*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29
30 /* This file handles functionality common to the different MIPS ABI's. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
83 {
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
113 };
114
115 /* This structure is used to hold .got information when linking. */
116
117 struct mips_got_info
118 {
119 /* The global symbol in the GOT with the lowest index in the dynamic
120 symbol table. */
121 struct elf_link_hash_entry *global_gotsym;
122 /* The number of global .got entries. */
123 unsigned int global_gotno;
124 /* The number of .got slots used for TLS. */
125 unsigned int tls_gotno;
126 /* The first unused TLS .got entry. Used only during
127 mips_elf_initialize_tls_index. */
128 unsigned int tls_assigned_gotno;
129 /* The number of local .got entries. */
130 unsigned int local_gotno;
131 /* The number of local .got entries we have used. */
132 unsigned int assigned_gotno;
133 /* A hash table holding members of the got. */
134 struct htab *got_entries;
135 /* A hash table mapping input bfds to other mips_got_info. NULL
136 unless multi-got was necessary. */
137 struct htab *bfd2got;
138 /* In multi-got links, a pointer to the next got (err, rather, most
139 of the time, it points to the previous got). */
140 struct mips_got_info *next;
141 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
142 for none, or MINUS_TWO for not yet assigned. This is needed
143 because a single-GOT link may have multiple hash table entries
144 for the LDM. It does not get initialized in multi-GOT mode. */
145 bfd_vma tls_ldm_offset;
146 };
147
148 /* Map an input bfd to a got in a multi-got link. */
149
150 struct mips_elf_bfd2got_hash {
151 bfd *bfd;
152 struct mips_got_info *g;
153 };
154
155 /* Structure passed when traversing the bfd2got hash table, used to
156 create and merge bfd's gots. */
157
158 struct mips_elf_got_per_bfd_arg
159 {
160 /* A hashtable that maps bfds to gots. */
161 htab_t bfd2got;
162 /* The output bfd. */
163 bfd *obfd;
164 /* The link information. */
165 struct bfd_link_info *info;
166 /* A pointer to the primary got, i.e., the one that's going to get
167 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
168 DT_MIPS_GOTSYM. */
169 struct mips_got_info *primary;
170 /* A non-primary got we're trying to merge with other input bfd's
171 gots. */
172 struct mips_got_info *current;
173 /* The maximum number of got entries that can be addressed with a
174 16-bit offset. */
175 unsigned int max_count;
176 /* The number of local and global entries in the primary got. */
177 unsigned int primary_count;
178 /* The number of local and global entries in the current got. */
179 unsigned int current_count;
180 /* The total number of global entries which will live in the
181 primary got and be automatically relocated. This includes
182 those not referenced by the primary GOT but included in
183 the "master" GOT. */
184 unsigned int global_count;
185 };
186
187 /* Another structure used to pass arguments for got entries traversal. */
188
189 struct mips_elf_set_global_got_offset_arg
190 {
191 struct mips_got_info *g;
192 int value;
193 unsigned int needed_relocs;
194 struct bfd_link_info *info;
195 };
196
197 /* A structure used to count TLS relocations or GOT entries, for GOT
198 entry or ELF symbol table traversal. */
199
200 struct mips_elf_count_tls_arg
201 {
202 struct bfd_link_info *info;
203 unsigned int needed;
204 };
205
206 struct _mips_elf_section_data
207 {
208 struct bfd_elf_section_data elf;
209 union
210 {
211 struct mips_got_info *got_info;
212 bfd_byte *tdata;
213 } u;
214 };
215
216 #define mips_elf_section_data(sec) \
217 ((struct _mips_elf_section_data *) elf_section_data (sec))
218
219 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
220 the dynamic symbols. */
221
222 struct mips_elf_hash_sort_data
223 {
224 /* The symbol in the global GOT with the lowest dynamic symbol table
225 index. */
226 struct elf_link_hash_entry *low;
227 /* The least dynamic symbol table index corresponding to a non-TLS
228 symbol with a GOT entry. */
229 long min_got_dynindx;
230 /* The greatest dynamic symbol table index corresponding to a symbol
231 with a GOT entry that is not referenced (e.g., a dynamic symbol
232 with dynamic relocations pointing to it from non-primary GOTs). */
233 long max_unref_got_dynindx;
234 /* The greatest dynamic symbol table index not corresponding to a
235 symbol without a GOT entry. */
236 long max_non_got_dynindx;
237 };
238
239 /* The MIPS ELF linker needs additional information for each symbol in
240 the global hash table. */
241
242 struct mips_elf_link_hash_entry
243 {
244 struct elf_link_hash_entry root;
245
246 /* External symbol information. */
247 EXTR esym;
248
249 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
250 this symbol. */
251 unsigned int possibly_dynamic_relocs;
252
253 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
254 a readonly section. */
255 bfd_boolean readonly_reloc;
256
257 /* We must not create a stub for a symbol that has relocations
258 related to taking the function's address, i.e. any but
259 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
260 p. 4-20. */
261 bfd_boolean no_fn_stub;
262
263 /* If there is a stub that 32 bit functions should use to call this
264 16 bit function, this points to the section containing the stub. */
265 asection *fn_stub;
266
267 /* Whether we need the fn_stub; this is set if this symbol appears
268 in any relocs other than a 16 bit call. */
269 bfd_boolean need_fn_stub;
270
271 /* If there is a stub that 16 bit functions should use to call this
272 32 bit function, this points to the section containing the stub. */
273 asection *call_stub;
274
275 /* This is like the call_stub field, but it is used if the function
276 being called returns a floating point value. */
277 asection *call_fp_stub;
278
279 /* Are we forced local? This will only be set if we have converted
280 the initial global GOT entry to a local GOT entry. */
281 bfd_boolean forced_local;
282
283 /* Are we referenced by some kind of relocation? */
284 bfd_boolean is_relocation_target;
285
286 /* Are we referenced by branch relocations? */
287 bfd_boolean is_branch_target;
288
289 #define GOT_NORMAL 0
290 #define GOT_TLS_GD 1
291 #define GOT_TLS_LDM 2
292 #define GOT_TLS_IE 4
293 #define GOT_TLS_OFFSET_DONE 0x40
294 #define GOT_TLS_DONE 0x80
295 unsigned char tls_type;
296 /* This is only used in single-GOT mode; in multi-GOT mode there
297 is one mips_got_entry per GOT entry, so the offset is stored
298 there. In single-GOT mode there may be many mips_got_entry
299 structures all referring to the same GOT slot. It might be
300 possible to use root.got.offset instead, but that field is
301 overloaded already. */
302 bfd_vma tls_got_offset;
303 };
304
305 /* MIPS ELF linker hash table. */
306
307 struct mips_elf_link_hash_table
308 {
309 struct elf_link_hash_table root;
310 #if 0
311 /* We no longer use this. */
312 /* String section indices for the dynamic section symbols. */
313 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
314 #endif
315 /* The number of .rtproc entries. */
316 bfd_size_type procedure_count;
317 /* The size of the .compact_rel section (if SGI_COMPAT). */
318 bfd_size_type compact_rel_size;
319 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
320 entry is set to the address of __rld_obj_head as in IRIX5. */
321 bfd_boolean use_rld_obj_head;
322 /* This is the value of the __rld_map or __rld_obj_head symbol. */
323 bfd_vma rld_value;
324 /* This is set if we see any mips16 stub sections. */
325 bfd_boolean mips16_stubs_seen;
326 /* True if we've computed the size of the GOT. */
327 bfd_boolean computed_got_sizes;
328 /* True if we're generating code for VxWorks. */
329 bfd_boolean is_vxworks;
330 /* True if we already reported the small-data section overflow. */
331 bfd_boolean small_data_overflow_reported;
332 /* Shortcuts to some dynamic sections, or NULL if they are not
333 being used. */
334 asection *srelbss;
335 asection *sdynbss;
336 asection *srelplt;
337 asection *srelplt2;
338 asection *sgotplt;
339 asection *splt;
340 /* The size of the PLT header in bytes (VxWorks only). */
341 bfd_vma plt_header_size;
342 /* The size of a PLT entry in bytes (VxWorks only). */
343 bfd_vma plt_entry_size;
344 /* The size of a function stub entry in bytes. */
345 bfd_vma function_stub_size;
346 };
347
348 #define TLS_RELOC_P(r_type) \
349 (r_type == R_MIPS_TLS_DTPMOD32 \
350 || r_type == R_MIPS_TLS_DTPMOD64 \
351 || r_type == R_MIPS_TLS_DTPREL32 \
352 || r_type == R_MIPS_TLS_DTPREL64 \
353 || r_type == R_MIPS_TLS_GD \
354 || r_type == R_MIPS_TLS_LDM \
355 || r_type == R_MIPS_TLS_DTPREL_HI16 \
356 || r_type == R_MIPS_TLS_DTPREL_LO16 \
357 || r_type == R_MIPS_TLS_GOTTPREL \
358 || r_type == R_MIPS_TLS_TPREL32 \
359 || r_type == R_MIPS_TLS_TPREL64 \
360 || r_type == R_MIPS_TLS_TPREL_HI16 \
361 || r_type == R_MIPS_TLS_TPREL_LO16)
362
363 /* Structure used to pass information to mips_elf_output_extsym. */
364
365 struct extsym_info
366 {
367 bfd *abfd;
368 struct bfd_link_info *info;
369 struct ecoff_debug_info *debug;
370 const struct ecoff_debug_swap *swap;
371 bfd_boolean failed;
372 };
373
374 /* The names of the runtime procedure table symbols used on IRIX5. */
375
376 static const char * const mips_elf_dynsym_rtproc_names[] =
377 {
378 "_procedure_table",
379 "_procedure_string_table",
380 "_procedure_table_size",
381 NULL
382 };
383
384 /* These structures are used to generate the .compact_rel section on
385 IRIX5. */
386
387 typedef struct
388 {
389 unsigned long id1; /* Always one? */
390 unsigned long num; /* Number of compact relocation entries. */
391 unsigned long id2; /* Always two? */
392 unsigned long offset; /* The file offset of the first relocation. */
393 unsigned long reserved0; /* Zero? */
394 unsigned long reserved1; /* Zero? */
395 } Elf32_compact_rel;
396
397 typedef struct
398 {
399 bfd_byte id1[4];
400 bfd_byte num[4];
401 bfd_byte id2[4];
402 bfd_byte offset[4];
403 bfd_byte reserved0[4];
404 bfd_byte reserved1[4];
405 } Elf32_External_compact_rel;
406
407 typedef struct
408 {
409 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
410 unsigned int rtype : 4; /* Relocation types. See below. */
411 unsigned int dist2to : 8;
412 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
413 unsigned long konst; /* KONST field. See below. */
414 unsigned long vaddr; /* VADDR to be relocated. */
415 } Elf32_crinfo;
416
417 typedef struct
418 {
419 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
420 unsigned int rtype : 4; /* Relocation types. See below. */
421 unsigned int dist2to : 8;
422 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
423 unsigned long konst; /* KONST field. See below. */
424 } Elf32_crinfo2;
425
426 typedef struct
427 {
428 bfd_byte info[4];
429 bfd_byte konst[4];
430 bfd_byte vaddr[4];
431 } Elf32_External_crinfo;
432
433 typedef struct
434 {
435 bfd_byte info[4];
436 bfd_byte konst[4];
437 } Elf32_External_crinfo2;
438
439 /* These are the constants used to swap the bitfields in a crinfo. */
440
441 #define CRINFO_CTYPE (0x1)
442 #define CRINFO_CTYPE_SH (31)
443 #define CRINFO_RTYPE (0xf)
444 #define CRINFO_RTYPE_SH (27)
445 #define CRINFO_DIST2TO (0xff)
446 #define CRINFO_DIST2TO_SH (19)
447 #define CRINFO_RELVADDR (0x7ffff)
448 #define CRINFO_RELVADDR_SH (0)
449
450 /* A compact relocation info has long (3 words) or short (2 words)
451 formats. A short format doesn't have VADDR field and relvaddr
452 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
453 #define CRF_MIPS_LONG 1
454 #define CRF_MIPS_SHORT 0
455
456 /* There are 4 types of compact relocation at least. The value KONST
457 has different meaning for each type:
458
459 (type) (konst)
460 CT_MIPS_REL32 Address in data
461 CT_MIPS_WORD Address in word (XXX)
462 CT_MIPS_GPHI_LO GP - vaddr
463 CT_MIPS_JMPAD Address to jump
464 */
465
466 #define CRT_MIPS_REL32 0xa
467 #define CRT_MIPS_WORD 0xb
468 #define CRT_MIPS_GPHI_LO 0xc
469 #define CRT_MIPS_JMPAD 0xd
470
471 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
472 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
473 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
474 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
475 \f
476 /* The structure of the runtime procedure descriptor created by the
477 loader for use by the static exception system. */
478
479 typedef struct runtime_pdr {
480 bfd_vma adr; /* Memory address of start of procedure. */
481 long regmask; /* Save register mask. */
482 long regoffset; /* Save register offset. */
483 long fregmask; /* Save floating point register mask. */
484 long fregoffset; /* Save floating point register offset. */
485 long frameoffset; /* Frame size. */
486 short framereg; /* Frame pointer register. */
487 short pcreg; /* Offset or reg of return pc. */
488 long irpss; /* Index into the runtime string table. */
489 long reserved;
490 struct exception_info *exception_info;/* Pointer to exception array. */
491 } RPDR, *pRPDR;
492 #define cbRPDR sizeof (RPDR)
493 #define rpdNil ((pRPDR) 0)
494 \f
495 static struct mips_got_entry *mips_elf_create_local_got_entry
496 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
497 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
498 static bfd_boolean mips_elf_sort_hash_table_f
499 (struct mips_elf_link_hash_entry *, void *);
500 static bfd_vma mips_elf_high
501 (bfd_vma);
502 static bfd_boolean mips16_stub_section_p
503 (bfd *, asection *);
504 static bfd_boolean mips_elf_create_dynamic_relocation
505 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
506 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
507 bfd_vma *, asection *);
508 static hashval_t mips_elf_got_entry_hash
509 (const void *);
510 static bfd_vma mips_elf_adjust_gp
511 (bfd *, struct mips_got_info *, bfd *);
512 static struct mips_got_info *mips_elf_got_for_ibfd
513 (struct mips_got_info *, bfd *);
514
515 /* This will be used when we sort the dynamic relocation records. */
516 static bfd *reldyn_sorting_bfd;
517
518 /* Nonzero if ABFD is using the N32 ABI. */
519 #define ABI_N32_P(abfd) \
520 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
521
522 /* Nonzero if ABFD is using the N64 ABI. */
523 #define ABI_64_P(abfd) \
524 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
525
526 /* Nonzero if ABFD is using NewABI conventions. */
527 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
528
529 /* The IRIX compatibility level we are striving for. */
530 #define IRIX_COMPAT(abfd) \
531 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
532
533 /* Whether we are trying to be compatible with IRIX at all. */
534 #define SGI_COMPAT(abfd) \
535 (IRIX_COMPAT (abfd) != ict_none)
536
537 /* The name of the options section. */
538 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
539 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
540
541 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
542 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
543 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
544 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
545
546 /* Whether the section is readonly. */
547 #define MIPS_ELF_READONLY_SECTION(sec) \
548 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
549 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
550
551 /* The name of the stub section. */
552 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
553
554 /* The size of an external REL relocation. */
555 #define MIPS_ELF_REL_SIZE(abfd) \
556 (get_elf_backend_data (abfd)->s->sizeof_rel)
557
558 /* The size of an external RELA relocation. */
559 #define MIPS_ELF_RELA_SIZE(abfd) \
560 (get_elf_backend_data (abfd)->s->sizeof_rela)
561
562 /* The size of an external dynamic table entry. */
563 #define MIPS_ELF_DYN_SIZE(abfd) \
564 (get_elf_backend_data (abfd)->s->sizeof_dyn)
565
566 /* The size of a GOT entry. */
567 #define MIPS_ELF_GOT_SIZE(abfd) \
568 (get_elf_backend_data (abfd)->s->arch_size / 8)
569
570 /* The size of a symbol-table entry. */
571 #define MIPS_ELF_SYM_SIZE(abfd) \
572 (get_elf_backend_data (abfd)->s->sizeof_sym)
573
574 /* The default alignment for sections, as a power of two. */
575 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
576 (get_elf_backend_data (abfd)->s->log_file_align)
577
578 /* Get word-sized data. */
579 #define MIPS_ELF_GET_WORD(abfd, ptr) \
580 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
581
582 /* Put out word-sized data. */
583 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
584 (ABI_64_P (abfd) \
585 ? bfd_put_64 (abfd, val, ptr) \
586 : bfd_put_32 (abfd, val, ptr))
587
588 /* Add a dynamic symbol table-entry. */
589 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
590 _bfd_elf_add_dynamic_entry (info, tag, val)
591
592 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
593 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
594
595 /* Determine whether the internal relocation of index REL_IDX is REL
596 (zero) or RELA (non-zero). The assumption is that, if there are
597 two relocation sections for this section, one of them is REL and
598 the other is RELA. If the index of the relocation we're testing is
599 in range for the first relocation section, check that the external
600 relocation size is that for RELA. It is also assumed that, if
601 rel_idx is not in range for the first section, and this first
602 section contains REL relocs, then the relocation is in the second
603 section, that is RELA. */
604 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
605 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
606 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
607 > (bfd_vma)(rel_idx)) \
608 == (elf_section_data (sec)->rel_hdr.sh_entsize \
609 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
610 : sizeof (Elf32_External_Rela))))
611
612 /* The name of the dynamic relocation section. */
613 #define MIPS_ELF_REL_DYN_NAME(INFO) \
614 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
615
616 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
617 from smaller values. Start with zero, widen, *then* decrement. */
618 #define MINUS_ONE (((bfd_vma)0) - 1)
619 #define MINUS_TWO (((bfd_vma)0) - 2)
620
621 /* The number of local .got entries we reserve. */
622 #define MIPS_RESERVED_GOTNO(INFO) \
623 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
624
625 /* The offset of $gp from the beginning of the .got section. */
626 #define ELF_MIPS_GP_OFFSET(INFO) \
627 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
628
629 /* The maximum size of the GOT for it to be addressable using 16-bit
630 offsets from $gp. */
631 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
632
633 /* Instructions which appear in a stub. */
634 #define STUB_LW(abfd) \
635 ((ABI_64_P (abfd) \
636 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
637 : 0x8f998010)) /* lw t9,0x8010(gp) */
638 #define STUB_MOVE(abfd) \
639 ((ABI_64_P (abfd) \
640 ? 0x03e0782d /* daddu t7,ra */ \
641 : 0x03e07821)) /* addu t7,ra */
642 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
643 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
644 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
645 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
646 #define STUB_LI16S(abfd, VAL) \
647 ((ABI_64_P (abfd) \
648 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
649 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
650
651 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
652 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
653
654 /* The name of the dynamic interpreter. This is put in the .interp
655 section. */
656
657 #define ELF_DYNAMIC_INTERPRETER(abfd) \
658 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
659 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
660 : "/usr/lib/libc.so.1")
661
662 #ifdef BFD64
663 #define MNAME(bfd,pre,pos) \
664 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
665 #define ELF_R_SYM(bfd, i) \
666 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
667 #define ELF_R_TYPE(bfd, i) \
668 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
669 #define ELF_R_INFO(bfd, s, t) \
670 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
671 #else
672 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
673 #define ELF_R_SYM(bfd, i) \
674 (ELF32_R_SYM (i))
675 #define ELF_R_TYPE(bfd, i) \
676 (ELF32_R_TYPE (i))
677 #define ELF_R_INFO(bfd, s, t) \
678 (ELF32_R_INFO (s, t))
679 #endif
680 \f
681 /* The mips16 compiler uses a couple of special sections to handle
682 floating point arguments.
683
684 Section names that look like .mips16.fn.FNNAME contain stubs that
685 copy floating point arguments from the fp regs to the gp regs and
686 then jump to FNNAME. If any 32 bit function calls FNNAME, the
687 call should be redirected to the stub instead. If no 32 bit
688 function calls FNNAME, the stub should be discarded. We need to
689 consider any reference to the function, not just a call, because
690 if the address of the function is taken we will need the stub,
691 since the address might be passed to a 32 bit function.
692
693 Section names that look like .mips16.call.FNNAME contain stubs
694 that copy floating point arguments from the gp regs to the fp
695 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
696 then any 16 bit function that calls FNNAME should be redirected
697 to the stub instead. If FNNAME is not a 32 bit function, the
698 stub should be discarded.
699
700 .mips16.call.fp.FNNAME sections are similar, but contain stubs
701 which call FNNAME and then copy the return value from the fp regs
702 to the gp regs. These stubs store the return value in $18 while
703 calling FNNAME; any function which might call one of these stubs
704 must arrange to save $18 around the call. (This case is not
705 needed for 32 bit functions that call 16 bit functions, because
706 16 bit functions always return floating point values in both
707 $f0/$f1 and $2/$3.)
708
709 Note that in all cases FNNAME might be defined statically.
710 Therefore, FNNAME is not used literally. Instead, the relocation
711 information will indicate which symbol the section is for.
712
713 We record any stubs that we find in the symbol table. */
714
715 #define FN_STUB ".mips16.fn."
716 #define CALL_STUB ".mips16.call."
717 #define CALL_FP_STUB ".mips16.call.fp."
718
719 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
720 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
721 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
722 \f
723 /* The format of the first PLT entry in a VxWorks executable. */
724 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
725 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
726 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
727 0x8f390008, /* lw t9, 8(t9) */
728 0x00000000, /* nop */
729 0x03200008, /* jr t9 */
730 0x00000000 /* nop */
731 };
732
733 /* The format of subsequent PLT entries. */
734 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
735 0x10000000, /* b .PLT_resolver */
736 0x24180000, /* li t8, <pltindex> */
737 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
738 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
739 0x8f390000, /* lw t9, 0(t9) */
740 0x00000000, /* nop */
741 0x03200008, /* jr t9 */
742 0x00000000 /* nop */
743 };
744
745 /* The format of the first PLT entry in a VxWorks shared object. */
746 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
747 0x8f990008, /* lw t9, 8(gp) */
748 0x00000000, /* nop */
749 0x03200008, /* jr t9 */
750 0x00000000, /* nop */
751 0x00000000, /* nop */
752 0x00000000 /* nop */
753 };
754
755 /* The format of subsequent PLT entries. */
756 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
757 0x10000000, /* b .PLT_resolver */
758 0x24180000 /* li t8, <pltindex> */
759 };
760 \f
761 /* Look up an entry in a MIPS ELF linker hash table. */
762
763 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
764 ((struct mips_elf_link_hash_entry *) \
765 elf_link_hash_lookup (&(table)->root, (string), (create), \
766 (copy), (follow)))
767
768 /* Traverse a MIPS ELF linker hash table. */
769
770 #define mips_elf_link_hash_traverse(table, func, info) \
771 (elf_link_hash_traverse \
772 (&(table)->root, \
773 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
774 (info)))
775
776 /* Get the MIPS ELF linker hash table from a link_info structure. */
777
778 #define mips_elf_hash_table(p) \
779 ((struct mips_elf_link_hash_table *) ((p)->hash))
780
781 /* Find the base offsets for thread-local storage in this object,
782 for GD/LD and IE/LE respectively. */
783
784 #define TP_OFFSET 0x7000
785 #define DTP_OFFSET 0x8000
786
787 static bfd_vma
788 dtprel_base (struct bfd_link_info *info)
789 {
790 /* If tls_sec is NULL, we should have signalled an error already. */
791 if (elf_hash_table (info)->tls_sec == NULL)
792 return 0;
793 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
794 }
795
796 static bfd_vma
797 tprel_base (struct bfd_link_info *info)
798 {
799 /* If tls_sec is NULL, we should have signalled an error already. */
800 if (elf_hash_table (info)->tls_sec == NULL)
801 return 0;
802 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
803 }
804
805 /* Create an entry in a MIPS ELF linker hash table. */
806
807 static struct bfd_hash_entry *
808 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
809 struct bfd_hash_table *table, const char *string)
810 {
811 struct mips_elf_link_hash_entry *ret =
812 (struct mips_elf_link_hash_entry *) entry;
813
814 /* Allocate the structure if it has not already been allocated by a
815 subclass. */
816 if (ret == NULL)
817 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
818 if (ret == NULL)
819 return (struct bfd_hash_entry *) ret;
820
821 /* Call the allocation method of the superclass. */
822 ret = ((struct mips_elf_link_hash_entry *)
823 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
824 table, string));
825 if (ret != NULL)
826 {
827 /* Set local fields. */
828 memset (&ret->esym, 0, sizeof (EXTR));
829 /* We use -2 as a marker to indicate that the information has
830 not been set. -1 means there is no associated ifd. */
831 ret->esym.ifd = -2;
832 ret->possibly_dynamic_relocs = 0;
833 ret->readonly_reloc = FALSE;
834 ret->no_fn_stub = FALSE;
835 ret->fn_stub = NULL;
836 ret->need_fn_stub = FALSE;
837 ret->call_stub = NULL;
838 ret->call_fp_stub = NULL;
839 ret->forced_local = FALSE;
840 ret->is_branch_target = FALSE;
841 ret->is_relocation_target = FALSE;
842 ret->tls_type = GOT_NORMAL;
843 }
844
845 return (struct bfd_hash_entry *) ret;
846 }
847
848 bfd_boolean
849 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
850 {
851 if (!sec->used_by_bfd)
852 {
853 struct _mips_elf_section_data *sdata;
854 bfd_size_type amt = sizeof (*sdata);
855
856 sdata = bfd_zalloc (abfd, amt);
857 if (sdata == NULL)
858 return FALSE;
859 sec->used_by_bfd = sdata;
860 }
861
862 return _bfd_elf_new_section_hook (abfd, sec);
863 }
864 \f
865 /* Read ECOFF debugging information from a .mdebug section into a
866 ecoff_debug_info structure. */
867
868 bfd_boolean
869 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
870 struct ecoff_debug_info *debug)
871 {
872 HDRR *symhdr;
873 const struct ecoff_debug_swap *swap;
874 char *ext_hdr;
875
876 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
877 memset (debug, 0, sizeof (*debug));
878
879 ext_hdr = bfd_malloc (swap->external_hdr_size);
880 if (ext_hdr == NULL && swap->external_hdr_size != 0)
881 goto error_return;
882
883 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
884 swap->external_hdr_size))
885 goto error_return;
886
887 symhdr = &debug->symbolic_header;
888 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
889
890 /* The symbolic header contains absolute file offsets and sizes to
891 read. */
892 #define READ(ptr, offset, count, size, type) \
893 if (symhdr->count == 0) \
894 debug->ptr = NULL; \
895 else \
896 { \
897 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
898 debug->ptr = bfd_malloc (amt); \
899 if (debug->ptr == NULL) \
900 goto error_return; \
901 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
902 || bfd_bread (debug->ptr, amt, abfd) != amt) \
903 goto error_return; \
904 }
905
906 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
907 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
908 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
909 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
910 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
911 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
912 union aux_ext *);
913 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
914 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
915 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
916 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
917 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
918 #undef READ
919
920 debug->fdr = NULL;
921
922 return TRUE;
923
924 error_return:
925 if (ext_hdr != NULL)
926 free (ext_hdr);
927 if (debug->line != NULL)
928 free (debug->line);
929 if (debug->external_dnr != NULL)
930 free (debug->external_dnr);
931 if (debug->external_pdr != NULL)
932 free (debug->external_pdr);
933 if (debug->external_sym != NULL)
934 free (debug->external_sym);
935 if (debug->external_opt != NULL)
936 free (debug->external_opt);
937 if (debug->external_aux != NULL)
938 free (debug->external_aux);
939 if (debug->ss != NULL)
940 free (debug->ss);
941 if (debug->ssext != NULL)
942 free (debug->ssext);
943 if (debug->external_fdr != NULL)
944 free (debug->external_fdr);
945 if (debug->external_rfd != NULL)
946 free (debug->external_rfd);
947 if (debug->external_ext != NULL)
948 free (debug->external_ext);
949 return FALSE;
950 }
951 \f
952 /* Swap RPDR (runtime procedure table entry) for output. */
953
954 static void
955 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
956 {
957 H_PUT_S32 (abfd, in->adr, ex->p_adr);
958 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
959 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
960 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
961 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
962 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
963
964 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
965 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
966
967 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
968 }
969
970 /* Create a runtime procedure table from the .mdebug section. */
971
972 static bfd_boolean
973 mips_elf_create_procedure_table (void *handle, bfd *abfd,
974 struct bfd_link_info *info, asection *s,
975 struct ecoff_debug_info *debug)
976 {
977 const struct ecoff_debug_swap *swap;
978 HDRR *hdr = &debug->symbolic_header;
979 RPDR *rpdr, *rp;
980 struct rpdr_ext *erp;
981 void *rtproc;
982 struct pdr_ext *epdr;
983 struct sym_ext *esym;
984 char *ss, **sv;
985 char *str;
986 bfd_size_type size;
987 bfd_size_type count;
988 unsigned long sindex;
989 unsigned long i;
990 PDR pdr;
991 SYMR sym;
992 const char *no_name_func = _("static procedure (no name)");
993
994 epdr = NULL;
995 rpdr = NULL;
996 esym = NULL;
997 ss = NULL;
998 sv = NULL;
999
1000 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1001
1002 sindex = strlen (no_name_func) + 1;
1003 count = hdr->ipdMax;
1004 if (count > 0)
1005 {
1006 size = swap->external_pdr_size;
1007
1008 epdr = bfd_malloc (size * count);
1009 if (epdr == NULL)
1010 goto error_return;
1011
1012 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1013 goto error_return;
1014
1015 size = sizeof (RPDR);
1016 rp = rpdr = bfd_malloc (size * count);
1017 if (rpdr == NULL)
1018 goto error_return;
1019
1020 size = sizeof (char *);
1021 sv = bfd_malloc (size * count);
1022 if (sv == NULL)
1023 goto error_return;
1024
1025 count = hdr->isymMax;
1026 size = swap->external_sym_size;
1027 esym = bfd_malloc (size * count);
1028 if (esym == NULL)
1029 goto error_return;
1030
1031 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1032 goto error_return;
1033
1034 count = hdr->issMax;
1035 ss = bfd_malloc (count);
1036 if (ss == NULL)
1037 goto error_return;
1038 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1039 goto error_return;
1040
1041 count = hdr->ipdMax;
1042 for (i = 0; i < (unsigned long) count; i++, rp++)
1043 {
1044 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1045 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1046 rp->adr = sym.value;
1047 rp->regmask = pdr.regmask;
1048 rp->regoffset = pdr.regoffset;
1049 rp->fregmask = pdr.fregmask;
1050 rp->fregoffset = pdr.fregoffset;
1051 rp->frameoffset = pdr.frameoffset;
1052 rp->framereg = pdr.framereg;
1053 rp->pcreg = pdr.pcreg;
1054 rp->irpss = sindex;
1055 sv[i] = ss + sym.iss;
1056 sindex += strlen (sv[i]) + 1;
1057 }
1058 }
1059
1060 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1061 size = BFD_ALIGN (size, 16);
1062 rtproc = bfd_alloc (abfd, size);
1063 if (rtproc == NULL)
1064 {
1065 mips_elf_hash_table (info)->procedure_count = 0;
1066 goto error_return;
1067 }
1068
1069 mips_elf_hash_table (info)->procedure_count = count + 2;
1070
1071 erp = rtproc;
1072 memset (erp, 0, sizeof (struct rpdr_ext));
1073 erp++;
1074 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1075 strcpy (str, no_name_func);
1076 str += strlen (no_name_func) + 1;
1077 for (i = 0; i < count; i++)
1078 {
1079 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1080 strcpy (str, sv[i]);
1081 str += strlen (sv[i]) + 1;
1082 }
1083 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1084
1085 /* Set the size and contents of .rtproc section. */
1086 s->size = size;
1087 s->contents = rtproc;
1088
1089 /* Skip this section later on (I don't think this currently
1090 matters, but someday it might). */
1091 s->map_head.link_order = NULL;
1092
1093 if (epdr != NULL)
1094 free (epdr);
1095 if (rpdr != NULL)
1096 free (rpdr);
1097 if (esym != NULL)
1098 free (esym);
1099 if (ss != NULL)
1100 free (ss);
1101 if (sv != NULL)
1102 free (sv);
1103
1104 return TRUE;
1105
1106 error_return:
1107 if (epdr != NULL)
1108 free (epdr);
1109 if (rpdr != NULL)
1110 free (rpdr);
1111 if (esym != NULL)
1112 free (esym);
1113 if (ss != NULL)
1114 free (ss);
1115 if (sv != NULL)
1116 free (sv);
1117 return FALSE;
1118 }
1119
1120 /* Check the mips16 stubs for a particular symbol, and see if we can
1121 discard them. */
1122
1123 static bfd_boolean
1124 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1125 void *data ATTRIBUTE_UNUSED)
1126 {
1127 if (h->root.root.type == bfd_link_hash_warning)
1128 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1129
1130 if (h->fn_stub != NULL
1131 && ! h->need_fn_stub)
1132 {
1133 /* We don't need the fn_stub; the only references to this symbol
1134 are 16 bit calls. Clobber the size to 0 to prevent it from
1135 being included in the link. */
1136 h->fn_stub->size = 0;
1137 h->fn_stub->flags &= ~SEC_RELOC;
1138 h->fn_stub->reloc_count = 0;
1139 h->fn_stub->flags |= SEC_EXCLUDE;
1140 }
1141
1142 if (h->call_stub != NULL
1143 && h->root.other == STO_MIPS16)
1144 {
1145 /* We don't need the call_stub; this is a 16 bit function, so
1146 calls from other 16 bit functions are OK. Clobber the size
1147 to 0 to prevent it from being included in the link. */
1148 h->call_stub->size = 0;
1149 h->call_stub->flags &= ~SEC_RELOC;
1150 h->call_stub->reloc_count = 0;
1151 h->call_stub->flags |= SEC_EXCLUDE;
1152 }
1153
1154 if (h->call_fp_stub != NULL
1155 && h->root.other == STO_MIPS16)
1156 {
1157 /* We don't need the call_stub; this is a 16 bit function, so
1158 calls from other 16 bit functions are OK. Clobber the size
1159 to 0 to prevent it from being included in the link. */
1160 h->call_fp_stub->size = 0;
1161 h->call_fp_stub->flags &= ~SEC_RELOC;
1162 h->call_fp_stub->reloc_count = 0;
1163 h->call_fp_stub->flags |= SEC_EXCLUDE;
1164 }
1165
1166 return TRUE;
1167 }
1168 \f
1169 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1170 Most mips16 instructions are 16 bits, but these instructions
1171 are 32 bits.
1172
1173 The format of these instructions is:
1174
1175 +--------------+--------------------------------+
1176 | JALX | X| Imm 20:16 | Imm 25:21 |
1177 +--------------+--------------------------------+
1178 | Immediate 15:0 |
1179 +-----------------------------------------------+
1180
1181 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1182 Note that the immediate value in the first word is swapped.
1183
1184 When producing a relocatable object file, R_MIPS16_26 is
1185 handled mostly like R_MIPS_26. In particular, the addend is
1186 stored as a straight 26-bit value in a 32-bit instruction.
1187 (gas makes life simpler for itself by never adjusting a
1188 R_MIPS16_26 reloc to be against a section, so the addend is
1189 always zero). However, the 32 bit instruction is stored as 2
1190 16-bit values, rather than a single 32-bit value. In a
1191 big-endian file, the result is the same; in a little-endian
1192 file, the two 16-bit halves of the 32 bit value are swapped.
1193 This is so that a disassembler can recognize the jal
1194 instruction.
1195
1196 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1197 instruction stored as two 16-bit values. The addend A is the
1198 contents of the targ26 field. The calculation is the same as
1199 R_MIPS_26. When storing the calculated value, reorder the
1200 immediate value as shown above, and don't forget to store the
1201 value as two 16-bit values.
1202
1203 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1204 defined as
1205
1206 big-endian:
1207 +--------+----------------------+
1208 | | |
1209 | | targ26-16 |
1210 |31 26|25 0|
1211 +--------+----------------------+
1212
1213 little-endian:
1214 +----------+------+-------------+
1215 | | | |
1216 | sub1 | | sub2 |
1217 |0 9|10 15|16 31|
1218 +----------+--------------------+
1219 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1220 ((sub1 << 16) | sub2)).
1221
1222 When producing a relocatable object file, the calculation is
1223 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1224 When producing a fully linked file, the calculation is
1225 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1226 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1227
1228 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1229 mode. A typical instruction will have a format like this:
1230
1231 +--------------+--------------------------------+
1232 | EXTEND | Imm 10:5 | Imm 15:11 |
1233 +--------------+--------------------------------+
1234 | Major | rx | ry | Imm 4:0 |
1235 +--------------+--------------------------------+
1236
1237 EXTEND is the five bit value 11110. Major is the instruction
1238 opcode.
1239
1240 This is handled exactly like R_MIPS_GPREL16, except that the
1241 addend is retrieved and stored as shown in this diagram; that
1242 is, the Imm fields above replace the V-rel16 field.
1243
1244 All we need to do here is shuffle the bits appropriately. As
1245 above, the two 16-bit halves must be swapped on a
1246 little-endian system.
1247
1248 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1249 access data when neither GP-relative nor PC-relative addressing
1250 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1251 except that the addend is retrieved and stored as shown above
1252 for R_MIPS16_GPREL.
1253 */
1254 void
1255 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1256 bfd_boolean jal_shuffle, bfd_byte *data)
1257 {
1258 bfd_vma extend, insn, val;
1259
1260 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1261 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1262 return;
1263
1264 /* Pick up the mips16 extend instruction and the real instruction. */
1265 extend = bfd_get_16 (abfd, data);
1266 insn = bfd_get_16 (abfd, data + 2);
1267 if (r_type == R_MIPS16_26)
1268 {
1269 if (jal_shuffle)
1270 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1271 | ((extend & 0x1f) << 21) | insn;
1272 else
1273 val = extend << 16 | insn;
1274 }
1275 else
1276 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1277 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1278 bfd_put_32 (abfd, val, data);
1279 }
1280
1281 void
1282 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1283 bfd_boolean jal_shuffle, bfd_byte *data)
1284 {
1285 bfd_vma extend, insn, val;
1286
1287 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1288 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1289 return;
1290
1291 val = bfd_get_32 (abfd, data);
1292 if (r_type == R_MIPS16_26)
1293 {
1294 if (jal_shuffle)
1295 {
1296 insn = val & 0xffff;
1297 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1298 | ((val >> 21) & 0x1f);
1299 }
1300 else
1301 {
1302 insn = val & 0xffff;
1303 extend = val >> 16;
1304 }
1305 }
1306 else
1307 {
1308 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1309 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1310 }
1311 bfd_put_16 (abfd, insn, data + 2);
1312 bfd_put_16 (abfd, extend, data);
1313 }
1314
1315 bfd_reloc_status_type
1316 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1317 arelent *reloc_entry, asection *input_section,
1318 bfd_boolean relocatable, void *data, bfd_vma gp)
1319 {
1320 bfd_vma relocation;
1321 bfd_signed_vma val;
1322 bfd_reloc_status_type status;
1323
1324 if (bfd_is_com_section (symbol->section))
1325 relocation = 0;
1326 else
1327 relocation = symbol->value;
1328
1329 relocation += symbol->section->output_section->vma;
1330 relocation += symbol->section->output_offset;
1331
1332 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1333 return bfd_reloc_outofrange;
1334
1335 /* Set val to the offset into the section or symbol. */
1336 val = reloc_entry->addend;
1337
1338 _bfd_mips_elf_sign_extend (val, 16);
1339
1340 /* Adjust val for the final section location and GP value. If we
1341 are producing relocatable output, we don't want to do this for
1342 an external symbol. */
1343 if (! relocatable
1344 || (symbol->flags & BSF_SECTION_SYM) != 0)
1345 val += relocation - gp;
1346
1347 if (reloc_entry->howto->partial_inplace)
1348 {
1349 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1350 (bfd_byte *) data
1351 + reloc_entry->address);
1352 if (status != bfd_reloc_ok)
1353 return status;
1354 }
1355 else
1356 reloc_entry->addend = val;
1357
1358 if (relocatable)
1359 reloc_entry->address += input_section->output_offset;
1360
1361 return bfd_reloc_ok;
1362 }
1363
1364 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1365 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1366 that contains the relocation field and DATA points to the start of
1367 INPUT_SECTION. */
1368
1369 struct mips_hi16
1370 {
1371 struct mips_hi16 *next;
1372 bfd_byte *data;
1373 asection *input_section;
1374 arelent rel;
1375 };
1376
1377 /* FIXME: This should not be a static variable. */
1378
1379 static struct mips_hi16 *mips_hi16_list;
1380
1381 /* A howto special_function for REL *HI16 relocations. We can only
1382 calculate the correct value once we've seen the partnering
1383 *LO16 relocation, so just save the information for later.
1384
1385 The ABI requires that the *LO16 immediately follow the *HI16.
1386 However, as a GNU extension, we permit an arbitrary number of
1387 *HI16s to be associated with a single *LO16. This significantly
1388 simplies the relocation handling in gcc. */
1389
1390 bfd_reloc_status_type
1391 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1392 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1393 asection *input_section, bfd *output_bfd,
1394 char **error_message ATTRIBUTE_UNUSED)
1395 {
1396 struct mips_hi16 *n;
1397
1398 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1399 return bfd_reloc_outofrange;
1400
1401 n = bfd_malloc (sizeof *n);
1402 if (n == NULL)
1403 return bfd_reloc_outofrange;
1404
1405 n->next = mips_hi16_list;
1406 n->data = data;
1407 n->input_section = input_section;
1408 n->rel = *reloc_entry;
1409 mips_hi16_list = n;
1410
1411 if (output_bfd != NULL)
1412 reloc_entry->address += input_section->output_offset;
1413
1414 return bfd_reloc_ok;
1415 }
1416
1417 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1418 like any other 16-bit relocation when applied to global symbols, but is
1419 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1420
1421 bfd_reloc_status_type
1422 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1423 void *data, asection *input_section,
1424 bfd *output_bfd, char **error_message)
1425 {
1426 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1427 || bfd_is_und_section (bfd_get_section (symbol))
1428 || bfd_is_com_section (bfd_get_section (symbol)))
1429 /* The relocation is against a global symbol. */
1430 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1431 input_section, output_bfd,
1432 error_message);
1433
1434 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1435 input_section, output_bfd, error_message);
1436 }
1437
1438 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1439 is a straightforward 16 bit inplace relocation, but we must deal with
1440 any partnering high-part relocations as well. */
1441
1442 bfd_reloc_status_type
1443 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1444 void *data, asection *input_section,
1445 bfd *output_bfd, char **error_message)
1446 {
1447 bfd_vma vallo;
1448 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1449
1450 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1451 return bfd_reloc_outofrange;
1452
1453 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1454 location);
1455 vallo = bfd_get_32 (abfd, location);
1456 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1457 location);
1458
1459 while (mips_hi16_list != NULL)
1460 {
1461 bfd_reloc_status_type ret;
1462 struct mips_hi16 *hi;
1463
1464 hi = mips_hi16_list;
1465
1466 /* R_MIPS_GOT16 relocations are something of a special case. We
1467 want to install the addend in the same way as for a R_MIPS_HI16
1468 relocation (with a rightshift of 16). However, since GOT16
1469 relocations can also be used with global symbols, their howto
1470 has a rightshift of 0. */
1471 if (hi->rel.howto->type == R_MIPS_GOT16)
1472 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1473
1474 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1475 carry or borrow will induce a change of +1 or -1 in the high part. */
1476 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1477
1478 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1479 hi->input_section, output_bfd,
1480 error_message);
1481 if (ret != bfd_reloc_ok)
1482 return ret;
1483
1484 mips_hi16_list = hi->next;
1485 free (hi);
1486 }
1487
1488 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1489 input_section, output_bfd,
1490 error_message);
1491 }
1492
1493 /* A generic howto special_function. This calculates and installs the
1494 relocation itself, thus avoiding the oft-discussed problems in
1495 bfd_perform_relocation and bfd_install_relocation. */
1496
1497 bfd_reloc_status_type
1498 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1499 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1500 asection *input_section, bfd *output_bfd,
1501 char **error_message ATTRIBUTE_UNUSED)
1502 {
1503 bfd_signed_vma val;
1504 bfd_reloc_status_type status;
1505 bfd_boolean relocatable;
1506
1507 relocatable = (output_bfd != NULL);
1508
1509 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1510 return bfd_reloc_outofrange;
1511
1512 /* Build up the field adjustment in VAL. */
1513 val = 0;
1514 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1515 {
1516 /* Either we're calculating the final field value or we have a
1517 relocation against a section symbol. Add in the section's
1518 offset or address. */
1519 val += symbol->section->output_section->vma;
1520 val += symbol->section->output_offset;
1521 }
1522
1523 if (!relocatable)
1524 {
1525 /* We're calculating the final field value. Add in the symbol's value
1526 and, if pc-relative, subtract the address of the field itself. */
1527 val += symbol->value;
1528 if (reloc_entry->howto->pc_relative)
1529 {
1530 val -= input_section->output_section->vma;
1531 val -= input_section->output_offset;
1532 val -= reloc_entry->address;
1533 }
1534 }
1535
1536 /* VAL is now the final adjustment. If we're keeping this relocation
1537 in the output file, and if the relocation uses a separate addend,
1538 we just need to add VAL to that addend. Otherwise we need to add
1539 VAL to the relocation field itself. */
1540 if (relocatable && !reloc_entry->howto->partial_inplace)
1541 reloc_entry->addend += val;
1542 else
1543 {
1544 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1545
1546 /* Add in the separate addend, if any. */
1547 val += reloc_entry->addend;
1548
1549 /* Add VAL to the relocation field. */
1550 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1551 location);
1552 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1553 location);
1554 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1555 location);
1556
1557 if (status != bfd_reloc_ok)
1558 return status;
1559 }
1560
1561 if (relocatable)
1562 reloc_entry->address += input_section->output_offset;
1563
1564 return bfd_reloc_ok;
1565 }
1566 \f
1567 /* Swap an entry in a .gptab section. Note that these routines rely
1568 on the equivalence of the two elements of the union. */
1569
1570 static void
1571 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1572 Elf32_gptab *in)
1573 {
1574 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1575 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1576 }
1577
1578 static void
1579 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1580 Elf32_External_gptab *ex)
1581 {
1582 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1583 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1584 }
1585
1586 static void
1587 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1588 Elf32_External_compact_rel *ex)
1589 {
1590 H_PUT_32 (abfd, in->id1, ex->id1);
1591 H_PUT_32 (abfd, in->num, ex->num);
1592 H_PUT_32 (abfd, in->id2, ex->id2);
1593 H_PUT_32 (abfd, in->offset, ex->offset);
1594 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1595 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1596 }
1597
1598 static void
1599 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1600 Elf32_External_crinfo *ex)
1601 {
1602 unsigned long l;
1603
1604 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1605 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1606 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1607 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1608 H_PUT_32 (abfd, l, ex->info);
1609 H_PUT_32 (abfd, in->konst, ex->konst);
1610 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1611 }
1612 \f
1613 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1614 routines swap this structure in and out. They are used outside of
1615 BFD, so they are globally visible. */
1616
1617 void
1618 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1619 Elf32_RegInfo *in)
1620 {
1621 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1622 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1623 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1624 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1625 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1626 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1627 }
1628
1629 void
1630 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1631 Elf32_External_RegInfo *ex)
1632 {
1633 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1634 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1635 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1636 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1637 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1638 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1639 }
1640
1641 /* In the 64 bit ABI, the .MIPS.options section holds register
1642 information in an Elf64_Reginfo structure. These routines swap
1643 them in and out. They are globally visible because they are used
1644 outside of BFD. These routines are here so that gas can call them
1645 without worrying about whether the 64 bit ABI has been included. */
1646
1647 void
1648 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1649 Elf64_Internal_RegInfo *in)
1650 {
1651 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1652 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1653 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1654 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1655 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1656 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1657 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1658 }
1659
1660 void
1661 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1662 Elf64_External_RegInfo *ex)
1663 {
1664 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1665 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1666 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1667 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1668 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1669 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1670 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1671 }
1672
1673 /* Swap in an options header. */
1674
1675 void
1676 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1677 Elf_Internal_Options *in)
1678 {
1679 in->kind = H_GET_8 (abfd, ex->kind);
1680 in->size = H_GET_8 (abfd, ex->size);
1681 in->section = H_GET_16 (abfd, ex->section);
1682 in->info = H_GET_32 (abfd, ex->info);
1683 }
1684
1685 /* Swap out an options header. */
1686
1687 void
1688 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1689 Elf_External_Options *ex)
1690 {
1691 H_PUT_8 (abfd, in->kind, ex->kind);
1692 H_PUT_8 (abfd, in->size, ex->size);
1693 H_PUT_16 (abfd, in->section, ex->section);
1694 H_PUT_32 (abfd, in->info, ex->info);
1695 }
1696 \f
1697 /* This function is called via qsort() to sort the dynamic relocation
1698 entries by increasing r_symndx value. */
1699
1700 static int
1701 sort_dynamic_relocs (const void *arg1, const void *arg2)
1702 {
1703 Elf_Internal_Rela int_reloc1;
1704 Elf_Internal_Rela int_reloc2;
1705 int diff;
1706
1707 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1708 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1709
1710 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1711 if (diff != 0)
1712 return diff;
1713
1714 if (int_reloc1.r_offset < int_reloc2.r_offset)
1715 return -1;
1716 if (int_reloc1.r_offset > int_reloc2.r_offset)
1717 return 1;
1718 return 0;
1719 }
1720
1721 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1722
1723 static int
1724 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1725 const void *arg2 ATTRIBUTE_UNUSED)
1726 {
1727 #ifdef BFD64
1728 Elf_Internal_Rela int_reloc1[3];
1729 Elf_Internal_Rela int_reloc2[3];
1730
1731 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1732 (reldyn_sorting_bfd, arg1, int_reloc1);
1733 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1734 (reldyn_sorting_bfd, arg2, int_reloc2);
1735
1736 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1737 return -1;
1738 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1739 return 1;
1740
1741 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1742 return -1;
1743 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1744 return 1;
1745 return 0;
1746 #else
1747 abort ();
1748 #endif
1749 }
1750
1751
1752 /* This routine is used to write out ECOFF debugging external symbol
1753 information. It is called via mips_elf_link_hash_traverse. The
1754 ECOFF external symbol information must match the ELF external
1755 symbol information. Unfortunately, at this point we don't know
1756 whether a symbol is required by reloc information, so the two
1757 tables may wind up being different. We must sort out the external
1758 symbol information before we can set the final size of the .mdebug
1759 section, and we must set the size of the .mdebug section before we
1760 can relocate any sections, and we can't know which symbols are
1761 required by relocation until we relocate the sections.
1762 Fortunately, it is relatively unlikely that any symbol will be
1763 stripped but required by a reloc. In particular, it can not happen
1764 when generating a final executable. */
1765
1766 static bfd_boolean
1767 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1768 {
1769 struct extsym_info *einfo = data;
1770 bfd_boolean strip;
1771 asection *sec, *output_section;
1772
1773 if (h->root.root.type == bfd_link_hash_warning)
1774 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1775
1776 if (h->root.indx == -2)
1777 strip = FALSE;
1778 else if ((h->root.def_dynamic
1779 || h->root.ref_dynamic
1780 || h->root.type == bfd_link_hash_new)
1781 && !h->root.def_regular
1782 && !h->root.ref_regular)
1783 strip = TRUE;
1784 else if (einfo->info->strip == strip_all
1785 || (einfo->info->strip == strip_some
1786 && bfd_hash_lookup (einfo->info->keep_hash,
1787 h->root.root.root.string,
1788 FALSE, FALSE) == NULL))
1789 strip = TRUE;
1790 else
1791 strip = FALSE;
1792
1793 if (strip)
1794 return TRUE;
1795
1796 if (h->esym.ifd == -2)
1797 {
1798 h->esym.jmptbl = 0;
1799 h->esym.cobol_main = 0;
1800 h->esym.weakext = 0;
1801 h->esym.reserved = 0;
1802 h->esym.ifd = ifdNil;
1803 h->esym.asym.value = 0;
1804 h->esym.asym.st = stGlobal;
1805
1806 if (h->root.root.type == bfd_link_hash_undefined
1807 || h->root.root.type == bfd_link_hash_undefweak)
1808 {
1809 const char *name;
1810
1811 /* Use undefined class. Also, set class and type for some
1812 special symbols. */
1813 name = h->root.root.root.string;
1814 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1815 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1816 {
1817 h->esym.asym.sc = scData;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value = 0;
1820 }
1821 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1822 {
1823 h->esym.asym.sc = scAbs;
1824 h->esym.asym.st = stLabel;
1825 h->esym.asym.value =
1826 mips_elf_hash_table (einfo->info)->procedure_count;
1827 }
1828 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1829 {
1830 h->esym.asym.sc = scAbs;
1831 h->esym.asym.st = stLabel;
1832 h->esym.asym.value = elf_gp (einfo->abfd);
1833 }
1834 else
1835 h->esym.asym.sc = scUndefined;
1836 }
1837 else if (h->root.root.type != bfd_link_hash_defined
1838 && h->root.root.type != bfd_link_hash_defweak)
1839 h->esym.asym.sc = scAbs;
1840 else
1841 {
1842 const char *name;
1843
1844 sec = h->root.root.u.def.section;
1845 output_section = sec->output_section;
1846
1847 /* When making a shared library and symbol h is the one from
1848 the another shared library, OUTPUT_SECTION may be null. */
1849 if (output_section == NULL)
1850 h->esym.asym.sc = scUndefined;
1851 else
1852 {
1853 name = bfd_section_name (output_section->owner, output_section);
1854
1855 if (strcmp (name, ".text") == 0)
1856 h->esym.asym.sc = scText;
1857 else if (strcmp (name, ".data") == 0)
1858 h->esym.asym.sc = scData;
1859 else if (strcmp (name, ".sdata") == 0)
1860 h->esym.asym.sc = scSData;
1861 else if (strcmp (name, ".rodata") == 0
1862 || strcmp (name, ".rdata") == 0)
1863 h->esym.asym.sc = scRData;
1864 else if (strcmp (name, ".bss") == 0)
1865 h->esym.asym.sc = scBss;
1866 else if (strcmp (name, ".sbss") == 0)
1867 h->esym.asym.sc = scSBss;
1868 else if (strcmp (name, ".init") == 0)
1869 h->esym.asym.sc = scInit;
1870 else if (strcmp (name, ".fini") == 0)
1871 h->esym.asym.sc = scFini;
1872 else
1873 h->esym.asym.sc = scAbs;
1874 }
1875 }
1876
1877 h->esym.asym.reserved = 0;
1878 h->esym.asym.index = indexNil;
1879 }
1880
1881 if (h->root.root.type == bfd_link_hash_common)
1882 h->esym.asym.value = h->root.root.u.c.size;
1883 else if (h->root.root.type == bfd_link_hash_defined
1884 || h->root.root.type == bfd_link_hash_defweak)
1885 {
1886 if (h->esym.asym.sc == scCommon)
1887 h->esym.asym.sc = scBss;
1888 else if (h->esym.asym.sc == scSCommon)
1889 h->esym.asym.sc = scSBss;
1890
1891 sec = h->root.root.u.def.section;
1892 output_section = sec->output_section;
1893 if (output_section != NULL)
1894 h->esym.asym.value = (h->root.root.u.def.value
1895 + sec->output_offset
1896 + output_section->vma);
1897 else
1898 h->esym.asym.value = 0;
1899 }
1900 else if (h->root.needs_plt)
1901 {
1902 struct mips_elf_link_hash_entry *hd = h;
1903 bfd_boolean no_fn_stub = h->no_fn_stub;
1904
1905 while (hd->root.root.type == bfd_link_hash_indirect)
1906 {
1907 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1908 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1909 }
1910
1911 if (!no_fn_stub)
1912 {
1913 /* Set type and value for a symbol with a function stub. */
1914 h->esym.asym.st = stProc;
1915 sec = hd->root.root.u.def.section;
1916 if (sec == NULL)
1917 h->esym.asym.value = 0;
1918 else
1919 {
1920 output_section = sec->output_section;
1921 if (output_section != NULL)
1922 h->esym.asym.value = (hd->root.plt.offset
1923 + sec->output_offset
1924 + output_section->vma);
1925 else
1926 h->esym.asym.value = 0;
1927 }
1928 }
1929 }
1930
1931 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1932 h->root.root.root.string,
1933 &h->esym))
1934 {
1935 einfo->failed = TRUE;
1936 return FALSE;
1937 }
1938
1939 return TRUE;
1940 }
1941
1942 /* A comparison routine used to sort .gptab entries. */
1943
1944 static int
1945 gptab_compare (const void *p1, const void *p2)
1946 {
1947 const Elf32_gptab *a1 = p1;
1948 const Elf32_gptab *a2 = p2;
1949
1950 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1951 }
1952 \f
1953 /* Functions to manage the got entry hash table. */
1954
1955 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1956 hash number. */
1957
1958 static INLINE hashval_t
1959 mips_elf_hash_bfd_vma (bfd_vma addr)
1960 {
1961 #ifdef BFD64
1962 return addr + (addr >> 32);
1963 #else
1964 return addr;
1965 #endif
1966 }
1967
1968 /* got_entries only match if they're identical, except for gotidx, so
1969 use all fields to compute the hash, and compare the appropriate
1970 union members. */
1971
1972 static hashval_t
1973 mips_elf_got_entry_hash (const void *entry_)
1974 {
1975 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1976
1977 return entry->symndx
1978 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1979 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1980 : entry->abfd->id
1981 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1982 : entry->d.h->root.root.root.hash));
1983 }
1984
1985 static int
1986 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1987 {
1988 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1989 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1990
1991 /* An LDM entry can only match another LDM entry. */
1992 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1993 return 0;
1994
1995 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1996 && (! e1->abfd ? e1->d.address == e2->d.address
1997 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1998 : e1->d.h == e2->d.h);
1999 }
2000
2001 /* multi_got_entries are still a match in the case of global objects,
2002 even if the input bfd in which they're referenced differs, so the
2003 hash computation and compare functions are adjusted
2004 accordingly. */
2005
2006 static hashval_t
2007 mips_elf_multi_got_entry_hash (const void *entry_)
2008 {
2009 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2010
2011 return entry->symndx
2012 + (! entry->abfd
2013 ? mips_elf_hash_bfd_vma (entry->d.address)
2014 : entry->symndx >= 0
2015 ? ((entry->tls_type & GOT_TLS_LDM)
2016 ? (GOT_TLS_LDM << 17)
2017 : (entry->abfd->id
2018 + mips_elf_hash_bfd_vma (entry->d.addend)))
2019 : entry->d.h->root.root.root.hash);
2020 }
2021
2022 static int
2023 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2024 {
2025 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2026 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2027
2028 /* Any two LDM entries match. */
2029 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2030 return 1;
2031
2032 /* Nothing else matches an LDM entry. */
2033 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2034 return 0;
2035
2036 return e1->symndx == e2->symndx
2037 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2038 : e1->abfd == NULL || e2->abfd == NULL
2039 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2040 : e1->d.h == e2->d.h);
2041 }
2042 \f
2043 /* Return the dynamic relocation section. If it doesn't exist, try to
2044 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2045 if creation fails. */
2046
2047 static asection *
2048 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2049 {
2050 const char *dname;
2051 asection *sreloc;
2052 bfd *dynobj;
2053
2054 dname = MIPS_ELF_REL_DYN_NAME (info);
2055 dynobj = elf_hash_table (info)->dynobj;
2056 sreloc = bfd_get_section_by_name (dynobj, dname);
2057 if (sreloc == NULL && create_p)
2058 {
2059 sreloc = bfd_make_section_with_flags (dynobj, dname,
2060 (SEC_ALLOC
2061 | SEC_LOAD
2062 | SEC_HAS_CONTENTS
2063 | SEC_IN_MEMORY
2064 | SEC_LINKER_CREATED
2065 | SEC_READONLY));
2066 if (sreloc == NULL
2067 || ! bfd_set_section_alignment (dynobj, sreloc,
2068 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2069 return NULL;
2070 }
2071 return sreloc;
2072 }
2073
2074 /* Returns the GOT section for ABFD. */
2075
2076 static asection *
2077 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2078 {
2079 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2080 if (sgot == NULL
2081 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2082 return NULL;
2083 return sgot;
2084 }
2085
2086 /* Returns the GOT information associated with the link indicated by
2087 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2088 section. */
2089
2090 static struct mips_got_info *
2091 mips_elf_got_info (bfd *abfd, asection **sgotp)
2092 {
2093 asection *sgot;
2094 struct mips_got_info *g;
2095
2096 sgot = mips_elf_got_section (abfd, TRUE);
2097 BFD_ASSERT (sgot != NULL);
2098 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2099 g = mips_elf_section_data (sgot)->u.got_info;
2100 BFD_ASSERT (g != NULL);
2101
2102 if (sgotp)
2103 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2104
2105 return g;
2106 }
2107
2108 /* Count the number of relocations needed for a TLS GOT entry, with
2109 access types from TLS_TYPE, and symbol H (or a local symbol if H
2110 is NULL). */
2111
2112 static int
2113 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2114 struct elf_link_hash_entry *h)
2115 {
2116 int indx = 0;
2117 int ret = 0;
2118 bfd_boolean need_relocs = FALSE;
2119 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2120
2121 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2122 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2123 indx = h->dynindx;
2124
2125 if ((info->shared || indx != 0)
2126 && (h == NULL
2127 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2128 || h->root.type != bfd_link_hash_undefweak))
2129 need_relocs = TRUE;
2130
2131 if (!need_relocs)
2132 return FALSE;
2133
2134 if (tls_type & GOT_TLS_GD)
2135 {
2136 ret++;
2137 if (indx != 0)
2138 ret++;
2139 }
2140
2141 if (tls_type & GOT_TLS_IE)
2142 ret++;
2143
2144 if ((tls_type & GOT_TLS_LDM) && info->shared)
2145 ret++;
2146
2147 return ret;
2148 }
2149
2150 /* Count the number of TLS relocations required for the GOT entry in
2151 ARG1, if it describes a local symbol. */
2152
2153 static int
2154 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2155 {
2156 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2157 struct mips_elf_count_tls_arg *arg = arg2;
2158
2159 if (entry->abfd != NULL && entry->symndx != -1)
2160 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2161
2162 return 1;
2163 }
2164
2165 /* Count the number of TLS GOT entries required for the global (or
2166 forced-local) symbol in ARG1. */
2167
2168 static int
2169 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2170 {
2171 struct mips_elf_link_hash_entry *hm
2172 = (struct mips_elf_link_hash_entry *) arg1;
2173 struct mips_elf_count_tls_arg *arg = arg2;
2174
2175 if (hm->tls_type & GOT_TLS_GD)
2176 arg->needed += 2;
2177 if (hm->tls_type & GOT_TLS_IE)
2178 arg->needed += 1;
2179
2180 return 1;
2181 }
2182
2183 /* Count the number of TLS relocations required for the global (or
2184 forced-local) symbol in ARG1. */
2185
2186 static int
2187 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2188 {
2189 struct mips_elf_link_hash_entry *hm
2190 = (struct mips_elf_link_hash_entry *) arg1;
2191 struct mips_elf_count_tls_arg *arg = arg2;
2192
2193 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2194
2195 return 1;
2196 }
2197
2198 /* Output a simple dynamic relocation into SRELOC. */
2199
2200 static void
2201 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2202 asection *sreloc,
2203 unsigned long indx,
2204 int r_type,
2205 bfd_vma offset)
2206 {
2207 Elf_Internal_Rela rel[3];
2208
2209 memset (rel, 0, sizeof (rel));
2210
2211 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2212 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2213
2214 if (ABI_64_P (output_bfd))
2215 {
2216 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2220 }
2221 else
2222 bfd_elf32_swap_reloc_out
2223 (output_bfd, &rel[0],
2224 (sreloc->contents
2225 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2226 ++sreloc->reloc_count;
2227 }
2228
2229 /* Initialize a set of TLS GOT entries for one symbol. */
2230
2231 static void
2232 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2233 unsigned char *tls_type_p,
2234 struct bfd_link_info *info,
2235 struct mips_elf_link_hash_entry *h,
2236 bfd_vma value)
2237 {
2238 int indx;
2239 asection *sreloc, *sgot;
2240 bfd_vma offset, offset2;
2241 bfd *dynobj;
2242 bfd_boolean need_relocs = FALSE;
2243
2244 dynobj = elf_hash_table (info)->dynobj;
2245 sgot = mips_elf_got_section (dynobj, FALSE);
2246
2247 indx = 0;
2248 if (h != NULL)
2249 {
2250 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2251
2252 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2253 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2254 indx = h->root.dynindx;
2255 }
2256
2257 if (*tls_type_p & GOT_TLS_DONE)
2258 return;
2259
2260 if ((info->shared || indx != 0)
2261 && (h == NULL
2262 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2263 || h->root.type != bfd_link_hash_undefweak))
2264 need_relocs = TRUE;
2265
2266 /* MINUS_ONE means the symbol is not defined in this object. It may not
2267 be defined at all; assume that the value doesn't matter in that
2268 case. Otherwise complain if we would use the value. */
2269 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2270 || h->root.root.type == bfd_link_hash_undefweak);
2271
2272 /* Emit necessary relocations. */
2273 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2274
2275 /* General Dynamic. */
2276 if (*tls_type_p & GOT_TLS_GD)
2277 {
2278 offset = got_offset;
2279 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2280
2281 if (need_relocs)
2282 {
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2286 sgot->output_offset + sgot->output_section->vma + offset);
2287
2288 if (indx)
2289 mips_elf_output_dynamic_relocation
2290 (abfd, sreloc, indx,
2291 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2292 sgot->output_offset + sgot->output_section->vma + offset2);
2293 else
2294 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2295 sgot->contents + offset2);
2296 }
2297 else
2298 {
2299 MIPS_ELF_PUT_WORD (abfd, 1,
2300 sgot->contents + offset);
2301 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2302 sgot->contents + offset2);
2303 }
2304
2305 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2306 }
2307
2308 /* Initial Exec model. */
2309 if (*tls_type_p & GOT_TLS_IE)
2310 {
2311 offset = got_offset;
2312
2313 if (need_relocs)
2314 {
2315 if (indx == 0)
2316 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2317 sgot->contents + offset);
2318 else
2319 MIPS_ELF_PUT_WORD (abfd, 0,
2320 sgot->contents + offset);
2321
2322 mips_elf_output_dynamic_relocation
2323 (abfd, sreloc, indx,
2324 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2325 sgot->output_offset + sgot->output_section->vma + offset);
2326 }
2327 else
2328 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2329 sgot->contents + offset);
2330 }
2331
2332 if (*tls_type_p & GOT_TLS_LDM)
2333 {
2334 /* The initial offset is zero, and the LD offsets will include the
2335 bias by DTP_OFFSET. */
2336 MIPS_ELF_PUT_WORD (abfd, 0,
2337 sgot->contents + got_offset
2338 + MIPS_ELF_GOT_SIZE (abfd));
2339
2340 if (!info->shared)
2341 MIPS_ELF_PUT_WORD (abfd, 1,
2342 sgot->contents + got_offset);
2343 else
2344 mips_elf_output_dynamic_relocation
2345 (abfd, sreloc, indx,
2346 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2347 sgot->output_offset + sgot->output_section->vma + got_offset);
2348 }
2349
2350 *tls_type_p |= GOT_TLS_DONE;
2351 }
2352
2353 /* Return the GOT index to use for a relocation of type R_TYPE against
2354 a symbol accessed using TLS_TYPE models. The GOT entries for this
2355 symbol in this GOT start at GOT_INDEX. This function initializes the
2356 GOT entries and corresponding relocations. */
2357
2358 static bfd_vma
2359 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2360 int r_type, struct bfd_link_info *info,
2361 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2362 {
2363 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2364 || r_type == R_MIPS_TLS_LDM);
2365
2366 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2367
2368 if (r_type == R_MIPS_TLS_GOTTPREL)
2369 {
2370 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2371 if (*tls_type & GOT_TLS_GD)
2372 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2373 else
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_GD)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2380 return got_index;
2381 }
2382
2383 if (r_type == R_MIPS_TLS_LDM)
2384 {
2385 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2386 return got_index;
2387 }
2388
2389 return got_index;
2390 }
2391
2392 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2393 for global symbol H. .got.plt comes before the GOT, so the offset
2394 will be negative. */
2395
2396 static bfd_vma
2397 mips_elf_gotplt_index (struct bfd_link_info *info,
2398 struct elf_link_hash_entry *h)
2399 {
2400 bfd_vma plt_index, got_address, got_value;
2401 struct mips_elf_link_hash_table *htab;
2402
2403 htab = mips_elf_hash_table (info);
2404 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2405
2406 /* Calculate the index of the symbol's PLT entry. */
2407 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2408
2409 /* Calculate the address of the associated .got.plt entry. */
2410 got_address = (htab->sgotplt->output_section->vma
2411 + htab->sgotplt->output_offset
2412 + plt_index * 4);
2413
2414 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2415 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2416 + htab->root.hgot->root.u.def.section->output_offset
2417 + htab->root.hgot->root.u.def.value);
2418
2419 return got_address - got_value;
2420 }
2421
2422 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2423 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2424 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2425 offset can be found. */
2426
2427 static bfd_vma
2428 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2429 bfd_vma value, unsigned long r_symndx,
2430 struct mips_elf_link_hash_entry *h, int r_type)
2431 {
2432 asection *sgot;
2433 struct mips_got_info *g;
2434 struct mips_got_entry *entry;
2435
2436 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2437
2438 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2439 value, r_symndx, h, r_type);
2440 if (!entry)
2441 return MINUS_ONE;
2442
2443 if (TLS_RELOC_P (r_type))
2444 {
2445 if (entry->symndx == -1 && g->next == NULL)
2446 /* A type (3) entry in the single-GOT case. We use the symbol's
2447 hash table entry to track the index. */
2448 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2449 r_type, info, h, value);
2450 else
2451 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2452 r_type, info, h, value);
2453 }
2454 else
2455 return entry->gotidx;
2456 }
2457
2458 /* Returns the GOT index for the global symbol indicated by H. */
2459
2460 static bfd_vma
2461 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2462 int r_type, struct bfd_link_info *info)
2463 {
2464 bfd_vma index;
2465 asection *sgot;
2466 struct mips_got_info *g, *gg;
2467 long global_got_dynindx = 0;
2468
2469 gg = g = mips_elf_got_info (abfd, &sgot);
2470 if (g->bfd2got && ibfd)
2471 {
2472 struct mips_got_entry e, *p;
2473
2474 BFD_ASSERT (h->dynindx >= 0);
2475
2476 g = mips_elf_got_for_ibfd (g, ibfd);
2477 if (g->next != gg || TLS_RELOC_P (r_type))
2478 {
2479 e.abfd = ibfd;
2480 e.symndx = -1;
2481 e.d.h = (struct mips_elf_link_hash_entry *)h;
2482 e.tls_type = 0;
2483
2484 p = htab_find (g->got_entries, &e);
2485
2486 BFD_ASSERT (p->gotidx > 0);
2487
2488 if (TLS_RELOC_P (r_type))
2489 {
2490 bfd_vma value = MINUS_ONE;
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && h->root.u.def.section->output_section)
2494 value = (h->root.u.def.value
2495 + h->root.u.def.section->output_offset
2496 + h->root.u.def.section->output_section->vma);
2497
2498 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2499 info, e.d.h, value);
2500 }
2501 else
2502 return p->gotidx;
2503 }
2504 }
2505
2506 if (gg->global_gotsym != NULL)
2507 global_got_dynindx = gg->global_gotsym->dynindx;
2508
2509 if (TLS_RELOC_P (r_type))
2510 {
2511 struct mips_elf_link_hash_entry *hm
2512 = (struct mips_elf_link_hash_entry *) h;
2513 bfd_vma value = MINUS_ONE;
2514
2515 if ((h->root.type == bfd_link_hash_defined
2516 || h->root.type == bfd_link_hash_defweak)
2517 && h->root.u.def.section->output_section)
2518 value = (h->root.u.def.value
2519 + h->root.u.def.section->output_offset
2520 + h->root.u.def.section->output_section->vma);
2521
2522 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2523 r_type, info, hm, value);
2524 }
2525 else
2526 {
2527 /* Once we determine the global GOT entry with the lowest dynamic
2528 symbol table index, we must put all dynamic symbols with greater
2529 indices into the GOT. That makes it easy to calculate the GOT
2530 offset. */
2531 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2532 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2533 * MIPS_ELF_GOT_SIZE (abfd));
2534 }
2535 BFD_ASSERT (index < sgot->size);
2536
2537 return index;
2538 }
2539
2540 /* Find a GOT page entry that points to within 32KB of VALUE. These
2541 entries are supposed to be placed at small offsets in the GOT, i.e.,
2542 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2543 entry could be created. If OFFSETP is nonnull, use it to return the
2544 offset of the GOT entry from VALUE. */
2545
2546 static bfd_vma
2547 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2548 bfd_vma value, bfd_vma *offsetp)
2549 {
2550 asection *sgot;
2551 struct mips_got_info *g;
2552 bfd_vma page, index;
2553 struct mips_got_entry *entry;
2554
2555 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2556
2557 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2558 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2559 page, 0, NULL, R_MIPS_GOT_PAGE);
2560
2561 if (!entry)
2562 return MINUS_ONE;
2563
2564 index = entry->gotidx;
2565
2566 if (offsetp)
2567 *offsetp = value - entry->d.address;
2568
2569 return index;
2570 }
2571
2572 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2573 EXTERNAL is true if the relocation was against a global symbol
2574 that has been forced local. */
2575
2576 static bfd_vma
2577 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2578 bfd_vma value, bfd_boolean external)
2579 {
2580 asection *sgot;
2581 struct mips_got_info *g;
2582 struct mips_got_entry *entry;
2583
2584 /* GOT16 relocations against local symbols are followed by a LO16
2585 relocation; those against global symbols are not. Thus if the
2586 symbol was originally local, the GOT16 relocation should load the
2587 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2588 if (! external)
2589 value = mips_elf_high (value) << 16;
2590
2591 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2592
2593 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2594 value, 0, NULL, R_MIPS_GOT16);
2595 if (entry)
2596 return entry->gotidx;
2597 else
2598 return MINUS_ONE;
2599 }
2600
2601 /* Returns the offset for the entry at the INDEXth position
2602 in the GOT. */
2603
2604 static bfd_vma
2605 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2606 bfd *input_bfd, bfd_vma index)
2607 {
2608 asection *sgot;
2609 bfd_vma gp;
2610 struct mips_got_info *g;
2611
2612 g = mips_elf_got_info (dynobj, &sgot);
2613 gp = _bfd_get_gp_value (output_bfd)
2614 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2615
2616 return sgot->output_section->vma + sgot->output_offset + index - gp;
2617 }
2618
2619 /* Create and return a local GOT entry for VALUE, which was calculated
2620 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2621 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2622 instead. */
2623
2624 static struct mips_got_entry *
2625 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2626 bfd *ibfd, struct mips_got_info *gg,
2627 asection *sgot, bfd_vma value,
2628 unsigned long r_symndx,
2629 struct mips_elf_link_hash_entry *h,
2630 int r_type)
2631 {
2632 struct mips_got_entry entry, **loc;
2633 struct mips_got_info *g;
2634 struct mips_elf_link_hash_table *htab;
2635
2636 htab = mips_elf_hash_table (info);
2637
2638 entry.abfd = NULL;
2639 entry.symndx = -1;
2640 entry.d.address = value;
2641 entry.tls_type = 0;
2642
2643 g = mips_elf_got_for_ibfd (gg, ibfd);
2644 if (g == NULL)
2645 {
2646 g = mips_elf_got_for_ibfd (gg, abfd);
2647 BFD_ASSERT (g != NULL);
2648 }
2649
2650 /* We might have a symbol, H, if it has been forced local. Use the
2651 global entry then. It doesn't matter whether an entry is local
2652 or global for TLS, since the dynamic linker does not
2653 automatically relocate TLS GOT entries. */
2654 BFD_ASSERT (h == NULL || h->root.forced_local);
2655 if (TLS_RELOC_P (r_type))
2656 {
2657 struct mips_got_entry *p;
2658
2659 entry.abfd = ibfd;
2660 if (r_type == R_MIPS_TLS_LDM)
2661 {
2662 entry.tls_type = GOT_TLS_LDM;
2663 entry.symndx = 0;
2664 entry.d.addend = 0;
2665 }
2666 else if (h == NULL)
2667 {
2668 entry.symndx = r_symndx;
2669 entry.d.addend = 0;
2670 }
2671 else
2672 entry.d.h = h;
2673
2674 p = (struct mips_got_entry *)
2675 htab_find (g->got_entries, &entry);
2676
2677 BFD_ASSERT (p);
2678 return p;
2679 }
2680
2681 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2682 INSERT);
2683 if (*loc)
2684 return *loc;
2685
2686 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2687 entry.tls_type = 0;
2688
2689 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2690
2691 if (! *loc)
2692 return NULL;
2693
2694 memcpy (*loc, &entry, sizeof entry);
2695
2696 if (g->assigned_gotno > g->local_gotno)
2697 {
2698 (*loc)->gotidx = -1;
2699 /* We didn't allocate enough space in the GOT. */
2700 (*_bfd_error_handler)
2701 (_("not enough GOT space for local GOT entries"));
2702 bfd_set_error (bfd_error_bad_value);
2703 return NULL;
2704 }
2705
2706 MIPS_ELF_PUT_WORD (abfd, value,
2707 (sgot->contents + entry.gotidx));
2708
2709 /* These GOT entries need a dynamic relocation on VxWorks. */
2710 if (htab->is_vxworks)
2711 {
2712 Elf_Internal_Rela outrel;
2713 asection *s;
2714 bfd_byte *loc;
2715 bfd_vma got_address;
2716
2717 s = mips_elf_rel_dyn_section (info, FALSE);
2718 got_address = (sgot->output_section->vma
2719 + sgot->output_offset
2720 + entry.gotidx);
2721
2722 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2723 outrel.r_offset = got_address;
2724 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2725 outrel.r_addend = value;
2726 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2727 }
2728
2729 return *loc;
2730 }
2731
2732 /* Sort the dynamic symbol table so that symbols that need GOT entries
2733 appear towards the end. This reduces the amount of GOT space
2734 required. MAX_LOCAL is used to set the number of local symbols
2735 known to be in the dynamic symbol table. During
2736 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2737 section symbols are added and the count is higher. */
2738
2739 static bfd_boolean
2740 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2741 {
2742 struct mips_elf_hash_sort_data hsd;
2743 struct mips_got_info *g;
2744 bfd *dynobj;
2745
2746 dynobj = elf_hash_table (info)->dynobj;
2747
2748 g = mips_elf_got_info (dynobj, NULL);
2749
2750 hsd.low = NULL;
2751 hsd.max_unref_got_dynindx =
2752 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2753 /* In the multi-got case, assigned_gotno of the master got_info
2754 indicate the number of entries that aren't referenced in the
2755 primary GOT, but that must have entries because there are
2756 dynamic relocations that reference it. Since they aren't
2757 referenced, we move them to the end of the GOT, so that they
2758 don't prevent other entries that are referenced from getting
2759 too large offsets. */
2760 - (g->next ? g->assigned_gotno : 0);
2761 hsd.max_non_got_dynindx = max_local;
2762 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2763 elf_hash_table (info)),
2764 mips_elf_sort_hash_table_f,
2765 &hsd);
2766
2767 /* There should have been enough room in the symbol table to
2768 accommodate both the GOT and non-GOT symbols. */
2769 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2770 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2771 <= elf_hash_table (info)->dynsymcount);
2772
2773 /* Now we know which dynamic symbol has the lowest dynamic symbol
2774 table index in the GOT. */
2775 g->global_gotsym = hsd.low;
2776
2777 return TRUE;
2778 }
2779
2780 /* If H needs a GOT entry, assign it the highest available dynamic
2781 index. Otherwise, assign it the lowest available dynamic
2782 index. */
2783
2784 static bfd_boolean
2785 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2786 {
2787 struct mips_elf_hash_sort_data *hsd = data;
2788
2789 if (h->root.root.type == bfd_link_hash_warning)
2790 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2791
2792 /* Symbols without dynamic symbol table entries aren't interesting
2793 at all. */
2794 if (h->root.dynindx == -1)
2795 return TRUE;
2796
2797 /* Global symbols that need GOT entries that are not explicitly
2798 referenced are marked with got offset 2. Those that are
2799 referenced get a 1, and those that don't need GOT entries get
2800 -1. */
2801 if (h->root.got.offset == 2)
2802 {
2803 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2804
2805 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2806 hsd->low = (struct elf_link_hash_entry *) h;
2807 h->root.dynindx = hsd->max_unref_got_dynindx++;
2808 }
2809 else if (h->root.got.offset != 1)
2810 h->root.dynindx = hsd->max_non_got_dynindx++;
2811 else
2812 {
2813 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2814
2815 h->root.dynindx = --hsd->min_got_dynindx;
2816 hsd->low = (struct elf_link_hash_entry *) h;
2817 }
2818
2819 return TRUE;
2820 }
2821
2822 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2823 symbol table index lower than any we've seen to date, record it for
2824 posterity. */
2825
2826 static bfd_boolean
2827 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2828 bfd *abfd, struct bfd_link_info *info,
2829 struct mips_got_info *g,
2830 unsigned char tls_flag)
2831 {
2832 struct mips_got_entry entry, **loc;
2833
2834 /* A global symbol in the GOT must also be in the dynamic symbol
2835 table. */
2836 if (h->dynindx == -1)
2837 {
2838 switch (ELF_ST_VISIBILITY (h->other))
2839 {
2840 case STV_INTERNAL:
2841 case STV_HIDDEN:
2842 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2843 break;
2844 }
2845 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2846 return FALSE;
2847 }
2848
2849 /* Make sure we have a GOT to put this entry into. */
2850 BFD_ASSERT (g != NULL);
2851
2852 entry.abfd = abfd;
2853 entry.symndx = -1;
2854 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2855 entry.tls_type = 0;
2856
2857 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2858 INSERT);
2859
2860 /* If we've already marked this entry as needing GOT space, we don't
2861 need to do it again. */
2862 if (*loc)
2863 {
2864 (*loc)->tls_type |= tls_flag;
2865 return TRUE;
2866 }
2867
2868 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2869
2870 if (! *loc)
2871 return FALSE;
2872
2873 entry.gotidx = -1;
2874 entry.tls_type = tls_flag;
2875
2876 memcpy (*loc, &entry, sizeof entry);
2877
2878 if (h->got.offset != MINUS_ONE)
2879 return TRUE;
2880
2881 if (tls_flag == 0)
2882 {
2883 /* By setting this to a value other than -1, we are indicating that
2884 there needs to be a GOT entry for H. Avoid using zero, as the
2885 generic ELF copy_indirect_symbol tests for <= 0. */
2886 h->got.offset = 1;
2887 if (h->forced_local)
2888 g->local_gotno++;
2889 }
2890
2891 return TRUE;
2892 }
2893
2894 /* Reserve space in G for a GOT entry containing the value of symbol
2895 SYMNDX in input bfd ABDF, plus ADDEND. */
2896
2897 static bfd_boolean
2898 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2899 struct mips_got_info *g,
2900 unsigned char tls_flag)
2901 {
2902 struct mips_got_entry entry, **loc;
2903
2904 entry.abfd = abfd;
2905 entry.symndx = symndx;
2906 entry.d.addend = addend;
2907 entry.tls_type = tls_flag;
2908 loc = (struct mips_got_entry **)
2909 htab_find_slot (g->got_entries, &entry, INSERT);
2910
2911 if (*loc)
2912 {
2913 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2914 {
2915 g->tls_gotno += 2;
2916 (*loc)->tls_type |= tls_flag;
2917 }
2918 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2919 {
2920 g->tls_gotno += 1;
2921 (*loc)->tls_type |= tls_flag;
2922 }
2923 return TRUE;
2924 }
2925
2926 if (tls_flag != 0)
2927 {
2928 entry.gotidx = -1;
2929 entry.tls_type = tls_flag;
2930 if (tls_flag == GOT_TLS_IE)
2931 g->tls_gotno += 1;
2932 else if (tls_flag == GOT_TLS_GD)
2933 g->tls_gotno += 2;
2934 else if (g->tls_ldm_offset == MINUS_ONE)
2935 {
2936 g->tls_ldm_offset = MINUS_TWO;
2937 g->tls_gotno += 2;
2938 }
2939 }
2940 else
2941 {
2942 entry.gotidx = g->local_gotno++;
2943 entry.tls_type = 0;
2944 }
2945
2946 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2947
2948 if (! *loc)
2949 return FALSE;
2950
2951 memcpy (*loc, &entry, sizeof entry);
2952
2953 return TRUE;
2954 }
2955 \f
2956 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2957
2958 static hashval_t
2959 mips_elf_bfd2got_entry_hash (const void *entry_)
2960 {
2961 const struct mips_elf_bfd2got_hash *entry
2962 = (struct mips_elf_bfd2got_hash *)entry_;
2963
2964 return entry->bfd->id;
2965 }
2966
2967 /* Check whether two hash entries have the same bfd. */
2968
2969 static int
2970 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2971 {
2972 const struct mips_elf_bfd2got_hash *e1
2973 = (const struct mips_elf_bfd2got_hash *)entry1;
2974 const struct mips_elf_bfd2got_hash *e2
2975 = (const struct mips_elf_bfd2got_hash *)entry2;
2976
2977 return e1->bfd == e2->bfd;
2978 }
2979
2980 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2981 be the master GOT data. */
2982
2983 static struct mips_got_info *
2984 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2985 {
2986 struct mips_elf_bfd2got_hash e, *p;
2987
2988 if (! g->bfd2got)
2989 return g;
2990
2991 e.bfd = ibfd;
2992 p = htab_find (g->bfd2got, &e);
2993 return p ? p->g : NULL;
2994 }
2995
2996 /* Create one separate got for each bfd that has entries in the global
2997 got, such that we can tell how many local and global entries each
2998 bfd requires. */
2999
3000 static int
3001 mips_elf_make_got_per_bfd (void **entryp, void *p)
3002 {
3003 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3004 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3005 htab_t bfd2got = arg->bfd2got;
3006 struct mips_got_info *g;
3007 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3008 void **bfdgotp;
3009
3010 /* Find the got_info for this GOT entry's input bfd. Create one if
3011 none exists. */
3012 bfdgot_entry.bfd = entry->abfd;
3013 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3014 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3015
3016 if (bfdgot != NULL)
3017 g = bfdgot->g;
3018 else
3019 {
3020 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3021 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3022
3023 if (bfdgot == NULL)
3024 {
3025 arg->obfd = 0;
3026 return 0;
3027 }
3028
3029 *bfdgotp = bfdgot;
3030
3031 bfdgot->bfd = entry->abfd;
3032 bfdgot->g = g = (struct mips_got_info *)
3033 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3034 if (g == NULL)
3035 {
3036 arg->obfd = 0;
3037 return 0;
3038 }
3039
3040 g->global_gotsym = NULL;
3041 g->global_gotno = 0;
3042 g->local_gotno = 0;
3043 g->assigned_gotno = -1;
3044 g->tls_gotno = 0;
3045 g->tls_assigned_gotno = 0;
3046 g->tls_ldm_offset = MINUS_ONE;
3047 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3048 mips_elf_multi_got_entry_eq, NULL);
3049 if (g->got_entries == NULL)
3050 {
3051 arg->obfd = 0;
3052 return 0;
3053 }
3054
3055 g->bfd2got = NULL;
3056 g->next = NULL;
3057 }
3058
3059 /* Insert the GOT entry in the bfd's got entry hash table. */
3060 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3061 if (*entryp != NULL)
3062 return 1;
3063
3064 *entryp = entry;
3065
3066 if (entry->tls_type)
3067 {
3068 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3069 g->tls_gotno += 2;
3070 if (entry->tls_type & GOT_TLS_IE)
3071 g->tls_gotno += 1;
3072 }
3073 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3074 ++g->local_gotno;
3075 else
3076 ++g->global_gotno;
3077
3078 return 1;
3079 }
3080
3081 /* Attempt to merge gots of different input bfds. Try to use as much
3082 as possible of the primary got, since it doesn't require explicit
3083 dynamic relocations, but don't use bfds that would reference global
3084 symbols out of the addressable range. Failing the primary got,
3085 attempt to merge with the current got, or finish the current got
3086 and then make make the new got current. */
3087
3088 static int
3089 mips_elf_merge_gots (void **bfd2got_, void *p)
3090 {
3091 struct mips_elf_bfd2got_hash *bfd2got
3092 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3093 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3094 unsigned int lcount = bfd2got->g->local_gotno;
3095 unsigned int gcount = bfd2got->g->global_gotno;
3096 unsigned int tcount = bfd2got->g->tls_gotno;
3097 unsigned int maxcnt = arg->max_count;
3098 bfd_boolean too_many_for_tls = FALSE;
3099
3100 /* We place TLS GOT entries after both locals and globals. The globals
3101 for the primary GOT may overflow the normal GOT size limit, so be
3102 sure not to merge a GOT which requires TLS with the primary GOT in that
3103 case. This doesn't affect non-primary GOTs. */
3104 if (tcount > 0)
3105 {
3106 unsigned int primary_total = lcount + tcount + arg->global_count;
3107 if (primary_total > maxcnt)
3108 too_many_for_tls = TRUE;
3109 }
3110
3111 /* If we don't have a primary GOT and this is not too big, use it as
3112 a starting point for the primary GOT. */
3113 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3114 && ! too_many_for_tls)
3115 {
3116 arg->primary = bfd2got->g;
3117 arg->primary_count = lcount + gcount;
3118 }
3119 /* If it looks like we can merge this bfd's entries with those of
3120 the primary, merge them. The heuristics is conservative, but we
3121 don't have to squeeze it too hard. */
3122 else if (arg->primary && ! too_many_for_tls
3123 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3124 {
3125 struct mips_got_info *g = bfd2got->g;
3126 int old_lcount = arg->primary->local_gotno;
3127 int old_gcount = arg->primary->global_gotno;
3128 int old_tcount = arg->primary->tls_gotno;
3129
3130 bfd2got->g = arg->primary;
3131
3132 htab_traverse (g->got_entries,
3133 mips_elf_make_got_per_bfd,
3134 arg);
3135 if (arg->obfd == NULL)
3136 return 0;
3137
3138 htab_delete (g->got_entries);
3139 /* We don't have to worry about releasing memory of the actual
3140 got entries, since they're all in the master got_entries hash
3141 table anyway. */
3142
3143 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3144 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3145 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3146
3147 arg->primary_count = arg->primary->local_gotno
3148 + arg->primary->global_gotno + arg->primary->tls_gotno;
3149 }
3150 /* If we can merge with the last-created got, do it. */
3151 else if (arg->current
3152 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3153 {
3154 struct mips_got_info *g = bfd2got->g;
3155 int old_lcount = arg->current->local_gotno;
3156 int old_gcount = arg->current->global_gotno;
3157 int old_tcount = arg->current->tls_gotno;
3158
3159 bfd2got->g = arg->current;
3160
3161 htab_traverse (g->got_entries,
3162 mips_elf_make_got_per_bfd,
3163 arg);
3164 if (arg->obfd == NULL)
3165 return 0;
3166
3167 htab_delete (g->got_entries);
3168
3169 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3170 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3171 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3172
3173 arg->current_count = arg->current->local_gotno
3174 + arg->current->global_gotno + arg->current->tls_gotno;
3175 }
3176 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3177 fits; if it turns out that it doesn't, we'll get relocation
3178 overflows anyway. */
3179 else
3180 {
3181 bfd2got->g->next = arg->current;
3182 arg->current = bfd2got->g;
3183
3184 arg->current_count = lcount + gcount + 2 * tcount;
3185 }
3186
3187 return 1;
3188 }
3189
3190 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3191 is null iff there is just a single GOT. */
3192
3193 static int
3194 mips_elf_initialize_tls_index (void **entryp, void *p)
3195 {
3196 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3197 struct mips_got_info *g = p;
3198 bfd_vma next_index;
3199 unsigned char tls_type;
3200
3201 /* We're only interested in TLS symbols. */
3202 if (entry->tls_type == 0)
3203 return 1;
3204
3205 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3206
3207 if (entry->symndx == -1 && g->next == NULL)
3208 {
3209 /* A type (3) got entry in the single-GOT case. We use the symbol's
3210 hash table entry to track its index. */
3211 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3212 return 1;
3213 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3214 entry->d.h->tls_got_offset = next_index;
3215 tls_type = entry->d.h->tls_type;
3216 }
3217 else
3218 {
3219 if (entry->tls_type & GOT_TLS_LDM)
3220 {
3221 /* There are separate mips_got_entry objects for each input bfd
3222 that requires an LDM entry. Make sure that all LDM entries in
3223 a GOT resolve to the same index. */
3224 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3225 {
3226 entry->gotidx = g->tls_ldm_offset;
3227 return 1;
3228 }
3229 g->tls_ldm_offset = next_index;
3230 }
3231 entry->gotidx = next_index;
3232 tls_type = entry->tls_type;
3233 }
3234
3235 /* Account for the entries we've just allocated. */
3236 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3237 g->tls_assigned_gotno += 2;
3238 if (tls_type & GOT_TLS_IE)
3239 g->tls_assigned_gotno += 1;
3240
3241 return 1;
3242 }
3243
3244 /* If passed a NULL mips_got_info in the argument, set the marker used
3245 to tell whether a global symbol needs a got entry (in the primary
3246 got) to the given VALUE.
3247
3248 If passed a pointer G to a mips_got_info in the argument (it must
3249 not be the primary GOT), compute the offset from the beginning of
3250 the (primary) GOT section to the entry in G corresponding to the
3251 global symbol. G's assigned_gotno must contain the index of the
3252 first available global GOT entry in G. VALUE must contain the size
3253 of a GOT entry in bytes. For each global GOT entry that requires a
3254 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3255 marked as not eligible for lazy resolution through a function
3256 stub. */
3257 static int
3258 mips_elf_set_global_got_offset (void **entryp, void *p)
3259 {
3260 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3261 struct mips_elf_set_global_got_offset_arg *arg
3262 = (struct mips_elf_set_global_got_offset_arg *)p;
3263 struct mips_got_info *g = arg->g;
3264
3265 if (g && entry->tls_type != GOT_NORMAL)
3266 arg->needed_relocs +=
3267 mips_tls_got_relocs (arg->info, entry->tls_type,
3268 entry->symndx == -1 ? &entry->d.h->root : NULL);
3269
3270 if (entry->abfd != NULL && entry->symndx == -1
3271 && entry->d.h->root.dynindx != -1
3272 && entry->d.h->tls_type == GOT_NORMAL)
3273 {
3274 if (g)
3275 {
3276 BFD_ASSERT (g->global_gotsym == NULL);
3277
3278 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3279 if (arg->info->shared
3280 || (elf_hash_table (arg->info)->dynamic_sections_created
3281 && entry->d.h->root.def_dynamic
3282 && !entry->d.h->root.def_regular))
3283 ++arg->needed_relocs;
3284 }
3285 else
3286 entry->d.h->root.got.offset = arg->value;
3287 }
3288
3289 return 1;
3290 }
3291
3292 /* Mark any global symbols referenced in the GOT we are iterating over
3293 as inelligible for lazy resolution stubs. */
3294 static int
3295 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3296 {
3297 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3298
3299 if (entry->abfd != NULL
3300 && entry->symndx == -1
3301 && entry->d.h->root.dynindx != -1)
3302 entry->d.h->no_fn_stub = TRUE;
3303
3304 return 1;
3305 }
3306
3307 /* Follow indirect and warning hash entries so that each got entry
3308 points to the final symbol definition. P must point to a pointer
3309 to the hash table we're traversing. Since this traversal may
3310 modify the hash table, we set this pointer to NULL to indicate
3311 we've made a potentially-destructive change to the hash table, so
3312 the traversal must be restarted. */
3313 static int
3314 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3315 {
3316 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3317 htab_t got_entries = *(htab_t *)p;
3318
3319 if (entry->abfd != NULL && entry->symndx == -1)
3320 {
3321 struct mips_elf_link_hash_entry *h = entry->d.h;
3322
3323 while (h->root.root.type == bfd_link_hash_indirect
3324 || h->root.root.type == bfd_link_hash_warning)
3325 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3326
3327 if (entry->d.h == h)
3328 return 1;
3329
3330 entry->d.h = h;
3331
3332 /* If we can't find this entry with the new bfd hash, re-insert
3333 it, and get the traversal restarted. */
3334 if (! htab_find (got_entries, entry))
3335 {
3336 htab_clear_slot (got_entries, entryp);
3337 entryp = htab_find_slot (got_entries, entry, INSERT);
3338 if (! *entryp)
3339 *entryp = entry;
3340 /* Abort the traversal, since the whole table may have
3341 moved, and leave it up to the parent to restart the
3342 process. */
3343 *(htab_t *)p = NULL;
3344 return 0;
3345 }
3346 /* We might want to decrement the global_gotno count, but it's
3347 either too early or too late for that at this point. */
3348 }
3349
3350 return 1;
3351 }
3352
3353 /* Turn indirect got entries in a got_entries table into their final
3354 locations. */
3355 static void
3356 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3357 {
3358 htab_t got_entries;
3359
3360 do
3361 {
3362 got_entries = g->got_entries;
3363
3364 htab_traverse (got_entries,
3365 mips_elf_resolve_final_got_entry,
3366 &got_entries);
3367 }
3368 while (got_entries == NULL);
3369 }
3370
3371 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3372 the primary GOT. */
3373 static bfd_vma
3374 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3375 {
3376 if (g->bfd2got == NULL)
3377 return 0;
3378
3379 g = mips_elf_got_for_ibfd (g, ibfd);
3380 if (! g)
3381 return 0;
3382
3383 BFD_ASSERT (g->next);
3384
3385 g = g->next;
3386
3387 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3388 * MIPS_ELF_GOT_SIZE (abfd);
3389 }
3390
3391 /* Turn a single GOT that is too big for 16-bit addressing into
3392 a sequence of GOTs, each one 16-bit addressable. */
3393
3394 static bfd_boolean
3395 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3396 struct mips_got_info *g, asection *got,
3397 bfd_size_type pages)
3398 {
3399 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3400 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3401 struct mips_got_info *gg;
3402 unsigned int assign;
3403
3404 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3405 mips_elf_bfd2got_entry_eq, NULL);
3406 if (g->bfd2got == NULL)
3407 return FALSE;
3408
3409 got_per_bfd_arg.bfd2got = g->bfd2got;
3410 got_per_bfd_arg.obfd = abfd;
3411 got_per_bfd_arg.info = info;
3412
3413 /* Count how many GOT entries each input bfd requires, creating a
3414 map from bfd to got info while at that. */
3415 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3416 if (got_per_bfd_arg.obfd == NULL)
3417 return FALSE;
3418
3419 got_per_bfd_arg.current = NULL;
3420 got_per_bfd_arg.primary = NULL;
3421 /* Taking out PAGES entries is a worst-case estimate. We could
3422 compute the maximum number of pages that each separate input bfd
3423 uses, but it's probably not worth it. */
3424 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3425 / MIPS_ELF_GOT_SIZE (abfd))
3426 - MIPS_RESERVED_GOTNO (info) - pages);
3427 /* The number of globals that will be included in the primary GOT.
3428 See the calls to mips_elf_set_global_got_offset below for more
3429 information. */
3430 got_per_bfd_arg.global_count = g->global_gotno;
3431
3432 /* Try to merge the GOTs of input bfds together, as long as they
3433 don't seem to exceed the maximum GOT size, choosing one of them
3434 to be the primary GOT. */
3435 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3436 if (got_per_bfd_arg.obfd == NULL)
3437 return FALSE;
3438
3439 /* If we do not find any suitable primary GOT, create an empty one. */
3440 if (got_per_bfd_arg.primary == NULL)
3441 {
3442 g->next = (struct mips_got_info *)
3443 bfd_alloc (abfd, sizeof (struct mips_got_info));
3444 if (g->next == NULL)
3445 return FALSE;
3446
3447 g->next->global_gotsym = NULL;
3448 g->next->global_gotno = 0;
3449 g->next->local_gotno = 0;
3450 g->next->tls_gotno = 0;
3451 g->next->assigned_gotno = 0;
3452 g->next->tls_assigned_gotno = 0;
3453 g->next->tls_ldm_offset = MINUS_ONE;
3454 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3455 mips_elf_multi_got_entry_eq,
3456 NULL);
3457 if (g->next->got_entries == NULL)
3458 return FALSE;
3459 g->next->bfd2got = NULL;
3460 }
3461 else
3462 g->next = got_per_bfd_arg.primary;
3463 g->next->next = got_per_bfd_arg.current;
3464
3465 /* GG is now the master GOT, and G is the primary GOT. */
3466 gg = g;
3467 g = g->next;
3468
3469 /* Map the output bfd to the primary got. That's what we're going
3470 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3471 didn't mark in check_relocs, and we want a quick way to find it.
3472 We can't just use gg->next because we're going to reverse the
3473 list. */
3474 {
3475 struct mips_elf_bfd2got_hash *bfdgot;
3476 void **bfdgotp;
3477
3478 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3479 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3480
3481 if (bfdgot == NULL)
3482 return FALSE;
3483
3484 bfdgot->bfd = abfd;
3485 bfdgot->g = g;
3486 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3487
3488 BFD_ASSERT (*bfdgotp == NULL);
3489 *bfdgotp = bfdgot;
3490 }
3491
3492 /* The IRIX dynamic linker requires every symbol that is referenced
3493 in a dynamic relocation to be present in the primary GOT, so
3494 arrange for them to appear after those that are actually
3495 referenced.
3496
3497 GNU/Linux could very well do without it, but it would slow down
3498 the dynamic linker, since it would have to resolve every dynamic
3499 symbol referenced in other GOTs more than once, without help from
3500 the cache. Also, knowing that every external symbol has a GOT
3501 helps speed up the resolution of local symbols too, so GNU/Linux
3502 follows IRIX's practice.
3503
3504 The number 2 is used by mips_elf_sort_hash_table_f to count
3505 global GOT symbols that are unreferenced in the primary GOT, with
3506 an initial dynamic index computed from gg->assigned_gotno, where
3507 the number of unreferenced global entries in the primary GOT is
3508 preserved. */
3509 if (1)
3510 {
3511 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3512 g->global_gotno = gg->global_gotno;
3513 set_got_offset_arg.value = 2;
3514 }
3515 else
3516 {
3517 /* This could be used for dynamic linkers that don't optimize
3518 symbol resolution while applying relocations so as to use
3519 primary GOT entries or assuming the symbol is locally-defined.
3520 With this code, we assign lower dynamic indices to global
3521 symbols that are not referenced in the primary GOT, so that
3522 their entries can be omitted. */
3523 gg->assigned_gotno = 0;
3524 set_got_offset_arg.value = -1;
3525 }
3526
3527 /* Reorder dynamic symbols as described above (which behavior
3528 depends on the setting of VALUE). */
3529 set_got_offset_arg.g = NULL;
3530 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3531 &set_got_offset_arg);
3532 set_got_offset_arg.value = 1;
3533 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3534 &set_got_offset_arg);
3535 if (! mips_elf_sort_hash_table (info, 1))
3536 return FALSE;
3537
3538 /* Now go through the GOTs assigning them offset ranges.
3539 [assigned_gotno, local_gotno[ will be set to the range of local
3540 entries in each GOT. We can then compute the end of a GOT by
3541 adding local_gotno to global_gotno. We reverse the list and make
3542 it circular since then we'll be able to quickly compute the
3543 beginning of a GOT, by computing the end of its predecessor. To
3544 avoid special cases for the primary GOT, while still preserving
3545 assertions that are valid for both single- and multi-got links,
3546 we arrange for the main got struct to have the right number of
3547 global entries, but set its local_gotno such that the initial
3548 offset of the primary GOT is zero. Remember that the primary GOT
3549 will become the last item in the circular linked list, so it
3550 points back to the master GOT. */
3551 gg->local_gotno = -g->global_gotno;
3552 gg->global_gotno = g->global_gotno;
3553 gg->tls_gotno = 0;
3554 assign = 0;
3555 gg->next = gg;
3556
3557 do
3558 {
3559 struct mips_got_info *gn;
3560
3561 assign += MIPS_RESERVED_GOTNO (info);
3562 g->assigned_gotno = assign;
3563 g->local_gotno += assign + pages;
3564 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3565
3566 /* Take g out of the direct list, and push it onto the reversed
3567 list that gg points to. g->next is guaranteed to be nonnull after
3568 this operation, as required by mips_elf_initialize_tls_index. */
3569 gn = g->next;
3570 g->next = gg->next;
3571 gg->next = g;
3572
3573 /* Set up any TLS entries. We always place the TLS entries after
3574 all non-TLS entries. */
3575 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3576 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3577
3578 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3579 g = gn;
3580
3581 /* Mark global symbols in every non-primary GOT as ineligible for
3582 stubs. */
3583 if (g)
3584 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3585 }
3586 while (g);
3587
3588 got->size = (gg->next->local_gotno
3589 + gg->next->global_gotno
3590 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3591
3592 return TRUE;
3593 }
3594
3595 \f
3596 /* Returns the first relocation of type r_type found, beginning with
3597 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3598
3599 static const Elf_Internal_Rela *
3600 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3601 const Elf_Internal_Rela *relocation,
3602 const Elf_Internal_Rela *relend)
3603 {
3604 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3605
3606 while (relocation < relend)
3607 {
3608 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3609 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3610 return relocation;
3611
3612 ++relocation;
3613 }
3614
3615 /* We didn't find it. */
3616 return NULL;
3617 }
3618
3619 /* Return whether a relocation is against a local symbol. */
3620
3621 static bfd_boolean
3622 mips_elf_local_relocation_p (bfd *input_bfd,
3623 const Elf_Internal_Rela *relocation,
3624 asection **local_sections,
3625 bfd_boolean check_forced)
3626 {
3627 unsigned long r_symndx;
3628 Elf_Internal_Shdr *symtab_hdr;
3629 struct mips_elf_link_hash_entry *h;
3630 size_t extsymoff;
3631
3632 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3633 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3634 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3635
3636 if (r_symndx < extsymoff)
3637 return TRUE;
3638 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3639 return TRUE;
3640
3641 if (check_forced)
3642 {
3643 /* Look up the hash table to check whether the symbol
3644 was forced local. */
3645 h = (struct mips_elf_link_hash_entry *)
3646 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3647 /* Find the real hash-table entry for this symbol. */
3648 while (h->root.root.type == bfd_link_hash_indirect
3649 || h->root.root.type == bfd_link_hash_warning)
3650 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3651 if (h->root.forced_local)
3652 return TRUE;
3653 }
3654
3655 return FALSE;
3656 }
3657 \f
3658 /* Sign-extend VALUE, which has the indicated number of BITS. */
3659
3660 bfd_vma
3661 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3662 {
3663 if (value & ((bfd_vma) 1 << (bits - 1)))
3664 /* VALUE is negative. */
3665 value |= ((bfd_vma) - 1) << bits;
3666
3667 return value;
3668 }
3669
3670 /* Return non-zero if the indicated VALUE has overflowed the maximum
3671 range expressible by a signed number with the indicated number of
3672 BITS. */
3673
3674 static bfd_boolean
3675 mips_elf_overflow_p (bfd_vma value, int bits)
3676 {
3677 bfd_signed_vma svalue = (bfd_signed_vma) value;
3678
3679 if (svalue > (1 << (bits - 1)) - 1)
3680 /* The value is too big. */
3681 return TRUE;
3682 else if (svalue < -(1 << (bits - 1)))
3683 /* The value is too small. */
3684 return TRUE;
3685
3686 /* All is well. */
3687 return FALSE;
3688 }
3689
3690 /* Calculate the %high function. */
3691
3692 static bfd_vma
3693 mips_elf_high (bfd_vma value)
3694 {
3695 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3696 }
3697
3698 /* Calculate the %higher function. */
3699
3700 static bfd_vma
3701 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3702 {
3703 #ifdef BFD64
3704 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3705 #else
3706 abort ();
3707 return MINUS_ONE;
3708 #endif
3709 }
3710
3711 /* Calculate the %highest function. */
3712
3713 static bfd_vma
3714 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3715 {
3716 #ifdef BFD64
3717 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3718 #else
3719 abort ();
3720 return MINUS_ONE;
3721 #endif
3722 }
3723 \f
3724 /* Create the .compact_rel section. */
3725
3726 static bfd_boolean
3727 mips_elf_create_compact_rel_section
3728 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3729 {
3730 flagword flags;
3731 register asection *s;
3732
3733 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3734 {
3735 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3736 | SEC_READONLY);
3737
3738 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3739 if (s == NULL
3740 || ! bfd_set_section_alignment (abfd, s,
3741 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3742 return FALSE;
3743
3744 s->size = sizeof (Elf32_External_compact_rel);
3745 }
3746
3747 return TRUE;
3748 }
3749
3750 /* Create the .got section to hold the global offset table. */
3751
3752 static bfd_boolean
3753 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3754 bfd_boolean maybe_exclude)
3755 {
3756 flagword flags;
3757 register asection *s;
3758 struct elf_link_hash_entry *h;
3759 struct bfd_link_hash_entry *bh;
3760 struct mips_got_info *g;
3761 bfd_size_type amt;
3762 struct mips_elf_link_hash_table *htab;
3763
3764 htab = mips_elf_hash_table (info);
3765
3766 /* This function may be called more than once. */
3767 s = mips_elf_got_section (abfd, TRUE);
3768 if (s)
3769 {
3770 if (! maybe_exclude)
3771 s->flags &= ~SEC_EXCLUDE;
3772 return TRUE;
3773 }
3774
3775 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3776 | SEC_LINKER_CREATED);
3777
3778 if (maybe_exclude)
3779 flags |= SEC_EXCLUDE;
3780
3781 /* We have to use an alignment of 2**4 here because this is hardcoded
3782 in the function stub generation and in the linker script. */
3783 s = bfd_make_section_with_flags (abfd, ".got", flags);
3784 if (s == NULL
3785 || ! bfd_set_section_alignment (abfd, s, 4))
3786 return FALSE;
3787
3788 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3789 linker script because we don't want to define the symbol if we
3790 are not creating a global offset table. */
3791 bh = NULL;
3792 if (! (_bfd_generic_link_add_one_symbol
3793 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3794 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3795 return FALSE;
3796
3797 h = (struct elf_link_hash_entry *) bh;
3798 h->non_elf = 0;
3799 h->def_regular = 1;
3800 h->type = STT_OBJECT;
3801 elf_hash_table (info)->hgot = h;
3802
3803 if (info->shared
3804 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3805 return FALSE;
3806
3807 amt = sizeof (struct mips_got_info);
3808 g = bfd_alloc (abfd, amt);
3809 if (g == NULL)
3810 return FALSE;
3811 g->global_gotsym = NULL;
3812 g->global_gotno = 0;
3813 g->tls_gotno = 0;
3814 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3815 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3816 g->bfd2got = NULL;
3817 g->next = NULL;
3818 g->tls_ldm_offset = MINUS_ONE;
3819 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3820 mips_elf_got_entry_eq, NULL);
3821 if (g->got_entries == NULL)
3822 return FALSE;
3823 mips_elf_section_data (s)->u.got_info = g;
3824 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3825 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3826
3827 /* VxWorks also needs a .got.plt section. */
3828 if (htab->is_vxworks)
3829 {
3830 s = bfd_make_section_with_flags (abfd, ".got.plt",
3831 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3832 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3833 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3834 return FALSE;
3835
3836 htab->sgotplt = s;
3837 }
3838 return TRUE;
3839 }
3840 \f
3841 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3842 __GOTT_INDEX__ symbols. These symbols are only special for
3843 shared objects; they are not used in executables. */
3844
3845 static bfd_boolean
3846 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3847 {
3848 return (mips_elf_hash_table (info)->is_vxworks
3849 && info->shared
3850 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3851 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3852 }
3853 \f
3854 /* Calculate the value produced by the RELOCATION (which comes from
3855 the INPUT_BFD). The ADDEND is the addend to use for this
3856 RELOCATION; RELOCATION->R_ADDEND is ignored.
3857
3858 The result of the relocation calculation is stored in VALUEP.
3859 REQUIRE_JALXP indicates whether or not the opcode used with this
3860 relocation must be JALX.
3861
3862 This function returns bfd_reloc_continue if the caller need take no
3863 further action regarding this relocation, bfd_reloc_notsupported if
3864 something goes dramatically wrong, bfd_reloc_overflow if an
3865 overflow occurs, and bfd_reloc_ok to indicate success. */
3866
3867 static bfd_reloc_status_type
3868 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3869 asection *input_section,
3870 struct bfd_link_info *info,
3871 const Elf_Internal_Rela *relocation,
3872 bfd_vma addend, reloc_howto_type *howto,
3873 Elf_Internal_Sym *local_syms,
3874 asection **local_sections, bfd_vma *valuep,
3875 const char **namep, bfd_boolean *require_jalxp,
3876 bfd_boolean save_addend)
3877 {
3878 /* The eventual value we will return. */
3879 bfd_vma value;
3880 /* The address of the symbol against which the relocation is
3881 occurring. */
3882 bfd_vma symbol = 0;
3883 /* The final GP value to be used for the relocatable, executable, or
3884 shared object file being produced. */
3885 bfd_vma gp = MINUS_ONE;
3886 /* The place (section offset or address) of the storage unit being
3887 relocated. */
3888 bfd_vma p;
3889 /* The value of GP used to create the relocatable object. */
3890 bfd_vma gp0 = MINUS_ONE;
3891 /* The offset into the global offset table at which the address of
3892 the relocation entry symbol, adjusted by the addend, resides
3893 during execution. */
3894 bfd_vma g = MINUS_ONE;
3895 /* The section in which the symbol referenced by the relocation is
3896 located. */
3897 asection *sec = NULL;
3898 struct mips_elf_link_hash_entry *h = NULL;
3899 /* TRUE if the symbol referred to by this relocation is a local
3900 symbol. */
3901 bfd_boolean local_p, was_local_p;
3902 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3903 bfd_boolean gp_disp_p = FALSE;
3904 /* TRUE if the symbol referred to by this relocation is
3905 "__gnu_local_gp". */
3906 bfd_boolean gnu_local_gp_p = FALSE;
3907 Elf_Internal_Shdr *symtab_hdr;
3908 size_t extsymoff;
3909 unsigned long r_symndx;
3910 int r_type;
3911 /* TRUE if overflow occurred during the calculation of the
3912 relocation value. */
3913 bfd_boolean overflowed_p;
3914 /* TRUE if this relocation refers to a MIPS16 function. */
3915 bfd_boolean target_is_16_bit_code_p = FALSE;
3916 struct mips_elf_link_hash_table *htab;
3917 bfd *dynobj;
3918
3919 dynobj = elf_hash_table (info)->dynobj;
3920 htab = mips_elf_hash_table (info);
3921
3922 /* Parse the relocation. */
3923 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3924 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3925 p = (input_section->output_section->vma
3926 + input_section->output_offset
3927 + relocation->r_offset);
3928
3929 /* Assume that there will be no overflow. */
3930 overflowed_p = FALSE;
3931
3932 /* Figure out whether or not the symbol is local, and get the offset
3933 used in the array of hash table entries. */
3934 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3935 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3936 local_sections, FALSE);
3937 was_local_p = local_p;
3938 if (! elf_bad_symtab (input_bfd))
3939 extsymoff = symtab_hdr->sh_info;
3940 else
3941 {
3942 /* The symbol table does not follow the rule that local symbols
3943 must come before globals. */
3944 extsymoff = 0;
3945 }
3946
3947 /* Figure out the value of the symbol. */
3948 if (local_p)
3949 {
3950 Elf_Internal_Sym *sym;
3951
3952 sym = local_syms + r_symndx;
3953 sec = local_sections[r_symndx];
3954
3955 symbol = sec->output_section->vma + sec->output_offset;
3956 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3957 || (sec->flags & SEC_MERGE))
3958 symbol += sym->st_value;
3959 if ((sec->flags & SEC_MERGE)
3960 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3961 {
3962 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3963 addend -= symbol;
3964 addend += sec->output_section->vma + sec->output_offset;
3965 }
3966
3967 /* MIPS16 text labels should be treated as odd. */
3968 if (sym->st_other == STO_MIPS16)
3969 ++symbol;
3970
3971 /* Record the name of this symbol, for our caller. */
3972 *namep = bfd_elf_string_from_elf_section (input_bfd,
3973 symtab_hdr->sh_link,
3974 sym->st_name);
3975 if (*namep == '\0')
3976 *namep = bfd_section_name (input_bfd, sec);
3977
3978 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3979 }
3980 else
3981 {
3982 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3983
3984 /* For global symbols we look up the symbol in the hash-table. */
3985 h = ((struct mips_elf_link_hash_entry *)
3986 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3987 /* Find the real hash-table entry for this symbol. */
3988 while (h->root.root.type == bfd_link_hash_indirect
3989 || h->root.root.type == bfd_link_hash_warning)
3990 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3991
3992 /* Record the name of this symbol, for our caller. */
3993 *namep = h->root.root.root.string;
3994
3995 /* See if this is the special _gp_disp symbol. Note that such a
3996 symbol must always be a global symbol. */
3997 if (strcmp (*namep, "_gp_disp") == 0
3998 && ! NEWABI_P (input_bfd))
3999 {
4000 /* Relocations against _gp_disp are permitted only with
4001 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4002 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4003 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
4004 return bfd_reloc_notsupported;
4005
4006 gp_disp_p = TRUE;
4007 }
4008 /* See if this is the special _gp symbol. Note that such a
4009 symbol must always be a global symbol. */
4010 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4011 gnu_local_gp_p = TRUE;
4012
4013
4014 /* If this symbol is defined, calculate its address. Note that
4015 _gp_disp is a magic symbol, always implicitly defined by the
4016 linker, so it's inappropriate to check to see whether or not
4017 its defined. */
4018 else if ((h->root.root.type == bfd_link_hash_defined
4019 || h->root.root.type == bfd_link_hash_defweak)
4020 && h->root.root.u.def.section)
4021 {
4022 sec = h->root.root.u.def.section;
4023 if (sec->output_section)
4024 symbol = (h->root.root.u.def.value
4025 + sec->output_section->vma
4026 + sec->output_offset);
4027 else
4028 symbol = h->root.root.u.def.value;
4029 }
4030 else if (h->root.root.type == bfd_link_hash_undefweak)
4031 /* We allow relocations against undefined weak symbols, giving
4032 it the value zero, so that you can undefined weak functions
4033 and check to see if they exist by looking at their
4034 addresses. */
4035 symbol = 0;
4036 else if (info->unresolved_syms_in_objects == RM_IGNORE
4037 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4038 symbol = 0;
4039 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4040 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4041 {
4042 /* If this is a dynamic link, we should have created a
4043 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4044 in in _bfd_mips_elf_create_dynamic_sections.
4045 Otherwise, we should define the symbol with a value of 0.
4046 FIXME: It should probably get into the symbol table
4047 somehow as well. */
4048 BFD_ASSERT (! info->shared);
4049 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4050 symbol = 0;
4051 }
4052 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4053 {
4054 /* This is an optional symbol - an Irix specific extension to the
4055 ELF spec. Ignore it for now.
4056 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4057 than simply ignoring them, but we do not handle this for now.
4058 For information see the "64-bit ELF Object File Specification"
4059 which is available from here:
4060 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4061 symbol = 0;
4062 }
4063 else
4064 {
4065 if (! ((*info->callbacks->undefined_symbol)
4066 (info, h->root.root.root.string, input_bfd,
4067 input_section, relocation->r_offset,
4068 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4069 || ELF_ST_VISIBILITY (h->root.other))))
4070 return bfd_reloc_undefined;
4071 symbol = 0;
4072 }
4073
4074 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4075 }
4076
4077 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4078 need to redirect the call to the stub, unless we're already *in*
4079 a stub. */
4080 if (r_type != R_MIPS16_26 && !info->relocatable
4081 && ((h != NULL && h->fn_stub != NULL)
4082 || (local_p
4083 && elf_tdata (input_bfd)->local_stubs != NULL
4084 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4085 && !mips16_stub_section_p (input_bfd, input_section))
4086 {
4087 /* This is a 32- or 64-bit call to a 16-bit function. We should
4088 have already noticed that we were going to need the
4089 stub. */
4090 if (local_p)
4091 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4092 else
4093 {
4094 BFD_ASSERT (h->need_fn_stub);
4095 sec = h->fn_stub;
4096 }
4097
4098 symbol = sec->output_section->vma + sec->output_offset;
4099 /* The target is 16-bit, but the stub isn't. */
4100 target_is_16_bit_code_p = FALSE;
4101 }
4102 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4103 need to redirect the call to the stub. */
4104 else if (r_type == R_MIPS16_26 && !info->relocatable
4105 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
4106 || (local_p
4107 && elf_tdata (input_bfd)->local_call_stubs != NULL
4108 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4109 && !target_is_16_bit_code_p)
4110 {
4111 if (local_p)
4112 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4113 else
4114 {
4115 /* If both call_stub and call_fp_stub are defined, we can figure
4116 out which one to use by checking which one appears in the input
4117 file. */
4118 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4119 {
4120 asection *o;
4121
4122 sec = NULL;
4123 for (o = input_bfd->sections; o != NULL; o = o->next)
4124 {
4125 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4126 {
4127 sec = h->call_fp_stub;
4128 break;
4129 }
4130 }
4131 if (sec == NULL)
4132 sec = h->call_stub;
4133 }
4134 else if (h->call_stub != NULL)
4135 sec = h->call_stub;
4136 else
4137 sec = h->call_fp_stub;
4138 }
4139
4140 BFD_ASSERT (sec->size > 0);
4141 symbol = sec->output_section->vma + sec->output_offset;
4142 }
4143
4144 /* Calls from 16-bit code to 32-bit code and vice versa require the
4145 special jalx instruction. */
4146 *require_jalxp = (!info->relocatable
4147 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4148 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4149
4150 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4151 local_sections, TRUE);
4152
4153 /* If we haven't already determined the GOT offset, or the GP value,
4154 and we're going to need it, get it now. */
4155 switch (r_type)
4156 {
4157 case R_MIPS_GOT_PAGE:
4158 case R_MIPS_GOT_OFST:
4159 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4160 bind locally. */
4161 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4162 if (local_p || r_type == R_MIPS_GOT_OFST)
4163 break;
4164 /* Fall through. */
4165
4166 case R_MIPS_CALL16:
4167 case R_MIPS_GOT16:
4168 case R_MIPS_GOT_DISP:
4169 case R_MIPS_GOT_HI16:
4170 case R_MIPS_CALL_HI16:
4171 case R_MIPS_GOT_LO16:
4172 case R_MIPS_CALL_LO16:
4173 case R_MIPS_TLS_GD:
4174 case R_MIPS_TLS_GOTTPREL:
4175 case R_MIPS_TLS_LDM:
4176 /* Find the index into the GOT where this value is located. */
4177 if (r_type == R_MIPS_TLS_LDM)
4178 {
4179 g = mips_elf_local_got_index (abfd, input_bfd, info,
4180 0, 0, NULL, r_type);
4181 if (g == MINUS_ONE)
4182 return bfd_reloc_outofrange;
4183 }
4184 else if (!local_p)
4185 {
4186 /* On VxWorks, CALL relocations should refer to the .got.plt
4187 entry, which is initialized to point at the PLT stub. */
4188 if (htab->is_vxworks
4189 && (r_type == R_MIPS_CALL_HI16
4190 || r_type == R_MIPS_CALL_LO16
4191 || r_type == R_MIPS_CALL16))
4192 {
4193 BFD_ASSERT (addend == 0);
4194 BFD_ASSERT (h->root.needs_plt);
4195 g = mips_elf_gotplt_index (info, &h->root);
4196 }
4197 else
4198 {
4199 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4200 GOT_PAGE relocation that decays to GOT_DISP because the
4201 symbol turns out to be global. The addend is then added
4202 as GOT_OFST. */
4203 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4204 g = mips_elf_global_got_index (dynobj, input_bfd,
4205 &h->root, r_type, info);
4206 if (h->tls_type == GOT_NORMAL
4207 && (! elf_hash_table(info)->dynamic_sections_created
4208 || (info->shared
4209 && (info->symbolic || h->root.forced_local)
4210 && h->root.def_regular)))
4211 {
4212 /* This is a static link or a -Bsymbolic link. The
4213 symbol is defined locally, or was forced to be local.
4214 We must initialize this entry in the GOT. */
4215 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4216 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4217 }
4218 }
4219 }
4220 else if (!htab->is_vxworks
4221 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4222 /* The calculation below does not involve "g". */
4223 break;
4224 else
4225 {
4226 g = mips_elf_local_got_index (abfd, input_bfd, info,
4227 symbol + addend, r_symndx, h, r_type);
4228 if (g == MINUS_ONE)
4229 return bfd_reloc_outofrange;
4230 }
4231
4232 /* Convert GOT indices to actual offsets. */
4233 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4234 break;
4235
4236 case R_MIPS_HI16:
4237 case R_MIPS_LO16:
4238 case R_MIPS_GPREL16:
4239 case R_MIPS_GPREL32:
4240 case R_MIPS_LITERAL:
4241 case R_MIPS16_HI16:
4242 case R_MIPS16_LO16:
4243 case R_MIPS16_GPREL:
4244 gp0 = _bfd_get_gp_value (input_bfd);
4245 gp = _bfd_get_gp_value (abfd);
4246 if (dynobj)
4247 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4248 input_bfd);
4249 break;
4250
4251 default:
4252 break;
4253 }
4254
4255 if (gnu_local_gp_p)
4256 symbol = gp;
4257
4258 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4259 symbols are resolved by the loader. Add them to .rela.dyn. */
4260 if (h != NULL && is_gott_symbol (info, &h->root))
4261 {
4262 Elf_Internal_Rela outrel;
4263 bfd_byte *loc;
4264 asection *s;
4265
4266 s = mips_elf_rel_dyn_section (info, FALSE);
4267 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4268
4269 outrel.r_offset = (input_section->output_section->vma
4270 + input_section->output_offset
4271 + relocation->r_offset);
4272 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4273 outrel.r_addend = addend;
4274 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4275
4276 /* If we've written this relocation for a readonly section,
4277 we need to set DF_TEXTREL again, so that we do not delete the
4278 DT_TEXTREL tag. */
4279 if (MIPS_ELF_READONLY_SECTION (input_section))
4280 info->flags |= DF_TEXTREL;
4281
4282 *valuep = 0;
4283 return bfd_reloc_ok;
4284 }
4285
4286 /* Figure out what kind of relocation is being performed. */
4287 switch (r_type)
4288 {
4289 case R_MIPS_NONE:
4290 return bfd_reloc_continue;
4291
4292 case R_MIPS_16:
4293 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4294 overflowed_p = mips_elf_overflow_p (value, 16);
4295 break;
4296
4297 case R_MIPS_32:
4298 case R_MIPS_REL32:
4299 case R_MIPS_64:
4300 if ((info->shared
4301 || (!htab->is_vxworks
4302 && htab->root.dynamic_sections_created
4303 && h != NULL
4304 && h->root.def_dynamic
4305 && !h->root.def_regular))
4306 && r_symndx != 0
4307 && (input_section->flags & SEC_ALLOC) != 0)
4308 {
4309 /* If we're creating a shared library, or this relocation is
4310 against a symbol in a shared library, then we can't know
4311 where the symbol will end up. So, we create a relocation
4312 record in the output, and leave the job up to the dynamic
4313 linker.
4314
4315 In VxWorks executables, references to external symbols
4316 are handled using copy relocs or PLT stubs, so there's
4317 no need to add a dynamic relocation here. */
4318 value = addend;
4319 if (!mips_elf_create_dynamic_relocation (abfd,
4320 info,
4321 relocation,
4322 h,
4323 sec,
4324 symbol,
4325 &value,
4326 input_section))
4327 return bfd_reloc_undefined;
4328 }
4329 else
4330 {
4331 if (r_type != R_MIPS_REL32)
4332 value = symbol + addend;
4333 else
4334 value = addend;
4335 }
4336 value &= howto->dst_mask;
4337 break;
4338
4339 case R_MIPS_PC32:
4340 value = symbol + addend - p;
4341 value &= howto->dst_mask;
4342 break;
4343
4344 case R_MIPS16_26:
4345 /* The calculation for R_MIPS16_26 is just the same as for an
4346 R_MIPS_26. It's only the storage of the relocated field into
4347 the output file that's different. That's handled in
4348 mips_elf_perform_relocation. So, we just fall through to the
4349 R_MIPS_26 case here. */
4350 case R_MIPS_26:
4351 if (local_p)
4352 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4353 else
4354 {
4355 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4356 if (h->root.root.type != bfd_link_hash_undefweak)
4357 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4358 }
4359 value &= howto->dst_mask;
4360 break;
4361
4362 case R_MIPS_TLS_DTPREL_HI16:
4363 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4364 & howto->dst_mask);
4365 break;
4366
4367 case R_MIPS_TLS_DTPREL_LO16:
4368 case R_MIPS_TLS_DTPREL32:
4369 case R_MIPS_TLS_DTPREL64:
4370 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4371 break;
4372
4373 case R_MIPS_TLS_TPREL_HI16:
4374 value = (mips_elf_high (addend + symbol - tprel_base (info))
4375 & howto->dst_mask);
4376 break;
4377
4378 case R_MIPS_TLS_TPREL_LO16:
4379 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4380 break;
4381
4382 case R_MIPS_HI16:
4383 case R_MIPS16_HI16:
4384 if (!gp_disp_p)
4385 {
4386 value = mips_elf_high (addend + symbol);
4387 value &= howto->dst_mask;
4388 }
4389 else
4390 {
4391 /* For MIPS16 ABI code we generate this sequence
4392 0: li $v0,%hi(_gp_disp)
4393 4: addiupc $v1,%lo(_gp_disp)
4394 8: sll $v0,16
4395 12: addu $v0,$v1
4396 14: move $gp,$v0
4397 So the offsets of hi and lo relocs are the same, but the
4398 $pc is four higher than $t9 would be, so reduce
4399 both reloc addends by 4. */
4400 if (r_type == R_MIPS16_HI16)
4401 value = mips_elf_high (addend + gp - p - 4);
4402 else
4403 value = mips_elf_high (addend + gp - p);
4404 overflowed_p = mips_elf_overflow_p (value, 16);
4405 }
4406 break;
4407
4408 case R_MIPS_LO16:
4409 case R_MIPS16_LO16:
4410 if (!gp_disp_p)
4411 value = (symbol + addend) & howto->dst_mask;
4412 else
4413 {
4414 /* See the comment for R_MIPS16_HI16 above for the reason
4415 for this conditional. */
4416 if (r_type == R_MIPS16_LO16)
4417 value = addend + gp - p;
4418 else
4419 value = addend + gp - p + 4;
4420 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4421 for overflow. But, on, say, IRIX5, relocations against
4422 _gp_disp are normally generated from the .cpload
4423 pseudo-op. It generates code that normally looks like
4424 this:
4425
4426 lui $gp,%hi(_gp_disp)
4427 addiu $gp,$gp,%lo(_gp_disp)
4428 addu $gp,$gp,$t9
4429
4430 Here $t9 holds the address of the function being called,
4431 as required by the MIPS ELF ABI. The R_MIPS_LO16
4432 relocation can easily overflow in this situation, but the
4433 R_MIPS_HI16 relocation will handle the overflow.
4434 Therefore, we consider this a bug in the MIPS ABI, and do
4435 not check for overflow here. */
4436 }
4437 break;
4438
4439 case R_MIPS_LITERAL:
4440 /* Because we don't merge literal sections, we can handle this
4441 just like R_MIPS_GPREL16. In the long run, we should merge
4442 shared literals, and then we will need to additional work
4443 here. */
4444
4445 /* Fall through. */
4446
4447 case R_MIPS16_GPREL:
4448 /* The R_MIPS16_GPREL performs the same calculation as
4449 R_MIPS_GPREL16, but stores the relocated bits in a different
4450 order. We don't need to do anything special here; the
4451 differences are handled in mips_elf_perform_relocation. */
4452 case R_MIPS_GPREL16:
4453 /* Only sign-extend the addend if it was extracted from the
4454 instruction. If the addend was separate, leave it alone,
4455 otherwise we may lose significant bits. */
4456 if (howto->partial_inplace)
4457 addend = _bfd_mips_elf_sign_extend (addend, 16);
4458 value = symbol + addend - gp;
4459 /* If the symbol was local, any earlier relocatable links will
4460 have adjusted its addend with the gp offset, so compensate
4461 for that now. Don't do it for symbols forced local in this
4462 link, though, since they won't have had the gp offset applied
4463 to them before. */
4464 if (was_local_p)
4465 value += gp0;
4466 overflowed_p = mips_elf_overflow_p (value, 16);
4467 break;
4468
4469 case R_MIPS_GOT16:
4470 case R_MIPS_CALL16:
4471 /* VxWorks does not have separate local and global semantics for
4472 R_MIPS_GOT16; every relocation evaluates to "G". */
4473 if (!htab->is_vxworks && local_p)
4474 {
4475 bfd_boolean forced;
4476
4477 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4478 local_sections, FALSE);
4479 value = mips_elf_got16_entry (abfd, input_bfd, info,
4480 symbol + addend, forced);
4481 if (value == MINUS_ONE)
4482 return bfd_reloc_outofrange;
4483 value
4484 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4485 overflowed_p = mips_elf_overflow_p (value, 16);
4486 break;
4487 }
4488
4489 /* Fall through. */
4490
4491 case R_MIPS_TLS_GD:
4492 case R_MIPS_TLS_GOTTPREL:
4493 case R_MIPS_TLS_LDM:
4494 case R_MIPS_GOT_DISP:
4495 got_disp:
4496 value = g;
4497 overflowed_p = mips_elf_overflow_p (value, 16);
4498 break;
4499
4500 case R_MIPS_GPREL32:
4501 value = (addend + symbol + gp0 - gp);
4502 if (!save_addend)
4503 value &= howto->dst_mask;
4504 break;
4505
4506 case R_MIPS_PC16:
4507 case R_MIPS_GNU_REL16_S2:
4508 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4509 overflowed_p = mips_elf_overflow_p (value, 18);
4510 value >>= howto->rightshift;
4511 value &= howto->dst_mask;
4512 break;
4513
4514 case R_MIPS_GOT_HI16:
4515 case R_MIPS_CALL_HI16:
4516 /* We're allowed to handle these two relocations identically.
4517 The dynamic linker is allowed to handle the CALL relocations
4518 differently by creating a lazy evaluation stub. */
4519 value = g;
4520 value = mips_elf_high (value);
4521 value &= howto->dst_mask;
4522 break;
4523
4524 case R_MIPS_GOT_LO16:
4525 case R_MIPS_CALL_LO16:
4526 value = g & howto->dst_mask;
4527 break;
4528
4529 case R_MIPS_GOT_PAGE:
4530 /* GOT_PAGE relocations that reference non-local symbols decay
4531 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4532 0. */
4533 if (! local_p)
4534 goto got_disp;
4535 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4536 if (value == MINUS_ONE)
4537 return bfd_reloc_outofrange;
4538 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4539 overflowed_p = mips_elf_overflow_p (value, 16);
4540 break;
4541
4542 case R_MIPS_GOT_OFST:
4543 if (local_p)
4544 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4545 else
4546 value = addend;
4547 overflowed_p = mips_elf_overflow_p (value, 16);
4548 break;
4549
4550 case R_MIPS_SUB:
4551 value = symbol - addend;
4552 value &= howto->dst_mask;
4553 break;
4554
4555 case R_MIPS_HIGHER:
4556 value = mips_elf_higher (addend + symbol);
4557 value &= howto->dst_mask;
4558 break;
4559
4560 case R_MIPS_HIGHEST:
4561 value = mips_elf_highest (addend + symbol);
4562 value &= howto->dst_mask;
4563 break;
4564
4565 case R_MIPS_SCN_DISP:
4566 value = symbol + addend - sec->output_offset;
4567 value &= howto->dst_mask;
4568 break;
4569
4570 case R_MIPS_JALR:
4571 /* This relocation is only a hint. In some cases, we optimize
4572 it into a bal instruction. But we don't try to optimize
4573 branches to the PLT; that will wind up wasting time. */
4574 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4575 return bfd_reloc_continue;
4576 value = symbol + addend;
4577 break;
4578
4579 case R_MIPS_PJUMP:
4580 case R_MIPS_GNU_VTINHERIT:
4581 case R_MIPS_GNU_VTENTRY:
4582 /* We don't do anything with these at present. */
4583 return bfd_reloc_continue;
4584
4585 default:
4586 /* An unrecognized relocation type. */
4587 return bfd_reloc_notsupported;
4588 }
4589
4590 /* Store the VALUE for our caller. */
4591 *valuep = value;
4592 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4593 }
4594
4595 /* Obtain the field relocated by RELOCATION. */
4596
4597 static bfd_vma
4598 mips_elf_obtain_contents (reloc_howto_type *howto,
4599 const Elf_Internal_Rela *relocation,
4600 bfd *input_bfd, bfd_byte *contents)
4601 {
4602 bfd_vma x;
4603 bfd_byte *location = contents + relocation->r_offset;
4604
4605 /* Obtain the bytes. */
4606 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4607
4608 return x;
4609 }
4610
4611 /* It has been determined that the result of the RELOCATION is the
4612 VALUE. Use HOWTO to place VALUE into the output file at the
4613 appropriate position. The SECTION is the section to which the
4614 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4615 for the relocation must be either JAL or JALX, and it is
4616 unconditionally converted to JALX.
4617
4618 Returns FALSE if anything goes wrong. */
4619
4620 static bfd_boolean
4621 mips_elf_perform_relocation (struct bfd_link_info *info,
4622 reloc_howto_type *howto,
4623 const Elf_Internal_Rela *relocation,
4624 bfd_vma value, bfd *input_bfd,
4625 asection *input_section, bfd_byte *contents,
4626 bfd_boolean require_jalx)
4627 {
4628 bfd_vma x;
4629 bfd_byte *location;
4630 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4631
4632 /* Figure out where the relocation is occurring. */
4633 location = contents + relocation->r_offset;
4634
4635 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4636
4637 /* Obtain the current value. */
4638 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4639
4640 /* Clear the field we are setting. */
4641 x &= ~howto->dst_mask;
4642
4643 /* Set the field. */
4644 x |= (value & howto->dst_mask);
4645
4646 /* If required, turn JAL into JALX. */
4647 if (require_jalx)
4648 {
4649 bfd_boolean ok;
4650 bfd_vma opcode = x >> 26;
4651 bfd_vma jalx_opcode;
4652
4653 /* Check to see if the opcode is already JAL or JALX. */
4654 if (r_type == R_MIPS16_26)
4655 {
4656 ok = ((opcode == 0x6) || (opcode == 0x7));
4657 jalx_opcode = 0x7;
4658 }
4659 else
4660 {
4661 ok = ((opcode == 0x3) || (opcode == 0x1d));
4662 jalx_opcode = 0x1d;
4663 }
4664
4665 /* If the opcode is not JAL or JALX, there's a problem. */
4666 if (!ok)
4667 {
4668 (*_bfd_error_handler)
4669 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4670 input_bfd,
4671 input_section,
4672 (unsigned long) relocation->r_offset);
4673 bfd_set_error (bfd_error_bad_value);
4674 return FALSE;
4675 }
4676
4677 /* Make this the JALX opcode. */
4678 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4679 }
4680
4681 /* On the RM9000, bal is faster than jal, because bal uses branch
4682 prediction hardware. If we are linking for the RM9000, and we
4683 see jal, and bal fits, use it instead. Note that this
4684 transformation should be safe for all architectures. */
4685 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4686 && !info->relocatable
4687 && !require_jalx
4688 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4689 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4690 {
4691 bfd_vma addr;
4692 bfd_vma dest;
4693 bfd_signed_vma off;
4694
4695 addr = (input_section->output_section->vma
4696 + input_section->output_offset
4697 + relocation->r_offset
4698 + 4);
4699 if (r_type == R_MIPS_26)
4700 dest = (value << 2) | ((addr >> 28) << 28);
4701 else
4702 dest = value;
4703 off = dest - addr;
4704 if (off <= 0x1ffff && off >= -0x20000)
4705 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4706 }
4707
4708 /* Put the value into the output. */
4709 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4710
4711 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4712 location);
4713
4714 return TRUE;
4715 }
4716
4717 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4718
4719 static bfd_boolean
4720 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4721 {
4722 const char *name = bfd_get_section_name (abfd, section);
4723
4724 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4725 }
4726 \f
4727 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4728
4729 static void
4730 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4731 unsigned int n)
4732 {
4733 asection *s;
4734 struct mips_elf_link_hash_table *htab;
4735
4736 htab = mips_elf_hash_table (info);
4737 s = mips_elf_rel_dyn_section (info, FALSE);
4738 BFD_ASSERT (s != NULL);
4739
4740 if (htab->is_vxworks)
4741 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4742 else
4743 {
4744 if (s->size == 0)
4745 {
4746 /* Make room for a null element. */
4747 s->size += MIPS_ELF_REL_SIZE (abfd);
4748 ++s->reloc_count;
4749 }
4750 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4751 }
4752 }
4753
4754 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4755 is the original relocation, which is now being transformed into a
4756 dynamic relocation. The ADDENDP is adjusted if necessary; the
4757 caller should store the result in place of the original addend. */
4758
4759 static bfd_boolean
4760 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4761 struct bfd_link_info *info,
4762 const Elf_Internal_Rela *rel,
4763 struct mips_elf_link_hash_entry *h,
4764 asection *sec, bfd_vma symbol,
4765 bfd_vma *addendp, asection *input_section)
4766 {
4767 Elf_Internal_Rela outrel[3];
4768 asection *sreloc;
4769 bfd *dynobj;
4770 int r_type;
4771 long indx;
4772 bfd_boolean defined_p;
4773 struct mips_elf_link_hash_table *htab;
4774
4775 htab = mips_elf_hash_table (info);
4776 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4777 dynobj = elf_hash_table (info)->dynobj;
4778 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4779 BFD_ASSERT (sreloc != NULL);
4780 BFD_ASSERT (sreloc->contents != NULL);
4781 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4782 < sreloc->size);
4783
4784 outrel[0].r_offset =
4785 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4786 if (ABI_64_P (output_bfd))
4787 {
4788 outrel[1].r_offset =
4789 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4790 outrel[2].r_offset =
4791 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4792 }
4793
4794 if (outrel[0].r_offset == MINUS_ONE)
4795 /* The relocation field has been deleted. */
4796 return TRUE;
4797
4798 if (outrel[0].r_offset == MINUS_TWO)
4799 {
4800 /* The relocation field has been converted into a relative value of
4801 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4802 the field to be fully relocated, so add in the symbol's value. */
4803 *addendp += symbol;
4804 return TRUE;
4805 }
4806
4807 /* We must now calculate the dynamic symbol table index to use
4808 in the relocation. */
4809 if (h != NULL
4810 && (!h->root.def_regular
4811 || (info->shared && !info->symbolic && !h->root.forced_local)))
4812 {
4813 indx = h->root.dynindx;
4814 if (SGI_COMPAT (output_bfd))
4815 defined_p = h->root.def_regular;
4816 else
4817 /* ??? glibc's ld.so just adds the final GOT entry to the
4818 relocation field. It therefore treats relocs against
4819 defined symbols in the same way as relocs against
4820 undefined symbols. */
4821 defined_p = FALSE;
4822 }
4823 else
4824 {
4825 if (sec != NULL && bfd_is_abs_section (sec))
4826 indx = 0;
4827 else if (sec == NULL || sec->owner == NULL)
4828 {
4829 bfd_set_error (bfd_error_bad_value);
4830 return FALSE;
4831 }
4832 else
4833 {
4834 indx = elf_section_data (sec->output_section)->dynindx;
4835 if (indx == 0)
4836 {
4837 asection *osec = htab->root.text_index_section;
4838 indx = elf_section_data (osec)->dynindx;
4839 }
4840 if (indx == 0)
4841 abort ();
4842 }
4843
4844 /* Instead of generating a relocation using the section
4845 symbol, we may as well make it a fully relative
4846 relocation. We want to avoid generating relocations to
4847 local symbols because we used to generate them
4848 incorrectly, without adding the original symbol value,
4849 which is mandated by the ABI for section symbols. In
4850 order to give dynamic loaders and applications time to
4851 phase out the incorrect use, we refrain from emitting
4852 section-relative relocations. It's not like they're
4853 useful, after all. This should be a bit more efficient
4854 as well. */
4855 /* ??? Although this behavior is compatible with glibc's ld.so,
4856 the ABI says that relocations against STN_UNDEF should have
4857 a symbol value of 0. Irix rld honors this, so relocations
4858 against STN_UNDEF have no effect. */
4859 if (!SGI_COMPAT (output_bfd))
4860 indx = 0;
4861 defined_p = TRUE;
4862 }
4863
4864 /* If the relocation was previously an absolute relocation and
4865 this symbol will not be referred to by the relocation, we must
4866 adjust it by the value we give it in the dynamic symbol table.
4867 Otherwise leave the job up to the dynamic linker. */
4868 if (defined_p && r_type != R_MIPS_REL32)
4869 *addendp += symbol;
4870
4871 if (htab->is_vxworks)
4872 /* VxWorks uses non-relative relocations for this. */
4873 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4874 else
4875 /* The relocation is always an REL32 relocation because we don't
4876 know where the shared library will wind up at load-time. */
4877 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4878 R_MIPS_REL32);
4879
4880 /* For strict adherence to the ABI specification, we should
4881 generate a R_MIPS_64 relocation record by itself before the
4882 _REL32/_64 record as well, such that the addend is read in as
4883 a 64-bit value (REL32 is a 32-bit relocation, after all).
4884 However, since none of the existing ELF64 MIPS dynamic
4885 loaders seems to care, we don't waste space with these
4886 artificial relocations. If this turns out to not be true,
4887 mips_elf_allocate_dynamic_relocation() should be tweaked so
4888 as to make room for a pair of dynamic relocations per
4889 invocation if ABI_64_P, and here we should generate an
4890 additional relocation record with R_MIPS_64 by itself for a
4891 NULL symbol before this relocation record. */
4892 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4893 ABI_64_P (output_bfd)
4894 ? R_MIPS_64
4895 : R_MIPS_NONE);
4896 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4897
4898 /* Adjust the output offset of the relocation to reference the
4899 correct location in the output file. */
4900 outrel[0].r_offset += (input_section->output_section->vma
4901 + input_section->output_offset);
4902 outrel[1].r_offset += (input_section->output_section->vma
4903 + input_section->output_offset);
4904 outrel[2].r_offset += (input_section->output_section->vma
4905 + input_section->output_offset);
4906
4907 /* Put the relocation back out. We have to use the special
4908 relocation outputter in the 64-bit case since the 64-bit
4909 relocation format is non-standard. */
4910 if (ABI_64_P (output_bfd))
4911 {
4912 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4913 (output_bfd, &outrel[0],
4914 (sreloc->contents
4915 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4916 }
4917 else if (htab->is_vxworks)
4918 {
4919 /* VxWorks uses RELA rather than REL dynamic relocations. */
4920 outrel[0].r_addend = *addendp;
4921 bfd_elf32_swap_reloca_out
4922 (output_bfd, &outrel[0],
4923 (sreloc->contents
4924 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4925 }
4926 else
4927 bfd_elf32_swap_reloc_out
4928 (output_bfd, &outrel[0],
4929 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4930
4931 /* We've now added another relocation. */
4932 ++sreloc->reloc_count;
4933
4934 /* Make sure the output section is writable. The dynamic linker
4935 will be writing to it. */
4936 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4937 |= SHF_WRITE;
4938
4939 /* On IRIX5, make an entry of compact relocation info. */
4940 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4941 {
4942 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4943 bfd_byte *cr;
4944
4945 if (scpt)
4946 {
4947 Elf32_crinfo cptrel;
4948
4949 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4950 cptrel.vaddr = (rel->r_offset
4951 + input_section->output_section->vma
4952 + input_section->output_offset);
4953 if (r_type == R_MIPS_REL32)
4954 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4955 else
4956 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4957 mips_elf_set_cr_dist2to (cptrel, 0);
4958 cptrel.konst = *addendp;
4959
4960 cr = (scpt->contents
4961 + sizeof (Elf32_External_compact_rel));
4962 mips_elf_set_cr_relvaddr (cptrel, 0);
4963 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4964 ((Elf32_External_crinfo *) cr
4965 + scpt->reloc_count));
4966 ++scpt->reloc_count;
4967 }
4968 }
4969
4970 /* If we've written this relocation for a readonly section,
4971 we need to set DF_TEXTREL again, so that we do not delete the
4972 DT_TEXTREL tag. */
4973 if (MIPS_ELF_READONLY_SECTION (input_section))
4974 info->flags |= DF_TEXTREL;
4975
4976 return TRUE;
4977 }
4978 \f
4979 /* Return the MACH for a MIPS e_flags value. */
4980
4981 unsigned long
4982 _bfd_elf_mips_mach (flagword flags)
4983 {
4984 switch (flags & EF_MIPS_MACH)
4985 {
4986 case E_MIPS_MACH_3900:
4987 return bfd_mach_mips3900;
4988
4989 case E_MIPS_MACH_4010:
4990 return bfd_mach_mips4010;
4991
4992 case E_MIPS_MACH_4100:
4993 return bfd_mach_mips4100;
4994
4995 case E_MIPS_MACH_4111:
4996 return bfd_mach_mips4111;
4997
4998 case E_MIPS_MACH_4120:
4999 return bfd_mach_mips4120;
5000
5001 case E_MIPS_MACH_4650:
5002 return bfd_mach_mips4650;
5003
5004 case E_MIPS_MACH_5400:
5005 return bfd_mach_mips5400;
5006
5007 case E_MIPS_MACH_5500:
5008 return bfd_mach_mips5500;
5009
5010 case E_MIPS_MACH_9000:
5011 return bfd_mach_mips9000;
5012
5013 case E_MIPS_MACH_SB1:
5014 return bfd_mach_mips_sb1;
5015
5016 default:
5017 switch (flags & EF_MIPS_ARCH)
5018 {
5019 default:
5020 case E_MIPS_ARCH_1:
5021 return bfd_mach_mips3000;
5022
5023 case E_MIPS_ARCH_2:
5024 return bfd_mach_mips6000;
5025
5026 case E_MIPS_ARCH_3:
5027 return bfd_mach_mips4000;
5028
5029 case E_MIPS_ARCH_4:
5030 return bfd_mach_mips8000;
5031
5032 case E_MIPS_ARCH_5:
5033 return bfd_mach_mips5;
5034
5035 case E_MIPS_ARCH_32:
5036 return bfd_mach_mipsisa32;
5037
5038 case E_MIPS_ARCH_64:
5039 return bfd_mach_mipsisa64;
5040
5041 case E_MIPS_ARCH_32R2:
5042 return bfd_mach_mipsisa32r2;
5043
5044 case E_MIPS_ARCH_64R2:
5045 return bfd_mach_mipsisa64r2;
5046 }
5047 }
5048
5049 return 0;
5050 }
5051
5052 /* Return printable name for ABI. */
5053
5054 static INLINE char *
5055 elf_mips_abi_name (bfd *abfd)
5056 {
5057 flagword flags;
5058
5059 flags = elf_elfheader (abfd)->e_flags;
5060 switch (flags & EF_MIPS_ABI)
5061 {
5062 case 0:
5063 if (ABI_N32_P (abfd))
5064 return "N32";
5065 else if (ABI_64_P (abfd))
5066 return "64";
5067 else
5068 return "none";
5069 case E_MIPS_ABI_O32:
5070 return "O32";
5071 case E_MIPS_ABI_O64:
5072 return "O64";
5073 case E_MIPS_ABI_EABI32:
5074 return "EABI32";
5075 case E_MIPS_ABI_EABI64:
5076 return "EABI64";
5077 default:
5078 return "unknown abi";
5079 }
5080 }
5081 \f
5082 /* MIPS ELF uses two common sections. One is the usual one, and the
5083 other is for small objects. All the small objects are kept
5084 together, and then referenced via the gp pointer, which yields
5085 faster assembler code. This is what we use for the small common
5086 section. This approach is copied from ecoff.c. */
5087 static asection mips_elf_scom_section;
5088 static asymbol mips_elf_scom_symbol;
5089 static asymbol *mips_elf_scom_symbol_ptr;
5090
5091 /* MIPS ELF also uses an acommon section, which represents an
5092 allocated common symbol which may be overridden by a
5093 definition in a shared library. */
5094 static asection mips_elf_acom_section;
5095 static asymbol mips_elf_acom_symbol;
5096 static asymbol *mips_elf_acom_symbol_ptr;
5097
5098 /* Handle the special MIPS section numbers that a symbol may use.
5099 This is used for both the 32-bit and the 64-bit ABI. */
5100
5101 void
5102 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5103 {
5104 elf_symbol_type *elfsym;
5105
5106 elfsym = (elf_symbol_type *) asym;
5107 switch (elfsym->internal_elf_sym.st_shndx)
5108 {
5109 case SHN_MIPS_ACOMMON:
5110 /* This section is used in a dynamically linked executable file.
5111 It is an allocated common section. The dynamic linker can
5112 either resolve these symbols to something in a shared
5113 library, or it can just leave them here. For our purposes,
5114 we can consider these symbols to be in a new section. */
5115 if (mips_elf_acom_section.name == NULL)
5116 {
5117 /* Initialize the acommon section. */
5118 mips_elf_acom_section.name = ".acommon";
5119 mips_elf_acom_section.flags = SEC_ALLOC;
5120 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5121 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5122 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5123 mips_elf_acom_symbol.name = ".acommon";
5124 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5125 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5126 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5127 }
5128 asym->section = &mips_elf_acom_section;
5129 break;
5130
5131 case SHN_COMMON:
5132 /* Common symbols less than the GP size are automatically
5133 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5134 if (asym->value > elf_gp_size (abfd)
5135 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5136 || IRIX_COMPAT (abfd) == ict_irix6)
5137 break;
5138 /* Fall through. */
5139 case SHN_MIPS_SCOMMON:
5140 if (mips_elf_scom_section.name == NULL)
5141 {
5142 /* Initialize the small common section. */
5143 mips_elf_scom_section.name = ".scommon";
5144 mips_elf_scom_section.flags = SEC_IS_COMMON;
5145 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5146 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5147 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5148 mips_elf_scom_symbol.name = ".scommon";
5149 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5150 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5151 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5152 }
5153 asym->section = &mips_elf_scom_section;
5154 asym->value = elfsym->internal_elf_sym.st_size;
5155 break;
5156
5157 case SHN_MIPS_SUNDEFINED:
5158 asym->section = bfd_und_section_ptr;
5159 break;
5160
5161 case SHN_MIPS_TEXT:
5162 {
5163 asection *section = bfd_get_section_by_name (abfd, ".text");
5164
5165 BFD_ASSERT (SGI_COMPAT (abfd));
5166 if (section != NULL)
5167 {
5168 asym->section = section;
5169 /* MIPS_TEXT is a bit special, the address is not an offset
5170 to the base of the .text section. So substract the section
5171 base address to make it an offset. */
5172 asym->value -= section->vma;
5173 }
5174 }
5175 break;
5176
5177 case SHN_MIPS_DATA:
5178 {
5179 asection *section = bfd_get_section_by_name (abfd, ".data");
5180
5181 BFD_ASSERT (SGI_COMPAT (abfd));
5182 if (section != NULL)
5183 {
5184 asym->section = section;
5185 /* MIPS_DATA is a bit special, the address is not an offset
5186 to the base of the .data section. So substract the section
5187 base address to make it an offset. */
5188 asym->value -= section->vma;
5189 }
5190 }
5191 break;
5192 }
5193 }
5194 \f
5195 /* Implement elf_backend_eh_frame_address_size. This differs from
5196 the default in the way it handles EABI64.
5197
5198 EABI64 was originally specified as an LP64 ABI, and that is what
5199 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5200 historically accepted the combination of -mabi=eabi and -mlong32,
5201 and this ILP32 variation has become semi-official over time.
5202 Both forms use elf32 and have pointer-sized FDE addresses.
5203
5204 If an EABI object was generated by GCC 4.0 or above, it will have
5205 an empty .gcc_compiled_longXX section, where XX is the size of longs
5206 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5207 have no special marking to distinguish them from LP64 objects.
5208
5209 We don't want users of the official LP64 ABI to be punished for the
5210 existence of the ILP32 variant, but at the same time, we don't want
5211 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5212 We therefore take the following approach:
5213
5214 - If ABFD contains a .gcc_compiled_longXX section, use it to
5215 determine the pointer size.
5216
5217 - Otherwise check the type of the first relocation. Assume that
5218 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5219
5220 - Otherwise punt.
5221
5222 The second check is enough to detect LP64 objects generated by pre-4.0
5223 compilers because, in the kind of output generated by those compilers,
5224 the first relocation will be associated with either a CIE personality
5225 routine or an FDE start address. Furthermore, the compilers never
5226 used a special (non-pointer) encoding for this ABI.
5227
5228 Checking the relocation type should also be safe because there is no
5229 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5230 did so. */
5231
5232 unsigned int
5233 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5234 {
5235 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5236 return 8;
5237 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5238 {
5239 bfd_boolean long32_p, long64_p;
5240
5241 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5242 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5243 if (long32_p && long64_p)
5244 return 0;
5245 if (long32_p)
5246 return 4;
5247 if (long64_p)
5248 return 8;
5249
5250 if (sec->reloc_count > 0
5251 && elf_section_data (sec)->relocs != NULL
5252 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5253 == R_MIPS_64))
5254 return 8;
5255
5256 return 0;
5257 }
5258 return 4;
5259 }
5260 \f
5261 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5262 relocations against two unnamed section symbols to resolve to the
5263 same address. For example, if we have code like:
5264
5265 lw $4,%got_disp(.data)($gp)
5266 lw $25,%got_disp(.text)($gp)
5267 jalr $25
5268
5269 then the linker will resolve both relocations to .data and the program
5270 will jump there rather than to .text.
5271
5272 We can work around this problem by giving names to local section symbols.
5273 This is also what the MIPSpro tools do. */
5274
5275 bfd_boolean
5276 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5277 {
5278 return SGI_COMPAT (abfd);
5279 }
5280 \f
5281 /* Work over a section just before writing it out. This routine is
5282 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5283 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5284 a better way. */
5285
5286 bfd_boolean
5287 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5288 {
5289 if (hdr->sh_type == SHT_MIPS_REGINFO
5290 && hdr->sh_size > 0)
5291 {
5292 bfd_byte buf[4];
5293
5294 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5295 BFD_ASSERT (hdr->contents == NULL);
5296
5297 if (bfd_seek (abfd,
5298 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5299 SEEK_SET) != 0)
5300 return FALSE;
5301 H_PUT_32 (abfd, elf_gp (abfd), buf);
5302 if (bfd_bwrite (buf, 4, abfd) != 4)
5303 return FALSE;
5304 }
5305
5306 if (hdr->sh_type == SHT_MIPS_OPTIONS
5307 && hdr->bfd_section != NULL
5308 && mips_elf_section_data (hdr->bfd_section) != NULL
5309 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5310 {
5311 bfd_byte *contents, *l, *lend;
5312
5313 /* We stored the section contents in the tdata field in the
5314 set_section_contents routine. We save the section contents
5315 so that we don't have to read them again.
5316 At this point we know that elf_gp is set, so we can look
5317 through the section contents to see if there is an
5318 ODK_REGINFO structure. */
5319
5320 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5321 l = contents;
5322 lend = contents + hdr->sh_size;
5323 while (l + sizeof (Elf_External_Options) <= lend)
5324 {
5325 Elf_Internal_Options intopt;
5326
5327 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5328 &intopt);
5329 if (intopt.size < sizeof (Elf_External_Options))
5330 {
5331 (*_bfd_error_handler)
5332 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5333 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5334 break;
5335 }
5336 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5337 {
5338 bfd_byte buf[8];
5339
5340 if (bfd_seek (abfd,
5341 (hdr->sh_offset
5342 + (l - contents)
5343 + sizeof (Elf_External_Options)
5344 + (sizeof (Elf64_External_RegInfo) - 8)),
5345 SEEK_SET) != 0)
5346 return FALSE;
5347 H_PUT_64 (abfd, elf_gp (abfd), buf);
5348 if (bfd_bwrite (buf, 8, abfd) != 8)
5349 return FALSE;
5350 }
5351 else if (intopt.kind == ODK_REGINFO)
5352 {
5353 bfd_byte buf[4];
5354
5355 if (bfd_seek (abfd,
5356 (hdr->sh_offset
5357 + (l - contents)
5358 + sizeof (Elf_External_Options)
5359 + (sizeof (Elf32_External_RegInfo) - 4)),
5360 SEEK_SET) != 0)
5361 return FALSE;
5362 H_PUT_32 (abfd, elf_gp (abfd), buf);
5363 if (bfd_bwrite (buf, 4, abfd) != 4)
5364 return FALSE;
5365 }
5366 l += intopt.size;
5367 }
5368 }
5369
5370 if (hdr->bfd_section != NULL)
5371 {
5372 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5373
5374 if (strcmp (name, ".sdata") == 0
5375 || strcmp (name, ".lit8") == 0
5376 || strcmp (name, ".lit4") == 0)
5377 {
5378 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5379 hdr->sh_type = SHT_PROGBITS;
5380 }
5381 else if (strcmp (name, ".sbss") == 0)
5382 {
5383 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5384 hdr->sh_type = SHT_NOBITS;
5385 }
5386 else if (strcmp (name, ".srdata") == 0)
5387 {
5388 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5389 hdr->sh_type = SHT_PROGBITS;
5390 }
5391 else if (strcmp (name, ".compact_rel") == 0)
5392 {
5393 hdr->sh_flags = 0;
5394 hdr->sh_type = SHT_PROGBITS;
5395 }
5396 else if (strcmp (name, ".rtproc") == 0)
5397 {
5398 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5399 {
5400 unsigned int adjust;
5401
5402 adjust = hdr->sh_size % hdr->sh_addralign;
5403 if (adjust != 0)
5404 hdr->sh_size += hdr->sh_addralign - adjust;
5405 }
5406 }
5407 }
5408
5409 return TRUE;
5410 }
5411
5412 /* Handle a MIPS specific section when reading an object file. This
5413 is called when elfcode.h finds a section with an unknown type.
5414 This routine supports both the 32-bit and 64-bit ELF ABI.
5415
5416 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5417 how to. */
5418
5419 bfd_boolean
5420 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5421 Elf_Internal_Shdr *hdr,
5422 const char *name,
5423 int shindex)
5424 {
5425 flagword flags = 0;
5426
5427 /* There ought to be a place to keep ELF backend specific flags, but
5428 at the moment there isn't one. We just keep track of the
5429 sections by their name, instead. Fortunately, the ABI gives
5430 suggested names for all the MIPS specific sections, so we will
5431 probably get away with this. */
5432 switch (hdr->sh_type)
5433 {
5434 case SHT_MIPS_LIBLIST:
5435 if (strcmp (name, ".liblist") != 0)
5436 return FALSE;
5437 break;
5438 case SHT_MIPS_MSYM:
5439 if (strcmp (name, ".msym") != 0)
5440 return FALSE;
5441 break;
5442 case SHT_MIPS_CONFLICT:
5443 if (strcmp (name, ".conflict") != 0)
5444 return FALSE;
5445 break;
5446 case SHT_MIPS_GPTAB:
5447 if (! CONST_STRNEQ (name, ".gptab."))
5448 return FALSE;
5449 break;
5450 case SHT_MIPS_UCODE:
5451 if (strcmp (name, ".ucode") != 0)
5452 return FALSE;
5453 break;
5454 case SHT_MIPS_DEBUG:
5455 if (strcmp (name, ".mdebug") != 0)
5456 return FALSE;
5457 flags = SEC_DEBUGGING;
5458 break;
5459 case SHT_MIPS_REGINFO:
5460 if (strcmp (name, ".reginfo") != 0
5461 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5462 return FALSE;
5463 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5464 break;
5465 case SHT_MIPS_IFACE:
5466 if (strcmp (name, ".MIPS.interfaces") != 0)
5467 return FALSE;
5468 break;
5469 case SHT_MIPS_CONTENT:
5470 if (! CONST_STRNEQ (name, ".MIPS.content"))
5471 return FALSE;
5472 break;
5473 case SHT_MIPS_OPTIONS:
5474 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5475 return FALSE;
5476 break;
5477 case SHT_MIPS_DWARF:
5478 if (! CONST_STRNEQ (name, ".debug_"))
5479 return FALSE;
5480 break;
5481 case SHT_MIPS_SYMBOL_LIB:
5482 if (strcmp (name, ".MIPS.symlib") != 0)
5483 return FALSE;
5484 break;
5485 case SHT_MIPS_EVENTS:
5486 if (! CONST_STRNEQ (name, ".MIPS.events")
5487 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5488 return FALSE;
5489 break;
5490 default:
5491 break;
5492 }
5493
5494 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5495 return FALSE;
5496
5497 if (flags)
5498 {
5499 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5500 (bfd_get_section_flags (abfd,
5501 hdr->bfd_section)
5502 | flags)))
5503 return FALSE;
5504 }
5505
5506 /* FIXME: We should record sh_info for a .gptab section. */
5507
5508 /* For a .reginfo section, set the gp value in the tdata information
5509 from the contents of this section. We need the gp value while
5510 processing relocs, so we just get it now. The .reginfo section
5511 is not used in the 64-bit MIPS ELF ABI. */
5512 if (hdr->sh_type == SHT_MIPS_REGINFO)
5513 {
5514 Elf32_External_RegInfo ext;
5515 Elf32_RegInfo s;
5516
5517 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5518 &ext, 0, sizeof ext))
5519 return FALSE;
5520 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5521 elf_gp (abfd) = s.ri_gp_value;
5522 }
5523
5524 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5525 set the gp value based on what we find. We may see both
5526 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5527 they should agree. */
5528 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5529 {
5530 bfd_byte *contents, *l, *lend;
5531
5532 contents = bfd_malloc (hdr->sh_size);
5533 if (contents == NULL)
5534 return FALSE;
5535 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5536 0, hdr->sh_size))
5537 {
5538 free (contents);
5539 return FALSE;
5540 }
5541 l = contents;
5542 lend = contents + hdr->sh_size;
5543 while (l + sizeof (Elf_External_Options) <= lend)
5544 {
5545 Elf_Internal_Options intopt;
5546
5547 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5548 &intopt);
5549 if (intopt.size < sizeof (Elf_External_Options))
5550 {
5551 (*_bfd_error_handler)
5552 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5553 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5554 break;
5555 }
5556 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5557 {
5558 Elf64_Internal_RegInfo intreg;
5559
5560 bfd_mips_elf64_swap_reginfo_in
5561 (abfd,
5562 ((Elf64_External_RegInfo *)
5563 (l + sizeof (Elf_External_Options))),
5564 &intreg);
5565 elf_gp (abfd) = intreg.ri_gp_value;
5566 }
5567 else if (intopt.kind == ODK_REGINFO)
5568 {
5569 Elf32_RegInfo intreg;
5570
5571 bfd_mips_elf32_swap_reginfo_in
5572 (abfd,
5573 ((Elf32_External_RegInfo *)
5574 (l + sizeof (Elf_External_Options))),
5575 &intreg);
5576 elf_gp (abfd) = intreg.ri_gp_value;
5577 }
5578 l += intopt.size;
5579 }
5580 free (contents);
5581 }
5582
5583 return TRUE;
5584 }
5585
5586 /* Set the correct type for a MIPS ELF section. We do this by the
5587 section name, which is a hack, but ought to work. This routine is
5588 used by both the 32-bit and the 64-bit ABI. */
5589
5590 bfd_boolean
5591 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5592 {
5593 const char *name = bfd_get_section_name (abfd, sec);
5594
5595 if (strcmp (name, ".liblist") == 0)
5596 {
5597 hdr->sh_type = SHT_MIPS_LIBLIST;
5598 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5599 /* The sh_link field is set in final_write_processing. */
5600 }
5601 else if (strcmp (name, ".conflict") == 0)
5602 hdr->sh_type = SHT_MIPS_CONFLICT;
5603 else if (CONST_STRNEQ (name, ".gptab."))
5604 {
5605 hdr->sh_type = SHT_MIPS_GPTAB;
5606 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5607 /* The sh_info field is set in final_write_processing. */
5608 }
5609 else if (strcmp (name, ".ucode") == 0)
5610 hdr->sh_type = SHT_MIPS_UCODE;
5611 else if (strcmp (name, ".mdebug") == 0)
5612 {
5613 hdr->sh_type = SHT_MIPS_DEBUG;
5614 /* In a shared object on IRIX 5.3, the .mdebug section has an
5615 entsize of 0. FIXME: Does this matter? */
5616 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5617 hdr->sh_entsize = 0;
5618 else
5619 hdr->sh_entsize = 1;
5620 }
5621 else if (strcmp (name, ".reginfo") == 0)
5622 {
5623 hdr->sh_type = SHT_MIPS_REGINFO;
5624 /* In a shared object on IRIX 5.3, the .reginfo section has an
5625 entsize of 0x18. FIXME: Does this matter? */
5626 if (SGI_COMPAT (abfd))
5627 {
5628 if ((abfd->flags & DYNAMIC) != 0)
5629 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5630 else
5631 hdr->sh_entsize = 1;
5632 }
5633 else
5634 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5635 }
5636 else if (SGI_COMPAT (abfd)
5637 && (strcmp (name, ".hash") == 0
5638 || strcmp (name, ".dynamic") == 0
5639 || strcmp (name, ".dynstr") == 0))
5640 {
5641 if (SGI_COMPAT (abfd))
5642 hdr->sh_entsize = 0;
5643 #if 0
5644 /* This isn't how the IRIX6 linker behaves. */
5645 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5646 #endif
5647 }
5648 else if (strcmp (name, ".got") == 0
5649 || strcmp (name, ".srdata") == 0
5650 || strcmp (name, ".sdata") == 0
5651 || strcmp (name, ".sbss") == 0
5652 || strcmp (name, ".lit4") == 0
5653 || strcmp (name, ".lit8") == 0)
5654 hdr->sh_flags |= SHF_MIPS_GPREL;
5655 else if (strcmp (name, ".MIPS.interfaces") == 0)
5656 {
5657 hdr->sh_type = SHT_MIPS_IFACE;
5658 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5659 }
5660 else if (CONST_STRNEQ (name, ".MIPS.content"))
5661 {
5662 hdr->sh_type = SHT_MIPS_CONTENT;
5663 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5664 /* The sh_info field is set in final_write_processing. */
5665 }
5666 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5667 {
5668 hdr->sh_type = SHT_MIPS_OPTIONS;
5669 hdr->sh_entsize = 1;
5670 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5671 }
5672 else if (CONST_STRNEQ (name, ".debug_"))
5673 hdr->sh_type = SHT_MIPS_DWARF;
5674 else if (strcmp (name, ".MIPS.symlib") == 0)
5675 {
5676 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5677 /* The sh_link and sh_info fields are set in
5678 final_write_processing. */
5679 }
5680 else if (CONST_STRNEQ (name, ".MIPS.events")
5681 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5682 {
5683 hdr->sh_type = SHT_MIPS_EVENTS;
5684 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5685 /* The sh_link field is set in final_write_processing. */
5686 }
5687 else if (strcmp (name, ".msym") == 0)
5688 {
5689 hdr->sh_type = SHT_MIPS_MSYM;
5690 hdr->sh_flags |= SHF_ALLOC;
5691 hdr->sh_entsize = 8;
5692 }
5693
5694 /* The generic elf_fake_sections will set up REL_HDR using the default
5695 kind of relocations. We used to set up a second header for the
5696 non-default kind of relocations here, but only NewABI would use
5697 these, and the IRIX ld doesn't like resulting empty RELA sections.
5698 Thus we create those header only on demand now. */
5699
5700 return TRUE;
5701 }
5702
5703 /* Given a BFD section, try to locate the corresponding ELF section
5704 index. This is used by both the 32-bit and the 64-bit ABI.
5705 Actually, it's not clear to me that the 64-bit ABI supports these,
5706 but for non-PIC objects we will certainly want support for at least
5707 the .scommon section. */
5708
5709 bfd_boolean
5710 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5711 asection *sec, int *retval)
5712 {
5713 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5714 {
5715 *retval = SHN_MIPS_SCOMMON;
5716 return TRUE;
5717 }
5718 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5719 {
5720 *retval = SHN_MIPS_ACOMMON;
5721 return TRUE;
5722 }
5723 return FALSE;
5724 }
5725 \f
5726 /* Hook called by the linker routine which adds symbols from an object
5727 file. We must handle the special MIPS section numbers here. */
5728
5729 bfd_boolean
5730 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5731 Elf_Internal_Sym *sym, const char **namep,
5732 flagword *flagsp ATTRIBUTE_UNUSED,
5733 asection **secp, bfd_vma *valp)
5734 {
5735 if (SGI_COMPAT (abfd)
5736 && (abfd->flags & DYNAMIC) != 0
5737 && strcmp (*namep, "_rld_new_interface") == 0)
5738 {
5739 /* Skip IRIX5 rld entry name. */
5740 *namep = NULL;
5741 return TRUE;
5742 }
5743
5744 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5745 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5746 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5747 a magic symbol resolved by the linker, we ignore this bogus definition
5748 of _gp_disp. New ABI objects do not suffer from this problem so this
5749 is not done for them. */
5750 if (!NEWABI_P(abfd)
5751 && (sym->st_shndx == SHN_ABS)
5752 && (strcmp (*namep, "_gp_disp") == 0))
5753 {
5754 *namep = NULL;
5755 return TRUE;
5756 }
5757
5758 switch (sym->st_shndx)
5759 {
5760 case SHN_COMMON:
5761 /* Common symbols less than the GP size are automatically
5762 treated as SHN_MIPS_SCOMMON symbols. */
5763 if (sym->st_size > elf_gp_size (abfd)
5764 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5765 || IRIX_COMPAT (abfd) == ict_irix6)
5766 break;
5767 /* Fall through. */
5768 case SHN_MIPS_SCOMMON:
5769 *secp = bfd_make_section_old_way (abfd, ".scommon");
5770 (*secp)->flags |= SEC_IS_COMMON;
5771 *valp = sym->st_size;
5772 break;
5773
5774 case SHN_MIPS_TEXT:
5775 /* This section is used in a shared object. */
5776 if (elf_tdata (abfd)->elf_text_section == NULL)
5777 {
5778 asymbol *elf_text_symbol;
5779 asection *elf_text_section;
5780 bfd_size_type amt = sizeof (asection);
5781
5782 elf_text_section = bfd_zalloc (abfd, amt);
5783 if (elf_text_section == NULL)
5784 return FALSE;
5785
5786 amt = sizeof (asymbol);
5787 elf_text_symbol = bfd_zalloc (abfd, amt);
5788 if (elf_text_symbol == NULL)
5789 return FALSE;
5790
5791 /* Initialize the section. */
5792
5793 elf_tdata (abfd)->elf_text_section = elf_text_section;
5794 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5795
5796 elf_text_section->symbol = elf_text_symbol;
5797 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5798
5799 elf_text_section->name = ".text";
5800 elf_text_section->flags = SEC_NO_FLAGS;
5801 elf_text_section->output_section = NULL;
5802 elf_text_section->owner = abfd;
5803 elf_text_symbol->name = ".text";
5804 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5805 elf_text_symbol->section = elf_text_section;
5806 }
5807 /* This code used to do *secp = bfd_und_section_ptr if
5808 info->shared. I don't know why, and that doesn't make sense,
5809 so I took it out. */
5810 *secp = elf_tdata (abfd)->elf_text_section;
5811 break;
5812
5813 case SHN_MIPS_ACOMMON:
5814 /* Fall through. XXX Can we treat this as allocated data? */
5815 case SHN_MIPS_DATA:
5816 /* This section is used in a shared object. */
5817 if (elf_tdata (abfd)->elf_data_section == NULL)
5818 {
5819 asymbol *elf_data_symbol;
5820 asection *elf_data_section;
5821 bfd_size_type amt = sizeof (asection);
5822
5823 elf_data_section = bfd_zalloc (abfd, amt);
5824 if (elf_data_section == NULL)
5825 return FALSE;
5826
5827 amt = sizeof (asymbol);
5828 elf_data_symbol = bfd_zalloc (abfd, amt);
5829 if (elf_data_symbol == NULL)
5830 return FALSE;
5831
5832 /* Initialize the section. */
5833
5834 elf_tdata (abfd)->elf_data_section = elf_data_section;
5835 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5836
5837 elf_data_section->symbol = elf_data_symbol;
5838 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5839
5840 elf_data_section->name = ".data";
5841 elf_data_section->flags = SEC_NO_FLAGS;
5842 elf_data_section->output_section = NULL;
5843 elf_data_section->owner = abfd;
5844 elf_data_symbol->name = ".data";
5845 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5846 elf_data_symbol->section = elf_data_section;
5847 }
5848 /* This code used to do *secp = bfd_und_section_ptr if
5849 info->shared. I don't know why, and that doesn't make sense,
5850 so I took it out. */
5851 *secp = elf_tdata (abfd)->elf_data_section;
5852 break;
5853
5854 case SHN_MIPS_SUNDEFINED:
5855 *secp = bfd_und_section_ptr;
5856 break;
5857 }
5858
5859 if (SGI_COMPAT (abfd)
5860 && ! info->shared
5861 && info->hash->creator == abfd->xvec
5862 && strcmp (*namep, "__rld_obj_head") == 0)
5863 {
5864 struct elf_link_hash_entry *h;
5865 struct bfd_link_hash_entry *bh;
5866
5867 /* Mark __rld_obj_head as dynamic. */
5868 bh = NULL;
5869 if (! (_bfd_generic_link_add_one_symbol
5870 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5871 get_elf_backend_data (abfd)->collect, &bh)))
5872 return FALSE;
5873
5874 h = (struct elf_link_hash_entry *) bh;
5875 h->non_elf = 0;
5876 h->def_regular = 1;
5877 h->type = STT_OBJECT;
5878
5879 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5880 return FALSE;
5881
5882 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5883 }
5884
5885 /* If this is a mips16 text symbol, add 1 to the value to make it
5886 odd. This will cause something like .word SYM to come up with
5887 the right value when it is loaded into the PC. */
5888 if (sym->st_other == STO_MIPS16)
5889 ++*valp;
5890
5891 return TRUE;
5892 }
5893
5894 /* This hook function is called before the linker writes out a global
5895 symbol. We mark symbols as small common if appropriate. This is
5896 also where we undo the increment of the value for a mips16 symbol. */
5897
5898 bfd_boolean
5899 _bfd_mips_elf_link_output_symbol_hook
5900 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5901 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5902 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5903 {
5904 /* If we see a common symbol, which implies a relocatable link, then
5905 if a symbol was small common in an input file, mark it as small
5906 common in the output file. */
5907 if (sym->st_shndx == SHN_COMMON
5908 && strcmp (input_sec->name, ".scommon") == 0)
5909 sym->st_shndx = SHN_MIPS_SCOMMON;
5910
5911 if (sym->st_other == STO_MIPS16)
5912 sym->st_value &= ~1;
5913
5914 return TRUE;
5915 }
5916 \f
5917 /* Functions for the dynamic linker. */
5918
5919 /* Create dynamic sections when linking against a dynamic object. */
5920
5921 bfd_boolean
5922 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5923 {
5924 struct elf_link_hash_entry *h;
5925 struct bfd_link_hash_entry *bh;
5926 flagword flags;
5927 register asection *s;
5928 const char * const *namep;
5929 struct mips_elf_link_hash_table *htab;
5930
5931 htab = mips_elf_hash_table (info);
5932 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5933 | SEC_LINKER_CREATED | SEC_READONLY);
5934
5935 /* The psABI requires a read-only .dynamic section, but the VxWorks
5936 EABI doesn't. */
5937 if (!htab->is_vxworks)
5938 {
5939 s = bfd_get_section_by_name (abfd, ".dynamic");
5940 if (s != NULL)
5941 {
5942 if (! bfd_set_section_flags (abfd, s, flags))
5943 return FALSE;
5944 }
5945 }
5946
5947 /* We need to create .got section. */
5948 if (! mips_elf_create_got_section (abfd, info, FALSE))
5949 return FALSE;
5950
5951 if (! mips_elf_rel_dyn_section (info, TRUE))
5952 return FALSE;
5953
5954 /* Create .stub section. */
5955 if (bfd_get_section_by_name (abfd,
5956 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5957 {
5958 s = bfd_make_section_with_flags (abfd,
5959 MIPS_ELF_STUB_SECTION_NAME (abfd),
5960 flags | SEC_CODE);
5961 if (s == NULL
5962 || ! bfd_set_section_alignment (abfd, s,
5963 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5964 return FALSE;
5965 }
5966
5967 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5968 && !info->shared
5969 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5970 {
5971 s = bfd_make_section_with_flags (abfd, ".rld_map",
5972 flags &~ (flagword) SEC_READONLY);
5973 if (s == NULL
5974 || ! bfd_set_section_alignment (abfd, s,
5975 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5976 return FALSE;
5977 }
5978
5979 /* On IRIX5, we adjust add some additional symbols and change the
5980 alignments of several sections. There is no ABI documentation
5981 indicating that this is necessary on IRIX6, nor any evidence that
5982 the linker takes such action. */
5983 if (IRIX_COMPAT (abfd) == ict_irix5)
5984 {
5985 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5986 {
5987 bh = NULL;
5988 if (! (_bfd_generic_link_add_one_symbol
5989 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5990 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5991 return FALSE;
5992
5993 h = (struct elf_link_hash_entry *) bh;
5994 h->non_elf = 0;
5995 h->def_regular = 1;
5996 h->type = STT_SECTION;
5997
5998 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5999 return FALSE;
6000 }
6001
6002 /* We need to create a .compact_rel section. */
6003 if (SGI_COMPAT (abfd))
6004 {
6005 if (!mips_elf_create_compact_rel_section (abfd, info))
6006 return FALSE;
6007 }
6008
6009 /* Change alignments of some sections. */
6010 s = bfd_get_section_by_name (abfd, ".hash");
6011 if (s != NULL)
6012 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6013 s = bfd_get_section_by_name (abfd, ".dynsym");
6014 if (s != NULL)
6015 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6016 s = bfd_get_section_by_name (abfd, ".dynstr");
6017 if (s != NULL)
6018 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6019 s = bfd_get_section_by_name (abfd, ".reginfo");
6020 if (s != NULL)
6021 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6022 s = bfd_get_section_by_name (abfd, ".dynamic");
6023 if (s != NULL)
6024 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6025 }
6026
6027 if (!info->shared)
6028 {
6029 const char *name;
6030
6031 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6032 bh = NULL;
6033 if (!(_bfd_generic_link_add_one_symbol
6034 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6035 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6036 return FALSE;
6037
6038 h = (struct elf_link_hash_entry *) bh;
6039 h->non_elf = 0;
6040 h->def_regular = 1;
6041 h->type = STT_SECTION;
6042
6043 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6044 return FALSE;
6045
6046 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6047 {
6048 /* __rld_map is a four byte word located in the .data section
6049 and is filled in by the rtld to contain a pointer to
6050 the _r_debug structure. Its symbol value will be set in
6051 _bfd_mips_elf_finish_dynamic_symbol. */
6052 s = bfd_get_section_by_name (abfd, ".rld_map");
6053 BFD_ASSERT (s != NULL);
6054
6055 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6056 bh = NULL;
6057 if (!(_bfd_generic_link_add_one_symbol
6058 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6059 get_elf_backend_data (abfd)->collect, &bh)))
6060 return FALSE;
6061
6062 h = (struct elf_link_hash_entry *) bh;
6063 h->non_elf = 0;
6064 h->def_regular = 1;
6065 h->type = STT_OBJECT;
6066
6067 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6068 return FALSE;
6069 }
6070 }
6071
6072 if (htab->is_vxworks)
6073 {
6074 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6075 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6076 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6077 return FALSE;
6078
6079 /* Cache the sections created above. */
6080 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6081 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6082 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6083 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6084 if (!htab->sdynbss
6085 || (!htab->srelbss && !info->shared)
6086 || !htab->srelplt
6087 || !htab->splt)
6088 abort ();
6089
6090 /* Do the usual VxWorks handling. */
6091 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6092 return FALSE;
6093
6094 /* Work out the PLT sizes. */
6095 if (info->shared)
6096 {
6097 htab->plt_header_size
6098 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6099 htab->plt_entry_size
6100 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6101 }
6102 else
6103 {
6104 htab->plt_header_size
6105 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6106 htab->plt_entry_size
6107 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6108 }
6109 }
6110
6111 return TRUE;
6112 }
6113 \f
6114 /* Look through the relocs for a section during the first phase, and
6115 allocate space in the global offset table. */
6116
6117 bfd_boolean
6118 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6119 asection *sec, const Elf_Internal_Rela *relocs)
6120 {
6121 const char *name;
6122 bfd *dynobj;
6123 Elf_Internal_Shdr *symtab_hdr;
6124 struct elf_link_hash_entry **sym_hashes;
6125 struct mips_got_info *g;
6126 size_t extsymoff;
6127 const Elf_Internal_Rela *rel;
6128 const Elf_Internal_Rela *rel_end;
6129 asection *sgot;
6130 asection *sreloc;
6131 const struct elf_backend_data *bed;
6132 struct mips_elf_link_hash_table *htab;
6133
6134 if (info->relocatable)
6135 return TRUE;
6136
6137 htab = mips_elf_hash_table (info);
6138 dynobj = elf_hash_table (info)->dynobj;
6139 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6140 sym_hashes = elf_sym_hashes (abfd);
6141 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6142
6143 /* Check for the mips16 stub sections. */
6144
6145 name = bfd_get_section_name (abfd, sec);
6146 if (FN_STUB_P (name))
6147 {
6148 unsigned long r_symndx;
6149
6150 /* Look at the relocation information to figure out which symbol
6151 this is for. */
6152
6153 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6154
6155 if (r_symndx < extsymoff
6156 || sym_hashes[r_symndx - extsymoff] == NULL)
6157 {
6158 asection *o;
6159
6160 /* This stub is for a local symbol. This stub will only be
6161 needed if there is some relocation in this BFD, other
6162 than a 16 bit function call, which refers to this symbol. */
6163 for (o = abfd->sections; o != NULL; o = o->next)
6164 {
6165 Elf_Internal_Rela *sec_relocs;
6166 const Elf_Internal_Rela *r, *rend;
6167
6168 /* We can ignore stub sections when looking for relocs. */
6169 if ((o->flags & SEC_RELOC) == 0
6170 || o->reloc_count == 0
6171 || mips16_stub_section_p (abfd, o))
6172 continue;
6173
6174 sec_relocs
6175 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6176 info->keep_memory);
6177 if (sec_relocs == NULL)
6178 return FALSE;
6179
6180 rend = sec_relocs + o->reloc_count;
6181 for (r = sec_relocs; r < rend; r++)
6182 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6183 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6184 break;
6185
6186 if (elf_section_data (o)->relocs != sec_relocs)
6187 free (sec_relocs);
6188
6189 if (r < rend)
6190 break;
6191 }
6192
6193 if (o == NULL)
6194 {
6195 /* There is no non-call reloc for this stub, so we do
6196 not need it. Since this function is called before
6197 the linker maps input sections to output sections, we
6198 can easily discard it by setting the SEC_EXCLUDE
6199 flag. */
6200 sec->flags |= SEC_EXCLUDE;
6201 return TRUE;
6202 }
6203
6204 /* Record this stub in an array of local symbol stubs for
6205 this BFD. */
6206 if (elf_tdata (abfd)->local_stubs == NULL)
6207 {
6208 unsigned long symcount;
6209 asection **n;
6210 bfd_size_type amt;
6211
6212 if (elf_bad_symtab (abfd))
6213 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6214 else
6215 symcount = symtab_hdr->sh_info;
6216 amt = symcount * sizeof (asection *);
6217 n = bfd_zalloc (abfd, amt);
6218 if (n == NULL)
6219 return FALSE;
6220 elf_tdata (abfd)->local_stubs = n;
6221 }
6222
6223 sec->flags |= SEC_KEEP;
6224 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6225
6226 /* We don't need to set mips16_stubs_seen in this case.
6227 That flag is used to see whether we need to look through
6228 the global symbol table for stubs. We don't need to set
6229 it here, because we just have a local stub. */
6230 }
6231 else
6232 {
6233 struct mips_elf_link_hash_entry *h;
6234
6235 h = ((struct mips_elf_link_hash_entry *)
6236 sym_hashes[r_symndx - extsymoff]);
6237
6238 while (h->root.root.type == bfd_link_hash_indirect
6239 || h->root.root.type == bfd_link_hash_warning)
6240 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6241
6242 /* H is the symbol this stub is for. */
6243
6244 /* If we already have an appropriate stub for this function, we
6245 don't need another one, so we can discard this one. Since
6246 this function is called before the linker maps input sections
6247 to output sections, we can easily discard it by setting the
6248 SEC_EXCLUDE flag. */
6249 if (h->fn_stub != NULL)
6250 {
6251 sec->flags |= SEC_EXCLUDE;
6252 return TRUE;
6253 }
6254
6255 sec->flags |= SEC_KEEP;
6256 h->fn_stub = sec;
6257 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6258 }
6259 }
6260 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6261 {
6262 unsigned long r_symndx;
6263 struct mips_elf_link_hash_entry *h;
6264 asection **loc;
6265
6266 /* Look at the relocation information to figure out which symbol
6267 this is for. */
6268
6269 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6270
6271 if (r_symndx < extsymoff
6272 || sym_hashes[r_symndx - extsymoff] == NULL)
6273 {
6274 asection *o;
6275
6276 /* This stub is for a local symbol. This stub will only be
6277 needed if there is some relocation (R_MIPS16_26) in this BFD
6278 that refers to this symbol. */
6279 for (o = abfd->sections; o != NULL; o = o->next)
6280 {
6281 Elf_Internal_Rela *sec_relocs;
6282 const Elf_Internal_Rela *r, *rend;
6283
6284 /* We can ignore stub sections when looking for relocs. */
6285 if ((o->flags & SEC_RELOC) == 0
6286 || o->reloc_count == 0
6287 || mips16_stub_section_p (abfd, o))
6288 continue;
6289
6290 sec_relocs
6291 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6292 info->keep_memory);
6293 if (sec_relocs == NULL)
6294 return FALSE;
6295
6296 rend = sec_relocs + o->reloc_count;
6297 for (r = sec_relocs; r < rend; r++)
6298 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6299 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6300 break;
6301
6302 if (elf_section_data (o)->relocs != sec_relocs)
6303 free (sec_relocs);
6304
6305 if (r < rend)
6306 break;
6307 }
6308
6309 if (o == NULL)
6310 {
6311 /* There is no non-call reloc for this stub, so we do
6312 not need it. Since this function is called before
6313 the linker maps input sections to output sections, we
6314 can easily discard it by setting the SEC_EXCLUDE
6315 flag. */
6316 sec->flags |= SEC_EXCLUDE;
6317 return TRUE;
6318 }
6319
6320 /* Record this stub in an array of local symbol call_stubs for
6321 this BFD. */
6322 if (elf_tdata (abfd)->local_call_stubs == NULL)
6323 {
6324 unsigned long symcount;
6325 asection **n;
6326 bfd_size_type amt;
6327
6328 if (elf_bad_symtab (abfd))
6329 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6330 else
6331 symcount = symtab_hdr->sh_info;
6332 amt = symcount * sizeof (asection *);
6333 n = bfd_zalloc (abfd, amt);
6334 if (n == NULL)
6335 return FALSE;
6336 elf_tdata (abfd)->local_call_stubs = n;
6337 }
6338
6339 sec->flags |= SEC_KEEP;
6340 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6341
6342 /* We don't need to set mips16_stubs_seen in this case.
6343 That flag is used to see whether we need to look through
6344 the global symbol table for stubs. We don't need to set
6345 it here, because we just have a local stub. */
6346 }
6347 else
6348 {
6349 h = ((struct mips_elf_link_hash_entry *)
6350 sym_hashes[r_symndx - extsymoff]);
6351
6352 /* H is the symbol this stub is for. */
6353
6354 if (CALL_FP_STUB_P (name))
6355 loc = &h->call_fp_stub;
6356 else
6357 loc = &h->call_stub;
6358
6359 /* If we already have an appropriate stub for this function, we
6360 don't need another one, so we can discard this one. Since
6361 this function is called before the linker maps input sections
6362 to output sections, we can easily discard it by setting the
6363 SEC_EXCLUDE flag. */
6364 if (*loc != NULL)
6365 {
6366 sec->flags |= SEC_EXCLUDE;
6367 return TRUE;
6368 }
6369
6370 sec->flags |= SEC_KEEP;
6371 *loc = sec;
6372 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6373 }
6374 }
6375
6376 if (dynobj == NULL)
6377 {
6378 sgot = NULL;
6379 g = NULL;
6380 }
6381 else
6382 {
6383 sgot = mips_elf_got_section (dynobj, FALSE);
6384 if (sgot == NULL)
6385 g = NULL;
6386 else
6387 {
6388 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6389 g = mips_elf_section_data (sgot)->u.got_info;
6390 BFD_ASSERT (g != NULL);
6391 }
6392 }
6393
6394 sreloc = NULL;
6395 bed = get_elf_backend_data (abfd);
6396 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6397 for (rel = relocs; rel < rel_end; ++rel)
6398 {
6399 unsigned long r_symndx;
6400 unsigned int r_type;
6401 struct elf_link_hash_entry *h;
6402
6403 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6404 r_type = ELF_R_TYPE (abfd, rel->r_info);
6405
6406 if (r_symndx < extsymoff)
6407 h = NULL;
6408 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6409 {
6410 (*_bfd_error_handler)
6411 (_("%B: Malformed reloc detected for section %s"),
6412 abfd, name);
6413 bfd_set_error (bfd_error_bad_value);
6414 return FALSE;
6415 }
6416 else
6417 {
6418 h = sym_hashes[r_symndx - extsymoff];
6419
6420 /* This may be an indirect symbol created because of a version. */
6421 if (h != NULL)
6422 {
6423 while (h->root.type == bfd_link_hash_indirect)
6424 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6425 }
6426 }
6427
6428 /* Some relocs require a global offset table. */
6429 if (dynobj == NULL || sgot == NULL)
6430 {
6431 switch (r_type)
6432 {
6433 case R_MIPS_GOT16:
6434 case R_MIPS_CALL16:
6435 case R_MIPS_CALL_HI16:
6436 case R_MIPS_CALL_LO16:
6437 case R_MIPS_GOT_HI16:
6438 case R_MIPS_GOT_LO16:
6439 case R_MIPS_GOT_PAGE:
6440 case R_MIPS_GOT_OFST:
6441 case R_MIPS_GOT_DISP:
6442 case R_MIPS_TLS_GOTTPREL:
6443 case R_MIPS_TLS_GD:
6444 case R_MIPS_TLS_LDM:
6445 if (dynobj == NULL)
6446 elf_hash_table (info)->dynobj = dynobj = abfd;
6447 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6448 return FALSE;
6449 g = mips_elf_got_info (dynobj, &sgot);
6450 if (htab->is_vxworks && !info->shared)
6451 {
6452 (*_bfd_error_handler)
6453 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6454 abfd, (unsigned long) rel->r_offset);
6455 bfd_set_error (bfd_error_bad_value);
6456 return FALSE;
6457 }
6458 break;
6459
6460 case R_MIPS_32:
6461 case R_MIPS_REL32:
6462 case R_MIPS_64:
6463 /* In VxWorks executables, references to external symbols
6464 are handled using copy relocs or PLT stubs, so there's
6465 no need to add a dynamic relocation here. */
6466 if (dynobj == NULL
6467 && (info->shared || (h != NULL && !htab->is_vxworks))
6468 && (sec->flags & SEC_ALLOC) != 0)
6469 elf_hash_table (info)->dynobj = dynobj = abfd;
6470 break;
6471
6472 default:
6473 break;
6474 }
6475 }
6476
6477 if (h)
6478 {
6479 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6480
6481 /* Relocations against the special VxWorks __GOTT_BASE__ and
6482 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6483 room for them in .rela.dyn. */
6484 if (is_gott_symbol (info, h))
6485 {
6486 if (sreloc == NULL)
6487 {
6488 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6489 if (sreloc == NULL)
6490 return FALSE;
6491 }
6492 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6493 if (MIPS_ELF_READONLY_SECTION (sec))
6494 /* We tell the dynamic linker that there are
6495 relocations against the text segment. */
6496 info->flags |= DF_TEXTREL;
6497 }
6498 }
6499 else if (r_type == R_MIPS_CALL_LO16
6500 || r_type == R_MIPS_GOT_LO16
6501 || r_type == R_MIPS_GOT_DISP
6502 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6503 {
6504 /* We may need a local GOT entry for this relocation. We
6505 don't count R_MIPS_GOT_PAGE because we can estimate the
6506 maximum number of pages needed by looking at the size of
6507 the segment. Similar comments apply to R_MIPS_GOT16 and
6508 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6509 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6510 R_MIPS_CALL_HI16 because these are always followed by an
6511 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6512 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6513 rel->r_addend, g, 0))
6514 return FALSE;
6515 }
6516
6517 switch (r_type)
6518 {
6519 case R_MIPS_CALL16:
6520 if (h == NULL)
6521 {
6522 (*_bfd_error_handler)
6523 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6524 abfd, (unsigned long) rel->r_offset);
6525 bfd_set_error (bfd_error_bad_value);
6526 return FALSE;
6527 }
6528 /* Fall through. */
6529
6530 case R_MIPS_CALL_HI16:
6531 case R_MIPS_CALL_LO16:
6532 if (h != NULL)
6533 {
6534 /* VxWorks call relocations point the function's .got.plt
6535 entry, which will be allocated by adjust_dynamic_symbol.
6536 Otherwise, this symbol requires a global GOT entry. */
6537 if ((!htab->is_vxworks || h->forced_local)
6538 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6539 return FALSE;
6540
6541 /* We need a stub, not a plt entry for the undefined
6542 function. But we record it as if it needs plt. See
6543 _bfd_elf_adjust_dynamic_symbol. */
6544 h->needs_plt = 1;
6545 h->type = STT_FUNC;
6546 }
6547 break;
6548
6549 case R_MIPS_GOT_PAGE:
6550 /* If this is a global, overridable symbol, GOT_PAGE will
6551 decay to GOT_DISP, so we'll need a GOT entry for it. */
6552 if (h == NULL)
6553 break;
6554 else
6555 {
6556 struct mips_elf_link_hash_entry *hmips =
6557 (struct mips_elf_link_hash_entry *) h;
6558
6559 while (hmips->root.root.type == bfd_link_hash_indirect
6560 || hmips->root.root.type == bfd_link_hash_warning)
6561 hmips = (struct mips_elf_link_hash_entry *)
6562 hmips->root.root.u.i.link;
6563
6564 if (hmips->root.def_regular
6565 && ! (info->shared && ! info->symbolic
6566 && ! hmips->root.forced_local))
6567 break;
6568 }
6569 /* Fall through. */
6570
6571 case R_MIPS_GOT16:
6572 case R_MIPS_GOT_HI16:
6573 case R_MIPS_GOT_LO16:
6574 case R_MIPS_GOT_DISP:
6575 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6576 return FALSE;
6577 break;
6578
6579 case R_MIPS_TLS_GOTTPREL:
6580 if (info->shared)
6581 info->flags |= DF_STATIC_TLS;
6582 /* Fall through */
6583
6584 case R_MIPS_TLS_LDM:
6585 if (r_type == R_MIPS_TLS_LDM)
6586 {
6587 r_symndx = 0;
6588 h = NULL;
6589 }
6590 /* Fall through */
6591
6592 case R_MIPS_TLS_GD:
6593 /* This symbol requires a global offset table entry, or two
6594 for TLS GD relocations. */
6595 {
6596 unsigned char flag = (r_type == R_MIPS_TLS_GD
6597 ? GOT_TLS_GD
6598 : r_type == R_MIPS_TLS_LDM
6599 ? GOT_TLS_LDM
6600 : GOT_TLS_IE);
6601 if (h != NULL)
6602 {
6603 struct mips_elf_link_hash_entry *hmips =
6604 (struct mips_elf_link_hash_entry *) h;
6605 hmips->tls_type |= flag;
6606
6607 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6608 return FALSE;
6609 }
6610 else
6611 {
6612 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6613
6614 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6615 rel->r_addend, g, flag))
6616 return FALSE;
6617 }
6618 }
6619 break;
6620
6621 case R_MIPS_32:
6622 case R_MIPS_REL32:
6623 case R_MIPS_64:
6624 /* In VxWorks executables, references to external symbols
6625 are handled using copy relocs or PLT stubs, so there's
6626 no need to add a .rela.dyn entry for this relocation. */
6627 if ((info->shared || (h != NULL && !htab->is_vxworks))
6628 && (sec->flags & SEC_ALLOC) != 0)
6629 {
6630 if (sreloc == NULL)
6631 {
6632 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6633 if (sreloc == NULL)
6634 return FALSE;
6635 }
6636 if (info->shared)
6637 {
6638 /* When creating a shared object, we must copy these
6639 reloc types into the output file as R_MIPS_REL32
6640 relocs. Make room for this reloc in .rel(a).dyn. */
6641 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6642 if (MIPS_ELF_READONLY_SECTION (sec))
6643 /* We tell the dynamic linker that there are
6644 relocations against the text segment. */
6645 info->flags |= DF_TEXTREL;
6646 }
6647 else
6648 {
6649 struct mips_elf_link_hash_entry *hmips;
6650
6651 /* We only need to copy this reloc if the symbol is
6652 defined in a dynamic object. */
6653 hmips = (struct mips_elf_link_hash_entry *) h;
6654 ++hmips->possibly_dynamic_relocs;
6655 if (MIPS_ELF_READONLY_SECTION (sec))
6656 /* We need it to tell the dynamic linker if there
6657 are relocations against the text segment. */
6658 hmips->readonly_reloc = TRUE;
6659 }
6660
6661 /* Even though we don't directly need a GOT entry for
6662 this symbol, a symbol must have a dynamic symbol
6663 table index greater that DT_MIPS_GOTSYM if there are
6664 dynamic relocations against it. This does not apply
6665 to VxWorks, which does not have the usual coupling
6666 between global GOT entries and .dynsym entries. */
6667 if (h != NULL && !htab->is_vxworks)
6668 {
6669 if (dynobj == NULL)
6670 elf_hash_table (info)->dynobj = dynobj = abfd;
6671 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6672 return FALSE;
6673 g = mips_elf_got_info (dynobj, &sgot);
6674 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6675 return FALSE;
6676 }
6677 }
6678
6679 if (SGI_COMPAT (abfd))
6680 mips_elf_hash_table (info)->compact_rel_size +=
6681 sizeof (Elf32_External_crinfo);
6682 break;
6683
6684 case R_MIPS_PC16:
6685 if (h)
6686 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6687 break;
6688
6689 case R_MIPS_26:
6690 if (h)
6691 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6692 /* Fall through. */
6693
6694 case R_MIPS_GPREL16:
6695 case R_MIPS_LITERAL:
6696 case R_MIPS_GPREL32:
6697 if (SGI_COMPAT (abfd))
6698 mips_elf_hash_table (info)->compact_rel_size +=
6699 sizeof (Elf32_External_crinfo);
6700 break;
6701
6702 /* This relocation describes the C++ object vtable hierarchy.
6703 Reconstruct it for later use during GC. */
6704 case R_MIPS_GNU_VTINHERIT:
6705 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6706 return FALSE;
6707 break;
6708
6709 /* This relocation describes which C++ vtable entries are actually
6710 used. Record for later use during GC. */
6711 case R_MIPS_GNU_VTENTRY:
6712 BFD_ASSERT (h != NULL);
6713 if (h != NULL
6714 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6715 return FALSE;
6716 break;
6717
6718 default:
6719 break;
6720 }
6721
6722 /* We must not create a stub for a symbol that has relocations
6723 related to taking the function's address. This doesn't apply to
6724 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6725 a normal .got entry. */
6726 if (!htab->is_vxworks && h != NULL)
6727 switch (r_type)
6728 {
6729 default:
6730 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6731 break;
6732 case R_MIPS_CALL16:
6733 case R_MIPS_CALL_HI16:
6734 case R_MIPS_CALL_LO16:
6735 case R_MIPS_JALR:
6736 break;
6737 }
6738
6739 /* If this reloc is not a 16 bit call, and it has a global
6740 symbol, then we will need the fn_stub if there is one.
6741 References from a stub section do not count. */
6742 if (h != NULL
6743 && r_type != R_MIPS16_26
6744 && !mips16_stub_section_p (abfd, sec))
6745 {
6746 struct mips_elf_link_hash_entry *mh;
6747
6748 mh = (struct mips_elf_link_hash_entry *) h;
6749 mh->need_fn_stub = TRUE;
6750 }
6751 }
6752
6753 return TRUE;
6754 }
6755 \f
6756 bfd_boolean
6757 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6758 struct bfd_link_info *link_info,
6759 bfd_boolean *again)
6760 {
6761 Elf_Internal_Rela *internal_relocs;
6762 Elf_Internal_Rela *irel, *irelend;
6763 Elf_Internal_Shdr *symtab_hdr;
6764 bfd_byte *contents = NULL;
6765 size_t extsymoff;
6766 bfd_boolean changed_contents = FALSE;
6767 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6768 Elf_Internal_Sym *isymbuf = NULL;
6769
6770 /* We are not currently changing any sizes, so only one pass. */
6771 *again = FALSE;
6772
6773 if (link_info->relocatable)
6774 return TRUE;
6775
6776 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6777 link_info->keep_memory);
6778 if (internal_relocs == NULL)
6779 return TRUE;
6780
6781 irelend = internal_relocs + sec->reloc_count
6782 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6783 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6784 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6785
6786 for (irel = internal_relocs; irel < irelend; irel++)
6787 {
6788 bfd_vma symval;
6789 bfd_signed_vma sym_offset;
6790 unsigned int r_type;
6791 unsigned long r_symndx;
6792 asection *sym_sec;
6793 unsigned long instruction;
6794
6795 /* Turn jalr into bgezal, and jr into beq, if they're marked
6796 with a JALR relocation, that indicate where they jump to.
6797 This saves some pipeline bubbles. */
6798 r_type = ELF_R_TYPE (abfd, irel->r_info);
6799 if (r_type != R_MIPS_JALR)
6800 continue;
6801
6802 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6803 /* Compute the address of the jump target. */
6804 if (r_symndx >= extsymoff)
6805 {
6806 struct mips_elf_link_hash_entry *h
6807 = ((struct mips_elf_link_hash_entry *)
6808 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6809
6810 while (h->root.root.type == bfd_link_hash_indirect
6811 || h->root.root.type == bfd_link_hash_warning)
6812 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6813
6814 /* If a symbol is undefined, or if it may be overridden,
6815 skip it. */
6816 if (! ((h->root.root.type == bfd_link_hash_defined
6817 || h->root.root.type == bfd_link_hash_defweak)
6818 && h->root.root.u.def.section)
6819 || (link_info->shared && ! link_info->symbolic
6820 && !h->root.forced_local))
6821 continue;
6822
6823 sym_sec = h->root.root.u.def.section;
6824 if (sym_sec->output_section)
6825 symval = (h->root.root.u.def.value
6826 + sym_sec->output_section->vma
6827 + sym_sec->output_offset);
6828 else
6829 symval = h->root.root.u.def.value;
6830 }
6831 else
6832 {
6833 Elf_Internal_Sym *isym;
6834
6835 /* Read this BFD's symbols if we haven't done so already. */
6836 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6837 {
6838 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6839 if (isymbuf == NULL)
6840 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6841 symtab_hdr->sh_info, 0,
6842 NULL, NULL, NULL);
6843 if (isymbuf == NULL)
6844 goto relax_return;
6845 }
6846
6847 isym = isymbuf + r_symndx;
6848 if (isym->st_shndx == SHN_UNDEF)
6849 continue;
6850 else if (isym->st_shndx == SHN_ABS)
6851 sym_sec = bfd_abs_section_ptr;
6852 else if (isym->st_shndx == SHN_COMMON)
6853 sym_sec = bfd_com_section_ptr;
6854 else
6855 sym_sec
6856 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6857 symval = isym->st_value
6858 + sym_sec->output_section->vma
6859 + sym_sec->output_offset;
6860 }
6861
6862 /* Compute branch offset, from delay slot of the jump to the
6863 branch target. */
6864 sym_offset = (symval + irel->r_addend)
6865 - (sec_start + irel->r_offset + 4);
6866
6867 /* Branch offset must be properly aligned. */
6868 if ((sym_offset & 3) != 0)
6869 continue;
6870
6871 sym_offset >>= 2;
6872
6873 /* Check that it's in range. */
6874 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6875 continue;
6876
6877 /* Get the section contents if we haven't done so already. */
6878 if (contents == NULL)
6879 {
6880 /* Get cached copy if it exists. */
6881 if (elf_section_data (sec)->this_hdr.contents != NULL)
6882 contents = elf_section_data (sec)->this_hdr.contents;
6883 else
6884 {
6885 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6886 goto relax_return;
6887 }
6888 }
6889
6890 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6891
6892 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6893 if ((instruction & 0xfc1fffff) == 0x0000f809)
6894 instruction = 0x04110000;
6895 /* If it was jr <reg>, turn it into b <target>. */
6896 else if ((instruction & 0xfc1fffff) == 0x00000008)
6897 instruction = 0x10000000;
6898 else
6899 continue;
6900
6901 instruction |= (sym_offset & 0xffff);
6902 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6903 changed_contents = TRUE;
6904 }
6905
6906 if (contents != NULL
6907 && elf_section_data (sec)->this_hdr.contents != contents)
6908 {
6909 if (!changed_contents && !link_info->keep_memory)
6910 free (contents);
6911 else
6912 {
6913 /* Cache the section contents for elf_link_input_bfd. */
6914 elf_section_data (sec)->this_hdr.contents = contents;
6915 }
6916 }
6917 return TRUE;
6918
6919 relax_return:
6920 if (contents != NULL
6921 && elf_section_data (sec)->this_hdr.contents != contents)
6922 free (contents);
6923 return FALSE;
6924 }
6925 \f
6926 /* Adjust a symbol defined by a dynamic object and referenced by a
6927 regular object. The current definition is in some section of the
6928 dynamic object, but we're not including those sections. We have to
6929 change the definition to something the rest of the link can
6930 understand. */
6931
6932 bfd_boolean
6933 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6934 struct elf_link_hash_entry *h)
6935 {
6936 bfd *dynobj;
6937 struct mips_elf_link_hash_entry *hmips;
6938 asection *s;
6939 struct mips_elf_link_hash_table *htab;
6940
6941 htab = mips_elf_hash_table (info);
6942 dynobj = elf_hash_table (info)->dynobj;
6943
6944 /* Make sure we know what is going on here. */
6945 BFD_ASSERT (dynobj != NULL
6946 && (h->needs_plt
6947 || h->u.weakdef != NULL
6948 || (h->def_dynamic
6949 && h->ref_regular
6950 && !h->def_regular)));
6951
6952 /* If this symbol is defined in a dynamic object, we need to copy
6953 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6954 file. */
6955 hmips = (struct mips_elf_link_hash_entry *) h;
6956 if (! info->relocatable
6957 && hmips->possibly_dynamic_relocs != 0
6958 && (h->root.type == bfd_link_hash_defweak
6959 || !h->def_regular))
6960 {
6961 mips_elf_allocate_dynamic_relocations
6962 (dynobj, info, hmips->possibly_dynamic_relocs);
6963 if (hmips->readonly_reloc)
6964 /* We tell the dynamic linker that there are relocations
6965 against the text segment. */
6966 info->flags |= DF_TEXTREL;
6967 }
6968
6969 /* For a function, create a stub, if allowed. */
6970 if (! hmips->no_fn_stub
6971 && h->needs_plt)
6972 {
6973 if (! elf_hash_table (info)->dynamic_sections_created)
6974 return TRUE;
6975
6976 /* If this symbol is not defined in a regular file, then set
6977 the symbol to the stub location. This is required to make
6978 function pointers compare as equal between the normal
6979 executable and the shared library. */
6980 if (!h->def_regular)
6981 {
6982 /* We need .stub section. */
6983 s = bfd_get_section_by_name (dynobj,
6984 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6985 BFD_ASSERT (s != NULL);
6986
6987 h->root.u.def.section = s;
6988 h->root.u.def.value = s->size;
6989
6990 /* XXX Write this stub address somewhere. */
6991 h->plt.offset = s->size;
6992
6993 /* Make room for this stub code. */
6994 s->size += htab->function_stub_size;
6995
6996 /* The last half word of the stub will be filled with the index
6997 of this symbol in .dynsym section. */
6998 return TRUE;
6999 }
7000 }
7001 else if ((h->type == STT_FUNC)
7002 && !h->needs_plt)
7003 {
7004 /* This will set the entry for this symbol in the GOT to 0, and
7005 the dynamic linker will take care of this. */
7006 h->root.u.def.value = 0;
7007 return TRUE;
7008 }
7009
7010 /* If this is a weak symbol, and there is a real definition, the
7011 processor independent code will have arranged for us to see the
7012 real definition first, and we can just use the same value. */
7013 if (h->u.weakdef != NULL)
7014 {
7015 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7016 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7017 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7018 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7019 return TRUE;
7020 }
7021
7022 /* This is a reference to a symbol defined by a dynamic object which
7023 is not a function. */
7024
7025 return TRUE;
7026 }
7027
7028 /* Likewise, for VxWorks. */
7029
7030 bfd_boolean
7031 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7032 struct elf_link_hash_entry *h)
7033 {
7034 bfd *dynobj;
7035 struct mips_elf_link_hash_entry *hmips;
7036 struct mips_elf_link_hash_table *htab;
7037
7038 htab = mips_elf_hash_table (info);
7039 dynobj = elf_hash_table (info)->dynobj;
7040 hmips = (struct mips_elf_link_hash_entry *) h;
7041
7042 /* Make sure we know what is going on here. */
7043 BFD_ASSERT (dynobj != NULL
7044 && (h->needs_plt
7045 || h->needs_copy
7046 || h->u.weakdef != NULL
7047 || (h->def_dynamic
7048 && h->ref_regular
7049 && !h->def_regular)));
7050
7051 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7052 either (a) we want to branch to the symbol or (b) we're linking an
7053 executable that needs a canonical function address. In the latter
7054 case, the canonical address will be the address of the executable's
7055 load stub. */
7056 if ((hmips->is_branch_target
7057 || (!info->shared
7058 && h->type == STT_FUNC
7059 && hmips->is_relocation_target))
7060 && h->def_dynamic
7061 && h->ref_regular
7062 && !h->def_regular
7063 && !h->forced_local)
7064 h->needs_plt = 1;
7065
7066 /* Locally-binding symbols do not need a PLT stub; we can refer to
7067 the functions directly. */
7068 else if (h->needs_plt
7069 && (SYMBOL_CALLS_LOCAL (info, h)
7070 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7071 && h->root.type == bfd_link_hash_undefweak)))
7072 {
7073 h->needs_plt = 0;
7074 return TRUE;
7075 }
7076
7077 if (h->needs_plt)
7078 {
7079 /* If this is the first symbol to need a PLT entry, allocate room
7080 for the header, and for the header's .rela.plt.unloaded entries. */
7081 if (htab->splt->size == 0)
7082 {
7083 htab->splt->size += htab->plt_header_size;
7084 if (!info->shared)
7085 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7086 }
7087
7088 /* Assign the next .plt entry to this symbol. */
7089 h->plt.offset = htab->splt->size;
7090 htab->splt->size += htab->plt_entry_size;
7091
7092 /* If the output file has no definition of the symbol, set the
7093 symbol's value to the address of the stub. For executables,
7094 point at the PLT load stub rather than the lazy resolution stub;
7095 this stub will become the canonical function address. */
7096 if (!h->def_regular)
7097 {
7098 h->root.u.def.section = htab->splt;
7099 h->root.u.def.value = h->plt.offset;
7100 if (!info->shared)
7101 h->root.u.def.value += 8;
7102 }
7103
7104 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7105 htab->sgotplt->size += 4;
7106 htab->srelplt->size += sizeof (Elf32_External_Rela);
7107
7108 /* Make room for the .rela.plt.unloaded relocations. */
7109 if (!info->shared)
7110 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7111
7112 return TRUE;
7113 }
7114
7115 /* If a function symbol is defined by a dynamic object, and we do not
7116 need a PLT stub for it, the symbol's value should be zero. */
7117 if (h->type == STT_FUNC
7118 && h->def_dynamic
7119 && h->ref_regular
7120 && !h->def_regular)
7121 {
7122 h->root.u.def.value = 0;
7123 return TRUE;
7124 }
7125
7126 /* If this is a weak symbol, and there is a real definition, the
7127 processor independent code will have arranged for us to see the
7128 real definition first, and we can just use the same value. */
7129 if (h->u.weakdef != NULL)
7130 {
7131 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7132 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7133 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7134 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7135 return TRUE;
7136 }
7137
7138 /* This is a reference to a symbol defined by a dynamic object which
7139 is not a function. */
7140 if (info->shared)
7141 return TRUE;
7142
7143 /* We must allocate the symbol in our .dynbss section, which will
7144 become part of the .bss section of the executable. There will be
7145 an entry for this symbol in the .dynsym section. The dynamic
7146 object will contain position independent code, so all references
7147 from the dynamic object to this symbol will go through the global
7148 offset table. The dynamic linker will use the .dynsym entry to
7149 determine the address it must put in the global offset table, so
7150 both the dynamic object and the regular object will refer to the
7151 same memory location for the variable. */
7152
7153 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7154 {
7155 htab->srelbss->size += sizeof (Elf32_External_Rela);
7156 h->needs_copy = 1;
7157 }
7158
7159 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7160 }
7161 \f
7162 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7163 The number might be exact or a worst-case estimate, depending on how
7164 much information is available to elf_backend_omit_section_dynsym at
7165 the current linking stage. */
7166
7167 static bfd_size_type
7168 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7169 {
7170 bfd_size_type count;
7171
7172 count = 0;
7173 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7174 {
7175 asection *p;
7176 const struct elf_backend_data *bed;
7177
7178 bed = get_elf_backend_data (output_bfd);
7179 for (p = output_bfd->sections; p ; p = p->next)
7180 if ((p->flags & SEC_EXCLUDE) == 0
7181 && (p->flags & SEC_ALLOC) != 0
7182 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7183 ++count;
7184 }
7185 return count;
7186 }
7187
7188 /* This function is called after all the input files have been read,
7189 and the input sections have been assigned to output sections. We
7190 check for any mips16 stub sections that we can discard. */
7191
7192 bfd_boolean
7193 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7194 struct bfd_link_info *info)
7195 {
7196 asection *ri;
7197
7198 bfd *dynobj;
7199 asection *s;
7200 struct mips_got_info *g;
7201 int i;
7202 bfd_size_type loadable_size = 0;
7203 bfd_size_type local_gotno;
7204 bfd_size_type dynsymcount;
7205 bfd *sub;
7206 struct mips_elf_count_tls_arg count_tls_arg;
7207 struct mips_elf_link_hash_table *htab;
7208
7209 htab = mips_elf_hash_table (info);
7210
7211 /* The .reginfo section has a fixed size. */
7212 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7213 if (ri != NULL)
7214 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7215
7216 if (! (info->relocatable
7217 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7218 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7219 mips_elf_check_mips16_stubs, NULL);
7220
7221 dynobj = elf_hash_table (info)->dynobj;
7222 if (dynobj == NULL)
7223 /* Relocatable links don't have it. */
7224 return TRUE;
7225
7226 g = mips_elf_got_info (dynobj, &s);
7227 if (s == NULL)
7228 return TRUE;
7229
7230 /* Calculate the total loadable size of the output. That
7231 will give us the maximum number of GOT_PAGE entries
7232 required. */
7233 for (sub = info->input_bfds; sub; sub = sub->link_next)
7234 {
7235 asection *subsection;
7236
7237 for (subsection = sub->sections;
7238 subsection;
7239 subsection = subsection->next)
7240 {
7241 if ((subsection->flags & SEC_ALLOC) == 0)
7242 continue;
7243 loadable_size += ((subsection->size + 0xf)
7244 &~ (bfd_size_type) 0xf);
7245 }
7246 }
7247
7248 /* There has to be a global GOT entry for every symbol with
7249 a dynamic symbol table index of DT_MIPS_GOTSYM or
7250 higher. Therefore, it make sense to put those symbols
7251 that need GOT entries at the end of the symbol table. We
7252 do that here. */
7253 if (! mips_elf_sort_hash_table (info, 1))
7254 return FALSE;
7255
7256 if (g->global_gotsym != NULL)
7257 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7258 else
7259 /* If there are no global symbols, or none requiring
7260 relocations, then GLOBAL_GOTSYM will be NULL. */
7261 i = 0;
7262
7263 /* Get a worst-case estimate of the number of dynamic symbols needed.
7264 At this point, dynsymcount does not account for section symbols
7265 and count_section_dynsyms may overestimate the number that will
7266 be needed. */
7267 dynsymcount = (elf_hash_table (info)->dynsymcount
7268 + count_section_dynsyms (output_bfd, info));
7269
7270 /* Determine the size of one stub entry. */
7271 htab->function_stub_size = (dynsymcount > 0x10000
7272 ? MIPS_FUNCTION_STUB_BIG_SIZE
7273 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7274
7275 /* In the worst case, we'll get one stub per dynamic symbol, plus
7276 one to account for the dummy entry at the end required by IRIX
7277 rld. */
7278 loadable_size += htab->function_stub_size * (i + 1);
7279
7280 if (htab->is_vxworks)
7281 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7282 relocations against local symbols evaluate to "G", and the EABI does
7283 not include R_MIPS_GOT_PAGE. */
7284 local_gotno = 0;
7285 else
7286 /* Assume there are two loadable segments consisting of contiguous
7287 sections. Is 5 enough? */
7288 local_gotno = (loadable_size >> 16) + 5;
7289
7290 g->local_gotno += local_gotno;
7291 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7292
7293 g->global_gotno = i;
7294 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7295
7296 /* We need to calculate tls_gotno for global symbols at this point
7297 instead of building it up earlier, to avoid doublecounting
7298 entries for one global symbol from multiple input files. */
7299 count_tls_arg.info = info;
7300 count_tls_arg.needed = 0;
7301 elf_link_hash_traverse (elf_hash_table (info),
7302 mips_elf_count_global_tls_entries,
7303 &count_tls_arg);
7304 g->tls_gotno += count_tls_arg.needed;
7305 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7306
7307 mips_elf_resolve_final_got_entries (g);
7308
7309 /* VxWorks does not support multiple GOTs. It initializes $gp to
7310 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7311 dynamic loader. */
7312 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7313 {
7314 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7315 return FALSE;
7316 }
7317 else
7318 {
7319 /* Set up TLS entries for the first GOT. */
7320 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7321 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7322 }
7323 htab->computed_got_sizes = TRUE;
7324
7325 return TRUE;
7326 }
7327
7328 /* Set the sizes of the dynamic sections. */
7329
7330 bfd_boolean
7331 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7332 struct bfd_link_info *info)
7333 {
7334 bfd *dynobj;
7335 asection *s, *sreldyn;
7336 bfd_boolean reltext;
7337 struct mips_elf_link_hash_table *htab;
7338
7339 htab = mips_elf_hash_table (info);
7340 dynobj = elf_hash_table (info)->dynobj;
7341 BFD_ASSERT (dynobj != NULL);
7342
7343 if (elf_hash_table (info)->dynamic_sections_created)
7344 {
7345 /* Set the contents of the .interp section to the interpreter. */
7346 if (info->executable)
7347 {
7348 s = bfd_get_section_by_name (dynobj, ".interp");
7349 BFD_ASSERT (s != NULL);
7350 s->size
7351 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7352 s->contents
7353 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7354 }
7355 }
7356
7357 /* The check_relocs and adjust_dynamic_symbol entry points have
7358 determined the sizes of the various dynamic sections. Allocate
7359 memory for them. */
7360 reltext = FALSE;
7361 sreldyn = NULL;
7362 for (s = dynobj->sections; s != NULL; s = s->next)
7363 {
7364 const char *name;
7365
7366 /* It's OK to base decisions on the section name, because none
7367 of the dynobj section names depend upon the input files. */
7368 name = bfd_get_section_name (dynobj, s);
7369
7370 if ((s->flags & SEC_LINKER_CREATED) == 0)
7371 continue;
7372
7373 if (CONST_STRNEQ (name, ".rel"))
7374 {
7375 if (s->size != 0)
7376 {
7377 const char *outname;
7378 asection *target;
7379
7380 /* If this relocation section applies to a read only
7381 section, then we probably need a DT_TEXTREL entry.
7382 If the relocation section is .rel(a).dyn, we always
7383 assert a DT_TEXTREL entry rather than testing whether
7384 there exists a relocation to a read only section or
7385 not. */
7386 outname = bfd_get_section_name (output_bfd,
7387 s->output_section);
7388 target = bfd_get_section_by_name (output_bfd, outname + 4);
7389 if ((target != NULL
7390 && (target->flags & SEC_READONLY) != 0
7391 && (target->flags & SEC_ALLOC) != 0)
7392 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7393 reltext = TRUE;
7394
7395 /* We use the reloc_count field as a counter if we need
7396 to copy relocs into the output file. */
7397 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7398 s->reloc_count = 0;
7399
7400 /* If combreloc is enabled, elf_link_sort_relocs() will
7401 sort relocations, but in a different way than we do,
7402 and before we're done creating relocations. Also, it
7403 will move them around between input sections'
7404 relocation's contents, so our sorting would be
7405 broken, so don't let it run. */
7406 info->combreloc = 0;
7407 }
7408 }
7409 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7410 {
7411 /* Executables do not need a GOT. */
7412 if (info->shared)
7413 {
7414 /* Allocate relocations for all but the reserved entries. */
7415 struct mips_got_info *g;
7416 unsigned int count;
7417
7418 g = mips_elf_got_info (dynobj, NULL);
7419 count = (g->global_gotno
7420 + g->local_gotno
7421 - MIPS_RESERVED_GOTNO (info));
7422 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7423 }
7424 }
7425 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7426 {
7427 /* _bfd_mips_elf_always_size_sections() has already done
7428 most of the work, but some symbols may have been mapped
7429 to versions that we must now resolve in the got_entries
7430 hash tables. */
7431 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7432 struct mips_got_info *g = gg;
7433 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7434 unsigned int needed_relocs = 0;
7435
7436 if (gg->next)
7437 {
7438 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7439 set_got_offset_arg.info = info;
7440
7441 /* NOTE 2005-02-03: How can this call, or the next, ever
7442 find any indirect entries to resolve? They were all
7443 resolved in mips_elf_multi_got. */
7444 mips_elf_resolve_final_got_entries (gg);
7445 for (g = gg->next; g && g->next != gg; g = g->next)
7446 {
7447 unsigned int save_assign;
7448
7449 mips_elf_resolve_final_got_entries (g);
7450
7451 /* Assign offsets to global GOT entries. */
7452 save_assign = g->assigned_gotno;
7453 g->assigned_gotno = g->local_gotno;
7454 set_got_offset_arg.g = g;
7455 set_got_offset_arg.needed_relocs = 0;
7456 htab_traverse (g->got_entries,
7457 mips_elf_set_global_got_offset,
7458 &set_got_offset_arg);
7459 needed_relocs += set_got_offset_arg.needed_relocs;
7460 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7461 <= g->global_gotno);
7462
7463 g->assigned_gotno = save_assign;
7464 if (info->shared)
7465 {
7466 needed_relocs += g->local_gotno - g->assigned_gotno;
7467 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7468 + g->next->global_gotno
7469 + g->next->tls_gotno
7470 + MIPS_RESERVED_GOTNO (info));
7471 }
7472 }
7473 }
7474 else
7475 {
7476 struct mips_elf_count_tls_arg arg;
7477 arg.info = info;
7478 arg.needed = 0;
7479
7480 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7481 &arg);
7482 elf_link_hash_traverse (elf_hash_table (info),
7483 mips_elf_count_global_tls_relocs,
7484 &arg);
7485
7486 needed_relocs += arg.needed;
7487 }
7488
7489 if (needed_relocs)
7490 mips_elf_allocate_dynamic_relocations (dynobj, info,
7491 needed_relocs);
7492 }
7493 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7494 {
7495 /* IRIX rld assumes that the function stub isn't at the end
7496 of .text section. So put a dummy. XXX */
7497 s->size += htab->function_stub_size;
7498 }
7499 else if (! info->shared
7500 && ! mips_elf_hash_table (info)->use_rld_obj_head
7501 && CONST_STRNEQ (name, ".rld_map"))
7502 {
7503 /* We add a room for __rld_map. It will be filled in by the
7504 rtld to contain a pointer to the _r_debug structure. */
7505 s->size += 4;
7506 }
7507 else if (SGI_COMPAT (output_bfd)
7508 && CONST_STRNEQ (name, ".compact_rel"))
7509 s->size += mips_elf_hash_table (info)->compact_rel_size;
7510 else if (! CONST_STRNEQ (name, ".init")
7511 && s != htab->sgotplt
7512 && s != htab->splt)
7513 {
7514 /* It's not one of our sections, so don't allocate space. */
7515 continue;
7516 }
7517
7518 if (s->size == 0)
7519 {
7520 s->flags |= SEC_EXCLUDE;
7521 continue;
7522 }
7523
7524 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7525 continue;
7526
7527 /* Allocate memory for this section last, since we may increase its
7528 size above. */
7529 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7530 {
7531 sreldyn = s;
7532 continue;
7533 }
7534
7535 /* Allocate memory for the section contents. */
7536 s->contents = bfd_zalloc (dynobj, s->size);
7537 if (s->contents == NULL)
7538 {
7539 bfd_set_error (bfd_error_no_memory);
7540 return FALSE;
7541 }
7542 }
7543
7544 /* Allocate memory for the .rel(a).dyn section. */
7545 if (sreldyn != NULL)
7546 {
7547 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7548 if (sreldyn->contents == NULL)
7549 {
7550 bfd_set_error (bfd_error_no_memory);
7551 return FALSE;
7552 }
7553 }
7554
7555 if (elf_hash_table (info)->dynamic_sections_created)
7556 {
7557 /* Add some entries to the .dynamic section. We fill in the
7558 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7559 must add the entries now so that we get the correct size for
7560 the .dynamic section. */
7561
7562 /* SGI object has the equivalence of DT_DEBUG in the
7563 DT_MIPS_RLD_MAP entry. This must come first because glibc
7564 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7565 looks at the first one it sees. */
7566 if (!info->shared
7567 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7568 return FALSE;
7569
7570 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7571 used by the debugger. */
7572 if (info->executable
7573 && !SGI_COMPAT (output_bfd)
7574 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7575 return FALSE;
7576
7577 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7578 info->flags |= DF_TEXTREL;
7579
7580 if ((info->flags & DF_TEXTREL) != 0)
7581 {
7582 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7583 return FALSE;
7584
7585 /* Clear the DF_TEXTREL flag. It will be set again if we
7586 write out an actual text relocation; we may not, because
7587 at this point we do not know whether e.g. any .eh_frame
7588 absolute relocations have been converted to PC-relative. */
7589 info->flags &= ~DF_TEXTREL;
7590 }
7591
7592 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7593 return FALSE;
7594
7595 if (htab->is_vxworks)
7596 {
7597 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7598 use any of the DT_MIPS_* tags. */
7599 if (mips_elf_rel_dyn_section (info, FALSE))
7600 {
7601 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7602 return FALSE;
7603
7604 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7605 return FALSE;
7606
7607 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7608 return FALSE;
7609 }
7610 if (htab->splt->size > 0)
7611 {
7612 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7613 return FALSE;
7614
7615 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7616 return FALSE;
7617
7618 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7619 return FALSE;
7620 }
7621 }
7622 else
7623 {
7624 if (mips_elf_rel_dyn_section (info, FALSE))
7625 {
7626 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7627 return FALSE;
7628
7629 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7630 return FALSE;
7631
7632 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7633 return FALSE;
7634 }
7635
7636 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7637 return FALSE;
7638
7639 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7640 return FALSE;
7641
7642 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7643 return FALSE;
7644
7645 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7646 return FALSE;
7647
7648 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7649 return FALSE;
7650
7651 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7652 return FALSE;
7653
7654 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7655 return FALSE;
7656
7657 if (IRIX_COMPAT (dynobj) == ict_irix5
7658 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7659 return FALSE;
7660
7661 if (IRIX_COMPAT (dynobj) == ict_irix6
7662 && (bfd_get_section_by_name
7663 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7664 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7665 return FALSE;
7666 }
7667 }
7668
7669 return TRUE;
7670 }
7671 \f
7672 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7673 Adjust its R_ADDEND field so that it is correct for the output file.
7674 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7675 and sections respectively; both use symbol indexes. */
7676
7677 static void
7678 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7679 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7680 asection **local_sections, Elf_Internal_Rela *rel)
7681 {
7682 unsigned int r_type, r_symndx;
7683 Elf_Internal_Sym *sym;
7684 asection *sec;
7685
7686 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7687 {
7688 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7689 if (r_type == R_MIPS16_GPREL
7690 || r_type == R_MIPS_GPREL16
7691 || r_type == R_MIPS_GPREL32
7692 || r_type == R_MIPS_LITERAL)
7693 {
7694 rel->r_addend += _bfd_get_gp_value (input_bfd);
7695 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7696 }
7697
7698 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7699 sym = local_syms + r_symndx;
7700
7701 /* Adjust REL's addend to account for section merging. */
7702 if (!info->relocatable)
7703 {
7704 sec = local_sections[r_symndx];
7705 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7706 }
7707
7708 /* This would normally be done by the rela_normal code in elflink.c. */
7709 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7710 rel->r_addend += local_sections[r_symndx]->output_offset;
7711 }
7712 }
7713
7714 /* Relocate a MIPS ELF section. */
7715
7716 bfd_boolean
7717 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7718 bfd *input_bfd, asection *input_section,
7719 bfd_byte *contents, Elf_Internal_Rela *relocs,
7720 Elf_Internal_Sym *local_syms,
7721 asection **local_sections)
7722 {
7723 Elf_Internal_Rela *rel;
7724 const Elf_Internal_Rela *relend;
7725 bfd_vma addend = 0;
7726 bfd_boolean use_saved_addend_p = FALSE;
7727 const struct elf_backend_data *bed;
7728
7729 bed = get_elf_backend_data (output_bfd);
7730 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7731 for (rel = relocs; rel < relend; ++rel)
7732 {
7733 const char *name;
7734 bfd_vma value = 0;
7735 reloc_howto_type *howto;
7736 bfd_boolean require_jalx;
7737 /* TRUE if the relocation is a RELA relocation, rather than a
7738 REL relocation. */
7739 bfd_boolean rela_relocation_p = TRUE;
7740 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7741 const char *msg;
7742 unsigned long r_symndx;
7743 asection *sec;
7744 Elf_Internal_Shdr *symtab_hdr;
7745 struct elf_link_hash_entry *h;
7746
7747 /* Find the relocation howto for this relocation. */
7748 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7749 NEWABI_P (input_bfd)
7750 && (MIPS_RELOC_RELA_P
7751 (input_bfd, input_section,
7752 rel - relocs)));
7753
7754 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7755 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7756 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7757 {
7758 sec = local_sections[r_symndx];
7759 h = NULL;
7760 }
7761 else
7762 {
7763 unsigned long extsymoff;
7764
7765 extsymoff = 0;
7766 if (!elf_bad_symtab (input_bfd))
7767 extsymoff = symtab_hdr->sh_info;
7768 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7769 while (h->root.type == bfd_link_hash_indirect
7770 || h->root.type == bfd_link_hash_warning)
7771 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7772
7773 sec = NULL;
7774 if (h->root.type == bfd_link_hash_defined
7775 || h->root.type == bfd_link_hash_defweak)
7776 sec = h->root.u.def.section;
7777 }
7778
7779 if (sec != NULL && elf_discarded_section (sec))
7780 {
7781 /* For relocs against symbols from removed linkonce sections,
7782 or sections discarded by a linker script, we just want the
7783 section contents zeroed. Avoid any special processing. */
7784 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7785 rel->r_info = 0;
7786 rel->r_addend = 0;
7787 continue;
7788 }
7789
7790 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7791 {
7792 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7793 64-bit code, but make sure all their addresses are in the
7794 lowermost or uppermost 32-bit section of the 64-bit address
7795 space. Thus, when they use an R_MIPS_64 they mean what is
7796 usually meant by R_MIPS_32, with the exception that the
7797 stored value is sign-extended to 64 bits. */
7798 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7799
7800 /* On big-endian systems, we need to lie about the position
7801 of the reloc. */
7802 if (bfd_big_endian (input_bfd))
7803 rel->r_offset += 4;
7804 }
7805
7806 if (!use_saved_addend_p)
7807 {
7808 Elf_Internal_Shdr *rel_hdr;
7809
7810 /* If these relocations were originally of the REL variety,
7811 we must pull the addend out of the field that will be
7812 relocated. Otherwise, we simply use the contents of the
7813 RELA relocation. To determine which flavor or relocation
7814 this is, we depend on the fact that the INPUT_SECTION's
7815 REL_HDR is read before its REL_HDR2. */
7816 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7817 if ((size_t) (rel - relocs)
7818 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7819 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7820 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7821 {
7822 bfd_byte *location = contents + rel->r_offset;
7823
7824 /* Note that this is a REL relocation. */
7825 rela_relocation_p = FALSE;
7826
7827 /* Get the addend, which is stored in the input file. */
7828 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7829 location);
7830 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7831 contents);
7832 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7833 location);
7834
7835 addend &= howto->src_mask;
7836
7837 /* For some kinds of relocations, the ADDEND is a
7838 combination of the addend stored in two different
7839 relocations. */
7840 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7841 || (r_type == R_MIPS_GOT16
7842 && mips_elf_local_relocation_p (input_bfd, rel,
7843 local_sections, FALSE)))
7844 {
7845 const Elf_Internal_Rela *lo16_relocation;
7846 reloc_howto_type *lo16_howto;
7847 int lo16_type;
7848
7849 if (r_type == R_MIPS16_HI16)
7850 lo16_type = R_MIPS16_LO16;
7851 else
7852 lo16_type = R_MIPS_LO16;
7853
7854 /* The combined value is the sum of the HI16 addend,
7855 left-shifted by sixteen bits, and the LO16
7856 addend, sign extended. (Usually, the code does
7857 a `lui' of the HI16 value, and then an `addiu' of
7858 the LO16 value.)
7859
7860 Scan ahead to find a matching LO16 relocation.
7861
7862 According to the MIPS ELF ABI, the R_MIPS_LO16
7863 relocation must be immediately following.
7864 However, for the IRIX6 ABI, the next relocation
7865 may be a composed relocation consisting of
7866 several relocations for the same address. In
7867 that case, the R_MIPS_LO16 relocation may occur
7868 as one of these. We permit a similar extension
7869 in general, as that is useful for GCC.
7870
7871 In some cases GCC dead code elimination removes
7872 the LO16 but keeps the corresponding HI16. This
7873 is strictly speaking a violation of the ABI but
7874 not immediately harmful. */
7875 lo16_relocation = mips_elf_next_relocation (input_bfd,
7876 lo16_type,
7877 rel, relend);
7878 if (lo16_relocation == NULL)
7879 {
7880 const char *name;
7881
7882 if (h)
7883 name = h->root.root.string;
7884 else
7885 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7886 local_syms + r_symndx,
7887 sec);
7888 (*_bfd_error_handler)
7889 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7890 input_bfd, input_section, name, howto->name,
7891 rel->r_offset);
7892 }
7893 else
7894 {
7895 bfd_byte *lo16_location;
7896 bfd_vma l;
7897
7898 lo16_location = contents + lo16_relocation->r_offset;
7899
7900 /* Obtain the addend kept there. */
7901 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7902 lo16_type, FALSE);
7903 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7904 FALSE, lo16_location);
7905 l = mips_elf_obtain_contents (lo16_howto,
7906 lo16_relocation,
7907 input_bfd, contents);
7908 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7909 FALSE, lo16_location);
7910 l &= lo16_howto->src_mask;
7911 l <<= lo16_howto->rightshift;
7912 l = _bfd_mips_elf_sign_extend (l, 16);
7913
7914 addend <<= 16;
7915
7916 /* Compute the combined addend. */
7917 addend += l;
7918 }
7919 }
7920 else
7921 addend <<= howto->rightshift;
7922 }
7923 else
7924 addend = rel->r_addend;
7925 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7926 local_syms, local_sections, rel);
7927 }
7928
7929 if (info->relocatable)
7930 {
7931 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7932 && bfd_big_endian (input_bfd))
7933 rel->r_offset -= 4;
7934
7935 if (!rela_relocation_p && rel->r_addend)
7936 {
7937 addend += rel->r_addend;
7938 if (r_type == R_MIPS_HI16
7939 || r_type == R_MIPS_GOT16)
7940 addend = mips_elf_high (addend);
7941 else if (r_type == R_MIPS_HIGHER)
7942 addend = mips_elf_higher (addend);
7943 else if (r_type == R_MIPS_HIGHEST)
7944 addend = mips_elf_highest (addend);
7945 else
7946 addend >>= howto->rightshift;
7947
7948 /* We use the source mask, rather than the destination
7949 mask because the place to which we are writing will be
7950 source of the addend in the final link. */
7951 addend &= howto->src_mask;
7952
7953 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7954 /* See the comment above about using R_MIPS_64 in the 32-bit
7955 ABI. Here, we need to update the addend. It would be
7956 possible to get away with just using the R_MIPS_32 reloc
7957 but for endianness. */
7958 {
7959 bfd_vma sign_bits;
7960 bfd_vma low_bits;
7961 bfd_vma high_bits;
7962
7963 if (addend & ((bfd_vma) 1 << 31))
7964 #ifdef BFD64
7965 sign_bits = ((bfd_vma) 1 << 32) - 1;
7966 #else
7967 sign_bits = -1;
7968 #endif
7969 else
7970 sign_bits = 0;
7971
7972 /* If we don't know that we have a 64-bit type,
7973 do two separate stores. */
7974 if (bfd_big_endian (input_bfd))
7975 {
7976 /* Store the sign-bits (which are most significant)
7977 first. */
7978 low_bits = sign_bits;
7979 high_bits = addend;
7980 }
7981 else
7982 {
7983 low_bits = addend;
7984 high_bits = sign_bits;
7985 }
7986 bfd_put_32 (input_bfd, low_bits,
7987 contents + rel->r_offset);
7988 bfd_put_32 (input_bfd, high_bits,
7989 contents + rel->r_offset + 4);
7990 continue;
7991 }
7992
7993 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7994 input_bfd, input_section,
7995 contents, FALSE))
7996 return FALSE;
7997 }
7998
7999 /* Go on to the next relocation. */
8000 continue;
8001 }
8002
8003 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8004 relocations for the same offset. In that case we are
8005 supposed to treat the output of each relocation as the addend
8006 for the next. */
8007 if (rel + 1 < relend
8008 && rel->r_offset == rel[1].r_offset
8009 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8010 use_saved_addend_p = TRUE;
8011 else
8012 use_saved_addend_p = FALSE;
8013
8014 /* Figure out what value we are supposed to relocate. */
8015 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8016 input_section, info, rel,
8017 addend, howto, local_syms,
8018 local_sections, &value,
8019 &name, &require_jalx,
8020 use_saved_addend_p))
8021 {
8022 case bfd_reloc_continue:
8023 /* There's nothing to do. */
8024 continue;
8025
8026 case bfd_reloc_undefined:
8027 /* mips_elf_calculate_relocation already called the
8028 undefined_symbol callback. There's no real point in
8029 trying to perform the relocation at this point, so we
8030 just skip ahead to the next relocation. */
8031 continue;
8032
8033 case bfd_reloc_notsupported:
8034 msg = _("internal error: unsupported relocation error");
8035 info->callbacks->warning
8036 (info, msg, name, input_bfd, input_section, rel->r_offset);
8037 return FALSE;
8038
8039 case bfd_reloc_overflow:
8040 if (use_saved_addend_p)
8041 /* Ignore overflow until we reach the last relocation for
8042 a given location. */
8043 ;
8044 else
8045 {
8046 struct mips_elf_link_hash_table *htab;
8047
8048 htab = mips_elf_hash_table (info);
8049 BFD_ASSERT (name != NULL);
8050 if (!htab->small_data_overflow_reported
8051 && (howto->type == R_MIPS_GPREL16
8052 || howto->type == R_MIPS_LITERAL))
8053 {
8054 const char *msg =
8055 _("small-data section exceeds 64KB;"
8056 " lower small-data size limit (see option -G)");
8057
8058 htab->small_data_overflow_reported = TRUE;
8059 (*info->callbacks->einfo) ("%P: %s\n", msg);
8060 }
8061 if (! ((*info->callbacks->reloc_overflow)
8062 (info, NULL, name, howto->name, (bfd_vma) 0,
8063 input_bfd, input_section, rel->r_offset)))
8064 return FALSE;
8065 }
8066 break;
8067
8068 case bfd_reloc_ok:
8069 break;
8070
8071 default:
8072 abort ();
8073 break;
8074 }
8075
8076 /* If we've got another relocation for the address, keep going
8077 until we reach the last one. */
8078 if (use_saved_addend_p)
8079 {
8080 addend = value;
8081 continue;
8082 }
8083
8084 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8085 /* See the comment above about using R_MIPS_64 in the 32-bit
8086 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8087 that calculated the right value. Now, however, we
8088 sign-extend the 32-bit result to 64-bits, and store it as a
8089 64-bit value. We are especially generous here in that we
8090 go to extreme lengths to support this usage on systems with
8091 only a 32-bit VMA. */
8092 {
8093 bfd_vma sign_bits;
8094 bfd_vma low_bits;
8095 bfd_vma high_bits;
8096
8097 if (value & ((bfd_vma) 1 << 31))
8098 #ifdef BFD64
8099 sign_bits = ((bfd_vma) 1 << 32) - 1;
8100 #else
8101 sign_bits = -1;
8102 #endif
8103 else
8104 sign_bits = 0;
8105
8106 /* If we don't know that we have a 64-bit type,
8107 do two separate stores. */
8108 if (bfd_big_endian (input_bfd))
8109 {
8110 /* Undo what we did above. */
8111 rel->r_offset -= 4;
8112 /* Store the sign-bits (which are most significant)
8113 first. */
8114 low_bits = sign_bits;
8115 high_bits = value;
8116 }
8117 else
8118 {
8119 low_bits = value;
8120 high_bits = sign_bits;
8121 }
8122 bfd_put_32 (input_bfd, low_bits,
8123 contents + rel->r_offset);
8124 bfd_put_32 (input_bfd, high_bits,
8125 contents + rel->r_offset + 4);
8126 continue;
8127 }
8128
8129 /* Actually perform the relocation. */
8130 if (! mips_elf_perform_relocation (info, howto, rel, value,
8131 input_bfd, input_section,
8132 contents, require_jalx))
8133 return FALSE;
8134 }
8135
8136 return TRUE;
8137 }
8138 \f
8139 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8140 adjust it appropriately now. */
8141
8142 static void
8143 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8144 const char *name, Elf_Internal_Sym *sym)
8145 {
8146 /* The linker script takes care of providing names and values for
8147 these, but we must place them into the right sections. */
8148 static const char* const text_section_symbols[] = {
8149 "_ftext",
8150 "_etext",
8151 "__dso_displacement",
8152 "__elf_header",
8153 "__program_header_table",
8154 NULL
8155 };
8156
8157 static const char* const data_section_symbols[] = {
8158 "_fdata",
8159 "_edata",
8160 "_end",
8161 "_fbss",
8162 NULL
8163 };
8164
8165 const char* const *p;
8166 int i;
8167
8168 for (i = 0; i < 2; ++i)
8169 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8170 *p;
8171 ++p)
8172 if (strcmp (*p, name) == 0)
8173 {
8174 /* All of these symbols are given type STT_SECTION by the
8175 IRIX6 linker. */
8176 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8177 sym->st_other = STO_PROTECTED;
8178
8179 /* The IRIX linker puts these symbols in special sections. */
8180 if (i == 0)
8181 sym->st_shndx = SHN_MIPS_TEXT;
8182 else
8183 sym->st_shndx = SHN_MIPS_DATA;
8184
8185 break;
8186 }
8187 }
8188
8189 /* Finish up dynamic symbol handling. We set the contents of various
8190 dynamic sections here. */
8191
8192 bfd_boolean
8193 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8194 struct bfd_link_info *info,
8195 struct elf_link_hash_entry *h,
8196 Elf_Internal_Sym *sym)
8197 {
8198 bfd *dynobj;
8199 asection *sgot;
8200 struct mips_got_info *g, *gg;
8201 const char *name;
8202 int idx;
8203 struct mips_elf_link_hash_table *htab;
8204
8205 htab = mips_elf_hash_table (info);
8206 dynobj = elf_hash_table (info)->dynobj;
8207
8208 if (h->plt.offset != MINUS_ONE)
8209 {
8210 asection *s;
8211 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8212
8213 /* This symbol has a stub. Set it up. */
8214
8215 BFD_ASSERT (h->dynindx != -1);
8216
8217 s = bfd_get_section_by_name (dynobj,
8218 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8219 BFD_ASSERT (s != NULL);
8220
8221 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8222 || (h->dynindx <= 0xffff));
8223
8224 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8225 sign extension at runtime in the stub, resulting in a negative
8226 index value. */
8227 if (h->dynindx & ~0x7fffffff)
8228 return FALSE;
8229
8230 /* Fill the stub. */
8231 idx = 0;
8232 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8233 idx += 4;
8234 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8235 idx += 4;
8236 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8237 {
8238 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8239 stub + idx);
8240 idx += 4;
8241 }
8242 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8243 idx += 4;
8244
8245 /* If a large stub is not required and sign extension is not a
8246 problem, then use legacy code in the stub. */
8247 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8248 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8249 else if (h->dynindx & ~0x7fff)
8250 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8251 else
8252 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8253 stub + idx);
8254
8255 BFD_ASSERT (h->plt.offset <= s->size);
8256 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8257
8258 /* Mark the symbol as undefined. plt.offset != -1 occurs
8259 only for the referenced symbol. */
8260 sym->st_shndx = SHN_UNDEF;
8261
8262 /* The run-time linker uses the st_value field of the symbol
8263 to reset the global offset table entry for this external
8264 to its stub address when unlinking a shared object. */
8265 sym->st_value = (s->output_section->vma + s->output_offset
8266 + h->plt.offset);
8267 }
8268
8269 BFD_ASSERT (h->dynindx != -1
8270 || h->forced_local);
8271
8272 sgot = mips_elf_got_section (dynobj, FALSE);
8273 BFD_ASSERT (sgot != NULL);
8274 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8275 g = mips_elf_section_data (sgot)->u.got_info;
8276 BFD_ASSERT (g != NULL);
8277
8278 /* Run through the global symbol table, creating GOT entries for all
8279 the symbols that need them. */
8280 if (g->global_gotsym != NULL
8281 && h->dynindx >= g->global_gotsym->dynindx)
8282 {
8283 bfd_vma offset;
8284 bfd_vma value;
8285
8286 value = sym->st_value;
8287 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8288 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8289 }
8290
8291 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8292 {
8293 struct mips_got_entry e, *p;
8294 bfd_vma entry;
8295 bfd_vma offset;
8296
8297 gg = g;
8298
8299 e.abfd = output_bfd;
8300 e.symndx = -1;
8301 e.d.h = (struct mips_elf_link_hash_entry *)h;
8302 e.tls_type = 0;
8303
8304 for (g = g->next; g->next != gg; g = g->next)
8305 {
8306 if (g->got_entries
8307 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8308 &e)))
8309 {
8310 offset = p->gotidx;
8311 if (info->shared
8312 || (elf_hash_table (info)->dynamic_sections_created
8313 && p->d.h != NULL
8314 && p->d.h->root.def_dynamic
8315 && !p->d.h->root.def_regular))
8316 {
8317 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8318 the various compatibility problems, it's easier to mock
8319 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8320 mips_elf_create_dynamic_relocation to calculate the
8321 appropriate addend. */
8322 Elf_Internal_Rela rel[3];
8323
8324 memset (rel, 0, sizeof (rel));
8325 if (ABI_64_P (output_bfd))
8326 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8327 else
8328 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8329 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8330
8331 entry = 0;
8332 if (! (mips_elf_create_dynamic_relocation
8333 (output_bfd, info, rel,
8334 e.d.h, NULL, sym->st_value, &entry, sgot)))
8335 return FALSE;
8336 }
8337 else
8338 entry = sym->st_value;
8339 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8340 }
8341 }
8342 }
8343
8344 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8345 name = h->root.root.string;
8346 if (strcmp (name, "_DYNAMIC") == 0
8347 || h == elf_hash_table (info)->hgot)
8348 sym->st_shndx = SHN_ABS;
8349 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8350 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8351 {
8352 sym->st_shndx = SHN_ABS;
8353 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8354 sym->st_value = 1;
8355 }
8356 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8357 {
8358 sym->st_shndx = SHN_ABS;
8359 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8360 sym->st_value = elf_gp (output_bfd);
8361 }
8362 else if (SGI_COMPAT (output_bfd))
8363 {
8364 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8365 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8366 {
8367 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8368 sym->st_other = STO_PROTECTED;
8369 sym->st_value = 0;
8370 sym->st_shndx = SHN_MIPS_DATA;
8371 }
8372 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8373 {
8374 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8375 sym->st_other = STO_PROTECTED;
8376 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8377 sym->st_shndx = SHN_ABS;
8378 }
8379 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8380 {
8381 if (h->type == STT_FUNC)
8382 sym->st_shndx = SHN_MIPS_TEXT;
8383 else if (h->type == STT_OBJECT)
8384 sym->st_shndx = SHN_MIPS_DATA;
8385 }
8386 }
8387
8388 /* Handle the IRIX6-specific symbols. */
8389 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8390 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8391
8392 if (! info->shared)
8393 {
8394 if (! mips_elf_hash_table (info)->use_rld_obj_head
8395 && (strcmp (name, "__rld_map") == 0
8396 || strcmp (name, "__RLD_MAP") == 0))
8397 {
8398 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8399 BFD_ASSERT (s != NULL);
8400 sym->st_value = s->output_section->vma + s->output_offset;
8401 bfd_put_32 (output_bfd, 0, s->contents);
8402 if (mips_elf_hash_table (info)->rld_value == 0)
8403 mips_elf_hash_table (info)->rld_value = sym->st_value;
8404 }
8405 else if (mips_elf_hash_table (info)->use_rld_obj_head
8406 && strcmp (name, "__rld_obj_head") == 0)
8407 {
8408 /* IRIX6 does not use a .rld_map section. */
8409 if (IRIX_COMPAT (output_bfd) == ict_irix5
8410 || IRIX_COMPAT (output_bfd) == ict_none)
8411 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8412 != NULL);
8413 mips_elf_hash_table (info)->rld_value = sym->st_value;
8414 }
8415 }
8416
8417 /* If this is a mips16 symbol, force the value to be even. */
8418 if (sym->st_other == STO_MIPS16)
8419 sym->st_value &= ~1;
8420
8421 return TRUE;
8422 }
8423
8424 /* Likewise, for VxWorks. */
8425
8426 bfd_boolean
8427 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8428 struct bfd_link_info *info,
8429 struct elf_link_hash_entry *h,
8430 Elf_Internal_Sym *sym)
8431 {
8432 bfd *dynobj;
8433 asection *sgot;
8434 struct mips_got_info *g;
8435 struct mips_elf_link_hash_table *htab;
8436
8437 htab = mips_elf_hash_table (info);
8438 dynobj = elf_hash_table (info)->dynobj;
8439
8440 if (h->plt.offset != (bfd_vma) -1)
8441 {
8442 bfd_byte *loc;
8443 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8444 Elf_Internal_Rela rel;
8445 static const bfd_vma *plt_entry;
8446
8447 BFD_ASSERT (h->dynindx != -1);
8448 BFD_ASSERT (htab->splt != NULL);
8449 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8450
8451 /* Calculate the address of the .plt entry. */
8452 plt_address = (htab->splt->output_section->vma
8453 + htab->splt->output_offset
8454 + h->plt.offset);
8455
8456 /* Calculate the index of the entry. */
8457 plt_index = ((h->plt.offset - htab->plt_header_size)
8458 / htab->plt_entry_size);
8459
8460 /* Calculate the address of the .got.plt entry. */
8461 got_address = (htab->sgotplt->output_section->vma
8462 + htab->sgotplt->output_offset
8463 + plt_index * 4);
8464
8465 /* Calculate the offset of the .got.plt entry from
8466 _GLOBAL_OFFSET_TABLE_. */
8467 got_offset = mips_elf_gotplt_index (info, h);
8468
8469 /* Calculate the offset for the branch at the start of the PLT
8470 entry. The branch jumps to the beginning of .plt. */
8471 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8472
8473 /* Fill in the initial value of the .got.plt entry. */
8474 bfd_put_32 (output_bfd, plt_address,
8475 htab->sgotplt->contents + plt_index * 4);
8476
8477 /* Find out where the .plt entry should go. */
8478 loc = htab->splt->contents + h->plt.offset;
8479
8480 if (info->shared)
8481 {
8482 plt_entry = mips_vxworks_shared_plt_entry;
8483 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8484 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8485 }
8486 else
8487 {
8488 bfd_vma got_address_high, got_address_low;
8489
8490 plt_entry = mips_vxworks_exec_plt_entry;
8491 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8492 got_address_low = got_address & 0xffff;
8493
8494 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8495 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8496 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8497 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8498 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8499 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8500 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8501 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8502
8503 loc = (htab->srelplt2->contents
8504 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8505
8506 /* Emit a relocation for the .got.plt entry. */
8507 rel.r_offset = got_address;
8508 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8509 rel.r_addend = h->plt.offset;
8510 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8511
8512 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8513 loc += sizeof (Elf32_External_Rela);
8514 rel.r_offset = plt_address + 8;
8515 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8516 rel.r_addend = got_offset;
8517 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8518
8519 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8520 loc += sizeof (Elf32_External_Rela);
8521 rel.r_offset += 4;
8522 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8523 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8524 }
8525
8526 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8527 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8528 rel.r_offset = got_address;
8529 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8530 rel.r_addend = 0;
8531 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8532
8533 if (!h->def_regular)
8534 sym->st_shndx = SHN_UNDEF;
8535 }
8536
8537 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8538
8539 sgot = mips_elf_got_section (dynobj, FALSE);
8540 BFD_ASSERT (sgot != NULL);
8541 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8542 g = mips_elf_section_data (sgot)->u.got_info;
8543 BFD_ASSERT (g != NULL);
8544
8545 /* See if this symbol has an entry in the GOT. */
8546 if (g->global_gotsym != NULL
8547 && h->dynindx >= g->global_gotsym->dynindx)
8548 {
8549 bfd_vma offset;
8550 Elf_Internal_Rela outrel;
8551 bfd_byte *loc;
8552 asection *s;
8553
8554 /* Install the symbol value in the GOT. */
8555 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8556 R_MIPS_GOT16, info);
8557 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8558
8559 /* Add a dynamic relocation for it. */
8560 s = mips_elf_rel_dyn_section (info, FALSE);
8561 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8562 outrel.r_offset = (sgot->output_section->vma
8563 + sgot->output_offset
8564 + offset);
8565 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8566 outrel.r_addend = 0;
8567 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8568 }
8569
8570 /* Emit a copy reloc, if needed. */
8571 if (h->needs_copy)
8572 {
8573 Elf_Internal_Rela rel;
8574
8575 BFD_ASSERT (h->dynindx != -1);
8576
8577 rel.r_offset = (h->root.u.def.section->output_section->vma
8578 + h->root.u.def.section->output_offset
8579 + h->root.u.def.value);
8580 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8581 rel.r_addend = 0;
8582 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8583 htab->srelbss->contents
8584 + (htab->srelbss->reloc_count
8585 * sizeof (Elf32_External_Rela)));
8586 ++htab->srelbss->reloc_count;
8587 }
8588
8589 /* If this is a mips16 symbol, force the value to be even. */
8590 if (sym->st_other == STO_MIPS16)
8591 sym->st_value &= ~1;
8592
8593 return TRUE;
8594 }
8595
8596 /* Install the PLT header for a VxWorks executable and finalize the
8597 contents of .rela.plt.unloaded. */
8598
8599 static void
8600 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8601 {
8602 Elf_Internal_Rela rela;
8603 bfd_byte *loc;
8604 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8605 static const bfd_vma *plt_entry;
8606 struct mips_elf_link_hash_table *htab;
8607
8608 htab = mips_elf_hash_table (info);
8609 plt_entry = mips_vxworks_exec_plt0_entry;
8610
8611 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8612 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8613 + htab->root.hgot->root.u.def.section->output_offset
8614 + htab->root.hgot->root.u.def.value);
8615
8616 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8617 got_value_low = got_value & 0xffff;
8618
8619 /* Calculate the address of the PLT header. */
8620 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8621
8622 /* Install the PLT header. */
8623 loc = htab->splt->contents;
8624 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8625 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8626 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8627 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8628 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8629 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8630
8631 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8632 loc = htab->srelplt2->contents;
8633 rela.r_offset = plt_address;
8634 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8635 rela.r_addend = 0;
8636 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8637 loc += sizeof (Elf32_External_Rela);
8638
8639 /* Output the relocation for the following addiu of
8640 %lo(_GLOBAL_OFFSET_TABLE_). */
8641 rela.r_offset += 4;
8642 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8643 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8644 loc += sizeof (Elf32_External_Rela);
8645
8646 /* Fix up the remaining relocations. They may have the wrong
8647 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8648 in which symbols were output. */
8649 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8650 {
8651 Elf_Internal_Rela rel;
8652
8653 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8654 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8655 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8656 loc += sizeof (Elf32_External_Rela);
8657
8658 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8659 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8660 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8661 loc += sizeof (Elf32_External_Rela);
8662
8663 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8664 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8665 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8666 loc += sizeof (Elf32_External_Rela);
8667 }
8668 }
8669
8670 /* Install the PLT header for a VxWorks shared library. */
8671
8672 static void
8673 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8674 {
8675 unsigned int i;
8676 struct mips_elf_link_hash_table *htab;
8677
8678 htab = mips_elf_hash_table (info);
8679
8680 /* We just need to copy the entry byte-by-byte. */
8681 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8682 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8683 htab->splt->contents + i * 4);
8684 }
8685
8686 /* Finish up the dynamic sections. */
8687
8688 bfd_boolean
8689 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8690 struct bfd_link_info *info)
8691 {
8692 bfd *dynobj;
8693 asection *sdyn;
8694 asection *sgot;
8695 struct mips_got_info *gg, *g;
8696 struct mips_elf_link_hash_table *htab;
8697
8698 htab = mips_elf_hash_table (info);
8699 dynobj = elf_hash_table (info)->dynobj;
8700
8701 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8702
8703 sgot = mips_elf_got_section (dynobj, FALSE);
8704 if (sgot == NULL)
8705 gg = g = NULL;
8706 else
8707 {
8708 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8709 gg = mips_elf_section_data (sgot)->u.got_info;
8710 BFD_ASSERT (gg != NULL);
8711 g = mips_elf_got_for_ibfd (gg, output_bfd);
8712 BFD_ASSERT (g != NULL);
8713 }
8714
8715 if (elf_hash_table (info)->dynamic_sections_created)
8716 {
8717 bfd_byte *b;
8718 int dyn_to_skip = 0, dyn_skipped = 0;
8719
8720 BFD_ASSERT (sdyn != NULL);
8721 BFD_ASSERT (g != NULL);
8722
8723 for (b = sdyn->contents;
8724 b < sdyn->contents + sdyn->size;
8725 b += MIPS_ELF_DYN_SIZE (dynobj))
8726 {
8727 Elf_Internal_Dyn dyn;
8728 const char *name;
8729 size_t elemsize;
8730 asection *s;
8731 bfd_boolean swap_out_p;
8732
8733 /* Read in the current dynamic entry. */
8734 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8735
8736 /* Assume that we're going to modify it and write it out. */
8737 swap_out_p = TRUE;
8738
8739 switch (dyn.d_tag)
8740 {
8741 case DT_RELENT:
8742 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8743 break;
8744
8745 case DT_RELAENT:
8746 BFD_ASSERT (htab->is_vxworks);
8747 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8748 break;
8749
8750 case DT_STRSZ:
8751 /* Rewrite DT_STRSZ. */
8752 dyn.d_un.d_val =
8753 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8754 break;
8755
8756 case DT_PLTGOT:
8757 name = ".got";
8758 if (htab->is_vxworks)
8759 {
8760 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8761 of the ".got" section in DYNOBJ. */
8762 s = bfd_get_section_by_name (dynobj, name);
8763 BFD_ASSERT (s != NULL);
8764 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8765 }
8766 else
8767 {
8768 s = bfd_get_section_by_name (output_bfd, name);
8769 BFD_ASSERT (s != NULL);
8770 dyn.d_un.d_ptr = s->vma;
8771 }
8772 break;
8773
8774 case DT_MIPS_RLD_VERSION:
8775 dyn.d_un.d_val = 1; /* XXX */
8776 break;
8777
8778 case DT_MIPS_FLAGS:
8779 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8780 break;
8781
8782 case DT_MIPS_TIME_STAMP:
8783 {
8784 time_t t;
8785 time (&t);
8786 dyn.d_un.d_val = t;
8787 }
8788 break;
8789
8790 case DT_MIPS_ICHECKSUM:
8791 /* XXX FIXME: */
8792 swap_out_p = FALSE;
8793 break;
8794
8795 case DT_MIPS_IVERSION:
8796 /* XXX FIXME: */
8797 swap_out_p = FALSE;
8798 break;
8799
8800 case DT_MIPS_BASE_ADDRESS:
8801 s = output_bfd->sections;
8802 BFD_ASSERT (s != NULL);
8803 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8804 break;
8805
8806 case DT_MIPS_LOCAL_GOTNO:
8807 dyn.d_un.d_val = g->local_gotno;
8808 break;
8809
8810 case DT_MIPS_UNREFEXTNO:
8811 /* The index into the dynamic symbol table which is the
8812 entry of the first external symbol that is not
8813 referenced within the same object. */
8814 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8815 break;
8816
8817 case DT_MIPS_GOTSYM:
8818 if (gg->global_gotsym)
8819 {
8820 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8821 break;
8822 }
8823 /* In case if we don't have global got symbols we default
8824 to setting DT_MIPS_GOTSYM to the same value as
8825 DT_MIPS_SYMTABNO, so we just fall through. */
8826
8827 case DT_MIPS_SYMTABNO:
8828 name = ".dynsym";
8829 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8830 s = bfd_get_section_by_name (output_bfd, name);
8831 BFD_ASSERT (s != NULL);
8832
8833 dyn.d_un.d_val = s->size / elemsize;
8834 break;
8835
8836 case DT_MIPS_HIPAGENO:
8837 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8838 break;
8839
8840 case DT_MIPS_RLD_MAP:
8841 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8842 break;
8843
8844 case DT_MIPS_OPTIONS:
8845 s = (bfd_get_section_by_name
8846 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8847 dyn.d_un.d_ptr = s->vma;
8848 break;
8849
8850 case DT_RELASZ:
8851 BFD_ASSERT (htab->is_vxworks);
8852 /* The count does not include the JUMP_SLOT relocations. */
8853 if (htab->srelplt)
8854 dyn.d_un.d_val -= htab->srelplt->size;
8855 break;
8856
8857 case DT_PLTREL:
8858 BFD_ASSERT (htab->is_vxworks);
8859 dyn.d_un.d_val = DT_RELA;
8860 break;
8861
8862 case DT_PLTRELSZ:
8863 BFD_ASSERT (htab->is_vxworks);
8864 dyn.d_un.d_val = htab->srelplt->size;
8865 break;
8866
8867 case DT_JMPREL:
8868 BFD_ASSERT (htab->is_vxworks);
8869 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8870 + htab->srelplt->output_offset);
8871 break;
8872
8873 case DT_TEXTREL:
8874 /* If we didn't need any text relocations after all, delete
8875 the dynamic tag. */
8876 if (!(info->flags & DF_TEXTREL))
8877 {
8878 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8879 swap_out_p = FALSE;
8880 }
8881 break;
8882
8883 case DT_FLAGS:
8884 /* If we didn't need any text relocations after all, clear
8885 DF_TEXTREL from DT_FLAGS. */
8886 if (!(info->flags & DF_TEXTREL))
8887 dyn.d_un.d_val &= ~DF_TEXTREL;
8888 else
8889 swap_out_p = FALSE;
8890 break;
8891
8892 default:
8893 swap_out_p = FALSE;
8894 break;
8895 }
8896
8897 if (swap_out_p || dyn_skipped)
8898 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8899 (dynobj, &dyn, b - dyn_skipped);
8900
8901 if (dyn_to_skip)
8902 {
8903 dyn_skipped += dyn_to_skip;
8904 dyn_to_skip = 0;
8905 }
8906 }
8907
8908 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8909 if (dyn_skipped > 0)
8910 memset (b - dyn_skipped, 0, dyn_skipped);
8911 }
8912
8913 if (sgot != NULL && sgot->size > 0
8914 && !bfd_is_abs_section (sgot->output_section))
8915 {
8916 if (htab->is_vxworks)
8917 {
8918 /* The first entry of the global offset table points to the
8919 ".dynamic" section. The second is initialized by the
8920 loader and contains the shared library identifier.
8921 The third is also initialized by the loader and points
8922 to the lazy resolution stub. */
8923 MIPS_ELF_PUT_WORD (output_bfd,
8924 sdyn->output_offset + sdyn->output_section->vma,
8925 sgot->contents);
8926 MIPS_ELF_PUT_WORD (output_bfd, 0,
8927 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8928 MIPS_ELF_PUT_WORD (output_bfd, 0,
8929 sgot->contents
8930 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8931 }
8932 else
8933 {
8934 /* The first entry of the global offset table will be filled at
8935 runtime. The second entry will be used by some runtime loaders.
8936 This isn't the case of IRIX rld. */
8937 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8938 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8939 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8940 }
8941
8942 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8943 = MIPS_ELF_GOT_SIZE (output_bfd);
8944 }
8945
8946 /* Generate dynamic relocations for the non-primary gots. */
8947 if (gg != NULL && gg->next)
8948 {
8949 Elf_Internal_Rela rel[3];
8950 bfd_vma addend = 0;
8951
8952 memset (rel, 0, sizeof (rel));
8953 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8954
8955 for (g = gg->next; g->next != gg; g = g->next)
8956 {
8957 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8958 + g->next->tls_gotno;
8959
8960 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8961 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8962 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8963 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8964
8965 if (! info->shared)
8966 continue;
8967
8968 while (index < g->assigned_gotno)
8969 {
8970 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8971 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8972 if (!(mips_elf_create_dynamic_relocation
8973 (output_bfd, info, rel, NULL,
8974 bfd_abs_section_ptr,
8975 0, &addend, sgot)))
8976 return FALSE;
8977 BFD_ASSERT (addend == 0);
8978 }
8979 }
8980 }
8981
8982 /* The generation of dynamic relocations for the non-primary gots
8983 adds more dynamic relocations. We cannot count them until
8984 here. */
8985
8986 if (elf_hash_table (info)->dynamic_sections_created)
8987 {
8988 bfd_byte *b;
8989 bfd_boolean swap_out_p;
8990
8991 BFD_ASSERT (sdyn != NULL);
8992
8993 for (b = sdyn->contents;
8994 b < sdyn->contents + sdyn->size;
8995 b += MIPS_ELF_DYN_SIZE (dynobj))
8996 {
8997 Elf_Internal_Dyn dyn;
8998 asection *s;
8999
9000 /* Read in the current dynamic entry. */
9001 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9002
9003 /* Assume that we're going to modify it and write it out. */
9004 swap_out_p = TRUE;
9005
9006 switch (dyn.d_tag)
9007 {
9008 case DT_RELSZ:
9009 /* Reduce DT_RELSZ to account for any relocations we
9010 decided not to make. This is for the n64 irix rld,
9011 which doesn't seem to apply any relocations if there
9012 are trailing null entries. */
9013 s = mips_elf_rel_dyn_section (info, FALSE);
9014 dyn.d_un.d_val = (s->reloc_count
9015 * (ABI_64_P (output_bfd)
9016 ? sizeof (Elf64_Mips_External_Rel)
9017 : sizeof (Elf32_External_Rel)));
9018 /* Adjust the section size too. Tools like the prelinker
9019 can reasonably expect the values to the same. */
9020 elf_section_data (s->output_section)->this_hdr.sh_size
9021 = dyn.d_un.d_val;
9022 break;
9023
9024 default:
9025 swap_out_p = FALSE;
9026 break;
9027 }
9028
9029 if (swap_out_p)
9030 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9031 (dynobj, &dyn, b);
9032 }
9033 }
9034
9035 {
9036 asection *s;
9037 Elf32_compact_rel cpt;
9038
9039 if (SGI_COMPAT (output_bfd))
9040 {
9041 /* Write .compact_rel section out. */
9042 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9043 if (s != NULL)
9044 {
9045 cpt.id1 = 1;
9046 cpt.num = s->reloc_count;
9047 cpt.id2 = 2;
9048 cpt.offset = (s->output_section->filepos
9049 + sizeof (Elf32_External_compact_rel));
9050 cpt.reserved0 = 0;
9051 cpt.reserved1 = 0;
9052 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9053 ((Elf32_External_compact_rel *)
9054 s->contents));
9055
9056 /* Clean up a dummy stub function entry in .text. */
9057 s = bfd_get_section_by_name (dynobj,
9058 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9059 if (s != NULL)
9060 {
9061 file_ptr dummy_offset;
9062
9063 BFD_ASSERT (s->size >= htab->function_stub_size);
9064 dummy_offset = s->size - htab->function_stub_size;
9065 memset (s->contents + dummy_offset, 0,
9066 htab->function_stub_size);
9067 }
9068 }
9069 }
9070
9071 /* The psABI says that the dynamic relocations must be sorted in
9072 increasing order of r_symndx. The VxWorks EABI doesn't require
9073 this, and because the code below handles REL rather than RELA
9074 relocations, using it for VxWorks would be outright harmful. */
9075 if (!htab->is_vxworks)
9076 {
9077 s = mips_elf_rel_dyn_section (info, FALSE);
9078 if (s != NULL
9079 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9080 {
9081 reldyn_sorting_bfd = output_bfd;
9082
9083 if (ABI_64_P (output_bfd))
9084 qsort ((Elf64_External_Rel *) s->contents + 1,
9085 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9086 sort_dynamic_relocs_64);
9087 else
9088 qsort ((Elf32_External_Rel *) s->contents + 1,
9089 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9090 sort_dynamic_relocs);
9091 }
9092 }
9093 }
9094
9095 if (htab->is_vxworks && htab->splt->size > 0)
9096 {
9097 if (info->shared)
9098 mips_vxworks_finish_shared_plt (output_bfd, info);
9099 else
9100 mips_vxworks_finish_exec_plt (output_bfd, info);
9101 }
9102 return TRUE;
9103 }
9104
9105
9106 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9107
9108 static void
9109 mips_set_isa_flags (bfd *abfd)
9110 {
9111 flagword val;
9112
9113 switch (bfd_get_mach (abfd))
9114 {
9115 default:
9116 case bfd_mach_mips3000:
9117 val = E_MIPS_ARCH_1;
9118 break;
9119
9120 case bfd_mach_mips3900:
9121 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9122 break;
9123
9124 case bfd_mach_mips6000:
9125 val = E_MIPS_ARCH_2;
9126 break;
9127
9128 case bfd_mach_mips4000:
9129 case bfd_mach_mips4300:
9130 case bfd_mach_mips4400:
9131 case bfd_mach_mips4600:
9132 val = E_MIPS_ARCH_3;
9133 break;
9134
9135 case bfd_mach_mips4010:
9136 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9137 break;
9138
9139 case bfd_mach_mips4100:
9140 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9141 break;
9142
9143 case bfd_mach_mips4111:
9144 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9145 break;
9146
9147 case bfd_mach_mips4120:
9148 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9149 break;
9150
9151 case bfd_mach_mips4650:
9152 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9153 break;
9154
9155 case bfd_mach_mips5400:
9156 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9157 break;
9158
9159 case bfd_mach_mips5500:
9160 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9161 break;
9162
9163 case bfd_mach_mips9000:
9164 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9165 break;
9166
9167 case bfd_mach_mips5000:
9168 case bfd_mach_mips7000:
9169 case bfd_mach_mips8000:
9170 case bfd_mach_mips10000:
9171 case bfd_mach_mips12000:
9172 val = E_MIPS_ARCH_4;
9173 break;
9174
9175 case bfd_mach_mips5:
9176 val = E_MIPS_ARCH_5;
9177 break;
9178
9179 case bfd_mach_mips_sb1:
9180 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9181 break;
9182
9183 case bfd_mach_mipsisa32:
9184 val = E_MIPS_ARCH_32;
9185 break;
9186
9187 case bfd_mach_mipsisa64:
9188 val = E_MIPS_ARCH_64;
9189 break;
9190
9191 case bfd_mach_mipsisa32r2:
9192 val = E_MIPS_ARCH_32R2;
9193 break;
9194
9195 case bfd_mach_mipsisa64r2:
9196 val = E_MIPS_ARCH_64R2;
9197 break;
9198 }
9199 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9200 elf_elfheader (abfd)->e_flags |= val;
9201
9202 }
9203
9204
9205 /* The final processing done just before writing out a MIPS ELF object
9206 file. This gets the MIPS architecture right based on the machine
9207 number. This is used by both the 32-bit and the 64-bit ABI. */
9208
9209 void
9210 _bfd_mips_elf_final_write_processing (bfd *abfd,
9211 bfd_boolean linker ATTRIBUTE_UNUSED)
9212 {
9213 unsigned int i;
9214 Elf_Internal_Shdr **hdrpp;
9215 const char *name;
9216 asection *sec;
9217
9218 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9219 is nonzero. This is for compatibility with old objects, which used
9220 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9221 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9222 mips_set_isa_flags (abfd);
9223
9224 /* Set the sh_info field for .gptab sections and other appropriate
9225 info for each special section. */
9226 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9227 i < elf_numsections (abfd);
9228 i++, hdrpp++)
9229 {
9230 switch ((*hdrpp)->sh_type)
9231 {
9232 case SHT_MIPS_MSYM:
9233 case SHT_MIPS_LIBLIST:
9234 sec = bfd_get_section_by_name (abfd, ".dynstr");
9235 if (sec != NULL)
9236 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9237 break;
9238
9239 case SHT_MIPS_GPTAB:
9240 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9241 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9242 BFD_ASSERT (name != NULL
9243 && CONST_STRNEQ (name, ".gptab."));
9244 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9245 BFD_ASSERT (sec != NULL);
9246 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9247 break;
9248
9249 case SHT_MIPS_CONTENT:
9250 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9251 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9252 BFD_ASSERT (name != NULL
9253 && CONST_STRNEQ (name, ".MIPS.content"));
9254 sec = bfd_get_section_by_name (abfd,
9255 name + sizeof ".MIPS.content" - 1);
9256 BFD_ASSERT (sec != NULL);
9257 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9258 break;
9259
9260 case SHT_MIPS_SYMBOL_LIB:
9261 sec = bfd_get_section_by_name (abfd, ".dynsym");
9262 if (sec != NULL)
9263 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9264 sec = bfd_get_section_by_name (abfd, ".liblist");
9265 if (sec != NULL)
9266 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9267 break;
9268
9269 case SHT_MIPS_EVENTS:
9270 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9271 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9272 BFD_ASSERT (name != NULL);
9273 if (CONST_STRNEQ (name, ".MIPS.events"))
9274 sec = bfd_get_section_by_name (abfd,
9275 name + sizeof ".MIPS.events" - 1);
9276 else
9277 {
9278 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9279 sec = bfd_get_section_by_name (abfd,
9280 (name
9281 + sizeof ".MIPS.post_rel" - 1));
9282 }
9283 BFD_ASSERT (sec != NULL);
9284 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9285 break;
9286
9287 }
9288 }
9289 }
9290 \f
9291 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9292 segments. */
9293
9294 int
9295 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9296 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9297 {
9298 asection *s;
9299 int ret = 0;
9300
9301 /* See if we need a PT_MIPS_REGINFO segment. */
9302 s = bfd_get_section_by_name (abfd, ".reginfo");
9303 if (s && (s->flags & SEC_LOAD))
9304 ++ret;
9305
9306 /* See if we need a PT_MIPS_OPTIONS segment. */
9307 if (IRIX_COMPAT (abfd) == ict_irix6
9308 && bfd_get_section_by_name (abfd,
9309 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9310 ++ret;
9311
9312 /* See if we need a PT_MIPS_RTPROC segment. */
9313 if (IRIX_COMPAT (abfd) == ict_irix5
9314 && bfd_get_section_by_name (abfd, ".dynamic")
9315 && bfd_get_section_by_name (abfd, ".mdebug"))
9316 ++ret;
9317
9318 /* Allocate a PT_NULL header in dynamic objects. See
9319 _bfd_mips_elf_modify_segment_map for details. */
9320 if (!SGI_COMPAT (abfd)
9321 && bfd_get_section_by_name (abfd, ".dynamic"))
9322 ++ret;
9323
9324 return ret;
9325 }
9326
9327 /* Modify the segment map for an IRIX5 executable. */
9328
9329 bfd_boolean
9330 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9331 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9332 {
9333 asection *s;
9334 struct elf_segment_map *m, **pm;
9335 bfd_size_type amt;
9336
9337 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9338 segment. */
9339 s = bfd_get_section_by_name (abfd, ".reginfo");
9340 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9341 {
9342 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9343 if (m->p_type == PT_MIPS_REGINFO)
9344 break;
9345 if (m == NULL)
9346 {
9347 amt = sizeof *m;
9348 m = bfd_zalloc (abfd, amt);
9349 if (m == NULL)
9350 return FALSE;
9351
9352 m->p_type = PT_MIPS_REGINFO;
9353 m->count = 1;
9354 m->sections[0] = s;
9355
9356 /* We want to put it after the PHDR and INTERP segments. */
9357 pm = &elf_tdata (abfd)->segment_map;
9358 while (*pm != NULL
9359 && ((*pm)->p_type == PT_PHDR
9360 || (*pm)->p_type == PT_INTERP))
9361 pm = &(*pm)->next;
9362
9363 m->next = *pm;
9364 *pm = m;
9365 }
9366 }
9367
9368 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9369 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9370 PT_MIPS_OPTIONS segment immediately following the program header
9371 table. */
9372 if (NEWABI_P (abfd)
9373 /* On non-IRIX6 new abi, we'll have already created a segment
9374 for this section, so don't create another. I'm not sure this
9375 is not also the case for IRIX 6, but I can't test it right
9376 now. */
9377 && IRIX_COMPAT (abfd) == ict_irix6)
9378 {
9379 for (s = abfd->sections; s; s = s->next)
9380 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9381 break;
9382
9383 if (s)
9384 {
9385 struct elf_segment_map *options_segment;
9386
9387 pm = &elf_tdata (abfd)->segment_map;
9388 while (*pm != NULL
9389 && ((*pm)->p_type == PT_PHDR
9390 || (*pm)->p_type == PT_INTERP))
9391 pm = &(*pm)->next;
9392
9393 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9394 {
9395 amt = sizeof (struct elf_segment_map);
9396 options_segment = bfd_zalloc (abfd, amt);
9397 options_segment->next = *pm;
9398 options_segment->p_type = PT_MIPS_OPTIONS;
9399 options_segment->p_flags = PF_R;
9400 options_segment->p_flags_valid = TRUE;
9401 options_segment->count = 1;
9402 options_segment->sections[0] = s;
9403 *pm = options_segment;
9404 }
9405 }
9406 }
9407 else
9408 {
9409 if (IRIX_COMPAT (abfd) == ict_irix5)
9410 {
9411 /* If there are .dynamic and .mdebug sections, we make a room
9412 for the RTPROC header. FIXME: Rewrite without section names. */
9413 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9414 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9415 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9416 {
9417 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9418 if (m->p_type == PT_MIPS_RTPROC)
9419 break;
9420 if (m == NULL)
9421 {
9422 amt = sizeof *m;
9423 m = bfd_zalloc (abfd, amt);
9424 if (m == NULL)
9425 return FALSE;
9426
9427 m->p_type = PT_MIPS_RTPROC;
9428
9429 s = bfd_get_section_by_name (abfd, ".rtproc");
9430 if (s == NULL)
9431 {
9432 m->count = 0;
9433 m->p_flags = 0;
9434 m->p_flags_valid = 1;
9435 }
9436 else
9437 {
9438 m->count = 1;
9439 m->sections[0] = s;
9440 }
9441
9442 /* We want to put it after the DYNAMIC segment. */
9443 pm = &elf_tdata (abfd)->segment_map;
9444 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9445 pm = &(*pm)->next;
9446 if (*pm != NULL)
9447 pm = &(*pm)->next;
9448
9449 m->next = *pm;
9450 *pm = m;
9451 }
9452 }
9453 }
9454 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9455 .dynstr, .dynsym, and .hash sections, and everything in
9456 between. */
9457 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9458 pm = &(*pm)->next)
9459 if ((*pm)->p_type == PT_DYNAMIC)
9460 break;
9461 m = *pm;
9462 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9463 {
9464 /* For a normal mips executable the permissions for the PT_DYNAMIC
9465 segment are read, write and execute. We do that here since
9466 the code in elf.c sets only the read permission. This matters
9467 sometimes for the dynamic linker. */
9468 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9469 {
9470 m->p_flags = PF_R | PF_W | PF_X;
9471 m->p_flags_valid = 1;
9472 }
9473 }
9474 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9475 glibc's dynamic linker has traditionally derived the number of
9476 tags from the p_filesz field, and sometimes allocates stack
9477 arrays of that size. An overly-big PT_DYNAMIC segment can
9478 be actively harmful in such cases. Making PT_DYNAMIC contain
9479 other sections can also make life hard for the prelinker,
9480 which might move one of the other sections to a different
9481 PT_LOAD segment. */
9482 if (SGI_COMPAT (abfd)
9483 && m != NULL
9484 && m->count == 1
9485 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9486 {
9487 static const char *sec_names[] =
9488 {
9489 ".dynamic", ".dynstr", ".dynsym", ".hash"
9490 };
9491 bfd_vma low, high;
9492 unsigned int i, c;
9493 struct elf_segment_map *n;
9494
9495 low = ~(bfd_vma) 0;
9496 high = 0;
9497 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9498 {
9499 s = bfd_get_section_by_name (abfd, sec_names[i]);
9500 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9501 {
9502 bfd_size_type sz;
9503
9504 if (low > s->vma)
9505 low = s->vma;
9506 sz = s->size;
9507 if (high < s->vma + sz)
9508 high = s->vma + sz;
9509 }
9510 }
9511
9512 c = 0;
9513 for (s = abfd->sections; s != NULL; s = s->next)
9514 if ((s->flags & SEC_LOAD) != 0
9515 && s->vma >= low
9516 && s->vma + s->size <= high)
9517 ++c;
9518
9519 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9520 n = bfd_zalloc (abfd, amt);
9521 if (n == NULL)
9522 return FALSE;
9523 *n = *m;
9524 n->count = c;
9525
9526 i = 0;
9527 for (s = abfd->sections; s != NULL; s = s->next)
9528 {
9529 if ((s->flags & SEC_LOAD) != 0
9530 && s->vma >= low
9531 && s->vma + s->size <= high)
9532 {
9533 n->sections[i] = s;
9534 ++i;
9535 }
9536 }
9537
9538 *pm = n;
9539 }
9540 }
9541
9542 /* Allocate a spare program header in dynamic objects so that tools
9543 like the prelinker can add an extra PT_LOAD entry.
9544
9545 If the prelinker needs to make room for a new PT_LOAD entry, its
9546 standard procedure is to move the first (read-only) sections into
9547 the new (writable) segment. However, the MIPS ABI requires
9548 .dynamic to be in a read-only segment, and the section will often
9549 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9550
9551 Although the prelinker could in principle move .dynamic to a
9552 writable segment, it seems better to allocate a spare program
9553 header instead, and avoid the need to move any sections.
9554 There is a long tradition of allocating spare dynamic tags,
9555 so allocating a spare program header seems like a natural
9556 extension. */
9557 if (!SGI_COMPAT (abfd)
9558 && bfd_get_section_by_name (abfd, ".dynamic"))
9559 {
9560 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9561 if ((*pm)->p_type == PT_NULL)
9562 break;
9563 if (*pm == NULL)
9564 {
9565 m = bfd_zalloc (abfd, sizeof (*m));
9566 if (m == NULL)
9567 return FALSE;
9568
9569 m->p_type = PT_NULL;
9570 *pm = m;
9571 }
9572 }
9573
9574 return TRUE;
9575 }
9576 \f
9577 /* Return the section that should be marked against GC for a given
9578 relocation. */
9579
9580 asection *
9581 _bfd_mips_elf_gc_mark_hook (asection *sec,
9582 struct bfd_link_info *info,
9583 Elf_Internal_Rela *rel,
9584 struct elf_link_hash_entry *h,
9585 Elf_Internal_Sym *sym)
9586 {
9587 /* ??? Do mips16 stub sections need to be handled special? */
9588
9589 if (h != NULL)
9590 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9591 {
9592 case R_MIPS_GNU_VTINHERIT:
9593 case R_MIPS_GNU_VTENTRY:
9594 return NULL;
9595 }
9596
9597 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9598 }
9599
9600 /* Update the got entry reference counts for the section being removed. */
9601
9602 bfd_boolean
9603 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9604 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9605 asection *sec ATTRIBUTE_UNUSED,
9606 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9607 {
9608 #if 0
9609 Elf_Internal_Shdr *symtab_hdr;
9610 struct elf_link_hash_entry **sym_hashes;
9611 bfd_signed_vma *local_got_refcounts;
9612 const Elf_Internal_Rela *rel, *relend;
9613 unsigned long r_symndx;
9614 struct elf_link_hash_entry *h;
9615
9616 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9617 sym_hashes = elf_sym_hashes (abfd);
9618 local_got_refcounts = elf_local_got_refcounts (abfd);
9619
9620 relend = relocs + sec->reloc_count;
9621 for (rel = relocs; rel < relend; rel++)
9622 switch (ELF_R_TYPE (abfd, rel->r_info))
9623 {
9624 case R_MIPS_GOT16:
9625 case R_MIPS_CALL16:
9626 case R_MIPS_CALL_HI16:
9627 case R_MIPS_CALL_LO16:
9628 case R_MIPS_GOT_HI16:
9629 case R_MIPS_GOT_LO16:
9630 case R_MIPS_GOT_DISP:
9631 case R_MIPS_GOT_PAGE:
9632 case R_MIPS_GOT_OFST:
9633 /* ??? It would seem that the existing MIPS code does no sort
9634 of reference counting or whatnot on its GOT and PLT entries,
9635 so it is not possible to garbage collect them at this time. */
9636 break;
9637
9638 default:
9639 break;
9640 }
9641 #endif
9642
9643 return TRUE;
9644 }
9645 \f
9646 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9647 hiding the old indirect symbol. Process additional relocation
9648 information. Also called for weakdefs, in which case we just let
9649 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9650
9651 void
9652 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9653 struct elf_link_hash_entry *dir,
9654 struct elf_link_hash_entry *ind)
9655 {
9656 struct mips_elf_link_hash_entry *dirmips, *indmips;
9657
9658 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9659
9660 if (ind->root.type != bfd_link_hash_indirect)
9661 return;
9662
9663 dirmips = (struct mips_elf_link_hash_entry *) dir;
9664 indmips = (struct mips_elf_link_hash_entry *) ind;
9665 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9666 if (indmips->readonly_reloc)
9667 dirmips->readonly_reloc = TRUE;
9668 if (indmips->no_fn_stub)
9669 dirmips->no_fn_stub = TRUE;
9670
9671 if (dirmips->tls_type == 0)
9672 dirmips->tls_type = indmips->tls_type;
9673 }
9674
9675 void
9676 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9677 struct elf_link_hash_entry *entry,
9678 bfd_boolean force_local)
9679 {
9680 bfd *dynobj;
9681 asection *got;
9682 struct mips_got_info *g;
9683 struct mips_elf_link_hash_entry *h;
9684 struct mips_elf_link_hash_table *htab;
9685
9686 h = (struct mips_elf_link_hash_entry *) entry;
9687 if (h->forced_local)
9688 return;
9689 h->forced_local = force_local;
9690
9691 dynobj = elf_hash_table (info)->dynobj;
9692 htab = mips_elf_hash_table (info);
9693 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9694 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9695 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9696 {
9697 if (g->next)
9698 {
9699 struct mips_got_entry e;
9700 struct mips_got_info *gg = g;
9701
9702 /* Since we're turning what used to be a global symbol into a
9703 local one, bump up the number of local entries of each GOT
9704 that had an entry for it. This will automatically decrease
9705 the number of global entries, since global_gotno is actually
9706 the upper limit of global entries. */
9707 e.abfd = dynobj;
9708 e.symndx = -1;
9709 e.d.h = h;
9710 e.tls_type = 0;
9711
9712 for (g = g->next; g != gg; g = g->next)
9713 if (htab_find (g->got_entries, &e))
9714 {
9715 BFD_ASSERT (g->global_gotno > 0);
9716 g->local_gotno++;
9717 g->global_gotno--;
9718 }
9719
9720 /* If this was a global symbol forced into the primary GOT, we
9721 no longer need an entry for it. We can't release the entry
9722 at this point, but we must at least stop counting it as one
9723 of the symbols that required a forced got entry. */
9724 if (h->root.got.offset == 2)
9725 {
9726 BFD_ASSERT (gg->assigned_gotno > 0);
9727 gg->assigned_gotno--;
9728 }
9729 }
9730 else if (h->root.got.offset == 1)
9731 {
9732 /* check_relocs didn't know that this symbol would be
9733 forced-local, so add an extra local got entry. */
9734 g->local_gotno++;
9735 if (htab->computed_got_sizes)
9736 {
9737 /* We'll have treated this symbol as global rather
9738 than local. */
9739 BFD_ASSERT (g->global_gotno > 0);
9740 g->global_gotno--;
9741 }
9742 }
9743 else if (htab->is_vxworks && h->root.needs_plt)
9744 {
9745 /* check_relocs didn't know that this symbol would be
9746 forced-local, so add an extra local got entry. */
9747 g->local_gotno++;
9748 if (htab->computed_got_sizes)
9749 /* The symbol is only used in call relocations, so we'll
9750 have assumed it only needs a .got.plt entry. Increase
9751 the size of .got accordingly. */
9752 got->size += MIPS_ELF_GOT_SIZE (dynobj);
9753 }
9754 }
9755
9756 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9757 }
9758 \f
9759 #define PDR_SIZE 32
9760
9761 bfd_boolean
9762 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9763 struct bfd_link_info *info)
9764 {
9765 asection *o;
9766 bfd_boolean ret = FALSE;
9767 unsigned char *tdata;
9768 size_t i, skip;
9769
9770 o = bfd_get_section_by_name (abfd, ".pdr");
9771 if (! o)
9772 return FALSE;
9773 if (o->size == 0)
9774 return FALSE;
9775 if (o->size % PDR_SIZE != 0)
9776 return FALSE;
9777 if (o->output_section != NULL
9778 && bfd_is_abs_section (o->output_section))
9779 return FALSE;
9780
9781 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9782 if (! tdata)
9783 return FALSE;
9784
9785 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9786 info->keep_memory);
9787 if (!cookie->rels)
9788 {
9789 free (tdata);
9790 return FALSE;
9791 }
9792
9793 cookie->rel = cookie->rels;
9794 cookie->relend = cookie->rels + o->reloc_count;
9795
9796 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9797 {
9798 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9799 {
9800 tdata[i] = 1;
9801 skip ++;
9802 }
9803 }
9804
9805 if (skip != 0)
9806 {
9807 mips_elf_section_data (o)->u.tdata = tdata;
9808 o->size -= skip * PDR_SIZE;
9809 ret = TRUE;
9810 }
9811 else
9812 free (tdata);
9813
9814 if (! info->keep_memory)
9815 free (cookie->rels);
9816
9817 return ret;
9818 }
9819
9820 bfd_boolean
9821 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9822 {
9823 if (strcmp (sec->name, ".pdr") == 0)
9824 return TRUE;
9825 return FALSE;
9826 }
9827
9828 bfd_boolean
9829 _bfd_mips_elf_write_section (bfd *output_bfd,
9830 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9831 asection *sec, bfd_byte *contents)
9832 {
9833 bfd_byte *to, *from, *end;
9834 int i;
9835
9836 if (strcmp (sec->name, ".pdr") != 0)
9837 return FALSE;
9838
9839 if (mips_elf_section_data (sec)->u.tdata == NULL)
9840 return FALSE;
9841
9842 to = contents;
9843 end = contents + sec->size;
9844 for (from = contents, i = 0;
9845 from < end;
9846 from += PDR_SIZE, i++)
9847 {
9848 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9849 continue;
9850 if (to != from)
9851 memcpy (to, from, PDR_SIZE);
9852 to += PDR_SIZE;
9853 }
9854 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9855 sec->output_offset, sec->size);
9856 return TRUE;
9857 }
9858 \f
9859 /* MIPS ELF uses a special find_nearest_line routine in order the
9860 handle the ECOFF debugging information. */
9861
9862 struct mips_elf_find_line
9863 {
9864 struct ecoff_debug_info d;
9865 struct ecoff_find_line i;
9866 };
9867
9868 bfd_boolean
9869 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9870 asymbol **symbols, bfd_vma offset,
9871 const char **filename_ptr,
9872 const char **functionname_ptr,
9873 unsigned int *line_ptr)
9874 {
9875 asection *msec;
9876
9877 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9878 filename_ptr, functionname_ptr,
9879 line_ptr))
9880 return TRUE;
9881
9882 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9883 filename_ptr, functionname_ptr,
9884 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9885 &elf_tdata (abfd)->dwarf2_find_line_info))
9886 return TRUE;
9887
9888 msec = bfd_get_section_by_name (abfd, ".mdebug");
9889 if (msec != NULL)
9890 {
9891 flagword origflags;
9892 struct mips_elf_find_line *fi;
9893 const struct ecoff_debug_swap * const swap =
9894 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9895
9896 /* If we are called during a link, mips_elf_final_link may have
9897 cleared the SEC_HAS_CONTENTS field. We force it back on here
9898 if appropriate (which it normally will be). */
9899 origflags = msec->flags;
9900 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9901 msec->flags |= SEC_HAS_CONTENTS;
9902
9903 fi = elf_tdata (abfd)->find_line_info;
9904 if (fi == NULL)
9905 {
9906 bfd_size_type external_fdr_size;
9907 char *fraw_src;
9908 char *fraw_end;
9909 struct fdr *fdr_ptr;
9910 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9911
9912 fi = bfd_zalloc (abfd, amt);
9913 if (fi == NULL)
9914 {
9915 msec->flags = origflags;
9916 return FALSE;
9917 }
9918
9919 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9920 {
9921 msec->flags = origflags;
9922 return FALSE;
9923 }
9924
9925 /* Swap in the FDR information. */
9926 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9927 fi->d.fdr = bfd_alloc (abfd, amt);
9928 if (fi->d.fdr == NULL)
9929 {
9930 msec->flags = origflags;
9931 return FALSE;
9932 }
9933 external_fdr_size = swap->external_fdr_size;
9934 fdr_ptr = fi->d.fdr;
9935 fraw_src = (char *) fi->d.external_fdr;
9936 fraw_end = (fraw_src
9937 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9938 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9939 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9940
9941 elf_tdata (abfd)->find_line_info = fi;
9942
9943 /* Note that we don't bother to ever free this information.
9944 find_nearest_line is either called all the time, as in
9945 objdump -l, so the information should be saved, or it is
9946 rarely called, as in ld error messages, so the memory
9947 wasted is unimportant. Still, it would probably be a
9948 good idea for free_cached_info to throw it away. */
9949 }
9950
9951 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9952 &fi->i, filename_ptr, functionname_ptr,
9953 line_ptr))
9954 {
9955 msec->flags = origflags;
9956 return TRUE;
9957 }
9958
9959 msec->flags = origflags;
9960 }
9961
9962 /* Fall back on the generic ELF find_nearest_line routine. */
9963
9964 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9965 filename_ptr, functionname_ptr,
9966 line_ptr);
9967 }
9968
9969 bfd_boolean
9970 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9971 const char **filename_ptr,
9972 const char **functionname_ptr,
9973 unsigned int *line_ptr)
9974 {
9975 bfd_boolean found;
9976 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9977 functionname_ptr, line_ptr,
9978 & elf_tdata (abfd)->dwarf2_find_line_info);
9979 return found;
9980 }
9981
9982 \f
9983 /* When are writing out the .options or .MIPS.options section,
9984 remember the bytes we are writing out, so that we can install the
9985 GP value in the section_processing routine. */
9986
9987 bfd_boolean
9988 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9989 const void *location,
9990 file_ptr offset, bfd_size_type count)
9991 {
9992 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9993 {
9994 bfd_byte *c;
9995
9996 if (elf_section_data (section) == NULL)
9997 {
9998 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9999 section->used_by_bfd = bfd_zalloc (abfd, amt);
10000 if (elf_section_data (section) == NULL)
10001 return FALSE;
10002 }
10003 c = mips_elf_section_data (section)->u.tdata;
10004 if (c == NULL)
10005 {
10006 c = bfd_zalloc (abfd, section->size);
10007 if (c == NULL)
10008 return FALSE;
10009 mips_elf_section_data (section)->u.tdata = c;
10010 }
10011
10012 memcpy (c + offset, location, count);
10013 }
10014
10015 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10016 count);
10017 }
10018
10019 /* This is almost identical to bfd_generic_get_... except that some
10020 MIPS relocations need to be handled specially. Sigh. */
10021
10022 bfd_byte *
10023 _bfd_elf_mips_get_relocated_section_contents
10024 (bfd *abfd,
10025 struct bfd_link_info *link_info,
10026 struct bfd_link_order *link_order,
10027 bfd_byte *data,
10028 bfd_boolean relocatable,
10029 asymbol **symbols)
10030 {
10031 /* Get enough memory to hold the stuff */
10032 bfd *input_bfd = link_order->u.indirect.section->owner;
10033 asection *input_section = link_order->u.indirect.section;
10034 bfd_size_type sz;
10035
10036 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10037 arelent **reloc_vector = NULL;
10038 long reloc_count;
10039
10040 if (reloc_size < 0)
10041 goto error_return;
10042
10043 reloc_vector = bfd_malloc (reloc_size);
10044 if (reloc_vector == NULL && reloc_size != 0)
10045 goto error_return;
10046
10047 /* read in the section */
10048 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10049 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10050 goto error_return;
10051
10052 reloc_count = bfd_canonicalize_reloc (input_bfd,
10053 input_section,
10054 reloc_vector,
10055 symbols);
10056 if (reloc_count < 0)
10057 goto error_return;
10058
10059 if (reloc_count > 0)
10060 {
10061 arelent **parent;
10062 /* for mips */
10063 int gp_found;
10064 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10065
10066 {
10067 struct bfd_hash_entry *h;
10068 struct bfd_link_hash_entry *lh;
10069 /* Skip all this stuff if we aren't mixing formats. */
10070 if (abfd && input_bfd
10071 && abfd->xvec == input_bfd->xvec)
10072 lh = 0;
10073 else
10074 {
10075 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10076 lh = (struct bfd_link_hash_entry *) h;
10077 }
10078 lookup:
10079 if (lh)
10080 {
10081 switch (lh->type)
10082 {
10083 case bfd_link_hash_undefined:
10084 case bfd_link_hash_undefweak:
10085 case bfd_link_hash_common:
10086 gp_found = 0;
10087 break;
10088 case bfd_link_hash_defined:
10089 case bfd_link_hash_defweak:
10090 gp_found = 1;
10091 gp = lh->u.def.value;
10092 break;
10093 case bfd_link_hash_indirect:
10094 case bfd_link_hash_warning:
10095 lh = lh->u.i.link;
10096 /* @@FIXME ignoring warning for now */
10097 goto lookup;
10098 case bfd_link_hash_new:
10099 default:
10100 abort ();
10101 }
10102 }
10103 else
10104 gp_found = 0;
10105 }
10106 /* end mips */
10107 for (parent = reloc_vector; *parent != NULL; parent++)
10108 {
10109 char *error_message = NULL;
10110 bfd_reloc_status_type r;
10111
10112 /* Specific to MIPS: Deal with relocation types that require
10113 knowing the gp of the output bfd. */
10114 asymbol *sym = *(*parent)->sym_ptr_ptr;
10115
10116 /* If we've managed to find the gp and have a special
10117 function for the relocation then go ahead, else default
10118 to the generic handling. */
10119 if (gp_found
10120 && (*parent)->howto->special_function
10121 == _bfd_mips_elf32_gprel16_reloc)
10122 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10123 input_section, relocatable,
10124 data, gp);
10125 else
10126 r = bfd_perform_relocation (input_bfd, *parent, data,
10127 input_section,
10128 relocatable ? abfd : NULL,
10129 &error_message);
10130
10131 if (relocatable)
10132 {
10133 asection *os = input_section->output_section;
10134
10135 /* A partial link, so keep the relocs */
10136 os->orelocation[os->reloc_count] = *parent;
10137 os->reloc_count++;
10138 }
10139
10140 if (r != bfd_reloc_ok)
10141 {
10142 switch (r)
10143 {
10144 case bfd_reloc_undefined:
10145 if (!((*link_info->callbacks->undefined_symbol)
10146 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10147 input_bfd, input_section, (*parent)->address, TRUE)))
10148 goto error_return;
10149 break;
10150 case bfd_reloc_dangerous:
10151 BFD_ASSERT (error_message != NULL);
10152 if (!((*link_info->callbacks->reloc_dangerous)
10153 (link_info, error_message, input_bfd, input_section,
10154 (*parent)->address)))
10155 goto error_return;
10156 break;
10157 case bfd_reloc_overflow:
10158 if (!((*link_info->callbacks->reloc_overflow)
10159 (link_info, NULL,
10160 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10161 (*parent)->howto->name, (*parent)->addend,
10162 input_bfd, input_section, (*parent)->address)))
10163 goto error_return;
10164 break;
10165 case bfd_reloc_outofrange:
10166 default:
10167 abort ();
10168 break;
10169 }
10170
10171 }
10172 }
10173 }
10174 if (reloc_vector != NULL)
10175 free (reloc_vector);
10176 return data;
10177
10178 error_return:
10179 if (reloc_vector != NULL)
10180 free (reloc_vector);
10181 return NULL;
10182 }
10183 \f
10184 /* Create a MIPS ELF linker hash table. */
10185
10186 struct bfd_link_hash_table *
10187 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10188 {
10189 struct mips_elf_link_hash_table *ret;
10190 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10191
10192 ret = bfd_malloc (amt);
10193 if (ret == NULL)
10194 return NULL;
10195
10196 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10197 mips_elf_link_hash_newfunc,
10198 sizeof (struct mips_elf_link_hash_entry)))
10199 {
10200 free (ret);
10201 return NULL;
10202 }
10203
10204 #if 0
10205 /* We no longer use this. */
10206 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10207 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10208 #endif
10209 ret->procedure_count = 0;
10210 ret->compact_rel_size = 0;
10211 ret->use_rld_obj_head = FALSE;
10212 ret->rld_value = 0;
10213 ret->mips16_stubs_seen = FALSE;
10214 ret->computed_got_sizes = FALSE;
10215 ret->is_vxworks = FALSE;
10216 ret->small_data_overflow_reported = FALSE;
10217 ret->srelbss = NULL;
10218 ret->sdynbss = NULL;
10219 ret->srelplt = NULL;
10220 ret->srelplt2 = NULL;
10221 ret->sgotplt = NULL;
10222 ret->splt = NULL;
10223 ret->plt_header_size = 0;
10224 ret->plt_entry_size = 0;
10225 ret->function_stub_size = 0;
10226
10227 return &ret->root.root;
10228 }
10229
10230 /* Likewise, but indicate that the target is VxWorks. */
10231
10232 struct bfd_link_hash_table *
10233 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10234 {
10235 struct bfd_link_hash_table *ret;
10236
10237 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10238 if (ret)
10239 {
10240 struct mips_elf_link_hash_table *htab;
10241
10242 htab = (struct mips_elf_link_hash_table *) ret;
10243 htab->is_vxworks = 1;
10244 }
10245 return ret;
10246 }
10247 \f
10248 /* We need to use a special link routine to handle the .reginfo and
10249 the .mdebug sections. We need to merge all instances of these
10250 sections together, not write them all out sequentially. */
10251
10252 bfd_boolean
10253 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10254 {
10255 asection *o;
10256 struct bfd_link_order *p;
10257 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10258 asection *rtproc_sec;
10259 Elf32_RegInfo reginfo;
10260 struct ecoff_debug_info debug;
10261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10262 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10263 HDRR *symhdr = &debug.symbolic_header;
10264 void *mdebug_handle = NULL;
10265 asection *s;
10266 EXTR esym;
10267 unsigned int i;
10268 bfd_size_type amt;
10269 struct mips_elf_link_hash_table *htab;
10270
10271 static const char * const secname[] =
10272 {
10273 ".text", ".init", ".fini", ".data",
10274 ".rodata", ".sdata", ".sbss", ".bss"
10275 };
10276 static const int sc[] =
10277 {
10278 scText, scInit, scFini, scData,
10279 scRData, scSData, scSBss, scBss
10280 };
10281
10282 /* We'd carefully arranged the dynamic symbol indices, and then the
10283 generic size_dynamic_sections renumbered them out from under us.
10284 Rather than trying somehow to prevent the renumbering, just do
10285 the sort again. */
10286 htab = mips_elf_hash_table (info);
10287 if (elf_hash_table (info)->dynamic_sections_created)
10288 {
10289 bfd *dynobj;
10290 asection *got;
10291 struct mips_got_info *g;
10292 bfd_size_type dynsecsymcount;
10293
10294 /* When we resort, we must tell mips_elf_sort_hash_table what
10295 the lowest index it may use is. That's the number of section
10296 symbols we're going to add. The generic ELF linker only
10297 adds these symbols when building a shared object. Note that
10298 we count the sections after (possibly) removing the .options
10299 section above. */
10300
10301 dynsecsymcount = count_section_dynsyms (abfd, info);
10302 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10303 return FALSE;
10304
10305 /* Make sure we didn't grow the global .got region. */
10306 dynobj = elf_hash_table (info)->dynobj;
10307 got = mips_elf_got_section (dynobj, FALSE);
10308 g = mips_elf_section_data (got)->u.got_info;
10309
10310 if (g->global_gotsym != NULL)
10311 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10312 - g->global_gotsym->dynindx)
10313 <= g->global_gotno);
10314 }
10315
10316 /* Get a value for the GP register. */
10317 if (elf_gp (abfd) == 0)
10318 {
10319 struct bfd_link_hash_entry *h;
10320
10321 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10322 if (h != NULL && h->type == bfd_link_hash_defined)
10323 elf_gp (abfd) = (h->u.def.value
10324 + h->u.def.section->output_section->vma
10325 + h->u.def.section->output_offset);
10326 else if (htab->is_vxworks
10327 && (h = bfd_link_hash_lookup (info->hash,
10328 "_GLOBAL_OFFSET_TABLE_",
10329 FALSE, FALSE, TRUE))
10330 && h->type == bfd_link_hash_defined)
10331 elf_gp (abfd) = (h->u.def.section->output_section->vma
10332 + h->u.def.section->output_offset
10333 + h->u.def.value);
10334 else if (info->relocatable)
10335 {
10336 bfd_vma lo = MINUS_ONE;
10337
10338 /* Find the GP-relative section with the lowest offset. */
10339 for (o = abfd->sections; o != NULL; o = o->next)
10340 if (o->vma < lo
10341 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10342 lo = o->vma;
10343
10344 /* And calculate GP relative to that. */
10345 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10346 }
10347 else
10348 {
10349 /* If the relocate_section function needs to do a reloc
10350 involving the GP value, it should make a reloc_dangerous
10351 callback to warn that GP is not defined. */
10352 }
10353 }
10354
10355 /* Go through the sections and collect the .reginfo and .mdebug
10356 information. */
10357 reginfo_sec = NULL;
10358 mdebug_sec = NULL;
10359 gptab_data_sec = NULL;
10360 gptab_bss_sec = NULL;
10361 for (o = abfd->sections; o != NULL; o = o->next)
10362 {
10363 if (strcmp (o->name, ".reginfo") == 0)
10364 {
10365 memset (&reginfo, 0, sizeof reginfo);
10366
10367 /* We have found the .reginfo section in the output file.
10368 Look through all the link_orders comprising it and merge
10369 the information together. */
10370 for (p = o->map_head.link_order; p != NULL; p = p->next)
10371 {
10372 asection *input_section;
10373 bfd *input_bfd;
10374 Elf32_External_RegInfo ext;
10375 Elf32_RegInfo sub;
10376
10377 if (p->type != bfd_indirect_link_order)
10378 {
10379 if (p->type == bfd_data_link_order)
10380 continue;
10381 abort ();
10382 }
10383
10384 input_section = p->u.indirect.section;
10385 input_bfd = input_section->owner;
10386
10387 if (! bfd_get_section_contents (input_bfd, input_section,
10388 &ext, 0, sizeof ext))
10389 return FALSE;
10390
10391 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10392
10393 reginfo.ri_gprmask |= sub.ri_gprmask;
10394 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10395 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10396 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10397 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10398
10399 /* ri_gp_value is set by the function
10400 mips_elf32_section_processing when the section is
10401 finally written out. */
10402
10403 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10404 elf_link_input_bfd ignores this section. */
10405 input_section->flags &= ~SEC_HAS_CONTENTS;
10406 }
10407
10408 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10409 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10410
10411 /* Skip this section later on (I don't think this currently
10412 matters, but someday it might). */
10413 o->map_head.link_order = NULL;
10414
10415 reginfo_sec = o;
10416 }
10417
10418 if (strcmp (o->name, ".mdebug") == 0)
10419 {
10420 struct extsym_info einfo;
10421 bfd_vma last;
10422
10423 /* We have found the .mdebug section in the output file.
10424 Look through all the link_orders comprising it and merge
10425 the information together. */
10426 symhdr->magic = swap->sym_magic;
10427 /* FIXME: What should the version stamp be? */
10428 symhdr->vstamp = 0;
10429 symhdr->ilineMax = 0;
10430 symhdr->cbLine = 0;
10431 symhdr->idnMax = 0;
10432 symhdr->ipdMax = 0;
10433 symhdr->isymMax = 0;
10434 symhdr->ioptMax = 0;
10435 symhdr->iauxMax = 0;
10436 symhdr->issMax = 0;
10437 symhdr->issExtMax = 0;
10438 symhdr->ifdMax = 0;
10439 symhdr->crfd = 0;
10440 symhdr->iextMax = 0;
10441
10442 /* We accumulate the debugging information itself in the
10443 debug_info structure. */
10444 debug.line = NULL;
10445 debug.external_dnr = NULL;
10446 debug.external_pdr = NULL;
10447 debug.external_sym = NULL;
10448 debug.external_opt = NULL;
10449 debug.external_aux = NULL;
10450 debug.ss = NULL;
10451 debug.ssext = debug.ssext_end = NULL;
10452 debug.external_fdr = NULL;
10453 debug.external_rfd = NULL;
10454 debug.external_ext = debug.external_ext_end = NULL;
10455
10456 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10457 if (mdebug_handle == NULL)
10458 return FALSE;
10459
10460 esym.jmptbl = 0;
10461 esym.cobol_main = 0;
10462 esym.weakext = 0;
10463 esym.reserved = 0;
10464 esym.ifd = ifdNil;
10465 esym.asym.iss = issNil;
10466 esym.asym.st = stLocal;
10467 esym.asym.reserved = 0;
10468 esym.asym.index = indexNil;
10469 last = 0;
10470 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10471 {
10472 esym.asym.sc = sc[i];
10473 s = bfd_get_section_by_name (abfd, secname[i]);
10474 if (s != NULL)
10475 {
10476 esym.asym.value = s->vma;
10477 last = s->vma + s->size;
10478 }
10479 else
10480 esym.asym.value = last;
10481 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10482 secname[i], &esym))
10483 return FALSE;
10484 }
10485
10486 for (p = o->map_head.link_order; p != NULL; p = p->next)
10487 {
10488 asection *input_section;
10489 bfd *input_bfd;
10490 const struct ecoff_debug_swap *input_swap;
10491 struct ecoff_debug_info input_debug;
10492 char *eraw_src;
10493 char *eraw_end;
10494
10495 if (p->type != bfd_indirect_link_order)
10496 {
10497 if (p->type == bfd_data_link_order)
10498 continue;
10499 abort ();
10500 }
10501
10502 input_section = p->u.indirect.section;
10503 input_bfd = input_section->owner;
10504
10505 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10506 || (get_elf_backend_data (input_bfd)
10507 ->elf_backend_ecoff_debug_swap) == NULL)
10508 {
10509 /* I don't know what a non MIPS ELF bfd would be
10510 doing with a .mdebug section, but I don't really
10511 want to deal with it. */
10512 continue;
10513 }
10514
10515 input_swap = (get_elf_backend_data (input_bfd)
10516 ->elf_backend_ecoff_debug_swap);
10517
10518 BFD_ASSERT (p->size == input_section->size);
10519
10520 /* The ECOFF linking code expects that we have already
10521 read in the debugging information and set up an
10522 ecoff_debug_info structure, so we do that now. */
10523 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10524 &input_debug))
10525 return FALSE;
10526
10527 if (! (bfd_ecoff_debug_accumulate
10528 (mdebug_handle, abfd, &debug, swap, input_bfd,
10529 &input_debug, input_swap, info)))
10530 return FALSE;
10531
10532 /* Loop through the external symbols. For each one with
10533 interesting information, try to find the symbol in
10534 the linker global hash table and save the information
10535 for the output external symbols. */
10536 eraw_src = input_debug.external_ext;
10537 eraw_end = (eraw_src
10538 + (input_debug.symbolic_header.iextMax
10539 * input_swap->external_ext_size));
10540 for (;
10541 eraw_src < eraw_end;
10542 eraw_src += input_swap->external_ext_size)
10543 {
10544 EXTR ext;
10545 const char *name;
10546 struct mips_elf_link_hash_entry *h;
10547
10548 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10549 if (ext.asym.sc == scNil
10550 || ext.asym.sc == scUndefined
10551 || ext.asym.sc == scSUndefined)
10552 continue;
10553
10554 name = input_debug.ssext + ext.asym.iss;
10555 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10556 name, FALSE, FALSE, TRUE);
10557 if (h == NULL || h->esym.ifd != -2)
10558 continue;
10559
10560 if (ext.ifd != -1)
10561 {
10562 BFD_ASSERT (ext.ifd
10563 < input_debug.symbolic_header.ifdMax);
10564 ext.ifd = input_debug.ifdmap[ext.ifd];
10565 }
10566
10567 h->esym = ext;
10568 }
10569
10570 /* Free up the information we just read. */
10571 free (input_debug.line);
10572 free (input_debug.external_dnr);
10573 free (input_debug.external_pdr);
10574 free (input_debug.external_sym);
10575 free (input_debug.external_opt);
10576 free (input_debug.external_aux);
10577 free (input_debug.ss);
10578 free (input_debug.ssext);
10579 free (input_debug.external_fdr);
10580 free (input_debug.external_rfd);
10581 free (input_debug.external_ext);
10582
10583 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10584 elf_link_input_bfd ignores this section. */
10585 input_section->flags &= ~SEC_HAS_CONTENTS;
10586 }
10587
10588 if (SGI_COMPAT (abfd) && info->shared)
10589 {
10590 /* Create .rtproc section. */
10591 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10592 if (rtproc_sec == NULL)
10593 {
10594 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10595 | SEC_LINKER_CREATED | SEC_READONLY);
10596
10597 rtproc_sec = bfd_make_section_with_flags (abfd,
10598 ".rtproc",
10599 flags);
10600 if (rtproc_sec == NULL
10601 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10602 return FALSE;
10603 }
10604
10605 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10606 info, rtproc_sec,
10607 &debug))
10608 return FALSE;
10609 }
10610
10611 /* Build the external symbol information. */
10612 einfo.abfd = abfd;
10613 einfo.info = info;
10614 einfo.debug = &debug;
10615 einfo.swap = swap;
10616 einfo.failed = FALSE;
10617 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10618 mips_elf_output_extsym, &einfo);
10619 if (einfo.failed)
10620 return FALSE;
10621
10622 /* Set the size of the .mdebug section. */
10623 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10624
10625 /* Skip this section later on (I don't think this currently
10626 matters, but someday it might). */
10627 o->map_head.link_order = NULL;
10628
10629 mdebug_sec = o;
10630 }
10631
10632 if (CONST_STRNEQ (o->name, ".gptab."))
10633 {
10634 const char *subname;
10635 unsigned int c;
10636 Elf32_gptab *tab;
10637 Elf32_External_gptab *ext_tab;
10638 unsigned int j;
10639
10640 /* The .gptab.sdata and .gptab.sbss sections hold
10641 information describing how the small data area would
10642 change depending upon the -G switch. These sections
10643 not used in executables files. */
10644 if (! info->relocatable)
10645 {
10646 for (p = o->map_head.link_order; p != NULL; p = p->next)
10647 {
10648 asection *input_section;
10649
10650 if (p->type != bfd_indirect_link_order)
10651 {
10652 if (p->type == bfd_data_link_order)
10653 continue;
10654 abort ();
10655 }
10656
10657 input_section = p->u.indirect.section;
10658
10659 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10660 elf_link_input_bfd ignores this section. */
10661 input_section->flags &= ~SEC_HAS_CONTENTS;
10662 }
10663
10664 /* Skip this section later on (I don't think this
10665 currently matters, but someday it might). */
10666 o->map_head.link_order = NULL;
10667
10668 /* Really remove the section. */
10669 bfd_section_list_remove (abfd, o);
10670 --abfd->section_count;
10671
10672 continue;
10673 }
10674
10675 /* There is one gptab for initialized data, and one for
10676 uninitialized data. */
10677 if (strcmp (o->name, ".gptab.sdata") == 0)
10678 gptab_data_sec = o;
10679 else if (strcmp (o->name, ".gptab.sbss") == 0)
10680 gptab_bss_sec = o;
10681 else
10682 {
10683 (*_bfd_error_handler)
10684 (_("%s: illegal section name `%s'"),
10685 bfd_get_filename (abfd), o->name);
10686 bfd_set_error (bfd_error_nonrepresentable_section);
10687 return FALSE;
10688 }
10689
10690 /* The linker script always combines .gptab.data and
10691 .gptab.sdata into .gptab.sdata, and likewise for
10692 .gptab.bss and .gptab.sbss. It is possible that there is
10693 no .sdata or .sbss section in the output file, in which
10694 case we must change the name of the output section. */
10695 subname = o->name + sizeof ".gptab" - 1;
10696 if (bfd_get_section_by_name (abfd, subname) == NULL)
10697 {
10698 if (o == gptab_data_sec)
10699 o->name = ".gptab.data";
10700 else
10701 o->name = ".gptab.bss";
10702 subname = o->name + sizeof ".gptab" - 1;
10703 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10704 }
10705
10706 /* Set up the first entry. */
10707 c = 1;
10708 amt = c * sizeof (Elf32_gptab);
10709 tab = bfd_malloc (amt);
10710 if (tab == NULL)
10711 return FALSE;
10712 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10713 tab[0].gt_header.gt_unused = 0;
10714
10715 /* Combine the input sections. */
10716 for (p = o->map_head.link_order; p != NULL; p = p->next)
10717 {
10718 asection *input_section;
10719 bfd *input_bfd;
10720 bfd_size_type size;
10721 unsigned long last;
10722 bfd_size_type gpentry;
10723
10724 if (p->type != bfd_indirect_link_order)
10725 {
10726 if (p->type == bfd_data_link_order)
10727 continue;
10728 abort ();
10729 }
10730
10731 input_section = p->u.indirect.section;
10732 input_bfd = input_section->owner;
10733
10734 /* Combine the gptab entries for this input section one
10735 by one. We know that the input gptab entries are
10736 sorted by ascending -G value. */
10737 size = input_section->size;
10738 last = 0;
10739 for (gpentry = sizeof (Elf32_External_gptab);
10740 gpentry < size;
10741 gpentry += sizeof (Elf32_External_gptab))
10742 {
10743 Elf32_External_gptab ext_gptab;
10744 Elf32_gptab int_gptab;
10745 unsigned long val;
10746 unsigned long add;
10747 bfd_boolean exact;
10748 unsigned int look;
10749
10750 if (! (bfd_get_section_contents
10751 (input_bfd, input_section, &ext_gptab, gpentry,
10752 sizeof (Elf32_External_gptab))))
10753 {
10754 free (tab);
10755 return FALSE;
10756 }
10757
10758 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10759 &int_gptab);
10760 val = int_gptab.gt_entry.gt_g_value;
10761 add = int_gptab.gt_entry.gt_bytes - last;
10762
10763 exact = FALSE;
10764 for (look = 1; look < c; look++)
10765 {
10766 if (tab[look].gt_entry.gt_g_value >= val)
10767 tab[look].gt_entry.gt_bytes += add;
10768
10769 if (tab[look].gt_entry.gt_g_value == val)
10770 exact = TRUE;
10771 }
10772
10773 if (! exact)
10774 {
10775 Elf32_gptab *new_tab;
10776 unsigned int max;
10777
10778 /* We need a new table entry. */
10779 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10780 new_tab = bfd_realloc (tab, amt);
10781 if (new_tab == NULL)
10782 {
10783 free (tab);
10784 return FALSE;
10785 }
10786 tab = new_tab;
10787 tab[c].gt_entry.gt_g_value = val;
10788 tab[c].gt_entry.gt_bytes = add;
10789
10790 /* Merge in the size for the next smallest -G
10791 value, since that will be implied by this new
10792 value. */
10793 max = 0;
10794 for (look = 1; look < c; look++)
10795 {
10796 if (tab[look].gt_entry.gt_g_value < val
10797 && (max == 0
10798 || (tab[look].gt_entry.gt_g_value
10799 > tab[max].gt_entry.gt_g_value)))
10800 max = look;
10801 }
10802 if (max != 0)
10803 tab[c].gt_entry.gt_bytes +=
10804 tab[max].gt_entry.gt_bytes;
10805
10806 ++c;
10807 }
10808
10809 last = int_gptab.gt_entry.gt_bytes;
10810 }
10811
10812 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10813 elf_link_input_bfd ignores this section. */
10814 input_section->flags &= ~SEC_HAS_CONTENTS;
10815 }
10816
10817 /* The table must be sorted by -G value. */
10818 if (c > 2)
10819 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10820
10821 /* Swap out the table. */
10822 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10823 ext_tab = bfd_alloc (abfd, amt);
10824 if (ext_tab == NULL)
10825 {
10826 free (tab);
10827 return FALSE;
10828 }
10829
10830 for (j = 0; j < c; j++)
10831 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10832 free (tab);
10833
10834 o->size = c * sizeof (Elf32_External_gptab);
10835 o->contents = (bfd_byte *) ext_tab;
10836
10837 /* Skip this section later on (I don't think this currently
10838 matters, but someday it might). */
10839 o->map_head.link_order = NULL;
10840 }
10841 }
10842
10843 /* Invoke the regular ELF backend linker to do all the work. */
10844 if (!bfd_elf_final_link (abfd, info))
10845 return FALSE;
10846
10847 /* Now write out the computed sections. */
10848
10849 if (reginfo_sec != NULL)
10850 {
10851 Elf32_External_RegInfo ext;
10852
10853 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10854 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10855 return FALSE;
10856 }
10857
10858 if (mdebug_sec != NULL)
10859 {
10860 BFD_ASSERT (abfd->output_has_begun);
10861 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10862 swap, info,
10863 mdebug_sec->filepos))
10864 return FALSE;
10865
10866 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10867 }
10868
10869 if (gptab_data_sec != NULL)
10870 {
10871 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10872 gptab_data_sec->contents,
10873 0, gptab_data_sec->size))
10874 return FALSE;
10875 }
10876
10877 if (gptab_bss_sec != NULL)
10878 {
10879 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10880 gptab_bss_sec->contents,
10881 0, gptab_bss_sec->size))
10882 return FALSE;
10883 }
10884
10885 if (SGI_COMPAT (abfd))
10886 {
10887 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10888 if (rtproc_sec != NULL)
10889 {
10890 if (! bfd_set_section_contents (abfd, rtproc_sec,
10891 rtproc_sec->contents,
10892 0, rtproc_sec->size))
10893 return FALSE;
10894 }
10895 }
10896
10897 return TRUE;
10898 }
10899 \f
10900 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10901
10902 struct mips_mach_extension {
10903 unsigned long extension, base;
10904 };
10905
10906
10907 /* An array describing how BFD machines relate to one another. The entries
10908 are ordered topologically with MIPS I extensions listed last. */
10909
10910 static const struct mips_mach_extension mips_mach_extensions[] = {
10911 /* MIPS64 extensions. */
10912 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10913 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10914
10915 /* MIPS V extensions. */
10916 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10917
10918 /* R10000 extensions. */
10919 { bfd_mach_mips12000, bfd_mach_mips10000 },
10920
10921 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10922 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10923 better to allow vr5400 and vr5500 code to be merged anyway, since
10924 many libraries will just use the core ISA. Perhaps we could add
10925 some sort of ASE flag if this ever proves a problem. */
10926 { bfd_mach_mips5500, bfd_mach_mips5400 },
10927 { bfd_mach_mips5400, bfd_mach_mips5000 },
10928
10929 /* MIPS IV extensions. */
10930 { bfd_mach_mips5, bfd_mach_mips8000 },
10931 { bfd_mach_mips10000, bfd_mach_mips8000 },
10932 { bfd_mach_mips5000, bfd_mach_mips8000 },
10933 { bfd_mach_mips7000, bfd_mach_mips8000 },
10934 { bfd_mach_mips9000, bfd_mach_mips8000 },
10935
10936 /* VR4100 extensions. */
10937 { bfd_mach_mips4120, bfd_mach_mips4100 },
10938 { bfd_mach_mips4111, bfd_mach_mips4100 },
10939
10940 /* MIPS III extensions. */
10941 { bfd_mach_mips8000, bfd_mach_mips4000 },
10942 { bfd_mach_mips4650, bfd_mach_mips4000 },
10943 { bfd_mach_mips4600, bfd_mach_mips4000 },
10944 { bfd_mach_mips4400, bfd_mach_mips4000 },
10945 { bfd_mach_mips4300, bfd_mach_mips4000 },
10946 { bfd_mach_mips4100, bfd_mach_mips4000 },
10947 { bfd_mach_mips4010, bfd_mach_mips4000 },
10948
10949 /* MIPS32 extensions. */
10950 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10951
10952 /* MIPS II extensions. */
10953 { bfd_mach_mips4000, bfd_mach_mips6000 },
10954 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10955
10956 /* MIPS I extensions. */
10957 { bfd_mach_mips6000, bfd_mach_mips3000 },
10958 { bfd_mach_mips3900, bfd_mach_mips3000 }
10959 };
10960
10961
10962 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10963
10964 static bfd_boolean
10965 mips_mach_extends_p (unsigned long base, unsigned long extension)
10966 {
10967 size_t i;
10968
10969 if (extension == base)
10970 return TRUE;
10971
10972 if (base == bfd_mach_mipsisa32
10973 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10974 return TRUE;
10975
10976 if (base == bfd_mach_mipsisa32r2
10977 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10978 return TRUE;
10979
10980 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10981 if (extension == mips_mach_extensions[i].extension)
10982 {
10983 extension = mips_mach_extensions[i].base;
10984 if (extension == base)
10985 return TRUE;
10986 }
10987
10988 return FALSE;
10989 }
10990
10991
10992 /* Return true if the given ELF header flags describe a 32-bit binary. */
10993
10994 static bfd_boolean
10995 mips_32bit_flags_p (flagword flags)
10996 {
10997 return ((flags & EF_MIPS_32BITMODE) != 0
10998 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10999 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11000 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11001 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11002 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11003 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
11004 }
11005
11006
11007 /* Merge object attributes from IBFD into OBFD. Raise an error if
11008 there are conflicting attributes. */
11009 static bfd_boolean
11010 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
11011 {
11012 obj_attribute *in_attr;
11013 obj_attribute *out_attr;
11014
11015 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11016 {
11017 /* This is the first object. Copy the attributes. */
11018 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11019
11020 /* Use the Tag_null value to indicate the attributes have been
11021 initialized. */
11022 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11023
11024 return TRUE;
11025 }
11026
11027 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11028 non-conflicting ones. */
11029 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11030 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11031 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11032 {
11033 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11034 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11035 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11036 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11037 ;
11038 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11039 _bfd_error_handler
11040 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11041 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11042 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11043 _bfd_error_handler
11044 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11045 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11046 else
11047 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11048 {
11049 case 1:
11050 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11051 {
11052 case 2:
11053 _bfd_error_handler
11054 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11055 obfd, ibfd);
11056
11057 case 3:
11058 _bfd_error_handler
11059 (_("Warning: %B uses hard float, %B uses soft float"),
11060 obfd, ibfd);
11061 break;
11062
11063 default:
11064 abort ();
11065 }
11066 break;
11067
11068 case 2:
11069 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11070 {
11071 case 1:
11072 _bfd_error_handler
11073 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11074 ibfd, obfd);
11075
11076 case 3:
11077 _bfd_error_handler
11078 (_("Warning: %B uses hard float, %B uses soft float"),
11079 obfd, ibfd);
11080 break;
11081
11082 default:
11083 abort ();
11084 }
11085 break;
11086
11087 case 3:
11088 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11089 {
11090 case 1:
11091 case 2:
11092 _bfd_error_handler
11093 (_("Warning: %B uses hard float, %B uses soft float"),
11094 ibfd, obfd);
11095 break;
11096
11097 default:
11098 abort ();
11099 }
11100 break;
11101
11102 default:
11103 abort ();
11104 }
11105 }
11106
11107 /* Merge Tag_compatibility attributes and any common GNU ones. */
11108 _bfd_elf_merge_object_attributes (ibfd, obfd);
11109
11110 return TRUE;
11111 }
11112
11113 /* Merge backend specific data from an object file to the output
11114 object file when linking. */
11115
11116 bfd_boolean
11117 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11118 {
11119 flagword old_flags;
11120 flagword new_flags;
11121 bfd_boolean ok;
11122 bfd_boolean null_input_bfd = TRUE;
11123 asection *sec;
11124
11125 /* Check if we have the same endianess */
11126 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11127 {
11128 (*_bfd_error_handler)
11129 (_("%B: endianness incompatible with that of the selected emulation"),
11130 ibfd);
11131 return FALSE;
11132 }
11133
11134 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11135 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11136 return TRUE;
11137
11138 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11139 {
11140 (*_bfd_error_handler)
11141 (_("%B: ABI is incompatible with that of the selected emulation"),
11142 ibfd);
11143 return FALSE;
11144 }
11145
11146 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11147 return FALSE;
11148
11149 new_flags = elf_elfheader (ibfd)->e_flags;
11150 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11151 old_flags = elf_elfheader (obfd)->e_flags;
11152
11153 if (! elf_flags_init (obfd))
11154 {
11155 elf_flags_init (obfd) = TRUE;
11156 elf_elfheader (obfd)->e_flags = new_flags;
11157 elf_elfheader (obfd)->e_ident[EI_CLASS]
11158 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11159
11160 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11161 && (bfd_get_arch_info (obfd)->the_default
11162 || mips_mach_extends_p (bfd_get_mach (obfd),
11163 bfd_get_mach (ibfd))))
11164 {
11165 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11166 bfd_get_mach (ibfd)))
11167 return FALSE;
11168 }
11169
11170 return TRUE;
11171 }
11172
11173 /* Check flag compatibility. */
11174
11175 new_flags &= ~EF_MIPS_NOREORDER;
11176 old_flags &= ~EF_MIPS_NOREORDER;
11177
11178 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11179 doesn't seem to matter. */
11180 new_flags &= ~EF_MIPS_XGOT;
11181 old_flags &= ~EF_MIPS_XGOT;
11182
11183 /* MIPSpro generates ucode info in n64 objects. Again, we should
11184 just be able to ignore this. */
11185 new_flags &= ~EF_MIPS_UCODE;
11186 old_flags &= ~EF_MIPS_UCODE;
11187
11188 /* Don't care about the PIC flags from dynamic objects; they are
11189 PIC by design. */
11190 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11191 && (ibfd->flags & DYNAMIC) != 0)
11192 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11193
11194 if (new_flags == old_flags)
11195 return TRUE;
11196
11197 /* Check to see if the input BFD actually contains any sections.
11198 If not, its flags may not have been initialised either, but it cannot
11199 actually cause any incompatibility. */
11200 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11201 {
11202 /* Ignore synthetic sections and empty .text, .data and .bss sections
11203 which are automatically generated by gas. */
11204 if (strcmp (sec->name, ".reginfo")
11205 && strcmp (sec->name, ".mdebug")
11206 && (sec->size != 0
11207 || (strcmp (sec->name, ".text")
11208 && strcmp (sec->name, ".data")
11209 && strcmp (sec->name, ".bss"))))
11210 {
11211 null_input_bfd = FALSE;
11212 break;
11213 }
11214 }
11215 if (null_input_bfd)
11216 return TRUE;
11217
11218 ok = TRUE;
11219
11220 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11221 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11222 {
11223 (*_bfd_error_handler)
11224 (_("%B: warning: linking PIC files with non-PIC files"),
11225 ibfd);
11226 ok = TRUE;
11227 }
11228
11229 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11230 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11231 if (! (new_flags & EF_MIPS_PIC))
11232 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11233
11234 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11235 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11236
11237 /* Compare the ISAs. */
11238 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11239 {
11240 (*_bfd_error_handler)
11241 (_("%B: linking 32-bit code with 64-bit code"),
11242 ibfd);
11243 ok = FALSE;
11244 }
11245 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11246 {
11247 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11248 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11249 {
11250 /* Copy the architecture info from IBFD to OBFD. Also copy
11251 the 32-bit flag (if set) so that we continue to recognise
11252 OBFD as a 32-bit binary. */
11253 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11254 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11255 elf_elfheader (obfd)->e_flags
11256 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11257
11258 /* Copy across the ABI flags if OBFD doesn't use them
11259 and if that was what caused us to treat IBFD as 32-bit. */
11260 if ((old_flags & EF_MIPS_ABI) == 0
11261 && mips_32bit_flags_p (new_flags)
11262 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11263 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11264 }
11265 else
11266 {
11267 /* The ISAs aren't compatible. */
11268 (*_bfd_error_handler)
11269 (_("%B: linking %s module with previous %s modules"),
11270 ibfd,
11271 bfd_printable_name (ibfd),
11272 bfd_printable_name (obfd));
11273 ok = FALSE;
11274 }
11275 }
11276
11277 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11278 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11279
11280 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11281 does set EI_CLASS differently from any 32-bit ABI. */
11282 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11283 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11284 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11285 {
11286 /* Only error if both are set (to different values). */
11287 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11288 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11289 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11290 {
11291 (*_bfd_error_handler)
11292 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11293 ibfd,
11294 elf_mips_abi_name (ibfd),
11295 elf_mips_abi_name (obfd));
11296 ok = FALSE;
11297 }
11298 new_flags &= ~EF_MIPS_ABI;
11299 old_flags &= ~EF_MIPS_ABI;
11300 }
11301
11302 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11303 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11304 {
11305 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11306
11307 new_flags &= ~ EF_MIPS_ARCH_ASE;
11308 old_flags &= ~ EF_MIPS_ARCH_ASE;
11309 }
11310
11311 /* Warn about any other mismatches */
11312 if (new_flags != old_flags)
11313 {
11314 (*_bfd_error_handler)
11315 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11316 ibfd, (unsigned long) new_flags,
11317 (unsigned long) old_flags);
11318 ok = FALSE;
11319 }
11320
11321 if (! ok)
11322 {
11323 bfd_set_error (bfd_error_bad_value);
11324 return FALSE;
11325 }
11326
11327 return TRUE;
11328 }
11329
11330 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11331
11332 bfd_boolean
11333 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11334 {
11335 BFD_ASSERT (!elf_flags_init (abfd)
11336 || elf_elfheader (abfd)->e_flags == flags);
11337
11338 elf_elfheader (abfd)->e_flags = flags;
11339 elf_flags_init (abfd) = TRUE;
11340 return TRUE;
11341 }
11342
11343 bfd_boolean
11344 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11345 {
11346 FILE *file = ptr;
11347
11348 BFD_ASSERT (abfd != NULL && ptr != NULL);
11349
11350 /* Print normal ELF private data. */
11351 _bfd_elf_print_private_bfd_data (abfd, ptr);
11352
11353 /* xgettext:c-format */
11354 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11355
11356 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11357 fprintf (file, _(" [abi=O32]"));
11358 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11359 fprintf (file, _(" [abi=O64]"));
11360 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11361 fprintf (file, _(" [abi=EABI32]"));
11362 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11363 fprintf (file, _(" [abi=EABI64]"));
11364 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11365 fprintf (file, _(" [abi unknown]"));
11366 else if (ABI_N32_P (abfd))
11367 fprintf (file, _(" [abi=N32]"));
11368 else if (ABI_64_P (abfd))
11369 fprintf (file, _(" [abi=64]"));
11370 else
11371 fprintf (file, _(" [no abi set]"));
11372
11373 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11374 fprintf (file, " [mips1]");
11375 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11376 fprintf (file, " [mips2]");
11377 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11378 fprintf (file, " [mips3]");
11379 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11380 fprintf (file, " [mips4]");
11381 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11382 fprintf (file, " [mips5]");
11383 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11384 fprintf (file, " [mips32]");
11385 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11386 fprintf (file, " [mips64]");
11387 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11388 fprintf (file, " [mips32r2]");
11389 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11390 fprintf (file, " [mips64r2]");
11391 else
11392 fprintf (file, _(" [unknown ISA]"));
11393
11394 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11395 fprintf (file, " [mdmx]");
11396
11397 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11398 fprintf (file, " [mips16]");
11399
11400 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11401 fprintf (file, " [32bitmode]");
11402 else
11403 fprintf (file, _(" [not 32bitmode]"));
11404
11405 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11406 fprintf (file, " [noreorder]");
11407
11408 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11409 fprintf (file, " [PIC]");
11410
11411 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11412 fprintf (file, " [CPIC]");
11413
11414 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11415 fprintf (file, " [XGOT]");
11416
11417 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11418 fprintf (file, " [UCODE]");
11419
11420 fputc ('\n', file);
11421
11422 return TRUE;
11423 }
11424
11425 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11426 {
11427 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11428 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11429 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11430 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11431 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11432 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11433 { NULL, 0, 0, 0, 0 }
11434 };
11435
11436 /* Merge non visibility st_other attributes. Ensure that the
11437 STO_OPTIONAL flag is copied into h->other, even if this is not a
11438 definiton of the symbol. */
11439 void
11440 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11441 const Elf_Internal_Sym *isym,
11442 bfd_boolean definition,
11443 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11444 {
11445 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11446 {
11447 unsigned char other;
11448
11449 other = (definition ? isym->st_other : h->other);
11450 other &= ~ELF_ST_VISIBILITY (-1);
11451 h->other = other | ELF_ST_VISIBILITY (h->other);
11452 }
11453
11454 if (!definition
11455 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11456 h->other |= STO_OPTIONAL;
11457 }
11458
11459 /* Decide whether an undefined symbol is special and can be ignored.
11460 This is the case for OPTIONAL symbols on IRIX. */
11461 bfd_boolean
11462 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11463 {
11464 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11465 }
11466
11467 bfd_boolean
11468 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11469 {
11470 return (sym->st_shndx == SHN_COMMON
11471 || sym->st_shndx == SHN_MIPS_ACOMMON
11472 || sym->st_shndx == SHN_MIPS_SCOMMON);
11473 }
This page took 0.276649 seconds and 4 git commands to generate.