT16:
5664 case R_MICROMIPS_CALL16:
5665 /* VxWorks does not have separate local and global semantics for
5666 R_MIPS*_GOT16; every relocation evaluates to "G". */
5667 if (!htab->is_vxworks && local_p)
5668 {
5669 value = mips_elf_got16_entry (abfd, input_bfd, info,
5670 symbol + addend, !was_local_p);
5671 if (value == MINUS_ONE)
5672 return bfd_reloc_outofrange;
5673 value
5674 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5675 overflowed_p = mips_elf_overflow_p (value, 16);
5676 break;
5677 }
5678
5679 /* Fall through. */
5680
5681 case R_MIPS_TLS_GD:
5682 case R_MIPS_TLS_GOTTPREL:
5683 case R_MIPS_TLS_LDM:
5684 case R_MIPS_GOT_DISP:
5685 case R_MIPS16_TLS_GD:
5686 case R_MIPS16_TLS_GOTTPREL:
5687 case R_MIPS16_TLS_LDM:
5688 case R_MICROMIPS_TLS_GD:
5689 case R_MICROMIPS_TLS_GOTTPREL:
5690 case R_MICROMIPS_TLS_LDM:
5691 case R_MICROMIPS_GOT_DISP:
5692 value = g;
5693 overflowed_p = mips_elf_overflow_p (value, 16);
5694 break;
5695
5696 case R_MIPS_GPREL32:
5697 value = (addend + symbol + gp0 - gp);
5698 if (!save_addend)
5699 value &= howto->dst_mask;
5700 break;
5701
5702 case R_MIPS_PC16:
5703 case R_MIPS_GNU_REL16_S2:
5704 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5705 overflowed_p = mips_elf_overflow_p (value, 18);
5706 value >>= howto->rightshift;
5707 value &= howto->dst_mask;
5708 break;
5709
5710 case R_MICROMIPS_PC7_S1:
5711 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5712 overflowed_p = mips_elf_overflow_p (value, 8);
5713 value >>= howto->rightshift;
5714 value &= howto->dst_mask;
5715 break;
5716
5717 case R_MICROMIPS_PC10_S1:
5718 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5719 overflowed_p = mips_elf_overflow_p (value, 11);
5720 value >>= howto->rightshift;
5721 value &= howto->dst_mask;
5722 break;
5723
5724 case R_MICROMIPS_PC16_S1:
5725 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5726 overflowed_p = mips_elf_overflow_p (value, 17);
5727 value >>= howto->rightshift;
5728 value &= howto->dst_mask;
5729 break;
5730
5731 case R_MICROMIPS_PC23_S2:
5732 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5733 overflowed_p = mips_elf_overflow_p (value, 25);
5734 value >>= howto->rightshift;
5735 value &= howto->dst_mask;
5736 break;
5737
5738 case R_MIPS_GOT_HI16:
5739 case R_MIPS_CALL_HI16:
5740 case R_MICROMIPS_GOT_HI16:
5741 case R_MICROMIPS_CALL_HI16:
5742 /* We're allowed to handle these two relocations identically.
5743 The dynamic linker is allowed to handle the CALL relocations
5744 differently by creating a lazy evaluation stub. */
5745 value = g;
5746 value = mips_elf_high (value);
5747 value &= howto->dst_mask;
5748 break;
5749
5750 case R_MIPS_GOT_LO16:
5751 case R_MIPS_CALL_LO16:
5752 case R_MICROMIPS_GOT_LO16:
5753 case R_MICROMIPS_CALL_LO16:
5754 value = g & howto->dst_mask;
5755 break;
5756
5757 case R_MIPS_GOT_PAGE:
5758 case R_MICROMIPS_GOT_PAGE:
5759 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5760 if (value == MINUS_ONE)
5761 return bfd_reloc_outofrange;
5762 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5763 overflowed_p = mips_elf_overflow_p (value, 16);
5764 break;
5765
5766 case R_MIPS_GOT_OFST:
5767 case R_MICROMIPS_GOT_OFST:
5768 if (local_p)
5769 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5770 else
5771 value = addend;
5772 overflowed_p = mips_elf_overflow_p (value, 16);
5773 break;
5774
5775 case R_MIPS_SUB:
5776 case R_MICROMIPS_SUB:
5777 value = symbol - addend;
5778 value &= howto->dst_mask;
5779 break;
5780
5781 case R_MIPS_HIGHER:
5782 case R_MICROMIPS_HIGHER:
5783 value = mips_elf_higher (addend + symbol);
5784 value &= howto->dst_mask;
5785 break;
5786
5787 case R_MIPS_HIGHEST:
5788 case R_MICROMIPS_HIGHEST:
5789 value = mips_elf_highest (addend + symbol);
5790 value &= howto->dst_mask;
5791 break;
5792
5793 case R_MIPS_SCN_DISP:
5794 case R_MICROMIPS_SCN_DISP:
5795 value = symbol + addend - sec->output_offset;
5796 value &= howto->dst_mask;
5797 break;
5798
5799 case R_MIPS_JALR:
5800 case R_MICROMIPS_JALR:
5801 /* This relocation is only a hint. In some cases, we optimize
5802 it into a bal instruction. But we don't try to optimize
5803 when the symbol does not resolve locally. */
5804 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5805 return bfd_reloc_continue;
5806 value = symbol + addend;
5807 break;
5808
5809 case R_MIPS_PJUMP:
5810 case R_MIPS_GNU_VTINHERIT:
5811 case R_MIPS_GNU_VTENTRY:
5812 /* We don't do anything with these at present. */
5813 return bfd_reloc_continue;
5814
5815 default:
5816 /* An unrecognized relocation type. */
5817 return bfd_reloc_notsupported;
5818 }
5819
5820 /* Store the VALUE for our caller. */
5821 *valuep = value;
5822 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5823 }
5824
5825 /* Obtain the field relocated by RELOCATION. */
5826
5827 static bfd_vma
5828 mips_elf_obtain_contents (reloc_howto_type *howto,
5829 const Elf_Internal_Rela *relocation,
5830 bfd *input_bfd, bfd_byte *contents)
5831 {
5832 bfd_vma x;
5833 bfd_byte *location = contents + relocation->r_offset;
5834
5835 /* Obtain the bytes. */
5836 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5837
5838 return x;
5839 }
5840
5841 /* It has been determined that the result of the RELOCATION is the
5842 VALUE. Use HOWTO to place VALUE into the output file at the
5843 appropriate position. The SECTION is the section to which the
5844 relocation applies.
5845 CROSS_MODE_JUMP_P is true if the relocation field
5846 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5847
5848 Returns FALSE if anything goes wrong. */
5849
5850 static bfd_boolean
5851 mips_elf_perform_relocation (struct bfd_link_info *info,
5852 reloc_howto_type *howto,
5853 const Elf_Internal_Rela *relocation,
5854 bfd_vma value, bfd *input_bfd,
5855 asection *input_section, bfd_byte *contents,
5856 bfd_boolean cross_mode_jump_p)
5857 {
5858 bfd_vma x;
5859 bfd_byte *location;
5860 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5861
5862 /* Figure out where the relocation is occurring. */
5863 location = contents + relocation->r_offset;
5864
5865 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5866
5867 /* Obtain the current value. */
5868 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5869
5870 /* Clear the field we are setting. */
5871 x &= ~howto->dst_mask;
5872
5873 /* Set the field. */
5874 x |= (value & howto->dst_mask);
5875
5876 /* If required, turn JAL into JALX. */
5877 if (cross_mode_jump_p && jal_reloc_p (r_type))
5878 {
5879 bfd_boolean ok;
5880 bfd_vma opcode = x >> 26;
5881 bfd_vma jalx_opcode;
5882
5883 /* Check to see if the opcode is already JAL or JALX. */
5884 if (r_type == R_MIPS16_26)
5885 {
5886 ok = ((opcode == 0x6) || (opcode == 0x7));
5887 jalx_opcode = 0x7;
5888 }
5889 else if (r_type == R_MICROMIPS_26_S1)
5890 {
5891 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5892 jalx_opcode = 0x3c;
5893 }
5894 else
5895 {
5896 ok = ((opcode == 0x3) || (opcode == 0x1d));
5897 jalx_opcode = 0x1d;
5898 }
5899
5900 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5901 convert J or JALS to JALX. */
5902 if (!ok)
5903 {
5904 (*_bfd_error_handler)
5905 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5906 input_bfd,
5907 input_section,
5908 (unsigned long) relocation->r_offset);
5909 bfd_set_error (bfd_error_bad_value);
5910 return FALSE;
5911 }
5912
5913 /* Make this the JALX opcode. */
5914 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5915 }
5916
5917 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5918 range. */
5919 if (!info->relocatable
5920 && !cross_mode_jump_p
5921 && ((JAL_TO_BAL_P (input_bfd)
5922 && r_type == R_MIPS_26
5923 && (x >> 26) == 0x3) /* jal addr */
5924 || (JALR_TO_BAL_P (input_bfd)
5925 && r_type == R_MIPS_JALR
5926 && x == 0x0320f809) /* jalr t9 */
5927 || (JR_TO_B_P (input_bfd)
5928 && r_type == R_MIPS_JALR
5929 && x == 0x03200008))) /* jr t9 */
5930 {
5931 bfd_vma addr;
5932 bfd_vma dest;
5933 bfd_signed_vma off;
5934
5935 addr = (input_section->output_section->vma
5936 + input_section->output_offset
5937 + relocation->r_offset
5938 + 4);
5939 if (r_type == R_MIPS_26)
5940 dest = (value << 2) | ((addr >> 28) << 28);
5941 else
5942 dest = value;
5943 off = dest - addr;
5944 if (off <= 0x1ffff && off >= -0x20000)
5945 {
5946 if (x == 0x03200008) /* jr t9 */
5947 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5948 else
5949 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5950 }
5951 }
5952
5953 /* Put the value into the output. */
5954 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5955
5956 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5957 location);
5958
5959 return TRUE;
5960 }
5961 \f
5962 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5963 is the original relocation, which is now being transformed into a
5964 dynamic relocation. The ADDENDP is adjusted if necessary; the
5965 caller should store the result in place of the original addend. */
5966
5967 static bfd_boolean
5968 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5969 struct bfd_link_info *info,
5970 const Elf_Internal_Rela *rel,
5971 struct mips_elf_link_hash_entry *h,
5972 asection *sec, bfd_vma symbol,
5973 bfd_vma *addendp, asection *input_section)
5974 {
5975 Elf_Internal_Rela outrel[3];
5976 asection *sreloc;
5977 bfd *dynobj;
5978 int r_type;
5979 long indx;
5980 bfd_boolean defined_p;
5981 struct mips_elf_link_hash_table *htab;
5982
5983 htab = mips_elf_hash_table (info);
5984 BFD_ASSERT (htab != NULL);
5985
5986 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5987 dynobj = elf_hash_table (info)->dynobj;
5988 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5989 BFD_ASSERT (sreloc != NULL);
5990 BFD_ASSERT (sreloc->contents != NULL);
5991 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5992 < sreloc->size);
5993
5994 outrel[0].r_offset =
5995 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5996 if (ABI_64_P (output_bfd))
5997 {
5998 outrel[1].r_offset =
5999 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6000 outrel[2].r_offset =
6001 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6002 }
6003
6004 if (outrel[0].r_offset == MINUS_ONE)
6005 /* The relocation field has been deleted. */
6006 return TRUE;
6007
6008 if (outrel[0].r_offset == MINUS_TWO)
6009 {
6010 /* The relocation field has been converted into a relative value of
6011 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6012 the field to be fully relocated, so add in the symbol's value. */
6013 *addendp += symbol;
6014 return TRUE;
6015 }
6016
6017 /* We must now calculate the dynamic symbol table index to use
6018 in the relocation. */
6019 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6020 {
6021 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6022 indx = h->root.dynindx;
6023 if (SGI_COMPAT (output_bfd))
6024 defined_p = h->root.def_regular;
6025 else
6026 /* ??? glibc's ld.so just adds the final GOT entry to the
6027 relocation field. It therefore treats relocs against
6028 defined symbols in the same way as relocs against
6029 undefined symbols. */
6030 defined_p = FALSE;
6031 }
6032 else
6033 {
6034 if (sec != NULL && bfd_is_abs_section (sec))
6035 indx = 0;
6036 else if (sec == NULL || sec->owner == NULL)
6037 {
6038 bfd_set_error (bfd_error_bad_value);
6039 return FALSE;
6040 }
6041 else
6042 {
6043 indx = elf_section_data (sec->output_section)->dynindx;
6044 if (indx == 0)
6045 {
6046 asection *osec = htab->root.text_index_section;
6047 indx = elf_section_data (osec)->dynindx;
6048 }
6049 if (indx == 0)
6050 abort ();
6051 }
6052
6053 /* Instead of generating a relocation using the section
6054 symbol, we may as well make it a fully relative
6055 relocation. We want to avoid generating relocations to
6056 local symbols because we used to generate them
6057 incorrectly, without adding the original symbol value,
6058 which is mandated by the ABI for section symbols. In
6059 order to give dynamic loaders and applications time to
6060 phase out the incorrect use, we refrain from emitting
6061 section-relative relocations. It's not like they're
6062 useful, after all. This should be a bit more efficient
6063 as well. */
6064 /* ??? Although this behavior is compatible with glibc's ld.so,
6065 the ABI says that relocations against STN_UNDEF should have
6066 a symbol value of 0. Irix rld honors this, so relocations
6067 against STN_UNDEF have no effect. */
6068 if (!SGI_COMPAT (output_bfd))
6069 indx = 0;
6070 defined_p = TRUE;
6071 }
6072
6073 /* If the relocation was previously an absolute relocation and
6074 this symbol will not be referred to by the relocation, we must
6075 adjust it by the value we give it in the dynamic symbol table.
6076 Otherwise leave the job up to the dynamic linker. */
6077 if (defined_p && r_type != R_MIPS_REL32)
6078 *addendp += symbol;
6079
6080 if (htab->is_vxworks)
6081 /* VxWorks uses non-relative relocations for this. */
6082 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6083 else
6084 /* The relocation is always an REL32 relocation because we don't
6085 know where the shared library will wind up at load-time. */
6086 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6087 R_MIPS_REL32);
6088
6089 /* For strict adherence to the ABI specification, we should
6090 generate a R_MIPS_64 relocation record by itself before the
6091 _REL32/_64 record as well, such that the addend is read in as
6092 a 64-bit value (REL32 is a 32-bit relocation, after all).
6093 However, since none of the existing ELF64 MIPS dynamic
6094 loaders seems to care, we don't waste space with these
6095 artificial relocations. If this turns out to not be true,
6096 mips_elf_allocate_dynamic_relocation() should be tweaked so
6097 as to make room for a pair of dynamic relocations per
6098 invocation if ABI_64_P, and here we should generate an
6099 additional relocation record with R_MIPS_64 by itself for a
6100 NULL symbol before this relocation record. */
6101 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6102 ABI_64_P (output_bfd)
6103 ? R_MIPS_64
6104 : R_MIPS_NONE);
6105 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6106
6107 /* Adjust the output offset of the relocation to reference the
6108 correct location in the output file. */
6109 outrel[0].r_offset += (input_section->output_section->vma
6110 + input_section->output_offset);
6111 outrel[1].r_offset += (input_section->output_section->vma
6112 + input_section->output_offset);
6113 outrel[2].r_offset += (input_section->output_section->vma
6114 + input_section->output_offset);
6115
6116 /* Put the relocation back out. We have to use the special
6117 relocation outputter in the 64-bit case since the 64-bit
6118 relocation format is non-standard. */
6119 if (ABI_64_P (output_bfd))
6120 {
6121 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6122 (output_bfd, &outrel[0],
6123 (sreloc->contents
6124 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6125 }
6126 else if (htab->is_vxworks)
6127 {
6128 /* VxWorks uses RELA rather than REL dynamic relocations. */
6129 outrel[0].r_addend = *addendp;
6130 bfd_elf32_swap_reloca_out
6131 (output_bfd, &outrel[0],
6132 (sreloc->contents
6133 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6134 }
6135 else
6136 bfd_elf32_swap_reloc_out
6137 (output_bfd, &outrel[0],
6138 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6139
6140 /* We've now added another relocation. */
6141 ++sreloc->reloc_count;
6142
6143 /* Make sure the output section is writable. The dynamic linker
6144 will be writing to it. */
6145 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6146 |= SHF_WRITE;
6147
6148 /* On IRIX5, make an entry of compact relocation info. */
6149 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6150 {
6151 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6152 bfd_byte *cr;
6153
6154 if (scpt)
6155 {
6156 Elf32_crinfo cptrel;
6157
6158 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6159 cptrel.vaddr = (rel->r_offset
6160 + input_section->output_section->vma
6161 + input_section->output_offset);
6162 if (r_type == R_MIPS_REL32)
6163 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6164 else
6165 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6166 mips_elf_set_cr_dist2to (cptrel, 0);
6167 cptrel.konst = *addendp;
6168
6169 cr = (scpt->contents
6170 + sizeof (Elf32_External_compact_rel));
6171 mips_elf_set_cr_relvaddr (cptrel, 0);
6172 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6173 ((Elf32_External_crinfo *) cr
6174 + scpt->reloc_count));
6175 ++scpt->reloc_count;
6176 }
6177 }
6178
6179 /* If we've written this relocation for a readonly section,
6180 we need to set DF_TEXTREL again, so that we do not delete the
6181 DT_TEXTREL tag. */
6182 if (MIPS_ELF_READONLY_SECTION (input_section))
6183 info->flags |= DF_TEXTREL;
6184
6185 return TRUE;
6186 }
6187 \f
6188 /* Return the MACH for a MIPS e_flags value. */
6189
6190 unsigned long
6191 _bfd_elf_mips_mach (flagword flags)
6192 {
6193 switch (flags & EF_MIPS_MACH)
6194 {
6195 case E_MIPS_MACH_3900:
6196 return bfd_mach_mips3900;
6197
6198 case E_MIPS_MACH_4010:
6199 return bfd_mach_mips4010;
6200
6201 case E_MIPS_MACH_4100:
6202 return bfd_mach_mips4100;
6203
6204 case E_MIPS_MACH_4111:
6205 return bfd_mach_mips4111;
6206
6207 case E_MIPS_MACH_4120:
6208 return bfd_mach_mips4120;
6209
6210 case E_MIPS_MACH_4650:
6211 return bfd_mach_mips4650;
6212
6213 case E_MIPS_MACH_5400:
6214 return bfd_mach_mips5400;
6215
6216 case E_MIPS_MACH_5500:
6217 return bfd_mach_mips5500;
6218
6219 case E_MIPS_MACH_5900:
6220 return bfd_mach_mips5900;
6221
6222 case E_MIPS_MACH_9000:
6223 return bfd_mach_mips9000;
6224
6225 case E_MIPS_MACH_SB1:
6226 return bfd_mach_mips_sb1;
6227
6228 case E_MIPS_MACH_LS2E:
6229 return bfd_mach_mips_loongson_2e;
6230
6231 case E_MIPS_MACH_LS2F:
6232 return bfd_mach_mips_loongson_2f;
6233
6234 case E_MIPS_MACH_LS3A:
6235 return bfd_mach_mips_loongson_3a;
6236
6237 case E_MIPS_MACH_OCTEON2:
6238 return bfd_mach_mips_octeon2;
6239
6240 case E_MIPS_MACH_OCTEON:
6241 return bfd_mach_mips_octeon;
6242
6243 case E_MIPS_MACH_XLR:
6244 return bfd_mach_mips_xlr;
6245
6246 default:
6247 switch (flags & EF_MIPS_ARCH)
6248 {
6249 default:
6250 case E_MIPS_ARCH_1:
6251 return bfd_mach_mips3000;
6252
6253 case E_MIPS_ARCH_2:
6254 return bfd_mach_mips6000;
6255
6256 case E_MIPS_ARCH_3:
6257 return bfd_mach_mips4000;
6258
6259 case E_MIPS_ARCH_4:
6260 return bfd_mach_mips8000;
6261
6262 case E_MIPS_ARCH_5:
6263 return bfd_mach_mips5;
6264
6265 case E_MIPS_ARCH_32:
6266 return bfd_mach_mipsisa32;
6267
6268 case E_MIPS_ARCH_64:
6269 return bfd_mach_mipsisa64;
6270
6271 case E_MIPS_ARCH_32R2:
6272 return bfd_mach_mipsisa32r2;
6273
6274 case E_MIPS_ARCH_64R2:
6275 return bfd_mach_mipsisa64r2;
6276 }
6277 }
6278
6279 return 0;
6280 }
6281
6282 /* Return printable name for ABI. */
6283
6284 static INLINE char *
6285 elf_mips_abi_name (bfd *abfd)
6286 {
6287 flagword flags;
6288
6289 flags = elf_elfheader (abfd)->e_flags;
6290 switch (flags & EF_MIPS_ABI)
6291 {
6292 case 0:
6293 if (ABI_N32_P (abfd))
6294 return "N32";
6295 else if (ABI_64_P (abfd))
6296 return "64";
6297 else
6298 return "none";
6299 case E_MIPS_ABI_O32:
6300 return "O32";
6301 case E_MIPS_ABI_O64:
6302 return "O64";
6303 case E_MIPS_ABI_EABI32:
6304 return "EABI32";
6305 case E_MIPS_ABI_EABI64:
6306 return "EABI64";
6307 default:
6308 return "unknown abi";
6309 }
6310 }
6311 \f
6312 /* MIPS ELF uses two common sections. One is the usual one, and the
6313 other is for small objects. All the small objects are kept
6314 together, and then referenced via the gp pointer, which yields
6315 faster assembler code. This is what we use for the small common
6316 section. This approach is copied from ecoff.c. */
6317 static asection mips_elf_scom_section;
6318 static asymbol mips_elf_scom_symbol;
6319 static asymbol *mips_elf_scom_symbol_ptr;
6320
6321 /* MIPS ELF also uses an acommon section, which represents an
6322 allocated common symbol which may be overridden by a
6323 definition in a shared library. */
6324 static asection mips_elf_acom_section;
6325 static asymbol mips_elf_acom_symbol;
6326 static asymbol *mips_elf_acom_symbol_ptr;
6327
6328 /* This is used for both the 32-bit and the 64-bit ABI. */
6329
6330 void
6331 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6332 {
6333 elf_symbol_type *elfsym;
6334
6335 /* Handle the special MIPS section numbers that a symbol may use. */
6336 elfsym = (elf_symbol_type *) asym;
6337 switch (elfsym->internal_elf_sym.st_shndx)
6338 {
6339 case SHN_MIPS_ACOMMON:
6340 /* This section is used in a dynamically linked executable file.
6341 It is an allocated common section. The dynamic linker can
6342 either resolve these symbols to something in a shared
6343 library, or it can just leave them here. For our purposes,
6344 we can consider these symbols to be in a new section. */
6345 if (mips_elf_acom_section.name == NULL)
6346 {
6347 /* Initialize the acommon section. */
6348 mips_elf_acom_section.name = ".acommon";
6349 mips_elf_acom_section.flags = SEC_ALLOC;
6350 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6351 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6352 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6353 mips_elf_acom_symbol.name = ".acommon";
6354 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6355 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6356 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6357 }
6358 asym->section = &mips_elf_acom_section;
6359 break;
6360
6361 case SHN_COMMON:
6362 /* Common symbols less than the GP size are automatically
6363 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6364 if (asym->value > elf_gp_size (abfd)
6365 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6366 || IRIX_COMPAT (abfd) == ict_irix6)
6367 break;
6368 /* Fall through. */
6369 case SHN_MIPS_SCOMMON:
6370 if (mips_elf_scom_section.name == NULL)
6371 {
6372 /* Initialize the small common section. */
6373 mips_elf_scom_section.name = ".scommon";
6374 mips_elf_scom_section.flags = SEC_IS_COMMON;
6375 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6376 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6377 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6378 mips_elf_scom_symbol.name = ".scommon";
6379 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6380 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6381 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6382 }
6383 asym->section = &mips_elf_scom_section;
6384 asym->value = elfsym->internal_elf_sym.st_size;
6385 break;
6386
6387 case SHN_MIPS_SUNDEFINED:
6388 asym->section = bfd_und_section_ptr;
6389 break;
6390
6391 case SHN_MIPS_TEXT:
6392 {
6393 asection *section = bfd_get_section_by_name (abfd, ".text");
6394
6395 if (section != NULL)
6396 {
6397 asym->section = section;
6398 /* MIPS_TEXT is a bit special, the address is not an offset
6399 to the base of the .text section. So substract the section
6400 base address to make it an offset. */
6401 asym->value -= section->vma;
6402 }
6403 }
6404 break;
6405
6406 case SHN_MIPS_DATA:
6407 {
6408 asection *section = bfd_get_section_by_name (abfd, ".data");
6409
6410 if (section != NULL)
6411 {
6412 asym->section = section;
6413 /* MIPS_DATA is a bit special, the address is not an offset
6414 to the base of the .data section. So substract the section
6415 base address to make it an offset. */
6416 asym->value -= section->vma;
6417 }
6418 }
6419 break;
6420 }
6421
6422 /* If this is an odd-valued function symbol, assume it's a MIPS16
6423 or microMIPS one. */
6424 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6425 && (asym->value & 1) != 0)
6426 {
6427 asym->value--;
6428 if (MICROMIPS_P (abfd))
6429 elfsym->internal_elf_sym.st_other
6430 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6431 else
6432 elfsym->internal_elf_sym.st_other
6433 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6434 }
6435 }
6436 \f
6437 /* Implement elf_backend_eh_frame_address_size. This differs from
6438 the default in the way it handles EABI64.
6439
6440 EABI64 was originally specified as an LP64 ABI, and that is what
6441 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6442 historically accepted the combination of -mabi=eabi and -mlong32,
6443 and this ILP32 variation has become semi-official over time.
6444 Both forms use elf32 and have pointer-sized FDE addresses.
6445
6446 If an EABI object was generated by GCC 4.0 or above, it will have
6447 an empty .gcc_compiled_longXX section, where XX is the size of longs
6448 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6449 have no special marking to distinguish them from LP64 objects.
6450
6451 We don't want users of the official LP64 ABI to be punished for the
6452 existence of the ILP32 variant, but at the same time, we don't want
6453 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6454 We therefore take the following approach:
6455
6456 - If ABFD contains a .gcc_compiled_longXX section, use it to
6457 determine the pointer size.
6458
6459 - Otherwise check the type of the first relocation. Assume that
6460 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6461
6462 - Otherwise punt.
6463
6464 The second check is enough to detect LP64 objects generated by pre-4.0
6465 compilers because, in the kind of output generated by those compilers,
6466 the first relocation will be associated with either a CIE personality
6467 routine or an FDE start address. Furthermore, the compilers never
6468 used a special (non-pointer) encoding for this ABI.
6469
6470 Checking the relocation type should also be safe because there is no
6471 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6472 did so. */
6473
6474 unsigned int
6475 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6476 {
6477 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6478 return 8;
6479 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6480 {
6481 bfd_boolean long32_p, long64_p;
6482
6483 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6484 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6485 if (long32_p && long64_p)
6486 return 0;
6487 if (long32_p)
6488 return 4;
6489 if (long64_p)
6490 return 8;
6491
6492 if (sec->reloc_count > 0
6493 && elf_section_data (sec)->relocs != NULL
6494 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6495 == R_MIPS_64))
6496 return 8;
6497
6498 return 0;
6499 }
6500 return 4;
6501 }
6502 \f
6503 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6504 relocations against two unnamed section symbols to resolve to the
6505 same address. For example, if we have code like:
6506
6507 lw $4,%got_disp(.data)($gp)
6508 lw $25,%got_disp(.text)($gp)
6509 jalr $25
6510
6511 then the linker will resolve both relocations to .data and the program
6512 will jump there rather than to .text.
6513
6514 We can work around this problem by giving names to local section symbols.
6515 This is also what the MIPSpro tools do. */
6516
6517 bfd_boolean
6518 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6519 {
6520 return SGI_COMPAT (abfd);
6521 }
6522 \f
6523 /* Work over a section just before writing it out. This routine is
6524 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6525 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6526 a better way. */
6527
6528 bfd_boolean
6529 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6530 {
6531 if (hdr->sh_type == SHT_MIPS_REGINFO
6532 && hdr->sh_size > 0)
6533 {
6534 bfd_byte buf[4];
6535
6536 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6537 BFD_ASSERT (hdr->contents == NULL);
6538
6539 if (bfd_seek (abfd,
6540 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6541 SEEK_SET) != 0)
6542 return FALSE;
6543 H_PUT_32 (abfd, elf_gp (abfd), buf);
6544 if (bfd_bwrite (buf, 4, abfd) != 4)
6545 return FALSE;
6546 }
6547
6548 if (hdr->sh_type == SHT_MIPS_OPTIONS
6549 && hdr->bfd_section != NULL
6550 && mips_elf_section_data (hdr->bfd_section) != NULL
6551 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6552 {
6553 bfd_byte *contents, *l, *lend;
6554
6555 /* We stored the section contents in the tdata field in the
6556 set_section_contents routine. We save the section contents
6557 so that we don't have to read them again.
6558 At this point we know that elf_gp is set, so we can look
6559 through the section contents to see if there is an
6560 ODK_REGINFO structure. */
6561
6562 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6563 l = contents;
6564 lend = contents + hdr->sh_size;
6565 while (l + sizeof (Elf_External_Options) <= lend)
6566 {
6567 Elf_Internal_Options intopt;
6568
6569 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6570 &intopt);
6571 if (intopt.size < sizeof (Elf_External_Options))
6572 {
6573 (*_bfd_error_handler)
6574 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6575 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6576 break;
6577 }
6578 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6579 {
6580 bfd_byte buf[8];
6581
6582 if (bfd_seek (abfd,
6583 (hdr->sh_offset
6584 + (l - contents)
6585 + sizeof (Elf_External_Options)
6586 + (sizeof (Elf64_External_RegInfo) - 8)),
6587 SEEK_SET) != 0)
6588 return FALSE;
6589 H_PUT_64 (abfd, elf_gp (abfd), buf);
6590 if (bfd_bwrite (buf, 8, abfd) != 8)
6591 return FALSE;
6592 }
6593 else if (intopt.kind == ODK_REGINFO)
6594 {
6595 bfd_byte buf[4];
6596
6597 if (bfd_seek (abfd,
6598 (hdr->sh_offset
6599 + (l - contents)
6600 + sizeof (Elf_External_Options)
6601 + (sizeof (Elf32_External_RegInfo) - 4)),
6602 SEEK_SET) != 0)
6603 return FALSE;
6604 H_PUT_32 (abfd, elf_gp (abfd), buf);
6605 if (bfd_bwrite (buf, 4, abfd) != 4)
6606 return FALSE;
6607 }
6608 l += intopt.size;
6609 }
6610 }
6611
6612 if (hdr->bfd_section != NULL)
6613 {
6614 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6615
6616 /* .sbss is not handled specially here because the GNU/Linux
6617 prelinker can convert .sbss from NOBITS to PROGBITS and
6618 changing it back to NOBITS breaks the binary. The entry in
6619 _bfd_mips_elf_special_sections will ensure the correct flags
6620 are set on .sbss if BFD creates it without reading it from an
6621 input file, and without special handling here the flags set
6622 on it in an input file will be followed. */
6623 if (strcmp (name, ".sdata") == 0
6624 || strcmp (name, ".lit8") == 0
6625 || strcmp (name, ".lit4") == 0)
6626 {
6627 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6628 hdr->sh_type = SHT_PROGBITS;
6629 }
6630 else if (strcmp (name, ".srdata") == 0)
6631 {
6632 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6633 hdr->sh_type = SHT_PROGBITS;
6634 }
6635 else if (strcmp (name, ".compact_rel") == 0)
6636 {
6637 hdr->sh_flags = 0;
6638 hdr->sh_type = SHT_PROGBITS;
6639 }
6640 else if (strcmp (name, ".rtproc") == 0)
6641 {
6642 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6643 {
6644 unsigned int adjust;
6645
6646 adjust = hdr->sh_size % hdr->sh_addralign;
6647 if (adjust != 0)
6648 hdr->sh_size += hdr->sh_addralign - adjust;
6649 }
6650 }
6651 }
6652
6653 return TRUE;
6654 }
6655
6656 /* Handle a MIPS specific section when reading an object file. This
6657 is called when elfcode.h finds a section with an unknown type.
6658 This routine supports both the 32-bit and 64-bit ELF ABI.
6659
6660 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6661 how to. */
6662
6663 bfd_boolean
6664 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6665 Elf_Internal_Shdr *hdr,
6666 const char *name,
6667 int shindex)
6668 {
6669 flagword flags = 0;
6670
6671 /* There ought to be a place to keep ELF backend specific flags, but
6672 at the moment there isn't one. We just keep track of the
6673 sections by their name, instead. Fortunately, the ABI gives
6674 suggested names for all the MIPS specific sections, so we will
6675 probably get away with this. */
6676 switch (hdr->sh_type)
6677 {
6678 case SHT_MIPS_LIBLIST:
6679 if (strcmp (name, ".liblist") != 0)
6680 return FALSE;
6681 break;
6682 case SHT_MIPS_MSYM:
6683 if (strcmp (name, ".msym") != 0)
6684 return FALSE;
6685 break;
6686 case SHT_MIPS_CONFLICT:
6687 if (strcmp (name, ".conflict") != 0)
6688 return FALSE;
6689 break;
6690 case SHT_MIPS_GPTAB:
6691 if (! CONST_STRNEQ (name, ".gptab."))
6692 return FALSE;
6693 break;
6694 case SHT_MIPS_UCODE:
6695 if (strcmp (name, ".ucode") != 0)
6696 return FALSE;
6697 break;
6698 case SHT_MIPS_DEBUG:
6699 if (strcmp (name, ".mdebug") != 0)
6700 return FALSE;
6701 flags = SEC_DEBUGGING;
6702 break;
6703 case SHT_MIPS_REGINFO:
6704 if (strcmp (name, ".reginfo") != 0
6705 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6706 return FALSE;
6707 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6708 break;
6709 case SHT_MIPS_IFACE:
6710 if (strcmp (name, ".MIPS.interfaces") != 0)
6711 return FALSE;
6712 break;
6713 case SHT_MIPS_CONTENT:
6714 if (! CONST_STRNEQ (name, ".MIPS.content"))
6715 return FALSE;
6716 break;
6717 case SHT_MIPS_OPTIONS:
6718 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6719 return FALSE;
6720 break;
6721 case SHT_MIPS_DWARF:
6722 if (! CONST_STRNEQ (name, ".debug_")
6723 && ! CONST_STRNEQ (name, ".zdebug_"))
6724 return FALSE;
6725 break;
6726 case SHT_MIPS_SYMBOL_LIB:
6727 if (strcmp (name, ".MIPS.symlib") != 0)
6728 return FALSE;
6729 break;
6730 case SHT_MIPS_EVENTS:
6731 if (! CONST_STRNEQ (name, ".MIPS.events")
6732 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6733 return FALSE;
6734 break;
6735 default:
6736 break;
6737 }
6738
6739 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6740 return FALSE;
6741
6742 if (flags)
6743 {
6744 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6745 (bfd_get_section_flags (abfd,
6746 hdr->bfd_section)
6747 | flags)))
6748 return FALSE;
6749 }
6750
6751 /* FIXME: We should record sh_info for a .gptab section. */
6752
6753 /* For a .reginfo section, set the gp value in the tdata information
6754 from the contents of this section. We need the gp value while
6755 processing relocs, so we just get it now. The .reginfo section
6756 is not used in the 64-bit MIPS ELF ABI. */
6757 if (hdr->sh_type == SHT_MIPS_REGINFO)
6758 {
6759 Elf32_External_RegInfo ext;
6760 Elf32_RegInfo s;
6761
6762 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6763 &ext, 0, sizeof ext))
6764 return FALSE;
6765 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6766 elf_gp (abfd) = s.ri_gp_value;
6767 }
6768
6769 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6770 set the gp value based on what we find. We may see both
6771 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6772 they should agree. */
6773 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6774 {
6775 bfd_byte *contents, *l, *lend;
6776
6777 contents = bfd_malloc (hdr->sh_size);
6778 if (contents == NULL)
6779 return FALSE;
6780 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6781 0, hdr->sh_size))
6782 {
6783 free (contents);
6784 return FALSE;
6785 }
6786 l = contents;
6787 lend = contents + hdr->sh_size;
6788 while (l + sizeof (Elf_External_Options) <= lend)
6789 {
6790 Elf_Internal_Options intopt;
6791
6792 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6793 &intopt);
6794 if (intopt.size < sizeof (Elf_External_Options))
6795 {
6796 (*_bfd_error_handler)
6797 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6798 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6799 break;
6800 }
6801 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6802 {
6803 Elf64_Internal_RegInfo intreg;
6804
6805 bfd_mips_elf64_swap_reginfo_in
6806 (abfd,
6807 ((Elf64_External_RegInfo *)
6808 (l + sizeof (Elf_External_Options))),
6809 &intreg);
6810 elf_gp (abfd) = intreg.ri_gp_value;
6811 }
6812 else if (intopt.kind == ODK_REGINFO)
6813 {
6814 Elf32_RegInfo intreg;
6815
6816 bfd_mips_elf32_swap_reginfo_in
6817 (abfd,
6818 ((Elf32_External_RegInfo *)
6819 (l + sizeof (Elf_External_Options))),
6820 &intreg);
6821 elf_gp (abfd) = intreg.ri_gp_value;
6822 }
6823 l += intopt.size;
6824 }
6825 free (contents);
6826 }
6827
6828 return TRUE;
6829 }
6830
6831 /* Set the correct type for a MIPS ELF section. We do this by the
6832 section name, which is a hack, but ought to work. This routine is
6833 used by both the 32-bit and the 64-bit ABI. */
6834
6835 bfd_boolean
6836 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6837 {
6838 const char *name = bfd_get_section_name (abfd, sec);
6839
6840 if (strcmp (name, ".liblist") == 0)
6841 {
6842 hdr->sh_type = SHT_MIPS_LIBLIST;
6843 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6844 /* The sh_link field is set in final_write_processing. */
6845 }
6846 else if (strcmp (name, ".conflict") == 0)
6847 hdr->sh_type = SHT_MIPS_CONFLICT;
6848 else if (CONST_STRNEQ (name, ".gptab."))
6849 {
6850 hdr->sh_type = SHT_MIPS_GPTAB;
6851 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6852 /* The sh_info field is set in final_write_processing. */
6853 }
6854 else if (strcmp (name, ".ucode") == 0)
6855 hdr->sh_type = SHT_MIPS_UCODE;
6856 else if (strcmp (name, ".mdebug") == 0)
6857 {
6858 hdr->sh_type = SHT_MIPS_DEBUG;
6859 /* In a shared object on IRIX 5.3, the .mdebug section has an
6860 entsize of 0. FIXME: Does this matter? */
6861 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6862 hdr->sh_entsize = 0;
6863 else
6864 hdr->sh_entsize = 1;
6865 }
6866 else if (strcmp (name, ".reginfo") == 0)
6867 {
6868 hdr->sh_type = SHT_MIPS_REGINFO;
6869 /* In a shared object on IRIX 5.3, the .reginfo section has an
6870 entsize of 0x18. FIXME: Does this matter? */
6871 if (SGI_COMPAT (abfd))
6872 {
6873 if ((abfd->flags & DYNAMIC) != 0)
6874 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6875 else
6876 hdr->sh_entsize = 1;
6877 }
6878 else
6879 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6880 }
6881 else if (SGI_COMPAT (abfd)
6882 && (strcmp (name, ".hash") == 0
6883 || strcmp (name, ".dynamic") == 0
6884 || strcmp (name, ".dynstr") == 0))
6885 {
6886 if (SGI_COMPAT (abfd))
6887 hdr->sh_entsize = 0;
6888 #if 0
6889 /* This isn't how the IRIX6 linker behaves. */
6890 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6891 #endif
6892 }
6893 else if (strcmp (name, ".got") == 0
6894 || strcmp (name, ".srdata") == 0
6895 || strcmp (name, ".sdata") == 0
6896 || strcmp (name, ".sbss") == 0
6897 || strcmp (name, ".lit4") == 0
6898 || strcmp (name, ".lit8") == 0)
6899 hdr->sh_flags |= SHF_MIPS_GPREL;
6900 else if (strcmp (name, ".MIPS.interfaces") == 0)
6901 {
6902 hdr->sh_type = SHT_MIPS_IFACE;
6903 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6904 }
6905 else if (CONST_STRNEQ (name, ".MIPS.content"))
6906 {
6907 hdr->sh_type = SHT_MIPS_CONTENT;
6908 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6909 /* The sh_info field is set in final_write_processing. */
6910 }
6911 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6912 {
6913 hdr->sh_type = SHT_MIPS_OPTIONS;
6914 hdr->sh_entsize = 1;
6915 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6916 }
6917 else if (CONST_STRNEQ (name, ".debug_")
6918 || CONST_STRNEQ (name, ".zdebug_"))
6919 {
6920 hdr->sh_type = SHT_MIPS_DWARF;
6921
6922 /* Irix facilities such as libexc expect a single .debug_frame
6923 per executable, the system ones have NOSTRIP set and the linker
6924 doesn't merge sections with different flags so ... */
6925 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6926 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6927 }
6928 else if (strcmp (name, ".MIPS.symlib") == 0)
6929 {
6930 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6931 /* The sh_link and sh_info fields are set in
6932 final_write_processing. */
6933 }
6934 else if (CONST_STRNEQ (name, ".MIPS.events")
6935 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6936 {
6937 hdr->sh_type = SHT_MIPS_EVENTS;
6938 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6939 /* The sh_link field is set in final_write_processing. */
6940 }
6941 else if (strcmp (name, ".msym") == 0)
6942 {
6943 hdr->sh_type = SHT_MIPS_MSYM;
6944 hdr->sh_flags |= SHF_ALLOC;
6945 hdr->sh_entsize = 8;
6946 }
6947
6948 /* The generic elf_fake_sections will set up REL_HDR using the default
6949 kind of relocations. We used to set up a second header for the
6950 non-default kind of relocations here, but only NewABI would use
6951 these, and the IRIX ld doesn't like resulting empty RELA sections.
6952 Thus we create those header only on demand now. */
6953
6954 return TRUE;
6955 }
6956
6957 /* Given a BFD section, try to locate the corresponding ELF section
6958 index. This is used by both the 32-bit and the 64-bit ABI.
6959 Actually, it's not clear to me that the 64-bit ABI supports these,
6960 but for non-PIC objects we will certainly want support for at least
6961 the .scommon section. */
6962
6963 bfd_boolean
6964 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6965 asection *sec, int *retval)
6966 {
6967 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6968 {
6969 *retval = SHN_MIPS_SCOMMON;
6970 return TRUE;
6971 }
6972 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6973 {
6974 *retval = SHN_MIPS_ACOMMON;
6975 return TRUE;
6976 }
6977 return FALSE;
6978 }
6979 \f
6980 /* Hook called by the linker routine which adds symbols from an object
6981 file. We must handle the special MIPS section numbers here. */
6982
6983 bfd_boolean
6984 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6985 Elf_Internal_Sym *sym, const char **namep,
6986 flagword *flagsp ATTRIBUTE_UNUSED,
6987 asection **secp, bfd_vma *valp)
6988 {
6989 if (SGI_COMPAT (abfd)
6990 && (abfd->flags & DYNAMIC) != 0
6991 && strcmp (*namep, "_rld_new_interface") == 0)
6992 {
6993 /* Skip IRIX5 rld entry name. */
6994 *namep = NULL;
6995 return TRUE;
6996 }
6997
6998 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6999 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7000 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7001 a magic symbol resolved by the linker, we ignore this bogus definition
7002 of _gp_disp. New ABI objects do not suffer from this problem so this
7003 is not done for them. */
7004 if (!NEWABI_P(abfd)
7005 && (sym->st_shndx == SHN_ABS)
7006 && (strcmp (*namep, "_gp_disp") == 0))
7007 {
7008 *namep = NULL;
7009 return TRUE;
7010 }
7011
7012 switch (sym->st_shndx)
7013 {
7014 case SHN_COMMON:
7015 /* Common symbols less than the GP size are automatically
7016 treated as SHN_MIPS_SCOMMON symbols. */
7017 if (sym->st_size > elf_gp_size (abfd)
7018 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7019 || IRIX_COMPAT (abfd) == ict_irix6)
7020 break;
7021 /* Fall through. */
7022 case SHN_MIPS_SCOMMON:
7023 *secp = bfd_make_section_old_way (abfd, ".scommon");
7024 (*secp)->flags |= SEC_IS_COMMON;
7025 *valp = sym->st_size;
7026 break;
7027
7028 case SHN_MIPS_TEXT:
7029 /* This section is used in a shared object. */
7030 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7031 {
7032 asymbol *elf_text_symbol;
7033 asection *elf_text_section;
7034 bfd_size_type amt = sizeof (asection);
7035
7036 elf_text_section = bfd_zalloc (abfd, amt);
7037 if (elf_text_section == NULL)
7038 return FALSE;
7039
7040 amt = sizeof (asymbol);
7041 elf_text_symbol = bfd_zalloc (abfd, amt);
7042 if (elf_text_symbol == NULL)
7043 return FALSE;
7044
7045 /* Initialize the section. */
7046
7047 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7048 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7049
7050 elf_text_section->symbol = elf_text_symbol;
7051 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7052
7053 elf_text_section->name = ".text";
7054 elf_text_section->flags = SEC_NO_FLAGS;
7055 elf_text_section->output_section = NULL;
7056 elf_text_section->owner = abfd;
7057 elf_text_symbol->name = ".text";
7058 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7059 elf_text_symbol->section = elf_text_section;
7060 }
7061 /* This code used to do *secp = bfd_und_section_ptr if
7062 info->shared. I don't know why, and that doesn't make sense,
7063 so I took it out. */
7064 *secp = mips_elf_tdata (abfd)->elf_text_section;
7065 break;
7066
7067 case SHN_MIPS_ACOMMON:
7068 /* Fall through. XXX Can we treat this as allocated data? */
7069 case SHN_MIPS_DATA:
7070 /* This section is used in a shared object. */
7071 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7072 {
7073 asymbol *elf_data_symbol;
7074 asection *elf_data_section;
7075 bfd_size_type amt = sizeof (asection);
7076
7077 elf_data_section = bfd_zalloc (abfd, amt);
7078 if (elf_data_section == NULL)
7079 return FALSE;
7080
7081 amt = sizeof (asymbol);
7082 elf_data_symbol = bfd_zalloc (abfd, amt);
7083 if (elf_data_symbol == NULL)
7084 return FALSE;
7085
7086 /* Initialize the section. */
7087
7088 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7089 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7090
7091 elf_data_section->symbol = elf_data_symbol;
7092 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7093
7094 elf_data_section->name = ".data";
7095 elf_data_section->flags = SEC_NO_FLAGS;
7096 elf_data_section->output_section = NULL;
7097 elf_data_section->owner = abfd;
7098 elf_data_symbol->name = ".data";
7099 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7100 elf_data_symbol->section = elf_data_section;
7101 }
7102 /* This code used to do *secp = bfd_und_section_ptr if
7103 info->shared. I don't know why, and that doesn't make sense,
7104 so I took it out. */
7105 *secp = mips_elf_tdata (abfd)->elf_data_section;
7106 break;
7107
7108 case SHN_MIPS_SUNDEFINED:
7109 *secp = bfd_und_section_ptr;
7110 break;
7111 }
7112
7113 if (SGI_COMPAT (abfd)
7114 && ! info->shared
7115 && info->output_bfd->xvec == abfd->xvec
7116 && strcmp (*namep, "__rld_obj_head") == 0)
7117 {
7118 struct elf_link_hash_entry *h;
7119 struct bfd_link_hash_entry *bh;
7120
7121 /* Mark __rld_obj_head as dynamic. */
7122 bh = NULL;
7123 if (! (_bfd_generic_link_add_one_symbol
7124 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7125 get_elf_backend_data (abfd)->collect, &bh)))
7126 return FALSE;
7127
7128 h = (struct elf_link_hash_entry *) bh;
7129 h->non_elf = 0;
7130 h->def_regular = 1;
7131 h->type = STT_OBJECT;
7132
7133 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7134 return FALSE;
7135
7136 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7137 mips_elf_hash_table (info)->rld_symbol = h;
7138 }
7139
7140 /* If this is a mips16 text symbol, add 1 to the value to make it
7141 odd. This will cause something like .word SYM to come up with
7142 the right value when it is loaded into the PC. */
7143 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7144 ++*valp;
7145
7146 return TRUE;
7147 }
7148
7149 /* This hook function is called before the linker writes out a global
7150 symbol. We mark symbols as small common if appropriate. This is
7151 also where we undo the increment of the value for a mips16 symbol. */
7152
7153 int
7154 _bfd_mips_elf_link_output_symbol_hook
7155 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7156 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7157 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7158 {
7159 /* If we see a common symbol, which implies a relocatable link, then
7160 if a symbol was small common in an input file, mark it as small
7161 common in the output file. */
7162 if (sym->st_shndx == SHN_COMMON
7163 && strcmp (input_sec->name, ".scommon") == 0)
7164 sym->st_shndx = SHN_MIPS_SCOMMON;
7165
7166 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7167 sym->st_value &= ~1;
7168
7169 return 1;
7170 }
7171 \f
7172 /* Functions for the dynamic linker. */
7173
7174 /* Create dynamic sections when linking against a dynamic object. */
7175
7176 bfd_boolean
7177 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7178 {
7179 struct elf_link_hash_entry *h;
7180 struct bfd_link_hash_entry *bh;
7181 flagword flags;
7182 register asection *s;
7183 const char * const *namep;
7184 struct mips_elf_link_hash_table *htab;
7185
7186 htab = mips_elf_hash_table (info);
7187 BFD_ASSERT (htab != NULL);
7188
7189 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7190 | SEC_LINKER_CREATED | SEC_READONLY);
7191
7192 /* The psABI requires a read-only .dynamic section, but the VxWorks
7193 EABI doesn't. */
7194 if (!htab->is_vxworks)
7195 {
7196 s = bfd_get_linker_section (abfd, ".dynamic");
7197 if (s != NULL)
7198 {
7199 if (! bfd_set_section_flags (abfd, s, flags))
7200 return FALSE;
7201 }
7202 }
7203
7204 /* We need to create .got section. */
7205 if (!mips_elf_create_got_section (abfd, info))
7206 return FALSE;
7207
7208 if (! mips_elf_rel_dyn_section (info, TRUE))
7209 return FALSE;
7210
7211 /* Create .stub section. */
7212 s = bfd_make_section_anyway_with_flags (abfd,
7213 MIPS_ELF_STUB_SECTION_NAME (abfd),
7214 flags | SEC_CODE);
7215 if (s == NULL
7216 || ! bfd_set_section_alignment (abfd, s,
7217 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7218 return FALSE;
7219 htab->sstubs = s;
7220
7221 if (!mips_elf_hash_table (info)->use_rld_obj_head
7222 && !info->shared
7223 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7224 {
7225 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7226 flags &~ (flagword) SEC_READONLY);
7227 if (s == NULL
7228 || ! bfd_set_section_alignment (abfd, s,
7229 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7230 return FALSE;
7231 }
7232
7233 /* On IRIX5, we adjust add some additional symbols and change the
7234 alignments of several sections. There is no ABI documentation
7235 indicating that this is necessary on IRIX6, nor any evidence that
7236 the linker takes such action. */
7237 if (IRIX_COMPAT (abfd) == ict_irix5)
7238 {
7239 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7240 {
7241 bh = NULL;
7242 if (! (_bfd_generic_link_add_one_symbol
7243 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7244 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7245 return FALSE;
7246
7247 h = (struct elf_link_hash_entry *) bh;
7248 h->non_elf = 0;
7249 h->def_regular = 1;
7250 h->type = STT_SECTION;
7251
7252 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7253 return FALSE;
7254 }
7255
7256 /* We need to create a .compact_rel section. */
7257 if (SGI_COMPAT (abfd))
7258 {
7259 if (!mips_elf_create_compact_rel_section (abfd, info))
7260 return FALSE;
7261 }
7262
7263 /* Change alignments of some sections. */
7264 s = bfd_get_linker_section (abfd, ".hash");
7265 if (s != NULL)
7266 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7267
7268 s = bfd_get_linker_section (abfd, ".dynsym");
7269 if (s != NULL)
7270 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7271
7272 s = bfd_get_linker_section (abfd, ".dynstr");
7273 if (s != NULL)
7274 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7275
7276 /* ??? */
7277 s = bfd_get_section_by_name (abfd, ".reginfo");
7278 if (s != NULL)
7279 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7280
7281 s = bfd_get_linker_section (abfd, ".dynamic");
7282 if (s != NULL)
7283 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7284 }
7285
7286 if (!info->shared)
7287 {
7288 const char *name;
7289
7290 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7291 bh = NULL;
7292 if (!(_bfd_generic_link_add_one_symbol
7293 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7294 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7295 return FALSE;
7296
7297 h = (struct elf_link_hash_entry *) bh;
7298 h->non_elf = 0;
7299 h->def_regular = 1;
7300 h->type = STT_SECTION;
7301
7302 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7303 return FALSE;
7304
7305 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7306 {
7307 /* __rld_map is a four byte word located in the .data section
7308 and is filled in by the rtld to contain a pointer to
7309 the _r_debug structure. Its symbol value will be set in
7310 _bfd_mips_elf_finish_dynamic_symbol. */
7311 s = bfd_get_linker_section (abfd, ".rld_map");
7312 BFD_ASSERT (s != NULL);
7313
7314 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7315 bh = NULL;
7316 if (!(_bfd_generic_link_add_one_symbol
7317 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7318 get_elf_backend_data (abfd)->collect, &bh)))
7319 return FALSE;
7320
7321 h = (struct elf_link_hash_entry *) bh;
7322 h->non_elf = 0;
7323 h->def_regular = 1;
7324 h->type = STT_OBJECT;
7325
7326 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7327 return FALSE;
7328 mips_elf_hash_table (info)->rld_symbol = h;
7329 }
7330 }
7331
7332 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7333 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7334 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7335 return FALSE;
7336
7337 /* Cache the sections created above. */
7338 htab->splt = bfd_get_linker_section (abfd, ".plt");
7339 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7340 if (htab->is_vxworks)
7341 {
7342 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7343 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7344 }
7345 else
7346 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7347 if (!htab->sdynbss
7348 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7349 || !htab->srelplt
7350 || !htab->splt)
7351 abort ();
7352
7353 if (htab->is_vxworks)
7354 {
7355 /* Do the usual VxWorks handling. */
7356 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7357 return FALSE;
7358
7359 /* Work out the PLT sizes. */
7360 if (info->shared)
7361 {
7362 htab->plt_header_size
7363 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7364 htab->plt_entry_size
7365 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7366 }
7367 else
7368 {
7369 htab->plt_header_size
7370 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7371 htab->plt_entry_size
7372 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7373 }
7374 }
7375 else if (!info->shared)
7376 {
7377 /* All variants of the plt0 entry are the same size. */
7378 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7379 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7380 }
7381
7382 return TRUE;
7383 }
7384 \f
7385 /* Return true if relocation REL against section SEC is a REL rather than
7386 RELA relocation. RELOCS is the first relocation in the section and
7387 ABFD is the bfd that contains SEC. */
7388
7389 static bfd_boolean
7390 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7391 const Elf_Internal_Rela *relocs,
7392 const Elf_Internal_Rela *rel)
7393 {
7394 Elf_Internal_Shdr *rel_hdr;
7395 const struct elf_backend_data *bed;
7396
7397 /* To determine which flavor of relocation this is, we depend on the
7398 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7399 rel_hdr = elf_section_data (sec)->rel.hdr;
7400 if (rel_hdr == NULL)
7401 return FALSE;
7402 bed = get_elf_backend_data (abfd);
7403 return ((size_t) (rel - relocs)
7404 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7405 }
7406
7407 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7408 HOWTO is the relocation's howto and CONTENTS points to the contents
7409 of the section that REL is against. */
7410
7411 static bfd_vma
7412 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7413 reloc_howto_type *howto, bfd_byte *contents)
7414 {
7415 bfd_byte *location;
7416 unsigned int r_type;
7417 bfd_vma addend;
7418
7419 r_type = ELF_R_TYPE (abfd, rel->r_info);
7420 location = contents + rel->r_offset;
7421
7422 /* Get the addend, which is stored in the input file. */
7423 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7424 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7425 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7426
7427 return addend & howto->src_mask;
7428 }
7429
7430 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7431 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7432 and update *ADDEND with the final addend. Return true on success
7433 or false if the LO16 could not be found. RELEND is the exclusive
7434 upper bound on the relocations for REL's section. */
7435
7436 static bfd_boolean
7437 mips_elf_add_lo16_rel_addend (bfd *abfd,
7438 const Elf_Internal_Rela *rel,
7439 const Elf_Internal_Rela *relend,
7440 bfd_byte *contents, bfd_vma *addend)
7441 {
7442 unsigned int r_type, lo16_type;
7443 const Elf_Internal_Rela *lo16_relocation;
7444 reloc_howto_type *lo16_howto;
7445 bfd_vma l;
7446
7447 r_type = ELF_R_TYPE (abfd, rel->r_info);
7448 if (mips16_reloc_p (r_type))
7449 lo16_type = R_MIPS16_LO16;
7450 else if (micromips_reloc_p (r_type))
7451 lo16_type = R_MICROMIPS_LO16;
7452 else
7453 lo16_type = R_MIPS_LO16;
7454
7455 /* The combined value is the sum of the HI16 addend, left-shifted by
7456 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7457 code does a `lui' of the HI16 value, and then an `addiu' of the
7458 LO16 value.)
7459
7460 Scan ahead to find a matching LO16 relocation.
7461
7462 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7463 be immediately following. However, for the IRIX6 ABI, the next
7464 relocation may be a composed relocation consisting of several
7465 relocations for the same address. In that case, the R_MIPS_LO16
7466 relocation may occur as one of these. We permit a similar
7467 extension in general, as that is useful for GCC.
7468
7469 In some cases GCC dead code elimination removes the LO16 but keeps
7470 the corresponding HI16. This is strictly speaking a violation of
7471 the ABI but not immediately harmful. */
7472 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7473 if (lo16_relocation == NULL)
7474 return FALSE;
7475
7476 /* Obtain the addend kept there. */
7477 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7478 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7479
7480 l <<= lo16_howto->rightshift;
7481 l = _bfd_mips_elf_sign_extend (l, 16);
7482
7483 *addend <<= 16;
7484 *addend += l;
7485 return TRUE;
7486 }
7487
7488 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7489 store the contents in *CONTENTS on success. Assume that *CONTENTS
7490 already holds the contents if it is nonull on entry. */
7491
7492 static bfd_boolean
7493 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7494 {
7495 if (*contents)
7496 return TRUE;
7497
7498 /* Get cached copy if it exists. */
7499 if (elf_section_data (sec)->this_hdr.contents != NULL)
7500 {
7501 *contents = elf_section_data (sec)->this_hdr.contents;
7502 return TRUE;
7503 }
7504
7505 return bfd_malloc_and_get_section (abfd, sec, contents);
7506 }
7507
7508 /* Look through the relocs for a section during the first phase, and
7509 allocate space in the global offset table. */
7510
7511 bfd_boolean
7512 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7513 asection *sec, const Elf_Internal_Rela *relocs)
7514 {
7515 const char *name;
7516 bfd *dynobj;
7517 Elf_Internal_Shdr *symtab_hdr;
7518 struct elf_link_hash_entry **sym_hashes;
7519 size_t extsymoff;
7520 const Elf_Internal_Rela *rel;
7521 const Elf_Internal_Rela *rel_end;
7522 asection *sreloc;
7523 const struct elf_backend_data *bed;
7524 struct mips_elf_link_hash_table *htab;
7525 bfd_byte *contents;
7526 bfd_vma addend;
7527 reloc_howto_type *howto;
7528
7529 if (info->relocatable)
7530 return TRUE;
7531
7532 htab = mips_elf_hash_table (info);
7533 BFD_ASSERT (htab != NULL);
7534
7535 dynobj = elf_hash_table (info)->dynobj;
7536 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7537 sym_hashes = elf_sym_hashes (abfd);
7538 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7539
7540 bed = get_elf_backend_data (abfd);
7541 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7542
7543 /* Check for the mips16 stub sections. */
7544
7545 name = bfd_get_section_name (abfd, sec);
7546 if (FN_STUB_P (name))
7547 {
7548 unsigned long r_symndx;
7549
7550 /* Look at the relocation information to figure out which symbol
7551 this is for. */
7552
7553 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7554 if (r_symndx == 0)
7555 {
7556 (*_bfd_error_handler)
7557 (_("%B: Warning: cannot determine the target function for"
7558 " stub section `%s'"),
7559 abfd, name);
7560 bfd_set_error (bfd_error_bad_value);
7561 return FALSE;
7562 }
7563
7564 if (r_symndx < extsymoff
7565 || sym_hashes[r_symndx - extsymoff] == NULL)
7566 {
7567 asection *o;
7568
7569 /* This stub is for a local symbol. This stub will only be
7570 needed if there is some relocation in this BFD, other
7571 than a 16 bit function call, which refers to this symbol. */
7572 for (o = abfd->sections; o != NULL; o = o->next)
7573 {
7574 Elf_Internal_Rela *sec_relocs;
7575 const Elf_Internal_Rela *r, *rend;
7576
7577 /* We can ignore stub sections when looking for relocs. */
7578 if ((o->flags & SEC_RELOC) == 0
7579 || o->reloc_count == 0
7580 || section_allows_mips16_refs_p (o))
7581 continue;
7582
7583 sec_relocs
7584 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7585 info->keep_memory);
7586 if (sec_relocs == NULL)
7587 return FALSE;
7588
7589 rend = sec_relocs + o->reloc_count;
7590 for (r = sec_relocs; r < rend; r++)
7591 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7592 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7593 break;
7594
7595 if (elf_section_data (o)->relocs != sec_relocs)
7596 free (sec_relocs);
7597
7598 if (r < rend)
7599 break;
7600 }
7601
7602 if (o == NULL)
7603 {
7604 /* There is no non-call reloc for this stub, so we do
7605 not need it. Since this function is called before
7606 the linker maps input sections to output sections, we
7607 can easily discard it by setting the SEC_EXCLUDE
7608 flag. */
7609 sec->flags |= SEC_EXCLUDE;
7610 return TRUE;
7611 }
7612
7613 /* Record this stub in an array of local symbol stubs for
7614 this BFD. */
7615 if (mips_elf_tdata (abfd)->local_stubs == NULL)
7616 {
7617 unsigned long symcount;
7618 asection **n;
7619 bfd_size_type amt;
7620
7621 if (elf_bad_symtab (abfd))
7622 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7623 else
7624 symcount = symtab_hdr->sh_info;
7625 amt = symcount * sizeof (asection *);
7626 n = bfd_zalloc (abfd, amt);
7627 if (n == NULL)
7628 return FALSE;
7629 mips_elf_tdata (abfd)->local_stubs = n;
7630 }
7631
7632 sec->flags |= SEC_KEEP;
7633 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7634
7635 /* We don't need to set mips16_stubs_seen in this case.
7636 That flag is used to see whether we need to look through
7637 the global symbol table for stubs. We don't need to set
7638 it here, because we just have a local stub. */
7639 }
7640 else
7641 {
7642 struct mips_elf_link_hash_entry *h;
7643
7644 h = ((struct mips_elf_link_hash_entry *)
7645 sym_hashes[r_symndx - extsymoff]);
7646
7647 while (h->root.root.type == bfd_link_hash_indirect
7648 || h->root.root.type == bfd_link_hash_warning)
7649 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7650
7651 /* H is the symbol this stub is for. */
7652
7653 /* If we already have an appropriate stub for this function, we
7654 don't need another one, so we can discard this one. Since
7655 this function is called before the linker maps input sections
7656 to output sections, we can easily discard it by setting the
7657 SEC_EXCLUDE flag. */
7658 if (h->fn_stub != NULL)
7659 {
7660 sec->flags |= SEC_EXCLUDE;
7661 return TRUE;
7662 }
7663
7664 sec->flags |= SEC_KEEP;
7665 h->fn_stub = sec;
7666 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7667 }
7668 }
7669 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7670 {
7671 unsigned long r_symndx;
7672 struct mips_elf_link_hash_entry *h;
7673 asection **loc;
7674
7675 /* Look at the relocation information to figure out which symbol
7676 this is for. */
7677
7678 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7679 if (r_symndx == 0)
7680 {
7681 (*_bfd_error_handler)
7682 (_("%B: Warning: cannot determine the target function for"
7683 " stub section `%s'"),
7684 abfd, name);
7685 bfd_set_error (bfd_error_bad_value);
7686 return FALSE;
7687 }
7688
7689 if (r_symndx < extsymoff
7690 || sym_hashes[r_symndx - extsymoff] == NULL)
7691 {
7692 asection *o;
7693
7694 /* This stub is for a local symbol. This stub will only be
7695 needed if there is some relocation (R_MIPS16_26) in this BFD
7696 that refers to this symbol. */
7697 for (o = abfd->sections; o != NULL; o = o->next)
7698 {
7699 Elf_Internal_Rela *sec_relocs;
7700 const Elf_Internal_Rela *r, *rend;
7701
7702 /* We can ignore stub sections when looking for relocs. */
7703 if ((o->flags & SEC_RELOC) == 0
7704 || o->reloc_count == 0
7705 || section_allows_mips16_refs_p (o))
7706 continue;
7707
7708 sec_relocs
7709 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7710 info->keep_memory);
7711 if (sec_relocs == NULL)
7712 return FALSE;
7713
7714 rend = sec_relocs + o->reloc_count;
7715 for (r = sec_relocs; r < rend; r++)
7716 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7717 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7718 break;
7719
7720 if (elf_section_data (o)->relocs != sec_relocs)
7721 free (sec_relocs);
7722
7723 if (r < rend)
7724 break;
7725 }
7726
7727 if (o == NULL)
7728 {
7729 /* There is no non-call reloc for this stub, so we do
7730 not need it. Since this function is called before
7731 the linker maps input sections to output sections, we
7732 can easily discard it by setting the SEC_EXCLUDE
7733 flag. */
7734 sec->flags |= SEC_EXCLUDE;
7735 return TRUE;
7736 }
7737
7738 /* Record this stub in an array of local symbol call_stubs for
7739 this BFD. */
7740 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
7741 {
7742 unsigned long symcount;
7743 asection **n;
7744 bfd_size_type amt;
7745
7746 if (elf_bad_symtab (abfd))
7747 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7748 else
7749 symcount = symtab_hdr->sh_info;
7750 amt = symcount * sizeof (asection *);
7751 n = bfd_zalloc (abfd, amt);
7752 if (n == NULL)
7753 return FALSE;
7754 mips_elf_tdata (abfd)->local_call_stubs = n;
7755 }
7756
7757 sec->flags |= SEC_KEEP;
7758 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7759
7760 /* We don't need to set mips16_stubs_seen in this case.
7761 That flag is used to see whether we need to look through
7762 the global symbol table for stubs. We don't need to set
7763 it here, because we just have a local stub. */
7764 }
7765 else
7766 {
7767 h = ((struct mips_elf_link_hash_entry *)
7768 sym_hashes[r_symndx - extsymoff]);
7769
7770 /* H is the symbol this stub is for. */
7771
7772 if (CALL_FP_STUB_P (name))
7773 loc = &h->call_fp_stub;
7774 else
7775 loc = &h->call_stub;
7776
7777 /* If we already have an appropriate stub for this function, we
7778 don't need another one, so we can discard this one. Since
7779 this function is called before the linker maps input sections
7780 to output sections, we can easily discard it by setting the
7781 SEC_EXCLUDE flag. */
7782 if (*loc != NULL)
7783 {
7784 sec->flags |= SEC_EXCLUDE;
7785 return TRUE;
7786 }
7787
7788 sec->flags |= SEC_KEEP;
7789 *loc = sec;
7790 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7791 }
7792 }
7793
7794 sreloc = NULL;
7795 contents = NULL;
7796 for (rel = relocs; rel < rel_end; ++rel)
7797 {
7798 unsigned long r_symndx;
7799 unsigned int r_type;
7800 struct elf_link_hash_entry *h;
7801 bfd_boolean can_make_dynamic_p;
7802
7803 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7804 r_type = ELF_R_TYPE (abfd, rel->r_info);
7805
7806 if (r_symndx < extsymoff)
7807 h = NULL;
7808 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7809 {
7810 (*_bfd_error_handler)
7811 (_("%B: Malformed reloc detected for section %s"),
7812 abfd, name);
7813 bfd_set_error (bfd_error_bad_value);
7814 return FALSE;
7815 }
7816 else
7817 {
7818 h = sym_hashes[r_symndx - extsymoff];
7819 if (h != NULL)
7820 {
7821 while (h->root.type == bfd_link_hash_indirect
7822 || h->root.type == bfd_link_hash_warning)
7823 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7824
7825 /* PR15323, ref flags aren't set for references in the
7826 same object. */
7827 h->root.non_ir_ref = 1;
7828 }
7829 }
7830
7831 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7832 relocation into a dynamic one. */
7833 can_make_dynamic_p = FALSE;
7834 switch (r_type)
7835 {
7836 case R_MIPS_GOT16:
7837 case R_MIPS_CALL16:
7838 case R_MIPS_CALL_HI16:
7839 case R_MIPS_CALL_LO16:
7840 case R_MIPS_GOT_HI16:
7841 case R_MIPS_GOT_LO16:
7842 case R_MIPS_GOT_PAGE:
7843 case R_MIPS_GOT_OFST:
7844 case R_MIPS_GOT_DISP:
7845 case R_MIPS_TLS_GOTTPREL:
7846 case R_MIPS_TLS_GD:
7847 case R_MIPS_TLS_LDM:
7848 case R_MIPS16_GOT16:
7849 case R_MIPS16_CALL16:
7850 case R_MIPS16_TLS_GOTTPREL:
7851 case R_MIPS16_TLS_GD:
7852 case R_MIPS16_TLS_LDM:
7853 case R_MICROMIPS_GOT16:
7854 case R_MICROMIPS_CALL16:
7855 case R_MICROMIPS_CALL_HI16:
7856 case R_MICROMIPS_CALL_LO16:
7857 case R_MICROMIPS_GOT_HI16:
7858 case R_MICROMIPS_GOT_LO16:
7859 case R_MICROMIPS_GOT_PAGE:
7860 case R_MICROMIPS_GOT_OFST:
7861 case R_MICROMIPS_GOT_DISP:
7862 case R_MICROMIPS_TLS_GOTTPREL:
7863 case R_MICROMIPS_TLS_GD:
7864 case R_MICROMIPS_TLS_LDM:
7865 if (dynobj == NULL)
7866 elf_hash_table (info)->dynobj = dynobj = abfd;
7867 if (!mips_elf_create_got_section (dynobj, info))
7868 return FALSE;
7869 if (htab->is_vxworks && !info->shared)
7870 {
7871 (*_bfd_error_handler)
7872 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7873 abfd, (unsigned long) rel->r_offset);
7874 bfd_set_error (bfd_error_bad_value);
7875 return FALSE;
7876 }
7877 break;
7878
7879 /* This is just a hint; it can safely be ignored. Don't set
7880 has_static_relocs for the corresponding symbol. */
7881 case R_MIPS_JALR:
7882 case R_MICROMIPS_JALR:
7883 break;
7884
7885 case R_MIPS_32:
7886 case R_MIPS_REL32:
7887 case R_MIPS_64:
7888 /* In VxWorks executables, references to external symbols
7889 must be handled using copy relocs or PLT entries; it is not
7890 possible to convert this relocation into a dynamic one.
7891
7892 For executables that use PLTs and copy-relocs, we have a
7893 choice between converting the relocation into a dynamic
7894 one or using copy relocations or PLT entries. It is
7895 usually better to do the former, unless the relocation is
7896 against a read-only section. */
7897 if ((info->shared
7898 || (h != NULL
7899 && !htab->is_vxworks
7900 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7901 && !(!info->nocopyreloc
7902 && !PIC_OBJECT_P (abfd)
7903 && MIPS_ELF_READONLY_SECTION (sec))))
7904 && (sec->flags & SEC_ALLOC) != 0)
7905 {
7906 can_make_dynamic_p = TRUE;
7907 if (dynobj == NULL)
7908 elf_hash_table (info)->dynobj = dynobj = abfd;
7909 break;
7910 }
7911 /* For sections that are not SEC_ALLOC a copy reloc would be
7912 output if possible (implying questionable semantics for
7913 read-only data objects) or otherwise the final link would
7914 fail as ld.so will not process them and could not therefore
7915 handle any outstanding dynamic relocations.
7916
7917 For such sections that are also SEC_DEBUGGING, we can avoid
7918 these problems by simply ignoring any relocs as these
7919 sections have a predefined use and we know it is safe to do
7920 so.
7921
7922 This is needed in cases such as a global symbol definition
7923 in a shared library causing a common symbol from an object
7924 file to be converted to an undefined reference. If that
7925 happens, then all the relocations against this symbol from
7926 SEC_DEBUGGING sections in the object file will resolve to
7927 nil. */
7928 if ((sec->flags & SEC_DEBUGGING) != 0)
7929 break;
7930 /* Fall through. */
7931
7932 default:
7933 /* Most static relocations require pointer equality, except
7934 for branches. */
7935 if (h)
7936 h->pointer_equality_needed = TRUE;
7937 /* Fall through. */
7938
7939 case R_MIPS_26:
7940 case R_MIPS_PC16:
7941 case R_MIPS16_26:
7942 case R_MICROMIPS_26_S1:
7943 case R_MICROMIPS_PC7_S1:
7944 case R_MICROMIPS_PC10_S1:
7945 case R_MICROMIPS_PC16_S1:
7946 case R_MICROMIPS_PC23_S2:
7947 if (h)
7948 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7949 break;
7950 }
7951
7952 if (h)
7953 {
7954 /* Relocations against the special VxWorks __GOTT_BASE__ and
7955 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7956 room for them in .rela.dyn. */
7957 if (is_gott_symbol (info, h))
7958 {
7959 if (sreloc == NULL)
7960 {
7961 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7962 if (sreloc == NULL)
7963 return FALSE;
7964 }
7965 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7966 if (MIPS_ELF_READONLY_SECTION (sec))
7967 /* We tell the dynamic linker that there are
7968 relocations against the text segment. */
7969 info->flags |= DF_TEXTREL;
7970 }
7971 }
7972 else if (call_lo16_reloc_p (r_type)
7973 || got_lo16_reloc_p (r_type)
7974 || got_disp_reloc_p (r_type)
7975 || (got16_reloc_p (r_type) && htab->is_vxworks))
7976 {
7977 /* We may need a local GOT entry for this relocation. We
7978 don't count R_MIPS_GOT_PAGE because we can estimate the
7979 maximum number of pages needed by looking at the size of
7980 the segment. Similar comments apply to R_MIPS*_GOT16 and
7981 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7982 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7983 R_MIPS_CALL_HI16 because these are always followed by an
7984 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7985 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7986 rel->r_addend, info, r_type))
7987 return FALSE;
7988 }
7989
7990 if (h != NULL
7991 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7992 ELF_ST_IS_MIPS16 (h->other)))
7993 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7994
7995 switch (r_type)
7996 {
7997 case R_MIPS_CALL16:
7998 case R_MIPS16_CALL16:
7999 case R_MICROMIPS_CALL16:
8000 if (h == NULL)
8001 {
8002 (*_bfd_error_handler)
8003 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8004 abfd, (unsigned long) rel->r_offset);
8005 bfd_set_error (bfd_error_bad_value);
8006 return FALSE;
8007 }
8008 /* Fall through. */
8009
8010 case R_MIPS_CALL_HI16:
8011 case R_MIPS_CALL_LO16:
8012 case R_MICROMIPS_CALL_HI16:
8013 case R_MICROMIPS_CALL_LO16:
8014 if (h != NULL)
8015 {
8016 /* Make sure there is room in the regular GOT to hold the
8017 function's address. We may eliminate it in favour of
8018 a .got.plt entry later; see mips_elf_count_got_symbols. */
8019 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8020 r_type))
8021 return FALSE;
8022
8023 /* We need a stub, not a plt entry for the undefined
8024 function. But we record it as if it needs plt. See
8025 _bfd_elf_adjust_dynamic_symbol. */
8026 h->needs_plt = 1;
8027 h->type = STT_FUNC;
8028 }
8029 break;
8030
8031 case R_MIPS_GOT_PAGE:
8032 case R_MICROMIPS_GOT_PAGE:
8033 case R_MIPS16_GOT16:
8034 case R_MIPS_GOT16:
8035 case R_MIPS_GOT_HI16:
8036 case R_MIPS_GOT_LO16:
8037 case R_MICROMIPS_GOT16:
8038 case R_MICROMIPS_GOT_HI16:
8039 case R_MICROMIPS_GOT_LO16:
8040 if (!h || got_page_reloc_p (r_type))
8041 {
8042 /* This relocation needs (or may need, if h != NULL) a
8043 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8044 know for sure until we know whether the symbol is
8045 preemptible. */
8046 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8047 {
8048 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8049 return FALSE;
8050 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8051 addend = mips_elf_read_rel_addend (abfd, rel,
8052 howto, contents);
8053 if (got16_reloc_p (r_type))
8054 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8055 contents, &addend);
8056 else
8057 addend <<= howto->rightshift;
8058 }
8059 else
8060 addend = rel->r_addend;
8061 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8062 h, addend))
8063 return FALSE;
8064
8065 if (h)
8066 {
8067 struct mips_elf_link_hash_entry *hmips =
8068 (struct mips_elf_link_hash_entry *) h;
8069
8070 /* This symbol is definitely not overridable. */
8071 if (hmips->root.def_regular
8072 && ! (info->shared && ! info->symbolic
8073 && ! hmips->root.forced_local))
8074 h = NULL;
8075 }
8076 }
8077 /* If this is a global, overridable symbol, GOT_PAGE will
8078 decay to GOT_DISP, so we'll need a GOT entry for it. */
8079 /* Fall through. */
8080
8081 case R_MIPS_GOT_DISP:
8082 case R_MICROMIPS_GOT_DISP:
8083 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8084 FALSE, r_type))
8085 return FALSE;
8086 break;
8087
8088 case R_MIPS_TLS_GOTTPREL:
8089 case R_MIPS16_TLS_GOTTPREL:
8090 case R_MICROMIPS_TLS_GOTTPREL:
8091 if (info->shared)
8092 info->flags |= DF_STATIC_TLS;
8093 /* Fall through */
8094
8095 case R_MIPS_TLS_LDM:
8096 case R_MIPS16_TLS_LDM:
8097 case R_MICROMIPS_TLS_LDM:
8098 if (tls_ldm_reloc_p (r_type))
8099 {
8100 r_symndx = STN_UNDEF;
8101 h = NULL;
8102 }
8103 /* Fall through */
8104
8105 case R_MIPS_TLS_GD:
8106 case R_MIPS16_TLS_GD:
8107 case R_MICROMIPS_TLS_GD:
8108 /* This symbol requires a global offset table entry, or two
8109 for TLS GD relocations. */
8110 if (h != NULL)
8111 {
8112 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8113 FALSE, r_type))
8114 return FALSE;
8115 }
8116 else
8117 {
8118 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8119 rel->r_addend,
8120 info, r_type))
8121 return FALSE;
8122 }
8123 break;
8124
8125 case R_MIPS_32:
8126 case R_MIPS_REL32:
8127 case R_MIPS_64:
8128 /* In VxWorks executables, references to external symbols
8129 are handled using copy relocs or PLT stubs, so there's
8130 no need to add a .rela.dyn entry for this relocation. */
8131 if (can_make_dynamic_p)
8132 {
8133 if (sreloc == NULL)
8134 {
8135 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8136 if (sreloc == NULL)
8137 return FALSE;
8138 }
8139 if (info->shared && h == NULL)
8140 {
8141 /* When creating a shared object, we must copy these
8142 reloc types into the output file as R_MIPS_REL32
8143 relocs. Make room for this reloc in .rel(a).dyn. */
8144 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8145 if (MIPS_ELF_READONLY_SECTION (sec))
8146 /* We tell the dynamic linker that there are
8147 relocations against the text segment. */
8148 info->flags |= DF_TEXTREL;
8149 }
8150 else
8151 {
8152 struct mips_elf_link_hash_entry *hmips;
8153
8154 /* For a shared object, we must copy this relocation
8155 unless the symbol turns out to be undefined and
8156 weak with non-default visibility, in which case
8157 it will be left as zero.
8158
8159 We could elide R_MIPS_REL32 for locally binding symbols
8160 in shared libraries, but do not yet do so.
8161
8162 For an executable, we only need to copy this
8163 reloc if the symbol is defined in a dynamic
8164 object. */
8165 hmips = (struct mips_elf_link_hash_entry *) h;
8166 ++hmips->possibly_dynamic_relocs;
8167 if (MIPS_ELF_READONLY_SECTION (sec))
8168 /* We need it to tell the dynamic linker if there
8169 are relocations against the text segment. */
8170 hmips->readonly_reloc = TRUE;
8171 }
8172 }
8173
8174 if (SGI_COMPAT (abfd))
8175 mips_elf_hash_table (info)->compact_rel_size +=
8176 sizeof (Elf32_External_crinfo);
8177 break;
8178
8179 case R_MIPS_26:
8180 case R_MIPS_GPREL16:
8181 case R_MIPS_LITERAL:
8182 case R_MIPS_GPREL32:
8183 case R_MICROMIPS_26_S1:
8184 case R_MICROMIPS_GPREL16:
8185 case R_MICROMIPS_LITERAL:
8186 case R_MICROMIPS_GPREL7_S2:
8187 if (SGI_COMPAT (abfd))
8188 mips_elf_hash_table (info)->compact_rel_size +=
8189 sizeof (Elf32_External_crinfo);
8190 break;
8191
8192 /* This relocation describes the C++ object vtable hierarchy.
8193 Reconstruct it for later use during GC. */
8194 case R_MIPS_GNU_VTINHERIT:
8195 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8196 return FALSE;
8197 break;
8198
8199 /* This relocation describes which C++ vtable entries are actually
8200 used. Record for later use during GC. */
8201 case R_MIPS_GNU_VTENTRY:
8202 BFD_ASSERT (h != NULL);
8203 if (h != NULL
8204 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8205 return FALSE;
8206 break;
8207
8208 default:
8209 break;
8210 }
8211
8212 /* We must not create a stub for a symbol that has relocations
8213 related to taking the function's address. This doesn't apply to
8214 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8215 a normal .got entry. */
8216 if (!htab->is_vxworks && h != NULL)
8217 switch (r_type)
8218 {
8219 default:
8220 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8221 break;
8222 case R_MIPS16_CALL16:
8223 case R_MIPS_CALL16:
8224 case R_MIPS_CALL_HI16:
8225 case R_MIPS_CALL_LO16:
8226 case R_MIPS_JALR:
8227 case R_MICROMIPS_CALL16:
8228 case R_MICROMIPS_CALL_HI16:
8229 case R_MICROMIPS_CALL_LO16:
8230 case R_MICROMIPS_JALR:
8231 break;
8232 }
8233
8234 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8235 if there is one. We only need to handle global symbols here;
8236 we decide whether to keep or delete stubs for local symbols
8237 when processing the stub's relocations. */
8238 if (h != NULL
8239 && !mips16_call_reloc_p (r_type)
8240 && !section_allows_mips16_refs_p (sec))
8241 {
8242 struct mips_elf_link_hash_entry *mh;
8243
8244 mh = (struct mips_elf_link_hash_entry *) h;
8245 mh->need_fn_stub = TRUE;
8246 }
8247
8248 /* Refuse some position-dependent relocations when creating a
8249 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8250 not PIC, but we can create dynamic relocations and the result
8251 will be fine. Also do not refuse R_MIPS_LO16, which can be
8252 combined with R_MIPS_GOT16. */
8253 if (info->shared)
8254 {
8255 switch (r_type)
8256 {
8257 case R_MIPS16_HI16:
8258 case R_MIPS_HI16:
8259 case R_MIPS_HIGHER:
8260 case R_MIPS_HIGHEST:
8261 case R_MICROMIPS_HI16:
8262 case R_MICROMIPS_HIGHER:
8263 case R_MICROMIPS_HIGHEST:
8264 /* Don't refuse a high part relocation if it's against
8265 no symbol (e.g. part of a compound relocation). */
8266 if (r_symndx == STN_UNDEF)
8267 break;
8268
8269 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8270 and has a special meaning. */
8271 if (!NEWABI_P (abfd) && h != NULL
8272 && strcmp (h->root.root.string, "_gp_disp") == 0)
8273 break;
8274
8275 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8276 if (is_gott_symbol (info, h))
8277 break;
8278
8279 /* FALLTHROUGH */
8280
8281 case R_MIPS16_26:
8282 case R_MIPS_26:
8283 case R_MICROMIPS_26_S1:
8284 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8285 (*_bfd_error_handler)
8286 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8287 abfd, howto->name,
8288 (h) ? h->root.root.string : "a local symbol");
8289 bfd_set_error (bfd_error_bad_value);
8290 return FALSE;
8291 default:
8292 break;
8293 }
8294 }
8295 }
8296
8297 return TRUE;
8298 }
8299 \f
8300 bfd_boolean
8301 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8302 struct bfd_link_info *link_info,
8303 bfd_boolean *again)
8304 {
8305 Elf_Internal_Rela *internal_relocs;
8306 Elf_Internal_Rela *irel, *irelend;
8307 Elf_Internal_Shdr *symtab_hdr;
8308 bfd_byte *contents = NULL;
8309 size_t extsymoff;
8310 bfd_boolean changed_contents = FALSE;
8311 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8312 Elf_Internal_Sym *isymbuf = NULL;
8313
8314 /* We are not currently changing any sizes, so only one pass. */
8315 *again = FALSE;
8316
8317 if (link_info->relocatable)
8318 return TRUE;
8319
8320 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8321 link_info->keep_memory);
8322 if (internal_relocs == NULL)
8323 return TRUE;
8324
8325 irelend = internal_relocs + sec->reloc_count
8326 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8327 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8328 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8329
8330 for (irel = internal_relocs; irel < irelend; irel++)
8331 {
8332 bfd_vma symval;
8333 bfd_signed_vma sym_offset;
8334 unsigned int r_type;
8335 unsigned long r_symndx;
8336 asection *sym_sec;
8337 unsigned long instruction;
8338
8339 /* Turn jalr into bgezal, and jr into beq, if they're marked
8340 with a JALR relocation, that indicate where they jump to.
8341 This saves some pipeline bubbles. */
8342 r_type = ELF_R_TYPE (abfd, irel->r_info);
8343 if (r_type != R_MIPS_JALR)
8344 continue;
8345
8346 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8347 /* Compute the address of the jump target. */
8348 if (r_symndx >= extsymoff)
8349 {
8350 struct mips_elf_link_hash_entry *h
8351 = ((struct mips_elf_link_hash_entry *)
8352 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8353
8354 while (h->root.root.type == bfd_link_hash_indirect
8355 || h->root.root.type == bfd_link_hash_warning)
8356 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8357
8358 /* If a symbol is undefined, or if it may be overridden,
8359 skip it. */
8360 if (! ((h->root.root.type == bfd_link_hash_defined
8361 || h->root.root.type == bfd_link_hash_defweak)
8362 && h->root.root.u.def.section)
8363 || (link_info->shared && ! link_info->symbolic
8364 && !h->root.forced_local))
8365 continue;
8366
8367 sym_sec = h->root.root.u.def.section;
8368 if (sym_sec->output_section)
8369 symval = (h->root.root.u.def.value
8370 + sym_sec->output_section->vma
8371 + sym_sec->output_offset);
8372 else
8373 symval = h->root.root.u.def.value;
8374 }
8375 else
8376 {
8377 Elf_Internal_Sym *isym;
8378
8379 /* Read this BFD's symbols if we haven't done so already. */
8380 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8381 {
8382 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8383 if (isymbuf == NULL)
8384 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8385 symtab_hdr->sh_info, 0,
8386 NULL, NULL, NULL);
8387 if (isymbuf == NULL)
8388 goto relax_return;
8389 }
8390
8391 isym = isymbuf + r_symndx;
8392 if (isym->st_shndx == SHN_UNDEF)
8393 continue;
8394 else if (isym->st_shndx == SHN_ABS)
8395 sym_sec = bfd_abs_section_ptr;
8396 else if (isym->st_shndx == SHN_COMMON)
8397 sym_sec = bfd_com_section_ptr;
8398 else
8399 sym_sec
8400 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8401 symval = isym->st_value
8402 + sym_sec->output_section->vma
8403 + sym_sec->output_offset;
8404 }
8405
8406 /* Compute branch offset, from delay slot of the jump to the
8407 branch target. */
8408 sym_offset = (symval + irel->r_addend)
8409 - (sec_start + irel->r_offset + 4);
8410
8411 /* Branch offset must be properly aligned. */
8412 if ((sym_offset & 3) != 0)
8413 continue;
8414
8415 sym_offset >>= 2;
8416
8417 /* Check that it's in range. */
8418 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8419 continue;
8420
8421 /* Get the section contents if we haven't done so already. */
8422 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8423 goto relax_return;
8424
8425 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8426
8427 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8428 if ((instruction & 0xfc1fffff) == 0x0000f809)
8429 instruction = 0x04110000;
8430 /* If it was jr <reg>, turn it into b <target>. */
8431 else if ((instruction & 0xfc1fffff) == 0x00000008)
8432 instruction = 0x10000000;
8433 else
8434 continue;
8435
8436 instruction |= (sym_offset & 0xffff);
8437 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8438 changed_contents = TRUE;
8439 }
8440
8441 if (contents != NULL
8442 && elf_section_data (sec)->this_hdr.contents != contents)
8443 {
8444 if (!changed_contents && !link_info->keep_memory)
8445 free (contents);
8446 else
8447 {
8448 /* Cache the section contents for elf_link_input_bfd. */
8449 elf_section_data (sec)->this_hdr.contents = contents;
8450 }
8451 }
8452 return TRUE;
8453
8454 relax_return:
8455 if (contents != NULL
8456 && elf_section_data (sec)->this_hdr.contents != contents)
8457 free (contents);
8458 return FALSE;
8459 }
8460 \f
8461 /* Allocate space for global sym dynamic relocs. */
8462
8463 static bfd_boolean
8464 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8465 {
8466 struct bfd_link_info *info = inf;
8467 bfd *dynobj;
8468 struct mips_elf_link_hash_entry *hmips;
8469 struct mips_elf_link_hash_table *htab;
8470
8471 htab = mips_elf_hash_table (info);
8472 BFD_ASSERT (htab != NULL);
8473
8474 dynobj = elf_hash_table (info)->dynobj;
8475 hmips = (struct mips_elf_link_hash_entry *) h;
8476
8477 /* VxWorks executables are handled elsewhere; we only need to
8478 allocate relocations in shared objects. */
8479 if (htab->is_vxworks && !info->shared)
8480 return TRUE;
8481
8482 /* Ignore indirect symbols. All relocations against such symbols
8483 will be redirected to the target symbol. */
8484 if (h->root.type == bfd_link_hash_indirect)
8485 return TRUE;
8486
8487 /* If this symbol is defined in a dynamic object, or we are creating
8488 a shared library, we will need to copy any R_MIPS_32 or
8489 R_MIPS_REL32 relocs against it into the output file. */
8490 if (! info->relocatable
8491 && hmips->possibly_dynamic_relocs != 0
8492 && (h->root.type == bfd_link_hash_defweak
8493 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8494 || info->shared))
8495 {
8496 bfd_boolean do_copy = TRUE;
8497
8498 if (h->root.type == bfd_link_hash_undefweak)
8499 {
8500 /* Do not copy relocations for undefined weak symbols with
8501 non-default visibility. */
8502 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8503 do_copy = FALSE;
8504
8505 /* Make sure undefined weak symbols are output as a dynamic
8506 symbol in PIEs. */
8507 else if (h->dynindx == -1 && !h->forced_local)
8508 {
8509 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8510 return FALSE;
8511 }
8512 }
8513
8514 if (do_copy)
8515 {
8516 /* Even though we don't directly need a GOT entry for this symbol,
8517 the SVR4 psABI requires it to have a dynamic symbol table
8518 index greater that DT_MIPS_GOTSYM if there are dynamic
8519 relocations against it.
8520
8521 VxWorks does not enforce the same mapping between the GOT
8522 and the symbol table, so the same requirement does not
8523 apply there. */
8524 if (!htab->is_vxworks)
8525 {
8526 if (hmips->global_got_area > GGA_RELOC_ONLY)
8527 hmips->global_got_area = GGA_RELOC_ONLY;
8528 hmips->got_only_for_calls = FALSE;
8529 }
8530
8531 mips_elf_allocate_dynamic_relocations
8532 (dynobj, info, hmips->possibly_dynamic_relocs);
8533 if (hmips->readonly_reloc)
8534 /* We tell the dynamic linker that there are relocations
8535 against the text segment. */
8536 info->flags |= DF_TEXTREL;
8537 }
8538 }
8539
8540 return TRUE;
8541 }
8542
8543 /* Adjust a symbol defined by a dynamic object and referenced by a
8544 regular object. The current definition is in some section of the
8545 dynamic object, but we're not including those sections. We have to
8546 change the definition to something the rest of the link can
8547 understand. */
8548
8549 bfd_boolean
8550 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8551 struct elf_link_hash_entry *h)
8552 {
8553 bfd *dynobj;
8554 struct mips_elf_link_hash_entry *hmips;
8555 struct mips_elf_link_hash_table *htab;
8556
8557 htab = mips_elf_hash_table (info);
8558 BFD_ASSERT (htab != NULL);
8559
8560 dynobj = elf_hash_table (info)->dynobj;
8561 hmips = (struct mips_elf_link_hash_entry *) h;
8562
8563 /* Make sure we know what is going on here. */
8564 BFD_ASSERT (dynobj != NULL
8565 && (h->needs_plt
8566 || h->u.weakdef != NULL
8567 || (h->def_dynamic
8568 && h->ref_regular
8569 && !h->def_regular)));
8570
8571 hmips = (struct mips_elf_link_hash_entry *) h;
8572
8573 /* If there are call relocations against an externally-defined symbol,
8574 see whether we can create a MIPS lazy-binding stub for it. We can
8575 only do this if all references to the function are through call
8576 relocations, and in that case, the traditional lazy-binding stubs
8577 are much more efficient than PLT entries.
8578
8579 Traditional stubs are only available on SVR4 psABI-based systems;
8580 VxWorks always uses PLTs instead. */
8581 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8582 {
8583 if (! elf_hash_table (info)->dynamic_sections_created)
8584 return TRUE;
8585
8586 /* If this symbol is not defined in a regular file, then set
8587 the symbol to the stub location. This is required to make
8588 function pointers compare as equal between the normal
8589 executable and the shared library. */
8590 if (!h->def_regular)
8591 {
8592 hmips->needs_lazy_stub = TRUE;
8593 htab->lazy_stub_count++;
8594 return TRUE;
8595 }
8596 }
8597 /* As above, VxWorks requires PLT entries for externally-defined
8598 functions that are only accessed through call relocations.
8599
8600 Both VxWorks and non-VxWorks targets also need PLT entries if there
8601 are static-only relocations against an externally-defined function.
8602 This can technically occur for shared libraries if there are
8603 branches to the symbol, although it is unlikely that this will be
8604 used in practice due to the short ranges involved. It can occur
8605 for any relative or absolute relocation in executables; in that
8606 case, the PLT entry becomes the function's canonical address. */
8607 else if (((h->needs_plt && !hmips->no_fn_stub)
8608 || (h->type == STT_FUNC && hmips->has_static_relocs))
8609 && htab->use_plts_and_copy_relocs
8610 && !SYMBOL_CALLS_LOCAL (info, h)
8611 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8612 && h->root.type == bfd_link_hash_undefweak))
8613 {
8614 /* If this is the first symbol to need a PLT entry, allocate room
8615 for the header. */
8616 if (htab->splt->size == 0)
8617 {
8618 BFD_ASSERT (htab->sgotplt->size == 0);
8619
8620 /* If we're using the PLT additions to the psABI, each PLT
8621 entry is 16 bytes and the PLT0 entry is 32 bytes.
8622 Encourage better cache usage by aligning. We do this
8623 lazily to avoid pessimizing traditional objects. */
8624 if (!htab->is_vxworks
8625 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8626 return FALSE;
8627
8628 /* Make sure that .got.plt is word-aligned. We do this lazily
8629 for the same reason as above. */
8630 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8631 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8632 return FALSE;
8633
8634 htab->splt->size += htab->plt_header_size;
8635
8636 /* On non-VxWorks targets, the first two entries in .got.plt
8637 are reserved. */
8638 if (!htab->is_vxworks)
8639 htab->sgotplt->size
8640 += get_elf_backend_data (dynobj)->got_header_size;
8641
8642 /* On VxWorks, also allocate room for the header's
8643 .rela.plt.unloaded entries. */
8644 if (htab->is_vxworks && !info->shared)
8645 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8646 }
8647
8648 /* Assign the next .plt entry to this symbol. */
8649 h->plt.offset = htab->splt->size;
8650 htab->splt->size += htab->plt_entry_size;
8651
8652 /* If the output file has no definition of the symbol, set the
8653 symbol's value to the address of the stub. */
8654 if (!info->shared && !h->def_regular)
8655 {
8656 h->root.u.def.section = htab->splt;
8657 h->root.u.def.value = h->plt.offset;
8658 /* For VxWorks, point at the PLT load stub rather than the
8659 lazy resolution stub; this stub will become the canonical
8660 function address. */
8661 if (htab->is_vxworks)
8662 h->root.u.def.value += 8;
8663 }
8664
8665 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8666 relocation. */
8667 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8668 htab->srelplt->size += (htab->is_vxworks
8669 ? MIPS_ELF_RELA_SIZE (dynobj)
8670 : MIPS_ELF_REL_SIZE (dynobj));
8671
8672 /* Make room for the .rela.plt.unloaded relocations. */
8673 if (htab->is_vxworks && !info->shared)
8674 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8675
8676 /* All relocations against this symbol that could have been made
8677 dynamic will now refer to the PLT entry instead. */
8678 hmips->possibly_dynamic_relocs = 0;
8679
8680 return TRUE;
8681 }
8682
8683 /* If this is a weak symbol, and there is a real definition, the
8684 processor independent code will have arranged for us to see the
8685 real definition first, and we can just use the same value. */
8686 if (h->u.weakdef != NULL)
8687 {
8688 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8689 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8690 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8691 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8692 return TRUE;
8693 }
8694
8695 /* Otherwise, there is nothing further to do for symbols defined
8696 in regular objects. */
8697 if (h->def_regular)
8698 return TRUE;
8699
8700 /* There's also nothing more to do if we'll convert all relocations
8701 against this symbol into dynamic relocations. */
8702 if (!hmips->has_static_relocs)
8703 return TRUE;
8704
8705 /* We're now relying on copy relocations. Complain if we have
8706 some that we can't convert. */
8707 if (!htab->use_plts_and_copy_relocs || info->shared)
8708 {
8709 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8710 "dynamic symbol %s"),
8711 h->root.root.string);
8712 bfd_set_error (bfd_error_bad_value);
8713 return FALSE;
8714 }
8715
8716 /* We must allocate the symbol in our .dynbss section, which will
8717 become part of the .bss section of the executable. There will be
8718 an entry for this symbol in the .dynsym section. The dynamic
8719 object will contain position independent code, so all references
8720 from the dynamic object to this symbol will go through the global
8721 offset table. The dynamic linker will use the .dynsym entry to
8722 determine the address it must put in the global offset table, so
8723 both the dynamic object and the regular object will refer to the
8724 same memory location for the variable. */
8725
8726 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8727 {
8728 if (htab->is_vxworks)
8729 htab->srelbss->size += sizeof (Elf32_External_Rela);
8730 else
8731 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8732 h->needs_copy = 1;
8733 }
8734
8735 /* All relocations against this symbol that could have been made
8736 dynamic will now refer to the local copy instead. */
8737 hmips->possibly_dynamic_relocs = 0;
8738
8739 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8740 }
8741 \f
8742 /* This function is called after all the input files have been read,
8743 and the input sections have been assigned to output sections. We
8744 check for any mips16 stub sections that we can discard. */
8745
8746 bfd_boolean
8747 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8748 struct bfd_link_info *info)
8749 {
8750 asection *ri;
8751 struct mips_elf_link_hash_table *htab;
8752 struct mips_htab_traverse_info hti;
8753
8754 htab = mips_elf_hash_table (info);
8755 BFD_ASSERT (htab != NULL);
8756
8757 /* The .reginfo section has a fixed size. */
8758 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8759 if (ri != NULL)
8760 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8761
8762 hti.info = info;
8763 hti.output_bfd = output_bfd;
8764 hti.error = FALSE;
8765 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8766 mips_elf_check_symbols, &hti);
8767 if (hti.error)
8768 return FALSE;
8769
8770 return TRUE;
8771 }
8772
8773 /* If the link uses a GOT, lay it out and work out its size. */
8774
8775 static bfd_boolean
8776 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8777 {
8778 bfd *dynobj;
8779 asection *s;
8780 struct mips_got_info *g;
8781 bfd_size_type loadable_size = 0;
8782 bfd_size_type page_gotno;
8783 bfd *ibfd;
8784 struct mips_elf_traverse_got_arg tga;
8785 struct mips_elf_link_hash_table *htab;
8786
8787 htab = mips_elf_hash_table (info);
8788 BFD_ASSERT (htab != NULL);
8789
8790 s = htab->sgot;
8791 if (s == NULL)
8792 return TRUE;
8793
8794 dynobj = elf_hash_table (info)->dynobj;
8795 g = htab->got_info;
8796
8797 /* Allocate room for the reserved entries. VxWorks always reserves
8798 3 entries; other objects only reserve 2 entries. */
8799 BFD_ASSERT (g->assigned_gotno == 0);
8800 if (htab->is_vxworks)
8801 htab->reserved_gotno = 3;
8802 else
8803 htab->reserved_gotno = 2;
8804 g->local_gotno += htab->reserved_gotno;
8805 g->assigned_gotno = htab->reserved_gotno;
8806
8807 /* Decide which symbols need to go in the global part of the GOT and
8808 count the number of reloc-only GOT symbols. */
8809 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8810
8811 if (!mips_elf_resolve_final_got_entries (info, g))
8812 return FALSE;
8813
8814 /* Calculate the total loadable size of the output. That
8815 will give us the maximum number of GOT_PAGE entries
8816 required. */
8817 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8818 {
8819 asection *subsection;
8820
8821 for (subsection = ibfd->sections;
8822 subsection;
8823 subsection = subsection->next)
8824 {
8825 if ((subsection->flags & SEC_ALLOC) == 0)
8826 continue;
8827 loadable_size += ((subsection->size + 0xf)
8828 &~ (bfd_size_type) 0xf);
8829 }
8830 }
8831
8832 if (htab->is_vxworks)
8833 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8834 relocations against local symbols evaluate to "G", and the EABI does
8835 not include R_MIPS_GOT_PAGE. */
8836 page_gotno = 0;
8837 else
8838 /* Assume there are two loadable segments consisting of contiguous
8839 sections. Is 5 enough? */
8840 page_gotno = (loadable_size >> 16) + 5;
8841
8842 /* Choose the smaller of the two page estimates; both are intended to be
8843 conservative. */
8844 if (page_gotno > g->page_gotno)
8845 page_gotno = g->page_gotno;
8846
8847 g->local_gotno += page_gotno;
8848
8849 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8850 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8851 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8852
8853 /* VxWorks does not support multiple GOTs. It initializes $gp to
8854 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8855 dynamic loader. */
8856 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8857 {
8858 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8859 return FALSE;
8860 }
8861 else
8862 {
8863 /* Record that all bfds use G. This also has the effect of freeing
8864 the per-bfd GOTs, which we no longer need. */
8865 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8866 if (mips_elf_bfd_got (ibfd, FALSE))
8867 mips_elf_replace_bfd_got (ibfd, g);
8868 mips_elf_replace_bfd_got (output_bfd, g);
8869
8870 /* Set up TLS entries. */
8871 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8872 tga.info = info;
8873 tga.g = g;
8874 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
8875 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
8876 if (!tga.g)
8877 return FALSE;
8878 BFD_ASSERT (g->tls_assigned_gotno
8879 == g->global_gotno + g->local_gotno + g->tls_gotno);
8880
8881 /* Each VxWorks GOT entry needs an explicit relocation. */
8882 if (htab->is_vxworks && info->shared)
8883 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
8884
8885 /* Allocate room for the TLS relocations. */
8886 if (g->relocs)
8887 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
8888 }
8889
8890 return TRUE;
8891 }
8892
8893 /* Estimate the size of the .MIPS.stubs section. */
8894
8895 static void
8896 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8897 {
8898 struct mips_elf_link_hash_table *htab;
8899 bfd_size_type dynsymcount;
8900
8901 htab = mips_elf_hash_table (info);
8902 BFD_ASSERT (htab != NULL);
8903
8904 if (htab->lazy_stub_count == 0)
8905 return;
8906
8907 /* IRIX rld assumes that a function stub isn't at the end of the .text
8908 section, so add a dummy entry to the end. */
8909 htab->lazy_stub_count++;
8910
8911 /* Get a worst-case estimate of the number of dynamic symbols needed.
8912 At this point, dynsymcount does not account for section symbols
8913 and count_section_dynsyms may overestimate the number that will
8914 be needed. */
8915 dynsymcount = (elf_hash_table (info)->dynsymcount
8916 + count_section_dynsyms (output_bfd, info));
8917
8918 /* Determine the size of one stub entry. */
8919 htab->function_stub_size = (dynsymcount > 0x10000
8920 ? MIPS_FUNCTION_STUB_BIG_SIZE
8921 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8922
8923 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8924 }
8925
8926 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8927 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8928 allocate an entry in the stubs section. */
8929
8930 static bfd_boolean
8931 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
8932 {
8933 struct mips_elf_link_hash_table *htab;
8934
8935 htab = (struct mips_elf_link_hash_table *) data;
8936 if (h->needs_lazy_stub)
8937 {
8938 h->root.root.u.def.section = htab->sstubs;
8939 h->root.root.u.def.value = htab->sstubs->size;
8940 h->root.plt.offset = htab->sstubs->size;
8941 htab->sstubs->size += htab->function_stub_size;
8942 }
8943 return TRUE;
8944 }
8945
8946 /* Allocate offsets in the stubs section to each symbol that needs one.
8947 Set the final size of the .MIPS.stub section. */
8948
8949 static void
8950 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8951 {
8952 struct mips_elf_link_hash_table *htab;
8953
8954 htab = mips_elf_hash_table (info);
8955 BFD_ASSERT (htab != NULL);
8956
8957 if (htab->lazy_stub_count == 0)
8958 return;
8959
8960 htab->sstubs->size = 0;
8961 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8962 htab->sstubs->size += htab->function_stub_size;
8963 BFD_ASSERT (htab->sstubs->size
8964 == htab->lazy_stub_count * htab->function_stub_size);
8965 }
8966
8967 /* Set the sizes of the dynamic sections. */
8968
8969 bfd_boolean
8970 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8971 struct bfd_link_info *info)
8972 {
8973 bfd *dynobj;
8974 asection *s, *sreldyn;
8975 bfd_boolean reltext;
8976 struct mips_elf_link_hash_table *htab;
8977
8978 htab = mips_elf_hash_table (info);
8979 BFD_ASSERT (htab != NULL);
8980 dynobj = elf_hash_table (info)->dynobj;
8981 BFD_ASSERT (dynobj != NULL);
8982
8983 if (elf_hash_table (info)->dynamic_sections_created)
8984 {
8985 /* Set the contents of the .interp section to the interpreter. */
8986 if (info->executable)
8987 {
8988 s = bfd_get_linker_section (dynobj, ".interp");
8989 BFD_ASSERT (s != NULL);
8990 s->size
8991 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8992 s->contents
8993 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8994 }
8995
8996 /* Create a symbol for the PLT, if we know that we are using it. */
8997 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8998 {
8999 struct elf_link_hash_entry *h;
9000
9001 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9002
9003 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9004 "_PROCEDURE_LINKAGE_TABLE_");
9005 htab->root.hplt = h;
9006 if (h == NULL)
9007 return FALSE;
9008 h->type = STT_FUNC;
9009 }
9010 }
9011
9012 /* Allocate space for global sym dynamic relocs. */
9013 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9014
9015 mips_elf_estimate_stub_size (output_bfd, info);
9016
9017 if (!mips_elf_lay_out_got (output_bfd, info))
9018 return FALSE;
9019
9020 mips_elf_lay_out_lazy_stubs (info);
9021
9022 /* The check_relocs and adjust_dynamic_symbol entry points have
9023 determined the sizes of the various dynamic sections. Allocate
9024 memory for them. */
9025 reltext = FALSE;
9026 for (s = dynobj->sections; s != NULL; s = s->next)
9027 {
9028 const char *name;
9029
9030 /* It's OK to base decisions on the section name, because none
9031 of the dynobj section names depend upon the input files. */
9032 name = bfd_get_section_name (dynobj, s);
9033
9034 if ((s->flags & SEC_LINKER_CREATED) == 0)
9035 continue;
9036
9037 if (CONST_STRNEQ (name, ".rel"))
9038 {
9039 if (s->size != 0)
9040 {
9041 const char *outname;
9042 asection *target;
9043
9044 /* If this relocation section applies to a read only
9045 section, then we probably need a DT_TEXTREL entry.
9046 If the relocation section is .rel(a).dyn, we always
9047 assert a DT_TEXTREL entry rather than testing whether
9048 there exists a relocation to a read only section or
9049 not. */
9050 outname = bfd_get_section_name (output_bfd,
9051 s->output_section);
9052 target = bfd_get_section_by_name (output_bfd, outname + 4);
9053 if ((target != NULL
9054 && (target->flags & SEC_READONLY) != 0
9055 && (target->flags & SEC_ALLOC) != 0)
9056 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9057 reltext = TRUE;
9058
9059 /* We use the reloc_count field as a counter if we need
9060 to copy relocs into the output file. */
9061 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9062 s->reloc_count = 0;
9063
9064 /* If combreloc is enabled, elf_link_sort_relocs() will
9065 sort relocations, but in a different way than we do,
9066 and before we're done creating relocations. Also, it
9067 will move them around between input sections'
9068 relocation's contents, so our sorting would be
9069 broken, so don't let it run. */
9070 info->combreloc = 0;
9071 }
9072 }
9073 else if (! info->shared
9074 && ! mips_elf_hash_table (info)->use_rld_obj_head
9075 && CONST_STRNEQ (name, ".rld_map"))
9076 {
9077 /* We add a room for __rld_map. It will be filled in by the
9078 rtld to contain a pointer to the _r_debug structure. */
9079 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9080 }
9081 else if (SGI_COMPAT (output_bfd)
9082 && CONST_STRNEQ (name, ".compact_rel"))
9083 s->size += mips_elf_hash_table (info)->compact_rel_size;
9084 else if (s == htab->splt)
9085 {
9086 /* If the last PLT entry has a branch delay slot, allocate
9087 room for an extra nop to fill the delay slot. This is
9088 for CPUs without load interlocking. */
9089 if (! LOAD_INTERLOCKS_P (output_bfd)
9090 && ! htab->is_vxworks && s->size > 0)
9091 s->size += 4;
9092 }
9093 else if (! CONST_STRNEQ (name, ".init")
9094 && s != htab->sgot
9095 && s != htab->sgotplt
9096 && s != htab->sstubs
9097 && s != htab->sdynbss)
9098 {
9099 /* It's not one of our sections, so don't allocate space. */
9100 continue;
9101 }
9102
9103 if (s->size == 0)
9104 {
9105 s->flags |= SEC_EXCLUDE;
9106 continue;
9107 }
9108
9109 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9110 continue;
9111
9112 /* Allocate memory for the section contents. */
9113 s->contents = bfd_zalloc (dynobj, s->size);
9114 if (s->contents == NULL)
9115 {
9116 bfd_set_error (bfd_error_no_memory);
9117 return FALSE;
9118 }
9119 }
9120
9121 if (elf_hash_table (info)->dynamic_sections_created)
9122 {
9123 /* Add some entries to the .dynamic section. We fill in the
9124 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9125 must add the entries now so that we get the correct size for
9126 the .dynamic section. */
9127
9128 /* SGI object has the equivalence of DT_DEBUG in the
9129 DT_MIPS_RLD_MAP entry. This must come first because glibc
9130 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9131 may only look at the first one they see. */
9132 if (!info->shared
9133 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9134 return FALSE;
9135
9136 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9137 used by the debugger. */
9138 if (info->executable
9139 && !SGI_COMPAT (output_bfd)
9140 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9141 return FALSE;
9142
9143 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9144 info->flags |= DF_TEXTREL;
9145
9146 if ((info->flags & DF_TEXTREL) != 0)
9147 {
9148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9149 return FALSE;
9150
9151 /* Clear the DF_TEXTREL flag. It will be set again if we
9152 write out an actual text relocation; we may not, because
9153 at this point we do not know whether e.g. any .eh_frame
9154 absolute relocations have been converted to PC-relative. */
9155 info->flags &= ~DF_TEXTREL;
9156 }
9157
9158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9159 return FALSE;
9160
9161 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9162 if (htab->is_vxworks)
9163 {
9164 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9165 use any of the DT_MIPS_* tags. */
9166 if (sreldyn && sreldyn->size > 0)
9167 {
9168 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9169 return FALSE;
9170
9171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9172 return FALSE;
9173
9174 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9175 return FALSE;
9176 }
9177 }
9178 else
9179 {
9180 if (sreldyn && sreldyn->size > 0)
9181 {
9182 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9183 return FALSE;
9184
9185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9186 return FALSE;
9187
9188 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9189 return FALSE;
9190 }
9191
9192 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9193 return FALSE;
9194
9195 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9196 return FALSE;
9197
9198 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9199 return FALSE;
9200
9201 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9202 return FALSE;
9203
9204 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9205 return FALSE;
9206
9207 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9208 return FALSE;
9209
9210 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9211 return FALSE;
9212
9213 if (IRIX_COMPAT (dynobj) == ict_irix5
9214 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9215 return FALSE;
9216
9217 if (IRIX_COMPAT (dynobj) == ict_irix6
9218 && (bfd_get_section_by_name
9219 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9220 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9221 return FALSE;
9222 }
9223 if (htab->splt->size > 0)
9224 {
9225 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9226 return FALSE;
9227
9228 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9229 return FALSE;
9230
9231 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9232 return FALSE;
9233
9234 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9235 return FALSE;
9236 }
9237 if (htab->is_vxworks
9238 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9239 return FALSE;
9240 }
9241
9242 return TRUE;
9243 }
9244 \f
9245 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9246 Adjust its R_ADDEND field so that it is correct for the output file.
9247 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9248 and sections respectively; both use symbol indexes. */
9249
9250 static void
9251 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9252 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9253 asection **local_sections, Elf_Internal_Rela *rel)
9254 {
9255 unsigned int r_type, r_symndx;
9256 Elf_Internal_Sym *sym;
9257 asection *sec;
9258
9259 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9260 {
9261 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9262 if (gprel16_reloc_p (r_type)
9263 || r_type == R_MIPS_GPREL32
9264 || literal_reloc_p (r_type))
9265 {
9266 rel->r_addend += _bfd_get_gp_value (input_bfd);
9267 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9268 }
9269
9270 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9271 sym = local_syms + r_symndx;
9272
9273 /* Adjust REL's addend to account for section merging. */
9274 if (!info->relocatable)
9275 {
9276 sec = local_sections[r_symndx];
9277 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9278 }
9279
9280 /* This would normally be done by the rela_normal code in elflink.c. */
9281 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9282 rel->r_addend += local_sections[r_symndx]->output_offset;
9283 }
9284 }
9285
9286 /* Handle relocations against symbols from removed linkonce sections,
9287 or sections discarded by a linker script. We use this wrapper around
9288 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9289 on 64-bit ELF targets. In this case for any relocation handled, which
9290 always be the first in a triplet, the remaining two have to be processed
9291 together with the first, even if they are R_MIPS_NONE. It is the symbol
9292 index referred by the first reloc that applies to all the three and the
9293 remaining two never refer to an object symbol. And it is the final
9294 relocation (the last non-null one) that determines the output field of
9295 the whole relocation so retrieve the corresponding howto structure for
9296 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9297
9298 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9299 and therefore requires to be pasted in a loop. It also defines a block
9300 and does not protect any of its arguments, hence the extra brackets. */
9301
9302 static void
9303 mips_reloc_against_discarded_section (bfd *output_bfd,
9304 struct bfd_link_info *info,
9305 bfd *input_bfd, asection *input_section,
9306 Elf_Internal_Rela **rel,
9307 const Elf_Internal_Rela **relend,
9308 bfd_boolean rel_reloc,
9309 reloc_howto_type *howto,
9310 bfd_byte *contents)
9311 {
9312 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9313 int count = bed->s->int_rels_per_ext_rel;
9314 unsigned int r_type;
9315 int i;
9316
9317 for (i = count - 1; i > 0; i--)
9318 {
9319 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9320 if (r_type != R_MIPS_NONE)
9321 {
9322 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9323 break;
9324 }
9325 }
9326 do
9327 {
9328 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9329 (*rel), count, (*relend),
9330 howto, i, contents);
9331 }
9332 while (0);
9333 }
9334
9335 /* Relocate a MIPS ELF section. */
9336
9337 bfd_boolean
9338 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9339 bfd *input_bfd, asection *input_section,
9340 bfd_byte *contents, Elf_Internal_Rela *relocs,
9341 Elf_Internal_Sym *local_syms,
9342 asection **local_sections)
9343 {
9344 Elf_Internal_Rela *rel;
9345 const Elf_Internal_Rela *relend;
9346 bfd_vma addend = 0;
9347 bfd_boolean use_saved_addend_p = FALSE;
9348 const struct elf_backend_data *bed;
9349
9350 bed = get_elf_backend_data (output_bfd);
9351 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9352 for (rel = relocs; rel < relend; ++rel)
9353 {
9354 const char *name;
9355 bfd_vma value = 0;
9356 reloc_howto_type *howto;
9357 bfd_boolean cross_mode_jump_p = FALSE;
9358 /* TRUE if the relocation is a RELA relocation, rather than a
9359 REL relocation. */
9360 bfd_boolean rela_relocation_p = TRUE;
9361 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9362 const char *msg;
9363 unsigned long r_symndx;
9364 asection *sec;
9365 Elf_Internal_Shdr *symtab_hdr;
9366 struct elf_link_hash_entry *h;
9367 bfd_boolean rel_reloc;
9368
9369 rel_reloc = (NEWABI_P (input_bfd)
9370 && mips_elf_rel_relocation_p (input_bfd, input_section,
9371 relocs, rel));
9372 /* Find the relocation howto for this relocation. */
9373 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9374
9375 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9376 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9377 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9378 {
9379 sec = local_sections[r_symndx];
9380 h = NULL;
9381 }
9382 else
9383 {
9384 unsigned long extsymoff;
9385
9386 extsymoff = 0;
9387 if (!elf_bad_symtab (input_bfd))
9388 extsymoff = symtab_hdr->sh_info;
9389 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9390 while (h->root.type == bfd_link_hash_indirect
9391 || h->root.type == bfd_link_hash_warning)
9392 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9393
9394 sec = NULL;
9395 if (h->root.type == bfd_link_hash_defined
9396 || h->root.type == bfd_link_hash_defweak)
9397 sec = h->root.u.def.section;
9398 }
9399
9400 if (sec != NULL && discarded_section (sec))
9401 {
9402 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9403 input_section, &rel, &relend,
9404 rel_reloc, howto, contents);
9405 continue;
9406 }
9407
9408 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9409 {
9410 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9411 64-bit code, but make sure all their addresses are in the
9412 lowermost or uppermost 32-bit section of the 64-bit address
9413 space. Thus, when they use an R_MIPS_64 they mean what is
9414 usually meant by R_MIPS_32, with the exception that the
9415 stored value is sign-extended to 64 bits. */
9416 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9417
9418 /* On big-endian systems, we need to lie about the position
9419 of the reloc. */
9420 if (bfd_big_endian (input_bfd))
9421 rel->r_offset += 4;
9422 }
9423
9424 if (!use_saved_addend_p)
9425 {
9426 /* If these relocations were originally of the REL variety,
9427 we must pull the addend out of the field that will be
9428 relocated. Otherwise, we simply use the contents of the
9429 RELA relocation. */
9430 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9431 relocs, rel))
9432 {
9433 rela_relocation_p = FALSE;
9434 addend = mips_elf_read_rel_addend (input_bfd, rel,
9435 howto, contents);
9436 if (hi16_reloc_p (r_type)
9437 || (got16_reloc_p (r_type)
9438 && mips_elf_local_relocation_p (input_bfd, rel,
9439 local_sections)))
9440 {
9441 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9442 contents, &addend))
9443 {
9444 if (h)
9445 name = h->root.root.string;
9446 else
9447 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9448 local_syms + r_symndx,
9449 sec);
9450 (*_bfd_error_handler)
9451 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9452 input_bfd, input_section, name, howto->name,
9453 rel->r_offset);
9454 }
9455 }
9456 else
9457 addend <<= howto->rightshift;
9458 }
9459 else
9460 addend = rel->r_addend;
9461 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9462 local_syms, local_sections, rel);
9463 }
9464
9465 if (info->relocatable)
9466 {
9467 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9468 && bfd_big_endian (input_bfd))
9469 rel->r_offset -= 4;
9470
9471 if (!rela_relocation_p && rel->r_addend)
9472 {
9473 addend += rel->r_addend;
9474 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9475 addend = mips_elf_high (addend);
9476 else if (r_type == R_MIPS_HIGHER)
9477 addend = mips_elf_higher (addend);
9478 else if (r_type == R_MIPS_HIGHEST)
9479 addend = mips_elf_highest (addend);
9480 else
9481 addend >>= howto->rightshift;
9482
9483 /* We use the source mask, rather than the destination
9484 mask because the place to which we are writing will be
9485 source of the addend in the final link. */
9486 addend &= howto->src_mask;
9487
9488 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9489 /* See the comment above about using R_MIPS_64 in the 32-bit
9490 ABI. Here, we need to update the addend. It would be
9491 possible to get away with just using the R_MIPS_32 reloc
9492 but for endianness. */
9493 {
9494 bfd_vma sign_bits;
9495 bfd_vma low_bits;
9496 bfd_vma high_bits;
9497
9498 if (addend & ((bfd_vma) 1 << 31))
9499 #ifdef BFD64
9500 sign_bits = ((bfd_vma) 1 << 32) - 1;
9501 #else
9502 sign_bits = -1;
9503 #endif
9504 else
9505 sign_bits = 0;
9506
9507 /* If we don't know that we have a 64-bit type,
9508 do two separate stores. */
9509 if (bfd_big_endian (input_bfd))
9510 {
9511 /* Store the sign-bits (which are most significant)
9512 first. */
9513 low_bits = sign_bits;
9514 high_bits = addend;
9515 }
9516 else
9517 {
9518 low_bits = addend;
9519 high_bits = sign_bits;
9520 }
9521 bfd_put_32 (input_bfd, low_bits,
9522 contents + rel->r_offset);
9523 bfd_put_32 (input_bfd, high_bits,
9524 contents + rel->r_offset + 4);
9525 continue;
9526 }
9527
9528 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9529 input_bfd, input_section,
9530 contents, FALSE))
9531 return FALSE;
9532 }
9533
9534 /* Go on to the next relocation. */
9535 continue;
9536 }
9537
9538 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9539 relocations for the same offset. In that case we are
9540 supposed to treat the output of each relocation as the addend
9541 for the next. */
9542 if (rel + 1 < relend
9543 && rel->r_offset == rel[1].r_offset
9544 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9545 use_saved_addend_p = TRUE;
9546 else
9547 use_saved_addend_p = FALSE;
9548
9549 /* Figure out what value we are supposed to relocate. */
9550 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9551 input_section, info, rel,
9552 addend, howto, local_syms,
9553 local_sections, &value,
9554 &name, &cross_mode_jump_p,
9555 use_saved_addend_p))
9556 {
9557 case bfd_reloc_continue:
9558 /* There's nothing to do. */
9559 continue;
9560
9561 case bfd_reloc_undefined:
9562 /* mips_elf_calculate_relocation already called the
9563 undefined_symbol callback. There's no real point in
9564 trying to perform the relocation at this point, so we
9565 just skip ahead to the next relocation. */
9566 continue;
9567
9568 case bfd_reloc_notsupported:
9569 msg = _("internal error: unsupported relocation error");
9570 info->callbacks->warning
9571 (info, msg, name, input_bfd, input_section, rel->r_offset);
9572 return FALSE;
9573
9574 case bfd_reloc_overflow:
9575 if (use_saved_addend_p)
9576 /* Ignore overflow until we reach the last relocation for
9577 a given location. */
9578 ;
9579 else
9580 {
9581 struct mips_elf_link_hash_table *htab;
9582
9583 htab = mips_elf_hash_table (info);
9584 BFD_ASSERT (htab != NULL);
9585 BFD_ASSERT (name != NULL);
9586 if (!htab->small_data_overflow_reported
9587 && (gprel16_reloc_p (howto->type)
9588 || literal_reloc_p (howto->type)))
9589 {
9590 msg = _("small-data section exceeds 64KB;"
9591 " lower small-data size limit (see option -G)");
9592
9593 htab->small_data_overflow_reported = TRUE;
9594 (*info->callbacks->einfo) ("%P: %s\n", msg);
9595 }
9596 if (! ((*info->callbacks->reloc_overflow)
9597 (info, NULL, name, howto->name, (bfd_vma) 0,
9598 input_bfd, input_section, rel->r_offset)))
9599 return FALSE;
9600 }
9601 break;
9602
9603 case bfd_reloc_ok:
9604 break;
9605
9606 case bfd_reloc_outofrange:
9607 if (jal_reloc_p (howto->type))
9608 {
9609 msg = _("JALX to a non-word-aligned address");
9610 info->callbacks->warning
9611 (info, msg, name, input_bfd, input_section, rel->r_offset);
9612 return FALSE;
9613 }
9614 /* Fall through. */
9615
9616 default:
9617 abort ();
9618 break;
9619 }
9620
9621 /* If we've got another relocation for the address, keep going
9622 until we reach the last one. */
9623 if (use_saved_addend_p)
9624 {
9625 addend = value;
9626 continue;
9627 }
9628
9629 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9630 /* See the comment above about using R_MIPS_64 in the 32-bit
9631 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9632 that calculated the right value. Now, however, we
9633 sign-extend the 32-bit result to 64-bits, and store it as a
9634 64-bit value. We are especially generous here in that we
9635 go to extreme lengths to support this usage on systems with
9636 only a 32-bit VMA. */
9637 {
9638 bfd_vma sign_bits;
9639 bfd_vma low_bits;
9640 bfd_vma high_bits;
9641
9642 if (value & ((bfd_vma) 1 << 31))
9643 #ifdef BFD64
9644 sign_bits = ((bfd_vma) 1 << 32) - 1;
9645 #else
9646 sign_bits = -1;
9647 #endif
9648 else
9649 sign_bits = 0;
9650
9651 /* If we don't know that we have a 64-bit type,
9652 do two separate stores. */
9653 if (bfd_big_endian (input_bfd))
9654 {
9655 /* Undo what we did above. */
9656 rel->r_offset -= 4;
9657 /* Store the sign-bits (which are most significant)
9658 first. */
9659 low_bits = sign_bits;
9660 high_bits = value;
9661 }
9662 else
9663 {
9664 low_bits = value;
9665 high_bits = sign_bits;
9666 }
9667 bfd_put_32 (input_bfd, low_bits,
9668 contents + rel->r_offset);
9669 bfd_put_32 (input_bfd, high_bits,
9670 contents + rel->r_offset + 4);
9671 continue;
9672 }
9673
9674 /* Actually perform the relocation. */
9675 if (! mips_elf_perform_relocation (info, howto, rel, value,
9676 input_bfd, input_section,
9677 contents, cross_mode_jump_p))
9678 return FALSE;
9679 }
9680
9681 return TRUE;
9682 }
9683 \f
9684 /* A function that iterates over each entry in la25_stubs and fills
9685 in the code for each one. DATA points to a mips_htab_traverse_info. */
9686
9687 static int
9688 mips_elf_create_la25_stub (void **slot, void *data)
9689 {
9690 struct mips_htab_traverse_info *hti;
9691 struct mips_elf_link_hash_table *htab;
9692 struct mips_elf_la25_stub *stub;
9693 asection *s;
9694 bfd_byte *loc;
9695 bfd_vma offset, target, target_high, target_low;
9696
9697 stub = (struct mips_elf_la25_stub *) *slot;
9698 hti = (struct mips_htab_traverse_info *) data;
9699 htab = mips_elf_hash_table (hti->info);
9700 BFD_ASSERT (htab != NULL);
9701
9702 /* Create the section contents, if we haven't already. */
9703 s = stub->stub_section;
9704 loc = s->contents;
9705 if (loc == NULL)
9706 {
9707 loc = bfd_malloc (s->size);
9708 if (loc == NULL)
9709 {
9710 hti->error = TRUE;
9711 return FALSE;
9712 }
9713 s->contents = loc;
9714 }
9715
9716 /* Work out where in the section this stub should go. */
9717 offset = stub->offset;
9718
9719 /* Work out the target address. */
9720 target = mips_elf_get_la25_target (stub, &s);
9721 target += s->output_section->vma + s->output_offset;
9722
9723 target_high = ((target + 0x8000) >> 16) & 0xffff;
9724 target_low = (target & 0xffff);
9725
9726 if (stub->stub_section != htab->strampoline)
9727 {
9728 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9729 of the section and write the two instructions at the end. */
9730 memset (loc, 0, offset);
9731 loc += offset;
9732 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9733 {
9734 bfd_put_micromips_32 (hti->output_bfd,
9735 LA25_LUI_MICROMIPS (target_high),
9736 loc);
9737 bfd_put_micromips_32 (hti->output_bfd,
9738 LA25_ADDIU_MICROMIPS (target_low),
9739 loc + 4);
9740 }
9741 else
9742 {
9743 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9744 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9745 }
9746 }
9747 else
9748 {
9749 /* This is trampoline. */
9750 loc += offset;
9751 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9752 {
9753 bfd_put_micromips_32 (hti->output_bfd,
9754 LA25_LUI_MICROMIPS (target_high), loc);
9755 bfd_put_micromips_32 (hti->output_bfd,
9756 LA25_J_MICROMIPS (target), loc + 4);
9757 bfd_put_micromips_32 (hti->output_bfd,
9758 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9759 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9760 }
9761 else
9762 {
9763 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9764 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9765 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9766 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9767 }
9768 }
9769 return TRUE;
9770 }
9771
9772 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9773 adjust it appropriately now. */
9774
9775 static void
9776 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9777 const char *name, Elf_Internal_Sym *sym)
9778 {
9779 /* The linker script takes care of providing names and values for
9780 these, but we must place them into the right sections. */
9781 static const char* const text_section_symbols[] = {
9782 "_ftext",
9783 "_etext",
9784 "__dso_displacement",
9785 "__elf_header",
9786 "__program_header_table",
9787 NULL
9788 };
9789
9790 static const char* const data_section_symbols[] = {
9791 "_fdata",
9792 "_edata",
9793 "_end",
9794 "_fbss",
9795 NULL
9796 };
9797
9798 const char* const *p;
9799 int i;
9800
9801 for (i = 0; i < 2; ++i)
9802 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9803 *p;
9804 ++p)
9805 if (strcmp (*p, name) == 0)
9806 {
9807 /* All of these symbols are given type STT_SECTION by the
9808 IRIX6 linker. */
9809 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9810 sym->st_other = STO_PROTECTED;
9811
9812 /* The IRIX linker puts these symbols in special sections. */
9813 if (i == 0)
9814 sym->st_shndx = SHN_MIPS_TEXT;
9815 else
9816 sym->st_shndx = SHN_MIPS_DATA;
9817
9818 break;
9819 }
9820 }
9821
9822 /* Finish up dynamic symbol handling. We set the contents of various
9823 dynamic sections here. */
9824
9825 bfd_boolean
9826 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9827 struct bfd_link_info *info,
9828 struct elf_link_hash_entry *h,
9829 Elf_Internal_Sym *sym)
9830 {
9831 bfd *dynobj;
9832 asection *sgot;
9833 struct mips_got_info *g, *gg;
9834 const char *name;
9835 int idx;
9836 struct mips_elf_link_hash_table *htab;
9837 struct mips_elf_link_hash_entry *hmips;
9838
9839 htab = mips_elf_hash_table (info);
9840 BFD_ASSERT (htab != NULL);
9841 dynobj = elf_hash_table (info)->dynobj;
9842 hmips = (struct mips_elf_link_hash_entry *) h;
9843
9844 BFD_ASSERT (!htab->is_vxworks);
9845
9846 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9847 {
9848 /* We've decided to create a PLT entry for this symbol. */
9849 bfd_byte *loc;
9850 bfd_vma header_address, plt_index, got_address;
9851 bfd_vma got_address_high, got_address_low, load;
9852 const bfd_vma *plt_entry;
9853
9854 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9855 BFD_ASSERT (h->dynindx != -1);
9856 BFD_ASSERT (htab->splt != NULL);
9857 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9858 BFD_ASSERT (!h->def_regular);
9859
9860 /* Calculate the address of the PLT header. */
9861 header_address = (htab->splt->output_section->vma
9862 + htab->splt->output_offset);
9863
9864 /* Calculate the index of the entry. */
9865 plt_index = ((h->plt.offset - htab->plt_header_size)
9866 / htab->plt_entry_size);
9867
9868 /* Calculate the address of the .got.plt entry. */
9869 got_address = (htab->sgotplt->output_section->vma
9870 + htab->sgotplt->output_offset
9871 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9872 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9873 got_address_low = got_address & 0xffff;
9874
9875 /* Initially point the .got.plt entry at the PLT header. */
9876 loc = (htab->sgotplt->contents
9877 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9878 if (ABI_64_P (output_bfd))
9879 bfd_put_64 (output_bfd, header_address, loc);
9880 else
9881 bfd_put_32 (output_bfd, header_address, loc);
9882
9883 /* Find out where the .plt entry should go. */
9884 loc = htab->splt->contents + h->plt.offset;
9885
9886 /* Pick the load opcode. */
9887 load = MIPS_ELF_LOAD_WORD (output_bfd);
9888
9889 /* Fill in the PLT entry itself. */
9890 plt_entry = mips_exec_plt_entry;
9891 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9892 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9893
9894 if (! LOAD_INTERLOCKS_P (output_bfd))
9895 {
9896 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9897 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9898 }
9899 else
9900 {
9901 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9902 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9903 }
9904
9905 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9906 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9907 plt_index, h->dynindx,
9908 R_MIPS_JUMP_SLOT, got_address);
9909
9910 /* We distinguish between PLT entries and lazy-binding stubs by
9911 giving the former an st_other value of STO_MIPS_PLT. Set the
9912 flag and leave the value if there are any relocations in the
9913 binary where pointer equality matters. */
9914 sym->st_shndx = SHN_UNDEF;
9915 if (h->pointer_equality_needed)
9916 sym->st_other = STO_MIPS_PLT;
9917 else
9918 sym->st_value = 0;
9919 }
9920 else if (h->plt.offset != MINUS_ONE)
9921 {
9922 /* We've decided to create a lazy-binding stub. */
9923 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9924
9925 /* This symbol has a stub. Set it up. */
9926
9927 BFD_ASSERT (h->dynindx != -1);
9928
9929 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9930 || (h->dynindx <= 0xffff));
9931
9932 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9933 sign extension at runtime in the stub, resulting in a negative
9934 index value. */
9935 if (h->dynindx & ~0x7fffffff)
9936 return FALSE;
9937
9938 /* Fill the stub. */
9939 idx = 0;
9940 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9941 idx += 4;
9942 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9943 idx += 4;
9944 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9945 {
9946 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9947 stub + idx);
9948 idx += 4;
9949 }
9950 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9951 idx += 4;
9952
9953 /* If a large stub is not required and sign extension is not a
9954 problem, then use legacy code in the stub. */
9955 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9956 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9957 else if (h->dynindx & ~0x7fff)
9958 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9959 else
9960 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9961 stub + idx);
9962
9963 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9964 memcpy (htab->sstubs->contents + h->plt.offset,
9965 stub, htab->function_stub_size);
9966
9967 /* Mark the symbol as undefined. plt.offset != -1 occurs
9968 only for the referenced symbol. */
9969 sym->st_shndx = SHN_UNDEF;
9970
9971 /* The run-time linker uses the st_value field of the symbol
9972 to reset the global offset table entry for this external
9973 to its stub address when unlinking a shared object. */
9974 sym->st_value = (htab->sstubs->output_section->vma
9975 + htab->sstubs->output_offset
9976 + h->plt.offset);
9977 }
9978
9979 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9980 refer to the stub, since only the stub uses the standard calling
9981 conventions. */
9982 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9983 {
9984 BFD_ASSERT (hmips->need_fn_stub);
9985 sym->st_value = (hmips->fn_stub->output_section->vma
9986 + hmips->fn_stub->output_offset);
9987 sym->st_size = hmips->fn_stub->size;
9988 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9989 }
9990
9991 BFD_ASSERT (h->dynindx != -1
9992 || h->forced_local);
9993
9994 sgot = htab->sgot;
9995 g = htab->got_info;
9996 BFD_ASSERT (g != NULL);
9997
9998 /* Run through the global symbol table, creating GOT entries for all
9999 the symbols that need them. */
10000 if (hmips->global_got_area != GGA_NONE)
10001 {
10002 bfd_vma offset;
10003 bfd_vma value;
10004
10005 value = sym->st_value;
10006 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10007 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10008 }
10009
10010 if (hmips->global_got_area != GGA_NONE && g->next)
10011 {
10012 struct mips_got_entry e, *p;
10013 bfd_vma entry;
10014 bfd_vma offset;
10015
10016 gg = g;
10017
10018 e.abfd = output_bfd;
10019 e.symndx = -1;
10020 e.d.h = hmips;
10021 e.tls_type = GOT_TLS_NONE;
10022
10023 for (g = g->next; g->next != gg; g = g->next)
10024 {
10025 if (g->got_entries
10026 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10027 &e)))
10028 {
10029 offset = p->gotidx;
10030 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10031 if (info->shared
10032 || (elf_hash_table (info)->dynamic_sections_created
10033 && p->d.h != NULL
10034 && p->d.h->root.def_dynamic
10035 && !p->d.h->root.def_regular))
10036 {
10037 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10038 the various compatibility problems, it's easier to mock
10039 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10040 mips_elf_create_dynamic_relocation to calculate the
10041 appropriate addend. */
10042 Elf_Internal_Rela rel[3];
10043
10044 memset (rel, 0, sizeof (rel));
10045 if (ABI_64_P (output_bfd))
10046 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10047 else
10048 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10049 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10050
10051 entry = 0;
10052 if (! (mips_elf_create_dynamic_relocation
10053 (output_bfd, info, rel,
10054 e.d.h, NULL, sym->st_value, &entry, sgot)))
10055 return FALSE;
10056 }
10057 else
10058 entry = sym->st_value;
10059 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10060 }
10061 }
10062 }
10063
10064 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10065 name = h->root.root.string;
10066 if (h == elf_hash_table (info)->hdynamic
10067 || h == elf_hash_table (info)->hgot)
10068 sym->st_shndx = SHN_ABS;
10069 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10070 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10071 {
10072 sym->st_shndx = SHN_ABS;
10073 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10074 sym->st_value = 1;
10075 }
10076 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10077 {
10078 sym->st_shndx = SHN_ABS;
10079 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10080 sym->st_value = elf_gp (output_bfd);
10081 }
10082 else if (SGI_COMPAT (output_bfd))
10083 {
10084 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10085 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10086 {
10087 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10088 sym->st_other = STO_PROTECTED;
10089 sym->st_value = 0;
10090 sym->st_shndx = SHN_MIPS_DATA;
10091 }
10092 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10093 {
10094 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10095 sym->st_other = STO_PROTECTED;
10096 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10097 sym->st_shndx = SHN_ABS;
10098 }
10099 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10100 {
10101 if (h->type == STT_FUNC)
10102 sym->st_shndx = SHN_MIPS_TEXT;
10103 else if (h->type == STT_OBJECT)
10104 sym->st_shndx = SHN_MIPS_DATA;
10105 }
10106 }
10107
10108 /* Emit a copy reloc, if needed. */
10109 if (h->needs_copy)
10110 {
10111 asection *s;
10112 bfd_vma symval;
10113
10114 BFD_ASSERT (h->dynindx != -1);
10115 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10116
10117 s = mips_elf_rel_dyn_section (info, FALSE);
10118 symval = (h->root.u.def.section->output_section->vma
10119 + h->root.u.def.section->output_offset
10120 + h->root.u.def.value);
10121 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10122 h->dynindx, R_MIPS_COPY, symval);
10123 }
10124
10125 /* Handle the IRIX6-specific symbols. */
10126 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10127 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10128
10129 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10130 to treat compressed symbols like any other. */
10131 if (ELF_ST_IS_MIPS16 (sym->st_other))
10132 {
10133 BFD_ASSERT (sym->st_value & 1);
10134 sym->st_other -= STO_MIPS16;
10135 }
10136 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10137 {
10138 BFD_ASSERT (sym->st_value & 1);
10139 sym->st_other -= STO_MICROMIPS;
10140 }
10141
10142 return TRUE;
10143 }
10144
10145 /* Likewise, for VxWorks. */
10146
10147 bfd_boolean
10148 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10149 struct bfd_link_info *info,
10150 struct elf_link_hash_entry *h,
10151 Elf_Internal_Sym *sym)
10152 {
10153 bfd *dynobj;
10154 asection *sgot;
10155 struct mips_got_info *g;
10156 struct mips_elf_link_hash_table *htab;
10157 struct mips_elf_link_hash_entry *hmips;
10158
10159 htab = mips_elf_hash_table (info);
10160 BFD_ASSERT (htab != NULL);
10161 dynobj = elf_hash_table (info)->dynobj;
10162 hmips = (struct mips_elf_link_hash_entry *) h;
10163
10164 if (h->plt.offset != (bfd_vma) -1)
10165 {
10166 bfd_byte *loc;
10167 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10168 Elf_Internal_Rela rel;
10169 static const bfd_vma *plt_entry;
10170
10171 BFD_ASSERT (h->dynindx != -1);
10172 BFD_ASSERT (htab->splt != NULL);
10173 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10174
10175 /* Calculate the address of the .plt entry. */
10176 plt_address = (htab->splt->output_section->vma
10177 + htab->splt->output_offset
10178 + h->plt.offset);
10179
10180 /* Calculate the index of the entry. */
10181 plt_index = ((h->plt.offset - htab->plt_header_size)
10182 / htab->plt_entry_size);
10183
10184 /* Calculate the address of the .got.plt entry. */
10185 got_address = (htab->sgotplt->output_section->vma
10186 + htab->sgotplt->output_offset
10187 + plt_index * 4);
10188
10189 /* Calculate the offset of the .got.plt entry from
10190 _GLOBAL_OFFSET_TABLE_. */
10191 got_offset = mips_elf_gotplt_index (info, h);
10192
10193 /* Calculate the offset for the branch at the start of the PLT
10194 entry. The branch jumps to the beginning of .plt. */
10195 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10196
10197 /* Fill in the initial value of the .got.plt entry. */
10198 bfd_put_32 (output_bfd, plt_address,
10199 htab->sgotplt->contents + plt_index * 4);
10200
10201 /* Find out where the .plt entry should go. */
10202 loc = htab->splt->contents + h->plt.offset;
10203
10204 if (info->shared)
10205 {
10206 plt_entry = mips_vxworks_shared_plt_entry;
10207 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10208 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10209 }
10210 else
10211 {
10212 bfd_vma got_address_high, got_address_low;
10213
10214 plt_entry = mips_vxworks_exec_plt_entry;
10215 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10216 got_address_low = got_address & 0xffff;
10217
10218 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10219 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10220 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10221 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10222 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10223 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10224 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10225 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10226
10227 loc = (htab->srelplt2->contents
10228 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10229
10230 /* Emit a relocation for the .got.plt entry. */
10231 rel.r_offset = got_address;
10232 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10233 rel.r_addend = h->plt.offset;
10234 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10235
10236 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10237 loc += sizeof (Elf32_External_Rela);
10238 rel.r_offset = plt_address + 8;
10239 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10240 rel.r_addend = got_offset;
10241 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10242
10243 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10244 loc += sizeof (Elf32_External_Rela);
10245 rel.r_offset += 4;
10246 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10247 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10248 }
10249
10250 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10251 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10252 rel.r_offset = got_address;
10253 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10254 rel.r_addend = 0;
10255 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10256
10257 if (!h->def_regular)
10258 sym->st_shndx = SHN_UNDEF;
10259 }
10260
10261 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10262
10263 sgot = htab->sgot;
10264 g = htab->got_info;
10265 BFD_ASSERT (g != NULL);
10266
10267 /* See if this symbol has an entry in the GOT. */
10268 if (hmips->global_got_area != GGA_NONE)
10269 {
10270 bfd_vma offset;
10271 Elf_Internal_Rela outrel;
10272 bfd_byte *loc;
10273 asection *s;
10274
10275 /* Install the symbol value in the GOT. */
10276 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10277 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10278
10279 /* Add a dynamic relocation for it. */
10280 s = mips_elf_rel_dyn_section (info, FALSE);
10281 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10282 outrel.r_offset = (sgot->output_section->vma
10283 + sgot->output_offset
10284 + offset);
10285 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10286 outrel.r_addend = 0;
10287 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10288 }
10289
10290 /* Emit a copy reloc, if needed. */
10291 if (h->needs_copy)
10292 {
10293 Elf_Internal_Rela rel;
10294
10295 BFD_ASSERT (h->dynindx != -1);
10296
10297 rel.r_offset = (h->root.u.def.section->output_section->vma
10298 + h->root.u.def.section->output_offset
10299 + h->root.u.def.value);
10300 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10301 rel.r_addend = 0;
10302 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10303 htab->srelbss->contents
10304 + (htab->srelbss->reloc_count
10305 * sizeof (Elf32_External_Rela)));
10306 ++htab->srelbss->reloc_count;
10307 }
10308
10309 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10310 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10311 sym->st_value &= ~1;
10312
10313 return TRUE;
10314 }
10315
10316 /* Write out a plt0 entry to the beginning of .plt. */
10317
10318 static void
10319 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10320 {
10321 bfd_byte *loc;
10322 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10323 static const bfd_vma *plt_entry;
10324 struct mips_elf_link_hash_table *htab;
10325
10326 htab = mips_elf_hash_table (info);
10327 BFD_ASSERT (htab != NULL);
10328
10329 if (ABI_64_P (output_bfd))
10330 plt_entry = mips_n64_exec_plt0_entry;
10331 else if (ABI_N32_P (output_bfd))
10332 plt_entry = mips_n32_exec_plt0_entry;
10333 else
10334 plt_entry = mips_o32_exec_plt0_entry;
10335
10336 /* Calculate the value of .got.plt. */
10337 gotplt_value = (htab->sgotplt->output_section->vma
10338 + htab->sgotplt->output_offset);
10339 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10340 gotplt_value_low = gotplt_value & 0xffff;
10341
10342 /* The PLT sequence is not safe for N64 if .got.plt's address can
10343 not be loaded in two instructions. */
10344 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10345 || ~(gotplt_value | 0x7fffffff) == 0);
10346
10347 /* Install the PLT header. */
10348 loc = htab->splt->contents;
10349 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10350 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10351 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10352 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10353 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10354 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10355 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10356 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10357 }
10358
10359 /* Install the PLT header for a VxWorks executable and finalize the
10360 contents of .rela.plt.unloaded. */
10361
10362 static void
10363 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10364 {
10365 Elf_Internal_Rela rela;
10366 bfd_byte *loc;
10367 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10368 static const bfd_vma *plt_entry;
10369 struct mips_elf_link_hash_table *htab;
10370
10371 htab = mips_elf_hash_table (info);
10372 BFD_ASSERT (htab != NULL);
10373
10374 plt_entry = mips_vxworks_exec_plt0_entry;
10375
10376 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10377 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10378 + htab->root.hgot->root.u.def.section->output_offset
10379 + htab->root.hgot->root.u.def.value);
10380
10381 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10382 got_value_low = got_value & 0xffff;
10383
10384 /* Calculate the address of the PLT header. */
10385 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10386
10387 /* Install the PLT header. */
10388 loc = htab->splt->contents;
10389 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10390 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10391 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10392 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10393 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10394 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10395
10396 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10397 loc = htab->srelplt2->contents;
10398 rela.r_offset = plt_address;
10399 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10400 rela.r_addend = 0;
10401 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10402 loc += sizeof (Elf32_External_Rela);
10403
10404 /* Output the relocation for the following addiu of
10405 %lo(_GLOBAL_OFFSET_TABLE_). */
10406 rela.r_offset += 4;
10407 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10408 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10409 loc += sizeof (Elf32_External_Rela);
10410
10411 /* Fix up the remaining relocations. They may have the wrong
10412 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10413 in which symbols were output. */
10414 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10415 {
10416 Elf_Internal_Rela rel;
10417
10418 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10419 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10420 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10421 loc += sizeof (Elf32_External_Rela);
10422
10423 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10424 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10425 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10426 loc += sizeof (Elf32_External_Rela);
10427
10428 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10429 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10430 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10431 loc += sizeof (Elf32_External_Rela);
10432 }
10433 }
10434
10435 /* Install the PLT header for a VxWorks shared library. */
10436
10437 static void
10438 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10439 {
10440 unsigned int i;
10441 struct mips_elf_link_hash_table *htab;
10442
10443 htab = mips_elf_hash_table (info);
10444 BFD_ASSERT (htab != NULL);
10445
10446 /* We just need to copy the entry byte-by-byte. */
10447 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10448 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10449 htab->splt->contents + i * 4);
10450 }
10451
10452 /* Finish up the dynamic sections. */
10453
10454 bfd_boolean
10455 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10456 struct bfd_link_info *info)
10457 {
10458 bfd *dynobj;
10459 asection *sdyn;
10460 asection *sgot;
10461 struct mips_got_info *gg, *g;
10462 struct mips_elf_link_hash_table *htab;
10463
10464 htab = mips_elf_hash_table (info);
10465 BFD_ASSERT (htab != NULL);
10466
10467 dynobj = elf_hash_table (info)->dynobj;
10468
10469 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10470
10471 sgot = htab->sgot;
10472 gg = htab->got_info;
10473
10474 if (elf_hash_table (info)->dynamic_sections_created)
10475 {
10476 bfd_byte *b;
10477 int dyn_to_skip = 0, dyn_skipped = 0;
10478
10479 BFD_ASSERT (sdyn != NULL);
10480 BFD_ASSERT (gg != NULL);
10481
10482 g = mips_elf_bfd_got (output_bfd, FALSE);
10483 BFD_ASSERT (g != NULL);
10484
10485 for (b = sdyn->contents;
10486 b < sdyn->contents + sdyn->size;
10487 b += MIPS_ELF_DYN_SIZE (dynobj))
10488 {
10489 Elf_Internal_Dyn dyn;
10490 const char *name;
10491 size_t elemsize;
10492 asection *s;
10493 bfd_boolean swap_out_p;
10494
10495 /* Read in the current dynamic entry. */
10496 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10497
10498 /* Assume that we're going to modify it and write it out. */
10499 swap_out_p = TRUE;
10500
10501 switch (dyn.d_tag)
10502 {
10503 case DT_RELENT:
10504 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10505 break;
10506
10507 case DT_RELAENT:
10508 BFD_ASSERT (htab->is_vxworks);
10509 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10510 break;
10511
10512 case DT_STRSZ:
10513 /* Rewrite DT_STRSZ. */
10514 dyn.d_un.d_val =
10515 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10516 break;
10517
10518 case DT_PLTGOT:
10519 s = htab->sgot;
10520 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10521 break;
10522
10523 case DT_MIPS_PLTGOT:
10524 s = htab->sgotplt;
10525 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10526 break;
10527
10528 case DT_MIPS_RLD_VERSION:
10529 dyn.d_un.d_val = 1; /* XXX */
10530 break;
10531
10532 case DT_MIPS_FLAGS:
10533 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10534 break;
10535
10536 case DT_MIPS_TIME_STAMP:
10537 {
10538 time_t t;
10539 time (&t);
10540 dyn.d_un.d_val = t;
10541 }
10542 break;
10543
10544 case DT_MIPS_ICHECKSUM:
10545 /* XXX FIXME: */
10546 swap_out_p = FALSE;
10547 break;
10548
10549 case DT_MIPS_IVERSION:
10550 /* XXX FIXME: */
10551 swap_out_p = FALSE;
10552 break;
10553
10554 case DT_MIPS_BASE_ADDRESS:
10555 s = output_bfd->sections;
10556 BFD_ASSERT (s != NULL);
10557 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10558 break;
10559
10560 case DT_MIPS_LOCAL_GOTNO:
10561 dyn.d_un.d_val = g->local_gotno;
10562 break;
10563
10564 case DT_MIPS_UNREFEXTNO:
10565 /* The index into the dynamic symbol table which is the
10566 entry of the first external symbol that is not
10567 referenced within the same object. */
10568 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10569 break;
10570
10571 case DT_MIPS_GOTSYM:
10572 if (htab->global_gotsym)
10573 {
10574 dyn.d_un.d_val = htab->global_gotsym->dynindx;
10575 break;
10576 }
10577 /* In case if we don't have global got symbols we default
10578 to setting DT_MIPS_GOTSYM to the same value as
10579 DT_MIPS_SYMTABNO, so we just fall through. */
10580
10581 case DT_MIPS_SYMTABNO:
10582 name = ".dynsym";
10583 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10584 s = bfd_get_section_by_name (output_bfd, name);
10585 BFD_ASSERT (s != NULL);
10586
10587 dyn.d_un.d_val = s->size / elemsize;
10588 break;
10589
10590 case DT_MIPS_HIPAGENO:
10591 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10592 break;
10593
10594 case DT_MIPS_RLD_MAP:
10595 {
10596 struct elf_link_hash_entry *h;
10597 h = mips_elf_hash_table (info)->rld_symbol;
10598 if (!h)
10599 {
10600 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10601 swap_out_p = FALSE;
10602 break;
10603 }
10604 s = h->root.u.def.section;
10605 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10606 + h->root.u.def.value);
10607 }
10608 break;
10609
10610 case DT_MIPS_OPTIONS:
10611 s = (bfd_get_section_by_name
10612 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10613 dyn.d_un.d_ptr = s->vma;
10614 break;
10615
10616 case DT_RELASZ:
10617 BFD_ASSERT (htab->is_vxworks);
10618 /* The count does not include the JUMP_SLOT relocations. */
10619 if (htab->srelplt)
10620 dyn.d_un.d_val -= htab->srelplt->size;
10621 break;
10622
10623 case DT_PLTREL:
10624 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10625 if (htab->is_vxworks)
10626 dyn.d_un.d_val = DT_RELA;
10627 else
10628 dyn.d_un.d_val = DT_REL;
10629 break;
10630
10631 case DT_PLTRELSZ:
10632 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10633 dyn.d_un.d_val = htab->srelplt->size;
10634 break;
10635
10636 case DT_JMPREL:
10637 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10638 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10639 + htab->srelplt->output_offset);
10640 break;
10641
10642 case DT_TEXTREL:
10643 /* If we didn't need any text relocations after all, delete
10644 the dynamic tag. */
10645 if (!(info->flags & DF_TEXTREL))
10646 {
10647 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10648 swap_out_p = FALSE;
10649 }
10650 break;
10651
10652 case DT_FLAGS:
10653 /* If we didn't need any text relocations after all, clear
10654 DF_TEXTREL from DT_FLAGS. */
10655 if (!(info->flags & DF_TEXTREL))
10656 dyn.d_un.d_val &= ~DF_TEXTREL;
10657 else
10658 swap_out_p = FALSE;
10659 break;
10660
10661 default:
10662 swap_out_p = FALSE;
10663 if (htab->is_vxworks
10664 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10665 swap_out_p = TRUE;
10666 break;
10667 }
10668
10669 if (swap_out_p || dyn_skipped)
10670 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10671 (dynobj, &dyn, b - dyn_skipped);
10672
10673 if (dyn_to_skip)
10674 {
10675 dyn_skipped += dyn_to_skip;
10676 dyn_to_skip = 0;
10677 }
10678 }
10679
10680 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10681 if (dyn_skipped > 0)
10682 memset (b - dyn_skipped, 0, dyn_skipped);
10683 }
10684
10685 if (sgot != NULL && sgot->size > 0
10686 && !bfd_is_abs_section (sgot->output_section))
10687 {
10688 if (htab->is_vxworks)
10689 {
10690 /* The first entry of the global offset table points to the
10691 ".dynamic" section. The second is initialized by the
10692 loader and contains the shared library identifier.
10693 The third is also initialized by the loader and points
10694 to the lazy resolution stub. */
10695 MIPS_ELF_PUT_WORD (output_bfd,
10696 sdyn->output_offset + sdyn->output_section->vma,
10697 sgot->contents);
10698 MIPS_ELF_PUT_WORD (output_bfd, 0,
10699 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10700 MIPS_ELF_PUT_WORD (output_bfd, 0,
10701 sgot->contents
10702 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10703 }
10704 else
10705 {
10706 /* The first entry of the global offset table will be filled at
10707 runtime. The second entry will be used by some runtime loaders.
10708 This isn't the case of IRIX rld. */
10709 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10710 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10711 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10712 }
10713
10714 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10715 = MIPS_ELF_GOT_SIZE (output_bfd);
10716 }
10717
10718 /* Generate dynamic relocations for the non-primary gots. */
10719 if (gg != NULL && gg->next)
10720 {
10721 Elf_Internal_Rela rel[3];
10722 bfd_vma addend = 0;
10723
10724 memset (rel, 0, sizeof (rel));
10725 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10726
10727 for (g = gg->next; g->next != gg; g = g->next)
10728 {
10729 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10730 + g->next->tls_gotno;
10731
10732 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10733 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10734 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10735 sgot->contents
10736 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10737
10738 if (! info->shared)
10739 continue;
10740
10741 while (got_index < g->assigned_gotno)
10742 {
10743 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10744 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10745 if (!(mips_elf_create_dynamic_relocation
10746 (output_bfd, info, rel, NULL,
10747 bfd_abs_section_ptr,
10748 0, &addend, sgot)))
10749 return FALSE;
10750 BFD_ASSERT (addend == 0);
10751 }
10752 }
10753 }
10754
10755 /* The generation of dynamic relocations for the non-primary gots
10756 adds more dynamic relocations. We cannot count them until
10757 here. */
10758
10759 if (elf_hash_table (info)->dynamic_sections_created)
10760 {
10761 bfd_byte *b;
10762 bfd_boolean swap_out_p;
10763
10764 BFD_ASSERT (sdyn != NULL);
10765
10766 for (b = sdyn->contents;
10767 b < sdyn->contents + sdyn->size;
10768 b += MIPS_ELF_DYN_SIZE (dynobj))
10769 {
10770 Elf_Internal_Dyn dyn;
10771 asection *s;
10772
10773 /* Read in the current dynamic entry. */
10774 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10775
10776 /* Assume that we're going to modify it and write it out. */
10777 swap_out_p = TRUE;
10778
10779 switch (dyn.d_tag)
10780 {
10781 case DT_RELSZ:
10782 /* Reduce DT_RELSZ to account for any relocations we
10783 decided not to make. This is for the n64 irix rld,
10784 which doesn't seem to apply any relocations if there
10785 are trailing null entries. */
10786 s = mips_elf_rel_dyn_section (info, FALSE);
10787 dyn.d_un.d_val = (s->reloc_count
10788 * (ABI_64_P (output_bfd)
10789 ? sizeof (Elf64_Mips_External_Rel)
10790 : sizeof (Elf32_External_Rel)));
10791 /* Adjust the section size too. Tools like the prelinker
10792 can reasonably expect the values to the same. */
10793 elf_section_data (s->output_section)->this_hdr.sh_size
10794 = dyn.d_un.d_val;
10795 break;
10796
10797 default:
10798 swap_out_p = FALSE;
10799 break;
10800 }
10801
10802 if (swap_out_p)
10803 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10804 (dynobj, &dyn, b);
10805 }
10806 }
10807
10808 {
10809 asection *s;
10810 Elf32_compact_rel cpt;
10811
10812 if (SGI_COMPAT (output_bfd))
10813 {
10814 /* Write .compact_rel section out. */
10815 s = bfd_get_linker_section (dynobj, ".compact_rel");
10816 if (s != NULL)
10817 {
10818 cpt.id1 = 1;
10819 cpt.num = s->reloc_count;
10820 cpt.id2 = 2;
10821 cpt.offset = (s->output_section->filepos
10822 + sizeof (Elf32_External_compact_rel));
10823 cpt.reserved0 = 0;
10824 cpt.reserved1 = 0;
10825 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10826 ((Elf32_External_compact_rel *)
10827 s->contents));
10828
10829 /* Clean up a dummy stub function entry in .text. */
10830 if (htab->sstubs != NULL)
10831 {
10832 file_ptr dummy_offset;
10833
10834 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10835 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10836 memset (htab->sstubs->contents + dummy_offset, 0,
10837 htab->function_stub_size);
10838 }
10839 }
10840 }
10841
10842 /* The psABI says that the dynamic relocations must be sorted in
10843 increasing order of r_symndx. The VxWorks EABI doesn't require
10844 this, and because the code below handles REL rather than RELA
10845 relocations, using it for VxWorks would be outright harmful. */
10846 if (!htab->is_vxworks)
10847 {
10848 s = mips_elf_rel_dyn_section (info, FALSE);
10849 if (s != NULL
10850 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10851 {
10852 reldyn_sorting_bfd = output_bfd;
10853
10854 if (ABI_64_P (output_bfd))
10855 qsort ((Elf64_External_Rel *) s->contents + 1,
10856 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10857 sort_dynamic_relocs_64);
10858 else
10859 qsort ((Elf32_External_Rel *) s->contents + 1,
10860 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10861 sort_dynamic_relocs);
10862 }
10863 }
10864 }
10865
10866 if (htab->splt && htab->splt->size > 0)
10867 {
10868 if (htab->is_vxworks)
10869 {
10870 if (info->shared)
10871 mips_vxworks_finish_shared_plt (output_bfd, info);
10872 else
10873 mips_vxworks_finish_exec_plt (output_bfd, info);
10874 }
10875 else
10876 {
10877 BFD_ASSERT (!info->shared);
10878 mips_finish_exec_plt (output_bfd, info);
10879 }
10880 }
10881 return TRUE;
10882 }
10883
10884
10885 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10886
10887 static void
10888 mips_set_isa_flags (bfd *abfd)
10889 {
10890 flagword val;
10891
10892 switch (bfd_get_mach (abfd))
10893 {
10894 default:
10895 case bfd_mach_mips3000:
10896 val = E_MIPS_ARCH_1;
10897 break;
10898
10899 case bfd_mach_mips3900:
10900 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10901 break;
10902
10903 case bfd_mach_mips6000:
10904 val = E_MIPS_ARCH_2;
10905 break;
10906
10907 case bfd_mach_mips4000:
10908 case bfd_mach_mips4300:
10909 case bfd_mach_mips4400:
10910 case bfd_mach_mips4600:
10911 val = E_MIPS_ARCH_3;
10912 break;
10913
10914 case bfd_mach_mips4010:
10915 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10916 break;
10917
10918 case bfd_mach_mips4100:
10919 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10920 break;
10921
10922 case bfd_mach_mips4111:
10923 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10924 break;
10925
10926 case bfd_mach_mips4120:
10927 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10928 break;
10929
10930 case bfd_mach_mips4650:
10931 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10932 break;
10933
10934 case bfd_mach_mips5400:
10935 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10936 break;
10937
10938 case bfd_mach_mips5500:
10939 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10940 break;
10941
10942 case bfd_mach_mips5900:
10943 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10944 break;
10945
10946 case bfd_mach_mips9000:
10947 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10948 break;
10949
10950 case bfd_mach_mips5000:
10951 case bfd_mach_mips7000:
10952 case bfd_mach_mips8000:
10953 case bfd_mach_mips10000:
10954 case bfd_mach_mips12000:
10955 case bfd_mach_mips14000:
10956 case bfd_mach_mips16000:
10957 val = E_MIPS_ARCH_4;
10958 break;
10959
10960 case bfd_mach_mips5:
10961 val = E_MIPS_ARCH_5;
10962 break;
10963
10964 case bfd_mach_mips_loongson_2e:
10965 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10966 break;
10967
10968 case bfd_mach_mips_loongson_2f:
10969 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10970 break;
10971
10972 case bfd_mach_mips_sb1:
10973 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10974 break;
10975
10976 case bfd_mach_mips_loongson_3a:
10977 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10978 break;
10979
10980 case bfd_mach_mips_octeon:
10981 case bfd_mach_mips_octeonp:
10982 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10983 break;
10984
10985 case bfd_mach_mips_xlr:
10986 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10987 break;
10988
10989 case bfd_mach_mips_octeon2:
10990 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10991 break;
10992
10993 case bfd_mach_mipsisa32:
10994 val = E_MIPS_ARCH_32;
10995 break;
10996
10997 case bfd_mach_mipsisa64:
10998 val = E_MIPS_ARCH_64;
10999 break;
11000
11001 case bfd_mach_mipsisa32r2:
11002 val = E_MIPS_ARCH_32R2;
11003 break;
11004
11005 case bfd_mach_mipsisa64r2:
11006 val = E_MIPS_ARCH_64R2;
11007 break;
11008 }
11009 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11010 elf_elfheader (abfd)->e_flags |= val;
11011
11012 }
11013
11014
11015 /* The final processing done just before writing out a MIPS ELF object
11016 file. This gets the MIPS architecture right based on the machine
11017 number. This is used by both the 32-bit and the 64-bit ABI. */
11018
11019 void
11020 _bfd_mips_elf_final_write_processing (bfd *abfd,
11021 bfd_boolean linker ATTRIBUTE_UNUSED)
11022 {
11023 unsigned int i;
11024 Elf_Internal_Shdr **hdrpp;
11025 const char *name;
11026 asection *sec;
11027
11028 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11029 is nonzero. This is for compatibility with old objects, which used
11030 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11031 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11032 mips_set_isa_flags (abfd);
11033
11034 /* Set the sh_info field for .gptab sections and other appropriate
11035 info for each special section. */
11036 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11037 i < elf_numsections (abfd);
11038 i++, hdrpp++)
11039 {
11040 switch ((*hdrpp)->sh_type)
11041 {
11042 case SHT_MIPS_MSYM:
11043 case SHT_MIPS_LIBLIST:
11044 sec = bfd_get_section_by_name (abfd, ".dynstr");
11045 if (sec != NULL)
11046 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11047 break;
11048
11049 case SHT_MIPS_GPTAB:
11050 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11051 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11052 BFD_ASSERT (name != NULL
11053 && CONST_STRNEQ (name, ".gptab."));
11054 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11055 BFD_ASSERT (sec != NULL);
11056 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11057 break;
11058
11059 case SHT_MIPS_CONTENT:
11060 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11061 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11062 BFD_ASSERT (name != NULL
11063 && CONST_STRNEQ (name, ".MIPS.content"));
11064 sec = bfd_get_section_by_name (abfd,
11065 name + sizeof ".MIPS.content" - 1);
11066 BFD_ASSERT (sec != NULL);
11067 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11068 break;
11069
11070 case SHT_MIPS_SYMBOL_LIB:
11071 sec = bfd_get_section_by_name (abfd, ".dynsym");
11072 if (sec != NULL)
11073 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11074 sec = bfd_get_section_by_name (abfd, ".liblist");
11075 if (sec != NULL)
11076 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11077 break;
11078
11079 case SHT_MIPS_EVENTS:
11080 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11081 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11082 BFD_ASSERT (name != NULL);
11083 if (CONST_STRNEQ (name, ".MIPS.events"))
11084 sec = bfd_get_section_by_name (abfd,
11085 name + sizeof ".MIPS.events" - 1);
11086 else
11087 {
11088 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11089 sec = bfd_get_section_by_name (abfd,
11090 (name
11091 + sizeof ".MIPS.post_rel" - 1));
11092 }
11093 BFD_ASSERT (sec != NULL);
11094 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11095 break;
11096
11097 }
11098 }
11099 }
11100 \f
11101 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11102 segments. */
11103
11104 int
11105 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11106 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11107 {
11108 asection *s;
11109 int ret = 0;
11110
11111 /* See if we need a PT_MIPS_REGINFO segment. */
11112 s = bfd_get_section_by_name (abfd, ".reginfo");
11113 if (s && (s->flags & SEC_LOAD))
11114 ++ret;
11115
11116 /* See if we need a PT_MIPS_OPTIONS segment. */
11117 if (IRIX_COMPAT (abfd) == ict_irix6
11118 && bfd_get_section_by_name (abfd,
11119 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11120 ++ret;
11121
11122 /* See if we need a PT_MIPS_RTPROC segment. */
11123 if (IRIX_COMPAT (abfd) == ict_irix5
11124 && bfd_get_section_by_name (abfd, ".dynamic")
11125 && bfd_get_section_by_name (abfd, ".mdebug"))
11126 ++ret;
11127
11128 /* Allocate a PT_NULL header in dynamic objects. See
11129 _bfd_mips_elf_modify_segment_map for details. */
11130 if (!SGI_COMPAT (abfd)
11131 && bfd_get_section_by_name (abfd, ".dynamic"))
11132 ++ret;
11133
11134 return ret;
11135 }
11136
11137 /* Modify the segment map for an IRIX5 executable. */
11138
11139 bfd_boolean
11140 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11141 struct bfd_link_info *info)
11142 {
11143 asection *s;
11144 struct elf_segment_map *m, **pm;
11145 bfd_size_type amt;
11146
11147 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11148 segment. */
11149 s = bfd_get_section_by_name (abfd, ".reginfo");
11150 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11151 {
11152 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
11153 if (m->p_type == PT_MIPS_REGINFO)
11154 break;
11155 if (m == NULL)
11156 {
11157 amt = sizeof *m;
11158 m = bfd_zalloc (abfd, amt);
11159 if (m == NULL)
11160 return FALSE;
11161
11162 m->p_type = PT_MIPS_REGINFO;
11163 m->count = 1;
11164 m->sections[0] = s;
11165
11166 /* We want to put it after the PHDR and INTERP segments. */
11167 pm = &elf_seg_map (abfd);
11168 while (*pm != NULL
11169 && ((*pm)->p_type == PT_PHDR
11170 || (*pm)->p_type == PT_INTERP))
11171 pm = &(*pm)->next;
11172
11173 m->next = *pm;
11174 *pm = m;
11175 }
11176 }
11177
11178 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11179 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11180 PT_MIPS_OPTIONS segment immediately following the program header
11181 table. */
11182 if (NEWABI_P (abfd)
11183 /* On non-IRIX6 new abi, we'll have already created a segment
11184 for this section, so don't create another. I'm not sure this
11185 is not also the case for IRIX 6, but I can't test it right
11186 now. */
11187 && IRIX_COMPAT (abfd) == ict_irix6)
11188 {
11189 for (s = abfd->sections; s; s = s->next)
11190 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11191 break;
11192
11193 if (s)
11194 {
11195 struct elf_segment_map *options_segment;
11196
11197 pm = &elf_seg_map (abfd);
11198 while (*pm != NULL
11199 && ((*pm)->p_type == PT_PHDR
11200 || (*pm)->p_type == PT_INTERP))
11201 pm = &(*pm)->next;
11202
11203 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11204 {
11205 amt = sizeof (struct elf_segment_map);
11206 options_segment = bfd_zalloc (abfd, amt);
11207 options_segment->next = *pm;
11208 options_segment->p_type = PT_MIPS_OPTIONS;
11209 options_segment->p_flags = PF_R;
11210 options_segment->p_flags_valid = TRUE;
11211 options_segment->count = 1;
11212 options_segment->sections[0] = s;
11213 *pm = options_segment;
11214 }
11215 }
11216 }
11217 else
11218 {
11219 if (IRIX_COMPAT (abfd) == ict_irix5)
11220 {
11221 /* If there are .dynamic and .mdebug sections, we make a room
11222 for the RTPROC header. FIXME: Rewrite without section names. */
11223 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11224 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11225 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11226 {
11227 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
11228 if (m->p_type == PT_MIPS_RTPROC)
11229 break;
11230 if (m == NULL)
11231 {
11232 amt = sizeof *m;
11233 m = bfd_zalloc (abfd, amt);
11234 if (m == NULL)
11235 return FALSE;
11236
11237 m->p_type = PT_MIPS_RTPROC;
11238
11239 s = bfd_get_section_by_name (abfd, ".rtproc");
11240 if (s == NULL)
11241 {
11242 m->count = 0;
11243 m->p_flags = 0;
11244 m->p_flags_valid = 1;
11245 }
11246 else
11247 {
11248 m->count = 1;
11249 m->sections[0] = s;
11250 }
11251
11252 /* We want to put it after the DYNAMIC segment. */
11253 pm = &elf_seg_map (abfd);
11254 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11255 pm = &(*pm)->next;
11256 if (*pm != NULL)
11257 pm = &(*pm)->next;
11258
11259 m->next = *pm;
11260 *pm = m;
11261 }
11262 }
11263 }
11264 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11265 .dynstr, .dynsym, and .hash sections, and everything in
11266 between. */
11267 for (pm = &elf_seg_map (abfd); *pm != NULL;
11268 pm = &(*pm)->next)
11269 if ((*pm)->p_type == PT_DYNAMIC)
11270 break;
11271 m = *pm;
11272 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11273 {
11274 /* For a normal mips executable the permissions for the PT_DYNAMIC
11275 segment are read, write and execute. We do that here since
11276 the code in elf.c sets only the read permission. This matters
11277 sometimes for the dynamic linker. */
11278 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11279 {
11280 m->p_flags = PF_R | PF_W | PF_X;
11281 m->p_flags_valid = 1;
11282 }
11283 }
11284 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11285 glibc's dynamic linker has traditionally derived the number of
11286 tags from the p_filesz field, and sometimes allocates stack
11287 arrays of that size. An overly-big PT_DYNAMIC segment can
11288 be actively harmful in such cases. Making PT_DYNAMIC contain
11289 other sections can also make life hard for the prelinker,
11290 which might move one of the other sections to a different
11291 PT_LOAD segment. */
11292 if (SGI_COMPAT (abfd)
11293 && m != NULL
11294 && m->count == 1
11295 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11296 {
11297 static const char *sec_names[] =
11298 {
11299 ".dynamic", ".dynstr", ".dynsym", ".hash"
11300 };
11301 bfd_vma low, high;
11302 unsigned int i, c;
11303 struct elf_segment_map *n;
11304
11305 low = ~(bfd_vma) 0;
11306 high = 0;
11307 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11308 {
11309 s = bfd_get_section_by_name (abfd, sec_names[i]);
11310 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11311 {
11312 bfd_size_type sz;
11313
11314 if (low > s->vma)
11315 low = s->vma;
11316 sz = s->size;
11317 if (high < s->vma + sz)
11318 high = s->vma + sz;
11319 }
11320 }
11321
11322 c = 0;
11323 for (s = abfd->sections; s != NULL; s = s->next)
11324 if ((s->flags & SEC_LOAD) != 0
11325 && s->vma >= low
11326 && s->vma + s->size <= high)
11327 ++c;
11328
11329 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11330 n = bfd_zalloc (abfd, amt);
11331 if (n == NULL)
11332 return FALSE;
11333 *n = *m;
11334 n->count = c;
11335
11336 i = 0;
11337 for (s = abfd->sections; s != NULL; s = s->next)
11338 {
11339 if ((s->flags & SEC_LOAD) != 0
11340 && s->vma >= low
11341 && s->vma + s->size <= high)
11342 {
11343 n->sections[i] = s;
11344 ++i;
11345 }
11346 }
11347
11348 *pm = n;
11349 }
11350 }
11351
11352 /* Allocate a spare program header in dynamic objects so that tools
11353 like the prelinker can add an extra PT_LOAD entry.
11354
11355 If the prelinker needs to make room for a new PT_LOAD entry, its
11356 standard procedure is to move the first (read-only) sections into
11357 the new (writable) segment. However, the MIPS ABI requires
11358 .dynamic to be in a read-only segment, and the section will often
11359 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11360
11361 Although the prelinker could in principle move .dynamic to a
11362 writable segment, it seems better to allocate a spare program
11363 header instead, and avoid the need to move any sections.
11364 There is a long tradition of allocating spare dynamic tags,
11365 so allocating a spare program header seems like a natural
11366 extension.
11367
11368 If INFO is NULL, we may be copying an already prelinked binary
11369 with objcopy or strip, so do not add this header. */
11370 if (info != NULL
11371 && !SGI_COMPAT (abfd)
11372 && bfd_get_section_by_name (abfd, ".dynamic"))
11373 {
11374 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
11375 if ((*pm)->p_type == PT_NULL)
11376 break;
11377 if (*pm == NULL)
11378 {
11379 m = bfd_zalloc (abfd, sizeof (*m));
11380 if (m == NULL)
11381 return FALSE;
11382
11383 m->p_type = PT_NULL;
11384 *pm = m;
11385 }
11386 }
11387
11388 return TRUE;
11389 }
11390 \f
11391 /* Return the section that should be marked against GC for a given
11392 relocation. */
11393
11394 asection *
11395 _bfd_mips_elf_gc_mark_hook (asection *sec,
11396 struct bfd_link_info *info,
11397 Elf_Internal_Rela *rel,
11398 struct elf_link_hash_entry *h,
11399 Elf_Internal_Sym *sym)
11400 {
11401 /* ??? Do mips16 stub sections need to be handled special? */
11402
11403 if (h != NULL)
11404 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11405 {
11406 case R_MIPS_GNU_VTINHERIT:
11407 case R_MIPS_GNU_VTENTRY:
11408 return NULL;
11409 }
11410
11411 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11412 }
11413
11414 /* Update the got entry reference counts for the section being removed. */
11415
11416 bfd_boolean
11417 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11418 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11419 asection *sec ATTRIBUTE_UNUSED,
11420 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11421 {
11422 #if 0
11423 Elf_Internal_Shdr *symtab_hdr;
11424 struct elf_link_hash_entry **sym_hashes;
11425 bfd_signed_vma *local_got_refcounts;
11426 const Elf_Internal_Rela *rel, *relend;
11427 unsigned long r_symndx;
11428 struct elf_link_hash_entry *h;
11429
11430 if (info->relocatable)
11431 return TRUE;
11432
11433 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11434 sym_hashes = elf_sym_hashes (abfd);
11435 local_got_refcounts = elf_local_got_refcounts (abfd);
11436
11437 relend = relocs + sec->reloc_count;
11438 for (rel = relocs; rel < relend; rel++)
11439 switch (ELF_R_TYPE (abfd, rel->r_info))
11440 {
11441 case R_MIPS16_GOT16:
11442 case R_MIPS16_CALL16:
11443 case R_MIPS_GOT16:
11444 case R_MIPS_CALL16:
11445 case R_MIPS_CALL_HI16:
11446 case R_MIPS_CALL_LO16:
11447 case R_MIPS_GOT_HI16:
11448 case R_MIPS_GOT_LO16:
11449 case R_MIPS_GOT_DISP:
11450 case R_MIPS_GOT_PAGE:
11451 case R_MIPS_GOT_OFST:
11452 case R_MICROMIPS_GOT16:
11453 case R_MICROMIPS_CALL16:
11454 case R_MICROMIPS_CALL_HI16:
11455 case R_MICROMIPS_CALL_LO16:
11456 case R_MICROMIPS_GOT_HI16:
11457 case R_MICROMIPS_GOT_LO16:
11458 case R_MICROMIPS_GOT_DISP:
11459 case R_MICROMIPS_GOT_PAGE:
11460 case R_MICROMIPS_GOT_OFST:
11461 /* ??? It would seem that the existing MIPS code does no sort
11462 of reference counting or whatnot on its GOT and PLT entries,
11463 so it is not possible to garbage collect them at this time. */
11464 break;
11465
11466 default:
11467 break;
11468 }
11469 #endif
11470
11471 return TRUE;
11472 }
11473 \f
11474 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11475 hiding the old indirect symbol. Process additional relocation
11476 information. Also called for weakdefs, in which case we just let
11477 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11478
11479 void
11480 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11481 struct elf_link_hash_entry *dir,
11482 struct elf_link_hash_entry *ind)
11483 {
11484 struct mips_elf_link_hash_entry *dirmips, *indmips;
11485
11486 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11487
11488 dirmips = (struct mips_elf_link_hash_entry *) dir;
11489 indmips = (struct mips_elf_link_hash_entry *) ind;
11490 /* Any absolute non-dynamic relocations against an indirect or weak
11491 definition will be against the target symbol. */
11492 if (indmips->has_static_relocs)
11493 dirmips->has_static_relocs = TRUE;
11494
11495 if (ind->root.type != bfd_link_hash_indirect)
11496 return;
11497
11498 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11499 if (indmips->readonly_reloc)
11500 dirmips->readonly_reloc = TRUE;
11501 if (indmips->no_fn_stub)
11502 dirmips->no_fn_stub = TRUE;
11503 if (indmips->fn_stub)
11504 {
11505 dirmips->fn_stub = indmips->fn_stub;
11506 indmips->fn_stub = NULL;
11507 }
11508 if (indmips->need_fn_stub)
11509 {
11510 dirmips->need_fn_stub = TRUE;
11511 indmips->need_fn_stub = FALSE;
11512 }
11513 if (indmips->call_stub)
11514 {
11515 dirmips->call_stub = indmips->call_stub;
11516 indmips->call_stub = NULL;
11517 }
11518 if (indmips->call_fp_stub)
11519 {
11520 dirmips->call_fp_stub = indmips->call_fp_stub;
11521 indmips->call_fp_stub = NULL;
11522 }
11523 if (indmips->global_got_area < dirmips->global_got_area)
11524 dirmips->global_got_area = indmips->global_got_area;
11525 if (indmips->global_got_area < GGA_NONE)
11526 indmips->global_got_area = GGA_NONE;
11527 if (indmips->has_nonpic_branches)
11528 dirmips->has_nonpic_branches = TRUE;
11529 }
11530 \f
11531 #define PDR_SIZE 32
11532
11533 bfd_boolean
11534 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11535 struct bfd_link_info *info)
11536 {
11537 asection *o;
11538 bfd_boolean ret = FALSE;
11539 unsigned char *tdata;
11540 size_t i, skip;
11541
11542 o = bfd_get_section_by_name (abfd, ".pdr");
11543 if (! o)
11544 return FALSE;
11545 if (o->size == 0)
11546 return FALSE;
11547 if (o->size % PDR_SIZE != 0)
11548 return FALSE;
11549 if (o->output_section != NULL
11550 && bfd_is_abs_section (o->output_section))
11551 return FALSE;
11552
11553 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11554 if (! tdata)
11555 return FALSE;
11556
11557 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11558 info->keep_memory);
11559 if (!cookie->rels)
11560 {
11561 free (tdata);
11562 return FALSE;
11563 }
11564
11565 cookie->rel = cookie->rels;
11566 cookie->relend = cookie->rels + o->reloc_count;
11567
11568 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11569 {
11570 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11571 {
11572 tdata[i] = 1;
11573 skip ++;
11574 }
11575 }
11576
11577 if (skip != 0)
11578 {
11579 mips_elf_section_data (o)->u.tdata = tdata;
11580 o->size -= skip * PDR_SIZE;
11581 ret = TRUE;
11582 }
11583 else
11584 free (tdata);
11585
11586 if (! info->keep_memory)
11587 free (cookie->rels);
11588
11589 return ret;
11590 }
11591
11592 bfd_boolean
11593 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11594 {
11595 if (strcmp (sec->name, ".pdr") == 0)
11596 return TRUE;
11597 return FALSE;
11598 }
11599
11600 bfd_boolean
11601 _bfd_mips_elf_write_section (bfd *output_bfd,
11602 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11603 asection *sec, bfd_byte *contents)
11604 {
11605 bfd_byte *to, *from, *end;
11606 int i;
11607
11608 if (strcmp (sec->name, ".pdr") != 0)
11609 return FALSE;
11610
11611 if (mips_elf_section_data (sec)->u.tdata == NULL)
11612 return FALSE;
11613
11614 to = contents;
11615 end = contents + sec->size;
11616 for (from = contents, i = 0;
11617 from < end;
11618 from += PDR_SIZE, i++)
11619 {
11620 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11621 continue;
11622 if (to != from)
11623 memcpy (to, from, PDR_SIZE);
11624 to += PDR_SIZE;
11625 }
11626 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11627 sec->output_offset, sec->size);
11628 return TRUE;
11629 }
11630 \f
11631 /* microMIPS code retains local labels for linker relaxation. Omit them
11632 from output by default for clarity. */
11633
11634 bfd_boolean
11635 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11636 {
11637 return _bfd_elf_is_local_label_name (abfd, sym->name);
11638 }
11639
11640 /* MIPS ELF uses a special find_nearest_line routine in order the
11641 handle the ECOFF debugging information. */
11642
11643 struct mips_elf_find_line
11644 {
11645 struct ecoff_debug_info d;
11646 struct ecoff_find_line i;
11647 };
11648
11649 bfd_boolean
11650 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11651 asymbol **symbols, bfd_vma offset,
11652 const char **filename_ptr,
11653 const char **functionname_ptr,
11654 unsigned int *line_ptr)
11655 {
11656 asection *msec;
11657
11658 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11659 filename_ptr, functionname_ptr,
11660 line_ptr))
11661 return TRUE;
11662
11663 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11664 section, symbols, offset,
11665 filename_ptr, functionname_ptr,
11666 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11667 &elf_tdata (abfd)->dwarf2_find_line_info))
11668 return TRUE;
11669
11670 msec = bfd_get_section_by_name (abfd, ".mdebug");
11671 if (msec != NULL)
11672 {
11673 flagword origflags;
11674 struct mips_elf_find_line *fi;
11675 const struct ecoff_debug_swap * const swap =
11676 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11677
11678 /* If we are called during a link, mips_elf_final_link may have
11679 cleared the SEC_HAS_CONTENTS field. We force it back on here
11680 if appropriate (which it normally will be). */
11681 origflags = msec->flags;
11682 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11683 msec->flags |= SEC_HAS_CONTENTS;
11684
11685 fi = mips_elf_tdata (abfd)->find_line_info;
11686 if (fi == NULL)
11687 {
11688 bfd_size_type external_fdr_size;
11689 char *fraw_src;
11690 char *fraw_end;
11691 struct fdr *fdr_ptr;
11692 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11693
11694 fi = bfd_zalloc (abfd, amt);
11695 if (fi == NULL)
11696 {
11697 msec->flags = origflags;
11698 return FALSE;
11699 }
11700
11701 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11702 {
11703 msec->flags = origflags;
11704 return FALSE;
11705 }
11706
11707 /* Swap in the FDR information. */
11708 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11709 fi->d.fdr = bfd_alloc (abfd, amt);
11710 if (fi->d.fdr == NULL)
11711 {
11712 msec->flags = origflags;
11713 return FALSE;
11714 }
11715 external_fdr_size = swap->external_fdr_size;
11716 fdr_ptr = fi->d.fdr;
11717 fraw_src = (char *) fi->d.external_fdr;
11718 fraw_end = (fraw_src
11719 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11720 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11721 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11722
11723 mips_elf_tdata (abfd)->find_line_info = fi;
11724
11725 /* Note that we don't bother to ever free this information.
11726 find_nearest_line is either called all the time, as in
11727 objdump -l, so the information should be saved, or it is
11728 rarely called, as in ld error messages, so the memory
11729 wasted is unimportant. Still, it would probably be a
11730 good idea for free_cached_info to throw it away. */
11731 }
11732
11733 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11734 &fi->i, filename_ptr, functionname_ptr,
11735 line_ptr))
11736 {
11737 msec->flags = origflags;
11738 return TRUE;
11739 }
11740
11741 msec->flags = origflags;
11742 }
11743
11744 /* Fall back on the generic ELF find_nearest_line routine. */
11745
11746 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11747 filename_ptr, functionname_ptr,
11748 line_ptr);
11749 }
11750
11751 bfd_boolean
11752 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11753 const char **filename_ptr,
11754 const char **functionname_ptr,
11755 unsigned int *line_ptr)
11756 {
11757 bfd_boolean found;
11758 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11759 functionname_ptr, line_ptr,
11760 & elf_tdata (abfd)->dwarf2_find_line_info);
11761 return found;
11762 }
11763
11764 \f
11765 /* When are writing out the .options or .MIPS.options section,
11766 remember the bytes we are writing out, so that we can install the
11767 GP value in the section_processing routine. */
11768
11769 bfd_boolean
11770 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11771 const void *location,
11772 file_ptr offset, bfd_size_type count)
11773 {
11774 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11775 {
11776 bfd_byte *c;
11777
11778 if (elf_section_data (section) == NULL)
11779 {
11780 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11781 section->used_by_bfd = bfd_zalloc (abfd, amt);
11782 if (elf_section_data (section) == NULL)
11783 return FALSE;
11784 }
11785 c = mips_elf_section_data (section)->u.tdata;
11786 if (c == NULL)
11787 {
11788 c = bfd_zalloc (abfd, section->size);
11789 if (c == NULL)
11790 return FALSE;
11791 mips_elf_section_data (section)->u.tdata = c;
11792 }
11793
11794 memcpy (c + offset, location, count);
11795 }
11796
11797 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11798 count);
11799 }
11800
11801 /* This is almost identical to bfd_generic_get_... except that some
11802 MIPS relocations need to be handled specially. Sigh. */
11803
11804 bfd_byte *
11805 _bfd_elf_mips_get_relocated_section_contents
11806 (bfd *abfd,
11807 struct bfd_link_info *link_info,
11808 struct bfd_link_order *link_order,
11809 bfd_byte *data,
11810 bfd_boolean relocatable,
11811 asymbol **symbols)
11812 {
11813 /* Get enough memory to hold the stuff */
11814 bfd *input_bfd = link_order->u.indirect.section->owner;
11815 asection *input_section = link_order->u.indirect.section;
11816 bfd_size_type sz;
11817
11818 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11819 arelent **reloc_vector = NULL;
11820 long reloc_count;
11821
11822 if (reloc_size < 0)
11823 goto error_return;
11824
11825 reloc_vector = bfd_malloc (reloc_size);
11826 if (reloc_vector == NULL && reloc_size != 0)
11827 goto error_return;
11828
11829 /* read in the section */
11830 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11831 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11832 goto error_return;
11833
11834 reloc_count = bfd_canonicalize_reloc (input_bfd,
11835 input_section,
11836 reloc_vector,
11837 symbols);
11838 if (reloc_count < 0)
11839 goto error_return;
11840
11841 if (reloc_count > 0)
11842 {
11843 arelent **parent;
11844 /* for mips */
11845 int gp_found;
11846 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11847
11848 {
11849 struct bfd_hash_entry *h;
11850 struct bfd_link_hash_entry *lh;
11851 /* Skip all this stuff if we aren't mixing formats. */
11852 if (abfd && input_bfd
11853 && abfd->xvec == input_bfd->xvec)
11854 lh = 0;
11855 else
11856 {
11857 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11858 lh = (struct bfd_link_hash_entry *) h;
11859 }
11860 lookup:
11861 if (lh)
11862 {
11863 switch (lh->type)
11864 {
11865 case bfd_link_hash_undefined:
11866 case bfd_link_hash_undefweak:
11867 case bfd_link_hash_common:
11868 gp_found = 0;
11869 break;
11870 case bfd_link_hash_defined:
11871 case bfd_link_hash_defweak:
11872 gp_found = 1;
11873 gp = lh->u.def.value;
11874 break;
11875 case bfd_link_hash_indirect:
11876 case bfd_link_hash_warning:
11877 lh = lh->u.i.link;
11878 /* @@FIXME ignoring warning for now */
11879 goto lookup;
11880 case bfd_link_hash_new:
11881 default:
11882 abort ();
11883 }
11884 }
11885 else
11886 gp_found = 0;
11887 }
11888 /* end mips */
11889 for (parent = reloc_vector; *parent != NULL; parent++)
11890 {
11891 char *error_message = NULL;
11892 bfd_reloc_status_type r;
11893
11894 /* Specific to MIPS: Deal with relocation types that require
11895 knowing the gp of the output bfd. */
11896 asymbol *sym = *(*parent)->sym_ptr_ptr;
11897
11898 /* If we've managed to find the gp and have a special
11899 function for the relocation then go ahead, else default
11900 to the generic handling. */
11901 if (gp_found
11902 && (*parent)->howto->special_function
11903 == _bfd_mips_elf32_gprel16_reloc)
11904 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11905 input_section, relocatable,
11906 data, gp);
11907 else
11908 r = bfd_perform_relocation (input_bfd, *parent, data,
11909 input_section,
11910 relocatable ? abfd : NULL,
11911 &error_message);
11912
11913 if (relocatable)
11914 {
11915 asection *os = input_section->output_section;
11916
11917 /* A partial link, so keep the relocs */
11918 os->orelocation[os->reloc_count] = *parent;
11919 os->reloc_count++;
11920 }
11921
11922 if (r != bfd_reloc_ok)
11923 {
11924 switch (r)
11925 {
11926 case bfd_reloc_undefined:
11927 if (!((*link_info->callbacks->undefined_symbol)
11928 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11929 input_bfd, input_section, (*parent)->address, TRUE)))
11930 goto error_return;
11931 break;
11932 case bfd_reloc_dangerous:
11933 BFD_ASSERT (error_message != NULL);
11934 if (!((*link_info->callbacks->reloc_dangerous)
11935 (link_info, error_message, input_bfd, input_section,
11936 (*parent)->address)))
11937 goto error_return;
11938 break;
11939 case bfd_reloc_overflow:
11940 if (!((*link_info->callbacks->reloc_overflow)
11941 (link_info, NULL,
11942 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11943 (*parent)->howto->name, (*parent)->addend,
11944 input_bfd, input_section, (*parent)->address)))
11945 goto error_return;
11946 break;
11947 case bfd_reloc_outofrange:
11948 default:
11949 abort ();
11950 break;
11951 }
11952
11953 }
11954 }
11955 }
11956 if (reloc_vector != NULL)
11957 free (reloc_vector);
11958 return data;
11959
11960 error_return:
11961 if (reloc_vector != NULL)
11962 free (reloc_vector);
11963 return NULL;
11964 }
11965 \f
11966 static bfd_boolean
11967 mips_elf_relax_delete_bytes (bfd *abfd,
11968 asection *sec, bfd_vma addr, int count)
11969 {
11970 Elf_Internal_Shdr *symtab_hdr;
11971 unsigned int sec_shndx;
11972 bfd_byte *contents;
11973 Elf_Internal_Rela *irel, *irelend;
11974 Elf_Internal_Sym *isym;
11975 Elf_Internal_Sym *isymend;
11976 struct elf_link_hash_entry **sym_hashes;
11977 struct elf_link_hash_entry **end_hashes;
11978 struct elf_link_hash_entry **start_hashes;
11979 unsigned int symcount;
11980
11981 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11982 contents = elf_section_data (sec)->this_hdr.contents;
11983
11984 irel = elf_section_data (sec)->relocs;
11985 irelend = irel + sec->reloc_count;
11986
11987 /* Actually delete the bytes. */
11988 memmove (contents + addr, contents + addr + count,
11989 (size_t) (sec->size - addr - count));
11990 sec->size -= count;
11991
11992 /* Adjust all the relocs. */
11993 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11994 {
11995 /* Get the new reloc address. */
11996 if (irel->r_offset > addr)
11997 irel->r_offset -= count;
11998 }
11999
12000 BFD_ASSERT (addr % 2 == 0);
12001 BFD_ASSERT (count % 2 == 0);
12002
12003 /* Adjust the local symbols defined in this section. */
12004 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12005 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12006 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12007 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12008 isym->st_value -= count;
12009
12010 /* Now adjust the global symbols defined in this section. */
12011 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12012 - symtab_hdr->sh_info);
12013 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12014 end_hashes = sym_hashes + symcount;
12015
12016 for (; sym_hashes < end_hashes; sym_hashes++)
12017 {
12018 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12019
12020 if ((sym_hash->root.type == bfd_link_hash_defined
12021 || sym_hash->root.type == bfd_link_hash_defweak)
12022 && sym_hash->root.u.def.section == sec)
12023 {
12024 bfd_vma value = sym_hash->root.u.def.value;
12025
12026 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12027 value &= MINUS_TWO;
12028 if (value > addr)
12029 sym_hash->root.u.def.value -= count;
12030 }
12031 }
12032
12033 return TRUE;
12034 }
12035
12036
12037 /* Opcodes needed for microMIPS relaxation as found in
12038 opcodes/micromips-opc.c. */
12039
12040 struct opcode_descriptor {
12041 unsigned long match;
12042 unsigned long mask;
12043 };
12044
12045 /* The $ra register aka $31. */
12046
12047 #define RA 31
12048
12049 /* 32-bit instruction format register fields. */
12050
12051 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12052 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12053
12054 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12055
12056 #define OP16_VALID_REG(r) \
12057 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12058
12059
12060 /* 32-bit and 16-bit branches. */
12061
12062 static const struct opcode_descriptor b_insns_32[] = {
12063 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12064 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12065 { 0, 0 } /* End marker for find_match(). */
12066 };
12067
12068 static const struct opcode_descriptor bc_insn_32 =
12069 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12070
12071 static const struct opcode_descriptor bz_insn_32 =
12072 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12073
12074 static const struct opcode_descriptor bzal_insn_32 =
12075 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12076
12077 static const struct opcode_descriptor beq_insn_32 =
12078 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12079
12080 static const struct opcode_descriptor b_insn_16 =
12081 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12082
12083 static const struct opcode_descriptor bz_insn_16 =
12084 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12085
12086
12087 /* 32-bit and 16-bit branch EQ and NE zero. */
12088
12089 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12090 eq and second the ne. This convention is used when replacing a
12091 32-bit BEQ/BNE with the 16-bit version. */
12092
12093 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12094
12095 static const struct opcode_descriptor bz_rs_insns_32[] = {
12096 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12097 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12098 { 0, 0 } /* End marker for find_match(). */
12099 };
12100
12101 static const struct opcode_descriptor bz_rt_insns_32[] = {
12102 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12103 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12104 { 0, 0 } /* End marker for find_match(). */
12105 };
12106
12107 static const struct opcode_descriptor bzc_insns_32[] = {
12108 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12109 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12110 { 0, 0 } /* End marker for find_match(). */
12111 };
12112
12113 static const struct opcode_descriptor bz_insns_16[] = {
12114 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12115 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12116 { 0, 0 } /* End marker for find_match(). */
12117 };
12118
12119 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12120
12121 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12122 #define BZ16_REG_FIELD(r) \
12123 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12124
12125
12126 /* 32-bit instructions with a delay slot. */
12127
12128 static const struct opcode_descriptor jal_insn_32_bd16 =
12129 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12130
12131 static const struct opcode_descriptor jal_insn_32_bd32 =
12132 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12133
12134 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12135 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12136
12137 static const struct opcode_descriptor j_insn_32 =
12138 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12139
12140 static const struct opcode_descriptor jalr_insn_32 =
12141 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12142
12143 /* This table can be compacted, because no opcode replacement is made. */
12144
12145 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12146 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12147
12148 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12149 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12150
12151 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12152 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12153 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12154 { 0, 0 } /* End marker for find_match(). */
12155 };
12156
12157 /* This table can be compacted, because no opcode replacement is made. */
12158
12159 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12160 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12161
12162 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12163 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12164 { 0, 0 } /* End marker for find_match(). */
12165 };
12166
12167
12168 /* 16-bit instructions with a delay slot. */
12169
12170 static const struct opcode_descriptor jalr_insn_16_bd16 =
12171 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12172
12173 static const struct opcode_descriptor jalr_insn_16_bd32 =
12174 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12175
12176 static const struct opcode_descriptor jr_insn_16 =
12177 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12178
12179 #define JR16_REG(opcode) ((opcode) & 0x1f)
12180
12181 /* This table can be compacted, because no opcode replacement is made. */
12182
12183 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12184 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12185
12186 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12187 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12188 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12189 { 0, 0 } /* End marker for find_match(). */
12190 };
12191
12192
12193 /* LUI instruction. */
12194
12195 static const struct opcode_descriptor lui_insn =
12196 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12197
12198
12199 /* ADDIU instruction. */
12200
12201 static const struct opcode_descriptor addiu_insn =
12202 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12203
12204 static const struct opcode_descriptor addiupc_insn =
12205 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12206
12207 #define ADDIUPC_REG_FIELD(r) \
12208 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12209
12210
12211 /* Relaxable instructions in a JAL delay slot: MOVE. */
12212
12213 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12214 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12215 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12216 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12217
12218 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12219 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12220
12221 static const struct opcode_descriptor move_insns_32[] = {
12222 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12223 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12224 { 0, 0 } /* End marker for find_match(). */
12225 };
12226
12227 static const struct opcode_descriptor move_insn_16 =
12228 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12229
12230
12231 /* NOP instructions. */
12232
12233 static const struct opcode_descriptor nop_insn_32 =
12234 { /* "nop", "", */ 0x00000000, 0xffffffff };
12235
12236 static const struct opcode_descriptor nop_insn_16 =
12237 { /* "nop", "", */ 0x0c00, 0xffff };
12238
12239
12240 /* Instruction match support. */
12241
12242 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12243
12244 static int
12245 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12246 {
12247 unsigned long indx;
12248
12249 for (indx = 0; insn[indx].mask != 0; indx++)
12250 if (MATCH (opcode, insn[indx]))
12251 return indx;
12252
12253 return -1;
12254 }
12255
12256
12257 /* Branch and delay slot decoding support. */
12258
12259 /* If PTR points to what *might* be a 16-bit branch or jump, then
12260 return the minimum length of its delay slot, otherwise return 0.
12261 Non-zero results are not definitive as we might be checking against
12262 the second half of another instruction. */
12263
12264 static int
12265 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12266 {
12267 unsigned long opcode;
12268 int bdsize;
12269
12270 opcode = bfd_get_16 (abfd, ptr);
12271 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12272 /* 16-bit branch/jump with a 32-bit delay slot. */
12273 bdsize = 4;
12274 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12275 || find_match (opcode, ds_insns_16_bd16) >= 0)
12276 /* 16-bit branch/jump with a 16-bit delay slot. */
12277 bdsize = 2;
12278 else
12279 /* No delay slot. */
12280 bdsize = 0;
12281
12282 return bdsize;
12283 }
12284
12285 /* If PTR points to what *might* be a 32-bit branch or jump, then
12286 return the minimum length of its delay slot, otherwise return 0.
12287 Non-zero results are not definitive as we might be checking against
12288 the second half of another instruction. */
12289
12290 static int
12291 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12292 {
12293 unsigned long opcode;
12294 int bdsize;
12295
12296 opcode = bfd_get_micromips_32 (abfd, ptr);
12297 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12298 /* 32-bit branch/jump with a 32-bit delay slot. */
12299 bdsize = 4;
12300 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12301 /* 32-bit branch/jump with a 16-bit delay slot. */
12302 bdsize = 2;
12303 else
12304 /* No delay slot. */
12305 bdsize = 0;
12306
12307 return bdsize;
12308 }
12309
12310 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12311 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12312
12313 static bfd_boolean
12314 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12315 {
12316 unsigned long opcode;
12317
12318 opcode = bfd_get_16 (abfd, ptr);
12319 if (MATCH (opcode, b_insn_16)
12320 /* B16 */
12321 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12322 /* JR16 */
12323 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12324 /* BEQZ16, BNEZ16 */
12325 || (MATCH (opcode, jalr_insn_16_bd32)
12326 /* JALR16 */
12327 && reg != JR16_REG (opcode) && reg != RA))
12328 return TRUE;
12329
12330 return FALSE;
12331 }
12332
12333 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12334 then return TRUE, otherwise FALSE. */
12335
12336 static bfd_boolean
12337 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12338 {
12339 unsigned long opcode;
12340
12341 opcode = bfd_get_micromips_32 (abfd, ptr);
12342 if (MATCH (opcode, j_insn_32)
12343 /* J */
12344 || MATCH (opcode, bc_insn_32)
12345 /* BC1F, BC1T, BC2F, BC2T */
12346 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12347 /* JAL, JALX */
12348 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12349 /* BGEZ, BGTZ, BLEZ, BLTZ */
12350 || (MATCH (opcode, bzal_insn_32)
12351 /* BGEZAL, BLTZAL */
12352 && reg != OP32_SREG (opcode) && reg != RA)
12353 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12354 /* JALR, JALR.HB, BEQ, BNE */
12355 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12356 return TRUE;
12357
12358 return FALSE;
12359 }
12360
12361 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12362 IRELEND) at OFFSET indicate that there must be a compact branch there,
12363 then return TRUE, otherwise FALSE. */
12364
12365 static bfd_boolean
12366 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12367 const Elf_Internal_Rela *internal_relocs,
12368 const Elf_Internal_Rela *irelend)
12369 {
12370 const Elf_Internal_Rela *irel;
12371 unsigned long opcode;
12372
12373 opcode = bfd_get_micromips_32 (abfd, ptr);
12374 if (find_match (opcode, bzc_insns_32) < 0)
12375 return FALSE;
12376
12377 for (irel = internal_relocs; irel < irelend; irel++)
12378 if (irel->r_offset == offset
12379 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12380 return TRUE;
12381
12382 return FALSE;
12383 }
12384
12385 /* Bitsize checking. */
12386 #define IS_BITSIZE(val, N) \
12387 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12388 - (1ULL << ((N) - 1))) == (val))
12389
12390 \f
12391 bfd_boolean
12392 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12393 struct bfd_link_info *link_info,
12394 bfd_boolean *again)
12395 {
12396 Elf_Internal_Shdr *symtab_hdr;
12397 Elf_Internal_Rela *internal_relocs;
12398 Elf_Internal_Rela *irel, *irelend;
12399 bfd_byte *contents = NULL;
12400 Elf_Internal_Sym *isymbuf = NULL;
12401
12402 /* Assume nothing changes. */
12403 *again = FALSE;
12404
12405 /* We don't have to do anything for a relocatable link, if
12406 this section does not have relocs, or if this is not a
12407 code section. */
12408
12409 if (link_info->relocatable
12410 || (sec->flags & SEC_RELOC) == 0
12411 || sec->reloc_count == 0
12412 || (sec->flags & SEC_CODE) == 0)
12413 return TRUE;
12414
12415 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12416
12417 /* Get a copy of the native relocations. */
12418 internal_relocs = (_bfd_elf_link_read_relocs
12419 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12420 link_info->keep_memory));
12421 if (internal_relocs == NULL)
12422 goto error_return;
12423
12424 /* Walk through them looking for relaxing opportunities. */
12425 irelend = internal_relocs + sec->reloc_count;
12426 for (irel = internal_relocs; irel < irelend; irel++)
12427 {
12428 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12429 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12430 bfd_boolean target_is_micromips_code_p;
12431 unsigned long opcode;
12432 bfd_vma symval;
12433 bfd_vma pcrval;
12434 bfd_byte *ptr;
12435 int fndopc;
12436
12437 /* The number of bytes to delete for relaxation and from where
12438 to delete these bytes starting at irel->r_offset. */
12439 int delcnt = 0;
12440 int deloff = 0;
12441
12442 /* If this isn't something that can be relaxed, then ignore
12443 this reloc. */
12444 if (r_type != R_MICROMIPS_HI16
12445 && r_type != R_MICROMIPS_PC16_S1
12446 && r_type != R_MICROMIPS_26_S1)
12447 continue;
12448
12449 /* Get the section contents if we haven't done so already. */
12450 if (contents == NULL)
12451 {
12452 /* Get cached copy if it exists. */
12453 if (elf_section_data (sec)->this_hdr.contents != NULL)
12454 contents = elf_section_data (sec)->this_hdr.contents;
12455 /* Go get them off disk. */
12456 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12457 goto error_return;
12458 }
12459 ptr = contents + irel->r_offset;
12460
12461 /* Read this BFD's local symbols if we haven't done so already. */
12462 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12463 {
12464 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12465 if (isymbuf == NULL)
12466 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12467 symtab_hdr->sh_info, 0,
12468 NULL, NULL, NULL);
12469 if (isymbuf == NULL)
12470 goto error_return;
12471 }
12472
12473 /* Get the value of the symbol referred to by the reloc. */
12474 if (r_symndx < symtab_hdr->sh_info)
12475 {
12476 /* A local symbol. */
12477 Elf_Internal_Sym *isym;
12478 asection *sym_sec;
12479
12480 isym = isymbuf + r_symndx;
12481 if (isym->st_shndx == SHN_UNDEF)
12482 sym_sec = bfd_und_section_ptr;
12483 else if (isym->st_shndx == SHN_ABS)
12484 sym_sec = bfd_abs_section_ptr;
12485 else if (isym->st_shndx == SHN_COMMON)
12486 sym_sec = bfd_com_section_ptr;
12487 else
12488 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12489 symval = (isym->st_value
12490 + sym_sec->output_section->vma
12491 + sym_sec->output_offset);
12492 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12493 }
12494 else
12495 {
12496 unsigned long indx;
12497 struct elf_link_hash_entry *h;
12498
12499 /* An external symbol. */
12500 indx = r_symndx - symtab_hdr->sh_info;
12501 h = elf_sym_hashes (abfd)[indx];
12502 BFD_ASSERT (h != NULL);
12503
12504 if (h->root.type != bfd_link_hash_defined
12505 && h->root.type != bfd_link_hash_defweak)
12506 /* This appears to be a reference to an undefined
12507 symbol. Just ignore it -- it will be caught by the
12508 regular reloc processing. */
12509 continue;
12510
12511 symval = (h->root.u.def.value
12512 + h->root.u.def.section->output_section->vma
12513 + h->root.u.def.section->output_offset);
12514 target_is_micromips_code_p = (!h->needs_plt
12515 && ELF_ST_IS_MICROMIPS (h->other));
12516 }
12517
12518
12519 /* For simplicity of coding, we are going to modify the
12520 section contents, the section relocs, and the BFD symbol
12521 table. We must tell the rest of the code not to free up this
12522 information. It would be possible to instead create a table
12523 of changes which have to be made, as is done in coff-mips.c;
12524 that would be more work, but would require less memory when
12525 the linker is run. */
12526
12527 /* Only 32-bit instructions relaxed. */
12528 if (irel->r_offset + 4 > sec->size)
12529 continue;
12530
12531 opcode = bfd_get_micromips_32 (abfd, ptr);
12532
12533 /* This is the pc-relative distance from the instruction the
12534 relocation is applied to, to the symbol referred. */
12535 pcrval = (symval
12536 - (sec->output_section->vma + sec->output_offset)
12537 - irel->r_offset);
12538
12539 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12540 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12541 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12542
12543 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12544
12545 where pcrval has first to be adjusted to apply against the LO16
12546 location (we make the adjustment later on, when we have figured
12547 out the offset). */
12548 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12549 {
12550 bfd_boolean bzc = FALSE;
12551 unsigned long nextopc;
12552 unsigned long reg;
12553 bfd_vma offset;
12554
12555 /* Give up if the previous reloc was a HI16 against this symbol
12556 too. */
12557 if (irel > internal_relocs
12558 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12559 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12560 continue;
12561
12562 /* Or if the next reloc is not a LO16 against this symbol. */
12563 if (irel + 1 >= irelend
12564 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12565 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12566 continue;
12567
12568 /* Or if the second next reloc is a LO16 against this symbol too. */
12569 if (irel + 2 >= irelend
12570 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12571 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12572 continue;
12573
12574 /* See if the LUI instruction *might* be in a branch delay slot.
12575 We check whether what looks like a 16-bit branch or jump is
12576 actually an immediate argument to a compact branch, and let
12577 it through if so. */
12578 if (irel->r_offset >= 2
12579 && check_br16_dslot (abfd, ptr - 2)
12580 && !(irel->r_offset >= 4
12581 && (bzc = check_relocated_bzc (abfd,
12582 ptr - 4, irel->r_offset - 4,
12583 internal_relocs, irelend))))
12584 continue;
12585 if (irel->r_offset >= 4
12586 && !bzc
12587 && check_br32_dslot (abfd, ptr - 4))
12588 continue;
12589
12590 reg = OP32_SREG (opcode);
12591
12592 /* We only relax adjacent instructions or ones separated with
12593 a branch or jump that has a delay slot. The branch or jump
12594 must not fiddle with the register used to hold the address.
12595 Subtract 4 for the LUI itself. */
12596 offset = irel[1].r_offset - irel[0].r_offset;
12597 switch (offset - 4)
12598 {
12599 case 0:
12600 break;
12601 case 2:
12602 if (check_br16 (abfd, ptr + 4, reg))
12603 break;
12604 continue;
12605 case 4:
12606 if (check_br32 (abfd, ptr + 4, reg))
12607 break;
12608 continue;
12609 default:
12610 continue;
12611 }
12612
12613 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12614
12615 /* Give up unless the same register is used with both
12616 relocations. */
12617 if (OP32_SREG (nextopc) != reg)
12618 continue;
12619
12620 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12621 and rounding up to take masking of the two LSBs into account. */
12622 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12623
12624 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12625 if (IS_BITSIZE (symval, 16))
12626 {
12627 /* Fix the relocation's type. */
12628 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12629
12630 /* Instructions using R_MICROMIPS_LO16 have the base or
12631 source register in bits 20:16. This register becomes $0
12632 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12633 nextopc &= ~0x001f0000;
12634 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12635 contents + irel[1].r_offset);
12636 }
12637
12638 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12639 We add 4 to take LUI deletion into account while checking
12640 the PC-relative distance. */
12641 else if (symval % 4 == 0
12642 && IS_BITSIZE (pcrval + 4, 25)
12643 && MATCH (nextopc, addiu_insn)
12644 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12645 && OP16_VALID_REG (OP32_TREG (nextopc)))
12646 {
12647 /* Fix the relocation's type. */
12648 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12649
12650 /* Replace ADDIU with the ADDIUPC version. */
12651 nextopc = (addiupc_insn.match
12652 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12653
12654 bfd_put_micromips_32 (abfd, nextopc,
12655 contents + irel[1].r_offset);
12656 }
12657
12658 /* Can't do anything, give up, sigh... */
12659 else
12660 continue;
12661
12662 /* Fix the relocation's type. */
12663 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12664
12665 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12666 delcnt = 4;
12667 deloff = 0;
12668 }
12669
12670 /* Compact branch relaxation -- due to the multitude of macros
12671 employed by the compiler/assembler, compact branches are not
12672 always generated. Obviously, this can/will be fixed elsewhere,
12673 but there is no drawback in double checking it here. */
12674 else if (r_type == R_MICROMIPS_PC16_S1
12675 && irel->r_offset + 5 < sec->size
12676 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12677 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12678 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12679 {
12680 unsigned long reg;
12681
12682 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12683
12684 /* Replace BEQZ/BNEZ with the compact version. */
12685 opcode = (bzc_insns_32[fndopc].match
12686 | BZC32_REG_FIELD (reg)
12687 | (opcode & 0xffff)); /* Addend value. */
12688
12689 bfd_put_micromips_32 (abfd, opcode, ptr);
12690
12691 /* Delete the 16-bit delay slot NOP: two bytes from
12692 irel->offset + 4. */
12693 delcnt = 2;
12694 deloff = 4;
12695 }
12696
12697 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12698 to check the distance from the next instruction, so subtract 2. */
12699 else if (r_type == R_MICROMIPS_PC16_S1
12700 && IS_BITSIZE (pcrval - 2, 11)
12701 && find_match (opcode, b_insns_32) >= 0)
12702 {
12703 /* Fix the relocation's type. */
12704 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12705
12706 /* Replace the 32-bit opcode with a 16-bit opcode. */
12707 bfd_put_16 (abfd,
12708 (b_insn_16.match
12709 | (opcode & 0x3ff)), /* Addend value. */
12710 ptr);
12711
12712 /* Delete 2 bytes from irel->r_offset + 2. */
12713 delcnt = 2;
12714 deloff = 2;
12715 }
12716
12717 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12718 to check the distance from the next instruction, so subtract 2. */
12719 else if (r_type == R_MICROMIPS_PC16_S1
12720 && IS_BITSIZE (pcrval - 2, 8)
12721 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12722 && OP16_VALID_REG (OP32_SREG (opcode)))
12723 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12724 && OP16_VALID_REG (OP32_TREG (opcode)))))
12725 {
12726 unsigned long reg;
12727
12728 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12729
12730 /* Fix the relocation's type. */
12731 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12732
12733 /* Replace the 32-bit opcode with a 16-bit opcode. */
12734 bfd_put_16 (abfd,
12735 (bz_insns_16[fndopc].match
12736 | BZ16_REG_FIELD (reg)
12737 | (opcode & 0x7f)), /* Addend value. */
12738 ptr);
12739
12740 /* Delete 2 bytes from irel->r_offset + 2. */
12741 delcnt = 2;
12742 deloff = 2;
12743 }
12744
12745 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12746 else if (r_type == R_MICROMIPS_26_S1
12747 && target_is_micromips_code_p
12748 && irel->r_offset + 7 < sec->size
12749 && MATCH (opcode, jal_insn_32_bd32))
12750 {
12751 unsigned long n32opc;
12752 bfd_boolean relaxed = FALSE;
12753
12754 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12755
12756 if (MATCH (n32opc, nop_insn_32))
12757 {
12758 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12759 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12760
12761 relaxed = TRUE;
12762 }
12763 else if (find_match (n32opc, move_insns_32) >= 0)
12764 {
12765 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12766 bfd_put_16 (abfd,
12767 (move_insn_16.match
12768 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12769 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12770 ptr + 4);
12771
12772 relaxed = TRUE;
12773 }
12774 /* Other 32-bit instructions relaxable to 16-bit
12775 instructions will be handled here later. */
12776
12777 if (relaxed)
12778 {
12779 /* JAL with 32-bit delay slot that is changed to a JALS
12780 with 16-bit delay slot. */
12781 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12782
12783 /* Delete 2 bytes from irel->r_offset + 6. */
12784 delcnt = 2;
12785 deloff = 6;
12786 }
12787 }
12788
12789 if (delcnt != 0)
12790 {
12791 /* Note that we've changed the relocs, section contents, etc. */
12792 elf_section_data (sec)->relocs = internal_relocs;
12793 elf_section_data (sec)->this_hdr.contents = contents;
12794 symtab_hdr->contents = (unsigned char *) isymbuf;
12795
12796 /* Delete bytes depending on the delcnt and deloff. */
12797 if (!mips_elf_relax_delete_bytes (abfd, sec,
12798 irel->r_offset + deloff, delcnt))
12799 goto error_return;
12800
12801 /* That will change things, so we should relax again.
12802 Note that this is not required, and it may be slow. */
12803 *again = TRUE;
12804 }
12805 }
12806
12807 if (isymbuf != NULL
12808 && symtab_hdr->contents != (unsigned char *) isymbuf)
12809 {
12810 if (! link_info->keep_memory)
12811 free (isymbuf);
12812 else
12813 {
12814 /* Cache the symbols for elf_link_input_bfd. */
12815 symtab_hdr->contents = (unsigned char *) isymbuf;
12816 }
12817 }
12818
12819 if (contents != NULL
12820 && elf_section_data (sec)->this_hdr.contents != contents)
12821 {
12822 if (! link_info->keep_memory)
12823 free (contents);
12824 else
12825 {
12826 /* Cache the section contents for elf_link_input_bfd. */
12827 elf_section_data (sec)->this_hdr.contents = contents;
12828 }
12829 }
12830
12831 if (internal_relocs != NULL
12832 && elf_section_data (sec)->relocs != internal_relocs)
12833 free (internal_relocs);
12834
12835 return TRUE;
12836
12837 error_return:
12838 if (isymbuf != NULL
12839 && symtab_hdr->contents != (unsigned char *) isymbuf)
12840 free (isymbuf);
12841 if (contents != NULL
12842 && elf_section_data (sec)->this_hdr.contents != contents)
12843 free (contents);
12844 if (internal_relocs != NULL
12845 && elf_section_data (sec)->relocs != internal_relocs)
12846 free (internal_relocs);
12847
12848 return FALSE;
12849 }
12850 \f
12851 /* Create a MIPS ELF linker hash table. */
12852
12853 struct bfd_link_hash_table *
12854 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12855 {
12856 struct mips_elf_link_hash_table *ret;
12857 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12858
12859 ret = bfd_zmalloc (amt);
12860 if (ret == NULL)
12861 return NULL;
12862
12863 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12864 mips_elf_link_hash_newfunc,
12865 sizeof (struct mips_elf_link_hash_entry),
12866 MIPS_ELF_DATA))
12867 {
12868 free (ret);
12869 return NULL;
12870 }
12871
12872 return &ret->root.root;
12873 }
12874
12875 /* Likewise, but indicate that the target is VxWorks. */
12876
12877 struct bfd_link_hash_table *
12878 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12879 {
12880 struct bfd_link_hash_table *ret;
12881
12882 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12883 if (ret)
12884 {
12885 struct mips_elf_link_hash_table *htab;
12886
12887 htab = (struct mips_elf_link_hash_table *) ret;
12888 htab->use_plts_and_copy_relocs = TRUE;
12889 htab->is_vxworks = TRUE;
12890 }
12891 return ret;
12892 }
12893
12894 /* A function that the linker calls if we are allowed to use PLTs
12895 and copy relocs. */
12896
12897 void
12898 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12899 {
12900 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12901 }
12902 \f
12903 /* We need to use a special link routine to handle the .reginfo and
12904 the .mdebug sections. We need to merge all instances of these
12905 sections together, not write them all out sequentially. */
12906
12907 bfd_boolean
12908 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12909 {
12910 asection *o;
12911 struct bfd_link_order *p;
12912 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12913 asection *rtproc_sec;
12914 Elf32_RegInfo reginfo;
12915 struct ecoff_debug_info debug;
12916 struct mips_htab_traverse_info hti;
12917 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12918 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12919 HDRR *symhdr = &debug.symbolic_header;
12920 void *mdebug_handle = NULL;
12921 asection *s;
12922 EXTR esym;
12923 unsigned int i;
12924 bfd_size_type amt;
12925 struct mips_elf_link_hash_table *htab;
12926
12927 static const char * const secname[] =
12928 {
12929 ".text", ".init", ".fini", ".data",
12930 ".rodata", ".sdata", ".sbss", ".bss"
12931 };
12932 static const int sc[] =
12933 {
12934 scText, scInit, scFini, scData,
12935 scRData, scSData, scSBss, scBss
12936 };
12937
12938 /* Sort the dynamic symbols so that those with GOT entries come after
12939 those without. */
12940 htab = mips_elf_hash_table (info);
12941 BFD_ASSERT (htab != NULL);
12942
12943 if (!mips_elf_sort_hash_table (abfd, info))
12944 return FALSE;
12945
12946 /* Create any scheduled LA25 stubs. */
12947 hti.info = info;
12948 hti.output_bfd = abfd;
12949 hti.error = FALSE;
12950 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12951 if (hti.error)
12952 return FALSE;
12953
12954 /* Get a value for the GP register. */
12955 if (elf_gp (abfd) == 0)
12956 {
12957 struct bfd_link_hash_entry *h;
12958
12959 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12960 if (h != NULL && h->type == bfd_link_hash_defined)
12961 elf_gp (abfd) = (h->u.def.value
12962 + h->u.def.section->output_section->vma
12963 + h->u.def.section->output_offset);
12964 else if (htab->is_vxworks
12965 && (h = bfd_link_hash_lookup (info->hash,
12966 "_GLOBAL_OFFSET_TABLE_",
12967 FALSE, FALSE, TRUE))
12968 && h->type == bfd_link_hash_defined)
12969 elf_gp (abfd) = (h->u.def.section->output_section->vma
12970 + h->u.def.section->output_offset
12971 + h->u.def.value);
12972 else if (info->relocatable)
12973 {
12974 bfd_vma lo = MINUS_ONE;
12975
12976 /* Find the GP-relative section with the lowest offset. */
12977 for (o = abfd->sections; o != NULL; o = o->next)
12978 if (o->vma < lo
12979 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12980 lo = o->vma;
12981
12982 /* And calculate GP relative to that. */
12983 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12984 }
12985 else
12986 {
12987 /* If the relocate_section function needs to do a reloc
12988 involving the GP value, it should make a reloc_dangerous
12989 callback to warn that GP is not defined. */
12990 }
12991 }
12992
12993 /* Go through the sections and collect the .reginfo and .mdebug
12994 information. */
12995 reginfo_sec = NULL;
12996 mdebug_sec = NULL;
12997 gptab_data_sec = NULL;
12998 gptab_bss_sec = NULL;
12999 for (o = abfd->sections; o != NULL; o = o->next)
13000 {
13001 if (strcmp (o->name, ".reginfo") == 0)
13002 {
13003 memset (&reginfo, 0, sizeof reginfo);
13004
13005 /* We have found the .reginfo section in the output file.
13006 Look through all the link_orders comprising it and merge
13007 the information together. */
13008 for (p = o->map_head.link_order; p != NULL; p = p->next)
13009 {
13010 asection *input_section;
13011 bfd *input_bfd;
13012 Elf32_External_RegInfo ext;
13013 Elf32_RegInfo sub;
13014
13015 if (p->type != bfd_indirect_link_order)
13016 {
13017 if (p->type == bfd_data_link_order)
13018 continue;
13019 abort ();
13020 }
13021
13022 input_section = p->u.indirect.section;
13023 input_bfd = input_section->owner;
13024
13025 if (! bfd_get_section_contents (input_bfd, input_section,
13026 &ext, 0, sizeof ext))
13027 return FALSE;
13028
13029 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13030
13031 reginfo.ri_gprmask |= sub.ri_gprmask;
13032 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13033 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13034 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13035 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13036
13037 /* ri_gp_value is set by the function
13038 mips_elf32_section_processing when the section is
13039 finally written out. */
13040
13041 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13042 elf_link_input_bfd ignores this section. */
13043 input_section->flags &= ~SEC_HAS_CONTENTS;
13044 }
13045
13046 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13047 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13048
13049 /* Skip this section later on (I don't think this currently
13050 matters, but someday it might). */
13051 o->map_head.link_order = NULL;
13052
13053 reginfo_sec = o;
13054 }
13055
13056 if (strcmp (o->name, ".mdebug") == 0)
13057 {
13058 struct extsym_info einfo;
13059 bfd_vma last;
13060
13061 /* We have found the .mdebug section in the output file.
13062 Look through all the link_orders comprising it and merge
13063 the information together. */
13064 symhdr->magic = swap->sym_magic;
13065 /* FIXME: What should the version stamp be? */
13066 symhdr->vstamp = 0;
13067 symhdr->ilineMax = 0;
13068 symhdr->cbLine = 0;
13069 symhdr->idnMax = 0;
13070 symhdr->ipdMax = 0;
13071 symhdr->isymMax = 0;
13072 symhdr->ioptMax = 0;
13073 symhdr->iauxMax = 0;
13074 symhdr->issMax = 0;
13075 symhdr->issExtMax = 0;
13076 symhdr->ifdMax = 0;
13077 symhdr->crfd = 0;
13078 symhdr->iextMax = 0;
13079
13080 /* We accumulate the debugging information itself in the
13081 debug_info structure. */
13082 debug.line = NULL;
13083 debug.external_dnr = NULL;
13084 debug.external_pdr = NULL;
13085 debug.external_sym = NULL;
13086 debug.external_opt = NULL;
13087 debug.external_aux = NULL;
13088 debug.ss = NULL;
13089 debug.ssext = debug.ssext_end = NULL;
13090 debug.external_fdr = NULL;
13091 debug.external_rfd = NULL;
13092 debug.external_ext = debug.external_ext_end = NULL;
13093
13094 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13095 if (mdebug_handle == NULL)
13096 return FALSE;
13097
13098 esym.jmptbl = 0;
13099 esym.cobol_main = 0;
13100 esym.weakext = 0;
13101 esym.reserved = 0;
13102 esym.ifd = ifdNil;
13103 esym.asym.iss = issNil;
13104 esym.asym.st = stLocal;
13105 esym.asym.reserved = 0;
13106 esym.asym.index = indexNil;
13107 last = 0;
13108 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13109 {
13110 esym.asym.sc = sc[i];
13111 s = bfd_get_section_by_name (abfd, secname[i]);
13112 if (s != NULL)
13113 {
13114 esym.asym.value = s->vma;
13115 last = s->vma + s->size;
13116 }
13117 else
13118 esym.asym.value = last;
13119 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13120 secname[i], &esym))
13121 return FALSE;
13122 }
13123
13124 for (p = o->map_head.link_order; p != NULL; p = p->next)
13125 {
13126 asection *input_section;
13127 bfd *input_bfd;
13128 const struct ecoff_debug_swap *input_swap;
13129 struct ecoff_debug_info input_debug;
13130 char *eraw_src;
13131 char *eraw_end;
13132
13133 if (p->type != bfd_indirect_link_order)
13134 {
13135 if (p->type == bfd_data_link_order)
13136 continue;
13137 abort ();
13138 }
13139
13140 input_section = p->u.indirect.section;
13141 input_bfd = input_section->owner;
13142
13143 if (!is_mips_elf (input_bfd))
13144 {
13145 /* I don't know what a non MIPS ELF bfd would be
13146 doing with a .mdebug section, but I don't really
13147 want to deal with it. */
13148 continue;
13149 }
13150
13151 input_swap = (get_elf_backend_data (input_bfd)
13152 ->elf_backend_ecoff_debug_swap);
13153
13154 BFD_ASSERT (p->size == input_section->size);
13155
13156 /* The ECOFF linking code expects that we have already
13157 read in the debugging information and set up an
13158 ecoff_debug_info structure, so we do that now. */
13159 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13160 &input_debug))
13161 return FALSE;
13162
13163 if (! (bfd_ecoff_debug_accumulate
13164 (mdebug_handle, abfd, &debug, swap, input_bfd,
13165 &input_debug, input_swap, info)))
13166 return FALSE;
13167
13168 /* Loop through the external symbols. For each one with
13169 interesting information, try to find the symbol in
13170 the linker global hash table and save the information
13171 for the output external symbols. */
13172 eraw_src = input_debug.external_ext;
13173 eraw_end = (eraw_src
13174 + (input_debug.symbolic_header.iextMax
13175 * input_swap->external_ext_size));
13176 for (;
13177 eraw_src < eraw_end;
13178 eraw_src += input_swap->external_ext_size)
13179 {
13180 EXTR ext;
13181 const char *name;
13182 struct mips_elf_link_hash_entry *h;
13183
13184 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13185 if (ext.asym.sc == scNil
13186 || ext.asym.sc == scUndefined
13187 || ext.asym.sc == scSUndefined)
13188 continue;
13189
13190 name = input_debug.ssext + ext.asym.iss;
13191 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13192 name, FALSE, FALSE, TRUE);
13193 if (h == NULL || h->esym.ifd != -2)
13194 continue;
13195
13196 if (ext.ifd != -1)
13197 {
13198 BFD_ASSERT (ext.ifd
13199 < input_debug.symbolic_header.ifdMax);
13200 ext.ifd = input_debug.ifdmap[ext.ifd];
13201 }
13202
13203 h->esym = ext;
13204 }
13205
13206 /* Free up the information we just read. */
13207 free (input_debug.line);
13208 free (input_debug.external_dnr);
13209 free (input_debug.external_pdr);
13210 free (input_debug.external_sym);
13211 free (input_debug.external_opt);
13212 free (input_debug.external_aux);
13213 free (input_debug.ss);
13214 free (input_debug.ssext);
13215 free (input_debug.external_fdr);
13216 free (input_debug.external_rfd);
13217 free (input_debug.external_ext);
13218
13219 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13220 elf_link_input_bfd ignores this section. */
13221 input_section->flags &= ~SEC_HAS_CONTENTS;
13222 }
13223
13224 if (SGI_COMPAT (abfd) && info->shared)
13225 {
13226 /* Create .rtproc section. */
13227 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13228 if (rtproc_sec == NULL)
13229 {
13230 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13231 | SEC_LINKER_CREATED | SEC_READONLY);
13232
13233 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13234 ".rtproc",
13235 flags);
13236 if (rtproc_sec == NULL
13237 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13238 return FALSE;
13239 }
13240
13241 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13242 info, rtproc_sec,
13243 &debug))
13244 return FALSE;
13245 }
13246
13247 /* Build the external symbol information. */
13248 einfo.abfd = abfd;
13249 einfo.info = info;
13250 einfo.debug = &debug;
13251 einfo.swap = swap;
13252 einfo.failed = FALSE;
13253 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13254 mips_elf_output_extsym, &einfo);
13255 if (einfo.failed)
13256 return FALSE;
13257
13258 /* Set the size of the .mdebug section. */
13259 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13260
13261 /* Skip this section later on (I don't think this currently
13262 matters, but someday it might). */
13263 o->map_head.link_order = NULL;
13264
13265 mdebug_sec = o;
13266 }
13267
13268 if (CONST_STRNEQ (o->name, ".gptab."))
13269 {
13270 const char *subname;
13271 unsigned int c;
13272 Elf32_gptab *tab;
13273 Elf32_External_gptab *ext_tab;
13274 unsigned int j;
13275
13276 /* The .gptab.sdata and .gptab.sbss sections hold
13277 information describing how the small data area would
13278 change depending upon the -G switch. These sections
13279 not used in executables files. */
13280 if (! info->relocatable)
13281 {
13282 for (p = o->map_head.link_order; p != NULL; p = p->next)
13283 {
13284 asection *input_section;
13285
13286 if (p->type != bfd_indirect_link_order)
13287 {
13288 if (p->type == bfd_data_link_order)
13289 continue;
13290 abort ();
13291 }
13292
13293 input_section = p->u.indirect.section;
13294
13295 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13296 elf_link_input_bfd ignores this section. */
13297 input_section->flags &= ~SEC_HAS_CONTENTS;
13298 }
13299
13300 /* Skip this section later on (I don't think this
13301 currently matters, but someday it might). */
13302 o->map_head.link_order = NULL;
13303
13304 /* Really remove the section. */
13305 bfd_section_list_remove (abfd, o);
13306 --abfd->section_count;
13307
13308 continue;
13309 }
13310
13311 /* There is one gptab for initialized data, and one for
13312 uninitialized data. */
13313 if (strcmp (o->name, ".gptab.sdata") == 0)
13314 gptab_data_sec = o;
13315 else if (strcmp (o->name, ".gptab.sbss") == 0)
13316 gptab_bss_sec = o;
13317 else
13318 {
13319 (*_bfd_error_handler)
13320 (_("%s: illegal section name `%s'"),
13321 bfd_get_filename (abfd), o->name);
13322 bfd_set_error (bfd_error_nonrepresentable_section);
13323 return FALSE;
13324 }
13325
13326 /* The linker script always combines .gptab.data and
13327 .gptab.sdata into .gptab.sdata, and likewise for
13328 .gptab.bss and .gptab.sbss. It is possible that there is
13329 no .sdata or .sbss section in the output file, in which
13330 case we must change the name of the output section. */
13331 subname = o->name + sizeof ".gptab" - 1;
13332 if (bfd_get_section_by_name (abfd, subname) == NULL)
13333 {
13334 if (o == gptab_data_sec)
13335 o->name = ".gptab.data";
13336 else
13337 o->name = ".gptab.bss";
13338 subname = o->name + sizeof ".gptab" - 1;
13339 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13340 }
13341
13342 /* Set up the first entry. */
13343 c = 1;
13344 amt = c * sizeof (Elf32_gptab);
13345 tab = bfd_malloc (amt);
13346 if (tab == NULL)
13347 return FALSE;
13348 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13349 tab[0].gt_header.gt_unused = 0;
13350
13351 /* Combine the input sections. */
13352 for (p = o->map_head.link_order; p != NULL; p = p->next)
13353 {
13354 asection *input_section;
13355 bfd *input_bfd;
13356 bfd_size_type size;
13357 unsigned long last;
13358 bfd_size_type gpentry;
13359
13360 if (p->type != bfd_indirect_link_order)
13361 {
13362 if (p->type == bfd_data_link_order)
13363 continue;
13364 abort ();
13365 }
13366
13367 input_section = p->u.indirect.section;
13368 input_bfd = input_section->owner;
13369
13370 /* Combine the gptab entries for this input section one
13371 by one. We know that the input gptab entries are
13372 sorted by ascending -G value. */
13373 size = input_section->size;
13374 last = 0;
13375 for (gpentry = sizeof (Elf32_External_gptab);
13376 gpentry < size;
13377 gpentry += sizeof (Elf32_External_gptab))
13378 {
13379 Elf32_External_gptab ext_gptab;
13380 Elf32_gptab int_gptab;
13381 unsigned long val;
13382 unsigned long add;
13383 bfd_boolean exact;
13384 unsigned int look;
13385
13386 if (! (bfd_get_section_contents
13387 (input_bfd, input_section, &ext_gptab, gpentry,
13388 sizeof (Elf32_External_gptab))))
13389 {
13390 free (tab);
13391 return FALSE;
13392 }
13393
13394 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13395 &int_gptab);
13396 val = int_gptab.gt_entry.gt_g_value;
13397 add = int_gptab.gt_entry.gt_bytes - last;
13398
13399 exact = FALSE;
13400 for (look = 1; look < c; look++)
13401 {
13402 if (tab[look].gt_entry.gt_g_value >= val)
13403 tab[look].gt_entry.gt_bytes += add;
13404
13405 if (tab[look].gt_entry.gt_g_value == val)
13406 exact = TRUE;
13407 }
13408
13409 if (! exact)
13410 {
13411 Elf32_gptab *new_tab;
13412 unsigned int max;
13413
13414 /* We need a new table entry. */
13415 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13416 new_tab = bfd_realloc (tab, amt);
13417 if (new_tab == NULL)
13418 {
13419 free (tab);
13420 return FALSE;
13421 }
13422 tab = new_tab;
13423 tab[c].gt_entry.gt_g_value = val;
13424 tab[c].gt_entry.gt_bytes = add;
13425
13426 /* Merge in the size for the next smallest -G
13427 value, since that will be implied by this new
13428 value. */
13429 max = 0;
13430 for (look = 1; look < c; look++)
13431 {
13432 if (tab[look].gt_entry.gt_g_value < val
13433 && (max == 0
13434 || (tab[look].gt_entry.gt_g_value
13435 > tab[max].gt_entry.gt_g_value)))
13436 max = look;
13437 }
13438 if (max != 0)
13439 tab[c].gt_entry.gt_bytes +=
13440 tab[max].gt_entry.gt_bytes;
13441
13442 ++c;
13443 }
13444
13445 last = int_gptab.gt_entry.gt_bytes;
13446 }
13447
13448 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13449 elf_link_input_bfd ignores this section. */
13450 input_section->flags &= ~SEC_HAS_CONTENTS;
13451 }
13452
13453 /* The table must be sorted by -G value. */
13454 if (c > 2)
13455 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13456
13457 /* Swap out the table. */
13458 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13459 ext_tab = bfd_alloc (abfd, amt);
13460 if (ext_tab == NULL)
13461 {
13462 free (tab);
13463 return FALSE;
13464 }
13465
13466 for (j = 0; j < c; j++)
13467 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13468 free (tab);
13469
13470 o->size = c * sizeof (Elf32_External_gptab);
13471 o->contents = (bfd_byte *) ext_tab;
13472
13473 /* Skip this section later on (I don't think this currently
13474 matters, but someday it might). */
13475 o->map_head.link_order = NULL;
13476 }
13477 }
13478
13479 /* Invoke the regular ELF backend linker to do all the work. */
13480 if (!bfd_elf_final_link (abfd, info))
13481 return FALSE;
13482
13483 /* Now write out the computed sections. */
13484
13485 if (reginfo_sec != NULL)
13486 {
13487 Elf32_External_RegInfo ext;
13488
13489 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13490 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13491 return FALSE;
13492 }
13493
13494 if (mdebug_sec != NULL)
13495 {
13496 BFD_ASSERT (abfd->output_has_begun);
13497 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13498 swap, info,
13499 mdebug_sec->filepos))
13500 return FALSE;
13501
13502 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13503 }
13504
13505 if (gptab_data_sec != NULL)
13506 {
13507 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13508 gptab_data_sec->contents,
13509 0, gptab_data_sec->size))
13510 return FALSE;
13511 }
13512
13513 if (gptab_bss_sec != NULL)
13514 {
13515 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13516 gptab_bss_sec->contents,
13517 0, gptab_bss_sec->size))
13518 return FALSE;
13519 }
13520
13521 if (SGI_COMPAT (abfd))
13522 {
13523 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13524 if (rtproc_sec != NULL)
13525 {
13526 if (! bfd_set_section_contents (abfd, rtproc_sec,
13527 rtproc_sec->contents,
13528 0, rtproc_sec->size))
13529 return FALSE;
13530 }
13531 }
13532
13533 return TRUE;
13534 }
13535 \f
13536 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13537
13538 struct mips_mach_extension
13539 {
13540 unsigned long extension, base;
13541 };
13542
13543
13544 /* An array describing how BFD machines relate to one another. The entries
13545 are ordered topologically with MIPS I extensions listed last. */
13546
13547 static const struct mips_mach_extension mips_mach_extensions[] =
13548 {
13549 /* MIPS64r2 extensions. */
13550 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13551 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13552 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13553
13554 /* MIPS64 extensions. */
13555 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13556 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13557 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13558 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13559
13560 /* MIPS V extensions. */
13561 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13562
13563 /* R10000 extensions. */
13564 { bfd_mach_mips12000, bfd_mach_mips10000 },
13565 { bfd_mach_mips14000, bfd_mach_mips10000 },
13566 { bfd_mach_mips16000, bfd_mach_mips10000 },
13567
13568 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13569 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13570 better to allow vr5400 and vr5500 code to be merged anyway, since
13571 many libraries will just use the core ISA. Perhaps we could add
13572 some sort of ASE flag if this ever proves a problem. */
13573 { bfd_mach_mips5500, bfd_mach_mips5400 },
13574 { bfd_mach_mips5400, bfd_mach_mips5000 },
13575
13576 /* MIPS IV extensions. */
13577 { bfd_mach_mips5, bfd_mach_mips8000 },
13578 { bfd_mach_mips10000, bfd_mach_mips8000 },
13579 { bfd_mach_mips5000, bfd_mach_mips8000 },
13580 { bfd_mach_mips7000, bfd_mach_mips8000 },
13581 { bfd_mach_mips9000, bfd_mach_mips8000 },
13582
13583 /* VR4100 extensions. */
13584 { bfd_mach_mips4120, bfd_mach_mips4100 },
13585 { bfd_mach_mips4111, bfd_mach_mips4100 },
13586
13587 /* MIPS III extensions. */
13588 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13589 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13590 { bfd_mach_mips8000, bfd_mach_mips4000 },
13591 { bfd_mach_mips4650, bfd_mach_mips4000 },
13592 { bfd_mach_mips4600, bfd_mach_mips4000 },
13593 { bfd_mach_mips4400, bfd_mach_mips4000 },
13594 { bfd_mach_mips4300, bfd_mach_mips4000 },
13595 { bfd_mach_mips4100, bfd_mach_mips4000 },
13596 { bfd_mach_mips4010, bfd_mach_mips4000 },
13597 { bfd_mach_mips5900, bfd_mach_mips4000 },
13598
13599 /* MIPS32 extensions. */
13600 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13601
13602 /* MIPS II extensions. */
13603 { bfd_mach_mips4000, bfd_mach_mips6000 },
13604 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13605
13606 /* MIPS I extensions. */
13607 { bfd_mach_mips6000, bfd_mach_mips3000 },
13608 { bfd_mach_mips3900, bfd_mach_mips3000 }
13609 };
13610
13611
13612 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13613
13614 static bfd_boolean
13615 mips_mach_extends_p (unsigned long base, unsigned long extension)
13616 {
13617 size_t i;
13618
13619 if (extension == base)
13620 return TRUE;
13621
13622 if (base == bfd_mach_mipsisa32
13623 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13624 return TRUE;
13625
13626 if (base == bfd_mach_mipsisa32r2
13627 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13628 return TRUE;
13629
13630 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13631 if (extension == mips_mach_extensions[i].extension)
13632 {
13633 extension = mips_mach_extensions[i].base;
13634 if (extension == base)
13635 return TRUE;
13636 }
13637
13638 return FALSE;
13639 }
13640
13641
13642 /* Return true if the given ELF header flags describe a 32-bit binary. */
13643
13644 static bfd_boolean
13645 mips_32bit_flags_p (flagword flags)
13646 {
13647 return ((flags & EF_MIPS_32BITMODE) != 0
13648 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13649 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13650 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13651 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13652 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13653 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13654 }
13655
13656
13657 /* Merge object attributes from IBFD into OBFD. Raise an error if
13658 there are conflicting attributes. */
13659 static bfd_boolean
13660 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13661 {
13662 obj_attribute *in_attr;
13663 obj_attribute *out_attr;
13664 bfd *abi_fp_bfd;
13665
13666 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13667 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13668 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13669 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13670
13671 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13672 {
13673 /* This is the first object. Copy the attributes. */
13674 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13675
13676 /* Use the Tag_null value to indicate the attributes have been
13677 initialized. */
13678 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13679
13680 return TRUE;
13681 }
13682
13683 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13684 non-conflicting ones. */
13685 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13686 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13687 {
13688 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13689 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13690 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13691 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13692 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13693 {
13694 case 1:
13695 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13696 {
13697 case 2:
13698 _bfd_error_handler
13699 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13700 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13701 break;
13702
13703 case 3:
13704 _bfd_error_handler
13705 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13706 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13707 break;
13708
13709 case 4:
13710 _bfd_error_handler
13711 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13712 obfd, abi_fp_bfd, ibfd,
13713 "-mdouble-float", "-mips32r2 -mfp64");
13714 break;
13715
13716 default:
13717 _bfd_error_handler
13718 (_("Warning: %B uses %s (set by %B), "
13719 "%B uses unknown floating point ABI %d"),
13720 obfd, abi_fp_bfd, ibfd,
13721 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13722 break;
13723 }
13724 break;
13725
13726 case 2:
13727 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13728 {
13729 case 1:
13730 _bfd_error_handler
13731 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13732 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13733 break;
13734
13735 case 3:
13736 _bfd_error_handler
13737 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13738 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13739 break;
13740
13741 case 4:
13742 _bfd_error_handler
13743 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13744 obfd, abi_fp_bfd, ibfd,
13745 "-msingle-float", "-mips32r2 -mfp64");
13746 break;
13747
13748 default:
13749 _bfd_error_handler
13750 (_("Warning: %B uses %s (set by %B), "
13751 "%B uses unknown floating point ABI %d"),
13752 obfd, abi_fp_bfd, ibfd,
13753 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13754 break;
13755 }
13756 break;
13757
13758 case 3:
13759 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13760 {
13761 case 1:
13762 case 2:
13763 case 4:
13764 _bfd_error_handler
13765 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13766 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13767 break;
13768
13769 default:
13770 _bfd_error_handler
13771 (_("Warning: %B uses %s (set by %B), "
13772 "%B uses unknown floating point ABI %d"),
13773 obfd, abi_fp_bfd, ibfd,
13774 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13775 break;
13776 }
13777 break;
13778
13779 case 4:
13780 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13781 {
13782 case 1:
13783 _bfd_error_handler
13784 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13785 obfd, abi_fp_bfd, ibfd,
13786 "-mips32r2 -mfp64", "-mdouble-float");
13787 break;
13788
13789 case 2:
13790 _bfd_error_handler
13791 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13792 obfd, abi_fp_bfd, ibfd,
13793 "-mips32r2 -mfp64", "-msingle-float");
13794 break;
13795
13796 case 3:
13797 _bfd_error_handler
13798 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13799 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13800 break;
13801
13802 default:
13803 _bfd_error_handler
13804 (_("Warning: %B uses %s (set by %B), "
13805 "%B uses unknown floating point ABI %d"),
13806 obfd, abi_fp_bfd, ibfd,
13807 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13808 break;
13809 }
13810 break;
13811
13812 default:
13813 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13814 {
13815 case 1:
13816 _bfd_error_handler
13817 (_("Warning: %B uses unknown floating point ABI %d "
13818 "(set by %B), %B uses %s"),
13819 obfd, abi_fp_bfd, ibfd,
13820 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13821 break;
13822
13823 case 2:
13824 _bfd_error_handler
13825 (_("Warning: %B uses unknown floating point ABI %d "
13826 "(set by %B), %B uses %s"),
13827 obfd, abi_fp_bfd, ibfd,
13828 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13829 break;
13830
13831 case 3:
13832 _bfd_error_handler
13833 (_("Warning: %B uses unknown floating point ABI %d "
13834 "(set by %B), %B uses %s"),
13835 obfd, abi_fp_bfd, ibfd,
13836 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13837 break;
13838
13839 case 4:
13840 _bfd_error_handler
13841 (_("Warning: %B uses unknown floating point ABI %d "
13842 "(set by %B), %B uses %s"),
13843 obfd, abi_fp_bfd, ibfd,
13844 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13845 break;
13846
13847 default:
13848 _bfd_error_handler
13849 (_("Warning: %B uses unknown floating point ABI %d "
13850 "(set by %B), %B uses unknown floating point ABI %d"),
13851 obfd, abi_fp_bfd, ibfd,
13852 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13853 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13854 break;
13855 }
13856 break;
13857 }
13858 }
13859
13860 /* Merge Tag_compatibility attributes and any common GNU ones. */
13861 _bfd_elf_merge_object_attributes (ibfd, obfd);
13862
13863 return TRUE;
13864 }
13865
13866 /* Merge backend specific data from an object file to the output
13867 object file when linking. */
13868
13869 bfd_boolean
13870 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13871 {
13872 flagword old_flags;
13873 flagword new_flags;
13874 bfd_boolean ok;
13875 bfd_boolean null_input_bfd = TRUE;
13876 asection *sec;
13877
13878 /* Check if we have the same endianness. */
13879 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13880 {
13881 (*_bfd_error_handler)
13882 (_("%B: endianness incompatible with that of the selected emulation"),
13883 ibfd);
13884 return FALSE;
13885 }
13886
13887 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13888 return TRUE;
13889
13890 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13891 {
13892 (*_bfd_error_handler)
13893 (_("%B: ABI is incompatible with that of the selected emulation"),
13894 ibfd);
13895 return FALSE;
13896 }
13897
13898 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13899 return FALSE;
13900
13901 new_flags = elf_elfheader (ibfd)->e_flags;
13902 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13903 old_flags = elf_elfheader (obfd)->e_flags;
13904
13905 if (! elf_flags_init (obfd))
13906 {
13907 elf_flags_init (obfd) = TRUE;
13908 elf_elfheader (obfd)->e_flags = new_flags;
13909 elf_elfheader (obfd)->e_ident[EI_CLASS]
13910 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13911
13912 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13913 && (bfd_get_arch_info (obfd)->the_default
13914 || mips_mach_extends_p (bfd_get_mach (obfd),
13915 bfd_get_mach (ibfd))))
13916 {
13917 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13918 bfd_get_mach (ibfd)))
13919 return FALSE;
13920 }
13921
13922 return TRUE;
13923 }
13924
13925 /* Check flag compatibility. */
13926
13927 new_flags &= ~EF_MIPS_NOREORDER;
13928 old_flags &= ~EF_MIPS_NOREORDER;
13929
13930 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13931 doesn't seem to matter. */
13932 new_flags &= ~EF_MIPS_XGOT;
13933 old_flags &= ~EF_MIPS_XGOT;
13934
13935 /* MIPSpro generates ucode info in n64 objects. Again, we should
13936 just be able to ignore this. */
13937 new_flags &= ~EF_MIPS_UCODE;
13938 old_flags &= ~EF_MIPS_UCODE;
13939
13940 /* DSOs should only be linked with CPIC code. */
13941 if ((ibfd->flags & DYNAMIC) != 0)
13942 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13943
13944 if (new_flags == old_flags)
13945 return TRUE;
13946
13947 /* Check to see if the input BFD actually contains any sections.
13948 If not, its flags may not have been initialised either, but it cannot
13949 actually cause any incompatibility. */
13950 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13951 {
13952 /* Ignore synthetic sections and empty .text, .data and .bss sections
13953 which are automatically generated by gas. Also ignore fake
13954 (s)common sections, since merely defining a common symbol does
13955 not affect compatibility. */
13956 if ((sec->flags & SEC_IS_COMMON) == 0
13957 && strcmp (sec->name, ".reginfo")
13958 && strcmp (sec->name, ".mdebug")
13959 && (sec->size != 0
13960 || (strcmp (sec->name, ".text")
13961 && strcmp (sec->name, ".data")
13962 && strcmp (sec->name, ".bss"))))
13963 {
13964 null_input_bfd = FALSE;
13965 break;
13966 }
13967 }
13968 if (null_input_bfd)
13969 return TRUE;
13970
13971 ok = TRUE;
13972
13973 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13974 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13975 {
13976 (*_bfd_error_handler)
13977 (_("%B: warning: linking abicalls files with non-abicalls files"),
13978 ibfd);
13979 ok = TRUE;
13980 }
13981
13982 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13983 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13984 if (! (new_flags & EF_MIPS_PIC))
13985 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13986
13987 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13988 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13989
13990 /* Compare the ISAs. */
13991 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13992 {
13993 (*_bfd_error_handler)
13994 (_("%B: linking 32-bit code with 64-bit code"),
13995 ibfd);
13996 ok = FALSE;
13997 }
13998 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13999 {
14000 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14001 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14002 {
14003 /* Copy the architecture info from IBFD to OBFD. Also copy
14004 the 32-bit flag (if set) so that we continue to recognise
14005 OBFD as a 32-bit binary. */
14006 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14007 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14008 elf_elfheader (obfd)->e_flags
14009 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14010
14011 /* Copy across the ABI flags if OBFD doesn't use them
14012 and if that was what caused us to treat IBFD as 32-bit. */
14013 if ((old_flags & EF_MIPS_ABI) == 0
14014 && mips_32bit_flags_p (new_flags)
14015 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14016 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14017 }
14018 else
14019 {
14020 /* The ISAs aren't compatible. */
14021 (*_bfd_error_handler)
14022 (_("%B: linking %s module with previous %s modules"),
14023 ibfd,
14024 bfd_printable_name (ibfd),
14025 bfd_printable_name (obfd));
14026 ok = FALSE;
14027 }
14028 }
14029
14030 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14031 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14032
14033 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14034 does set EI_CLASS differently from any 32-bit ABI. */
14035 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14036 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14037 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14038 {
14039 /* Only error if both are set (to different values). */
14040 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14041 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14042 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14043 {
14044 (*_bfd_error_handler)
14045 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14046 ibfd,
14047 elf_mips_abi_name (ibfd),
14048 elf_mips_abi_name (obfd));
14049 ok = FALSE;
14050 }
14051 new_flags &= ~EF_MIPS_ABI;
14052 old_flags &= ~EF_MIPS_ABI;
14053 }
14054
14055 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14056 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14057 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14058 {
14059 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14060 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14061 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14062 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14063 int micro_mis = old_m16 && new_micro;
14064 int m16_mis = old_micro && new_m16;
14065
14066 if (m16_mis || micro_mis)
14067 {
14068 (*_bfd_error_handler)
14069 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14070 ibfd,
14071 m16_mis ? "MIPS16" : "microMIPS",
14072 m16_mis ? "microMIPS" : "MIPS16");
14073 ok = FALSE;
14074 }
14075
14076 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14077
14078 new_flags &= ~ EF_MIPS_ARCH_ASE;
14079 old_flags &= ~ EF_MIPS_ARCH_ASE;
14080 }
14081
14082 /* Warn about any other mismatches */
14083 if (new_flags != old_flags)
14084 {
14085 (*_bfd_error_handler)
14086 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14087 ibfd, (unsigned long) new_flags,
14088 (unsigned long) old_flags);
14089 ok = FALSE;
14090 }
14091
14092 if (! ok)
14093 {
14094 bfd_set_error (bfd_error_bad_value);
14095 return FALSE;
14096 }
14097
14098 return TRUE;
14099 }
14100
14101 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14102
14103 bfd_boolean
14104 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14105 {
14106 BFD_ASSERT (!elf_flags_init (abfd)
14107 || elf_elfheader (abfd)->e_flags == flags);
14108
14109 elf_elfheader (abfd)->e_flags = flags;
14110 elf_flags_init (abfd) = TRUE;
14111 return TRUE;
14112 }
14113
14114 char *
14115 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14116 {
14117 switch (dtag)
14118 {
14119 default: return "";
14120 case DT_MIPS_RLD_VERSION:
14121 return "MIPS_RLD_VERSION";
14122 case DT_MIPS_TIME_STAMP:
14123 return "MIPS_TIME_STAMP";
14124 case DT_MIPS_ICHECKSUM:
14125 return "MIPS_ICHECKSUM";
14126 case DT_MIPS_IVERSION:
14127 return "MIPS_IVERSION";
14128 case DT_MIPS_FLAGS:
14129 return "MIPS_FLAGS";
14130 case DT_MIPS_BASE_ADDRESS:
14131 return "MIPS_BASE_ADDRESS";
14132 case DT_MIPS_MSYM:
14133 return "MIPS_MSYM";
14134 case DT_MIPS_CONFLICT:
14135 return "MIPS_CONFLICT";
14136 case DT_MIPS_LIBLIST:
14137 return "MIPS_LIBLIST";
14138 case DT_MIPS_LOCAL_GOTNO:
14139 return "MIPS_LOCAL_GOTNO";
14140 case DT_MIPS_CONFLICTNO:
14141 return "MIPS_CONFLICTNO";
14142 case DT_MIPS_LIBLISTNO:
14143 return "MIPS_LIBLISTNO";
14144 case DT_MIPS_SYMTABNO:
14145 return "MIPS_SYMTABNO";
14146 case DT_MIPS_UNREFEXTNO:
14147 return "MIPS_UNREFEXTNO";
14148 case DT_MIPS_GOTSYM:
14149 return "MIPS_GOTSYM";
14150 case DT_MIPS_HIPAGENO:
14151 return "MIPS_HIPAGENO";
14152 case DT_MIPS_RLD_MAP:
14153 return "MIPS_RLD_MAP";
14154 case DT_MIPS_DELTA_CLASS:
14155 return "MIPS_DELTA_CLASS";
14156 case DT_MIPS_DELTA_CLASS_NO:
14157 return "MIPS_DELTA_CLASS_NO";
14158 case DT_MIPS_DELTA_INSTANCE:
14159 return "MIPS_DELTA_INSTANCE";
14160 case DT_MIPS_DELTA_INSTANCE_NO:
14161 return "MIPS_DELTA_INSTANCE_NO";
14162 case DT_MIPS_DELTA_RELOC:
14163 return "MIPS_DELTA_RELOC";
14164 case DT_MIPS_DELTA_RELOC_NO:
14165 return "MIPS_DELTA_RELOC_NO";
14166 case DT_MIPS_DELTA_SYM:
14167 return "MIPS_DELTA_SYM";
14168 case DT_MIPS_DELTA_SYM_NO:
14169 return "MIPS_DELTA_SYM_NO";
14170 case DT_MIPS_DELTA_CLASSSYM:
14171 return "MIPS_DELTA_CLASSSYM";
14172 case DT_MIPS_DELTA_CLASSSYM_NO:
14173 return "MIPS_DELTA_CLASSSYM_NO";
14174 case DT_MIPS_CXX_FLAGS:
14175 return "MIPS_CXX_FLAGS";
14176 case DT_MIPS_PIXIE_INIT:
14177 return "MIPS_PIXIE_INIT";
14178 case DT_MIPS_SYMBOL_LIB:
14179 return "MIPS_SYMBOL_LIB";
14180 case DT_MIPS_LOCALPAGE_GOTIDX:
14181 return "MIPS_LOCALPAGE_GOTIDX";
14182 case DT_MIPS_LOCAL_GOTIDX:
14183 return "MIPS_LOCAL_GOTIDX";
14184 case DT_MIPS_HIDDEN_GOTIDX:
14185 return "MIPS_HIDDEN_GOTIDX";
14186 case DT_MIPS_PROTECTED_GOTIDX:
14187 return "MIPS_PROTECTED_GOT_IDX";
14188 case DT_MIPS_OPTIONS:
14189 return "MIPS_OPTIONS";
14190 case DT_MIPS_INTERFACE:
14191 return "MIPS_INTERFACE";
14192 case DT_MIPS_DYNSTR_ALIGN:
14193 return "DT_MIPS_DYNSTR_ALIGN";
14194 case DT_MIPS_INTERFACE_SIZE:
14195 return "DT_MIPS_INTERFACE_SIZE";
14196 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14197 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14198 case DT_MIPS_PERF_SUFFIX:
14199 return "DT_MIPS_PERF_SUFFIX";
14200 case DT_MIPS_COMPACT_SIZE:
14201 return "DT_MIPS_COMPACT_SIZE";
14202 case DT_MIPS_GP_VALUE:
14203 return "DT_MIPS_GP_VALUE";
14204 case DT_MIPS_AUX_DYNAMIC:
14205 return "DT_MIPS_AUX_DYNAMIC";
14206 case DT_MIPS_PLTGOT:
14207 return "DT_MIPS_PLTGOT";
14208 case DT_MIPS_RWPLT:
14209 return "DT_MIPS_RWPLT";
14210 }
14211 }
14212
14213 bfd_boolean
14214 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14215 {
14216 FILE *file = ptr;
14217
14218 BFD_ASSERT (abfd != NULL && ptr != NULL);
14219
14220 /* Print normal ELF private data. */
14221 _bfd_elf_print_private_bfd_data (abfd, ptr);
14222
14223 /* xgettext:c-format */
14224 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14225
14226 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14227 fprintf (file, _(" [abi=O32]"));
14228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14229 fprintf (file, _(" [abi=O64]"));
14230 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14231 fprintf (file, _(" [abi=EABI32]"));
14232 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14233 fprintf (file, _(" [abi=EABI64]"));
14234 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14235 fprintf (file, _(" [abi unknown]"));
14236 else if (ABI_N32_P (abfd))
14237 fprintf (file, _(" [abi=N32]"));
14238 else if (ABI_64_P (abfd))
14239 fprintf (file, _(" [abi=64]"));
14240 else
14241 fprintf (file, _(" [no abi set]"));
14242
14243 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14244 fprintf (file, " [mips1]");
14245 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14246 fprintf (file, " [mips2]");
14247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14248 fprintf (file, " [mips3]");
14249 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14250 fprintf (file, " [mips4]");
14251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14252 fprintf (file, " [mips5]");
14253 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14254 fprintf (file, " [mips32]");
14255 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14256 fprintf (file, " [mips64]");
14257 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14258 fprintf (file, " [mips32r2]");
14259 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14260 fprintf (file, " [mips64r2]");
14261 else
14262 fprintf (file, _(" [unknown ISA]"));
14263
14264 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14265 fprintf (file, " [mdmx]");
14266
14267 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14268 fprintf (file, " [mips16]");
14269
14270 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14271 fprintf (file, " [micromips]");
14272
14273 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14274 fprintf (file, " [32bitmode]");
14275 else
14276 fprintf (file, _(" [not 32bitmode]"));
14277
14278 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14279 fprintf (file, " [noreorder]");
14280
14281 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14282 fprintf (file, " [PIC]");
14283
14284 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14285 fprintf (file, " [CPIC]");
14286
14287 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14288 fprintf (file, " [XGOT]");
14289
14290 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14291 fprintf (file, " [UCODE]");
14292
14293 fputc ('\n', file);
14294
14295 return TRUE;
14296 }
14297
14298 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14299 {
14300 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14301 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14302 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14303 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14304 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14305 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14306 { NULL, 0, 0, 0, 0 }
14307 };
14308
14309 /* Merge non visibility st_other attributes. Ensure that the
14310 STO_OPTIONAL flag is copied into h->other, even if this is not a
14311 definiton of the symbol. */
14312 void
14313 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14314 const Elf_Internal_Sym *isym,
14315 bfd_boolean definition,
14316 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14317 {
14318 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14319 {
14320 unsigned char other;
14321
14322 other = (definition ? isym->st_other : h->other);
14323 other &= ~ELF_ST_VISIBILITY (-1);
14324 h->other = other | ELF_ST_VISIBILITY (h->other);
14325 }
14326
14327 if (!definition
14328 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14329 h->other |= STO_OPTIONAL;
14330 }
14331
14332 /* Decide whether an undefined symbol is special and can be ignored.
14333 This is the case for OPTIONAL symbols on IRIX. */
14334 bfd_boolean
14335 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14336 {
14337 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14338 }
14339
14340 bfd_boolean
14341 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14342 {
14343 return (sym->st_shndx == SHN_COMMON
14344 || sym->st_shndx == SHN_MIPS_ACOMMON
14345 || sym->st_shndx == SHN_MIPS_SCOMMON);
14346 }
14347
14348 /* Return address for Ith PLT stub in section PLT, for relocation REL
14349 or (bfd_vma) -1 if it should not be included. */
14350
14351 bfd_vma
14352 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14353 const arelent *rel ATTRIBUTE_UNUSED)
14354 {
14355 return (plt->vma
14356 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14357 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14358 }
14359
14360 void
14361 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14362 {
14363 struct mips_elf_link_hash_table *htab;
14364 Elf_Internal_Ehdr *i_ehdrp;
14365
14366 i_ehdrp = elf_elfheader (abfd);
14367 if (link_info)
14368 {
14369 htab = mips_elf_hash_table (link_info);
14370 BFD_ASSERT (htab != NULL);
14371
14372 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14373 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14374 }
14375 }
This page took 0.359903 seconds and 4 git commands to generate.