Fix cross build problems for --target=ia64-linux-gnu.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
195 bfd_boolean no_fn_stub;
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
203 bfd_boolean need_fn_stub;
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
212
213 /* Are we forced local? .*/
214 bfd_boolean forced_local;
215 };
216
217 /* MIPS ELF linker hash table. */
218
219 struct mips_elf_link_hash_table
220 {
221 struct elf_link_hash_table root;
222 #if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226 #endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
232 entry is set to the address of __rld_obj_head as in IRIX5. */
233 bfd_boolean use_rld_obj_head;
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
237 bfd_boolean mips16_stubs_seen;
238 };
239
240 /* Structure used to pass information to mips_elf_output_extsym. */
241
242 struct extsym_info
243 {
244 bfd *abfd;
245 struct bfd_link_info *info;
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
248 bfd_boolean failed;
249 };
250
251 /* The names of the runtime procedure table symbols used on IRIX5. */
252
253 static const char * const mips_elf_dynsym_rtproc_names[] =
254 {
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259 };
260
261 /* These structures are used to generate the .compact_rel section on
262 IRIX5. */
263
264 typedef struct
265 {
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272 } Elf32_compact_rel;
273
274 typedef struct
275 {
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282 } Elf32_External_compact_rel;
283
284 typedef struct
285 {
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292 } Elf32_crinfo;
293
294 typedef struct
295 {
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301 } Elf32_crinfo2;
302
303 typedef struct
304 {
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308 } Elf32_External_crinfo;
309
310 typedef struct
311 {
312 bfd_byte info[4];
313 bfd_byte konst[4];
314 } Elf32_External_crinfo2;
315
316 /* These are the constants used to swap the bitfields in a crinfo. */
317
318 #define CRINFO_CTYPE (0x1)
319 #define CRINFO_CTYPE_SH (31)
320 #define CRINFO_RTYPE (0xf)
321 #define CRINFO_RTYPE_SH (27)
322 #define CRINFO_DIST2TO (0xff)
323 #define CRINFO_DIST2TO_SH (19)
324 #define CRINFO_RELVADDR (0x7ffff)
325 #define CRINFO_RELVADDR_SH (0)
326
327 /* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330 #define CRF_MIPS_LONG 1
331 #define CRF_MIPS_SHORT 0
332
333 /* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343 #define CRT_MIPS_REL32 0xa
344 #define CRT_MIPS_WORD 0xb
345 #define CRT_MIPS_GPHI_LO 0xc
346 #define CRT_MIPS_JMPAD 0xd
347
348 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352 \f
353 /* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356 typedef struct runtime_pdr {
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
366 long reserved;
367 struct exception_info *exception_info;/* Pointer to exception array. */
368 } RPDR, *pRPDR;
369 #define cbRPDR sizeof (RPDR)
370 #define rpdNil ((pRPDR) 0)
371 \f
372 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
374 static void ecoff_swap_rpdr_out
375 (bfd *, const RPDR *, struct rpdr_ext *);
376 static bfd_boolean mips_elf_create_procedure_table
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
379 static bfd_boolean mips_elf_check_mips16_stubs
380 (struct mips_elf_link_hash_entry *, void *);
381 static void bfd_mips_elf32_swap_gptab_in
382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
383 static void bfd_mips_elf32_swap_gptab_out
384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
385 static void bfd_elf32_swap_compact_rel_out
386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
387 static void bfd_elf32_swap_crinfo_out
388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
389 static int sort_dynamic_relocs
390 (const void *, const void *);
391 static int sort_dynamic_relocs_64
392 (const void *, const void *);
393 static bfd_boolean mips_elf_output_extsym
394 (struct mips_elf_link_hash_entry *, void *);
395 static int gptab_compare
396 (const void *, const void *);
397 static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399 static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
401 static struct mips_got_info *mips_elf_got_info
402 (bfd *, asection **);
403 static long mips_elf_get_global_gotsym_index
404 (bfd *abfd);
405 static bfd_vma mips_elf_local_got_index
406 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
407 static bfd_vma mips_elf_global_got_index
408 (bfd *, bfd *, struct elf_link_hash_entry *);
409 static bfd_vma mips_elf_got_page
410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
411 static bfd_vma mips_elf_got16_entry
412 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
413 static bfd_vma mips_elf_got_offset_from_index
414 (bfd *, bfd *, bfd *, bfd_vma);
415 static struct mips_got_entry *mips_elf_create_local_got_entry
416 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
417 static bfd_boolean mips_elf_sort_hash_table
418 (struct bfd_link_info *, unsigned long);
419 static bfd_boolean mips_elf_sort_hash_table_f
420 (struct mips_elf_link_hash_entry *, void *);
421 static bfd_boolean mips_elf_record_local_got_symbol
422 (bfd *, long, bfd_vma, struct mips_got_info *);
423 static bfd_boolean mips_elf_record_global_got_symbol
424 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
425 struct mips_got_info *);
426 static const Elf_Internal_Rela *mips_elf_next_relocation
427 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
428 static bfd_boolean mips_elf_local_relocation_p
429 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
430 static bfd_boolean mips_elf_overflow_p
431 (bfd_vma, int);
432 static bfd_vma mips_elf_high
433 (bfd_vma);
434 static bfd_vma mips_elf_higher
435 (bfd_vma);
436 static bfd_vma mips_elf_highest
437 (bfd_vma);
438 static bfd_boolean mips_elf_create_compact_rel_section
439 (bfd *, struct bfd_link_info *);
440 static bfd_boolean mips_elf_create_got_section
441 (bfd *, struct bfd_link_info *, bfd_boolean);
442 static bfd_reloc_status_type mips_elf_calculate_relocation
443 (bfd *, bfd *, asection *, struct bfd_link_info *,
444 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
445 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
446 bfd_boolean *, bfd_boolean);
447 static bfd_vma mips_elf_obtain_contents
448 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
449 static bfd_boolean mips_elf_perform_relocation
450 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
451 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
452 static bfd_boolean mips_elf_stub_section_p
453 (bfd *, asection *);
454 static void mips_elf_allocate_dynamic_relocations
455 (bfd *, unsigned int);
456 static bfd_boolean mips_elf_create_dynamic_relocation
457 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
458 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
459 bfd_vma *, asection *);
460 static void mips_set_isa_flags
461 (bfd *);
462 static INLINE char *elf_mips_abi_name
463 (bfd *);
464 static void mips_elf_irix6_finish_dynamic_symbol
465 (bfd *, const char *, Elf_Internal_Sym *);
466 static bfd_boolean mips_mach_extends_p
467 (unsigned long, unsigned long);
468 static bfd_boolean mips_32bit_flags_p
469 (flagword);
470 static INLINE hashval_t mips_elf_hash_bfd_vma
471 (bfd_vma);
472 static hashval_t mips_elf_got_entry_hash
473 (const void *);
474 static int mips_elf_got_entry_eq
475 (const void *, const void *);
476
477 static bfd_boolean mips_elf_multi_got
478 (bfd *, struct bfd_link_info *, struct mips_got_info *,
479 asection *, bfd_size_type);
480 static hashval_t mips_elf_multi_got_entry_hash
481 (const void *);
482 static int mips_elf_multi_got_entry_eq
483 (const void *, const void *);
484 static hashval_t mips_elf_bfd2got_entry_hash
485 (const void *);
486 static int mips_elf_bfd2got_entry_eq
487 (const void *, const void *);
488 static int mips_elf_make_got_per_bfd
489 (void **, void *);
490 static int mips_elf_merge_gots
491 (void **, void *);
492 static int mips_elf_set_global_got_offset
493 (void **, void *);
494 static int mips_elf_set_no_stub
495 (void **, void *);
496 static int mips_elf_resolve_final_got_entry
497 (void **, void *);
498 static void mips_elf_resolve_final_got_entries
499 (struct mips_got_info *);
500 static bfd_vma mips_elf_adjust_gp
501 (bfd *, struct mips_got_info *, bfd *);
502 static struct mips_got_info *mips_elf_got_for_ibfd
503 (struct mips_got_info *, bfd *);
504
505 /* This will be used when we sort the dynamic relocation records. */
506 static bfd *reldyn_sorting_bfd;
507
508 /* Nonzero if ABFD is using the N32 ABI. */
509
510 #define ABI_N32_P(abfd) \
511 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
512
513 /* Nonzero if ABFD is using the N64 ABI. */
514 #define ABI_64_P(abfd) \
515 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
516
517 /* Nonzero if ABFD is using NewABI conventions. */
518 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
519
520 /* The IRIX compatibility level we are striving for. */
521 #define IRIX_COMPAT(abfd) \
522 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
523
524 /* Whether we are trying to be compatible with IRIX at all. */
525 #define SGI_COMPAT(abfd) \
526 (IRIX_COMPAT (abfd) != ict_none)
527
528 /* The name of the options section. */
529 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
530 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
531
532 /* The name of the stub section. */
533 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
534
535 /* The size of an external REL relocation. */
536 #define MIPS_ELF_REL_SIZE(abfd) \
537 (get_elf_backend_data (abfd)->s->sizeof_rel)
538
539 /* The size of an external dynamic table entry. */
540 #define MIPS_ELF_DYN_SIZE(abfd) \
541 (get_elf_backend_data (abfd)->s->sizeof_dyn)
542
543 /* The size of a GOT entry. */
544 #define MIPS_ELF_GOT_SIZE(abfd) \
545 (get_elf_backend_data (abfd)->s->arch_size / 8)
546
547 /* The size of a symbol-table entry. */
548 #define MIPS_ELF_SYM_SIZE(abfd) \
549 (get_elf_backend_data (abfd)->s->sizeof_sym)
550
551 /* The default alignment for sections, as a power of two. */
552 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
553 (get_elf_backend_data (abfd)->s->log_file_align)
554
555 /* Get word-sized data. */
556 #define MIPS_ELF_GET_WORD(abfd, ptr) \
557 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
558
559 /* Put out word-sized data. */
560 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
561 (ABI_64_P (abfd) \
562 ? bfd_put_64 (abfd, val, ptr) \
563 : bfd_put_32 (abfd, val, ptr))
564
565 /* Add a dynamic symbol table-entry. */
566 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
567 _bfd_elf_add_dynamic_entry (info, tag, val)
568
569 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
570 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
571
572 /* Determine whether the internal relocation of index REL_IDX is REL
573 (zero) or RELA (non-zero). The assumption is that, if there are
574 two relocation sections for this section, one of them is REL and
575 the other is RELA. If the index of the relocation we're testing is
576 in range for the first relocation section, check that the external
577 relocation size is that for RELA. It is also assumed that, if
578 rel_idx is not in range for the first section, and this first
579 section contains REL relocs, then the relocation is in the second
580 section, that is RELA. */
581 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
582 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
583 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
584 > (bfd_vma)(rel_idx)) \
585 == (elf_section_data (sec)->rel_hdr.sh_entsize \
586 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
587 : sizeof (Elf32_External_Rela))))
588
589 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
590 from smaller values. Start with zero, widen, *then* decrement. */
591 #define MINUS_ONE (((bfd_vma)0) - 1)
592
593 /* The number of local .got entries we reserve. */
594 #define MIPS_RESERVED_GOTNO (2)
595
596 /* The offset of $gp from the beginning of the .got section. */
597 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
598
599 /* The maximum size of the GOT for it to be addressable using 16-bit
600 offsets from $gp. */
601 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
602
603 /* Instructions which appear in a stub. */
604 #define STUB_LW(abfd) \
605 ((ABI_64_P (abfd) \
606 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
607 : 0x8f998010)) /* lw t9,0x8010(gp) */
608 #define STUB_MOVE(abfd) \
609 ((ABI_64_P (abfd) \
610 ? 0x03e0782d /* daddu t7,ra */ \
611 : 0x03e07821)) /* addu t7,ra */
612 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
613 #define STUB_LI16(abfd) \
614 ((ABI_64_P (abfd) \
615 ? 0x64180000 /* daddiu t8,zero,0 */ \
616 : 0x24180000)) /* addiu t8,zero,0 */
617 #define MIPS_FUNCTION_STUB_SIZE (16)
618
619 /* The name of the dynamic interpreter. This is put in the .interp
620 section. */
621
622 #define ELF_DYNAMIC_INTERPRETER(abfd) \
623 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
624 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
625 : "/usr/lib/libc.so.1")
626
627 #ifdef BFD64
628 #define MNAME(bfd,pre,pos) \
629 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
630 #define ELF_R_SYM(bfd, i) \
631 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
632 #define ELF_R_TYPE(bfd, i) \
633 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
634 #define ELF_R_INFO(bfd, s, t) \
635 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
636 #else
637 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
638 #define ELF_R_SYM(bfd, i) \
639 (ELF32_R_SYM (i))
640 #define ELF_R_TYPE(bfd, i) \
641 (ELF32_R_TYPE (i))
642 #define ELF_R_INFO(bfd, s, t) \
643 (ELF32_R_INFO (s, t))
644 #endif
645 \f
646 /* The mips16 compiler uses a couple of special sections to handle
647 floating point arguments.
648
649 Section names that look like .mips16.fn.FNNAME contain stubs that
650 copy floating point arguments from the fp regs to the gp regs and
651 then jump to FNNAME. If any 32 bit function calls FNNAME, the
652 call should be redirected to the stub instead. If no 32 bit
653 function calls FNNAME, the stub should be discarded. We need to
654 consider any reference to the function, not just a call, because
655 if the address of the function is taken we will need the stub,
656 since the address might be passed to a 32 bit function.
657
658 Section names that look like .mips16.call.FNNAME contain stubs
659 that copy floating point arguments from the gp regs to the fp
660 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
661 then any 16 bit function that calls FNNAME should be redirected
662 to the stub instead. If FNNAME is not a 32 bit function, the
663 stub should be discarded.
664
665 .mips16.call.fp.FNNAME sections are similar, but contain stubs
666 which call FNNAME and then copy the return value from the fp regs
667 to the gp regs. These stubs store the return value in $18 while
668 calling FNNAME; any function which might call one of these stubs
669 must arrange to save $18 around the call. (This case is not
670 needed for 32 bit functions that call 16 bit functions, because
671 16 bit functions always return floating point values in both
672 $f0/$f1 and $2/$3.)
673
674 Note that in all cases FNNAME might be defined statically.
675 Therefore, FNNAME is not used literally. Instead, the relocation
676 information will indicate which symbol the section is for.
677
678 We record any stubs that we find in the symbol table. */
679
680 #define FN_STUB ".mips16.fn."
681 #define CALL_STUB ".mips16.call."
682 #define CALL_FP_STUB ".mips16.call.fp."
683 \f
684 /* Look up an entry in a MIPS ELF linker hash table. */
685
686 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
687 ((struct mips_elf_link_hash_entry *) \
688 elf_link_hash_lookup (&(table)->root, (string), (create), \
689 (copy), (follow)))
690
691 /* Traverse a MIPS ELF linker hash table. */
692
693 #define mips_elf_link_hash_traverse(table, func, info) \
694 (elf_link_hash_traverse \
695 (&(table)->root, \
696 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
697 (info)))
698
699 /* Get the MIPS ELF linker hash table from a link_info structure. */
700
701 #define mips_elf_hash_table(p) \
702 ((struct mips_elf_link_hash_table *) ((p)->hash))
703
704 /* Create an entry in a MIPS ELF linker hash table. */
705
706 static struct bfd_hash_entry *
707 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
708 struct bfd_hash_table *table, const char *string)
709 {
710 struct mips_elf_link_hash_entry *ret =
711 (struct mips_elf_link_hash_entry *) entry;
712
713 /* Allocate the structure if it has not already been allocated by a
714 subclass. */
715 if (ret == NULL)
716 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
717 if (ret == NULL)
718 return (struct bfd_hash_entry *) ret;
719
720 /* Call the allocation method of the superclass. */
721 ret = ((struct mips_elf_link_hash_entry *)
722 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
723 table, string));
724 if (ret != NULL)
725 {
726 /* Set local fields. */
727 memset (&ret->esym, 0, sizeof (EXTR));
728 /* We use -2 as a marker to indicate that the information has
729 not been set. -1 means there is no associated ifd. */
730 ret->esym.ifd = -2;
731 ret->possibly_dynamic_relocs = 0;
732 ret->readonly_reloc = FALSE;
733 ret->no_fn_stub = FALSE;
734 ret->fn_stub = NULL;
735 ret->need_fn_stub = FALSE;
736 ret->call_stub = NULL;
737 ret->call_fp_stub = NULL;
738 ret->forced_local = FALSE;
739 }
740
741 return (struct bfd_hash_entry *) ret;
742 }
743
744 bfd_boolean
745 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
746 {
747 struct _mips_elf_section_data *sdata;
748 bfd_size_type amt = sizeof (*sdata);
749
750 sdata = bfd_zalloc (abfd, amt);
751 if (sdata == NULL)
752 return FALSE;
753 sec->used_by_bfd = sdata;
754
755 return _bfd_elf_new_section_hook (abfd, sec);
756 }
757 \f
758 /* Read ECOFF debugging information from a .mdebug section into a
759 ecoff_debug_info structure. */
760
761 bfd_boolean
762 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
763 struct ecoff_debug_info *debug)
764 {
765 HDRR *symhdr;
766 const struct ecoff_debug_swap *swap;
767 char *ext_hdr;
768
769 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
770 memset (debug, 0, sizeof (*debug));
771
772 ext_hdr = bfd_malloc (swap->external_hdr_size);
773 if (ext_hdr == NULL && swap->external_hdr_size != 0)
774 goto error_return;
775
776 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
777 swap->external_hdr_size))
778 goto error_return;
779
780 symhdr = &debug->symbolic_header;
781 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
782
783 /* The symbolic header contains absolute file offsets and sizes to
784 read. */
785 #define READ(ptr, offset, count, size, type) \
786 if (symhdr->count == 0) \
787 debug->ptr = NULL; \
788 else \
789 { \
790 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
791 debug->ptr = bfd_malloc (amt); \
792 if (debug->ptr == NULL) \
793 goto error_return; \
794 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
795 || bfd_bread (debug->ptr, amt, abfd) != amt) \
796 goto error_return; \
797 }
798
799 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
800 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
801 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
802 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
803 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
804 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
805 union aux_ext *);
806 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
807 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
808 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
809 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
810 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
811 #undef READ
812
813 debug->fdr = NULL;
814 debug->adjust = NULL;
815
816 return TRUE;
817
818 error_return:
819 if (ext_hdr != NULL)
820 free (ext_hdr);
821 if (debug->line != NULL)
822 free (debug->line);
823 if (debug->external_dnr != NULL)
824 free (debug->external_dnr);
825 if (debug->external_pdr != NULL)
826 free (debug->external_pdr);
827 if (debug->external_sym != NULL)
828 free (debug->external_sym);
829 if (debug->external_opt != NULL)
830 free (debug->external_opt);
831 if (debug->external_aux != NULL)
832 free (debug->external_aux);
833 if (debug->ss != NULL)
834 free (debug->ss);
835 if (debug->ssext != NULL)
836 free (debug->ssext);
837 if (debug->external_fdr != NULL)
838 free (debug->external_fdr);
839 if (debug->external_rfd != NULL)
840 free (debug->external_rfd);
841 if (debug->external_ext != NULL)
842 free (debug->external_ext);
843 return FALSE;
844 }
845 \f
846 /* Swap RPDR (runtime procedure table entry) for output. */
847
848 static void
849 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
850 {
851 H_PUT_S32 (abfd, in->adr, ex->p_adr);
852 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
853 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
854 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
855 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
856 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
857
858 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
859 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
860
861 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
862 #if 0 /* FIXME */
863 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
864 #endif
865 }
866
867 /* Create a runtime procedure table from the .mdebug section. */
868
869 static bfd_boolean
870 mips_elf_create_procedure_table (void *handle, bfd *abfd,
871 struct bfd_link_info *info, asection *s,
872 struct ecoff_debug_info *debug)
873 {
874 const struct ecoff_debug_swap *swap;
875 HDRR *hdr = &debug->symbolic_header;
876 RPDR *rpdr, *rp;
877 struct rpdr_ext *erp;
878 void *rtproc;
879 struct pdr_ext *epdr;
880 struct sym_ext *esym;
881 char *ss, **sv;
882 char *str;
883 bfd_size_type size;
884 bfd_size_type count;
885 unsigned long sindex;
886 unsigned long i;
887 PDR pdr;
888 SYMR sym;
889 const char *no_name_func = _("static procedure (no name)");
890
891 epdr = NULL;
892 rpdr = NULL;
893 esym = NULL;
894 ss = NULL;
895 sv = NULL;
896
897 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
898
899 sindex = strlen (no_name_func) + 1;
900 count = hdr->ipdMax;
901 if (count > 0)
902 {
903 size = swap->external_pdr_size;
904
905 epdr = bfd_malloc (size * count);
906 if (epdr == NULL)
907 goto error_return;
908
909 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
910 goto error_return;
911
912 size = sizeof (RPDR);
913 rp = rpdr = bfd_malloc (size * count);
914 if (rpdr == NULL)
915 goto error_return;
916
917 size = sizeof (char *);
918 sv = bfd_malloc (size * count);
919 if (sv == NULL)
920 goto error_return;
921
922 count = hdr->isymMax;
923 size = swap->external_sym_size;
924 esym = bfd_malloc (size * count);
925 if (esym == NULL)
926 goto error_return;
927
928 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
929 goto error_return;
930
931 count = hdr->issMax;
932 ss = bfd_malloc (count);
933 if (ss == NULL)
934 goto error_return;
935 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
936 goto error_return;
937
938 count = hdr->ipdMax;
939 for (i = 0; i < (unsigned long) count; i++, rp++)
940 {
941 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
942 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
943 rp->adr = sym.value;
944 rp->regmask = pdr.regmask;
945 rp->regoffset = pdr.regoffset;
946 rp->fregmask = pdr.fregmask;
947 rp->fregoffset = pdr.fregoffset;
948 rp->frameoffset = pdr.frameoffset;
949 rp->framereg = pdr.framereg;
950 rp->pcreg = pdr.pcreg;
951 rp->irpss = sindex;
952 sv[i] = ss + sym.iss;
953 sindex += strlen (sv[i]) + 1;
954 }
955 }
956
957 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
958 size = BFD_ALIGN (size, 16);
959 rtproc = bfd_alloc (abfd, size);
960 if (rtproc == NULL)
961 {
962 mips_elf_hash_table (info)->procedure_count = 0;
963 goto error_return;
964 }
965
966 mips_elf_hash_table (info)->procedure_count = count + 2;
967
968 erp = rtproc;
969 memset (erp, 0, sizeof (struct rpdr_ext));
970 erp++;
971 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
972 strcpy (str, no_name_func);
973 str += strlen (no_name_func) + 1;
974 for (i = 0; i < count; i++)
975 {
976 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
977 strcpy (str, sv[i]);
978 str += strlen (sv[i]) + 1;
979 }
980 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
981
982 /* Set the size and contents of .rtproc section. */
983 s->_raw_size = size;
984 s->contents = rtproc;
985
986 /* Skip this section later on (I don't think this currently
987 matters, but someday it might). */
988 s->link_order_head = NULL;
989
990 if (epdr != NULL)
991 free (epdr);
992 if (rpdr != NULL)
993 free (rpdr);
994 if (esym != NULL)
995 free (esym);
996 if (ss != NULL)
997 free (ss);
998 if (sv != NULL)
999 free (sv);
1000
1001 return TRUE;
1002
1003 error_return:
1004 if (epdr != NULL)
1005 free (epdr);
1006 if (rpdr != NULL)
1007 free (rpdr);
1008 if (esym != NULL)
1009 free (esym);
1010 if (ss != NULL)
1011 free (ss);
1012 if (sv != NULL)
1013 free (sv);
1014 return FALSE;
1015 }
1016
1017 /* Check the mips16 stubs for a particular symbol, and see if we can
1018 discard them. */
1019
1020 static bfd_boolean
1021 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1022 void *data ATTRIBUTE_UNUSED)
1023 {
1024 if (h->root.root.type == bfd_link_hash_warning)
1025 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1026
1027 if (h->fn_stub != NULL
1028 && ! h->need_fn_stub)
1029 {
1030 /* We don't need the fn_stub; the only references to this symbol
1031 are 16 bit calls. Clobber the size to 0 to prevent it from
1032 being included in the link. */
1033 h->fn_stub->_raw_size = 0;
1034 h->fn_stub->_cooked_size = 0;
1035 h->fn_stub->flags &= ~SEC_RELOC;
1036 h->fn_stub->reloc_count = 0;
1037 h->fn_stub->flags |= SEC_EXCLUDE;
1038 }
1039
1040 if (h->call_stub != NULL
1041 && h->root.other == STO_MIPS16)
1042 {
1043 /* We don't need the call_stub; this is a 16 bit function, so
1044 calls from other 16 bit functions are OK. Clobber the size
1045 to 0 to prevent it from being included in the link. */
1046 h->call_stub->_raw_size = 0;
1047 h->call_stub->_cooked_size = 0;
1048 h->call_stub->flags &= ~SEC_RELOC;
1049 h->call_stub->reloc_count = 0;
1050 h->call_stub->flags |= SEC_EXCLUDE;
1051 }
1052
1053 if (h->call_fp_stub != NULL
1054 && h->root.other == STO_MIPS16)
1055 {
1056 /* We don't need the call_stub; this is a 16 bit function, so
1057 calls from other 16 bit functions are OK. Clobber the size
1058 to 0 to prevent it from being included in the link. */
1059 h->call_fp_stub->_raw_size = 0;
1060 h->call_fp_stub->_cooked_size = 0;
1061 h->call_fp_stub->flags &= ~SEC_RELOC;
1062 h->call_fp_stub->reloc_count = 0;
1063 h->call_fp_stub->flags |= SEC_EXCLUDE;
1064 }
1065
1066 return TRUE;
1067 }
1068 \f
1069 bfd_reloc_status_type
1070 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1071 arelent *reloc_entry, asection *input_section,
1072 bfd_boolean relocatable, void *data, bfd_vma gp)
1073 {
1074 bfd_vma relocation;
1075 bfd_signed_vma val;
1076 bfd_reloc_status_type status;
1077
1078 if (bfd_is_com_section (symbol->section))
1079 relocation = 0;
1080 else
1081 relocation = symbol->value;
1082
1083 relocation += symbol->section->output_section->vma;
1084 relocation += symbol->section->output_offset;
1085
1086 if (reloc_entry->address > input_section->_cooked_size)
1087 return bfd_reloc_outofrange;
1088
1089 /* Set val to the offset into the section or symbol. */
1090 val = reloc_entry->addend;
1091
1092 _bfd_mips_elf_sign_extend (val, 16);
1093
1094 /* Adjust val for the final section location and GP value. If we
1095 are producing relocatable output, we don't want to do this for
1096 an external symbol. */
1097 if (! relocatable
1098 || (symbol->flags & BSF_SECTION_SYM) != 0)
1099 val += relocation - gp;
1100
1101 if (reloc_entry->howto->partial_inplace)
1102 {
1103 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1104 (bfd_byte *) data
1105 + reloc_entry->address);
1106 if (status != bfd_reloc_ok)
1107 return status;
1108 }
1109 else
1110 reloc_entry->addend = val;
1111
1112 if (relocatable)
1113 reloc_entry->address += input_section->output_offset;
1114
1115 return bfd_reloc_ok;
1116 }
1117
1118 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1119 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1120 that contains the relocation field and DATA points to the start of
1121 INPUT_SECTION. */
1122
1123 struct mips_hi16
1124 {
1125 struct mips_hi16 *next;
1126 bfd_byte *data;
1127 asection *input_section;
1128 arelent rel;
1129 };
1130
1131 /* FIXME: This should not be a static variable. */
1132
1133 static struct mips_hi16 *mips_hi16_list;
1134
1135 /* A howto special_function for REL *HI16 relocations. We can only
1136 calculate the correct value once we've seen the partnering
1137 *LO16 relocation, so just save the information for later.
1138
1139 The ABI requires that the *LO16 immediately follow the *HI16.
1140 However, as a GNU extension, we permit an arbitrary number of
1141 *HI16s to be associated with a single *LO16. This significantly
1142 simplies the relocation handling in gcc. */
1143
1144 bfd_reloc_status_type
1145 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1146 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1147 asection *input_section, bfd *output_bfd,
1148 char **error_message ATTRIBUTE_UNUSED)
1149 {
1150 struct mips_hi16 *n;
1151
1152 if (reloc_entry->address > input_section->_cooked_size)
1153 return bfd_reloc_outofrange;
1154
1155 n = bfd_malloc (sizeof *n);
1156 if (n == NULL)
1157 return bfd_reloc_outofrange;
1158
1159 n->next = mips_hi16_list;
1160 n->data = data;
1161 n->input_section = input_section;
1162 n->rel = *reloc_entry;
1163 mips_hi16_list = n;
1164
1165 if (output_bfd != NULL)
1166 reloc_entry->address += input_section->output_offset;
1167
1168 return bfd_reloc_ok;
1169 }
1170
1171 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1172 like any other 16-bit relocation when applied to global symbols, but is
1173 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1174
1175 bfd_reloc_status_type
1176 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1177 void *data, asection *input_section,
1178 bfd *output_bfd, char **error_message)
1179 {
1180 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1181 || bfd_is_und_section (bfd_get_section (symbol))
1182 || bfd_is_com_section (bfd_get_section (symbol)))
1183 /* The relocation is against a global symbol. */
1184 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1185 input_section, output_bfd,
1186 error_message);
1187
1188 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1189 input_section, output_bfd, error_message);
1190 }
1191
1192 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1193 is a straightforward 16 bit inplace relocation, but we must deal with
1194 any partnering high-part relocations as well. */
1195
1196 bfd_reloc_status_type
1197 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1198 void *data, asection *input_section,
1199 bfd *output_bfd, char **error_message)
1200 {
1201 bfd_vma vallo;
1202
1203 if (reloc_entry->address > input_section->_cooked_size)
1204 return bfd_reloc_outofrange;
1205
1206 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1207 while (mips_hi16_list != NULL)
1208 {
1209 bfd_reloc_status_type ret;
1210 struct mips_hi16 *hi;
1211
1212 hi = mips_hi16_list;
1213
1214 /* R_MIPS_GOT16 relocations are something of a special case. We
1215 want to install the addend in the same way as for a R_MIPS_HI16
1216 relocation (with a rightshift of 16). However, since GOT16
1217 relocations can also be used with global symbols, their howto
1218 has a rightshift of 0. */
1219 if (hi->rel.howto->type == R_MIPS_GOT16)
1220 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1221
1222 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1223 carry or borrow will induce a change of +1 or -1 in the high part. */
1224 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1225
1226 /* R_MIPS_GNU_REL_HI16 relocations are relative to the address of the
1227 lo16 relocation, not their own address. If we're calculating the
1228 final value, and hence subtracting the "PC", subtract the offset
1229 of the lo16 relocation from here. */
1230 if (output_bfd == NULL && hi->rel.howto->type == R_MIPS_GNU_REL_HI16)
1231 hi->rel.addend -= reloc_entry->address - hi->rel.address;
1232
1233 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1234 hi->input_section, output_bfd,
1235 error_message);
1236 if (ret != bfd_reloc_ok)
1237 return ret;
1238
1239 mips_hi16_list = hi->next;
1240 free (hi);
1241 }
1242
1243 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1244 input_section, output_bfd,
1245 error_message);
1246 }
1247
1248 /* A generic howto special_function. This calculates and installs the
1249 relocation itself, thus avoiding the oft-discussed problems in
1250 bfd_perform_relocation and bfd_install_relocation. */
1251
1252 bfd_reloc_status_type
1253 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1254 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1255 asection *input_section, bfd *output_bfd,
1256 char **error_message ATTRIBUTE_UNUSED)
1257 {
1258 bfd_signed_vma val;
1259 bfd_reloc_status_type status;
1260 bfd_boolean relocatable;
1261
1262 relocatable = (output_bfd != NULL);
1263
1264 if (reloc_entry->address > input_section->_cooked_size)
1265 return bfd_reloc_outofrange;
1266
1267 /* Build up the field adjustment in VAL. */
1268 val = 0;
1269 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1270 {
1271 /* Either we're calculating the final field value or we have a
1272 relocation against a section symbol. Add in the section's
1273 offset or address. */
1274 val += symbol->section->output_section->vma;
1275 val += symbol->section->output_offset;
1276 }
1277
1278 if (!relocatable)
1279 {
1280 /* We're calculating the final field value. Add in the symbol's value
1281 and, if pc-relative, subtract the address of the field itself. */
1282 val += symbol->value;
1283 if (reloc_entry->howto->pc_relative)
1284 {
1285 val -= input_section->output_section->vma;
1286 val -= input_section->output_offset;
1287 val -= reloc_entry->address;
1288 }
1289 }
1290
1291 /* VAL is now the final adjustment. If we're keeping this relocation
1292 in the output file, and if the relocation uses a separate addend,
1293 we just need to add VAL to that addend. Otherwise we need to add
1294 VAL to the relocation field itself. */
1295 if (relocatable && !reloc_entry->howto->partial_inplace)
1296 reloc_entry->addend += val;
1297 else
1298 {
1299 /* Add in the separate addend, if any. */
1300 val += reloc_entry->addend;
1301
1302 /* Add VAL to the relocation field. */
1303 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1304 (bfd_byte *) data
1305 + reloc_entry->address);
1306 if (status != bfd_reloc_ok)
1307 return status;
1308 }
1309
1310 if (relocatable)
1311 reloc_entry->address += input_section->output_offset;
1312
1313 return bfd_reloc_ok;
1314 }
1315 \f
1316 /* Swap an entry in a .gptab section. Note that these routines rely
1317 on the equivalence of the two elements of the union. */
1318
1319 static void
1320 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1321 Elf32_gptab *in)
1322 {
1323 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1324 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1325 }
1326
1327 static void
1328 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1329 Elf32_External_gptab *ex)
1330 {
1331 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1332 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1333 }
1334
1335 static void
1336 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1337 Elf32_External_compact_rel *ex)
1338 {
1339 H_PUT_32 (abfd, in->id1, ex->id1);
1340 H_PUT_32 (abfd, in->num, ex->num);
1341 H_PUT_32 (abfd, in->id2, ex->id2);
1342 H_PUT_32 (abfd, in->offset, ex->offset);
1343 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1344 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1345 }
1346
1347 static void
1348 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1349 Elf32_External_crinfo *ex)
1350 {
1351 unsigned long l;
1352
1353 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1354 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1355 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1356 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1357 H_PUT_32 (abfd, l, ex->info);
1358 H_PUT_32 (abfd, in->konst, ex->konst);
1359 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1360 }
1361 \f
1362 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1363 routines swap this structure in and out. They are used outside of
1364 BFD, so they are globally visible. */
1365
1366 void
1367 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1368 Elf32_RegInfo *in)
1369 {
1370 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1371 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1372 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1373 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1374 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1375 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1376 }
1377
1378 void
1379 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1380 Elf32_External_RegInfo *ex)
1381 {
1382 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1383 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1384 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1385 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1386 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1387 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1388 }
1389
1390 /* In the 64 bit ABI, the .MIPS.options section holds register
1391 information in an Elf64_Reginfo structure. These routines swap
1392 them in and out. They are globally visible because they are used
1393 outside of BFD. These routines are here so that gas can call them
1394 without worrying about whether the 64 bit ABI has been included. */
1395
1396 void
1397 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1398 Elf64_Internal_RegInfo *in)
1399 {
1400 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1401 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1402 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1403 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1404 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1405 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1406 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1407 }
1408
1409 void
1410 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1411 Elf64_External_RegInfo *ex)
1412 {
1413 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1414 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1415 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1416 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1417 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1418 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1419 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1420 }
1421
1422 /* Swap in an options header. */
1423
1424 void
1425 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1426 Elf_Internal_Options *in)
1427 {
1428 in->kind = H_GET_8 (abfd, ex->kind);
1429 in->size = H_GET_8 (abfd, ex->size);
1430 in->section = H_GET_16 (abfd, ex->section);
1431 in->info = H_GET_32 (abfd, ex->info);
1432 }
1433
1434 /* Swap out an options header. */
1435
1436 void
1437 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1438 Elf_External_Options *ex)
1439 {
1440 H_PUT_8 (abfd, in->kind, ex->kind);
1441 H_PUT_8 (abfd, in->size, ex->size);
1442 H_PUT_16 (abfd, in->section, ex->section);
1443 H_PUT_32 (abfd, in->info, ex->info);
1444 }
1445 \f
1446 /* This function is called via qsort() to sort the dynamic relocation
1447 entries by increasing r_symndx value. */
1448
1449 static int
1450 sort_dynamic_relocs (const void *arg1, const void *arg2)
1451 {
1452 Elf_Internal_Rela int_reloc1;
1453 Elf_Internal_Rela int_reloc2;
1454
1455 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1456 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1457
1458 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1459 }
1460
1461 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1462
1463 static int
1464 sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
1465 {
1466 Elf_Internal_Rela int_reloc1[3];
1467 Elf_Internal_Rela int_reloc2[3];
1468
1469 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1470 (reldyn_sorting_bfd, arg1, int_reloc1);
1471 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1472 (reldyn_sorting_bfd, arg2, int_reloc2);
1473
1474 return (ELF64_R_SYM (int_reloc1[0].r_info)
1475 - ELF64_R_SYM (int_reloc2[0].r_info));
1476 }
1477
1478
1479 /* This routine is used to write out ECOFF debugging external symbol
1480 information. It is called via mips_elf_link_hash_traverse. The
1481 ECOFF external symbol information must match the ELF external
1482 symbol information. Unfortunately, at this point we don't know
1483 whether a symbol is required by reloc information, so the two
1484 tables may wind up being different. We must sort out the external
1485 symbol information before we can set the final size of the .mdebug
1486 section, and we must set the size of the .mdebug section before we
1487 can relocate any sections, and we can't know which symbols are
1488 required by relocation until we relocate the sections.
1489 Fortunately, it is relatively unlikely that any symbol will be
1490 stripped but required by a reloc. In particular, it can not happen
1491 when generating a final executable. */
1492
1493 static bfd_boolean
1494 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1495 {
1496 struct extsym_info *einfo = data;
1497 bfd_boolean strip;
1498 asection *sec, *output_section;
1499
1500 if (h->root.root.type == bfd_link_hash_warning)
1501 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1502
1503 if (h->root.indx == -2)
1504 strip = FALSE;
1505 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1506 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1507 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1508 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1509 strip = TRUE;
1510 else if (einfo->info->strip == strip_all
1511 || (einfo->info->strip == strip_some
1512 && bfd_hash_lookup (einfo->info->keep_hash,
1513 h->root.root.root.string,
1514 FALSE, FALSE) == NULL))
1515 strip = TRUE;
1516 else
1517 strip = FALSE;
1518
1519 if (strip)
1520 return TRUE;
1521
1522 if (h->esym.ifd == -2)
1523 {
1524 h->esym.jmptbl = 0;
1525 h->esym.cobol_main = 0;
1526 h->esym.weakext = 0;
1527 h->esym.reserved = 0;
1528 h->esym.ifd = ifdNil;
1529 h->esym.asym.value = 0;
1530 h->esym.asym.st = stGlobal;
1531
1532 if (h->root.root.type == bfd_link_hash_undefined
1533 || h->root.root.type == bfd_link_hash_undefweak)
1534 {
1535 const char *name;
1536
1537 /* Use undefined class. Also, set class and type for some
1538 special symbols. */
1539 name = h->root.root.root.string;
1540 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1541 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1542 {
1543 h->esym.asym.sc = scData;
1544 h->esym.asym.st = stLabel;
1545 h->esym.asym.value = 0;
1546 }
1547 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1548 {
1549 h->esym.asym.sc = scAbs;
1550 h->esym.asym.st = stLabel;
1551 h->esym.asym.value =
1552 mips_elf_hash_table (einfo->info)->procedure_count;
1553 }
1554 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1555 {
1556 h->esym.asym.sc = scAbs;
1557 h->esym.asym.st = stLabel;
1558 h->esym.asym.value = elf_gp (einfo->abfd);
1559 }
1560 else
1561 h->esym.asym.sc = scUndefined;
1562 }
1563 else if (h->root.root.type != bfd_link_hash_defined
1564 && h->root.root.type != bfd_link_hash_defweak)
1565 h->esym.asym.sc = scAbs;
1566 else
1567 {
1568 const char *name;
1569
1570 sec = h->root.root.u.def.section;
1571 output_section = sec->output_section;
1572
1573 /* When making a shared library and symbol h is the one from
1574 the another shared library, OUTPUT_SECTION may be null. */
1575 if (output_section == NULL)
1576 h->esym.asym.sc = scUndefined;
1577 else
1578 {
1579 name = bfd_section_name (output_section->owner, output_section);
1580
1581 if (strcmp (name, ".text") == 0)
1582 h->esym.asym.sc = scText;
1583 else if (strcmp (name, ".data") == 0)
1584 h->esym.asym.sc = scData;
1585 else if (strcmp (name, ".sdata") == 0)
1586 h->esym.asym.sc = scSData;
1587 else if (strcmp (name, ".rodata") == 0
1588 || strcmp (name, ".rdata") == 0)
1589 h->esym.asym.sc = scRData;
1590 else if (strcmp (name, ".bss") == 0)
1591 h->esym.asym.sc = scBss;
1592 else if (strcmp (name, ".sbss") == 0)
1593 h->esym.asym.sc = scSBss;
1594 else if (strcmp (name, ".init") == 0)
1595 h->esym.asym.sc = scInit;
1596 else if (strcmp (name, ".fini") == 0)
1597 h->esym.asym.sc = scFini;
1598 else
1599 h->esym.asym.sc = scAbs;
1600 }
1601 }
1602
1603 h->esym.asym.reserved = 0;
1604 h->esym.asym.index = indexNil;
1605 }
1606
1607 if (h->root.root.type == bfd_link_hash_common)
1608 h->esym.asym.value = h->root.root.u.c.size;
1609 else if (h->root.root.type == bfd_link_hash_defined
1610 || h->root.root.type == bfd_link_hash_defweak)
1611 {
1612 if (h->esym.asym.sc == scCommon)
1613 h->esym.asym.sc = scBss;
1614 else if (h->esym.asym.sc == scSCommon)
1615 h->esym.asym.sc = scSBss;
1616
1617 sec = h->root.root.u.def.section;
1618 output_section = sec->output_section;
1619 if (output_section != NULL)
1620 h->esym.asym.value = (h->root.root.u.def.value
1621 + sec->output_offset
1622 + output_section->vma);
1623 else
1624 h->esym.asym.value = 0;
1625 }
1626 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1627 {
1628 struct mips_elf_link_hash_entry *hd = h;
1629 bfd_boolean no_fn_stub = h->no_fn_stub;
1630
1631 while (hd->root.root.type == bfd_link_hash_indirect)
1632 {
1633 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1634 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1635 }
1636
1637 if (!no_fn_stub)
1638 {
1639 /* Set type and value for a symbol with a function stub. */
1640 h->esym.asym.st = stProc;
1641 sec = hd->root.root.u.def.section;
1642 if (sec == NULL)
1643 h->esym.asym.value = 0;
1644 else
1645 {
1646 output_section = sec->output_section;
1647 if (output_section != NULL)
1648 h->esym.asym.value = (hd->root.plt.offset
1649 + sec->output_offset
1650 + output_section->vma);
1651 else
1652 h->esym.asym.value = 0;
1653 }
1654 #if 0 /* FIXME? */
1655 h->esym.ifd = 0;
1656 #endif
1657 }
1658 }
1659
1660 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1661 h->root.root.root.string,
1662 &h->esym))
1663 {
1664 einfo->failed = TRUE;
1665 return FALSE;
1666 }
1667
1668 return TRUE;
1669 }
1670
1671 /* A comparison routine used to sort .gptab entries. */
1672
1673 static int
1674 gptab_compare (const void *p1, const void *p2)
1675 {
1676 const Elf32_gptab *a1 = p1;
1677 const Elf32_gptab *a2 = p2;
1678
1679 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1680 }
1681 \f
1682 /* Functions to manage the got entry hash table. */
1683
1684 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1685 hash number. */
1686
1687 static INLINE hashval_t
1688 mips_elf_hash_bfd_vma (bfd_vma addr)
1689 {
1690 #ifdef BFD64
1691 return addr + (addr >> 32);
1692 #else
1693 return addr;
1694 #endif
1695 }
1696
1697 /* got_entries only match if they're identical, except for gotidx, so
1698 use all fields to compute the hash, and compare the appropriate
1699 union members. */
1700
1701 static hashval_t
1702 mips_elf_got_entry_hash (const void *entry_)
1703 {
1704 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1705
1706 return entry->symndx
1707 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1708 : entry->abfd->id
1709 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1710 : entry->d.h->root.root.root.hash));
1711 }
1712
1713 static int
1714 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1715 {
1716 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1717 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1718
1719 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1720 && (! e1->abfd ? e1->d.address == e2->d.address
1721 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1722 : e1->d.h == e2->d.h);
1723 }
1724
1725 /* multi_got_entries are still a match in the case of global objects,
1726 even if the input bfd in which they're referenced differs, so the
1727 hash computation and compare functions are adjusted
1728 accordingly. */
1729
1730 static hashval_t
1731 mips_elf_multi_got_entry_hash (const void *entry_)
1732 {
1733 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1734
1735 return entry->symndx
1736 + (! entry->abfd
1737 ? mips_elf_hash_bfd_vma (entry->d.address)
1738 : entry->symndx >= 0
1739 ? (entry->abfd->id
1740 + mips_elf_hash_bfd_vma (entry->d.addend))
1741 : entry->d.h->root.root.root.hash);
1742 }
1743
1744 static int
1745 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1746 {
1747 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1748 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1749
1750 return e1->symndx == e2->symndx
1751 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1752 : e1->abfd == NULL || e2->abfd == NULL
1753 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1754 : e1->d.h == e2->d.h);
1755 }
1756 \f
1757 /* Returns the dynamic relocation section for DYNOBJ. */
1758
1759 static asection *
1760 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1761 {
1762 static const char dname[] = ".rel.dyn";
1763 asection *sreloc;
1764
1765 sreloc = bfd_get_section_by_name (dynobj, dname);
1766 if (sreloc == NULL && create_p)
1767 {
1768 sreloc = bfd_make_section (dynobj, dname);
1769 if (sreloc == NULL
1770 || ! bfd_set_section_flags (dynobj, sreloc,
1771 (SEC_ALLOC
1772 | SEC_LOAD
1773 | SEC_HAS_CONTENTS
1774 | SEC_IN_MEMORY
1775 | SEC_LINKER_CREATED
1776 | SEC_READONLY))
1777 || ! bfd_set_section_alignment (dynobj, sreloc,
1778 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1779 return NULL;
1780 }
1781 return sreloc;
1782 }
1783
1784 /* Returns the GOT section for ABFD. */
1785
1786 static asection *
1787 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1788 {
1789 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1790 if (sgot == NULL
1791 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1792 return NULL;
1793 return sgot;
1794 }
1795
1796 /* Returns the GOT information associated with the link indicated by
1797 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1798 section. */
1799
1800 static struct mips_got_info *
1801 mips_elf_got_info (bfd *abfd, asection **sgotp)
1802 {
1803 asection *sgot;
1804 struct mips_got_info *g;
1805
1806 sgot = mips_elf_got_section (abfd, TRUE);
1807 BFD_ASSERT (sgot != NULL);
1808 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1809 g = mips_elf_section_data (sgot)->u.got_info;
1810 BFD_ASSERT (g != NULL);
1811
1812 if (sgotp)
1813 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1814
1815 return g;
1816 }
1817
1818 /* Obtain the lowest dynamic index of a symbol that was assigned a
1819 global GOT entry. */
1820 static long
1821 mips_elf_get_global_gotsym_index (bfd *abfd)
1822 {
1823 asection *sgot;
1824 struct mips_got_info *g;
1825
1826 if (abfd == NULL)
1827 return 0;
1828
1829 sgot = mips_elf_got_section (abfd, TRUE);
1830 if (sgot == NULL || mips_elf_section_data (sgot) == NULL)
1831 return 0;
1832
1833 g = mips_elf_section_data (sgot)->u.got_info;
1834 if (g == NULL || g->global_gotsym == NULL)
1835 return 0;
1836
1837 return g->global_gotsym->dynindx;
1838 }
1839
1840 /* Returns the GOT offset at which the indicated address can be found.
1841 If there is not yet a GOT entry for this value, create one. Returns
1842 -1 if no satisfactory GOT offset can be found. */
1843
1844 static bfd_vma
1845 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1846 bfd_vma value)
1847 {
1848 asection *sgot;
1849 struct mips_got_info *g;
1850 struct mips_got_entry *entry;
1851
1852 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1853
1854 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1855 if (entry)
1856 return entry->gotidx;
1857 else
1858 return MINUS_ONE;
1859 }
1860
1861 /* Returns the GOT index for the global symbol indicated by H. */
1862
1863 static bfd_vma
1864 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
1865 {
1866 bfd_vma index;
1867 asection *sgot;
1868 struct mips_got_info *g, *gg;
1869 long global_got_dynindx = 0;
1870
1871 gg = g = mips_elf_got_info (abfd, &sgot);
1872 if (g->bfd2got && ibfd)
1873 {
1874 struct mips_got_entry e, *p;
1875
1876 BFD_ASSERT (h->dynindx >= 0);
1877
1878 g = mips_elf_got_for_ibfd (g, ibfd);
1879 if (g->next != gg)
1880 {
1881 e.abfd = ibfd;
1882 e.symndx = -1;
1883 e.d.h = (struct mips_elf_link_hash_entry *)h;
1884
1885 p = htab_find (g->got_entries, &e);
1886
1887 BFD_ASSERT (p->gotidx > 0);
1888 return p->gotidx;
1889 }
1890 }
1891
1892 if (gg->global_gotsym != NULL)
1893 global_got_dynindx = gg->global_gotsym->dynindx;
1894
1895 /* Once we determine the global GOT entry with the lowest dynamic
1896 symbol table index, we must put all dynamic symbols with greater
1897 indices into the GOT. That makes it easy to calculate the GOT
1898 offset. */
1899 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1900 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1901 * MIPS_ELF_GOT_SIZE (abfd));
1902 BFD_ASSERT (index < sgot->_raw_size);
1903
1904 return index;
1905 }
1906
1907 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1908 are supposed to be placed at small offsets in the GOT, i.e.,
1909 within 32KB of GP. Return the index into the GOT for this page,
1910 and store the offset from this entry to the desired address in
1911 OFFSETP, if it is non-NULL. */
1912
1913 static bfd_vma
1914 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1915 bfd_vma value, bfd_vma *offsetp)
1916 {
1917 asection *sgot;
1918 struct mips_got_info *g;
1919 bfd_vma index;
1920 struct mips_got_entry *entry;
1921
1922 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1923
1924 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1925 (value + 0x8000)
1926 & (~(bfd_vma)0xffff));
1927
1928 if (!entry)
1929 return MINUS_ONE;
1930
1931 index = entry->gotidx;
1932
1933 if (offsetp)
1934 *offsetp = value - entry->d.address;
1935
1936 return index;
1937 }
1938
1939 /* Find a GOT entry whose higher-order 16 bits are the same as those
1940 for value. Return the index into the GOT for this entry. */
1941
1942 static bfd_vma
1943 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1944 bfd_vma value, bfd_boolean external)
1945 {
1946 asection *sgot;
1947 struct mips_got_info *g;
1948 struct mips_got_entry *entry;
1949
1950 if (! external)
1951 {
1952 /* Although the ABI says that it is "the high-order 16 bits" that we
1953 want, it is really the %high value. The complete value is
1954 calculated with a `addiu' of a LO16 relocation, just as with a
1955 HI16/LO16 pair. */
1956 value = mips_elf_high (value) << 16;
1957 }
1958
1959 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1960
1961 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1962 if (entry)
1963 return entry->gotidx;
1964 else
1965 return MINUS_ONE;
1966 }
1967
1968 /* Returns the offset for the entry at the INDEXth position
1969 in the GOT. */
1970
1971 static bfd_vma
1972 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1973 bfd *input_bfd, bfd_vma index)
1974 {
1975 asection *sgot;
1976 bfd_vma gp;
1977 struct mips_got_info *g;
1978
1979 g = mips_elf_got_info (dynobj, &sgot);
1980 gp = _bfd_get_gp_value (output_bfd)
1981 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1982
1983 return sgot->output_section->vma + sgot->output_offset + index - gp;
1984 }
1985
1986 /* Create a local GOT entry for VALUE. Return the index of the entry,
1987 or -1 if it could not be created. */
1988
1989 static struct mips_got_entry *
1990 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1991 struct mips_got_info *gg,
1992 asection *sgot, bfd_vma value)
1993 {
1994 struct mips_got_entry entry, **loc;
1995 struct mips_got_info *g;
1996
1997 entry.abfd = NULL;
1998 entry.symndx = -1;
1999 entry.d.address = value;
2000
2001 g = mips_elf_got_for_ibfd (gg, ibfd);
2002 if (g == NULL)
2003 {
2004 g = mips_elf_got_for_ibfd (gg, abfd);
2005 BFD_ASSERT (g != NULL);
2006 }
2007
2008 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2009 INSERT);
2010 if (*loc)
2011 return *loc;
2012
2013 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2014
2015 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2016
2017 if (! *loc)
2018 return NULL;
2019
2020 memcpy (*loc, &entry, sizeof entry);
2021
2022 if (g->assigned_gotno >= g->local_gotno)
2023 {
2024 (*loc)->gotidx = -1;
2025 /* We didn't allocate enough space in the GOT. */
2026 (*_bfd_error_handler)
2027 (_("not enough GOT space for local GOT entries"));
2028 bfd_set_error (bfd_error_bad_value);
2029 return NULL;
2030 }
2031
2032 MIPS_ELF_PUT_WORD (abfd, value,
2033 (sgot->contents + entry.gotidx));
2034
2035 return *loc;
2036 }
2037
2038 /* Sort the dynamic symbol table so that symbols that need GOT entries
2039 appear towards the end. This reduces the amount of GOT space
2040 required. MAX_LOCAL is used to set the number of local symbols
2041 known to be in the dynamic symbol table. During
2042 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2043 section symbols are added and the count is higher. */
2044
2045 static bfd_boolean
2046 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2047 {
2048 struct mips_elf_hash_sort_data hsd;
2049 struct mips_got_info *g;
2050 bfd *dynobj;
2051
2052 dynobj = elf_hash_table (info)->dynobj;
2053
2054 g = mips_elf_got_info (dynobj, NULL);
2055
2056 hsd.low = NULL;
2057 hsd.max_unref_got_dynindx =
2058 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2059 /* In the multi-got case, assigned_gotno of the master got_info
2060 indicate the number of entries that aren't referenced in the
2061 primary GOT, but that must have entries because there are
2062 dynamic relocations that reference it. Since they aren't
2063 referenced, we move them to the end of the GOT, so that they
2064 don't prevent other entries that are referenced from getting
2065 too large offsets. */
2066 - (g->next ? g->assigned_gotno : 0);
2067 hsd.max_non_got_dynindx = max_local;
2068 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2069 elf_hash_table (info)),
2070 mips_elf_sort_hash_table_f,
2071 &hsd);
2072
2073 /* There should have been enough room in the symbol table to
2074 accommodate both the GOT and non-GOT symbols. */
2075 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2076 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2077 <= elf_hash_table (info)->dynsymcount);
2078
2079 /* Now we know which dynamic symbol has the lowest dynamic symbol
2080 table index in the GOT. */
2081 g->global_gotsym = hsd.low;
2082
2083 return TRUE;
2084 }
2085
2086 /* If H needs a GOT entry, assign it the highest available dynamic
2087 index. Otherwise, assign it the lowest available dynamic
2088 index. */
2089
2090 static bfd_boolean
2091 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2092 {
2093 struct mips_elf_hash_sort_data *hsd = data;
2094
2095 if (h->root.root.type == bfd_link_hash_warning)
2096 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2097
2098 /* Symbols without dynamic symbol table entries aren't interesting
2099 at all. */
2100 if (h->root.dynindx == -1)
2101 return TRUE;
2102
2103 /* Global symbols that need GOT entries that are not explicitly
2104 referenced are marked with got offset 2. Those that are
2105 referenced get a 1, and those that don't need GOT entries get
2106 -1. */
2107 if (h->root.got.offset == 2)
2108 {
2109 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2110 hsd->low = (struct elf_link_hash_entry *) h;
2111 h->root.dynindx = hsd->max_unref_got_dynindx++;
2112 }
2113 else if (h->root.got.offset != 1)
2114 h->root.dynindx = hsd->max_non_got_dynindx++;
2115 else
2116 {
2117 h->root.dynindx = --hsd->min_got_dynindx;
2118 hsd->low = (struct elf_link_hash_entry *) h;
2119 }
2120
2121 return TRUE;
2122 }
2123
2124 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2125 symbol table index lower than any we've seen to date, record it for
2126 posterity. */
2127
2128 static bfd_boolean
2129 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2130 bfd *abfd, struct bfd_link_info *info,
2131 struct mips_got_info *g)
2132 {
2133 struct mips_got_entry entry, **loc;
2134
2135 /* A global symbol in the GOT must also be in the dynamic symbol
2136 table. */
2137 if (h->dynindx == -1)
2138 {
2139 switch (ELF_ST_VISIBILITY (h->other))
2140 {
2141 case STV_INTERNAL:
2142 case STV_HIDDEN:
2143 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2144 break;
2145 }
2146 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2147 return FALSE;
2148 }
2149
2150 entry.abfd = abfd;
2151 entry.symndx = -1;
2152 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2153
2154 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2155 INSERT);
2156
2157 /* If we've already marked this entry as needing GOT space, we don't
2158 need to do it again. */
2159 if (*loc)
2160 return TRUE;
2161
2162 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2163
2164 if (! *loc)
2165 return FALSE;
2166
2167 entry.gotidx = -1;
2168 memcpy (*loc, &entry, sizeof entry);
2169
2170 if (h->got.offset != MINUS_ONE)
2171 return TRUE;
2172
2173 /* By setting this to a value other than -1, we are indicating that
2174 there needs to be a GOT entry for H. Avoid using zero, as the
2175 generic ELF copy_indirect_symbol tests for <= 0. */
2176 h->got.offset = 1;
2177
2178 return TRUE;
2179 }
2180
2181 /* Reserve space in G for a GOT entry containing the value of symbol
2182 SYMNDX in input bfd ABDF, plus ADDEND. */
2183
2184 static bfd_boolean
2185 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2186 struct mips_got_info *g)
2187 {
2188 struct mips_got_entry entry, **loc;
2189
2190 entry.abfd = abfd;
2191 entry.symndx = symndx;
2192 entry.d.addend = addend;
2193 loc = (struct mips_got_entry **)
2194 htab_find_slot (g->got_entries, &entry, INSERT);
2195
2196 if (*loc)
2197 return TRUE;
2198
2199 entry.gotidx = g->local_gotno++;
2200
2201 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2202
2203 if (! *loc)
2204 return FALSE;
2205
2206 memcpy (*loc, &entry, sizeof entry);
2207
2208 return TRUE;
2209 }
2210 \f
2211 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2212
2213 static hashval_t
2214 mips_elf_bfd2got_entry_hash (const void *entry_)
2215 {
2216 const struct mips_elf_bfd2got_hash *entry
2217 = (struct mips_elf_bfd2got_hash *)entry_;
2218
2219 return entry->bfd->id;
2220 }
2221
2222 /* Check whether two hash entries have the same bfd. */
2223
2224 static int
2225 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2226 {
2227 const struct mips_elf_bfd2got_hash *e1
2228 = (const struct mips_elf_bfd2got_hash *)entry1;
2229 const struct mips_elf_bfd2got_hash *e2
2230 = (const struct mips_elf_bfd2got_hash *)entry2;
2231
2232 return e1->bfd == e2->bfd;
2233 }
2234
2235 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2236 be the master GOT data. */
2237
2238 static struct mips_got_info *
2239 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2240 {
2241 struct mips_elf_bfd2got_hash e, *p;
2242
2243 if (! g->bfd2got)
2244 return g;
2245
2246 e.bfd = ibfd;
2247 p = htab_find (g->bfd2got, &e);
2248 return p ? p->g : NULL;
2249 }
2250
2251 /* Create one separate got for each bfd that has entries in the global
2252 got, such that we can tell how many local and global entries each
2253 bfd requires. */
2254
2255 static int
2256 mips_elf_make_got_per_bfd (void **entryp, void *p)
2257 {
2258 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2259 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2260 htab_t bfd2got = arg->bfd2got;
2261 struct mips_got_info *g;
2262 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2263 void **bfdgotp;
2264
2265 /* Find the got_info for this GOT entry's input bfd. Create one if
2266 none exists. */
2267 bfdgot_entry.bfd = entry->abfd;
2268 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2269 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2270
2271 if (bfdgot != NULL)
2272 g = bfdgot->g;
2273 else
2274 {
2275 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2276 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2277
2278 if (bfdgot == NULL)
2279 {
2280 arg->obfd = 0;
2281 return 0;
2282 }
2283
2284 *bfdgotp = bfdgot;
2285
2286 bfdgot->bfd = entry->abfd;
2287 bfdgot->g = g = (struct mips_got_info *)
2288 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2289 if (g == NULL)
2290 {
2291 arg->obfd = 0;
2292 return 0;
2293 }
2294
2295 g->global_gotsym = NULL;
2296 g->global_gotno = 0;
2297 g->local_gotno = 0;
2298 g->assigned_gotno = -1;
2299 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2300 mips_elf_multi_got_entry_eq, NULL);
2301 if (g->got_entries == NULL)
2302 {
2303 arg->obfd = 0;
2304 return 0;
2305 }
2306
2307 g->bfd2got = NULL;
2308 g->next = NULL;
2309 }
2310
2311 /* Insert the GOT entry in the bfd's got entry hash table. */
2312 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2313 if (*entryp != NULL)
2314 return 1;
2315
2316 *entryp = entry;
2317
2318 if (entry->symndx >= 0 || entry->d.h->forced_local)
2319 ++g->local_gotno;
2320 else
2321 ++g->global_gotno;
2322
2323 return 1;
2324 }
2325
2326 /* Attempt to merge gots of different input bfds. Try to use as much
2327 as possible of the primary got, since it doesn't require explicit
2328 dynamic relocations, but don't use bfds that would reference global
2329 symbols out of the addressable range. Failing the primary got,
2330 attempt to merge with the current got, or finish the current got
2331 and then make make the new got current. */
2332
2333 static int
2334 mips_elf_merge_gots (void **bfd2got_, void *p)
2335 {
2336 struct mips_elf_bfd2got_hash *bfd2got
2337 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2338 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2339 unsigned int lcount = bfd2got->g->local_gotno;
2340 unsigned int gcount = bfd2got->g->global_gotno;
2341 unsigned int maxcnt = arg->max_count;
2342
2343 /* If we don't have a primary GOT and this is not too big, use it as
2344 a starting point for the primary GOT. */
2345 if (! arg->primary && lcount + gcount <= maxcnt)
2346 {
2347 arg->primary = bfd2got->g;
2348 arg->primary_count = lcount + gcount;
2349 }
2350 /* If it looks like we can merge this bfd's entries with those of
2351 the primary, merge them. The heuristics is conservative, but we
2352 don't have to squeeze it too hard. */
2353 else if (arg->primary
2354 && (arg->primary_count + lcount + gcount) <= maxcnt)
2355 {
2356 struct mips_got_info *g = bfd2got->g;
2357 int old_lcount = arg->primary->local_gotno;
2358 int old_gcount = arg->primary->global_gotno;
2359
2360 bfd2got->g = arg->primary;
2361
2362 htab_traverse (g->got_entries,
2363 mips_elf_make_got_per_bfd,
2364 arg);
2365 if (arg->obfd == NULL)
2366 return 0;
2367
2368 htab_delete (g->got_entries);
2369 /* We don't have to worry about releasing memory of the actual
2370 got entries, since they're all in the master got_entries hash
2371 table anyway. */
2372
2373 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2374 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2375
2376 arg->primary_count = arg->primary->local_gotno
2377 + arg->primary->global_gotno;
2378 }
2379 /* If we can merge with the last-created got, do it. */
2380 else if (arg->current
2381 && arg->current_count + lcount + gcount <= maxcnt)
2382 {
2383 struct mips_got_info *g = bfd2got->g;
2384 int old_lcount = arg->current->local_gotno;
2385 int old_gcount = arg->current->global_gotno;
2386
2387 bfd2got->g = arg->current;
2388
2389 htab_traverse (g->got_entries,
2390 mips_elf_make_got_per_bfd,
2391 arg);
2392 if (arg->obfd == NULL)
2393 return 0;
2394
2395 htab_delete (g->got_entries);
2396
2397 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2398 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2399
2400 arg->current_count = arg->current->local_gotno
2401 + arg->current->global_gotno;
2402 }
2403 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2404 fits; if it turns out that it doesn't, we'll get relocation
2405 overflows anyway. */
2406 else
2407 {
2408 bfd2got->g->next = arg->current;
2409 arg->current = bfd2got->g;
2410
2411 arg->current_count = lcount + gcount;
2412 }
2413
2414 return 1;
2415 }
2416
2417 /* If passed a NULL mips_got_info in the argument, set the marker used
2418 to tell whether a global symbol needs a got entry (in the primary
2419 got) to the given VALUE.
2420
2421 If passed a pointer G to a mips_got_info in the argument (it must
2422 not be the primary GOT), compute the offset from the beginning of
2423 the (primary) GOT section to the entry in G corresponding to the
2424 global symbol. G's assigned_gotno must contain the index of the
2425 first available global GOT entry in G. VALUE must contain the size
2426 of a GOT entry in bytes. For each global GOT entry that requires a
2427 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2428 marked as not eligible for lazy resolution through a function
2429 stub. */
2430 static int
2431 mips_elf_set_global_got_offset (void **entryp, void *p)
2432 {
2433 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2434 struct mips_elf_set_global_got_offset_arg *arg
2435 = (struct mips_elf_set_global_got_offset_arg *)p;
2436 struct mips_got_info *g = arg->g;
2437
2438 if (entry->abfd != NULL && entry->symndx == -1
2439 && entry->d.h->root.dynindx != -1)
2440 {
2441 if (g)
2442 {
2443 BFD_ASSERT (g->global_gotsym == NULL);
2444
2445 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2446 if (arg->info->shared
2447 || (elf_hash_table (arg->info)->dynamic_sections_created
2448 && ((entry->d.h->root.elf_link_hash_flags
2449 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2450 && ((entry->d.h->root.elf_link_hash_flags
2451 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2452 ++arg->needed_relocs;
2453 }
2454 else
2455 entry->d.h->root.got.offset = arg->value;
2456 }
2457
2458 return 1;
2459 }
2460
2461 /* Mark any global symbols referenced in the GOT we are iterating over
2462 as inelligible for lazy resolution stubs. */
2463 static int
2464 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
2465 {
2466 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2467
2468 if (entry->abfd != NULL
2469 && entry->symndx == -1
2470 && entry->d.h->root.dynindx != -1)
2471 entry->d.h->no_fn_stub = TRUE;
2472
2473 return 1;
2474 }
2475
2476 /* Follow indirect and warning hash entries so that each got entry
2477 points to the final symbol definition. P must point to a pointer
2478 to the hash table we're traversing. Since this traversal may
2479 modify the hash table, we set this pointer to NULL to indicate
2480 we've made a potentially-destructive change to the hash table, so
2481 the traversal must be restarted. */
2482 static int
2483 mips_elf_resolve_final_got_entry (void **entryp, void *p)
2484 {
2485 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2486 htab_t got_entries = *(htab_t *)p;
2487
2488 if (entry->abfd != NULL && entry->symndx == -1)
2489 {
2490 struct mips_elf_link_hash_entry *h = entry->d.h;
2491
2492 while (h->root.root.type == bfd_link_hash_indirect
2493 || h->root.root.type == bfd_link_hash_warning)
2494 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2495
2496 if (entry->d.h == h)
2497 return 1;
2498
2499 entry->d.h = h;
2500
2501 /* If we can't find this entry with the new bfd hash, re-insert
2502 it, and get the traversal restarted. */
2503 if (! htab_find (got_entries, entry))
2504 {
2505 htab_clear_slot (got_entries, entryp);
2506 entryp = htab_find_slot (got_entries, entry, INSERT);
2507 if (! *entryp)
2508 *entryp = entry;
2509 /* Abort the traversal, since the whole table may have
2510 moved, and leave it up to the parent to restart the
2511 process. */
2512 *(htab_t *)p = NULL;
2513 return 0;
2514 }
2515 /* We might want to decrement the global_gotno count, but it's
2516 either too early or too late for that at this point. */
2517 }
2518
2519 return 1;
2520 }
2521
2522 /* Turn indirect got entries in a got_entries table into their final
2523 locations. */
2524 static void
2525 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
2526 {
2527 htab_t got_entries;
2528
2529 do
2530 {
2531 got_entries = g->got_entries;
2532
2533 htab_traverse (got_entries,
2534 mips_elf_resolve_final_got_entry,
2535 &got_entries);
2536 }
2537 while (got_entries == NULL);
2538 }
2539
2540 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2541 the primary GOT. */
2542 static bfd_vma
2543 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
2544 {
2545 if (g->bfd2got == NULL)
2546 return 0;
2547
2548 g = mips_elf_got_for_ibfd (g, ibfd);
2549 if (! g)
2550 return 0;
2551
2552 BFD_ASSERT (g->next);
2553
2554 g = g->next;
2555
2556 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2557 }
2558
2559 /* Turn a single GOT that is too big for 16-bit addressing into
2560 a sequence of GOTs, each one 16-bit addressable. */
2561
2562 static bfd_boolean
2563 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2564 struct mips_got_info *g, asection *got,
2565 bfd_size_type pages)
2566 {
2567 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2568 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2569 struct mips_got_info *gg;
2570 unsigned int assign;
2571
2572 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2573 mips_elf_bfd2got_entry_eq, NULL);
2574 if (g->bfd2got == NULL)
2575 return FALSE;
2576
2577 got_per_bfd_arg.bfd2got = g->bfd2got;
2578 got_per_bfd_arg.obfd = abfd;
2579 got_per_bfd_arg.info = info;
2580
2581 /* Count how many GOT entries each input bfd requires, creating a
2582 map from bfd to got info while at that. */
2583 mips_elf_resolve_final_got_entries (g);
2584 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2585 if (got_per_bfd_arg.obfd == NULL)
2586 return FALSE;
2587
2588 got_per_bfd_arg.current = NULL;
2589 got_per_bfd_arg.primary = NULL;
2590 /* Taking out PAGES entries is a worst-case estimate. We could
2591 compute the maximum number of pages that each separate input bfd
2592 uses, but it's probably not worth it. */
2593 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2594 / MIPS_ELF_GOT_SIZE (abfd))
2595 - MIPS_RESERVED_GOTNO - pages);
2596
2597 /* Try to merge the GOTs of input bfds together, as long as they
2598 don't seem to exceed the maximum GOT size, choosing one of them
2599 to be the primary GOT. */
2600 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2601 if (got_per_bfd_arg.obfd == NULL)
2602 return FALSE;
2603
2604 /* If we find any suitable primary GOT, create an empty one. */
2605 if (got_per_bfd_arg.primary == NULL)
2606 {
2607 g->next = (struct mips_got_info *)
2608 bfd_alloc (abfd, sizeof (struct mips_got_info));
2609 if (g->next == NULL)
2610 return FALSE;
2611
2612 g->next->global_gotsym = NULL;
2613 g->next->global_gotno = 0;
2614 g->next->local_gotno = 0;
2615 g->next->assigned_gotno = 0;
2616 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2617 mips_elf_multi_got_entry_eq,
2618 NULL);
2619 if (g->next->got_entries == NULL)
2620 return FALSE;
2621 g->next->bfd2got = NULL;
2622 }
2623 else
2624 g->next = got_per_bfd_arg.primary;
2625 g->next->next = got_per_bfd_arg.current;
2626
2627 /* GG is now the master GOT, and G is the primary GOT. */
2628 gg = g;
2629 g = g->next;
2630
2631 /* Map the output bfd to the primary got. That's what we're going
2632 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2633 didn't mark in check_relocs, and we want a quick way to find it.
2634 We can't just use gg->next because we're going to reverse the
2635 list. */
2636 {
2637 struct mips_elf_bfd2got_hash *bfdgot;
2638 void **bfdgotp;
2639
2640 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2641 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2642
2643 if (bfdgot == NULL)
2644 return FALSE;
2645
2646 bfdgot->bfd = abfd;
2647 bfdgot->g = g;
2648 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2649
2650 BFD_ASSERT (*bfdgotp == NULL);
2651 *bfdgotp = bfdgot;
2652 }
2653
2654 /* The IRIX dynamic linker requires every symbol that is referenced
2655 in a dynamic relocation to be present in the primary GOT, so
2656 arrange for them to appear after those that are actually
2657 referenced.
2658
2659 GNU/Linux could very well do without it, but it would slow down
2660 the dynamic linker, since it would have to resolve every dynamic
2661 symbol referenced in other GOTs more than once, without help from
2662 the cache. Also, knowing that every external symbol has a GOT
2663 helps speed up the resolution of local symbols too, so GNU/Linux
2664 follows IRIX's practice.
2665
2666 The number 2 is used by mips_elf_sort_hash_table_f to count
2667 global GOT symbols that are unreferenced in the primary GOT, with
2668 an initial dynamic index computed from gg->assigned_gotno, where
2669 the number of unreferenced global entries in the primary GOT is
2670 preserved. */
2671 if (1)
2672 {
2673 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2674 g->global_gotno = gg->global_gotno;
2675 set_got_offset_arg.value = 2;
2676 }
2677 else
2678 {
2679 /* This could be used for dynamic linkers that don't optimize
2680 symbol resolution while applying relocations so as to use
2681 primary GOT entries or assuming the symbol is locally-defined.
2682 With this code, we assign lower dynamic indices to global
2683 symbols that are not referenced in the primary GOT, so that
2684 their entries can be omitted. */
2685 gg->assigned_gotno = 0;
2686 set_got_offset_arg.value = -1;
2687 }
2688
2689 /* Reorder dynamic symbols as described above (which behavior
2690 depends on the setting of VALUE). */
2691 set_got_offset_arg.g = NULL;
2692 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2693 &set_got_offset_arg);
2694 set_got_offset_arg.value = 1;
2695 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2696 &set_got_offset_arg);
2697 if (! mips_elf_sort_hash_table (info, 1))
2698 return FALSE;
2699
2700 /* Now go through the GOTs assigning them offset ranges.
2701 [assigned_gotno, local_gotno[ will be set to the range of local
2702 entries in each GOT. We can then compute the end of a GOT by
2703 adding local_gotno to global_gotno. We reverse the list and make
2704 it circular since then we'll be able to quickly compute the
2705 beginning of a GOT, by computing the end of its predecessor. To
2706 avoid special cases for the primary GOT, while still preserving
2707 assertions that are valid for both single- and multi-got links,
2708 we arrange for the main got struct to have the right number of
2709 global entries, but set its local_gotno such that the initial
2710 offset of the primary GOT is zero. Remember that the primary GOT
2711 will become the last item in the circular linked list, so it
2712 points back to the master GOT. */
2713 gg->local_gotno = -g->global_gotno;
2714 gg->global_gotno = g->global_gotno;
2715 assign = 0;
2716 gg->next = gg;
2717
2718 do
2719 {
2720 struct mips_got_info *gn;
2721
2722 assign += MIPS_RESERVED_GOTNO;
2723 g->assigned_gotno = assign;
2724 g->local_gotno += assign + pages;
2725 assign = g->local_gotno + g->global_gotno;
2726
2727 /* Take g out of the direct list, and push it onto the reversed
2728 list that gg points to. */
2729 gn = g->next;
2730 g->next = gg->next;
2731 gg->next = g;
2732 g = gn;
2733
2734 /* Mark global symbols in every non-primary GOT as ineligible for
2735 stubs. */
2736 if (g)
2737 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
2738 }
2739 while (g);
2740
2741 got->_raw_size = (gg->next->local_gotno
2742 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2743
2744 return TRUE;
2745 }
2746
2747 \f
2748 /* Returns the first relocation of type r_type found, beginning with
2749 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2750
2751 static const Elf_Internal_Rela *
2752 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2753 const Elf_Internal_Rela *relocation,
2754 const Elf_Internal_Rela *relend)
2755 {
2756 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2757 immediately following. However, for the IRIX6 ABI, the next
2758 relocation may be a composed relocation consisting of several
2759 relocations for the same address. In that case, the R_MIPS_LO16
2760 relocation may occur as one of these. We permit a similar
2761 extension in general, as that is useful for GCC. */
2762 while (relocation < relend)
2763 {
2764 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2765 return relocation;
2766
2767 ++relocation;
2768 }
2769
2770 /* We didn't find it. */
2771 bfd_set_error (bfd_error_bad_value);
2772 return NULL;
2773 }
2774
2775 /* Return whether a relocation is against a local symbol. */
2776
2777 static bfd_boolean
2778 mips_elf_local_relocation_p (bfd *input_bfd,
2779 const Elf_Internal_Rela *relocation,
2780 asection **local_sections,
2781 bfd_boolean check_forced)
2782 {
2783 unsigned long r_symndx;
2784 Elf_Internal_Shdr *symtab_hdr;
2785 struct mips_elf_link_hash_entry *h;
2786 size_t extsymoff;
2787
2788 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2789 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2790 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2791
2792 if (r_symndx < extsymoff)
2793 return TRUE;
2794 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2795 return TRUE;
2796
2797 if (check_forced)
2798 {
2799 /* Look up the hash table to check whether the symbol
2800 was forced local. */
2801 h = (struct mips_elf_link_hash_entry *)
2802 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2803 /* Find the real hash-table entry for this symbol. */
2804 while (h->root.root.type == bfd_link_hash_indirect
2805 || h->root.root.type == bfd_link_hash_warning)
2806 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2807 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2808 return TRUE;
2809 }
2810
2811 return FALSE;
2812 }
2813 \f
2814 /* Sign-extend VALUE, which has the indicated number of BITS. */
2815
2816 bfd_vma
2817 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
2818 {
2819 if (value & ((bfd_vma) 1 << (bits - 1)))
2820 /* VALUE is negative. */
2821 value |= ((bfd_vma) - 1) << bits;
2822
2823 return value;
2824 }
2825
2826 /* Return non-zero if the indicated VALUE has overflowed the maximum
2827 range expressible by a signed number with the indicated number of
2828 BITS. */
2829
2830 static bfd_boolean
2831 mips_elf_overflow_p (bfd_vma value, int bits)
2832 {
2833 bfd_signed_vma svalue = (bfd_signed_vma) value;
2834
2835 if (svalue > (1 << (bits - 1)) - 1)
2836 /* The value is too big. */
2837 return TRUE;
2838 else if (svalue < -(1 << (bits - 1)))
2839 /* The value is too small. */
2840 return TRUE;
2841
2842 /* All is well. */
2843 return FALSE;
2844 }
2845
2846 /* Calculate the %high function. */
2847
2848 static bfd_vma
2849 mips_elf_high (bfd_vma value)
2850 {
2851 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2852 }
2853
2854 /* Calculate the %higher function. */
2855
2856 static bfd_vma
2857 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
2858 {
2859 #ifdef BFD64
2860 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2861 #else
2862 abort ();
2863 return (bfd_vma) -1;
2864 #endif
2865 }
2866
2867 /* Calculate the %highest function. */
2868
2869 static bfd_vma
2870 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
2871 {
2872 #ifdef BFD64
2873 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2874 #else
2875 abort ();
2876 return (bfd_vma) -1;
2877 #endif
2878 }
2879 \f
2880 /* Create the .compact_rel section. */
2881
2882 static bfd_boolean
2883 mips_elf_create_compact_rel_section
2884 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
2885 {
2886 flagword flags;
2887 register asection *s;
2888
2889 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2890 {
2891 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2892 | SEC_READONLY);
2893
2894 s = bfd_make_section (abfd, ".compact_rel");
2895 if (s == NULL
2896 || ! bfd_set_section_flags (abfd, s, flags)
2897 || ! bfd_set_section_alignment (abfd, s,
2898 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2899 return FALSE;
2900
2901 s->_raw_size = sizeof (Elf32_External_compact_rel);
2902 }
2903
2904 return TRUE;
2905 }
2906
2907 /* Create the .got section to hold the global offset table. */
2908
2909 static bfd_boolean
2910 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2911 bfd_boolean maybe_exclude)
2912 {
2913 flagword flags;
2914 register asection *s;
2915 struct elf_link_hash_entry *h;
2916 struct bfd_link_hash_entry *bh;
2917 struct mips_got_info *g;
2918 bfd_size_type amt;
2919
2920 /* This function may be called more than once. */
2921 s = mips_elf_got_section (abfd, TRUE);
2922 if (s)
2923 {
2924 if (! maybe_exclude)
2925 s->flags &= ~SEC_EXCLUDE;
2926 return TRUE;
2927 }
2928
2929 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2930 | SEC_LINKER_CREATED);
2931
2932 if (maybe_exclude)
2933 flags |= SEC_EXCLUDE;
2934
2935 /* We have to use an alignment of 2**4 here because this is hardcoded
2936 in the function stub generation and in the linker script. */
2937 s = bfd_make_section (abfd, ".got");
2938 if (s == NULL
2939 || ! bfd_set_section_flags (abfd, s, flags)
2940 || ! bfd_set_section_alignment (abfd, s, 4))
2941 return FALSE;
2942
2943 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2944 linker script because we don't want to define the symbol if we
2945 are not creating a global offset table. */
2946 bh = NULL;
2947 if (! (_bfd_generic_link_add_one_symbol
2948 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2949 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
2950 return FALSE;
2951
2952 h = (struct elf_link_hash_entry *) bh;
2953 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2954 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2955 h->type = STT_OBJECT;
2956
2957 if (info->shared
2958 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2959 return FALSE;
2960
2961 amt = sizeof (struct mips_got_info);
2962 g = bfd_alloc (abfd, amt);
2963 if (g == NULL)
2964 return FALSE;
2965 g->global_gotsym = NULL;
2966 g->global_gotno = 0;
2967 g->local_gotno = MIPS_RESERVED_GOTNO;
2968 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2969 g->bfd2got = NULL;
2970 g->next = NULL;
2971 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2972 mips_elf_got_entry_eq, NULL);
2973 if (g->got_entries == NULL)
2974 return FALSE;
2975 mips_elf_section_data (s)->u.got_info = g;
2976 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2977 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2978
2979 return TRUE;
2980 }
2981 \f
2982 /* Calculate the value produced by the RELOCATION (which comes from
2983 the INPUT_BFD). The ADDEND is the addend to use for this
2984 RELOCATION; RELOCATION->R_ADDEND is ignored.
2985
2986 The result of the relocation calculation is stored in VALUEP.
2987 REQUIRE_JALXP indicates whether or not the opcode used with this
2988 relocation must be JALX.
2989
2990 This function returns bfd_reloc_continue if the caller need take no
2991 further action regarding this relocation, bfd_reloc_notsupported if
2992 something goes dramatically wrong, bfd_reloc_overflow if an
2993 overflow occurs, and bfd_reloc_ok to indicate success. */
2994
2995 static bfd_reloc_status_type
2996 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2997 asection *input_section,
2998 struct bfd_link_info *info,
2999 const Elf_Internal_Rela *relocation,
3000 bfd_vma addend, reloc_howto_type *howto,
3001 Elf_Internal_Sym *local_syms,
3002 asection **local_sections, bfd_vma *valuep,
3003 const char **namep, bfd_boolean *require_jalxp,
3004 bfd_boolean save_addend)
3005 {
3006 /* The eventual value we will return. */
3007 bfd_vma value;
3008 /* The address of the symbol against which the relocation is
3009 occurring. */
3010 bfd_vma symbol = 0;
3011 /* The final GP value to be used for the relocatable, executable, or
3012 shared object file being produced. */
3013 bfd_vma gp = MINUS_ONE;
3014 /* The place (section offset or address) of the storage unit being
3015 relocated. */
3016 bfd_vma p;
3017 /* The value of GP used to create the relocatable object. */
3018 bfd_vma gp0 = MINUS_ONE;
3019 /* The offset into the global offset table at which the address of
3020 the relocation entry symbol, adjusted by the addend, resides
3021 during execution. */
3022 bfd_vma g = MINUS_ONE;
3023 /* The section in which the symbol referenced by the relocation is
3024 located. */
3025 asection *sec = NULL;
3026 struct mips_elf_link_hash_entry *h = NULL;
3027 /* TRUE if the symbol referred to by this relocation is a local
3028 symbol. */
3029 bfd_boolean local_p, was_local_p;
3030 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3031 bfd_boolean gp_disp_p = FALSE;
3032 Elf_Internal_Shdr *symtab_hdr;
3033 size_t extsymoff;
3034 unsigned long r_symndx;
3035 int r_type;
3036 /* TRUE if overflow occurred during the calculation of the
3037 relocation value. */
3038 bfd_boolean overflowed_p;
3039 /* TRUE if this relocation refers to a MIPS16 function. */
3040 bfd_boolean target_is_16_bit_code_p = FALSE;
3041
3042 /* Parse the relocation. */
3043 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3044 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3045 p = (input_section->output_section->vma
3046 + input_section->output_offset
3047 + relocation->r_offset);
3048
3049 /* Assume that there will be no overflow. */
3050 overflowed_p = FALSE;
3051
3052 /* Figure out whether or not the symbol is local, and get the offset
3053 used in the array of hash table entries. */
3054 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3055 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3056 local_sections, FALSE);
3057 was_local_p = local_p;
3058 if (! elf_bad_symtab (input_bfd))
3059 extsymoff = symtab_hdr->sh_info;
3060 else
3061 {
3062 /* The symbol table does not follow the rule that local symbols
3063 must come before globals. */
3064 extsymoff = 0;
3065 }
3066
3067 /* Figure out the value of the symbol. */
3068 if (local_p)
3069 {
3070 Elf_Internal_Sym *sym;
3071
3072 sym = local_syms + r_symndx;
3073 sec = local_sections[r_symndx];
3074
3075 symbol = sec->output_section->vma + sec->output_offset;
3076 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3077 || (sec->flags & SEC_MERGE))
3078 symbol += sym->st_value;
3079 if ((sec->flags & SEC_MERGE)
3080 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3081 {
3082 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3083 addend -= symbol;
3084 addend += sec->output_section->vma + sec->output_offset;
3085 }
3086
3087 /* MIPS16 text labels should be treated as odd. */
3088 if (sym->st_other == STO_MIPS16)
3089 ++symbol;
3090
3091 /* Record the name of this symbol, for our caller. */
3092 *namep = bfd_elf_string_from_elf_section (input_bfd,
3093 symtab_hdr->sh_link,
3094 sym->st_name);
3095 if (*namep == '\0')
3096 *namep = bfd_section_name (input_bfd, sec);
3097
3098 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3099 }
3100 else
3101 {
3102 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3103
3104 /* For global symbols we look up the symbol in the hash-table. */
3105 h = ((struct mips_elf_link_hash_entry *)
3106 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3107 /* Find the real hash-table entry for this symbol. */
3108 while (h->root.root.type == bfd_link_hash_indirect
3109 || h->root.root.type == bfd_link_hash_warning)
3110 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3111
3112 /* Record the name of this symbol, for our caller. */
3113 *namep = h->root.root.root.string;
3114
3115 /* See if this is the special _gp_disp symbol. Note that such a
3116 symbol must always be a global symbol. */
3117 if (strcmp (*namep, "_gp_disp") == 0
3118 && ! NEWABI_P (input_bfd))
3119 {
3120 /* Relocations against _gp_disp are permitted only with
3121 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3122 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3123 return bfd_reloc_notsupported;
3124
3125 gp_disp_p = TRUE;
3126 }
3127 /* If this symbol is defined, calculate its address. Note that
3128 _gp_disp is a magic symbol, always implicitly defined by the
3129 linker, so it's inappropriate to check to see whether or not
3130 its defined. */
3131 else if ((h->root.root.type == bfd_link_hash_defined
3132 || h->root.root.type == bfd_link_hash_defweak)
3133 && h->root.root.u.def.section)
3134 {
3135 sec = h->root.root.u.def.section;
3136 if (sec->output_section)
3137 symbol = (h->root.root.u.def.value
3138 + sec->output_section->vma
3139 + sec->output_offset);
3140 else
3141 symbol = h->root.root.u.def.value;
3142 }
3143 else if (h->root.root.type == bfd_link_hash_undefweak)
3144 /* We allow relocations against undefined weak symbols, giving
3145 it the value zero, so that you can undefined weak functions
3146 and check to see if they exist by looking at their
3147 addresses. */
3148 symbol = 0;
3149 else if (info->unresolved_syms_in_objects == RM_IGNORE
3150 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3151 symbol = 0;
3152 else if (strcmp (*namep, "_DYNAMIC_LINK") == 0 ||
3153 strcmp (*namep, "_DYNAMIC_LINKING") == 0)
3154 {
3155 /* If this is a dynamic link, we should have created a
3156 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3157 in in _bfd_mips_elf_create_dynamic_sections.
3158 Otherwise, we should define the symbol with a value of 0.
3159 FIXME: It should probably get into the symbol table
3160 somehow as well. */
3161 BFD_ASSERT (! info->shared);
3162 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3163 symbol = 0;
3164 }
3165 else
3166 {
3167 if (! ((*info->callbacks->undefined_symbol)
3168 (info, h->root.root.root.string, input_bfd,
3169 input_section, relocation->r_offset,
3170 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3171 || ELF_ST_VISIBILITY (h->root.other))))
3172 return bfd_reloc_undefined;
3173 symbol = 0;
3174 }
3175
3176 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3177 }
3178
3179 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3180 need to redirect the call to the stub, unless we're already *in*
3181 a stub. */
3182 if (r_type != R_MIPS16_26 && !info->relocatable
3183 && ((h != NULL && h->fn_stub != NULL)
3184 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3185 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3186 && !mips_elf_stub_section_p (input_bfd, input_section))
3187 {
3188 /* This is a 32- or 64-bit call to a 16-bit function. We should
3189 have already noticed that we were going to need the
3190 stub. */
3191 if (local_p)
3192 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3193 else
3194 {
3195 BFD_ASSERT (h->need_fn_stub);
3196 sec = h->fn_stub;
3197 }
3198
3199 symbol = sec->output_section->vma + sec->output_offset;
3200 }
3201 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3202 need to redirect the call to the stub. */
3203 else if (r_type == R_MIPS16_26 && !info->relocatable
3204 && h != NULL
3205 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3206 && !target_is_16_bit_code_p)
3207 {
3208 /* If both call_stub and call_fp_stub are defined, we can figure
3209 out which one to use by seeing which one appears in the input
3210 file. */
3211 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3212 {
3213 asection *o;
3214
3215 sec = NULL;
3216 for (o = input_bfd->sections; o != NULL; o = o->next)
3217 {
3218 if (strncmp (bfd_get_section_name (input_bfd, o),
3219 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3220 {
3221 sec = h->call_fp_stub;
3222 break;
3223 }
3224 }
3225 if (sec == NULL)
3226 sec = h->call_stub;
3227 }
3228 else if (h->call_stub != NULL)
3229 sec = h->call_stub;
3230 else
3231 sec = h->call_fp_stub;
3232
3233 BFD_ASSERT (sec->_raw_size > 0);
3234 symbol = sec->output_section->vma + sec->output_offset;
3235 }
3236
3237 /* Calls from 16-bit code to 32-bit code and vice versa require the
3238 special jalx instruction. */
3239 *require_jalxp = (!info->relocatable
3240 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3241 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3242
3243 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3244 local_sections, TRUE);
3245
3246 /* If we haven't already determined the GOT offset, or the GP value,
3247 and we're going to need it, get it now. */
3248 switch (r_type)
3249 {
3250 case R_MIPS_GOT_PAGE:
3251 case R_MIPS_GOT_OFST:
3252 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3253 bind locally. */
3254 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3255 if (local_p || r_type == R_MIPS_GOT_OFST)
3256 break;
3257 /* Fall through. */
3258
3259 case R_MIPS_CALL16:
3260 case R_MIPS_GOT16:
3261 case R_MIPS_GOT_DISP:
3262 case R_MIPS_GOT_HI16:
3263 case R_MIPS_CALL_HI16:
3264 case R_MIPS_GOT_LO16:
3265 case R_MIPS_CALL_LO16:
3266 /* Find the index into the GOT where this value is located. */
3267 if (!local_p)
3268 {
3269 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3270 GOT_PAGE relocation that decays to GOT_DISP because the
3271 symbol turns out to be global. The addend is then added
3272 as GOT_OFST. */
3273 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3274 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3275 input_bfd,
3276 (struct elf_link_hash_entry *) h);
3277 if (! elf_hash_table(info)->dynamic_sections_created
3278 || (info->shared
3279 && (info->symbolic || h->root.dynindx == -1)
3280 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3281 {
3282 /* This is a static link or a -Bsymbolic link. The
3283 symbol is defined locally, or was forced to be local.
3284 We must initialize this entry in the GOT. */
3285 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3286 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3287 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3288 }
3289 }
3290 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3291 /* There's no need to create a local GOT entry here; the
3292 calculation for a local GOT16 entry does not involve G. */
3293 break;
3294 else
3295 {
3296 g = mips_elf_local_got_index (abfd, input_bfd,
3297 info, symbol + addend);
3298 if (g == MINUS_ONE)
3299 return bfd_reloc_outofrange;
3300 }
3301
3302 /* Convert GOT indices to actual offsets. */
3303 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3304 abfd, input_bfd, g);
3305 break;
3306
3307 case R_MIPS_HI16:
3308 case R_MIPS_LO16:
3309 case R_MIPS16_GPREL:
3310 case R_MIPS_GPREL16:
3311 case R_MIPS_GPREL32:
3312 case R_MIPS_LITERAL:
3313 gp0 = _bfd_get_gp_value (input_bfd);
3314 gp = _bfd_get_gp_value (abfd);
3315 if (elf_hash_table (info)->dynobj)
3316 gp += mips_elf_adjust_gp (abfd,
3317 mips_elf_got_info
3318 (elf_hash_table (info)->dynobj, NULL),
3319 input_bfd);
3320 break;
3321
3322 default:
3323 break;
3324 }
3325
3326 /* Figure out what kind of relocation is being performed. */
3327 switch (r_type)
3328 {
3329 case R_MIPS_NONE:
3330 return bfd_reloc_continue;
3331
3332 case R_MIPS_16:
3333 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3334 overflowed_p = mips_elf_overflow_p (value, 16);
3335 break;
3336
3337 case R_MIPS_32:
3338 case R_MIPS_REL32:
3339 case R_MIPS_64:
3340 if ((info->shared
3341 || (elf_hash_table (info)->dynamic_sections_created
3342 && h != NULL
3343 && ((h->root.elf_link_hash_flags
3344 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3345 && ((h->root.elf_link_hash_flags
3346 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3347 && r_symndx != 0
3348 && (input_section->flags & SEC_ALLOC) != 0)
3349 {
3350 /* If we're creating a shared library, or this relocation is
3351 against a symbol in a shared library, then we can't know
3352 where the symbol will end up. So, we create a relocation
3353 record in the output, and leave the job up to the dynamic
3354 linker. */
3355 value = addend;
3356 if (!mips_elf_create_dynamic_relocation (abfd,
3357 info,
3358 relocation,
3359 h,
3360 sec,
3361 symbol,
3362 &value,
3363 input_section))
3364 return bfd_reloc_undefined;
3365 }
3366 else
3367 {
3368 if (r_type != R_MIPS_REL32)
3369 value = symbol + addend;
3370 else
3371 value = addend;
3372 }
3373 value &= howto->dst_mask;
3374 break;
3375
3376 case R_MIPS_PC32:
3377 case R_MIPS_PC64:
3378 case R_MIPS_GNU_REL_LO16:
3379 value = symbol + addend - p;
3380 value &= howto->dst_mask;
3381 break;
3382
3383 case R_MIPS_GNU_REL16_S2:
3384 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
3385 overflowed_p = mips_elf_overflow_p (value, 18);
3386 value = (value >> 2) & howto->dst_mask;
3387 break;
3388
3389 case R_MIPS_GNU_REL_HI16:
3390 /* Instead of subtracting 'p' here, we should be subtracting the
3391 equivalent value for the LO part of the reloc, since the value
3392 here is relative to that address. Because that's not easy to do,
3393 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3394 the comment there for more information. */
3395 value = mips_elf_high (addend + symbol - p);
3396 value &= howto->dst_mask;
3397 break;
3398
3399 case R_MIPS16_26:
3400 /* The calculation for R_MIPS16_26 is just the same as for an
3401 R_MIPS_26. It's only the storage of the relocated field into
3402 the output file that's different. That's handled in
3403 mips_elf_perform_relocation. So, we just fall through to the
3404 R_MIPS_26 case here. */
3405 case R_MIPS_26:
3406 if (local_p)
3407 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3408 else
3409 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3410 value &= howto->dst_mask;
3411 break;
3412
3413 case R_MIPS_HI16:
3414 if (!gp_disp_p)
3415 {
3416 value = mips_elf_high (addend + symbol);
3417 value &= howto->dst_mask;
3418 }
3419 else
3420 {
3421 value = mips_elf_high (addend + gp - p);
3422 overflowed_p = mips_elf_overflow_p (value, 16);
3423 }
3424 break;
3425
3426 case R_MIPS_LO16:
3427 if (!gp_disp_p)
3428 value = (symbol + addend) & howto->dst_mask;
3429 else
3430 {
3431 value = addend + gp - p + 4;
3432 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3433 for overflow. But, on, say, IRIX5, relocations against
3434 _gp_disp are normally generated from the .cpload
3435 pseudo-op. It generates code that normally looks like
3436 this:
3437
3438 lui $gp,%hi(_gp_disp)
3439 addiu $gp,$gp,%lo(_gp_disp)
3440 addu $gp,$gp,$t9
3441
3442 Here $t9 holds the address of the function being called,
3443 as required by the MIPS ELF ABI. The R_MIPS_LO16
3444 relocation can easily overflow in this situation, but the
3445 R_MIPS_HI16 relocation will handle the overflow.
3446 Therefore, we consider this a bug in the MIPS ABI, and do
3447 not check for overflow here. */
3448 }
3449 break;
3450
3451 case R_MIPS_LITERAL:
3452 /* Because we don't merge literal sections, we can handle this
3453 just like R_MIPS_GPREL16. In the long run, we should merge
3454 shared literals, and then we will need to additional work
3455 here. */
3456
3457 /* Fall through. */
3458
3459 case R_MIPS16_GPREL:
3460 /* The R_MIPS16_GPREL performs the same calculation as
3461 R_MIPS_GPREL16, but stores the relocated bits in a different
3462 order. We don't need to do anything special here; the
3463 differences are handled in mips_elf_perform_relocation. */
3464 case R_MIPS_GPREL16:
3465 /* Only sign-extend the addend if it was extracted from the
3466 instruction. If the addend was separate, leave it alone,
3467 otherwise we may lose significant bits. */
3468 if (howto->partial_inplace)
3469 addend = _bfd_mips_elf_sign_extend (addend, 16);
3470 value = symbol + addend - gp;
3471 /* If the symbol was local, any earlier relocatable links will
3472 have adjusted its addend with the gp offset, so compensate
3473 for that now. Don't do it for symbols forced local in this
3474 link, though, since they won't have had the gp offset applied
3475 to them before. */
3476 if (was_local_p)
3477 value += gp0;
3478 overflowed_p = mips_elf_overflow_p (value, 16);
3479 break;
3480
3481 case R_MIPS_GOT16:
3482 case R_MIPS_CALL16:
3483 if (local_p)
3484 {
3485 bfd_boolean forced;
3486
3487 /* The special case is when the symbol is forced to be local. We
3488 need the full address in the GOT since no R_MIPS_LO16 relocation
3489 follows. */
3490 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3491 local_sections, FALSE);
3492 value = mips_elf_got16_entry (abfd, input_bfd, info,
3493 symbol + addend, forced);
3494 if (value == MINUS_ONE)
3495 return bfd_reloc_outofrange;
3496 value
3497 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3498 abfd, input_bfd, value);
3499 overflowed_p = mips_elf_overflow_p (value, 16);
3500 break;
3501 }
3502
3503 /* Fall through. */
3504
3505 case R_MIPS_GOT_DISP:
3506 got_disp:
3507 value = g;
3508 overflowed_p = mips_elf_overflow_p (value, 16);
3509 break;
3510
3511 case R_MIPS_GPREL32:
3512 value = (addend + symbol + gp0 - gp);
3513 if (!save_addend)
3514 value &= howto->dst_mask;
3515 break;
3516
3517 case R_MIPS_PC16:
3518 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3519 overflowed_p = mips_elf_overflow_p (value, 16);
3520 break;
3521
3522 case R_MIPS_GOT_HI16:
3523 case R_MIPS_CALL_HI16:
3524 /* We're allowed to handle these two relocations identically.
3525 The dynamic linker is allowed to handle the CALL relocations
3526 differently by creating a lazy evaluation stub. */
3527 value = g;
3528 value = mips_elf_high (value);
3529 value &= howto->dst_mask;
3530 break;
3531
3532 case R_MIPS_GOT_LO16:
3533 case R_MIPS_CALL_LO16:
3534 value = g & howto->dst_mask;
3535 break;
3536
3537 case R_MIPS_GOT_PAGE:
3538 /* GOT_PAGE relocations that reference non-local symbols decay
3539 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3540 0. */
3541 if (! local_p)
3542 goto got_disp;
3543 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3544 if (value == MINUS_ONE)
3545 return bfd_reloc_outofrange;
3546 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3547 abfd, input_bfd, value);
3548 overflowed_p = mips_elf_overflow_p (value, 16);
3549 break;
3550
3551 case R_MIPS_GOT_OFST:
3552 if (local_p)
3553 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3554 else
3555 value = addend;
3556 overflowed_p = mips_elf_overflow_p (value, 16);
3557 break;
3558
3559 case R_MIPS_SUB:
3560 value = symbol - addend;
3561 value &= howto->dst_mask;
3562 break;
3563
3564 case R_MIPS_HIGHER:
3565 value = mips_elf_higher (addend + symbol);
3566 value &= howto->dst_mask;
3567 break;
3568
3569 case R_MIPS_HIGHEST:
3570 value = mips_elf_highest (addend + symbol);
3571 value &= howto->dst_mask;
3572 break;
3573
3574 case R_MIPS_SCN_DISP:
3575 value = symbol + addend - sec->output_offset;
3576 value &= howto->dst_mask;
3577 break;
3578
3579 case R_MIPS_PJUMP:
3580 case R_MIPS_JALR:
3581 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3582 hint; we could improve performance by honoring that hint. */
3583 return bfd_reloc_continue;
3584
3585 case R_MIPS_GNU_VTINHERIT:
3586 case R_MIPS_GNU_VTENTRY:
3587 /* We don't do anything with these at present. */
3588 return bfd_reloc_continue;
3589
3590 default:
3591 /* An unrecognized relocation type. */
3592 return bfd_reloc_notsupported;
3593 }
3594
3595 /* Store the VALUE for our caller. */
3596 *valuep = value;
3597 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3598 }
3599
3600 /* Obtain the field relocated by RELOCATION. */
3601
3602 static bfd_vma
3603 mips_elf_obtain_contents (reloc_howto_type *howto,
3604 const Elf_Internal_Rela *relocation,
3605 bfd *input_bfd, bfd_byte *contents)
3606 {
3607 bfd_vma x;
3608 bfd_byte *location = contents + relocation->r_offset;
3609
3610 /* Obtain the bytes. */
3611 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3612
3613 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3614 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3615 && bfd_little_endian (input_bfd))
3616 /* The two 16-bit words will be reversed on a little-endian system.
3617 See mips_elf_perform_relocation for more details. */
3618 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3619
3620 return x;
3621 }
3622
3623 /* It has been determined that the result of the RELOCATION is the
3624 VALUE. Use HOWTO to place VALUE into the output file at the
3625 appropriate position. The SECTION is the section to which the
3626 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3627 for the relocation must be either JAL or JALX, and it is
3628 unconditionally converted to JALX.
3629
3630 Returns FALSE if anything goes wrong. */
3631
3632 static bfd_boolean
3633 mips_elf_perform_relocation (struct bfd_link_info *info,
3634 reloc_howto_type *howto,
3635 const Elf_Internal_Rela *relocation,
3636 bfd_vma value, bfd *input_bfd,
3637 asection *input_section, bfd_byte *contents,
3638 bfd_boolean require_jalx)
3639 {
3640 bfd_vma x;
3641 bfd_byte *location;
3642 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3643
3644 /* Figure out where the relocation is occurring. */
3645 location = contents + relocation->r_offset;
3646
3647 /* Obtain the current value. */
3648 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3649
3650 /* Clear the field we are setting. */
3651 x &= ~howto->dst_mask;
3652
3653 /* If this is the R_MIPS16_26 relocation, we must store the
3654 value in a funny way. */
3655 if (r_type == R_MIPS16_26)
3656 {
3657 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3658 Most mips16 instructions are 16 bits, but these instructions
3659 are 32 bits.
3660
3661 The format of these instructions is:
3662
3663 +--------------+--------------------------------+
3664 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3665 +--------------+--------------------------------+
3666 ! Immediate 15:0 !
3667 +-----------------------------------------------+
3668
3669 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3670 Note that the immediate value in the first word is swapped.
3671
3672 When producing a relocatable object file, R_MIPS16_26 is
3673 handled mostly like R_MIPS_26. In particular, the addend is
3674 stored as a straight 26-bit value in a 32-bit instruction.
3675 (gas makes life simpler for itself by never adjusting a
3676 R_MIPS16_26 reloc to be against a section, so the addend is
3677 always zero). However, the 32 bit instruction is stored as 2
3678 16-bit values, rather than a single 32-bit value. In a
3679 big-endian file, the result is the same; in a little-endian
3680 file, the two 16-bit halves of the 32 bit value are swapped.
3681 This is so that a disassembler can recognize the jal
3682 instruction.
3683
3684 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3685 instruction stored as two 16-bit values. The addend A is the
3686 contents of the targ26 field. The calculation is the same as
3687 R_MIPS_26. When storing the calculated value, reorder the
3688 immediate value as shown above, and don't forget to store the
3689 value as two 16-bit values.
3690
3691 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3692 defined as
3693
3694 big-endian:
3695 +--------+----------------------+
3696 | | |
3697 | | targ26-16 |
3698 |31 26|25 0|
3699 +--------+----------------------+
3700
3701 little-endian:
3702 +----------+------+-------------+
3703 | | | |
3704 | sub1 | | sub2 |
3705 |0 9|10 15|16 31|
3706 +----------+--------------------+
3707 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3708 ((sub1 << 16) | sub2)).
3709
3710 When producing a relocatable object file, the calculation is
3711 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3712 When producing a fully linked file, the calculation is
3713 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3714 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3715
3716 if (!info->relocatable)
3717 /* Shuffle the bits according to the formula above. */
3718 value = (((value & 0x1f0000) << 5)
3719 | ((value & 0x3e00000) >> 5)
3720 | (value & 0xffff));
3721 }
3722 else if (r_type == R_MIPS16_GPREL)
3723 {
3724 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3725 mode. A typical instruction will have a format like this:
3726
3727 +--------------+--------------------------------+
3728 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3729 +--------------+--------------------------------+
3730 ! Major ! rx ! ry ! Imm 4:0 !
3731 +--------------+--------------------------------+
3732
3733 EXTEND is the five bit value 11110. Major is the instruction
3734 opcode.
3735
3736 This is handled exactly like R_MIPS_GPREL16, except that the
3737 addend is retrieved and stored as shown in this diagram; that
3738 is, the Imm fields above replace the V-rel16 field.
3739
3740 All we need to do here is shuffle the bits appropriately. As
3741 above, the two 16-bit halves must be swapped on a
3742 little-endian system. */
3743 value = (((value & 0x7e0) << 16)
3744 | ((value & 0xf800) << 5)
3745 | (value & 0x1f));
3746 }
3747
3748 /* Set the field. */
3749 x |= (value & howto->dst_mask);
3750
3751 /* If required, turn JAL into JALX. */
3752 if (require_jalx)
3753 {
3754 bfd_boolean ok;
3755 bfd_vma opcode = x >> 26;
3756 bfd_vma jalx_opcode;
3757
3758 /* Check to see if the opcode is already JAL or JALX. */
3759 if (r_type == R_MIPS16_26)
3760 {
3761 ok = ((opcode == 0x6) || (opcode == 0x7));
3762 jalx_opcode = 0x7;
3763 }
3764 else
3765 {
3766 ok = ((opcode == 0x3) || (opcode == 0x1d));
3767 jalx_opcode = 0x1d;
3768 }
3769
3770 /* If the opcode is not JAL or JALX, there's a problem. */
3771 if (!ok)
3772 {
3773 (*_bfd_error_handler)
3774 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3775 bfd_archive_filename (input_bfd),
3776 input_section->name,
3777 (unsigned long) relocation->r_offset);
3778 bfd_set_error (bfd_error_bad_value);
3779 return FALSE;
3780 }
3781
3782 /* Make this the JALX opcode. */
3783 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3784 }
3785
3786 /* Swap the high- and low-order 16 bits on little-endian systems
3787 when doing a MIPS16 relocation. */
3788 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3789 && bfd_little_endian (input_bfd))
3790 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3791
3792 /* Put the value into the output. */
3793 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3794 return TRUE;
3795 }
3796
3797 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3798
3799 static bfd_boolean
3800 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
3801 {
3802 const char *name = bfd_get_section_name (abfd, section);
3803
3804 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3805 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3806 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3807 }
3808 \f
3809 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3810
3811 static void
3812 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
3813 {
3814 asection *s;
3815
3816 s = mips_elf_rel_dyn_section (abfd, FALSE);
3817 BFD_ASSERT (s != NULL);
3818
3819 if (s->_raw_size == 0)
3820 {
3821 /* Make room for a null element. */
3822 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3823 ++s->reloc_count;
3824 }
3825 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3826 }
3827
3828 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3829 is the original relocation, which is now being transformed into a
3830 dynamic relocation. The ADDENDP is adjusted if necessary; the
3831 caller should store the result in place of the original addend. */
3832
3833 static bfd_boolean
3834 mips_elf_create_dynamic_relocation (bfd *output_bfd,
3835 struct bfd_link_info *info,
3836 const Elf_Internal_Rela *rel,
3837 struct mips_elf_link_hash_entry *h,
3838 asection *sec, bfd_vma symbol,
3839 bfd_vma *addendp, asection *input_section)
3840 {
3841 Elf_Internal_Rela outrel[3];
3842 bfd_boolean skip;
3843 asection *sreloc;
3844 bfd *dynobj;
3845 int r_type;
3846
3847 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3848 dynobj = elf_hash_table (info)->dynobj;
3849 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3850 BFD_ASSERT (sreloc != NULL);
3851 BFD_ASSERT (sreloc->contents != NULL);
3852 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3853 < sreloc->_raw_size);
3854
3855 skip = FALSE;
3856 outrel[0].r_offset =
3857 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3858 outrel[1].r_offset =
3859 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3860 outrel[2].r_offset =
3861 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3862
3863 #if 0
3864 /* We begin by assuming that the offset for the dynamic relocation
3865 is the same as for the original relocation. We'll adjust this
3866 later to reflect the correct output offsets. */
3867 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3868 {
3869 outrel[1].r_offset = rel[1].r_offset;
3870 outrel[2].r_offset = rel[2].r_offset;
3871 }
3872 else
3873 {
3874 /* Except that in a stab section things are more complex.
3875 Because we compress stab information, the offset given in the
3876 relocation may not be the one we want; we must let the stabs
3877 machinery tell us the offset. */
3878 outrel[1].r_offset = outrel[0].r_offset;
3879 outrel[2].r_offset = outrel[0].r_offset;
3880 /* If we didn't need the relocation at all, this value will be
3881 -1. */
3882 if (outrel[0].r_offset == (bfd_vma) -1)
3883 skip = TRUE;
3884 }
3885 #endif
3886
3887 if (outrel[0].r_offset == (bfd_vma) -1)
3888 /* The relocation field has been deleted. */
3889 skip = TRUE;
3890 else if (outrel[0].r_offset == (bfd_vma) -2)
3891 {
3892 /* The relocation field has been converted into a relative value of
3893 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3894 the field to be fully relocated, so add in the symbol's value. */
3895 skip = TRUE;
3896 *addendp += symbol;
3897 }
3898
3899 /* If we've decided to skip this relocation, just output an empty
3900 record. Note that R_MIPS_NONE == 0, so that this call to memset
3901 is a way of setting R_TYPE to R_MIPS_NONE. */
3902 if (skip)
3903 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3904 else
3905 {
3906 long indx;
3907 bfd_boolean defined_p;
3908
3909 /* We must now calculate the dynamic symbol table index to use
3910 in the relocation. */
3911 if (h != NULL
3912 && (! info->symbolic || (h->root.elf_link_hash_flags
3913 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3914 /* h->root.dynindx may be -1 if this symbol was marked to
3915 become local. */
3916 && h->root.dynindx != -1)
3917 {
3918 indx = h->root.dynindx;
3919 if (SGI_COMPAT (output_bfd))
3920 defined_p = ((h->root.elf_link_hash_flags
3921 & ELF_LINK_HASH_DEF_REGULAR) != 0);
3922 else
3923 /* ??? glibc's ld.so just adds the final GOT entry to the
3924 relocation field. It therefore treats relocs against
3925 defined symbols in the same way as relocs against
3926 undefined symbols. */
3927 defined_p = FALSE;
3928 }
3929 else
3930 {
3931 if (sec != NULL && bfd_is_abs_section (sec))
3932 indx = 0;
3933 else if (sec == NULL || sec->owner == NULL)
3934 {
3935 bfd_set_error (bfd_error_bad_value);
3936 return FALSE;
3937 }
3938 else
3939 {
3940 indx = elf_section_data (sec->output_section)->dynindx;
3941 if (indx == 0)
3942 abort ();
3943 }
3944
3945 /* Instead of generating a relocation using the section
3946 symbol, we may as well make it a fully relative
3947 relocation. We want to avoid generating relocations to
3948 local symbols because we used to generate them
3949 incorrectly, without adding the original symbol value,
3950 which is mandated by the ABI for section symbols. In
3951 order to give dynamic loaders and applications time to
3952 phase out the incorrect use, we refrain from emitting
3953 section-relative relocations. It's not like they're
3954 useful, after all. This should be a bit more efficient
3955 as well. */
3956 /* ??? Although this behavior is compatible with glibc's ld.so,
3957 the ABI says that relocations against STN_UNDEF should have
3958 a symbol value of 0. Irix rld honors this, so relocations
3959 against STN_UNDEF have no effect. */
3960 if (!SGI_COMPAT (output_bfd))
3961 indx = 0;
3962 defined_p = TRUE;
3963 }
3964
3965 /* If the relocation was previously an absolute relocation and
3966 this symbol will not be referred to by the relocation, we must
3967 adjust it by the value we give it in the dynamic symbol table.
3968 Otherwise leave the job up to the dynamic linker. */
3969 if (defined_p && r_type != R_MIPS_REL32)
3970 *addendp += symbol;
3971
3972 /* The relocation is always an REL32 relocation because we don't
3973 know where the shared library will wind up at load-time. */
3974 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3975 R_MIPS_REL32);
3976 /* For strict adherence to the ABI specification, we should
3977 generate a R_MIPS_64 relocation record by itself before the
3978 _REL32/_64 record as well, such that the addend is read in as
3979 a 64-bit value (REL32 is a 32-bit relocation, after all).
3980 However, since none of the existing ELF64 MIPS dynamic
3981 loaders seems to care, we don't waste space with these
3982 artificial relocations. If this turns out to not be true,
3983 mips_elf_allocate_dynamic_relocation() should be tweaked so
3984 as to make room for a pair of dynamic relocations per
3985 invocation if ABI_64_P, and here we should generate an
3986 additional relocation record with R_MIPS_64 by itself for a
3987 NULL symbol before this relocation record. */
3988 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3989 ABI_64_P (output_bfd)
3990 ? R_MIPS_64
3991 : R_MIPS_NONE);
3992 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3993
3994 /* Adjust the output offset of the relocation to reference the
3995 correct location in the output file. */
3996 outrel[0].r_offset += (input_section->output_section->vma
3997 + input_section->output_offset);
3998 outrel[1].r_offset += (input_section->output_section->vma
3999 + input_section->output_offset);
4000 outrel[2].r_offset += (input_section->output_section->vma
4001 + input_section->output_offset);
4002 }
4003
4004 /* Put the relocation back out. We have to use the special
4005 relocation outputter in the 64-bit case since the 64-bit
4006 relocation format is non-standard. */
4007 if (ABI_64_P (output_bfd))
4008 {
4009 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4010 (output_bfd, &outrel[0],
4011 (sreloc->contents
4012 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4013 }
4014 else
4015 bfd_elf32_swap_reloc_out
4016 (output_bfd, &outrel[0],
4017 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4018
4019 /* We've now added another relocation. */
4020 ++sreloc->reloc_count;
4021
4022 /* Make sure the output section is writable. The dynamic linker
4023 will be writing to it. */
4024 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4025 |= SHF_WRITE;
4026
4027 /* On IRIX5, make an entry of compact relocation info. */
4028 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
4029 {
4030 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4031 bfd_byte *cr;
4032
4033 if (scpt)
4034 {
4035 Elf32_crinfo cptrel;
4036
4037 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4038 cptrel.vaddr = (rel->r_offset
4039 + input_section->output_section->vma
4040 + input_section->output_offset);
4041 if (r_type == R_MIPS_REL32)
4042 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4043 else
4044 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4045 mips_elf_set_cr_dist2to (cptrel, 0);
4046 cptrel.konst = *addendp;
4047
4048 cr = (scpt->contents
4049 + sizeof (Elf32_External_compact_rel));
4050 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4051 ((Elf32_External_crinfo *) cr
4052 + scpt->reloc_count));
4053 ++scpt->reloc_count;
4054 }
4055 }
4056
4057 return TRUE;
4058 }
4059 \f
4060 /* Return the MACH for a MIPS e_flags value. */
4061
4062 unsigned long
4063 _bfd_elf_mips_mach (flagword flags)
4064 {
4065 switch (flags & EF_MIPS_MACH)
4066 {
4067 case E_MIPS_MACH_3900:
4068 return bfd_mach_mips3900;
4069
4070 case E_MIPS_MACH_4010:
4071 return bfd_mach_mips4010;
4072
4073 case E_MIPS_MACH_4100:
4074 return bfd_mach_mips4100;
4075
4076 case E_MIPS_MACH_4111:
4077 return bfd_mach_mips4111;
4078
4079 case E_MIPS_MACH_4120:
4080 return bfd_mach_mips4120;
4081
4082 case E_MIPS_MACH_4650:
4083 return bfd_mach_mips4650;
4084
4085 case E_MIPS_MACH_5400:
4086 return bfd_mach_mips5400;
4087
4088 case E_MIPS_MACH_5500:
4089 return bfd_mach_mips5500;
4090
4091 case E_MIPS_MACH_SB1:
4092 return bfd_mach_mips_sb1;
4093
4094 default:
4095 switch (flags & EF_MIPS_ARCH)
4096 {
4097 default:
4098 case E_MIPS_ARCH_1:
4099 return bfd_mach_mips3000;
4100 break;
4101
4102 case E_MIPS_ARCH_2:
4103 return bfd_mach_mips6000;
4104 break;
4105
4106 case E_MIPS_ARCH_3:
4107 return bfd_mach_mips4000;
4108 break;
4109
4110 case E_MIPS_ARCH_4:
4111 return bfd_mach_mips8000;
4112 break;
4113
4114 case E_MIPS_ARCH_5:
4115 return bfd_mach_mips5;
4116 break;
4117
4118 case E_MIPS_ARCH_32:
4119 return bfd_mach_mipsisa32;
4120 break;
4121
4122 case E_MIPS_ARCH_64:
4123 return bfd_mach_mipsisa64;
4124 break;
4125
4126 case E_MIPS_ARCH_32R2:
4127 return bfd_mach_mipsisa32r2;
4128 break;
4129
4130 case E_MIPS_ARCH_64R2:
4131 return bfd_mach_mipsisa64r2;
4132 break;
4133 }
4134 }
4135
4136 return 0;
4137 }
4138
4139 /* Return printable name for ABI. */
4140
4141 static INLINE char *
4142 elf_mips_abi_name (bfd *abfd)
4143 {
4144 flagword flags;
4145
4146 flags = elf_elfheader (abfd)->e_flags;
4147 switch (flags & EF_MIPS_ABI)
4148 {
4149 case 0:
4150 if (ABI_N32_P (abfd))
4151 return "N32";
4152 else if (ABI_64_P (abfd))
4153 return "64";
4154 else
4155 return "none";
4156 case E_MIPS_ABI_O32:
4157 return "O32";
4158 case E_MIPS_ABI_O64:
4159 return "O64";
4160 case E_MIPS_ABI_EABI32:
4161 return "EABI32";
4162 case E_MIPS_ABI_EABI64:
4163 return "EABI64";
4164 default:
4165 return "unknown abi";
4166 }
4167 }
4168 \f
4169 /* MIPS ELF uses two common sections. One is the usual one, and the
4170 other is for small objects. All the small objects are kept
4171 together, and then referenced via the gp pointer, which yields
4172 faster assembler code. This is what we use for the small common
4173 section. This approach is copied from ecoff.c. */
4174 static asection mips_elf_scom_section;
4175 static asymbol mips_elf_scom_symbol;
4176 static asymbol *mips_elf_scom_symbol_ptr;
4177
4178 /* MIPS ELF also uses an acommon section, which represents an
4179 allocated common symbol which may be overridden by a
4180 definition in a shared library. */
4181 static asection mips_elf_acom_section;
4182 static asymbol mips_elf_acom_symbol;
4183 static asymbol *mips_elf_acom_symbol_ptr;
4184
4185 /* Handle the special MIPS section numbers that a symbol may use.
4186 This is used for both the 32-bit and the 64-bit ABI. */
4187
4188 void
4189 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4190 {
4191 elf_symbol_type *elfsym;
4192
4193 elfsym = (elf_symbol_type *) asym;
4194 switch (elfsym->internal_elf_sym.st_shndx)
4195 {
4196 case SHN_MIPS_ACOMMON:
4197 /* This section is used in a dynamically linked executable file.
4198 It is an allocated common section. The dynamic linker can
4199 either resolve these symbols to something in a shared
4200 library, or it can just leave them here. For our purposes,
4201 we can consider these symbols to be in a new section. */
4202 if (mips_elf_acom_section.name == NULL)
4203 {
4204 /* Initialize the acommon section. */
4205 mips_elf_acom_section.name = ".acommon";
4206 mips_elf_acom_section.flags = SEC_ALLOC;
4207 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4208 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4209 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4210 mips_elf_acom_symbol.name = ".acommon";
4211 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4212 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4213 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4214 }
4215 asym->section = &mips_elf_acom_section;
4216 break;
4217
4218 case SHN_COMMON:
4219 /* Common symbols less than the GP size are automatically
4220 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4221 if (asym->value > elf_gp_size (abfd)
4222 || IRIX_COMPAT (abfd) == ict_irix6)
4223 break;
4224 /* Fall through. */
4225 case SHN_MIPS_SCOMMON:
4226 if (mips_elf_scom_section.name == NULL)
4227 {
4228 /* Initialize the small common section. */
4229 mips_elf_scom_section.name = ".scommon";
4230 mips_elf_scom_section.flags = SEC_IS_COMMON;
4231 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4232 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4233 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4234 mips_elf_scom_symbol.name = ".scommon";
4235 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4236 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4237 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4238 }
4239 asym->section = &mips_elf_scom_section;
4240 asym->value = elfsym->internal_elf_sym.st_size;
4241 break;
4242
4243 case SHN_MIPS_SUNDEFINED:
4244 asym->section = bfd_und_section_ptr;
4245 break;
4246
4247 #if 0 /* for SGI_COMPAT */
4248 case SHN_MIPS_TEXT:
4249 asym->section = mips_elf_text_section_ptr;
4250 break;
4251
4252 case SHN_MIPS_DATA:
4253 asym->section = mips_elf_data_section_ptr;
4254 break;
4255 #endif
4256 }
4257 }
4258 \f
4259 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4260 relocations against two unnamed section symbols to resolve to the
4261 same address. For example, if we have code like:
4262
4263 lw $4,%got_disp(.data)($gp)
4264 lw $25,%got_disp(.text)($gp)
4265 jalr $25
4266
4267 then the linker will resolve both relocations to .data and the program
4268 will jump there rather than to .text.
4269
4270 We can work around this problem by giving names to local section symbols.
4271 This is also what the MIPSpro tools do. */
4272
4273 bfd_boolean
4274 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4275 {
4276 return SGI_COMPAT (abfd);
4277 }
4278 \f
4279 /* Work over a section just before writing it out. This routine is
4280 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4281 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4282 a better way. */
4283
4284 bfd_boolean
4285 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4286 {
4287 if (hdr->sh_type == SHT_MIPS_REGINFO
4288 && hdr->sh_size > 0)
4289 {
4290 bfd_byte buf[4];
4291
4292 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4293 BFD_ASSERT (hdr->contents == NULL);
4294
4295 if (bfd_seek (abfd,
4296 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4297 SEEK_SET) != 0)
4298 return FALSE;
4299 H_PUT_32 (abfd, elf_gp (abfd), buf);
4300 if (bfd_bwrite (buf, 4, abfd) != 4)
4301 return FALSE;
4302 }
4303
4304 if (hdr->sh_type == SHT_MIPS_OPTIONS
4305 && hdr->bfd_section != NULL
4306 && mips_elf_section_data (hdr->bfd_section) != NULL
4307 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4308 {
4309 bfd_byte *contents, *l, *lend;
4310
4311 /* We stored the section contents in the tdata field in the
4312 set_section_contents routine. We save the section contents
4313 so that we don't have to read them again.
4314 At this point we know that elf_gp is set, so we can look
4315 through the section contents to see if there is an
4316 ODK_REGINFO structure. */
4317
4318 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4319 l = contents;
4320 lend = contents + hdr->sh_size;
4321 while (l + sizeof (Elf_External_Options) <= lend)
4322 {
4323 Elf_Internal_Options intopt;
4324
4325 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4326 &intopt);
4327 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4328 {
4329 bfd_byte buf[8];
4330
4331 if (bfd_seek (abfd,
4332 (hdr->sh_offset
4333 + (l - contents)
4334 + sizeof (Elf_External_Options)
4335 + (sizeof (Elf64_External_RegInfo) - 8)),
4336 SEEK_SET) != 0)
4337 return FALSE;
4338 H_PUT_64 (abfd, elf_gp (abfd), buf);
4339 if (bfd_bwrite (buf, 8, abfd) != 8)
4340 return FALSE;
4341 }
4342 else if (intopt.kind == ODK_REGINFO)
4343 {
4344 bfd_byte buf[4];
4345
4346 if (bfd_seek (abfd,
4347 (hdr->sh_offset
4348 + (l - contents)
4349 + sizeof (Elf_External_Options)
4350 + (sizeof (Elf32_External_RegInfo) - 4)),
4351 SEEK_SET) != 0)
4352 return FALSE;
4353 H_PUT_32 (abfd, elf_gp (abfd), buf);
4354 if (bfd_bwrite (buf, 4, abfd) != 4)
4355 return FALSE;
4356 }
4357 l += intopt.size;
4358 }
4359 }
4360
4361 if (hdr->bfd_section != NULL)
4362 {
4363 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4364
4365 if (strcmp (name, ".sdata") == 0
4366 || strcmp (name, ".lit8") == 0
4367 || strcmp (name, ".lit4") == 0)
4368 {
4369 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4370 hdr->sh_type = SHT_PROGBITS;
4371 }
4372 else if (strcmp (name, ".sbss") == 0)
4373 {
4374 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4375 hdr->sh_type = SHT_NOBITS;
4376 }
4377 else if (strcmp (name, ".srdata") == 0)
4378 {
4379 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4380 hdr->sh_type = SHT_PROGBITS;
4381 }
4382 else if (strcmp (name, ".compact_rel") == 0)
4383 {
4384 hdr->sh_flags = 0;
4385 hdr->sh_type = SHT_PROGBITS;
4386 }
4387 else if (strcmp (name, ".rtproc") == 0)
4388 {
4389 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4390 {
4391 unsigned int adjust;
4392
4393 adjust = hdr->sh_size % hdr->sh_addralign;
4394 if (adjust != 0)
4395 hdr->sh_size += hdr->sh_addralign - adjust;
4396 }
4397 }
4398 }
4399
4400 return TRUE;
4401 }
4402
4403 /* Handle a MIPS specific section when reading an object file. This
4404 is called when elfcode.h finds a section with an unknown type.
4405 This routine supports both the 32-bit and 64-bit ELF ABI.
4406
4407 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4408 how to. */
4409
4410 bfd_boolean
4411 _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4412 const char *name)
4413 {
4414 flagword flags = 0;
4415
4416 /* There ought to be a place to keep ELF backend specific flags, but
4417 at the moment there isn't one. We just keep track of the
4418 sections by their name, instead. Fortunately, the ABI gives
4419 suggested names for all the MIPS specific sections, so we will
4420 probably get away with this. */
4421 switch (hdr->sh_type)
4422 {
4423 case SHT_MIPS_LIBLIST:
4424 if (strcmp (name, ".liblist") != 0)
4425 return FALSE;
4426 break;
4427 case SHT_MIPS_MSYM:
4428 if (strcmp (name, ".msym") != 0)
4429 return FALSE;
4430 break;
4431 case SHT_MIPS_CONFLICT:
4432 if (strcmp (name, ".conflict") != 0)
4433 return FALSE;
4434 break;
4435 case SHT_MIPS_GPTAB:
4436 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4437 return FALSE;
4438 break;
4439 case SHT_MIPS_UCODE:
4440 if (strcmp (name, ".ucode") != 0)
4441 return FALSE;
4442 break;
4443 case SHT_MIPS_DEBUG:
4444 if (strcmp (name, ".mdebug") != 0)
4445 return FALSE;
4446 flags = SEC_DEBUGGING;
4447 break;
4448 case SHT_MIPS_REGINFO:
4449 if (strcmp (name, ".reginfo") != 0
4450 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4451 return FALSE;
4452 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4453 break;
4454 case SHT_MIPS_IFACE:
4455 if (strcmp (name, ".MIPS.interfaces") != 0)
4456 return FALSE;
4457 break;
4458 case SHT_MIPS_CONTENT:
4459 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4460 return FALSE;
4461 break;
4462 case SHT_MIPS_OPTIONS:
4463 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4464 return FALSE;
4465 break;
4466 case SHT_MIPS_DWARF:
4467 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4468 return FALSE;
4469 break;
4470 case SHT_MIPS_SYMBOL_LIB:
4471 if (strcmp (name, ".MIPS.symlib") != 0)
4472 return FALSE;
4473 break;
4474 case SHT_MIPS_EVENTS:
4475 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4476 && strncmp (name, ".MIPS.post_rel",
4477 sizeof ".MIPS.post_rel" - 1) != 0)
4478 return FALSE;
4479 break;
4480 default:
4481 return FALSE;
4482 }
4483
4484 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4485 return FALSE;
4486
4487 if (flags)
4488 {
4489 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4490 (bfd_get_section_flags (abfd,
4491 hdr->bfd_section)
4492 | flags)))
4493 return FALSE;
4494 }
4495
4496 /* FIXME: We should record sh_info for a .gptab section. */
4497
4498 /* For a .reginfo section, set the gp value in the tdata information
4499 from the contents of this section. We need the gp value while
4500 processing relocs, so we just get it now. The .reginfo section
4501 is not used in the 64-bit MIPS ELF ABI. */
4502 if (hdr->sh_type == SHT_MIPS_REGINFO)
4503 {
4504 Elf32_External_RegInfo ext;
4505 Elf32_RegInfo s;
4506
4507 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4508 &ext, 0, sizeof ext))
4509 return FALSE;
4510 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4511 elf_gp (abfd) = s.ri_gp_value;
4512 }
4513
4514 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4515 set the gp value based on what we find. We may see both
4516 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4517 they should agree. */
4518 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4519 {
4520 bfd_byte *contents, *l, *lend;
4521
4522 contents = bfd_malloc (hdr->sh_size);
4523 if (contents == NULL)
4524 return FALSE;
4525 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4526 0, hdr->sh_size))
4527 {
4528 free (contents);
4529 return FALSE;
4530 }
4531 l = contents;
4532 lend = contents + hdr->sh_size;
4533 while (l + sizeof (Elf_External_Options) <= lend)
4534 {
4535 Elf_Internal_Options intopt;
4536
4537 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4538 &intopt);
4539 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4540 {
4541 Elf64_Internal_RegInfo intreg;
4542
4543 bfd_mips_elf64_swap_reginfo_in
4544 (abfd,
4545 ((Elf64_External_RegInfo *)
4546 (l + sizeof (Elf_External_Options))),
4547 &intreg);
4548 elf_gp (abfd) = intreg.ri_gp_value;
4549 }
4550 else if (intopt.kind == ODK_REGINFO)
4551 {
4552 Elf32_RegInfo intreg;
4553
4554 bfd_mips_elf32_swap_reginfo_in
4555 (abfd,
4556 ((Elf32_External_RegInfo *)
4557 (l + sizeof (Elf_External_Options))),
4558 &intreg);
4559 elf_gp (abfd) = intreg.ri_gp_value;
4560 }
4561 l += intopt.size;
4562 }
4563 free (contents);
4564 }
4565
4566 return TRUE;
4567 }
4568
4569 /* Set the correct type for a MIPS ELF section. We do this by the
4570 section name, which is a hack, but ought to work. This routine is
4571 used by both the 32-bit and the 64-bit ABI. */
4572
4573 bfd_boolean
4574 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
4575 {
4576 register const char *name;
4577
4578 name = bfd_get_section_name (abfd, sec);
4579
4580 if (strcmp (name, ".liblist") == 0)
4581 {
4582 hdr->sh_type = SHT_MIPS_LIBLIST;
4583 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4584 /* The sh_link field is set in final_write_processing. */
4585 }
4586 else if (strcmp (name, ".conflict") == 0)
4587 hdr->sh_type = SHT_MIPS_CONFLICT;
4588 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4589 {
4590 hdr->sh_type = SHT_MIPS_GPTAB;
4591 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4592 /* The sh_info field is set in final_write_processing. */
4593 }
4594 else if (strcmp (name, ".ucode") == 0)
4595 hdr->sh_type = SHT_MIPS_UCODE;
4596 else if (strcmp (name, ".mdebug") == 0)
4597 {
4598 hdr->sh_type = SHT_MIPS_DEBUG;
4599 /* In a shared object on IRIX 5.3, the .mdebug section has an
4600 entsize of 0. FIXME: Does this matter? */
4601 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4602 hdr->sh_entsize = 0;
4603 else
4604 hdr->sh_entsize = 1;
4605 }
4606 else if (strcmp (name, ".reginfo") == 0)
4607 {
4608 hdr->sh_type = SHT_MIPS_REGINFO;
4609 /* In a shared object on IRIX 5.3, the .reginfo section has an
4610 entsize of 0x18. FIXME: Does this matter? */
4611 if (SGI_COMPAT (abfd))
4612 {
4613 if ((abfd->flags & DYNAMIC) != 0)
4614 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4615 else
4616 hdr->sh_entsize = 1;
4617 }
4618 else
4619 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4620 }
4621 else if (SGI_COMPAT (abfd)
4622 && (strcmp (name, ".hash") == 0
4623 || strcmp (name, ".dynamic") == 0
4624 || strcmp (name, ".dynstr") == 0))
4625 {
4626 if (SGI_COMPAT (abfd))
4627 hdr->sh_entsize = 0;
4628 #if 0
4629 /* This isn't how the IRIX6 linker behaves. */
4630 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4631 #endif
4632 }
4633 else if (strcmp (name, ".got") == 0
4634 || strcmp (name, ".srdata") == 0
4635 || strcmp (name, ".sdata") == 0
4636 || strcmp (name, ".sbss") == 0
4637 || strcmp (name, ".lit4") == 0
4638 || strcmp (name, ".lit8") == 0)
4639 hdr->sh_flags |= SHF_MIPS_GPREL;
4640 else if (strcmp (name, ".MIPS.interfaces") == 0)
4641 {
4642 hdr->sh_type = SHT_MIPS_IFACE;
4643 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4644 }
4645 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4646 {
4647 hdr->sh_type = SHT_MIPS_CONTENT;
4648 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4649 /* The sh_info field is set in final_write_processing. */
4650 }
4651 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4652 {
4653 hdr->sh_type = SHT_MIPS_OPTIONS;
4654 hdr->sh_entsize = 1;
4655 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4656 }
4657 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4658 hdr->sh_type = SHT_MIPS_DWARF;
4659 else if (strcmp (name, ".MIPS.symlib") == 0)
4660 {
4661 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4662 /* The sh_link and sh_info fields are set in
4663 final_write_processing. */
4664 }
4665 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4666 || strncmp (name, ".MIPS.post_rel",
4667 sizeof ".MIPS.post_rel" - 1) == 0)
4668 {
4669 hdr->sh_type = SHT_MIPS_EVENTS;
4670 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4671 /* The sh_link field is set in final_write_processing. */
4672 }
4673 else if (strcmp (name, ".msym") == 0)
4674 {
4675 hdr->sh_type = SHT_MIPS_MSYM;
4676 hdr->sh_flags |= SHF_ALLOC;
4677 hdr->sh_entsize = 8;
4678 }
4679
4680 /* The generic elf_fake_sections will set up REL_HDR using the default
4681 kind of relocations. We used to set up a second header for the
4682 non-default kind of relocations here, but only NewABI would use
4683 these, and the IRIX ld doesn't like resulting empty RELA sections.
4684 Thus we create those header only on demand now. */
4685
4686 return TRUE;
4687 }
4688
4689 /* Given a BFD section, try to locate the corresponding ELF section
4690 index. This is used by both the 32-bit and the 64-bit ABI.
4691 Actually, it's not clear to me that the 64-bit ABI supports these,
4692 but for non-PIC objects we will certainly want support for at least
4693 the .scommon section. */
4694
4695 bfd_boolean
4696 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4697 asection *sec, int *retval)
4698 {
4699 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4700 {
4701 *retval = SHN_MIPS_SCOMMON;
4702 return TRUE;
4703 }
4704 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4705 {
4706 *retval = SHN_MIPS_ACOMMON;
4707 return TRUE;
4708 }
4709 return FALSE;
4710 }
4711 \f
4712 /* Hook called by the linker routine which adds symbols from an object
4713 file. We must handle the special MIPS section numbers here. */
4714
4715 bfd_boolean
4716 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4717 Elf_Internal_Sym *sym, const char **namep,
4718 flagword *flagsp ATTRIBUTE_UNUSED,
4719 asection **secp, bfd_vma *valp)
4720 {
4721 if (SGI_COMPAT (abfd)
4722 && (abfd->flags & DYNAMIC) != 0
4723 && strcmp (*namep, "_rld_new_interface") == 0)
4724 {
4725 /* Skip IRIX5 rld entry name. */
4726 *namep = NULL;
4727 return TRUE;
4728 }
4729
4730 switch (sym->st_shndx)
4731 {
4732 case SHN_COMMON:
4733 /* Common symbols less than the GP size are automatically
4734 treated as SHN_MIPS_SCOMMON symbols. */
4735 if (sym->st_size > elf_gp_size (abfd)
4736 || IRIX_COMPAT (abfd) == ict_irix6)
4737 break;
4738 /* Fall through. */
4739 case SHN_MIPS_SCOMMON:
4740 *secp = bfd_make_section_old_way (abfd, ".scommon");
4741 (*secp)->flags |= SEC_IS_COMMON;
4742 *valp = sym->st_size;
4743 break;
4744
4745 case SHN_MIPS_TEXT:
4746 /* This section is used in a shared object. */
4747 if (elf_tdata (abfd)->elf_text_section == NULL)
4748 {
4749 asymbol *elf_text_symbol;
4750 asection *elf_text_section;
4751 bfd_size_type amt = sizeof (asection);
4752
4753 elf_text_section = bfd_zalloc (abfd, amt);
4754 if (elf_text_section == NULL)
4755 return FALSE;
4756
4757 amt = sizeof (asymbol);
4758 elf_text_symbol = bfd_zalloc (abfd, amt);
4759 if (elf_text_symbol == NULL)
4760 return FALSE;
4761
4762 /* Initialize the section. */
4763
4764 elf_tdata (abfd)->elf_text_section = elf_text_section;
4765 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4766
4767 elf_text_section->symbol = elf_text_symbol;
4768 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4769
4770 elf_text_section->name = ".text";
4771 elf_text_section->flags = SEC_NO_FLAGS;
4772 elf_text_section->output_section = NULL;
4773 elf_text_section->owner = abfd;
4774 elf_text_symbol->name = ".text";
4775 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4776 elf_text_symbol->section = elf_text_section;
4777 }
4778 /* This code used to do *secp = bfd_und_section_ptr if
4779 info->shared. I don't know why, and that doesn't make sense,
4780 so I took it out. */
4781 *secp = elf_tdata (abfd)->elf_text_section;
4782 break;
4783
4784 case SHN_MIPS_ACOMMON:
4785 /* Fall through. XXX Can we treat this as allocated data? */
4786 case SHN_MIPS_DATA:
4787 /* This section is used in a shared object. */
4788 if (elf_tdata (abfd)->elf_data_section == NULL)
4789 {
4790 asymbol *elf_data_symbol;
4791 asection *elf_data_section;
4792 bfd_size_type amt = sizeof (asection);
4793
4794 elf_data_section = bfd_zalloc (abfd, amt);
4795 if (elf_data_section == NULL)
4796 return FALSE;
4797
4798 amt = sizeof (asymbol);
4799 elf_data_symbol = bfd_zalloc (abfd, amt);
4800 if (elf_data_symbol == NULL)
4801 return FALSE;
4802
4803 /* Initialize the section. */
4804
4805 elf_tdata (abfd)->elf_data_section = elf_data_section;
4806 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4807
4808 elf_data_section->symbol = elf_data_symbol;
4809 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4810
4811 elf_data_section->name = ".data";
4812 elf_data_section->flags = SEC_NO_FLAGS;
4813 elf_data_section->output_section = NULL;
4814 elf_data_section->owner = abfd;
4815 elf_data_symbol->name = ".data";
4816 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4817 elf_data_symbol->section = elf_data_section;
4818 }
4819 /* This code used to do *secp = bfd_und_section_ptr if
4820 info->shared. I don't know why, and that doesn't make sense,
4821 so I took it out. */
4822 *secp = elf_tdata (abfd)->elf_data_section;
4823 break;
4824
4825 case SHN_MIPS_SUNDEFINED:
4826 *secp = bfd_und_section_ptr;
4827 break;
4828 }
4829
4830 if (SGI_COMPAT (abfd)
4831 && ! info->shared
4832 && info->hash->creator == abfd->xvec
4833 && strcmp (*namep, "__rld_obj_head") == 0)
4834 {
4835 struct elf_link_hash_entry *h;
4836 struct bfd_link_hash_entry *bh;
4837
4838 /* Mark __rld_obj_head as dynamic. */
4839 bh = NULL;
4840 if (! (_bfd_generic_link_add_one_symbol
4841 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
4842 get_elf_backend_data (abfd)->collect, &bh)))
4843 return FALSE;
4844
4845 h = (struct elf_link_hash_entry *) bh;
4846 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4847 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4848 h->type = STT_OBJECT;
4849
4850 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4851 return FALSE;
4852
4853 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4854 }
4855
4856 /* If this is a mips16 text symbol, add 1 to the value to make it
4857 odd. This will cause something like .word SYM to come up with
4858 the right value when it is loaded into the PC. */
4859 if (sym->st_other == STO_MIPS16)
4860 ++*valp;
4861
4862 return TRUE;
4863 }
4864
4865 /* This hook function is called before the linker writes out a global
4866 symbol. We mark symbols as small common if appropriate. This is
4867 also where we undo the increment of the value for a mips16 symbol. */
4868
4869 bfd_boolean
4870 _bfd_mips_elf_link_output_symbol_hook
4871 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4872 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4873 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4874 {
4875 /* If we see a common symbol, which implies a relocatable link, then
4876 if a symbol was small common in an input file, mark it as small
4877 common in the output file. */
4878 if (sym->st_shndx == SHN_COMMON
4879 && strcmp (input_sec->name, ".scommon") == 0)
4880 sym->st_shndx = SHN_MIPS_SCOMMON;
4881
4882 if (sym->st_other == STO_MIPS16)
4883 sym->st_value &= ~1;
4884
4885 return TRUE;
4886 }
4887 \f
4888 /* Functions for the dynamic linker. */
4889
4890 /* Create dynamic sections when linking against a dynamic object. */
4891
4892 bfd_boolean
4893 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4894 {
4895 struct elf_link_hash_entry *h;
4896 struct bfd_link_hash_entry *bh;
4897 flagword flags;
4898 register asection *s;
4899 const char * const *namep;
4900
4901 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4902 | SEC_LINKER_CREATED | SEC_READONLY);
4903
4904 /* Mips ABI requests the .dynamic section to be read only. */
4905 s = bfd_get_section_by_name (abfd, ".dynamic");
4906 if (s != NULL)
4907 {
4908 if (! bfd_set_section_flags (abfd, s, flags))
4909 return FALSE;
4910 }
4911
4912 /* We need to create .got section. */
4913 if (! mips_elf_create_got_section (abfd, info, FALSE))
4914 return FALSE;
4915
4916 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4917 return FALSE;
4918
4919 /* Create .stub section. */
4920 if (bfd_get_section_by_name (abfd,
4921 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4922 {
4923 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4924 if (s == NULL
4925 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4926 || ! bfd_set_section_alignment (abfd, s,
4927 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4928 return FALSE;
4929 }
4930
4931 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4932 && !info->shared
4933 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4934 {
4935 s = bfd_make_section (abfd, ".rld_map");
4936 if (s == NULL
4937 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4938 || ! bfd_set_section_alignment (abfd, s,
4939 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4940 return FALSE;
4941 }
4942
4943 /* On IRIX5, we adjust add some additional symbols and change the
4944 alignments of several sections. There is no ABI documentation
4945 indicating that this is necessary on IRIX6, nor any evidence that
4946 the linker takes such action. */
4947 if (IRIX_COMPAT (abfd) == ict_irix5)
4948 {
4949 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4950 {
4951 bh = NULL;
4952 if (! (_bfd_generic_link_add_one_symbol
4953 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4954 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4955 return FALSE;
4956
4957 h = (struct elf_link_hash_entry *) bh;
4958 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4959 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4960 h->type = STT_SECTION;
4961
4962 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4963 return FALSE;
4964 }
4965
4966 /* We need to create a .compact_rel section. */
4967 if (SGI_COMPAT (abfd))
4968 {
4969 if (!mips_elf_create_compact_rel_section (abfd, info))
4970 return FALSE;
4971 }
4972
4973 /* Change alignments of some sections. */
4974 s = bfd_get_section_by_name (abfd, ".hash");
4975 if (s != NULL)
4976 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4977 s = bfd_get_section_by_name (abfd, ".dynsym");
4978 if (s != NULL)
4979 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4980 s = bfd_get_section_by_name (abfd, ".dynstr");
4981 if (s != NULL)
4982 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4983 s = bfd_get_section_by_name (abfd, ".reginfo");
4984 if (s != NULL)
4985 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4986 s = bfd_get_section_by_name (abfd, ".dynamic");
4987 if (s != NULL)
4988 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4989 }
4990
4991 if (!info->shared)
4992 {
4993 const char *name;
4994
4995 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4996 bh = NULL;
4997 if (!(_bfd_generic_link_add_one_symbol
4998 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4999 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5000 return FALSE;
5001
5002 h = (struct elf_link_hash_entry *) bh;
5003 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5004 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5005 h->type = STT_SECTION;
5006
5007 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5008 return FALSE;
5009
5010 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5011 {
5012 /* __rld_map is a four byte word located in the .data section
5013 and is filled in by the rtld to contain a pointer to
5014 the _r_debug structure. Its symbol value will be set in
5015 _bfd_mips_elf_finish_dynamic_symbol. */
5016 s = bfd_get_section_by_name (abfd, ".rld_map");
5017 BFD_ASSERT (s != NULL);
5018
5019 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5020 bh = NULL;
5021 if (!(_bfd_generic_link_add_one_symbol
5022 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
5023 get_elf_backend_data (abfd)->collect, &bh)))
5024 return FALSE;
5025
5026 h = (struct elf_link_hash_entry *) bh;
5027 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5028 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5029 h->type = STT_OBJECT;
5030
5031 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5032 return FALSE;
5033 }
5034 }
5035
5036 return TRUE;
5037 }
5038 \f
5039 /* Look through the relocs for a section during the first phase, and
5040 allocate space in the global offset table. */
5041
5042 bfd_boolean
5043 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5044 asection *sec, const Elf_Internal_Rela *relocs)
5045 {
5046 const char *name;
5047 bfd *dynobj;
5048 Elf_Internal_Shdr *symtab_hdr;
5049 struct elf_link_hash_entry **sym_hashes;
5050 struct mips_got_info *g;
5051 size_t extsymoff;
5052 const Elf_Internal_Rela *rel;
5053 const Elf_Internal_Rela *rel_end;
5054 asection *sgot;
5055 asection *sreloc;
5056 const struct elf_backend_data *bed;
5057
5058 if (info->relocatable)
5059 return TRUE;
5060
5061 dynobj = elf_hash_table (info)->dynobj;
5062 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5063 sym_hashes = elf_sym_hashes (abfd);
5064 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5065
5066 /* Check for the mips16 stub sections. */
5067
5068 name = bfd_get_section_name (abfd, sec);
5069 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5070 {
5071 unsigned long r_symndx;
5072
5073 /* Look at the relocation information to figure out which symbol
5074 this is for. */
5075
5076 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5077
5078 if (r_symndx < extsymoff
5079 || sym_hashes[r_symndx - extsymoff] == NULL)
5080 {
5081 asection *o;
5082
5083 /* This stub is for a local symbol. This stub will only be
5084 needed if there is some relocation in this BFD, other
5085 than a 16 bit function call, which refers to this symbol. */
5086 for (o = abfd->sections; o != NULL; o = o->next)
5087 {
5088 Elf_Internal_Rela *sec_relocs;
5089 const Elf_Internal_Rela *r, *rend;
5090
5091 /* We can ignore stub sections when looking for relocs. */
5092 if ((o->flags & SEC_RELOC) == 0
5093 || o->reloc_count == 0
5094 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5095 sizeof FN_STUB - 1) == 0
5096 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5097 sizeof CALL_STUB - 1) == 0
5098 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5099 sizeof CALL_FP_STUB - 1) == 0)
5100 continue;
5101
5102 sec_relocs
5103 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5104 info->keep_memory);
5105 if (sec_relocs == NULL)
5106 return FALSE;
5107
5108 rend = sec_relocs + o->reloc_count;
5109 for (r = sec_relocs; r < rend; r++)
5110 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5111 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5112 break;
5113
5114 if (elf_section_data (o)->relocs != sec_relocs)
5115 free (sec_relocs);
5116
5117 if (r < rend)
5118 break;
5119 }
5120
5121 if (o == NULL)
5122 {
5123 /* There is no non-call reloc for this stub, so we do
5124 not need it. Since this function is called before
5125 the linker maps input sections to output sections, we
5126 can easily discard it by setting the SEC_EXCLUDE
5127 flag. */
5128 sec->flags |= SEC_EXCLUDE;
5129 return TRUE;
5130 }
5131
5132 /* Record this stub in an array of local symbol stubs for
5133 this BFD. */
5134 if (elf_tdata (abfd)->local_stubs == NULL)
5135 {
5136 unsigned long symcount;
5137 asection **n;
5138 bfd_size_type amt;
5139
5140 if (elf_bad_symtab (abfd))
5141 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5142 else
5143 symcount = symtab_hdr->sh_info;
5144 amt = symcount * sizeof (asection *);
5145 n = bfd_zalloc (abfd, amt);
5146 if (n == NULL)
5147 return FALSE;
5148 elf_tdata (abfd)->local_stubs = n;
5149 }
5150
5151 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5152
5153 /* We don't need to set mips16_stubs_seen in this case.
5154 That flag is used to see whether we need to look through
5155 the global symbol table for stubs. We don't need to set
5156 it here, because we just have a local stub. */
5157 }
5158 else
5159 {
5160 struct mips_elf_link_hash_entry *h;
5161
5162 h = ((struct mips_elf_link_hash_entry *)
5163 sym_hashes[r_symndx - extsymoff]);
5164
5165 /* H is the symbol this stub is for. */
5166
5167 h->fn_stub = sec;
5168 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5169 }
5170 }
5171 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5172 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5173 {
5174 unsigned long r_symndx;
5175 struct mips_elf_link_hash_entry *h;
5176 asection **loc;
5177
5178 /* Look at the relocation information to figure out which symbol
5179 this is for. */
5180
5181 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5182
5183 if (r_symndx < extsymoff
5184 || sym_hashes[r_symndx - extsymoff] == NULL)
5185 {
5186 /* This stub was actually built for a static symbol defined
5187 in the same file. We assume that all static symbols in
5188 mips16 code are themselves mips16, so we can simply
5189 discard this stub. Since this function is called before
5190 the linker maps input sections to output sections, we can
5191 easily discard it by setting the SEC_EXCLUDE flag. */
5192 sec->flags |= SEC_EXCLUDE;
5193 return TRUE;
5194 }
5195
5196 h = ((struct mips_elf_link_hash_entry *)
5197 sym_hashes[r_symndx - extsymoff]);
5198
5199 /* H is the symbol this stub is for. */
5200
5201 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5202 loc = &h->call_fp_stub;
5203 else
5204 loc = &h->call_stub;
5205
5206 /* If we already have an appropriate stub for this function, we
5207 don't need another one, so we can discard this one. Since
5208 this function is called before the linker maps input sections
5209 to output sections, we can easily discard it by setting the
5210 SEC_EXCLUDE flag. We can also discard this section if we
5211 happen to already know that this is a mips16 function; it is
5212 not necessary to check this here, as it is checked later, but
5213 it is slightly faster to check now. */
5214 if (*loc != NULL || h->root.other == STO_MIPS16)
5215 {
5216 sec->flags |= SEC_EXCLUDE;
5217 return TRUE;
5218 }
5219
5220 *loc = sec;
5221 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5222 }
5223
5224 if (dynobj == NULL)
5225 {
5226 sgot = NULL;
5227 g = NULL;
5228 }
5229 else
5230 {
5231 sgot = mips_elf_got_section (dynobj, FALSE);
5232 if (sgot == NULL)
5233 g = NULL;
5234 else
5235 {
5236 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5237 g = mips_elf_section_data (sgot)->u.got_info;
5238 BFD_ASSERT (g != NULL);
5239 }
5240 }
5241
5242 sreloc = NULL;
5243 bed = get_elf_backend_data (abfd);
5244 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5245 for (rel = relocs; rel < rel_end; ++rel)
5246 {
5247 unsigned long r_symndx;
5248 unsigned int r_type;
5249 struct elf_link_hash_entry *h;
5250
5251 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5252 r_type = ELF_R_TYPE (abfd, rel->r_info);
5253
5254 if (r_symndx < extsymoff)
5255 h = NULL;
5256 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5257 {
5258 (*_bfd_error_handler)
5259 (_("%s: Malformed reloc detected for section %s"),
5260 bfd_archive_filename (abfd), name);
5261 bfd_set_error (bfd_error_bad_value);
5262 return FALSE;
5263 }
5264 else
5265 {
5266 h = sym_hashes[r_symndx - extsymoff];
5267
5268 /* This may be an indirect symbol created because of a version. */
5269 if (h != NULL)
5270 {
5271 while (h->root.type == bfd_link_hash_indirect)
5272 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5273 }
5274 }
5275
5276 /* Some relocs require a global offset table. */
5277 if (dynobj == NULL || sgot == NULL)
5278 {
5279 switch (r_type)
5280 {
5281 case R_MIPS_GOT16:
5282 case R_MIPS_CALL16:
5283 case R_MIPS_CALL_HI16:
5284 case R_MIPS_CALL_LO16:
5285 case R_MIPS_GOT_HI16:
5286 case R_MIPS_GOT_LO16:
5287 case R_MIPS_GOT_PAGE:
5288 case R_MIPS_GOT_OFST:
5289 case R_MIPS_GOT_DISP:
5290 if (dynobj == NULL)
5291 elf_hash_table (info)->dynobj = dynobj = abfd;
5292 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5293 return FALSE;
5294 g = mips_elf_got_info (dynobj, &sgot);
5295 break;
5296
5297 case R_MIPS_32:
5298 case R_MIPS_REL32:
5299 case R_MIPS_64:
5300 if (dynobj == NULL
5301 && (info->shared || h != NULL)
5302 && (sec->flags & SEC_ALLOC) != 0)
5303 elf_hash_table (info)->dynobj = dynobj = abfd;
5304 break;
5305
5306 default:
5307 break;
5308 }
5309 }
5310
5311 if (!h && (r_type == R_MIPS_CALL_LO16
5312 || r_type == R_MIPS_GOT_LO16
5313 || r_type == R_MIPS_GOT_DISP))
5314 {
5315 /* We may need a local GOT entry for this relocation. We
5316 don't count R_MIPS_GOT_PAGE because we can estimate the
5317 maximum number of pages needed by looking at the size of
5318 the segment. Similar comments apply to R_MIPS_GOT16 and
5319 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5320 R_MIPS_CALL_HI16 because these are always followed by an
5321 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5322 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5323 rel->r_addend, g))
5324 return FALSE;
5325 }
5326
5327 switch (r_type)
5328 {
5329 case R_MIPS_CALL16:
5330 if (h == NULL)
5331 {
5332 (*_bfd_error_handler)
5333 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5334 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5335 bfd_set_error (bfd_error_bad_value);
5336 return FALSE;
5337 }
5338 /* Fall through. */
5339
5340 case R_MIPS_CALL_HI16:
5341 case R_MIPS_CALL_LO16:
5342 if (h != NULL)
5343 {
5344 /* This symbol requires a global offset table entry. */
5345 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5346 return FALSE;
5347
5348 /* We need a stub, not a plt entry for the undefined
5349 function. But we record it as if it needs plt. See
5350 _bfd_elf_adjust_dynamic_symbol. */
5351 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5352 h->type = STT_FUNC;
5353 }
5354 break;
5355
5356 case R_MIPS_GOT_PAGE:
5357 /* If this is a global, overridable symbol, GOT_PAGE will
5358 decay to GOT_DISP, so we'll need a GOT entry for it. */
5359 if (h == NULL)
5360 break;
5361 else
5362 {
5363 struct mips_elf_link_hash_entry *hmips =
5364 (struct mips_elf_link_hash_entry *) h;
5365
5366 while (hmips->root.root.type == bfd_link_hash_indirect
5367 || hmips->root.root.type == bfd_link_hash_warning)
5368 hmips = (struct mips_elf_link_hash_entry *)
5369 hmips->root.root.u.i.link;
5370
5371 if ((hmips->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
5372 && ! (info->shared && ! info->symbolic
5373 && ! (hmips->root.elf_link_hash_flags
5374 & ELF_LINK_FORCED_LOCAL)))
5375 break;
5376 }
5377 /* Fall through. */
5378
5379 case R_MIPS_GOT16:
5380 case R_MIPS_GOT_HI16:
5381 case R_MIPS_GOT_LO16:
5382 case R_MIPS_GOT_DISP:
5383 /* This symbol requires a global offset table entry. */
5384 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5385 return FALSE;
5386 break;
5387
5388 case R_MIPS_32:
5389 case R_MIPS_REL32:
5390 case R_MIPS_64:
5391 if ((info->shared || h != NULL)
5392 && (sec->flags & SEC_ALLOC) != 0)
5393 {
5394 if (sreloc == NULL)
5395 {
5396 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5397 if (sreloc == NULL)
5398 return FALSE;
5399 }
5400 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5401 if (info->shared)
5402 {
5403 /* When creating a shared object, we must copy these
5404 reloc types into the output file as R_MIPS_REL32
5405 relocs. We make room for this reloc in the
5406 .rel.dyn reloc section. */
5407 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5408 if ((sec->flags & MIPS_READONLY_SECTION)
5409 == MIPS_READONLY_SECTION)
5410 /* We tell the dynamic linker that there are
5411 relocations against the text segment. */
5412 info->flags |= DF_TEXTREL;
5413 }
5414 else
5415 {
5416 struct mips_elf_link_hash_entry *hmips;
5417
5418 /* We only need to copy this reloc if the symbol is
5419 defined in a dynamic object. */
5420 hmips = (struct mips_elf_link_hash_entry *) h;
5421 ++hmips->possibly_dynamic_relocs;
5422 if ((sec->flags & MIPS_READONLY_SECTION)
5423 == MIPS_READONLY_SECTION)
5424 /* We need it to tell the dynamic linker if there
5425 are relocations against the text segment. */
5426 hmips->readonly_reloc = TRUE;
5427 }
5428
5429 /* Even though we don't directly need a GOT entry for
5430 this symbol, a symbol must have a dynamic symbol
5431 table index greater that DT_MIPS_GOTSYM if there are
5432 dynamic relocations against it. */
5433 if (h != NULL)
5434 {
5435 if (dynobj == NULL)
5436 elf_hash_table (info)->dynobj = dynobj = abfd;
5437 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5438 return FALSE;
5439 g = mips_elf_got_info (dynobj, &sgot);
5440 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5441 return FALSE;
5442 }
5443 }
5444
5445 if (SGI_COMPAT (abfd))
5446 mips_elf_hash_table (info)->compact_rel_size +=
5447 sizeof (Elf32_External_crinfo);
5448 break;
5449
5450 case R_MIPS_26:
5451 case R_MIPS_GPREL16:
5452 case R_MIPS_LITERAL:
5453 case R_MIPS_GPREL32:
5454 if (SGI_COMPAT (abfd))
5455 mips_elf_hash_table (info)->compact_rel_size +=
5456 sizeof (Elf32_External_crinfo);
5457 break;
5458
5459 /* This relocation describes the C++ object vtable hierarchy.
5460 Reconstruct it for later use during GC. */
5461 case R_MIPS_GNU_VTINHERIT:
5462 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5463 return FALSE;
5464 break;
5465
5466 /* This relocation describes which C++ vtable entries are actually
5467 used. Record for later use during GC. */
5468 case R_MIPS_GNU_VTENTRY:
5469 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5470 return FALSE;
5471 break;
5472
5473 default:
5474 break;
5475 }
5476
5477 /* We must not create a stub for a symbol that has relocations
5478 related to taking the function's address. */
5479 switch (r_type)
5480 {
5481 default:
5482 if (h != NULL)
5483 {
5484 struct mips_elf_link_hash_entry *mh;
5485
5486 mh = (struct mips_elf_link_hash_entry *) h;
5487 mh->no_fn_stub = TRUE;
5488 }
5489 break;
5490 case R_MIPS_CALL16:
5491 case R_MIPS_CALL_HI16:
5492 case R_MIPS_CALL_LO16:
5493 case R_MIPS_JALR:
5494 break;
5495 }
5496
5497 /* If this reloc is not a 16 bit call, and it has a global
5498 symbol, then we will need the fn_stub if there is one.
5499 References from a stub section do not count. */
5500 if (h != NULL
5501 && r_type != R_MIPS16_26
5502 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5503 sizeof FN_STUB - 1) != 0
5504 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5505 sizeof CALL_STUB - 1) != 0
5506 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5507 sizeof CALL_FP_STUB - 1) != 0)
5508 {
5509 struct mips_elf_link_hash_entry *mh;
5510
5511 mh = (struct mips_elf_link_hash_entry *) h;
5512 mh->need_fn_stub = TRUE;
5513 }
5514 }
5515
5516 return TRUE;
5517 }
5518 \f
5519 bfd_boolean
5520 _bfd_mips_relax_section (bfd *abfd, asection *sec,
5521 struct bfd_link_info *link_info,
5522 bfd_boolean *again)
5523 {
5524 Elf_Internal_Rela *internal_relocs;
5525 Elf_Internal_Rela *irel, *irelend;
5526 Elf_Internal_Shdr *symtab_hdr;
5527 bfd_byte *contents = NULL;
5528 bfd_byte *free_contents = NULL;
5529 size_t extsymoff;
5530 bfd_boolean changed_contents = FALSE;
5531 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5532 Elf_Internal_Sym *isymbuf = NULL;
5533
5534 /* We are not currently changing any sizes, so only one pass. */
5535 *again = FALSE;
5536
5537 if (link_info->relocatable)
5538 return TRUE;
5539
5540 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
5541 link_info->keep_memory);
5542 if (internal_relocs == NULL)
5543 return TRUE;
5544
5545 irelend = internal_relocs + sec->reloc_count
5546 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5547 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5548 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5549
5550 for (irel = internal_relocs; irel < irelend; irel++)
5551 {
5552 bfd_vma symval;
5553 bfd_signed_vma sym_offset;
5554 unsigned int r_type;
5555 unsigned long r_symndx;
5556 asection *sym_sec;
5557 unsigned long instruction;
5558
5559 /* Turn jalr into bgezal, and jr into beq, if they're marked
5560 with a JALR relocation, that indicate where they jump to.
5561 This saves some pipeline bubbles. */
5562 r_type = ELF_R_TYPE (abfd, irel->r_info);
5563 if (r_type != R_MIPS_JALR)
5564 continue;
5565
5566 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5567 /* Compute the address of the jump target. */
5568 if (r_symndx >= extsymoff)
5569 {
5570 struct mips_elf_link_hash_entry *h
5571 = ((struct mips_elf_link_hash_entry *)
5572 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5573
5574 while (h->root.root.type == bfd_link_hash_indirect
5575 || h->root.root.type == bfd_link_hash_warning)
5576 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5577
5578 /* If a symbol is undefined, or if it may be overridden,
5579 skip it. */
5580 if (! ((h->root.root.type == bfd_link_hash_defined
5581 || h->root.root.type == bfd_link_hash_defweak)
5582 && h->root.root.u.def.section)
5583 || (link_info->shared && ! link_info->symbolic
5584 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5585 continue;
5586
5587 sym_sec = h->root.root.u.def.section;
5588 if (sym_sec->output_section)
5589 symval = (h->root.root.u.def.value
5590 + sym_sec->output_section->vma
5591 + sym_sec->output_offset);
5592 else
5593 symval = h->root.root.u.def.value;
5594 }
5595 else
5596 {
5597 Elf_Internal_Sym *isym;
5598
5599 /* Read this BFD's symbols if we haven't done so already. */
5600 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5601 {
5602 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5603 if (isymbuf == NULL)
5604 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5605 symtab_hdr->sh_info, 0,
5606 NULL, NULL, NULL);
5607 if (isymbuf == NULL)
5608 goto relax_return;
5609 }
5610
5611 isym = isymbuf + r_symndx;
5612 if (isym->st_shndx == SHN_UNDEF)
5613 continue;
5614 else if (isym->st_shndx == SHN_ABS)
5615 sym_sec = bfd_abs_section_ptr;
5616 else if (isym->st_shndx == SHN_COMMON)
5617 sym_sec = bfd_com_section_ptr;
5618 else
5619 sym_sec
5620 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5621 symval = isym->st_value
5622 + sym_sec->output_section->vma
5623 + sym_sec->output_offset;
5624 }
5625
5626 /* Compute branch offset, from delay slot of the jump to the
5627 branch target. */
5628 sym_offset = (symval + irel->r_addend)
5629 - (sec_start + irel->r_offset + 4);
5630
5631 /* Branch offset must be properly aligned. */
5632 if ((sym_offset & 3) != 0)
5633 continue;
5634
5635 sym_offset >>= 2;
5636
5637 /* Check that it's in range. */
5638 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5639 continue;
5640
5641 /* Get the section contents if we haven't done so already. */
5642 if (contents == NULL)
5643 {
5644 /* Get cached copy if it exists. */
5645 if (elf_section_data (sec)->this_hdr.contents != NULL)
5646 contents = elf_section_data (sec)->this_hdr.contents;
5647 else
5648 {
5649 contents = bfd_malloc (sec->_raw_size);
5650 if (contents == NULL)
5651 goto relax_return;
5652
5653 free_contents = contents;
5654 if (! bfd_get_section_contents (abfd, sec, contents,
5655 0, sec->_raw_size))
5656 goto relax_return;
5657 }
5658 }
5659
5660 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5661
5662 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5663 if ((instruction & 0xfc1fffff) == 0x0000f809)
5664 instruction = 0x04110000;
5665 /* If it was jr <reg>, turn it into b <target>. */
5666 else if ((instruction & 0xfc1fffff) == 0x00000008)
5667 instruction = 0x10000000;
5668 else
5669 continue;
5670
5671 instruction |= (sym_offset & 0xffff);
5672 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5673 changed_contents = TRUE;
5674 }
5675
5676 if (contents != NULL
5677 && elf_section_data (sec)->this_hdr.contents != contents)
5678 {
5679 if (!changed_contents && !link_info->keep_memory)
5680 free (contents);
5681 else
5682 {
5683 /* Cache the section contents for elf_link_input_bfd. */
5684 elf_section_data (sec)->this_hdr.contents = contents;
5685 }
5686 }
5687 return TRUE;
5688
5689 relax_return:
5690 if (free_contents != NULL)
5691 free (free_contents);
5692 return FALSE;
5693 }
5694 \f
5695 /* Adjust a symbol defined by a dynamic object and referenced by a
5696 regular object. The current definition is in some section of the
5697 dynamic object, but we're not including those sections. We have to
5698 change the definition to something the rest of the link can
5699 understand. */
5700
5701 bfd_boolean
5702 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5703 struct elf_link_hash_entry *h)
5704 {
5705 bfd *dynobj;
5706 struct mips_elf_link_hash_entry *hmips;
5707 asection *s;
5708
5709 dynobj = elf_hash_table (info)->dynobj;
5710
5711 /* Make sure we know what is going on here. */
5712 BFD_ASSERT (dynobj != NULL
5713 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5714 || h->weakdef != NULL
5715 || ((h->elf_link_hash_flags
5716 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5717 && (h->elf_link_hash_flags
5718 & ELF_LINK_HASH_REF_REGULAR) != 0
5719 && (h->elf_link_hash_flags
5720 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5721
5722 /* If this symbol is defined in a dynamic object, we need to copy
5723 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5724 file. */
5725 hmips = (struct mips_elf_link_hash_entry *) h;
5726 if (! info->relocatable
5727 && hmips->possibly_dynamic_relocs != 0
5728 && (h->root.type == bfd_link_hash_defweak
5729 || (h->elf_link_hash_flags
5730 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5731 {
5732 mips_elf_allocate_dynamic_relocations (dynobj,
5733 hmips->possibly_dynamic_relocs);
5734 if (hmips->readonly_reloc)
5735 /* We tell the dynamic linker that there are relocations
5736 against the text segment. */
5737 info->flags |= DF_TEXTREL;
5738 }
5739
5740 /* For a function, create a stub, if allowed. */
5741 if (! hmips->no_fn_stub
5742 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5743 {
5744 if (! elf_hash_table (info)->dynamic_sections_created)
5745 return TRUE;
5746
5747 /* If this symbol is not defined in a regular file, then set
5748 the symbol to the stub location. This is required to make
5749 function pointers compare as equal between the normal
5750 executable and the shared library. */
5751 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5752 {
5753 /* We need .stub section. */
5754 s = bfd_get_section_by_name (dynobj,
5755 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5756 BFD_ASSERT (s != NULL);
5757
5758 h->root.u.def.section = s;
5759 h->root.u.def.value = s->_raw_size;
5760
5761 /* XXX Write this stub address somewhere. */
5762 h->plt.offset = s->_raw_size;
5763
5764 /* Make room for this stub code. */
5765 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5766
5767 /* The last half word of the stub will be filled with the index
5768 of this symbol in .dynsym section. */
5769 return TRUE;
5770 }
5771 }
5772 else if ((h->type == STT_FUNC)
5773 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5774 {
5775 /* This will set the entry for this symbol in the GOT to 0, and
5776 the dynamic linker will take care of this. */
5777 h->root.u.def.value = 0;
5778 return TRUE;
5779 }
5780
5781 /* If this is a weak symbol, and there is a real definition, the
5782 processor independent code will have arranged for us to see the
5783 real definition first, and we can just use the same value. */
5784 if (h->weakdef != NULL)
5785 {
5786 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5787 || h->weakdef->root.type == bfd_link_hash_defweak);
5788 h->root.u.def.section = h->weakdef->root.u.def.section;
5789 h->root.u.def.value = h->weakdef->root.u.def.value;
5790 return TRUE;
5791 }
5792
5793 /* This is a reference to a symbol defined by a dynamic object which
5794 is not a function. */
5795
5796 return TRUE;
5797 }
5798 \f
5799 /* This function is called after all the input files have been read,
5800 and the input sections have been assigned to output sections. We
5801 check for any mips16 stub sections that we can discard. */
5802
5803 bfd_boolean
5804 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
5805 struct bfd_link_info *info)
5806 {
5807 asection *ri;
5808
5809 bfd *dynobj;
5810 asection *s;
5811 struct mips_got_info *g;
5812 int i;
5813 bfd_size_type loadable_size = 0;
5814 bfd_size_type local_gotno;
5815 bfd *sub;
5816
5817 /* The .reginfo section has a fixed size. */
5818 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5819 if (ri != NULL)
5820 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
5821
5822 if (! (info->relocatable
5823 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5824 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5825 mips_elf_check_mips16_stubs, NULL);
5826
5827 dynobj = elf_hash_table (info)->dynobj;
5828 if (dynobj == NULL)
5829 /* Relocatable links don't have it. */
5830 return TRUE;
5831
5832 g = mips_elf_got_info (dynobj, &s);
5833 if (s == NULL)
5834 return TRUE;
5835
5836 /* Calculate the total loadable size of the output. That
5837 will give us the maximum number of GOT_PAGE entries
5838 required. */
5839 for (sub = info->input_bfds; sub; sub = sub->link_next)
5840 {
5841 asection *subsection;
5842
5843 for (subsection = sub->sections;
5844 subsection;
5845 subsection = subsection->next)
5846 {
5847 if ((subsection->flags & SEC_ALLOC) == 0)
5848 continue;
5849 loadable_size += ((subsection->_raw_size + 0xf)
5850 &~ (bfd_size_type) 0xf);
5851 }
5852 }
5853
5854 /* There has to be a global GOT entry for every symbol with
5855 a dynamic symbol table index of DT_MIPS_GOTSYM or
5856 higher. Therefore, it make sense to put those symbols
5857 that need GOT entries at the end of the symbol table. We
5858 do that here. */
5859 if (! mips_elf_sort_hash_table (info, 1))
5860 return FALSE;
5861
5862 if (g->global_gotsym != NULL)
5863 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5864 else
5865 /* If there are no global symbols, or none requiring
5866 relocations, then GLOBAL_GOTSYM will be NULL. */
5867 i = 0;
5868
5869 /* In the worst case, we'll get one stub per dynamic symbol, plus
5870 one to account for the dummy entry at the end required by IRIX
5871 rld. */
5872 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5873
5874 /* Assume there are two loadable segments consisting of
5875 contiguous sections. Is 5 enough? */
5876 local_gotno = (loadable_size >> 16) + 5;
5877
5878 g->local_gotno += local_gotno;
5879 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5880
5881 g->global_gotno = i;
5882 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5883
5884 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5885 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5886 return FALSE;
5887
5888 return TRUE;
5889 }
5890
5891 /* Set the sizes of the dynamic sections. */
5892
5893 bfd_boolean
5894 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5895 struct bfd_link_info *info)
5896 {
5897 bfd *dynobj;
5898 asection *s;
5899 bfd_boolean reltext;
5900
5901 dynobj = elf_hash_table (info)->dynobj;
5902 BFD_ASSERT (dynobj != NULL);
5903
5904 if (elf_hash_table (info)->dynamic_sections_created)
5905 {
5906 /* Set the contents of the .interp section to the interpreter. */
5907 if (info->executable)
5908 {
5909 s = bfd_get_section_by_name (dynobj, ".interp");
5910 BFD_ASSERT (s != NULL);
5911 s->_raw_size
5912 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5913 s->contents
5914 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5915 }
5916 }
5917
5918 /* The check_relocs and adjust_dynamic_symbol entry points have
5919 determined the sizes of the various dynamic sections. Allocate
5920 memory for them. */
5921 reltext = FALSE;
5922 for (s = dynobj->sections; s != NULL; s = s->next)
5923 {
5924 const char *name;
5925 bfd_boolean strip;
5926
5927 /* It's OK to base decisions on the section name, because none
5928 of the dynobj section names depend upon the input files. */
5929 name = bfd_get_section_name (dynobj, s);
5930
5931 if ((s->flags & SEC_LINKER_CREATED) == 0)
5932 continue;
5933
5934 strip = FALSE;
5935
5936 if (strncmp (name, ".rel", 4) == 0)
5937 {
5938 if (s->_raw_size == 0)
5939 {
5940 /* We only strip the section if the output section name
5941 has the same name. Otherwise, there might be several
5942 input sections for this output section. FIXME: This
5943 code is probably not needed these days anyhow, since
5944 the linker now does not create empty output sections. */
5945 if (s->output_section != NULL
5946 && strcmp (name,
5947 bfd_get_section_name (s->output_section->owner,
5948 s->output_section)) == 0)
5949 strip = TRUE;
5950 }
5951 else
5952 {
5953 const char *outname;
5954 asection *target;
5955
5956 /* If this relocation section applies to a read only
5957 section, then we probably need a DT_TEXTREL entry.
5958 If the relocation section is .rel.dyn, we always
5959 assert a DT_TEXTREL entry rather than testing whether
5960 there exists a relocation to a read only section or
5961 not. */
5962 outname = bfd_get_section_name (output_bfd,
5963 s->output_section);
5964 target = bfd_get_section_by_name (output_bfd, outname + 4);
5965 if ((target != NULL
5966 && (target->flags & SEC_READONLY) != 0
5967 && (target->flags & SEC_ALLOC) != 0)
5968 || strcmp (outname, ".rel.dyn") == 0)
5969 reltext = TRUE;
5970
5971 /* We use the reloc_count field as a counter if we need
5972 to copy relocs into the output file. */
5973 if (strcmp (name, ".rel.dyn") != 0)
5974 s->reloc_count = 0;
5975
5976 /* If combreloc is enabled, elf_link_sort_relocs() will
5977 sort relocations, but in a different way than we do,
5978 and before we're done creating relocations. Also, it
5979 will move them around between input sections'
5980 relocation's contents, so our sorting would be
5981 broken, so don't let it run. */
5982 info->combreloc = 0;
5983 }
5984 }
5985 else if (strncmp (name, ".got", 4) == 0)
5986 {
5987 /* _bfd_mips_elf_always_size_sections() has already done
5988 most of the work, but some symbols may have been mapped
5989 to versions that we must now resolve in the got_entries
5990 hash tables. */
5991 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5992 struct mips_got_info *g = gg;
5993 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5994 unsigned int needed_relocs = 0;
5995
5996 if (gg->next)
5997 {
5998 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5999 set_got_offset_arg.info = info;
6000
6001 mips_elf_resolve_final_got_entries (gg);
6002 for (g = gg->next; g && g->next != gg; g = g->next)
6003 {
6004 unsigned int save_assign;
6005
6006 mips_elf_resolve_final_got_entries (g);
6007
6008 /* Assign offsets to global GOT entries. */
6009 save_assign = g->assigned_gotno;
6010 g->assigned_gotno = g->local_gotno;
6011 set_got_offset_arg.g = g;
6012 set_got_offset_arg.needed_relocs = 0;
6013 htab_traverse (g->got_entries,
6014 mips_elf_set_global_got_offset,
6015 &set_got_offset_arg);
6016 needed_relocs += set_got_offset_arg.needed_relocs;
6017 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6018 <= g->global_gotno);
6019
6020 g->assigned_gotno = save_assign;
6021 if (info->shared)
6022 {
6023 needed_relocs += g->local_gotno - g->assigned_gotno;
6024 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6025 + g->next->global_gotno
6026 + MIPS_RESERVED_GOTNO);
6027 }
6028 }
6029
6030 if (needed_relocs)
6031 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6032 }
6033 }
6034 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6035 {
6036 /* IRIX rld assumes that the function stub isn't at the end
6037 of .text section. So put a dummy. XXX */
6038 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
6039 }
6040 else if (! info->shared
6041 && ! mips_elf_hash_table (info)->use_rld_obj_head
6042 && strncmp (name, ".rld_map", 8) == 0)
6043 {
6044 /* We add a room for __rld_map. It will be filled in by the
6045 rtld to contain a pointer to the _r_debug structure. */
6046 s->_raw_size += 4;
6047 }
6048 else if (SGI_COMPAT (output_bfd)
6049 && strncmp (name, ".compact_rel", 12) == 0)
6050 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
6051 else if (strncmp (name, ".init", 5) != 0)
6052 {
6053 /* It's not one of our sections, so don't allocate space. */
6054 continue;
6055 }
6056
6057 if (strip)
6058 {
6059 _bfd_strip_section_from_output (info, s);
6060 continue;
6061 }
6062
6063 /* Allocate memory for the section contents. */
6064 s->contents = bfd_zalloc (dynobj, s->_raw_size);
6065 if (s->contents == NULL && s->_raw_size != 0)
6066 {
6067 bfd_set_error (bfd_error_no_memory);
6068 return FALSE;
6069 }
6070 }
6071
6072 if (elf_hash_table (info)->dynamic_sections_created)
6073 {
6074 /* Add some entries to the .dynamic section. We fill in the
6075 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6076 must add the entries now so that we get the correct size for
6077 the .dynamic section. The DT_DEBUG entry is filled in by the
6078 dynamic linker and used by the debugger. */
6079 if (! info->shared)
6080 {
6081 /* SGI object has the equivalence of DT_DEBUG in the
6082 DT_MIPS_RLD_MAP entry. */
6083 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6084 return FALSE;
6085 if (!SGI_COMPAT (output_bfd))
6086 {
6087 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6088 return FALSE;
6089 }
6090 }
6091 else
6092 {
6093 /* Shared libraries on traditional mips have DT_DEBUG. */
6094 if (!SGI_COMPAT (output_bfd))
6095 {
6096 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6097 return FALSE;
6098 }
6099 }
6100
6101 if (reltext && SGI_COMPAT (output_bfd))
6102 info->flags |= DF_TEXTREL;
6103
6104 if ((info->flags & DF_TEXTREL) != 0)
6105 {
6106 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6107 return FALSE;
6108 }
6109
6110 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6111 return FALSE;
6112
6113 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6114 {
6115 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6116 return FALSE;
6117
6118 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6119 return FALSE;
6120
6121 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6122 return FALSE;
6123 }
6124
6125 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6126 return FALSE;
6127
6128 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6129 return FALSE;
6130
6131 #if 0
6132 /* Time stamps in executable files are a bad idea. */
6133 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6134 return FALSE;
6135 #endif
6136
6137 #if 0 /* FIXME */
6138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6139 return FALSE;
6140 #endif
6141
6142 #if 0 /* FIXME */
6143 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6144 return FALSE;
6145 #endif
6146
6147 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6148 return FALSE;
6149
6150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6151 return FALSE;
6152
6153 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6154 return FALSE;
6155
6156 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6157 return FALSE;
6158
6159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6160 return FALSE;
6161
6162 if (IRIX_COMPAT (dynobj) == ict_irix5
6163 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6164 return FALSE;
6165
6166 if (IRIX_COMPAT (dynobj) == ict_irix6
6167 && (bfd_get_section_by_name
6168 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6169 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6170 return FALSE;
6171 }
6172
6173 return TRUE;
6174 }
6175 \f
6176 /* Relocate a MIPS ELF section. */
6177
6178 bfd_boolean
6179 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6180 bfd *input_bfd, asection *input_section,
6181 bfd_byte *contents, Elf_Internal_Rela *relocs,
6182 Elf_Internal_Sym *local_syms,
6183 asection **local_sections)
6184 {
6185 Elf_Internal_Rela *rel;
6186 const Elf_Internal_Rela *relend;
6187 bfd_vma addend = 0;
6188 bfd_boolean use_saved_addend_p = FALSE;
6189 const struct elf_backend_data *bed;
6190
6191 bed = get_elf_backend_data (output_bfd);
6192 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6193 for (rel = relocs; rel < relend; ++rel)
6194 {
6195 const char *name;
6196 bfd_vma value;
6197 reloc_howto_type *howto;
6198 bfd_boolean require_jalx;
6199 /* TRUE if the relocation is a RELA relocation, rather than a
6200 REL relocation. */
6201 bfd_boolean rela_relocation_p = TRUE;
6202 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6203 const char *msg;
6204
6205 /* Find the relocation howto for this relocation. */
6206 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6207 {
6208 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6209 64-bit code, but make sure all their addresses are in the
6210 lowermost or uppermost 32-bit section of the 64-bit address
6211 space. Thus, when they use an R_MIPS_64 they mean what is
6212 usually meant by R_MIPS_32, with the exception that the
6213 stored value is sign-extended to 64 bits. */
6214 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6215
6216 /* On big-endian systems, we need to lie about the position
6217 of the reloc. */
6218 if (bfd_big_endian (input_bfd))
6219 rel->r_offset += 4;
6220 }
6221 else
6222 /* NewABI defaults to RELA relocations. */
6223 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6224 NEWABI_P (input_bfd)
6225 && (MIPS_RELOC_RELA_P
6226 (input_bfd, input_section,
6227 rel - relocs)));
6228
6229 if (!use_saved_addend_p)
6230 {
6231 Elf_Internal_Shdr *rel_hdr;
6232
6233 /* If these relocations were originally of the REL variety,
6234 we must pull the addend out of the field that will be
6235 relocated. Otherwise, we simply use the contents of the
6236 RELA relocation. To determine which flavor or relocation
6237 this is, we depend on the fact that the INPUT_SECTION's
6238 REL_HDR is read before its REL_HDR2. */
6239 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6240 if ((size_t) (rel - relocs)
6241 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6242 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6243 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6244 {
6245 /* Note that this is a REL relocation. */
6246 rela_relocation_p = FALSE;
6247
6248 /* Get the addend, which is stored in the input file. */
6249 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6250 contents);
6251 addend &= howto->src_mask;
6252
6253 /* For some kinds of relocations, the ADDEND is a
6254 combination of the addend stored in two different
6255 relocations. */
6256 if (r_type == R_MIPS_HI16
6257 || r_type == R_MIPS_GNU_REL_HI16
6258 || (r_type == R_MIPS_GOT16
6259 && mips_elf_local_relocation_p (input_bfd, rel,
6260 local_sections, FALSE)))
6261 {
6262 bfd_vma l;
6263 const Elf_Internal_Rela *lo16_relocation;
6264 reloc_howto_type *lo16_howto;
6265 unsigned int lo;
6266
6267 /* The combined value is the sum of the HI16 addend,
6268 left-shifted by sixteen bits, and the LO16
6269 addend, sign extended. (Usually, the code does
6270 a `lui' of the HI16 value, and then an `addiu' of
6271 the LO16 value.)
6272
6273 Scan ahead to find a matching LO16 relocation. */
6274 if (r_type == R_MIPS_GNU_REL_HI16)
6275 lo = R_MIPS_GNU_REL_LO16;
6276 else
6277 lo = R_MIPS_LO16;
6278 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6279 rel, relend);
6280 if (lo16_relocation == NULL)
6281 return FALSE;
6282
6283 /* Obtain the addend kept there. */
6284 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
6285 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6286 input_bfd, contents);
6287 l &= lo16_howto->src_mask;
6288 l <<= lo16_howto->rightshift;
6289 l = _bfd_mips_elf_sign_extend (l, 16);
6290
6291 addend <<= 16;
6292
6293 /* Compute the combined addend. */
6294 addend += l;
6295
6296 /* If PC-relative, subtract the difference between the
6297 address of the LO part of the reloc and the address of
6298 the HI part. The relocation is relative to the LO
6299 part, but mips_elf_calculate_relocation() doesn't
6300 know its address or the difference from the HI part, so
6301 we subtract that difference here. See also the
6302 comment in mips_elf_calculate_relocation(). */
6303 if (r_type == R_MIPS_GNU_REL_HI16)
6304 addend -= (lo16_relocation->r_offset - rel->r_offset);
6305 }
6306 else if (r_type == R_MIPS16_GPREL)
6307 {
6308 /* The addend is scrambled in the object file. See
6309 mips_elf_perform_relocation for details on the
6310 format. */
6311 addend = (((addend & 0x1f0000) >> 5)
6312 | ((addend & 0x7e00000) >> 16)
6313 | (addend & 0x1f));
6314 }
6315 else
6316 addend <<= howto->rightshift;
6317 }
6318 else
6319 addend = rel->r_addend;
6320 }
6321
6322 if (info->relocatable)
6323 {
6324 Elf_Internal_Sym *sym;
6325 unsigned long r_symndx;
6326
6327 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6328 && bfd_big_endian (input_bfd))
6329 rel->r_offset -= 4;
6330
6331 /* Since we're just relocating, all we need to do is copy
6332 the relocations back out to the object file, unless
6333 they're against a section symbol, in which case we need
6334 to adjust by the section offset, or unless they're GP
6335 relative in which case we need to adjust by the amount
6336 that we're adjusting GP in this relocatable object. */
6337
6338 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6339 FALSE))
6340 /* There's nothing to do for non-local relocations. */
6341 continue;
6342
6343 if (r_type == R_MIPS16_GPREL
6344 || r_type == R_MIPS_GPREL16
6345 || r_type == R_MIPS_GPREL32
6346 || r_type == R_MIPS_LITERAL)
6347 addend -= (_bfd_get_gp_value (output_bfd)
6348 - _bfd_get_gp_value (input_bfd));
6349
6350 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6351 sym = local_syms + r_symndx;
6352 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6353 /* Adjust the addend appropriately. */
6354 addend += local_sections[r_symndx]->output_offset;
6355
6356 if (rela_relocation_p)
6357 /* If this is a RELA relocation, just update the addend. */
6358 rel->r_addend = addend;
6359 else
6360 {
6361 if (r_type == R_MIPS_HI16
6362 || r_type == R_MIPS_GOT16
6363 || r_type == R_MIPS_GNU_REL_HI16)
6364 addend = mips_elf_high (addend);
6365 else if (r_type == R_MIPS_HIGHER)
6366 addend = mips_elf_higher (addend);
6367 else if (r_type == R_MIPS_HIGHEST)
6368 addend = mips_elf_highest (addend);
6369 else
6370 addend >>= howto->rightshift;
6371
6372 /* We use the source mask, rather than the destination
6373 mask because the place to which we are writing will be
6374 source of the addend in the final link. */
6375 addend &= howto->src_mask;
6376
6377 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6378 /* See the comment above about using R_MIPS_64 in the 32-bit
6379 ABI. Here, we need to update the addend. It would be
6380 possible to get away with just using the R_MIPS_32 reloc
6381 but for endianness. */
6382 {
6383 bfd_vma sign_bits;
6384 bfd_vma low_bits;
6385 bfd_vma high_bits;
6386
6387 if (addend & ((bfd_vma) 1 << 31))
6388 #ifdef BFD64
6389 sign_bits = ((bfd_vma) 1 << 32) - 1;
6390 #else
6391 sign_bits = -1;
6392 #endif
6393 else
6394 sign_bits = 0;
6395
6396 /* If we don't know that we have a 64-bit type,
6397 do two separate stores. */
6398 if (bfd_big_endian (input_bfd))
6399 {
6400 /* Store the sign-bits (which are most significant)
6401 first. */
6402 low_bits = sign_bits;
6403 high_bits = addend;
6404 }
6405 else
6406 {
6407 low_bits = addend;
6408 high_bits = sign_bits;
6409 }
6410 bfd_put_32 (input_bfd, low_bits,
6411 contents + rel->r_offset);
6412 bfd_put_32 (input_bfd, high_bits,
6413 contents + rel->r_offset + 4);
6414 continue;
6415 }
6416
6417 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6418 input_bfd, input_section,
6419 contents, FALSE))
6420 return FALSE;
6421 }
6422
6423 /* Go on to the next relocation. */
6424 continue;
6425 }
6426
6427 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6428 relocations for the same offset. In that case we are
6429 supposed to treat the output of each relocation as the addend
6430 for the next. */
6431 if (rel + 1 < relend
6432 && rel->r_offset == rel[1].r_offset
6433 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6434 use_saved_addend_p = TRUE;
6435 else
6436 use_saved_addend_p = FALSE;
6437
6438 /* Figure out what value we are supposed to relocate. */
6439 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6440 input_section, info, rel,
6441 addend, howto, local_syms,
6442 local_sections, &value,
6443 &name, &require_jalx,
6444 use_saved_addend_p))
6445 {
6446 case bfd_reloc_continue:
6447 /* There's nothing to do. */
6448 continue;
6449
6450 case bfd_reloc_undefined:
6451 /* mips_elf_calculate_relocation already called the
6452 undefined_symbol callback. There's no real point in
6453 trying to perform the relocation at this point, so we
6454 just skip ahead to the next relocation. */
6455 continue;
6456
6457 case bfd_reloc_notsupported:
6458 msg = _("internal error: unsupported relocation error");
6459 info->callbacks->warning
6460 (info, msg, name, input_bfd, input_section, rel->r_offset);
6461 return FALSE;
6462
6463 case bfd_reloc_overflow:
6464 if (use_saved_addend_p)
6465 /* Ignore overflow until we reach the last relocation for
6466 a given location. */
6467 ;
6468 else
6469 {
6470 BFD_ASSERT (name != NULL);
6471 if (! ((*info->callbacks->reloc_overflow)
6472 (info, name, howto->name, 0,
6473 input_bfd, input_section, rel->r_offset)))
6474 return FALSE;
6475 }
6476 break;
6477
6478 case bfd_reloc_ok:
6479 break;
6480
6481 default:
6482 abort ();
6483 break;
6484 }
6485
6486 /* If we've got another relocation for the address, keep going
6487 until we reach the last one. */
6488 if (use_saved_addend_p)
6489 {
6490 addend = value;
6491 continue;
6492 }
6493
6494 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6495 /* See the comment above about using R_MIPS_64 in the 32-bit
6496 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6497 that calculated the right value. Now, however, we
6498 sign-extend the 32-bit result to 64-bits, and store it as a
6499 64-bit value. We are especially generous here in that we
6500 go to extreme lengths to support this usage on systems with
6501 only a 32-bit VMA. */
6502 {
6503 bfd_vma sign_bits;
6504 bfd_vma low_bits;
6505 bfd_vma high_bits;
6506
6507 if (value & ((bfd_vma) 1 << 31))
6508 #ifdef BFD64
6509 sign_bits = ((bfd_vma) 1 << 32) - 1;
6510 #else
6511 sign_bits = -1;
6512 #endif
6513 else
6514 sign_bits = 0;
6515
6516 /* If we don't know that we have a 64-bit type,
6517 do two separate stores. */
6518 if (bfd_big_endian (input_bfd))
6519 {
6520 /* Undo what we did above. */
6521 rel->r_offset -= 4;
6522 /* Store the sign-bits (which are most significant)
6523 first. */
6524 low_bits = sign_bits;
6525 high_bits = value;
6526 }
6527 else
6528 {
6529 low_bits = value;
6530 high_bits = sign_bits;
6531 }
6532 bfd_put_32 (input_bfd, low_bits,
6533 contents + rel->r_offset);
6534 bfd_put_32 (input_bfd, high_bits,
6535 contents + rel->r_offset + 4);
6536 continue;
6537 }
6538
6539 /* Actually perform the relocation. */
6540 if (! mips_elf_perform_relocation (info, howto, rel, value,
6541 input_bfd, input_section,
6542 contents, require_jalx))
6543 return FALSE;
6544 }
6545
6546 return TRUE;
6547 }
6548 \f
6549 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6550 adjust it appropriately now. */
6551
6552 static void
6553 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6554 const char *name, Elf_Internal_Sym *sym)
6555 {
6556 /* The linker script takes care of providing names and values for
6557 these, but we must place them into the right sections. */
6558 static const char* const text_section_symbols[] = {
6559 "_ftext",
6560 "_etext",
6561 "__dso_displacement",
6562 "__elf_header",
6563 "__program_header_table",
6564 NULL
6565 };
6566
6567 static const char* const data_section_symbols[] = {
6568 "_fdata",
6569 "_edata",
6570 "_end",
6571 "_fbss",
6572 NULL
6573 };
6574
6575 const char* const *p;
6576 int i;
6577
6578 for (i = 0; i < 2; ++i)
6579 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6580 *p;
6581 ++p)
6582 if (strcmp (*p, name) == 0)
6583 {
6584 /* All of these symbols are given type STT_SECTION by the
6585 IRIX6 linker. */
6586 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6587 sym->st_other = STO_PROTECTED;
6588
6589 /* The IRIX linker puts these symbols in special sections. */
6590 if (i == 0)
6591 sym->st_shndx = SHN_MIPS_TEXT;
6592 else
6593 sym->st_shndx = SHN_MIPS_DATA;
6594
6595 break;
6596 }
6597 }
6598
6599 /* Finish up dynamic symbol handling. We set the contents of various
6600 dynamic sections here. */
6601
6602 bfd_boolean
6603 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6604 struct bfd_link_info *info,
6605 struct elf_link_hash_entry *h,
6606 Elf_Internal_Sym *sym)
6607 {
6608 bfd *dynobj;
6609 bfd_vma gval;
6610 asection *sgot;
6611 struct mips_got_info *g, *gg;
6612 const char *name;
6613
6614 dynobj = elf_hash_table (info)->dynobj;
6615 gval = sym->st_value;
6616
6617 if (h->plt.offset != (bfd_vma) -1)
6618 {
6619 asection *s;
6620 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6621
6622 /* This symbol has a stub. Set it up. */
6623
6624 BFD_ASSERT (h->dynindx != -1);
6625
6626 s = bfd_get_section_by_name (dynobj,
6627 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6628 BFD_ASSERT (s != NULL);
6629
6630 /* FIXME: Can h->dynindex be more than 64K? */
6631 if (h->dynindx & 0xffff0000)
6632 return FALSE;
6633
6634 /* Fill the stub. */
6635 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6636 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6637 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6638 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6639
6640 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6641 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6642
6643 /* Mark the symbol as undefined. plt.offset != -1 occurs
6644 only for the referenced symbol. */
6645 sym->st_shndx = SHN_UNDEF;
6646
6647 /* The run-time linker uses the st_value field of the symbol
6648 to reset the global offset table entry for this external
6649 to its stub address when unlinking a shared object. */
6650 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6651 sym->st_value = gval;
6652 }
6653
6654 BFD_ASSERT (h->dynindx != -1
6655 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6656
6657 sgot = mips_elf_got_section (dynobj, FALSE);
6658 BFD_ASSERT (sgot != NULL);
6659 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6660 g = mips_elf_section_data (sgot)->u.got_info;
6661 BFD_ASSERT (g != NULL);
6662
6663 /* Run through the global symbol table, creating GOT entries for all
6664 the symbols that need them. */
6665 if (g->global_gotsym != NULL
6666 && h->dynindx >= g->global_gotsym->dynindx)
6667 {
6668 bfd_vma offset;
6669 bfd_vma value;
6670
6671 value = sym->st_value;
6672 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6673 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6674 }
6675
6676 if (g->next && h->dynindx != -1)
6677 {
6678 struct mips_got_entry e, *p;
6679 bfd_vma entry;
6680 bfd_vma offset;
6681
6682 gg = g;
6683
6684 e.abfd = output_bfd;
6685 e.symndx = -1;
6686 e.d.h = (struct mips_elf_link_hash_entry *)h;
6687
6688 for (g = g->next; g->next != gg; g = g->next)
6689 {
6690 if (g->got_entries
6691 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6692 &e)))
6693 {
6694 offset = p->gotidx;
6695 if (info->shared
6696 || (elf_hash_table (info)->dynamic_sections_created
6697 && p->d.h != NULL
6698 && ((p->d.h->root.elf_link_hash_flags
6699 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6700 && ((p->d.h->root.elf_link_hash_flags
6701 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6702 {
6703 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6704 the various compatibility problems, it's easier to mock
6705 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6706 mips_elf_create_dynamic_relocation to calculate the
6707 appropriate addend. */
6708 Elf_Internal_Rela rel[3];
6709
6710 memset (rel, 0, sizeof (rel));
6711 if (ABI_64_P (output_bfd))
6712 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6713 else
6714 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6715 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6716
6717 entry = 0;
6718 if (! (mips_elf_create_dynamic_relocation
6719 (output_bfd, info, rel,
6720 e.d.h, NULL, sym->st_value, &entry, sgot)))
6721 return FALSE;
6722 }
6723 else
6724 entry = sym->st_value;
6725 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
6726 }
6727 }
6728 }
6729
6730 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6731 name = h->root.root.string;
6732 if (strcmp (name, "_DYNAMIC") == 0
6733 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6734 sym->st_shndx = SHN_ABS;
6735 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6736 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6737 {
6738 sym->st_shndx = SHN_ABS;
6739 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6740 sym->st_value = 1;
6741 }
6742 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6743 {
6744 sym->st_shndx = SHN_ABS;
6745 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6746 sym->st_value = elf_gp (output_bfd);
6747 }
6748 else if (SGI_COMPAT (output_bfd))
6749 {
6750 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6751 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6752 {
6753 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6754 sym->st_other = STO_PROTECTED;
6755 sym->st_value = 0;
6756 sym->st_shndx = SHN_MIPS_DATA;
6757 }
6758 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6759 {
6760 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6761 sym->st_other = STO_PROTECTED;
6762 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6763 sym->st_shndx = SHN_ABS;
6764 }
6765 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6766 {
6767 if (h->type == STT_FUNC)
6768 sym->st_shndx = SHN_MIPS_TEXT;
6769 else if (h->type == STT_OBJECT)
6770 sym->st_shndx = SHN_MIPS_DATA;
6771 }
6772 }
6773
6774 /* Handle the IRIX6-specific symbols. */
6775 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6776 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6777
6778 if (! info->shared)
6779 {
6780 if (! mips_elf_hash_table (info)->use_rld_obj_head
6781 && (strcmp (name, "__rld_map") == 0
6782 || strcmp (name, "__RLD_MAP") == 0))
6783 {
6784 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6785 BFD_ASSERT (s != NULL);
6786 sym->st_value = s->output_section->vma + s->output_offset;
6787 bfd_put_32 (output_bfd, 0, s->contents);
6788 if (mips_elf_hash_table (info)->rld_value == 0)
6789 mips_elf_hash_table (info)->rld_value = sym->st_value;
6790 }
6791 else if (mips_elf_hash_table (info)->use_rld_obj_head
6792 && strcmp (name, "__rld_obj_head") == 0)
6793 {
6794 /* IRIX6 does not use a .rld_map section. */
6795 if (IRIX_COMPAT (output_bfd) == ict_irix5
6796 || IRIX_COMPAT (output_bfd) == ict_none)
6797 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6798 != NULL);
6799 mips_elf_hash_table (info)->rld_value = sym->st_value;
6800 }
6801 }
6802
6803 /* If this is a mips16 symbol, force the value to be even. */
6804 if (sym->st_other == STO_MIPS16)
6805 sym->st_value &= ~1;
6806
6807 return TRUE;
6808 }
6809
6810 /* Finish up the dynamic sections. */
6811
6812 bfd_boolean
6813 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6814 struct bfd_link_info *info)
6815 {
6816 bfd *dynobj;
6817 asection *sdyn;
6818 asection *sgot;
6819 struct mips_got_info *gg, *g;
6820
6821 dynobj = elf_hash_table (info)->dynobj;
6822
6823 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6824
6825 sgot = mips_elf_got_section (dynobj, FALSE);
6826 if (sgot == NULL)
6827 gg = g = NULL;
6828 else
6829 {
6830 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6831 gg = mips_elf_section_data (sgot)->u.got_info;
6832 BFD_ASSERT (gg != NULL);
6833 g = mips_elf_got_for_ibfd (gg, output_bfd);
6834 BFD_ASSERT (g != NULL);
6835 }
6836
6837 if (elf_hash_table (info)->dynamic_sections_created)
6838 {
6839 bfd_byte *b;
6840
6841 BFD_ASSERT (sdyn != NULL);
6842 BFD_ASSERT (g != NULL);
6843
6844 for (b = sdyn->contents;
6845 b < sdyn->contents + sdyn->_raw_size;
6846 b += MIPS_ELF_DYN_SIZE (dynobj))
6847 {
6848 Elf_Internal_Dyn dyn;
6849 const char *name;
6850 size_t elemsize;
6851 asection *s;
6852 bfd_boolean swap_out_p;
6853
6854 /* Read in the current dynamic entry. */
6855 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6856
6857 /* Assume that we're going to modify it and write it out. */
6858 swap_out_p = TRUE;
6859
6860 switch (dyn.d_tag)
6861 {
6862 case DT_RELENT:
6863 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6864 BFD_ASSERT (s != NULL);
6865 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6866 break;
6867
6868 case DT_STRSZ:
6869 /* Rewrite DT_STRSZ. */
6870 dyn.d_un.d_val =
6871 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6872 break;
6873
6874 case DT_PLTGOT:
6875 name = ".got";
6876 s = bfd_get_section_by_name (output_bfd, name);
6877 BFD_ASSERT (s != NULL);
6878 dyn.d_un.d_ptr = s->vma;
6879 break;
6880
6881 case DT_MIPS_RLD_VERSION:
6882 dyn.d_un.d_val = 1; /* XXX */
6883 break;
6884
6885 case DT_MIPS_FLAGS:
6886 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6887 break;
6888
6889 case DT_MIPS_TIME_STAMP:
6890 time ((time_t *) &dyn.d_un.d_val);
6891 break;
6892
6893 case DT_MIPS_ICHECKSUM:
6894 /* XXX FIXME: */
6895 swap_out_p = FALSE;
6896 break;
6897
6898 case DT_MIPS_IVERSION:
6899 /* XXX FIXME: */
6900 swap_out_p = FALSE;
6901 break;
6902
6903 case DT_MIPS_BASE_ADDRESS:
6904 s = output_bfd->sections;
6905 BFD_ASSERT (s != NULL);
6906 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6907 break;
6908
6909 case DT_MIPS_LOCAL_GOTNO:
6910 dyn.d_un.d_val = g->local_gotno;
6911 break;
6912
6913 case DT_MIPS_UNREFEXTNO:
6914 /* The index into the dynamic symbol table which is the
6915 entry of the first external symbol that is not
6916 referenced within the same object. */
6917 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6918 break;
6919
6920 case DT_MIPS_GOTSYM:
6921 if (gg->global_gotsym)
6922 {
6923 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6924 break;
6925 }
6926 /* In case if we don't have global got symbols we default
6927 to setting DT_MIPS_GOTSYM to the same value as
6928 DT_MIPS_SYMTABNO, so we just fall through. */
6929
6930 case DT_MIPS_SYMTABNO:
6931 name = ".dynsym";
6932 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6933 s = bfd_get_section_by_name (output_bfd, name);
6934 BFD_ASSERT (s != NULL);
6935
6936 if (s->_cooked_size != 0)
6937 dyn.d_un.d_val = s->_cooked_size / elemsize;
6938 else
6939 dyn.d_un.d_val = s->_raw_size / elemsize;
6940 break;
6941
6942 case DT_MIPS_HIPAGENO:
6943 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6944 break;
6945
6946 case DT_MIPS_RLD_MAP:
6947 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6948 break;
6949
6950 case DT_MIPS_OPTIONS:
6951 s = (bfd_get_section_by_name
6952 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6953 dyn.d_un.d_ptr = s->vma;
6954 break;
6955
6956 case DT_RELSZ:
6957 /* Reduce DT_RELSZ to account for any relocations we
6958 decided not to make. This is for the n64 irix rld,
6959 which doesn't seem to apply any relocations if there
6960 are trailing null entries. */
6961 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6962 dyn.d_un.d_val = (s->reloc_count
6963 * (ABI_64_P (output_bfd)
6964 ? sizeof (Elf64_Mips_External_Rel)
6965 : sizeof (Elf32_External_Rel)));
6966 break;
6967
6968 default:
6969 swap_out_p = FALSE;
6970 break;
6971 }
6972
6973 if (swap_out_p)
6974 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6975 (dynobj, &dyn, b);
6976 }
6977 }
6978
6979 /* The first entry of the global offset table will be filled at
6980 runtime. The second entry will be used by some runtime loaders.
6981 This isn't the case of IRIX rld. */
6982 if (sgot != NULL && sgot->_raw_size > 0)
6983 {
6984 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6985 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
6986 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6987 }
6988
6989 if (sgot != NULL)
6990 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6991 = MIPS_ELF_GOT_SIZE (output_bfd);
6992
6993 /* Generate dynamic relocations for the non-primary gots. */
6994 if (gg != NULL && gg->next)
6995 {
6996 Elf_Internal_Rela rel[3];
6997 bfd_vma addend = 0;
6998
6999 memset (rel, 0, sizeof (rel));
7000 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7001
7002 for (g = gg->next; g->next != gg; g = g->next)
7003 {
7004 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7005
7006 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
7007 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7008 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
7009 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7010
7011 if (! info->shared)
7012 continue;
7013
7014 while (index < g->assigned_gotno)
7015 {
7016 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7017 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7018 if (!(mips_elf_create_dynamic_relocation
7019 (output_bfd, info, rel, NULL,
7020 bfd_abs_section_ptr,
7021 0, &addend, sgot)))
7022 return FALSE;
7023 BFD_ASSERT (addend == 0);
7024 }
7025 }
7026 }
7027
7028 {
7029 asection *s;
7030 Elf32_compact_rel cpt;
7031
7032 if (SGI_COMPAT (output_bfd))
7033 {
7034 /* Write .compact_rel section out. */
7035 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7036 if (s != NULL)
7037 {
7038 cpt.id1 = 1;
7039 cpt.num = s->reloc_count;
7040 cpt.id2 = 2;
7041 cpt.offset = (s->output_section->filepos
7042 + sizeof (Elf32_External_compact_rel));
7043 cpt.reserved0 = 0;
7044 cpt.reserved1 = 0;
7045 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7046 ((Elf32_External_compact_rel *)
7047 s->contents));
7048
7049 /* Clean up a dummy stub function entry in .text. */
7050 s = bfd_get_section_by_name (dynobj,
7051 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7052 if (s != NULL)
7053 {
7054 file_ptr dummy_offset;
7055
7056 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7057 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7058 memset (s->contents + dummy_offset, 0,
7059 MIPS_FUNCTION_STUB_SIZE);
7060 }
7061 }
7062 }
7063
7064 /* We need to sort the entries of the dynamic relocation section. */
7065
7066 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7067
7068 if (s != NULL
7069 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7070 {
7071 reldyn_sorting_bfd = output_bfd;
7072
7073 if (ABI_64_P (output_bfd))
7074 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7075 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7076 else
7077 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7078 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7079 }
7080 }
7081
7082 return TRUE;
7083 }
7084
7085
7086 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7087
7088 static void
7089 mips_set_isa_flags (bfd *abfd)
7090 {
7091 flagword val;
7092
7093 switch (bfd_get_mach (abfd))
7094 {
7095 default:
7096 case bfd_mach_mips3000:
7097 val = E_MIPS_ARCH_1;
7098 break;
7099
7100 case bfd_mach_mips3900:
7101 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7102 break;
7103
7104 case bfd_mach_mips6000:
7105 val = E_MIPS_ARCH_2;
7106 break;
7107
7108 case bfd_mach_mips4000:
7109 case bfd_mach_mips4300:
7110 case bfd_mach_mips4400:
7111 case bfd_mach_mips4600:
7112 val = E_MIPS_ARCH_3;
7113 break;
7114
7115 case bfd_mach_mips4010:
7116 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7117 break;
7118
7119 case bfd_mach_mips4100:
7120 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7121 break;
7122
7123 case bfd_mach_mips4111:
7124 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7125 break;
7126
7127 case bfd_mach_mips4120:
7128 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7129 break;
7130
7131 case bfd_mach_mips4650:
7132 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7133 break;
7134
7135 case bfd_mach_mips5400:
7136 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7137 break;
7138
7139 case bfd_mach_mips5500:
7140 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7141 break;
7142
7143 case bfd_mach_mips5000:
7144 case bfd_mach_mips7000:
7145 case bfd_mach_mips8000:
7146 case bfd_mach_mips10000:
7147 case bfd_mach_mips12000:
7148 val = E_MIPS_ARCH_4;
7149 break;
7150
7151 case bfd_mach_mips5:
7152 val = E_MIPS_ARCH_5;
7153 break;
7154
7155 case bfd_mach_mips_sb1:
7156 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7157 break;
7158
7159 case bfd_mach_mipsisa32:
7160 val = E_MIPS_ARCH_32;
7161 break;
7162
7163 case bfd_mach_mipsisa64:
7164 val = E_MIPS_ARCH_64;
7165 break;
7166
7167 case bfd_mach_mipsisa32r2:
7168 val = E_MIPS_ARCH_32R2;
7169 break;
7170
7171 case bfd_mach_mipsisa64r2:
7172 val = E_MIPS_ARCH_64R2;
7173 break;
7174 }
7175 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7176 elf_elfheader (abfd)->e_flags |= val;
7177
7178 }
7179
7180
7181 /* The final processing done just before writing out a MIPS ELF object
7182 file. This gets the MIPS architecture right based on the machine
7183 number. This is used by both the 32-bit and the 64-bit ABI. */
7184
7185 void
7186 _bfd_mips_elf_final_write_processing (bfd *abfd,
7187 bfd_boolean linker ATTRIBUTE_UNUSED)
7188 {
7189 unsigned int i;
7190 Elf_Internal_Shdr **hdrpp;
7191 const char *name;
7192 asection *sec;
7193
7194 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7195 is nonzero. This is for compatibility with old objects, which used
7196 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7197 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7198 mips_set_isa_flags (abfd);
7199
7200 /* Set the sh_info field for .gptab sections and other appropriate
7201 info for each special section. */
7202 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7203 i < elf_numsections (abfd);
7204 i++, hdrpp++)
7205 {
7206 switch ((*hdrpp)->sh_type)
7207 {
7208 case SHT_MIPS_MSYM:
7209 case SHT_MIPS_LIBLIST:
7210 sec = bfd_get_section_by_name (abfd, ".dynstr");
7211 if (sec != NULL)
7212 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7213 break;
7214
7215 case SHT_MIPS_GPTAB:
7216 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7217 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7218 BFD_ASSERT (name != NULL
7219 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7220 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7221 BFD_ASSERT (sec != NULL);
7222 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7223 break;
7224
7225 case SHT_MIPS_CONTENT:
7226 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7227 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7228 BFD_ASSERT (name != NULL
7229 && strncmp (name, ".MIPS.content",
7230 sizeof ".MIPS.content" - 1) == 0);
7231 sec = bfd_get_section_by_name (abfd,
7232 name + sizeof ".MIPS.content" - 1);
7233 BFD_ASSERT (sec != NULL);
7234 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7235 break;
7236
7237 case SHT_MIPS_SYMBOL_LIB:
7238 sec = bfd_get_section_by_name (abfd, ".dynsym");
7239 if (sec != NULL)
7240 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7241 sec = bfd_get_section_by_name (abfd, ".liblist");
7242 if (sec != NULL)
7243 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7244 break;
7245
7246 case SHT_MIPS_EVENTS:
7247 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7248 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7249 BFD_ASSERT (name != NULL);
7250 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7251 sec = bfd_get_section_by_name (abfd,
7252 name + sizeof ".MIPS.events" - 1);
7253 else
7254 {
7255 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7256 sizeof ".MIPS.post_rel" - 1) == 0);
7257 sec = bfd_get_section_by_name (abfd,
7258 (name
7259 + sizeof ".MIPS.post_rel" - 1));
7260 }
7261 BFD_ASSERT (sec != NULL);
7262 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7263 break;
7264
7265 }
7266 }
7267 }
7268 \f
7269 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7270 segments. */
7271
7272 int
7273 _bfd_mips_elf_additional_program_headers (bfd *abfd)
7274 {
7275 asection *s;
7276 int ret = 0;
7277
7278 /* See if we need a PT_MIPS_REGINFO segment. */
7279 s = bfd_get_section_by_name (abfd, ".reginfo");
7280 if (s && (s->flags & SEC_LOAD))
7281 ++ret;
7282
7283 /* See if we need a PT_MIPS_OPTIONS segment. */
7284 if (IRIX_COMPAT (abfd) == ict_irix6
7285 && bfd_get_section_by_name (abfd,
7286 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7287 ++ret;
7288
7289 /* See if we need a PT_MIPS_RTPROC segment. */
7290 if (IRIX_COMPAT (abfd) == ict_irix5
7291 && bfd_get_section_by_name (abfd, ".dynamic")
7292 && bfd_get_section_by_name (abfd, ".mdebug"))
7293 ++ret;
7294
7295 return ret;
7296 }
7297
7298 /* Modify the segment map for an IRIX5 executable. */
7299
7300 bfd_boolean
7301 _bfd_mips_elf_modify_segment_map (bfd *abfd,
7302 struct bfd_link_info *info ATTRIBUTE_UNUSED)
7303 {
7304 asection *s;
7305 struct elf_segment_map *m, **pm;
7306 bfd_size_type amt;
7307
7308 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7309 segment. */
7310 s = bfd_get_section_by_name (abfd, ".reginfo");
7311 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7312 {
7313 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7314 if (m->p_type == PT_MIPS_REGINFO)
7315 break;
7316 if (m == NULL)
7317 {
7318 amt = sizeof *m;
7319 m = bfd_zalloc (abfd, amt);
7320 if (m == NULL)
7321 return FALSE;
7322
7323 m->p_type = PT_MIPS_REGINFO;
7324 m->count = 1;
7325 m->sections[0] = s;
7326
7327 /* We want to put it after the PHDR and INTERP segments. */
7328 pm = &elf_tdata (abfd)->segment_map;
7329 while (*pm != NULL
7330 && ((*pm)->p_type == PT_PHDR
7331 || (*pm)->p_type == PT_INTERP))
7332 pm = &(*pm)->next;
7333
7334 m->next = *pm;
7335 *pm = m;
7336 }
7337 }
7338
7339 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7340 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7341 PT_MIPS_OPTIONS segment immediately following the program header
7342 table. */
7343 if (NEWABI_P (abfd)
7344 /* On non-IRIX6 new abi, we'll have already created a segment
7345 for this section, so don't create another. I'm not sure this
7346 is not also the case for IRIX 6, but I can't test it right
7347 now. */
7348 && IRIX_COMPAT (abfd) == ict_irix6)
7349 {
7350 for (s = abfd->sections; s; s = s->next)
7351 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7352 break;
7353
7354 if (s)
7355 {
7356 struct elf_segment_map *options_segment;
7357
7358 pm = &elf_tdata (abfd)->segment_map;
7359 while (*pm != NULL
7360 && ((*pm)->p_type == PT_PHDR
7361 || (*pm)->p_type == PT_INTERP))
7362 pm = &(*pm)->next;
7363
7364 amt = sizeof (struct elf_segment_map);
7365 options_segment = bfd_zalloc (abfd, amt);
7366 options_segment->next = *pm;
7367 options_segment->p_type = PT_MIPS_OPTIONS;
7368 options_segment->p_flags = PF_R;
7369 options_segment->p_flags_valid = TRUE;
7370 options_segment->count = 1;
7371 options_segment->sections[0] = s;
7372 *pm = options_segment;
7373 }
7374 }
7375 else
7376 {
7377 if (IRIX_COMPAT (abfd) == ict_irix5)
7378 {
7379 /* If there are .dynamic and .mdebug sections, we make a room
7380 for the RTPROC header. FIXME: Rewrite without section names. */
7381 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7382 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7383 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7384 {
7385 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7386 if (m->p_type == PT_MIPS_RTPROC)
7387 break;
7388 if (m == NULL)
7389 {
7390 amt = sizeof *m;
7391 m = bfd_zalloc (abfd, amt);
7392 if (m == NULL)
7393 return FALSE;
7394
7395 m->p_type = PT_MIPS_RTPROC;
7396
7397 s = bfd_get_section_by_name (abfd, ".rtproc");
7398 if (s == NULL)
7399 {
7400 m->count = 0;
7401 m->p_flags = 0;
7402 m->p_flags_valid = 1;
7403 }
7404 else
7405 {
7406 m->count = 1;
7407 m->sections[0] = s;
7408 }
7409
7410 /* We want to put it after the DYNAMIC segment. */
7411 pm = &elf_tdata (abfd)->segment_map;
7412 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7413 pm = &(*pm)->next;
7414 if (*pm != NULL)
7415 pm = &(*pm)->next;
7416
7417 m->next = *pm;
7418 *pm = m;
7419 }
7420 }
7421 }
7422 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7423 .dynstr, .dynsym, and .hash sections, and everything in
7424 between. */
7425 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7426 pm = &(*pm)->next)
7427 if ((*pm)->p_type == PT_DYNAMIC)
7428 break;
7429 m = *pm;
7430 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7431 {
7432 /* For a normal mips executable the permissions for the PT_DYNAMIC
7433 segment are read, write and execute. We do that here since
7434 the code in elf.c sets only the read permission. This matters
7435 sometimes for the dynamic linker. */
7436 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7437 {
7438 m->p_flags = PF_R | PF_W | PF_X;
7439 m->p_flags_valid = 1;
7440 }
7441 }
7442 if (m != NULL
7443 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7444 {
7445 static const char *sec_names[] =
7446 {
7447 ".dynamic", ".dynstr", ".dynsym", ".hash"
7448 };
7449 bfd_vma low, high;
7450 unsigned int i, c;
7451 struct elf_segment_map *n;
7452
7453 low = ~(bfd_vma) 0;
7454 high = 0;
7455 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7456 {
7457 s = bfd_get_section_by_name (abfd, sec_names[i]);
7458 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7459 {
7460 bfd_size_type sz;
7461
7462 if (low > s->vma)
7463 low = s->vma;
7464 sz = s->_cooked_size;
7465 if (sz == 0)
7466 sz = s->_raw_size;
7467 if (high < s->vma + sz)
7468 high = s->vma + sz;
7469 }
7470 }
7471
7472 c = 0;
7473 for (s = abfd->sections; s != NULL; s = s->next)
7474 if ((s->flags & SEC_LOAD) != 0
7475 && s->vma >= low
7476 && ((s->vma
7477 + (s->_cooked_size !=
7478 0 ? s->_cooked_size : s->_raw_size)) <= high))
7479 ++c;
7480
7481 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7482 n = bfd_zalloc (abfd, amt);
7483 if (n == NULL)
7484 return FALSE;
7485 *n = *m;
7486 n->count = c;
7487
7488 i = 0;
7489 for (s = abfd->sections; s != NULL; s = s->next)
7490 {
7491 if ((s->flags & SEC_LOAD) != 0
7492 && s->vma >= low
7493 && ((s->vma
7494 + (s->_cooked_size != 0 ?
7495 s->_cooked_size : s->_raw_size)) <= high))
7496 {
7497 n->sections[i] = s;
7498 ++i;
7499 }
7500 }
7501
7502 *pm = n;
7503 }
7504 }
7505
7506 return TRUE;
7507 }
7508 \f
7509 /* Return the section that should be marked against GC for a given
7510 relocation. */
7511
7512 asection *
7513 _bfd_mips_elf_gc_mark_hook (asection *sec,
7514 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7515 Elf_Internal_Rela *rel,
7516 struct elf_link_hash_entry *h,
7517 Elf_Internal_Sym *sym)
7518 {
7519 /* ??? Do mips16 stub sections need to be handled special? */
7520
7521 if (h != NULL)
7522 {
7523 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7524 {
7525 case R_MIPS_GNU_VTINHERIT:
7526 case R_MIPS_GNU_VTENTRY:
7527 break;
7528
7529 default:
7530 switch (h->root.type)
7531 {
7532 case bfd_link_hash_defined:
7533 case bfd_link_hash_defweak:
7534 return h->root.u.def.section;
7535
7536 case bfd_link_hash_common:
7537 return h->root.u.c.p->section;
7538
7539 default:
7540 break;
7541 }
7542 }
7543 }
7544 else
7545 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7546
7547 return NULL;
7548 }
7549
7550 /* Update the got entry reference counts for the section being removed. */
7551
7552 bfd_boolean
7553 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7554 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7555 asection *sec ATTRIBUTE_UNUSED,
7556 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
7557 {
7558 #if 0
7559 Elf_Internal_Shdr *symtab_hdr;
7560 struct elf_link_hash_entry **sym_hashes;
7561 bfd_signed_vma *local_got_refcounts;
7562 const Elf_Internal_Rela *rel, *relend;
7563 unsigned long r_symndx;
7564 struct elf_link_hash_entry *h;
7565
7566 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7567 sym_hashes = elf_sym_hashes (abfd);
7568 local_got_refcounts = elf_local_got_refcounts (abfd);
7569
7570 relend = relocs + sec->reloc_count;
7571 for (rel = relocs; rel < relend; rel++)
7572 switch (ELF_R_TYPE (abfd, rel->r_info))
7573 {
7574 case R_MIPS_GOT16:
7575 case R_MIPS_CALL16:
7576 case R_MIPS_CALL_HI16:
7577 case R_MIPS_CALL_LO16:
7578 case R_MIPS_GOT_HI16:
7579 case R_MIPS_GOT_LO16:
7580 case R_MIPS_GOT_DISP:
7581 case R_MIPS_GOT_PAGE:
7582 case R_MIPS_GOT_OFST:
7583 /* ??? It would seem that the existing MIPS code does no sort
7584 of reference counting or whatnot on its GOT and PLT entries,
7585 so it is not possible to garbage collect them at this time. */
7586 break;
7587
7588 default:
7589 break;
7590 }
7591 #endif
7592
7593 return TRUE;
7594 }
7595 \f
7596 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7597 hiding the old indirect symbol. Process additional relocation
7598 information. Also called for weakdefs, in which case we just let
7599 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7600
7601 void
7602 _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7603 struct elf_link_hash_entry *dir,
7604 struct elf_link_hash_entry *ind)
7605 {
7606 struct mips_elf_link_hash_entry *dirmips, *indmips;
7607
7608 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7609
7610 if (ind->root.type != bfd_link_hash_indirect)
7611 return;
7612
7613 dirmips = (struct mips_elf_link_hash_entry *) dir;
7614 indmips = (struct mips_elf_link_hash_entry *) ind;
7615 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7616 if (indmips->readonly_reloc)
7617 dirmips->readonly_reloc = TRUE;
7618 if (indmips->no_fn_stub)
7619 dirmips->no_fn_stub = TRUE;
7620 }
7621
7622 void
7623 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7624 struct elf_link_hash_entry *entry,
7625 bfd_boolean force_local)
7626 {
7627 bfd *dynobj;
7628 asection *got;
7629 struct mips_got_info *g;
7630 struct mips_elf_link_hash_entry *h;
7631
7632 h = (struct mips_elf_link_hash_entry *) entry;
7633 if (h->forced_local)
7634 return;
7635 h->forced_local = force_local;
7636
7637 dynobj = elf_hash_table (info)->dynobj;
7638 if (dynobj != NULL && force_local)
7639 {
7640 got = mips_elf_got_section (dynobj, FALSE);
7641 g = mips_elf_section_data (got)->u.got_info;
7642
7643 if (g->next)
7644 {
7645 struct mips_got_entry e;
7646 struct mips_got_info *gg = g;
7647
7648 /* Since we're turning what used to be a global symbol into a
7649 local one, bump up the number of local entries of each GOT
7650 that had an entry for it. This will automatically decrease
7651 the number of global entries, since global_gotno is actually
7652 the upper limit of global entries. */
7653 e.abfd = dynobj;
7654 e.symndx = -1;
7655 e.d.h = h;
7656
7657 for (g = g->next; g != gg; g = g->next)
7658 if (htab_find (g->got_entries, &e))
7659 {
7660 BFD_ASSERT (g->global_gotno > 0);
7661 g->local_gotno++;
7662 g->global_gotno--;
7663 }
7664
7665 /* If this was a global symbol forced into the primary GOT, we
7666 no longer need an entry for it. We can't release the entry
7667 at this point, but we must at least stop counting it as one
7668 of the symbols that required a forced got entry. */
7669 if (h->root.got.offset == 2)
7670 {
7671 BFD_ASSERT (gg->assigned_gotno > 0);
7672 gg->assigned_gotno--;
7673 }
7674 }
7675 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7676 /* If we haven't got through GOT allocation yet, just bump up the
7677 number of local entries, as this symbol won't be counted as
7678 global. */
7679 g->local_gotno++;
7680 else if (h->root.got.offset == 1)
7681 {
7682 /* If we're past non-multi-GOT allocation and this symbol had
7683 been marked for a global got entry, give it a local entry
7684 instead. */
7685 BFD_ASSERT (g->global_gotno > 0);
7686 g->local_gotno++;
7687 g->global_gotno--;
7688 }
7689 }
7690
7691 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7692 }
7693 \f
7694 #define PDR_SIZE 32
7695
7696 bfd_boolean
7697 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7698 struct bfd_link_info *info)
7699 {
7700 asection *o;
7701 bfd_boolean ret = FALSE;
7702 unsigned char *tdata;
7703 size_t i, skip;
7704
7705 o = bfd_get_section_by_name (abfd, ".pdr");
7706 if (! o)
7707 return FALSE;
7708 if (o->_raw_size == 0)
7709 return FALSE;
7710 if (o->_raw_size % PDR_SIZE != 0)
7711 return FALSE;
7712 if (o->output_section != NULL
7713 && bfd_is_abs_section (o->output_section))
7714 return FALSE;
7715
7716 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7717 if (! tdata)
7718 return FALSE;
7719
7720 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7721 info->keep_memory);
7722 if (!cookie->rels)
7723 {
7724 free (tdata);
7725 return FALSE;
7726 }
7727
7728 cookie->rel = cookie->rels;
7729 cookie->relend = cookie->rels + o->reloc_count;
7730
7731 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
7732 {
7733 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
7734 {
7735 tdata[i] = 1;
7736 skip ++;
7737 }
7738 }
7739
7740 if (skip != 0)
7741 {
7742 mips_elf_section_data (o)->u.tdata = tdata;
7743 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7744 ret = TRUE;
7745 }
7746 else
7747 free (tdata);
7748
7749 if (! info->keep_memory)
7750 free (cookie->rels);
7751
7752 return ret;
7753 }
7754
7755 bfd_boolean
7756 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
7757 {
7758 if (strcmp (sec->name, ".pdr") == 0)
7759 return TRUE;
7760 return FALSE;
7761 }
7762
7763 bfd_boolean
7764 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7765 bfd_byte *contents)
7766 {
7767 bfd_byte *to, *from, *end;
7768 int i;
7769
7770 if (strcmp (sec->name, ".pdr") != 0)
7771 return FALSE;
7772
7773 if (mips_elf_section_data (sec)->u.tdata == NULL)
7774 return FALSE;
7775
7776 to = contents;
7777 end = contents + sec->_raw_size;
7778 for (from = contents, i = 0;
7779 from < end;
7780 from += PDR_SIZE, i++)
7781 {
7782 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7783 continue;
7784 if (to != from)
7785 memcpy (to, from, PDR_SIZE);
7786 to += PDR_SIZE;
7787 }
7788 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7789 sec->output_offset, sec->_cooked_size);
7790 return TRUE;
7791 }
7792 \f
7793 /* MIPS ELF uses a special find_nearest_line routine in order the
7794 handle the ECOFF debugging information. */
7795
7796 struct mips_elf_find_line
7797 {
7798 struct ecoff_debug_info d;
7799 struct ecoff_find_line i;
7800 };
7801
7802 bfd_boolean
7803 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7804 asymbol **symbols, bfd_vma offset,
7805 const char **filename_ptr,
7806 const char **functionname_ptr,
7807 unsigned int *line_ptr)
7808 {
7809 asection *msec;
7810
7811 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7812 filename_ptr, functionname_ptr,
7813 line_ptr))
7814 return TRUE;
7815
7816 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7817 filename_ptr, functionname_ptr,
7818 line_ptr, ABI_64_P (abfd) ? 8 : 0,
7819 &elf_tdata (abfd)->dwarf2_find_line_info))
7820 return TRUE;
7821
7822 msec = bfd_get_section_by_name (abfd, ".mdebug");
7823 if (msec != NULL)
7824 {
7825 flagword origflags;
7826 struct mips_elf_find_line *fi;
7827 const struct ecoff_debug_swap * const swap =
7828 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7829
7830 /* If we are called during a link, mips_elf_final_link may have
7831 cleared the SEC_HAS_CONTENTS field. We force it back on here
7832 if appropriate (which it normally will be). */
7833 origflags = msec->flags;
7834 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7835 msec->flags |= SEC_HAS_CONTENTS;
7836
7837 fi = elf_tdata (abfd)->find_line_info;
7838 if (fi == NULL)
7839 {
7840 bfd_size_type external_fdr_size;
7841 char *fraw_src;
7842 char *fraw_end;
7843 struct fdr *fdr_ptr;
7844 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7845
7846 fi = bfd_zalloc (abfd, amt);
7847 if (fi == NULL)
7848 {
7849 msec->flags = origflags;
7850 return FALSE;
7851 }
7852
7853 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7854 {
7855 msec->flags = origflags;
7856 return FALSE;
7857 }
7858
7859 /* Swap in the FDR information. */
7860 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7861 fi->d.fdr = bfd_alloc (abfd, amt);
7862 if (fi->d.fdr == NULL)
7863 {
7864 msec->flags = origflags;
7865 return FALSE;
7866 }
7867 external_fdr_size = swap->external_fdr_size;
7868 fdr_ptr = fi->d.fdr;
7869 fraw_src = (char *) fi->d.external_fdr;
7870 fraw_end = (fraw_src
7871 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7872 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7873 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
7874
7875 elf_tdata (abfd)->find_line_info = fi;
7876
7877 /* Note that we don't bother to ever free this information.
7878 find_nearest_line is either called all the time, as in
7879 objdump -l, so the information should be saved, or it is
7880 rarely called, as in ld error messages, so the memory
7881 wasted is unimportant. Still, it would probably be a
7882 good idea for free_cached_info to throw it away. */
7883 }
7884
7885 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7886 &fi->i, filename_ptr, functionname_ptr,
7887 line_ptr))
7888 {
7889 msec->flags = origflags;
7890 return TRUE;
7891 }
7892
7893 msec->flags = origflags;
7894 }
7895
7896 /* Fall back on the generic ELF find_nearest_line routine. */
7897
7898 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7899 filename_ptr, functionname_ptr,
7900 line_ptr);
7901 }
7902 \f
7903 /* When are writing out the .options or .MIPS.options section,
7904 remember the bytes we are writing out, so that we can install the
7905 GP value in the section_processing routine. */
7906
7907 bfd_boolean
7908 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7909 const void *location,
7910 file_ptr offset, bfd_size_type count)
7911 {
7912 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7913 {
7914 bfd_byte *c;
7915
7916 if (elf_section_data (section) == NULL)
7917 {
7918 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7919 section->used_by_bfd = bfd_zalloc (abfd, amt);
7920 if (elf_section_data (section) == NULL)
7921 return FALSE;
7922 }
7923 c = mips_elf_section_data (section)->u.tdata;
7924 if (c == NULL)
7925 {
7926 bfd_size_type size;
7927
7928 if (section->_cooked_size != 0)
7929 size = section->_cooked_size;
7930 else
7931 size = section->_raw_size;
7932 c = bfd_zalloc (abfd, size);
7933 if (c == NULL)
7934 return FALSE;
7935 mips_elf_section_data (section)->u.tdata = c;
7936 }
7937
7938 memcpy (c + offset, location, count);
7939 }
7940
7941 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7942 count);
7943 }
7944
7945 /* This is almost identical to bfd_generic_get_... except that some
7946 MIPS relocations need to be handled specially. Sigh. */
7947
7948 bfd_byte *
7949 _bfd_elf_mips_get_relocated_section_contents
7950 (bfd *abfd,
7951 struct bfd_link_info *link_info,
7952 struct bfd_link_order *link_order,
7953 bfd_byte *data,
7954 bfd_boolean relocatable,
7955 asymbol **symbols)
7956 {
7957 /* Get enough memory to hold the stuff */
7958 bfd *input_bfd = link_order->u.indirect.section->owner;
7959 asection *input_section = link_order->u.indirect.section;
7960
7961 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7962 arelent **reloc_vector = NULL;
7963 long reloc_count;
7964
7965 if (reloc_size < 0)
7966 goto error_return;
7967
7968 reloc_vector = bfd_malloc (reloc_size);
7969 if (reloc_vector == NULL && reloc_size != 0)
7970 goto error_return;
7971
7972 /* read in the section */
7973 if (!bfd_get_section_contents (input_bfd, input_section, data, 0,
7974 input_section->_raw_size))
7975 goto error_return;
7976
7977 /* We're not relaxing the section, so just copy the size info */
7978 input_section->_cooked_size = input_section->_raw_size;
7979 input_section->reloc_done = TRUE;
7980
7981 reloc_count = bfd_canonicalize_reloc (input_bfd,
7982 input_section,
7983 reloc_vector,
7984 symbols);
7985 if (reloc_count < 0)
7986 goto error_return;
7987
7988 if (reloc_count > 0)
7989 {
7990 arelent **parent;
7991 /* for mips */
7992 int gp_found;
7993 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7994
7995 {
7996 struct bfd_hash_entry *h;
7997 struct bfd_link_hash_entry *lh;
7998 /* Skip all this stuff if we aren't mixing formats. */
7999 if (abfd && input_bfd
8000 && abfd->xvec == input_bfd->xvec)
8001 lh = 0;
8002 else
8003 {
8004 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
8005 lh = (struct bfd_link_hash_entry *) h;
8006 }
8007 lookup:
8008 if (lh)
8009 {
8010 switch (lh->type)
8011 {
8012 case bfd_link_hash_undefined:
8013 case bfd_link_hash_undefweak:
8014 case bfd_link_hash_common:
8015 gp_found = 0;
8016 break;
8017 case bfd_link_hash_defined:
8018 case bfd_link_hash_defweak:
8019 gp_found = 1;
8020 gp = lh->u.def.value;
8021 break;
8022 case bfd_link_hash_indirect:
8023 case bfd_link_hash_warning:
8024 lh = lh->u.i.link;
8025 /* @@FIXME ignoring warning for now */
8026 goto lookup;
8027 case bfd_link_hash_new:
8028 default:
8029 abort ();
8030 }
8031 }
8032 else
8033 gp_found = 0;
8034 }
8035 /* end mips */
8036 for (parent = reloc_vector; *parent != NULL; parent++)
8037 {
8038 char *error_message = NULL;
8039 bfd_reloc_status_type r;
8040
8041 /* Specific to MIPS: Deal with relocation types that require
8042 knowing the gp of the output bfd. */
8043 asymbol *sym = *(*parent)->sym_ptr_ptr;
8044 if (bfd_is_abs_section (sym->section) && abfd)
8045 {
8046 /* The special_function wouldn't get called anyway. */
8047 }
8048 else if (!gp_found)
8049 {
8050 /* The gp isn't there; let the special function code
8051 fall over on its own. */
8052 }
8053 else if ((*parent)->howto->special_function
8054 == _bfd_mips_elf32_gprel16_reloc)
8055 {
8056 /* bypass special_function call */
8057 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8058 input_section, relocatable,
8059 data, gp);
8060 goto skip_bfd_perform_relocation;
8061 }
8062 /* end mips specific stuff */
8063
8064 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8065 relocatable ? abfd : NULL,
8066 &error_message);
8067 skip_bfd_perform_relocation:
8068
8069 if (relocatable)
8070 {
8071 asection *os = input_section->output_section;
8072
8073 /* A partial link, so keep the relocs */
8074 os->orelocation[os->reloc_count] = *parent;
8075 os->reloc_count++;
8076 }
8077
8078 if (r != bfd_reloc_ok)
8079 {
8080 switch (r)
8081 {
8082 case bfd_reloc_undefined:
8083 if (!((*link_info->callbacks->undefined_symbol)
8084 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8085 input_bfd, input_section, (*parent)->address,
8086 TRUE)))
8087 goto error_return;
8088 break;
8089 case bfd_reloc_dangerous:
8090 BFD_ASSERT (error_message != NULL);
8091 if (!((*link_info->callbacks->reloc_dangerous)
8092 (link_info, error_message, input_bfd, input_section,
8093 (*parent)->address)))
8094 goto error_return;
8095 break;
8096 case bfd_reloc_overflow:
8097 if (!((*link_info->callbacks->reloc_overflow)
8098 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8099 (*parent)->howto->name, (*parent)->addend,
8100 input_bfd, input_section, (*parent)->address)))
8101 goto error_return;
8102 break;
8103 case bfd_reloc_outofrange:
8104 default:
8105 abort ();
8106 break;
8107 }
8108
8109 }
8110 }
8111 }
8112 if (reloc_vector != NULL)
8113 free (reloc_vector);
8114 return data;
8115
8116 error_return:
8117 if (reloc_vector != NULL)
8118 free (reloc_vector);
8119 return NULL;
8120 }
8121 \f
8122 /* Create a MIPS ELF linker hash table. */
8123
8124 struct bfd_link_hash_table *
8125 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8126 {
8127 struct mips_elf_link_hash_table *ret;
8128 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8129
8130 ret = bfd_malloc (amt);
8131 if (ret == NULL)
8132 return NULL;
8133
8134 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8135 mips_elf_link_hash_newfunc))
8136 {
8137 free (ret);
8138 return NULL;
8139 }
8140
8141 #if 0
8142 /* We no longer use this. */
8143 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8144 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8145 #endif
8146 ret->procedure_count = 0;
8147 ret->compact_rel_size = 0;
8148 ret->use_rld_obj_head = FALSE;
8149 ret->rld_value = 0;
8150 ret->mips16_stubs_seen = FALSE;
8151
8152 return &ret->root.root;
8153 }
8154 \f
8155 /* We need to use a special link routine to handle the .reginfo and
8156 the .mdebug sections. We need to merge all instances of these
8157 sections together, not write them all out sequentially. */
8158
8159 bfd_boolean
8160 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8161 {
8162 asection **secpp;
8163 asection *o;
8164 struct bfd_link_order *p;
8165 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8166 asection *rtproc_sec;
8167 Elf32_RegInfo reginfo;
8168 struct ecoff_debug_info debug;
8169 const struct ecoff_debug_swap *swap
8170 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8171 HDRR *symhdr = &debug.symbolic_header;
8172 void *mdebug_handle = NULL;
8173 asection *s;
8174 EXTR esym;
8175 unsigned int i;
8176 bfd_size_type amt;
8177
8178 static const char * const secname[] =
8179 {
8180 ".text", ".init", ".fini", ".data",
8181 ".rodata", ".sdata", ".sbss", ".bss"
8182 };
8183 static const int sc[] =
8184 {
8185 scText, scInit, scFini, scData,
8186 scRData, scSData, scSBss, scBss
8187 };
8188
8189 /* We'd carefully arranged the dynamic symbol indices, and then the
8190 generic size_dynamic_sections renumbered them out from under us.
8191 Rather than trying somehow to prevent the renumbering, just do
8192 the sort again. */
8193 if (elf_hash_table (info)->dynamic_sections_created)
8194 {
8195 bfd *dynobj;
8196 asection *got;
8197 struct mips_got_info *g;
8198
8199 /* When we resort, we must tell mips_elf_sort_hash_table what
8200 the lowest index it may use is. That's the number of section
8201 symbols we're going to add. The generic ELF linker only
8202 adds these symbols when building a shared object. Note that
8203 we count the sections after (possibly) removing the .options
8204 section above. */
8205 if (! mips_elf_sort_hash_table (info, (info->shared
8206 ? bfd_count_sections (abfd) + 1
8207 : 1)))
8208 return FALSE;
8209
8210 /* Make sure we didn't grow the global .got region. */
8211 dynobj = elf_hash_table (info)->dynobj;
8212 got = mips_elf_got_section (dynobj, FALSE);
8213 g = mips_elf_section_data (got)->u.got_info;
8214
8215 if (g->global_gotsym != NULL)
8216 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8217 - g->global_gotsym->dynindx)
8218 <= g->global_gotno);
8219 }
8220
8221 #if 0
8222 /* We want to set the GP value for ld -r. */
8223 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8224 include it, even though we don't process it quite right. (Some
8225 entries are supposed to be merged.) Empirically, we seem to be
8226 better off including it then not. */
8227 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8228 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8229 {
8230 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8231 {
8232 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8233 if (p->type == bfd_indirect_link_order)
8234 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8235 (*secpp)->link_order_head = NULL;
8236 bfd_section_list_remove (abfd, secpp);
8237 --abfd->section_count;
8238
8239 break;
8240 }
8241 }
8242
8243 /* We include .MIPS.options, even though we don't process it quite right.
8244 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8245 to be better off including it than not. */
8246 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8247 {
8248 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8249 {
8250 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8251 if (p->type == bfd_indirect_link_order)
8252 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8253 (*secpp)->link_order_head = NULL;
8254 bfd_section_list_remove (abfd, secpp);
8255 --abfd->section_count;
8256
8257 break;
8258 }
8259 }
8260 #endif
8261
8262 /* Get a value for the GP register. */
8263 if (elf_gp (abfd) == 0)
8264 {
8265 struct bfd_link_hash_entry *h;
8266
8267 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8268 if (h != NULL && h->type == bfd_link_hash_defined)
8269 elf_gp (abfd) = (h->u.def.value
8270 + h->u.def.section->output_section->vma
8271 + h->u.def.section->output_offset);
8272 else if (info->relocatable)
8273 {
8274 bfd_vma lo = MINUS_ONE;
8275
8276 /* Find the GP-relative section with the lowest offset. */
8277 for (o = abfd->sections; o != NULL; o = o->next)
8278 if (o->vma < lo
8279 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8280 lo = o->vma;
8281
8282 /* And calculate GP relative to that. */
8283 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8284 }
8285 else
8286 {
8287 /* If the relocate_section function needs to do a reloc
8288 involving the GP value, it should make a reloc_dangerous
8289 callback to warn that GP is not defined. */
8290 }
8291 }
8292
8293 /* Go through the sections and collect the .reginfo and .mdebug
8294 information. */
8295 reginfo_sec = NULL;
8296 mdebug_sec = NULL;
8297 gptab_data_sec = NULL;
8298 gptab_bss_sec = NULL;
8299 for (o = abfd->sections; o != NULL; o = o->next)
8300 {
8301 if (strcmp (o->name, ".reginfo") == 0)
8302 {
8303 memset (&reginfo, 0, sizeof reginfo);
8304
8305 /* We have found the .reginfo section in the output file.
8306 Look through all the link_orders comprising it and merge
8307 the information together. */
8308 for (p = o->link_order_head; p != NULL; p = p->next)
8309 {
8310 asection *input_section;
8311 bfd *input_bfd;
8312 Elf32_External_RegInfo ext;
8313 Elf32_RegInfo sub;
8314
8315 if (p->type != bfd_indirect_link_order)
8316 {
8317 if (p->type == bfd_data_link_order)
8318 continue;
8319 abort ();
8320 }
8321
8322 input_section = p->u.indirect.section;
8323 input_bfd = input_section->owner;
8324
8325 /* The linker emulation code has probably clobbered the
8326 size to be zero bytes. */
8327 if (input_section->_raw_size == 0)
8328 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8329
8330 if (! bfd_get_section_contents (input_bfd, input_section,
8331 &ext, 0, sizeof ext))
8332 return FALSE;
8333
8334 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8335
8336 reginfo.ri_gprmask |= sub.ri_gprmask;
8337 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8338 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8339 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8340 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8341
8342 /* ri_gp_value is set by the function
8343 mips_elf32_section_processing when the section is
8344 finally written out. */
8345
8346 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8347 elf_link_input_bfd ignores this section. */
8348 input_section->flags &= ~SEC_HAS_CONTENTS;
8349 }
8350
8351 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8352 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8353
8354 /* Skip this section later on (I don't think this currently
8355 matters, but someday it might). */
8356 o->link_order_head = NULL;
8357
8358 reginfo_sec = o;
8359 }
8360
8361 if (strcmp (o->name, ".mdebug") == 0)
8362 {
8363 struct extsym_info einfo;
8364 bfd_vma last;
8365
8366 /* We have found the .mdebug section in the output file.
8367 Look through all the link_orders comprising it and merge
8368 the information together. */
8369 symhdr->magic = swap->sym_magic;
8370 /* FIXME: What should the version stamp be? */
8371 symhdr->vstamp = 0;
8372 symhdr->ilineMax = 0;
8373 symhdr->cbLine = 0;
8374 symhdr->idnMax = 0;
8375 symhdr->ipdMax = 0;
8376 symhdr->isymMax = 0;
8377 symhdr->ioptMax = 0;
8378 symhdr->iauxMax = 0;
8379 symhdr->issMax = 0;
8380 symhdr->issExtMax = 0;
8381 symhdr->ifdMax = 0;
8382 symhdr->crfd = 0;
8383 symhdr->iextMax = 0;
8384
8385 /* We accumulate the debugging information itself in the
8386 debug_info structure. */
8387 debug.line = NULL;
8388 debug.external_dnr = NULL;
8389 debug.external_pdr = NULL;
8390 debug.external_sym = NULL;
8391 debug.external_opt = NULL;
8392 debug.external_aux = NULL;
8393 debug.ss = NULL;
8394 debug.ssext = debug.ssext_end = NULL;
8395 debug.external_fdr = NULL;
8396 debug.external_rfd = NULL;
8397 debug.external_ext = debug.external_ext_end = NULL;
8398
8399 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8400 if (mdebug_handle == NULL)
8401 return FALSE;
8402
8403 esym.jmptbl = 0;
8404 esym.cobol_main = 0;
8405 esym.weakext = 0;
8406 esym.reserved = 0;
8407 esym.ifd = ifdNil;
8408 esym.asym.iss = issNil;
8409 esym.asym.st = stLocal;
8410 esym.asym.reserved = 0;
8411 esym.asym.index = indexNil;
8412 last = 0;
8413 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8414 {
8415 esym.asym.sc = sc[i];
8416 s = bfd_get_section_by_name (abfd, secname[i]);
8417 if (s != NULL)
8418 {
8419 esym.asym.value = s->vma;
8420 last = s->vma + s->_raw_size;
8421 }
8422 else
8423 esym.asym.value = last;
8424 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8425 secname[i], &esym))
8426 return FALSE;
8427 }
8428
8429 for (p = o->link_order_head; p != NULL; p = p->next)
8430 {
8431 asection *input_section;
8432 bfd *input_bfd;
8433 const struct ecoff_debug_swap *input_swap;
8434 struct ecoff_debug_info input_debug;
8435 char *eraw_src;
8436 char *eraw_end;
8437
8438 if (p->type != bfd_indirect_link_order)
8439 {
8440 if (p->type == bfd_data_link_order)
8441 continue;
8442 abort ();
8443 }
8444
8445 input_section = p->u.indirect.section;
8446 input_bfd = input_section->owner;
8447
8448 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8449 || (get_elf_backend_data (input_bfd)
8450 ->elf_backend_ecoff_debug_swap) == NULL)
8451 {
8452 /* I don't know what a non MIPS ELF bfd would be
8453 doing with a .mdebug section, but I don't really
8454 want to deal with it. */
8455 continue;
8456 }
8457
8458 input_swap = (get_elf_backend_data (input_bfd)
8459 ->elf_backend_ecoff_debug_swap);
8460
8461 BFD_ASSERT (p->size == input_section->_raw_size);
8462
8463 /* The ECOFF linking code expects that we have already
8464 read in the debugging information and set up an
8465 ecoff_debug_info structure, so we do that now. */
8466 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8467 &input_debug))
8468 return FALSE;
8469
8470 if (! (bfd_ecoff_debug_accumulate
8471 (mdebug_handle, abfd, &debug, swap, input_bfd,
8472 &input_debug, input_swap, info)))
8473 return FALSE;
8474
8475 /* Loop through the external symbols. For each one with
8476 interesting information, try to find the symbol in
8477 the linker global hash table and save the information
8478 for the output external symbols. */
8479 eraw_src = input_debug.external_ext;
8480 eraw_end = (eraw_src
8481 + (input_debug.symbolic_header.iextMax
8482 * input_swap->external_ext_size));
8483 for (;
8484 eraw_src < eraw_end;
8485 eraw_src += input_swap->external_ext_size)
8486 {
8487 EXTR ext;
8488 const char *name;
8489 struct mips_elf_link_hash_entry *h;
8490
8491 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
8492 if (ext.asym.sc == scNil
8493 || ext.asym.sc == scUndefined
8494 || ext.asym.sc == scSUndefined)
8495 continue;
8496
8497 name = input_debug.ssext + ext.asym.iss;
8498 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8499 name, FALSE, FALSE, TRUE);
8500 if (h == NULL || h->esym.ifd != -2)
8501 continue;
8502
8503 if (ext.ifd != -1)
8504 {
8505 BFD_ASSERT (ext.ifd
8506 < input_debug.symbolic_header.ifdMax);
8507 ext.ifd = input_debug.ifdmap[ext.ifd];
8508 }
8509
8510 h->esym = ext;
8511 }
8512
8513 /* Free up the information we just read. */
8514 free (input_debug.line);
8515 free (input_debug.external_dnr);
8516 free (input_debug.external_pdr);
8517 free (input_debug.external_sym);
8518 free (input_debug.external_opt);
8519 free (input_debug.external_aux);
8520 free (input_debug.ss);
8521 free (input_debug.ssext);
8522 free (input_debug.external_fdr);
8523 free (input_debug.external_rfd);
8524 free (input_debug.external_ext);
8525
8526 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8527 elf_link_input_bfd ignores this section. */
8528 input_section->flags &= ~SEC_HAS_CONTENTS;
8529 }
8530
8531 if (SGI_COMPAT (abfd) && info->shared)
8532 {
8533 /* Create .rtproc section. */
8534 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8535 if (rtproc_sec == NULL)
8536 {
8537 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8538 | SEC_LINKER_CREATED | SEC_READONLY);
8539
8540 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8541 if (rtproc_sec == NULL
8542 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8543 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8544 return FALSE;
8545 }
8546
8547 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8548 info, rtproc_sec,
8549 &debug))
8550 return FALSE;
8551 }
8552
8553 /* Build the external symbol information. */
8554 einfo.abfd = abfd;
8555 einfo.info = info;
8556 einfo.debug = &debug;
8557 einfo.swap = swap;
8558 einfo.failed = FALSE;
8559 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8560 mips_elf_output_extsym, &einfo);
8561 if (einfo.failed)
8562 return FALSE;
8563
8564 /* Set the size of the .mdebug section. */
8565 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8566
8567 /* Skip this section later on (I don't think this currently
8568 matters, but someday it might). */
8569 o->link_order_head = NULL;
8570
8571 mdebug_sec = o;
8572 }
8573
8574 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8575 {
8576 const char *subname;
8577 unsigned int c;
8578 Elf32_gptab *tab;
8579 Elf32_External_gptab *ext_tab;
8580 unsigned int j;
8581
8582 /* The .gptab.sdata and .gptab.sbss sections hold
8583 information describing how the small data area would
8584 change depending upon the -G switch. These sections
8585 not used in executables files. */
8586 if (! info->relocatable)
8587 {
8588 for (p = o->link_order_head; p != NULL; p = p->next)
8589 {
8590 asection *input_section;
8591
8592 if (p->type != bfd_indirect_link_order)
8593 {
8594 if (p->type == bfd_data_link_order)
8595 continue;
8596 abort ();
8597 }
8598
8599 input_section = p->u.indirect.section;
8600
8601 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8602 elf_link_input_bfd ignores this section. */
8603 input_section->flags &= ~SEC_HAS_CONTENTS;
8604 }
8605
8606 /* Skip this section later on (I don't think this
8607 currently matters, but someday it might). */
8608 o->link_order_head = NULL;
8609
8610 /* Really remove the section. */
8611 for (secpp = &abfd->sections;
8612 *secpp != o;
8613 secpp = &(*secpp)->next)
8614 ;
8615 bfd_section_list_remove (abfd, secpp);
8616 --abfd->section_count;
8617
8618 continue;
8619 }
8620
8621 /* There is one gptab for initialized data, and one for
8622 uninitialized data. */
8623 if (strcmp (o->name, ".gptab.sdata") == 0)
8624 gptab_data_sec = o;
8625 else if (strcmp (o->name, ".gptab.sbss") == 0)
8626 gptab_bss_sec = o;
8627 else
8628 {
8629 (*_bfd_error_handler)
8630 (_("%s: illegal section name `%s'"),
8631 bfd_get_filename (abfd), o->name);
8632 bfd_set_error (bfd_error_nonrepresentable_section);
8633 return FALSE;
8634 }
8635
8636 /* The linker script always combines .gptab.data and
8637 .gptab.sdata into .gptab.sdata, and likewise for
8638 .gptab.bss and .gptab.sbss. It is possible that there is
8639 no .sdata or .sbss section in the output file, in which
8640 case we must change the name of the output section. */
8641 subname = o->name + sizeof ".gptab" - 1;
8642 if (bfd_get_section_by_name (abfd, subname) == NULL)
8643 {
8644 if (o == gptab_data_sec)
8645 o->name = ".gptab.data";
8646 else
8647 o->name = ".gptab.bss";
8648 subname = o->name + sizeof ".gptab" - 1;
8649 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8650 }
8651
8652 /* Set up the first entry. */
8653 c = 1;
8654 amt = c * sizeof (Elf32_gptab);
8655 tab = bfd_malloc (amt);
8656 if (tab == NULL)
8657 return FALSE;
8658 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8659 tab[0].gt_header.gt_unused = 0;
8660
8661 /* Combine the input sections. */
8662 for (p = o->link_order_head; p != NULL; p = p->next)
8663 {
8664 asection *input_section;
8665 bfd *input_bfd;
8666 bfd_size_type size;
8667 unsigned long last;
8668 bfd_size_type gpentry;
8669
8670 if (p->type != bfd_indirect_link_order)
8671 {
8672 if (p->type == bfd_data_link_order)
8673 continue;
8674 abort ();
8675 }
8676
8677 input_section = p->u.indirect.section;
8678 input_bfd = input_section->owner;
8679
8680 /* Combine the gptab entries for this input section one
8681 by one. We know that the input gptab entries are
8682 sorted by ascending -G value. */
8683 size = bfd_section_size (input_bfd, input_section);
8684 last = 0;
8685 for (gpentry = sizeof (Elf32_External_gptab);
8686 gpentry < size;
8687 gpentry += sizeof (Elf32_External_gptab))
8688 {
8689 Elf32_External_gptab ext_gptab;
8690 Elf32_gptab int_gptab;
8691 unsigned long val;
8692 unsigned long add;
8693 bfd_boolean exact;
8694 unsigned int look;
8695
8696 if (! (bfd_get_section_contents
8697 (input_bfd, input_section, &ext_gptab, gpentry,
8698 sizeof (Elf32_External_gptab))))
8699 {
8700 free (tab);
8701 return FALSE;
8702 }
8703
8704 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8705 &int_gptab);
8706 val = int_gptab.gt_entry.gt_g_value;
8707 add = int_gptab.gt_entry.gt_bytes - last;
8708
8709 exact = FALSE;
8710 for (look = 1; look < c; look++)
8711 {
8712 if (tab[look].gt_entry.gt_g_value >= val)
8713 tab[look].gt_entry.gt_bytes += add;
8714
8715 if (tab[look].gt_entry.gt_g_value == val)
8716 exact = TRUE;
8717 }
8718
8719 if (! exact)
8720 {
8721 Elf32_gptab *new_tab;
8722 unsigned int max;
8723
8724 /* We need a new table entry. */
8725 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8726 new_tab = bfd_realloc (tab, amt);
8727 if (new_tab == NULL)
8728 {
8729 free (tab);
8730 return FALSE;
8731 }
8732 tab = new_tab;
8733 tab[c].gt_entry.gt_g_value = val;
8734 tab[c].gt_entry.gt_bytes = add;
8735
8736 /* Merge in the size for the next smallest -G
8737 value, since that will be implied by this new
8738 value. */
8739 max = 0;
8740 for (look = 1; look < c; look++)
8741 {
8742 if (tab[look].gt_entry.gt_g_value < val
8743 && (max == 0
8744 || (tab[look].gt_entry.gt_g_value
8745 > tab[max].gt_entry.gt_g_value)))
8746 max = look;
8747 }
8748 if (max != 0)
8749 tab[c].gt_entry.gt_bytes +=
8750 tab[max].gt_entry.gt_bytes;
8751
8752 ++c;
8753 }
8754
8755 last = int_gptab.gt_entry.gt_bytes;
8756 }
8757
8758 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8759 elf_link_input_bfd ignores this section. */
8760 input_section->flags &= ~SEC_HAS_CONTENTS;
8761 }
8762
8763 /* The table must be sorted by -G value. */
8764 if (c > 2)
8765 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8766
8767 /* Swap out the table. */
8768 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8769 ext_tab = bfd_alloc (abfd, amt);
8770 if (ext_tab == NULL)
8771 {
8772 free (tab);
8773 return FALSE;
8774 }
8775
8776 for (j = 0; j < c; j++)
8777 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8778 free (tab);
8779
8780 o->_raw_size = c * sizeof (Elf32_External_gptab);
8781 o->contents = (bfd_byte *) ext_tab;
8782
8783 /* Skip this section later on (I don't think this currently
8784 matters, but someday it might). */
8785 o->link_order_head = NULL;
8786 }
8787 }
8788
8789 /* Invoke the regular ELF backend linker to do all the work. */
8790 if (!bfd_elf_final_link (abfd, info))
8791 return FALSE;
8792
8793 /* Now write out the computed sections. */
8794
8795 if (reginfo_sec != NULL)
8796 {
8797 Elf32_External_RegInfo ext;
8798
8799 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8800 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
8801 return FALSE;
8802 }
8803
8804 if (mdebug_sec != NULL)
8805 {
8806 BFD_ASSERT (abfd->output_has_begun);
8807 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8808 swap, info,
8809 mdebug_sec->filepos))
8810 return FALSE;
8811
8812 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8813 }
8814
8815 if (gptab_data_sec != NULL)
8816 {
8817 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8818 gptab_data_sec->contents,
8819 0, gptab_data_sec->_raw_size))
8820 return FALSE;
8821 }
8822
8823 if (gptab_bss_sec != NULL)
8824 {
8825 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8826 gptab_bss_sec->contents,
8827 0, gptab_bss_sec->_raw_size))
8828 return FALSE;
8829 }
8830
8831 if (SGI_COMPAT (abfd))
8832 {
8833 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8834 if (rtproc_sec != NULL)
8835 {
8836 if (! bfd_set_section_contents (abfd, rtproc_sec,
8837 rtproc_sec->contents,
8838 0, rtproc_sec->_raw_size))
8839 return FALSE;
8840 }
8841 }
8842
8843 return TRUE;
8844 }
8845 \f
8846 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8847
8848 struct mips_mach_extension {
8849 unsigned long extension, base;
8850 };
8851
8852
8853 /* An array describing how BFD machines relate to one another. The entries
8854 are ordered topologically with MIPS I extensions listed last. */
8855
8856 static const struct mips_mach_extension mips_mach_extensions[] = {
8857 /* MIPS64 extensions. */
8858 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
8859 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8860
8861 /* MIPS V extensions. */
8862 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8863
8864 /* R10000 extensions. */
8865 { bfd_mach_mips12000, bfd_mach_mips10000 },
8866
8867 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8868 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8869 better to allow vr5400 and vr5500 code to be merged anyway, since
8870 many libraries will just use the core ISA. Perhaps we could add
8871 some sort of ASE flag if this ever proves a problem. */
8872 { bfd_mach_mips5500, bfd_mach_mips5400 },
8873 { bfd_mach_mips5400, bfd_mach_mips5000 },
8874
8875 /* MIPS IV extensions. */
8876 { bfd_mach_mips5, bfd_mach_mips8000 },
8877 { bfd_mach_mips10000, bfd_mach_mips8000 },
8878 { bfd_mach_mips5000, bfd_mach_mips8000 },
8879 { bfd_mach_mips7000, bfd_mach_mips8000 },
8880
8881 /* VR4100 extensions. */
8882 { bfd_mach_mips4120, bfd_mach_mips4100 },
8883 { bfd_mach_mips4111, bfd_mach_mips4100 },
8884
8885 /* MIPS III extensions. */
8886 { bfd_mach_mips8000, bfd_mach_mips4000 },
8887 { bfd_mach_mips4650, bfd_mach_mips4000 },
8888 { bfd_mach_mips4600, bfd_mach_mips4000 },
8889 { bfd_mach_mips4400, bfd_mach_mips4000 },
8890 { bfd_mach_mips4300, bfd_mach_mips4000 },
8891 { bfd_mach_mips4100, bfd_mach_mips4000 },
8892 { bfd_mach_mips4010, bfd_mach_mips4000 },
8893
8894 /* MIPS32 extensions. */
8895 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8896
8897 /* MIPS II extensions. */
8898 { bfd_mach_mips4000, bfd_mach_mips6000 },
8899 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8900
8901 /* MIPS I extensions. */
8902 { bfd_mach_mips6000, bfd_mach_mips3000 },
8903 { bfd_mach_mips3900, bfd_mach_mips3000 }
8904 };
8905
8906
8907 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8908
8909 static bfd_boolean
8910 mips_mach_extends_p (unsigned long base, unsigned long extension)
8911 {
8912 size_t i;
8913
8914 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8915 if (extension == mips_mach_extensions[i].extension)
8916 extension = mips_mach_extensions[i].base;
8917
8918 return extension == base;
8919 }
8920
8921
8922 /* Return true if the given ELF header flags describe a 32-bit binary. */
8923
8924 static bfd_boolean
8925 mips_32bit_flags_p (flagword flags)
8926 {
8927 return ((flags & EF_MIPS_32BITMODE) != 0
8928 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8929 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8930 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8931 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8932 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8933 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8934 }
8935
8936
8937 /* Merge backend specific data from an object file to the output
8938 object file when linking. */
8939
8940 bfd_boolean
8941 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
8942 {
8943 flagword old_flags;
8944 flagword new_flags;
8945 bfd_boolean ok;
8946 bfd_boolean null_input_bfd = TRUE;
8947 asection *sec;
8948
8949 /* Check if we have the same endianess */
8950 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8951 {
8952 (*_bfd_error_handler)
8953 (_("%s: endianness incompatible with that of the selected emulation"),
8954 bfd_archive_filename (ibfd));
8955 return FALSE;
8956 }
8957
8958 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8959 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8960 return TRUE;
8961
8962 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8963 {
8964 (*_bfd_error_handler)
8965 (_("%s: ABI is incompatible with that of the selected emulation"),
8966 bfd_archive_filename (ibfd));
8967 return FALSE;
8968 }
8969
8970 new_flags = elf_elfheader (ibfd)->e_flags;
8971 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8972 old_flags = elf_elfheader (obfd)->e_flags;
8973
8974 if (! elf_flags_init (obfd))
8975 {
8976 elf_flags_init (obfd) = TRUE;
8977 elf_elfheader (obfd)->e_flags = new_flags;
8978 elf_elfheader (obfd)->e_ident[EI_CLASS]
8979 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8980
8981 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8982 && bfd_get_arch_info (obfd)->the_default)
8983 {
8984 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8985 bfd_get_mach (ibfd)))
8986 return FALSE;
8987 }
8988
8989 return TRUE;
8990 }
8991
8992 /* Check flag compatibility. */
8993
8994 new_flags &= ~EF_MIPS_NOREORDER;
8995 old_flags &= ~EF_MIPS_NOREORDER;
8996
8997 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8998 doesn't seem to matter. */
8999 new_flags &= ~EF_MIPS_XGOT;
9000 old_flags &= ~EF_MIPS_XGOT;
9001
9002 /* MIPSpro generates ucode info in n64 objects. Again, we should
9003 just be able to ignore this. */
9004 new_flags &= ~EF_MIPS_UCODE;
9005 old_flags &= ~EF_MIPS_UCODE;
9006
9007 if (new_flags == old_flags)
9008 return TRUE;
9009
9010 /* Check to see if the input BFD actually contains any sections.
9011 If not, its flags may not have been initialised either, but it cannot
9012 actually cause any incompatibility. */
9013 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9014 {
9015 /* Ignore synthetic sections and empty .text, .data and .bss sections
9016 which are automatically generated by gas. */
9017 if (strcmp (sec->name, ".reginfo")
9018 && strcmp (sec->name, ".mdebug")
9019 && (sec->_raw_size != 0
9020 || (strcmp (sec->name, ".text")
9021 && strcmp (sec->name, ".data")
9022 && strcmp (sec->name, ".bss"))))
9023 {
9024 null_input_bfd = FALSE;
9025 break;
9026 }
9027 }
9028 if (null_input_bfd)
9029 return TRUE;
9030
9031 ok = TRUE;
9032
9033 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9034 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
9035 {
9036 (*_bfd_error_handler)
9037 (_("%s: warning: linking PIC files with non-PIC files"),
9038 bfd_archive_filename (ibfd));
9039 ok = TRUE;
9040 }
9041
9042 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9043 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9044 if (! (new_flags & EF_MIPS_PIC))
9045 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9046
9047 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9048 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9049
9050 /* Compare the ISAs. */
9051 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9052 {
9053 (*_bfd_error_handler)
9054 (_("%s: linking 32-bit code with 64-bit code"),
9055 bfd_archive_filename (ibfd));
9056 ok = FALSE;
9057 }
9058 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9059 {
9060 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9061 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9062 {
9063 /* Copy the architecture info from IBFD to OBFD. Also copy
9064 the 32-bit flag (if set) so that we continue to recognise
9065 OBFD as a 32-bit binary. */
9066 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9067 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9068 elf_elfheader (obfd)->e_flags
9069 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9070
9071 /* Copy across the ABI flags if OBFD doesn't use them
9072 and if that was what caused us to treat IBFD as 32-bit. */
9073 if ((old_flags & EF_MIPS_ABI) == 0
9074 && mips_32bit_flags_p (new_flags)
9075 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9076 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9077 }
9078 else
9079 {
9080 /* The ISAs aren't compatible. */
9081 (*_bfd_error_handler)
9082 (_("%s: linking %s module with previous %s modules"),
9083 bfd_archive_filename (ibfd),
9084 bfd_printable_name (ibfd),
9085 bfd_printable_name (obfd));
9086 ok = FALSE;
9087 }
9088 }
9089
9090 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9091 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9092
9093 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9094 does set EI_CLASS differently from any 32-bit ABI. */
9095 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9096 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9097 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9098 {
9099 /* Only error if both are set (to different values). */
9100 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9101 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9102 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9103 {
9104 (*_bfd_error_handler)
9105 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9106 bfd_archive_filename (ibfd),
9107 elf_mips_abi_name (ibfd),
9108 elf_mips_abi_name (obfd));
9109 ok = FALSE;
9110 }
9111 new_flags &= ~EF_MIPS_ABI;
9112 old_flags &= ~EF_MIPS_ABI;
9113 }
9114
9115 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9116 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9117 {
9118 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9119
9120 new_flags &= ~ EF_MIPS_ARCH_ASE;
9121 old_flags &= ~ EF_MIPS_ARCH_ASE;
9122 }
9123
9124 /* Warn about any other mismatches */
9125 if (new_flags != old_flags)
9126 {
9127 (*_bfd_error_handler)
9128 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9129 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9130 (unsigned long) old_flags);
9131 ok = FALSE;
9132 }
9133
9134 if (! ok)
9135 {
9136 bfd_set_error (bfd_error_bad_value);
9137 return FALSE;
9138 }
9139
9140 return TRUE;
9141 }
9142
9143 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9144
9145 bfd_boolean
9146 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9147 {
9148 BFD_ASSERT (!elf_flags_init (abfd)
9149 || elf_elfheader (abfd)->e_flags == flags);
9150
9151 elf_elfheader (abfd)->e_flags = flags;
9152 elf_flags_init (abfd) = TRUE;
9153 return TRUE;
9154 }
9155
9156 bfd_boolean
9157 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9158 {
9159 FILE *file = ptr;
9160
9161 BFD_ASSERT (abfd != NULL && ptr != NULL);
9162
9163 /* Print normal ELF private data. */
9164 _bfd_elf_print_private_bfd_data (abfd, ptr);
9165
9166 /* xgettext:c-format */
9167 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9168
9169 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9170 fprintf (file, _(" [abi=O32]"));
9171 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9172 fprintf (file, _(" [abi=O64]"));
9173 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9174 fprintf (file, _(" [abi=EABI32]"));
9175 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9176 fprintf (file, _(" [abi=EABI64]"));
9177 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9178 fprintf (file, _(" [abi unknown]"));
9179 else if (ABI_N32_P (abfd))
9180 fprintf (file, _(" [abi=N32]"));
9181 else if (ABI_64_P (abfd))
9182 fprintf (file, _(" [abi=64]"));
9183 else
9184 fprintf (file, _(" [no abi set]"));
9185
9186 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9187 fprintf (file, _(" [mips1]"));
9188 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9189 fprintf (file, _(" [mips2]"));
9190 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9191 fprintf (file, _(" [mips3]"));
9192 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9193 fprintf (file, _(" [mips4]"));
9194 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9195 fprintf (file, _(" [mips5]"));
9196 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9197 fprintf (file, _(" [mips32]"));
9198 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9199 fprintf (file, _(" [mips64]"));
9200 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9201 fprintf (file, _(" [mips32r2]"));
9202 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9203 fprintf (file, _(" [mips64r2]"));
9204 else
9205 fprintf (file, _(" [unknown ISA]"));
9206
9207 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9208 fprintf (file, _(" [mdmx]"));
9209
9210 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9211 fprintf (file, _(" [mips16]"));
9212
9213 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9214 fprintf (file, _(" [32bitmode]"));
9215 else
9216 fprintf (file, _(" [not 32bitmode]"));
9217
9218 fputc ('\n', file);
9219
9220 return TRUE;
9221 }
9222
9223 struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9224 {
9225 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9226 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9227 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9228 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9229 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9230 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9231 { NULL, 0, 0, 0, 0 }
9232 };
This page took 0.22257 seconds and 4 git commands to generate.