solib_global_lookup: Fetch arch from objfile, not target_gdbarch.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/ecoff.h"
44 #include "coff/mips.h"
45
46 #include "hashtab.h"
47
48 /* Types of TLS GOT entry. */
49 enum mips_got_tls_type {
50 GOT_TLS_NONE,
51 GOT_TLS_GD,
52 GOT_TLS_LDM,
53 GOT_TLS_IE
54 };
55
56 /* This structure is used to hold information about one GOT entry.
57 There are four types of entry:
58
59 (1) an absolute address
60 requires: abfd == NULL
61 fields: d.address
62
63 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
64 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
65 fields: abfd, symndx, d.addend, tls_type
66
67 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
68 requires: abfd != NULL, symndx == -1
69 fields: d.h, tls_type
70
71 (4) a TLS LDM slot
72 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
73 fields: none; there's only one of these per GOT. */
74 struct mips_got_entry
75 {
76 /* One input bfd that needs the GOT entry. */
77 bfd *abfd;
78 /* The index of the symbol, as stored in the relocation r_info, if
79 we have a local symbol; -1 otherwise. */
80 long symndx;
81 union
82 {
83 /* If abfd == NULL, an address that must be stored in the got. */
84 bfd_vma address;
85 /* If abfd != NULL && symndx != -1, the addend of the relocation
86 that should be added to the symbol value. */
87 bfd_vma addend;
88 /* If abfd != NULL && symndx == -1, the hash table entry
89 corresponding to a symbol in the GOT. The symbol's entry
90 is in the local area if h->global_got_area is GGA_NONE,
91 otherwise it is in the global area. */
92 struct mips_elf_link_hash_entry *h;
93 } d;
94
95 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
96 symbol entry with r_symndx == 0. */
97 unsigned char tls_type;
98
99 /* True if we have filled in the GOT contents for a TLS entry,
100 and created the associated relocations. */
101 unsigned char tls_initialized;
102
103 /* The offset from the beginning of the .got section to the entry
104 corresponding to this symbol+addend. If it's a global symbol
105 whose offset is yet to be decided, it's going to be -1. */
106 long gotidx;
107 };
108
109 /* This structure represents a GOT page reference from an input bfd.
110 Each instance represents a symbol + ADDEND, where the representation
111 of the symbol depends on whether it is local to the input bfd.
112 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
113 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
114
115 Page references with SYMNDX >= 0 always become page references
116 in the output. Page references with SYMNDX < 0 only become page
117 references if the symbol binds locally; in other cases, the page
118 reference decays to a global GOT reference. */
119 struct mips_got_page_ref
120 {
121 long symndx;
122 union
123 {
124 struct mips_elf_link_hash_entry *h;
125 bfd *abfd;
126 } u;
127 bfd_vma addend;
128 };
129
130 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
131 The structures form a non-overlapping list that is sorted by increasing
132 MIN_ADDEND. */
133 struct mips_got_page_range
134 {
135 struct mips_got_page_range *next;
136 bfd_signed_vma min_addend;
137 bfd_signed_vma max_addend;
138 };
139
140 /* This structure describes the range of addends that are applied to page
141 relocations against a given section. */
142 struct mips_got_page_entry
143 {
144 /* The section that these entries are based on. */
145 asection *sec;
146 /* The ranges for this page entry. */
147 struct mips_got_page_range *ranges;
148 /* The maximum number of page entries needed for RANGES. */
149 bfd_vma num_pages;
150 };
151
152 /* This structure is used to hold .got information when linking. */
153
154 struct mips_got_info
155 {
156 /* The number of global .got entries. */
157 unsigned int global_gotno;
158 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
159 unsigned int reloc_only_gotno;
160 /* The number of .got slots used for TLS. */
161 unsigned int tls_gotno;
162 /* The first unused TLS .got entry. Used only during
163 mips_elf_initialize_tls_index. */
164 unsigned int tls_assigned_gotno;
165 /* The number of local .got entries, eventually including page entries. */
166 unsigned int local_gotno;
167 /* The maximum number of page entries needed. */
168 unsigned int page_gotno;
169 /* The number of relocations needed for the GOT entries. */
170 unsigned int relocs;
171 /* The first unused local .got entry. */
172 unsigned int assigned_low_gotno;
173 /* The last unused local .got entry. */
174 unsigned int assigned_high_gotno;
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184 };
185
186 /* Structure passed when merging bfds' gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
215
216 struct mips_elf_traverse_got_arg
217 {
218 struct bfd_link_info *info;
219 struct mips_got_info *g;
220 int value;
221 };
222
223 struct _mips_elf_section_data
224 {
225 struct bfd_elf_section_data elf;
226 union
227 {
228 bfd_byte *tdata;
229 } u;
230 };
231
232 #define mips_elf_section_data(sec) \
233 ((struct _mips_elf_section_data *) elf_section_data (sec))
234
235 #define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
238 && elf_object_id (bfd) == MIPS_ELF_DATA)
239
240 /* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257 #define GGA_NORMAL 0
258 #define GGA_RELOC_ONLY 1
259 #define GGA_NONE 2
260
261 /* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278 struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288 };
289
290 /* Macros for populating a mips_elf_la25_stub. */
291
292 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
295 #define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297 #define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299 #define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
301
302 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305 struct mips_elf_hash_sort_data
306 {
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
312 long min_got_dynindx;
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
315 with dynamic relocations pointing to it from non-primary GOTs). */
316 long max_unref_got_dynindx;
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320 };
321
322 /* We make up to two PLT entries if needed, one for standard MIPS code
323 and one for compressed code, either a MIPS16 or microMIPS one. We
324 keep a separate record of traditional lazy-binding stubs, for easier
325 processing. */
326
327 struct plt_entry
328 {
329 /* Traditional SVR4 stub offset, or -1 if none. */
330 bfd_vma stub_offset;
331
332 /* Standard PLT entry offset, or -1 if none. */
333 bfd_vma mips_offset;
334
335 /* Compressed PLT entry offset, or -1 if none. */
336 bfd_vma comp_offset;
337
338 /* The corresponding .got.plt index, or -1 if none. */
339 bfd_vma gotplt_index;
340
341 /* Whether we need a standard PLT entry. */
342 unsigned int need_mips : 1;
343
344 /* Whether we need a compressed PLT entry. */
345 unsigned int need_comp : 1;
346 };
347
348 /* The MIPS ELF linker needs additional information for each symbol in
349 the global hash table. */
350
351 struct mips_elf_link_hash_entry
352 {
353 struct elf_link_hash_entry root;
354
355 /* External symbol information. */
356 EXTR esym;
357
358 /* The la25 stub we have created for ths symbol, if any. */
359 struct mips_elf_la25_stub *la25_stub;
360
361 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
362 this symbol. */
363 unsigned int possibly_dynamic_relocs;
364
365 /* If there is a stub that 32 bit functions should use to call this
366 16 bit function, this points to the section containing the stub. */
367 asection *fn_stub;
368
369 /* If there is a stub that 16 bit functions should use to call this
370 32 bit function, this points to the section containing the stub. */
371 asection *call_stub;
372
373 /* This is like the call_stub field, but it is used if the function
374 being called returns a floating point value. */
375 asection *call_fp_stub;
376
377 /* The highest GGA_* value that satisfies all references to this symbol. */
378 unsigned int global_got_area : 2;
379
380 /* True if all GOT relocations against this symbol are for calls. This is
381 a looser condition than no_fn_stub below, because there may be other
382 non-call non-GOT relocations against the symbol. */
383 unsigned int got_only_for_calls : 1;
384
385 /* True if one of the relocations described by possibly_dynamic_relocs
386 is against a readonly section. */
387 unsigned int readonly_reloc : 1;
388
389 /* True if there is a relocation against this symbol that must be
390 resolved by the static linker (in other words, if the relocation
391 cannot possibly be made dynamic). */
392 unsigned int has_static_relocs : 1;
393
394 /* True if we must not create a .MIPS.stubs entry for this symbol.
395 This is set, for example, if there are relocations related to
396 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
397 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
398 unsigned int no_fn_stub : 1;
399
400 /* Whether we need the fn_stub; this is true if this symbol appears
401 in any relocs other than a 16 bit call. */
402 unsigned int need_fn_stub : 1;
403
404 /* True if this symbol is referenced by branch relocations from
405 any non-PIC input file. This is used to determine whether an
406 la25 stub is required. */
407 unsigned int has_nonpic_branches : 1;
408
409 /* Does this symbol need a traditional MIPS lazy-binding stub
410 (as opposed to a PLT entry)? */
411 unsigned int needs_lazy_stub : 1;
412
413 /* Does this symbol resolve to a PLT entry? */
414 unsigned int use_plt_entry : 1;
415 };
416
417 /* MIPS ELF linker hash table. */
418
419 struct mips_elf_link_hash_table
420 {
421 struct elf_link_hash_table root;
422
423 /* The number of .rtproc entries. */
424 bfd_size_type procedure_count;
425
426 /* The size of the .compact_rel section (if SGI_COMPAT). */
427 bfd_size_type compact_rel_size;
428
429 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
430 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
431 bfd_boolean use_rld_obj_head;
432
433 /* The __rld_map or __rld_obj_head symbol. */
434 struct elf_link_hash_entry *rld_symbol;
435
436 /* This is set if we see any mips16 stub sections. */
437 bfd_boolean mips16_stubs_seen;
438
439 /* True if we can generate copy relocs and PLTs. */
440 bfd_boolean use_plts_and_copy_relocs;
441
442 /* True if we can only use 32-bit microMIPS instructions. */
443 bfd_boolean insn32;
444
445 /* True if we're generating code for VxWorks. */
446 bfd_boolean is_vxworks;
447
448 /* True if we already reported the small-data section overflow. */
449 bfd_boolean small_data_overflow_reported;
450
451 /* Shortcuts to some dynamic sections, or NULL if they are not
452 being used. */
453 asection *srelbss;
454 asection *sdynbss;
455 asection *srelplt;
456 asection *srelplt2;
457 asection *sgotplt;
458 asection *splt;
459 asection *sstubs;
460 asection *sgot;
461
462 /* The master GOT information. */
463 struct mips_got_info *got_info;
464
465 /* The global symbol in the GOT with the lowest index in the dynamic
466 symbol table. */
467 struct elf_link_hash_entry *global_gotsym;
468
469 /* The size of the PLT header in bytes. */
470 bfd_vma plt_header_size;
471
472 /* The size of a standard PLT entry in bytes. */
473 bfd_vma plt_mips_entry_size;
474
475 /* The size of a compressed PLT entry in bytes. */
476 bfd_vma plt_comp_entry_size;
477
478 /* The offset of the next standard PLT entry to create. */
479 bfd_vma plt_mips_offset;
480
481 /* The offset of the next compressed PLT entry to create. */
482 bfd_vma plt_comp_offset;
483
484 /* The index of the next .got.plt entry to create. */
485 bfd_vma plt_got_index;
486
487 /* The number of functions that need a lazy-binding stub. */
488 bfd_vma lazy_stub_count;
489
490 /* The size of a function stub entry in bytes. */
491 bfd_vma function_stub_size;
492
493 /* The number of reserved entries at the beginning of the GOT. */
494 unsigned int reserved_gotno;
495
496 /* The section used for mips_elf_la25_stub trampolines.
497 See the comment above that structure for details. */
498 asection *strampoline;
499
500 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
501 pairs. */
502 htab_t la25_stubs;
503
504 /* A function FN (NAME, IS, OS) that creates a new input section
505 called NAME and links it to output section OS. If IS is nonnull,
506 the new section should go immediately before it, otherwise it
507 should go at the (current) beginning of OS.
508
509 The function returns the new section on success, otherwise it
510 returns null. */
511 asection *(*add_stub_section) (const char *, asection *, asection *);
512
513 /* Small local sym cache. */
514 struct sym_cache sym_cache;
515
516 /* Is the PLT header compressed? */
517 unsigned int plt_header_is_comp : 1;
518 };
519
520 /* Get the MIPS ELF linker hash table from a link_info structure. */
521
522 #define mips_elf_hash_table(p) \
523 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
524 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
525
526 /* A structure used to communicate with htab_traverse callbacks. */
527 struct mips_htab_traverse_info
528 {
529 /* The usual link-wide information. */
530 struct bfd_link_info *info;
531 bfd *output_bfd;
532
533 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
534 bfd_boolean error;
535 };
536
537 /* MIPS ELF private object data. */
538
539 struct mips_elf_obj_tdata
540 {
541 /* Generic ELF private object data. */
542 struct elf_obj_tdata root;
543
544 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
545 bfd *abi_fp_bfd;
546
547 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
548 bfd *abi_msa_bfd;
549
550 /* The abiflags for this object. */
551 Elf_Internal_ABIFlags_v0 abiflags;
552 bfd_boolean abiflags_valid;
553
554 /* The GOT requirements of input bfds. */
555 struct mips_got_info *got;
556
557 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
558 included directly in this one, but there's no point to wasting
559 the memory just for the infrequently called find_nearest_line. */
560 struct mips_elf_find_line *find_line_info;
561
562 /* An array of stub sections indexed by symbol number. */
563 asection **local_stubs;
564 asection **local_call_stubs;
565
566 /* The Irix 5 support uses two virtual sections, which represent
567 text/data symbols defined in dynamic objects. */
568 asymbol *elf_data_symbol;
569 asymbol *elf_text_symbol;
570 asection *elf_data_section;
571 asection *elf_text_section;
572 };
573
574 /* Get MIPS ELF private object data from BFD's tdata. */
575
576 #define mips_elf_tdata(bfd) \
577 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
578
579 #define TLS_RELOC_P(r_type) \
580 (r_type == R_MIPS_TLS_DTPMOD32 \
581 || r_type == R_MIPS_TLS_DTPMOD64 \
582 || r_type == R_MIPS_TLS_DTPREL32 \
583 || r_type == R_MIPS_TLS_DTPREL64 \
584 || r_type == R_MIPS_TLS_GD \
585 || r_type == R_MIPS_TLS_LDM \
586 || r_type == R_MIPS_TLS_DTPREL_HI16 \
587 || r_type == R_MIPS_TLS_DTPREL_LO16 \
588 || r_type == R_MIPS_TLS_GOTTPREL \
589 || r_type == R_MIPS_TLS_TPREL32 \
590 || r_type == R_MIPS_TLS_TPREL64 \
591 || r_type == R_MIPS_TLS_TPREL_HI16 \
592 || r_type == R_MIPS_TLS_TPREL_LO16 \
593 || r_type == R_MIPS16_TLS_GD \
594 || r_type == R_MIPS16_TLS_LDM \
595 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
596 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
597 || r_type == R_MIPS16_TLS_GOTTPREL \
598 || r_type == R_MIPS16_TLS_TPREL_HI16 \
599 || r_type == R_MIPS16_TLS_TPREL_LO16 \
600 || r_type == R_MICROMIPS_TLS_GD \
601 || r_type == R_MICROMIPS_TLS_LDM \
602 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
603 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
604 || r_type == R_MICROMIPS_TLS_GOTTPREL \
605 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
606 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
607
608 /* Structure used to pass information to mips_elf_output_extsym. */
609
610 struct extsym_info
611 {
612 bfd *abfd;
613 struct bfd_link_info *info;
614 struct ecoff_debug_info *debug;
615 const struct ecoff_debug_swap *swap;
616 bfd_boolean failed;
617 };
618
619 /* The names of the runtime procedure table symbols used on IRIX5. */
620
621 static const char * const mips_elf_dynsym_rtproc_names[] =
622 {
623 "_procedure_table",
624 "_procedure_string_table",
625 "_procedure_table_size",
626 NULL
627 };
628
629 /* These structures are used to generate the .compact_rel section on
630 IRIX5. */
631
632 typedef struct
633 {
634 unsigned long id1; /* Always one? */
635 unsigned long num; /* Number of compact relocation entries. */
636 unsigned long id2; /* Always two? */
637 unsigned long offset; /* The file offset of the first relocation. */
638 unsigned long reserved0; /* Zero? */
639 unsigned long reserved1; /* Zero? */
640 } Elf32_compact_rel;
641
642 typedef struct
643 {
644 bfd_byte id1[4];
645 bfd_byte num[4];
646 bfd_byte id2[4];
647 bfd_byte offset[4];
648 bfd_byte reserved0[4];
649 bfd_byte reserved1[4];
650 } Elf32_External_compact_rel;
651
652 typedef struct
653 {
654 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
655 unsigned int rtype : 4; /* Relocation types. See below. */
656 unsigned int dist2to : 8;
657 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
658 unsigned long konst; /* KONST field. See below. */
659 unsigned long vaddr; /* VADDR to be relocated. */
660 } Elf32_crinfo;
661
662 typedef struct
663 {
664 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
665 unsigned int rtype : 4; /* Relocation types. See below. */
666 unsigned int dist2to : 8;
667 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
668 unsigned long konst; /* KONST field. See below. */
669 } Elf32_crinfo2;
670
671 typedef struct
672 {
673 bfd_byte info[4];
674 bfd_byte konst[4];
675 bfd_byte vaddr[4];
676 } Elf32_External_crinfo;
677
678 typedef struct
679 {
680 bfd_byte info[4];
681 bfd_byte konst[4];
682 } Elf32_External_crinfo2;
683
684 /* These are the constants used to swap the bitfields in a crinfo. */
685
686 #define CRINFO_CTYPE (0x1)
687 #define CRINFO_CTYPE_SH (31)
688 #define CRINFO_RTYPE (0xf)
689 #define CRINFO_RTYPE_SH (27)
690 #define CRINFO_DIST2TO (0xff)
691 #define CRINFO_DIST2TO_SH (19)
692 #define CRINFO_RELVADDR (0x7ffff)
693 #define CRINFO_RELVADDR_SH (0)
694
695 /* A compact relocation info has long (3 words) or short (2 words)
696 formats. A short format doesn't have VADDR field and relvaddr
697 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
698 #define CRF_MIPS_LONG 1
699 #define CRF_MIPS_SHORT 0
700
701 /* There are 4 types of compact relocation at least. The value KONST
702 has different meaning for each type:
703
704 (type) (konst)
705 CT_MIPS_REL32 Address in data
706 CT_MIPS_WORD Address in word (XXX)
707 CT_MIPS_GPHI_LO GP - vaddr
708 CT_MIPS_JMPAD Address to jump
709 */
710
711 #define CRT_MIPS_REL32 0xa
712 #define CRT_MIPS_WORD 0xb
713 #define CRT_MIPS_GPHI_LO 0xc
714 #define CRT_MIPS_JMPAD 0xd
715
716 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
717 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
718 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
719 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
720 \f
721 /* The structure of the runtime procedure descriptor created by the
722 loader for use by the static exception system. */
723
724 typedef struct runtime_pdr {
725 bfd_vma adr; /* Memory address of start of procedure. */
726 long regmask; /* Save register mask. */
727 long regoffset; /* Save register offset. */
728 long fregmask; /* Save floating point register mask. */
729 long fregoffset; /* Save floating point register offset. */
730 long frameoffset; /* Frame size. */
731 short framereg; /* Frame pointer register. */
732 short pcreg; /* Offset or reg of return pc. */
733 long irpss; /* Index into the runtime string table. */
734 long reserved;
735 struct exception_info *exception_info;/* Pointer to exception array. */
736 } RPDR, *pRPDR;
737 #define cbRPDR sizeof (RPDR)
738 #define rpdNil ((pRPDR) 0)
739 \f
740 static struct mips_got_entry *mips_elf_create_local_got_entry
741 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
742 struct mips_elf_link_hash_entry *, int);
743 static bfd_boolean mips_elf_sort_hash_table_f
744 (struct mips_elf_link_hash_entry *, void *);
745 static bfd_vma mips_elf_high
746 (bfd_vma);
747 static bfd_boolean mips_elf_create_dynamic_relocation
748 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
749 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
750 bfd_vma *, asection *);
751 static bfd_vma mips_elf_adjust_gp
752 (bfd *, struct mips_got_info *, bfd *);
753
754 /* This will be used when we sort the dynamic relocation records. */
755 static bfd *reldyn_sorting_bfd;
756
757 /* True if ABFD is for CPUs with load interlocking that include
758 non-MIPS1 CPUs and R3900. */
759 #define LOAD_INTERLOCKS_P(abfd) \
760 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
761 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
762
763 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
764 This should be safe for all architectures. We enable this predicate
765 for RM9000 for now. */
766 #define JAL_TO_BAL_P(abfd) \
767 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
768
769 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
770 This should be safe for all architectures. We enable this predicate for
771 all CPUs. */
772 #define JALR_TO_BAL_P(abfd) 1
773
774 /* True if ABFD is for CPUs that are faster if JR is converted to B.
775 This should be safe for all architectures. We enable this predicate for
776 all CPUs. */
777 #define JR_TO_B_P(abfd) 1
778
779 /* True if ABFD is a PIC object. */
780 #define PIC_OBJECT_P(abfd) \
781 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
782
783 /* Nonzero if ABFD is using the O32 ABI. */
784 #define ABI_O32_P(abfd) \
785 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
786
787 /* Nonzero if ABFD is using the N32 ABI. */
788 #define ABI_N32_P(abfd) \
789 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
790
791 /* Nonzero if ABFD is using the N64 ABI. */
792 #define ABI_64_P(abfd) \
793 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
794
795 /* Nonzero if ABFD is using NewABI conventions. */
796 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
797
798 /* Nonzero if ABFD has microMIPS code. */
799 #define MICROMIPS_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
801
802 /* Nonzero if ABFD is MIPS R6. */
803 #define MIPSR6_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
805 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
806
807 /* The IRIX compatibility level we are striving for. */
808 #define IRIX_COMPAT(abfd) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
810
811 /* Whether we are trying to be compatible with IRIX at all. */
812 #define SGI_COMPAT(abfd) \
813 (IRIX_COMPAT (abfd) != ict_none)
814
815 /* The name of the options section. */
816 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
817 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
818
819 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
820 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
821 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
822 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
823
824 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
825 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
826 (strcmp (NAME, ".MIPS.abiflags") == 0)
827
828 /* Whether the section is readonly. */
829 #define MIPS_ELF_READONLY_SECTION(sec) \
830 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
831 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
832
833 /* The name of the stub section. */
834 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
835
836 /* The size of an external REL relocation. */
837 #define MIPS_ELF_REL_SIZE(abfd) \
838 (get_elf_backend_data (abfd)->s->sizeof_rel)
839
840 /* The size of an external RELA relocation. */
841 #define MIPS_ELF_RELA_SIZE(abfd) \
842 (get_elf_backend_data (abfd)->s->sizeof_rela)
843
844 /* The size of an external dynamic table entry. */
845 #define MIPS_ELF_DYN_SIZE(abfd) \
846 (get_elf_backend_data (abfd)->s->sizeof_dyn)
847
848 /* The size of a GOT entry. */
849 #define MIPS_ELF_GOT_SIZE(abfd) \
850 (get_elf_backend_data (abfd)->s->arch_size / 8)
851
852 /* The size of the .rld_map section. */
853 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
854 (get_elf_backend_data (abfd)->s->arch_size / 8)
855
856 /* The size of a symbol-table entry. */
857 #define MIPS_ELF_SYM_SIZE(abfd) \
858 (get_elf_backend_data (abfd)->s->sizeof_sym)
859
860 /* The default alignment for sections, as a power of two. */
861 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
862 (get_elf_backend_data (abfd)->s->log_file_align)
863
864 /* Get word-sized data. */
865 #define MIPS_ELF_GET_WORD(abfd, ptr) \
866 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
867
868 /* Put out word-sized data. */
869 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
870 (ABI_64_P (abfd) \
871 ? bfd_put_64 (abfd, val, ptr) \
872 : bfd_put_32 (abfd, val, ptr))
873
874 /* The opcode for word-sized loads (LW or LD). */
875 #define MIPS_ELF_LOAD_WORD(abfd) \
876 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
877
878 /* Add a dynamic symbol table-entry. */
879 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
880 _bfd_elf_add_dynamic_entry (info, tag, val)
881
882 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
883 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
884
885 /* The name of the dynamic relocation section. */
886 #define MIPS_ELF_REL_DYN_NAME(INFO) \
887 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
888
889 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
890 from smaller values. Start with zero, widen, *then* decrement. */
891 #define MINUS_ONE (((bfd_vma)0) - 1)
892 #define MINUS_TWO (((bfd_vma)0) - 2)
893
894 /* The value to write into got[1] for SVR4 targets, to identify it is
895 a GNU object. The dynamic linker can then use got[1] to store the
896 module pointer. */
897 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
898 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
899
900 /* The offset of $gp from the beginning of the .got section. */
901 #define ELF_MIPS_GP_OFFSET(INFO) \
902 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
903
904 /* The maximum size of the GOT for it to be addressable using 16-bit
905 offsets from $gp. */
906 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
907
908 /* Instructions which appear in a stub. */
909 #define STUB_LW(abfd) \
910 ((ABI_64_P (abfd) \
911 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
912 : 0x8f998010)) /* lw t9,0x8010(gp) */
913 #define STUB_MOVE(abfd) \
914 ((ABI_64_P (abfd) \
915 ? 0x03e0782d /* daddu t7,ra */ \
916 : 0x03e07821)) /* addu t7,ra */
917 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
918 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
919 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
920 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
921 #define STUB_LI16S(abfd, VAL) \
922 ((ABI_64_P (abfd) \
923 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
924 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
925
926 /* Likewise for the microMIPS ASE. */
927 #define STUB_LW_MICROMIPS(abfd) \
928 (ABI_64_P (abfd) \
929 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
930 : 0xff3c8010) /* lw t9,0x8010(gp) */
931 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
932 #define STUB_MOVE32_MICROMIPS(abfd) \
933 (ABI_64_P (abfd) \
934 ? 0x581f7950 /* daddu t7,ra,zero */ \
935 : 0x001f7950) /* addu t7,ra,zero */
936 #define STUB_LUI_MICROMIPS(VAL) \
937 (0x41b80000 + (VAL)) /* lui t8,VAL */
938 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
939 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
940 #define STUB_ORI_MICROMIPS(VAL) \
941 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
942 #define STUB_LI16U_MICROMIPS(VAL) \
943 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
944 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
945 (ABI_64_P (abfd) \
946 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
947 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
948
949 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
950 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
951 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
952 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
953 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
954 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
955
956 /* The name of the dynamic interpreter. This is put in the .interp
957 section. */
958
959 #define ELF_DYNAMIC_INTERPRETER(abfd) \
960 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
961 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
962 : "/usr/lib/libc.so.1")
963
964 #ifdef BFD64
965 #define MNAME(bfd,pre,pos) \
966 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
967 #define ELF_R_SYM(bfd, i) \
968 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
969 #define ELF_R_TYPE(bfd, i) \
970 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
971 #define ELF_R_INFO(bfd, s, t) \
972 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
973 #else
974 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
975 #define ELF_R_SYM(bfd, i) \
976 (ELF32_R_SYM (i))
977 #define ELF_R_TYPE(bfd, i) \
978 (ELF32_R_TYPE (i))
979 #define ELF_R_INFO(bfd, s, t) \
980 (ELF32_R_INFO (s, t))
981 #endif
982 \f
983 /* The mips16 compiler uses a couple of special sections to handle
984 floating point arguments.
985
986 Section names that look like .mips16.fn.FNNAME contain stubs that
987 copy floating point arguments from the fp regs to the gp regs and
988 then jump to FNNAME. If any 32 bit function calls FNNAME, the
989 call should be redirected to the stub instead. If no 32 bit
990 function calls FNNAME, the stub should be discarded. We need to
991 consider any reference to the function, not just a call, because
992 if the address of the function is taken we will need the stub,
993 since the address might be passed to a 32 bit function.
994
995 Section names that look like .mips16.call.FNNAME contain stubs
996 that copy floating point arguments from the gp regs to the fp
997 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
998 then any 16 bit function that calls FNNAME should be redirected
999 to the stub instead. If FNNAME is not a 32 bit function, the
1000 stub should be discarded.
1001
1002 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1003 which call FNNAME and then copy the return value from the fp regs
1004 to the gp regs. These stubs store the return value in $18 while
1005 calling FNNAME; any function which might call one of these stubs
1006 must arrange to save $18 around the call. (This case is not
1007 needed for 32 bit functions that call 16 bit functions, because
1008 16 bit functions always return floating point values in both
1009 $f0/$f1 and $2/$3.)
1010
1011 Note that in all cases FNNAME might be defined statically.
1012 Therefore, FNNAME is not used literally. Instead, the relocation
1013 information will indicate which symbol the section is for.
1014
1015 We record any stubs that we find in the symbol table. */
1016
1017 #define FN_STUB ".mips16.fn."
1018 #define CALL_STUB ".mips16.call."
1019 #define CALL_FP_STUB ".mips16.call.fp."
1020
1021 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1022 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1023 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1024 \f
1025 /* The format of the first PLT entry in an O32 executable. */
1026 static const bfd_vma mips_o32_exec_plt0_entry[] =
1027 {
1028 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1029 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1030 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1031 0x031cc023, /* subu $24, $24, $28 */
1032 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1033 0x0018c082, /* srl $24, $24, 2 */
1034 0x0320f809, /* jalr $25 */
1035 0x2718fffe /* subu $24, $24, 2 */
1036 };
1037
1038 /* The format of the first PLT entry in an N32 executable. Different
1039 because gp ($28) is not available; we use t2 ($14) instead. */
1040 static const bfd_vma mips_n32_exec_plt0_entry[] =
1041 {
1042 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1043 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1044 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1045 0x030ec023, /* subu $24, $24, $14 */
1046 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1047 0x0018c082, /* srl $24, $24, 2 */
1048 0x0320f809, /* jalr $25 */
1049 0x2718fffe /* subu $24, $24, 2 */
1050 };
1051
1052 /* The format of the first PLT entry in an N64 executable. Different
1053 from N32 because of the increased size of GOT entries. */
1054 static const bfd_vma mips_n64_exec_plt0_entry[] =
1055 {
1056 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1057 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1058 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1059 0x030ec023, /* subu $24, $24, $14 */
1060 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1061 0x0018c0c2, /* srl $24, $24, 3 */
1062 0x0320f809, /* jalr $25 */
1063 0x2718fffe /* subu $24, $24, 2 */
1064 };
1065
1066 /* The format of the microMIPS first PLT entry in an O32 executable.
1067 We rely on v0 ($2) rather than t8 ($24) to contain the address
1068 of the GOTPLT entry handled, so this stub may only be used when
1069 all the subsequent PLT entries are microMIPS code too.
1070
1071 The trailing NOP is for alignment and correct disassembly only. */
1072 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1073 {
1074 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1075 0xff23, 0x0000, /* lw $25, 0($3) */
1076 0x0535, /* subu $2, $2, $3 */
1077 0x2525, /* srl $2, $2, 2 */
1078 0x3302, 0xfffe, /* subu $24, $2, 2 */
1079 0x0dff, /* move $15, $31 */
1080 0x45f9, /* jalrs $25 */
1081 0x0f83, /* move $28, $3 */
1082 0x0c00 /* nop */
1083 };
1084
1085 /* The format of the microMIPS first PLT entry in an O32 executable
1086 in the insn32 mode. */
1087 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1088 {
1089 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1090 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1091 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1092 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1093 0x001f, 0x7950, /* move $15, $31 */
1094 0x0318, 0x1040, /* srl $24, $24, 2 */
1095 0x03f9, 0x0f3c, /* jalr $25 */
1096 0x3318, 0xfffe /* subu $24, $24, 2 */
1097 };
1098
1099 /* The format of subsequent standard PLT entries. */
1100 static const bfd_vma mips_exec_plt_entry[] =
1101 {
1102 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1103 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1104 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1105 0x03200008 /* jr $25 */
1106 };
1107
1108 /* In the following PLT entry the JR and ADDIU instructions will
1109 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1110 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1111 static const bfd_vma mipsr6_exec_plt_entry[] =
1112 {
1113 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1114 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1115 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1116 0x03200009 /* jr $25 */
1117 };
1118
1119 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1120 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1121 directly addressable. */
1122 static const bfd_vma mips16_o32_exec_plt_entry[] =
1123 {
1124 0xb203, /* lw $2, 12($pc) */
1125 0x9a60, /* lw $3, 0($2) */
1126 0x651a, /* move $24, $2 */
1127 0xeb00, /* jr $3 */
1128 0x653b, /* move $25, $3 */
1129 0x6500, /* nop */
1130 0x0000, 0x0000 /* .word (.got.plt entry) */
1131 };
1132
1133 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1134 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1135 static const bfd_vma micromips_o32_exec_plt_entry[] =
1136 {
1137 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1138 0xff22, 0x0000, /* lw $25, 0($2) */
1139 0x4599, /* jr $25 */
1140 0x0f02 /* move $24, $2 */
1141 };
1142
1143 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1145 {
1146 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1147 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1148 0x0019, 0x0f3c, /* jr $25 */
1149 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1150 };
1151
1152 /* The format of the first PLT entry in a VxWorks executable. */
1153 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1154 {
1155 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1156 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1157 0x8f390008, /* lw t9, 8(t9) */
1158 0x00000000, /* nop */
1159 0x03200008, /* jr t9 */
1160 0x00000000 /* nop */
1161 };
1162
1163 /* The format of subsequent PLT entries. */
1164 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1165 {
1166 0x10000000, /* b .PLT_resolver */
1167 0x24180000, /* li t8, <pltindex> */
1168 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1169 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1170 0x8f390000, /* lw t9, 0(t9) */
1171 0x00000000, /* nop */
1172 0x03200008, /* jr t9 */
1173 0x00000000 /* nop */
1174 };
1175
1176 /* The format of the first PLT entry in a VxWorks shared object. */
1177 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1178 {
1179 0x8f990008, /* lw t9, 8(gp) */
1180 0x00000000, /* nop */
1181 0x03200008, /* jr t9 */
1182 0x00000000, /* nop */
1183 0x00000000, /* nop */
1184 0x00000000 /* nop */
1185 };
1186
1187 /* The format of subsequent PLT entries. */
1188 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1189 {
1190 0x10000000, /* b .PLT_resolver */
1191 0x24180000 /* li t8, <pltindex> */
1192 };
1193 \f
1194 /* microMIPS 32-bit opcode helper installer. */
1195
1196 static void
1197 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1198 {
1199 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1200 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1201 }
1202
1203 /* microMIPS 32-bit opcode helper retriever. */
1204
1205 static bfd_vma
1206 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1207 {
1208 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1209 }
1210 \f
1211 /* Look up an entry in a MIPS ELF linker hash table. */
1212
1213 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1214 ((struct mips_elf_link_hash_entry *) \
1215 elf_link_hash_lookup (&(table)->root, (string), (create), \
1216 (copy), (follow)))
1217
1218 /* Traverse a MIPS ELF linker hash table. */
1219
1220 #define mips_elf_link_hash_traverse(table, func, info) \
1221 (elf_link_hash_traverse \
1222 (&(table)->root, \
1223 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1224 (info)))
1225
1226 /* Find the base offsets for thread-local storage in this object,
1227 for GD/LD and IE/LE respectively. */
1228
1229 #define TP_OFFSET 0x7000
1230 #define DTP_OFFSET 0x8000
1231
1232 static bfd_vma
1233 dtprel_base (struct bfd_link_info *info)
1234 {
1235 /* If tls_sec is NULL, we should have signalled an error already. */
1236 if (elf_hash_table (info)->tls_sec == NULL)
1237 return 0;
1238 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1239 }
1240
1241 static bfd_vma
1242 tprel_base (struct bfd_link_info *info)
1243 {
1244 /* If tls_sec is NULL, we should have signalled an error already. */
1245 if (elf_hash_table (info)->tls_sec == NULL)
1246 return 0;
1247 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1248 }
1249
1250 /* Create an entry in a MIPS ELF linker hash table. */
1251
1252 static struct bfd_hash_entry *
1253 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1254 struct bfd_hash_table *table, const char *string)
1255 {
1256 struct mips_elf_link_hash_entry *ret =
1257 (struct mips_elf_link_hash_entry *) entry;
1258
1259 /* Allocate the structure if it has not already been allocated by a
1260 subclass. */
1261 if (ret == NULL)
1262 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1263 if (ret == NULL)
1264 return (struct bfd_hash_entry *) ret;
1265
1266 /* Call the allocation method of the superclass. */
1267 ret = ((struct mips_elf_link_hash_entry *)
1268 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1269 table, string));
1270 if (ret != NULL)
1271 {
1272 /* Set local fields. */
1273 memset (&ret->esym, 0, sizeof (EXTR));
1274 /* We use -2 as a marker to indicate that the information has
1275 not been set. -1 means there is no associated ifd. */
1276 ret->esym.ifd = -2;
1277 ret->la25_stub = 0;
1278 ret->possibly_dynamic_relocs = 0;
1279 ret->fn_stub = NULL;
1280 ret->call_stub = NULL;
1281 ret->call_fp_stub = NULL;
1282 ret->global_got_area = GGA_NONE;
1283 ret->got_only_for_calls = TRUE;
1284 ret->readonly_reloc = FALSE;
1285 ret->has_static_relocs = FALSE;
1286 ret->no_fn_stub = FALSE;
1287 ret->need_fn_stub = FALSE;
1288 ret->has_nonpic_branches = FALSE;
1289 ret->needs_lazy_stub = FALSE;
1290 ret->use_plt_entry = FALSE;
1291 }
1292
1293 return (struct bfd_hash_entry *) ret;
1294 }
1295
1296 /* Allocate MIPS ELF private object data. */
1297
1298 bfd_boolean
1299 _bfd_mips_elf_mkobject (bfd *abfd)
1300 {
1301 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1302 MIPS_ELF_DATA);
1303 }
1304
1305 bfd_boolean
1306 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1307 {
1308 if (!sec->used_by_bfd)
1309 {
1310 struct _mips_elf_section_data *sdata;
1311 bfd_size_type amt = sizeof (*sdata);
1312
1313 sdata = bfd_zalloc (abfd, amt);
1314 if (sdata == NULL)
1315 return FALSE;
1316 sec->used_by_bfd = sdata;
1317 }
1318
1319 return _bfd_elf_new_section_hook (abfd, sec);
1320 }
1321 \f
1322 /* Read ECOFF debugging information from a .mdebug section into a
1323 ecoff_debug_info structure. */
1324
1325 bfd_boolean
1326 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1327 struct ecoff_debug_info *debug)
1328 {
1329 HDRR *symhdr;
1330 const struct ecoff_debug_swap *swap;
1331 char *ext_hdr;
1332
1333 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1334 memset (debug, 0, sizeof (*debug));
1335
1336 ext_hdr = bfd_malloc (swap->external_hdr_size);
1337 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1338 goto error_return;
1339
1340 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1341 swap->external_hdr_size))
1342 goto error_return;
1343
1344 symhdr = &debug->symbolic_header;
1345 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1346
1347 /* The symbolic header contains absolute file offsets and sizes to
1348 read. */
1349 #define READ(ptr, offset, count, size, type) \
1350 if (symhdr->count == 0) \
1351 debug->ptr = NULL; \
1352 else \
1353 { \
1354 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1355 debug->ptr = bfd_malloc (amt); \
1356 if (debug->ptr == NULL) \
1357 goto error_return; \
1358 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1359 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1360 goto error_return; \
1361 }
1362
1363 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1364 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1365 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1366 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1367 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1368 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1369 union aux_ext *);
1370 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1371 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1372 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1373 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1374 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1375 #undef READ
1376
1377 debug->fdr = NULL;
1378
1379 return TRUE;
1380
1381 error_return:
1382 if (ext_hdr != NULL)
1383 free (ext_hdr);
1384 if (debug->line != NULL)
1385 free (debug->line);
1386 if (debug->external_dnr != NULL)
1387 free (debug->external_dnr);
1388 if (debug->external_pdr != NULL)
1389 free (debug->external_pdr);
1390 if (debug->external_sym != NULL)
1391 free (debug->external_sym);
1392 if (debug->external_opt != NULL)
1393 free (debug->external_opt);
1394 if (debug->external_aux != NULL)
1395 free (debug->external_aux);
1396 if (debug->ss != NULL)
1397 free (debug->ss);
1398 if (debug->ssext != NULL)
1399 free (debug->ssext);
1400 if (debug->external_fdr != NULL)
1401 free (debug->external_fdr);
1402 if (debug->external_rfd != NULL)
1403 free (debug->external_rfd);
1404 if (debug->external_ext != NULL)
1405 free (debug->external_ext);
1406 return FALSE;
1407 }
1408 \f
1409 /* Swap RPDR (runtime procedure table entry) for output. */
1410
1411 static void
1412 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1413 {
1414 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1415 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1416 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1417 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1418 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1419 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1420
1421 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1422 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1423
1424 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1425 }
1426
1427 /* Create a runtime procedure table from the .mdebug section. */
1428
1429 static bfd_boolean
1430 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1431 struct bfd_link_info *info, asection *s,
1432 struct ecoff_debug_info *debug)
1433 {
1434 const struct ecoff_debug_swap *swap;
1435 HDRR *hdr = &debug->symbolic_header;
1436 RPDR *rpdr, *rp;
1437 struct rpdr_ext *erp;
1438 void *rtproc;
1439 struct pdr_ext *epdr;
1440 struct sym_ext *esym;
1441 char *ss, **sv;
1442 char *str;
1443 bfd_size_type size;
1444 bfd_size_type count;
1445 unsigned long sindex;
1446 unsigned long i;
1447 PDR pdr;
1448 SYMR sym;
1449 const char *no_name_func = _("static procedure (no name)");
1450
1451 epdr = NULL;
1452 rpdr = NULL;
1453 esym = NULL;
1454 ss = NULL;
1455 sv = NULL;
1456
1457 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1458
1459 sindex = strlen (no_name_func) + 1;
1460 count = hdr->ipdMax;
1461 if (count > 0)
1462 {
1463 size = swap->external_pdr_size;
1464
1465 epdr = bfd_malloc (size * count);
1466 if (epdr == NULL)
1467 goto error_return;
1468
1469 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1470 goto error_return;
1471
1472 size = sizeof (RPDR);
1473 rp = rpdr = bfd_malloc (size * count);
1474 if (rpdr == NULL)
1475 goto error_return;
1476
1477 size = sizeof (char *);
1478 sv = bfd_malloc (size * count);
1479 if (sv == NULL)
1480 goto error_return;
1481
1482 count = hdr->isymMax;
1483 size = swap->external_sym_size;
1484 esym = bfd_malloc (size * count);
1485 if (esym == NULL)
1486 goto error_return;
1487
1488 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1489 goto error_return;
1490
1491 count = hdr->issMax;
1492 ss = bfd_malloc (count);
1493 if (ss == NULL)
1494 goto error_return;
1495 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1496 goto error_return;
1497
1498 count = hdr->ipdMax;
1499 for (i = 0; i < (unsigned long) count; i++, rp++)
1500 {
1501 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1502 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1503 rp->adr = sym.value;
1504 rp->regmask = pdr.regmask;
1505 rp->regoffset = pdr.regoffset;
1506 rp->fregmask = pdr.fregmask;
1507 rp->fregoffset = pdr.fregoffset;
1508 rp->frameoffset = pdr.frameoffset;
1509 rp->framereg = pdr.framereg;
1510 rp->pcreg = pdr.pcreg;
1511 rp->irpss = sindex;
1512 sv[i] = ss + sym.iss;
1513 sindex += strlen (sv[i]) + 1;
1514 }
1515 }
1516
1517 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1518 size = BFD_ALIGN (size, 16);
1519 rtproc = bfd_alloc (abfd, size);
1520 if (rtproc == NULL)
1521 {
1522 mips_elf_hash_table (info)->procedure_count = 0;
1523 goto error_return;
1524 }
1525
1526 mips_elf_hash_table (info)->procedure_count = count + 2;
1527
1528 erp = rtproc;
1529 memset (erp, 0, sizeof (struct rpdr_ext));
1530 erp++;
1531 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1532 strcpy (str, no_name_func);
1533 str += strlen (no_name_func) + 1;
1534 for (i = 0; i < count; i++)
1535 {
1536 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1537 strcpy (str, sv[i]);
1538 str += strlen (sv[i]) + 1;
1539 }
1540 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1541
1542 /* Set the size and contents of .rtproc section. */
1543 s->size = size;
1544 s->contents = rtproc;
1545
1546 /* Skip this section later on (I don't think this currently
1547 matters, but someday it might). */
1548 s->map_head.link_order = NULL;
1549
1550 if (epdr != NULL)
1551 free (epdr);
1552 if (rpdr != NULL)
1553 free (rpdr);
1554 if (esym != NULL)
1555 free (esym);
1556 if (ss != NULL)
1557 free (ss);
1558 if (sv != NULL)
1559 free (sv);
1560
1561 return TRUE;
1562
1563 error_return:
1564 if (epdr != NULL)
1565 free (epdr);
1566 if (rpdr != NULL)
1567 free (rpdr);
1568 if (esym != NULL)
1569 free (esym);
1570 if (ss != NULL)
1571 free (ss);
1572 if (sv != NULL)
1573 free (sv);
1574 return FALSE;
1575 }
1576 \f
1577 /* We're going to create a stub for H. Create a symbol for the stub's
1578 value and size, to help make the disassembly easier to read. */
1579
1580 static bfd_boolean
1581 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1582 struct mips_elf_link_hash_entry *h,
1583 const char *prefix, asection *s, bfd_vma value,
1584 bfd_vma size)
1585 {
1586 struct bfd_link_hash_entry *bh;
1587 struct elf_link_hash_entry *elfh;
1588 const char *name;
1589
1590 if (ELF_ST_IS_MICROMIPS (h->root.other))
1591 value |= 1;
1592
1593 /* Create a new symbol. */
1594 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1595 bh = NULL;
1596 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1597 BSF_LOCAL, s, value, NULL,
1598 TRUE, FALSE, &bh))
1599 return FALSE;
1600
1601 /* Make it a local function. */
1602 elfh = (struct elf_link_hash_entry *) bh;
1603 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1604 elfh->size = size;
1605 elfh->forced_local = 1;
1606 return TRUE;
1607 }
1608
1609 /* We're about to redefine H. Create a symbol to represent H's
1610 current value and size, to help make the disassembly easier
1611 to read. */
1612
1613 static bfd_boolean
1614 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1615 struct mips_elf_link_hash_entry *h,
1616 const char *prefix)
1617 {
1618 struct bfd_link_hash_entry *bh;
1619 struct elf_link_hash_entry *elfh;
1620 const char *name;
1621 asection *s;
1622 bfd_vma value;
1623
1624 /* Read the symbol's value. */
1625 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1626 || h->root.root.type == bfd_link_hash_defweak);
1627 s = h->root.root.u.def.section;
1628 value = h->root.root.u.def.value;
1629
1630 /* Create a new symbol. */
1631 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1632 bh = NULL;
1633 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1634 BSF_LOCAL, s, value, NULL,
1635 TRUE, FALSE, &bh))
1636 return FALSE;
1637
1638 /* Make it local and copy the other attributes from H. */
1639 elfh = (struct elf_link_hash_entry *) bh;
1640 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1641 elfh->other = h->root.other;
1642 elfh->size = h->root.size;
1643 elfh->forced_local = 1;
1644 return TRUE;
1645 }
1646
1647 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1648 function rather than to a hard-float stub. */
1649
1650 static bfd_boolean
1651 section_allows_mips16_refs_p (asection *section)
1652 {
1653 const char *name;
1654
1655 name = bfd_get_section_name (section->owner, section);
1656 return (FN_STUB_P (name)
1657 || CALL_STUB_P (name)
1658 || CALL_FP_STUB_P (name)
1659 || strcmp (name, ".pdr") == 0);
1660 }
1661
1662 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1663 stub section of some kind. Return the R_SYMNDX of the target
1664 function, or 0 if we can't decide which function that is. */
1665
1666 static unsigned long
1667 mips16_stub_symndx (const struct elf_backend_data *bed,
1668 asection *sec ATTRIBUTE_UNUSED,
1669 const Elf_Internal_Rela *relocs,
1670 const Elf_Internal_Rela *relend)
1671 {
1672 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1673 const Elf_Internal_Rela *rel;
1674
1675 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1676 one in a compound relocation. */
1677 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1678 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1679 return ELF_R_SYM (sec->owner, rel->r_info);
1680
1681 /* Otherwise trust the first relocation, whatever its kind. This is
1682 the traditional behavior. */
1683 if (relocs < relend)
1684 return ELF_R_SYM (sec->owner, relocs->r_info);
1685
1686 return 0;
1687 }
1688
1689 /* Check the mips16 stubs for a particular symbol, and see if we can
1690 discard them. */
1691
1692 static void
1693 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1694 struct mips_elf_link_hash_entry *h)
1695 {
1696 /* Dynamic symbols must use the standard call interface, in case other
1697 objects try to call them. */
1698 if (h->fn_stub != NULL
1699 && h->root.dynindx != -1)
1700 {
1701 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1702 h->need_fn_stub = TRUE;
1703 }
1704
1705 if (h->fn_stub != NULL
1706 && ! h->need_fn_stub)
1707 {
1708 /* We don't need the fn_stub; the only references to this symbol
1709 are 16 bit calls. Clobber the size to 0 to prevent it from
1710 being included in the link. */
1711 h->fn_stub->size = 0;
1712 h->fn_stub->flags &= ~SEC_RELOC;
1713 h->fn_stub->reloc_count = 0;
1714 h->fn_stub->flags |= SEC_EXCLUDE;
1715 }
1716
1717 if (h->call_stub != NULL
1718 && ELF_ST_IS_MIPS16 (h->root.other))
1719 {
1720 /* We don't need the call_stub; this is a 16 bit function, so
1721 calls from other 16 bit functions are OK. Clobber the size
1722 to 0 to prevent it from being included in the link. */
1723 h->call_stub->size = 0;
1724 h->call_stub->flags &= ~SEC_RELOC;
1725 h->call_stub->reloc_count = 0;
1726 h->call_stub->flags |= SEC_EXCLUDE;
1727 }
1728
1729 if (h->call_fp_stub != NULL
1730 && ELF_ST_IS_MIPS16 (h->root.other))
1731 {
1732 /* We don't need the call_stub; this is a 16 bit function, so
1733 calls from other 16 bit functions are OK. Clobber the size
1734 to 0 to prevent it from being included in the link. */
1735 h->call_fp_stub->size = 0;
1736 h->call_fp_stub->flags &= ~SEC_RELOC;
1737 h->call_fp_stub->reloc_count = 0;
1738 h->call_fp_stub->flags |= SEC_EXCLUDE;
1739 }
1740 }
1741
1742 /* Hashtable callbacks for mips_elf_la25_stubs. */
1743
1744 static hashval_t
1745 mips_elf_la25_stub_hash (const void *entry_)
1746 {
1747 const struct mips_elf_la25_stub *entry;
1748
1749 entry = (struct mips_elf_la25_stub *) entry_;
1750 return entry->h->root.root.u.def.section->id
1751 + entry->h->root.root.u.def.value;
1752 }
1753
1754 static int
1755 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1756 {
1757 const struct mips_elf_la25_stub *entry1, *entry2;
1758
1759 entry1 = (struct mips_elf_la25_stub *) entry1_;
1760 entry2 = (struct mips_elf_la25_stub *) entry2_;
1761 return ((entry1->h->root.root.u.def.section
1762 == entry2->h->root.root.u.def.section)
1763 && (entry1->h->root.root.u.def.value
1764 == entry2->h->root.root.u.def.value));
1765 }
1766
1767 /* Called by the linker to set up the la25 stub-creation code. FN is
1768 the linker's implementation of add_stub_function. Return true on
1769 success. */
1770
1771 bfd_boolean
1772 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1773 asection *(*fn) (const char *, asection *,
1774 asection *))
1775 {
1776 struct mips_elf_link_hash_table *htab;
1777
1778 htab = mips_elf_hash_table (info);
1779 if (htab == NULL)
1780 return FALSE;
1781
1782 htab->add_stub_section = fn;
1783 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1784 mips_elf_la25_stub_eq, NULL);
1785 if (htab->la25_stubs == NULL)
1786 return FALSE;
1787
1788 return TRUE;
1789 }
1790
1791 /* Return true if H is a locally-defined PIC function, in the sense
1792 that it or its fn_stub might need $25 to be valid on entry.
1793 Note that MIPS16 functions set up $gp using PC-relative instructions,
1794 so they themselves never need $25 to be valid. Only non-MIPS16
1795 entry points are of interest here. */
1796
1797 static bfd_boolean
1798 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1799 {
1800 return ((h->root.root.type == bfd_link_hash_defined
1801 || h->root.root.type == bfd_link_hash_defweak)
1802 && h->root.def_regular
1803 && !bfd_is_abs_section (h->root.root.u.def.section)
1804 && (!ELF_ST_IS_MIPS16 (h->root.other)
1805 || (h->fn_stub && h->need_fn_stub))
1806 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1807 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1808 }
1809
1810 /* Set *SEC to the input section that contains the target of STUB.
1811 Return the offset of the target from the start of that section. */
1812
1813 static bfd_vma
1814 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1815 asection **sec)
1816 {
1817 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1818 {
1819 BFD_ASSERT (stub->h->need_fn_stub);
1820 *sec = stub->h->fn_stub;
1821 return 0;
1822 }
1823 else
1824 {
1825 *sec = stub->h->root.root.u.def.section;
1826 return stub->h->root.root.u.def.value;
1827 }
1828 }
1829
1830 /* STUB describes an la25 stub that we have decided to implement
1831 by inserting an LUI/ADDIU pair before the target function.
1832 Create the section and redirect the function symbol to it. */
1833
1834 static bfd_boolean
1835 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1836 struct bfd_link_info *info)
1837 {
1838 struct mips_elf_link_hash_table *htab;
1839 char *name;
1840 asection *s, *input_section;
1841 unsigned int align;
1842
1843 htab = mips_elf_hash_table (info);
1844 if (htab == NULL)
1845 return FALSE;
1846
1847 /* Create a unique name for the new section. */
1848 name = bfd_malloc (11 + sizeof (".text.stub."));
1849 if (name == NULL)
1850 return FALSE;
1851 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1852
1853 /* Create the section. */
1854 mips_elf_get_la25_target (stub, &input_section);
1855 s = htab->add_stub_section (name, input_section,
1856 input_section->output_section);
1857 if (s == NULL)
1858 return FALSE;
1859
1860 /* Make sure that any padding goes before the stub. */
1861 align = input_section->alignment_power;
1862 if (!bfd_set_section_alignment (s->owner, s, align))
1863 return FALSE;
1864 if (align > 3)
1865 s->size = (1 << align) - 8;
1866
1867 /* Create a symbol for the stub. */
1868 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1869 stub->stub_section = s;
1870 stub->offset = s->size;
1871
1872 /* Allocate room for it. */
1873 s->size += 8;
1874 return TRUE;
1875 }
1876
1877 /* STUB describes an la25 stub that we have decided to implement
1878 with a separate trampoline. Allocate room for it and redirect
1879 the function symbol to it. */
1880
1881 static bfd_boolean
1882 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1883 struct bfd_link_info *info)
1884 {
1885 struct mips_elf_link_hash_table *htab;
1886 asection *s;
1887
1888 htab = mips_elf_hash_table (info);
1889 if (htab == NULL)
1890 return FALSE;
1891
1892 /* Create a trampoline section, if we haven't already. */
1893 s = htab->strampoline;
1894 if (s == NULL)
1895 {
1896 asection *input_section = stub->h->root.root.u.def.section;
1897 s = htab->add_stub_section (".text", NULL,
1898 input_section->output_section);
1899 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1900 return FALSE;
1901 htab->strampoline = s;
1902 }
1903
1904 /* Create a symbol for the stub. */
1905 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1906 stub->stub_section = s;
1907 stub->offset = s->size;
1908
1909 /* Allocate room for it. */
1910 s->size += 16;
1911 return TRUE;
1912 }
1913
1914 /* H describes a symbol that needs an la25 stub. Make sure that an
1915 appropriate stub exists and point H at it. */
1916
1917 static bfd_boolean
1918 mips_elf_add_la25_stub (struct bfd_link_info *info,
1919 struct mips_elf_link_hash_entry *h)
1920 {
1921 struct mips_elf_link_hash_table *htab;
1922 struct mips_elf_la25_stub search, *stub;
1923 bfd_boolean use_trampoline_p;
1924 asection *s;
1925 bfd_vma value;
1926 void **slot;
1927
1928 /* Describe the stub we want. */
1929 search.stub_section = NULL;
1930 search.offset = 0;
1931 search.h = h;
1932
1933 /* See if we've already created an equivalent stub. */
1934 htab = mips_elf_hash_table (info);
1935 if (htab == NULL)
1936 return FALSE;
1937
1938 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1939 if (slot == NULL)
1940 return FALSE;
1941
1942 stub = (struct mips_elf_la25_stub *) *slot;
1943 if (stub != NULL)
1944 {
1945 /* We can reuse the existing stub. */
1946 h->la25_stub = stub;
1947 return TRUE;
1948 }
1949
1950 /* Create a permanent copy of ENTRY and add it to the hash table. */
1951 stub = bfd_malloc (sizeof (search));
1952 if (stub == NULL)
1953 return FALSE;
1954 *stub = search;
1955 *slot = stub;
1956
1957 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1958 of the section and if we would need no more than 2 nops. */
1959 value = mips_elf_get_la25_target (stub, &s);
1960 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1961
1962 h->la25_stub = stub;
1963 return (use_trampoline_p
1964 ? mips_elf_add_la25_trampoline (stub, info)
1965 : mips_elf_add_la25_intro (stub, info));
1966 }
1967
1968 /* A mips_elf_link_hash_traverse callback that is called before sizing
1969 sections. DATA points to a mips_htab_traverse_info structure. */
1970
1971 static bfd_boolean
1972 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1973 {
1974 struct mips_htab_traverse_info *hti;
1975
1976 hti = (struct mips_htab_traverse_info *) data;
1977 if (!hti->info->relocatable)
1978 mips_elf_check_mips16_stubs (hti->info, h);
1979
1980 if (mips_elf_local_pic_function_p (h))
1981 {
1982 /* PR 12845: If H is in a section that has been garbage
1983 collected it will have its output section set to *ABS*. */
1984 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1985 return TRUE;
1986
1987 /* H is a function that might need $25 to be valid on entry.
1988 If we're creating a non-PIC relocatable object, mark H as
1989 being PIC. If we're creating a non-relocatable object with
1990 non-PIC branches and jumps to H, make sure that H has an la25
1991 stub. */
1992 if (hti->info->relocatable)
1993 {
1994 if (!PIC_OBJECT_P (hti->output_bfd))
1995 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1996 }
1997 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1998 {
1999 hti->error = TRUE;
2000 return FALSE;
2001 }
2002 }
2003 return TRUE;
2004 }
2005 \f
2006 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2007 Most mips16 instructions are 16 bits, but these instructions
2008 are 32 bits.
2009
2010 The format of these instructions is:
2011
2012 +--------------+--------------------------------+
2013 | JALX | X| Imm 20:16 | Imm 25:21 |
2014 +--------------+--------------------------------+
2015 | Immediate 15:0 |
2016 +-----------------------------------------------+
2017
2018 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2019 Note that the immediate value in the first word is swapped.
2020
2021 When producing a relocatable object file, R_MIPS16_26 is
2022 handled mostly like R_MIPS_26. In particular, the addend is
2023 stored as a straight 26-bit value in a 32-bit instruction.
2024 (gas makes life simpler for itself by never adjusting a
2025 R_MIPS16_26 reloc to be against a section, so the addend is
2026 always zero). However, the 32 bit instruction is stored as 2
2027 16-bit values, rather than a single 32-bit value. In a
2028 big-endian file, the result is the same; in a little-endian
2029 file, the two 16-bit halves of the 32 bit value are swapped.
2030 This is so that a disassembler can recognize the jal
2031 instruction.
2032
2033 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2034 instruction stored as two 16-bit values. The addend A is the
2035 contents of the targ26 field. The calculation is the same as
2036 R_MIPS_26. When storing the calculated value, reorder the
2037 immediate value as shown above, and don't forget to store the
2038 value as two 16-bit values.
2039
2040 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2041 defined as
2042
2043 big-endian:
2044 +--------+----------------------+
2045 | | |
2046 | | targ26-16 |
2047 |31 26|25 0|
2048 +--------+----------------------+
2049
2050 little-endian:
2051 +----------+------+-------------+
2052 | | | |
2053 | sub1 | | sub2 |
2054 |0 9|10 15|16 31|
2055 +----------+--------------------+
2056 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2057 ((sub1 << 16) | sub2)).
2058
2059 When producing a relocatable object file, the calculation is
2060 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2061 When producing a fully linked file, the calculation is
2062 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2063 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2064
2065 The table below lists the other MIPS16 instruction relocations.
2066 Each one is calculated in the same way as the non-MIPS16 relocation
2067 given on the right, but using the extended MIPS16 layout of 16-bit
2068 immediate fields:
2069
2070 R_MIPS16_GPREL R_MIPS_GPREL16
2071 R_MIPS16_GOT16 R_MIPS_GOT16
2072 R_MIPS16_CALL16 R_MIPS_CALL16
2073 R_MIPS16_HI16 R_MIPS_HI16
2074 R_MIPS16_LO16 R_MIPS_LO16
2075
2076 A typical instruction will have a format like this:
2077
2078 +--------------+--------------------------------+
2079 | EXTEND | Imm 10:5 | Imm 15:11 |
2080 +--------------+--------------------------------+
2081 | Major | rx | ry | Imm 4:0 |
2082 +--------------+--------------------------------+
2083
2084 EXTEND is the five bit value 11110. Major is the instruction
2085 opcode.
2086
2087 All we need to do here is shuffle the bits appropriately.
2088 As above, the two 16-bit halves must be swapped on a
2089 little-endian system. */
2090
2091 static inline bfd_boolean
2092 mips16_reloc_p (int r_type)
2093 {
2094 switch (r_type)
2095 {
2096 case R_MIPS16_26:
2097 case R_MIPS16_GPREL:
2098 case R_MIPS16_GOT16:
2099 case R_MIPS16_CALL16:
2100 case R_MIPS16_HI16:
2101 case R_MIPS16_LO16:
2102 case R_MIPS16_TLS_GD:
2103 case R_MIPS16_TLS_LDM:
2104 case R_MIPS16_TLS_DTPREL_HI16:
2105 case R_MIPS16_TLS_DTPREL_LO16:
2106 case R_MIPS16_TLS_GOTTPREL:
2107 case R_MIPS16_TLS_TPREL_HI16:
2108 case R_MIPS16_TLS_TPREL_LO16:
2109 return TRUE;
2110
2111 default:
2112 return FALSE;
2113 }
2114 }
2115
2116 /* Check if a microMIPS reloc. */
2117
2118 static inline bfd_boolean
2119 micromips_reloc_p (unsigned int r_type)
2120 {
2121 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2122 }
2123
2124 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2125 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2126 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2127
2128 static inline bfd_boolean
2129 micromips_reloc_shuffle_p (unsigned int r_type)
2130 {
2131 return (micromips_reloc_p (r_type)
2132 && r_type != R_MICROMIPS_PC7_S1
2133 && r_type != R_MICROMIPS_PC10_S1);
2134 }
2135
2136 static inline bfd_boolean
2137 got16_reloc_p (int r_type)
2138 {
2139 return (r_type == R_MIPS_GOT16
2140 || r_type == R_MIPS16_GOT16
2141 || r_type == R_MICROMIPS_GOT16);
2142 }
2143
2144 static inline bfd_boolean
2145 call16_reloc_p (int r_type)
2146 {
2147 return (r_type == R_MIPS_CALL16
2148 || r_type == R_MIPS16_CALL16
2149 || r_type == R_MICROMIPS_CALL16);
2150 }
2151
2152 static inline bfd_boolean
2153 got_disp_reloc_p (unsigned int r_type)
2154 {
2155 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2156 }
2157
2158 static inline bfd_boolean
2159 got_page_reloc_p (unsigned int r_type)
2160 {
2161 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2162 }
2163
2164 static inline bfd_boolean
2165 got_ofst_reloc_p (unsigned int r_type)
2166 {
2167 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2168 }
2169
2170 static inline bfd_boolean
2171 got_hi16_reloc_p (unsigned int r_type)
2172 {
2173 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2174 }
2175
2176 static inline bfd_boolean
2177 got_lo16_reloc_p (unsigned int r_type)
2178 {
2179 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2180 }
2181
2182 static inline bfd_boolean
2183 call_hi16_reloc_p (unsigned int r_type)
2184 {
2185 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2186 }
2187
2188 static inline bfd_boolean
2189 call_lo16_reloc_p (unsigned int r_type)
2190 {
2191 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2192 }
2193
2194 static inline bfd_boolean
2195 hi16_reloc_p (int r_type)
2196 {
2197 return (r_type == R_MIPS_HI16
2198 || r_type == R_MIPS16_HI16
2199 || r_type == R_MICROMIPS_HI16
2200 || r_type == R_MIPS_PCHI16);
2201 }
2202
2203 static inline bfd_boolean
2204 lo16_reloc_p (int r_type)
2205 {
2206 return (r_type == R_MIPS_LO16
2207 || r_type == R_MIPS16_LO16
2208 || r_type == R_MICROMIPS_LO16
2209 || r_type == R_MIPS_PCLO16);
2210 }
2211
2212 static inline bfd_boolean
2213 mips16_call_reloc_p (int r_type)
2214 {
2215 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2216 }
2217
2218 static inline bfd_boolean
2219 jal_reloc_p (int r_type)
2220 {
2221 return (r_type == R_MIPS_26
2222 || r_type == R_MIPS16_26
2223 || r_type == R_MICROMIPS_26_S1);
2224 }
2225
2226 static inline bfd_boolean
2227 aligned_pcrel_reloc_p (int r_type)
2228 {
2229 return (r_type == R_MIPS_PC18_S3
2230 || r_type == R_MIPS_PC19_S2);
2231 }
2232
2233 static inline bfd_boolean
2234 micromips_branch_reloc_p (int r_type)
2235 {
2236 return (r_type == R_MICROMIPS_26_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 tls_gd_reloc_p (unsigned int r_type)
2244 {
2245 return (r_type == R_MIPS_TLS_GD
2246 || r_type == R_MIPS16_TLS_GD
2247 || r_type == R_MICROMIPS_TLS_GD);
2248 }
2249
2250 static inline bfd_boolean
2251 tls_ldm_reloc_p (unsigned int r_type)
2252 {
2253 return (r_type == R_MIPS_TLS_LDM
2254 || r_type == R_MIPS16_TLS_LDM
2255 || r_type == R_MICROMIPS_TLS_LDM);
2256 }
2257
2258 static inline bfd_boolean
2259 tls_gottprel_reloc_p (unsigned int r_type)
2260 {
2261 return (r_type == R_MIPS_TLS_GOTTPREL
2262 || r_type == R_MIPS16_TLS_GOTTPREL
2263 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2264 }
2265
2266 void
2267 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2268 bfd_boolean jal_shuffle, bfd_byte *data)
2269 {
2270 bfd_vma first, second, val;
2271
2272 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2273 return;
2274
2275 /* Pick up the first and second halfwords of the instruction. */
2276 first = bfd_get_16 (abfd, data);
2277 second = bfd_get_16 (abfd, data + 2);
2278 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2279 val = first << 16 | second;
2280 else if (r_type != R_MIPS16_26)
2281 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2282 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2283 else
2284 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2285 | ((first & 0x1f) << 21) | second);
2286 bfd_put_32 (abfd, val, data);
2287 }
2288
2289 void
2290 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2291 bfd_boolean jal_shuffle, bfd_byte *data)
2292 {
2293 bfd_vma first, second, val;
2294
2295 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2296 return;
2297
2298 val = bfd_get_32 (abfd, data);
2299 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2300 {
2301 second = val & 0xffff;
2302 first = val >> 16;
2303 }
2304 else if (r_type != R_MIPS16_26)
2305 {
2306 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2307 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2308 }
2309 else
2310 {
2311 second = val & 0xffff;
2312 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2313 | ((val >> 21) & 0x1f);
2314 }
2315 bfd_put_16 (abfd, second, data + 2);
2316 bfd_put_16 (abfd, first, data);
2317 }
2318
2319 bfd_reloc_status_type
2320 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2321 arelent *reloc_entry, asection *input_section,
2322 bfd_boolean relocatable, void *data, bfd_vma gp)
2323 {
2324 bfd_vma relocation;
2325 bfd_signed_vma val;
2326 bfd_reloc_status_type status;
2327
2328 if (bfd_is_com_section (symbol->section))
2329 relocation = 0;
2330 else
2331 relocation = symbol->value;
2332
2333 relocation += symbol->section->output_section->vma;
2334 relocation += symbol->section->output_offset;
2335
2336 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2337 return bfd_reloc_outofrange;
2338
2339 /* Set val to the offset into the section or symbol. */
2340 val = reloc_entry->addend;
2341
2342 _bfd_mips_elf_sign_extend (val, 16);
2343
2344 /* Adjust val for the final section location and GP value. If we
2345 are producing relocatable output, we don't want to do this for
2346 an external symbol. */
2347 if (! relocatable
2348 || (symbol->flags & BSF_SECTION_SYM) != 0)
2349 val += relocation - gp;
2350
2351 if (reloc_entry->howto->partial_inplace)
2352 {
2353 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2354 (bfd_byte *) data
2355 + reloc_entry->address);
2356 if (status != bfd_reloc_ok)
2357 return status;
2358 }
2359 else
2360 reloc_entry->addend = val;
2361
2362 if (relocatable)
2363 reloc_entry->address += input_section->output_offset;
2364
2365 return bfd_reloc_ok;
2366 }
2367
2368 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2369 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2370 that contains the relocation field and DATA points to the start of
2371 INPUT_SECTION. */
2372
2373 struct mips_hi16
2374 {
2375 struct mips_hi16 *next;
2376 bfd_byte *data;
2377 asection *input_section;
2378 arelent rel;
2379 };
2380
2381 /* FIXME: This should not be a static variable. */
2382
2383 static struct mips_hi16 *mips_hi16_list;
2384
2385 /* A howto special_function for REL *HI16 relocations. We can only
2386 calculate the correct value once we've seen the partnering
2387 *LO16 relocation, so just save the information for later.
2388
2389 The ABI requires that the *LO16 immediately follow the *HI16.
2390 However, as a GNU extension, we permit an arbitrary number of
2391 *HI16s to be associated with a single *LO16. This significantly
2392 simplies the relocation handling in gcc. */
2393
2394 bfd_reloc_status_type
2395 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2396 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2397 asection *input_section, bfd *output_bfd,
2398 char **error_message ATTRIBUTE_UNUSED)
2399 {
2400 struct mips_hi16 *n;
2401
2402 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2403 return bfd_reloc_outofrange;
2404
2405 n = bfd_malloc (sizeof *n);
2406 if (n == NULL)
2407 return bfd_reloc_outofrange;
2408
2409 n->next = mips_hi16_list;
2410 n->data = data;
2411 n->input_section = input_section;
2412 n->rel = *reloc_entry;
2413 mips_hi16_list = n;
2414
2415 if (output_bfd != NULL)
2416 reloc_entry->address += input_section->output_offset;
2417
2418 return bfd_reloc_ok;
2419 }
2420
2421 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2422 like any other 16-bit relocation when applied to global symbols, but is
2423 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2424
2425 bfd_reloc_status_type
2426 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2427 void *data, asection *input_section,
2428 bfd *output_bfd, char **error_message)
2429 {
2430 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2431 || bfd_is_und_section (bfd_get_section (symbol))
2432 || bfd_is_com_section (bfd_get_section (symbol)))
2433 /* The relocation is against a global symbol. */
2434 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2435 input_section, output_bfd,
2436 error_message);
2437
2438 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2439 input_section, output_bfd, error_message);
2440 }
2441
2442 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2443 is a straightforward 16 bit inplace relocation, but we must deal with
2444 any partnering high-part relocations as well. */
2445
2446 bfd_reloc_status_type
2447 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2448 void *data, asection *input_section,
2449 bfd *output_bfd, char **error_message)
2450 {
2451 bfd_vma vallo;
2452 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2453
2454 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2455 return bfd_reloc_outofrange;
2456
2457 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2458 location);
2459 vallo = bfd_get_32 (abfd, location);
2460 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2461 location);
2462
2463 while (mips_hi16_list != NULL)
2464 {
2465 bfd_reloc_status_type ret;
2466 struct mips_hi16 *hi;
2467
2468 hi = mips_hi16_list;
2469
2470 /* R_MIPS*_GOT16 relocations are something of a special case. We
2471 want to install the addend in the same way as for a R_MIPS*_HI16
2472 relocation (with a rightshift of 16). However, since GOT16
2473 relocations can also be used with global symbols, their howto
2474 has a rightshift of 0. */
2475 if (hi->rel.howto->type == R_MIPS_GOT16)
2476 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2477 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2478 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2479 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2480 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2481
2482 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2483 carry or borrow will induce a change of +1 or -1 in the high part. */
2484 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2485
2486 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2487 hi->input_section, output_bfd,
2488 error_message);
2489 if (ret != bfd_reloc_ok)
2490 return ret;
2491
2492 mips_hi16_list = hi->next;
2493 free (hi);
2494 }
2495
2496 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2497 input_section, output_bfd,
2498 error_message);
2499 }
2500
2501 /* A generic howto special_function. This calculates and installs the
2502 relocation itself, thus avoiding the oft-discussed problems in
2503 bfd_perform_relocation and bfd_install_relocation. */
2504
2505 bfd_reloc_status_type
2506 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2507 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2508 asection *input_section, bfd *output_bfd,
2509 char **error_message ATTRIBUTE_UNUSED)
2510 {
2511 bfd_signed_vma val;
2512 bfd_reloc_status_type status;
2513 bfd_boolean relocatable;
2514
2515 relocatable = (output_bfd != NULL);
2516
2517 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2518 return bfd_reloc_outofrange;
2519
2520 /* Build up the field adjustment in VAL. */
2521 val = 0;
2522 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2523 {
2524 /* Either we're calculating the final field value or we have a
2525 relocation against a section symbol. Add in the section's
2526 offset or address. */
2527 val += symbol->section->output_section->vma;
2528 val += symbol->section->output_offset;
2529 }
2530
2531 if (!relocatable)
2532 {
2533 /* We're calculating the final field value. Add in the symbol's value
2534 and, if pc-relative, subtract the address of the field itself. */
2535 val += symbol->value;
2536 if (reloc_entry->howto->pc_relative)
2537 {
2538 val -= input_section->output_section->vma;
2539 val -= input_section->output_offset;
2540 val -= reloc_entry->address;
2541 }
2542 }
2543
2544 /* VAL is now the final adjustment. If we're keeping this relocation
2545 in the output file, and if the relocation uses a separate addend,
2546 we just need to add VAL to that addend. Otherwise we need to add
2547 VAL to the relocation field itself. */
2548 if (relocatable && !reloc_entry->howto->partial_inplace)
2549 reloc_entry->addend += val;
2550 else
2551 {
2552 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2553
2554 /* Add in the separate addend, if any. */
2555 val += reloc_entry->addend;
2556
2557 /* Add VAL to the relocation field. */
2558 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2559 location);
2560 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2561 location);
2562 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2563 location);
2564
2565 if (status != bfd_reloc_ok)
2566 return status;
2567 }
2568
2569 if (relocatable)
2570 reloc_entry->address += input_section->output_offset;
2571
2572 return bfd_reloc_ok;
2573 }
2574 \f
2575 /* Swap an entry in a .gptab section. Note that these routines rely
2576 on the equivalence of the two elements of the union. */
2577
2578 static void
2579 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2580 Elf32_gptab *in)
2581 {
2582 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2583 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2584 }
2585
2586 static void
2587 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2588 Elf32_External_gptab *ex)
2589 {
2590 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2591 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2592 }
2593
2594 static void
2595 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2596 Elf32_External_compact_rel *ex)
2597 {
2598 H_PUT_32 (abfd, in->id1, ex->id1);
2599 H_PUT_32 (abfd, in->num, ex->num);
2600 H_PUT_32 (abfd, in->id2, ex->id2);
2601 H_PUT_32 (abfd, in->offset, ex->offset);
2602 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2603 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2604 }
2605
2606 static void
2607 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2608 Elf32_External_crinfo *ex)
2609 {
2610 unsigned long l;
2611
2612 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2613 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2614 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2615 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2616 H_PUT_32 (abfd, l, ex->info);
2617 H_PUT_32 (abfd, in->konst, ex->konst);
2618 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2619 }
2620 \f
2621 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2622 routines swap this structure in and out. They are used outside of
2623 BFD, so they are globally visible. */
2624
2625 void
2626 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2627 Elf32_RegInfo *in)
2628 {
2629 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2630 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2631 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2632 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2633 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2634 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2635 }
2636
2637 void
2638 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2639 Elf32_External_RegInfo *ex)
2640 {
2641 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2642 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2643 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2644 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2645 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2646 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2647 }
2648
2649 /* In the 64 bit ABI, the .MIPS.options section holds register
2650 information in an Elf64_Reginfo structure. These routines swap
2651 them in and out. They are globally visible because they are used
2652 outside of BFD. These routines are here so that gas can call them
2653 without worrying about whether the 64 bit ABI has been included. */
2654
2655 void
2656 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2657 Elf64_Internal_RegInfo *in)
2658 {
2659 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2660 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2661 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2662 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2663 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2664 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2665 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2666 }
2667
2668 void
2669 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2670 Elf64_External_RegInfo *ex)
2671 {
2672 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2673 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2674 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2675 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2676 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2677 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2678 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2679 }
2680
2681 /* Swap in an options header. */
2682
2683 void
2684 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2685 Elf_Internal_Options *in)
2686 {
2687 in->kind = H_GET_8 (abfd, ex->kind);
2688 in->size = H_GET_8 (abfd, ex->size);
2689 in->section = H_GET_16 (abfd, ex->section);
2690 in->info = H_GET_32 (abfd, ex->info);
2691 }
2692
2693 /* Swap out an options header. */
2694
2695 void
2696 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2697 Elf_External_Options *ex)
2698 {
2699 H_PUT_8 (abfd, in->kind, ex->kind);
2700 H_PUT_8 (abfd, in->size, ex->size);
2701 H_PUT_16 (abfd, in->section, ex->section);
2702 H_PUT_32 (abfd, in->info, ex->info);
2703 }
2704
2705 /* Swap in an abiflags structure. */
2706
2707 void
2708 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2709 const Elf_External_ABIFlags_v0 *ex,
2710 Elf_Internal_ABIFlags_v0 *in)
2711 {
2712 in->version = H_GET_16 (abfd, ex->version);
2713 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2714 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2715 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2716 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2717 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2718 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2719 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2720 in->ases = H_GET_32 (abfd, ex->ases);
2721 in->flags1 = H_GET_32 (abfd, ex->flags1);
2722 in->flags2 = H_GET_32 (abfd, ex->flags2);
2723 }
2724
2725 /* Swap out an abiflags structure. */
2726
2727 void
2728 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2729 const Elf_Internal_ABIFlags_v0 *in,
2730 Elf_External_ABIFlags_v0 *ex)
2731 {
2732 H_PUT_16 (abfd, in->version, ex->version);
2733 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2734 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2735 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2736 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2737 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2738 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2739 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2740 H_PUT_32 (abfd, in->ases, ex->ases);
2741 H_PUT_32 (abfd, in->flags1, ex->flags1);
2742 H_PUT_32 (abfd, in->flags2, ex->flags2);
2743 }
2744 \f
2745 /* This function is called via qsort() to sort the dynamic relocation
2746 entries by increasing r_symndx value. */
2747
2748 static int
2749 sort_dynamic_relocs (const void *arg1, const void *arg2)
2750 {
2751 Elf_Internal_Rela int_reloc1;
2752 Elf_Internal_Rela int_reloc2;
2753 int diff;
2754
2755 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2756 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2757
2758 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2759 if (diff != 0)
2760 return diff;
2761
2762 if (int_reloc1.r_offset < int_reloc2.r_offset)
2763 return -1;
2764 if (int_reloc1.r_offset > int_reloc2.r_offset)
2765 return 1;
2766 return 0;
2767 }
2768
2769 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2770
2771 static int
2772 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2773 const void *arg2 ATTRIBUTE_UNUSED)
2774 {
2775 #ifdef BFD64
2776 Elf_Internal_Rela int_reloc1[3];
2777 Elf_Internal_Rela int_reloc2[3];
2778
2779 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2780 (reldyn_sorting_bfd, arg1, int_reloc1);
2781 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2782 (reldyn_sorting_bfd, arg2, int_reloc2);
2783
2784 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2785 return -1;
2786 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2787 return 1;
2788
2789 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2790 return -1;
2791 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2792 return 1;
2793 return 0;
2794 #else
2795 abort ();
2796 #endif
2797 }
2798
2799
2800 /* This routine is used to write out ECOFF debugging external symbol
2801 information. It is called via mips_elf_link_hash_traverse. The
2802 ECOFF external symbol information must match the ELF external
2803 symbol information. Unfortunately, at this point we don't know
2804 whether a symbol is required by reloc information, so the two
2805 tables may wind up being different. We must sort out the external
2806 symbol information before we can set the final size of the .mdebug
2807 section, and we must set the size of the .mdebug section before we
2808 can relocate any sections, and we can't know which symbols are
2809 required by relocation until we relocate the sections.
2810 Fortunately, it is relatively unlikely that any symbol will be
2811 stripped but required by a reloc. In particular, it can not happen
2812 when generating a final executable. */
2813
2814 static bfd_boolean
2815 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2816 {
2817 struct extsym_info *einfo = data;
2818 bfd_boolean strip;
2819 asection *sec, *output_section;
2820
2821 if (h->root.indx == -2)
2822 strip = FALSE;
2823 else if ((h->root.def_dynamic
2824 || h->root.ref_dynamic
2825 || h->root.type == bfd_link_hash_new)
2826 && !h->root.def_regular
2827 && !h->root.ref_regular)
2828 strip = TRUE;
2829 else if (einfo->info->strip == strip_all
2830 || (einfo->info->strip == strip_some
2831 && bfd_hash_lookup (einfo->info->keep_hash,
2832 h->root.root.root.string,
2833 FALSE, FALSE) == NULL))
2834 strip = TRUE;
2835 else
2836 strip = FALSE;
2837
2838 if (strip)
2839 return TRUE;
2840
2841 if (h->esym.ifd == -2)
2842 {
2843 h->esym.jmptbl = 0;
2844 h->esym.cobol_main = 0;
2845 h->esym.weakext = 0;
2846 h->esym.reserved = 0;
2847 h->esym.ifd = ifdNil;
2848 h->esym.asym.value = 0;
2849 h->esym.asym.st = stGlobal;
2850
2851 if (h->root.root.type == bfd_link_hash_undefined
2852 || h->root.root.type == bfd_link_hash_undefweak)
2853 {
2854 const char *name;
2855
2856 /* Use undefined class. Also, set class and type for some
2857 special symbols. */
2858 name = h->root.root.root.string;
2859 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2860 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2861 {
2862 h->esym.asym.sc = scData;
2863 h->esym.asym.st = stLabel;
2864 h->esym.asym.value = 0;
2865 }
2866 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2867 {
2868 h->esym.asym.sc = scAbs;
2869 h->esym.asym.st = stLabel;
2870 h->esym.asym.value =
2871 mips_elf_hash_table (einfo->info)->procedure_count;
2872 }
2873 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2874 {
2875 h->esym.asym.sc = scAbs;
2876 h->esym.asym.st = stLabel;
2877 h->esym.asym.value = elf_gp (einfo->abfd);
2878 }
2879 else
2880 h->esym.asym.sc = scUndefined;
2881 }
2882 else if (h->root.root.type != bfd_link_hash_defined
2883 && h->root.root.type != bfd_link_hash_defweak)
2884 h->esym.asym.sc = scAbs;
2885 else
2886 {
2887 const char *name;
2888
2889 sec = h->root.root.u.def.section;
2890 output_section = sec->output_section;
2891
2892 /* When making a shared library and symbol h is the one from
2893 the another shared library, OUTPUT_SECTION may be null. */
2894 if (output_section == NULL)
2895 h->esym.asym.sc = scUndefined;
2896 else
2897 {
2898 name = bfd_section_name (output_section->owner, output_section);
2899
2900 if (strcmp (name, ".text") == 0)
2901 h->esym.asym.sc = scText;
2902 else if (strcmp (name, ".data") == 0)
2903 h->esym.asym.sc = scData;
2904 else if (strcmp (name, ".sdata") == 0)
2905 h->esym.asym.sc = scSData;
2906 else if (strcmp (name, ".rodata") == 0
2907 || strcmp (name, ".rdata") == 0)
2908 h->esym.asym.sc = scRData;
2909 else if (strcmp (name, ".bss") == 0)
2910 h->esym.asym.sc = scBss;
2911 else if (strcmp (name, ".sbss") == 0)
2912 h->esym.asym.sc = scSBss;
2913 else if (strcmp (name, ".init") == 0)
2914 h->esym.asym.sc = scInit;
2915 else if (strcmp (name, ".fini") == 0)
2916 h->esym.asym.sc = scFini;
2917 else
2918 h->esym.asym.sc = scAbs;
2919 }
2920 }
2921
2922 h->esym.asym.reserved = 0;
2923 h->esym.asym.index = indexNil;
2924 }
2925
2926 if (h->root.root.type == bfd_link_hash_common)
2927 h->esym.asym.value = h->root.root.u.c.size;
2928 else if (h->root.root.type == bfd_link_hash_defined
2929 || h->root.root.type == bfd_link_hash_defweak)
2930 {
2931 if (h->esym.asym.sc == scCommon)
2932 h->esym.asym.sc = scBss;
2933 else if (h->esym.asym.sc == scSCommon)
2934 h->esym.asym.sc = scSBss;
2935
2936 sec = h->root.root.u.def.section;
2937 output_section = sec->output_section;
2938 if (output_section != NULL)
2939 h->esym.asym.value = (h->root.root.u.def.value
2940 + sec->output_offset
2941 + output_section->vma);
2942 else
2943 h->esym.asym.value = 0;
2944 }
2945 else
2946 {
2947 struct mips_elf_link_hash_entry *hd = h;
2948
2949 while (hd->root.root.type == bfd_link_hash_indirect)
2950 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2951
2952 if (hd->needs_lazy_stub)
2953 {
2954 BFD_ASSERT (hd->root.plt.plist != NULL);
2955 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2956 /* Set type and value for a symbol with a function stub. */
2957 h->esym.asym.st = stProc;
2958 sec = hd->root.root.u.def.section;
2959 if (sec == NULL)
2960 h->esym.asym.value = 0;
2961 else
2962 {
2963 output_section = sec->output_section;
2964 if (output_section != NULL)
2965 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2966 + sec->output_offset
2967 + output_section->vma);
2968 else
2969 h->esym.asym.value = 0;
2970 }
2971 }
2972 }
2973
2974 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2975 h->root.root.root.string,
2976 &h->esym))
2977 {
2978 einfo->failed = TRUE;
2979 return FALSE;
2980 }
2981
2982 return TRUE;
2983 }
2984
2985 /* A comparison routine used to sort .gptab entries. */
2986
2987 static int
2988 gptab_compare (const void *p1, const void *p2)
2989 {
2990 const Elf32_gptab *a1 = p1;
2991 const Elf32_gptab *a2 = p2;
2992
2993 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2994 }
2995 \f
2996 /* Functions to manage the got entry hash table. */
2997
2998 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2999 hash number. */
3000
3001 static INLINE hashval_t
3002 mips_elf_hash_bfd_vma (bfd_vma addr)
3003 {
3004 #ifdef BFD64
3005 return addr + (addr >> 32);
3006 #else
3007 return addr;
3008 #endif
3009 }
3010
3011 static hashval_t
3012 mips_elf_got_entry_hash (const void *entry_)
3013 {
3014 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3015
3016 return (entry->symndx
3017 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3018 + (entry->tls_type == GOT_TLS_LDM ? 0
3019 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3020 : entry->symndx >= 0 ? (entry->abfd->id
3021 + mips_elf_hash_bfd_vma (entry->d.addend))
3022 : entry->d.h->root.root.root.hash));
3023 }
3024
3025 static int
3026 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3027 {
3028 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3029 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3030
3031 return (e1->symndx == e2->symndx
3032 && e1->tls_type == e2->tls_type
3033 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3034 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3035 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3036 && e1->d.addend == e2->d.addend)
3037 : e2->abfd && e1->d.h == e2->d.h));
3038 }
3039
3040 static hashval_t
3041 mips_got_page_ref_hash (const void *ref_)
3042 {
3043 const struct mips_got_page_ref *ref;
3044
3045 ref = (const struct mips_got_page_ref *) ref_;
3046 return ((ref->symndx >= 0
3047 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3048 : ref->u.h->root.root.root.hash)
3049 + mips_elf_hash_bfd_vma (ref->addend));
3050 }
3051
3052 static int
3053 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3054 {
3055 const struct mips_got_page_ref *ref1, *ref2;
3056
3057 ref1 = (const struct mips_got_page_ref *) ref1_;
3058 ref2 = (const struct mips_got_page_ref *) ref2_;
3059 return (ref1->symndx == ref2->symndx
3060 && (ref1->symndx < 0
3061 ? ref1->u.h == ref2->u.h
3062 : ref1->u.abfd == ref2->u.abfd)
3063 && ref1->addend == ref2->addend);
3064 }
3065
3066 static hashval_t
3067 mips_got_page_entry_hash (const void *entry_)
3068 {
3069 const struct mips_got_page_entry *entry;
3070
3071 entry = (const struct mips_got_page_entry *) entry_;
3072 return entry->sec->id;
3073 }
3074
3075 static int
3076 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3077 {
3078 const struct mips_got_page_entry *entry1, *entry2;
3079
3080 entry1 = (const struct mips_got_page_entry *) entry1_;
3081 entry2 = (const struct mips_got_page_entry *) entry2_;
3082 return entry1->sec == entry2->sec;
3083 }
3084 \f
3085 /* Create and return a new mips_got_info structure. */
3086
3087 static struct mips_got_info *
3088 mips_elf_create_got_info (bfd *abfd)
3089 {
3090 struct mips_got_info *g;
3091
3092 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3093 if (g == NULL)
3094 return NULL;
3095
3096 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3097 mips_elf_got_entry_eq, NULL);
3098 if (g->got_entries == NULL)
3099 return NULL;
3100
3101 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3102 mips_got_page_ref_eq, NULL);
3103 if (g->got_page_refs == NULL)
3104 return NULL;
3105
3106 return g;
3107 }
3108
3109 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3110 CREATE_P and if ABFD doesn't already have a GOT. */
3111
3112 static struct mips_got_info *
3113 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3114 {
3115 struct mips_elf_obj_tdata *tdata;
3116
3117 if (!is_mips_elf (abfd))
3118 return NULL;
3119
3120 tdata = mips_elf_tdata (abfd);
3121 if (!tdata->got && create_p)
3122 tdata->got = mips_elf_create_got_info (abfd);
3123 return tdata->got;
3124 }
3125
3126 /* Record that ABFD should use output GOT G. */
3127
3128 static void
3129 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3130 {
3131 struct mips_elf_obj_tdata *tdata;
3132
3133 BFD_ASSERT (is_mips_elf (abfd));
3134 tdata = mips_elf_tdata (abfd);
3135 if (tdata->got)
3136 {
3137 /* The GOT structure itself and the hash table entries are
3138 allocated to a bfd, but the hash tables aren't. */
3139 htab_delete (tdata->got->got_entries);
3140 htab_delete (tdata->got->got_page_refs);
3141 if (tdata->got->got_page_entries)
3142 htab_delete (tdata->got->got_page_entries);
3143 }
3144 tdata->got = g;
3145 }
3146
3147 /* Return the dynamic relocation section. If it doesn't exist, try to
3148 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3149 if creation fails. */
3150
3151 static asection *
3152 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3153 {
3154 const char *dname;
3155 asection *sreloc;
3156 bfd *dynobj;
3157
3158 dname = MIPS_ELF_REL_DYN_NAME (info);
3159 dynobj = elf_hash_table (info)->dynobj;
3160 sreloc = bfd_get_linker_section (dynobj, dname);
3161 if (sreloc == NULL && create_p)
3162 {
3163 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3164 (SEC_ALLOC
3165 | SEC_LOAD
3166 | SEC_HAS_CONTENTS
3167 | SEC_IN_MEMORY
3168 | SEC_LINKER_CREATED
3169 | SEC_READONLY));
3170 if (sreloc == NULL
3171 || ! bfd_set_section_alignment (dynobj, sreloc,
3172 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3173 return NULL;
3174 }
3175 return sreloc;
3176 }
3177
3178 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3179
3180 static int
3181 mips_elf_reloc_tls_type (unsigned int r_type)
3182 {
3183 if (tls_gd_reloc_p (r_type))
3184 return GOT_TLS_GD;
3185
3186 if (tls_ldm_reloc_p (r_type))
3187 return GOT_TLS_LDM;
3188
3189 if (tls_gottprel_reloc_p (r_type))
3190 return GOT_TLS_IE;
3191
3192 return GOT_TLS_NONE;
3193 }
3194
3195 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3196
3197 static int
3198 mips_tls_got_entries (unsigned int type)
3199 {
3200 switch (type)
3201 {
3202 case GOT_TLS_GD:
3203 case GOT_TLS_LDM:
3204 return 2;
3205
3206 case GOT_TLS_IE:
3207 return 1;
3208
3209 case GOT_TLS_NONE:
3210 return 0;
3211 }
3212 abort ();
3213 }
3214
3215 /* Count the number of relocations needed for a TLS GOT entry, with
3216 access types from TLS_TYPE, and symbol H (or a local symbol if H
3217 is NULL). */
3218
3219 static int
3220 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3221 struct elf_link_hash_entry *h)
3222 {
3223 int indx = 0;
3224 bfd_boolean need_relocs = FALSE;
3225 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3226
3227 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3228 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3229 indx = h->dynindx;
3230
3231 if ((info->shared || indx != 0)
3232 && (h == NULL
3233 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3234 || h->root.type != bfd_link_hash_undefweak))
3235 need_relocs = TRUE;
3236
3237 if (!need_relocs)
3238 return 0;
3239
3240 switch (tls_type)
3241 {
3242 case GOT_TLS_GD:
3243 return indx != 0 ? 2 : 1;
3244
3245 case GOT_TLS_IE:
3246 return 1;
3247
3248 case GOT_TLS_LDM:
3249 return info->shared ? 1 : 0;
3250
3251 default:
3252 return 0;
3253 }
3254 }
3255
3256 /* Add the number of GOT entries and TLS relocations required by ENTRY
3257 to G. */
3258
3259 static void
3260 mips_elf_count_got_entry (struct bfd_link_info *info,
3261 struct mips_got_info *g,
3262 struct mips_got_entry *entry)
3263 {
3264 if (entry->tls_type)
3265 {
3266 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3267 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3268 entry->symndx < 0
3269 ? &entry->d.h->root : NULL);
3270 }
3271 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3272 g->local_gotno += 1;
3273 else
3274 g->global_gotno += 1;
3275 }
3276
3277 /* Output a simple dynamic relocation into SRELOC. */
3278
3279 static void
3280 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3281 asection *sreloc,
3282 unsigned long reloc_index,
3283 unsigned long indx,
3284 int r_type,
3285 bfd_vma offset)
3286 {
3287 Elf_Internal_Rela rel[3];
3288
3289 memset (rel, 0, sizeof (rel));
3290
3291 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3292 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3293
3294 if (ABI_64_P (output_bfd))
3295 {
3296 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3297 (output_bfd, &rel[0],
3298 (sreloc->contents
3299 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3300 }
3301 else
3302 bfd_elf32_swap_reloc_out
3303 (output_bfd, &rel[0],
3304 (sreloc->contents
3305 + reloc_index * sizeof (Elf32_External_Rel)));
3306 }
3307
3308 /* Initialize a set of TLS GOT entries for one symbol. */
3309
3310 static void
3311 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3312 struct mips_got_entry *entry,
3313 struct mips_elf_link_hash_entry *h,
3314 bfd_vma value)
3315 {
3316 struct mips_elf_link_hash_table *htab;
3317 int indx;
3318 asection *sreloc, *sgot;
3319 bfd_vma got_offset, got_offset2;
3320 bfd_boolean need_relocs = FALSE;
3321
3322 htab = mips_elf_hash_table (info);
3323 if (htab == NULL)
3324 return;
3325
3326 sgot = htab->sgot;
3327
3328 indx = 0;
3329 if (h != NULL)
3330 {
3331 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3332
3333 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3334 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3335 indx = h->root.dynindx;
3336 }
3337
3338 if (entry->tls_initialized)
3339 return;
3340
3341 if ((info->shared || indx != 0)
3342 && (h == NULL
3343 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3344 || h->root.type != bfd_link_hash_undefweak))
3345 need_relocs = TRUE;
3346
3347 /* MINUS_ONE means the symbol is not defined in this object. It may not
3348 be defined at all; assume that the value doesn't matter in that
3349 case. Otherwise complain if we would use the value. */
3350 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3351 || h->root.root.type == bfd_link_hash_undefweak);
3352
3353 /* Emit necessary relocations. */
3354 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3355 got_offset = entry->gotidx;
3356
3357 switch (entry->tls_type)
3358 {
3359 case GOT_TLS_GD:
3360 /* General Dynamic. */
3361 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3362
3363 if (need_relocs)
3364 {
3365 mips_elf_output_dynamic_relocation
3366 (abfd, sreloc, sreloc->reloc_count++, indx,
3367 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3368 sgot->output_offset + sgot->output_section->vma + got_offset);
3369
3370 if (indx)
3371 mips_elf_output_dynamic_relocation
3372 (abfd, sreloc, sreloc->reloc_count++, indx,
3373 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3374 sgot->output_offset + sgot->output_section->vma + got_offset2);
3375 else
3376 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3377 sgot->contents + got_offset2);
3378 }
3379 else
3380 {
3381 MIPS_ELF_PUT_WORD (abfd, 1,
3382 sgot->contents + got_offset);
3383 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3384 sgot->contents + got_offset2);
3385 }
3386 break;
3387
3388 case GOT_TLS_IE:
3389 /* Initial Exec model. */
3390 if (need_relocs)
3391 {
3392 if (indx == 0)
3393 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3394 sgot->contents + got_offset);
3395 else
3396 MIPS_ELF_PUT_WORD (abfd, 0,
3397 sgot->contents + got_offset);
3398
3399 mips_elf_output_dynamic_relocation
3400 (abfd, sreloc, sreloc->reloc_count++, indx,
3401 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3402 sgot->output_offset + sgot->output_section->vma + got_offset);
3403 }
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3406 sgot->contents + got_offset);
3407 break;
3408
3409 case GOT_TLS_LDM:
3410 /* The initial offset is zero, and the LD offsets will include the
3411 bias by DTP_OFFSET. */
3412 MIPS_ELF_PUT_WORD (abfd, 0,
3413 sgot->contents + got_offset
3414 + MIPS_ELF_GOT_SIZE (abfd));
3415
3416 if (!info->shared)
3417 MIPS_ELF_PUT_WORD (abfd, 1,
3418 sgot->contents + got_offset);
3419 else
3420 mips_elf_output_dynamic_relocation
3421 (abfd, sreloc, sreloc->reloc_count++, indx,
3422 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3423 sgot->output_offset + sgot->output_section->vma + got_offset);
3424 break;
3425
3426 default:
3427 abort ();
3428 }
3429
3430 entry->tls_initialized = TRUE;
3431 }
3432
3433 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3434 for global symbol H. .got.plt comes before the GOT, so the offset
3435 will be negative. */
3436
3437 static bfd_vma
3438 mips_elf_gotplt_index (struct bfd_link_info *info,
3439 struct elf_link_hash_entry *h)
3440 {
3441 bfd_vma got_address, got_value;
3442 struct mips_elf_link_hash_table *htab;
3443
3444 htab = mips_elf_hash_table (info);
3445 BFD_ASSERT (htab != NULL);
3446
3447 BFD_ASSERT (h->plt.plist != NULL);
3448 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3449
3450 /* Calculate the address of the associated .got.plt entry. */
3451 got_address = (htab->sgotplt->output_section->vma
3452 + htab->sgotplt->output_offset
3453 + (h->plt.plist->gotplt_index
3454 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3455
3456 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3457 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3458 + htab->root.hgot->root.u.def.section->output_offset
3459 + htab->root.hgot->root.u.def.value);
3460
3461 return got_address - got_value;
3462 }
3463
3464 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3465 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3466 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3467 offset can be found. */
3468
3469 static bfd_vma
3470 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3471 bfd_vma value, unsigned long r_symndx,
3472 struct mips_elf_link_hash_entry *h, int r_type)
3473 {
3474 struct mips_elf_link_hash_table *htab;
3475 struct mips_got_entry *entry;
3476
3477 htab = mips_elf_hash_table (info);
3478 BFD_ASSERT (htab != NULL);
3479
3480 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3481 r_symndx, h, r_type);
3482 if (!entry)
3483 return MINUS_ONE;
3484
3485 if (entry->tls_type)
3486 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3487 return entry->gotidx;
3488 }
3489
3490 /* Return the GOT index of global symbol H in the primary GOT. */
3491
3492 static bfd_vma
3493 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3494 struct elf_link_hash_entry *h)
3495 {
3496 struct mips_elf_link_hash_table *htab;
3497 long global_got_dynindx;
3498 struct mips_got_info *g;
3499 bfd_vma got_index;
3500
3501 htab = mips_elf_hash_table (info);
3502 BFD_ASSERT (htab != NULL);
3503
3504 global_got_dynindx = 0;
3505 if (htab->global_gotsym != NULL)
3506 global_got_dynindx = htab->global_gotsym->dynindx;
3507
3508 /* Once we determine the global GOT entry with the lowest dynamic
3509 symbol table index, we must put all dynamic symbols with greater
3510 indices into the primary GOT. That makes it easy to calculate the
3511 GOT offset. */
3512 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3513 g = mips_elf_bfd_got (obfd, FALSE);
3514 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3515 * MIPS_ELF_GOT_SIZE (obfd));
3516 BFD_ASSERT (got_index < htab->sgot->size);
3517
3518 return got_index;
3519 }
3520
3521 /* Return the GOT index for the global symbol indicated by H, which is
3522 referenced by a relocation of type R_TYPE in IBFD. */
3523
3524 static bfd_vma
3525 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3526 struct elf_link_hash_entry *h, int r_type)
3527 {
3528 struct mips_elf_link_hash_table *htab;
3529 struct mips_got_info *g;
3530 struct mips_got_entry lookup, *entry;
3531 bfd_vma gotidx;
3532
3533 htab = mips_elf_hash_table (info);
3534 BFD_ASSERT (htab != NULL);
3535
3536 g = mips_elf_bfd_got (ibfd, FALSE);
3537 BFD_ASSERT (g);
3538
3539 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3540 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3541 return mips_elf_primary_global_got_index (obfd, info, h);
3542
3543 lookup.abfd = ibfd;
3544 lookup.symndx = -1;
3545 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3546 entry = htab_find (g->got_entries, &lookup);
3547 BFD_ASSERT (entry);
3548
3549 gotidx = entry->gotidx;
3550 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3551
3552 if (lookup.tls_type)
3553 {
3554 bfd_vma value = MINUS_ONE;
3555
3556 if ((h->root.type == bfd_link_hash_defined
3557 || h->root.type == bfd_link_hash_defweak)
3558 && h->root.u.def.section->output_section)
3559 value = (h->root.u.def.value
3560 + h->root.u.def.section->output_offset
3561 + h->root.u.def.section->output_section->vma);
3562
3563 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3564 }
3565 return gotidx;
3566 }
3567
3568 /* Find a GOT page entry that points to within 32KB of VALUE. These
3569 entries are supposed to be placed at small offsets in the GOT, i.e.,
3570 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3571 entry could be created. If OFFSETP is nonnull, use it to return the
3572 offset of the GOT entry from VALUE. */
3573
3574 static bfd_vma
3575 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3576 bfd_vma value, bfd_vma *offsetp)
3577 {
3578 bfd_vma page, got_index;
3579 struct mips_got_entry *entry;
3580
3581 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3582 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3583 NULL, R_MIPS_GOT_PAGE);
3584
3585 if (!entry)
3586 return MINUS_ONE;
3587
3588 got_index = entry->gotidx;
3589
3590 if (offsetp)
3591 *offsetp = value - entry->d.address;
3592
3593 return got_index;
3594 }
3595
3596 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3597 EXTERNAL is true if the relocation was originally against a global
3598 symbol that binds locally. */
3599
3600 static bfd_vma
3601 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3602 bfd_vma value, bfd_boolean external)
3603 {
3604 struct mips_got_entry *entry;
3605
3606 /* GOT16 relocations against local symbols are followed by a LO16
3607 relocation; those against global symbols are not. Thus if the
3608 symbol was originally local, the GOT16 relocation should load the
3609 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3610 if (! external)
3611 value = mips_elf_high (value) << 16;
3612
3613 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3614 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3615 same in all cases. */
3616 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3617 NULL, R_MIPS_GOT16);
3618 if (entry)
3619 return entry->gotidx;
3620 else
3621 return MINUS_ONE;
3622 }
3623
3624 /* Returns the offset for the entry at the INDEXth position
3625 in the GOT. */
3626
3627 static bfd_vma
3628 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3629 bfd *input_bfd, bfd_vma got_index)
3630 {
3631 struct mips_elf_link_hash_table *htab;
3632 asection *sgot;
3633 bfd_vma gp;
3634
3635 htab = mips_elf_hash_table (info);
3636 BFD_ASSERT (htab != NULL);
3637
3638 sgot = htab->sgot;
3639 gp = _bfd_get_gp_value (output_bfd)
3640 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3641
3642 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3643 }
3644
3645 /* Create and return a local GOT entry for VALUE, which was calculated
3646 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3647 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3648 instead. */
3649
3650 static struct mips_got_entry *
3651 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3652 bfd *ibfd, bfd_vma value,
3653 unsigned long r_symndx,
3654 struct mips_elf_link_hash_entry *h,
3655 int r_type)
3656 {
3657 struct mips_got_entry lookup, *entry;
3658 void **loc;
3659 struct mips_got_info *g;
3660 struct mips_elf_link_hash_table *htab;
3661 bfd_vma gotidx;
3662
3663 htab = mips_elf_hash_table (info);
3664 BFD_ASSERT (htab != NULL);
3665
3666 g = mips_elf_bfd_got (ibfd, FALSE);
3667 if (g == NULL)
3668 {
3669 g = mips_elf_bfd_got (abfd, FALSE);
3670 BFD_ASSERT (g != NULL);
3671 }
3672
3673 /* This function shouldn't be called for symbols that live in the global
3674 area of the GOT. */
3675 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3676
3677 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3678 if (lookup.tls_type)
3679 {
3680 lookup.abfd = ibfd;
3681 if (tls_ldm_reloc_p (r_type))
3682 {
3683 lookup.symndx = 0;
3684 lookup.d.addend = 0;
3685 }
3686 else if (h == NULL)
3687 {
3688 lookup.symndx = r_symndx;
3689 lookup.d.addend = 0;
3690 }
3691 else
3692 {
3693 lookup.symndx = -1;
3694 lookup.d.h = h;
3695 }
3696
3697 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3698 BFD_ASSERT (entry);
3699
3700 gotidx = entry->gotidx;
3701 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3702
3703 return entry;
3704 }
3705
3706 lookup.abfd = NULL;
3707 lookup.symndx = -1;
3708 lookup.d.address = value;
3709 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3710 if (!loc)
3711 return NULL;
3712
3713 entry = (struct mips_got_entry *) *loc;
3714 if (entry)
3715 return entry;
3716
3717 if (g->assigned_low_gotno > g->assigned_high_gotno)
3718 {
3719 /* We didn't allocate enough space in the GOT. */
3720 (*_bfd_error_handler)
3721 (_("not enough GOT space for local GOT entries"));
3722 bfd_set_error (bfd_error_bad_value);
3723 return NULL;
3724 }
3725
3726 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3727 if (!entry)
3728 return NULL;
3729
3730 if (got16_reloc_p (r_type)
3731 || call16_reloc_p (r_type)
3732 || got_page_reloc_p (r_type)
3733 || got_disp_reloc_p (r_type))
3734 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3735 else
3736 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3737
3738 *entry = lookup;
3739 *loc = entry;
3740
3741 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3742
3743 /* These GOT entries need a dynamic relocation on VxWorks. */
3744 if (htab->is_vxworks)
3745 {
3746 Elf_Internal_Rela outrel;
3747 asection *s;
3748 bfd_byte *rloc;
3749 bfd_vma got_address;
3750
3751 s = mips_elf_rel_dyn_section (info, FALSE);
3752 got_address = (htab->sgot->output_section->vma
3753 + htab->sgot->output_offset
3754 + entry->gotidx);
3755
3756 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3757 outrel.r_offset = got_address;
3758 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3759 outrel.r_addend = value;
3760 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3761 }
3762
3763 return entry;
3764 }
3765
3766 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3767 The number might be exact or a worst-case estimate, depending on how
3768 much information is available to elf_backend_omit_section_dynsym at
3769 the current linking stage. */
3770
3771 static bfd_size_type
3772 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3773 {
3774 bfd_size_type count;
3775
3776 count = 0;
3777 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3778 {
3779 asection *p;
3780 const struct elf_backend_data *bed;
3781
3782 bed = get_elf_backend_data (output_bfd);
3783 for (p = output_bfd->sections; p ; p = p->next)
3784 if ((p->flags & SEC_EXCLUDE) == 0
3785 && (p->flags & SEC_ALLOC) != 0
3786 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3787 ++count;
3788 }
3789 return count;
3790 }
3791
3792 /* Sort the dynamic symbol table so that symbols that need GOT entries
3793 appear towards the end. */
3794
3795 static bfd_boolean
3796 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3797 {
3798 struct mips_elf_link_hash_table *htab;
3799 struct mips_elf_hash_sort_data hsd;
3800 struct mips_got_info *g;
3801
3802 if (elf_hash_table (info)->dynsymcount == 0)
3803 return TRUE;
3804
3805 htab = mips_elf_hash_table (info);
3806 BFD_ASSERT (htab != NULL);
3807
3808 g = htab->got_info;
3809 if (g == NULL)
3810 return TRUE;
3811
3812 hsd.low = NULL;
3813 hsd.max_unref_got_dynindx
3814 = hsd.min_got_dynindx
3815 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3816 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3817 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3818 elf_hash_table (info)),
3819 mips_elf_sort_hash_table_f,
3820 &hsd);
3821
3822 /* There should have been enough room in the symbol table to
3823 accommodate both the GOT and non-GOT symbols. */
3824 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3825 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3826 == elf_hash_table (info)->dynsymcount);
3827 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3828 == g->global_gotno);
3829
3830 /* Now we know which dynamic symbol has the lowest dynamic symbol
3831 table index in the GOT. */
3832 htab->global_gotsym = hsd.low;
3833
3834 return TRUE;
3835 }
3836
3837 /* If H needs a GOT entry, assign it the highest available dynamic
3838 index. Otherwise, assign it the lowest available dynamic
3839 index. */
3840
3841 static bfd_boolean
3842 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3843 {
3844 struct mips_elf_hash_sort_data *hsd = data;
3845
3846 /* Symbols without dynamic symbol table entries aren't interesting
3847 at all. */
3848 if (h->root.dynindx == -1)
3849 return TRUE;
3850
3851 switch (h->global_got_area)
3852 {
3853 case GGA_NONE:
3854 h->root.dynindx = hsd->max_non_got_dynindx++;
3855 break;
3856
3857 case GGA_NORMAL:
3858 h->root.dynindx = --hsd->min_got_dynindx;
3859 hsd->low = (struct elf_link_hash_entry *) h;
3860 break;
3861
3862 case GGA_RELOC_ONLY:
3863 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3864 hsd->low = (struct elf_link_hash_entry *) h;
3865 h->root.dynindx = hsd->max_unref_got_dynindx++;
3866 break;
3867 }
3868
3869 return TRUE;
3870 }
3871
3872 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3873 (which is owned by the caller and shouldn't be added to the
3874 hash table directly). */
3875
3876 static bfd_boolean
3877 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3878 struct mips_got_entry *lookup)
3879 {
3880 struct mips_elf_link_hash_table *htab;
3881 struct mips_got_entry *entry;
3882 struct mips_got_info *g;
3883 void **loc, **bfd_loc;
3884
3885 /* Make sure there's a slot for this entry in the master GOT. */
3886 htab = mips_elf_hash_table (info);
3887 g = htab->got_info;
3888 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3889 if (!loc)
3890 return FALSE;
3891
3892 /* Populate the entry if it isn't already. */
3893 entry = (struct mips_got_entry *) *loc;
3894 if (!entry)
3895 {
3896 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3897 if (!entry)
3898 return FALSE;
3899
3900 lookup->tls_initialized = FALSE;
3901 lookup->gotidx = -1;
3902 *entry = *lookup;
3903 *loc = entry;
3904 }
3905
3906 /* Reuse the same GOT entry for the BFD's GOT. */
3907 g = mips_elf_bfd_got (abfd, TRUE);
3908 if (!g)
3909 return FALSE;
3910
3911 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3912 if (!bfd_loc)
3913 return FALSE;
3914
3915 if (!*bfd_loc)
3916 *bfd_loc = entry;
3917 return TRUE;
3918 }
3919
3920 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3921 entry for it. FOR_CALL is true if the caller is only interested in
3922 using the GOT entry for calls. */
3923
3924 static bfd_boolean
3925 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3926 bfd *abfd, struct bfd_link_info *info,
3927 bfd_boolean for_call, int r_type)
3928 {
3929 struct mips_elf_link_hash_table *htab;
3930 struct mips_elf_link_hash_entry *hmips;
3931 struct mips_got_entry entry;
3932 unsigned char tls_type;
3933
3934 htab = mips_elf_hash_table (info);
3935 BFD_ASSERT (htab != NULL);
3936
3937 hmips = (struct mips_elf_link_hash_entry *) h;
3938 if (!for_call)
3939 hmips->got_only_for_calls = FALSE;
3940
3941 /* A global symbol in the GOT must also be in the dynamic symbol
3942 table. */
3943 if (h->dynindx == -1)
3944 {
3945 switch (ELF_ST_VISIBILITY (h->other))
3946 {
3947 case STV_INTERNAL:
3948 case STV_HIDDEN:
3949 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3950 break;
3951 }
3952 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3953 return FALSE;
3954 }
3955
3956 tls_type = mips_elf_reloc_tls_type (r_type);
3957 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3958 hmips->global_got_area = GGA_NORMAL;
3959
3960 entry.abfd = abfd;
3961 entry.symndx = -1;
3962 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3963 entry.tls_type = tls_type;
3964 return mips_elf_record_got_entry (info, abfd, &entry);
3965 }
3966
3967 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3968 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3969
3970 static bfd_boolean
3971 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3972 struct bfd_link_info *info, int r_type)
3973 {
3974 struct mips_elf_link_hash_table *htab;
3975 struct mips_got_info *g;
3976 struct mips_got_entry entry;
3977
3978 htab = mips_elf_hash_table (info);
3979 BFD_ASSERT (htab != NULL);
3980
3981 g = htab->got_info;
3982 BFD_ASSERT (g != NULL);
3983
3984 entry.abfd = abfd;
3985 entry.symndx = symndx;
3986 entry.d.addend = addend;
3987 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3988 return mips_elf_record_got_entry (info, abfd, &entry);
3989 }
3990
3991 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3992 H is the symbol's hash table entry, or null if SYMNDX is local
3993 to ABFD. */
3994
3995 static bfd_boolean
3996 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3997 long symndx, struct elf_link_hash_entry *h,
3998 bfd_signed_vma addend)
3999 {
4000 struct mips_elf_link_hash_table *htab;
4001 struct mips_got_info *g1, *g2;
4002 struct mips_got_page_ref lookup, *entry;
4003 void **loc, **bfd_loc;
4004
4005 htab = mips_elf_hash_table (info);
4006 BFD_ASSERT (htab != NULL);
4007
4008 g1 = htab->got_info;
4009 BFD_ASSERT (g1 != NULL);
4010
4011 if (h)
4012 {
4013 lookup.symndx = -1;
4014 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4015 }
4016 else
4017 {
4018 lookup.symndx = symndx;
4019 lookup.u.abfd = abfd;
4020 }
4021 lookup.addend = addend;
4022 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4023 if (loc == NULL)
4024 return FALSE;
4025
4026 entry = (struct mips_got_page_ref *) *loc;
4027 if (!entry)
4028 {
4029 entry = bfd_alloc (abfd, sizeof (*entry));
4030 if (!entry)
4031 return FALSE;
4032
4033 *entry = lookup;
4034 *loc = entry;
4035 }
4036
4037 /* Add the same entry to the BFD's GOT. */
4038 g2 = mips_elf_bfd_got (abfd, TRUE);
4039 if (!g2)
4040 return FALSE;
4041
4042 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4043 if (!bfd_loc)
4044 return FALSE;
4045
4046 if (!*bfd_loc)
4047 *bfd_loc = entry;
4048
4049 return TRUE;
4050 }
4051
4052 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4053
4054 static void
4055 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4056 unsigned int n)
4057 {
4058 asection *s;
4059 struct mips_elf_link_hash_table *htab;
4060
4061 htab = mips_elf_hash_table (info);
4062 BFD_ASSERT (htab != NULL);
4063
4064 s = mips_elf_rel_dyn_section (info, FALSE);
4065 BFD_ASSERT (s != NULL);
4066
4067 if (htab->is_vxworks)
4068 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4069 else
4070 {
4071 if (s->size == 0)
4072 {
4073 /* Make room for a null element. */
4074 s->size += MIPS_ELF_REL_SIZE (abfd);
4075 ++s->reloc_count;
4076 }
4077 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4078 }
4079 }
4080 \f
4081 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4082 mips_elf_traverse_got_arg structure. Count the number of GOT
4083 entries and TLS relocs. Set DATA->value to true if we need
4084 to resolve indirect or warning symbols and then recreate the GOT. */
4085
4086 static int
4087 mips_elf_check_recreate_got (void **entryp, void *data)
4088 {
4089 struct mips_got_entry *entry;
4090 struct mips_elf_traverse_got_arg *arg;
4091
4092 entry = (struct mips_got_entry *) *entryp;
4093 arg = (struct mips_elf_traverse_got_arg *) data;
4094 if (entry->abfd != NULL && entry->symndx == -1)
4095 {
4096 struct mips_elf_link_hash_entry *h;
4097
4098 h = entry->d.h;
4099 if (h->root.root.type == bfd_link_hash_indirect
4100 || h->root.root.type == bfd_link_hash_warning)
4101 {
4102 arg->value = TRUE;
4103 return 0;
4104 }
4105 }
4106 mips_elf_count_got_entry (arg->info, arg->g, entry);
4107 return 1;
4108 }
4109
4110 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4111 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4112 converting entries for indirect and warning symbols into entries
4113 for the target symbol. Set DATA->g to null on error. */
4114
4115 static int
4116 mips_elf_recreate_got (void **entryp, void *data)
4117 {
4118 struct mips_got_entry new_entry, *entry;
4119 struct mips_elf_traverse_got_arg *arg;
4120 void **slot;
4121
4122 entry = (struct mips_got_entry *) *entryp;
4123 arg = (struct mips_elf_traverse_got_arg *) data;
4124 if (entry->abfd != NULL
4125 && entry->symndx == -1
4126 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4127 || entry->d.h->root.root.type == bfd_link_hash_warning))
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
4131 new_entry = *entry;
4132 entry = &new_entry;
4133 h = entry->d.h;
4134 do
4135 {
4136 BFD_ASSERT (h->global_got_area == GGA_NONE);
4137 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4138 }
4139 while (h->root.root.type == bfd_link_hash_indirect
4140 || h->root.root.type == bfd_link_hash_warning);
4141 entry->d.h = h;
4142 }
4143 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4144 if (slot == NULL)
4145 {
4146 arg->g = NULL;
4147 return 0;
4148 }
4149 if (*slot == NULL)
4150 {
4151 if (entry == &new_entry)
4152 {
4153 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4154 if (!entry)
4155 {
4156 arg->g = NULL;
4157 return 0;
4158 }
4159 *entry = new_entry;
4160 }
4161 *slot = entry;
4162 mips_elf_count_got_entry (arg->info, arg->g, entry);
4163 }
4164 return 1;
4165 }
4166
4167 /* Return the maximum number of GOT page entries required for RANGE. */
4168
4169 static bfd_vma
4170 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4171 {
4172 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4173 }
4174
4175 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4176
4177 static bfd_boolean
4178 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4179 asection *sec, bfd_signed_vma addend)
4180 {
4181 struct mips_got_info *g = arg->g;
4182 struct mips_got_page_entry lookup, *entry;
4183 struct mips_got_page_range **range_ptr, *range;
4184 bfd_vma old_pages, new_pages;
4185 void **loc;
4186
4187 /* Find the mips_got_page_entry hash table entry for this section. */
4188 lookup.sec = sec;
4189 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4190 if (loc == NULL)
4191 return FALSE;
4192
4193 /* Create a mips_got_page_entry if this is the first time we've
4194 seen the section. */
4195 entry = (struct mips_got_page_entry *) *loc;
4196 if (!entry)
4197 {
4198 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4199 if (!entry)
4200 return FALSE;
4201
4202 entry->sec = sec;
4203 *loc = entry;
4204 }
4205
4206 /* Skip over ranges whose maximum extent cannot share a page entry
4207 with ADDEND. */
4208 range_ptr = &entry->ranges;
4209 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4210 range_ptr = &(*range_ptr)->next;
4211
4212 /* If we scanned to the end of the list, or found a range whose
4213 minimum extent cannot share a page entry with ADDEND, create
4214 a new singleton range. */
4215 range = *range_ptr;
4216 if (!range || addend < range->min_addend - 0xffff)
4217 {
4218 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4219 if (!range)
4220 return FALSE;
4221
4222 range->next = *range_ptr;
4223 range->min_addend = addend;
4224 range->max_addend = addend;
4225
4226 *range_ptr = range;
4227 entry->num_pages++;
4228 g->page_gotno++;
4229 return TRUE;
4230 }
4231
4232 /* Remember how many pages the old range contributed. */
4233 old_pages = mips_elf_pages_for_range (range);
4234
4235 /* Update the ranges. */
4236 if (addend < range->min_addend)
4237 range->min_addend = addend;
4238 else if (addend > range->max_addend)
4239 {
4240 if (range->next && addend >= range->next->min_addend - 0xffff)
4241 {
4242 old_pages += mips_elf_pages_for_range (range->next);
4243 range->max_addend = range->next->max_addend;
4244 range->next = range->next->next;
4245 }
4246 else
4247 range->max_addend = addend;
4248 }
4249
4250 /* Record any change in the total estimate. */
4251 new_pages = mips_elf_pages_for_range (range);
4252 if (old_pages != new_pages)
4253 {
4254 entry->num_pages += new_pages - old_pages;
4255 g->page_gotno += new_pages - old_pages;
4256 }
4257
4258 return TRUE;
4259 }
4260
4261 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4262 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4263 whether the page reference described by *REFP needs a GOT page entry,
4264 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4265
4266 static bfd_boolean
4267 mips_elf_resolve_got_page_ref (void **refp, void *data)
4268 {
4269 struct mips_got_page_ref *ref;
4270 struct mips_elf_traverse_got_arg *arg;
4271 struct mips_elf_link_hash_table *htab;
4272 asection *sec;
4273 bfd_vma addend;
4274
4275 ref = (struct mips_got_page_ref *) *refp;
4276 arg = (struct mips_elf_traverse_got_arg *) data;
4277 htab = mips_elf_hash_table (arg->info);
4278
4279 if (ref->symndx < 0)
4280 {
4281 struct mips_elf_link_hash_entry *h;
4282
4283 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4284 h = ref->u.h;
4285 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4286 return 1;
4287
4288 /* Ignore undefined symbols; we'll issue an error later if
4289 appropriate. */
4290 if (!((h->root.root.type == bfd_link_hash_defined
4291 || h->root.root.type == bfd_link_hash_defweak)
4292 && h->root.root.u.def.section))
4293 return 1;
4294
4295 sec = h->root.root.u.def.section;
4296 addend = h->root.root.u.def.value + ref->addend;
4297 }
4298 else
4299 {
4300 Elf_Internal_Sym *isym;
4301
4302 /* Read in the symbol. */
4303 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4304 ref->symndx);
4305 if (isym == NULL)
4306 {
4307 arg->g = NULL;
4308 return 0;
4309 }
4310
4311 /* Get the associated input section. */
4312 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4313 if (sec == NULL)
4314 {
4315 arg->g = NULL;
4316 return 0;
4317 }
4318
4319 /* If this is a mergable section, work out the section and offset
4320 of the merged data. For section symbols, the addend specifies
4321 of the offset _of_ the first byte in the data, otherwise it
4322 specifies the offset _from_ the first byte. */
4323 if (sec->flags & SEC_MERGE)
4324 {
4325 void *secinfo;
4326
4327 secinfo = elf_section_data (sec)->sec_info;
4328 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4329 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4330 isym->st_value + ref->addend);
4331 else
4332 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4333 isym->st_value) + ref->addend;
4334 }
4335 else
4336 addend = isym->st_value + ref->addend;
4337 }
4338 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343 return 1;
4344 }
4345
4346 /* If any entries in G->got_entries are for indirect or warning symbols,
4347 replace them with entries for the target symbol. Convert g->got_page_refs
4348 into got_page_entry structures and estimate the number of page entries
4349 that they require. */
4350
4351 static bfd_boolean
4352 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4353 struct mips_got_info *g)
4354 {
4355 struct mips_elf_traverse_got_arg tga;
4356 struct mips_got_info oldg;
4357
4358 oldg = *g;
4359
4360 tga.info = info;
4361 tga.g = g;
4362 tga.value = FALSE;
4363 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4364 if (tga.value)
4365 {
4366 *g = oldg;
4367 g->got_entries = htab_create (htab_size (oldg.got_entries),
4368 mips_elf_got_entry_hash,
4369 mips_elf_got_entry_eq, NULL);
4370 if (!g->got_entries)
4371 return FALSE;
4372
4373 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4374 if (!tga.g)
4375 return FALSE;
4376
4377 htab_delete (oldg.got_entries);
4378 }
4379
4380 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4381 mips_got_page_entry_eq, NULL);
4382 if (g->got_page_entries == NULL)
4383 return FALSE;
4384
4385 tga.info = info;
4386 tga.g = g;
4387 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4388
4389 return TRUE;
4390 }
4391
4392 /* Return true if a GOT entry for H should live in the local rather than
4393 global GOT area. */
4394
4395 static bfd_boolean
4396 mips_use_local_got_p (struct bfd_link_info *info,
4397 struct mips_elf_link_hash_entry *h)
4398 {
4399 /* Symbols that aren't in the dynamic symbol table must live in the
4400 local GOT. This includes symbols that are completely undefined
4401 and which therefore don't bind locally. We'll report undefined
4402 symbols later if appropriate. */
4403 if (h->root.dynindx == -1)
4404 return TRUE;
4405
4406 /* Symbols that bind locally can (and in the case of forced-local
4407 symbols, must) live in the local GOT. */
4408 if (h->got_only_for_calls
4409 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4410 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4411 return TRUE;
4412
4413 /* If this is an executable that must provide a definition of the symbol,
4414 either though PLTs or copy relocations, then that address should go in
4415 the local rather than global GOT. */
4416 if (info->executable && h->has_static_relocs)
4417 return TRUE;
4418
4419 return FALSE;
4420 }
4421
4422 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4423 link_info structure. Decide whether the hash entry needs an entry in
4424 the global part of the primary GOT, setting global_got_area accordingly.
4425 Count the number of global symbols that are in the primary GOT only
4426 because they have relocations against them (reloc_only_gotno). */
4427
4428 static int
4429 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4430 {
4431 struct bfd_link_info *info;
4432 struct mips_elf_link_hash_table *htab;
4433 struct mips_got_info *g;
4434
4435 info = (struct bfd_link_info *) data;
4436 htab = mips_elf_hash_table (info);
4437 g = htab->got_info;
4438 if (h->global_got_area != GGA_NONE)
4439 {
4440 /* Make a final decision about whether the symbol belongs in the
4441 local or global GOT. */
4442 if (mips_use_local_got_p (info, h))
4443 /* The symbol belongs in the local GOT. We no longer need this
4444 entry if it was only used for relocations; those relocations
4445 will be against the null or section symbol instead of H. */
4446 h->global_got_area = GGA_NONE;
4447 else if (htab->is_vxworks
4448 && h->got_only_for_calls
4449 && h->root.plt.plist->mips_offset != MINUS_ONE)
4450 /* On VxWorks, calls can refer directly to the .got.plt entry;
4451 they don't need entries in the regular GOT. .got.plt entries
4452 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4453 h->global_got_area = GGA_NONE;
4454 else if (h->global_got_area == GGA_RELOC_ONLY)
4455 {
4456 g->reloc_only_gotno++;
4457 g->global_gotno++;
4458 }
4459 }
4460 return 1;
4461 }
4462 \f
4463 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4464 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4465
4466 static int
4467 mips_elf_add_got_entry (void **entryp, void *data)
4468 {
4469 struct mips_got_entry *entry;
4470 struct mips_elf_traverse_got_arg *arg;
4471 void **slot;
4472
4473 entry = (struct mips_got_entry *) *entryp;
4474 arg = (struct mips_elf_traverse_got_arg *) data;
4475 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4476 if (!slot)
4477 {
4478 arg->g = NULL;
4479 return 0;
4480 }
4481 if (!*slot)
4482 {
4483 *slot = entry;
4484 mips_elf_count_got_entry (arg->info, arg->g, entry);
4485 }
4486 return 1;
4487 }
4488
4489 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4490 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4491
4492 static int
4493 mips_elf_add_got_page_entry (void **entryp, void *data)
4494 {
4495 struct mips_got_page_entry *entry;
4496 struct mips_elf_traverse_got_arg *arg;
4497 void **slot;
4498
4499 entry = (struct mips_got_page_entry *) *entryp;
4500 arg = (struct mips_elf_traverse_got_arg *) data;
4501 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4502 if (!slot)
4503 {
4504 arg->g = NULL;
4505 return 0;
4506 }
4507 if (!*slot)
4508 {
4509 *slot = entry;
4510 arg->g->page_gotno += entry->num_pages;
4511 }
4512 return 1;
4513 }
4514
4515 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4516 this would lead to overflow, 1 if they were merged successfully,
4517 and 0 if a merge failed due to lack of memory. (These values are chosen
4518 so that nonnegative return values can be returned by a htab_traverse
4519 callback.) */
4520
4521 static int
4522 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4523 struct mips_got_info *to,
4524 struct mips_elf_got_per_bfd_arg *arg)
4525 {
4526 struct mips_elf_traverse_got_arg tga;
4527 unsigned int estimate;
4528
4529 /* Work out how many page entries we would need for the combined GOT. */
4530 estimate = arg->max_pages;
4531 if (estimate >= from->page_gotno + to->page_gotno)
4532 estimate = from->page_gotno + to->page_gotno;
4533
4534 /* And conservatively estimate how many local and TLS entries
4535 would be needed. */
4536 estimate += from->local_gotno + to->local_gotno;
4537 estimate += from->tls_gotno + to->tls_gotno;
4538
4539 /* If we're merging with the primary got, any TLS relocations will
4540 come after the full set of global entries. Otherwise estimate those
4541 conservatively as well. */
4542 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4543 estimate += arg->global_count;
4544 else
4545 estimate += from->global_gotno + to->global_gotno;
4546
4547 /* Bail out if the combined GOT might be too big. */
4548 if (estimate > arg->max_count)
4549 return -1;
4550
4551 /* Transfer the bfd's got information from FROM to TO. */
4552 tga.info = arg->info;
4553 tga.g = to;
4554 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4555 if (!tga.g)
4556 return 0;
4557
4558 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4559 if (!tga.g)
4560 return 0;
4561
4562 mips_elf_replace_bfd_got (abfd, to);
4563 return 1;
4564 }
4565
4566 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4567 as possible of the primary got, since it doesn't require explicit
4568 dynamic relocations, but don't use bfds that would reference global
4569 symbols out of the addressable range. Failing the primary got,
4570 attempt to merge with the current got, or finish the current got
4571 and then make make the new got current. */
4572
4573 static bfd_boolean
4574 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4575 struct mips_elf_got_per_bfd_arg *arg)
4576 {
4577 unsigned int estimate;
4578 int result;
4579
4580 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4581 return FALSE;
4582
4583 /* Work out the number of page, local and TLS entries. */
4584 estimate = arg->max_pages;
4585 if (estimate > g->page_gotno)
4586 estimate = g->page_gotno;
4587 estimate += g->local_gotno + g->tls_gotno;
4588
4589 /* We place TLS GOT entries after both locals and globals. The globals
4590 for the primary GOT may overflow the normal GOT size limit, so be
4591 sure not to merge a GOT which requires TLS with the primary GOT in that
4592 case. This doesn't affect non-primary GOTs. */
4593 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4594
4595 if (estimate <= arg->max_count)
4596 {
4597 /* If we don't have a primary GOT, use it as
4598 a starting point for the primary GOT. */
4599 if (!arg->primary)
4600 {
4601 arg->primary = g;
4602 return TRUE;
4603 }
4604
4605 /* Try merging with the primary GOT. */
4606 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4607 if (result >= 0)
4608 return result;
4609 }
4610
4611 /* If we can merge with the last-created got, do it. */
4612 if (arg->current)
4613 {
4614 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4615 if (result >= 0)
4616 return result;
4617 }
4618
4619 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4620 fits; if it turns out that it doesn't, we'll get relocation
4621 overflows anyway. */
4622 g->next = arg->current;
4623 arg->current = g;
4624
4625 return TRUE;
4626 }
4627
4628 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4629 to GOTIDX, duplicating the entry if it has already been assigned
4630 an index in a different GOT. */
4631
4632 static bfd_boolean
4633 mips_elf_set_gotidx (void **entryp, long gotidx)
4634 {
4635 struct mips_got_entry *entry;
4636
4637 entry = (struct mips_got_entry *) *entryp;
4638 if (entry->gotidx > 0)
4639 {
4640 struct mips_got_entry *new_entry;
4641
4642 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4643 if (!new_entry)
4644 return FALSE;
4645
4646 *new_entry = *entry;
4647 *entryp = new_entry;
4648 entry = new_entry;
4649 }
4650 entry->gotidx = gotidx;
4651 return TRUE;
4652 }
4653
4654 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4655 mips_elf_traverse_got_arg in which DATA->value is the size of one
4656 GOT entry. Set DATA->g to null on failure. */
4657
4658 static int
4659 mips_elf_initialize_tls_index (void **entryp, void *data)
4660 {
4661 struct mips_got_entry *entry;
4662 struct mips_elf_traverse_got_arg *arg;
4663
4664 /* We're only interested in TLS symbols. */
4665 entry = (struct mips_got_entry *) *entryp;
4666 if (entry->tls_type == GOT_TLS_NONE)
4667 return 1;
4668
4669 arg = (struct mips_elf_traverse_got_arg *) data;
4670 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4671 {
4672 arg->g = NULL;
4673 return 0;
4674 }
4675
4676 /* Account for the entries we've just allocated. */
4677 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4678 return 1;
4679 }
4680
4681 /* A htab_traverse callback for GOT entries, where DATA points to a
4682 mips_elf_traverse_got_arg. Set the global_got_area of each global
4683 symbol to DATA->value. */
4684
4685 static int
4686 mips_elf_set_global_got_area (void **entryp, void *data)
4687 {
4688 struct mips_got_entry *entry;
4689 struct mips_elf_traverse_got_arg *arg;
4690
4691 entry = (struct mips_got_entry *) *entryp;
4692 arg = (struct mips_elf_traverse_got_arg *) data;
4693 if (entry->abfd != NULL
4694 && entry->symndx == -1
4695 && entry->d.h->global_got_area != GGA_NONE)
4696 entry->d.h->global_got_area = arg->value;
4697 return 1;
4698 }
4699
4700 /* A htab_traverse callback for secondary GOT entries, where DATA points
4701 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4702 and record the number of relocations they require. DATA->value is
4703 the size of one GOT entry. Set DATA->g to null on failure. */
4704
4705 static int
4706 mips_elf_set_global_gotidx (void **entryp, void *data)
4707 {
4708 struct mips_got_entry *entry;
4709 struct mips_elf_traverse_got_arg *arg;
4710
4711 entry = (struct mips_got_entry *) *entryp;
4712 arg = (struct mips_elf_traverse_got_arg *) data;
4713 if (entry->abfd != NULL
4714 && entry->symndx == -1
4715 && entry->d.h->global_got_area != GGA_NONE)
4716 {
4717 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4718 {
4719 arg->g = NULL;
4720 return 0;
4721 }
4722 arg->g->assigned_low_gotno += 1;
4723
4724 if (arg->info->shared
4725 || (elf_hash_table (arg->info)->dynamic_sections_created
4726 && entry->d.h->root.def_dynamic
4727 && !entry->d.h->root.def_regular))
4728 arg->g->relocs += 1;
4729 }
4730
4731 return 1;
4732 }
4733
4734 /* A htab_traverse callback for GOT entries for which DATA is the
4735 bfd_link_info. Forbid any global symbols from having traditional
4736 lazy-binding stubs. */
4737
4738 static int
4739 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4740 {
4741 struct bfd_link_info *info;
4742 struct mips_elf_link_hash_table *htab;
4743 struct mips_got_entry *entry;
4744
4745 entry = (struct mips_got_entry *) *entryp;
4746 info = (struct bfd_link_info *) data;
4747 htab = mips_elf_hash_table (info);
4748 BFD_ASSERT (htab != NULL);
4749
4750 if (entry->abfd != NULL
4751 && entry->symndx == -1
4752 && entry->d.h->needs_lazy_stub)
4753 {
4754 entry->d.h->needs_lazy_stub = FALSE;
4755 htab->lazy_stub_count--;
4756 }
4757
4758 return 1;
4759 }
4760
4761 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4762 the primary GOT. */
4763 static bfd_vma
4764 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4765 {
4766 if (!g->next)
4767 return 0;
4768
4769 g = mips_elf_bfd_got (ibfd, FALSE);
4770 if (! g)
4771 return 0;
4772
4773 BFD_ASSERT (g->next);
4774
4775 g = g->next;
4776
4777 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4778 * MIPS_ELF_GOT_SIZE (abfd);
4779 }
4780
4781 /* Turn a single GOT that is too big for 16-bit addressing into
4782 a sequence of GOTs, each one 16-bit addressable. */
4783
4784 static bfd_boolean
4785 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4786 asection *got, bfd_size_type pages)
4787 {
4788 struct mips_elf_link_hash_table *htab;
4789 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4790 struct mips_elf_traverse_got_arg tga;
4791 struct mips_got_info *g, *gg;
4792 unsigned int assign, needed_relocs;
4793 bfd *dynobj, *ibfd;
4794
4795 dynobj = elf_hash_table (info)->dynobj;
4796 htab = mips_elf_hash_table (info);
4797 BFD_ASSERT (htab != NULL);
4798
4799 g = htab->got_info;
4800
4801 got_per_bfd_arg.obfd = abfd;
4802 got_per_bfd_arg.info = info;
4803 got_per_bfd_arg.current = NULL;
4804 got_per_bfd_arg.primary = NULL;
4805 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4806 / MIPS_ELF_GOT_SIZE (abfd))
4807 - htab->reserved_gotno);
4808 got_per_bfd_arg.max_pages = pages;
4809 /* The number of globals that will be included in the primary GOT.
4810 See the calls to mips_elf_set_global_got_area below for more
4811 information. */
4812 got_per_bfd_arg.global_count = g->global_gotno;
4813
4814 /* Try to merge the GOTs of input bfds together, as long as they
4815 don't seem to exceed the maximum GOT size, choosing one of them
4816 to be the primary GOT. */
4817 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4818 {
4819 gg = mips_elf_bfd_got (ibfd, FALSE);
4820 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4821 return FALSE;
4822 }
4823
4824 /* If we do not find any suitable primary GOT, create an empty one. */
4825 if (got_per_bfd_arg.primary == NULL)
4826 g->next = mips_elf_create_got_info (abfd);
4827 else
4828 g->next = got_per_bfd_arg.primary;
4829 g->next->next = got_per_bfd_arg.current;
4830
4831 /* GG is now the master GOT, and G is the primary GOT. */
4832 gg = g;
4833 g = g->next;
4834
4835 /* Map the output bfd to the primary got. That's what we're going
4836 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4837 didn't mark in check_relocs, and we want a quick way to find it.
4838 We can't just use gg->next because we're going to reverse the
4839 list. */
4840 mips_elf_replace_bfd_got (abfd, g);
4841
4842 /* Every symbol that is referenced in a dynamic relocation must be
4843 present in the primary GOT, so arrange for them to appear after
4844 those that are actually referenced. */
4845 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4846 g->global_gotno = gg->global_gotno;
4847
4848 tga.info = info;
4849 tga.value = GGA_RELOC_ONLY;
4850 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4851 tga.value = GGA_NORMAL;
4852 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4853
4854 /* Now go through the GOTs assigning them offset ranges.
4855 [assigned_low_gotno, local_gotno[ will be set to the range of local
4856 entries in each GOT. We can then compute the end of a GOT by
4857 adding local_gotno to global_gotno. We reverse the list and make
4858 it circular since then we'll be able to quickly compute the
4859 beginning of a GOT, by computing the end of its predecessor. To
4860 avoid special cases for the primary GOT, while still preserving
4861 assertions that are valid for both single- and multi-got links,
4862 we arrange for the main got struct to have the right number of
4863 global entries, but set its local_gotno such that the initial
4864 offset of the primary GOT is zero. Remember that the primary GOT
4865 will become the last item in the circular linked list, so it
4866 points back to the master GOT. */
4867 gg->local_gotno = -g->global_gotno;
4868 gg->global_gotno = g->global_gotno;
4869 gg->tls_gotno = 0;
4870 assign = 0;
4871 gg->next = gg;
4872
4873 do
4874 {
4875 struct mips_got_info *gn;
4876
4877 assign += htab->reserved_gotno;
4878 g->assigned_low_gotno = assign;
4879 g->local_gotno += assign;
4880 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4881 g->assigned_high_gotno = g->local_gotno - 1;
4882 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4883
4884 /* Take g out of the direct list, and push it onto the reversed
4885 list that gg points to. g->next is guaranteed to be nonnull after
4886 this operation, as required by mips_elf_initialize_tls_index. */
4887 gn = g->next;
4888 g->next = gg->next;
4889 gg->next = g;
4890
4891 /* Set up any TLS entries. We always place the TLS entries after
4892 all non-TLS entries. */
4893 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4894 tga.g = g;
4895 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4896 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4897 if (!tga.g)
4898 return FALSE;
4899 BFD_ASSERT (g->tls_assigned_gotno == assign);
4900
4901 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4902 g = gn;
4903
4904 /* Forbid global symbols in every non-primary GOT from having
4905 lazy-binding stubs. */
4906 if (g)
4907 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4908 }
4909 while (g);
4910
4911 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4912
4913 needed_relocs = 0;
4914 for (g = gg->next; g && g->next != gg; g = g->next)
4915 {
4916 unsigned int save_assign;
4917
4918 /* Assign offsets to global GOT entries and count how many
4919 relocations they need. */
4920 save_assign = g->assigned_low_gotno;
4921 g->assigned_low_gotno = g->local_gotno;
4922 tga.info = info;
4923 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4924 tga.g = g;
4925 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4926 if (!tga.g)
4927 return FALSE;
4928 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4929 g->assigned_low_gotno = save_assign;
4930
4931 if (info->shared)
4932 {
4933 g->relocs += g->local_gotno - g->assigned_low_gotno;
4934 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4935 + g->next->global_gotno
4936 + g->next->tls_gotno
4937 + htab->reserved_gotno);
4938 }
4939 needed_relocs += g->relocs;
4940 }
4941 needed_relocs += g->relocs;
4942
4943 if (needed_relocs)
4944 mips_elf_allocate_dynamic_relocations (dynobj, info,
4945 needed_relocs);
4946
4947 return TRUE;
4948 }
4949
4950 \f
4951 /* Returns the first relocation of type r_type found, beginning with
4952 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4953
4954 static const Elf_Internal_Rela *
4955 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4956 const Elf_Internal_Rela *relocation,
4957 const Elf_Internal_Rela *relend)
4958 {
4959 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4960
4961 while (relocation < relend)
4962 {
4963 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4964 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4965 return relocation;
4966
4967 ++relocation;
4968 }
4969
4970 /* We didn't find it. */
4971 return NULL;
4972 }
4973
4974 /* Return whether an input relocation is against a local symbol. */
4975
4976 static bfd_boolean
4977 mips_elf_local_relocation_p (bfd *input_bfd,
4978 const Elf_Internal_Rela *relocation,
4979 asection **local_sections)
4980 {
4981 unsigned long r_symndx;
4982 Elf_Internal_Shdr *symtab_hdr;
4983 size_t extsymoff;
4984
4985 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4986 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4987 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4988
4989 if (r_symndx < extsymoff)
4990 return TRUE;
4991 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4992 return TRUE;
4993
4994 return FALSE;
4995 }
4996 \f
4997 /* Sign-extend VALUE, which has the indicated number of BITS. */
4998
4999 bfd_vma
5000 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5001 {
5002 if (value & ((bfd_vma) 1 << (bits - 1)))
5003 /* VALUE is negative. */
5004 value |= ((bfd_vma) - 1) << bits;
5005
5006 return value;
5007 }
5008
5009 /* Return non-zero if the indicated VALUE has overflowed the maximum
5010 range expressible by a signed number with the indicated number of
5011 BITS. */
5012
5013 static bfd_boolean
5014 mips_elf_overflow_p (bfd_vma value, int bits)
5015 {
5016 bfd_signed_vma svalue = (bfd_signed_vma) value;
5017
5018 if (svalue > (1 << (bits - 1)) - 1)
5019 /* The value is too big. */
5020 return TRUE;
5021 else if (svalue < -(1 << (bits - 1)))
5022 /* The value is too small. */
5023 return TRUE;
5024
5025 /* All is well. */
5026 return FALSE;
5027 }
5028
5029 /* Calculate the %high function. */
5030
5031 static bfd_vma
5032 mips_elf_high (bfd_vma value)
5033 {
5034 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5035 }
5036
5037 /* Calculate the %higher function. */
5038
5039 static bfd_vma
5040 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5041 {
5042 #ifdef BFD64
5043 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5044 #else
5045 abort ();
5046 return MINUS_ONE;
5047 #endif
5048 }
5049
5050 /* Calculate the %highest function. */
5051
5052 static bfd_vma
5053 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5054 {
5055 #ifdef BFD64
5056 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5057 #else
5058 abort ();
5059 return MINUS_ONE;
5060 #endif
5061 }
5062 \f
5063 /* Create the .compact_rel section. */
5064
5065 static bfd_boolean
5066 mips_elf_create_compact_rel_section
5067 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5068 {
5069 flagword flags;
5070 register asection *s;
5071
5072 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5073 {
5074 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5075 | SEC_READONLY);
5076
5077 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5078 if (s == NULL
5079 || ! bfd_set_section_alignment (abfd, s,
5080 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5081 return FALSE;
5082
5083 s->size = sizeof (Elf32_External_compact_rel);
5084 }
5085
5086 return TRUE;
5087 }
5088
5089 /* Create the .got section to hold the global offset table. */
5090
5091 static bfd_boolean
5092 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5093 {
5094 flagword flags;
5095 register asection *s;
5096 struct elf_link_hash_entry *h;
5097 struct bfd_link_hash_entry *bh;
5098 struct mips_elf_link_hash_table *htab;
5099
5100 htab = mips_elf_hash_table (info);
5101 BFD_ASSERT (htab != NULL);
5102
5103 /* This function may be called more than once. */
5104 if (htab->sgot)
5105 return TRUE;
5106
5107 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5108 | SEC_LINKER_CREATED);
5109
5110 /* We have to use an alignment of 2**4 here because this is hardcoded
5111 in the function stub generation and in the linker script. */
5112 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5113 if (s == NULL
5114 || ! bfd_set_section_alignment (abfd, s, 4))
5115 return FALSE;
5116 htab->sgot = s;
5117
5118 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5119 linker script because we don't want to define the symbol if we
5120 are not creating a global offset table. */
5121 bh = NULL;
5122 if (! (_bfd_generic_link_add_one_symbol
5123 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5124 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5125 return FALSE;
5126
5127 h = (struct elf_link_hash_entry *) bh;
5128 h->non_elf = 0;
5129 h->def_regular = 1;
5130 h->type = STT_OBJECT;
5131 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5132 elf_hash_table (info)->hgot = h;
5133
5134 if (info->shared
5135 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5136 return FALSE;
5137
5138 htab->got_info = mips_elf_create_got_info (abfd);
5139 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5140 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5141
5142 /* We also need a .got.plt section when generating PLTs. */
5143 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5144 SEC_ALLOC | SEC_LOAD
5145 | SEC_HAS_CONTENTS
5146 | SEC_IN_MEMORY
5147 | SEC_LINKER_CREATED);
5148 if (s == NULL)
5149 return FALSE;
5150 htab->sgotplt = s;
5151
5152 return TRUE;
5153 }
5154 \f
5155 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5156 __GOTT_INDEX__ symbols. These symbols are only special for
5157 shared objects; they are not used in executables. */
5158
5159 static bfd_boolean
5160 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5161 {
5162 return (mips_elf_hash_table (info)->is_vxworks
5163 && info->shared
5164 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5165 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5166 }
5167
5168 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5169 require an la25 stub. See also mips_elf_local_pic_function_p,
5170 which determines whether the destination function ever requires a
5171 stub. */
5172
5173 static bfd_boolean
5174 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5175 bfd_boolean target_is_16_bit_code_p)
5176 {
5177 /* We specifically ignore branches and jumps from EF_PIC objects,
5178 where the onus is on the compiler or programmer to perform any
5179 necessary initialization of $25. Sometimes such initialization
5180 is unnecessary; for example, -mno-shared functions do not use
5181 the incoming value of $25, and may therefore be called directly. */
5182 if (PIC_OBJECT_P (input_bfd))
5183 return FALSE;
5184
5185 switch (r_type)
5186 {
5187 case R_MIPS_26:
5188 case R_MIPS_PC16:
5189 case R_MIPS_PC21_S2:
5190 case R_MIPS_PC26_S2:
5191 case R_MICROMIPS_26_S1:
5192 case R_MICROMIPS_PC7_S1:
5193 case R_MICROMIPS_PC10_S1:
5194 case R_MICROMIPS_PC16_S1:
5195 case R_MICROMIPS_PC23_S2:
5196 return TRUE;
5197
5198 case R_MIPS16_26:
5199 return !target_is_16_bit_code_p;
5200
5201 default:
5202 return FALSE;
5203 }
5204 }
5205 \f
5206 /* Calculate the value produced by the RELOCATION (which comes from
5207 the INPUT_BFD). The ADDEND is the addend to use for this
5208 RELOCATION; RELOCATION->R_ADDEND is ignored.
5209
5210 The result of the relocation calculation is stored in VALUEP.
5211 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5212 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5213
5214 This function returns bfd_reloc_continue if the caller need take no
5215 further action regarding this relocation, bfd_reloc_notsupported if
5216 something goes dramatically wrong, bfd_reloc_overflow if an
5217 overflow occurs, and bfd_reloc_ok to indicate success. */
5218
5219 static bfd_reloc_status_type
5220 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5221 asection *input_section,
5222 struct bfd_link_info *info,
5223 const Elf_Internal_Rela *relocation,
5224 bfd_vma addend, reloc_howto_type *howto,
5225 Elf_Internal_Sym *local_syms,
5226 asection **local_sections, bfd_vma *valuep,
5227 const char **namep,
5228 bfd_boolean *cross_mode_jump_p,
5229 bfd_boolean save_addend)
5230 {
5231 /* The eventual value we will return. */
5232 bfd_vma value;
5233 /* The address of the symbol against which the relocation is
5234 occurring. */
5235 bfd_vma symbol = 0;
5236 /* The final GP value to be used for the relocatable, executable, or
5237 shared object file being produced. */
5238 bfd_vma gp;
5239 /* The place (section offset or address) of the storage unit being
5240 relocated. */
5241 bfd_vma p;
5242 /* The value of GP used to create the relocatable object. */
5243 bfd_vma gp0;
5244 /* The offset into the global offset table at which the address of
5245 the relocation entry symbol, adjusted by the addend, resides
5246 during execution. */
5247 bfd_vma g = MINUS_ONE;
5248 /* The section in which the symbol referenced by the relocation is
5249 located. */
5250 asection *sec = NULL;
5251 struct mips_elf_link_hash_entry *h = NULL;
5252 /* TRUE if the symbol referred to by this relocation is a local
5253 symbol. */
5254 bfd_boolean local_p, was_local_p;
5255 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5256 bfd_boolean gp_disp_p = FALSE;
5257 /* TRUE if the symbol referred to by this relocation is
5258 "__gnu_local_gp". */
5259 bfd_boolean gnu_local_gp_p = FALSE;
5260 Elf_Internal_Shdr *symtab_hdr;
5261 size_t extsymoff;
5262 unsigned long r_symndx;
5263 int r_type;
5264 /* TRUE if overflow occurred during the calculation of the
5265 relocation value. */
5266 bfd_boolean overflowed_p;
5267 /* TRUE if this relocation refers to a MIPS16 function. */
5268 bfd_boolean target_is_16_bit_code_p = FALSE;
5269 bfd_boolean target_is_micromips_code_p = FALSE;
5270 struct mips_elf_link_hash_table *htab;
5271 bfd *dynobj;
5272
5273 dynobj = elf_hash_table (info)->dynobj;
5274 htab = mips_elf_hash_table (info);
5275 BFD_ASSERT (htab != NULL);
5276
5277 /* Parse the relocation. */
5278 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5279 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5280 p = (input_section->output_section->vma
5281 + input_section->output_offset
5282 + relocation->r_offset);
5283
5284 /* Assume that there will be no overflow. */
5285 overflowed_p = FALSE;
5286
5287 /* Figure out whether or not the symbol is local, and get the offset
5288 used in the array of hash table entries. */
5289 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5290 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5291 local_sections);
5292 was_local_p = local_p;
5293 if (! elf_bad_symtab (input_bfd))
5294 extsymoff = symtab_hdr->sh_info;
5295 else
5296 {
5297 /* The symbol table does not follow the rule that local symbols
5298 must come before globals. */
5299 extsymoff = 0;
5300 }
5301
5302 /* Figure out the value of the symbol. */
5303 if (local_p)
5304 {
5305 Elf_Internal_Sym *sym;
5306
5307 sym = local_syms + r_symndx;
5308 sec = local_sections[r_symndx];
5309
5310 symbol = sec->output_section->vma + sec->output_offset;
5311 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5312 || (sec->flags & SEC_MERGE))
5313 symbol += sym->st_value;
5314 if ((sec->flags & SEC_MERGE)
5315 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5316 {
5317 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5318 addend -= symbol;
5319 addend += sec->output_section->vma + sec->output_offset;
5320 }
5321
5322 /* MIPS16/microMIPS text labels should be treated as odd. */
5323 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5324 ++symbol;
5325
5326 /* Record the name of this symbol, for our caller. */
5327 *namep = bfd_elf_string_from_elf_section (input_bfd,
5328 symtab_hdr->sh_link,
5329 sym->st_name);
5330 if (*namep == '\0')
5331 *namep = bfd_section_name (input_bfd, sec);
5332
5333 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5334 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5335 }
5336 else
5337 {
5338 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5339
5340 /* For global symbols we look up the symbol in the hash-table. */
5341 h = ((struct mips_elf_link_hash_entry *)
5342 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5343 /* Find the real hash-table entry for this symbol. */
5344 while (h->root.root.type == bfd_link_hash_indirect
5345 || h->root.root.type == bfd_link_hash_warning)
5346 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5347
5348 /* Record the name of this symbol, for our caller. */
5349 *namep = h->root.root.root.string;
5350
5351 /* See if this is the special _gp_disp symbol. Note that such a
5352 symbol must always be a global symbol. */
5353 if (strcmp (*namep, "_gp_disp") == 0
5354 && ! NEWABI_P (input_bfd))
5355 {
5356 /* Relocations against _gp_disp are permitted only with
5357 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5358 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5359 return bfd_reloc_notsupported;
5360
5361 gp_disp_p = TRUE;
5362 }
5363 /* See if this is the special _gp symbol. Note that such a
5364 symbol must always be a global symbol. */
5365 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5366 gnu_local_gp_p = TRUE;
5367
5368
5369 /* If this symbol is defined, calculate its address. Note that
5370 _gp_disp is a magic symbol, always implicitly defined by the
5371 linker, so it's inappropriate to check to see whether or not
5372 its defined. */
5373 else if ((h->root.root.type == bfd_link_hash_defined
5374 || h->root.root.type == bfd_link_hash_defweak)
5375 && h->root.root.u.def.section)
5376 {
5377 sec = h->root.root.u.def.section;
5378 if (sec->output_section)
5379 symbol = (h->root.root.u.def.value
5380 + sec->output_section->vma
5381 + sec->output_offset);
5382 else
5383 symbol = h->root.root.u.def.value;
5384 }
5385 else if (h->root.root.type == bfd_link_hash_undefweak)
5386 /* We allow relocations against undefined weak symbols, giving
5387 it the value zero, so that you can undefined weak functions
5388 and check to see if they exist by looking at their
5389 addresses. */
5390 symbol = 0;
5391 else if (info->unresolved_syms_in_objects == RM_IGNORE
5392 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5393 symbol = 0;
5394 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5395 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5396 {
5397 /* If this is a dynamic link, we should have created a
5398 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5399 in in _bfd_mips_elf_create_dynamic_sections.
5400 Otherwise, we should define the symbol with a value of 0.
5401 FIXME: It should probably get into the symbol table
5402 somehow as well. */
5403 BFD_ASSERT (! info->shared);
5404 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5405 symbol = 0;
5406 }
5407 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5408 {
5409 /* This is an optional symbol - an Irix specific extension to the
5410 ELF spec. Ignore it for now.
5411 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5412 than simply ignoring them, but we do not handle this for now.
5413 For information see the "64-bit ELF Object File Specification"
5414 which is available from here:
5415 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5416 symbol = 0;
5417 }
5418 else if ((*info->callbacks->undefined_symbol)
5419 (info, h->root.root.root.string, input_bfd,
5420 input_section, relocation->r_offset,
5421 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5422 || ELF_ST_VISIBILITY (h->root.other)))
5423 {
5424 return bfd_reloc_undefined;
5425 }
5426 else
5427 {
5428 return bfd_reloc_notsupported;
5429 }
5430
5431 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5432 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5433 }
5434
5435 /* If this is a reference to a 16-bit function with a stub, we need
5436 to redirect the relocation to the stub unless:
5437
5438 (a) the relocation is for a MIPS16 JAL;
5439
5440 (b) the relocation is for a MIPS16 PIC call, and there are no
5441 non-MIPS16 uses of the GOT slot; or
5442
5443 (c) the section allows direct references to MIPS16 functions. */
5444 if (r_type != R_MIPS16_26
5445 && !info->relocatable
5446 && ((h != NULL
5447 && h->fn_stub != NULL
5448 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5449 || (local_p
5450 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5451 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5452 && !section_allows_mips16_refs_p (input_section))
5453 {
5454 /* This is a 32- or 64-bit call to a 16-bit function. We should
5455 have already noticed that we were going to need the
5456 stub. */
5457 if (local_p)
5458 {
5459 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5460 value = 0;
5461 }
5462 else
5463 {
5464 BFD_ASSERT (h->need_fn_stub);
5465 if (h->la25_stub)
5466 {
5467 /* If a LA25 header for the stub itself exists, point to the
5468 prepended LUI/ADDIU sequence. */
5469 sec = h->la25_stub->stub_section;
5470 value = h->la25_stub->offset;
5471 }
5472 else
5473 {
5474 sec = h->fn_stub;
5475 value = 0;
5476 }
5477 }
5478
5479 symbol = sec->output_section->vma + sec->output_offset + value;
5480 /* The target is 16-bit, but the stub isn't. */
5481 target_is_16_bit_code_p = FALSE;
5482 }
5483 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5484 to a standard MIPS function, we need to redirect the call to the stub.
5485 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5486 indirect calls should use an indirect stub instead. */
5487 else if (r_type == R_MIPS16_26 && !info->relocatable
5488 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5489 || (local_p
5490 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5491 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5492 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5493 {
5494 if (local_p)
5495 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5496 else
5497 {
5498 /* If both call_stub and call_fp_stub are defined, we can figure
5499 out which one to use by checking which one appears in the input
5500 file. */
5501 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5502 {
5503 asection *o;
5504
5505 sec = NULL;
5506 for (o = input_bfd->sections; o != NULL; o = o->next)
5507 {
5508 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5509 {
5510 sec = h->call_fp_stub;
5511 break;
5512 }
5513 }
5514 if (sec == NULL)
5515 sec = h->call_stub;
5516 }
5517 else if (h->call_stub != NULL)
5518 sec = h->call_stub;
5519 else
5520 sec = h->call_fp_stub;
5521 }
5522
5523 BFD_ASSERT (sec->size > 0);
5524 symbol = sec->output_section->vma + sec->output_offset;
5525 }
5526 /* If this is a direct call to a PIC function, redirect to the
5527 non-PIC stub. */
5528 else if (h != NULL && h->la25_stub
5529 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5530 target_is_16_bit_code_p))
5531 symbol = (h->la25_stub->stub_section->output_section->vma
5532 + h->la25_stub->stub_section->output_offset
5533 + h->la25_stub->offset);
5534 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5535 entry is used if a standard PLT entry has also been made. In this
5536 case the symbol will have been set by mips_elf_set_plt_sym_value
5537 to point to the standard PLT entry, so redirect to the compressed
5538 one. */
5539 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5540 && !info->relocatable
5541 && h != NULL
5542 && h->use_plt_entry
5543 && h->root.plt.plist->comp_offset != MINUS_ONE
5544 && h->root.plt.plist->mips_offset != MINUS_ONE)
5545 {
5546 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5547
5548 sec = htab->splt;
5549 symbol = (sec->output_section->vma
5550 + sec->output_offset
5551 + htab->plt_header_size
5552 + htab->plt_mips_offset
5553 + h->root.plt.plist->comp_offset
5554 + 1);
5555
5556 target_is_16_bit_code_p = !micromips_p;
5557 target_is_micromips_code_p = micromips_p;
5558 }
5559
5560 /* Make sure MIPS16 and microMIPS are not used together. */
5561 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5562 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5563 {
5564 (*_bfd_error_handler)
5565 (_("MIPS16 and microMIPS functions cannot call each other"));
5566 return bfd_reloc_notsupported;
5567 }
5568
5569 /* Calls from 16-bit code to 32-bit code and vice versa require the
5570 mode change. However, we can ignore calls to undefined weak symbols,
5571 which should never be executed at runtime. This exception is important
5572 because the assembly writer may have "known" that any definition of the
5573 symbol would be 16-bit code, and that direct jumps were therefore
5574 acceptable. */
5575 *cross_mode_jump_p = (!info->relocatable
5576 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5577 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5578 || (r_type == R_MICROMIPS_26_S1
5579 && !target_is_micromips_code_p)
5580 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5581 && (target_is_16_bit_code_p
5582 || target_is_micromips_code_p))));
5583
5584 local_p = (h == NULL || mips_use_local_got_p (info, h));
5585
5586 gp0 = _bfd_get_gp_value (input_bfd);
5587 gp = _bfd_get_gp_value (abfd);
5588 if (htab->got_info)
5589 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5590
5591 if (gnu_local_gp_p)
5592 symbol = gp;
5593
5594 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5595 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5596 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5597 if (got_page_reloc_p (r_type) && !local_p)
5598 {
5599 r_type = (micromips_reloc_p (r_type)
5600 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5601 addend = 0;
5602 }
5603
5604 /* If we haven't already determined the GOT offset, and we're going
5605 to need it, get it now. */
5606 switch (r_type)
5607 {
5608 case R_MIPS16_CALL16:
5609 case R_MIPS16_GOT16:
5610 case R_MIPS_CALL16:
5611 case R_MIPS_GOT16:
5612 case R_MIPS_GOT_DISP:
5613 case R_MIPS_GOT_HI16:
5614 case R_MIPS_CALL_HI16:
5615 case R_MIPS_GOT_LO16:
5616 case R_MIPS_CALL_LO16:
5617 case R_MICROMIPS_CALL16:
5618 case R_MICROMIPS_GOT16:
5619 case R_MICROMIPS_GOT_DISP:
5620 case R_MICROMIPS_GOT_HI16:
5621 case R_MICROMIPS_CALL_HI16:
5622 case R_MICROMIPS_GOT_LO16:
5623 case R_MICROMIPS_CALL_LO16:
5624 case R_MIPS_TLS_GD:
5625 case R_MIPS_TLS_GOTTPREL:
5626 case R_MIPS_TLS_LDM:
5627 case R_MIPS16_TLS_GD:
5628 case R_MIPS16_TLS_GOTTPREL:
5629 case R_MIPS16_TLS_LDM:
5630 case R_MICROMIPS_TLS_GD:
5631 case R_MICROMIPS_TLS_GOTTPREL:
5632 case R_MICROMIPS_TLS_LDM:
5633 /* Find the index into the GOT where this value is located. */
5634 if (tls_ldm_reloc_p (r_type))
5635 {
5636 g = mips_elf_local_got_index (abfd, input_bfd, info,
5637 0, 0, NULL, r_type);
5638 if (g == MINUS_ONE)
5639 return bfd_reloc_outofrange;
5640 }
5641 else if (!local_p)
5642 {
5643 /* On VxWorks, CALL relocations should refer to the .got.plt
5644 entry, which is initialized to point at the PLT stub. */
5645 if (htab->is_vxworks
5646 && (call_hi16_reloc_p (r_type)
5647 || call_lo16_reloc_p (r_type)
5648 || call16_reloc_p (r_type)))
5649 {
5650 BFD_ASSERT (addend == 0);
5651 BFD_ASSERT (h->root.needs_plt);
5652 g = mips_elf_gotplt_index (info, &h->root);
5653 }
5654 else
5655 {
5656 BFD_ASSERT (addend == 0);
5657 g = mips_elf_global_got_index (abfd, info, input_bfd,
5658 &h->root, r_type);
5659 if (!TLS_RELOC_P (r_type)
5660 && !elf_hash_table (info)->dynamic_sections_created)
5661 /* This is a static link. We must initialize the GOT entry. */
5662 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5663 }
5664 }
5665 else if (!htab->is_vxworks
5666 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5667 /* The calculation below does not involve "g". */
5668 break;
5669 else
5670 {
5671 g = mips_elf_local_got_index (abfd, input_bfd, info,
5672 symbol + addend, r_symndx, h, r_type);
5673 if (g == MINUS_ONE)
5674 return bfd_reloc_outofrange;
5675 }
5676
5677 /* Convert GOT indices to actual offsets. */
5678 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5679 break;
5680 }
5681
5682 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5683 symbols are resolved by the loader. Add them to .rela.dyn. */
5684 if (h != NULL && is_gott_symbol (info, &h->root))
5685 {
5686 Elf_Internal_Rela outrel;
5687 bfd_byte *loc;
5688 asection *s;
5689
5690 s = mips_elf_rel_dyn_section (info, FALSE);
5691 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5692
5693 outrel.r_offset = (input_section->output_section->vma
5694 + input_section->output_offset
5695 + relocation->r_offset);
5696 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5697 outrel.r_addend = addend;
5698 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5699
5700 /* If we've written this relocation for a readonly section,
5701 we need to set DF_TEXTREL again, so that we do not delete the
5702 DT_TEXTREL tag. */
5703 if (MIPS_ELF_READONLY_SECTION (input_section))
5704 info->flags |= DF_TEXTREL;
5705
5706 *valuep = 0;
5707 return bfd_reloc_ok;
5708 }
5709
5710 /* Figure out what kind of relocation is being performed. */
5711 switch (r_type)
5712 {
5713 case R_MIPS_NONE:
5714 return bfd_reloc_continue;
5715
5716 case R_MIPS_16:
5717 if (howto->partial_inplace)
5718 addend = _bfd_mips_elf_sign_extend (addend, 16);
5719 value = symbol + addend;
5720 overflowed_p = mips_elf_overflow_p (value, 16);
5721 break;
5722
5723 case R_MIPS_32:
5724 case R_MIPS_REL32:
5725 case R_MIPS_64:
5726 if ((info->shared
5727 || (htab->root.dynamic_sections_created
5728 && h != NULL
5729 && h->root.def_dynamic
5730 && !h->root.def_regular
5731 && !h->has_static_relocs))
5732 && r_symndx != STN_UNDEF
5733 && (h == NULL
5734 || h->root.root.type != bfd_link_hash_undefweak
5735 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5736 && (input_section->flags & SEC_ALLOC) != 0)
5737 {
5738 /* If we're creating a shared library, then we can't know
5739 where the symbol will end up. So, we create a relocation
5740 record in the output, and leave the job up to the dynamic
5741 linker. We must do the same for executable references to
5742 shared library symbols, unless we've decided to use copy
5743 relocs or PLTs instead. */
5744 value = addend;
5745 if (!mips_elf_create_dynamic_relocation (abfd,
5746 info,
5747 relocation,
5748 h,
5749 sec,
5750 symbol,
5751 &value,
5752 input_section))
5753 return bfd_reloc_undefined;
5754 }
5755 else
5756 {
5757 if (r_type != R_MIPS_REL32)
5758 value = symbol + addend;
5759 else
5760 value = addend;
5761 }
5762 value &= howto->dst_mask;
5763 break;
5764
5765 case R_MIPS_PC32:
5766 value = symbol + addend - p;
5767 value &= howto->dst_mask;
5768 break;
5769
5770 case R_MIPS16_26:
5771 /* The calculation for R_MIPS16_26 is just the same as for an
5772 R_MIPS_26. It's only the storage of the relocated field into
5773 the output file that's different. That's handled in
5774 mips_elf_perform_relocation. So, we just fall through to the
5775 R_MIPS_26 case here. */
5776 case R_MIPS_26:
5777 case R_MICROMIPS_26_S1:
5778 {
5779 unsigned int shift;
5780
5781 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5782 the correct ISA mode selector and bit 1 must be 0. */
5783 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5784 return bfd_reloc_outofrange;
5785
5786 /* Shift is 2, unusually, for microMIPS JALX. */
5787 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5788
5789 if (was_local_p)
5790 value = addend | ((p + 4) & (0xfc000000 << shift));
5791 else if (howto->partial_inplace)
5792 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5793 else
5794 value = addend;
5795 value = (value + symbol) >> shift;
5796 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5797 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5798 value &= howto->dst_mask;
5799 }
5800 break;
5801
5802 case R_MIPS_TLS_DTPREL_HI16:
5803 case R_MIPS16_TLS_DTPREL_HI16:
5804 case R_MICROMIPS_TLS_DTPREL_HI16:
5805 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5806 & howto->dst_mask);
5807 break;
5808
5809 case R_MIPS_TLS_DTPREL_LO16:
5810 case R_MIPS_TLS_DTPREL32:
5811 case R_MIPS_TLS_DTPREL64:
5812 case R_MIPS16_TLS_DTPREL_LO16:
5813 case R_MICROMIPS_TLS_DTPREL_LO16:
5814 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5815 break;
5816
5817 case R_MIPS_TLS_TPREL_HI16:
5818 case R_MIPS16_TLS_TPREL_HI16:
5819 case R_MICROMIPS_TLS_TPREL_HI16:
5820 value = (mips_elf_high (addend + symbol - tprel_base (info))
5821 & howto->dst_mask);
5822 break;
5823
5824 case R_MIPS_TLS_TPREL_LO16:
5825 case R_MIPS_TLS_TPREL32:
5826 case R_MIPS_TLS_TPREL64:
5827 case R_MIPS16_TLS_TPREL_LO16:
5828 case R_MICROMIPS_TLS_TPREL_LO16:
5829 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5830 break;
5831
5832 case R_MIPS_HI16:
5833 case R_MIPS16_HI16:
5834 case R_MICROMIPS_HI16:
5835 if (!gp_disp_p)
5836 {
5837 value = mips_elf_high (addend + symbol);
5838 value &= howto->dst_mask;
5839 }
5840 else
5841 {
5842 /* For MIPS16 ABI code we generate this sequence
5843 0: li $v0,%hi(_gp_disp)
5844 4: addiupc $v1,%lo(_gp_disp)
5845 8: sll $v0,16
5846 12: addu $v0,$v1
5847 14: move $gp,$v0
5848 So the offsets of hi and lo relocs are the same, but the
5849 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5850 ADDIUPC clears the low two bits of the instruction address,
5851 so the base is ($t9 + 4) & ~3. */
5852 if (r_type == R_MIPS16_HI16)
5853 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5854 /* The microMIPS .cpload sequence uses the same assembly
5855 instructions as the traditional psABI version, but the
5856 incoming $t9 has the low bit set. */
5857 else if (r_type == R_MICROMIPS_HI16)
5858 value = mips_elf_high (addend + gp - p - 1);
5859 else
5860 value = mips_elf_high (addend + gp - p);
5861 overflowed_p = mips_elf_overflow_p (value, 16);
5862 }
5863 break;
5864
5865 case R_MIPS_LO16:
5866 case R_MIPS16_LO16:
5867 case R_MICROMIPS_LO16:
5868 case R_MICROMIPS_HI0_LO16:
5869 if (!gp_disp_p)
5870 value = (symbol + addend) & howto->dst_mask;
5871 else
5872 {
5873 /* See the comment for R_MIPS16_HI16 above for the reason
5874 for this conditional. */
5875 if (r_type == R_MIPS16_LO16)
5876 value = addend + gp - (p & ~(bfd_vma) 0x3);
5877 else if (r_type == R_MICROMIPS_LO16
5878 || r_type == R_MICROMIPS_HI0_LO16)
5879 value = addend + gp - p + 3;
5880 else
5881 value = addend + gp - p + 4;
5882 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5883 for overflow. But, on, say, IRIX5, relocations against
5884 _gp_disp are normally generated from the .cpload
5885 pseudo-op. It generates code that normally looks like
5886 this:
5887
5888 lui $gp,%hi(_gp_disp)
5889 addiu $gp,$gp,%lo(_gp_disp)
5890 addu $gp,$gp,$t9
5891
5892 Here $t9 holds the address of the function being called,
5893 as required by the MIPS ELF ABI. The R_MIPS_LO16
5894 relocation can easily overflow in this situation, but the
5895 R_MIPS_HI16 relocation will handle the overflow.
5896 Therefore, we consider this a bug in the MIPS ABI, and do
5897 not check for overflow here. */
5898 }
5899 break;
5900
5901 case R_MIPS_LITERAL:
5902 case R_MICROMIPS_LITERAL:
5903 /* Because we don't merge literal sections, we can handle this
5904 just like R_MIPS_GPREL16. In the long run, we should merge
5905 shared literals, and then we will need to additional work
5906 here. */
5907
5908 /* Fall through. */
5909
5910 case R_MIPS16_GPREL:
5911 /* The R_MIPS16_GPREL performs the same calculation as
5912 R_MIPS_GPREL16, but stores the relocated bits in a different
5913 order. We don't need to do anything special here; the
5914 differences are handled in mips_elf_perform_relocation. */
5915 case R_MIPS_GPREL16:
5916 case R_MICROMIPS_GPREL7_S2:
5917 case R_MICROMIPS_GPREL16:
5918 /* Only sign-extend the addend if it was extracted from the
5919 instruction. If the addend was separate, leave it alone,
5920 otherwise we may lose significant bits. */
5921 if (howto->partial_inplace)
5922 addend = _bfd_mips_elf_sign_extend (addend, 16);
5923 value = symbol + addend - gp;
5924 /* If the symbol was local, any earlier relocatable links will
5925 have adjusted its addend with the gp offset, so compensate
5926 for that now. Don't do it for symbols forced local in this
5927 link, though, since they won't have had the gp offset applied
5928 to them before. */
5929 if (was_local_p)
5930 value += gp0;
5931 overflowed_p = mips_elf_overflow_p (value, 16);
5932 break;
5933
5934 case R_MIPS16_GOT16:
5935 case R_MIPS16_CALL16:
5936 case R_MIPS_GOT16:
5937 case R_MIPS_CALL16:
5938 case R_MICROMIPS_GOT16:
5939 case R_MICROMIPS_CALL16:
5940 /* VxWorks does not have separate local and global semantics for
5941 R_MIPS*_GOT16; every relocation evaluates to "G". */
5942 if (!htab->is_vxworks && local_p)
5943 {
5944 value = mips_elf_got16_entry (abfd, input_bfd, info,
5945 symbol + addend, !was_local_p);
5946 if (value == MINUS_ONE)
5947 return bfd_reloc_outofrange;
5948 value
5949 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5950 overflowed_p = mips_elf_overflow_p (value, 16);
5951 break;
5952 }
5953
5954 /* Fall through. */
5955
5956 case R_MIPS_TLS_GD:
5957 case R_MIPS_TLS_GOTTPREL:
5958 case R_MIPS_TLS_LDM:
5959 case R_MIPS_GOT_DISP:
5960 case R_MIPS16_TLS_GD:
5961 case R_MIPS16_TLS_GOTTPREL:
5962 case R_MIPS16_TLS_LDM:
5963 case R_MICROMIPS_TLS_GD:
5964 case R_MICROMIPS_TLS_GOTTPREL:
5965 case R_MICROMIPS_TLS_LDM:
5966 case R_MICROMIPS_GOT_DISP:
5967 value = g;
5968 overflowed_p = mips_elf_overflow_p (value, 16);
5969 break;
5970
5971 case R_MIPS_GPREL32:
5972 value = (addend + symbol + gp0 - gp);
5973 if (!save_addend)
5974 value &= howto->dst_mask;
5975 break;
5976
5977 case R_MIPS_PC16:
5978 case R_MIPS_GNU_REL16_S2:
5979 if (howto->partial_inplace)
5980 addend = _bfd_mips_elf_sign_extend (addend, 18);
5981
5982 if ((symbol + addend) & 3)
5983 return bfd_reloc_outofrange;
5984
5985 value = symbol + addend - p;
5986 overflowed_p = mips_elf_overflow_p (value, 18);
5987 value >>= howto->rightshift;
5988 value &= howto->dst_mask;
5989 break;
5990
5991 case R_MIPS_PC21_S2:
5992 if (howto->partial_inplace)
5993 addend = _bfd_mips_elf_sign_extend (addend, 23);
5994
5995 if ((symbol + addend) & 3)
5996 return bfd_reloc_outofrange;
5997
5998 value = symbol + addend - p;
5999 overflowed_p = mips_elf_overflow_p (value, 23);
6000 value >>= howto->rightshift;
6001 value &= howto->dst_mask;
6002 break;
6003
6004 case R_MIPS_PC26_S2:
6005 if (howto->partial_inplace)
6006 addend = _bfd_mips_elf_sign_extend (addend, 28);
6007
6008 if ((symbol + addend) & 3)
6009 return bfd_reloc_outofrange;
6010
6011 value = symbol + addend - p;
6012 overflowed_p = mips_elf_overflow_p (value, 28);
6013 value >>= howto->rightshift;
6014 value &= howto->dst_mask;
6015 break;
6016
6017 case R_MIPS_PC18_S3:
6018 if (howto->partial_inplace)
6019 addend = _bfd_mips_elf_sign_extend (addend, 21);
6020
6021 if ((symbol + addend) & 7)
6022 return bfd_reloc_outofrange;
6023
6024 value = symbol + addend - ((p | 7) ^ 7);
6025 overflowed_p = mips_elf_overflow_p (value, 21);
6026 value >>= howto->rightshift;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS_PC19_S2:
6031 if (howto->partial_inplace)
6032 addend = _bfd_mips_elf_sign_extend (addend, 21);
6033
6034 if ((symbol + addend) & 3)
6035 return bfd_reloc_outofrange;
6036
6037 value = symbol + addend - p;
6038 overflowed_p = mips_elf_overflow_p (value, 21);
6039 value >>= howto->rightshift;
6040 value &= howto->dst_mask;
6041 break;
6042
6043 case R_MIPS_PCHI16:
6044 value = mips_elf_high (symbol + addend - p);
6045 overflowed_p = mips_elf_overflow_p (value, 16);
6046 value &= howto->dst_mask;
6047 break;
6048
6049 case R_MIPS_PCLO16:
6050 if (howto->partial_inplace)
6051 addend = _bfd_mips_elf_sign_extend (addend, 16);
6052 value = symbol + addend - p;
6053 value &= howto->dst_mask;
6054 break;
6055
6056 case R_MICROMIPS_PC7_S1:
6057 if (howto->partial_inplace)
6058 addend = _bfd_mips_elf_sign_extend (addend, 8);
6059 value = symbol + addend - p;
6060 overflowed_p = mips_elf_overflow_p (value, 8);
6061 value >>= howto->rightshift;
6062 value &= howto->dst_mask;
6063 break;
6064
6065 case R_MICROMIPS_PC10_S1:
6066 if (howto->partial_inplace)
6067 addend = _bfd_mips_elf_sign_extend (addend, 11);
6068 value = symbol + addend - p;
6069 overflowed_p = mips_elf_overflow_p (value, 11);
6070 value >>= howto->rightshift;
6071 value &= howto->dst_mask;
6072 break;
6073
6074 case R_MICROMIPS_PC16_S1:
6075 if (howto->partial_inplace)
6076 addend = _bfd_mips_elf_sign_extend (addend, 17);
6077 value = symbol + addend - p;
6078 overflowed_p = mips_elf_overflow_p (value, 17);
6079 value >>= howto->rightshift;
6080 value &= howto->dst_mask;
6081 break;
6082
6083 case R_MICROMIPS_PC23_S2:
6084 if (howto->partial_inplace)
6085 addend = _bfd_mips_elf_sign_extend (addend, 25);
6086 value = symbol + addend - ((p | 3) ^ 3);
6087 overflowed_p = mips_elf_overflow_p (value, 25);
6088 value >>= howto->rightshift;
6089 value &= howto->dst_mask;
6090 break;
6091
6092 case R_MIPS_GOT_HI16:
6093 case R_MIPS_CALL_HI16:
6094 case R_MICROMIPS_GOT_HI16:
6095 case R_MICROMIPS_CALL_HI16:
6096 /* We're allowed to handle these two relocations identically.
6097 The dynamic linker is allowed to handle the CALL relocations
6098 differently by creating a lazy evaluation stub. */
6099 value = g;
6100 value = mips_elf_high (value);
6101 value &= howto->dst_mask;
6102 break;
6103
6104 case R_MIPS_GOT_LO16:
6105 case R_MIPS_CALL_LO16:
6106 case R_MICROMIPS_GOT_LO16:
6107 case R_MICROMIPS_CALL_LO16:
6108 value = g & howto->dst_mask;
6109 break;
6110
6111 case R_MIPS_GOT_PAGE:
6112 case R_MICROMIPS_GOT_PAGE:
6113 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6114 if (value == MINUS_ONE)
6115 return bfd_reloc_outofrange;
6116 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6117 overflowed_p = mips_elf_overflow_p (value, 16);
6118 break;
6119
6120 case R_MIPS_GOT_OFST:
6121 case R_MICROMIPS_GOT_OFST:
6122 if (local_p)
6123 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6124 else
6125 value = addend;
6126 overflowed_p = mips_elf_overflow_p (value, 16);
6127 break;
6128
6129 case R_MIPS_SUB:
6130 case R_MICROMIPS_SUB:
6131 value = symbol - addend;
6132 value &= howto->dst_mask;
6133 break;
6134
6135 case R_MIPS_HIGHER:
6136 case R_MICROMIPS_HIGHER:
6137 value = mips_elf_higher (addend + symbol);
6138 value &= howto->dst_mask;
6139 break;
6140
6141 case R_MIPS_HIGHEST:
6142 case R_MICROMIPS_HIGHEST:
6143 value = mips_elf_highest (addend + symbol);
6144 value &= howto->dst_mask;
6145 break;
6146
6147 case R_MIPS_SCN_DISP:
6148 case R_MICROMIPS_SCN_DISP:
6149 value = symbol + addend - sec->output_offset;
6150 value &= howto->dst_mask;
6151 break;
6152
6153 case R_MIPS_JALR:
6154 case R_MICROMIPS_JALR:
6155 /* This relocation is only a hint. In some cases, we optimize
6156 it into a bal instruction. But we don't try to optimize
6157 when the symbol does not resolve locally. */
6158 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6159 return bfd_reloc_continue;
6160 value = symbol + addend;
6161 break;
6162
6163 case R_MIPS_PJUMP:
6164 case R_MIPS_GNU_VTINHERIT:
6165 case R_MIPS_GNU_VTENTRY:
6166 /* We don't do anything with these at present. */
6167 return bfd_reloc_continue;
6168
6169 default:
6170 /* An unrecognized relocation type. */
6171 return bfd_reloc_notsupported;
6172 }
6173
6174 /* Store the VALUE for our caller. */
6175 *valuep = value;
6176 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6177 }
6178
6179 /* Obtain the field relocated by RELOCATION. */
6180
6181 static bfd_vma
6182 mips_elf_obtain_contents (reloc_howto_type *howto,
6183 const Elf_Internal_Rela *relocation,
6184 bfd *input_bfd, bfd_byte *contents)
6185 {
6186 bfd_vma x;
6187 bfd_byte *location = contents + relocation->r_offset;
6188
6189 /* Obtain the bytes. */
6190 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
6191
6192 return x;
6193 }
6194
6195 /* It has been determined that the result of the RELOCATION is the
6196 VALUE. Use HOWTO to place VALUE into the output file at the
6197 appropriate position. The SECTION is the section to which the
6198 relocation applies.
6199 CROSS_MODE_JUMP_P is true if the relocation field
6200 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6201
6202 Returns FALSE if anything goes wrong. */
6203
6204 static bfd_boolean
6205 mips_elf_perform_relocation (struct bfd_link_info *info,
6206 reloc_howto_type *howto,
6207 const Elf_Internal_Rela *relocation,
6208 bfd_vma value, bfd *input_bfd,
6209 asection *input_section, bfd_byte *contents,
6210 bfd_boolean cross_mode_jump_p)
6211 {
6212 bfd_vma x;
6213 bfd_byte *location;
6214 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6215
6216 /* Figure out where the relocation is occurring. */
6217 location = contents + relocation->r_offset;
6218
6219 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6220
6221 /* Obtain the current value. */
6222 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6223
6224 /* Clear the field we are setting. */
6225 x &= ~howto->dst_mask;
6226
6227 /* Set the field. */
6228 x |= (value & howto->dst_mask);
6229
6230 /* If required, turn JAL into JALX. */
6231 if (cross_mode_jump_p && jal_reloc_p (r_type))
6232 {
6233 bfd_boolean ok;
6234 bfd_vma opcode = x >> 26;
6235 bfd_vma jalx_opcode;
6236
6237 /* Check to see if the opcode is already JAL or JALX. */
6238 if (r_type == R_MIPS16_26)
6239 {
6240 ok = ((opcode == 0x6) || (opcode == 0x7));
6241 jalx_opcode = 0x7;
6242 }
6243 else if (r_type == R_MICROMIPS_26_S1)
6244 {
6245 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6246 jalx_opcode = 0x3c;
6247 }
6248 else
6249 {
6250 ok = ((opcode == 0x3) || (opcode == 0x1d));
6251 jalx_opcode = 0x1d;
6252 }
6253
6254 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6255 convert J or JALS to JALX. */
6256 if (!ok)
6257 {
6258 (*_bfd_error_handler)
6259 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6260 input_bfd,
6261 input_section,
6262 (unsigned long) relocation->r_offset);
6263 bfd_set_error (bfd_error_bad_value);
6264 return FALSE;
6265 }
6266
6267 /* Make this the JALX opcode. */
6268 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6269 }
6270
6271 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6272 range. */
6273 if (!info->relocatable
6274 && !cross_mode_jump_p
6275 && ((JAL_TO_BAL_P (input_bfd)
6276 && r_type == R_MIPS_26
6277 && (x >> 26) == 0x3) /* jal addr */
6278 || (JALR_TO_BAL_P (input_bfd)
6279 && r_type == R_MIPS_JALR
6280 && x == 0x0320f809) /* jalr t9 */
6281 || (JR_TO_B_P (input_bfd)
6282 && r_type == R_MIPS_JALR
6283 && x == 0x03200008))) /* jr t9 */
6284 {
6285 bfd_vma addr;
6286 bfd_vma dest;
6287 bfd_signed_vma off;
6288
6289 addr = (input_section->output_section->vma
6290 + input_section->output_offset
6291 + relocation->r_offset
6292 + 4);
6293 if (r_type == R_MIPS_26)
6294 dest = (value << 2) | ((addr >> 28) << 28);
6295 else
6296 dest = value;
6297 off = dest - addr;
6298 if (off <= 0x1ffff && off >= -0x20000)
6299 {
6300 if (x == 0x03200008) /* jr t9 */
6301 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6302 else
6303 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6304 }
6305 }
6306
6307 /* Put the value into the output. */
6308 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6309
6310 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6311 location);
6312
6313 return TRUE;
6314 }
6315 \f
6316 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6317 is the original relocation, which is now being transformed into a
6318 dynamic relocation. The ADDENDP is adjusted if necessary; the
6319 caller should store the result in place of the original addend. */
6320
6321 static bfd_boolean
6322 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6323 struct bfd_link_info *info,
6324 const Elf_Internal_Rela *rel,
6325 struct mips_elf_link_hash_entry *h,
6326 asection *sec, bfd_vma symbol,
6327 bfd_vma *addendp, asection *input_section)
6328 {
6329 Elf_Internal_Rela outrel[3];
6330 asection *sreloc;
6331 bfd *dynobj;
6332 int r_type;
6333 long indx;
6334 bfd_boolean defined_p;
6335 struct mips_elf_link_hash_table *htab;
6336
6337 htab = mips_elf_hash_table (info);
6338 BFD_ASSERT (htab != NULL);
6339
6340 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6341 dynobj = elf_hash_table (info)->dynobj;
6342 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6343 BFD_ASSERT (sreloc != NULL);
6344 BFD_ASSERT (sreloc->contents != NULL);
6345 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6346 < sreloc->size);
6347
6348 outrel[0].r_offset =
6349 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6350 if (ABI_64_P (output_bfd))
6351 {
6352 outrel[1].r_offset =
6353 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6354 outrel[2].r_offset =
6355 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6356 }
6357
6358 if (outrel[0].r_offset == MINUS_ONE)
6359 /* The relocation field has been deleted. */
6360 return TRUE;
6361
6362 if (outrel[0].r_offset == MINUS_TWO)
6363 {
6364 /* The relocation field has been converted into a relative value of
6365 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6366 the field to be fully relocated, so add in the symbol's value. */
6367 *addendp += symbol;
6368 return TRUE;
6369 }
6370
6371 /* We must now calculate the dynamic symbol table index to use
6372 in the relocation. */
6373 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6374 {
6375 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6376 indx = h->root.dynindx;
6377 if (SGI_COMPAT (output_bfd))
6378 defined_p = h->root.def_regular;
6379 else
6380 /* ??? glibc's ld.so just adds the final GOT entry to the
6381 relocation field. It therefore treats relocs against
6382 defined symbols in the same way as relocs against
6383 undefined symbols. */
6384 defined_p = FALSE;
6385 }
6386 else
6387 {
6388 if (sec != NULL && bfd_is_abs_section (sec))
6389 indx = 0;
6390 else if (sec == NULL || sec->owner == NULL)
6391 {
6392 bfd_set_error (bfd_error_bad_value);
6393 return FALSE;
6394 }
6395 else
6396 {
6397 indx = elf_section_data (sec->output_section)->dynindx;
6398 if (indx == 0)
6399 {
6400 asection *osec = htab->root.text_index_section;
6401 indx = elf_section_data (osec)->dynindx;
6402 }
6403 if (indx == 0)
6404 abort ();
6405 }
6406
6407 /* Instead of generating a relocation using the section
6408 symbol, we may as well make it a fully relative
6409 relocation. We want to avoid generating relocations to
6410 local symbols because we used to generate them
6411 incorrectly, without adding the original symbol value,
6412 which is mandated by the ABI for section symbols. In
6413 order to give dynamic loaders and applications time to
6414 phase out the incorrect use, we refrain from emitting
6415 section-relative relocations. It's not like they're
6416 useful, after all. This should be a bit more efficient
6417 as well. */
6418 /* ??? Although this behavior is compatible with glibc's ld.so,
6419 the ABI says that relocations against STN_UNDEF should have
6420 a symbol value of 0. Irix rld honors this, so relocations
6421 against STN_UNDEF have no effect. */
6422 if (!SGI_COMPAT (output_bfd))
6423 indx = 0;
6424 defined_p = TRUE;
6425 }
6426
6427 /* If the relocation was previously an absolute relocation and
6428 this symbol will not be referred to by the relocation, we must
6429 adjust it by the value we give it in the dynamic symbol table.
6430 Otherwise leave the job up to the dynamic linker. */
6431 if (defined_p && r_type != R_MIPS_REL32)
6432 *addendp += symbol;
6433
6434 if (htab->is_vxworks)
6435 /* VxWorks uses non-relative relocations for this. */
6436 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6437 else
6438 /* The relocation is always an REL32 relocation because we don't
6439 know where the shared library will wind up at load-time. */
6440 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6441 R_MIPS_REL32);
6442
6443 /* For strict adherence to the ABI specification, we should
6444 generate a R_MIPS_64 relocation record by itself before the
6445 _REL32/_64 record as well, such that the addend is read in as
6446 a 64-bit value (REL32 is a 32-bit relocation, after all).
6447 However, since none of the existing ELF64 MIPS dynamic
6448 loaders seems to care, we don't waste space with these
6449 artificial relocations. If this turns out to not be true,
6450 mips_elf_allocate_dynamic_relocation() should be tweaked so
6451 as to make room for a pair of dynamic relocations per
6452 invocation if ABI_64_P, and here we should generate an
6453 additional relocation record with R_MIPS_64 by itself for a
6454 NULL symbol before this relocation record. */
6455 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6456 ABI_64_P (output_bfd)
6457 ? R_MIPS_64
6458 : R_MIPS_NONE);
6459 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6460
6461 /* Adjust the output offset of the relocation to reference the
6462 correct location in the output file. */
6463 outrel[0].r_offset += (input_section->output_section->vma
6464 + input_section->output_offset);
6465 outrel[1].r_offset += (input_section->output_section->vma
6466 + input_section->output_offset);
6467 outrel[2].r_offset += (input_section->output_section->vma
6468 + input_section->output_offset);
6469
6470 /* Put the relocation back out. We have to use the special
6471 relocation outputter in the 64-bit case since the 64-bit
6472 relocation format is non-standard. */
6473 if (ABI_64_P (output_bfd))
6474 {
6475 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6476 (output_bfd, &outrel[0],
6477 (sreloc->contents
6478 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6479 }
6480 else if (htab->is_vxworks)
6481 {
6482 /* VxWorks uses RELA rather than REL dynamic relocations. */
6483 outrel[0].r_addend = *addendp;
6484 bfd_elf32_swap_reloca_out
6485 (output_bfd, &outrel[0],
6486 (sreloc->contents
6487 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6488 }
6489 else
6490 bfd_elf32_swap_reloc_out
6491 (output_bfd, &outrel[0],
6492 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6493
6494 /* We've now added another relocation. */
6495 ++sreloc->reloc_count;
6496
6497 /* Make sure the output section is writable. The dynamic linker
6498 will be writing to it. */
6499 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6500 |= SHF_WRITE;
6501
6502 /* On IRIX5, make an entry of compact relocation info. */
6503 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6504 {
6505 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6506 bfd_byte *cr;
6507
6508 if (scpt)
6509 {
6510 Elf32_crinfo cptrel;
6511
6512 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6513 cptrel.vaddr = (rel->r_offset
6514 + input_section->output_section->vma
6515 + input_section->output_offset);
6516 if (r_type == R_MIPS_REL32)
6517 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6518 else
6519 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6520 mips_elf_set_cr_dist2to (cptrel, 0);
6521 cptrel.konst = *addendp;
6522
6523 cr = (scpt->contents
6524 + sizeof (Elf32_External_compact_rel));
6525 mips_elf_set_cr_relvaddr (cptrel, 0);
6526 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6527 ((Elf32_External_crinfo *) cr
6528 + scpt->reloc_count));
6529 ++scpt->reloc_count;
6530 }
6531 }
6532
6533 /* If we've written this relocation for a readonly section,
6534 we need to set DF_TEXTREL again, so that we do not delete the
6535 DT_TEXTREL tag. */
6536 if (MIPS_ELF_READONLY_SECTION (input_section))
6537 info->flags |= DF_TEXTREL;
6538
6539 return TRUE;
6540 }
6541 \f
6542 /* Return the MACH for a MIPS e_flags value. */
6543
6544 unsigned long
6545 _bfd_elf_mips_mach (flagword flags)
6546 {
6547 switch (flags & EF_MIPS_MACH)
6548 {
6549 case E_MIPS_MACH_3900:
6550 return bfd_mach_mips3900;
6551
6552 case E_MIPS_MACH_4010:
6553 return bfd_mach_mips4010;
6554
6555 case E_MIPS_MACH_4100:
6556 return bfd_mach_mips4100;
6557
6558 case E_MIPS_MACH_4111:
6559 return bfd_mach_mips4111;
6560
6561 case E_MIPS_MACH_4120:
6562 return bfd_mach_mips4120;
6563
6564 case E_MIPS_MACH_4650:
6565 return bfd_mach_mips4650;
6566
6567 case E_MIPS_MACH_5400:
6568 return bfd_mach_mips5400;
6569
6570 case E_MIPS_MACH_5500:
6571 return bfd_mach_mips5500;
6572
6573 case E_MIPS_MACH_5900:
6574 return bfd_mach_mips5900;
6575
6576 case E_MIPS_MACH_9000:
6577 return bfd_mach_mips9000;
6578
6579 case E_MIPS_MACH_SB1:
6580 return bfd_mach_mips_sb1;
6581
6582 case E_MIPS_MACH_LS2E:
6583 return bfd_mach_mips_loongson_2e;
6584
6585 case E_MIPS_MACH_LS2F:
6586 return bfd_mach_mips_loongson_2f;
6587
6588 case E_MIPS_MACH_LS3A:
6589 return bfd_mach_mips_loongson_3a;
6590
6591 case E_MIPS_MACH_OCTEON3:
6592 return bfd_mach_mips_octeon3;
6593
6594 case E_MIPS_MACH_OCTEON2:
6595 return bfd_mach_mips_octeon2;
6596
6597 case E_MIPS_MACH_OCTEON:
6598 return bfd_mach_mips_octeon;
6599
6600 case E_MIPS_MACH_XLR:
6601 return bfd_mach_mips_xlr;
6602
6603 default:
6604 switch (flags & EF_MIPS_ARCH)
6605 {
6606 default:
6607 case E_MIPS_ARCH_1:
6608 return bfd_mach_mips3000;
6609
6610 case E_MIPS_ARCH_2:
6611 return bfd_mach_mips6000;
6612
6613 case E_MIPS_ARCH_3:
6614 return bfd_mach_mips4000;
6615
6616 case E_MIPS_ARCH_4:
6617 return bfd_mach_mips8000;
6618
6619 case E_MIPS_ARCH_5:
6620 return bfd_mach_mips5;
6621
6622 case E_MIPS_ARCH_32:
6623 return bfd_mach_mipsisa32;
6624
6625 case E_MIPS_ARCH_64:
6626 return bfd_mach_mipsisa64;
6627
6628 case E_MIPS_ARCH_32R2:
6629 return bfd_mach_mipsisa32r2;
6630
6631 case E_MIPS_ARCH_64R2:
6632 return bfd_mach_mipsisa64r2;
6633
6634 case E_MIPS_ARCH_32R6:
6635 return bfd_mach_mipsisa32r6;
6636
6637 case E_MIPS_ARCH_64R6:
6638 return bfd_mach_mipsisa64r6;
6639 }
6640 }
6641
6642 return 0;
6643 }
6644
6645 /* Return printable name for ABI. */
6646
6647 static INLINE char *
6648 elf_mips_abi_name (bfd *abfd)
6649 {
6650 flagword flags;
6651
6652 flags = elf_elfheader (abfd)->e_flags;
6653 switch (flags & EF_MIPS_ABI)
6654 {
6655 case 0:
6656 if (ABI_N32_P (abfd))
6657 return "N32";
6658 else if (ABI_64_P (abfd))
6659 return "64";
6660 else
6661 return "none";
6662 case E_MIPS_ABI_O32:
6663 return "O32";
6664 case E_MIPS_ABI_O64:
6665 return "O64";
6666 case E_MIPS_ABI_EABI32:
6667 return "EABI32";
6668 case E_MIPS_ABI_EABI64:
6669 return "EABI64";
6670 default:
6671 return "unknown abi";
6672 }
6673 }
6674 \f
6675 /* MIPS ELF uses two common sections. One is the usual one, and the
6676 other is for small objects. All the small objects are kept
6677 together, and then referenced via the gp pointer, which yields
6678 faster assembler code. This is what we use for the small common
6679 section. This approach is copied from ecoff.c. */
6680 static asection mips_elf_scom_section;
6681 static asymbol mips_elf_scom_symbol;
6682 static asymbol *mips_elf_scom_symbol_ptr;
6683
6684 /* MIPS ELF also uses an acommon section, which represents an
6685 allocated common symbol which may be overridden by a
6686 definition in a shared library. */
6687 static asection mips_elf_acom_section;
6688 static asymbol mips_elf_acom_symbol;
6689 static asymbol *mips_elf_acom_symbol_ptr;
6690
6691 /* This is used for both the 32-bit and the 64-bit ABI. */
6692
6693 void
6694 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6695 {
6696 elf_symbol_type *elfsym;
6697
6698 /* Handle the special MIPS section numbers that a symbol may use. */
6699 elfsym = (elf_symbol_type *) asym;
6700 switch (elfsym->internal_elf_sym.st_shndx)
6701 {
6702 case SHN_MIPS_ACOMMON:
6703 /* This section is used in a dynamically linked executable file.
6704 It is an allocated common section. The dynamic linker can
6705 either resolve these symbols to something in a shared
6706 library, or it can just leave them here. For our purposes,
6707 we can consider these symbols to be in a new section. */
6708 if (mips_elf_acom_section.name == NULL)
6709 {
6710 /* Initialize the acommon section. */
6711 mips_elf_acom_section.name = ".acommon";
6712 mips_elf_acom_section.flags = SEC_ALLOC;
6713 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6714 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6715 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6716 mips_elf_acom_symbol.name = ".acommon";
6717 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6718 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6719 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6720 }
6721 asym->section = &mips_elf_acom_section;
6722 break;
6723
6724 case SHN_COMMON:
6725 /* Common symbols less than the GP size are automatically
6726 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6727 if (asym->value > elf_gp_size (abfd)
6728 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6729 || IRIX_COMPAT (abfd) == ict_irix6)
6730 break;
6731 /* Fall through. */
6732 case SHN_MIPS_SCOMMON:
6733 if (mips_elf_scom_section.name == NULL)
6734 {
6735 /* Initialize the small common section. */
6736 mips_elf_scom_section.name = ".scommon";
6737 mips_elf_scom_section.flags = SEC_IS_COMMON;
6738 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6739 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6740 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6741 mips_elf_scom_symbol.name = ".scommon";
6742 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6743 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6744 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6745 }
6746 asym->section = &mips_elf_scom_section;
6747 asym->value = elfsym->internal_elf_sym.st_size;
6748 break;
6749
6750 case SHN_MIPS_SUNDEFINED:
6751 asym->section = bfd_und_section_ptr;
6752 break;
6753
6754 case SHN_MIPS_TEXT:
6755 {
6756 asection *section = bfd_get_section_by_name (abfd, ".text");
6757
6758 if (section != NULL)
6759 {
6760 asym->section = section;
6761 /* MIPS_TEXT is a bit special, the address is not an offset
6762 to the base of the .text section. So substract the section
6763 base address to make it an offset. */
6764 asym->value -= section->vma;
6765 }
6766 }
6767 break;
6768
6769 case SHN_MIPS_DATA:
6770 {
6771 asection *section = bfd_get_section_by_name (abfd, ".data");
6772
6773 if (section != NULL)
6774 {
6775 asym->section = section;
6776 /* MIPS_DATA is a bit special, the address is not an offset
6777 to the base of the .data section. So substract the section
6778 base address to make it an offset. */
6779 asym->value -= section->vma;
6780 }
6781 }
6782 break;
6783 }
6784
6785 /* If this is an odd-valued function symbol, assume it's a MIPS16
6786 or microMIPS one. */
6787 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6788 && (asym->value & 1) != 0)
6789 {
6790 asym->value--;
6791 if (MICROMIPS_P (abfd))
6792 elfsym->internal_elf_sym.st_other
6793 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6794 else
6795 elfsym->internal_elf_sym.st_other
6796 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6797 }
6798 }
6799 \f
6800 /* Implement elf_backend_eh_frame_address_size. This differs from
6801 the default in the way it handles EABI64.
6802
6803 EABI64 was originally specified as an LP64 ABI, and that is what
6804 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6805 historically accepted the combination of -mabi=eabi and -mlong32,
6806 and this ILP32 variation has become semi-official over time.
6807 Both forms use elf32 and have pointer-sized FDE addresses.
6808
6809 If an EABI object was generated by GCC 4.0 or above, it will have
6810 an empty .gcc_compiled_longXX section, where XX is the size of longs
6811 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6812 have no special marking to distinguish them from LP64 objects.
6813
6814 We don't want users of the official LP64 ABI to be punished for the
6815 existence of the ILP32 variant, but at the same time, we don't want
6816 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6817 We therefore take the following approach:
6818
6819 - If ABFD contains a .gcc_compiled_longXX section, use it to
6820 determine the pointer size.
6821
6822 - Otherwise check the type of the first relocation. Assume that
6823 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6824
6825 - Otherwise punt.
6826
6827 The second check is enough to detect LP64 objects generated by pre-4.0
6828 compilers because, in the kind of output generated by those compilers,
6829 the first relocation will be associated with either a CIE personality
6830 routine or an FDE start address. Furthermore, the compilers never
6831 used a special (non-pointer) encoding for this ABI.
6832
6833 Checking the relocation type should also be safe because there is no
6834 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6835 did so. */
6836
6837 unsigned int
6838 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6839 {
6840 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6841 return 8;
6842 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6843 {
6844 bfd_boolean long32_p, long64_p;
6845
6846 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6847 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6848 if (long32_p && long64_p)
6849 return 0;
6850 if (long32_p)
6851 return 4;
6852 if (long64_p)
6853 return 8;
6854
6855 if (sec->reloc_count > 0
6856 && elf_section_data (sec)->relocs != NULL
6857 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6858 == R_MIPS_64))
6859 return 8;
6860
6861 return 0;
6862 }
6863 return 4;
6864 }
6865 \f
6866 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6867 relocations against two unnamed section symbols to resolve to the
6868 same address. For example, if we have code like:
6869
6870 lw $4,%got_disp(.data)($gp)
6871 lw $25,%got_disp(.text)($gp)
6872 jalr $25
6873
6874 then the linker will resolve both relocations to .data and the program
6875 will jump there rather than to .text.
6876
6877 We can work around this problem by giving names to local section symbols.
6878 This is also what the MIPSpro tools do. */
6879
6880 bfd_boolean
6881 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6882 {
6883 return SGI_COMPAT (abfd);
6884 }
6885 \f
6886 /* Work over a section just before writing it out. This routine is
6887 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6888 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6889 a better way. */
6890
6891 bfd_boolean
6892 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6893 {
6894 if (hdr->sh_type == SHT_MIPS_REGINFO
6895 && hdr->sh_size > 0)
6896 {
6897 bfd_byte buf[4];
6898
6899 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6900 BFD_ASSERT (hdr->contents == NULL);
6901
6902 if (bfd_seek (abfd,
6903 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6904 SEEK_SET) != 0)
6905 return FALSE;
6906 H_PUT_32 (abfd, elf_gp (abfd), buf);
6907 if (bfd_bwrite (buf, 4, abfd) != 4)
6908 return FALSE;
6909 }
6910
6911 if (hdr->sh_type == SHT_MIPS_OPTIONS
6912 && hdr->bfd_section != NULL
6913 && mips_elf_section_data (hdr->bfd_section) != NULL
6914 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6915 {
6916 bfd_byte *contents, *l, *lend;
6917
6918 /* We stored the section contents in the tdata field in the
6919 set_section_contents routine. We save the section contents
6920 so that we don't have to read them again.
6921 At this point we know that elf_gp is set, so we can look
6922 through the section contents to see if there is an
6923 ODK_REGINFO structure. */
6924
6925 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6926 l = contents;
6927 lend = contents + hdr->sh_size;
6928 while (l + sizeof (Elf_External_Options) <= lend)
6929 {
6930 Elf_Internal_Options intopt;
6931
6932 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6933 &intopt);
6934 if (intopt.size < sizeof (Elf_External_Options))
6935 {
6936 (*_bfd_error_handler)
6937 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6938 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6939 break;
6940 }
6941 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6942 {
6943 bfd_byte buf[8];
6944
6945 if (bfd_seek (abfd,
6946 (hdr->sh_offset
6947 + (l - contents)
6948 + sizeof (Elf_External_Options)
6949 + (sizeof (Elf64_External_RegInfo) - 8)),
6950 SEEK_SET) != 0)
6951 return FALSE;
6952 H_PUT_64 (abfd, elf_gp (abfd), buf);
6953 if (bfd_bwrite (buf, 8, abfd) != 8)
6954 return FALSE;
6955 }
6956 else if (intopt.kind == ODK_REGINFO)
6957 {
6958 bfd_byte buf[4];
6959
6960 if (bfd_seek (abfd,
6961 (hdr->sh_offset
6962 + (l - contents)
6963 + sizeof (Elf_External_Options)
6964 + (sizeof (Elf32_External_RegInfo) - 4)),
6965 SEEK_SET) != 0)
6966 return FALSE;
6967 H_PUT_32 (abfd, elf_gp (abfd), buf);
6968 if (bfd_bwrite (buf, 4, abfd) != 4)
6969 return FALSE;
6970 }
6971 l += intopt.size;
6972 }
6973 }
6974
6975 if (hdr->bfd_section != NULL)
6976 {
6977 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6978
6979 /* .sbss is not handled specially here because the GNU/Linux
6980 prelinker can convert .sbss from NOBITS to PROGBITS and
6981 changing it back to NOBITS breaks the binary. The entry in
6982 _bfd_mips_elf_special_sections will ensure the correct flags
6983 are set on .sbss if BFD creates it without reading it from an
6984 input file, and without special handling here the flags set
6985 on it in an input file will be followed. */
6986 if (strcmp (name, ".sdata") == 0
6987 || strcmp (name, ".lit8") == 0
6988 || strcmp (name, ".lit4") == 0)
6989 {
6990 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6991 hdr->sh_type = SHT_PROGBITS;
6992 }
6993 else if (strcmp (name, ".srdata") == 0)
6994 {
6995 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6996 hdr->sh_type = SHT_PROGBITS;
6997 }
6998 else if (strcmp (name, ".compact_rel") == 0)
6999 {
7000 hdr->sh_flags = 0;
7001 hdr->sh_type = SHT_PROGBITS;
7002 }
7003 else if (strcmp (name, ".rtproc") == 0)
7004 {
7005 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7006 {
7007 unsigned int adjust;
7008
7009 adjust = hdr->sh_size % hdr->sh_addralign;
7010 if (adjust != 0)
7011 hdr->sh_size += hdr->sh_addralign - adjust;
7012 }
7013 }
7014 }
7015
7016 return TRUE;
7017 }
7018
7019 /* Handle a MIPS specific section when reading an object file. This
7020 is called when elfcode.h finds a section with an unknown type.
7021 This routine supports both the 32-bit and 64-bit ELF ABI.
7022
7023 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7024 how to. */
7025
7026 bfd_boolean
7027 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7028 Elf_Internal_Shdr *hdr,
7029 const char *name,
7030 int shindex)
7031 {
7032 flagword flags = 0;
7033
7034 /* There ought to be a place to keep ELF backend specific flags, but
7035 at the moment there isn't one. We just keep track of the
7036 sections by their name, instead. Fortunately, the ABI gives
7037 suggested names for all the MIPS specific sections, so we will
7038 probably get away with this. */
7039 switch (hdr->sh_type)
7040 {
7041 case SHT_MIPS_LIBLIST:
7042 if (strcmp (name, ".liblist") != 0)
7043 return FALSE;
7044 break;
7045 case SHT_MIPS_MSYM:
7046 if (strcmp (name, ".msym") != 0)
7047 return FALSE;
7048 break;
7049 case SHT_MIPS_CONFLICT:
7050 if (strcmp (name, ".conflict") != 0)
7051 return FALSE;
7052 break;
7053 case SHT_MIPS_GPTAB:
7054 if (! CONST_STRNEQ (name, ".gptab."))
7055 return FALSE;
7056 break;
7057 case SHT_MIPS_UCODE:
7058 if (strcmp (name, ".ucode") != 0)
7059 return FALSE;
7060 break;
7061 case SHT_MIPS_DEBUG:
7062 if (strcmp (name, ".mdebug") != 0)
7063 return FALSE;
7064 flags = SEC_DEBUGGING;
7065 break;
7066 case SHT_MIPS_REGINFO:
7067 if (strcmp (name, ".reginfo") != 0
7068 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7069 return FALSE;
7070 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7071 break;
7072 case SHT_MIPS_IFACE:
7073 if (strcmp (name, ".MIPS.interfaces") != 0)
7074 return FALSE;
7075 break;
7076 case SHT_MIPS_CONTENT:
7077 if (! CONST_STRNEQ (name, ".MIPS.content"))
7078 return FALSE;
7079 break;
7080 case SHT_MIPS_OPTIONS:
7081 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7082 return FALSE;
7083 break;
7084 case SHT_MIPS_ABIFLAGS:
7085 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7086 return FALSE;
7087 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7088 break;
7089 case SHT_MIPS_DWARF:
7090 if (! CONST_STRNEQ (name, ".debug_")
7091 && ! CONST_STRNEQ (name, ".zdebug_"))
7092 return FALSE;
7093 break;
7094 case SHT_MIPS_SYMBOL_LIB:
7095 if (strcmp (name, ".MIPS.symlib") != 0)
7096 return FALSE;
7097 break;
7098 case SHT_MIPS_EVENTS:
7099 if (! CONST_STRNEQ (name, ".MIPS.events")
7100 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7101 return FALSE;
7102 break;
7103 default:
7104 break;
7105 }
7106
7107 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7108 return FALSE;
7109
7110 if (flags)
7111 {
7112 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7113 (bfd_get_section_flags (abfd,
7114 hdr->bfd_section)
7115 | flags)))
7116 return FALSE;
7117 }
7118
7119 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7120 {
7121 Elf_External_ABIFlags_v0 ext;
7122
7123 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7124 &ext, 0, sizeof ext))
7125 return FALSE;
7126 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7127 &mips_elf_tdata (abfd)->abiflags);
7128 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7129 return FALSE;
7130 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7131 }
7132
7133 /* FIXME: We should record sh_info for a .gptab section. */
7134
7135 /* For a .reginfo section, set the gp value in the tdata information
7136 from the contents of this section. We need the gp value while
7137 processing relocs, so we just get it now. The .reginfo section
7138 is not used in the 64-bit MIPS ELF ABI. */
7139 if (hdr->sh_type == SHT_MIPS_REGINFO)
7140 {
7141 Elf32_External_RegInfo ext;
7142 Elf32_RegInfo s;
7143
7144 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7145 &ext, 0, sizeof ext))
7146 return FALSE;
7147 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7148 elf_gp (abfd) = s.ri_gp_value;
7149 }
7150
7151 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7152 set the gp value based on what we find. We may see both
7153 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7154 they should agree. */
7155 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7156 {
7157 bfd_byte *contents, *l, *lend;
7158
7159 contents = bfd_malloc (hdr->sh_size);
7160 if (contents == NULL)
7161 return FALSE;
7162 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7163 0, hdr->sh_size))
7164 {
7165 free (contents);
7166 return FALSE;
7167 }
7168 l = contents;
7169 lend = contents + hdr->sh_size;
7170 while (l + sizeof (Elf_External_Options) <= lend)
7171 {
7172 Elf_Internal_Options intopt;
7173
7174 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7175 &intopt);
7176 if (intopt.size < sizeof (Elf_External_Options))
7177 {
7178 (*_bfd_error_handler)
7179 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7180 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7181 break;
7182 }
7183 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7184 {
7185 Elf64_Internal_RegInfo intreg;
7186
7187 bfd_mips_elf64_swap_reginfo_in
7188 (abfd,
7189 ((Elf64_External_RegInfo *)
7190 (l + sizeof (Elf_External_Options))),
7191 &intreg);
7192 elf_gp (abfd) = intreg.ri_gp_value;
7193 }
7194 else if (intopt.kind == ODK_REGINFO)
7195 {
7196 Elf32_RegInfo intreg;
7197
7198 bfd_mips_elf32_swap_reginfo_in
7199 (abfd,
7200 ((Elf32_External_RegInfo *)
7201 (l + sizeof (Elf_External_Options))),
7202 &intreg);
7203 elf_gp (abfd) = intreg.ri_gp_value;
7204 }
7205 l += intopt.size;
7206 }
7207 free (contents);
7208 }
7209
7210 return TRUE;
7211 }
7212
7213 /* Set the correct type for a MIPS ELF section. We do this by the
7214 section name, which is a hack, but ought to work. This routine is
7215 used by both the 32-bit and the 64-bit ABI. */
7216
7217 bfd_boolean
7218 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7219 {
7220 const char *name = bfd_get_section_name (abfd, sec);
7221
7222 if (strcmp (name, ".liblist") == 0)
7223 {
7224 hdr->sh_type = SHT_MIPS_LIBLIST;
7225 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7226 /* The sh_link field is set in final_write_processing. */
7227 }
7228 else if (strcmp (name, ".conflict") == 0)
7229 hdr->sh_type = SHT_MIPS_CONFLICT;
7230 else if (CONST_STRNEQ (name, ".gptab."))
7231 {
7232 hdr->sh_type = SHT_MIPS_GPTAB;
7233 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7234 /* The sh_info field is set in final_write_processing. */
7235 }
7236 else if (strcmp (name, ".ucode") == 0)
7237 hdr->sh_type = SHT_MIPS_UCODE;
7238 else if (strcmp (name, ".mdebug") == 0)
7239 {
7240 hdr->sh_type = SHT_MIPS_DEBUG;
7241 /* In a shared object on IRIX 5.3, the .mdebug section has an
7242 entsize of 0. FIXME: Does this matter? */
7243 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7244 hdr->sh_entsize = 0;
7245 else
7246 hdr->sh_entsize = 1;
7247 }
7248 else if (strcmp (name, ".reginfo") == 0)
7249 {
7250 hdr->sh_type = SHT_MIPS_REGINFO;
7251 /* In a shared object on IRIX 5.3, the .reginfo section has an
7252 entsize of 0x18. FIXME: Does this matter? */
7253 if (SGI_COMPAT (abfd))
7254 {
7255 if ((abfd->flags & DYNAMIC) != 0)
7256 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7257 else
7258 hdr->sh_entsize = 1;
7259 }
7260 else
7261 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7262 }
7263 else if (SGI_COMPAT (abfd)
7264 && (strcmp (name, ".hash") == 0
7265 || strcmp (name, ".dynamic") == 0
7266 || strcmp (name, ".dynstr") == 0))
7267 {
7268 if (SGI_COMPAT (abfd))
7269 hdr->sh_entsize = 0;
7270 #if 0
7271 /* This isn't how the IRIX6 linker behaves. */
7272 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7273 #endif
7274 }
7275 else if (strcmp (name, ".got") == 0
7276 || strcmp (name, ".srdata") == 0
7277 || strcmp (name, ".sdata") == 0
7278 || strcmp (name, ".sbss") == 0
7279 || strcmp (name, ".lit4") == 0
7280 || strcmp (name, ".lit8") == 0)
7281 hdr->sh_flags |= SHF_MIPS_GPREL;
7282 else if (strcmp (name, ".MIPS.interfaces") == 0)
7283 {
7284 hdr->sh_type = SHT_MIPS_IFACE;
7285 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7286 }
7287 else if (CONST_STRNEQ (name, ".MIPS.content"))
7288 {
7289 hdr->sh_type = SHT_MIPS_CONTENT;
7290 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7291 /* The sh_info field is set in final_write_processing. */
7292 }
7293 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7294 {
7295 hdr->sh_type = SHT_MIPS_OPTIONS;
7296 hdr->sh_entsize = 1;
7297 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7298 }
7299 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7300 {
7301 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7302 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7303 }
7304 else if (CONST_STRNEQ (name, ".debug_")
7305 || CONST_STRNEQ (name, ".zdebug_"))
7306 {
7307 hdr->sh_type = SHT_MIPS_DWARF;
7308
7309 /* Irix facilities such as libexc expect a single .debug_frame
7310 per executable, the system ones have NOSTRIP set and the linker
7311 doesn't merge sections with different flags so ... */
7312 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7313 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7314 }
7315 else if (strcmp (name, ".MIPS.symlib") == 0)
7316 {
7317 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7318 /* The sh_link and sh_info fields are set in
7319 final_write_processing. */
7320 }
7321 else if (CONST_STRNEQ (name, ".MIPS.events")
7322 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7323 {
7324 hdr->sh_type = SHT_MIPS_EVENTS;
7325 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7326 /* The sh_link field is set in final_write_processing. */
7327 }
7328 else if (strcmp (name, ".msym") == 0)
7329 {
7330 hdr->sh_type = SHT_MIPS_MSYM;
7331 hdr->sh_flags |= SHF_ALLOC;
7332 hdr->sh_entsize = 8;
7333 }
7334
7335 /* The generic elf_fake_sections will set up REL_HDR using the default
7336 kind of relocations. We used to set up a second header for the
7337 non-default kind of relocations here, but only NewABI would use
7338 these, and the IRIX ld doesn't like resulting empty RELA sections.
7339 Thus we create those header only on demand now. */
7340
7341 return TRUE;
7342 }
7343
7344 /* Given a BFD section, try to locate the corresponding ELF section
7345 index. This is used by both the 32-bit and the 64-bit ABI.
7346 Actually, it's not clear to me that the 64-bit ABI supports these,
7347 but for non-PIC objects we will certainly want support for at least
7348 the .scommon section. */
7349
7350 bfd_boolean
7351 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7352 asection *sec, int *retval)
7353 {
7354 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7355 {
7356 *retval = SHN_MIPS_SCOMMON;
7357 return TRUE;
7358 }
7359 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7360 {
7361 *retval = SHN_MIPS_ACOMMON;
7362 return TRUE;
7363 }
7364 return FALSE;
7365 }
7366 \f
7367 /* Hook called by the linker routine which adds symbols from an object
7368 file. We must handle the special MIPS section numbers here. */
7369
7370 bfd_boolean
7371 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7372 Elf_Internal_Sym *sym, const char **namep,
7373 flagword *flagsp ATTRIBUTE_UNUSED,
7374 asection **secp, bfd_vma *valp)
7375 {
7376 if (SGI_COMPAT (abfd)
7377 && (abfd->flags & DYNAMIC) != 0
7378 && strcmp (*namep, "_rld_new_interface") == 0)
7379 {
7380 /* Skip IRIX5 rld entry name. */
7381 *namep = NULL;
7382 return TRUE;
7383 }
7384
7385 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7386 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7387 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7388 a magic symbol resolved by the linker, we ignore this bogus definition
7389 of _gp_disp. New ABI objects do not suffer from this problem so this
7390 is not done for them. */
7391 if (!NEWABI_P(abfd)
7392 && (sym->st_shndx == SHN_ABS)
7393 && (strcmp (*namep, "_gp_disp") == 0))
7394 {
7395 *namep = NULL;
7396 return TRUE;
7397 }
7398
7399 switch (sym->st_shndx)
7400 {
7401 case SHN_COMMON:
7402 /* Common symbols less than the GP size are automatically
7403 treated as SHN_MIPS_SCOMMON symbols. */
7404 if (sym->st_size > elf_gp_size (abfd)
7405 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7406 || IRIX_COMPAT (abfd) == ict_irix6)
7407 break;
7408 /* Fall through. */
7409 case SHN_MIPS_SCOMMON:
7410 *secp = bfd_make_section_old_way (abfd, ".scommon");
7411 (*secp)->flags |= SEC_IS_COMMON;
7412 *valp = sym->st_size;
7413 break;
7414
7415 case SHN_MIPS_TEXT:
7416 /* This section is used in a shared object. */
7417 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7418 {
7419 asymbol *elf_text_symbol;
7420 asection *elf_text_section;
7421 bfd_size_type amt = sizeof (asection);
7422
7423 elf_text_section = bfd_zalloc (abfd, amt);
7424 if (elf_text_section == NULL)
7425 return FALSE;
7426
7427 amt = sizeof (asymbol);
7428 elf_text_symbol = bfd_zalloc (abfd, amt);
7429 if (elf_text_symbol == NULL)
7430 return FALSE;
7431
7432 /* Initialize the section. */
7433
7434 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7435 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7436
7437 elf_text_section->symbol = elf_text_symbol;
7438 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7439
7440 elf_text_section->name = ".text";
7441 elf_text_section->flags = SEC_NO_FLAGS;
7442 elf_text_section->output_section = NULL;
7443 elf_text_section->owner = abfd;
7444 elf_text_symbol->name = ".text";
7445 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7446 elf_text_symbol->section = elf_text_section;
7447 }
7448 /* This code used to do *secp = bfd_und_section_ptr if
7449 info->shared. I don't know why, and that doesn't make sense,
7450 so I took it out. */
7451 *secp = mips_elf_tdata (abfd)->elf_text_section;
7452 break;
7453
7454 case SHN_MIPS_ACOMMON:
7455 /* Fall through. XXX Can we treat this as allocated data? */
7456 case SHN_MIPS_DATA:
7457 /* This section is used in a shared object. */
7458 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7459 {
7460 asymbol *elf_data_symbol;
7461 asection *elf_data_section;
7462 bfd_size_type amt = sizeof (asection);
7463
7464 elf_data_section = bfd_zalloc (abfd, amt);
7465 if (elf_data_section == NULL)
7466 return FALSE;
7467
7468 amt = sizeof (asymbol);
7469 elf_data_symbol = bfd_zalloc (abfd, amt);
7470 if (elf_data_symbol == NULL)
7471 return FALSE;
7472
7473 /* Initialize the section. */
7474
7475 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7476 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7477
7478 elf_data_section->symbol = elf_data_symbol;
7479 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7480
7481 elf_data_section->name = ".data";
7482 elf_data_section->flags = SEC_NO_FLAGS;
7483 elf_data_section->output_section = NULL;
7484 elf_data_section->owner = abfd;
7485 elf_data_symbol->name = ".data";
7486 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7487 elf_data_symbol->section = elf_data_section;
7488 }
7489 /* This code used to do *secp = bfd_und_section_ptr if
7490 info->shared. I don't know why, and that doesn't make sense,
7491 so I took it out. */
7492 *secp = mips_elf_tdata (abfd)->elf_data_section;
7493 break;
7494
7495 case SHN_MIPS_SUNDEFINED:
7496 *secp = bfd_und_section_ptr;
7497 break;
7498 }
7499
7500 if (SGI_COMPAT (abfd)
7501 && ! info->shared
7502 && info->output_bfd->xvec == abfd->xvec
7503 && strcmp (*namep, "__rld_obj_head") == 0)
7504 {
7505 struct elf_link_hash_entry *h;
7506 struct bfd_link_hash_entry *bh;
7507
7508 /* Mark __rld_obj_head as dynamic. */
7509 bh = NULL;
7510 if (! (_bfd_generic_link_add_one_symbol
7511 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7512 get_elf_backend_data (abfd)->collect, &bh)))
7513 return FALSE;
7514
7515 h = (struct elf_link_hash_entry *) bh;
7516 h->non_elf = 0;
7517 h->def_regular = 1;
7518 h->type = STT_OBJECT;
7519
7520 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7521 return FALSE;
7522
7523 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7524 mips_elf_hash_table (info)->rld_symbol = h;
7525 }
7526
7527 /* If this is a mips16 text symbol, add 1 to the value to make it
7528 odd. This will cause something like .word SYM to come up with
7529 the right value when it is loaded into the PC. */
7530 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7531 ++*valp;
7532
7533 return TRUE;
7534 }
7535
7536 /* This hook function is called before the linker writes out a global
7537 symbol. We mark symbols as small common if appropriate. This is
7538 also where we undo the increment of the value for a mips16 symbol. */
7539
7540 int
7541 _bfd_mips_elf_link_output_symbol_hook
7542 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7543 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7544 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7545 {
7546 /* If we see a common symbol, which implies a relocatable link, then
7547 if a symbol was small common in an input file, mark it as small
7548 common in the output file. */
7549 if (sym->st_shndx == SHN_COMMON
7550 && strcmp (input_sec->name, ".scommon") == 0)
7551 sym->st_shndx = SHN_MIPS_SCOMMON;
7552
7553 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7554 sym->st_value &= ~1;
7555
7556 return 1;
7557 }
7558 \f
7559 /* Functions for the dynamic linker. */
7560
7561 /* Create dynamic sections when linking against a dynamic object. */
7562
7563 bfd_boolean
7564 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7565 {
7566 struct elf_link_hash_entry *h;
7567 struct bfd_link_hash_entry *bh;
7568 flagword flags;
7569 register asection *s;
7570 const char * const *namep;
7571 struct mips_elf_link_hash_table *htab;
7572
7573 htab = mips_elf_hash_table (info);
7574 BFD_ASSERT (htab != NULL);
7575
7576 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7577 | SEC_LINKER_CREATED | SEC_READONLY);
7578
7579 /* The psABI requires a read-only .dynamic section, but the VxWorks
7580 EABI doesn't. */
7581 if (!htab->is_vxworks)
7582 {
7583 s = bfd_get_linker_section (abfd, ".dynamic");
7584 if (s != NULL)
7585 {
7586 if (! bfd_set_section_flags (abfd, s, flags))
7587 return FALSE;
7588 }
7589 }
7590
7591 /* We need to create .got section. */
7592 if (!mips_elf_create_got_section (abfd, info))
7593 return FALSE;
7594
7595 if (! mips_elf_rel_dyn_section (info, TRUE))
7596 return FALSE;
7597
7598 /* Create .stub section. */
7599 s = bfd_make_section_anyway_with_flags (abfd,
7600 MIPS_ELF_STUB_SECTION_NAME (abfd),
7601 flags | SEC_CODE);
7602 if (s == NULL
7603 || ! bfd_set_section_alignment (abfd, s,
7604 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7605 return FALSE;
7606 htab->sstubs = s;
7607
7608 if (!mips_elf_hash_table (info)->use_rld_obj_head
7609 && !info->shared
7610 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7611 {
7612 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7613 flags &~ (flagword) SEC_READONLY);
7614 if (s == NULL
7615 || ! bfd_set_section_alignment (abfd, s,
7616 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7617 return FALSE;
7618 }
7619
7620 /* On IRIX5, we adjust add some additional symbols and change the
7621 alignments of several sections. There is no ABI documentation
7622 indicating that this is necessary on IRIX6, nor any evidence that
7623 the linker takes such action. */
7624 if (IRIX_COMPAT (abfd) == ict_irix5)
7625 {
7626 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7627 {
7628 bh = NULL;
7629 if (! (_bfd_generic_link_add_one_symbol
7630 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7631 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7632 return FALSE;
7633
7634 h = (struct elf_link_hash_entry *) bh;
7635 h->non_elf = 0;
7636 h->def_regular = 1;
7637 h->type = STT_SECTION;
7638
7639 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7640 return FALSE;
7641 }
7642
7643 /* We need to create a .compact_rel section. */
7644 if (SGI_COMPAT (abfd))
7645 {
7646 if (!mips_elf_create_compact_rel_section (abfd, info))
7647 return FALSE;
7648 }
7649
7650 /* Change alignments of some sections. */
7651 s = bfd_get_linker_section (abfd, ".hash");
7652 if (s != NULL)
7653 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7654
7655 s = bfd_get_linker_section (abfd, ".dynsym");
7656 if (s != NULL)
7657 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7658
7659 s = bfd_get_linker_section (abfd, ".dynstr");
7660 if (s != NULL)
7661 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7662
7663 /* ??? */
7664 s = bfd_get_section_by_name (abfd, ".reginfo");
7665 if (s != NULL)
7666 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7667
7668 s = bfd_get_linker_section (abfd, ".dynamic");
7669 if (s != NULL)
7670 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7671 }
7672
7673 if (!info->shared)
7674 {
7675 const char *name;
7676
7677 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7678 bh = NULL;
7679 if (!(_bfd_generic_link_add_one_symbol
7680 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7681 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7682 return FALSE;
7683
7684 h = (struct elf_link_hash_entry *) bh;
7685 h->non_elf = 0;
7686 h->def_regular = 1;
7687 h->type = STT_SECTION;
7688
7689 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7690 return FALSE;
7691
7692 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7693 {
7694 /* __rld_map is a four byte word located in the .data section
7695 and is filled in by the rtld to contain a pointer to
7696 the _r_debug structure. Its symbol value will be set in
7697 _bfd_mips_elf_finish_dynamic_symbol. */
7698 s = bfd_get_linker_section (abfd, ".rld_map");
7699 BFD_ASSERT (s != NULL);
7700
7701 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7702 bh = NULL;
7703 if (!(_bfd_generic_link_add_one_symbol
7704 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7705 get_elf_backend_data (abfd)->collect, &bh)))
7706 return FALSE;
7707
7708 h = (struct elf_link_hash_entry *) bh;
7709 h->non_elf = 0;
7710 h->def_regular = 1;
7711 h->type = STT_OBJECT;
7712
7713 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7714 return FALSE;
7715 mips_elf_hash_table (info)->rld_symbol = h;
7716 }
7717 }
7718
7719 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7720 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7721 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7722 return FALSE;
7723
7724 /* Cache the sections created above. */
7725 htab->splt = bfd_get_linker_section (abfd, ".plt");
7726 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7727 if (htab->is_vxworks)
7728 {
7729 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7730 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7731 }
7732 else
7733 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7734 if (!htab->sdynbss
7735 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7736 || !htab->srelplt
7737 || !htab->splt)
7738 abort ();
7739
7740 /* Do the usual VxWorks handling. */
7741 if (htab->is_vxworks
7742 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7743 return FALSE;
7744
7745 return TRUE;
7746 }
7747 \f
7748 /* Return true if relocation REL against section SEC is a REL rather than
7749 RELA relocation. RELOCS is the first relocation in the section and
7750 ABFD is the bfd that contains SEC. */
7751
7752 static bfd_boolean
7753 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7754 const Elf_Internal_Rela *relocs,
7755 const Elf_Internal_Rela *rel)
7756 {
7757 Elf_Internal_Shdr *rel_hdr;
7758 const struct elf_backend_data *bed;
7759
7760 /* To determine which flavor of relocation this is, we depend on the
7761 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7762 rel_hdr = elf_section_data (sec)->rel.hdr;
7763 if (rel_hdr == NULL)
7764 return FALSE;
7765 bed = get_elf_backend_data (abfd);
7766 return ((size_t) (rel - relocs)
7767 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7768 }
7769
7770 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7771 HOWTO is the relocation's howto and CONTENTS points to the contents
7772 of the section that REL is against. */
7773
7774 static bfd_vma
7775 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7776 reloc_howto_type *howto, bfd_byte *contents)
7777 {
7778 bfd_byte *location;
7779 unsigned int r_type;
7780 bfd_vma addend;
7781
7782 r_type = ELF_R_TYPE (abfd, rel->r_info);
7783 location = contents + rel->r_offset;
7784
7785 /* Get the addend, which is stored in the input file. */
7786 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7787 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7788 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7789
7790 return addend & howto->src_mask;
7791 }
7792
7793 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7794 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7795 and update *ADDEND with the final addend. Return true on success
7796 or false if the LO16 could not be found. RELEND is the exclusive
7797 upper bound on the relocations for REL's section. */
7798
7799 static bfd_boolean
7800 mips_elf_add_lo16_rel_addend (bfd *abfd,
7801 const Elf_Internal_Rela *rel,
7802 const Elf_Internal_Rela *relend,
7803 bfd_byte *contents, bfd_vma *addend)
7804 {
7805 unsigned int r_type, lo16_type;
7806 const Elf_Internal_Rela *lo16_relocation;
7807 reloc_howto_type *lo16_howto;
7808 bfd_vma l;
7809
7810 r_type = ELF_R_TYPE (abfd, rel->r_info);
7811 if (mips16_reloc_p (r_type))
7812 lo16_type = R_MIPS16_LO16;
7813 else if (micromips_reloc_p (r_type))
7814 lo16_type = R_MICROMIPS_LO16;
7815 else if (r_type == R_MIPS_PCHI16)
7816 lo16_type = R_MIPS_PCLO16;
7817 else
7818 lo16_type = R_MIPS_LO16;
7819
7820 /* The combined value is the sum of the HI16 addend, left-shifted by
7821 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7822 code does a `lui' of the HI16 value, and then an `addiu' of the
7823 LO16 value.)
7824
7825 Scan ahead to find a matching LO16 relocation.
7826
7827 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7828 be immediately following. However, for the IRIX6 ABI, the next
7829 relocation may be a composed relocation consisting of several
7830 relocations for the same address. In that case, the R_MIPS_LO16
7831 relocation may occur as one of these. We permit a similar
7832 extension in general, as that is useful for GCC.
7833
7834 In some cases GCC dead code elimination removes the LO16 but keeps
7835 the corresponding HI16. This is strictly speaking a violation of
7836 the ABI but not immediately harmful. */
7837 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7838 if (lo16_relocation == NULL)
7839 return FALSE;
7840
7841 /* Obtain the addend kept there. */
7842 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7843 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7844
7845 l <<= lo16_howto->rightshift;
7846 l = _bfd_mips_elf_sign_extend (l, 16);
7847
7848 *addend <<= 16;
7849 *addend += l;
7850 return TRUE;
7851 }
7852
7853 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7854 store the contents in *CONTENTS on success. Assume that *CONTENTS
7855 already holds the contents if it is nonull on entry. */
7856
7857 static bfd_boolean
7858 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7859 {
7860 if (*contents)
7861 return TRUE;
7862
7863 /* Get cached copy if it exists. */
7864 if (elf_section_data (sec)->this_hdr.contents != NULL)
7865 {
7866 *contents = elf_section_data (sec)->this_hdr.contents;
7867 return TRUE;
7868 }
7869
7870 return bfd_malloc_and_get_section (abfd, sec, contents);
7871 }
7872
7873 /* Make a new PLT record to keep internal data. */
7874
7875 static struct plt_entry *
7876 mips_elf_make_plt_record (bfd *abfd)
7877 {
7878 struct plt_entry *entry;
7879
7880 entry = bfd_zalloc (abfd, sizeof (*entry));
7881 if (entry == NULL)
7882 return NULL;
7883
7884 entry->stub_offset = MINUS_ONE;
7885 entry->mips_offset = MINUS_ONE;
7886 entry->comp_offset = MINUS_ONE;
7887 entry->gotplt_index = MINUS_ONE;
7888 return entry;
7889 }
7890
7891 /* Look through the relocs for a section during the first phase, and
7892 allocate space in the global offset table and record the need for
7893 standard MIPS and compressed procedure linkage table entries. */
7894
7895 bfd_boolean
7896 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7897 asection *sec, const Elf_Internal_Rela *relocs)
7898 {
7899 const char *name;
7900 bfd *dynobj;
7901 Elf_Internal_Shdr *symtab_hdr;
7902 struct elf_link_hash_entry **sym_hashes;
7903 size_t extsymoff;
7904 const Elf_Internal_Rela *rel;
7905 const Elf_Internal_Rela *rel_end;
7906 asection *sreloc;
7907 const struct elf_backend_data *bed;
7908 struct mips_elf_link_hash_table *htab;
7909 bfd_byte *contents;
7910 bfd_vma addend;
7911 reloc_howto_type *howto;
7912
7913 if (info->relocatable)
7914 return TRUE;
7915
7916 htab = mips_elf_hash_table (info);
7917 BFD_ASSERT (htab != NULL);
7918
7919 dynobj = elf_hash_table (info)->dynobj;
7920 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7921 sym_hashes = elf_sym_hashes (abfd);
7922 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7923
7924 bed = get_elf_backend_data (abfd);
7925 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7926
7927 /* Check for the mips16 stub sections. */
7928
7929 name = bfd_get_section_name (abfd, sec);
7930 if (FN_STUB_P (name))
7931 {
7932 unsigned long r_symndx;
7933
7934 /* Look at the relocation information to figure out which symbol
7935 this is for. */
7936
7937 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7938 if (r_symndx == 0)
7939 {
7940 (*_bfd_error_handler)
7941 (_("%B: Warning: cannot determine the target function for"
7942 " stub section `%s'"),
7943 abfd, name);
7944 bfd_set_error (bfd_error_bad_value);
7945 return FALSE;
7946 }
7947
7948 if (r_symndx < extsymoff
7949 || sym_hashes[r_symndx - extsymoff] == NULL)
7950 {
7951 asection *o;
7952
7953 /* This stub is for a local symbol. This stub will only be
7954 needed if there is some relocation in this BFD, other
7955 than a 16 bit function call, which refers to this symbol. */
7956 for (o = abfd->sections; o != NULL; o = o->next)
7957 {
7958 Elf_Internal_Rela *sec_relocs;
7959 const Elf_Internal_Rela *r, *rend;
7960
7961 /* We can ignore stub sections when looking for relocs. */
7962 if ((o->flags & SEC_RELOC) == 0
7963 || o->reloc_count == 0
7964 || section_allows_mips16_refs_p (o))
7965 continue;
7966
7967 sec_relocs
7968 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7969 info->keep_memory);
7970 if (sec_relocs == NULL)
7971 return FALSE;
7972
7973 rend = sec_relocs + o->reloc_count;
7974 for (r = sec_relocs; r < rend; r++)
7975 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7976 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7977 break;
7978
7979 if (elf_section_data (o)->relocs != sec_relocs)
7980 free (sec_relocs);
7981
7982 if (r < rend)
7983 break;
7984 }
7985
7986 if (o == NULL)
7987 {
7988 /* There is no non-call reloc for this stub, so we do
7989 not need it. Since this function is called before
7990 the linker maps input sections to output sections, we
7991 can easily discard it by setting the SEC_EXCLUDE
7992 flag. */
7993 sec->flags |= SEC_EXCLUDE;
7994 return TRUE;
7995 }
7996
7997 /* Record this stub in an array of local symbol stubs for
7998 this BFD. */
7999 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8000 {
8001 unsigned long symcount;
8002 asection **n;
8003 bfd_size_type amt;
8004
8005 if (elf_bad_symtab (abfd))
8006 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8007 else
8008 symcount = symtab_hdr->sh_info;
8009 amt = symcount * sizeof (asection *);
8010 n = bfd_zalloc (abfd, amt);
8011 if (n == NULL)
8012 return FALSE;
8013 mips_elf_tdata (abfd)->local_stubs = n;
8014 }
8015
8016 sec->flags |= SEC_KEEP;
8017 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8018
8019 /* We don't need to set mips16_stubs_seen in this case.
8020 That flag is used to see whether we need to look through
8021 the global symbol table for stubs. We don't need to set
8022 it here, because we just have a local stub. */
8023 }
8024 else
8025 {
8026 struct mips_elf_link_hash_entry *h;
8027
8028 h = ((struct mips_elf_link_hash_entry *)
8029 sym_hashes[r_symndx - extsymoff]);
8030
8031 while (h->root.root.type == bfd_link_hash_indirect
8032 || h->root.root.type == bfd_link_hash_warning)
8033 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8034
8035 /* H is the symbol this stub is for. */
8036
8037 /* If we already have an appropriate stub for this function, we
8038 don't need another one, so we can discard this one. Since
8039 this function is called before the linker maps input sections
8040 to output sections, we can easily discard it by setting the
8041 SEC_EXCLUDE flag. */
8042 if (h->fn_stub != NULL)
8043 {
8044 sec->flags |= SEC_EXCLUDE;
8045 return TRUE;
8046 }
8047
8048 sec->flags |= SEC_KEEP;
8049 h->fn_stub = sec;
8050 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8051 }
8052 }
8053 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8054 {
8055 unsigned long r_symndx;
8056 struct mips_elf_link_hash_entry *h;
8057 asection **loc;
8058
8059 /* Look at the relocation information to figure out which symbol
8060 this is for. */
8061
8062 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8063 if (r_symndx == 0)
8064 {
8065 (*_bfd_error_handler)
8066 (_("%B: Warning: cannot determine the target function for"
8067 " stub section `%s'"),
8068 abfd, name);
8069 bfd_set_error (bfd_error_bad_value);
8070 return FALSE;
8071 }
8072
8073 if (r_symndx < extsymoff
8074 || sym_hashes[r_symndx - extsymoff] == NULL)
8075 {
8076 asection *o;
8077
8078 /* This stub is for a local symbol. This stub will only be
8079 needed if there is some relocation (R_MIPS16_26) in this BFD
8080 that refers to this symbol. */
8081 for (o = abfd->sections; o != NULL; o = o->next)
8082 {
8083 Elf_Internal_Rela *sec_relocs;
8084 const Elf_Internal_Rela *r, *rend;
8085
8086 /* We can ignore stub sections when looking for relocs. */
8087 if ((o->flags & SEC_RELOC) == 0
8088 || o->reloc_count == 0
8089 || section_allows_mips16_refs_p (o))
8090 continue;
8091
8092 sec_relocs
8093 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8094 info->keep_memory);
8095 if (sec_relocs == NULL)
8096 return FALSE;
8097
8098 rend = sec_relocs + o->reloc_count;
8099 for (r = sec_relocs; r < rend; r++)
8100 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8101 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8102 break;
8103
8104 if (elf_section_data (o)->relocs != sec_relocs)
8105 free (sec_relocs);
8106
8107 if (r < rend)
8108 break;
8109 }
8110
8111 if (o == NULL)
8112 {
8113 /* There is no non-call reloc for this stub, so we do
8114 not need it. Since this function is called before
8115 the linker maps input sections to output sections, we
8116 can easily discard it by setting the SEC_EXCLUDE
8117 flag. */
8118 sec->flags |= SEC_EXCLUDE;
8119 return TRUE;
8120 }
8121
8122 /* Record this stub in an array of local symbol call_stubs for
8123 this BFD. */
8124 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8125 {
8126 unsigned long symcount;
8127 asection **n;
8128 bfd_size_type amt;
8129
8130 if (elf_bad_symtab (abfd))
8131 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8132 else
8133 symcount = symtab_hdr->sh_info;
8134 amt = symcount * sizeof (asection *);
8135 n = bfd_zalloc (abfd, amt);
8136 if (n == NULL)
8137 return FALSE;
8138 mips_elf_tdata (abfd)->local_call_stubs = n;
8139 }
8140
8141 sec->flags |= SEC_KEEP;
8142 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8143
8144 /* We don't need to set mips16_stubs_seen in this case.
8145 That flag is used to see whether we need to look through
8146 the global symbol table for stubs. We don't need to set
8147 it here, because we just have a local stub. */
8148 }
8149 else
8150 {
8151 h = ((struct mips_elf_link_hash_entry *)
8152 sym_hashes[r_symndx - extsymoff]);
8153
8154 /* H is the symbol this stub is for. */
8155
8156 if (CALL_FP_STUB_P (name))
8157 loc = &h->call_fp_stub;
8158 else
8159 loc = &h->call_stub;
8160
8161 /* If we already have an appropriate stub for this function, we
8162 don't need another one, so we can discard this one. Since
8163 this function is called before the linker maps input sections
8164 to output sections, we can easily discard it by setting the
8165 SEC_EXCLUDE flag. */
8166 if (*loc != NULL)
8167 {
8168 sec->flags |= SEC_EXCLUDE;
8169 return TRUE;
8170 }
8171
8172 sec->flags |= SEC_KEEP;
8173 *loc = sec;
8174 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8175 }
8176 }
8177
8178 sreloc = NULL;
8179 contents = NULL;
8180 for (rel = relocs; rel < rel_end; ++rel)
8181 {
8182 unsigned long r_symndx;
8183 unsigned int r_type;
8184 struct elf_link_hash_entry *h;
8185 bfd_boolean can_make_dynamic_p;
8186 bfd_boolean call_reloc_p;
8187 bfd_boolean constrain_symbol_p;
8188
8189 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8190 r_type = ELF_R_TYPE (abfd, rel->r_info);
8191
8192 if (r_symndx < extsymoff)
8193 h = NULL;
8194 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8195 {
8196 (*_bfd_error_handler)
8197 (_("%B: Malformed reloc detected for section %s"),
8198 abfd, name);
8199 bfd_set_error (bfd_error_bad_value);
8200 return FALSE;
8201 }
8202 else
8203 {
8204 h = sym_hashes[r_symndx - extsymoff];
8205 if (h != NULL)
8206 {
8207 while (h->root.type == bfd_link_hash_indirect
8208 || h->root.type == bfd_link_hash_warning)
8209 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8210
8211 /* PR15323, ref flags aren't set for references in the
8212 same object. */
8213 h->root.non_ir_ref = 1;
8214 }
8215 }
8216
8217 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8218 relocation into a dynamic one. */
8219 can_make_dynamic_p = FALSE;
8220
8221 /* Set CALL_RELOC_P to true if the relocation is for a call,
8222 and if pointer equality therefore doesn't matter. */
8223 call_reloc_p = FALSE;
8224
8225 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8226 into account when deciding how to define the symbol.
8227 Relocations in nonallocatable sections such as .pdr and
8228 .debug* should have no effect. */
8229 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8230
8231 switch (r_type)
8232 {
8233 case R_MIPS_CALL16:
8234 case R_MIPS_CALL_HI16:
8235 case R_MIPS_CALL_LO16:
8236 case R_MIPS16_CALL16:
8237 case R_MICROMIPS_CALL16:
8238 case R_MICROMIPS_CALL_HI16:
8239 case R_MICROMIPS_CALL_LO16:
8240 call_reloc_p = TRUE;
8241 /* Fall through. */
8242
8243 case R_MIPS_GOT16:
8244 case R_MIPS_GOT_HI16:
8245 case R_MIPS_GOT_LO16:
8246 case R_MIPS_GOT_PAGE:
8247 case R_MIPS_GOT_OFST:
8248 case R_MIPS_GOT_DISP:
8249 case R_MIPS_TLS_GOTTPREL:
8250 case R_MIPS_TLS_GD:
8251 case R_MIPS_TLS_LDM:
8252 case R_MIPS16_GOT16:
8253 case R_MIPS16_TLS_GOTTPREL:
8254 case R_MIPS16_TLS_GD:
8255 case R_MIPS16_TLS_LDM:
8256 case R_MICROMIPS_GOT16:
8257 case R_MICROMIPS_GOT_HI16:
8258 case R_MICROMIPS_GOT_LO16:
8259 case R_MICROMIPS_GOT_PAGE:
8260 case R_MICROMIPS_GOT_OFST:
8261 case R_MICROMIPS_GOT_DISP:
8262 case R_MICROMIPS_TLS_GOTTPREL:
8263 case R_MICROMIPS_TLS_GD:
8264 case R_MICROMIPS_TLS_LDM:
8265 if (dynobj == NULL)
8266 elf_hash_table (info)->dynobj = dynobj = abfd;
8267 if (!mips_elf_create_got_section (dynobj, info))
8268 return FALSE;
8269 if (htab->is_vxworks && !info->shared)
8270 {
8271 (*_bfd_error_handler)
8272 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8273 abfd, (unsigned long) rel->r_offset);
8274 bfd_set_error (bfd_error_bad_value);
8275 return FALSE;
8276 }
8277 can_make_dynamic_p = TRUE;
8278 break;
8279
8280 case R_MIPS_NONE:
8281 case R_MIPS_JALR:
8282 case R_MICROMIPS_JALR:
8283 /* These relocations have empty fields and are purely there to
8284 provide link information. The symbol value doesn't matter. */
8285 constrain_symbol_p = FALSE;
8286 break;
8287
8288 case R_MIPS_GPREL16:
8289 case R_MIPS_GPREL32:
8290 case R_MIPS16_GPREL:
8291 case R_MICROMIPS_GPREL16:
8292 /* GP-relative relocations always resolve to a definition in a
8293 regular input file, ignoring the one-definition rule. This is
8294 important for the GP setup sequence in NewABI code, which
8295 always resolves to a local function even if other relocations
8296 against the symbol wouldn't. */
8297 constrain_symbol_p = FALSE;
8298 break;
8299
8300 case R_MIPS_32:
8301 case R_MIPS_REL32:
8302 case R_MIPS_64:
8303 /* In VxWorks executables, references to external symbols
8304 must be handled using copy relocs or PLT entries; it is not
8305 possible to convert this relocation into a dynamic one.
8306
8307 For executables that use PLTs and copy-relocs, we have a
8308 choice between converting the relocation into a dynamic
8309 one or using copy relocations or PLT entries. It is
8310 usually better to do the former, unless the relocation is
8311 against a read-only section. */
8312 if ((info->shared
8313 || (h != NULL
8314 && !htab->is_vxworks
8315 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8316 && !(!info->nocopyreloc
8317 && !PIC_OBJECT_P (abfd)
8318 && MIPS_ELF_READONLY_SECTION (sec))))
8319 && (sec->flags & SEC_ALLOC) != 0)
8320 {
8321 can_make_dynamic_p = TRUE;
8322 if (dynobj == NULL)
8323 elf_hash_table (info)->dynobj = dynobj = abfd;
8324 }
8325 break;
8326
8327 case R_MIPS_26:
8328 case R_MIPS_PC16:
8329 case R_MIPS_PC21_S2:
8330 case R_MIPS_PC26_S2:
8331 case R_MIPS16_26:
8332 case R_MICROMIPS_26_S1:
8333 case R_MICROMIPS_PC7_S1:
8334 case R_MICROMIPS_PC10_S1:
8335 case R_MICROMIPS_PC16_S1:
8336 case R_MICROMIPS_PC23_S2:
8337 call_reloc_p = TRUE;
8338 break;
8339 }
8340
8341 if (h)
8342 {
8343 if (constrain_symbol_p)
8344 {
8345 if (!can_make_dynamic_p)
8346 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8347
8348 if (!call_reloc_p)
8349 h->pointer_equality_needed = 1;
8350
8351 /* We must not create a stub for a symbol that has
8352 relocations related to taking the function's address.
8353 This doesn't apply to VxWorks, where CALL relocs refer
8354 to a .got.plt entry instead of a normal .got entry. */
8355 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8356 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8357 }
8358
8359 /* Relocations against the special VxWorks __GOTT_BASE__ and
8360 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8361 room for them in .rela.dyn. */
8362 if (is_gott_symbol (info, h))
8363 {
8364 if (sreloc == NULL)
8365 {
8366 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8367 if (sreloc == NULL)
8368 return FALSE;
8369 }
8370 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8371 if (MIPS_ELF_READONLY_SECTION (sec))
8372 /* We tell the dynamic linker that there are
8373 relocations against the text segment. */
8374 info->flags |= DF_TEXTREL;
8375 }
8376 }
8377 else if (call_lo16_reloc_p (r_type)
8378 || got_lo16_reloc_p (r_type)
8379 || got_disp_reloc_p (r_type)
8380 || (got16_reloc_p (r_type) && htab->is_vxworks))
8381 {
8382 /* We may need a local GOT entry for this relocation. We
8383 don't count R_MIPS_GOT_PAGE because we can estimate the
8384 maximum number of pages needed by looking at the size of
8385 the segment. Similar comments apply to R_MIPS*_GOT16 and
8386 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8387 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8388 R_MIPS_CALL_HI16 because these are always followed by an
8389 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8390 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8391 rel->r_addend, info, r_type))
8392 return FALSE;
8393 }
8394
8395 if (h != NULL
8396 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8397 ELF_ST_IS_MIPS16 (h->other)))
8398 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8399
8400 switch (r_type)
8401 {
8402 case R_MIPS_CALL16:
8403 case R_MIPS16_CALL16:
8404 case R_MICROMIPS_CALL16:
8405 if (h == NULL)
8406 {
8407 (*_bfd_error_handler)
8408 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8409 abfd, (unsigned long) rel->r_offset);
8410 bfd_set_error (bfd_error_bad_value);
8411 return FALSE;
8412 }
8413 /* Fall through. */
8414
8415 case R_MIPS_CALL_HI16:
8416 case R_MIPS_CALL_LO16:
8417 case R_MICROMIPS_CALL_HI16:
8418 case R_MICROMIPS_CALL_LO16:
8419 if (h != NULL)
8420 {
8421 /* Make sure there is room in the regular GOT to hold the
8422 function's address. We may eliminate it in favour of
8423 a .got.plt entry later; see mips_elf_count_got_symbols. */
8424 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8425 r_type))
8426 return FALSE;
8427
8428 /* We need a stub, not a plt entry for the undefined
8429 function. But we record it as if it needs plt. See
8430 _bfd_elf_adjust_dynamic_symbol. */
8431 h->needs_plt = 1;
8432 h->type = STT_FUNC;
8433 }
8434 break;
8435
8436 case R_MIPS_GOT_PAGE:
8437 case R_MICROMIPS_GOT_PAGE:
8438 case R_MIPS16_GOT16:
8439 case R_MIPS_GOT16:
8440 case R_MIPS_GOT_HI16:
8441 case R_MIPS_GOT_LO16:
8442 case R_MICROMIPS_GOT16:
8443 case R_MICROMIPS_GOT_HI16:
8444 case R_MICROMIPS_GOT_LO16:
8445 if (!h || got_page_reloc_p (r_type))
8446 {
8447 /* This relocation needs (or may need, if h != NULL) a
8448 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8449 know for sure until we know whether the symbol is
8450 preemptible. */
8451 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8452 {
8453 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8454 return FALSE;
8455 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8456 addend = mips_elf_read_rel_addend (abfd, rel,
8457 howto, contents);
8458 if (got16_reloc_p (r_type))
8459 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8460 contents, &addend);
8461 else
8462 addend <<= howto->rightshift;
8463 }
8464 else
8465 addend = rel->r_addend;
8466 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8467 h, addend))
8468 return FALSE;
8469
8470 if (h)
8471 {
8472 struct mips_elf_link_hash_entry *hmips =
8473 (struct mips_elf_link_hash_entry *) h;
8474
8475 /* This symbol is definitely not overridable. */
8476 if (hmips->root.def_regular
8477 && ! (info->shared && ! info->symbolic
8478 && ! hmips->root.forced_local))
8479 h = NULL;
8480 }
8481 }
8482 /* If this is a global, overridable symbol, GOT_PAGE will
8483 decay to GOT_DISP, so we'll need a GOT entry for it. */
8484 /* Fall through. */
8485
8486 case R_MIPS_GOT_DISP:
8487 case R_MICROMIPS_GOT_DISP:
8488 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8489 FALSE, r_type))
8490 return FALSE;
8491 break;
8492
8493 case R_MIPS_TLS_GOTTPREL:
8494 case R_MIPS16_TLS_GOTTPREL:
8495 case R_MICROMIPS_TLS_GOTTPREL:
8496 if (info->shared)
8497 info->flags |= DF_STATIC_TLS;
8498 /* Fall through */
8499
8500 case R_MIPS_TLS_LDM:
8501 case R_MIPS16_TLS_LDM:
8502 case R_MICROMIPS_TLS_LDM:
8503 if (tls_ldm_reloc_p (r_type))
8504 {
8505 r_symndx = STN_UNDEF;
8506 h = NULL;
8507 }
8508 /* Fall through */
8509
8510 case R_MIPS_TLS_GD:
8511 case R_MIPS16_TLS_GD:
8512 case R_MICROMIPS_TLS_GD:
8513 /* This symbol requires a global offset table entry, or two
8514 for TLS GD relocations. */
8515 if (h != NULL)
8516 {
8517 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8518 FALSE, r_type))
8519 return FALSE;
8520 }
8521 else
8522 {
8523 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8524 rel->r_addend,
8525 info, r_type))
8526 return FALSE;
8527 }
8528 break;
8529
8530 case R_MIPS_32:
8531 case R_MIPS_REL32:
8532 case R_MIPS_64:
8533 /* In VxWorks executables, references to external symbols
8534 are handled using copy relocs or PLT stubs, so there's
8535 no need to add a .rela.dyn entry for this relocation. */
8536 if (can_make_dynamic_p)
8537 {
8538 if (sreloc == NULL)
8539 {
8540 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8541 if (sreloc == NULL)
8542 return FALSE;
8543 }
8544 if (info->shared && h == NULL)
8545 {
8546 /* When creating a shared object, we must copy these
8547 reloc types into the output file as R_MIPS_REL32
8548 relocs. Make room for this reloc in .rel(a).dyn. */
8549 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8550 if (MIPS_ELF_READONLY_SECTION (sec))
8551 /* We tell the dynamic linker that there are
8552 relocations against the text segment. */
8553 info->flags |= DF_TEXTREL;
8554 }
8555 else
8556 {
8557 struct mips_elf_link_hash_entry *hmips;
8558
8559 /* For a shared object, we must copy this relocation
8560 unless the symbol turns out to be undefined and
8561 weak with non-default visibility, in which case
8562 it will be left as zero.
8563
8564 We could elide R_MIPS_REL32 for locally binding symbols
8565 in shared libraries, but do not yet do so.
8566
8567 For an executable, we only need to copy this
8568 reloc if the symbol is defined in a dynamic
8569 object. */
8570 hmips = (struct mips_elf_link_hash_entry *) h;
8571 ++hmips->possibly_dynamic_relocs;
8572 if (MIPS_ELF_READONLY_SECTION (sec))
8573 /* We need it to tell the dynamic linker if there
8574 are relocations against the text segment. */
8575 hmips->readonly_reloc = TRUE;
8576 }
8577 }
8578
8579 if (SGI_COMPAT (abfd))
8580 mips_elf_hash_table (info)->compact_rel_size +=
8581 sizeof (Elf32_External_crinfo);
8582 break;
8583
8584 case R_MIPS_26:
8585 case R_MIPS_GPREL16:
8586 case R_MIPS_LITERAL:
8587 case R_MIPS_GPREL32:
8588 case R_MICROMIPS_26_S1:
8589 case R_MICROMIPS_GPREL16:
8590 case R_MICROMIPS_LITERAL:
8591 case R_MICROMIPS_GPREL7_S2:
8592 if (SGI_COMPAT (abfd))
8593 mips_elf_hash_table (info)->compact_rel_size +=
8594 sizeof (Elf32_External_crinfo);
8595 break;
8596
8597 /* This relocation describes the C++ object vtable hierarchy.
8598 Reconstruct it for later use during GC. */
8599 case R_MIPS_GNU_VTINHERIT:
8600 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8601 return FALSE;
8602 break;
8603
8604 /* This relocation describes which C++ vtable entries are actually
8605 used. Record for later use during GC. */
8606 case R_MIPS_GNU_VTENTRY:
8607 BFD_ASSERT (h != NULL);
8608 if (h != NULL
8609 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8610 return FALSE;
8611 break;
8612
8613 default:
8614 break;
8615 }
8616
8617 /* Record the need for a PLT entry. At this point we don't know
8618 yet if we are going to create a PLT in the first place, but
8619 we only record whether the relocation requires a standard MIPS
8620 or a compressed code entry anyway. If we don't make a PLT after
8621 all, then we'll just ignore these arrangements. Likewise if
8622 a PLT entry is not created because the symbol is satisfied
8623 locally. */
8624 if (h != NULL
8625 && jal_reloc_p (r_type)
8626 && !SYMBOL_CALLS_LOCAL (info, h))
8627 {
8628 if (h->plt.plist == NULL)
8629 h->plt.plist = mips_elf_make_plt_record (abfd);
8630 if (h->plt.plist == NULL)
8631 return FALSE;
8632
8633 if (r_type == R_MIPS_26)
8634 h->plt.plist->need_mips = TRUE;
8635 else
8636 h->plt.plist->need_comp = TRUE;
8637 }
8638
8639 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8640 if there is one. We only need to handle global symbols here;
8641 we decide whether to keep or delete stubs for local symbols
8642 when processing the stub's relocations. */
8643 if (h != NULL
8644 && !mips16_call_reloc_p (r_type)
8645 && !section_allows_mips16_refs_p (sec))
8646 {
8647 struct mips_elf_link_hash_entry *mh;
8648
8649 mh = (struct mips_elf_link_hash_entry *) h;
8650 mh->need_fn_stub = TRUE;
8651 }
8652
8653 /* Refuse some position-dependent relocations when creating a
8654 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8655 not PIC, but we can create dynamic relocations and the result
8656 will be fine. Also do not refuse R_MIPS_LO16, which can be
8657 combined with R_MIPS_GOT16. */
8658 if (info->shared)
8659 {
8660 switch (r_type)
8661 {
8662 case R_MIPS16_HI16:
8663 case R_MIPS_HI16:
8664 case R_MIPS_HIGHER:
8665 case R_MIPS_HIGHEST:
8666 case R_MICROMIPS_HI16:
8667 case R_MICROMIPS_HIGHER:
8668 case R_MICROMIPS_HIGHEST:
8669 /* Don't refuse a high part relocation if it's against
8670 no symbol (e.g. part of a compound relocation). */
8671 if (r_symndx == STN_UNDEF)
8672 break;
8673
8674 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8675 and has a special meaning. */
8676 if (!NEWABI_P (abfd) && h != NULL
8677 && strcmp (h->root.root.string, "_gp_disp") == 0)
8678 break;
8679
8680 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8681 if (is_gott_symbol (info, h))
8682 break;
8683
8684 /* FALLTHROUGH */
8685
8686 case R_MIPS16_26:
8687 case R_MIPS_26:
8688 case R_MICROMIPS_26_S1:
8689 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8690 (*_bfd_error_handler)
8691 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8692 abfd, howto->name,
8693 (h) ? h->root.root.string : "a local symbol");
8694 bfd_set_error (bfd_error_bad_value);
8695 return FALSE;
8696 default:
8697 break;
8698 }
8699 }
8700 }
8701
8702 return TRUE;
8703 }
8704 \f
8705 bfd_boolean
8706 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8707 struct bfd_link_info *link_info,
8708 bfd_boolean *again)
8709 {
8710 Elf_Internal_Rela *internal_relocs;
8711 Elf_Internal_Rela *irel, *irelend;
8712 Elf_Internal_Shdr *symtab_hdr;
8713 bfd_byte *contents = NULL;
8714 size_t extsymoff;
8715 bfd_boolean changed_contents = FALSE;
8716 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8717 Elf_Internal_Sym *isymbuf = NULL;
8718
8719 /* We are not currently changing any sizes, so only one pass. */
8720 *again = FALSE;
8721
8722 if (link_info->relocatable)
8723 return TRUE;
8724
8725 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8726 link_info->keep_memory);
8727 if (internal_relocs == NULL)
8728 return TRUE;
8729
8730 irelend = internal_relocs + sec->reloc_count
8731 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8732 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8733 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8734
8735 for (irel = internal_relocs; irel < irelend; irel++)
8736 {
8737 bfd_vma symval;
8738 bfd_signed_vma sym_offset;
8739 unsigned int r_type;
8740 unsigned long r_symndx;
8741 asection *sym_sec;
8742 unsigned long instruction;
8743
8744 /* Turn jalr into bgezal, and jr into beq, if they're marked
8745 with a JALR relocation, that indicate where they jump to.
8746 This saves some pipeline bubbles. */
8747 r_type = ELF_R_TYPE (abfd, irel->r_info);
8748 if (r_type != R_MIPS_JALR)
8749 continue;
8750
8751 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8752 /* Compute the address of the jump target. */
8753 if (r_symndx >= extsymoff)
8754 {
8755 struct mips_elf_link_hash_entry *h
8756 = ((struct mips_elf_link_hash_entry *)
8757 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8758
8759 while (h->root.root.type == bfd_link_hash_indirect
8760 || h->root.root.type == bfd_link_hash_warning)
8761 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8762
8763 /* If a symbol is undefined, or if it may be overridden,
8764 skip it. */
8765 if (! ((h->root.root.type == bfd_link_hash_defined
8766 || h->root.root.type == bfd_link_hash_defweak)
8767 && h->root.root.u.def.section)
8768 || (link_info->shared && ! link_info->symbolic
8769 && !h->root.forced_local))
8770 continue;
8771
8772 sym_sec = h->root.root.u.def.section;
8773 if (sym_sec->output_section)
8774 symval = (h->root.root.u.def.value
8775 + sym_sec->output_section->vma
8776 + sym_sec->output_offset);
8777 else
8778 symval = h->root.root.u.def.value;
8779 }
8780 else
8781 {
8782 Elf_Internal_Sym *isym;
8783
8784 /* Read this BFD's symbols if we haven't done so already. */
8785 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8786 {
8787 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8788 if (isymbuf == NULL)
8789 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8790 symtab_hdr->sh_info, 0,
8791 NULL, NULL, NULL);
8792 if (isymbuf == NULL)
8793 goto relax_return;
8794 }
8795
8796 isym = isymbuf + r_symndx;
8797 if (isym->st_shndx == SHN_UNDEF)
8798 continue;
8799 else if (isym->st_shndx == SHN_ABS)
8800 sym_sec = bfd_abs_section_ptr;
8801 else if (isym->st_shndx == SHN_COMMON)
8802 sym_sec = bfd_com_section_ptr;
8803 else
8804 sym_sec
8805 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8806 symval = isym->st_value
8807 + sym_sec->output_section->vma
8808 + sym_sec->output_offset;
8809 }
8810
8811 /* Compute branch offset, from delay slot of the jump to the
8812 branch target. */
8813 sym_offset = (symval + irel->r_addend)
8814 - (sec_start + irel->r_offset + 4);
8815
8816 /* Branch offset must be properly aligned. */
8817 if ((sym_offset & 3) != 0)
8818 continue;
8819
8820 sym_offset >>= 2;
8821
8822 /* Check that it's in range. */
8823 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8824 continue;
8825
8826 /* Get the section contents if we haven't done so already. */
8827 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8828 goto relax_return;
8829
8830 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8831
8832 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8833 if ((instruction & 0xfc1fffff) == 0x0000f809)
8834 instruction = 0x04110000;
8835 /* If it was jr <reg>, turn it into b <target>. */
8836 else if ((instruction & 0xfc1fffff) == 0x00000008)
8837 instruction = 0x10000000;
8838 else
8839 continue;
8840
8841 instruction |= (sym_offset & 0xffff);
8842 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8843 changed_contents = TRUE;
8844 }
8845
8846 if (contents != NULL
8847 && elf_section_data (sec)->this_hdr.contents != contents)
8848 {
8849 if (!changed_contents && !link_info->keep_memory)
8850 free (contents);
8851 else
8852 {
8853 /* Cache the section contents for elf_link_input_bfd. */
8854 elf_section_data (sec)->this_hdr.contents = contents;
8855 }
8856 }
8857 return TRUE;
8858
8859 relax_return:
8860 if (contents != NULL
8861 && elf_section_data (sec)->this_hdr.contents != contents)
8862 free (contents);
8863 return FALSE;
8864 }
8865 \f
8866 /* Allocate space for global sym dynamic relocs. */
8867
8868 static bfd_boolean
8869 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8870 {
8871 struct bfd_link_info *info = inf;
8872 bfd *dynobj;
8873 struct mips_elf_link_hash_entry *hmips;
8874 struct mips_elf_link_hash_table *htab;
8875
8876 htab = mips_elf_hash_table (info);
8877 BFD_ASSERT (htab != NULL);
8878
8879 dynobj = elf_hash_table (info)->dynobj;
8880 hmips = (struct mips_elf_link_hash_entry *) h;
8881
8882 /* VxWorks executables are handled elsewhere; we only need to
8883 allocate relocations in shared objects. */
8884 if (htab->is_vxworks && !info->shared)
8885 return TRUE;
8886
8887 /* Ignore indirect symbols. All relocations against such symbols
8888 will be redirected to the target symbol. */
8889 if (h->root.type == bfd_link_hash_indirect)
8890 return TRUE;
8891
8892 /* If this symbol is defined in a dynamic object, or we are creating
8893 a shared library, we will need to copy any R_MIPS_32 or
8894 R_MIPS_REL32 relocs against it into the output file. */
8895 if (! info->relocatable
8896 && hmips->possibly_dynamic_relocs != 0
8897 && (h->root.type == bfd_link_hash_defweak
8898 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8899 || info->shared))
8900 {
8901 bfd_boolean do_copy = TRUE;
8902
8903 if (h->root.type == bfd_link_hash_undefweak)
8904 {
8905 /* Do not copy relocations for undefined weak symbols with
8906 non-default visibility. */
8907 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8908 do_copy = FALSE;
8909
8910 /* Make sure undefined weak symbols are output as a dynamic
8911 symbol in PIEs. */
8912 else if (h->dynindx == -1 && !h->forced_local)
8913 {
8914 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8915 return FALSE;
8916 }
8917 }
8918
8919 if (do_copy)
8920 {
8921 /* Even though we don't directly need a GOT entry for this symbol,
8922 the SVR4 psABI requires it to have a dynamic symbol table
8923 index greater that DT_MIPS_GOTSYM if there are dynamic
8924 relocations against it.
8925
8926 VxWorks does not enforce the same mapping between the GOT
8927 and the symbol table, so the same requirement does not
8928 apply there. */
8929 if (!htab->is_vxworks)
8930 {
8931 if (hmips->global_got_area > GGA_RELOC_ONLY)
8932 hmips->global_got_area = GGA_RELOC_ONLY;
8933 hmips->got_only_for_calls = FALSE;
8934 }
8935
8936 mips_elf_allocate_dynamic_relocations
8937 (dynobj, info, hmips->possibly_dynamic_relocs);
8938 if (hmips->readonly_reloc)
8939 /* We tell the dynamic linker that there are relocations
8940 against the text segment. */
8941 info->flags |= DF_TEXTREL;
8942 }
8943 }
8944
8945 return TRUE;
8946 }
8947
8948 /* Adjust a symbol defined by a dynamic object and referenced by a
8949 regular object. The current definition is in some section of the
8950 dynamic object, but we're not including those sections. We have to
8951 change the definition to something the rest of the link can
8952 understand. */
8953
8954 bfd_boolean
8955 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8956 struct elf_link_hash_entry *h)
8957 {
8958 bfd *dynobj;
8959 struct mips_elf_link_hash_entry *hmips;
8960 struct mips_elf_link_hash_table *htab;
8961
8962 htab = mips_elf_hash_table (info);
8963 BFD_ASSERT (htab != NULL);
8964
8965 dynobj = elf_hash_table (info)->dynobj;
8966 hmips = (struct mips_elf_link_hash_entry *) h;
8967
8968 /* Make sure we know what is going on here. */
8969 BFD_ASSERT (dynobj != NULL
8970 && (h->needs_plt
8971 || h->u.weakdef != NULL
8972 || (h->def_dynamic
8973 && h->ref_regular
8974 && !h->def_regular)));
8975
8976 hmips = (struct mips_elf_link_hash_entry *) h;
8977
8978 /* If there are call relocations against an externally-defined symbol,
8979 see whether we can create a MIPS lazy-binding stub for it. We can
8980 only do this if all references to the function are through call
8981 relocations, and in that case, the traditional lazy-binding stubs
8982 are much more efficient than PLT entries.
8983
8984 Traditional stubs are only available on SVR4 psABI-based systems;
8985 VxWorks always uses PLTs instead. */
8986 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8987 {
8988 if (! elf_hash_table (info)->dynamic_sections_created)
8989 return TRUE;
8990
8991 /* If this symbol is not defined in a regular file, then set
8992 the symbol to the stub location. This is required to make
8993 function pointers compare as equal between the normal
8994 executable and the shared library. */
8995 if (!h->def_regular)
8996 {
8997 hmips->needs_lazy_stub = TRUE;
8998 htab->lazy_stub_count++;
8999 return TRUE;
9000 }
9001 }
9002 /* As above, VxWorks requires PLT entries for externally-defined
9003 functions that are only accessed through call relocations.
9004
9005 Both VxWorks and non-VxWorks targets also need PLT entries if there
9006 are static-only relocations against an externally-defined function.
9007 This can technically occur for shared libraries if there are
9008 branches to the symbol, although it is unlikely that this will be
9009 used in practice due to the short ranges involved. It can occur
9010 for any relative or absolute relocation in executables; in that
9011 case, the PLT entry becomes the function's canonical address. */
9012 else if (((h->needs_plt && !hmips->no_fn_stub)
9013 || (h->type == STT_FUNC && hmips->has_static_relocs))
9014 && htab->use_plts_and_copy_relocs
9015 && !SYMBOL_CALLS_LOCAL (info, h)
9016 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9017 && h->root.type == bfd_link_hash_undefweak))
9018 {
9019 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9020 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9021
9022 /* If this is the first symbol to need a PLT entry, then make some
9023 basic setup. Also work out PLT entry sizes. We'll need them
9024 for PLT offset calculations. */
9025 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9026 {
9027 BFD_ASSERT (htab->sgotplt->size == 0);
9028 BFD_ASSERT (htab->plt_got_index == 0);
9029
9030 /* If we're using the PLT additions to the psABI, each PLT
9031 entry is 16 bytes and the PLT0 entry is 32 bytes.
9032 Encourage better cache usage by aligning. We do this
9033 lazily to avoid pessimizing traditional objects. */
9034 if (!htab->is_vxworks
9035 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9036 return FALSE;
9037
9038 /* Make sure that .got.plt is word-aligned. We do this lazily
9039 for the same reason as above. */
9040 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9041 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9042 return FALSE;
9043
9044 /* On non-VxWorks targets, the first two entries in .got.plt
9045 are reserved. */
9046 if (!htab->is_vxworks)
9047 htab->plt_got_index
9048 += (get_elf_backend_data (dynobj)->got_header_size
9049 / MIPS_ELF_GOT_SIZE (dynobj));
9050
9051 /* On VxWorks, also allocate room for the header's
9052 .rela.plt.unloaded entries. */
9053 if (htab->is_vxworks && !info->shared)
9054 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9055
9056 /* Now work out the sizes of individual PLT entries. */
9057 if (htab->is_vxworks && info->shared)
9058 htab->plt_mips_entry_size
9059 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9060 else if (htab->is_vxworks)
9061 htab->plt_mips_entry_size
9062 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9063 else if (newabi_p)
9064 htab->plt_mips_entry_size
9065 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9066 else if (!micromips_p)
9067 {
9068 htab->plt_mips_entry_size
9069 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9070 htab->plt_comp_entry_size
9071 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9072 }
9073 else if (htab->insn32)
9074 {
9075 htab->plt_mips_entry_size
9076 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9077 htab->plt_comp_entry_size
9078 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9079 }
9080 else
9081 {
9082 htab->plt_mips_entry_size
9083 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9084 htab->plt_comp_entry_size
9085 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9086 }
9087 }
9088
9089 if (h->plt.plist == NULL)
9090 h->plt.plist = mips_elf_make_plt_record (dynobj);
9091 if (h->plt.plist == NULL)
9092 return FALSE;
9093
9094 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9095 n32 or n64, so always use a standard entry there.
9096
9097 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9098 all MIPS16 calls will go via that stub, and there is no benefit
9099 to having a MIPS16 entry. And in the case of call_stub a
9100 standard entry actually has to be used as the stub ends with a J
9101 instruction. */
9102 if (newabi_p
9103 || htab->is_vxworks
9104 || hmips->call_stub
9105 || hmips->call_fp_stub)
9106 {
9107 h->plt.plist->need_mips = TRUE;
9108 h->plt.plist->need_comp = FALSE;
9109 }
9110
9111 /* Otherwise, if there are no direct calls to the function, we
9112 have a free choice of whether to use standard or compressed
9113 entries. Prefer microMIPS entries if the object is known to
9114 contain microMIPS code, so that it becomes possible to create
9115 pure microMIPS binaries. Prefer standard entries otherwise,
9116 because MIPS16 ones are no smaller and are usually slower. */
9117 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9118 {
9119 if (micromips_p)
9120 h->plt.plist->need_comp = TRUE;
9121 else
9122 h->plt.plist->need_mips = TRUE;
9123 }
9124
9125 if (h->plt.plist->need_mips)
9126 {
9127 h->plt.plist->mips_offset = htab->plt_mips_offset;
9128 htab->plt_mips_offset += htab->plt_mips_entry_size;
9129 }
9130 if (h->plt.plist->need_comp)
9131 {
9132 h->plt.plist->comp_offset = htab->plt_comp_offset;
9133 htab->plt_comp_offset += htab->plt_comp_entry_size;
9134 }
9135
9136 /* Reserve the corresponding .got.plt entry now too. */
9137 h->plt.plist->gotplt_index = htab->plt_got_index++;
9138
9139 /* If the output file has no definition of the symbol, set the
9140 symbol's value to the address of the stub. */
9141 if (!info->shared && !h->def_regular)
9142 hmips->use_plt_entry = TRUE;
9143
9144 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9145 htab->srelplt->size += (htab->is_vxworks
9146 ? MIPS_ELF_RELA_SIZE (dynobj)
9147 : MIPS_ELF_REL_SIZE (dynobj));
9148
9149 /* Make room for the .rela.plt.unloaded relocations. */
9150 if (htab->is_vxworks && !info->shared)
9151 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9152
9153 /* All relocations against this symbol that could have been made
9154 dynamic will now refer to the PLT entry instead. */
9155 hmips->possibly_dynamic_relocs = 0;
9156
9157 return TRUE;
9158 }
9159
9160 /* If this is a weak symbol, and there is a real definition, the
9161 processor independent code will have arranged for us to see the
9162 real definition first, and we can just use the same value. */
9163 if (h->u.weakdef != NULL)
9164 {
9165 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9166 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9167 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9168 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9169 return TRUE;
9170 }
9171
9172 /* Otherwise, there is nothing further to do for symbols defined
9173 in regular objects. */
9174 if (h->def_regular)
9175 return TRUE;
9176
9177 /* There's also nothing more to do if we'll convert all relocations
9178 against this symbol into dynamic relocations. */
9179 if (!hmips->has_static_relocs)
9180 return TRUE;
9181
9182 /* We're now relying on copy relocations. Complain if we have
9183 some that we can't convert. */
9184 if (!htab->use_plts_and_copy_relocs || info->shared)
9185 {
9186 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9187 "dynamic symbol %s"),
9188 h->root.root.string);
9189 bfd_set_error (bfd_error_bad_value);
9190 return FALSE;
9191 }
9192
9193 /* We must allocate the symbol in our .dynbss section, which will
9194 become part of the .bss section of the executable. There will be
9195 an entry for this symbol in the .dynsym section. The dynamic
9196 object will contain position independent code, so all references
9197 from the dynamic object to this symbol will go through the global
9198 offset table. The dynamic linker will use the .dynsym entry to
9199 determine the address it must put in the global offset table, so
9200 both the dynamic object and the regular object will refer to the
9201 same memory location for the variable. */
9202
9203 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9204 {
9205 if (htab->is_vxworks)
9206 htab->srelbss->size += sizeof (Elf32_External_Rela);
9207 else
9208 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9209 h->needs_copy = 1;
9210 }
9211
9212 /* All relocations against this symbol that could have been made
9213 dynamic will now refer to the local copy instead. */
9214 hmips->possibly_dynamic_relocs = 0;
9215
9216 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
9217 }
9218 \f
9219 /* This function is called after all the input files have been read,
9220 and the input sections have been assigned to output sections. We
9221 check for any mips16 stub sections that we can discard. */
9222
9223 bfd_boolean
9224 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9225 struct bfd_link_info *info)
9226 {
9227 asection *sect;
9228 struct mips_elf_link_hash_table *htab;
9229 struct mips_htab_traverse_info hti;
9230
9231 htab = mips_elf_hash_table (info);
9232 BFD_ASSERT (htab != NULL);
9233
9234 /* The .reginfo section has a fixed size. */
9235 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9236 if (sect != NULL)
9237 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9238
9239 /* The .MIPS.abiflags section has a fixed size. */
9240 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9241 if (sect != NULL)
9242 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9243
9244 hti.info = info;
9245 hti.output_bfd = output_bfd;
9246 hti.error = FALSE;
9247 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9248 mips_elf_check_symbols, &hti);
9249 if (hti.error)
9250 return FALSE;
9251
9252 return TRUE;
9253 }
9254
9255 /* If the link uses a GOT, lay it out and work out its size. */
9256
9257 static bfd_boolean
9258 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9259 {
9260 bfd *dynobj;
9261 asection *s;
9262 struct mips_got_info *g;
9263 bfd_size_type loadable_size = 0;
9264 bfd_size_type page_gotno;
9265 bfd *ibfd;
9266 struct mips_elf_traverse_got_arg tga;
9267 struct mips_elf_link_hash_table *htab;
9268
9269 htab = mips_elf_hash_table (info);
9270 BFD_ASSERT (htab != NULL);
9271
9272 s = htab->sgot;
9273 if (s == NULL)
9274 return TRUE;
9275
9276 dynobj = elf_hash_table (info)->dynobj;
9277 g = htab->got_info;
9278
9279 /* Allocate room for the reserved entries. VxWorks always reserves
9280 3 entries; other objects only reserve 2 entries. */
9281 BFD_ASSERT (g->assigned_low_gotno == 0);
9282 if (htab->is_vxworks)
9283 htab->reserved_gotno = 3;
9284 else
9285 htab->reserved_gotno = 2;
9286 g->local_gotno += htab->reserved_gotno;
9287 g->assigned_low_gotno = htab->reserved_gotno;
9288
9289 /* Decide which symbols need to go in the global part of the GOT and
9290 count the number of reloc-only GOT symbols. */
9291 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9292
9293 if (!mips_elf_resolve_final_got_entries (info, g))
9294 return FALSE;
9295
9296 /* Calculate the total loadable size of the output. That
9297 will give us the maximum number of GOT_PAGE entries
9298 required. */
9299 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9300 {
9301 asection *subsection;
9302
9303 for (subsection = ibfd->sections;
9304 subsection;
9305 subsection = subsection->next)
9306 {
9307 if ((subsection->flags & SEC_ALLOC) == 0)
9308 continue;
9309 loadable_size += ((subsection->size + 0xf)
9310 &~ (bfd_size_type) 0xf);
9311 }
9312 }
9313
9314 if (htab->is_vxworks)
9315 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9316 relocations against local symbols evaluate to "G", and the EABI does
9317 not include R_MIPS_GOT_PAGE. */
9318 page_gotno = 0;
9319 else
9320 /* Assume there are two loadable segments consisting of contiguous
9321 sections. Is 5 enough? */
9322 page_gotno = (loadable_size >> 16) + 5;
9323
9324 /* Choose the smaller of the two page estimates; both are intended to be
9325 conservative. */
9326 if (page_gotno > g->page_gotno)
9327 page_gotno = g->page_gotno;
9328
9329 g->local_gotno += page_gotno;
9330 g->assigned_high_gotno = g->local_gotno - 1;
9331
9332 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9333 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9334 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9335
9336 /* VxWorks does not support multiple GOTs. It initializes $gp to
9337 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9338 dynamic loader. */
9339 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9340 {
9341 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9342 return FALSE;
9343 }
9344 else
9345 {
9346 /* Record that all bfds use G. This also has the effect of freeing
9347 the per-bfd GOTs, which we no longer need. */
9348 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9349 if (mips_elf_bfd_got (ibfd, FALSE))
9350 mips_elf_replace_bfd_got (ibfd, g);
9351 mips_elf_replace_bfd_got (output_bfd, g);
9352
9353 /* Set up TLS entries. */
9354 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9355 tga.info = info;
9356 tga.g = g;
9357 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9358 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9359 if (!tga.g)
9360 return FALSE;
9361 BFD_ASSERT (g->tls_assigned_gotno
9362 == g->global_gotno + g->local_gotno + g->tls_gotno);
9363
9364 /* Each VxWorks GOT entry needs an explicit relocation. */
9365 if (htab->is_vxworks && info->shared)
9366 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9367
9368 /* Allocate room for the TLS relocations. */
9369 if (g->relocs)
9370 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9371 }
9372
9373 return TRUE;
9374 }
9375
9376 /* Estimate the size of the .MIPS.stubs section. */
9377
9378 static void
9379 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9380 {
9381 struct mips_elf_link_hash_table *htab;
9382 bfd_size_type dynsymcount;
9383
9384 htab = mips_elf_hash_table (info);
9385 BFD_ASSERT (htab != NULL);
9386
9387 if (htab->lazy_stub_count == 0)
9388 return;
9389
9390 /* IRIX rld assumes that a function stub isn't at the end of the .text
9391 section, so add a dummy entry to the end. */
9392 htab->lazy_stub_count++;
9393
9394 /* Get a worst-case estimate of the number of dynamic symbols needed.
9395 At this point, dynsymcount does not account for section symbols
9396 and count_section_dynsyms may overestimate the number that will
9397 be needed. */
9398 dynsymcount = (elf_hash_table (info)->dynsymcount
9399 + count_section_dynsyms (output_bfd, info));
9400
9401 /* Determine the size of one stub entry. There's no disadvantage
9402 from using microMIPS code here, so for the sake of pure-microMIPS
9403 binaries we prefer it whenever there's any microMIPS code in
9404 output produced at all. This has a benefit of stubs being
9405 shorter by 4 bytes each too, unless in the insn32 mode. */
9406 if (!MICROMIPS_P (output_bfd))
9407 htab->function_stub_size = (dynsymcount > 0x10000
9408 ? MIPS_FUNCTION_STUB_BIG_SIZE
9409 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9410 else if (htab->insn32)
9411 htab->function_stub_size = (dynsymcount > 0x10000
9412 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9413 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9414 else
9415 htab->function_stub_size = (dynsymcount > 0x10000
9416 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9417 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9418
9419 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9420 }
9421
9422 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9423 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9424 stub, allocate an entry in the stubs section. */
9425
9426 static bfd_boolean
9427 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9428 {
9429 struct mips_htab_traverse_info *hti = data;
9430 struct mips_elf_link_hash_table *htab;
9431 struct bfd_link_info *info;
9432 bfd *output_bfd;
9433
9434 info = hti->info;
9435 output_bfd = hti->output_bfd;
9436 htab = mips_elf_hash_table (info);
9437 BFD_ASSERT (htab != NULL);
9438
9439 if (h->needs_lazy_stub)
9440 {
9441 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9442 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9443 bfd_vma isa_bit = micromips_p;
9444
9445 BFD_ASSERT (htab->root.dynobj != NULL);
9446 if (h->root.plt.plist == NULL)
9447 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9448 if (h->root.plt.plist == NULL)
9449 {
9450 hti->error = TRUE;
9451 return FALSE;
9452 }
9453 h->root.root.u.def.section = htab->sstubs;
9454 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9455 h->root.plt.plist->stub_offset = htab->sstubs->size;
9456 h->root.other = other;
9457 htab->sstubs->size += htab->function_stub_size;
9458 }
9459 return TRUE;
9460 }
9461
9462 /* Allocate offsets in the stubs section to each symbol that needs one.
9463 Set the final size of the .MIPS.stub section. */
9464
9465 static bfd_boolean
9466 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9467 {
9468 bfd *output_bfd = info->output_bfd;
9469 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9470 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9471 bfd_vma isa_bit = micromips_p;
9472 struct mips_elf_link_hash_table *htab;
9473 struct mips_htab_traverse_info hti;
9474 struct elf_link_hash_entry *h;
9475 bfd *dynobj;
9476
9477 htab = mips_elf_hash_table (info);
9478 BFD_ASSERT (htab != NULL);
9479
9480 if (htab->lazy_stub_count == 0)
9481 return TRUE;
9482
9483 htab->sstubs->size = 0;
9484 hti.info = info;
9485 hti.output_bfd = output_bfd;
9486 hti.error = FALSE;
9487 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9488 if (hti.error)
9489 return FALSE;
9490 htab->sstubs->size += htab->function_stub_size;
9491 BFD_ASSERT (htab->sstubs->size
9492 == htab->lazy_stub_count * htab->function_stub_size);
9493
9494 dynobj = elf_hash_table (info)->dynobj;
9495 BFD_ASSERT (dynobj != NULL);
9496 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9497 if (h == NULL)
9498 return FALSE;
9499 h->root.u.def.value = isa_bit;
9500 h->other = other;
9501 h->type = STT_FUNC;
9502
9503 return TRUE;
9504 }
9505
9506 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9507 bfd_link_info. If H uses the address of a PLT entry as the value
9508 of the symbol, then set the entry in the symbol table now. Prefer
9509 a standard MIPS PLT entry. */
9510
9511 static bfd_boolean
9512 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9513 {
9514 struct bfd_link_info *info = data;
9515 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9516 struct mips_elf_link_hash_table *htab;
9517 unsigned int other;
9518 bfd_vma isa_bit;
9519 bfd_vma val;
9520
9521 htab = mips_elf_hash_table (info);
9522 BFD_ASSERT (htab != NULL);
9523
9524 if (h->use_plt_entry)
9525 {
9526 BFD_ASSERT (h->root.plt.plist != NULL);
9527 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9528 || h->root.plt.plist->comp_offset != MINUS_ONE);
9529
9530 val = htab->plt_header_size;
9531 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9532 {
9533 isa_bit = 0;
9534 val += h->root.plt.plist->mips_offset;
9535 other = 0;
9536 }
9537 else
9538 {
9539 isa_bit = 1;
9540 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9541 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9542 }
9543 val += isa_bit;
9544 /* For VxWorks, point at the PLT load stub rather than the lazy
9545 resolution stub; this stub will become the canonical function
9546 address. */
9547 if (htab->is_vxworks)
9548 val += 8;
9549
9550 h->root.root.u.def.section = htab->splt;
9551 h->root.root.u.def.value = val;
9552 h->root.other = other;
9553 }
9554
9555 return TRUE;
9556 }
9557
9558 /* Set the sizes of the dynamic sections. */
9559
9560 bfd_boolean
9561 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9562 struct bfd_link_info *info)
9563 {
9564 bfd *dynobj;
9565 asection *s, *sreldyn;
9566 bfd_boolean reltext;
9567 struct mips_elf_link_hash_table *htab;
9568
9569 htab = mips_elf_hash_table (info);
9570 BFD_ASSERT (htab != NULL);
9571 dynobj = elf_hash_table (info)->dynobj;
9572 BFD_ASSERT (dynobj != NULL);
9573
9574 if (elf_hash_table (info)->dynamic_sections_created)
9575 {
9576 /* Set the contents of the .interp section to the interpreter. */
9577 if (info->executable)
9578 {
9579 s = bfd_get_linker_section (dynobj, ".interp");
9580 BFD_ASSERT (s != NULL);
9581 s->size
9582 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9583 s->contents
9584 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9585 }
9586
9587 /* Figure out the size of the PLT header if we know that we
9588 are using it. For the sake of cache alignment always use
9589 a standard header whenever any standard entries are present
9590 even if microMIPS entries are present as well. This also
9591 lets the microMIPS header rely on the value of $v0 only set
9592 by microMIPS entries, for a small size reduction.
9593
9594 Set symbol table entry values for symbols that use the
9595 address of their PLT entry now that we can calculate it.
9596
9597 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9598 haven't already in _bfd_elf_create_dynamic_sections. */
9599 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9600 {
9601 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9602 && !htab->plt_mips_offset);
9603 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9604 bfd_vma isa_bit = micromips_p;
9605 struct elf_link_hash_entry *h;
9606 bfd_vma size;
9607
9608 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9609 BFD_ASSERT (htab->sgotplt->size == 0);
9610 BFD_ASSERT (htab->splt->size == 0);
9611
9612 if (htab->is_vxworks && info->shared)
9613 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9614 else if (htab->is_vxworks)
9615 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9616 else if (ABI_64_P (output_bfd))
9617 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9618 else if (ABI_N32_P (output_bfd))
9619 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9620 else if (!micromips_p)
9621 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9622 else if (htab->insn32)
9623 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9624 else
9625 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9626
9627 htab->plt_header_is_comp = micromips_p;
9628 htab->plt_header_size = size;
9629 htab->splt->size = (size
9630 + htab->plt_mips_offset
9631 + htab->plt_comp_offset);
9632 htab->sgotplt->size = (htab->plt_got_index
9633 * MIPS_ELF_GOT_SIZE (dynobj));
9634
9635 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9636
9637 if (htab->root.hplt == NULL)
9638 {
9639 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9640 "_PROCEDURE_LINKAGE_TABLE_");
9641 htab->root.hplt = h;
9642 if (h == NULL)
9643 return FALSE;
9644 }
9645
9646 h = htab->root.hplt;
9647 h->root.u.def.value = isa_bit;
9648 h->other = other;
9649 h->type = STT_FUNC;
9650 }
9651 }
9652
9653 /* Allocate space for global sym dynamic relocs. */
9654 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9655
9656 mips_elf_estimate_stub_size (output_bfd, info);
9657
9658 if (!mips_elf_lay_out_got (output_bfd, info))
9659 return FALSE;
9660
9661 mips_elf_lay_out_lazy_stubs (info);
9662
9663 /* The check_relocs and adjust_dynamic_symbol entry points have
9664 determined the sizes of the various dynamic sections. Allocate
9665 memory for them. */
9666 reltext = FALSE;
9667 for (s = dynobj->sections; s != NULL; s = s->next)
9668 {
9669 const char *name;
9670
9671 /* It's OK to base decisions on the section name, because none
9672 of the dynobj section names depend upon the input files. */
9673 name = bfd_get_section_name (dynobj, s);
9674
9675 if ((s->flags & SEC_LINKER_CREATED) == 0)
9676 continue;
9677
9678 if (CONST_STRNEQ (name, ".rel"))
9679 {
9680 if (s->size != 0)
9681 {
9682 const char *outname;
9683 asection *target;
9684
9685 /* If this relocation section applies to a read only
9686 section, then we probably need a DT_TEXTREL entry.
9687 If the relocation section is .rel(a).dyn, we always
9688 assert a DT_TEXTREL entry rather than testing whether
9689 there exists a relocation to a read only section or
9690 not. */
9691 outname = bfd_get_section_name (output_bfd,
9692 s->output_section);
9693 target = bfd_get_section_by_name (output_bfd, outname + 4);
9694 if ((target != NULL
9695 && (target->flags & SEC_READONLY) != 0
9696 && (target->flags & SEC_ALLOC) != 0)
9697 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9698 reltext = TRUE;
9699
9700 /* We use the reloc_count field as a counter if we need
9701 to copy relocs into the output file. */
9702 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9703 s->reloc_count = 0;
9704
9705 /* If combreloc is enabled, elf_link_sort_relocs() will
9706 sort relocations, but in a different way than we do,
9707 and before we're done creating relocations. Also, it
9708 will move them around between input sections'
9709 relocation's contents, so our sorting would be
9710 broken, so don't let it run. */
9711 info->combreloc = 0;
9712 }
9713 }
9714 else if (! info->shared
9715 && ! mips_elf_hash_table (info)->use_rld_obj_head
9716 && CONST_STRNEQ (name, ".rld_map"))
9717 {
9718 /* We add a room for __rld_map. It will be filled in by the
9719 rtld to contain a pointer to the _r_debug structure. */
9720 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9721 }
9722 else if (SGI_COMPAT (output_bfd)
9723 && CONST_STRNEQ (name, ".compact_rel"))
9724 s->size += mips_elf_hash_table (info)->compact_rel_size;
9725 else if (s == htab->splt)
9726 {
9727 /* If the last PLT entry has a branch delay slot, allocate
9728 room for an extra nop to fill the delay slot. This is
9729 for CPUs without load interlocking. */
9730 if (! LOAD_INTERLOCKS_P (output_bfd)
9731 && ! htab->is_vxworks && s->size > 0)
9732 s->size += 4;
9733 }
9734 else if (! CONST_STRNEQ (name, ".init")
9735 && s != htab->sgot
9736 && s != htab->sgotplt
9737 && s != htab->sstubs
9738 && s != htab->sdynbss)
9739 {
9740 /* It's not one of our sections, so don't allocate space. */
9741 continue;
9742 }
9743
9744 if (s->size == 0)
9745 {
9746 s->flags |= SEC_EXCLUDE;
9747 continue;
9748 }
9749
9750 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9751 continue;
9752
9753 /* Allocate memory for the section contents. */
9754 s->contents = bfd_zalloc (dynobj, s->size);
9755 if (s->contents == NULL)
9756 {
9757 bfd_set_error (bfd_error_no_memory);
9758 return FALSE;
9759 }
9760 }
9761
9762 if (elf_hash_table (info)->dynamic_sections_created)
9763 {
9764 /* Add some entries to the .dynamic section. We fill in the
9765 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9766 must add the entries now so that we get the correct size for
9767 the .dynamic section. */
9768
9769 /* SGI object has the equivalence of DT_DEBUG in the
9770 DT_MIPS_RLD_MAP entry. This must come first because glibc
9771 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9772 may only look at the first one they see. */
9773 if (!info->shared
9774 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9775 return FALSE;
9776
9777 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9778 used by the debugger. */
9779 if (info->executable
9780 && !SGI_COMPAT (output_bfd)
9781 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9782 return FALSE;
9783
9784 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9785 info->flags |= DF_TEXTREL;
9786
9787 if ((info->flags & DF_TEXTREL) != 0)
9788 {
9789 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9790 return FALSE;
9791
9792 /* Clear the DF_TEXTREL flag. It will be set again if we
9793 write out an actual text relocation; we may not, because
9794 at this point we do not know whether e.g. any .eh_frame
9795 absolute relocations have been converted to PC-relative. */
9796 info->flags &= ~DF_TEXTREL;
9797 }
9798
9799 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9800 return FALSE;
9801
9802 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9803 if (htab->is_vxworks)
9804 {
9805 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9806 use any of the DT_MIPS_* tags. */
9807 if (sreldyn && sreldyn->size > 0)
9808 {
9809 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9810 return FALSE;
9811
9812 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9813 return FALSE;
9814
9815 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9816 return FALSE;
9817 }
9818 }
9819 else
9820 {
9821 if (sreldyn && sreldyn->size > 0)
9822 {
9823 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9824 return FALSE;
9825
9826 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9827 return FALSE;
9828
9829 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9830 return FALSE;
9831 }
9832
9833 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9834 return FALSE;
9835
9836 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9837 return FALSE;
9838
9839 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9840 return FALSE;
9841
9842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9843 return FALSE;
9844
9845 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9846 return FALSE;
9847
9848 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9849 return FALSE;
9850
9851 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9852 return FALSE;
9853
9854 if (IRIX_COMPAT (dynobj) == ict_irix5
9855 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9856 return FALSE;
9857
9858 if (IRIX_COMPAT (dynobj) == ict_irix6
9859 && (bfd_get_section_by_name
9860 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9861 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9862 return FALSE;
9863 }
9864 if (htab->splt->size > 0)
9865 {
9866 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9867 return FALSE;
9868
9869 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9870 return FALSE;
9871
9872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9873 return FALSE;
9874
9875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9876 return FALSE;
9877 }
9878 if (htab->is_vxworks
9879 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9880 return FALSE;
9881 }
9882
9883 return TRUE;
9884 }
9885 \f
9886 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9887 Adjust its R_ADDEND field so that it is correct for the output file.
9888 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9889 and sections respectively; both use symbol indexes. */
9890
9891 static void
9892 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9893 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9894 asection **local_sections, Elf_Internal_Rela *rel)
9895 {
9896 unsigned int r_type, r_symndx;
9897 Elf_Internal_Sym *sym;
9898 asection *sec;
9899
9900 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9901 {
9902 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9903 if (gprel16_reloc_p (r_type)
9904 || r_type == R_MIPS_GPREL32
9905 || literal_reloc_p (r_type))
9906 {
9907 rel->r_addend += _bfd_get_gp_value (input_bfd);
9908 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9909 }
9910
9911 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9912 sym = local_syms + r_symndx;
9913
9914 /* Adjust REL's addend to account for section merging. */
9915 if (!info->relocatable)
9916 {
9917 sec = local_sections[r_symndx];
9918 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9919 }
9920
9921 /* This would normally be done by the rela_normal code in elflink.c. */
9922 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9923 rel->r_addend += local_sections[r_symndx]->output_offset;
9924 }
9925 }
9926
9927 /* Handle relocations against symbols from removed linkonce sections,
9928 or sections discarded by a linker script. We use this wrapper around
9929 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9930 on 64-bit ELF targets. In this case for any relocation handled, which
9931 always be the first in a triplet, the remaining two have to be processed
9932 together with the first, even if they are R_MIPS_NONE. It is the symbol
9933 index referred by the first reloc that applies to all the three and the
9934 remaining two never refer to an object symbol. And it is the final
9935 relocation (the last non-null one) that determines the output field of
9936 the whole relocation so retrieve the corresponding howto structure for
9937 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9938
9939 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9940 and therefore requires to be pasted in a loop. It also defines a block
9941 and does not protect any of its arguments, hence the extra brackets. */
9942
9943 static void
9944 mips_reloc_against_discarded_section (bfd *output_bfd,
9945 struct bfd_link_info *info,
9946 bfd *input_bfd, asection *input_section,
9947 Elf_Internal_Rela **rel,
9948 const Elf_Internal_Rela **relend,
9949 bfd_boolean rel_reloc,
9950 reloc_howto_type *howto,
9951 bfd_byte *contents)
9952 {
9953 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9954 int count = bed->s->int_rels_per_ext_rel;
9955 unsigned int r_type;
9956 int i;
9957
9958 for (i = count - 1; i > 0; i--)
9959 {
9960 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9961 if (r_type != R_MIPS_NONE)
9962 {
9963 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9964 break;
9965 }
9966 }
9967 do
9968 {
9969 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9970 (*rel), count, (*relend),
9971 howto, i, contents);
9972 }
9973 while (0);
9974 }
9975
9976 /* Relocate a MIPS ELF section. */
9977
9978 bfd_boolean
9979 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9980 bfd *input_bfd, asection *input_section,
9981 bfd_byte *contents, Elf_Internal_Rela *relocs,
9982 Elf_Internal_Sym *local_syms,
9983 asection **local_sections)
9984 {
9985 Elf_Internal_Rela *rel;
9986 const Elf_Internal_Rela *relend;
9987 bfd_vma addend = 0;
9988 bfd_boolean use_saved_addend_p = FALSE;
9989 const struct elf_backend_data *bed;
9990
9991 bed = get_elf_backend_data (output_bfd);
9992 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9993 for (rel = relocs; rel < relend; ++rel)
9994 {
9995 const char *name;
9996 bfd_vma value = 0;
9997 reloc_howto_type *howto;
9998 bfd_boolean cross_mode_jump_p = FALSE;
9999 /* TRUE if the relocation is a RELA relocation, rather than a
10000 REL relocation. */
10001 bfd_boolean rela_relocation_p = TRUE;
10002 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10003 const char *msg;
10004 unsigned long r_symndx;
10005 asection *sec;
10006 Elf_Internal_Shdr *symtab_hdr;
10007 struct elf_link_hash_entry *h;
10008 bfd_boolean rel_reloc;
10009
10010 rel_reloc = (NEWABI_P (input_bfd)
10011 && mips_elf_rel_relocation_p (input_bfd, input_section,
10012 relocs, rel));
10013 /* Find the relocation howto for this relocation. */
10014 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10015
10016 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10017 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10018 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10019 {
10020 sec = local_sections[r_symndx];
10021 h = NULL;
10022 }
10023 else
10024 {
10025 unsigned long extsymoff;
10026
10027 extsymoff = 0;
10028 if (!elf_bad_symtab (input_bfd))
10029 extsymoff = symtab_hdr->sh_info;
10030 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10031 while (h->root.type == bfd_link_hash_indirect
10032 || h->root.type == bfd_link_hash_warning)
10033 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10034
10035 sec = NULL;
10036 if (h->root.type == bfd_link_hash_defined
10037 || h->root.type == bfd_link_hash_defweak)
10038 sec = h->root.u.def.section;
10039 }
10040
10041 if (sec != NULL && discarded_section (sec))
10042 {
10043 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10044 input_section, &rel, &relend,
10045 rel_reloc, howto, contents);
10046 continue;
10047 }
10048
10049 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10050 {
10051 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10052 64-bit code, but make sure all their addresses are in the
10053 lowermost or uppermost 32-bit section of the 64-bit address
10054 space. Thus, when they use an R_MIPS_64 they mean what is
10055 usually meant by R_MIPS_32, with the exception that the
10056 stored value is sign-extended to 64 bits. */
10057 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10058
10059 /* On big-endian systems, we need to lie about the position
10060 of the reloc. */
10061 if (bfd_big_endian (input_bfd))
10062 rel->r_offset += 4;
10063 }
10064
10065 if (!use_saved_addend_p)
10066 {
10067 /* If these relocations were originally of the REL variety,
10068 we must pull the addend out of the field that will be
10069 relocated. Otherwise, we simply use the contents of the
10070 RELA relocation. */
10071 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10072 relocs, rel))
10073 {
10074 rela_relocation_p = FALSE;
10075 addend = mips_elf_read_rel_addend (input_bfd, rel,
10076 howto, contents);
10077 if (hi16_reloc_p (r_type)
10078 || (got16_reloc_p (r_type)
10079 && mips_elf_local_relocation_p (input_bfd, rel,
10080 local_sections)))
10081 {
10082 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10083 contents, &addend))
10084 {
10085 if (h)
10086 name = h->root.root.string;
10087 else
10088 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10089 local_syms + r_symndx,
10090 sec);
10091 (*_bfd_error_handler)
10092 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10093 input_bfd, input_section, name, howto->name,
10094 rel->r_offset);
10095 }
10096 }
10097 else
10098 addend <<= howto->rightshift;
10099 }
10100 else
10101 addend = rel->r_addend;
10102 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10103 local_syms, local_sections, rel);
10104 }
10105
10106 if (info->relocatable)
10107 {
10108 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10109 && bfd_big_endian (input_bfd))
10110 rel->r_offset -= 4;
10111
10112 if (!rela_relocation_p && rel->r_addend)
10113 {
10114 addend += rel->r_addend;
10115 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10116 addend = mips_elf_high (addend);
10117 else if (r_type == R_MIPS_HIGHER)
10118 addend = mips_elf_higher (addend);
10119 else if (r_type == R_MIPS_HIGHEST)
10120 addend = mips_elf_highest (addend);
10121 else
10122 addend >>= howto->rightshift;
10123
10124 /* We use the source mask, rather than the destination
10125 mask because the place to which we are writing will be
10126 source of the addend in the final link. */
10127 addend &= howto->src_mask;
10128
10129 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10130 /* See the comment above about using R_MIPS_64 in the 32-bit
10131 ABI. Here, we need to update the addend. It would be
10132 possible to get away with just using the R_MIPS_32 reloc
10133 but for endianness. */
10134 {
10135 bfd_vma sign_bits;
10136 bfd_vma low_bits;
10137 bfd_vma high_bits;
10138
10139 if (addend & ((bfd_vma) 1 << 31))
10140 #ifdef BFD64
10141 sign_bits = ((bfd_vma) 1 << 32) - 1;
10142 #else
10143 sign_bits = -1;
10144 #endif
10145 else
10146 sign_bits = 0;
10147
10148 /* If we don't know that we have a 64-bit type,
10149 do two separate stores. */
10150 if (bfd_big_endian (input_bfd))
10151 {
10152 /* Store the sign-bits (which are most significant)
10153 first. */
10154 low_bits = sign_bits;
10155 high_bits = addend;
10156 }
10157 else
10158 {
10159 low_bits = addend;
10160 high_bits = sign_bits;
10161 }
10162 bfd_put_32 (input_bfd, low_bits,
10163 contents + rel->r_offset);
10164 bfd_put_32 (input_bfd, high_bits,
10165 contents + rel->r_offset + 4);
10166 continue;
10167 }
10168
10169 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10170 input_bfd, input_section,
10171 contents, FALSE))
10172 return FALSE;
10173 }
10174
10175 /* Go on to the next relocation. */
10176 continue;
10177 }
10178
10179 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10180 relocations for the same offset. In that case we are
10181 supposed to treat the output of each relocation as the addend
10182 for the next. */
10183 if (rel + 1 < relend
10184 && rel->r_offset == rel[1].r_offset
10185 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10186 use_saved_addend_p = TRUE;
10187 else
10188 use_saved_addend_p = FALSE;
10189
10190 /* Figure out what value we are supposed to relocate. */
10191 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10192 input_section, info, rel,
10193 addend, howto, local_syms,
10194 local_sections, &value,
10195 &name, &cross_mode_jump_p,
10196 use_saved_addend_p))
10197 {
10198 case bfd_reloc_continue:
10199 /* There's nothing to do. */
10200 continue;
10201
10202 case bfd_reloc_undefined:
10203 /* mips_elf_calculate_relocation already called the
10204 undefined_symbol callback. There's no real point in
10205 trying to perform the relocation at this point, so we
10206 just skip ahead to the next relocation. */
10207 continue;
10208
10209 case bfd_reloc_notsupported:
10210 msg = _("internal error: unsupported relocation error");
10211 info->callbacks->warning
10212 (info, msg, name, input_bfd, input_section, rel->r_offset);
10213 return FALSE;
10214
10215 case bfd_reloc_overflow:
10216 if (use_saved_addend_p)
10217 /* Ignore overflow until we reach the last relocation for
10218 a given location. */
10219 ;
10220 else
10221 {
10222 struct mips_elf_link_hash_table *htab;
10223
10224 htab = mips_elf_hash_table (info);
10225 BFD_ASSERT (htab != NULL);
10226 BFD_ASSERT (name != NULL);
10227 if (!htab->small_data_overflow_reported
10228 && (gprel16_reloc_p (howto->type)
10229 || literal_reloc_p (howto->type)))
10230 {
10231 msg = _("small-data section exceeds 64KB;"
10232 " lower small-data size limit (see option -G)");
10233
10234 htab->small_data_overflow_reported = TRUE;
10235 (*info->callbacks->einfo) ("%P: %s\n", msg);
10236 }
10237 if (! ((*info->callbacks->reloc_overflow)
10238 (info, NULL, name, howto->name, (bfd_vma) 0,
10239 input_bfd, input_section, rel->r_offset)))
10240 return FALSE;
10241 }
10242 break;
10243
10244 case bfd_reloc_ok:
10245 break;
10246
10247 case bfd_reloc_outofrange:
10248 if (jal_reloc_p (howto->type))
10249 {
10250 msg = _("JALX to a non-word-aligned address");
10251 info->callbacks->warning
10252 (info, msg, name, input_bfd, input_section, rel->r_offset);
10253 return FALSE;
10254 }
10255 if (aligned_pcrel_reloc_p (howto->type))
10256 {
10257 msg = _("PC-relative load from unaligned address");
10258 info->callbacks->warning
10259 (info, msg, name, input_bfd, input_section, rel->r_offset);
10260 return FALSE;
10261 }
10262 /* Fall through. */
10263
10264 default:
10265 abort ();
10266 break;
10267 }
10268
10269 /* If we've got another relocation for the address, keep going
10270 until we reach the last one. */
10271 if (use_saved_addend_p)
10272 {
10273 addend = value;
10274 continue;
10275 }
10276
10277 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10278 /* See the comment above about using R_MIPS_64 in the 32-bit
10279 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10280 that calculated the right value. Now, however, we
10281 sign-extend the 32-bit result to 64-bits, and store it as a
10282 64-bit value. We are especially generous here in that we
10283 go to extreme lengths to support this usage on systems with
10284 only a 32-bit VMA. */
10285 {
10286 bfd_vma sign_bits;
10287 bfd_vma low_bits;
10288 bfd_vma high_bits;
10289
10290 if (value & ((bfd_vma) 1 << 31))
10291 #ifdef BFD64
10292 sign_bits = ((bfd_vma) 1 << 32) - 1;
10293 #else
10294 sign_bits = -1;
10295 #endif
10296 else
10297 sign_bits = 0;
10298
10299 /* If we don't know that we have a 64-bit type,
10300 do two separate stores. */
10301 if (bfd_big_endian (input_bfd))
10302 {
10303 /* Undo what we did above. */
10304 rel->r_offset -= 4;
10305 /* Store the sign-bits (which are most significant)
10306 first. */
10307 low_bits = sign_bits;
10308 high_bits = value;
10309 }
10310 else
10311 {
10312 low_bits = value;
10313 high_bits = sign_bits;
10314 }
10315 bfd_put_32 (input_bfd, low_bits,
10316 contents + rel->r_offset);
10317 bfd_put_32 (input_bfd, high_bits,
10318 contents + rel->r_offset + 4);
10319 continue;
10320 }
10321
10322 /* Actually perform the relocation. */
10323 if (! mips_elf_perform_relocation (info, howto, rel, value,
10324 input_bfd, input_section,
10325 contents, cross_mode_jump_p))
10326 return FALSE;
10327 }
10328
10329 return TRUE;
10330 }
10331 \f
10332 /* A function that iterates over each entry in la25_stubs and fills
10333 in the code for each one. DATA points to a mips_htab_traverse_info. */
10334
10335 static int
10336 mips_elf_create_la25_stub (void **slot, void *data)
10337 {
10338 struct mips_htab_traverse_info *hti;
10339 struct mips_elf_link_hash_table *htab;
10340 struct mips_elf_la25_stub *stub;
10341 asection *s;
10342 bfd_byte *loc;
10343 bfd_vma offset, target, target_high, target_low;
10344
10345 stub = (struct mips_elf_la25_stub *) *slot;
10346 hti = (struct mips_htab_traverse_info *) data;
10347 htab = mips_elf_hash_table (hti->info);
10348 BFD_ASSERT (htab != NULL);
10349
10350 /* Create the section contents, if we haven't already. */
10351 s = stub->stub_section;
10352 loc = s->contents;
10353 if (loc == NULL)
10354 {
10355 loc = bfd_malloc (s->size);
10356 if (loc == NULL)
10357 {
10358 hti->error = TRUE;
10359 return FALSE;
10360 }
10361 s->contents = loc;
10362 }
10363
10364 /* Work out where in the section this stub should go. */
10365 offset = stub->offset;
10366
10367 /* Work out the target address. */
10368 target = mips_elf_get_la25_target (stub, &s);
10369 target += s->output_section->vma + s->output_offset;
10370
10371 target_high = ((target + 0x8000) >> 16) & 0xffff;
10372 target_low = (target & 0xffff);
10373
10374 if (stub->stub_section != htab->strampoline)
10375 {
10376 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10377 of the section and write the two instructions at the end. */
10378 memset (loc, 0, offset);
10379 loc += offset;
10380 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10381 {
10382 bfd_put_micromips_32 (hti->output_bfd,
10383 LA25_LUI_MICROMIPS (target_high),
10384 loc);
10385 bfd_put_micromips_32 (hti->output_bfd,
10386 LA25_ADDIU_MICROMIPS (target_low),
10387 loc + 4);
10388 }
10389 else
10390 {
10391 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10392 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10393 }
10394 }
10395 else
10396 {
10397 /* This is trampoline. */
10398 loc += offset;
10399 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10400 {
10401 bfd_put_micromips_32 (hti->output_bfd,
10402 LA25_LUI_MICROMIPS (target_high), loc);
10403 bfd_put_micromips_32 (hti->output_bfd,
10404 LA25_J_MICROMIPS (target), loc + 4);
10405 bfd_put_micromips_32 (hti->output_bfd,
10406 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10407 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10408 }
10409 else
10410 {
10411 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10412 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10413 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10414 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10415 }
10416 }
10417 return TRUE;
10418 }
10419
10420 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10421 adjust it appropriately now. */
10422
10423 static void
10424 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10425 const char *name, Elf_Internal_Sym *sym)
10426 {
10427 /* The linker script takes care of providing names and values for
10428 these, but we must place them into the right sections. */
10429 static const char* const text_section_symbols[] = {
10430 "_ftext",
10431 "_etext",
10432 "__dso_displacement",
10433 "__elf_header",
10434 "__program_header_table",
10435 NULL
10436 };
10437
10438 static const char* const data_section_symbols[] = {
10439 "_fdata",
10440 "_edata",
10441 "_end",
10442 "_fbss",
10443 NULL
10444 };
10445
10446 const char* const *p;
10447 int i;
10448
10449 for (i = 0; i < 2; ++i)
10450 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10451 *p;
10452 ++p)
10453 if (strcmp (*p, name) == 0)
10454 {
10455 /* All of these symbols are given type STT_SECTION by the
10456 IRIX6 linker. */
10457 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10458 sym->st_other = STO_PROTECTED;
10459
10460 /* The IRIX linker puts these symbols in special sections. */
10461 if (i == 0)
10462 sym->st_shndx = SHN_MIPS_TEXT;
10463 else
10464 sym->st_shndx = SHN_MIPS_DATA;
10465
10466 break;
10467 }
10468 }
10469
10470 /* Finish up dynamic symbol handling. We set the contents of various
10471 dynamic sections here. */
10472
10473 bfd_boolean
10474 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10475 struct bfd_link_info *info,
10476 struct elf_link_hash_entry *h,
10477 Elf_Internal_Sym *sym)
10478 {
10479 bfd *dynobj;
10480 asection *sgot;
10481 struct mips_got_info *g, *gg;
10482 const char *name;
10483 int idx;
10484 struct mips_elf_link_hash_table *htab;
10485 struct mips_elf_link_hash_entry *hmips;
10486
10487 htab = mips_elf_hash_table (info);
10488 BFD_ASSERT (htab != NULL);
10489 dynobj = elf_hash_table (info)->dynobj;
10490 hmips = (struct mips_elf_link_hash_entry *) h;
10491
10492 BFD_ASSERT (!htab->is_vxworks);
10493
10494 if (h->plt.plist != NULL
10495 && (h->plt.plist->mips_offset != MINUS_ONE
10496 || h->plt.plist->comp_offset != MINUS_ONE))
10497 {
10498 /* We've decided to create a PLT entry for this symbol. */
10499 bfd_byte *loc;
10500 bfd_vma header_address, got_address;
10501 bfd_vma got_address_high, got_address_low, load;
10502 bfd_vma got_index;
10503 bfd_vma isa_bit;
10504
10505 got_index = h->plt.plist->gotplt_index;
10506
10507 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10508 BFD_ASSERT (h->dynindx != -1);
10509 BFD_ASSERT (htab->splt != NULL);
10510 BFD_ASSERT (got_index != MINUS_ONE);
10511 BFD_ASSERT (!h->def_regular);
10512
10513 /* Calculate the address of the PLT header. */
10514 isa_bit = htab->plt_header_is_comp;
10515 header_address = (htab->splt->output_section->vma
10516 + htab->splt->output_offset + isa_bit);
10517
10518 /* Calculate the address of the .got.plt entry. */
10519 got_address = (htab->sgotplt->output_section->vma
10520 + htab->sgotplt->output_offset
10521 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10522
10523 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10524 got_address_low = got_address & 0xffff;
10525
10526 /* Initially point the .got.plt entry at the PLT header. */
10527 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10528 if (ABI_64_P (output_bfd))
10529 bfd_put_64 (output_bfd, header_address, loc);
10530 else
10531 bfd_put_32 (output_bfd, header_address, loc);
10532
10533 /* Now handle the PLT itself. First the standard entry (the order
10534 does not matter, we just have to pick one). */
10535 if (h->plt.plist->mips_offset != MINUS_ONE)
10536 {
10537 const bfd_vma *plt_entry;
10538 bfd_vma plt_offset;
10539
10540 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10541
10542 BFD_ASSERT (plt_offset <= htab->splt->size);
10543
10544 /* Find out where the .plt entry should go. */
10545 loc = htab->splt->contents + plt_offset;
10546
10547 /* Pick the load opcode. */
10548 load = MIPS_ELF_LOAD_WORD (output_bfd);
10549
10550 /* Fill in the PLT entry itself. */
10551
10552 if (MIPSR6_P (output_bfd))
10553 plt_entry = mipsr6_exec_plt_entry;
10554 else
10555 plt_entry = mips_exec_plt_entry;
10556 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10557 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10558 loc + 4);
10559
10560 if (! LOAD_INTERLOCKS_P (output_bfd))
10561 {
10562 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10563 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10564 }
10565 else
10566 {
10567 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10568 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10569 loc + 12);
10570 }
10571 }
10572
10573 /* Now the compressed entry. They come after any standard ones. */
10574 if (h->plt.plist->comp_offset != MINUS_ONE)
10575 {
10576 bfd_vma plt_offset;
10577
10578 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10579 + h->plt.plist->comp_offset);
10580
10581 BFD_ASSERT (plt_offset <= htab->splt->size);
10582
10583 /* Find out where the .plt entry should go. */
10584 loc = htab->splt->contents + plt_offset;
10585
10586 /* Fill in the PLT entry itself. */
10587 if (!MICROMIPS_P (output_bfd))
10588 {
10589 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10590
10591 bfd_put_16 (output_bfd, plt_entry[0], loc);
10592 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10593 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10594 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10595 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10596 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10597 bfd_put_32 (output_bfd, got_address, loc + 12);
10598 }
10599 else if (htab->insn32)
10600 {
10601 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10602
10603 bfd_put_16 (output_bfd, plt_entry[0], loc);
10604 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10605 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10606 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10607 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10608 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10609 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10610 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10611 }
10612 else
10613 {
10614 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10615 bfd_signed_vma gotpc_offset;
10616 bfd_vma loc_address;
10617
10618 BFD_ASSERT (got_address % 4 == 0);
10619
10620 loc_address = (htab->splt->output_section->vma
10621 + htab->splt->output_offset + plt_offset);
10622 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10623
10624 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10625 if (gotpc_offset + 0x1000000 >= 0x2000000)
10626 {
10627 (*_bfd_error_handler)
10628 (_("%B: `%A' offset of %ld from `%A' "
10629 "beyond the range of ADDIUPC"),
10630 output_bfd,
10631 htab->sgotplt->output_section,
10632 htab->splt->output_section,
10633 (long) gotpc_offset);
10634 bfd_set_error (bfd_error_no_error);
10635 return FALSE;
10636 }
10637 bfd_put_16 (output_bfd,
10638 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10639 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10640 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10641 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10642 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10643 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10644 }
10645 }
10646
10647 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10648 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10649 got_index - 2, h->dynindx,
10650 R_MIPS_JUMP_SLOT, got_address);
10651
10652 /* We distinguish between PLT entries and lazy-binding stubs by
10653 giving the former an st_other value of STO_MIPS_PLT. Set the
10654 flag and leave the value if there are any relocations in the
10655 binary where pointer equality matters. */
10656 sym->st_shndx = SHN_UNDEF;
10657 if (h->pointer_equality_needed)
10658 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10659 else
10660 {
10661 sym->st_value = 0;
10662 sym->st_other = 0;
10663 }
10664 }
10665
10666 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10667 {
10668 /* We've decided to create a lazy-binding stub. */
10669 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10670 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10671 bfd_vma stub_size = htab->function_stub_size;
10672 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10673 bfd_vma isa_bit = micromips_p;
10674 bfd_vma stub_big_size;
10675
10676 if (!micromips_p)
10677 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10678 else if (htab->insn32)
10679 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10680 else
10681 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10682
10683 /* This symbol has a stub. Set it up. */
10684
10685 BFD_ASSERT (h->dynindx != -1);
10686
10687 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10688
10689 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10690 sign extension at runtime in the stub, resulting in a negative
10691 index value. */
10692 if (h->dynindx & ~0x7fffffff)
10693 return FALSE;
10694
10695 /* Fill the stub. */
10696 if (micromips_p)
10697 {
10698 idx = 0;
10699 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10700 stub + idx);
10701 idx += 4;
10702 if (htab->insn32)
10703 {
10704 bfd_put_micromips_32 (output_bfd,
10705 STUB_MOVE32_MICROMIPS (output_bfd),
10706 stub + idx);
10707 idx += 4;
10708 }
10709 else
10710 {
10711 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10712 idx += 2;
10713 }
10714 if (stub_size == stub_big_size)
10715 {
10716 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10717
10718 bfd_put_micromips_32 (output_bfd,
10719 STUB_LUI_MICROMIPS (dynindx_hi),
10720 stub + idx);
10721 idx += 4;
10722 }
10723 if (htab->insn32)
10724 {
10725 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10726 stub + idx);
10727 idx += 4;
10728 }
10729 else
10730 {
10731 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10732 idx += 2;
10733 }
10734
10735 /* If a large stub is not required and sign extension is not a
10736 problem, then use legacy code in the stub. */
10737 if (stub_size == stub_big_size)
10738 bfd_put_micromips_32 (output_bfd,
10739 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10740 stub + idx);
10741 else if (h->dynindx & ~0x7fff)
10742 bfd_put_micromips_32 (output_bfd,
10743 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10744 stub + idx);
10745 else
10746 bfd_put_micromips_32 (output_bfd,
10747 STUB_LI16S_MICROMIPS (output_bfd,
10748 h->dynindx),
10749 stub + idx);
10750 }
10751 else
10752 {
10753 idx = 0;
10754 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10755 idx += 4;
10756 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10757 idx += 4;
10758 if (stub_size == stub_big_size)
10759 {
10760 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10761 stub + idx);
10762 idx += 4;
10763 }
10764 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10765 idx += 4;
10766
10767 /* If a large stub is not required and sign extension is not a
10768 problem, then use legacy code in the stub. */
10769 if (stub_size == stub_big_size)
10770 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10771 stub + idx);
10772 else if (h->dynindx & ~0x7fff)
10773 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10774 stub + idx);
10775 else
10776 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10777 stub + idx);
10778 }
10779
10780 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10781 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10782 stub, stub_size);
10783
10784 /* Mark the symbol as undefined. stub_offset != -1 occurs
10785 only for the referenced symbol. */
10786 sym->st_shndx = SHN_UNDEF;
10787
10788 /* The run-time linker uses the st_value field of the symbol
10789 to reset the global offset table entry for this external
10790 to its stub address when unlinking a shared object. */
10791 sym->st_value = (htab->sstubs->output_section->vma
10792 + htab->sstubs->output_offset
10793 + h->plt.plist->stub_offset
10794 + isa_bit);
10795 sym->st_other = other;
10796 }
10797
10798 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10799 refer to the stub, since only the stub uses the standard calling
10800 conventions. */
10801 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10802 {
10803 BFD_ASSERT (hmips->need_fn_stub);
10804 sym->st_value = (hmips->fn_stub->output_section->vma
10805 + hmips->fn_stub->output_offset);
10806 sym->st_size = hmips->fn_stub->size;
10807 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10808 }
10809
10810 BFD_ASSERT (h->dynindx != -1
10811 || h->forced_local);
10812
10813 sgot = htab->sgot;
10814 g = htab->got_info;
10815 BFD_ASSERT (g != NULL);
10816
10817 /* Run through the global symbol table, creating GOT entries for all
10818 the symbols that need them. */
10819 if (hmips->global_got_area != GGA_NONE)
10820 {
10821 bfd_vma offset;
10822 bfd_vma value;
10823
10824 value = sym->st_value;
10825 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10826 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10827 }
10828
10829 if (hmips->global_got_area != GGA_NONE && g->next)
10830 {
10831 struct mips_got_entry e, *p;
10832 bfd_vma entry;
10833 bfd_vma offset;
10834
10835 gg = g;
10836
10837 e.abfd = output_bfd;
10838 e.symndx = -1;
10839 e.d.h = hmips;
10840 e.tls_type = GOT_TLS_NONE;
10841
10842 for (g = g->next; g->next != gg; g = g->next)
10843 {
10844 if (g->got_entries
10845 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10846 &e)))
10847 {
10848 offset = p->gotidx;
10849 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10850 if (info->shared
10851 || (elf_hash_table (info)->dynamic_sections_created
10852 && p->d.h != NULL
10853 && p->d.h->root.def_dynamic
10854 && !p->d.h->root.def_regular))
10855 {
10856 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10857 the various compatibility problems, it's easier to mock
10858 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10859 mips_elf_create_dynamic_relocation to calculate the
10860 appropriate addend. */
10861 Elf_Internal_Rela rel[3];
10862
10863 memset (rel, 0, sizeof (rel));
10864 if (ABI_64_P (output_bfd))
10865 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10866 else
10867 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10868 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10869
10870 entry = 0;
10871 if (! (mips_elf_create_dynamic_relocation
10872 (output_bfd, info, rel,
10873 e.d.h, NULL, sym->st_value, &entry, sgot)))
10874 return FALSE;
10875 }
10876 else
10877 entry = sym->st_value;
10878 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10879 }
10880 }
10881 }
10882
10883 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10884 name = h->root.root.string;
10885 if (h == elf_hash_table (info)->hdynamic
10886 || h == elf_hash_table (info)->hgot)
10887 sym->st_shndx = SHN_ABS;
10888 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10889 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10890 {
10891 sym->st_shndx = SHN_ABS;
10892 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10893 sym->st_value = 1;
10894 }
10895 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10896 {
10897 sym->st_shndx = SHN_ABS;
10898 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10899 sym->st_value = elf_gp (output_bfd);
10900 }
10901 else if (SGI_COMPAT (output_bfd))
10902 {
10903 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10904 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10905 {
10906 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10907 sym->st_other = STO_PROTECTED;
10908 sym->st_value = 0;
10909 sym->st_shndx = SHN_MIPS_DATA;
10910 }
10911 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10912 {
10913 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10914 sym->st_other = STO_PROTECTED;
10915 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10916 sym->st_shndx = SHN_ABS;
10917 }
10918 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10919 {
10920 if (h->type == STT_FUNC)
10921 sym->st_shndx = SHN_MIPS_TEXT;
10922 else if (h->type == STT_OBJECT)
10923 sym->st_shndx = SHN_MIPS_DATA;
10924 }
10925 }
10926
10927 /* Emit a copy reloc, if needed. */
10928 if (h->needs_copy)
10929 {
10930 asection *s;
10931 bfd_vma symval;
10932
10933 BFD_ASSERT (h->dynindx != -1);
10934 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10935
10936 s = mips_elf_rel_dyn_section (info, FALSE);
10937 symval = (h->root.u.def.section->output_section->vma
10938 + h->root.u.def.section->output_offset
10939 + h->root.u.def.value);
10940 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10941 h->dynindx, R_MIPS_COPY, symval);
10942 }
10943
10944 /* Handle the IRIX6-specific symbols. */
10945 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10946 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10947
10948 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10949 to treat compressed symbols like any other. */
10950 if (ELF_ST_IS_MIPS16 (sym->st_other))
10951 {
10952 BFD_ASSERT (sym->st_value & 1);
10953 sym->st_other -= STO_MIPS16;
10954 }
10955 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10956 {
10957 BFD_ASSERT (sym->st_value & 1);
10958 sym->st_other -= STO_MICROMIPS;
10959 }
10960
10961 return TRUE;
10962 }
10963
10964 /* Likewise, for VxWorks. */
10965
10966 bfd_boolean
10967 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10968 struct bfd_link_info *info,
10969 struct elf_link_hash_entry *h,
10970 Elf_Internal_Sym *sym)
10971 {
10972 bfd *dynobj;
10973 asection *sgot;
10974 struct mips_got_info *g;
10975 struct mips_elf_link_hash_table *htab;
10976 struct mips_elf_link_hash_entry *hmips;
10977
10978 htab = mips_elf_hash_table (info);
10979 BFD_ASSERT (htab != NULL);
10980 dynobj = elf_hash_table (info)->dynobj;
10981 hmips = (struct mips_elf_link_hash_entry *) h;
10982
10983 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10984 {
10985 bfd_byte *loc;
10986 bfd_vma plt_address, got_address, got_offset, branch_offset;
10987 Elf_Internal_Rela rel;
10988 static const bfd_vma *plt_entry;
10989 bfd_vma gotplt_index;
10990 bfd_vma plt_offset;
10991
10992 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10993 gotplt_index = h->plt.plist->gotplt_index;
10994
10995 BFD_ASSERT (h->dynindx != -1);
10996 BFD_ASSERT (htab->splt != NULL);
10997 BFD_ASSERT (gotplt_index != MINUS_ONE);
10998 BFD_ASSERT (plt_offset <= htab->splt->size);
10999
11000 /* Calculate the address of the .plt entry. */
11001 plt_address = (htab->splt->output_section->vma
11002 + htab->splt->output_offset
11003 + plt_offset);
11004
11005 /* Calculate the address of the .got.plt entry. */
11006 got_address = (htab->sgotplt->output_section->vma
11007 + htab->sgotplt->output_offset
11008 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11009
11010 /* Calculate the offset of the .got.plt entry from
11011 _GLOBAL_OFFSET_TABLE_. */
11012 got_offset = mips_elf_gotplt_index (info, h);
11013
11014 /* Calculate the offset for the branch at the start of the PLT
11015 entry. The branch jumps to the beginning of .plt. */
11016 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11017
11018 /* Fill in the initial value of the .got.plt entry. */
11019 bfd_put_32 (output_bfd, plt_address,
11020 (htab->sgotplt->contents
11021 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11022
11023 /* Find out where the .plt entry should go. */
11024 loc = htab->splt->contents + plt_offset;
11025
11026 if (info->shared)
11027 {
11028 plt_entry = mips_vxworks_shared_plt_entry;
11029 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11030 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11031 }
11032 else
11033 {
11034 bfd_vma got_address_high, got_address_low;
11035
11036 plt_entry = mips_vxworks_exec_plt_entry;
11037 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11038 got_address_low = got_address & 0xffff;
11039
11040 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11041 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11042 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11043 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11044 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11045 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11046 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11047 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11048
11049 loc = (htab->srelplt2->contents
11050 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11051
11052 /* Emit a relocation for the .got.plt entry. */
11053 rel.r_offset = got_address;
11054 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11055 rel.r_addend = plt_offset;
11056 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11057
11058 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11059 loc += sizeof (Elf32_External_Rela);
11060 rel.r_offset = plt_address + 8;
11061 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11062 rel.r_addend = got_offset;
11063 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11064
11065 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11066 loc += sizeof (Elf32_External_Rela);
11067 rel.r_offset += 4;
11068 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11069 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11070 }
11071
11072 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11073 loc = (htab->srelplt->contents
11074 + gotplt_index * sizeof (Elf32_External_Rela));
11075 rel.r_offset = got_address;
11076 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11077 rel.r_addend = 0;
11078 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11079
11080 if (!h->def_regular)
11081 sym->st_shndx = SHN_UNDEF;
11082 }
11083
11084 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11085
11086 sgot = htab->sgot;
11087 g = htab->got_info;
11088 BFD_ASSERT (g != NULL);
11089
11090 /* See if this symbol has an entry in the GOT. */
11091 if (hmips->global_got_area != GGA_NONE)
11092 {
11093 bfd_vma offset;
11094 Elf_Internal_Rela outrel;
11095 bfd_byte *loc;
11096 asection *s;
11097
11098 /* Install the symbol value in the GOT. */
11099 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11100 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11101
11102 /* Add a dynamic relocation for it. */
11103 s = mips_elf_rel_dyn_section (info, FALSE);
11104 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11105 outrel.r_offset = (sgot->output_section->vma
11106 + sgot->output_offset
11107 + offset);
11108 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11109 outrel.r_addend = 0;
11110 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11111 }
11112
11113 /* Emit a copy reloc, if needed. */
11114 if (h->needs_copy)
11115 {
11116 Elf_Internal_Rela rel;
11117
11118 BFD_ASSERT (h->dynindx != -1);
11119
11120 rel.r_offset = (h->root.u.def.section->output_section->vma
11121 + h->root.u.def.section->output_offset
11122 + h->root.u.def.value);
11123 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11124 rel.r_addend = 0;
11125 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11126 htab->srelbss->contents
11127 + (htab->srelbss->reloc_count
11128 * sizeof (Elf32_External_Rela)));
11129 ++htab->srelbss->reloc_count;
11130 }
11131
11132 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11133 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11134 sym->st_value &= ~1;
11135
11136 return TRUE;
11137 }
11138
11139 /* Write out a plt0 entry to the beginning of .plt. */
11140
11141 static bfd_boolean
11142 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11143 {
11144 bfd_byte *loc;
11145 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11146 static const bfd_vma *plt_entry;
11147 struct mips_elf_link_hash_table *htab;
11148
11149 htab = mips_elf_hash_table (info);
11150 BFD_ASSERT (htab != NULL);
11151
11152 if (ABI_64_P (output_bfd))
11153 plt_entry = mips_n64_exec_plt0_entry;
11154 else if (ABI_N32_P (output_bfd))
11155 plt_entry = mips_n32_exec_plt0_entry;
11156 else if (!htab->plt_header_is_comp)
11157 plt_entry = mips_o32_exec_plt0_entry;
11158 else if (htab->insn32)
11159 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11160 else
11161 plt_entry = micromips_o32_exec_plt0_entry;
11162
11163 /* Calculate the value of .got.plt. */
11164 gotplt_value = (htab->sgotplt->output_section->vma
11165 + htab->sgotplt->output_offset);
11166 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11167 gotplt_value_low = gotplt_value & 0xffff;
11168
11169 /* The PLT sequence is not safe for N64 if .got.plt's address can
11170 not be loaded in two instructions. */
11171 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11172 || ~(gotplt_value | 0x7fffffff) == 0);
11173
11174 /* Install the PLT header. */
11175 loc = htab->splt->contents;
11176 if (plt_entry == micromips_o32_exec_plt0_entry)
11177 {
11178 bfd_vma gotpc_offset;
11179 bfd_vma loc_address;
11180 size_t i;
11181
11182 BFD_ASSERT (gotplt_value % 4 == 0);
11183
11184 loc_address = (htab->splt->output_section->vma
11185 + htab->splt->output_offset);
11186 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11187
11188 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11189 if (gotpc_offset + 0x1000000 >= 0x2000000)
11190 {
11191 (*_bfd_error_handler)
11192 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11193 output_bfd,
11194 htab->sgotplt->output_section,
11195 htab->splt->output_section,
11196 (long) gotpc_offset);
11197 bfd_set_error (bfd_error_no_error);
11198 return FALSE;
11199 }
11200 bfd_put_16 (output_bfd,
11201 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11202 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11203 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11204 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11205 }
11206 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11207 {
11208 size_t i;
11209
11210 bfd_put_16 (output_bfd, plt_entry[0], loc);
11211 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11212 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11213 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11214 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11215 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11216 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11217 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11218 }
11219 else
11220 {
11221 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11222 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11223 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11224 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11225 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11226 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11227 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11228 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11229 }
11230
11231 return TRUE;
11232 }
11233
11234 /* Install the PLT header for a VxWorks executable and finalize the
11235 contents of .rela.plt.unloaded. */
11236
11237 static void
11238 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11239 {
11240 Elf_Internal_Rela rela;
11241 bfd_byte *loc;
11242 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11243 static const bfd_vma *plt_entry;
11244 struct mips_elf_link_hash_table *htab;
11245
11246 htab = mips_elf_hash_table (info);
11247 BFD_ASSERT (htab != NULL);
11248
11249 plt_entry = mips_vxworks_exec_plt0_entry;
11250
11251 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11252 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11253 + htab->root.hgot->root.u.def.section->output_offset
11254 + htab->root.hgot->root.u.def.value);
11255
11256 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11257 got_value_low = got_value & 0xffff;
11258
11259 /* Calculate the address of the PLT header. */
11260 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11261
11262 /* Install the PLT header. */
11263 loc = htab->splt->contents;
11264 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11265 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11266 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11267 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11268 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11269 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11270
11271 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11272 loc = htab->srelplt2->contents;
11273 rela.r_offset = plt_address;
11274 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11275 rela.r_addend = 0;
11276 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11277 loc += sizeof (Elf32_External_Rela);
11278
11279 /* Output the relocation for the following addiu of
11280 %lo(_GLOBAL_OFFSET_TABLE_). */
11281 rela.r_offset += 4;
11282 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11283 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11284 loc += sizeof (Elf32_External_Rela);
11285
11286 /* Fix up the remaining relocations. They may have the wrong
11287 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11288 in which symbols were output. */
11289 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11290 {
11291 Elf_Internal_Rela rel;
11292
11293 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11294 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11295 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11296 loc += sizeof (Elf32_External_Rela);
11297
11298 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11299 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11300 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11301 loc += sizeof (Elf32_External_Rela);
11302
11303 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11304 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11305 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11306 loc += sizeof (Elf32_External_Rela);
11307 }
11308 }
11309
11310 /* Install the PLT header for a VxWorks shared library. */
11311
11312 static void
11313 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11314 {
11315 unsigned int i;
11316 struct mips_elf_link_hash_table *htab;
11317
11318 htab = mips_elf_hash_table (info);
11319 BFD_ASSERT (htab != NULL);
11320
11321 /* We just need to copy the entry byte-by-byte. */
11322 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11323 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11324 htab->splt->contents + i * 4);
11325 }
11326
11327 /* Finish up the dynamic sections. */
11328
11329 bfd_boolean
11330 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11331 struct bfd_link_info *info)
11332 {
11333 bfd *dynobj;
11334 asection *sdyn;
11335 asection *sgot;
11336 struct mips_got_info *gg, *g;
11337 struct mips_elf_link_hash_table *htab;
11338
11339 htab = mips_elf_hash_table (info);
11340 BFD_ASSERT (htab != NULL);
11341
11342 dynobj = elf_hash_table (info)->dynobj;
11343
11344 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11345
11346 sgot = htab->sgot;
11347 gg = htab->got_info;
11348
11349 if (elf_hash_table (info)->dynamic_sections_created)
11350 {
11351 bfd_byte *b;
11352 int dyn_to_skip = 0, dyn_skipped = 0;
11353
11354 BFD_ASSERT (sdyn != NULL);
11355 BFD_ASSERT (gg != NULL);
11356
11357 g = mips_elf_bfd_got (output_bfd, FALSE);
11358 BFD_ASSERT (g != NULL);
11359
11360 for (b = sdyn->contents;
11361 b < sdyn->contents + sdyn->size;
11362 b += MIPS_ELF_DYN_SIZE (dynobj))
11363 {
11364 Elf_Internal_Dyn dyn;
11365 const char *name;
11366 size_t elemsize;
11367 asection *s;
11368 bfd_boolean swap_out_p;
11369
11370 /* Read in the current dynamic entry. */
11371 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11372
11373 /* Assume that we're going to modify it and write it out. */
11374 swap_out_p = TRUE;
11375
11376 switch (dyn.d_tag)
11377 {
11378 case DT_RELENT:
11379 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11380 break;
11381
11382 case DT_RELAENT:
11383 BFD_ASSERT (htab->is_vxworks);
11384 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11385 break;
11386
11387 case DT_STRSZ:
11388 /* Rewrite DT_STRSZ. */
11389 dyn.d_un.d_val =
11390 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11391 break;
11392
11393 case DT_PLTGOT:
11394 s = htab->sgot;
11395 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11396 break;
11397
11398 case DT_MIPS_PLTGOT:
11399 s = htab->sgotplt;
11400 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11401 break;
11402
11403 case DT_MIPS_RLD_VERSION:
11404 dyn.d_un.d_val = 1; /* XXX */
11405 break;
11406
11407 case DT_MIPS_FLAGS:
11408 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11409 break;
11410
11411 case DT_MIPS_TIME_STAMP:
11412 {
11413 time_t t;
11414 time (&t);
11415 dyn.d_un.d_val = t;
11416 }
11417 break;
11418
11419 case DT_MIPS_ICHECKSUM:
11420 /* XXX FIXME: */
11421 swap_out_p = FALSE;
11422 break;
11423
11424 case DT_MIPS_IVERSION:
11425 /* XXX FIXME: */
11426 swap_out_p = FALSE;
11427 break;
11428
11429 case DT_MIPS_BASE_ADDRESS:
11430 s = output_bfd->sections;
11431 BFD_ASSERT (s != NULL);
11432 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11433 break;
11434
11435 case DT_MIPS_LOCAL_GOTNO:
11436 dyn.d_un.d_val = g->local_gotno;
11437 break;
11438
11439 case DT_MIPS_UNREFEXTNO:
11440 /* The index into the dynamic symbol table which is the
11441 entry of the first external symbol that is not
11442 referenced within the same object. */
11443 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11444 break;
11445
11446 case DT_MIPS_GOTSYM:
11447 if (htab->global_gotsym)
11448 {
11449 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11450 break;
11451 }
11452 /* In case if we don't have global got symbols we default
11453 to setting DT_MIPS_GOTSYM to the same value as
11454 DT_MIPS_SYMTABNO, so we just fall through. */
11455
11456 case DT_MIPS_SYMTABNO:
11457 name = ".dynsym";
11458 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11459 s = bfd_get_section_by_name (output_bfd, name);
11460
11461 if (s != NULL)
11462 dyn.d_un.d_val = s->size / elemsize;
11463 else
11464 dyn.d_un.d_val = 0;
11465 break;
11466
11467 case DT_MIPS_HIPAGENO:
11468 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11469 break;
11470
11471 case DT_MIPS_RLD_MAP:
11472 {
11473 struct elf_link_hash_entry *h;
11474 h = mips_elf_hash_table (info)->rld_symbol;
11475 if (!h)
11476 {
11477 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11478 swap_out_p = FALSE;
11479 break;
11480 }
11481 s = h->root.u.def.section;
11482 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11483 + h->root.u.def.value);
11484 }
11485 break;
11486
11487 case DT_MIPS_OPTIONS:
11488 s = (bfd_get_section_by_name
11489 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11490 dyn.d_un.d_ptr = s->vma;
11491 break;
11492
11493 case DT_RELASZ:
11494 BFD_ASSERT (htab->is_vxworks);
11495 /* The count does not include the JUMP_SLOT relocations. */
11496 if (htab->srelplt)
11497 dyn.d_un.d_val -= htab->srelplt->size;
11498 break;
11499
11500 case DT_PLTREL:
11501 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11502 if (htab->is_vxworks)
11503 dyn.d_un.d_val = DT_RELA;
11504 else
11505 dyn.d_un.d_val = DT_REL;
11506 break;
11507
11508 case DT_PLTRELSZ:
11509 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11510 dyn.d_un.d_val = htab->srelplt->size;
11511 break;
11512
11513 case DT_JMPREL:
11514 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11515 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11516 + htab->srelplt->output_offset);
11517 break;
11518
11519 case DT_TEXTREL:
11520 /* If we didn't need any text relocations after all, delete
11521 the dynamic tag. */
11522 if (!(info->flags & DF_TEXTREL))
11523 {
11524 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11525 swap_out_p = FALSE;
11526 }
11527 break;
11528
11529 case DT_FLAGS:
11530 /* If we didn't need any text relocations after all, clear
11531 DF_TEXTREL from DT_FLAGS. */
11532 if (!(info->flags & DF_TEXTREL))
11533 dyn.d_un.d_val &= ~DF_TEXTREL;
11534 else
11535 swap_out_p = FALSE;
11536 break;
11537
11538 default:
11539 swap_out_p = FALSE;
11540 if (htab->is_vxworks
11541 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11542 swap_out_p = TRUE;
11543 break;
11544 }
11545
11546 if (swap_out_p || dyn_skipped)
11547 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11548 (dynobj, &dyn, b - dyn_skipped);
11549
11550 if (dyn_to_skip)
11551 {
11552 dyn_skipped += dyn_to_skip;
11553 dyn_to_skip = 0;
11554 }
11555 }
11556
11557 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11558 if (dyn_skipped > 0)
11559 memset (b - dyn_skipped, 0, dyn_skipped);
11560 }
11561
11562 if (sgot != NULL && sgot->size > 0
11563 && !bfd_is_abs_section (sgot->output_section))
11564 {
11565 if (htab->is_vxworks)
11566 {
11567 /* The first entry of the global offset table points to the
11568 ".dynamic" section. The second is initialized by the
11569 loader and contains the shared library identifier.
11570 The third is also initialized by the loader and points
11571 to the lazy resolution stub. */
11572 MIPS_ELF_PUT_WORD (output_bfd,
11573 sdyn->output_offset + sdyn->output_section->vma,
11574 sgot->contents);
11575 MIPS_ELF_PUT_WORD (output_bfd, 0,
11576 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11577 MIPS_ELF_PUT_WORD (output_bfd, 0,
11578 sgot->contents
11579 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11580 }
11581 else
11582 {
11583 /* The first entry of the global offset table will be filled at
11584 runtime. The second entry will be used by some runtime loaders.
11585 This isn't the case of IRIX rld. */
11586 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11587 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11588 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11589 }
11590
11591 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11592 = MIPS_ELF_GOT_SIZE (output_bfd);
11593 }
11594
11595 /* Generate dynamic relocations for the non-primary gots. */
11596 if (gg != NULL && gg->next)
11597 {
11598 Elf_Internal_Rela rel[3];
11599 bfd_vma addend = 0;
11600
11601 memset (rel, 0, sizeof (rel));
11602 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11603
11604 for (g = gg->next; g->next != gg; g = g->next)
11605 {
11606 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11607 + g->next->tls_gotno;
11608
11609 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11610 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11611 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11612 sgot->contents
11613 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11614
11615 if (! info->shared)
11616 continue;
11617
11618 for (; got_index < g->local_gotno; got_index++)
11619 {
11620 if (got_index >= g->assigned_low_gotno
11621 && got_index <= g->assigned_high_gotno)
11622 continue;
11623
11624 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11625 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11626 if (!(mips_elf_create_dynamic_relocation
11627 (output_bfd, info, rel, NULL,
11628 bfd_abs_section_ptr,
11629 0, &addend, sgot)))
11630 return FALSE;
11631 BFD_ASSERT (addend == 0);
11632 }
11633 }
11634 }
11635
11636 /* The generation of dynamic relocations for the non-primary gots
11637 adds more dynamic relocations. We cannot count them until
11638 here. */
11639
11640 if (elf_hash_table (info)->dynamic_sections_created)
11641 {
11642 bfd_byte *b;
11643 bfd_boolean swap_out_p;
11644
11645 BFD_ASSERT (sdyn != NULL);
11646
11647 for (b = sdyn->contents;
11648 b < sdyn->contents + sdyn->size;
11649 b += MIPS_ELF_DYN_SIZE (dynobj))
11650 {
11651 Elf_Internal_Dyn dyn;
11652 asection *s;
11653
11654 /* Read in the current dynamic entry. */
11655 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11656
11657 /* Assume that we're going to modify it and write it out. */
11658 swap_out_p = TRUE;
11659
11660 switch (dyn.d_tag)
11661 {
11662 case DT_RELSZ:
11663 /* Reduce DT_RELSZ to account for any relocations we
11664 decided not to make. This is for the n64 irix rld,
11665 which doesn't seem to apply any relocations if there
11666 are trailing null entries. */
11667 s = mips_elf_rel_dyn_section (info, FALSE);
11668 dyn.d_un.d_val = (s->reloc_count
11669 * (ABI_64_P (output_bfd)
11670 ? sizeof (Elf64_Mips_External_Rel)
11671 : sizeof (Elf32_External_Rel)));
11672 /* Adjust the section size too. Tools like the prelinker
11673 can reasonably expect the values to the same. */
11674 elf_section_data (s->output_section)->this_hdr.sh_size
11675 = dyn.d_un.d_val;
11676 break;
11677
11678 default:
11679 swap_out_p = FALSE;
11680 break;
11681 }
11682
11683 if (swap_out_p)
11684 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11685 (dynobj, &dyn, b);
11686 }
11687 }
11688
11689 {
11690 asection *s;
11691 Elf32_compact_rel cpt;
11692
11693 if (SGI_COMPAT (output_bfd))
11694 {
11695 /* Write .compact_rel section out. */
11696 s = bfd_get_linker_section (dynobj, ".compact_rel");
11697 if (s != NULL)
11698 {
11699 cpt.id1 = 1;
11700 cpt.num = s->reloc_count;
11701 cpt.id2 = 2;
11702 cpt.offset = (s->output_section->filepos
11703 + sizeof (Elf32_External_compact_rel));
11704 cpt.reserved0 = 0;
11705 cpt.reserved1 = 0;
11706 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11707 ((Elf32_External_compact_rel *)
11708 s->contents));
11709
11710 /* Clean up a dummy stub function entry in .text. */
11711 if (htab->sstubs != NULL)
11712 {
11713 file_ptr dummy_offset;
11714
11715 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11716 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11717 memset (htab->sstubs->contents + dummy_offset, 0,
11718 htab->function_stub_size);
11719 }
11720 }
11721 }
11722
11723 /* The psABI says that the dynamic relocations must be sorted in
11724 increasing order of r_symndx. The VxWorks EABI doesn't require
11725 this, and because the code below handles REL rather than RELA
11726 relocations, using it for VxWorks would be outright harmful. */
11727 if (!htab->is_vxworks)
11728 {
11729 s = mips_elf_rel_dyn_section (info, FALSE);
11730 if (s != NULL
11731 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11732 {
11733 reldyn_sorting_bfd = output_bfd;
11734
11735 if (ABI_64_P (output_bfd))
11736 qsort ((Elf64_External_Rel *) s->contents + 1,
11737 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11738 sort_dynamic_relocs_64);
11739 else
11740 qsort ((Elf32_External_Rel *) s->contents + 1,
11741 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11742 sort_dynamic_relocs);
11743 }
11744 }
11745 }
11746
11747 if (htab->splt && htab->splt->size > 0)
11748 {
11749 if (htab->is_vxworks)
11750 {
11751 if (info->shared)
11752 mips_vxworks_finish_shared_plt (output_bfd, info);
11753 else
11754 mips_vxworks_finish_exec_plt (output_bfd, info);
11755 }
11756 else
11757 {
11758 BFD_ASSERT (!info->shared);
11759 if (!mips_finish_exec_plt (output_bfd, info))
11760 return FALSE;
11761 }
11762 }
11763 return TRUE;
11764 }
11765
11766
11767 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11768
11769 static void
11770 mips_set_isa_flags (bfd *abfd)
11771 {
11772 flagword val;
11773
11774 switch (bfd_get_mach (abfd))
11775 {
11776 default:
11777 case bfd_mach_mips3000:
11778 val = E_MIPS_ARCH_1;
11779 break;
11780
11781 case bfd_mach_mips3900:
11782 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11783 break;
11784
11785 case bfd_mach_mips6000:
11786 val = E_MIPS_ARCH_2;
11787 break;
11788
11789 case bfd_mach_mips4000:
11790 case bfd_mach_mips4300:
11791 case bfd_mach_mips4400:
11792 case bfd_mach_mips4600:
11793 val = E_MIPS_ARCH_3;
11794 break;
11795
11796 case bfd_mach_mips4010:
11797 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11798 break;
11799
11800 case bfd_mach_mips4100:
11801 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11802 break;
11803
11804 case bfd_mach_mips4111:
11805 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11806 break;
11807
11808 case bfd_mach_mips4120:
11809 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11810 break;
11811
11812 case bfd_mach_mips4650:
11813 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11814 break;
11815
11816 case bfd_mach_mips5400:
11817 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11818 break;
11819
11820 case bfd_mach_mips5500:
11821 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11822 break;
11823
11824 case bfd_mach_mips5900:
11825 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11826 break;
11827
11828 case bfd_mach_mips9000:
11829 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11830 break;
11831
11832 case bfd_mach_mips5000:
11833 case bfd_mach_mips7000:
11834 case bfd_mach_mips8000:
11835 case bfd_mach_mips10000:
11836 case bfd_mach_mips12000:
11837 case bfd_mach_mips14000:
11838 case bfd_mach_mips16000:
11839 val = E_MIPS_ARCH_4;
11840 break;
11841
11842 case bfd_mach_mips5:
11843 val = E_MIPS_ARCH_5;
11844 break;
11845
11846 case bfd_mach_mips_loongson_2e:
11847 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11848 break;
11849
11850 case bfd_mach_mips_loongson_2f:
11851 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11852 break;
11853
11854 case bfd_mach_mips_sb1:
11855 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11856 break;
11857
11858 case bfd_mach_mips_loongson_3a:
11859 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11860 break;
11861
11862 case bfd_mach_mips_octeon:
11863 case bfd_mach_mips_octeonp:
11864 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11865 break;
11866
11867 case bfd_mach_mips_octeon3:
11868 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11869 break;
11870
11871 case bfd_mach_mips_xlr:
11872 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11873 break;
11874
11875 case bfd_mach_mips_octeon2:
11876 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11877 break;
11878
11879 case bfd_mach_mipsisa32:
11880 val = E_MIPS_ARCH_32;
11881 break;
11882
11883 case bfd_mach_mipsisa64:
11884 val = E_MIPS_ARCH_64;
11885 break;
11886
11887 case bfd_mach_mipsisa32r2:
11888 case bfd_mach_mipsisa32r3:
11889 case bfd_mach_mipsisa32r5:
11890 val = E_MIPS_ARCH_32R2;
11891 break;
11892
11893 case bfd_mach_mipsisa64r2:
11894 case bfd_mach_mipsisa64r3:
11895 case bfd_mach_mipsisa64r5:
11896 val = E_MIPS_ARCH_64R2;
11897 break;
11898
11899 case bfd_mach_mipsisa32r6:
11900 val = E_MIPS_ARCH_32R6;
11901 break;
11902
11903 case bfd_mach_mipsisa64r6:
11904 val = E_MIPS_ARCH_64R6;
11905 break;
11906 }
11907 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11908 elf_elfheader (abfd)->e_flags |= val;
11909
11910 }
11911
11912
11913 /* The final processing done just before writing out a MIPS ELF object
11914 file. This gets the MIPS architecture right based on the machine
11915 number. This is used by both the 32-bit and the 64-bit ABI. */
11916
11917 void
11918 _bfd_mips_elf_final_write_processing (bfd *abfd,
11919 bfd_boolean linker ATTRIBUTE_UNUSED)
11920 {
11921 unsigned int i;
11922 Elf_Internal_Shdr **hdrpp;
11923 const char *name;
11924 asection *sec;
11925
11926 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11927 is nonzero. This is for compatibility with old objects, which used
11928 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11929 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11930 mips_set_isa_flags (abfd);
11931
11932 /* Set the sh_info field for .gptab sections and other appropriate
11933 info for each special section. */
11934 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11935 i < elf_numsections (abfd);
11936 i++, hdrpp++)
11937 {
11938 switch ((*hdrpp)->sh_type)
11939 {
11940 case SHT_MIPS_MSYM:
11941 case SHT_MIPS_LIBLIST:
11942 sec = bfd_get_section_by_name (abfd, ".dynstr");
11943 if (sec != NULL)
11944 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11945 break;
11946
11947 case SHT_MIPS_GPTAB:
11948 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11949 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11950 BFD_ASSERT (name != NULL
11951 && CONST_STRNEQ (name, ".gptab."));
11952 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11953 BFD_ASSERT (sec != NULL);
11954 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11955 break;
11956
11957 case SHT_MIPS_CONTENT:
11958 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11959 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11960 BFD_ASSERT (name != NULL
11961 && CONST_STRNEQ (name, ".MIPS.content"));
11962 sec = bfd_get_section_by_name (abfd,
11963 name + sizeof ".MIPS.content" - 1);
11964 BFD_ASSERT (sec != NULL);
11965 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11966 break;
11967
11968 case SHT_MIPS_SYMBOL_LIB:
11969 sec = bfd_get_section_by_name (abfd, ".dynsym");
11970 if (sec != NULL)
11971 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11972 sec = bfd_get_section_by_name (abfd, ".liblist");
11973 if (sec != NULL)
11974 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11975 break;
11976
11977 case SHT_MIPS_EVENTS:
11978 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11979 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11980 BFD_ASSERT (name != NULL);
11981 if (CONST_STRNEQ (name, ".MIPS.events"))
11982 sec = bfd_get_section_by_name (abfd,
11983 name + sizeof ".MIPS.events" - 1);
11984 else
11985 {
11986 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11987 sec = bfd_get_section_by_name (abfd,
11988 (name
11989 + sizeof ".MIPS.post_rel" - 1));
11990 }
11991 BFD_ASSERT (sec != NULL);
11992 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11993 break;
11994
11995 }
11996 }
11997 }
11998 \f
11999 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12000 segments. */
12001
12002 int
12003 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12004 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12005 {
12006 asection *s;
12007 int ret = 0;
12008
12009 /* See if we need a PT_MIPS_REGINFO segment. */
12010 s = bfd_get_section_by_name (abfd, ".reginfo");
12011 if (s && (s->flags & SEC_LOAD))
12012 ++ret;
12013
12014 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12015 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12016 ++ret;
12017
12018 /* See if we need a PT_MIPS_OPTIONS segment. */
12019 if (IRIX_COMPAT (abfd) == ict_irix6
12020 && bfd_get_section_by_name (abfd,
12021 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12022 ++ret;
12023
12024 /* See if we need a PT_MIPS_RTPROC segment. */
12025 if (IRIX_COMPAT (abfd) == ict_irix5
12026 && bfd_get_section_by_name (abfd, ".dynamic")
12027 && bfd_get_section_by_name (abfd, ".mdebug"))
12028 ++ret;
12029
12030 /* Allocate a PT_NULL header in dynamic objects. See
12031 _bfd_mips_elf_modify_segment_map for details. */
12032 if (!SGI_COMPAT (abfd)
12033 && bfd_get_section_by_name (abfd, ".dynamic"))
12034 ++ret;
12035
12036 return ret;
12037 }
12038
12039 /* Modify the segment map for an IRIX5 executable. */
12040
12041 bfd_boolean
12042 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12043 struct bfd_link_info *info)
12044 {
12045 asection *s;
12046 struct elf_segment_map *m, **pm;
12047 bfd_size_type amt;
12048
12049 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12050 segment. */
12051 s = bfd_get_section_by_name (abfd, ".reginfo");
12052 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12053 {
12054 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12055 if (m->p_type == PT_MIPS_REGINFO)
12056 break;
12057 if (m == NULL)
12058 {
12059 amt = sizeof *m;
12060 m = bfd_zalloc (abfd, amt);
12061 if (m == NULL)
12062 return FALSE;
12063
12064 m->p_type = PT_MIPS_REGINFO;
12065 m->count = 1;
12066 m->sections[0] = s;
12067
12068 /* We want to put it after the PHDR and INTERP segments. */
12069 pm = &elf_seg_map (abfd);
12070 while (*pm != NULL
12071 && ((*pm)->p_type == PT_PHDR
12072 || (*pm)->p_type == PT_INTERP))
12073 pm = &(*pm)->next;
12074
12075 m->next = *pm;
12076 *pm = m;
12077 }
12078 }
12079
12080 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12081 segment. */
12082 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12083 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12084 {
12085 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12086 if (m->p_type == PT_MIPS_ABIFLAGS)
12087 break;
12088 if (m == NULL)
12089 {
12090 amt = sizeof *m;
12091 m = bfd_zalloc (abfd, amt);
12092 if (m == NULL)
12093 return FALSE;
12094
12095 m->p_type = PT_MIPS_ABIFLAGS;
12096 m->count = 1;
12097 m->sections[0] = s;
12098
12099 /* We want to put it after the PHDR and INTERP segments. */
12100 pm = &elf_seg_map (abfd);
12101 while (*pm != NULL
12102 && ((*pm)->p_type == PT_PHDR
12103 || (*pm)->p_type == PT_INTERP))
12104 pm = &(*pm)->next;
12105
12106 m->next = *pm;
12107 *pm = m;
12108 }
12109 }
12110
12111 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12112 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12113 PT_MIPS_OPTIONS segment immediately following the program header
12114 table. */
12115 if (NEWABI_P (abfd)
12116 /* On non-IRIX6 new abi, we'll have already created a segment
12117 for this section, so don't create another. I'm not sure this
12118 is not also the case for IRIX 6, but I can't test it right
12119 now. */
12120 && IRIX_COMPAT (abfd) == ict_irix6)
12121 {
12122 for (s = abfd->sections; s; s = s->next)
12123 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12124 break;
12125
12126 if (s)
12127 {
12128 struct elf_segment_map *options_segment;
12129
12130 pm = &elf_seg_map (abfd);
12131 while (*pm != NULL
12132 && ((*pm)->p_type == PT_PHDR
12133 || (*pm)->p_type == PT_INTERP))
12134 pm = &(*pm)->next;
12135
12136 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12137 {
12138 amt = sizeof (struct elf_segment_map);
12139 options_segment = bfd_zalloc (abfd, amt);
12140 options_segment->next = *pm;
12141 options_segment->p_type = PT_MIPS_OPTIONS;
12142 options_segment->p_flags = PF_R;
12143 options_segment->p_flags_valid = TRUE;
12144 options_segment->count = 1;
12145 options_segment->sections[0] = s;
12146 *pm = options_segment;
12147 }
12148 }
12149 }
12150 else
12151 {
12152 if (IRIX_COMPAT (abfd) == ict_irix5)
12153 {
12154 /* If there are .dynamic and .mdebug sections, we make a room
12155 for the RTPROC header. FIXME: Rewrite without section names. */
12156 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12157 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12158 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12159 {
12160 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12161 if (m->p_type == PT_MIPS_RTPROC)
12162 break;
12163 if (m == NULL)
12164 {
12165 amt = sizeof *m;
12166 m = bfd_zalloc (abfd, amt);
12167 if (m == NULL)
12168 return FALSE;
12169
12170 m->p_type = PT_MIPS_RTPROC;
12171
12172 s = bfd_get_section_by_name (abfd, ".rtproc");
12173 if (s == NULL)
12174 {
12175 m->count = 0;
12176 m->p_flags = 0;
12177 m->p_flags_valid = 1;
12178 }
12179 else
12180 {
12181 m->count = 1;
12182 m->sections[0] = s;
12183 }
12184
12185 /* We want to put it after the DYNAMIC segment. */
12186 pm = &elf_seg_map (abfd);
12187 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12188 pm = &(*pm)->next;
12189 if (*pm != NULL)
12190 pm = &(*pm)->next;
12191
12192 m->next = *pm;
12193 *pm = m;
12194 }
12195 }
12196 }
12197 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12198 .dynstr, .dynsym, and .hash sections, and everything in
12199 between. */
12200 for (pm = &elf_seg_map (abfd); *pm != NULL;
12201 pm = &(*pm)->next)
12202 if ((*pm)->p_type == PT_DYNAMIC)
12203 break;
12204 m = *pm;
12205 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12206 glibc's dynamic linker has traditionally derived the number of
12207 tags from the p_filesz field, and sometimes allocates stack
12208 arrays of that size. An overly-big PT_DYNAMIC segment can
12209 be actively harmful in such cases. Making PT_DYNAMIC contain
12210 other sections can also make life hard for the prelinker,
12211 which might move one of the other sections to a different
12212 PT_LOAD segment. */
12213 if (SGI_COMPAT (abfd)
12214 && m != NULL
12215 && m->count == 1
12216 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12217 {
12218 static const char *sec_names[] =
12219 {
12220 ".dynamic", ".dynstr", ".dynsym", ".hash"
12221 };
12222 bfd_vma low, high;
12223 unsigned int i, c;
12224 struct elf_segment_map *n;
12225
12226 low = ~(bfd_vma) 0;
12227 high = 0;
12228 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12229 {
12230 s = bfd_get_section_by_name (abfd, sec_names[i]);
12231 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12232 {
12233 bfd_size_type sz;
12234
12235 if (low > s->vma)
12236 low = s->vma;
12237 sz = s->size;
12238 if (high < s->vma + sz)
12239 high = s->vma + sz;
12240 }
12241 }
12242
12243 c = 0;
12244 for (s = abfd->sections; s != NULL; s = s->next)
12245 if ((s->flags & SEC_LOAD) != 0
12246 && s->vma >= low
12247 && s->vma + s->size <= high)
12248 ++c;
12249
12250 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12251 n = bfd_zalloc (abfd, amt);
12252 if (n == NULL)
12253 return FALSE;
12254 *n = *m;
12255 n->count = c;
12256
12257 i = 0;
12258 for (s = abfd->sections; s != NULL; s = s->next)
12259 {
12260 if ((s->flags & SEC_LOAD) != 0
12261 && s->vma >= low
12262 && s->vma + s->size <= high)
12263 {
12264 n->sections[i] = s;
12265 ++i;
12266 }
12267 }
12268
12269 *pm = n;
12270 }
12271 }
12272
12273 /* Allocate a spare program header in dynamic objects so that tools
12274 like the prelinker can add an extra PT_LOAD entry.
12275
12276 If the prelinker needs to make room for a new PT_LOAD entry, its
12277 standard procedure is to move the first (read-only) sections into
12278 the new (writable) segment. However, the MIPS ABI requires
12279 .dynamic to be in a read-only segment, and the section will often
12280 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12281
12282 Although the prelinker could in principle move .dynamic to a
12283 writable segment, it seems better to allocate a spare program
12284 header instead, and avoid the need to move any sections.
12285 There is a long tradition of allocating spare dynamic tags,
12286 so allocating a spare program header seems like a natural
12287 extension.
12288
12289 If INFO is NULL, we may be copying an already prelinked binary
12290 with objcopy or strip, so do not add this header. */
12291 if (info != NULL
12292 && !SGI_COMPAT (abfd)
12293 && bfd_get_section_by_name (abfd, ".dynamic"))
12294 {
12295 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12296 if ((*pm)->p_type == PT_NULL)
12297 break;
12298 if (*pm == NULL)
12299 {
12300 m = bfd_zalloc (abfd, sizeof (*m));
12301 if (m == NULL)
12302 return FALSE;
12303
12304 m->p_type = PT_NULL;
12305 *pm = m;
12306 }
12307 }
12308
12309 return TRUE;
12310 }
12311 \f
12312 /* Return the section that should be marked against GC for a given
12313 relocation. */
12314
12315 asection *
12316 _bfd_mips_elf_gc_mark_hook (asection *sec,
12317 struct bfd_link_info *info,
12318 Elf_Internal_Rela *rel,
12319 struct elf_link_hash_entry *h,
12320 Elf_Internal_Sym *sym)
12321 {
12322 /* ??? Do mips16 stub sections need to be handled special? */
12323
12324 if (h != NULL)
12325 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12326 {
12327 case R_MIPS_GNU_VTINHERIT:
12328 case R_MIPS_GNU_VTENTRY:
12329 return NULL;
12330 }
12331
12332 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12333 }
12334
12335 /* Update the got entry reference counts for the section being removed. */
12336
12337 bfd_boolean
12338 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12339 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12340 asection *sec ATTRIBUTE_UNUSED,
12341 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12342 {
12343 #if 0
12344 Elf_Internal_Shdr *symtab_hdr;
12345 struct elf_link_hash_entry **sym_hashes;
12346 bfd_signed_vma *local_got_refcounts;
12347 const Elf_Internal_Rela *rel, *relend;
12348 unsigned long r_symndx;
12349 struct elf_link_hash_entry *h;
12350
12351 if (info->relocatable)
12352 return TRUE;
12353
12354 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12355 sym_hashes = elf_sym_hashes (abfd);
12356 local_got_refcounts = elf_local_got_refcounts (abfd);
12357
12358 relend = relocs + sec->reloc_count;
12359 for (rel = relocs; rel < relend; rel++)
12360 switch (ELF_R_TYPE (abfd, rel->r_info))
12361 {
12362 case R_MIPS16_GOT16:
12363 case R_MIPS16_CALL16:
12364 case R_MIPS_GOT16:
12365 case R_MIPS_CALL16:
12366 case R_MIPS_CALL_HI16:
12367 case R_MIPS_CALL_LO16:
12368 case R_MIPS_GOT_HI16:
12369 case R_MIPS_GOT_LO16:
12370 case R_MIPS_GOT_DISP:
12371 case R_MIPS_GOT_PAGE:
12372 case R_MIPS_GOT_OFST:
12373 case R_MICROMIPS_GOT16:
12374 case R_MICROMIPS_CALL16:
12375 case R_MICROMIPS_CALL_HI16:
12376 case R_MICROMIPS_CALL_LO16:
12377 case R_MICROMIPS_GOT_HI16:
12378 case R_MICROMIPS_GOT_LO16:
12379 case R_MICROMIPS_GOT_DISP:
12380 case R_MICROMIPS_GOT_PAGE:
12381 case R_MICROMIPS_GOT_OFST:
12382 /* ??? It would seem that the existing MIPS code does no sort
12383 of reference counting or whatnot on its GOT and PLT entries,
12384 so it is not possible to garbage collect them at this time. */
12385 break;
12386
12387 default:
12388 break;
12389 }
12390 #endif
12391
12392 return TRUE;
12393 }
12394
12395 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12396
12397 bfd_boolean
12398 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12399 elf_gc_mark_hook_fn gc_mark_hook)
12400 {
12401 bfd *sub;
12402
12403 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12404
12405 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12406 {
12407 asection *o;
12408
12409 if (! is_mips_elf (sub))
12410 continue;
12411
12412 for (o = sub->sections; o != NULL; o = o->next)
12413 if (!o->gc_mark
12414 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12415 (bfd_get_section_name (sub, o)))
12416 {
12417 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12418 return FALSE;
12419 }
12420 }
12421
12422 return TRUE;
12423 }
12424 \f
12425 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12426 hiding the old indirect symbol. Process additional relocation
12427 information. Also called for weakdefs, in which case we just let
12428 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12429
12430 void
12431 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12432 struct elf_link_hash_entry *dir,
12433 struct elf_link_hash_entry *ind)
12434 {
12435 struct mips_elf_link_hash_entry *dirmips, *indmips;
12436
12437 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12438
12439 dirmips = (struct mips_elf_link_hash_entry *) dir;
12440 indmips = (struct mips_elf_link_hash_entry *) ind;
12441 /* Any absolute non-dynamic relocations against an indirect or weak
12442 definition will be against the target symbol. */
12443 if (indmips->has_static_relocs)
12444 dirmips->has_static_relocs = TRUE;
12445
12446 if (ind->root.type != bfd_link_hash_indirect)
12447 return;
12448
12449 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12450 if (indmips->readonly_reloc)
12451 dirmips->readonly_reloc = TRUE;
12452 if (indmips->no_fn_stub)
12453 dirmips->no_fn_stub = TRUE;
12454 if (indmips->fn_stub)
12455 {
12456 dirmips->fn_stub = indmips->fn_stub;
12457 indmips->fn_stub = NULL;
12458 }
12459 if (indmips->need_fn_stub)
12460 {
12461 dirmips->need_fn_stub = TRUE;
12462 indmips->need_fn_stub = FALSE;
12463 }
12464 if (indmips->call_stub)
12465 {
12466 dirmips->call_stub = indmips->call_stub;
12467 indmips->call_stub = NULL;
12468 }
12469 if (indmips->call_fp_stub)
12470 {
12471 dirmips->call_fp_stub = indmips->call_fp_stub;
12472 indmips->call_fp_stub = NULL;
12473 }
12474 if (indmips->global_got_area < dirmips->global_got_area)
12475 dirmips->global_got_area = indmips->global_got_area;
12476 if (indmips->global_got_area < GGA_NONE)
12477 indmips->global_got_area = GGA_NONE;
12478 if (indmips->has_nonpic_branches)
12479 dirmips->has_nonpic_branches = TRUE;
12480 }
12481 \f
12482 #define PDR_SIZE 32
12483
12484 bfd_boolean
12485 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12486 struct bfd_link_info *info)
12487 {
12488 asection *o;
12489 bfd_boolean ret = FALSE;
12490 unsigned char *tdata;
12491 size_t i, skip;
12492
12493 o = bfd_get_section_by_name (abfd, ".pdr");
12494 if (! o)
12495 return FALSE;
12496 if (o->size == 0)
12497 return FALSE;
12498 if (o->size % PDR_SIZE != 0)
12499 return FALSE;
12500 if (o->output_section != NULL
12501 && bfd_is_abs_section (o->output_section))
12502 return FALSE;
12503
12504 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12505 if (! tdata)
12506 return FALSE;
12507
12508 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12509 info->keep_memory);
12510 if (!cookie->rels)
12511 {
12512 free (tdata);
12513 return FALSE;
12514 }
12515
12516 cookie->rel = cookie->rels;
12517 cookie->relend = cookie->rels + o->reloc_count;
12518
12519 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12520 {
12521 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12522 {
12523 tdata[i] = 1;
12524 skip ++;
12525 }
12526 }
12527
12528 if (skip != 0)
12529 {
12530 mips_elf_section_data (o)->u.tdata = tdata;
12531 if (o->rawsize == 0)
12532 o->rawsize = o->size;
12533 o->size -= skip * PDR_SIZE;
12534 ret = TRUE;
12535 }
12536 else
12537 free (tdata);
12538
12539 if (! info->keep_memory)
12540 free (cookie->rels);
12541
12542 return ret;
12543 }
12544
12545 bfd_boolean
12546 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12547 {
12548 if (strcmp (sec->name, ".pdr") == 0)
12549 return TRUE;
12550 return FALSE;
12551 }
12552
12553 bfd_boolean
12554 _bfd_mips_elf_write_section (bfd *output_bfd,
12555 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12556 asection *sec, bfd_byte *contents)
12557 {
12558 bfd_byte *to, *from, *end;
12559 int i;
12560
12561 if (strcmp (sec->name, ".pdr") != 0)
12562 return FALSE;
12563
12564 if (mips_elf_section_data (sec)->u.tdata == NULL)
12565 return FALSE;
12566
12567 to = contents;
12568 end = contents + sec->size;
12569 for (from = contents, i = 0;
12570 from < end;
12571 from += PDR_SIZE, i++)
12572 {
12573 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12574 continue;
12575 if (to != from)
12576 memcpy (to, from, PDR_SIZE);
12577 to += PDR_SIZE;
12578 }
12579 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12580 sec->output_offset, sec->size);
12581 return TRUE;
12582 }
12583 \f
12584 /* microMIPS code retains local labels for linker relaxation. Omit them
12585 from output by default for clarity. */
12586
12587 bfd_boolean
12588 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12589 {
12590 return _bfd_elf_is_local_label_name (abfd, sym->name);
12591 }
12592
12593 /* MIPS ELF uses a special find_nearest_line routine in order the
12594 handle the ECOFF debugging information. */
12595
12596 struct mips_elf_find_line
12597 {
12598 struct ecoff_debug_info d;
12599 struct ecoff_find_line i;
12600 };
12601
12602 bfd_boolean
12603 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12604 asection *section, bfd_vma offset,
12605 const char **filename_ptr,
12606 const char **functionname_ptr,
12607 unsigned int *line_ptr,
12608 unsigned int *discriminator_ptr)
12609 {
12610 asection *msec;
12611
12612 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12613 filename_ptr, functionname_ptr,
12614 line_ptr, discriminator_ptr,
12615 dwarf_debug_sections,
12616 ABI_64_P (abfd) ? 8 : 0,
12617 &elf_tdata (abfd)->dwarf2_find_line_info))
12618 return TRUE;
12619
12620 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12621 filename_ptr, functionname_ptr,
12622 line_ptr))
12623 return TRUE;
12624
12625 msec = bfd_get_section_by_name (abfd, ".mdebug");
12626 if (msec != NULL)
12627 {
12628 flagword origflags;
12629 struct mips_elf_find_line *fi;
12630 const struct ecoff_debug_swap * const swap =
12631 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12632
12633 /* If we are called during a link, mips_elf_final_link may have
12634 cleared the SEC_HAS_CONTENTS field. We force it back on here
12635 if appropriate (which it normally will be). */
12636 origflags = msec->flags;
12637 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12638 msec->flags |= SEC_HAS_CONTENTS;
12639
12640 fi = mips_elf_tdata (abfd)->find_line_info;
12641 if (fi == NULL)
12642 {
12643 bfd_size_type external_fdr_size;
12644 char *fraw_src;
12645 char *fraw_end;
12646 struct fdr *fdr_ptr;
12647 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12648
12649 fi = bfd_zalloc (abfd, amt);
12650 if (fi == NULL)
12651 {
12652 msec->flags = origflags;
12653 return FALSE;
12654 }
12655
12656 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12657 {
12658 msec->flags = origflags;
12659 return FALSE;
12660 }
12661
12662 /* Swap in the FDR information. */
12663 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12664 fi->d.fdr = bfd_alloc (abfd, amt);
12665 if (fi->d.fdr == NULL)
12666 {
12667 msec->flags = origflags;
12668 return FALSE;
12669 }
12670 external_fdr_size = swap->external_fdr_size;
12671 fdr_ptr = fi->d.fdr;
12672 fraw_src = (char *) fi->d.external_fdr;
12673 fraw_end = (fraw_src
12674 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12675 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12676 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12677
12678 mips_elf_tdata (abfd)->find_line_info = fi;
12679
12680 /* Note that we don't bother to ever free this information.
12681 find_nearest_line is either called all the time, as in
12682 objdump -l, so the information should be saved, or it is
12683 rarely called, as in ld error messages, so the memory
12684 wasted is unimportant. Still, it would probably be a
12685 good idea for free_cached_info to throw it away. */
12686 }
12687
12688 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12689 &fi->i, filename_ptr, functionname_ptr,
12690 line_ptr))
12691 {
12692 msec->flags = origflags;
12693 return TRUE;
12694 }
12695
12696 msec->flags = origflags;
12697 }
12698
12699 /* Fall back on the generic ELF find_nearest_line routine. */
12700
12701 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12702 filename_ptr, functionname_ptr,
12703 line_ptr, discriminator_ptr);
12704 }
12705
12706 bfd_boolean
12707 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12708 const char **filename_ptr,
12709 const char **functionname_ptr,
12710 unsigned int *line_ptr)
12711 {
12712 bfd_boolean found;
12713 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12714 functionname_ptr, line_ptr,
12715 & elf_tdata (abfd)->dwarf2_find_line_info);
12716 return found;
12717 }
12718
12719 \f
12720 /* When are writing out the .options or .MIPS.options section,
12721 remember the bytes we are writing out, so that we can install the
12722 GP value in the section_processing routine. */
12723
12724 bfd_boolean
12725 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12726 const void *location,
12727 file_ptr offset, bfd_size_type count)
12728 {
12729 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12730 {
12731 bfd_byte *c;
12732
12733 if (elf_section_data (section) == NULL)
12734 {
12735 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12736 section->used_by_bfd = bfd_zalloc (abfd, amt);
12737 if (elf_section_data (section) == NULL)
12738 return FALSE;
12739 }
12740 c = mips_elf_section_data (section)->u.tdata;
12741 if (c == NULL)
12742 {
12743 c = bfd_zalloc (abfd, section->size);
12744 if (c == NULL)
12745 return FALSE;
12746 mips_elf_section_data (section)->u.tdata = c;
12747 }
12748
12749 memcpy (c + offset, location, count);
12750 }
12751
12752 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12753 count);
12754 }
12755
12756 /* This is almost identical to bfd_generic_get_... except that some
12757 MIPS relocations need to be handled specially. Sigh. */
12758
12759 bfd_byte *
12760 _bfd_elf_mips_get_relocated_section_contents
12761 (bfd *abfd,
12762 struct bfd_link_info *link_info,
12763 struct bfd_link_order *link_order,
12764 bfd_byte *data,
12765 bfd_boolean relocatable,
12766 asymbol **symbols)
12767 {
12768 /* Get enough memory to hold the stuff */
12769 bfd *input_bfd = link_order->u.indirect.section->owner;
12770 asection *input_section = link_order->u.indirect.section;
12771 bfd_size_type sz;
12772
12773 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12774 arelent **reloc_vector = NULL;
12775 long reloc_count;
12776
12777 if (reloc_size < 0)
12778 goto error_return;
12779
12780 reloc_vector = bfd_malloc (reloc_size);
12781 if (reloc_vector == NULL && reloc_size != 0)
12782 goto error_return;
12783
12784 /* read in the section */
12785 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12786 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12787 goto error_return;
12788
12789 reloc_count = bfd_canonicalize_reloc (input_bfd,
12790 input_section,
12791 reloc_vector,
12792 symbols);
12793 if (reloc_count < 0)
12794 goto error_return;
12795
12796 if (reloc_count > 0)
12797 {
12798 arelent **parent;
12799 /* for mips */
12800 int gp_found;
12801 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12802
12803 {
12804 struct bfd_hash_entry *h;
12805 struct bfd_link_hash_entry *lh;
12806 /* Skip all this stuff if we aren't mixing formats. */
12807 if (abfd && input_bfd
12808 && abfd->xvec == input_bfd->xvec)
12809 lh = 0;
12810 else
12811 {
12812 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12813 lh = (struct bfd_link_hash_entry *) h;
12814 }
12815 lookup:
12816 if (lh)
12817 {
12818 switch (lh->type)
12819 {
12820 case bfd_link_hash_undefined:
12821 case bfd_link_hash_undefweak:
12822 case bfd_link_hash_common:
12823 gp_found = 0;
12824 break;
12825 case bfd_link_hash_defined:
12826 case bfd_link_hash_defweak:
12827 gp_found = 1;
12828 gp = lh->u.def.value;
12829 break;
12830 case bfd_link_hash_indirect:
12831 case bfd_link_hash_warning:
12832 lh = lh->u.i.link;
12833 /* @@FIXME ignoring warning for now */
12834 goto lookup;
12835 case bfd_link_hash_new:
12836 default:
12837 abort ();
12838 }
12839 }
12840 else
12841 gp_found = 0;
12842 }
12843 /* end mips */
12844 for (parent = reloc_vector; *parent != NULL; parent++)
12845 {
12846 char *error_message = NULL;
12847 bfd_reloc_status_type r;
12848
12849 /* Specific to MIPS: Deal with relocation types that require
12850 knowing the gp of the output bfd. */
12851 asymbol *sym = *(*parent)->sym_ptr_ptr;
12852
12853 /* If we've managed to find the gp and have a special
12854 function for the relocation then go ahead, else default
12855 to the generic handling. */
12856 if (gp_found
12857 && (*parent)->howto->special_function
12858 == _bfd_mips_elf32_gprel16_reloc)
12859 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12860 input_section, relocatable,
12861 data, gp);
12862 else
12863 r = bfd_perform_relocation (input_bfd, *parent, data,
12864 input_section,
12865 relocatable ? abfd : NULL,
12866 &error_message);
12867
12868 if (relocatable)
12869 {
12870 asection *os = input_section->output_section;
12871
12872 /* A partial link, so keep the relocs */
12873 os->orelocation[os->reloc_count] = *parent;
12874 os->reloc_count++;
12875 }
12876
12877 if (r != bfd_reloc_ok)
12878 {
12879 switch (r)
12880 {
12881 case bfd_reloc_undefined:
12882 if (!((*link_info->callbacks->undefined_symbol)
12883 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12884 input_bfd, input_section, (*parent)->address, TRUE)))
12885 goto error_return;
12886 break;
12887 case bfd_reloc_dangerous:
12888 BFD_ASSERT (error_message != NULL);
12889 if (!((*link_info->callbacks->reloc_dangerous)
12890 (link_info, error_message, input_bfd, input_section,
12891 (*parent)->address)))
12892 goto error_return;
12893 break;
12894 case bfd_reloc_overflow:
12895 if (!((*link_info->callbacks->reloc_overflow)
12896 (link_info, NULL,
12897 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12898 (*parent)->howto->name, (*parent)->addend,
12899 input_bfd, input_section, (*parent)->address)))
12900 goto error_return;
12901 break;
12902 case bfd_reloc_outofrange:
12903 default:
12904 abort ();
12905 break;
12906 }
12907
12908 }
12909 }
12910 }
12911 if (reloc_vector != NULL)
12912 free (reloc_vector);
12913 return data;
12914
12915 error_return:
12916 if (reloc_vector != NULL)
12917 free (reloc_vector);
12918 return NULL;
12919 }
12920 \f
12921 static bfd_boolean
12922 mips_elf_relax_delete_bytes (bfd *abfd,
12923 asection *sec, bfd_vma addr, int count)
12924 {
12925 Elf_Internal_Shdr *symtab_hdr;
12926 unsigned int sec_shndx;
12927 bfd_byte *contents;
12928 Elf_Internal_Rela *irel, *irelend;
12929 Elf_Internal_Sym *isym;
12930 Elf_Internal_Sym *isymend;
12931 struct elf_link_hash_entry **sym_hashes;
12932 struct elf_link_hash_entry **end_hashes;
12933 struct elf_link_hash_entry **start_hashes;
12934 unsigned int symcount;
12935
12936 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12937 contents = elf_section_data (sec)->this_hdr.contents;
12938
12939 irel = elf_section_data (sec)->relocs;
12940 irelend = irel + sec->reloc_count;
12941
12942 /* Actually delete the bytes. */
12943 memmove (contents + addr, contents + addr + count,
12944 (size_t) (sec->size - addr - count));
12945 sec->size -= count;
12946
12947 /* Adjust all the relocs. */
12948 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12949 {
12950 /* Get the new reloc address. */
12951 if (irel->r_offset > addr)
12952 irel->r_offset -= count;
12953 }
12954
12955 BFD_ASSERT (addr % 2 == 0);
12956 BFD_ASSERT (count % 2 == 0);
12957
12958 /* Adjust the local symbols defined in this section. */
12959 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12960 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12961 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12962 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12963 isym->st_value -= count;
12964
12965 /* Now adjust the global symbols defined in this section. */
12966 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12967 - symtab_hdr->sh_info);
12968 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12969 end_hashes = sym_hashes + symcount;
12970
12971 for (; sym_hashes < end_hashes; sym_hashes++)
12972 {
12973 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12974
12975 if ((sym_hash->root.type == bfd_link_hash_defined
12976 || sym_hash->root.type == bfd_link_hash_defweak)
12977 && sym_hash->root.u.def.section == sec)
12978 {
12979 bfd_vma value = sym_hash->root.u.def.value;
12980
12981 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12982 value &= MINUS_TWO;
12983 if (value > addr)
12984 sym_hash->root.u.def.value -= count;
12985 }
12986 }
12987
12988 return TRUE;
12989 }
12990
12991
12992 /* Opcodes needed for microMIPS relaxation as found in
12993 opcodes/micromips-opc.c. */
12994
12995 struct opcode_descriptor {
12996 unsigned long match;
12997 unsigned long mask;
12998 };
12999
13000 /* The $ra register aka $31. */
13001
13002 #define RA 31
13003
13004 /* 32-bit instruction format register fields. */
13005
13006 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13007 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13008
13009 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13010
13011 #define OP16_VALID_REG(r) \
13012 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13013
13014
13015 /* 32-bit and 16-bit branches. */
13016
13017 static const struct opcode_descriptor b_insns_32[] = {
13018 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13019 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13020 { 0, 0 } /* End marker for find_match(). */
13021 };
13022
13023 static const struct opcode_descriptor bc_insn_32 =
13024 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13025
13026 static const struct opcode_descriptor bz_insn_32 =
13027 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13028
13029 static const struct opcode_descriptor bzal_insn_32 =
13030 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13031
13032 static const struct opcode_descriptor beq_insn_32 =
13033 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13034
13035 static const struct opcode_descriptor b_insn_16 =
13036 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13037
13038 static const struct opcode_descriptor bz_insn_16 =
13039 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13040
13041
13042 /* 32-bit and 16-bit branch EQ and NE zero. */
13043
13044 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13045 eq and second the ne. This convention is used when replacing a
13046 32-bit BEQ/BNE with the 16-bit version. */
13047
13048 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13049
13050 static const struct opcode_descriptor bz_rs_insns_32[] = {
13051 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13052 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13053 { 0, 0 } /* End marker for find_match(). */
13054 };
13055
13056 static const struct opcode_descriptor bz_rt_insns_32[] = {
13057 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13058 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13059 { 0, 0 } /* End marker for find_match(). */
13060 };
13061
13062 static const struct opcode_descriptor bzc_insns_32[] = {
13063 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13064 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13065 { 0, 0 } /* End marker for find_match(). */
13066 };
13067
13068 static const struct opcode_descriptor bz_insns_16[] = {
13069 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13070 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13071 { 0, 0 } /* End marker for find_match(). */
13072 };
13073
13074 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13075
13076 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
13077 #define BZ16_REG_FIELD(r) \
13078 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
13079
13080
13081 /* 32-bit instructions with a delay slot. */
13082
13083 static const struct opcode_descriptor jal_insn_32_bd16 =
13084 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13085
13086 static const struct opcode_descriptor jal_insn_32_bd32 =
13087 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13088
13089 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13090 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13091
13092 static const struct opcode_descriptor j_insn_32 =
13093 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13094
13095 static const struct opcode_descriptor jalr_insn_32 =
13096 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13097
13098 /* This table can be compacted, because no opcode replacement is made. */
13099
13100 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13101 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13102
13103 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13104 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13105
13106 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13107 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13108 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13109 { 0, 0 } /* End marker for find_match(). */
13110 };
13111
13112 /* This table can be compacted, because no opcode replacement is made. */
13113
13114 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13115 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13116
13117 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13118 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13119 { 0, 0 } /* End marker for find_match(). */
13120 };
13121
13122
13123 /* 16-bit instructions with a delay slot. */
13124
13125 static const struct opcode_descriptor jalr_insn_16_bd16 =
13126 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13127
13128 static const struct opcode_descriptor jalr_insn_16_bd32 =
13129 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13130
13131 static const struct opcode_descriptor jr_insn_16 =
13132 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13133
13134 #define JR16_REG(opcode) ((opcode) & 0x1f)
13135
13136 /* This table can be compacted, because no opcode replacement is made. */
13137
13138 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13139 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13140
13141 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13142 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13143 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13144 { 0, 0 } /* End marker for find_match(). */
13145 };
13146
13147
13148 /* LUI instruction. */
13149
13150 static const struct opcode_descriptor lui_insn =
13151 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13152
13153
13154 /* ADDIU instruction. */
13155
13156 static const struct opcode_descriptor addiu_insn =
13157 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13158
13159 static const struct opcode_descriptor addiupc_insn =
13160 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13161
13162 #define ADDIUPC_REG_FIELD(r) \
13163 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13164
13165
13166 /* Relaxable instructions in a JAL delay slot: MOVE. */
13167
13168 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13169 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13170 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13171 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13172
13173 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13174 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13175
13176 static const struct opcode_descriptor move_insns_32[] = {
13177 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13178 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13179 { 0, 0 } /* End marker for find_match(). */
13180 };
13181
13182 static const struct opcode_descriptor move_insn_16 =
13183 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13184
13185
13186 /* NOP instructions. */
13187
13188 static const struct opcode_descriptor nop_insn_32 =
13189 { /* "nop", "", */ 0x00000000, 0xffffffff };
13190
13191 static const struct opcode_descriptor nop_insn_16 =
13192 { /* "nop", "", */ 0x0c00, 0xffff };
13193
13194
13195 /* Instruction match support. */
13196
13197 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13198
13199 static int
13200 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13201 {
13202 unsigned long indx;
13203
13204 for (indx = 0; insn[indx].mask != 0; indx++)
13205 if (MATCH (opcode, insn[indx]))
13206 return indx;
13207
13208 return -1;
13209 }
13210
13211
13212 /* Branch and delay slot decoding support. */
13213
13214 /* If PTR points to what *might* be a 16-bit branch or jump, then
13215 return the minimum length of its delay slot, otherwise return 0.
13216 Non-zero results are not definitive as we might be checking against
13217 the second half of another instruction. */
13218
13219 static int
13220 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13221 {
13222 unsigned long opcode;
13223 int bdsize;
13224
13225 opcode = bfd_get_16 (abfd, ptr);
13226 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13227 /* 16-bit branch/jump with a 32-bit delay slot. */
13228 bdsize = 4;
13229 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13230 || find_match (opcode, ds_insns_16_bd16) >= 0)
13231 /* 16-bit branch/jump with a 16-bit delay slot. */
13232 bdsize = 2;
13233 else
13234 /* No delay slot. */
13235 bdsize = 0;
13236
13237 return bdsize;
13238 }
13239
13240 /* If PTR points to what *might* be a 32-bit branch or jump, then
13241 return the minimum length of its delay slot, otherwise return 0.
13242 Non-zero results are not definitive as we might be checking against
13243 the second half of another instruction. */
13244
13245 static int
13246 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13247 {
13248 unsigned long opcode;
13249 int bdsize;
13250
13251 opcode = bfd_get_micromips_32 (abfd, ptr);
13252 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13253 /* 32-bit branch/jump with a 32-bit delay slot. */
13254 bdsize = 4;
13255 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13256 /* 32-bit branch/jump with a 16-bit delay slot. */
13257 bdsize = 2;
13258 else
13259 /* No delay slot. */
13260 bdsize = 0;
13261
13262 return bdsize;
13263 }
13264
13265 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13266 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13267
13268 static bfd_boolean
13269 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13270 {
13271 unsigned long opcode;
13272
13273 opcode = bfd_get_16 (abfd, ptr);
13274 if (MATCH (opcode, b_insn_16)
13275 /* B16 */
13276 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13277 /* JR16 */
13278 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13279 /* BEQZ16, BNEZ16 */
13280 || (MATCH (opcode, jalr_insn_16_bd32)
13281 /* JALR16 */
13282 && reg != JR16_REG (opcode) && reg != RA))
13283 return TRUE;
13284
13285 return FALSE;
13286 }
13287
13288 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13289 then return TRUE, otherwise FALSE. */
13290
13291 static bfd_boolean
13292 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13293 {
13294 unsigned long opcode;
13295
13296 opcode = bfd_get_micromips_32 (abfd, ptr);
13297 if (MATCH (opcode, j_insn_32)
13298 /* J */
13299 || MATCH (opcode, bc_insn_32)
13300 /* BC1F, BC1T, BC2F, BC2T */
13301 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13302 /* JAL, JALX */
13303 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13304 /* BGEZ, BGTZ, BLEZ, BLTZ */
13305 || (MATCH (opcode, bzal_insn_32)
13306 /* BGEZAL, BLTZAL */
13307 && reg != OP32_SREG (opcode) && reg != RA)
13308 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13309 /* JALR, JALR.HB, BEQ, BNE */
13310 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13311 return TRUE;
13312
13313 return FALSE;
13314 }
13315
13316 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13317 IRELEND) at OFFSET indicate that there must be a compact branch there,
13318 then return TRUE, otherwise FALSE. */
13319
13320 static bfd_boolean
13321 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13322 const Elf_Internal_Rela *internal_relocs,
13323 const Elf_Internal_Rela *irelend)
13324 {
13325 const Elf_Internal_Rela *irel;
13326 unsigned long opcode;
13327
13328 opcode = bfd_get_micromips_32 (abfd, ptr);
13329 if (find_match (opcode, bzc_insns_32) < 0)
13330 return FALSE;
13331
13332 for (irel = internal_relocs; irel < irelend; irel++)
13333 if (irel->r_offset == offset
13334 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13335 return TRUE;
13336
13337 return FALSE;
13338 }
13339
13340 /* Bitsize checking. */
13341 #define IS_BITSIZE(val, N) \
13342 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13343 - (1ULL << ((N) - 1))) == (val))
13344
13345 \f
13346 bfd_boolean
13347 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13348 struct bfd_link_info *link_info,
13349 bfd_boolean *again)
13350 {
13351 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13352 Elf_Internal_Shdr *symtab_hdr;
13353 Elf_Internal_Rela *internal_relocs;
13354 Elf_Internal_Rela *irel, *irelend;
13355 bfd_byte *contents = NULL;
13356 Elf_Internal_Sym *isymbuf = NULL;
13357
13358 /* Assume nothing changes. */
13359 *again = FALSE;
13360
13361 /* We don't have to do anything for a relocatable link, if
13362 this section does not have relocs, or if this is not a
13363 code section. */
13364
13365 if (link_info->relocatable
13366 || (sec->flags & SEC_RELOC) == 0
13367 || sec->reloc_count == 0
13368 || (sec->flags & SEC_CODE) == 0)
13369 return TRUE;
13370
13371 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13372
13373 /* Get a copy of the native relocations. */
13374 internal_relocs = (_bfd_elf_link_read_relocs
13375 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13376 link_info->keep_memory));
13377 if (internal_relocs == NULL)
13378 goto error_return;
13379
13380 /* Walk through them looking for relaxing opportunities. */
13381 irelend = internal_relocs + sec->reloc_count;
13382 for (irel = internal_relocs; irel < irelend; irel++)
13383 {
13384 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13385 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13386 bfd_boolean target_is_micromips_code_p;
13387 unsigned long opcode;
13388 bfd_vma symval;
13389 bfd_vma pcrval;
13390 bfd_byte *ptr;
13391 int fndopc;
13392
13393 /* The number of bytes to delete for relaxation and from where
13394 to delete these bytes starting at irel->r_offset. */
13395 int delcnt = 0;
13396 int deloff = 0;
13397
13398 /* If this isn't something that can be relaxed, then ignore
13399 this reloc. */
13400 if (r_type != R_MICROMIPS_HI16
13401 && r_type != R_MICROMIPS_PC16_S1
13402 && r_type != R_MICROMIPS_26_S1)
13403 continue;
13404
13405 /* Get the section contents if we haven't done so already. */
13406 if (contents == NULL)
13407 {
13408 /* Get cached copy if it exists. */
13409 if (elf_section_data (sec)->this_hdr.contents != NULL)
13410 contents = elf_section_data (sec)->this_hdr.contents;
13411 /* Go get them off disk. */
13412 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13413 goto error_return;
13414 }
13415 ptr = contents + irel->r_offset;
13416
13417 /* Read this BFD's local symbols if we haven't done so already. */
13418 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13419 {
13420 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13421 if (isymbuf == NULL)
13422 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13423 symtab_hdr->sh_info, 0,
13424 NULL, NULL, NULL);
13425 if (isymbuf == NULL)
13426 goto error_return;
13427 }
13428
13429 /* Get the value of the symbol referred to by the reloc. */
13430 if (r_symndx < symtab_hdr->sh_info)
13431 {
13432 /* A local symbol. */
13433 Elf_Internal_Sym *isym;
13434 asection *sym_sec;
13435
13436 isym = isymbuf + r_symndx;
13437 if (isym->st_shndx == SHN_UNDEF)
13438 sym_sec = bfd_und_section_ptr;
13439 else if (isym->st_shndx == SHN_ABS)
13440 sym_sec = bfd_abs_section_ptr;
13441 else if (isym->st_shndx == SHN_COMMON)
13442 sym_sec = bfd_com_section_ptr;
13443 else
13444 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13445 symval = (isym->st_value
13446 + sym_sec->output_section->vma
13447 + sym_sec->output_offset);
13448 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13449 }
13450 else
13451 {
13452 unsigned long indx;
13453 struct elf_link_hash_entry *h;
13454
13455 /* An external symbol. */
13456 indx = r_symndx - symtab_hdr->sh_info;
13457 h = elf_sym_hashes (abfd)[indx];
13458 BFD_ASSERT (h != NULL);
13459
13460 if (h->root.type != bfd_link_hash_defined
13461 && h->root.type != bfd_link_hash_defweak)
13462 /* This appears to be a reference to an undefined
13463 symbol. Just ignore it -- it will be caught by the
13464 regular reloc processing. */
13465 continue;
13466
13467 symval = (h->root.u.def.value
13468 + h->root.u.def.section->output_section->vma
13469 + h->root.u.def.section->output_offset);
13470 target_is_micromips_code_p = (!h->needs_plt
13471 && ELF_ST_IS_MICROMIPS (h->other));
13472 }
13473
13474
13475 /* For simplicity of coding, we are going to modify the
13476 section contents, the section relocs, and the BFD symbol
13477 table. We must tell the rest of the code not to free up this
13478 information. It would be possible to instead create a table
13479 of changes which have to be made, as is done in coff-mips.c;
13480 that would be more work, but would require less memory when
13481 the linker is run. */
13482
13483 /* Only 32-bit instructions relaxed. */
13484 if (irel->r_offset + 4 > sec->size)
13485 continue;
13486
13487 opcode = bfd_get_micromips_32 (abfd, ptr);
13488
13489 /* This is the pc-relative distance from the instruction the
13490 relocation is applied to, to the symbol referred. */
13491 pcrval = (symval
13492 - (sec->output_section->vma + sec->output_offset)
13493 - irel->r_offset);
13494
13495 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13496 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13497 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13498
13499 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13500
13501 where pcrval has first to be adjusted to apply against the LO16
13502 location (we make the adjustment later on, when we have figured
13503 out the offset). */
13504 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13505 {
13506 bfd_boolean bzc = FALSE;
13507 unsigned long nextopc;
13508 unsigned long reg;
13509 bfd_vma offset;
13510
13511 /* Give up if the previous reloc was a HI16 against this symbol
13512 too. */
13513 if (irel > internal_relocs
13514 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13515 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13516 continue;
13517
13518 /* Or if the next reloc is not a LO16 against this symbol. */
13519 if (irel + 1 >= irelend
13520 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13521 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13522 continue;
13523
13524 /* Or if the second next reloc is a LO16 against this symbol too. */
13525 if (irel + 2 >= irelend
13526 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13527 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13528 continue;
13529
13530 /* See if the LUI instruction *might* be in a branch delay slot.
13531 We check whether what looks like a 16-bit branch or jump is
13532 actually an immediate argument to a compact branch, and let
13533 it through if so. */
13534 if (irel->r_offset >= 2
13535 && check_br16_dslot (abfd, ptr - 2)
13536 && !(irel->r_offset >= 4
13537 && (bzc = check_relocated_bzc (abfd,
13538 ptr - 4, irel->r_offset - 4,
13539 internal_relocs, irelend))))
13540 continue;
13541 if (irel->r_offset >= 4
13542 && !bzc
13543 && check_br32_dslot (abfd, ptr - 4))
13544 continue;
13545
13546 reg = OP32_SREG (opcode);
13547
13548 /* We only relax adjacent instructions or ones separated with
13549 a branch or jump that has a delay slot. The branch or jump
13550 must not fiddle with the register used to hold the address.
13551 Subtract 4 for the LUI itself. */
13552 offset = irel[1].r_offset - irel[0].r_offset;
13553 switch (offset - 4)
13554 {
13555 case 0:
13556 break;
13557 case 2:
13558 if (check_br16 (abfd, ptr + 4, reg))
13559 break;
13560 continue;
13561 case 4:
13562 if (check_br32 (abfd, ptr + 4, reg))
13563 break;
13564 continue;
13565 default:
13566 continue;
13567 }
13568
13569 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13570
13571 /* Give up unless the same register is used with both
13572 relocations. */
13573 if (OP32_SREG (nextopc) != reg)
13574 continue;
13575
13576 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13577 and rounding up to take masking of the two LSBs into account. */
13578 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13579
13580 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13581 if (IS_BITSIZE (symval, 16))
13582 {
13583 /* Fix the relocation's type. */
13584 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13585
13586 /* Instructions using R_MICROMIPS_LO16 have the base or
13587 source register in bits 20:16. This register becomes $0
13588 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13589 nextopc &= ~0x001f0000;
13590 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13591 contents + irel[1].r_offset);
13592 }
13593
13594 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13595 We add 4 to take LUI deletion into account while checking
13596 the PC-relative distance. */
13597 else if (symval % 4 == 0
13598 && IS_BITSIZE (pcrval + 4, 25)
13599 && MATCH (nextopc, addiu_insn)
13600 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13601 && OP16_VALID_REG (OP32_TREG (nextopc)))
13602 {
13603 /* Fix the relocation's type. */
13604 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13605
13606 /* Replace ADDIU with the ADDIUPC version. */
13607 nextopc = (addiupc_insn.match
13608 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13609
13610 bfd_put_micromips_32 (abfd, nextopc,
13611 contents + irel[1].r_offset);
13612 }
13613
13614 /* Can't do anything, give up, sigh... */
13615 else
13616 continue;
13617
13618 /* Fix the relocation's type. */
13619 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13620
13621 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13622 delcnt = 4;
13623 deloff = 0;
13624 }
13625
13626 /* Compact branch relaxation -- due to the multitude of macros
13627 employed by the compiler/assembler, compact branches are not
13628 always generated. Obviously, this can/will be fixed elsewhere,
13629 but there is no drawback in double checking it here. */
13630 else if (r_type == R_MICROMIPS_PC16_S1
13631 && irel->r_offset + 5 < sec->size
13632 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13633 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13634 && ((!insn32
13635 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13636 nop_insn_16) ? 2 : 0))
13637 || (irel->r_offset + 7 < sec->size
13638 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13639 ptr + 4),
13640 nop_insn_32) ? 4 : 0))))
13641 {
13642 unsigned long reg;
13643
13644 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13645
13646 /* Replace BEQZ/BNEZ with the compact version. */
13647 opcode = (bzc_insns_32[fndopc].match
13648 | BZC32_REG_FIELD (reg)
13649 | (opcode & 0xffff)); /* Addend value. */
13650
13651 bfd_put_micromips_32 (abfd, opcode, ptr);
13652
13653 /* Delete the delay slot NOP: two or four bytes from
13654 irel->offset + 4; delcnt has already been set above. */
13655 deloff = 4;
13656 }
13657
13658 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13659 to check the distance from the next instruction, so subtract 2. */
13660 else if (!insn32
13661 && r_type == R_MICROMIPS_PC16_S1
13662 && IS_BITSIZE (pcrval - 2, 11)
13663 && find_match (opcode, b_insns_32) >= 0)
13664 {
13665 /* Fix the relocation's type. */
13666 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13667
13668 /* Replace the 32-bit opcode with a 16-bit opcode. */
13669 bfd_put_16 (abfd,
13670 (b_insn_16.match
13671 | (opcode & 0x3ff)), /* Addend value. */
13672 ptr);
13673
13674 /* Delete 2 bytes from irel->r_offset + 2. */
13675 delcnt = 2;
13676 deloff = 2;
13677 }
13678
13679 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13680 to check the distance from the next instruction, so subtract 2. */
13681 else if (!insn32
13682 && r_type == R_MICROMIPS_PC16_S1
13683 && IS_BITSIZE (pcrval - 2, 8)
13684 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13685 && OP16_VALID_REG (OP32_SREG (opcode)))
13686 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13687 && OP16_VALID_REG (OP32_TREG (opcode)))))
13688 {
13689 unsigned long reg;
13690
13691 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13692
13693 /* Fix the relocation's type. */
13694 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13695
13696 /* Replace the 32-bit opcode with a 16-bit opcode. */
13697 bfd_put_16 (abfd,
13698 (bz_insns_16[fndopc].match
13699 | BZ16_REG_FIELD (reg)
13700 | (opcode & 0x7f)), /* Addend value. */
13701 ptr);
13702
13703 /* Delete 2 bytes from irel->r_offset + 2. */
13704 delcnt = 2;
13705 deloff = 2;
13706 }
13707
13708 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13709 else if (!insn32
13710 && r_type == R_MICROMIPS_26_S1
13711 && target_is_micromips_code_p
13712 && irel->r_offset + 7 < sec->size
13713 && MATCH (opcode, jal_insn_32_bd32))
13714 {
13715 unsigned long n32opc;
13716 bfd_boolean relaxed = FALSE;
13717
13718 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13719
13720 if (MATCH (n32opc, nop_insn_32))
13721 {
13722 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13723 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13724
13725 relaxed = TRUE;
13726 }
13727 else if (find_match (n32opc, move_insns_32) >= 0)
13728 {
13729 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13730 bfd_put_16 (abfd,
13731 (move_insn_16.match
13732 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13733 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13734 ptr + 4);
13735
13736 relaxed = TRUE;
13737 }
13738 /* Other 32-bit instructions relaxable to 16-bit
13739 instructions will be handled here later. */
13740
13741 if (relaxed)
13742 {
13743 /* JAL with 32-bit delay slot that is changed to a JALS
13744 with 16-bit delay slot. */
13745 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13746
13747 /* Delete 2 bytes from irel->r_offset + 6. */
13748 delcnt = 2;
13749 deloff = 6;
13750 }
13751 }
13752
13753 if (delcnt != 0)
13754 {
13755 /* Note that we've changed the relocs, section contents, etc. */
13756 elf_section_data (sec)->relocs = internal_relocs;
13757 elf_section_data (sec)->this_hdr.contents = contents;
13758 symtab_hdr->contents = (unsigned char *) isymbuf;
13759
13760 /* Delete bytes depending on the delcnt and deloff. */
13761 if (!mips_elf_relax_delete_bytes (abfd, sec,
13762 irel->r_offset + deloff, delcnt))
13763 goto error_return;
13764
13765 /* That will change things, so we should relax again.
13766 Note that this is not required, and it may be slow. */
13767 *again = TRUE;
13768 }
13769 }
13770
13771 if (isymbuf != NULL
13772 && symtab_hdr->contents != (unsigned char *) isymbuf)
13773 {
13774 if (! link_info->keep_memory)
13775 free (isymbuf);
13776 else
13777 {
13778 /* Cache the symbols for elf_link_input_bfd. */
13779 symtab_hdr->contents = (unsigned char *) isymbuf;
13780 }
13781 }
13782
13783 if (contents != NULL
13784 && elf_section_data (sec)->this_hdr.contents != contents)
13785 {
13786 if (! link_info->keep_memory)
13787 free (contents);
13788 else
13789 {
13790 /* Cache the section contents for elf_link_input_bfd. */
13791 elf_section_data (sec)->this_hdr.contents = contents;
13792 }
13793 }
13794
13795 if (internal_relocs != NULL
13796 && elf_section_data (sec)->relocs != internal_relocs)
13797 free (internal_relocs);
13798
13799 return TRUE;
13800
13801 error_return:
13802 if (isymbuf != NULL
13803 && symtab_hdr->contents != (unsigned char *) isymbuf)
13804 free (isymbuf);
13805 if (contents != NULL
13806 && elf_section_data (sec)->this_hdr.contents != contents)
13807 free (contents);
13808 if (internal_relocs != NULL
13809 && elf_section_data (sec)->relocs != internal_relocs)
13810 free (internal_relocs);
13811
13812 return FALSE;
13813 }
13814 \f
13815 /* Create a MIPS ELF linker hash table. */
13816
13817 struct bfd_link_hash_table *
13818 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13819 {
13820 struct mips_elf_link_hash_table *ret;
13821 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13822
13823 ret = bfd_zmalloc (amt);
13824 if (ret == NULL)
13825 return NULL;
13826
13827 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13828 mips_elf_link_hash_newfunc,
13829 sizeof (struct mips_elf_link_hash_entry),
13830 MIPS_ELF_DATA))
13831 {
13832 free (ret);
13833 return NULL;
13834 }
13835 ret->root.init_plt_refcount.plist = NULL;
13836 ret->root.init_plt_offset.plist = NULL;
13837
13838 return &ret->root.root;
13839 }
13840
13841 /* Likewise, but indicate that the target is VxWorks. */
13842
13843 struct bfd_link_hash_table *
13844 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13845 {
13846 struct bfd_link_hash_table *ret;
13847
13848 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13849 if (ret)
13850 {
13851 struct mips_elf_link_hash_table *htab;
13852
13853 htab = (struct mips_elf_link_hash_table *) ret;
13854 htab->use_plts_and_copy_relocs = TRUE;
13855 htab->is_vxworks = TRUE;
13856 }
13857 return ret;
13858 }
13859
13860 /* A function that the linker calls if we are allowed to use PLTs
13861 and copy relocs. */
13862
13863 void
13864 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13865 {
13866 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13867 }
13868
13869 /* A function that the linker calls to select between all or only
13870 32-bit microMIPS instructions. */
13871
13872 void
13873 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13874 {
13875 mips_elf_hash_table (info)->insn32 = on;
13876 }
13877 \f
13878 /* Return the .MIPS.abiflags value representing each ISA Extension. */
13879
13880 unsigned int
13881 bfd_mips_isa_ext (bfd *abfd)
13882 {
13883 switch (bfd_get_mach (abfd))
13884 {
13885 case bfd_mach_mips3900:
13886 return AFL_EXT_3900;
13887 case bfd_mach_mips4010:
13888 return AFL_EXT_4010;
13889 case bfd_mach_mips4100:
13890 return AFL_EXT_4100;
13891 case bfd_mach_mips4111:
13892 return AFL_EXT_4111;
13893 case bfd_mach_mips4120:
13894 return AFL_EXT_4120;
13895 case bfd_mach_mips4650:
13896 return AFL_EXT_4650;
13897 case bfd_mach_mips5400:
13898 return AFL_EXT_5400;
13899 case bfd_mach_mips5500:
13900 return AFL_EXT_5500;
13901 case bfd_mach_mips5900:
13902 return AFL_EXT_5900;
13903 case bfd_mach_mips10000:
13904 return AFL_EXT_10000;
13905 case bfd_mach_mips_loongson_2e:
13906 return AFL_EXT_LOONGSON_2E;
13907 case bfd_mach_mips_loongson_2f:
13908 return AFL_EXT_LOONGSON_2F;
13909 case bfd_mach_mips_loongson_3a:
13910 return AFL_EXT_LOONGSON_3A;
13911 case bfd_mach_mips_sb1:
13912 return AFL_EXT_SB1;
13913 case bfd_mach_mips_octeon:
13914 return AFL_EXT_OCTEON;
13915 case bfd_mach_mips_octeonp:
13916 return AFL_EXT_OCTEONP;
13917 case bfd_mach_mips_octeon3:
13918 return AFL_EXT_OCTEON3;
13919 case bfd_mach_mips_octeon2:
13920 return AFL_EXT_OCTEON2;
13921 case bfd_mach_mips_xlr:
13922 return AFL_EXT_XLR;
13923 }
13924 return 0;
13925 }
13926
13927 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
13928
13929 static void
13930 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
13931 {
13932 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
13933 {
13934 case E_MIPS_ARCH_1:
13935 abiflags->isa_level = 1;
13936 abiflags->isa_rev = 0;
13937 break;
13938 case E_MIPS_ARCH_2:
13939 abiflags->isa_level = 2;
13940 abiflags->isa_rev = 0;
13941 break;
13942 case E_MIPS_ARCH_3:
13943 abiflags->isa_level = 3;
13944 abiflags->isa_rev = 0;
13945 break;
13946 case E_MIPS_ARCH_4:
13947 abiflags->isa_level = 4;
13948 abiflags->isa_rev = 0;
13949 break;
13950 case E_MIPS_ARCH_5:
13951 abiflags->isa_level = 5;
13952 abiflags->isa_rev = 0;
13953 break;
13954 case E_MIPS_ARCH_32:
13955 abiflags->isa_level = 32;
13956 abiflags->isa_rev = 1;
13957 break;
13958 case E_MIPS_ARCH_32R2:
13959 abiflags->isa_level = 32;
13960 /* Handle MIPS32r3 and MIPS32r5 which do not have a header flag. */
13961 if (abiflags->isa_rev < 2)
13962 abiflags->isa_rev = 2;
13963 break;
13964 case E_MIPS_ARCH_32R6:
13965 abiflags->isa_level = 32;
13966 abiflags->isa_rev = 6;
13967 break;
13968 case E_MIPS_ARCH_64:
13969 abiflags->isa_level = 64;
13970 abiflags->isa_rev = 1;
13971 break;
13972 case E_MIPS_ARCH_64R2:
13973 /* Handle MIPS64r3 and MIPS64r5 which do not have a header flag. */
13974 abiflags->isa_level = 64;
13975 if (abiflags->isa_rev < 2)
13976 abiflags->isa_rev = 2;
13977 break;
13978 case E_MIPS_ARCH_64R6:
13979 abiflags->isa_level = 64;
13980 abiflags->isa_rev = 6;
13981 break;
13982 default:
13983 (*_bfd_error_handler)
13984 (_("%B: Unknown architecture %s"),
13985 abfd, bfd_printable_name (abfd));
13986 }
13987
13988 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
13989 }
13990
13991 /* Return true if the given ELF header flags describe a 32-bit binary. */
13992
13993 static bfd_boolean
13994 mips_32bit_flags_p (flagword flags)
13995 {
13996 return ((flags & EF_MIPS_32BITMODE) != 0
13997 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13998 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13999 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14000 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14001 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14002 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14003 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14004 }
14005
14006 /* Infer the content of the ABI flags based on the elf header. */
14007
14008 static void
14009 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14010 {
14011 obj_attribute *in_attr;
14012
14013 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14014 update_mips_abiflags_isa (abfd, abiflags);
14015
14016 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14017 abiflags->gpr_size = AFL_REG_32;
14018 else
14019 abiflags->gpr_size = AFL_REG_64;
14020
14021 abiflags->cpr1_size = AFL_REG_NONE;
14022
14023 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14024 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14025
14026 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14027 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14028 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14029 && abiflags->gpr_size == AFL_REG_32))
14030 abiflags->cpr1_size = AFL_REG_32;
14031 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14032 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14033 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14034 abiflags->cpr1_size = AFL_REG_64;
14035
14036 abiflags->cpr2_size = AFL_REG_NONE;
14037
14038 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14039 abiflags->ases |= AFL_ASE_MDMX;
14040 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14041 abiflags->ases |= AFL_ASE_MIPS16;
14042 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14043 abiflags->ases |= AFL_ASE_MICROMIPS;
14044
14045 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14046 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14047 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14048 && abiflags->isa_level >= 32
14049 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14050 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14051 }
14052
14053 /* We need to use a special link routine to handle the .reginfo and
14054 the .mdebug sections. We need to merge all instances of these
14055 sections together, not write them all out sequentially. */
14056
14057 bfd_boolean
14058 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14059 {
14060 asection *o;
14061 struct bfd_link_order *p;
14062 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14063 asection *rtproc_sec, *abiflags_sec;
14064 Elf32_RegInfo reginfo;
14065 struct ecoff_debug_info debug;
14066 struct mips_htab_traverse_info hti;
14067 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14068 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14069 HDRR *symhdr = &debug.symbolic_header;
14070 void *mdebug_handle = NULL;
14071 asection *s;
14072 EXTR esym;
14073 unsigned int i;
14074 bfd_size_type amt;
14075 struct mips_elf_link_hash_table *htab;
14076
14077 static const char * const secname[] =
14078 {
14079 ".text", ".init", ".fini", ".data",
14080 ".rodata", ".sdata", ".sbss", ".bss"
14081 };
14082 static const int sc[] =
14083 {
14084 scText, scInit, scFini, scData,
14085 scRData, scSData, scSBss, scBss
14086 };
14087
14088 /* Sort the dynamic symbols so that those with GOT entries come after
14089 those without. */
14090 htab = mips_elf_hash_table (info);
14091 BFD_ASSERT (htab != NULL);
14092
14093 if (!mips_elf_sort_hash_table (abfd, info))
14094 return FALSE;
14095
14096 /* Create any scheduled LA25 stubs. */
14097 hti.info = info;
14098 hti.output_bfd = abfd;
14099 hti.error = FALSE;
14100 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14101 if (hti.error)
14102 return FALSE;
14103
14104 /* Get a value for the GP register. */
14105 if (elf_gp (abfd) == 0)
14106 {
14107 struct bfd_link_hash_entry *h;
14108
14109 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14110 if (h != NULL && h->type == bfd_link_hash_defined)
14111 elf_gp (abfd) = (h->u.def.value
14112 + h->u.def.section->output_section->vma
14113 + h->u.def.section->output_offset);
14114 else if (htab->is_vxworks
14115 && (h = bfd_link_hash_lookup (info->hash,
14116 "_GLOBAL_OFFSET_TABLE_",
14117 FALSE, FALSE, TRUE))
14118 && h->type == bfd_link_hash_defined)
14119 elf_gp (abfd) = (h->u.def.section->output_section->vma
14120 + h->u.def.section->output_offset
14121 + h->u.def.value);
14122 else if (info->relocatable)
14123 {
14124 bfd_vma lo = MINUS_ONE;
14125
14126 /* Find the GP-relative section with the lowest offset. */
14127 for (o = abfd->sections; o != NULL; o = o->next)
14128 if (o->vma < lo
14129 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14130 lo = o->vma;
14131
14132 /* And calculate GP relative to that. */
14133 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14134 }
14135 else
14136 {
14137 /* If the relocate_section function needs to do a reloc
14138 involving the GP value, it should make a reloc_dangerous
14139 callback to warn that GP is not defined. */
14140 }
14141 }
14142
14143 /* Go through the sections and collect the .reginfo and .mdebug
14144 information. */
14145 abiflags_sec = NULL;
14146 reginfo_sec = NULL;
14147 mdebug_sec = NULL;
14148 gptab_data_sec = NULL;
14149 gptab_bss_sec = NULL;
14150 for (o = abfd->sections; o != NULL; o = o->next)
14151 {
14152 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14153 {
14154 /* We have found the .MIPS.abiflags section in the output file.
14155 Look through all the link_orders comprising it and remove them.
14156 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14157 for (p = o->map_head.link_order; p != NULL; p = p->next)
14158 {
14159 asection *input_section;
14160
14161 if (p->type != bfd_indirect_link_order)
14162 {
14163 if (p->type == bfd_data_link_order)
14164 continue;
14165 abort ();
14166 }
14167
14168 input_section = p->u.indirect.section;
14169
14170 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14171 elf_link_input_bfd ignores this section. */
14172 input_section->flags &= ~SEC_HAS_CONTENTS;
14173 }
14174
14175 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14176 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14177
14178 /* Skip this section later on (I don't think this currently
14179 matters, but someday it might). */
14180 o->map_head.link_order = NULL;
14181
14182 abiflags_sec = o;
14183 }
14184
14185 if (strcmp (o->name, ".reginfo") == 0)
14186 {
14187 memset (&reginfo, 0, sizeof reginfo);
14188
14189 /* We have found the .reginfo section in the output file.
14190 Look through all the link_orders comprising it and merge
14191 the information together. */
14192 for (p = o->map_head.link_order; p != NULL; p = p->next)
14193 {
14194 asection *input_section;
14195 bfd *input_bfd;
14196 Elf32_External_RegInfo ext;
14197 Elf32_RegInfo sub;
14198
14199 if (p->type != bfd_indirect_link_order)
14200 {
14201 if (p->type == bfd_data_link_order)
14202 continue;
14203 abort ();
14204 }
14205
14206 input_section = p->u.indirect.section;
14207 input_bfd = input_section->owner;
14208
14209 if (! bfd_get_section_contents (input_bfd, input_section,
14210 &ext, 0, sizeof ext))
14211 return FALSE;
14212
14213 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14214
14215 reginfo.ri_gprmask |= sub.ri_gprmask;
14216 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14217 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14218 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14219 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14220
14221 /* ri_gp_value is set by the function
14222 mips_elf32_section_processing when the section is
14223 finally written out. */
14224
14225 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14226 elf_link_input_bfd ignores this section. */
14227 input_section->flags &= ~SEC_HAS_CONTENTS;
14228 }
14229
14230 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14231 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14232
14233 /* Skip this section later on (I don't think this currently
14234 matters, but someday it might). */
14235 o->map_head.link_order = NULL;
14236
14237 reginfo_sec = o;
14238 }
14239
14240 if (strcmp (o->name, ".mdebug") == 0)
14241 {
14242 struct extsym_info einfo;
14243 bfd_vma last;
14244
14245 /* We have found the .mdebug section in the output file.
14246 Look through all the link_orders comprising it and merge
14247 the information together. */
14248 symhdr->magic = swap->sym_magic;
14249 /* FIXME: What should the version stamp be? */
14250 symhdr->vstamp = 0;
14251 symhdr->ilineMax = 0;
14252 symhdr->cbLine = 0;
14253 symhdr->idnMax = 0;
14254 symhdr->ipdMax = 0;
14255 symhdr->isymMax = 0;
14256 symhdr->ioptMax = 0;
14257 symhdr->iauxMax = 0;
14258 symhdr->issMax = 0;
14259 symhdr->issExtMax = 0;
14260 symhdr->ifdMax = 0;
14261 symhdr->crfd = 0;
14262 symhdr->iextMax = 0;
14263
14264 /* We accumulate the debugging information itself in the
14265 debug_info structure. */
14266 debug.line = NULL;
14267 debug.external_dnr = NULL;
14268 debug.external_pdr = NULL;
14269 debug.external_sym = NULL;
14270 debug.external_opt = NULL;
14271 debug.external_aux = NULL;
14272 debug.ss = NULL;
14273 debug.ssext = debug.ssext_end = NULL;
14274 debug.external_fdr = NULL;
14275 debug.external_rfd = NULL;
14276 debug.external_ext = debug.external_ext_end = NULL;
14277
14278 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14279 if (mdebug_handle == NULL)
14280 return FALSE;
14281
14282 esym.jmptbl = 0;
14283 esym.cobol_main = 0;
14284 esym.weakext = 0;
14285 esym.reserved = 0;
14286 esym.ifd = ifdNil;
14287 esym.asym.iss = issNil;
14288 esym.asym.st = stLocal;
14289 esym.asym.reserved = 0;
14290 esym.asym.index = indexNil;
14291 last = 0;
14292 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14293 {
14294 esym.asym.sc = sc[i];
14295 s = bfd_get_section_by_name (abfd, secname[i]);
14296 if (s != NULL)
14297 {
14298 esym.asym.value = s->vma;
14299 last = s->vma + s->size;
14300 }
14301 else
14302 esym.asym.value = last;
14303 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14304 secname[i], &esym))
14305 return FALSE;
14306 }
14307
14308 for (p = o->map_head.link_order; p != NULL; p = p->next)
14309 {
14310 asection *input_section;
14311 bfd *input_bfd;
14312 const struct ecoff_debug_swap *input_swap;
14313 struct ecoff_debug_info input_debug;
14314 char *eraw_src;
14315 char *eraw_end;
14316
14317 if (p->type != bfd_indirect_link_order)
14318 {
14319 if (p->type == bfd_data_link_order)
14320 continue;
14321 abort ();
14322 }
14323
14324 input_section = p->u.indirect.section;
14325 input_bfd = input_section->owner;
14326
14327 if (!is_mips_elf (input_bfd))
14328 {
14329 /* I don't know what a non MIPS ELF bfd would be
14330 doing with a .mdebug section, but I don't really
14331 want to deal with it. */
14332 continue;
14333 }
14334
14335 input_swap = (get_elf_backend_data (input_bfd)
14336 ->elf_backend_ecoff_debug_swap);
14337
14338 BFD_ASSERT (p->size == input_section->size);
14339
14340 /* The ECOFF linking code expects that we have already
14341 read in the debugging information and set up an
14342 ecoff_debug_info structure, so we do that now. */
14343 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14344 &input_debug))
14345 return FALSE;
14346
14347 if (! (bfd_ecoff_debug_accumulate
14348 (mdebug_handle, abfd, &debug, swap, input_bfd,
14349 &input_debug, input_swap, info)))
14350 return FALSE;
14351
14352 /* Loop through the external symbols. For each one with
14353 interesting information, try to find the symbol in
14354 the linker global hash table and save the information
14355 for the output external symbols. */
14356 eraw_src = input_debug.external_ext;
14357 eraw_end = (eraw_src
14358 + (input_debug.symbolic_header.iextMax
14359 * input_swap->external_ext_size));
14360 for (;
14361 eraw_src < eraw_end;
14362 eraw_src += input_swap->external_ext_size)
14363 {
14364 EXTR ext;
14365 const char *name;
14366 struct mips_elf_link_hash_entry *h;
14367
14368 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14369 if (ext.asym.sc == scNil
14370 || ext.asym.sc == scUndefined
14371 || ext.asym.sc == scSUndefined)
14372 continue;
14373
14374 name = input_debug.ssext + ext.asym.iss;
14375 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14376 name, FALSE, FALSE, TRUE);
14377 if (h == NULL || h->esym.ifd != -2)
14378 continue;
14379
14380 if (ext.ifd != -1)
14381 {
14382 BFD_ASSERT (ext.ifd
14383 < input_debug.symbolic_header.ifdMax);
14384 ext.ifd = input_debug.ifdmap[ext.ifd];
14385 }
14386
14387 h->esym = ext;
14388 }
14389
14390 /* Free up the information we just read. */
14391 free (input_debug.line);
14392 free (input_debug.external_dnr);
14393 free (input_debug.external_pdr);
14394 free (input_debug.external_sym);
14395 free (input_debug.external_opt);
14396 free (input_debug.external_aux);
14397 free (input_debug.ss);
14398 free (input_debug.ssext);
14399 free (input_debug.external_fdr);
14400 free (input_debug.external_rfd);
14401 free (input_debug.external_ext);
14402
14403 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14404 elf_link_input_bfd ignores this section. */
14405 input_section->flags &= ~SEC_HAS_CONTENTS;
14406 }
14407
14408 if (SGI_COMPAT (abfd) && info->shared)
14409 {
14410 /* Create .rtproc section. */
14411 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14412 if (rtproc_sec == NULL)
14413 {
14414 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14415 | SEC_LINKER_CREATED | SEC_READONLY);
14416
14417 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14418 ".rtproc",
14419 flags);
14420 if (rtproc_sec == NULL
14421 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14422 return FALSE;
14423 }
14424
14425 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14426 info, rtproc_sec,
14427 &debug))
14428 return FALSE;
14429 }
14430
14431 /* Build the external symbol information. */
14432 einfo.abfd = abfd;
14433 einfo.info = info;
14434 einfo.debug = &debug;
14435 einfo.swap = swap;
14436 einfo.failed = FALSE;
14437 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14438 mips_elf_output_extsym, &einfo);
14439 if (einfo.failed)
14440 return FALSE;
14441
14442 /* Set the size of the .mdebug section. */
14443 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14444
14445 /* Skip this section later on (I don't think this currently
14446 matters, but someday it might). */
14447 o->map_head.link_order = NULL;
14448
14449 mdebug_sec = o;
14450 }
14451
14452 if (CONST_STRNEQ (o->name, ".gptab."))
14453 {
14454 const char *subname;
14455 unsigned int c;
14456 Elf32_gptab *tab;
14457 Elf32_External_gptab *ext_tab;
14458 unsigned int j;
14459
14460 /* The .gptab.sdata and .gptab.sbss sections hold
14461 information describing how the small data area would
14462 change depending upon the -G switch. These sections
14463 not used in executables files. */
14464 if (! info->relocatable)
14465 {
14466 for (p = o->map_head.link_order; p != NULL; p = p->next)
14467 {
14468 asection *input_section;
14469
14470 if (p->type != bfd_indirect_link_order)
14471 {
14472 if (p->type == bfd_data_link_order)
14473 continue;
14474 abort ();
14475 }
14476
14477 input_section = p->u.indirect.section;
14478
14479 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14480 elf_link_input_bfd ignores this section. */
14481 input_section->flags &= ~SEC_HAS_CONTENTS;
14482 }
14483
14484 /* Skip this section later on (I don't think this
14485 currently matters, but someday it might). */
14486 o->map_head.link_order = NULL;
14487
14488 /* Really remove the section. */
14489 bfd_section_list_remove (abfd, o);
14490 --abfd->section_count;
14491
14492 continue;
14493 }
14494
14495 /* There is one gptab for initialized data, and one for
14496 uninitialized data. */
14497 if (strcmp (o->name, ".gptab.sdata") == 0)
14498 gptab_data_sec = o;
14499 else if (strcmp (o->name, ".gptab.sbss") == 0)
14500 gptab_bss_sec = o;
14501 else
14502 {
14503 (*_bfd_error_handler)
14504 (_("%s: illegal section name `%s'"),
14505 bfd_get_filename (abfd), o->name);
14506 bfd_set_error (bfd_error_nonrepresentable_section);
14507 return FALSE;
14508 }
14509
14510 /* The linker script always combines .gptab.data and
14511 .gptab.sdata into .gptab.sdata, and likewise for
14512 .gptab.bss and .gptab.sbss. It is possible that there is
14513 no .sdata or .sbss section in the output file, in which
14514 case we must change the name of the output section. */
14515 subname = o->name + sizeof ".gptab" - 1;
14516 if (bfd_get_section_by_name (abfd, subname) == NULL)
14517 {
14518 if (o == gptab_data_sec)
14519 o->name = ".gptab.data";
14520 else
14521 o->name = ".gptab.bss";
14522 subname = o->name + sizeof ".gptab" - 1;
14523 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14524 }
14525
14526 /* Set up the first entry. */
14527 c = 1;
14528 amt = c * sizeof (Elf32_gptab);
14529 tab = bfd_malloc (amt);
14530 if (tab == NULL)
14531 return FALSE;
14532 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14533 tab[0].gt_header.gt_unused = 0;
14534
14535 /* Combine the input sections. */
14536 for (p = o->map_head.link_order; p != NULL; p = p->next)
14537 {
14538 asection *input_section;
14539 bfd *input_bfd;
14540 bfd_size_type size;
14541 unsigned long last;
14542 bfd_size_type gpentry;
14543
14544 if (p->type != bfd_indirect_link_order)
14545 {
14546 if (p->type == bfd_data_link_order)
14547 continue;
14548 abort ();
14549 }
14550
14551 input_section = p->u.indirect.section;
14552 input_bfd = input_section->owner;
14553
14554 /* Combine the gptab entries for this input section one
14555 by one. We know that the input gptab entries are
14556 sorted by ascending -G value. */
14557 size = input_section->size;
14558 last = 0;
14559 for (gpentry = sizeof (Elf32_External_gptab);
14560 gpentry < size;
14561 gpentry += sizeof (Elf32_External_gptab))
14562 {
14563 Elf32_External_gptab ext_gptab;
14564 Elf32_gptab int_gptab;
14565 unsigned long val;
14566 unsigned long add;
14567 bfd_boolean exact;
14568 unsigned int look;
14569
14570 if (! (bfd_get_section_contents
14571 (input_bfd, input_section, &ext_gptab, gpentry,
14572 sizeof (Elf32_External_gptab))))
14573 {
14574 free (tab);
14575 return FALSE;
14576 }
14577
14578 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14579 &int_gptab);
14580 val = int_gptab.gt_entry.gt_g_value;
14581 add = int_gptab.gt_entry.gt_bytes - last;
14582
14583 exact = FALSE;
14584 for (look = 1; look < c; look++)
14585 {
14586 if (tab[look].gt_entry.gt_g_value >= val)
14587 tab[look].gt_entry.gt_bytes += add;
14588
14589 if (tab[look].gt_entry.gt_g_value == val)
14590 exact = TRUE;
14591 }
14592
14593 if (! exact)
14594 {
14595 Elf32_gptab *new_tab;
14596 unsigned int max;
14597
14598 /* We need a new table entry. */
14599 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14600 new_tab = bfd_realloc (tab, amt);
14601 if (new_tab == NULL)
14602 {
14603 free (tab);
14604 return FALSE;
14605 }
14606 tab = new_tab;
14607 tab[c].gt_entry.gt_g_value = val;
14608 tab[c].gt_entry.gt_bytes = add;
14609
14610 /* Merge in the size for the next smallest -G
14611 value, since that will be implied by this new
14612 value. */
14613 max = 0;
14614 for (look = 1; look < c; look++)
14615 {
14616 if (tab[look].gt_entry.gt_g_value < val
14617 && (max == 0
14618 || (tab[look].gt_entry.gt_g_value
14619 > tab[max].gt_entry.gt_g_value)))
14620 max = look;
14621 }
14622 if (max != 0)
14623 tab[c].gt_entry.gt_bytes +=
14624 tab[max].gt_entry.gt_bytes;
14625
14626 ++c;
14627 }
14628
14629 last = int_gptab.gt_entry.gt_bytes;
14630 }
14631
14632 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14633 elf_link_input_bfd ignores this section. */
14634 input_section->flags &= ~SEC_HAS_CONTENTS;
14635 }
14636
14637 /* The table must be sorted by -G value. */
14638 if (c > 2)
14639 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14640
14641 /* Swap out the table. */
14642 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14643 ext_tab = bfd_alloc (abfd, amt);
14644 if (ext_tab == NULL)
14645 {
14646 free (tab);
14647 return FALSE;
14648 }
14649
14650 for (j = 0; j < c; j++)
14651 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14652 free (tab);
14653
14654 o->size = c * sizeof (Elf32_External_gptab);
14655 o->contents = (bfd_byte *) ext_tab;
14656
14657 /* Skip this section later on (I don't think this currently
14658 matters, but someday it might). */
14659 o->map_head.link_order = NULL;
14660 }
14661 }
14662
14663 /* Invoke the regular ELF backend linker to do all the work. */
14664 if (!bfd_elf_final_link (abfd, info))
14665 return FALSE;
14666
14667 /* Now write out the computed sections. */
14668
14669 if (abiflags_sec != NULL)
14670 {
14671 Elf_External_ABIFlags_v0 ext;
14672 Elf_Internal_ABIFlags_v0 *abiflags;
14673
14674 abiflags = &mips_elf_tdata (abfd)->abiflags;
14675
14676 /* Set up the abiflags if no valid input sections were found. */
14677 if (!mips_elf_tdata (abfd)->abiflags_valid)
14678 {
14679 infer_mips_abiflags (abfd, abiflags);
14680 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14681 }
14682 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14683 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14684 return FALSE;
14685 }
14686
14687 if (reginfo_sec != NULL)
14688 {
14689 Elf32_External_RegInfo ext;
14690
14691 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14692 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14693 return FALSE;
14694 }
14695
14696 if (mdebug_sec != NULL)
14697 {
14698 BFD_ASSERT (abfd->output_has_begun);
14699 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14700 swap, info,
14701 mdebug_sec->filepos))
14702 return FALSE;
14703
14704 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14705 }
14706
14707 if (gptab_data_sec != NULL)
14708 {
14709 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14710 gptab_data_sec->contents,
14711 0, gptab_data_sec->size))
14712 return FALSE;
14713 }
14714
14715 if (gptab_bss_sec != NULL)
14716 {
14717 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14718 gptab_bss_sec->contents,
14719 0, gptab_bss_sec->size))
14720 return FALSE;
14721 }
14722
14723 if (SGI_COMPAT (abfd))
14724 {
14725 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14726 if (rtproc_sec != NULL)
14727 {
14728 if (! bfd_set_section_contents (abfd, rtproc_sec,
14729 rtproc_sec->contents,
14730 0, rtproc_sec->size))
14731 return FALSE;
14732 }
14733 }
14734
14735 return TRUE;
14736 }
14737 \f
14738 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14739
14740 struct mips_mach_extension
14741 {
14742 unsigned long extension, base;
14743 };
14744
14745
14746 /* An array describing how BFD machines relate to one another. The entries
14747 are ordered topologically with MIPS I extensions listed last. */
14748
14749 static const struct mips_mach_extension mips_mach_extensions[] =
14750 {
14751 /* MIPS64r2 extensions. */
14752 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14753 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14754 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14755 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14756 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14757
14758 /* MIPS64 extensions. */
14759 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14760 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14761 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14762
14763 /* MIPS V extensions. */
14764 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14765
14766 /* R10000 extensions. */
14767 { bfd_mach_mips12000, bfd_mach_mips10000 },
14768 { bfd_mach_mips14000, bfd_mach_mips10000 },
14769 { bfd_mach_mips16000, bfd_mach_mips10000 },
14770
14771 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14772 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14773 better to allow vr5400 and vr5500 code to be merged anyway, since
14774 many libraries will just use the core ISA. Perhaps we could add
14775 some sort of ASE flag if this ever proves a problem. */
14776 { bfd_mach_mips5500, bfd_mach_mips5400 },
14777 { bfd_mach_mips5400, bfd_mach_mips5000 },
14778
14779 /* MIPS IV extensions. */
14780 { bfd_mach_mips5, bfd_mach_mips8000 },
14781 { bfd_mach_mips10000, bfd_mach_mips8000 },
14782 { bfd_mach_mips5000, bfd_mach_mips8000 },
14783 { bfd_mach_mips7000, bfd_mach_mips8000 },
14784 { bfd_mach_mips9000, bfd_mach_mips8000 },
14785
14786 /* VR4100 extensions. */
14787 { bfd_mach_mips4120, bfd_mach_mips4100 },
14788 { bfd_mach_mips4111, bfd_mach_mips4100 },
14789
14790 /* MIPS III extensions. */
14791 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14792 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14793 { bfd_mach_mips8000, bfd_mach_mips4000 },
14794 { bfd_mach_mips4650, bfd_mach_mips4000 },
14795 { bfd_mach_mips4600, bfd_mach_mips4000 },
14796 { bfd_mach_mips4400, bfd_mach_mips4000 },
14797 { bfd_mach_mips4300, bfd_mach_mips4000 },
14798 { bfd_mach_mips4100, bfd_mach_mips4000 },
14799 { bfd_mach_mips4010, bfd_mach_mips4000 },
14800 { bfd_mach_mips5900, bfd_mach_mips4000 },
14801
14802 /* MIPS32 extensions. */
14803 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14804
14805 /* MIPS II extensions. */
14806 { bfd_mach_mips4000, bfd_mach_mips6000 },
14807 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14808
14809 /* MIPS I extensions. */
14810 { bfd_mach_mips6000, bfd_mach_mips3000 },
14811 { bfd_mach_mips3900, bfd_mach_mips3000 }
14812 };
14813
14814
14815 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14816
14817 static bfd_boolean
14818 mips_mach_extends_p (unsigned long base, unsigned long extension)
14819 {
14820 size_t i;
14821
14822 if (extension == base)
14823 return TRUE;
14824
14825 if (base == bfd_mach_mipsisa32
14826 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14827 return TRUE;
14828
14829 if (base == bfd_mach_mipsisa32r2
14830 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14831 return TRUE;
14832
14833 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14834 if (extension == mips_mach_extensions[i].extension)
14835 {
14836 extension = mips_mach_extensions[i].base;
14837 if (extension == base)
14838 return TRUE;
14839 }
14840
14841 return FALSE;
14842 }
14843
14844
14845 /* Merge object attributes from IBFD into OBFD. Raise an error if
14846 there are conflicting attributes. */
14847 static bfd_boolean
14848 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14849 {
14850 obj_attribute *in_attr;
14851 obj_attribute *out_attr;
14852 bfd *abi_fp_bfd;
14853 bfd *abi_msa_bfd;
14854
14855 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14856 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14857 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14858 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14859
14860 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14861 if (!abi_msa_bfd
14862 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14863 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14864
14865 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14866 {
14867 /* This is the first object. Copy the attributes. */
14868 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14869
14870 /* Use the Tag_null value to indicate the attributes have been
14871 initialized. */
14872 elf_known_obj_attributes_proc (obfd)[0].i = 1;
14873
14874 return TRUE;
14875 }
14876
14877 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14878 non-conflicting ones. */
14879 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14880 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14881 {
14882 int out_fp, in_fp;
14883
14884 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14885 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14886 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14887 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14888 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
14889 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14890 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14891 || in_fp == Val_GNU_MIPS_ABI_FP_64
14892 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14893 {
14894 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14895 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14896 }
14897 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14898 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14899 || out_fp == Val_GNU_MIPS_ABI_FP_64
14900 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14901 /* Keep the current setting. */;
14902 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14903 && in_fp == Val_GNU_MIPS_ABI_FP_64)
14904 {
14905 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14906 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14907 }
14908 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14909 && out_fp == Val_GNU_MIPS_ABI_FP_64)
14910 /* Keep the current setting. */;
14911 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14912 {
14913 const char *out_string, *in_string;
14914
14915 out_string = _bfd_mips_fp_abi_string (out_fp);
14916 in_string = _bfd_mips_fp_abi_string (in_fp);
14917 /* First warn about cases involving unrecognised ABIs. */
14918 if (!out_string && !in_string)
14919 _bfd_error_handler
14920 (_("Warning: %B uses unknown floating point ABI %d "
14921 "(set by %B), %B uses unknown floating point ABI %d"),
14922 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14923 else if (!out_string)
14924 _bfd_error_handler
14925 (_("Warning: %B uses unknown floating point ABI %d "
14926 "(set by %B), %B uses %s"),
14927 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14928 else if (!in_string)
14929 _bfd_error_handler
14930 (_("Warning: %B uses %s (set by %B), "
14931 "%B uses unknown floating point ABI %d"),
14932 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14933 else
14934 {
14935 /* If one of the bfds is soft-float, the other must be
14936 hard-float. The exact choice of hard-float ABI isn't
14937 really relevant to the error message. */
14938 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14939 out_string = "-mhard-float";
14940 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14941 in_string = "-mhard-float";
14942 _bfd_error_handler
14943 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14944 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14945 }
14946 }
14947 }
14948
14949 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14950 non-conflicting ones. */
14951 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14952 {
14953 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14954 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14955 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14956 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14957 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14958 {
14959 case Val_GNU_MIPS_ABI_MSA_128:
14960 _bfd_error_handler
14961 (_("Warning: %B uses %s (set by %B), "
14962 "%B uses unknown MSA ABI %d"),
14963 obfd, abi_msa_bfd, ibfd,
14964 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14965 break;
14966
14967 default:
14968 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
14969 {
14970 case Val_GNU_MIPS_ABI_MSA_128:
14971 _bfd_error_handler
14972 (_("Warning: %B uses unknown MSA ABI %d "
14973 "(set by %B), %B uses %s"),
14974 obfd, abi_msa_bfd, ibfd,
14975 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
14976 break;
14977
14978 default:
14979 _bfd_error_handler
14980 (_("Warning: %B uses unknown MSA ABI %d "
14981 "(set by %B), %B uses unknown MSA ABI %d"),
14982 obfd, abi_msa_bfd, ibfd,
14983 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
14984 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14985 break;
14986 }
14987 }
14988 }
14989
14990 /* Merge Tag_compatibility attributes and any common GNU ones. */
14991 _bfd_elf_merge_object_attributes (ibfd, obfd);
14992
14993 return TRUE;
14994 }
14995
14996 /* Merge backend specific data from an object file to the output
14997 object file when linking. */
14998
14999 bfd_boolean
15000 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15001 {
15002 flagword old_flags;
15003 flagword new_flags;
15004 bfd_boolean ok;
15005 bfd_boolean null_input_bfd = TRUE;
15006 asection *sec;
15007 obj_attribute *out_attr;
15008
15009 /* Check if we have the same endianness. */
15010 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15011 {
15012 (*_bfd_error_handler)
15013 (_("%B: endianness incompatible with that of the selected emulation"),
15014 ibfd);
15015 return FALSE;
15016 }
15017
15018 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15019 return TRUE;
15020
15021 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15022 {
15023 (*_bfd_error_handler)
15024 (_("%B: ABI is incompatible with that of the selected emulation"),
15025 ibfd);
15026 return FALSE;
15027 }
15028
15029 /* Set up the FP ABI attribute from the abiflags if it is not already
15030 set. */
15031 if (mips_elf_tdata (ibfd)->abiflags_valid)
15032 {
15033 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15034 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15035 in_attr[Tag_GNU_MIPS_ABI_FP].i =
15036 mips_elf_tdata (ibfd)->abiflags.fp_abi;
15037 }
15038
15039 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
15040 return FALSE;
15041
15042 /* Check to see if the input BFD actually contains any sections.
15043 If not, its flags may not have been initialised either, but it cannot
15044 actually cause any incompatibility. */
15045 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15046 {
15047 /* Ignore synthetic sections and empty .text, .data and .bss sections
15048 which are automatically generated by gas. Also ignore fake
15049 (s)common sections, since merely defining a common symbol does
15050 not affect compatibility. */
15051 if ((sec->flags & SEC_IS_COMMON) == 0
15052 && strcmp (sec->name, ".reginfo")
15053 && strcmp (sec->name, ".mdebug")
15054 && (sec->size != 0
15055 || (strcmp (sec->name, ".text")
15056 && strcmp (sec->name, ".data")
15057 && strcmp (sec->name, ".bss"))))
15058 {
15059 null_input_bfd = FALSE;
15060 break;
15061 }
15062 }
15063 if (null_input_bfd)
15064 return TRUE;
15065
15066 /* Populate abiflags using existing information. */
15067 if (!mips_elf_tdata (ibfd)->abiflags_valid)
15068 {
15069 infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags);
15070 mips_elf_tdata (ibfd)->abiflags_valid = TRUE;
15071 }
15072 else
15073 {
15074 Elf_Internal_ABIFlags_v0 abiflags;
15075 Elf_Internal_ABIFlags_v0 in_abiflags;
15076 infer_mips_abiflags (ibfd, &abiflags);
15077 in_abiflags = mips_elf_tdata (ibfd)->abiflags;
15078
15079 /* It is not possible to infer the correct ISA revision
15080 for R3 or R5 so drop down to R2 for the checks. */
15081 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15082 in_abiflags.isa_rev = 2;
15083
15084 if (in_abiflags.isa_level != abiflags.isa_level
15085 || in_abiflags.isa_rev != abiflags.isa_rev
15086 || in_abiflags.isa_ext != abiflags.isa_ext)
15087 (*_bfd_error_handler)
15088 (_("%B: warning: Inconsistent ISA between e_flags and "
15089 ".MIPS.abiflags"), ibfd);
15090 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15091 && in_abiflags.fp_abi != abiflags.fp_abi)
15092 (*_bfd_error_handler)
15093 (_("%B: warning: Inconsistent FP ABI between e_flags and "
15094 ".MIPS.abiflags"), ibfd);
15095 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15096 (*_bfd_error_handler)
15097 (_("%B: warning: Inconsistent ASEs between e_flags and "
15098 ".MIPS.abiflags"), ibfd);
15099 if (in_abiflags.isa_ext != abiflags.isa_ext)
15100 (*_bfd_error_handler)
15101 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15102 ".MIPS.abiflags"), ibfd);
15103 if (in_abiflags.flags2 != 0)
15104 (*_bfd_error_handler)
15105 (_("%B: warning: Unexpected flag in the flags2 field of "
15106 ".MIPS.abiflags (0x%lx)"), ibfd,
15107 (unsigned long) in_abiflags.flags2);
15108 }
15109
15110 if (!mips_elf_tdata (obfd)->abiflags_valid)
15111 {
15112 /* Copy input abiflags if output abiflags are not already valid. */
15113 mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags;
15114 mips_elf_tdata (obfd)->abiflags_valid = TRUE;
15115 }
15116
15117 if (! elf_flags_init (obfd))
15118 {
15119 elf_flags_init (obfd) = TRUE;
15120 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15121 elf_elfheader (obfd)->e_ident[EI_CLASS]
15122 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15123
15124 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15125 && (bfd_get_arch_info (obfd)->the_default
15126 || mips_mach_extends_p (bfd_get_mach (obfd),
15127 bfd_get_mach (ibfd))))
15128 {
15129 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15130 bfd_get_mach (ibfd)))
15131 return FALSE;
15132
15133 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15134 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15135 }
15136
15137 return TRUE;
15138 }
15139
15140 /* Update the output abiflags fp_abi using the computed fp_abi. */
15141 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15142 mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15143
15144 #define max(a,b) ((a) > (b) ? (a) : (b))
15145 /* Merge abiflags. */
15146 mips_elf_tdata (obfd)->abiflags.isa_rev
15147 = max (mips_elf_tdata (obfd)->abiflags.isa_rev,
15148 mips_elf_tdata (ibfd)->abiflags.isa_rev);
15149 mips_elf_tdata (obfd)->abiflags.gpr_size
15150 = max (mips_elf_tdata (obfd)->abiflags.gpr_size,
15151 mips_elf_tdata (ibfd)->abiflags.gpr_size);
15152 mips_elf_tdata (obfd)->abiflags.cpr1_size
15153 = max (mips_elf_tdata (obfd)->abiflags.cpr1_size,
15154 mips_elf_tdata (ibfd)->abiflags.cpr1_size);
15155 mips_elf_tdata (obfd)->abiflags.cpr2_size
15156 = max (mips_elf_tdata (obfd)->abiflags.cpr2_size,
15157 mips_elf_tdata (ibfd)->abiflags.cpr2_size);
15158 #undef max
15159 mips_elf_tdata (obfd)->abiflags.ases
15160 |= mips_elf_tdata (ibfd)->abiflags.ases;
15161 mips_elf_tdata (obfd)->abiflags.flags1
15162 |= mips_elf_tdata (ibfd)->abiflags.flags1;
15163
15164 new_flags = elf_elfheader (ibfd)->e_flags;
15165 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15166 old_flags = elf_elfheader (obfd)->e_flags;
15167
15168 /* Check flag compatibility. */
15169
15170 new_flags &= ~EF_MIPS_NOREORDER;
15171 old_flags &= ~EF_MIPS_NOREORDER;
15172
15173 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15174 doesn't seem to matter. */
15175 new_flags &= ~EF_MIPS_XGOT;
15176 old_flags &= ~EF_MIPS_XGOT;
15177
15178 /* MIPSpro generates ucode info in n64 objects. Again, we should
15179 just be able to ignore this. */
15180 new_flags &= ~EF_MIPS_UCODE;
15181 old_flags &= ~EF_MIPS_UCODE;
15182
15183 /* DSOs should only be linked with CPIC code. */
15184 if ((ibfd->flags & DYNAMIC) != 0)
15185 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15186
15187 if (new_flags == old_flags)
15188 return TRUE;
15189
15190 ok = TRUE;
15191
15192 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15193 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15194 {
15195 (*_bfd_error_handler)
15196 (_("%B: warning: linking abicalls files with non-abicalls files"),
15197 ibfd);
15198 ok = TRUE;
15199 }
15200
15201 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15202 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15203 if (! (new_flags & EF_MIPS_PIC))
15204 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15205
15206 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15207 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15208
15209 /* Compare the ISAs. */
15210 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15211 {
15212 (*_bfd_error_handler)
15213 (_("%B: linking 32-bit code with 64-bit code"),
15214 ibfd);
15215 ok = FALSE;
15216 }
15217 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15218 {
15219 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15220 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15221 {
15222 /* Copy the architecture info from IBFD to OBFD. Also copy
15223 the 32-bit flag (if set) so that we continue to recognise
15224 OBFD as a 32-bit binary. */
15225 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15226 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15227 elf_elfheader (obfd)->e_flags
15228 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15229
15230 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15231 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15232
15233 /* Copy across the ABI flags if OBFD doesn't use them
15234 and if that was what caused us to treat IBFD as 32-bit. */
15235 if ((old_flags & EF_MIPS_ABI) == 0
15236 && mips_32bit_flags_p (new_flags)
15237 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15238 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15239 }
15240 else
15241 {
15242 /* The ISAs aren't compatible. */
15243 (*_bfd_error_handler)
15244 (_("%B: linking %s module with previous %s modules"),
15245 ibfd,
15246 bfd_printable_name (ibfd),
15247 bfd_printable_name (obfd));
15248 ok = FALSE;
15249 }
15250 }
15251
15252 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15253 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15254
15255 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15256 does set EI_CLASS differently from any 32-bit ABI. */
15257 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15258 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15259 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15260 {
15261 /* Only error if both are set (to different values). */
15262 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15263 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15264 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15265 {
15266 (*_bfd_error_handler)
15267 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15268 ibfd,
15269 elf_mips_abi_name (ibfd),
15270 elf_mips_abi_name (obfd));
15271 ok = FALSE;
15272 }
15273 new_flags &= ~EF_MIPS_ABI;
15274 old_flags &= ~EF_MIPS_ABI;
15275 }
15276
15277 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15278 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15279 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15280 {
15281 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15282 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15283 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15284 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15285 int micro_mis = old_m16 && new_micro;
15286 int m16_mis = old_micro && new_m16;
15287
15288 if (m16_mis || micro_mis)
15289 {
15290 (*_bfd_error_handler)
15291 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15292 ibfd,
15293 m16_mis ? "MIPS16" : "microMIPS",
15294 m16_mis ? "microMIPS" : "MIPS16");
15295 ok = FALSE;
15296 }
15297
15298 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15299
15300 new_flags &= ~ EF_MIPS_ARCH_ASE;
15301 old_flags &= ~ EF_MIPS_ARCH_ASE;
15302 }
15303
15304 /* Compare NaN encodings. */
15305 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15306 {
15307 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15308 ibfd,
15309 (new_flags & EF_MIPS_NAN2008
15310 ? "-mnan=2008" : "-mnan=legacy"),
15311 (old_flags & EF_MIPS_NAN2008
15312 ? "-mnan=2008" : "-mnan=legacy"));
15313 ok = FALSE;
15314 new_flags &= ~EF_MIPS_NAN2008;
15315 old_flags &= ~EF_MIPS_NAN2008;
15316 }
15317
15318 /* Compare FP64 state. */
15319 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15320 {
15321 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15322 ibfd,
15323 (new_flags & EF_MIPS_FP64
15324 ? "-mfp64" : "-mfp32"),
15325 (old_flags & EF_MIPS_FP64
15326 ? "-mfp64" : "-mfp32"));
15327 ok = FALSE;
15328 new_flags &= ~EF_MIPS_FP64;
15329 old_flags &= ~EF_MIPS_FP64;
15330 }
15331
15332 /* Warn about any other mismatches */
15333 if (new_flags != old_flags)
15334 {
15335 (*_bfd_error_handler)
15336 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15337 ibfd, (unsigned long) new_flags,
15338 (unsigned long) old_flags);
15339 ok = FALSE;
15340 }
15341
15342 if (! ok)
15343 {
15344 bfd_set_error (bfd_error_bad_value);
15345 return FALSE;
15346 }
15347
15348 return TRUE;
15349 }
15350
15351 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15352
15353 bfd_boolean
15354 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15355 {
15356 BFD_ASSERT (!elf_flags_init (abfd)
15357 || elf_elfheader (abfd)->e_flags == flags);
15358
15359 elf_elfheader (abfd)->e_flags = flags;
15360 elf_flags_init (abfd) = TRUE;
15361 return TRUE;
15362 }
15363
15364 char *
15365 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15366 {
15367 switch (dtag)
15368 {
15369 default: return "";
15370 case DT_MIPS_RLD_VERSION:
15371 return "MIPS_RLD_VERSION";
15372 case DT_MIPS_TIME_STAMP:
15373 return "MIPS_TIME_STAMP";
15374 case DT_MIPS_ICHECKSUM:
15375 return "MIPS_ICHECKSUM";
15376 case DT_MIPS_IVERSION:
15377 return "MIPS_IVERSION";
15378 case DT_MIPS_FLAGS:
15379 return "MIPS_FLAGS";
15380 case DT_MIPS_BASE_ADDRESS:
15381 return "MIPS_BASE_ADDRESS";
15382 case DT_MIPS_MSYM:
15383 return "MIPS_MSYM";
15384 case DT_MIPS_CONFLICT:
15385 return "MIPS_CONFLICT";
15386 case DT_MIPS_LIBLIST:
15387 return "MIPS_LIBLIST";
15388 case DT_MIPS_LOCAL_GOTNO:
15389 return "MIPS_LOCAL_GOTNO";
15390 case DT_MIPS_CONFLICTNO:
15391 return "MIPS_CONFLICTNO";
15392 case DT_MIPS_LIBLISTNO:
15393 return "MIPS_LIBLISTNO";
15394 case DT_MIPS_SYMTABNO:
15395 return "MIPS_SYMTABNO";
15396 case DT_MIPS_UNREFEXTNO:
15397 return "MIPS_UNREFEXTNO";
15398 case DT_MIPS_GOTSYM:
15399 return "MIPS_GOTSYM";
15400 case DT_MIPS_HIPAGENO:
15401 return "MIPS_HIPAGENO";
15402 case DT_MIPS_RLD_MAP:
15403 return "MIPS_RLD_MAP";
15404 case DT_MIPS_DELTA_CLASS:
15405 return "MIPS_DELTA_CLASS";
15406 case DT_MIPS_DELTA_CLASS_NO:
15407 return "MIPS_DELTA_CLASS_NO";
15408 case DT_MIPS_DELTA_INSTANCE:
15409 return "MIPS_DELTA_INSTANCE";
15410 case DT_MIPS_DELTA_INSTANCE_NO:
15411 return "MIPS_DELTA_INSTANCE_NO";
15412 case DT_MIPS_DELTA_RELOC:
15413 return "MIPS_DELTA_RELOC";
15414 case DT_MIPS_DELTA_RELOC_NO:
15415 return "MIPS_DELTA_RELOC_NO";
15416 case DT_MIPS_DELTA_SYM:
15417 return "MIPS_DELTA_SYM";
15418 case DT_MIPS_DELTA_SYM_NO:
15419 return "MIPS_DELTA_SYM_NO";
15420 case DT_MIPS_DELTA_CLASSSYM:
15421 return "MIPS_DELTA_CLASSSYM";
15422 case DT_MIPS_DELTA_CLASSSYM_NO:
15423 return "MIPS_DELTA_CLASSSYM_NO";
15424 case DT_MIPS_CXX_FLAGS:
15425 return "MIPS_CXX_FLAGS";
15426 case DT_MIPS_PIXIE_INIT:
15427 return "MIPS_PIXIE_INIT";
15428 case DT_MIPS_SYMBOL_LIB:
15429 return "MIPS_SYMBOL_LIB";
15430 case DT_MIPS_LOCALPAGE_GOTIDX:
15431 return "MIPS_LOCALPAGE_GOTIDX";
15432 case DT_MIPS_LOCAL_GOTIDX:
15433 return "MIPS_LOCAL_GOTIDX";
15434 case DT_MIPS_HIDDEN_GOTIDX:
15435 return "MIPS_HIDDEN_GOTIDX";
15436 case DT_MIPS_PROTECTED_GOTIDX:
15437 return "MIPS_PROTECTED_GOT_IDX";
15438 case DT_MIPS_OPTIONS:
15439 return "MIPS_OPTIONS";
15440 case DT_MIPS_INTERFACE:
15441 return "MIPS_INTERFACE";
15442 case DT_MIPS_DYNSTR_ALIGN:
15443 return "DT_MIPS_DYNSTR_ALIGN";
15444 case DT_MIPS_INTERFACE_SIZE:
15445 return "DT_MIPS_INTERFACE_SIZE";
15446 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15447 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15448 case DT_MIPS_PERF_SUFFIX:
15449 return "DT_MIPS_PERF_SUFFIX";
15450 case DT_MIPS_COMPACT_SIZE:
15451 return "DT_MIPS_COMPACT_SIZE";
15452 case DT_MIPS_GP_VALUE:
15453 return "DT_MIPS_GP_VALUE";
15454 case DT_MIPS_AUX_DYNAMIC:
15455 return "DT_MIPS_AUX_DYNAMIC";
15456 case DT_MIPS_PLTGOT:
15457 return "DT_MIPS_PLTGOT";
15458 case DT_MIPS_RWPLT:
15459 return "DT_MIPS_RWPLT";
15460 }
15461 }
15462
15463 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15464 not known. */
15465
15466 const char *
15467 _bfd_mips_fp_abi_string (int fp)
15468 {
15469 switch (fp)
15470 {
15471 /* These strings aren't translated because they're simply
15472 option lists. */
15473 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15474 return "-mdouble-float";
15475
15476 case Val_GNU_MIPS_ABI_FP_SINGLE:
15477 return "-msingle-float";
15478
15479 case Val_GNU_MIPS_ABI_FP_SOFT:
15480 return "-msoft-float";
15481
15482 case Val_GNU_MIPS_ABI_FP_OLD_64:
15483 return _("-mips32r2 -mfp64 (12 callee-saved)");
15484
15485 case Val_GNU_MIPS_ABI_FP_XX:
15486 return "-mfpxx";
15487
15488 case Val_GNU_MIPS_ABI_FP_64:
15489 return "-mgp32 -mfp64";
15490
15491 case Val_GNU_MIPS_ABI_FP_64A:
15492 return "-mgp32 -mfp64 -mno-odd-spreg";
15493
15494 default:
15495 return 0;
15496 }
15497 }
15498
15499 static void
15500 print_mips_ases (FILE *file, unsigned int mask)
15501 {
15502 if (mask & AFL_ASE_DSP)
15503 fputs ("\n\tDSP ASE", file);
15504 if (mask & AFL_ASE_DSPR2)
15505 fputs ("\n\tDSP R2 ASE", file);
15506 if (mask & AFL_ASE_EVA)
15507 fputs ("\n\tEnhanced VA Scheme", file);
15508 if (mask & AFL_ASE_MCU)
15509 fputs ("\n\tMCU (MicroController) ASE", file);
15510 if (mask & AFL_ASE_MDMX)
15511 fputs ("\n\tMDMX ASE", file);
15512 if (mask & AFL_ASE_MIPS3D)
15513 fputs ("\n\tMIPS-3D ASE", file);
15514 if (mask & AFL_ASE_MT)
15515 fputs ("\n\tMT ASE", file);
15516 if (mask & AFL_ASE_SMARTMIPS)
15517 fputs ("\n\tSmartMIPS ASE", file);
15518 if (mask & AFL_ASE_VIRT)
15519 fputs ("\n\tVZ ASE", file);
15520 if (mask & AFL_ASE_MSA)
15521 fputs ("\n\tMSA ASE", file);
15522 if (mask & AFL_ASE_MIPS16)
15523 fputs ("\n\tMIPS16 ASE", file);
15524 if (mask & AFL_ASE_MICROMIPS)
15525 fputs ("\n\tMICROMIPS ASE", file);
15526 if (mask & AFL_ASE_XPA)
15527 fputs ("\n\tXPA ASE", file);
15528 if (mask == 0)
15529 fprintf (file, "\n\t%s", _("None"));
15530 else if ((mask & ~AFL_ASE_MASK) != 0)
15531 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15532 }
15533
15534 static void
15535 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15536 {
15537 switch (isa_ext)
15538 {
15539 case 0:
15540 fputs (_("None"), file);
15541 break;
15542 case AFL_EXT_XLR:
15543 fputs ("RMI XLR", file);
15544 break;
15545 case AFL_EXT_OCTEON3:
15546 fputs ("Cavium Networks Octeon3", file);
15547 break;
15548 case AFL_EXT_OCTEON2:
15549 fputs ("Cavium Networks Octeon2", file);
15550 break;
15551 case AFL_EXT_OCTEONP:
15552 fputs ("Cavium Networks OcteonP", file);
15553 break;
15554 case AFL_EXT_LOONGSON_3A:
15555 fputs ("Loongson 3A", file);
15556 break;
15557 case AFL_EXT_OCTEON:
15558 fputs ("Cavium Networks Octeon", file);
15559 break;
15560 case AFL_EXT_5900:
15561 fputs ("Toshiba R5900", file);
15562 break;
15563 case AFL_EXT_4650:
15564 fputs ("MIPS R4650", file);
15565 break;
15566 case AFL_EXT_4010:
15567 fputs ("LSI R4010", file);
15568 break;
15569 case AFL_EXT_4100:
15570 fputs ("NEC VR4100", file);
15571 break;
15572 case AFL_EXT_3900:
15573 fputs ("Toshiba R3900", file);
15574 break;
15575 case AFL_EXT_10000:
15576 fputs ("MIPS R10000", file);
15577 break;
15578 case AFL_EXT_SB1:
15579 fputs ("Broadcom SB-1", file);
15580 break;
15581 case AFL_EXT_4111:
15582 fputs ("NEC VR4111/VR4181", file);
15583 break;
15584 case AFL_EXT_4120:
15585 fputs ("NEC VR4120", file);
15586 break;
15587 case AFL_EXT_5400:
15588 fputs ("NEC VR5400", file);
15589 break;
15590 case AFL_EXT_5500:
15591 fputs ("NEC VR5500", file);
15592 break;
15593 case AFL_EXT_LOONGSON_2E:
15594 fputs ("ST Microelectronics Loongson 2E", file);
15595 break;
15596 case AFL_EXT_LOONGSON_2F:
15597 fputs ("ST Microelectronics Loongson 2F", file);
15598 break;
15599 default:
15600 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15601 break;
15602 }
15603 }
15604
15605 static void
15606 print_mips_fp_abi_value (FILE *file, int val)
15607 {
15608 switch (val)
15609 {
15610 case Val_GNU_MIPS_ABI_FP_ANY:
15611 fprintf (file, _("Hard or soft float\n"));
15612 break;
15613 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15614 fprintf (file, _("Hard float (double precision)\n"));
15615 break;
15616 case Val_GNU_MIPS_ABI_FP_SINGLE:
15617 fprintf (file, _("Hard float (single precision)\n"));
15618 break;
15619 case Val_GNU_MIPS_ABI_FP_SOFT:
15620 fprintf (file, _("Soft float\n"));
15621 break;
15622 case Val_GNU_MIPS_ABI_FP_OLD_64:
15623 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15624 break;
15625 case Val_GNU_MIPS_ABI_FP_XX:
15626 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15627 break;
15628 case Val_GNU_MIPS_ABI_FP_64:
15629 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15630 break;
15631 case Val_GNU_MIPS_ABI_FP_64A:
15632 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15633 break;
15634 default:
15635 fprintf (file, "??? (%d)\n", val);
15636 break;
15637 }
15638 }
15639
15640 static int
15641 get_mips_reg_size (int reg_size)
15642 {
15643 return (reg_size == AFL_REG_NONE) ? 0
15644 : (reg_size == AFL_REG_32) ? 32
15645 : (reg_size == AFL_REG_64) ? 64
15646 : (reg_size == AFL_REG_128) ? 128
15647 : -1;
15648 }
15649
15650 bfd_boolean
15651 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15652 {
15653 FILE *file = ptr;
15654
15655 BFD_ASSERT (abfd != NULL && ptr != NULL);
15656
15657 /* Print normal ELF private data. */
15658 _bfd_elf_print_private_bfd_data (abfd, ptr);
15659
15660 /* xgettext:c-format */
15661 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15662
15663 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15664 fprintf (file, _(" [abi=O32]"));
15665 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15666 fprintf (file, _(" [abi=O64]"));
15667 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15668 fprintf (file, _(" [abi=EABI32]"));
15669 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15670 fprintf (file, _(" [abi=EABI64]"));
15671 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15672 fprintf (file, _(" [abi unknown]"));
15673 else if (ABI_N32_P (abfd))
15674 fprintf (file, _(" [abi=N32]"));
15675 else if (ABI_64_P (abfd))
15676 fprintf (file, _(" [abi=64]"));
15677 else
15678 fprintf (file, _(" [no abi set]"));
15679
15680 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15681 fprintf (file, " [mips1]");
15682 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15683 fprintf (file, " [mips2]");
15684 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15685 fprintf (file, " [mips3]");
15686 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15687 fprintf (file, " [mips4]");
15688 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15689 fprintf (file, " [mips5]");
15690 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15691 fprintf (file, " [mips32]");
15692 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15693 fprintf (file, " [mips64]");
15694 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15695 fprintf (file, " [mips32r2]");
15696 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15697 fprintf (file, " [mips64r2]");
15698 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15699 fprintf (file, " [mips32r6]");
15700 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15701 fprintf (file, " [mips64r6]");
15702 else
15703 fprintf (file, _(" [unknown ISA]"));
15704
15705 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15706 fprintf (file, " [mdmx]");
15707
15708 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15709 fprintf (file, " [mips16]");
15710
15711 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15712 fprintf (file, " [micromips]");
15713
15714 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15715 fprintf (file, " [nan2008]");
15716
15717 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15718 fprintf (file, " [old fp64]");
15719
15720 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15721 fprintf (file, " [32bitmode]");
15722 else
15723 fprintf (file, _(" [not 32bitmode]"));
15724
15725 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15726 fprintf (file, " [noreorder]");
15727
15728 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15729 fprintf (file, " [PIC]");
15730
15731 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15732 fprintf (file, " [CPIC]");
15733
15734 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15735 fprintf (file, " [XGOT]");
15736
15737 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15738 fprintf (file, " [UCODE]");
15739
15740 fputc ('\n', file);
15741
15742 if (mips_elf_tdata (abfd)->abiflags_valid)
15743 {
15744 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15745 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15746 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15747 if (abiflags->isa_rev > 1)
15748 fprintf (file, "r%d", abiflags->isa_rev);
15749 fprintf (file, "\nGPR size: %d",
15750 get_mips_reg_size (abiflags->gpr_size));
15751 fprintf (file, "\nCPR1 size: %d",
15752 get_mips_reg_size (abiflags->cpr1_size));
15753 fprintf (file, "\nCPR2 size: %d",
15754 get_mips_reg_size (abiflags->cpr2_size));
15755 fputs ("\nFP ABI: ", file);
15756 print_mips_fp_abi_value (file, abiflags->fp_abi);
15757 fputs ("ISA Extension: ", file);
15758 print_mips_isa_ext (file, abiflags->isa_ext);
15759 fputs ("\nASEs:", file);
15760 print_mips_ases (file, abiflags->ases);
15761 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15762 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15763 fputc ('\n', file);
15764 }
15765
15766 return TRUE;
15767 }
15768
15769 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15770 {
15771 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15772 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15773 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15774 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15775 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15776 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15777 { NULL, 0, 0, 0, 0 }
15778 };
15779
15780 /* Merge non visibility st_other attributes. Ensure that the
15781 STO_OPTIONAL flag is copied into h->other, even if this is not a
15782 definiton of the symbol. */
15783 void
15784 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15785 const Elf_Internal_Sym *isym,
15786 bfd_boolean definition,
15787 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15788 {
15789 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15790 {
15791 unsigned char other;
15792
15793 other = (definition ? isym->st_other : h->other);
15794 other &= ~ELF_ST_VISIBILITY (-1);
15795 h->other = other | ELF_ST_VISIBILITY (h->other);
15796 }
15797
15798 if (!definition
15799 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15800 h->other |= STO_OPTIONAL;
15801 }
15802
15803 /* Decide whether an undefined symbol is special and can be ignored.
15804 This is the case for OPTIONAL symbols on IRIX. */
15805 bfd_boolean
15806 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15807 {
15808 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15809 }
15810
15811 bfd_boolean
15812 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15813 {
15814 return (sym->st_shndx == SHN_COMMON
15815 || sym->st_shndx == SHN_MIPS_ACOMMON
15816 || sym->st_shndx == SHN_MIPS_SCOMMON);
15817 }
15818
15819 /* Return address for Ith PLT stub in section PLT, for relocation REL
15820 or (bfd_vma) -1 if it should not be included. */
15821
15822 bfd_vma
15823 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15824 const arelent *rel ATTRIBUTE_UNUSED)
15825 {
15826 return (plt->vma
15827 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15828 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15829 }
15830
15831 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15832 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15833 and .got.plt and also the slots may be of a different size each we walk
15834 the PLT manually fetching instructions and matching them against known
15835 patterns. To make things easier standard MIPS slots, if any, always come
15836 first. As we don't create proper ELF symbols we use the UDATA.I member
15837 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15838 with the ST_OTHER member of the ELF symbol. */
15839
15840 long
15841 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15842 long symcount ATTRIBUTE_UNUSED,
15843 asymbol **syms ATTRIBUTE_UNUSED,
15844 long dynsymcount, asymbol **dynsyms,
15845 asymbol **ret)
15846 {
15847 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15848 static const char microsuffix[] = "@micromipsplt";
15849 static const char m16suffix[] = "@mips16plt";
15850 static const char mipssuffix[] = "@plt";
15851
15852 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15853 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15854 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15855 Elf_Internal_Shdr *hdr;
15856 bfd_byte *plt_data;
15857 bfd_vma plt_offset;
15858 unsigned int other;
15859 bfd_vma entry_size;
15860 bfd_vma plt0_size;
15861 asection *relplt;
15862 bfd_vma opcode;
15863 asection *plt;
15864 asymbol *send;
15865 size_t size;
15866 char *names;
15867 long counti;
15868 arelent *p;
15869 asymbol *s;
15870 char *nend;
15871 long count;
15872 long pi;
15873 long i;
15874 long n;
15875
15876 *ret = NULL;
15877
15878 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15879 return 0;
15880
15881 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15882 if (relplt == NULL)
15883 return 0;
15884
15885 hdr = &elf_section_data (relplt)->this_hdr;
15886 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15887 return 0;
15888
15889 plt = bfd_get_section_by_name (abfd, ".plt");
15890 if (plt == NULL)
15891 return 0;
15892
15893 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15894 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15895 return -1;
15896 p = relplt->relocation;
15897
15898 /* Calculating the exact amount of space required for symbols would
15899 require two passes over the PLT, so just pessimise assuming two
15900 PLT slots per relocation. */
15901 count = relplt->size / hdr->sh_entsize;
15902 counti = count * bed->s->int_rels_per_ext_rel;
15903 size = 2 * count * sizeof (asymbol);
15904 size += count * (sizeof (mipssuffix) +
15905 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15906 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15907 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15908
15909 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15910 size += sizeof (asymbol) + sizeof (pltname);
15911
15912 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15913 return -1;
15914
15915 if (plt->size < 16)
15916 return -1;
15917
15918 s = *ret = bfd_malloc (size);
15919 if (s == NULL)
15920 return -1;
15921 send = s + 2 * count + 1;
15922
15923 names = (char *) send;
15924 nend = (char *) s + size;
15925 n = 0;
15926
15927 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15928 if (opcode == 0x3302fffe)
15929 {
15930 if (!micromips_p)
15931 return -1;
15932 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15933 other = STO_MICROMIPS;
15934 }
15935 else if (opcode == 0x0398c1d0)
15936 {
15937 if (!micromips_p)
15938 return -1;
15939 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15940 other = STO_MICROMIPS;
15941 }
15942 else
15943 {
15944 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15945 other = 0;
15946 }
15947
15948 s->the_bfd = abfd;
15949 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15950 s->section = plt;
15951 s->value = 0;
15952 s->name = names;
15953 s->udata.i = other;
15954 memcpy (names, pltname, sizeof (pltname));
15955 names += sizeof (pltname);
15956 ++s, ++n;
15957
15958 pi = 0;
15959 for (plt_offset = plt0_size;
15960 plt_offset + 8 <= plt->size && s < send;
15961 plt_offset += entry_size)
15962 {
15963 bfd_vma gotplt_addr;
15964 const char *suffix;
15965 bfd_vma gotplt_hi;
15966 bfd_vma gotplt_lo;
15967 size_t suffixlen;
15968
15969 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
15970
15971 /* Check if the second word matches the expected MIPS16 instruction. */
15972 if (opcode == 0x651aeb00)
15973 {
15974 if (micromips_p)
15975 return -1;
15976 /* Truncated table??? */
15977 if (plt_offset + 16 > plt->size)
15978 break;
15979 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
15980 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
15981 suffixlen = sizeof (m16suffix);
15982 suffix = m16suffix;
15983 other = STO_MIPS16;
15984 }
15985 /* Likewise the expected microMIPS instruction (no insn32 mode). */
15986 else if (opcode == 0xff220000)
15987 {
15988 if (!micromips_p)
15989 return -1;
15990 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
15991 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15992 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
15993 gotplt_lo <<= 2;
15994 gotplt_addr = gotplt_hi + gotplt_lo;
15995 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
15996 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
15997 suffixlen = sizeof (microsuffix);
15998 suffix = microsuffix;
15999 other = STO_MICROMIPS;
16000 }
16001 /* Likewise the expected microMIPS instruction (insn32 mode). */
16002 else if ((opcode & 0xffff0000) == 0xff2f0000)
16003 {
16004 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16005 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16006 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16007 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16008 gotplt_addr = gotplt_hi + gotplt_lo;
16009 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16010 suffixlen = sizeof (microsuffix);
16011 suffix = microsuffix;
16012 other = STO_MICROMIPS;
16013 }
16014 /* Otherwise assume standard MIPS code. */
16015 else
16016 {
16017 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16018 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16019 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16020 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16021 gotplt_addr = gotplt_hi + gotplt_lo;
16022 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16023 suffixlen = sizeof (mipssuffix);
16024 suffix = mipssuffix;
16025 other = 0;
16026 }
16027 /* Truncated table??? */
16028 if (plt_offset + entry_size > plt->size)
16029 break;
16030
16031 for (i = 0;
16032 i < count && p[pi].address != gotplt_addr;
16033 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16034
16035 if (i < count)
16036 {
16037 size_t namelen;
16038 size_t len;
16039
16040 *s = **p[pi].sym_ptr_ptr;
16041 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16042 we are defining a symbol, ensure one of them is set. */
16043 if ((s->flags & BSF_LOCAL) == 0)
16044 s->flags |= BSF_GLOBAL;
16045 s->flags |= BSF_SYNTHETIC;
16046 s->section = plt;
16047 s->value = plt_offset;
16048 s->name = names;
16049 s->udata.i = other;
16050
16051 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16052 namelen = len + suffixlen;
16053 if (names + namelen > nend)
16054 break;
16055
16056 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16057 names += len;
16058 memcpy (names, suffix, suffixlen);
16059 names += suffixlen;
16060
16061 ++s, ++n;
16062 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16063 }
16064 }
16065
16066 free (plt_data);
16067
16068 return n;
16069 }
16070
16071 void
16072 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16073 {
16074 struct mips_elf_link_hash_table *htab;
16075 Elf_Internal_Ehdr *i_ehdrp;
16076
16077 i_ehdrp = elf_elfheader (abfd);
16078 if (link_info)
16079 {
16080 htab = mips_elf_hash_table (link_info);
16081 BFD_ASSERT (htab != NULL);
16082
16083 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16084 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16085 }
16086
16087 _bfd_elf_post_process_headers (abfd, link_info);
16088
16089 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16090 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16091 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16092 }
This page took 0.400941 seconds and 4 git commands to generate.