cdc81a229d5bf770c1d998a5d4c207e120dd193d
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 \f
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488 \f
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips_elf_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
571
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
585
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
614
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
618
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
622
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
626
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
647
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
674 \f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
712 \f
713 /* The format of the first PLT entry in a VxWorks executable. */
714 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
715 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
716 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
717 0x8f390008, /* lw t9, 8(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
720 0x00000000 /* nop */
721 };
722
723 /* The format of subsequent PLT entries. */
724 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
725 0x10000000, /* b .PLT_resolver */
726 0x24180000, /* li t8, <pltindex> */
727 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
728 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
729 0x8f390000, /* lw t9, 0(t9) */
730 0x00000000, /* nop */
731 0x03200008, /* jr t9 */
732 0x00000000 /* nop */
733 };
734
735 /* The format of the first PLT entry in a VxWorks shared object. */
736 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
737 0x8f990008, /* lw t9, 8(gp) */
738 0x00000000, /* nop */
739 0x03200008, /* jr t9 */
740 0x00000000, /* nop */
741 0x00000000, /* nop */
742 0x00000000 /* nop */
743 };
744
745 /* The format of subsequent PLT entries. */
746 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
747 0x10000000, /* b .PLT_resolver */
748 0x24180000 /* li t8, <pltindex> */
749 };
750 \f
751 /* Look up an entry in a MIPS ELF linker hash table. */
752
753 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
754 ((struct mips_elf_link_hash_entry *) \
755 elf_link_hash_lookup (&(table)->root, (string), (create), \
756 (copy), (follow)))
757
758 /* Traverse a MIPS ELF linker hash table. */
759
760 #define mips_elf_link_hash_traverse(table, func, info) \
761 (elf_link_hash_traverse \
762 (&(table)->root, \
763 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
764 (info)))
765
766 /* Get the MIPS ELF linker hash table from a link_info structure. */
767
768 #define mips_elf_hash_table(p) \
769 ((struct mips_elf_link_hash_table *) ((p)->hash))
770
771 /* Find the base offsets for thread-local storage in this object,
772 for GD/LD and IE/LE respectively. */
773
774 #define TP_OFFSET 0x7000
775 #define DTP_OFFSET 0x8000
776
777 static bfd_vma
778 dtprel_base (struct bfd_link_info *info)
779 {
780 /* If tls_sec is NULL, we should have signalled an error already. */
781 if (elf_hash_table (info)->tls_sec == NULL)
782 return 0;
783 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
784 }
785
786 static bfd_vma
787 tprel_base (struct bfd_link_info *info)
788 {
789 /* If tls_sec is NULL, we should have signalled an error already. */
790 if (elf_hash_table (info)->tls_sec == NULL)
791 return 0;
792 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
793 }
794
795 /* Create an entry in a MIPS ELF linker hash table. */
796
797 static struct bfd_hash_entry *
798 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
799 struct bfd_hash_table *table, const char *string)
800 {
801 struct mips_elf_link_hash_entry *ret =
802 (struct mips_elf_link_hash_entry *) entry;
803
804 /* Allocate the structure if it has not already been allocated by a
805 subclass. */
806 if (ret == NULL)
807 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
808 if (ret == NULL)
809 return (struct bfd_hash_entry *) ret;
810
811 /* Call the allocation method of the superclass. */
812 ret = ((struct mips_elf_link_hash_entry *)
813 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
814 table, string));
815 if (ret != NULL)
816 {
817 /* Set local fields. */
818 memset (&ret->esym, 0, sizeof (EXTR));
819 /* We use -2 as a marker to indicate that the information has
820 not been set. -1 means there is no associated ifd. */
821 ret->esym.ifd = -2;
822 ret->possibly_dynamic_relocs = 0;
823 ret->readonly_reloc = FALSE;
824 ret->no_fn_stub = FALSE;
825 ret->fn_stub = NULL;
826 ret->need_fn_stub = FALSE;
827 ret->call_stub = NULL;
828 ret->call_fp_stub = NULL;
829 ret->forced_local = FALSE;
830 ret->is_branch_target = FALSE;
831 ret->is_relocation_target = FALSE;
832 ret->tls_type = GOT_NORMAL;
833 }
834
835 return (struct bfd_hash_entry *) ret;
836 }
837
838 bfd_boolean
839 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
840 {
841 if (!sec->used_by_bfd)
842 {
843 struct _mips_elf_section_data *sdata;
844 bfd_size_type amt = sizeof (*sdata);
845
846 sdata = bfd_zalloc (abfd, amt);
847 if (sdata == NULL)
848 return FALSE;
849 sec->used_by_bfd = sdata;
850 }
851
852 return _bfd_elf_new_section_hook (abfd, sec);
853 }
854 \f
855 /* Read ECOFF debugging information from a .mdebug section into a
856 ecoff_debug_info structure. */
857
858 bfd_boolean
859 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
860 struct ecoff_debug_info *debug)
861 {
862 HDRR *symhdr;
863 const struct ecoff_debug_swap *swap;
864 char *ext_hdr;
865
866 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
867 memset (debug, 0, sizeof (*debug));
868
869 ext_hdr = bfd_malloc (swap->external_hdr_size);
870 if (ext_hdr == NULL && swap->external_hdr_size != 0)
871 goto error_return;
872
873 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
874 swap->external_hdr_size))
875 goto error_return;
876
877 symhdr = &debug->symbolic_header;
878 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
879
880 /* The symbolic header contains absolute file offsets and sizes to
881 read. */
882 #define READ(ptr, offset, count, size, type) \
883 if (symhdr->count == 0) \
884 debug->ptr = NULL; \
885 else \
886 { \
887 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
888 debug->ptr = bfd_malloc (amt); \
889 if (debug->ptr == NULL) \
890 goto error_return; \
891 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
892 || bfd_bread (debug->ptr, amt, abfd) != amt) \
893 goto error_return; \
894 }
895
896 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
897 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
898 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
899 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
900 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
901 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
902 union aux_ext *);
903 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
904 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
905 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
906 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
907 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
908 #undef READ
909
910 debug->fdr = NULL;
911
912 return TRUE;
913
914 error_return:
915 if (ext_hdr != NULL)
916 free (ext_hdr);
917 if (debug->line != NULL)
918 free (debug->line);
919 if (debug->external_dnr != NULL)
920 free (debug->external_dnr);
921 if (debug->external_pdr != NULL)
922 free (debug->external_pdr);
923 if (debug->external_sym != NULL)
924 free (debug->external_sym);
925 if (debug->external_opt != NULL)
926 free (debug->external_opt);
927 if (debug->external_aux != NULL)
928 free (debug->external_aux);
929 if (debug->ss != NULL)
930 free (debug->ss);
931 if (debug->ssext != NULL)
932 free (debug->ssext);
933 if (debug->external_fdr != NULL)
934 free (debug->external_fdr);
935 if (debug->external_rfd != NULL)
936 free (debug->external_rfd);
937 if (debug->external_ext != NULL)
938 free (debug->external_ext);
939 return FALSE;
940 }
941 \f
942 /* Swap RPDR (runtime procedure table entry) for output. */
943
944 static void
945 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
946 {
947 H_PUT_S32 (abfd, in->adr, ex->p_adr);
948 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
949 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
950 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
951 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
952 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
953
954 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
955 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
956
957 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
958 }
959
960 /* Create a runtime procedure table from the .mdebug section. */
961
962 static bfd_boolean
963 mips_elf_create_procedure_table (void *handle, bfd *abfd,
964 struct bfd_link_info *info, asection *s,
965 struct ecoff_debug_info *debug)
966 {
967 const struct ecoff_debug_swap *swap;
968 HDRR *hdr = &debug->symbolic_header;
969 RPDR *rpdr, *rp;
970 struct rpdr_ext *erp;
971 void *rtproc;
972 struct pdr_ext *epdr;
973 struct sym_ext *esym;
974 char *ss, **sv;
975 char *str;
976 bfd_size_type size;
977 bfd_size_type count;
978 unsigned long sindex;
979 unsigned long i;
980 PDR pdr;
981 SYMR sym;
982 const char *no_name_func = _("static procedure (no name)");
983
984 epdr = NULL;
985 rpdr = NULL;
986 esym = NULL;
987 ss = NULL;
988 sv = NULL;
989
990 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
991
992 sindex = strlen (no_name_func) + 1;
993 count = hdr->ipdMax;
994 if (count > 0)
995 {
996 size = swap->external_pdr_size;
997
998 epdr = bfd_malloc (size * count);
999 if (epdr == NULL)
1000 goto error_return;
1001
1002 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1003 goto error_return;
1004
1005 size = sizeof (RPDR);
1006 rp = rpdr = bfd_malloc (size * count);
1007 if (rpdr == NULL)
1008 goto error_return;
1009
1010 size = sizeof (char *);
1011 sv = bfd_malloc (size * count);
1012 if (sv == NULL)
1013 goto error_return;
1014
1015 count = hdr->isymMax;
1016 size = swap->external_sym_size;
1017 esym = bfd_malloc (size * count);
1018 if (esym == NULL)
1019 goto error_return;
1020
1021 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1022 goto error_return;
1023
1024 count = hdr->issMax;
1025 ss = bfd_malloc (count);
1026 if (ss == NULL)
1027 goto error_return;
1028 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1029 goto error_return;
1030
1031 count = hdr->ipdMax;
1032 for (i = 0; i < (unsigned long) count; i++, rp++)
1033 {
1034 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1035 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1036 rp->adr = sym.value;
1037 rp->regmask = pdr.regmask;
1038 rp->regoffset = pdr.regoffset;
1039 rp->fregmask = pdr.fregmask;
1040 rp->fregoffset = pdr.fregoffset;
1041 rp->frameoffset = pdr.frameoffset;
1042 rp->framereg = pdr.framereg;
1043 rp->pcreg = pdr.pcreg;
1044 rp->irpss = sindex;
1045 sv[i] = ss + sym.iss;
1046 sindex += strlen (sv[i]) + 1;
1047 }
1048 }
1049
1050 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1051 size = BFD_ALIGN (size, 16);
1052 rtproc = bfd_alloc (abfd, size);
1053 if (rtproc == NULL)
1054 {
1055 mips_elf_hash_table (info)->procedure_count = 0;
1056 goto error_return;
1057 }
1058
1059 mips_elf_hash_table (info)->procedure_count = count + 2;
1060
1061 erp = rtproc;
1062 memset (erp, 0, sizeof (struct rpdr_ext));
1063 erp++;
1064 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1065 strcpy (str, no_name_func);
1066 str += strlen (no_name_func) + 1;
1067 for (i = 0; i < count; i++)
1068 {
1069 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1070 strcpy (str, sv[i]);
1071 str += strlen (sv[i]) + 1;
1072 }
1073 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1074
1075 /* Set the size and contents of .rtproc section. */
1076 s->size = size;
1077 s->contents = rtproc;
1078
1079 /* Skip this section later on (I don't think this currently
1080 matters, but someday it might). */
1081 s->map_head.link_order = NULL;
1082
1083 if (epdr != NULL)
1084 free (epdr);
1085 if (rpdr != NULL)
1086 free (rpdr);
1087 if (esym != NULL)
1088 free (esym);
1089 if (ss != NULL)
1090 free (ss);
1091 if (sv != NULL)
1092 free (sv);
1093
1094 return TRUE;
1095
1096 error_return:
1097 if (epdr != NULL)
1098 free (epdr);
1099 if (rpdr != NULL)
1100 free (rpdr);
1101 if (esym != NULL)
1102 free (esym);
1103 if (ss != NULL)
1104 free (ss);
1105 if (sv != NULL)
1106 free (sv);
1107 return FALSE;
1108 }
1109
1110 /* Check the mips16 stubs for a particular symbol, and see if we can
1111 discard them. */
1112
1113 static bfd_boolean
1114 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1115 void *data ATTRIBUTE_UNUSED)
1116 {
1117 if (h->root.root.type == bfd_link_hash_warning)
1118 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1119
1120 if (h->fn_stub != NULL
1121 && ! h->need_fn_stub)
1122 {
1123 /* We don't need the fn_stub; the only references to this symbol
1124 are 16 bit calls. Clobber the size to 0 to prevent it from
1125 being included in the link. */
1126 h->fn_stub->size = 0;
1127 h->fn_stub->flags &= ~SEC_RELOC;
1128 h->fn_stub->reloc_count = 0;
1129 h->fn_stub->flags |= SEC_EXCLUDE;
1130 }
1131
1132 if (h->call_stub != NULL
1133 && h->root.other == STO_MIPS16)
1134 {
1135 /* We don't need the call_stub; this is a 16 bit function, so
1136 calls from other 16 bit functions are OK. Clobber the size
1137 to 0 to prevent it from being included in the link. */
1138 h->call_stub->size = 0;
1139 h->call_stub->flags &= ~SEC_RELOC;
1140 h->call_stub->reloc_count = 0;
1141 h->call_stub->flags |= SEC_EXCLUDE;
1142 }
1143
1144 if (h->call_fp_stub != NULL
1145 && h->root.other == STO_MIPS16)
1146 {
1147 /* We don't need the call_stub; this is a 16 bit function, so
1148 calls from other 16 bit functions are OK. Clobber the size
1149 to 0 to prevent it from being included in the link. */
1150 h->call_fp_stub->size = 0;
1151 h->call_fp_stub->flags &= ~SEC_RELOC;
1152 h->call_fp_stub->reloc_count = 0;
1153 h->call_fp_stub->flags |= SEC_EXCLUDE;
1154 }
1155
1156 return TRUE;
1157 }
1158 \f
1159 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1160 Most mips16 instructions are 16 bits, but these instructions
1161 are 32 bits.
1162
1163 The format of these instructions is:
1164
1165 +--------------+--------------------------------+
1166 | JALX | X| Imm 20:16 | Imm 25:21 |
1167 +--------------+--------------------------------+
1168 | Immediate 15:0 |
1169 +-----------------------------------------------+
1170
1171 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1172 Note that the immediate value in the first word is swapped.
1173
1174 When producing a relocatable object file, R_MIPS16_26 is
1175 handled mostly like R_MIPS_26. In particular, the addend is
1176 stored as a straight 26-bit value in a 32-bit instruction.
1177 (gas makes life simpler for itself by never adjusting a
1178 R_MIPS16_26 reloc to be against a section, so the addend is
1179 always zero). However, the 32 bit instruction is stored as 2
1180 16-bit values, rather than a single 32-bit value. In a
1181 big-endian file, the result is the same; in a little-endian
1182 file, the two 16-bit halves of the 32 bit value are swapped.
1183 This is so that a disassembler can recognize the jal
1184 instruction.
1185
1186 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1187 instruction stored as two 16-bit values. The addend A is the
1188 contents of the targ26 field. The calculation is the same as
1189 R_MIPS_26. When storing the calculated value, reorder the
1190 immediate value as shown above, and don't forget to store the
1191 value as two 16-bit values.
1192
1193 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1194 defined as
1195
1196 big-endian:
1197 +--------+----------------------+
1198 | | |
1199 | | targ26-16 |
1200 |31 26|25 0|
1201 +--------+----------------------+
1202
1203 little-endian:
1204 +----------+------+-------------+
1205 | | | |
1206 | sub1 | | sub2 |
1207 |0 9|10 15|16 31|
1208 +----------+--------------------+
1209 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1210 ((sub1 << 16) | sub2)).
1211
1212 When producing a relocatable object file, the calculation is
1213 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1214 When producing a fully linked file, the calculation is
1215 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1216 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1217
1218 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1219 mode. A typical instruction will have a format like this:
1220
1221 +--------------+--------------------------------+
1222 | EXTEND | Imm 10:5 | Imm 15:11 |
1223 +--------------+--------------------------------+
1224 | Major | rx | ry | Imm 4:0 |
1225 +--------------+--------------------------------+
1226
1227 EXTEND is the five bit value 11110. Major is the instruction
1228 opcode.
1229
1230 This is handled exactly like R_MIPS_GPREL16, except that the
1231 addend is retrieved and stored as shown in this diagram; that
1232 is, the Imm fields above replace the V-rel16 field.
1233
1234 All we need to do here is shuffle the bits appropriately. As
1235 above, the two 16-bit halves must be swapped on a
1236 little-endian system.
1237
1238 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1239 access data when neither GP-relative nor PC-relative addressing
1240 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1241 except that the addend is retrieved and stored as shown above
1242 for R_MIPS16_GPREL.
1243 */
1244 void
1245 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1246 bfd_boolean jal_shuffle, bfd_byte *data)
1247 {
1248 bfd_vma extend, insn, val;
1249
1250 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1251 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1252 return;
1253
1254 /* Pick up the mips16 extend instruction and the real instruction. */
1255 extend = bfd_get_16 (abfd, data);
1256 insn = bfd_get_16 (abfd, data + 2);
1257 if (r_type == R_MIPS16_26)
1258 {
1259 if (jal_shuffle)
1260 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1261 | ((extend & 0x1f) << 21) | insn;
1262 else
1263 val = extend << 16 | insn;
1264 }
1265 else
1266 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1267 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1268 bfd_put_32 (abfd, val, data);
1269 }
1270
1271 void
1272 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1273 bfd_boolean jal_shuffle, bfd_byte *data)
1274 {
1275 bfd_vma extend, insn, val;
1276
1277 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1278 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1279 return;
1280
1281 val = bfd_get_32 (abfd, data);
1282 if (r_type == R_MIPS16_26)
1283 {
1284 if (jal_shuffle)
1285 {
1286 insn = val & 0xffff;
1287 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1288 | ((val >> 21) & 0x1f);
1289 }
1290 else
1291 {
1292 insn = val & 0xffff;
1293 extend = val >> 16;
1294 }
1295 }
1296 else
1297 {
1298 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1299 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1300 }
1301 bfd_put_16 (abfd, insn, data + 2);
1302 bfd_put_16 (abfd, extend, data);
1303 }
1304
1305 bfd_reloc_status_type
1306 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1307 arelent *reloc_entry, asection *input_section,
1308 bfd_boolean relocatable, void *data, bfd_vma gp)
1309 {
1310 bfd_vma relocation;
1311 bfd_signed_vma val;
1312 bfd_reloc_status_type status;
1313
1314 if (bfd_is_com_section (symbol->section))
1315 relocation = 0;
1316 else
1317 relocation = symbol->value;
1318
1319 relocation += symbol->section->output_section->vma;
1320 relocation += symbol->section->output_offset;
1321
1322 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1323 return bfd_reloc_outofrange;
1324
1325 /* Set val to the offset into the section or symbol. */
1326 val = reloc_entry->addend;
1327
1328 _bfd_mips_elf_sign_extend (val, 16);
1329
1330 /* Adjust val for the final section location and GP value. If we
1331 are producing relocatable output, we don't want to do this for
1332 an external symbol. */
1333 if (! relocatable
1334 || (symbol->flags & BSF_SECTION_SYM) != 0)
1335 val += relocation - gp;
1336
1337 if (reloc_entry->howto->partial_inplace)
1338 {
1339 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1340 (bfd_byte *) data
1341 + reloc_entry->address);
1342 if (status != bfd_reloc_ok)
1343 return status;
1344 }
1345 else
1346 reloc_entry->addend = val;
1347
1348 if (relocatable)
1349 reloc_entry->address += input_section->output_offset;
1350
1351 return bfd_reloc_ok;
1352 }
1353
1354 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1355 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1356 that contains the relocation field and DATA points to the start of
1357 INPUT_SECTION. */
1358
1359 struct mips_hi16
1360 {
1361 struct mips_hi16 *next;
1362 bfd_byte *data;
1363 asection *input_section;
1364 arelent rel;
1365 };
1366
1367 /* FIXME: This should not be a static variable. */
1368
1369 static struct mips_hi16 *mips_hi16_list;
1370
1371 /* A howto special_function for REL *HI16 relocations. We can only
1372 calculate the correct value once we've seen the partnering
1373 *LO16 relocation, so just save the information for later.
1374
1375 The ABI requires that the *LO16 immediately follow the *HI16.
1376 However, as a GNU extension, we permit an arbitrary number of
1377 *HI16s to be associated with a single *LO16. This significantly
1378 simplies the relocation handling in gcc. */
1379
1380 bfd_reloc_status_type
1381 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1382 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1383 asection *input_section, bfd *output_bfd,
1384 char **error_message ATTRIBUTE_UNUSED)
1385 {
1386 struct mips_hi16 *n;
1387
1388 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1389 return bfd_reloc_outofrange;
1390
1391 n = bfd_malloc (sizeof *n);
1392 if (n == NULL)
1393 return bfd_reloc_outofrange;
1394
1395 n->next = mips_hi16_list;
1396 n->data = data;
1397 n->input_section = input_section;
1398 n->rel = *reloc_entry;
1399 mips_hi16_list = n;
1400
1401 if (output_bfd != NULL)
1402 reloc_entry->address += input_section->output_offset;
1403
1404 return bfd_reloc_ok;
1405 }
1406
1407 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1408 like any other 16-bit relocation when applied to global symbols, but is
1409 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1410
1411 bfd_reloc_status_type
1412 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1413 void *data, asection *input_section,
1414 bfd *output_bfd, char **error_message)
1415 {
1416 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1417 || bfd_is_und_section (bfd_get_section (symbol))
1418 || bfd_is_com_section (bfd_get_section (symbol)))
1419 /* The relocation is against a global symbol. */
1420 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1421 input_section, output_bfd,
1422 error_message);
1423
1424 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd, error_message);
1426 }
1427
1428 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1429 is a straightforward 16 bit inplace relocation, but we must deal with
1430 any partnering high-part relocations as well. */
1431
1432 bfd_reloc_status_type
1433 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1434 void *data, asection *input_section,
1435 bfd *output_bfd, char **error_message)
1436 {
1437 bfd_vma vallo;
1438 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1439
1440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1441 return bfd_reloc_outofrange;
1442
1443 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1444 location);
1445 vallo = bfd_get_32 (abfd, location);
1446 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1447 location);
1448
1449 while (mips_hi16_list != NULL)
1450 {
1451 bfd_reloc_status_type ret;
1452 struct mips_hi16 *hi;
1453
1454 hi = mips_hi16_list;
1455
1456 /* R_MIPS_GOT16 relocations are something of a special case. We
1457 want to install the addend in the same way as for a R_MIPS_HI16
1458 relocation (with a rightshift of 16). However, since GOT16
1459 relocations can also be used with global symbols, their howto
1460 has a rightshift of 0. */
1461 if (hi->rel.howto->type == R_MIPS_GOT16)
1462 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1463
1464 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1465 carry or borrow will induce a change of +1 or -1 in the high part. */
1466 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1467
1468 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1469 hi->input_section, output_bfd,
1470 error_message);
1471 if (ret != bfd_reloc_ok)
1472 return ret;
1473
1474 mips_hi16_list = hi->next;
1475 free (hi);
1476 }
1477
1478 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1479 input_section, output_bfd,
1480 error_message);
1481 }
1482
1483 /* A generic howto special_function. This calculates and installs the
1484 relocation itself, thus avoiding the oft-discussed problems in
1485 bfd_perform_relocation and bfd_install_relocation. */
1486
1487 bfd_reloc_status_type
1488 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1489 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1490 asection *input_section, bfd *output_bfd,
1491 char **error_message ATTRIBUTE_UNUSED)
1492 {
1493 bfd_signed_vma val;
1494 bfd_reloc_status_type status;
1495 bfd_boolean relocatable;
1496
1497 relocatable = (output_bfd != NULL);
1498
1499 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1500 return bfd_reloc_outofrange;
1501
1502 /* Build up the field adjustment in VAL. */
1503 val = 0;
1504 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1505 {
1506 /* Either we're calculating the final field value or we have a
1507 relocation against a section symbol. Add in the section's
1508 offset or address. */
1509 val += symbol->section->output_section->vma;
1510 val += symbol->section->output_offset;
1511 }
1512
1513 if (!relocatable)
1514 {
1515 /* We're calculating the final field value. Add in the symbol's value
1516 and, if pc-relative, subtract the address of the field itself. */
1517 val += symbol->value;
1518 if (reloc_entry->howto->pc_relative)
1519 {
1520 val -= input_section->output_section->vma;
1521 val -= input_section->output_offset;
1522 val -= reloc_entry->address;
1523 }
1524 }
1525
1526 /* VAL is now the final adjustment. If we're keeping this relocation
1527 in the output file, and if the relocation uses a separate addend,
1528 we just need to add VAL to that addend. Otherwise we need to add
1529 VAL to the relocation field itself. */
1530 if (relocatable && !reloc_entry->howto->partial_inplace)
1531 reloc_entry->addend += val;
1532 else
1533 {
1534 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1535
1536 /* Add in the separate addend, if any. */
1537 val += reloc_entry->addend;
1538
1539 /* Add VAL to the relocation field. */
1540 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1541 location);
1542 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1543 location);
1544 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546
1547 if (status != bfd_reloc_ok)
1548 return status;
1549 }
1550
1551 if (relocatable)
1552 reloc_entry->address += input_section->output_offset;
1553
1554 return bfd_reloc_ok;
1555 }
1556 \f
1557 /* Swap an entry in a .gptab section. Note that these routines rely
1558 on the equivalence of the two elements of the union. */
1559
1560 static void
1561 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1562 Elf32_gptab *in)
1563 {
1564 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1565 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1566 }
1567
1568 static void
1569 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1570 Elf32_External_gptab *ex)
1571 {
1572 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1573 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1574 }
1575
1576 static void
1577 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1578 Elf32_External_compact_rel *ex)
1579 {
1580 H_PUT_32 (abfd, in->id1, ex->id1);
1581 H_PUT_32 (abfd, in->num, ex->num);
1582 H_PUT_32 (abfd, in->id2, ex->id2);
1583 H_PUT_32 (abfd, in->offset, ex->offset);
1584 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1585 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1586 }
1587
1588 static void
1589 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1590 Elf32_External_crinfo *ex)
1591 {
1592 unsigned long l;
1593
1594 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1595 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1596 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1597 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1598 H_PUT_32 (abfd, l, ex->info);
1599 H_PUT_32 (abfd, in->konst, ex->konst);
1600 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1601 }
1602 \f
1603 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1604 routines swap this structure in and out. They are used outside of
1605 BFD, so they are globally visible. */
1606
1607 void
1608 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1609 Elf32_RegInfo *in)
1610 {
1611 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1612 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1613 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1614 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1615 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1616 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1617 }
1618
1619 void
1620 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1621 Elf32_External_RegInfo *ex)
1622 {
1623 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1624 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1625 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1626 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1627 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1628 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1629 }
1630
1631 /* In the 64 bit ABI, the .MIPS.options section holds register
1632 information in an Elf64_Reginfo structure. These routines swap
1633 them in and out. They are globally visible because they are used
1634 outside of BFD. These routines are here so that gas can call them
1635 without worrying about whether the 64 bit ABI has been included. */
1636
1637 void
1638 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1639 Elf64_Internal_RegInfo *in)
1640 {
1641 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1642 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1643 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1644 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1645 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1646 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1647 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1648 }
1649
1650 void
1651 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1652 Elf64_External_RegInfo *ex)
1653 {
1654 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1655 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1656 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1657 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1658 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1659 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1660 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1661 }
1662
1663 /* Swap in an options header. */
1664
1665 void
1666 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1667 Elf_Internal_Options *in)
1668 {
1669 in->kind = H_GET_8 (abfd, ex->kind);
1670 in->size = H_GET_8 (abfd, ex->size);
1671 in->section = H_GET_16 (abfd, ex->section);
1672 in->info = H_GET_32 (abfd, ex->info);
1673 }
1674
1675 /* Swap out an options header. */
1676
1677 void
1678 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1679 Elf_External_Options *ex)
1680 {
1681 H_PUT_8 (abfd, in->kind, ex->kind);
1682 H_PUT_8 (abfd, in->size, ex->size);
1683 H_PUT_16 (abfd, in->section, ex->section);
1684 H_PUT_32 (abfd, in->info, ex->info);
1685 }
1686 \f
1687 /* This function is called via qsort() to sort the dynamic relocation
1688 entries by increasing r_symndx value. */
1689
1690 static int
1691 sort_dynamic_relocs (const void *arg1, const void *arg2)
1692 {
1693 Elf_Internal_Rela int_reloc1;
1694 Elf_Internal_Rela int_reloc2;
1695
1696 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1697 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1698
1699 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1700 }
1701
1702 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1703
1704 static int
1705 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1706 const void *arg2 ATTRIBUTE_UNUSED)
1707 {
1708 #ifdef BFD64
1709 Elf_Internal_Rela int_reloc1[3];
1710 Elf_Internal_Rela int_reloc2[3];
1711
1712 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1713 (reldyn_sorting_bfd, arg1, int_reloc1);
1714 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1715 (reldyn_sorting_bfd, arg2, int_reloc2);
1716
1717 return (ELF64_R_SYM (int_reloc1[0].r_info)
1718 - ELF64_R_SYM (int_reloc2[0].r_info));
1719 #else
1720 abort ();
1721 #endif
1722 }
1723
1724
1725 /* This routine is used to write out ECOFF debugging external symbol
1726 information. It is called via mips_elf_link_hash_traverse. The
1727 ECOFF external symbol information must match the ELF external
1728 symbol information. Unfortunately, at this point we don't know
1729 whether a symbol is required by reloc information, so the two
1730 tables may wind up being different. We must sort out the external
1731 symbol information before we can set the final size of the .mdebug
1732 section, and we must set the size of the .mdebug section before we
1733 can relocate any sections, and we can't know which symbols are
1734 required by relocation until we relocate the sections.
1735 Fortunately, it is relatively unlikely that any symbol will be
1736 stripped but required by a reloc. In particular, it can not happen
1737 when generating a final executable. */
1738
1739 static bfd_boolean
1740 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1741 {
1742 struct extsym_info *einfo = data;
1743 bfd_boolean strip;
1744 asection *sec, *output_section;
1745
1746 if (h->root.root.type == bfd_link_hash_warning)
1747 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1748
1749 if (h->root.indx == -2)
1750 strip = FALSE;
1751 else if ((h->root.def_dynamic
1752 || h->root.ref_dynamic
1753 || h->root.type == bfd_link_hash_new)
1754 && !h->root.def_regular
1755 && !h->root.ref_regular)
1756 strip = TRUE;
1757 else if (einfo->info->strip == strip_all
1758 || (einfo->info->strip == strip_some
1759 && bfd_hash_lookup (einfo->info->keep_hash,
1760 h->root.root.root.string,
1761 FALSE, FALSE) == NULL))
1762 strip = TRUE;
1763 else
1764 strip = FALSE;
1765
1766 if (strip)
1767 return TRUE;
1768
1769 if (h->esym.ifd == -2)
1770 {
1771 h->esym.jmptbl = 0;
1772 h->esym.cobol_main = 0;
1773 h->esym.weakext = 0;
1774 h->esym.reserved = 0;
1775 h->esym.ifd = ifdNil;
1776 h->esym.asym.value = 0;
1777 h->esym.asym.st = stGlobal;
1778
1779 if (h->root.root.type == bfd_link_hash_undefined
1780 || h->root.root.type == bfd_link_hash_undefweak)
1781 {
1782 const char *name;
1783
1784 /* Use undefined class. Also, set class and type for some
1785 special symbols. */
1786 name = h->root.root.root.string;
1787 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1788 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1789 {
1790 h->esym.asym.sc = scData;
1791 h->esym.asym.st = stLabel;
1792 h->esym.asym.value = 0;
1793 }
1794 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1795 {
1796 h->esym.asym.sc = scAbs;
1797 h->esym.asym.st = stLabel;
1798 h->esym.asym.value =
1799 mips_elf_hash_table (einfo->info)->procedure_count;
1800 }
1801 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1802 {
1803 h->esym.asym.sc = scAbs;
1804 h->esym.asym.st = stLabel;
1805 h->esym.asym.value = elf_gp (einfo->abfd);
1806 }
1807 else
1808 h->esym.asym.sc = scUndefined;
1809 }
1810 else if (h->root.root.type != bfd_link_hash_defined
1811 && h->root.root.type != bfd_link_hash_defweak)
1812 h->esym.asym.sc = scAbs;
1813 else
1814 {
1815 const char *name;
1816
1817 sec = h->root.root.u.def.section;
1818 output_section = sec->output_section;
1819
1820 /* When making a shared library and symbol h is the one from
1821 the another shared library, OUTPUT_SECTION may be null. */
1822 if (output_section == NULL)
1823 h->esym.asym.sc = scUndefined;
1824 else
1825 {
1826 name = bfd_section_name (output_section->owner, output_section);
1827
1828 if (strcmp (name, ".text") == 0)
1829 h->esym.asym.sc = scText;
1830 else if (strcmp (name, ".data") == 0)
1831 h->esym.asym.sc = scData;
1832 else if (strcmp (name, ".sdata") == 0)
1833 h->esym.asym.sc = scSData;
1834 else if (strcmp (name, ".rodata") == 0
1835 || strcmp (name, ".rdata") == 0)
1836 h->esym.asym.sc = scRData;
1837 else if (strcmp (name, ".bss") == 0)
1838 h->esym.asym.sc = scBss;
1839 else if (strcmp (name, ".sbss") == 0)
1840 h->esym.asym.sc = scSBss;
1841 else if (strcmp (name, ".init") == 0)
1842 h->esym.asym.sc = scInit;
1843 else if (strcmp (name, ".fini") == 0)
1844 h->esym.asym.sc = scFini;
1845 else
1846 h->esym.asym.sc = scAbs;
1847 }
1848 }
1849
1850 h->esym.asym.reserved = 0;
1851 h->esym.asym.index = indexNil;
1852 }
1853
1854 if (h->root.root.type == bfd_link_hash_common)
1855 h->esym.asym.value = h->root.root.u.c.size;
1856 else if (h->root.root.type == bfd_link_hash_defined
1857 || h->root.root.type == bfd_link_hash_defweak)
1858 {
1859 if (h->esym.asym.sc == scCommon)
1860 h->esym.asym.sc = scBss;
1861 else if (h->esym.asym.sc == scSCommon)
1862 h->esym.asym.sc = scSBss;
1863
1864 sec = h->root.root.u.def.section;
1865 output_section = sec->output_section;
1866 if (output_section != NULL)
1867 h->esym.asym.value = (h->root.root.u.def.value
1868 + sec->output_offset
1869 + output_section->vma);
1870 else
1871 h->esym.asym.value = 0;
1872 }
1873 else if (h->root.needs_plt)
1874 {
1875 struct mips_elf_link_hash_entry *hd = h;
1876 bfd_boolean no_fn_stub = h->no_fn_stub;
1877
1878 while (hd->root.root.type == bfd_link_hash_indirect)
1879 {
1880 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1881 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1882 }
1883
1884 if (!no_fn_stub)
1885 {
1886 /* Set type and value for a symbol with a function stub. */
1887 h->esym.asym.st = stProc;
1888 sec = hd->root.root.u.def.section;
1889 if (sec == NULL)
1890 h->esym.asym.value = 0;
1891 else
1892 {
1893 output_section = sec->output_section;
1894 if (output_section != NULL)
1895 h->esym.asym.value = (hd->root.plt.offset
1896 + sec->output_offset
1897 + output_section->vma);
1898 else
1899 h->esym.asym.value = 0;
1900 }
1901 }
1902 }
1903
1904 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1905 h->root.root.root.string,
1906 &h->esym))
1907 {
1908 einfo->failed = TRUE;
1909 return FALSE;
1910 }
1911
1912 return TRUE;
1913 }
1914
1915 /* A comparison routine used to sort .gptab entries. */
1916
1917 static int
1918 gptab_compare (const void *p1, const void *p2)
1919 {
1920 const Elf32_gptab *a1 = p1;
1921 const Elf32_gptab *a2 = p2;
1922
1923 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1924 }
1925 \f
1926 /* Functions to manage the got entry hash table. */
1927
1928 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1929 hash number. */
1930
1931 static INLINE hashval_t
1932 mips_elf_hash_bfd_vma (bfd_vma addr)
1933 {
1934 #ifdef BFD64
1935 return addr + (addr >> 32);
1936 #else
1937 return addr;
1938 #endif
1939 }
1940
1941 /* got_entries only match if they're identical, except for gotidx, so
1942 use all fields to compute the hash, and compare the appropriate
1943 union members. */
1944
1945 static hashval_t
1946 mips_elf_got_entry_hash (const void *entry_)
1947 {
1948 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1949
1950 return entry->symndx
1951 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1952 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1953 : entry->abfd->id
1954 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1955 : entry->d.h->root.root.root.hash));
1956 }
1957
1958 static int
1959 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1960 {
1961 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1962 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1963
1964 /* An LDM entry can only match another LDM entry. */
1965 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1966 return 0;
1967
1968 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1969 && (! e1->abfd ? e1->d.address == e2->d.address
1970 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1971 : e1->d.h == e2->d.h);
1972 }
1973
1974 /* multi_got_entries are still a match in the case of global objects,
1975 even if the input bfd in which they're referenced differs, so the
1976 hash computation and compare functions are adjusted
1977 accordingly. */
1978
1979 static hashval_t
1980 mips_elf_multi_got_entry_hash (const void *entry_)
1981 {
1982 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1983
1984 return entry->symndx
1985 + (! entry->abfd
1986 ? mips_elf_hash_bfd_vma (entry->d.address)
1987 : entry->symndx >= 0
1988 ? ((entry->tls_type & GOT_TLS_LDM)
1989 ? (GOT_TLS_LDM << 17)
1990 : (entry->abfd->id
1991 + mips_elf_hash_bfd_vma (entry->d.addend)))
1992 : entry->d.h->root.root.root.hash);
1993 }
1994
1995 static int
1996 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1997 {
1998 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1999 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2000
2001 /* Any two LDM entries match. */
2002 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2003 return 1;
2004
2005 /* Nothing else matches an LDM entry. */
2006 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2007 return 0;
2008
2009 return e1->symndx == e2->symndx
2010 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2011 : e1->abfd == NULL || e2->abfd == NULL
2012 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2013 : e1->d.h == e2->d.h);
2014 }
2015 \f
2016 /* Return the dynamic relocation section. If it doesn't exist, try to
2017 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2018 if creation fails. */
2019
2020 static asection *
2021 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2022 {
2023 const char *dname;
2024 asection *sreloc;
2025 bfd *dynobj;
2026
2027 dname = MIPS_ELF_REL_DYN_NAME (info);
2028 dynobj = elf_hash_table (info)->dynobj;
2029 sreloc = bfd_get_section_by_name (dynobj, dname);
2030 if (sreloc == NULL && create_p)
2031 {
2032 sreloc = bfd_make_section_with_flags (dynobj, dname,
2033 (SEC_ALLOC
2034 | SEC_LOAD
2035 | SEC_HAS_CONTENTS
2036 | SEC_IN_MEMORY
2037 | SEC_LINKER_CREATED
2038 | SEC_READONLY));
2039 if (sreloc == NULL
2040 || ! bfd_set_section_alignment (dynobj, sreloc,
2041 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2042 return NULL;
2043 }
2044 return sreloc;
2045 }
2046
2047 /* Returns the GOT section for ABFD. */
2048
2049 static asection *
2050 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2051 {
2052 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2053 if (sgot == NULL
2054 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2055 return NULL;
2056 return sgot;
2057 }
2058
2059 /* Returns the GOT information associated with the link indicated by
2060 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2061 section. */
2062
2063 static struct mips_got_info *
2064 mips_elf_got_info (bfd *abfd, asection **sgotp)
2065 {
2066 asection *sgot;
2067 struct mips_got_info *g;
2068
2069 sgot = mips_elf_got_section (abfd, TRUE);
2070 BFD_ASSERT (sgot != NULL);
2071 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2072 g = mips_elf_section_data (sgot)->u.got_info;
2073 BFD_ASSERT (g != NULL);
2074
2075 if (sgotp)
2076 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2077
2078 return g;
2079 }
2080
2081 /* Count the number of relocations needed for a TLS GOT entry, with
2082 access types from TLS_TYPE, and symbol H (or a local symbol if H
2083 is NULL). */
2084
2085 static int
2086 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2087 struct elf_link_hash_entry *h)
2088 {
2089 int indx = 0;
2090 int ret = 0;
2091 bfd_boolean need_relocs = FALSE;
2092 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2093
2094 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2095 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2096 indx = h->dynindx;
2097
2098 if ((info->shared || indx != 0)
2099 && (h == NULL
2100 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2101 || h->root.type != bfd_link_hash_undefweak))
2102 need_relocs = TRUE;
2103
2104 if (!need_relocs)
2105 return FALSE;
2106
2107 if (tls_type & GOT_TLS_GD)
2108 {
2109 ret++;
2110 if (indx != 0)
2111 ret++;
2112 }
2113
2114 if (tls_type & GOT_TLS_IE)
2115 ret++;
2116
2117 if ((tls_type & GOT_TLS_LDM) && info->shared)
2118 ret++;
2119
2120 return ret;
2121 }
2122
2123 /* Count the number of TLS relocations required for the GOT entry in
2124 ARG1, if it describes a local symbol. */
2125
2126 static int
2127 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2128 {
2129 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2130 struct mips_elf_count_tls_arg *arg = arg2;
2131
2132 if (entry->abfd != NULL && entry->symndx != -1)
2133 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2134
2135 return 1;
2136 }
2137
2138 /* Count the number of TLS GOT entries required for the global (or
2139 forced-local) symbol in ARG1. */
2140
2141 static int
2142 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2143 {
2144 struct mips_elf_link_hash_entry *hm
2145 = (struct mips_elf_link_hash_entry *) arg1;
2146 struct mips_elf_count_tls_arg *arg = arg2;
2147
2148 if (hm->tls_type & GOT_TLS_GD)
2149 arg->needed += 2;
2150 if (hm->tls_type & GOT_TLS_IE)
2151 arg->needed += 1;
2152
2153 return 1;
2154 }
2155
2156 /* Count the number of TLS relocations required for the global (or
2157 forced-local) symbol in ARG1. */
2158
2159 static int
2160 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2161 {
2162 struct mips_elf_link_hash_entry *hm
2163 = (struct mips_elf_link_hash_entry *) arg1;
2164 struct mips_elf_count_tls_arg *arg = arg2;
2165
2166 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2167
2168 return 1;
2169 }
2170
2171 /* Output a simple dynamic relocation into SRELOC. */
2172
2173 static void
2174 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2175 asection *sreloc,
2176 unsigned long indx,
2177 int r_type,
2178 bfd_vma offset)
2179 {
2180 Elf_Internal_Rela rel[3];
2181
2182 memset (rel, 0, sizeof (rel));
2183
2184 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2185 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2186
2187 if (ABI_64_P (output_bfd))
2188 {
2189 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2190 (output_bfd, &rel[0],
2191 (sreloc->contents
2192 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2193 }
2194 else
2195 bfd_elf32_swap_reloc_out
2196 (output_bfd, &rel[0],
2197 (sreloc->contents
2198 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2199 ++sreloc->reloc_count;
2200 }
2201
2202 /* Initialize a set of TLS GOT entries for one symbol. */
2203
2204 static void
2205 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2206 unsigned char *tls_type_p,
2207 struct bfd_link_info *info,
2208 struct mips_elf_link_hash_entry *h,
2209 bfd_vma value)
2210 {
2211 int indx;
2212 asection *sreloc, *sgot;
2213 bfd_vma offset, offset2;
2214 bfd *dynobj;
2215 bfd_boolean need_relocs = FALSE;
2216
2217 dynobj = elf_hash_table (info)->dynobj;
2218 sgot = mips_elf_got_section (dynobj, FALSE);
2219
2220 indx = 0;
2221 if (h != NULL)
2222 {
2223 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2224
2225 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2226 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2227 indx = h->root.dynindx;
2228 }
2229
2230 if (*tls_type_p & GOT_TLS_DONE)
2231 return;
2232
2233 if ((info->shared || indx != 0)
2234 && (h == NULL
2235 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2236 || h->root.type != bfd_link_hash_undefweak))
2237 need_relocs = TRUE;
2238
2239 /* MINUS_ONE means the symbol is not defined in this object. It may not
2240 be defined at all; assume that the value doesn't matter in that
2241 case. Otherwise complain if we would use the value. */
2242 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2243 || h->root.root.type == bfd_link_hash_undefweak);
2244
2245 /* Emit necessary relocations. */
2246 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2247
2248 /* General Dynamic. */
2249 if (*tls_type_p & GOT_TLS_GD)
2250 {
2251 offset = got_offset;
2252 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2253
2254 if (need_relocs)
2255 {
2256 mips_elf_output_dynamic_relocation
2257 (abfd, sreloc, indx,
2258 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2259 sgot->output_offset + sgot->output_section->vma + offset);
2260
2261 if (indx)
2262 mips_elf_output_dynamic_relocation
2263 (abfd, sreloc, indx,
2264 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2265 sgot->output_offset + sgot->output_section->vma + offset2);
2266 else
2267 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2268 sgot->contents + offset2);
2269 }
2270 else
2271 {
2272 MIPS_ELF_PUT_WORD (abfd, 1,
2273 sgot->contents + offset);
2274 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2275 sgot->contents + offset2);
2276 }
2277
2278 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2279 }
2280
2281 /* Initial Exec model. */
2282 if (*tls_type_p & GOT_TLS_IE)
2283 {
2284 offset = got_offset;
2285
2286 if (need_relocs)
2287 {
2288 if (indx == 0)
2289 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2290 sgot->contents + offset);
2291 else
2292 MIPS_ELF_PUT_WORD (abfd, 0,
2293 sgot->contents + offset);
2294
2295 mips_elf_output_dynamic_relocation
2296 (abfd, sreloc, indx,
2297 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2298 sgot->output_offset + sgot->output_section->vma + offset);
2299 }
2300 else
2301 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2302 sgot->contents + offset);
2303 }
2304
2305 if (*tls_type_p & GOT_TLS_LDM)
2306 {
2307 /* The initial offset is zero, and the LD offsets will include the
2308 bias by DTP_OFFSET. */
2309 MIPS_ELF_PUT_WORD (abfd, 0,
2310 sgot->contents + got_offset
2311 + MIPS_ELF_GOT_SIZE (abfd));
2312
2313 if (!info->shared)
2314 MIPS_ELF_PUT_WORD (abfd, 1,
2315 sgot->contents + got_offset);
2316 else
2317 mips_elf_output_dynamic_relocation
2318 (abfd, sreloc, indx,
2319 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2320 sgot->output_offset + sgot->output_section->vma + got_offset);
2321 }
2322
2323 *tls_type_p |= GOT_TLS_DONE;
2324 }
2325
2326 /* Return the GOT index to use for a relocation of type R_TYPE against
2327 a symbol accessed using TLS_TYPE models. The GOT entries for this
2328 symbol in this GOT start at GOT_INDEX. This function initializes the
2329 GOT entries and corresponding relocations. */
2330
2331 static bfd_vma
2332 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2333 int r_type, struct bfd_link_info *info,
2334 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2335 {
2336 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2337 || r_type == R_MIPS_TLS_LDM);
2338
2339 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2340
2341 if (r_type == R_MIPS_TLS_GOTTPREL)
2342 {
2343 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2344 if (*tls_type & GOT_TLS_GD)
2345 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2346 else
2347 return got_index;
2348 }
2349
2350 if (r_type == R_MIPS_TLS_GD)
2351 {
2352 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2353 return got_index;
2354 }
2355
2356 if (r_type == R_MIPS_TLS_LDM)
2357 {
2358 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2359 return got_index;
2360 }
2361
2362 return got_index;
2363 }
2364
2365 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2366 for global symbol H. .got.plt comes before the GOT, so the offset
2367 will be negative. */
2368
2369 static bfd_vma
2370 mips_elf_gotplt_index (struct bfd_link_info *info,
2371 struct elf_link_hash_entry *h)
2372 {
2373 bfd_vma plt_index, got_address, got_value;
2374 struct mips_elf_link_hash_table *htab;
2375
2376 htab = mips_elf_hash_table (info);
2377 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2378
2379 /* Calculate the index of the symbol's PLT entry. */
2380 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2381
2382 /* Calculate the address of the associated .got.plt entry. */
2383 got_address = (htab->sgotplt->output_section->vma
2384 + htab->sgotplt->output_offset
2385 + plt_index * 4);
2386
2387 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2388 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2389 + htab->root.hgot->root.u.def.section->output_offset
2390 + htab->root.hgot->root.u.def.value);
2391
2392 return got_address - got_value;
2393 }
2394
2395 /* Return the GOT offset for address VALUE, which was derived from
2396 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2397 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2398 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2399 offset can be found. */
2400
2401 static bfd_vma
2402 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2403 asection *input_section, bfd_vma value,
2404 unsigned long r_symndx,
2405 struct mips_elf_link_hash_entry *h, int r_type)
2406 {
2407 asection *sgot;
2408 struct mips_got_info *g;
2409 struct mips_got_entry *entry;
2410
2411 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2412
2413 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2414 input_section, value,
2415 r_symndx, h, r_type);
2416 if (!entry)
2417 return MINUS_ONE;
2418
2419 if (TLS_RELOC_P (r_type))
2420 {
2421 if (entry->symndx == -1 && g->next == NULL)
2422 /* A type (3) entry in the single-GOT case. We use the symbol's
2423 hash table entry to track the index. */
2424 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2425 r_type, info, h, value);
2426 else
2427 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2428 r_type, info, h, value);
2429 }
2430 else
2431 return entry->gotidx;
2432 }
2433
2434 /* Returns the GOT index for the global symbol indicated by H. */
2435
2436 static bfd_vma
2437 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2438 int r_type, struct bfd_link_info *info)
2439 {
2440 bfd_vma index;
2441 asection *sgot;
2442 struct mips_got_info *g, *gg;
2443 long global_got_dynindx = 0;
2444
2445 gg = g = mips_elf_got_info (abfd, &sgot);
2446 if (g->bfd2got && ibfd)
2447 {
2448 struct mips_got_entry e, *p;
2449
2450 BFD_ASSERT (h->dynindx >= 0);
2451
2452 g = mips_elf_got_for_ibfd (g, ibfd);
2453 if (g->next != gg || TLS_RELOC_P (r_type))
2454 {
2455 e.abfd = ibfd;
2456 e.symndx = -1;
2457 e.d.h = (struct mips_elf_link_hash_entry *)h;
2458 e.tls_type = 0;
2459
2460 p = htab_find (g->got_entries, &e);
2461
2462 BFD_ASSERT (p->gotidx > 0);
2463
2464 if (TLS_RELOC_P (r_type))
2465 {
2466 bfd_vma value = MINUS_ONE;
2467 if ((h->root.type == bfd_link_hash_defined
2468 || h->root.type == bfd_link_hash_defweak)
2469 && h->root.u.def.section->output_section)
2470 value = (h->root.u.def.value
2471 + h->root.u.def.section->output_offset
2472 + h->root.u.def.section->output_section->vma);
2473
2474 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2475 info, e.d.h, value);
2476 }
2477 else
2478 return p->gotidx;
2479 }
2480 }
2481
2482 if (gg->global_gotsym != NULL)
2483 global_got_dynindx = gg->global_gotsym->dynindx;
2484
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 struct mips_elf_link_hash_entry *hm
2488 = (struct mips_elf_link_hash_entry *) h;
2489 bfd_vma value = MINUS_ONE;
2490
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && h->root.u.def.section->output_section)
2494 value = (h->root.u.def.value
2495 + h->root.u.def.section->output_offset
2496 + h->root.u.def.section->output_section->vma);
2497
2498 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2499 r_type, info, hm, value);
2500 }
2501 else
2502 {
2503 /* Once we determine the global GOT entry with the lowest dynamic
2504 symbol table index, we must put all dynamic symbols with greater
2505 indices into the GOT. That makes it easy to calculate the GOT
2506 offset. */
2507 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2508 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2509 * MIPS_ELF_GOT_SIZE (abfd));
2510 }
2511 BFD_ASSERT (index < sgot->size);
2512
2513 return index;
2514 }
2515
2516 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2517 calculated from a symbol belonging to INPUT_SECTION. These entries
2518 are supposed to be placed at small offsets in the GOT, i.e., within
2519 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2520 could be created. If OFFSETP is nonnull, use it to return the
2521 offset of the GOT entry from VALUE. */
2522
2523 static bfd_vma
2524 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2525 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2526 {
2527 asection *sgot;
2528 struct mips_got_info *g;
2529 bfd_vma page, index;
2530 struct mips_got_entry *entry;
2531
2532 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2533
2534 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2535 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2536 input_section, page, 0,
2537 NULL, R_MIPS_GOT_PAGE);
2538
2539 if (!entry)
2540 return MINUS_ONE;
2541
2542 index = entry->gotidx;
2543
2544 if (offsetp)
2545 *offsetp = value - entry->d.address;
2546
2547 return index;
2548 }
2549
2550 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2551 which was calculated from a symbol belonging to INPUT_SECTION.
2552 EXTERNAL is true if the relocation was against a global symbol
2553 that has been forced local. */
2554
2555 static bfd_vma
2556 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2557 asection *input_section, bfd_vma value,
2558 bfd_boolean external)
2559 {
2560 asection *sgot;
2561 struct mips_got_info *g;
2562 struct mips_got_entry *entry;
2563
2564 /* GOT16 relocations against local symbols are followed by a LO16
2565 relocation; those against global symbols are not. Thus if the
2566 symbol was originally local, the GOT16 relocation should load the
2567 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2568 if (! external)
2569 value = mips_elf_high (value) << 16;
2570
2571 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2572
2573 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2574 input_section, value, 0,
2575 NULL, R_MIPS_GOT16);
2576 if (entry)
2577 return entry->gotidx;
2578 else
2579 return MINUS_ONE;
2580 }
2581
2582 /* Returns the offset for the entry at the INDEXth position
2583 in the GOT. */
2584
2585 static bfd_vma
2586 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2587 bfd *input_bfd, bfd_vma index)
2588 {
2589 asection *sgot;
2590 bfd_vma gp;
2591 struct mips_got_info *g;
2592
2593 g = mips_elf_got_info (dynobj, &sgot);
2594 gp = _bfd_get_gp_value (output_bfd)
2595 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2596
2597 return sgot->output_section->vma + sgot->output_offset + index - gp;
2598 }
2599
2600 /* Create and return a local GOT entry for VALUE, which was calculated
2601 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2602 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2603 instead. */
2604
2605 static struct mips_got_entry *
2606 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2607 bfd *ibfd, struct mips_got_info *gg,
2608 asection *sgot, asection *input_section,
2609 bfd_vma value, unsigned long r_symndx,
2610 struct mips_elf_link_hash_entry *h,
2611 int r_type)
2612 {
2613 struct mips_got_entry entry, **loc;
2614 struct mips_got_info *g;
2615 struct mips_elf_link_hash_table *htab;
2616
2617 htab = mips_elf_hash_table (info);
2618
2619 entry.abfd = NULL;
2620 entry.symndx = -1;
2621 entry.d.address = value;
2622 entry.tls_type = 0;
2623
2624 g = mips_elf_got_for_ibfd (gg, ibfd);
2625 if (g == NULL)
2626 {
2627 g = mips_elf_got_for_ibfd (gg, abfd);
2628 BFD_ASSERT (g != NULL);
2629 }
2630
2631 /* We might have a symbol, H, if it has been forced local. Use the
2632 global entry then. It doesn't matter whether an entry is local
2633 or global for TLS, since the dynamic linker does not
2634 automatically relocate TLS GOT entries. */
2635 BFD_ASSERT (h == NULL || h->root.forced_local);
2636 if (TLS_RELOC_P (r_type))
2637 {
2638 struct mips_got_entry *p;
2639
2640 entry.abfd = ibfd;
2641 if (r_type == R_MIPS_TLS_LDM)
2642 {
2643 entry.tls_type = GOT_TLS_LDM;
2644 entry.symndx = 0;
2645 entry.d.addend = 0;
2646 }
2647 else if (h == NULL)
2648 {
2649 entry.symndx = r_symndx;
2650 entry.d.addend = 0;
2651 }
2652 else
2653 entry.d.h = h;
2654
2655 p = (struct mips_got_entry *)
2656 htab_find (g->got_entries, &entry);
2657
2658 BFD_ASSERT (p);
2659 return p;
2660 }
2661
2662 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2663 INSERT);
2664 if (*loc)
2665 return *loc;
2666
2667 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2668 entry.tls_type = 0;
2669
2670 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2671
2672 if (! *loc)
2673 return NULL;
2674
2675 memcpy (*loc, &entry, sizeof entry);
2676
2677 if (g->assigned_gotno >= g->local_gotno)
2678 {
2679 (*loc)->gotidx = -1;
2680 /* We didn't allocate enough space in the GOT. */
2681 (*_bfd_error_handler)
2682 (_("not enough GOT space for local GOT entries"));
2683 bfd_set_error (bfd_error_bad_value);
2684 return NULL;
2685 }
2686
2687 MIPS_ELF_PUT_WORD (abfd, value,
2688 (sgot->contents + entry.gotidx));
2689
2690 /* These GOT entries need a dynamic relocation on VxWorks. Because
2691 the offset between segments is not fixed, the relocation must be
2692 against a symbol in the same segment as the original symbol.
2693 The easiest way to do this is to take INPUT_SECTION's output
2694 section and emit a relocation against its section symbol. */
2695 if (htab->is_vxworks)
2696 {
2697 Elf_Internal_Rela outrel;
2698 asection *s, *output_section;
2699 bfd_byte *loc;
2700 bfd_vma got_address;
2701 int dynindx;
2702
2703 s = mips_elf_rel_dyn_section (info, FALSE);
2704 output_section = input_section->output_section;
2705 dynindx = elf_section_data (output_section)->dynindx;
2706 got_address = (sgot->output_section->vma
2707 + sgot->output_offset
2708 + entry.gotidx);
2709
2710 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2711 outrel.r_offset = got_address;
2712 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2713 outrel.r_addend = value - output_section->vma;
2714 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2715 }
2716
2717 return *loc;
2718 }
2719
2720 /* Sort the dynamic symbol table so that symbols that need GOT entries
2721 appear towards the end. This reduces the amount of GOT space
2722 required. MAX_LOCAL is used to set the number of local symbols
2723 known to be in the dynamic symbol table. During
2724 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2725 section symbols are added and the count is higher. */
2726
2727 static bfd_boolean
2728 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2729 {
2730 struct mips_elf_hash_sort_data hsd;
2731 struct mips_got_info *g;
2732 bfd *dynobj;
2733
2734 dynobj = elf_hash_table (info)->dynobj;
2735
2736 g = mips_elf_got_info (dynobj, NULL);
2737
2738 hsd.low = NULL;
2739 hsd.max_unref_got_dynindx =
2740 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2741 /* In the multi-got case, assigned_gotno of the master got_info
2742 indicate the number of entries that aren't referenced in the
2743 primary GOT, but that must have entries because there are
2744 dynamic relocations that reference it. Since they aren't
2745 referenced, we move them to the end of the GOT, so that they
2746 don't prevent other entries that are referenced from getting
2747 too large offsets. */
2748 - (g->next ? g->assigned_gotno : 0);
2749 hsd.max_non_got_dynindx = max_local;
2750 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2751 elf_hash_table (info)),
2752 mips_elf_sort_hash_table_f,
2753 &hsd);
2754
2755 /* There should have been enough room in the symbol table to
2756 accommodate both the GOT and non-GOT symbols. */
2757 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2758 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2759 <= elf_hash_table (info)->dynsymcount);
2760
2761 /* Now we know which dynamic symbol has the lowest dynamic symbol
2762 table index in the GOT. */
2763 g->global_gotsym = hsd.low;
2764
2765 return TRUE;
2766 }
2767
2768 /* If H needs a GOT entry, assign it the highest available dynamic
2769 index. Otherwise, assign it the lowest available dynamic
2770 index. */
2771
2772 static bfd_boolean
2773 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2774 {
2775 struct mips_elf_hash_sort_data *hsd = data;
2776
2777 if (h->root.root.type == bfd_link_hash_warning)
2778 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2779
2780 /* Symbols without dynamic symbol table entries aren't interesting
2781 at all. */
2782 if (h->root.dynindx == -1)
2783 return TRUE;
2784
2785 /* Global symbols that need GOT entries that are not explicitly
2786 referenced are marked with got offset 2. Those that are
2787 referenced get a 1, and those that don't need GOT entries get
2788 -1. */
2789 if (h->root.got.offset == 2)
2790 {
2791 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2792
2793 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2794 hsd->low = (struct elf_link_hash_entry *) h;
2795 h->root.dynindx = hsd->max_unref_got_dynindx++;
2796 }
2797 else if (h->root.got.offset != 1)
2798 h->root.dynindx = hsd->max_non_got_dynindx++;
2799 else
2800 {
2801 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2802
2803 h->root.dynindx = --hsd->min_got_dynindx;
2804 hsd->low = (struct elf_link_hash_entry *) h;
2805 }
2806
2807 return TRUE;
2808 }
2809
2810 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2811 symbol table index lower than any we've seen to date, record it for
2812 posterity. */
2813
2814 static bfd_boolean
2815 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2816 bfd *abfd, struct bfd_link_info *info,
2817 struct mips_got_info *g,
2818 unsigned char tls_flag)
2819 {
2820 struct mips_got_entry entry, **loc;
2821
2822 /* A global symbol in the GOT must also be in the dynamic symbol
2823 table. */
2824 if (h->dynindx == -1)
2825 {
2826 switch (ELF_ST_VISIBILITY (h->other))
2827 {
2828 case STV_INTERNAL:
2829 case STV_HIDDEN:
2830 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2831 break;
2832 }
2833 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2834 return FALSE;
2835 }
2836
2837 /* Make sure we have a GOT to put this entry into. */
2838 BFD_ASSERT (g != NULL);
2839
2840 entry.abfd = abfd;
2841 entry.symndx = -1;
2842 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2843 entry.tls_type = 0;
2844
2845 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2846 INSERT);
2847
2848 /* If we've already marked this entry as needing GOT space, we don't
2849 need to do it again. */
2850 if (*loc)
2851 {
2852 (*loc)->tls_type |= tls_flag;
2853 return TRUE;
2854 }
2855
2856 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2857
2858 if (! *loc)
2859 return FALSE;
2860
2861 entry.gotidx = -1;
2862 entry.tls_type = tls_flag;
2863
2864 memcpy (*loc, &entry, sizeof entry);
2865
2866 if (h->got.offset != MINUS_ONE)
2867 return TRUE;
2868
2869 /* By setting this to a value other than -1, we are indicating that
2870 there needs to be a GOT entry for H. Avoid using zero, as the
2871 generic ELF copy_indirect_symbol tests for <= 0. */
2872 if (tls_flag == 0)
2873 h->got.offset = 1;
2874
2875 return TRUE;
2876 }
2877
2878 /* Reserve space in G for a GOT entry containing the value of symbol
2879 SYMNDX in input bfd ABDF, plus ADDEND. */
2880
2881 static bfd_boolean
2882 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2883 struct mips_got_info *g,
2884 unsigned char tls_flag)
2885 {
2886 struct mips_got_entry entry, **loc;
2887
2888 entry.abfd = abfd;
2889 entry.symndx = symndx;
2890 entry.d.addend = addend;
2891 entry.tls_type = tls_flag;
2892 loc = (struct mips_got_entry **)
2893 htab_find_slot (g->got_entries, &entry, INSERT);
2894
2895 if (*loc)
2896 {
2897 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2898 {
2899 g->tls_gotno += 2;
2900 (*loc)->tls_type |= tls_flag;
2901 }
2902 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2903 {
2904 g->tls_gotno += 1;
2905 (*loc)->tls_type |= tls_flag;
2906 }
2907 return TRUE;
2908 }
2909
2910 if (tls_flag != 0)
2911 {
2912 entry.gotidx = -1;
2913 entry.tls_type = tls_flag;
2914 if (tls_flag == GOT_TLS_IE)
2915 g->tls_gotno += 1;
2916 else if (tls_flag == GOT_TLS_GD)
2917 g->tls_gotno += 2;
2918 else if (g->tls_ldm_offset == MINUS_ONE)
2919 {
2920 g->tls_ldm_offset = MINUS_TWO;
2921 g->tls_gotno += 2;
2922 }
2923 }
2924 else
2925 {
2926 entry.gotidx = g->local_gotno++;
2927 entry.tls_type = 0;
2928 }
2929
2930 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2931
2932 if (! *loc)
2933 return FALSE;
2934
2935 memcpy (*loc, &entry, sizeof entry);
2936
2937 return TRUE;
2938 }
2939 \f
2940 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2941
2942 static hashval_t
2943 mips_elf_bfd2got_entry_hash (const void *entry_)
2944 {
2945 const struct mips_elf_bfd2got_hash *entry
2946 = (struct mips_elf_bfd2got_hash *)entry_;
2947
2948 return entry->bfd->id;
2949 }
2950
2951 /* Check whether two hash entries have the same bfd. */
2952
2953 static int
2954 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2955 {
2956 const struct mips_elf_bfd2got_hash *e1
2957 = (const struct mips_elf_bfd2got_hash *)entry1;
2958 const struct mips_elf_bfd2got_hash *e2
2959 = (const struct mips_elf_bfd2got_hash *)entry2;
2960
2961 return e1->bfd == e2->bfd;
2962 }
2963
2964 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2965 be the master GOT data. */
2966
2967 static struct mips_got_info *
2968 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2969 {
2970 struct mips_elf_bfd2got_hash e, *p;
2971
2972 if (! g->bfd2got)
2973 return g;
2974
2975 e.bfd = ibfd;
2976 p = htab_find (g->bfd2got, &e);
2977 return p ? p->g : NULL;
2978 }
2979
2980 /* Create one separate got for each bfd that has entries in the global
2981 got, such that we can tell how many local and global entries each
2982 bfd requires. */
2983
2984 static int
2985 mips_elf_make_got_per_bfd (void **entryp, void *p)
2986 {
2987 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2988 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2989 htab_t bfd2got = arg->bfd2got;
2990 struct mips_got_info *g;
2991 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2992 void **bfdgotp;
2993
2994 /* Find the got_info for this GOT entry's input bfd. Create one if
2995 none exists. */
2996 bfdgot_entry.bfd = entry->abfd;
2997 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2998 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2999
3000 if (bfdgot != NULL)
3001 g = bfdgot->g;
3002 else
3003 {
3004 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3005 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3006
3007 if (bfdgot == NULL)
3008 {
3009 arg->obfd = 0;
3010 return 0;
3011 }
3012
3013 *bfdgotp = bfdgot;
3014
3015 bfdgot->bfd = entry->abfd;
3016 bfdgot->g = g = (struct mips_got_info *)
3017 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3018 if (g == NULL)
3019 {
3020 arg->obfd = 0;
3021 return 0;
3022 }
3023
3024 g->global_gotsym = NULL;
3025 g->global_gotno = 0;
3026 g->local_gotno = 0;
3027 g->assigned_gotno = -1;
3028 g->tls_gotno = 0;
3029 g->tls_assigned_gotno = 0;
3030 g->tls_ldm_offset = MINUS_ONE;
3031 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3032 mips_elf_multi_got_entry_eq, NULL);
3033 if (g->got_entries == NULL)
3034 {
3035 arg->obfd = 0;
3036 return 0;
3037 }
3038
3039 g->bfd2got = NULL;
3040 g->next = NULL;
3041 }
3042
3043 /* Insert the GOT entry in the bfd's got entry hash table. */
3044 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3045 if (*entryp != NULL)
3046 return 1;
3047
3048 *entryp = entry;
3049
3050 if (entry->tls_type)
3051 {
3052 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3053 g->tls_gotno += 2;
3054 if (entry->tls_type & GOT_TLS_IE)
3055 g->tls_gotno += 1;
3056 }
3057 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3058 ++g->local_gotno;
3059 else
3060 ++g->global_gotno;
3061
3062 return 1;
3063 }
3064
3065 /* Attempt to merge gots of different input bfds. Try to use as much
3066 as possible of the primary got, since it doesn't require explicit
3067 dynamic relocations, but don't use bfds that would reference global
3068 symbols out of the addressable range. Failing the primary got,
3069 attempt to merge with the current got, or finish the current got
3070 and then make make the new got current. */
3071
3072 static int
3073 mips_elf_merge_gots (void **bfd2got_, void *p)
3074 {
3075 struct mips_elf_bfd2got_hash *bfd2got
3076 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3077 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3078 unsigned int lcount = bfd2got->g->local_gotno;
3079 unsigned int gcount = bfd2got->g->global_gotno;
3080 unsigned int tcount = bfd2got->g->tls_gotno;
3081 unsigned int maxcnt = arg->max_count;
3082 bfd_boolean too_many_for_tls = FALSE;
3083
3084 /* We place TLS GOT entries after both locals and globals. The globals
3085 for the primary GOT may overflow the normal GOT size limit, so be
3086 sure not to merge a GOT which requires TLS with the primary GOT in that
3087 case. This doesn't affect non-primary GOTs. */
3088 if (tcount > 0)
3089 {
3090 unsigned int primary_total = lcount + tcount + arg->global_count;
3091 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
3092 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
3093 too_many_for_tls = TRUE;
3094 }
3095
3096 /* If we don't have a primary GOT and this is not too big, use it as
3097 a starting point for the primary GOT. */
3098 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3099 && ! too_many_for_tls)
3100 {
3101 arg->primary = bfd2got->g;
3102 arg->primary_count = lcount + gcount;
3103 }
3104 /* If it looks like we can merge this bfd's entries with those of
3105 the primary, merge them. The heuristics is conservative, but we
3106 don't have to squeeze it too hard. */
3107 else if (arg->primary && ! too_many_for_tls
3108 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3109 {
3110 struct mips_got_info *g = bfd2got->g;
3111 int old_lcount = arg->primary->local_gotno;
3112 int old_gcount = arg->primary->global_gotno;
3113 int old_tcount = arg->primary->tls_gotno;
3114
3115 bfd2got->g = arg->primary;
3116
3117 htab_traverse (g->got_entries,
3118 mips_elf_make_got_per_bfd,
3119 arg);
3120 if (arg->obfd == NULL)
3121 return 0;
3122
3123 htab_delete (g->got_entries);
3124 /* We don't have to worry about releasing memory of the actual
3125 got entries, since they're all in the master got_entries hash
3126 table anyway. */
3127
3128 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3129 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3130 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3131
3132 arg->primary_count = arg->primary->local_gotno
3133 + arg->primary->global_gotno + arg->primary->tls_gotno;
3134 }
3135 /* If we can merge with the last-created got, do it. */
3136 else if (arg->current
3137 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3138 {
3139 struct mips_got_info *g = bfd2got->g;
3140 int old_lcount = arg->current->local_gotno;
3141 int old_gcount = arg->current->global_gotno;
3142 int old_tcount = arg->current->tls_gotno;
3143
3144 bfd2got->g = arg->current;
3145
3146 htab_traverse (g->got_entries,
3147 mips_elf_make_got_per_bfd,
3148 arg);
3149 if (arg->obfd == NULL)
3150 return 0;
3151
3152 htab_delete (g->got_entries);
3153
3154 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3155 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3156 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3157
3158 arg->current_count = arg->current->local_gotno
3159 + arg->current->global_gotno + arg->current->tls_gotno;
3160 }
3161 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3162 fits; if it turns out that it doesn't, we'll get relocation
3163 overflows anyway. */
3164 else
3165 {
3166 bfd2got->g->next = arg->current;
3167 arg->current = bfd2got->g;
3168
3169 arg->current_count = lcount + gcount + 2 * tcount;
3170 }
3171
3172 return 1;
3173 }
3174
3175 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3176 is null iff there is just a single GOT. */
3177
3178 static int
3179 mips_elf_initialize_tls_index (void **entryp, void *p)
3180 {
3181 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3182 struct mips_got_info *g = p;
3183 bfd_vma next_index;
3184
3185 /* We're only interested in TLS symbols. */
3186 if (entry->tls_type == 0)
3187 return 1;
3188
3189 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3190
3191 if (entry->symndx == -1 && g->next == NULL)
3192 {
3193 /* A type (3) got entry in the single-GOT case. We use the symbol's
3194 hash table entry to track its index. */
3195 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3196 return 1;
3197 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3198 entry->d.h->tls_got_offset = next_index;
3199 }
3200 else
3201 {
3202 if (entry->tls_type & GOT_TLS_LDM)
3203 {
3204 /* There are separate mips_got_entry objects for each input bfd
3205 that requires an LDM entry. Make sure that all LDM entries in
3206 a GOT resolve to the same index. */
3207 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3208 {
3209 entry->gotidx = g->tls_ldm_offset;
3210 return 1;
3211 }
3212 g->tls_ldm_offset = next_index;
3213 }
3214 entry->gotidx = next_index;
3215 }
3216
3217 /* Account for the entries we've just allocated. */
3218 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3219 g->tls_assigned_gotno += 2;
3220 if (entry->tls_type & GOT_TLS_IE)
3221 g->tls_assigned_gotno += 1;
3222
3223 return 1;
3224 }
3225
3226 /* If passed a NULL mips_got_info in the argument, set the marker used
3227 to tell whether a global symbol needs a got entry (in the primary
3228 got) to the given VALUE.
3229
3230 If passed a pointer G to a mips_got_info in the argument (it must
3231 not be the primary GOT), compute the offset from the beginning of
3232 the (primary) GOT section to the entry in G corresponding to the
3233 global symbol. G's assigned_gotno must contain the index of the
3234 first available global GOT entry in G. VALUE must contain the size
3235 of a GOT entry in bytes. For each global GOT entry that requires a
3236 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3237 marked as not eligible for lazy resolution through a function
3238 stub. */
3239 static int
3240 mips_elf_set_global_got_offset (void **entryp, void *p)
3241 {
3242 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3243 struct mips_elf_set_global_got_offset_arg *arg
3244 = (struct mips_elf_set_global_got_offset_arg *)p;
3245 struct mips_got_info *g = arg->g;
3246
3247 if (g && entry->tls_type != GOT_NORMAL)
3248 arg->needed_relocs +=
3249 mips_tls_got_relocs (arg->info, entry->tls_type,
3250 entry->symndx == -1 ? &entry->d.h->root : NULL);
3251
3252 if (entry->abfd != NULL && entry->symndx == -1
3253 && entry->d.h->root.dynindx != -1
3254 && entry->d.h->tls_type == GOT_NORMAL)
3255 {
3256 if (g)
3257 {
3258 BFD_ASSERT (g->global_gotsym == NULL);
3259
3260 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3261 if (arg->info->shared
3262 || (elf_hash_table (arg->info)->dynamic_sections_created
3263 && entry->d.h->root.def_dynamic
3264 && !entry->d.h->root.def_regular))
3265 ++arg->needed_relocs;
3266 }
3267 else
3268 entry->d.h->root.got.offset = arg->value;
3269 }
3270
3271 return 1;
3272 }
3273
3274 /* Mark any global symbols referenced in the GOT we are iterating over
3275 as inelligible for lazy resolution stubs. */
3276 static int
3277 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3278 {
3279 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3280
3281 if (entry->abfd != NULL
3282 && entry->symndx == -1
3283 && entry->d.h->root.dynindx != -1)
3284 entry->d.h->no_fn_stub = TRUE;
3285
3286 return 1;
3287 }
3288
3289 /* Follow indirect and warning hash entries so that each got entry
3290 points to the final symbol definition. P must point to a pointer
3291 to the hash table we're traversing. Since this traversal may
3292 modify the hash table, we set this pointer to NULL to indicate
3293 we've made a potentially-destructive change to the hash table, so
3294 the traversal must be restarted. */
3295 static int
3296 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3297 {
3298 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3299 htab_t got_entries = *(htab_t *)p;
3300
3301 if (entry->abfd != NULL && entry->symndx == -1)
3302 {
3303 struct mips_elf_link_hash_entry *h = entry->d.h;
3304
3305 while (h->root.root.type == bfd_link_hash_indirect
3306 || h->root.root.type == bfd_link_hash_warning)
3307 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3308
3309 if (entry->d.h == h)
3310 return 1;
3311
3312 entry->d.h = h;
3313
3314 /* If we can't find this entry with the new bfd hash, re-insert
3315 it, and get the traversal restarted. */
3316 if (! htab_find (got_entries, entry))
3317 {
3318 htab_clear_slot (got_entries, entryp);
3319 entryp = htab_find_slot (got_entries, entry, INSERT);
3320 if (! *entryp)
3321 *entryp = entry;
3322 /* Abort the traversal, since the whole table may have
3323 moved, and leave it up to the parent to restart the
3324 process. */
3325 *(htab_t *)p = NULL;
3326 return 0;
3327 }
3328 /* We might want to decrement the global_gotno count, but it's
3329 either too early or too late for that at this point. */
3330 }
3331
3332 return 1;
3333 }
3334
3335 /* Turn indirect got entries in a got_entries table into their final
3336 locations. */
3337 static void
3338 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3339 {
3340 htab_t got_entries;
3341
3342 do
3343 {
3344 got_entries = g->got_entries;
3345
3346 htab_traverse (got_entries,
3347 mips_elf_resolve_final_got_entry,
3348 &got_entries);
3349 }
3350 while (got_entries == NULL);
3351 }
3352
3353 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3354 the primary GOT. */
3355 static bfd_vma
3356 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3357 {
3358 if (g->bfd2got == NULL)
3359 return 0;
3360
3361 g = mips_elf_got_for_ibfd (g, ibfd);
3362 if (! g)
3363 return 0;
3364
3365 BFD_ASSERT (g->next);
3366
3367 g = g->next;
3368
3369 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3370 * MIPS_ELF_GOT_SIZE (abfd);
3371 }
3372
3373 /* Turn a single GOT that is too big for 16-bit addressing into
3374 a sequence of GOTs, each one 16-bit addressable. */
3375
3376 static bfd_boolean
3377 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3378 struct mips_got_info *g, asection *got,
3379 bfd_size_type pages)
3380 {
3381 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3382 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3383 struct mips_got_info *gg;
3384 unsigned int assign;
3385
3386 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3387 mips_elf_bfd2got_entry_eq, NULL);
3388 if (g->bfd2got == NULL)
3389 return FALSE;
3390
3391 got_per_bfd_arg.bfd2got = g->bfd2got;
3392 got_per_bfd_arg.obfd = abfd;
3393 got_per_bfd_arg.info = info;
3394
3395 /* Count how many GOT entries each input bfd requires, creating a
3396 map from bfd to got info while at that. */
3397 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3398 if (got_per_bfd_arg.obfd == NULL)
3399 return FALSE;
3400
3401 got_per_bfd_arg.current = NULL;
3402 got_per_bfd_arg.primary = NULL;
3403 /* Taking out PAGES entries is a worst-case estimate. We could
3404 compute the maximum number of pages that each separate input bfd
3405 uses, but it's probably not worth it. */
3406 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3407 / MIPS_ELF_GOT_SIZE (abfd))
3408 - MIPS_RESERVED_GOTNO (info) - pages);
3409 /* The number of globals that will be included in the primary GOT.
3410 See the calls to mips_elf_set_global_got_offset below for more
3411 information. */
3412 got_per_bfd_arg.global_count = g->global_gotno;
3413
3414 /* Try to merge the GOTs of input bfds together, as long as they
3415 don't seem to exceed the maximum GOT size, choosing one of them
3416 to be the primary GOT. */
3417 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 /* If we do not find any suitable primary GOT, create an empty one. */
3422 if (got_per_bfd_arg.primary == NULL)
3423 {
3424 g->next = (struct mips_got_info *)
3425 bfd_alloc (abfd, sizeof (struct mips_got_info));
3426 if (g->next == NULL)
3427 return FALSE;
3428
3429 g->next->global_gotsym = NULL;
3430 g->next->global_gotno = 0;
3431 g->next->local_gotno = 0;
3432 g->next->tls_gotno = 0;
3433 g->next->assigned_gotno = 0;
3434 g->next->tls_assigned_gotno = 0;
3435 g->next->tls_ldm_offset = MINUS_ONE;
3436 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3437 mips_elf_multi_got_entry_eq,
3438 NULL);
3439 if (g->next->got_entries == NULL)
3440 return FALSE;
3441 g->next->bfd2got = NULL;
3442 }
3443 else
3444 g->next = got_per_bfd_arg.primary;
3445 g->next->next = got_per_bfd_arg.current;
3446
3447 /* GG is now the master GOT, and G is the primary GOT. */
3448 gg = g;
3449 g = g->next;
3450
3451 /* Map the output bfd to the primary got. That's what we're going
3452 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3453 didn't mark in check_relocs, and we want a quick way to find it.
3454 We can't just use gg->next because we're going to reverse the
3455 list. */
3456 {
3457 struct mips_elf_bfd2got_hash *bfdgot;
3458 void **bfdgotp;
3459
3460 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3461 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3462
3463 if (bfdgot == NULL)
3464 return FALSE;
3465
3466 bfdgot->bfd = abfd;
3467 bfdgot->g = g;
3468 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3469
3470 BFD_ASSERT (*bfdgotp == NULL);
3471 *bfdgotp = bfdgot;
3472 }
3473
3474 /* The IRIX dynamic linker requires every symbol that is referenced
3475 in a dynamic relocation to be present in the primary GOT, so
3476 arrange for them to appear after those that are actually
3477 referenced.
3478
3479 GNU/Linux could very well do without it, but it would slow down
3480 the dynamic linker, since it would have to resolve every dynamic
3481 symbol referenced in other GOTs more than once, without help from
3482 the cache. Also, knowing that every external symbol has a GOT
3483 helps speed up the resolution of local symbols too, so GNU/Linux
3484 follows IRIX's practice.
3485
3486 The number 2 is used by mips_elf_sort_hash_table_f to count
3487 global GOT symbols that are unreferenced in the primary GOT, with
3488 an initial dynamic index computed from gg->assigned_gotno, where
3489 the number of unreferenced global entries in the primary GOT is
3490 preserved. */
3491 if (1)
3492 {
3493 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3494 g->global_gotno = gg->global_gotno;
3495 set_got_offset_arg.value = 2;
3496 }
3497 else
3498 {
3499 /* This could be used for dynamic linkers that don't optimize
3500 symbol resolution while applying relocations so as to use
3501 primary GOT entries or assuming the symbol is locally-defined.
3502 With this code, we assign lower dynamic indices to global
3503 symbols that are not referenced in the primary GOT, so that
3504 their entries can be omitted. */
3505 gg->assigned_gotno = 0;
3506 set_got_offset_arg.value = -1;
3507 }
3508
3509 /* Reorder dynamic symbols as described above (which behavior
3510 depends on the setting of VALUE). */
3511 set_got_offset_arg.g = NULL;
3512 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3513 &set_got_offset_arg);
3514 set_got_offset_arg.value = 1;
3515 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3516 &set_got_offset_arg);
3517 if (! mips_elf_sort_hash_table (info, 1))
3518 return FALSE;
3519
3520 /* Now go through the GOTs assigning them offset ranges.
3521 [assigned_gotno, local_gotno[ will be set to the range of local
3522 entries in each GOT. We can then compute the end of a GOT by
3523 adding local_gotno to global_gotno. We reverse the list and make
3524 it circular since then we'll be able to quickly compute the
3525 beginning of a GOT, by computing the end of its predecessor. To
3526 avoid special cases for the primary GOT, while still preserving
3527 assertions that are valid for both single- and multi-got links,
3528 we arrange for the main got struct to have the right number of
3529 global entries, but set its local_gotno such that the initial
3530 offset of the primary GOT is zero. Remember that the primary GOT
3531 will become the last item in the circular linked list, so it
3532 points back to the master GOT. */
3533 gg->local_gotno = -g->global_gotno;
3534 gg->global_gotno = g->global_gotno;
3535 gg->tls_gotno = 0;
3536 assign = 0;
3537 gg->next = gg;
3538
3539 do
3540 {
3541 struct mips_got_info *gn;
3542
3543 assign += MIPS_RESERVED_GOTNO (info);
3544 g->assigned_gotno = assign;
3545 g->local_gotno += assign + pages;
3546 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3547
3548 /* Take g out of the direct list, and push it onto the reversed
3549 list that gg points to. g->next is guaranteed to be nonnull after
3550 this operation, as required by mips_elf_initialize_tls_index. */
3551 gn = g->next;
3552 g->next = gg->next;
3553 gg->next = g;
3554
3555 /* Set up any TLS entries. We always place the TLS entries after
3556 all non-TLS entries. */
3557 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3558 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3559
3560 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3561 g = gn;
3562
3563 /* Mark global symbols in every non-primary GOT as ineligible for
3564 stubs. */
3565 if (g)
3566 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3567 }
3568 while (g);
3569
3570 got->size = (gg->next->local_gotno
3571 + gg->next->global_gotno
3572 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3573
3574 return TRUE;
3575 }
3576
3577 \f
3578 /* Returns the first relocation of type r_type found, beginning with
3579 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3580
3581 static const Elf_Internal_Rela *
3582 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3583 const Elf_Internal_Rela *relocation,
3584 const Elf_Internal_Rela *relend)
3585 {
3586 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3587
3588 while (relocation < relend)
3589 {
3590 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3591 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3592 return relocation;
3593
3594 ++relocation;
3595 }
3596
3597 /* We didn't find it. */
3598 bfd_set_error (bfd_error_bad_value);
3599 return NULL;
3600 }
3601
3602 /* Return whether a relocation is against a local symbol. */
3603
3604 static bfd_boolean
3605 mips_elf_local_relocation_p (bfd *input_bfd,
3606 const Elf_Internal_Rela *relocation,
3607 asection **local_sections,
3608 bfd_boolean check_forced)
3609 {
3610 unsigned long r_symndx;
3611 Elf_Internal_Shdr *symtab_hdr;
3612 struct mips_elf_link_hash_entry *h;
3613 size_t extsymoff;
3614
3615 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3616 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3617 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3618
3619 if (r_symndx < extsymoff)
3620 return TRUE;
3621 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3622 return TRUE;
3623
3624 if (check_forced)
3625 {
3626 /* Look up the hash table to check whether the symbol
3627 was forced local. */
3628 h = (struct mips_elf_link_hash_entry *)
3629 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3630 /* Find the real hash-table entry for this symbol. */
3631 while (h->root.root.type == bfd_link_hash_indirect
3632 || h->root.root.type == bfd_link_hash_warning)
3633 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3634 if (h->root.forced_local)
3635 return TRUE;
3636 }
3637
3638 return FALSE;
3639 }
3640 \f
3641 /* Sign-extend VALUE, which has the indicated number of BITS. */
3642
3643 bfd_vma
3644 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3645 {
3646 if (value & ((bfd_vma) 1 << (bits - 1)))
3647 /* VALUE is negative. */
3648 value |= ((bfd_vma) - 1) << bits;
3649
3650 return value;
3651 }
3652
3653 /* Return non-zero if the indicated VALUE has overflowed the maximum
3654 range expressible by a signed number with the indicated number of
3655 BITS. */
3656
3657 static bfd_boolean
3658 mips_elf_overflow_p (bfd_vma value, int bits)
3659 {
3660 bfd_signed_vma svalue = (bfd_signed_vma) value;
3661
3662 if (svalue > (1 << (bits - 1)) - 1)
3663 /* The value is too big. */
3664 return TRUE;
3665 else if (svalue < -(1 << (bits - 1)))
3666 /* The value is too small. */
3667 return TRUE;
3668
3669 /* All is well. */
3670 return FALSE;
3671 }
3672
3673 /* Calculate the %high function. */
3674
3675 static bfd_vma
3676 mips_elf_high (bfd_vma value)
3677 {
3678 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3679 }
3680
3681 /* Calculate the %higher function. */
3682
3683 static bfd_vma
3684 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3685 {
3686 #ifdef BFD64
3687 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3688 #else
3689 abort ();
3690 return MINUS_ONE;
3691 #endif
3692 }
3693
3694 /* Calculate the %highest function. */
3695
3696 static bfd_vma
3697 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3698 {
3699 #ifdef BFD64
3700 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3701 #else
3702 abort ();
3703 return MINUS_ONE;
3704 #endif
3705 }
3706 \f
3707 /* Create the .compact_rel section. */
3708
3709 static bfd_boolean
3710 mips_elf_create_compact_rel_section
3711 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3712 {
3713 flagword flags;
3714 register asection *s;
3715
3716 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3717 {
3718 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3719 | SEC_READONLY);
3720
3721 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3722 if (s == NULL
3723 || ! bfd_set_section_alignment (abfd, s,
3724 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3725 return FALSE;
3726
3727 s->size = sizeof (Elf32_External_compact_rel);
3728 }
3729
3730 return TRUE;
3731 }
3732
3733 /* Create the .got section to hold the global offset table. */
3734
3735 static bfd_boolean
3736 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3737 bfd_boolean maybe_exclude)
3738 {
3739 flagword flags;
3740 register asection *s;
3741 struct elf_link_hash_entry *h;
3742 struct bfd_link_hash_entry *bh;
3743 struct mips_got_info *g;
3744 bfd_size_type amt;
3745 struct mips_elf_link_hash_table *htab;
3746
3747 htab = mips_elf_hash_table (info);
3748
3749 /* This function may be called more than once. */
3750 s = mips_elf_got_section (abfd, TRUE);
3751 if (s)
3752 {
3753 if (! maybe_exclude)
3754 s->flags &= ~SEC_EXCLUDE;
3755 return TRUE;
3756 }
3757
3758 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3759 | SEC_LINKER_CREATED);
3760
3761 if (maybe_exclude)
3762 flags |= SEC_EXCLUDE;
3763
3764 /* We have to use an alignment of 2**4 here because this is hardcoded
3765 in the function stub generation and in the linker script. */
3766 s = bfd_make_section_with_flags (abfd, ".got", flags);
3767 if (s == NULL
3768 || ! bfd_set_section_alignment (abfd, s, 4))
3769 return FALSE;
3770
3771 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3772 linker script because we don't want to define the symbol if we
3773 are not creating a global offset table. */
3774 bh = NULL;
3775 if (! (_bfd_generic_link_add_one_symbol
3776 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3777 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3778 return FALSE;
3779
3780 h = (struct elf_link_hash_entry *) bh;
3781 h->non_elf = 0;
3782 h->def_regular = 1;
3783 h->type = STT_OBJECT;
3784 elf_hash_table (info)->hgot = h;
3785
3786 if (info->shared
3787 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3788 return FALSE;
3789
3790 amt = sizeof (struct mips_got_info);
3791 g = bfd_alloc (abfd, amt);
3792 if (g == NULL)
3793 return FALSE;
3794 g->global_gotsym = NULL;
3795 g->global_gotno = 0;
3796 g->tls_gotno = 0;
3797 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3798 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3799 g->bfd2got = NULL;
3800 g->next = NULL;
3801 g->tls_ldm_offset = MINUS_ONE;
3802 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3803 mips_elf_got_entry_eq, NULL);
3804 if (g->got_entries == NULL)
3805 return FALSE;
3806 mips_elf_section_data (s)->u.got_info = g;
3807 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3808 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3809
3810 /* VxWorks also needs a .got.plt section. */
3811 if (htab->is_vxworks)
3812 {
3813 s = bfd_make_section_with_flags (abfd, ".got.plt",
3814 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3815 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3816 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3817 return FALSE;
3818
3819 htab->sgotplt = s;
3820 }
3821 return TRUE;
3822 }
3823 \f
3824 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3825 __GOTT_INDEX__ symbols. These symbols are only special for
3826 shared objects; they are not used in executables. */
3827
3828 static bfd_boolean
3829 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3830 {
3831 return (mips_elf_hash_table (info)->is_vxworks
3832 && info->shared
3833 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3834 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3835 }
3836 \f
3837 /* Calculate the value produced by the RELOCATION (which comes from
3838 the INPUT_BFD). The ADDEND is the addend to use for this
3839 RELOCATION; RELOCATION->R_ADDEND is ignored.
3840
3841 The result of the relocation calculation is stored in VALUEP.
3842 REQUIRE_JALXP indicates whether or not the opcode used with this
3843 relocation must be JALX.
3844
3845 This function returns bfd_reloc_continue if the caller need take no
3846 further action regarding this relocation, bfd_reloc_notsupported if
3847 something goes dramatically wrong, bfd_reloc_overflow if an
3848 overflow occurs, and bfd_reloc_ok to indicate success. */
3849
3850 static bfd_reloc_status_type
3851 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3852 asection *input_section,
3853 struct bfd_link_info *info,
3854 const Elf_Internal_Rela *relocation,
3855 bfd_vma addend, reloc_howto_type *howto,
3856 Elf_Internal_Sym *local_syms,
3857 asection **local_sections, bfd_vma *valuep,
3858 const char **namep, bfd_boolean *require_jalxp,
3859 bfd_boolean save_addend)
3860 {
3861 /* The eventual value we will return. */
3862 bfd_vma value;
3863 /* The address of the symbol against which the relocation is
3864 occurring. */
3865 bfd_vma symbol = 0;
3866 /* The final GP value to be used for the relocatable, executable, or
3867 shared object file being produced. */
3868 bfd_vma gp = MINUS_ONE;
3869 /* The place (section offset or address) of the storage unit being
3870 relocated. */
3871 bfd_vma p;
3872 /* The value of GP used to create the relocatable object. */
3873 bfd_vma gp0 = MINUS_ONE;
3874 /* The offset into the global offset table at which the address of
3875 the relocation entry symbol, adjusted by the addend, resides
3876 during execution. */
3877 bfd_vma g = MINUS_ONE;
3878 /* The section in which the symbol referenced by the relocation is
3879 located. */
3880 asection *sec = NULL;
3881 struct mips_elf_link_hash_entry *h = NULL;
3882 /* TRUE if the symbol referred to by this relocation is a local
3883 symbol. */
3884 bfd_boolean local_p, was_local_p;
3885 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3886 bfd_boolean gp_disp_p = FALSE;
3887 /* TRUE if the symbol referred to by this relocation is
3888 "__gnu_local_gp". */
3889 bfd_boolean gnu_local_gp_p = FALSE;
3890 Elf_Internal_Shdr *symtab_hdr;
3891 size_t extsymoff;
3892 unsigned long r_symndx;
3893 int r_type;
3894 /* TRUE if overflow occurred during the calculation of the
3895 relocation value. */
3896 bfd_boolean overflowed_p;
3897 /* TRUE if this relocation refers to a MIPS16 function. */
3898 bfd_boolean target_is_16_bit_code_p = FALSE;
3899 struct mips_elf_link_hash_table *htab;
3900 bfd *dynobj;
3901
3902 dynobj = elf_hash_table (info)->dynobj;
3903 htab = mips_elf_hash_table (info);
3904
3905 /* Parse the relocation. */
3906 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3907 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3908 p = (input_section->output_section->vma
3909 + input_section->output_offset
3910 + relocation->r_offset);
3911
3912 /* Assume that there will be no overflow. */
3913 overflowed_p = FALSE;
3914
3915 /* Figure out whether or not the symbol is local, and get the offset
3916 used in the array of hash table entries. */
3917 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3918 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3919 local_sections, FALSE);
3920 was_local_p = local_p;
3921 if (! elf_bad_symtab (input_bfd))
3922 extsymoff = symtab_hdr->sh_info;
3923 else
3924 {
3925 /* The symbol table does not follow the rule that local symbols
3926 must come before globals. */
3927 extsymoff = 0;
3928 }
3929
3930 /* Figure out the value of the symbol. */
3931 if (local_p)
3932 {
3933 Elf_Internal_Sym *sym;
3934
3935 sym = local_syms + r_symndx;
3936 sec = local_sections[r_symndx];
3937
3938 symbol = sec->output_section->vma + sec->output_offset;
3939 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3940 || (sec->flags & SEC_MERGE))
3941 symbol += sym->st_value;
3942 if ((sec->flags & SEC_MERGE)
3943 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3944 {
3945 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3946 addend -= symbol;
3947 addend += sec->output_section->vma + sec->output_offset;
3948 }
3949
3950 /* MIPS16 text labels should be treated as odd. */
3951 if (sym->st_other == STO_MIPS16)
3952 ++symbol;
3953
3954 /* Record the name of this symbol, for our caller. */
3955 *namep = bfd_elf_string_from_elf_section (input_bfd,
3956 symtab_hdr->sh_link,
3957 sym->st_name);
3958 if (*namep == '\0')
3959 *namep = bfd_section_name (input_bfd, sec);
3960
3961 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3962 }
3963 else
3964 {
3965 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3966
3967 /* For global symbols we look up the symbol in the hash-table. */
3968 h = ((struct mips_elf_link_hash_entry *)
3969 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3970 /* Find the real hash-table entry for this symbol. */
3971 while (h->root.root.type == bfd_link_hash_indirect
3972 || h->root.root.type == bfd_link_hash_warning)
3973 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3974
3975 /* Record the name of this symbol, for our caller. */
3976 *namep = h->root.root.root.string;
3977
3978 /* See if this is the special _gp_disp symbol. Note that such a
3979 symbol must always be a global symbol. */
3980 if (strcmp (*namep, "_gp_disp") == 0
3981 && ! NEWABI_P (input_bfd))
3982 {
3983 /* Relocations against _gp_disp are permitted only with
3984 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3985 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3986 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3987 return bfd_reloc_notsupported;
3988
3989 gp_disp_p = TRUE;
3990 }
3991 /* See if this is the special _gp symbol. Note that such a
3992 symbol must always be a global symbol. */
3993 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3994 gnu_local_gp_p = TRUE;
3995
3996
3997 /* If this symbol is defined, calculate its address. Note that
3998 _gp_disp is a magic symbol, always implicitly defined by the
3999 linker, so it's inappropriate to check to see whether or not
4000 its defined. */
4001 else if ((h->root.root.type == bfd_link_hash_defined
4002 || h->root.root.type == bfd_link_hash_defweak)
4003 && h->root.root.u.def.section)
4004 {
4005 sec = h->root.root.u.def.section;
4006 if (sec->output_section)
4007 symbol = (h->root.root.u.def.value
4008 + sec->output_section->vma
4009 + sec->output_offset);
4010 else
4011 symbol = h->root.root.u.def.value;
4012 }
4013 else if (h->root.root.type == bfd_link_hash_undefweak)
4014 /* We allow relocations against undefined weak symbols, giving
4015 it the value zero, so that you can undefined weak functions
4016 and check to see if they exist by looking at their
4017 addresses. */
4018 symbol = 0;
4019 else if (info->unresolved_syms_in_objects == RM_IGNORE
4020 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4021 symbol = 0;
4022 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4023 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4024 {
4025 /* If this is a dynamic link, we should have created a
4026 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4027 in in _bfd_mips_elf_create_dynamic_sections.
4028 Otherwise, we should define the symbol with a value of 0.
4029 FIXME: It should probably get into the symbol table
4030 somehow as well. */
4031 BFD_ASSERT (! info->shared);
4032 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4033 symbol = 0;
4034 }
4035 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4036 {
4037 /* This is an optional symbol - an Irix specific extension to the
4038 ELF spec. Ignore it for now.
4039 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4040 than simply ignoring them, but we do not handle this for now.
4041 For information see the "64-bit ELF Object File Specification"
4042 which is available from here:
4043 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4044 symbol = 0;
4045 }
4046 else
4047 {
4048 if (! ((*info->callbacks->undefined_symbol)
4049 (info, h->root.root.root.string, input_bfd,
4050 input_section, relocation->r_offset,
4051 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4052 || ELF_ST_VISIBILITY (h->root.other))))
4053 return bfd_reloc_undefined;
4054 symbol = 0;
4055 }
4056
4057 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4058 }
4059
4060 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4061 need to redirect the call to the stub, unless we're already *in*
4062 a stub. */
4063 if (r_type != R_MIPS16_26 && !info->relocatable
4064 && ((h != NULL && h->fn_stub != NULL)
4065 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4066 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4067 && !mips_elf_stub_section_p (input_bfd, input_section))
4068 {
4069 /* This is a 32- or 64-bit call to a 16-bit function. We should
4070 have already noticed that we were going to need the
4071 stub. */
4072 if (local_p)
4073 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4074 else
4075 {
4076 BFD_ASSERT (h->need_fn_stub);
4077 sec = h->fn_stub;
4078 }
4079
4080 symbol = sec->output_section->vma + sec->output_offset;
4081 /* The target is 16-bit, but the stub isn't. */
4082 target_is_16_bit_code_p = FALSE;
4083 }
4084 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4085 need to redirect the call to the stub. */
4086 else if (r_type == R_MIPS16_26 && !info->relocatable
4087 && h != NULL
4088 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4089 && !target_is_16_bit_code_p)
4090 {
4091 /* If both call_stub and call_fp_stub are defined, we can figure
4092 out which one to use by seeing which one appears in the input
4093 file. */
4094 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4095 {
4096 asection *o;
4097
4098 sec = NULL;
4099 for (o = input_bfd->sections; o != NULL; o = o->next)
4100 {
4101 if (strncmp (bfd_get_section_name (input_bfd, o),
4102 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4103 {
4104 sec = h->call_fp_stub;
4105 break;
4106 }
4107 }
4108 if (sec == NULL)
4109 sec = h->call_stub;
4110 }
4111 else if (h->call_stub != NULL)
4112 sec = h->call_stub;
4113 else
4114 sec = h->call_fp_stub;
4115
4116 BFD_ASSERT (sec->size > 0);
4117 symbol = sec->output_section->vma + sec->output_offset;
4118 }
4119
4120 /* Calls from 16-bit code to 32-bit code and vice versa require the
4121 special jalx instruction. */
4122 *require_jalxp = (!info->relocatable
4123 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4124 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4125
4126 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4127 local_sections, TRUE);
4128
4129 /* If we haven't already determined the GOT offset, or the GP value,
4130 and we're going to need it, get it now. */
4131 switch (r_type)
4132 {
4133 case R_MIPS_GOT_PAGE:
4134 case R_MIPS_GOT_OFST:
4135 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4136 bind locally. */
4137 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4138 if (local_p || r_type == R_MIPS_GOT_OFST)
4139 break;
4140 /* Fall through. */
4141
4142 case R_MIPS_CALL16:
4143 case R_MIPS_GOT16:
4144 case R_MIPS_GOT_DISP:
4145 case R_MIPS_GOT_HI16:
4146 case R_MIPS_CALL_HI16:
4147 case R_MIPS_GOT_LO16:
4148 case R_MIPS_CALL_LO16:
4149 case R_MIPS_TLS_GD:
4150 case R_MIPS_TLS_GOTTPREL:
4151 case R_MIPS_TLS_LDM:
4152 /* Find the index into the GOT where this value is located. */
4153 if (r_type == R_MIPS_TLS_LDM)
4154 {
4155 g = mips_elf_local_got_index (abfd, input_bfd, info,
4156 sec, 0, 0, NULL, r_type);
4157 if (g == MINUS_ONE)
4158 return bfd_reloc_outofrange;
4159 }
4160 else if (!local_p)
4161 {
4162 /* On VxWorks, CALL relocations should refer to the .got.plt
4163 entry, which is initialized to point at the PLT stub. */
4164 if (htab->is_vxworks
4165 && (r_type == R_MIPS_CALL_HI16
4166 || r_type == R_MIPS_CALL_LO16
4167 || r_type == R_MIPS_CALL16))
4168 {
4169 BFD_ASSERT (addend == 0);
4170 BFD_ASSERT (h->root.needs_plt);
4171 g = mips_elf_gotplt_index (info, &h->root);
4172 }
4173 else
4174 {
4175 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4176 GOT_PAGE relocation that decays to GOT_DISP because the
4177 symbol turns out to be global. The addend is then added
4178 as GOT_OFST. */
4179 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4180 g = mips_elf_global_got_index (dynobj, input_bfd,
4181 &h->root, r_type, info);
4182 if (h->tls_type == GOT_NORMAL
4183 && (! elf_hash_table(info)->dynamic_sections_created
4184 || (info->shared
4185 && (info->symbolic || h->root.forced_local)
4186 && h->root.def_regular)))
4187 {
4188 /* This is a static link or a -Bsymbolic link. The
4189 symbol is defined locally, or was forced to be local.
4190 We must initialize this entry in the GOT. */
4191 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4192 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4193 }
4194 }
4195 }
4196 else if (!htab->is_vxworks
4197 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4198 /* The calculation below does not involve "g". */
4199 break;
4200 else
4201 {
4202 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4203 symbol + addend, r_symndx, h, r_type);
4204 if (g == MINUS_ONE)
4205 return bfd_reloc_outofrange;
4206 }
4207
4208 /* Convert GOT indices to actual offsets. */
4209 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4210 break;
4211
4212 case R_MIPS_HI16:
4213 case R_MIPS_LO16:
4214 case R_MIPS_GPREL16:
4215 case R_MIPS_GPREL32:
4216 case R_MIPS_LITERAL:
4217 case R_MIPS16_HI16:
4218 case R_MIPS16_LO16:
4219 case R_MIPS16_GPREL:
4220 gp0 = _bfd_get_gp_value (input_bfd);
4221 gp = _bfd_get_gp_value (abfd);
4222 if (dynobj)
4223 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4224 input_bfd);
4225 break;
4226
4227 default:
4228 break;
4229 }
4230
4231 if (gnu_local_gp_p)
4232 symbol = gp;
4233
4234 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4235 symbols are resolved by the loader. Add them to .rela.dyn. */
4236 if (h != NULL && is_gott_symbol (info, &h->root))
4237 {
4238 Elf_Internal_Rela outrel;
4239 bfd_byte *loc;
4240 asection *s;
4241
4242 s = mips_elf_rel_dyn_section (info, FALSE);
4243 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4244
4245 outrel.r_offset = (input_section->output_section->vma
4246 + input_section->output_offset
4247 + relocation->r_offset);
4248 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4249 outrel.r_addend = addend;
4250 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4251 *valuep = 0;
4252 return bfd_reloc_ok;
4253 }
4254
4255 /* Figure out what kind of relocation is being performed. */
4256 switch (r_type)
4257 {
4258 case R_MIPS_NONE:
4259 return bfd_reloc_continue;
4260
4261 case R_MIPS_16:
4262 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4263 overflowed_p = mips_elf_overflow_p (value, 16);
4264 break;
4265
4266 case R_MIPS_32:
4267 case R_MIPS_REL32:
4268 case R_MIPS_64:
4269 if ((info->shared
4270 || (!htab->is_vxworks
4271 && htab->root.dynamic_sections_created
4272 && h != NULL
4273 && h->root.def_dynamic
4274 && !h->root.def_regular))
4275 && r_symndx != 0
4276 && (input_section->flags & SEC_ALLOC) != 0)
4277 {
4278 /* If we're creating a shared library, or this relocation is
4279 against a symbol in a shared library, then we can't know
4280 where the symbol will end up. So, we create a relocation
4281 record in the output, and leave the job up to the dynamic
4282 linker.
4283
4284 In VxWorks executables, references to external symbols
4285 are handled using copy relocs or PLT stubs, so there's
4286 no need to add a dynamic relocation here. */
4287 value = addend;
4288 if (!mips_elf_create_dynamic_relocation (abfd,
4289 info,
4290 relocation,
4291 h,
4292 sec,
4293 symbol,
4294 &value,
4295 input_section))
4296 return bfd_reloc_undefined;
4297 }
4298 else
4299 {
4300 if (r_type != R_MIPS_REL32)
4301 value = symbol + addend;
4302 else
4303 value = addend;
4304 }
4305 value &= howto->dst_mask;
4306 break;
4307
4308 case R_MIPS_PC32:
4309 value = symbol + addend - p;
4310 value &= howto->dst_mask;
4311 break;
4312
4313 case R_MIPS16_26:
4314 /* The calculation for R_MIPS16_26 is just the same as for an
4315 R_MIPS_26. It's only the storage of the relocated field into
4316 the output file that's different. That's handled in
4317 mips_elf_perform_relocation. So, we just fall through to the
4318 R_MIPS_26 case here. */
4319 case R_MIPS_26:
4320 if (local_p)
4321 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4322 else
4323 {
4324 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4325 if (h->root.root.type != bfd_link_hash_undefweak)
4326 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4327 }
4328 value &= howto->dst_mask;
4329 break;
4330
4331 case R_MIPS_TLS_DTPREL_HI16:
4332 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4333 & howto->dst_mask);
4334 break;
4335
4336 case R_MIPS_TLS_DTPREL_LO16:
4337 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4338 break;
4339
4340 case R_MIPS_TLS_TPREL_HI16:
4341 value = (mips_elf_high (addend + symbol - tprel_base (info))
4342 & howto->dst_mask);
4343 break;
4344
4345 case R_MIPS_TLS_TPREL_LO16:
4346 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4347 break;
4348
4349 case R_MIPS_HI16:
4350 case R_MIPS16_HI16:
4351 if (!gp_disp_p)
4352 {
4353 value = mips_elf_high (addend + symbol);
4354 value &= howto->dst_mask;
4355 }
4356 else
4357 {
4358 /* For MIPS16 ABI code we generate this sequence
4359 0: li $v0,%hi(_gp_disp)
4360 4: addiupc $v1,%lo(_gp_disp)
4361 8: sll $v0,16
4362 12: addu $v0,$v1
4363 14: move $gp,$v0
4364 So the offsets of hi and lo relocs are the same, but the
4365 $pc is four higher than $t9 would be, so reduce
4366 both reloc addends by 4. */
4367 if (r_type == R_MIPS16_HI16)
4368 value = mips_elf_high (addend + gp - p - 4);
4369 else
4370 value = mips_elf_high (addend + gp - p);
4371 overflowed_p = mips_elf_overflow_p (value, 16);
4372 }
4373 break;
4374
4375 case R_MIPS_LO16:
4376 case R_MIPS16_LO16:
4377 if (!gp_disp_p)
4378 value = (symbol + addend) & howto->dst_mask;
4379 else
4380 {
4381 /* See the comment for R_MIPS16_HI16 above for the reason
4382 for this conditional. */
4383 if (r_type == R_MIPS16_LO16)
4384 value = addend + gp - p;
4385 else
4386 value = addend + gp - p + 4;
4387 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4388 for overflow. But, on, say, IRIX5, relocations against
4389 _gp_disp are normally generated from the .cpload
4390 pseudo-op. It generates code that normally looks like
4391 this:
4392
4393 lui $gp,%hi(_gp_disp)
4394 addiu $gp,$gp,%lo(_gp_disp)
4395 addu $gp,$gp,$t9
4396
4397 Here $t9 holds the address of the function being called,
4398 as required by the MIPS ELF ABI. The R_MIPS_LO16
4399 relocation can easily overflow in this situation, but the
4400 R_MIPS_HI16 relocation will handle the overflow.
4401 Therefore, we consider this a bug in the MIPS ABI, and do
4402 not check for overflow here. */
4403 }
4404 break;
4405
4406 case R_MIPS_LITERAL:
4407 /* Because we don't merge literal sections, we can handle this
4408 just like R_MIPS_GPREL16. In the long run, we should merge
4409 shared literals, and then we will need to additional work
4410 here. */
4411
4412 /* Fall through. */
4413
4414 case R_MIPS16_GPREL:
4415 /* The R_MIPS16_GPREL performs the same calculation as
4416 R_MIPS_GPREL16, but stores the relocated bits in a different
4417 order. We don't need to do anything special here; the
4418 differences are handled in mips_elf_perform_relocation. */
4419 case R_MIPS_GPREL16:
4420 /* Only sign-extend the addend if it was extracted from the
4421 instruction. If the addend was separate, leave it alone,
4422 otherwise we may lose significant bits. */
4423 if (howto->partial_inplace)
4424 addend = _bfd_mips_elf_sign_extend (addend, 16);
4425 value = symbol + addend - gp;
4426 /* If the symbol was local, any earlier relocatable links will
4427 have adjusted its addend with the gp offset, so compensate
4428 for that now. Don't do it for symbols forced local in this
4429 link, though, since they won't have had the gp offset applied
4430 to them before. */
4431 if (was_local_p)
4432 value += gp0;
4433 overflowed_p = mips_elf_overflow_p (value, 16);
4434 break;
4435
4436 case R_MIPS_GOT16:
4437 case R_MIPS_CALL16:
4438 /* VxWorks does not have separate local and global semantics for
4439 R_MIPS_GOT16; every relocation evaluates to "G". */
4440 if (!htab->is_vxworks && local_p)
4441 {
4442 bfd_boolean forced;
4443
4444 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4445 local_sections, FALSE);
4446 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4447 symbol + addend, forced);
4448 if (value == MINUS_ONE)
4449 return bfd_reloc_outofrange;
4450 value
4451 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4452 overflowed_p = mips_elf_overflow_p (value, 16);
4453 break;
4454 }
4455
4456 /* Fall through. */
4457
4458 case R_MIPS_TLS_GD:
4459 case R_MIPS_TLS_GOTTPREL:
4460 case R_MIPS_TLS_LDM:
4461 case R_MIPS_GOT_DISP:
4462 got_disp:
4463 value = g;
4464 overflowed_p = mips_elf_overflow_p (value, 16);
4465 break;
4466
4467 case R_MIPS_GPREL32:
4468 value = (addend + symbol + gp0 - gp);
4469 if (!save_addend)
4470 value &= howto->dst_mask;
4471 break;
4472
4473 case R_MIPS_PC16:
4474 case R_MIPS_GNU_REL16_S2:
4475 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4476 overflowed_p = mips_elf_overflow_p (value, 18);
4477 value >>= howto->rightshift;
4478 value &= howto->dst_mask;
4479 break;
4480
4481 case R_MIPS_GOT_HI16:
4482 case R_MIPS_CALL_HI16:
4483 /* We're allowed to handle these two relocations identically.
4484 The dynamic linker is allowed to handle the CALL relocations
4485 differently by creating a lazy evaluation stub. */
4486 value = g;
4487 value = mips_elf_high (value);
4488 value &= howto->dst_mask;
4489 break;
4490
4491 case R_MIPS_GOT_LO16:
4492 case R_MIPS_CALL_LO16:
4493 value = g & howto->dst_mask;
4494 break;
4495
4496 case R_MIPS_GOT_PAGE:
4497 /* GOT_PAGE relocations that reference non-local symbols decay
4498 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4499 0. */
4500 if (! local_p)
4501 goto got_disp;
4502 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4503 symbol + addend, NULL);
4504 if (value == MINUS_ONE)
4505 return bfd_reloc_outofrange;
4506 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4507 overflowed_p = mips_elf_overflow_p (value, 16);
4508 break;
4509
4510 case R_MIPS_GOT_OFST:
4511 if (local_p)
4512 mips_elf_got_page (abfd, input_bfd, info, sec,
4513 symbol + addend, &value);
4514 else
4515 value = addend;
4516 overflowed_p = mips_elf_overflow_p (value, 16);
4517 break;
4518
4519 case R_MIPS_SUB:
4520 value = symbol - addend;
4521 value &= howto->dst_mask;
4522 break;
4523
4524 case R_MIPS_HIGHER:
4525 value = mips_elf_higher (addend + symbol);
4526 value &= howto->dst_mask;
4527 break;
4528
4529 case R_MIPS_HIGHEST:
4530 value = mips_elf_highest (addend + symbol);
4531 value &= howto->dst_mask;
4532 break;
4533
4534 case R_MIPS_SCN_DISP:
4535 value = symbol + addend - sec->output_offset;
4536 value &= howto->dst_mask;
4537 break;
4538
4539 case R_MIPS_JALR:
4540 /* This relocation is only a hint. In some cases, we optimize
4541 it into a bal instruction. But we don't try to optimize
4542 branches to the PLT; that will wind up wasting time. */
4543 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4544 return bfd_reloc_continue;
4545 value = symbol + addend;
4546 break;
4547
4548 case R_MIPS_PJUMP:
4549 case R_MIPS_GNU_VTINHERIT:
4550 case R_MIPS_GNU_VTENTRY:
4551 /* We don't do anything with these at present. */
4552 return bfd_reloc_continue;
4553
4554 default:
4555 /* An unrecognized relocation type. */
4556 return bfd_reloc_notsupported;
4557 }
4558
4559 /* Store the VALUE for our caller. */
4560 *valuep = value;
4561 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4562 }
4563
4564 /* Obtain the field relocated by RELOCATION. */
4565
4566 static bfd_vma
4567 mips_elf_obtain_contents (reloc_howto_type *howto,
4568 const Elf_Internal_Rela *relocation,
4569 bfd *input_bfd, bfd_byte *contents)
4570 {
4571 bfd_vma x;
4572 bfd_byte *location = contents + relocation->r_offset;
4573
4574 /* Obtain the bytes. */
4575 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4576
4577 return x;
4578 }
4579
4580 /* It has been determined that the result of the RELOCATION is the
4581 VALUE. Use HOWTO to place VALUE into the output file at the
4582 appropriate position. The SECTION is the section to which the
4583 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4584 for the relocation must be either JAL or JALX, and it is
4585 unconditionally converted to JALX.
4586
4587 Returns FALSE if anything goes wrong. */
4588
4589 static bfd_boolean
4590 mips_elf_perform_relocation (struct bfd_link_info *info,
4591 reloc_howto_type *howto,
4592 const Elf_Internal_Rela *relocation,
4593 bfd_vma value, bfd *input_bfd,
4594 asection *input_section, bfd_byte *contents,
4595 bfd_boolean require_jalx)
4596 {
4597 bfd_vma x;
4598 bfd_byte *location;
4599 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4600
4601 /* Figure out where the relocation is occurring. */
4602 location = contents + relocation->r_offset;
4603
4604 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4605
4606 /* Obtain the current value. */
4607 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4608
4609 /* Clear the field we are setting. */
4610 x &= ~howto->dst_mask;
4611
4612 /* Set the field. */
4613 x |= (value & howto->dst_mask);
4614
4615 /* If required, turn JAL into JALX. */
4616 if (require_jalx)
4617 {
4618 bfd_boolean ok;
4619 bfd_vma opcode = x >> 26;
4620 bfd_vma jalx_opcode;
4621
4622 /* Check to see if the opcode is already JAL or JALX. */
4623 if (r_type == R_MIPS16_26)
4624 {
4625 ok = ((opcode == 0x6) || (opcode == 0x7));
4626 jalx_opcode = 0x7;
4627 }
4628 else
4629 {
4630 ok = ((opcode == 0x3) || (opcode == 0x1d));
4631 jalx_opcode = 0x1d;
4632 }
4633
4634 /* If the opcode is not JAL or JALX, there's a problem. */
4635 if (!ok)
4636 {
4637 (*_bfd_error_handler)
4638 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4639 input_bfd,
4640 input_section,
4641 (unsigned long) relocation->r_offset);
4642 bfd_set_error (bfd_error_bad_value);
4643 return FALSE;
4644 }
4645
4646 /* Make this the JALX opcode. */
4647 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4648 }
4649
4650 /* On the RM9000, bal is faster than jal, because bal uses branch
4651 prediction hardware. If we are linking for the RM9000, and we
4652 see jal, and bal fits, use it instead. Note that this
4653 transformation should be safe for all architectures. */
4654 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4655 && !info->relocatable
4656 && !require_jalx
4657 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4658 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4659 {
4660 bfd_vma addr;
4661 bfd_vma dest;
4662 bfd_signed_vma off;
4663
4664 addr = (input_section->output_section->vma
4665 + input_section->output_offset
4666 + relocation->r_offset
4667 + 4);
4668 if (r_type == R_MIPS_26)
4669 dest = (value << 2) | ((addr >> 28) << 28);
4670 else
4671 dest = value;
4672 off = dest - addr;
4673 if (off <= 0x1ffff && off >= -0x20000)
4674 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4675 }
4676
4677 /* Put the value into the output. */
4678 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4679
4680 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4681 location);
4682
4683 return TRUE;
4684 }
4685
4686 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4687
4688 static bfd_boolean
4689 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4690 {
4691 const char *name = bfd_get_section_name (abfd, section);
4692
4693 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4694 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4695 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4696 }
4697 \f
4698 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4699
4700 static void
4701 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4702 unsigned int n)
4703 {
4704 asection *s;
4705 struct mips_elf_link_hash_table *htab;
4706
4707 htab = mips_elf_hash_table (info);
4708 s = mips_elf_rel_dyn_section (info, FALSE);
4709 BFD_ASSERT (s != NULL);
4710
4711 if (htab->is_vxworks)
4712 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4713 else
4714 {
4715 if (s->size == 0)
4716 {
4717 /* Make room for a null element. */
4718 s->size += MIPS_ELF_REL_SIZE (abfd);
4719 ++s->reloc_count;
4720 }
4721 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4722 }
4723 }
4724
4725 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4726 is the original relocation, which is now being transformed into a
4727 dynamic relocation. The ADDENDP is adjusted if necessary; the
4728 caller should store the result in place of the original addend. */
4729
4730 static bfd_boolean
4731 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4732 struct bfd_link_info *info,
4733 const Elf_Internal_Rela *rel,
4734 struct mips_elf_link_hash_entry *h,
4735 asection *sec, bfd_vma symbol,
4736 bfd_vma *addendp, asection *input_section)
4737 {
4738 Elf_Internal_Rela outrel[3];
4739 asection *sreloc;
4740 bfd *dynobj;
4741 int r_type;
4742 long indx;
4743 bfd_boolean defined_p;
4744 struct mips_elf_link_hash_table *htab;
4745
4746 htab = mips_elf_hash_table (info);
4747 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4748 dynobj = elf_hash_table (info)->dynobj;
4749 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4750 BFD_ASSERT (sreloc != NULL);
4751 BFD_ASSERT (sreloc->contents != NULL);
4752 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4753 < sreloc->size);
4754
4755 outrel[0].r_offset =
4756 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4757 outrel[1].r_offset =
4758 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4759 outrel[2].r_offset =
4760 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4761
4762 if (outrel[0].r_offset == MINUS_ONE)
4763 /* The relocation field has been deleted. */
4764 return TRUE;
4765
4766 if (outrel[0].r_offset == MINUS_TWO)
4767 {
4768 /* The relocation field has been converted into a relative value of
4769 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4770 the field to be fully relocated, so add in the symbol's value. */
4771 *addendp += symbol;
4772 return TRUE;
4773 }
4774
4775 /* We must now calculate the dynamic symbol table index to use
4776 in the relocation. */
4777 if (h != NULL
4778 && (!h->root.def_regular
4779 || (info->shared && !info->symbolic && !h->root.forced_local)))
4780 {
4781 indx = h->root.dynindx;
4782 if (SGI_COMPAT (output_bfd))
4783 defined_p = h->root.def_regular;
4784 else
4785 /* ??? glibc's ld.so just adds the final GOT entry to the
4786 relocation field. It therefore treats relocs against
4787 defined symbols in the same way as relocs against
4788 undefined symbols. */
4789 defined_p = FALSE;
4790 }
4791 else
4792 {
4793 if (sec != NULL && bfd_is_abs_section (sec))
4794 indx = 0;
4795 else if (sec == NULL || sec->owner == NULL)
4796 {
4797 bfd_set_error (bfd_error_bad_value);
4798 return FALSE;
4799 }
4800 else
4801 {
4802 indx = elf_section_data (sec->output_section)->dynindx;
4803 if (indx == 0)
4804 abort ();
4805 }
4806
4807 /* Instead of generating a relocation using the section
4808 symbol, we may as well make it a fully relative
4809 relocation. We want to avoid generating relocations to
4810 local symbols because we used to generate them
4811 incorrectly, without adding the original symbol value,
4812 which is mandated by the ABI for section symbols. In
4813 order to give dynamic loaders and applications time to
4814 phase out the incorrect use, we refrain from emitting
4815 section-relative relocations. It's not like they're
4816 useful, after all. This should be a bit more efficient
4817 as well. */
4818 /* ??? Although this behavior is compatible with glibc's ld.so,
4819 the ABI says that relocations against STN_UNDEF should have
4820 a symbol value of 0. Irix rld honors this, so relocations
4821 against STN_UNDEF have no effect. */
4822 if (!SGI_COMPAT (output_bfd))
4823 indx = 0;
4824 defined_p = TRUE;
4825 }
4826
4827 /* If the relocation was previously an absolute relocation and
4828 this symbol will not be referred to by the relocation, we must
4829 adjust it by the value we give it in the dynamic symbol table.
4830 Otherwise leave the job up to the dynamic linker. */
4831 if (defined_p && r_type != R_MIPS_REL32)
4832 *addendp += symbol;
4833
4834 if (htab->is_vxworks)
4835 /* VxWorks uses non-relative relocations for this. */
4836 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4837 else
4838 /* The relocation is always an REL32 relocation because we don't
4839 know where the shared library will wind up at load-time. */
4840 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4841 R_MIPS_REL32);
4842
4843 /* For strict adherence to the ABI specification, we should
4844 generate a R_MIPS_64 relocation record by itself before the
4845 _REL32/_64 record as well, such that the addend is read in as
4846 a 64-bit value (REL32 is a 32-bit relocation, after all).
4847 However, since none of the existing ELF64 MIPS dynamic
4848 loaders seems to care, we don't waste space with these
4849 artificial relocations. If this turns out to not be true,
4850 mips_elf_allocate_dynamic_relocation() should be tweaked so
4851 as to make room for a pair of dynamic relocations per
4852 invocation if ABI_64_P, and here we should generate an
4853 additional relocation record with R_MIPS_64 by itself for a
4854 NULL symbol before this relocation record. */
4855 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4856 ABI_64_P (output_bfd)
4857 ? R_MIPS_64
4858 : R_MIPS_NONE);
4859 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4860
4861 /* Adjust the output offset of the relocation to reference the
4862 correct location in the output file. */
4863 outrel[0].r_offset += (input_section->output_section->vma
4864 + input_section->output_offset);
4865 outrel[1].r_offset += (input_section->output_section->vma
4866 + input_section->output_offset);
4867 outrel[2].r_offset += (input_section->output_section->vma
4868 + input_section->output_offset);
4869
4870 /* Put the relocation back out. We have to use the special
4871 relocation outputter in the 64-bit case since the 64-bit
4872 relocation format is non-standard. */
4873 if (ABI_64_P (output_bfd))
4874 {
4875 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4876 (output_bfd, &outrel[0],
4877 (sreloc->contents
4878 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4879 }
4880 else if (htab->is_vxworks)
4881 {
4882 /* VxWorks uses RELA rather than REL dynamic relocations. */
4883 outrel[0].r_addend = *addendp;
4884 bfd_elf32_swap_reloca_out
4885 (output_bfd, &outrel[0],
4886 (sreloc->contents
4887 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4888 }
4889 else
4890 bfd_elf32_swap_reloc_out
4891 (output_bfd, &outrel[0],
4892 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4893
4894 /* We've now added another relocation. */
4895 ++sreloc->reloc_count;
4896
4897 /* Make sure the output section is writable. The dynamic linker
4898 will be writing to it. */
4899 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4900 |= SHF_WRITE;
4901
4902 /* On IRIX5, make an entry of compact relocation info. */
4903 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4904 {
4905 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4906 bfd_byte *cr;
4907
4908 if (scpt)
4909 {
4910 Elf32_crinfo cptrel;
4911
4912 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4913 cptrel.vaddr = (rel->r_offset
4914 + input_section->output_section->vma
4915 + input_section->output_offset);
4916 if (r_type == R_MIPS_REL32)
4917 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4918 else
4919 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4920 mips_elf_set_cr_dist2to (cptrel, 0);
4921 cptrel.konst = *addendp;
4922
4923 cr = (scpt->contents
4924 + sizeof (Elf32_External_compact_rel));
4925 mips_elf_set_cr_relvaddr (cptrel, 0);
4926 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4927 ((Elf32_External_crinfo *) cr
4928 + scpt->reloc_count));
4929 ++scpt->reloc_count;
4930 }
4931 }
4932
4933 /* If we've written this relocation for a readonly section,
4934 we need to set DF_TEXTREL again, so that we do not delete the
4935 DT_TEXTREL tag. */
4936 if (MIPS_ELF_READONLY_SECTION (input_section))
4937 info->flags |= DF_TEXTREL;
4938
4939 return TRUE;
4940 }
4941 \f
4942 /* Return the MACH for a MIPS e_flags value. */
4943
4944 unsigned long
4945 _bfd_elf_mips_mach (flagword flags)
4946 {
4947 switch (flags & EF_MIPS_MACH)
4948 {
4949 case E_MIPS_MACH_3900:
4950 return bfd_mach_mips3900;
4951
4952 case E_MIPS_MACH_4010:
4953 return bfd_mach_mips4010;
4954
4955 case E_MIPS_MACH_4100:
4956 return bfd_mach_mips4100;
4957
4958 case E_MIPS_MACH_4111:
4959 return bfd_mach_mips4111;
4960
4961 case E_MIPS_MACH_4120:
4962 return bfd_mach_mips4120;
4963
4964 case E_MIPS_MACH_4650:
4965 return bfd_mach_mips4650;
4966
4967 case E_MIPS_MACH_5400:
4968 return bfd_mach_mips5400;
4969
4970 case E_MIPS_MACH_5500:
4971 return bfd_mach_mips5500;
4972
4973 case E_MIPS_MACH_9000:
4974 return bfd_mach_mips9000;
4975
4976 case E_MIPS_MACH_SB1:
4977 return bfd_mach_mips_sb1;
4978
4979 default:
4980 switch (flags & EF_MIPS_ARCH)
4981 {
4982 default:
4983 case E_MIPS_ARCH_1:
4984 return bfd_mach_mips3000;
4985
4986 case E_MIPS_ARCH_2:
4987 return bfd_mach_mips6000;
4988
4989 case E_MIPS_ARCH_3:
4990 return bfd_mach_mips4000;
4991
4992 case E_MIPS_ARCH_4:
4993 return bfd_mach_mips8000;
4994
4995 case E_MIPS_ARCH_5:
4996 return bfd_mach_mips5;
4997
4998 case E_MIPS_ARCH_32:
4999 return bfd_mach_mipsisa32;
5000
5001 case E_MIPS_ARCH_64:
5002 return bfd_mach_mipsisa64;
5003
5004 case E_MIPS_ARCH_32R2:
5005 return bfd_mach_mipsisa32r2;
5006
5007 case E_MIPS_ARCH_64R2:
5008 return bfd_mach_mipsisa64r2;
5009 }
5010 }
5011
5012 return 0;
5013 }
5014
5015 /* Return printable name for ABI. */
5016
5017 static INLINE char *
5018 elf_mips_abi_name (bfd *abfd)
5019 {
5020 flagword flags;
5021
5022 flags = elf_elfheader (abfd)->e_flags;
5023 switch (flags & EF_MIPS_ABI)
5024 {
5025 case 0:
5026 if (ABI_N32_P (abfd))
5027 return "N32";
5028 else if (ABI_64_P (abfd))
5029 return "64";
5030 else
5031 return "none";
5032 case E_MIPS_ABI_O32:
5033 return "O32";
5034 case E_MIPS_ABI_O64:
5035 return "O64";
5036 case E_MIPS_ABI_EABI32:
5037 return "EABI32";
5038 case E_MIPS_ABI_EABI64:
5039 return "EABI64";
5040 default:
5041 return "unknown abi";
5042 }
5043 }
5044 \f
5045 /* MIPS ELF uses two common sections. One is the usual one, and the
5046 other is for small objects. All the small objects are kept
5047 together, and then referenced via the gp pointer, which yields
5048 faster assembler code. This is what we use for the small common
5049 section. This approach is copied from ecoff.c. */
5050 static asection mips_elf_scom_section;
5051 static asymbol mips_elf_scom_symbol;
5052 static asymbol *mips_elf_scom_symbol_ptr;
5053
5054 /* MIPS ELF also uses an acommon section, which represents an
5055 allocated common symbol which may be overridden by a
5056 definition in a shared library. */
5057 static asection mips_elf_acom_section;
5058 static asymbol mips_elf_acom_symbol;
5059 static asymbol *mips_elf_acom_symbol_ptr;
5060
5061 /* Handle the special MIPS section numbers that a symbol may use.
5062 This is used for both the 32-bit and the 64-bit ABI. */
5063
5064 void
5065 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5066 {
5067 elf_symbol_type *elfsym;
5068
5069 elfsym = (elf_symbol_type *) asym;
5070 switch (elfsym->internal_elf_sym.st_shndx)
5071 {
5072 case SHN_MIPS_ACOMMON:
5073 /* This section is used in a dynamically linked executable file.
5074 It is an allocated common section. The dynamic linker can
5075 either resolve these symbols to something in a shared
5076 library, or it can just leave them here. For our purposes,
5077 we can consider these symbols to be in a new section. */
5078 if (mips_elf_acom_section.name == NULL)
5079 {
5080 /* Initialize the acommon section. */
5081 mips_elf_acom_section.name = ".acommon";
5082 mips_elf_acom_section.flags = SEC_ALLOC;
5083 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5084 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5085 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5086 mips_elf_acom_symbol.name = ".acommon";
5087 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5088 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5089 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5090 }
5091 asym->section = &mips_elf_acom_section;
5092 break;
5093
5094 case SHN_COMMON:
5095 /* Common symbols less than the GP size are automatically
5096 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5097 if (asym->value > elf_gp_size (abfd)
5098 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5099 || IRIX_COMPAT (abfd) == ict_irix6)
5100 break;
5101 /* Fall through. */
5102 case SHN_MIPS_SCOMMON:
5103 if (mips_elf_scom_section.name == NULL)
5104 {
5105 /* Initialize the small common section. */
5106 mips_elf_scom_section.name = ".scommon";
5107 mips_elf_scom_section.flags = SEC_IS_COMMON;
5108 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5109 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5110 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5111 mips_elf_scom_symbol.name = ".scommon";
5112 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5113 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5114 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5115 }
5116 asym->section = &mips_elf_scom_section;
5117 asym->value = elfsym->internal_elf_sym.st_size;
5118 break;
5119
5120 case SHN_MIPS_SUNDEFINED:
5121 asym->section = bfd_und_section_ptr;
5122 break;
5123
5124 case SHN_MIPS_TEXT:
5125 {
5126 asection *section = bfd_get_section_by_name (abfd, ".text");
5127
5128 BFD_ASSERT (SGI_COMPAT (abfd));
5129 if (section != NULL)
5130 {
5131 asym->section = section;
5132 /* MIPS_TEXT is a bit special, the address is not an offset
5133 to the base of the .text section. So substract the section
5134 base address to make it an offset. */
5135 asym->value -= section->vma;
5136 }
5137 }
5138 break;
5139
5140 case SHN_MIPS_DATA:
5141 {
5142 asection *section = bfd_get_section_by_name (abfd, ".data");
5143
5144 BFD_ASSERT (SGI_COMPAT (abfd));
5145 if (section != NULL)
5146 {
5147 asym->section = section;
5148 /* MIPS_DATA is a bit special, the address is not an offset
5149 to the base of the .data section. So substract the section
5150 base address to make it an offset. */
5151 asym->value -= section->vma;
5152 }
5153 }
5154 break;
5155 }
5156 }
5157 \f
5158 /* Implement elf_backend_eh_frame_address_size. This differs from
5159 the default in the way it handles EABI64.
5160
5161 EABI64 was originally specified as an LP64 ABI, and that is what
5162 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5163 historically accepted the combination of -mabi=eabi and -mlong32,
5164 and this ILP32 variation has become semi-official over time.
5165 Both forms use elf32 and have pointer-sized FDE addresses.
5166
5167 If an EABI object was generated by GCC 4.0 or above, it will have
5168 an empty .gcc_compiled_longXX section, where XX is the size of longs
5169 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5170 have no special marking to distinguish them from LP64 objects.
5171
5172 We don't want users of the official LP64 ABI to be punished for the
5173 existence of the ILP32 variant, but at the same time, we don't want
5174 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5175 We therefore take the following approach:
5176
5177 - If ABFD contains a .gcc_compiled_longXX section, use it to
5178 determine the pointer size.
5179
5180 - Otherwise check the type of the first relocation. Assume that
5181 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5182
5183 - Otherwise punt.
5184
5185 The second check is enough to detect LP64 objects generated by pre-4.0
5186 compilers because, in the kind of output generated by those compilers,
5187 the first relocation will be associated with either a CIE personality
5188 routine or an FDE start address. Furthermore, the compilers never
5189 used a special (non-pointer) encoding for this ABI.
5190
5191 Checking the relocation type should also be safe because there is no
5192 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5193 did so. */
5194
5195 unsigned int
5196 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5197 {
5198 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5199 return 8;
5200 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5201 {
5202 bfd_boolean long32_p, long64_p;
5203
5204 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5205 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5206 if (long32_p && long64_p)
5207 return 0;
5208 if (long32_p)
5209 return 4;
5210 if (long64_p)
5211 return 8;
5212
5213 if (sec->reloc_count > 0
5214 && elf_section_data (sec)->relocs != NULL
5215 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5216 == R_MIPS_64))
5217 return 8;
5218
5219 return 0;
5220 }
5221 return 4;
5222 }
5223 \f
5224 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5225 relocations against two unnamed section symbols to resolve to the
5226 same address. For example, if we have code like:
5227
5228 lw $4,%got_disp(.data)($gp)
5229 lw $25,%got_disp(.text)($gp)
5230 jalr $25
5231
5232 then the linker will resolve both relocations to .data and the program
5233 will jump there rather than to .text.
5234
5235 We can work around this problem by giving names to local section symbols.
5236 This is also what the MIPSpro tools do. */
5237
5238 bfd_boolean
5239 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5240 {
5241 return SGI_COMPAT (abfd);
5242 }
5243 \f
5244 /* Work over a section just before writing it out. This routine is
5245 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5246 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5247 a better way. */
5248
5249 bfd_boolean
5250 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5251 {
5252 if (hdr->sh_type == SHT_MIPS_REGINFO
5253 && hdr->sh_size > 0)
5254 {
5255 bfd_byte buf[4];
5256
5257 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5258 BFD_ASSERT (hdr->contents == NULL);
5259
5260 if (bfd_seek (abfd,
5261 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5262 SEEK_SET) != 0)
5263 return FALSE;
5264 H_PUT_32 (abfd, elf_gp (abfd), buf);
5265 if (bfd_bwrite (buf, 4, abfd) != 4)
5266 return FALSE;
5267 }
5268
5269 if (hdr->sh_type == SHT_MIPS_OPTIONS
5270 && hdr->bfd_section != NULL
5271 && mips_elf_section_data (hdr->bfd_section) != NULL
5272 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5273 {
5274 bfd_byte *contents, *l, *lend;
5275
5276 /* We stored the section contents in the tdata field in the
5277 set_section_contents routine. We save the section contents
5278 so that we don't have to read them again.
5279 At this point we know that elf_gp is set, so we can look
5280 through the section contents to see if there is an
5281 ODK_REGINFO structure. */
5282
5283 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5284 l = contents;
5285 lend = contents + hdr->sh_size;
5286 while (l + sizeof (Elf_External_Options) <= lend)
5287 {
5288 Elf_Internal_Options intopt;
5289
5290 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5291 &intopt);
5292 if (intopt.size < sizeof (Elf_External_Options))
5293 {
5294 (*_bfd_error_handler)
5295 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5296 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5297 break;
5298 }
5299 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5300 {
5301 bfd_byte buf[8];
5302
5303 if (bfd_seek (abfd,
5304 (hdr->sh_offset
5305 + (l - contents)
5306 + sizeof (Elf_External_Options)
5307 + (sizeof (Elf64_External_RegInfo) - 8)),
5308 SEEK_SET) != 0)
5309 return FALSE;
5310 H_PUT_64 (abfd, elf_gp (abfd), buf);
5311 if (bfd_bwrite (buf, 8, abfd) != 8)
5312 return FALSE;
5313 }
5314 else if (intopt.kind == ODK_REGINFO)
5315 {
5316 bfd_byte buf[4];
5317
5318 if (bfd_seek (abfd,
5319 (hdr->sh_offset
5320 + (l - contents)
5321 + sizeof (Elf_External_Options)
5322 + (sizeof (Elf32_External_RegInfo) - 4)),
5323 SEEK_SET) != 0)
5324 return FALSE;
5325 H_PUT_32 (abfd, elf_gp (abfd), buf);
5326 if (bfd_bwrite (buf, 4, abfd) != 4)
5327 return FALSE;
5328 }
5329 l += intopt.size;
5330 }
5331 }
5332
5333 if (hdr->bfd_section != NULL)
5334 {
5335 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5336
5337 if (strcmp (name, ".sdata") == 0
5338 || strcmp (name, ".lit8") == 0
5339 || strcmp (name, ".lit4") == 0)
5340 {
5341 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5342 hdr->sh_type = SHT_PROGBITS;
5343 }
5344 else if (strcmp (name, ".sbss") == 0)
5345 {
5346 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5347 hdr->sh_type = SHT_NOBITS;
5348 }
5349 else if (strcmp (name, ".srdata") == 0)
5350 {
5351 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5352 hdr->sh_type = SHT_PROGBITS;
5353 }
5354 else if (strcmp (name, ".compact_rel") == 0)
5355 {
5356 hdr->sh_flags = 0;
5357 hdr->sh_type = SHT_PROGBITS;
5358 }
5359 else if (strcmp (name, ".rtproc") == 0)
5360 {
5361 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5362 {
5363 unsigned int adjust;
5364
5365 adjust = hdr->sh_size % hdr->sh_addralign;
5366 if (adjust != 0)
5367 hdr->sh_size += hdr->sh_addralign - adjust;
5368 }
5369 }
5370 }
5371
5372 return TRUE;
5373 }
5374
5375 /* Handle a MIPS specific section when reading an object file. This
5376 is called when elfcode.h finds a section with an unknown type.
5377 This routine supports both the 32-bit and 64-bit ELF ABI.
5378
5379 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5380 how to. */
5381
5382 bfd_boolean
5383 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5384 Elf_Internal_Shdr *hdr,
5385 const char *name,
5386 int shindex)
5387 {
5388 flagword flags = 0;
5389
5390 /* There ought to be a place to keep ELF backend specific flags, but
5391 at the moment there isn't one. We just keep track of the
5392 sections by their name, instead. Fortunately, the ABI gives
5393 suggested names for all the MIPS specific sections, so we will
5394 probably get away with this. */
5395 switch (hdr->sh_type)
5396 {
5397 case SHT_MIPS_LIBLIST:
5398 if (strcmp (name, ".liblist") != 0)
5399 return FALSE;
5400 break;
5401 case SHT_MIPS_MSYM:
5402 if (strcmp (name, ".msym") != 0)
5403 return FALSE;
5404 break;
5405 case SHT_MIPS_CONFLICT:
5406 if (strcmp (name, ".conflict") != 0)
5407 return FALSE;
5408 break;
5409 case SHT_MIPS_GPTAB:
5410 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
5411 return FALSE;
5412 break;
5413 case SHT_MIPS_UCODE:
5414 if (strcmp (name, ".ucode") != 0)
5415 return FALSE;
5416 break;
5417 case SHT_MIPS_DEBUG:
5418 if (strcmp (name, ".mdebug") != 0)
5419 return FALSE;
5420 flags = SEC_DEBUGGING;
5421 break;
5422 case SHT_MIPS_REGINFO:
5423 if (strcmp (name, ".reginfo") != 0
5424 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5425 return FALSE;
5426 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5427 break;
5428 case SHT_MIPS_IFACE:
5429 if (strcmp (name, ".MIPS.interfaces") != 0)
5430 return FALSE;
5431 break;
5432 case SHT_MIPS_CONTENT:
5433 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5434 return FALSE;
5435 break;
5436 case SHT_MIPS_OPTIONS:
5437 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5438 return FALSE;
5439 break;
5440 case SHT_MIPS_DWARF:
5441 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
5442 return FALSE;
5443 break;
5444 case SHT_MIPS_SYMBOL_LIB:
5445 if (strcmp (name, ".MIPS.symlib") != 0)
5446 return FALSE;
5447 break;
5448 case SHT_MIPS_EVENTS:
5449 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5450 && strncmp (name, ".MIPS.post_rel",
5451 sizeof ".MIPS.post_rel" - 1) != 0)
5452 return FALSE;
5453 break;
5454 default:
5455 break;
5456 }
5457
5458 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5459 return FALSE;
5460
5461 if (flags)
5462 {
5463 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5464 (bfd_get_section_flags (abfd,
5465 hdr->bfd_section)
5466 | flags)))
5467 return FALSE;
5468 }
5469
5470 /* FIXME: We should record sh_info for a .gptab section. */
5471
5472 /* For a .reginfo section, set the gp value in the tdata information
5473 from the contents of this section. We need the gp value while
5474 processing relocs, so we just get it now. The .reginfo section
5475 is not used in the 64-bit MIPS ELF ABI. */
5476 if (hdr->sh_type == SHT_MIPS_REGINFO)
5477 {
5478 Elf32_External_RegInfo ext;
5479 Elf32_RegInfo s;
5480
5481 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5482 &ext, 0, sizeof ext))
5483 return FALSE;
5484 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5485 elf_gp (abfd) = s.ri_gp_value;
5486 }
5487
5488 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5489 set the gp value based on what we find. We may see both
5490 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5491 they should agree. */
5492 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5493 {
5494 bfd_byte *contents, *l, *lend;
5495
5496 contents = bfd_malloc (hdr->sh_size);
5497 if (contents == NULL)
5498 return FALSE;
5499 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5500 0, hdr->sh_size))
5501 {
5502 free (contents);
5503 return FALSE;
5504 }
5505 l = contents;
5506 lend = contents + hdr->sh_size;
5507 while (l + sizeof (Elf_External_Options) <= lend)
5508 {
5509 Elf_Internal_Options intopt;
5510
5511 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5512 &intopt);
5513 if (intopt.size < sizeof (Elf_External_Options))
5514 {
5515 (*_bfd_error_handler)
5516 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5517 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5518 break;
5519 }
5520 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5521 {
5522 Elf64_Internal_RegInfo intreg;
5523
5524 bfd_mips_elf64_swap_reginfo_in
5525 (abfd,
5526 ((Elf64_External_RegInfo *)
5527 (l + sizeof (Elf_External_Options))),
5528 &intreg);
5529 elf_gp (abfd) = intreg.ri_gp_value;
5530 }
5531 else if (intopt.kind == ODK_REGINFO)
5532 {
5533 Elf32_RegInfo intreg;
5534
5535 bfd_mips_elf32_swap_reginfo_in
5536 (abfd,
5537 ((Elf32_External_RegInfo *)
5538 (l + sizeof (Elf_External_Options))),
5539 &intreg);
5540 elf_gp (abfd) = intreg.ri_gp_value;
5541 }
5542 l += intopt.size;
5543 }
5544 free (contents);
5545 }
5546
5547 return TRUE;
5548 }
5549
5550 /* Set the correct type for a MIPS ELF section. We do this by the
5551 section name, which is a hack, but ought to work. This routine is
5552 used by both the 32-bit and the 64-bit ABI. */
5553
5554 bfd_boolean
5555 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5556 {
5557 register const char *name;
5558 unsigned int sh_type;
5559
5560 name = bfd_get_section_name (abfd, sec);
5561 sh_type = hdr->sh_type;
5562
5563 if (strcmp (name, ".liblist") == 0)
5564 {
5565 hdr->sh_type = SHT_MIPS_LIBLIST;
5566 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5567 /* The sh_link field is set in final_write_processing. */
5568 }
5569 else if (strcmp (name, ".conflict") == 0)
5570 hdr->sh_type = SHT_MIPS_CONFLICT;
5571 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5572 {
5573 hdr->sh_type = SHT_MIPS_GPTAB;
5574 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5575 /* The sh_info field is set in final_write_processing. */
5576 }
5577 else if (strcmp (name, ".ucode") == 0)
5578 hdr->sh_type = SHT_MIPS_UCODE;
5579 else if (strcmp (name, ".mdebug") == 0)
5580 {
5581 hdr->sh_type = SHT_MIPS_DEBUG;
5582 /* In a shared object on IRIX 5.3, the .mdebug section has an
5583 entsize of 0. FIXME: Does this matter? */
5584 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5585 hdr->sh_entsize = 0;
5586 else
5587 hdr->sh_entsize = 1;
5588 }
5589 else if (strcmp (name, ".reginfo") == 0)
5590 {
5591 hdr->sh_type = SHT_MIPS_REGINFO;
5592 /* In a shared object on IRIX 5.3, the .reginfo section has an
5593 entsize of 0x18. FIXME: Does this matter? */
5594 if (SGI_COMPAT (abfd))
5595 {
5596 if ((abfd->flags & DYNAMIC) != 0)
5597 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5598 else
5599 hdr->sh_entsize = 1;
5600 }
5601 else
5602 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5603 }
5604 else if (SGI_COMPAT (abfd)
5605 && (strcmp (name, ".hash") == 0
5606 || strcmp (name, ".dynamic") == 0
5607 || strcmp (name, ".dynstr") == 0))
5608 {
5609 if (SGI_COMPAT (abfd))
5610 hdr->sh_entsize = 0;
5611 #if 0
5612 /* This isn't how the IRIX6 linker behaves. */
5613 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5614 #endif
5615 }
5616 else if (strcmp (name, ".got") == 0
5617 || strcmp (name, ".srdata") == 0
5618 || strcmp (name, ".sdata") == 0
5619 || strcmp (name, ".sbss") == 0
5620 || strcmp (name, ".lit4") == 0
5621 || strcmp (name, ".lit8") == 0)
5622 hdr->sh_flags |= SHF_MIPS_GPREL;
5623 else if (strcmp (name, ".MIPS.interfaces") == 0)
5624 {
5625 hdr->sh_type = SHT_MIPS_IFACE;
5626 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5627 }
5628 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5629 {
5630 hdr->sh_type = SHT_MIPS_CONTENT;
5631 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5632 /* The sh_info field is set in final_write_processing. */
5633 }
5634 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5635 {
5636 hdr->sh_type = SHT_MIPS_OPTIONS;
5637 hdr->sh_entsize = 1;
5638 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5639 }
5640 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5641 hdr->sh_type = SHT_MIPS_DWARF;
5642 else if (strcmp (name, ".MIPS.symlib") == 0)
5643 {
5644 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5645 /* The sh_link and sh_info fields are set in
5646 final_write_processing. */
5647 }
5648 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5649 || strncmp (name, ".MIPS.post_rel",
5650 sizeof ".MIPS.post_rel" - 1) == 0)
5651 {
5652 hdr->sh_type = SHT_MIPS_EVENTS;
5653 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5654 /* The sh_link field is set in final_write_processing. */
5655 }
5656 else if (strcmp (name, ".msym") == 0)
5657 {
5658 hdr->sh_type = SHT_MIPS_MSYM;
5659 hdr->sh_flags |= SHF_ALLOC;
5660 hdr->sh_entsize = 8;
5661 }
5662
5663 /* In the unlikely event a special section is empty it has to lose its
5664 special meaning. This may happen e.g. when using `strip' with the
5665 "--only-keep-debug" option. */
5666 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5667 hdr->sh_type = sh_type;
5668
5669 /* The generic elf_fake_sections will set up REL_HDR using the default
5670 kind of relocations. We used to set up a second header for the
5671 non-default kind of relocations here, but only NewABI would use
5672 these, and the IRIX ld doesn't like resulting empty RELA sections.
5673 Thus we create those header only on demand now. */
5674
5675 return TRUE;
5676 }
5677
5678 /* Given a BFD section, try to locate the corresponding ELF section
5679 index. This is used by both the 32-bit and the 64-bit ABI.
5680 Actually, it's not clear to me that the 64-bit ABI supports these,
5681 but for non-PIC objects we will certainly want support for at least
5682 the .scommon section. */
5683
5684 bfd_boolean
5685 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5686 asection *sec, int *retval)
5687 {
5688 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5689 {
5690 *retval = SHN_MIPS_SCOMMON;
5691 return TRUE;
5692 }
5693 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5694 {
5695 *retval = SHN_MIPS_ACOMMON;
5696 return TRUE;
5697 }
5698 return FALSE;
5699 }
5700 \f
5701 /* Hook called by the linker routine which adds symbols from an object
5702 file. We must handle the special MIPS section numbers here. */
5703
5704 bfd_boolean
5705 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5706 Elf_Internal_Sym *sym, const char **namep,
5707 flagword *flagsp ATTRIBUTE_UNUSED,
5708 asection **secp, bfd_vma *valp)
5709 {
5710 if (SGI_COMPAT (abfd)
5711 && (abfd->flags & DYNAMIC) != 0
5712 && strcmp (*namep, "_rld_new_interface") == 0)
5713 {
5714 /* Skip IRIX5 rld entry name. */
5715 *namep = NULL;
5716 return TRUE;
5717 }
5718
5719 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5720 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5721 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5722 a magic symbol resolved by the linker, we ignore this bogus definition
5723 of _gp_disp. New ABI objects do not suffer from this problem so this
5724 is not done for them. */
5725 if (!NEWABI_P(abfd)
5726 && (sym->st_shndx == SHN_ABS)
5727 && (strcmp (*namep, "_gp_disp") == 0))
5728 {
5729 *namep = NULL;
5730 return TRUE;
5731 }
5732
5733 switch (sym->st_shndx)
5734 {
5735 case SHN_COMMON:
5736 /* Common symbols less than the GP size are automatically
5737 treated as SHN_MIPS_SCOMMON symbols. */
5738 if (sym->st_size > elf_gp_size (abfd)
5739 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5740 || IRIX_COMPAT (abfd) == ict_irix6)
5741 break;
5742 /* Fall through. */
5743 case SHN_MIPS_SCOMMON:
5744 *secp = bfd_make_section_old_way (abfd, ".scommon");
5745 (*secp)->flags |= SEC_IS_COMMON;
5746 *valp = sym->st_size;
5747 break;
5748
5749 case SHN_MIPS_TEXT:
5750 /* This section is used in a shared object. */
5751 if (elf_tdata (abfd)->elf_text_section == NULL)
5752 {
5753 asymbol *elf_text_symbol;
5754 asection *elf_text_section;
5755 bfd_size_type amt = sizeof (asection);
5756
5757 elf_text_section = bfd_zalloc (abfd, amt);
5758 if (elf_text_section == NULL)
5759 return FALSE;
5760
5761 amt = sizeof (asymbol);
5762 elf_text_symbol = bfd_zalloc (abfd, amt);
5763 if (elf_text_symbol == NULL)
5764 return FALSE;
5765
5766 /* Initialize the section. */
5767
5768 elf_tdata (abfd)->elf_text_section = elf_text_section;
5769 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5770
5771 elf_text_section->symbol = elf_text_symbol;
5772 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5773
5774 elf_text_section->name = ".text";
5775 elf_text_section->flags = SEC_NO_FLAGS;
5776 elf_text_section->output_section = NULL;
5777 elf_text_section->owner = abfd;
5778 elf_text_symbol->name = ".text";
5779 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5780 elf_text_symbol->section = elf_text_section;
5781 }
5782 /* This code used to do *secp = bfd_und_section_ptr if
5783 info->shared. I don't know why, and that doesn't make sense,
5784 so I took it out. */
5785 *secp = elf_tdata (abfd)->elf_text_section;
5786 break;
5787
5788 case SHN_MIPS_ACOMMON:
5789 /* Fall through. XXX Can we treat this as allocated data? */
5790 case SHN_MIPS_DATA:
5791 /* This section is used in a shared object. */
5792 if (elf_tdata (abfd)->elf_data_section == NULL)
5793 {
5794 asymbol *elf_data_symbol;
5795 asection *elf_data_section;
5796 bfd_size_type amt = sizeof (asection);
5797
5798 elf_data_section = bfd_zalloc (abfd, amt);
5799 if (elf_data_section == NULL)
5800 return FALSE;
5801
5802 amt = sizeof (asymbol);
5803 elf_data_symbol = bfd_zalloc (abfd, amt);
5804 if (elf_data_symbol == NULL)
5805 return FALSE;
5806
5807 /* Initialize the section. */
5808
5809 elf_tdata (abfd)->elf_data_section = elf_data_section;
5810 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5811
5812 elf_data_section->symbol = elf_data_symbol;
5813 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5814
5815 elf_data_section->name = ".data";
5816 elf_data_section->flags = SEC_NO_FLAGS;
5817 elf_data_section->output_section = NULL;
5818 elf_data_section->owner = abfd;
5819 elf_data_symbol->name = ".data";
5820 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5821 elf_data_symbol->section = elf_data_section;
5822 }
5823 /* This code used to do *secp = bfd_und_section_ptr if
5824 info->shared. I don't know why, and that doesn't make sense,
5825 so I took it out. */
5826 *secp = elf_tdata (abfd)->elf_data_section;
5827 break;
5828
5829 case SHN_MIPS_SUNDEFINED:
5830 *secp = bfd_und_section_ptr;
5831 break;
5832 }
5833
5834 if (SGI_COMPAT (abfd)
5835 && ! info->shared
5836 && info->hash->creator == abfd->xvec
5837 && strcmp (*namep, "__rld_obj_head") == 0)
5838 {
5839 struct elf_link_hash_entry *h;
5840 struct bfd_link_hash_entry *bh;
5841
5842 /* Mark __rld_obj_head as dynamic. */
5843 bh = NULL;
5844 if (! (_bfd_generic_link_add_one_symbol
5845 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5846 get_elf_backend_data (abfd)->collect, &bh)))
5847 return FALSE;
5848
5849 h = (struct elf_link_hash_entry *) bh;
5850 h->non_elf = 0;
5851 h->def_regular = 1;
5852 h->type = STT_OBJECT;
5853
5854 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5855 return FALSE;
5856
5857 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5858 }
5859
5860 /* If this is a mips16 text symbol, add 1 to the value to make it
5861 odd. This will cause something like .word SYM to come up with
5862 the right value when it is loaded into the PC. */
5863 if (sym->st_other == STO_MIPS16)
5864 ++*valp;
5865
5866 return TRUE;
5867 }
5868
5869 /* This hook function is called before the linker writes out a global
5870 symbol. We mark symbols as small common if appropriate. This is
5871 also where we undo the increment of the value for a mips16 symbol. */
5872
5873 bfd_boolean
5874 _bfd_mips_elf_link_output_symbol_hook
5875 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5876 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5877 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5878 {
5879 /* If we see a common symbol, which implies a relocatable link, then
5880 if a symbol was small common in an input file, mark it as small
5881 common in the output file. */
5882 if (sym->st_shndx == SHN_COMMON
5883 && strcmp (input_sec->name, ".scommon") == 0)
5884 sym->st_shndx = SHN_MIPS_SCOMMON;
5885
5886 if (sym->st_other == STO_MIPS16)
5887 sym->st_value &= ~1;
5888
5889 return TRUE;
5890 }
5891 \f
5892 /* Functions for the dynamic linker. */
5893
5894 /* Create dynamic sections when linking against a dynamic object. */
5895
5896 bfd_boolean
5897 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5898 {
5899 struct elf_link_hash_entry *h;
5900 struct bfd_link_hash_entry *bh;
5901 flagword flags;
5902 register asection *s;
5903 const char * const *namep;
5904 struct mips_elf_link_hash_table *htab;
5905
5906 htab = mips_elf_hash_table (info);
5907 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5908 | SEC_LINKER_CREATED | SEC_READONLY);
5909
5910 /* The psABI requires a read-only .dynamic section, but the VxWorks
5911 EABI doesn't. */
5912 if (!htab->is_vxworks)
5913 {
5914 s = bfd_get_section_by_name (abfd, ".dynamic");
5915 if (s != NULL)
5916 {
5917 if (! bfd_set_section_flags (abfd, s, flags))
5918 return FALSE;
5919 }
5920 }
5921
5922 /* We need to create .got section. */
5923 if (! mips_elf_create_got_section (abfd, info, FALSE))
5924 return FALSE;
5925
5926 if (! mips_elf_rel_dyn_section (info, TRUE))
5927 return FALSE;
5928
5929 /* Create .stub section. */
5930 if (bfd_get_section_by_name (abfd,
5931 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5932 {
5933 s = bfd_make_section_with_flags (abfd,
5934 MIPS_ELF_STUB_SECTION_NAME (abfd),
5935 flags | SEC_CODE);
5936 if (s == NULL
5937 || ! bfd_set_section_alignment (abfd, s,
5938 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5939 return FALSE;
5940 }
5941
5942 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5943 && !info->shared
5944 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5945 {
5946 s = bfd_make_section_with_flags (abfd, ".rld_map",
5947 flags &~ (flagword) SEC_READONLY);
5948 if (s == NULL
5949 || ! bfd_set_section_alignment (abfd, s,
5950 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5951 return FALSE;
5952 }
5953
5954 /* On IRIX5, we adjust add some additional symbols and change the
5955 alignments of several sections. There is no ABI documentation
5956 indicating that this is necessary on IRIX6, nor any evidence that
5957 the linker takes such action. */
5958 if (IRIX_COMPAT (abfd) == ict_irix5)
5959 {
5960 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5961 {
5962 bh = NULL;
5963 if (! (_bfd_generic_link_add_one_symbol
5964 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5965 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5966 return FALSE;
5967
5968 h = (struct elf_link_hash_entry *) bh;
5969 h->non_elf = 0;
5970 h->def_regular = 1;
5971 h->type = STT_SECTION;
5972
5973 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5974 return FALSE;
5975 }
5976
5977 /* We need to create a .compact_rel section. */
5978 if (SGI_COMPAT (abfd))
5979 {
5980 if (!mips_elf_create_compact_rel_section (abfd, info))
5981 return FALSE;
5982 }
5983
5984 /* Change alignments of some sections. */
5985 s = bfd_get_section_by_name (abfd, ".hash");
5986 if (s != NULL)
5987 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5988 s = bfd_get_section_by_name (abfd, ".dynsym");
5989 if (s != NULL)
5990 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5991 s = bfd_get_section_by_name (abfd, ".dynstr");
5992 if (s != NULL)
5993 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5994 s = bfd_get_section_by_name (abfd, ".reginfo");
5995 if (s != NULL)
5996 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5997 s = bfd_get_section_by_name (abfd, ".dynamic");
5998 if (s != NULL)
5999 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6000 }
6001
6002 if (!info->shared)
6003 {
6004 const char *name;
6005
6006 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6007 bh = NULL;
6008 if (!(_bfd_generic_link_add_one_symbol
6009 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6010 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6011 return FALSE;
6012
6013 h = (struct elf_link_hash_entry *) bh;
6014 h->non_elf = 0;
6015 h->def_regular = 1;
6016 h->type = STT_SECTION;
6017
6018 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6019 return FALSE;
6020
6021 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6022 {
6023 /* __rld_map is a four byte word located in the .data section
6024 and is filled in by the rtld to contain a pointer to
6025 the _r_debug structure. Its symbol value will be set in
6026 _bfd_mips_elf_finish_dynamic_symbol. */
6027 s = bfd_get_section_by_name (abfd, ".rld_map");
6028 BFD_ASSERT (s != NULL);
6029
6030 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6031 bh = NULL;
6032 if (!(_bfd_generic_link_add_one_symbol
6033 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6034 get_elf_backend_data (abfd)->collect, &bh)))
6035 return FALSE;
6036
6037 h = (struct elf_link_hash_entry *) bh;
6038 h->non_elf = 0;
6039 h->def_regular = 1;
6040 h->type = STT_OBJECT;
6041
6042 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6043 return FALSE;
6044 }
6045 }
6046
6047 if (htab->is_vxworks)
6048 {
6049 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6050 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6051 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6052 return FALSE;
6053
6054 /* Cache the sections created above. */
6055 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6056 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6057 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6058 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6059 if (!htab->sdynbss
6060 || (!htab->srelbss && !info->shared)
6061 || !htab->srelplt
6062 || !htab->splt)
6063 abort ();
6064
6065 /* Do the usual VxWorks handling. */
6066 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6067 return FALSE;
6068
6069 /* Work out the PLT sizes. */
6070 if (info->shared)
6071 {
6072 htab->plt_header_size
6073 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6074 htab->plt_entry_size
6075 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6076 }
6077 else
6078 {
6079 htab->plt_header_size
6080 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6081 htab->plt_entry_size
6082 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6083 }
6084 }
6085
6086 return TRUE;
6087 }
6088 \f
6089 /* Look through the relocs for a section during the first phase, and
6090 allocate space in the global offset table. */
6091
6092 bfd_boolean
6093 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6094 asection *sec, const Elf_Internal_Rela *relocs)
6095 {
6096 const char *name;
6097 bfd *dynobj;
6098 Elf_Internal_Shdr *symtab_hdr;
6099 struct elf_link_hash_entry **sym_hashes;
6100 struct mips_got_info *g;
6101 size_t extsymoff;
6102 const Elf_Internal_Rela *rel;
6103 const Elf_Internal_Rela *rel_end;
6104 asection *sgot;
6105 asection *sreloc;
6106 const struct elf_backend_data *bed;
6107 struct mips_elf_link_hash_table *htab;
6108
6109 if (info->relocatable)
6110 return TRUE;
6111
6112 htab = mips_elf_hash_table (info);
6113 dynobj = elf_hash_table (info)->dynobj;
6114 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6115 sym_hashes = elf_sym_hashes (abfd);
6116 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6117
6118 /* Check for the mips16 stub sections. */
6119
6120 name = bfd_get_section_name (abfd, sec);
6121 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
6122 {
6123 unsigned long r_symndx;
6124
6125 /* Look at the relocation information to figure out which symbol
6126 this is for. */
6127
6128 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6129
6130 if (r_symndx < extsymoff
6131 || sym_hashes[r_symndx - extsymoff] == NULL)
6132 {
6133 asection *o;
6134
6135 /* This stub is for a local symbol. This stub will only be
6136 needed if there is some relocation in this BFD, other
6137 than a 16 bit function call, which refers to this symbol. */
6138 for (o = abfd->sections; o != NULL; o = o->next)
6139 {
6140 Elf_Internal_Rela *sec_relocs;
6141 const Elf_Internal_Rela *r, *rend;
6142
6143 /* We can ignore stub sections when looking for relocs. */
6144 if ((o->flags & SEC_RELOC) == 0
6145 || o->reloc_count == 0
6146 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
6147 sizeof FN_STUB - 1) == 0
6148 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
6149 sizeof CALL_STUB - 1) == 0
6150 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
6151 sizeof CALL_FP_STUB - 1) == 0)
6152 continue;
6153
6154 sec_relocs
6155 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6156 info->keep_memory);
6157 if (sec_relocs == NULL)
6158 return FALSE;
6159
6160 rend = sec_relocs + o->reloc_count;
6161 for (r = sec_relocs; r < rend; r++)
6162 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6163 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6164 break;
6165
6166 if (elf_section_data (o)->relocs != sec_relocs)
6167 free (sec_relocs);
6168
6169 if (r < rend)
6170 break;
6171 }
6172
6173 if (o == NULL)
6174 {
6175 /* There is no non-call reloc for this stub, so we do
6176 not need it. Since this function is called before
6177 the linker maps input sections to output sections, we
6178 can easily discard it by setting the SEC_EXCLUDE
6179 flag. */
6180 sec->flags |= SEC_EXCLUDE;
6181 return TRUE;
6182 }
6183
6184 /* Record this stub in an array of local symbol stubs for
6185 this BFD. */
6186 if (elf_tdata (abfd)->local_stubs == NULL)
6187 {
6188 unsigned long symcount;
6189 asection **n;
6190 bfd_size_type amt;
6191
6192 if (elf_bad_symtab (abfd))
6193 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6194 else
6195 symcount = symtab_hdr->sh_info;
6196 amt = symcount * sizeof (asection *);
6197 n = bfd_zalloc (abfd, amt);
6198 if (n == NULL)
6199 return FALSE;
6200 elf_tdata (abfd)->local_stubs = n;
6201 }
6202
6203 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6204
6205 /* We don't need to set mips16_stubs_seen in this case.
6206 That flag is used to see whether we need to look through
6207 the global symbol table for stubs. We don't need to set
6208 it here, because we just have a local stub. */
6209 }
6210 else
6211 {
6212 struct mips_elf_link_hash_entry *h;
6213
6214 h = ((struct mips_elf_link_hash_entry *)
6215 sym_hashes[r_symndx - extsymoff]);
6216
6217 while (h->root.root.type == bfd_link_hash_indirect
6218 || h->root.root.type == bfd_link_hash_warning)
6219 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6220
6221 /* H is the symbol this stub is for. */
6222
6223 h->fn_stub = sec;
6224 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6225 }
6226 }
6227 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6228 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6229 {
6230 unsigned long r_symndx;
6231 struct mips_elf_link_hash_entry *h;
6232 asection **loc;
6233
6234 /* Look at the relocation information to figure out which symbol
6235 this is for. */
6236
6237 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6238
6239 if (r_symndx < extsymoff
6240 || sym_hashes[r_symndx - extsymoff] == NULL)
6241 {
6242 /* This stub was actually built for a static symbol defined
6243 in the same file. We assume that all static symbols in
6244 mips16 code are themselves mips16, so we can simply
6245 discard this stub. Since this function is called before
6246 the linker maps input sections to output sections, we can
6247 easily discard it by setting the SEC_EXCLUDE flag. */
6248 sec->flags |= SEC_EXCLUDE;
6249 return TRUE;
6250 }
6251
6252 h = ((struct mips_elf_link_hash_entry *)
6253 sym_hashes[r_symndx - extsymoff]);
6254
6255 /* H is the symbol this stub is for. */
6256
6257 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6258 loc = &h->call_fp_stub;
6259 else
6260 loc = &h->call_stub;
6261
6262 /* If we already have an appropriate stub for this function, we
6263 don't need another one, so we can discard this one. Since
6264 this function is called before the linker maps input sections
6265 to output sections, we can easily discard it by setting the
6266 SEC_EXCLUDE flag. We can also discard this section if we
6267 happen to already know that this is a mips16 function; it is
6268 not necessary to check this here, as it is checked later, but
6269 it is slightly faster to check now. */
6270 if (*loc != NULL || h->root.other == STO_MIPS16)
6271 {
6272 sec->flags |= SEC_EXCLUDE;
6273 return TRUE;
6274 }
6275
6276 *loc = sec;
6277 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6278 }
6279
6280 if (dynobj == NULL)
6281 {
6282 sgot = NULL;
6283 g = NULL;
6284 }
6285 else
6286 {
6287 sgot = mips_elf_got_section (dynobj, FALSE);
6288 if (sgot == NULL)
6289 g = NULL;
6290 else
6291 {
6292 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6293 g = mips_elf_section_data (sgot)->u.got_info;
6294 BFD_ASSERT (g != NULL);
6295 }
6296 }
6297
6298 sreloc = NULL;
6299 bed = get_elf_backend_data (abfd);
6300 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6301 for (rel = relocs; rel < rel_end; ++rel)
6302 {
6303 unsigned long r_symndx;
6304 unsigned int r_type;
6305 struct elf_link_hash_entry *h;
6306
6307 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6308 r_type = ELF_R_TYPE (abfd, rel->r_info);
6309
6310 if (r_symndx < extsymoff)
6311 h = NULL;
6312 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6313 {
6314 (*_bfd_error_handler)
6315 (_("%B: Malformed reloc detected for section %s"),
6316 abfd, name);
6317 bfd_set_error (bfd_error_bad_value);
6318 return FALSE;
6319 }
6320 else
6321 {
6322 h = sym_hashes[r_symndx - extsymoff];
6323
6324 /* This may be an indirect symbol created because of a version. */
6325 if (h != NULL)
6326 {
6327 while (h->root.type == bfd_link_hash_indirect)
6328 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6329 }
6330 }
6331
6332 /* Some relocs require a global offset table. */
6333 if (dynobj == NULL || sgot == NULL)
6334 {
6335 switch (r_type)
6336 {
6337 case R_MIPS_GOT16:
6338 case R_MIPS_CALL16:
6339 case R_MIPS_CALL_HI16:
6340 case R_MIPS_CALL_LO16:
6341 case R_MIPS_GOT_HI16:
6342 case R_MIPS_GOT_LO16:
6343 case R_MIPS_GOT_PAGE:
6344 case R_MIPS_GOT_OFST:
6345 case R_MIPS_GOT_DISP:
6346 case R_MIPS_TLS_GOTTPREL:
6347 case R_MIPS_TLS_GD:
6348 case R_MIPS_TLS_LDM:
6349 if (dynobj == NULL)
6350 elf_hash_table (info)->dynobj = dynobj = abfd;
6351 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6352 return FALSE;
6353 g = mips_elf_got_info (dynobj, &sgot);
6354 if (htab->is_vxworks && !info->shared)
6355 {
6356 (*_bfd_error_handler)
6357 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6358 abfd, (unsigned long) rel->r_offset);
6359 bfd_set_error (bfd_error_bad_value);
6360 return FALSE;
6361 }
6362 break;
6363
6364 case R_MIPS_32:
6365 case R_MIPS_REL32:
6366 case R_MIPS_64:
6367 /* In VxWorks executables, references to external symbols
6368 are handled using copy relocs or PLT stubs, so there's
6369 no need to add a dynamic relocation here. */
6370 if (dynobj == NULL
6371 && (info->shared || (h != NULL && !htab->is_vxworks))
6372 && (sec->flags & SEC_ALLOC) != 0)
6373 elf_hash_table (info)->dynobj = dynobj = abfd;
6374 break;
6375
6376 default:
6377 break;
6378 }
6379 }
6380
6381 if (h)
6382 {
6383 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6384
6385 /* Relocations against the special VxWorks __GOTT_BASE__ and
6386 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6387 room for them in .rela.dyn. */
6388 if (is_gott_symbol (info, h))
6389 {
6390 if (sreloc == NULL)
6391 {
6392 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6393 if (sreloc == NULL)
6394 return FALSE;
6395 }
6396 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6397 }
6398 }
6399 else if (r_type == R_MIPS_CALL_LO16
6400 || r_type == R_MIPS_GOT_LO16
6401 || r_type == R_MIPS_GOT_DISP
6402 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6403 {
6404 /* We may need a local GOT entry for this relocation. We
6405 don't count R_MIPS_GOT_PAGE because we can estimate the
6406 maximum number of pages needed by looking at the size of
6407 the segment. Similar comments apply to R_MIPS_GOT16 and
6408 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6409 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6410 R_MIPS_CALL_HI16 because these are always followed by an
6411 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6412 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6413 rel->r_addend, g, 0))
6414 return FALSE;
6415 }
6416
6417 switch (r_type)
6418 {
6419 case R_MIPS_CALL16:
6420 if (h == NULL)
6421 {
6422 (*_bfd_error_handler)
6423 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6424 abfd, (unsigned long) rel->r_offset);
6425 bfd_set_error (bfd_error_bad_value);
6426 return FALSE;
6427 }
6428 /* Fall through. */
6429
6430 case R_MIPS_CALL_HI16:
6431 case R_MIPS_CALL_LO16:
6432 if (h != NULL)
6433 {
6434 /* VxWorks call relocations point the function's .got.plt
6435 entry, which will be allocated by adjust_dynamic_symbol.
6436 Otherwise, this symbol requires a global GOT entry. */
6437 if (!htab->is_vxworks
6438 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6439 return FALSE;
6440
6441 /* We need a stub, not a plt entry for the undefined
6442 function. But we record it as if it needs plt. See
6443 _bfd_elf_adjust_dynamic_symbol. */
6444 h->needs_plt = 1;
6445 h->type = STT_FUNC;
6446 }
6447 break;
6448
6449 case R_MIPS_GOT_PAGE:
6450 /* If this is a global, overridable symbol, GOT_PAGE will
6451 decay to GOT_DISP, so we'll need a GOT entry for it. */
6452 if (h == NULL)
6453 break;
6454 else
6455 {
6456 struct mips_elf_link_hash_entry *hmips =
6457 (struct mips_elf_link_hash_entry *) h;
6458
6459 while (hmips->root.root.type == bfd_link_hash_indirect
6460 || hmips->root.root.type == bfd_link_hash_warning)
6461 hmips = (struct mips_elf_link_hash_entry *)
6462 hmips->root.root.u.i.link;
6463
6464 if (hmips->root.def_regular
6465 && ! (info->shared && ! info->symbolic
6466 && ! hmips->root.forced_local))
6467 break;
6468 }
6469 /* Fall through. */
6470
6471 case R_MIPS_GOT16:
6472 case R_MIPS_GOT_HI16:
6473 case R_MIPS_GOT_LO16:
6474 case R_MIPS_GOT_DISP:
6475 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6476 return FALSE;
6477 break;
6478
6479 case R_MIPS_TLS_GOTTPREL:
6480 if (info->shared)
6481 info->flags |= DF_STATIC_TLS;
6482 /* Fall through */
6483
6484 case R_MIPS_TLS_LDM:
6485 if (r_type == R_MIPS_TLS_LDM)
6486 {
6487 r_symndx = 0;
6488 h = NULL;
6489 }
6490 /* Fall through */
6491
6492 case R_MIPS_TLS_GD:
6493 /* This symbol requires a global offset table entry, or two
6494 for TLS GD relocations. */
6495 {
6496 unsigned char flag = (r_type == R_MIPS_TLS_GD
6497 ? GOT_TLS_GD
6498 : r_type == R_MIPS_TLS_LDM
6499 ? GOT_TLS_LDM
6500 : GOT_TLS_IE);
6501 if (h != NULL)
6502 {
6503 struct mips_elf_link_hash_entry *hmips =
6504 (struct mips_elf_link_hash_entry *) h;
6505 hmips->tls_type |= flag;
6506
6507 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6508 return FALSE;
6509 }
6510 else
6511 {
6512 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6513
6514 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6515 rel->r_addend, g, flag))
6516 return FALSE;
6517 }
6518 }
6519 break;
6520
6521 case R_MIPS_32:
6522 case R_MIPS_REL32:
6523 case R_MIPS_64:
6524 /* In VxWorks executables, references to external symbols
6525 are handled using copy relocs or PLT stubs, so there's
6526 no need to add a .rela.dyn entry for this relocation. */
6527 if ((info->shared || (h != NULL && !htab->is_vxworks))
6528 && (sec->flags & SEC_ALLOC) != 0)
6529 {
6530 if (sreloc == NULL)
6531 {
6532 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6533 if (sreloc == NULL)
6534 return FALSE;
6535 }
6536 if (info->shared)
6537 {
6538 /* When creating a shared object, we must copy these
6539 reloc types into the output file as R_MIPS_REL32
6540 relocs. Make room for this reloc in .rel(a).dyn. */
6541 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6542 if (MIPS_ELF_READONLY_SECTION (sec))
6543 /* We tell the dynamic linker that there are
6544 relocations against the text segment. */
6545 info->flags |= DF_TEXTREL;
6546 }
6547 else
6548 {
6549 struct mips_elf_link_hash_entry *hmips;
6550
6551 /* We only need to copy this reloc if the symbol is
6552 defined in a dynamic object. */
6553 hmips = (struct mips_elf_link_hash_entry *) h;
6554 ++hmips->possibly_dynamic_relocs;
6555 if (MIPS_ELF_READONLY_SECTION (sec))
6556 /* We need it to tell the dynamic linker if there
6557 are relocations against the text segment. */
6558 hmips->readonly_reloc = TRUE;
6559 }
6560
6561 /* Even though we don't directly need a GOT entry for
6562 this symbol, a symbol must have a dynamic symbol
6563 table index greater that DT_MIPS_GOTSYM if there are
6564 dynamic relocations against it. This does not apply
6565 to VxWorks, which does not have the usual coupling
6566 between global GOT entries and .dynsym entries. */
6567 if (h != NULL && !htab->is_vxworks)
6568 {
6569 if (dynobj == NULL)
6570 elf_hash_table (info)->dynobj = dynobj = abfd;
6571 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6572 return FALSE;
6573 g = mips_elf_got_info (dynobj, &sgot);
6574 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6575 return FALSE;
6576 }
6577 }
6578
6579 if (SGI_COMPAT (abfd))
6580 mips_elf_hash_table (info)->compact_rel_size +=
6581 sizeof (Elf32_External_crinfo);
6582 break;
6583
6584 case R_MIPS_PC16:
6585 if (h)
6586 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6587 break;
6588
6589 case R_MIPS_26:
6590 if (h)
6591 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6592 /* Fall through. */
6593
6594 case R_MIPS_GPREL16:
6595 case R_MIPS_LITERAL:
6596 case R_MIPS_GPREL32:
6597 if (SGI_COMPAT (abfd))
6598 mips_elf_hash_table (info)->compact_rel_size +=
6599 sizeof (Elf32_External_crinfo);
6600 break;
6601
6602 /* This relocation describes the C++ object vtable hierarchy.
6603 Reconstruct it for later use during GC. */
6604 case R_MIPS_GNU_VTINHERIT:
6605 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6606 return FALSE;
6607 break;
6608
6609 /* This relocation describes which C++ vtable entries are actually
6610 used. Record for later use during GC. */
6611 case R_MIPS_GNU_VTENTRY:
6612 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6613 return FALSE;
6614 break;
6615
6616 default:
6617 break;
6618 }
6619
6620 /* We must not create a stub for a symbol that has relocations
6621 related to taking the function's address. This doesn't apply to
6622 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6623 a normal .got entry. */
6624 if (!htab->is_vxworks && h != NULL)
6625 switch (r_type)
6626 {
6627 default:
6628 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6629 break;
6630 case R_MIPS_CALL16:
6631 case R_MIPS_CALL_HI16:
6632 case R_MIPS_CALL_LO16:
6633 case R_MIPS_JALR:
6634 break;
6635 }
6636
6637 /* If this reloc is not a 16 bit call, and it has a global
6638 symbol, then we will need the fn_stub if there is one.
6639 References from a stub section do not count. */
6640 if (h != NULL
6641 && r_type != R_MIPS16_26
6642 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6643 sizeof FN_STUB - 1) != 0
6644 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6645 sizeof CALL_STUB - 1) != 0
6646 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6647 sizeof CALL_FP_STUB - 1) != 0)
6648 {
6649 struct mips_elf_link_hash_entry *mh;
6650
6651 mh = (struct mips_elf_link_hash_entry *) h;
6652 mh->need_fn_stub = TRUE;
6653 }
6654 }
6655
6656 return TRUE;
6657 }
6658 \f
6659 bfd_boolean
6660 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6661 struct bfd_link_info *link_info,
6662 bfd_boolean *again)
6663 {
6664 Elf_Internal_Rela *internal_relocs;
6665 Elf_Internal_Rela *irel, *irelend;
6666 Elf_Internal_Shdr *symtab_hdr;
6667 bfd_byte *contents = NULL;
6668 size_t extsymoff;
6669 bfd_boolean changed_contents = FALSE;
6670 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6671 Elf_Internal_Sym *isymbuf = NULL;
6672
6673 /* We are not currently changing any sizes, so only one pass. */
6674 *again = FALSE;
6675
6676 if (link_info->relocatable)
6677 return TRUE;
6678
6679 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6680 link_info->keep_memory);
6681 if (internal_relocs == NULL)
6682 return TRUE;
6683
6684 irelend = internal_relocs + sec->reloc_count
6685 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6686 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6687 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6688
6689 for (irel = internal_relocs; irel < irelend; irel++)
6690 {
6691 bfd_vma symval;
6692 bfd_signed_vma sym_offset;
6693 unsigned int r_type;
6694 unsigned long r_symndx;
6695 asection *sym_sec;
6696 unsigned long instruction;
6697
6698 /* Turn jalr into bgezal, and jr into beq, if they're marked
6699 with a JALR relocation, that indicate where they jump to.
6700 This saves some pipeline bubbles. */
6701 r_type = ELF_R_TYPE (abfd, irel->r_info);
6702 if (r_type != R_MIPS_JALR)
6703 continue;
6704
6705 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6706 /* Compute the address of the jump target. */
6707 if (r_symndx >= extsymoff)
6708 {
6709 struct mips_elf_link_hash_entry *h
6710 = ((struct mips_elf_link_hash_entry *)
6711 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6712
6713 while (h->root.root.type == bfd_link_hash_indirect
6714 || h->root.root.type == bfd_link_hash_warning)
6715 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6716
6717 /* If a symbol is undefined, or if it may be overridden,
6718 skip it. */
6719 if (! ((h->root.root.type == bfd_link_hash_defined
6720 || h->root.root.type == bfd_link_hash_defweak)
6721 && h->root.root.u.def.section)
6722 || (link_info->shared && ! link_info->symbolic
6723 && !h->root.forced_local))
6724 continue;
6725
6726 sym_sec = h->root.root.u.def.section;
6727 if (sym_sec->output_section)
6728 symval = (h->root.root.u.def.value
6729 + sym_sec->output_section->vma
6730 + sym_sec->output_offset);
6731 else
6732 symval = h->root.root.u.def.value;
6733 }
6734 else
6735 {
6736 Elf_Internal_Sym *isym;
6737
6738 /* Read this BFD's symbols if we haven't done so already. */
6739 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6740 {
6741 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6742 if (isymbuf == NULL)
6743 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6744 symtab_hdr->sh_info, 0,
6745 NULL, NULL, NULL);
6746 if (isymbuf == NULL)
6747 goto relax_return;
6748 }
6749
6750 isym = isymbuf + r_symndx;
6751 if (isym->st_shndx == SHN_UNDEF)
6752 continue;
6753 else if (isym->st_shndx == SHN_ABS)
6754 sym_sec = bfd_abs_section_ptr;
6755 else if (isym->st_shndx == SHN_COMMON)
6756 sym_sec = bfd_com_section_ptr;
6757 else
6758 sym_sec
6759 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6760 symval = isym->st_value
6761 + sym_sec->output_section->vma
6762 + sym_sec->output_offset;
6763 }
6764
6765 /* Compute branch offset, from delay slot of the jump to the
6766 branch target. */
6767 sym_offset = (symval + irel->r_addend)
6768 - (sec_start + irel->r_offset + 4);
6769
6770 /* Branch offset must be properly aligned. */
6771 if ((sym_offset & 3) != 0)
6772 continue;
6773
6774 sym_offset >>= 2;
6775
6776 /* Check that it's in range. */
6777 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6778 continue;
6779
6780 /* Get the section contents if we haven't done so already. */
6781 if (contents == NULL)
6782 {
6783 /* Get cached copy if it exists. */
6784 if (elf_section_data (sec)->this_hdr.contents != NULL)
6785 contents = elf_section_data (sec)->this_hdr.contents;
6786 else
6787 {
6788 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6789 goto relax_return;
6790 }
6791 }
6792
6793 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6794
6795 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6796 if ((instruction & 0xfc1fffff) == 0x0000f809)
6797 instruction = 0x04110000;
6798 /* If it was jr <reg>, turn it into b <target>. */
6799 else if ((instruction & 0xfc1fffff) == 0x00000008)
6800 instruction = 0x10000000;
6801 else
6802 continue;
6803
6804 instruction |= (sym_offset & 0xffff);
6805 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6806 changed_contents = TRUE;
6807 }
6808
6809 if (contents != NULL
6810 && elf_section_data (sec)->this_hdr.contents != contents)
6811 {
6812 if (!changed_contents && !link_info->keep_memory)
6813 free (contents);
6814 else
6815 {
6816 /* Cache the section contents for elf_link_input_bfd. */
6817 elf_section_data (sec)->this_hdr.contents = contents;
6818 }
6819 }
6820 return TRUE;
6821
6822 relax_return:
6823 if (contents != NULL
6824 && elf_section_data (sec)->this_hdr.contents != contents)
6825 free (contents);
6826 return FALSE;
6827 }
6828 \f
6829 /* Adjust a symbol defined by a dynamic object and referenced by a
6830 regular object. The current definition is in some section of the
6831 dynamic object, but we're not including those sections. We have to
6832 change the definition to something the rest of the link can
6833 understand. */
6834
6835 bfd_boolean
6836 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6837 struct elf_link_hash_entry *h)
6838 {
6839 bfd *dynobj;
6840 struct mips_elf_link_hash_entry *hmips;
6841 asection *s;
6842 struct mips_elf_link_hash_table *htab;
6843
6844 htab = mips_elf_hash_table (info);
6845 dynobj = elf_hash_table (info)->dynobj;
6846
6847 /* Make sure we know what is going on here. */
6848 BFD_ASSERT (dynobj != NULL
6849 && (h->needs_plt
6850 || h->u.weakdef != NULL
6851 || (h->def_dynamic
6852 && h->ref_regular
6853 && !h->def_regular)));
6854
6855 /* If this symbol is defined in a dynamic object, we need to copy
6856 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6857 file. */
6858 hmips = (struct mips_elf_link_hash_entry *) h;
6859 if (! info->relocatable
6860 && hmips->possibly_dynamic_relocs != 0
6861 && (h->root.type == bfd_link_hash_defweak
6862 || !h->def_regular))
6863 {
6864 mips_elf_allocate_dynamic_relocations
6865 (dynobj, info, hmips->possibly_dynamic_relocs);
6866 if (hmips->readonly_reloc)
6867 /* We tell the dynamic linker that there are relocations
6868 against the text segment. */
6869 info->flags |= DF_TEXTREL;
6870 }
6871
6872 /* For a function, create a stub, if allowed. */
6873 if (! hmips->no_fn_stub
6874 && h->needs_plt)
6875 {
6876 if (! elf_hash_table (info)->dynamic_sections_created)
6877 return TRUE;
6878
6879 /* If this symbol is not defined in a regular file, then set
6880 the symbol to the stub location. This is required to make
6881 function pointers compare as equal between the normal
6882 executable and the shared library. */
6883 if (!h->def_regular)
6884 {
6885 /* We need .stub section. */
6886 s = bfd_get_section_by_name (dynobj,
6887 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6888 BFD_ASSERT (s != NULL);
6889
6890 h->root.u.def.section = s;
6891 h->root.u.def.value = s->size;
6892
6893 /* XXX Write this stub address somewhere. */
6894 h->plt.offset = s->size;
6895
6896 /* Make room for this stub code. */
6897 s->size += htab->function_stub_size;
6898
6899 /* The last half word of the stub will be filled with the index
6900 of this symbol in .dynsym section. */
6901 return TRUE;
6902 }
6903 }
6904 else if ((h->type == STT_FUNC)
6905 && !h->needs_plt)
6906 {
6907 /* This will set the entry for this symbol in the GOT to 0, and
6908 the dynamic linker will take care of this. */
6909 h->root.u.def.value = 0;
6910 return TRUE;
6911 }
6912
6913 /* If this is a weak symbol, and there is a real definition, the
6914 processor independent code will have arranged for us to see the
6915 real definition first, and we can just use the same value. */
6916 if (h->u.weakdef != NULL)
6917 {
6918 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6919 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6920 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6921 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6922 return TRUE;
6923 }
6924
6925 /* This is a reference to a symbol defined by a dynamic object which
6926 is not a function. */
6927
6928 return TRUE;
6929 }
6930
6931 /* Likewise, for VxWorks. */
6932
6933 bfd_boolean
6934 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6935 struct elf_link_hash_entry *h)
6936 {
6937 bfd *dynobj;
6938 struct mips_elf_link_hash_entry *hmips;
6939 struct mips_elf_link_hash_table *htab;
6940 unsigned int power_of_two;
6941
6942 htab = mips_elf_hash_table (info);
6943 dynobj = elf_hash_table (info)->dynobj;
6944 hmips = (struct mips_elf_link_hash_entry *) h;
6945
6946 /* Make sure we know what is going on here. */
6947 BFD_ASSERT (dynobj != NULL
6948 && (h->needs_plt
6949 || h->needs_copy
6950 || h->u.weakdef != NULL
6951 || (h->def_dynamic
6952 && h->ref_regular
6953 && !h->def_regular)));
6954
6955 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6956 either (a) we want to branch to the symbol or (b) we're linking an
6957 executable that needs a canonical function address. In the latter
6958 case, the canonical address will be the address of the executable's
6959 load stub. */
6960 if ((hmips->is_branch_target
6961 || (!info->shared
6962 && h->type == STT_FUNC
6963 && hmips->is_relocation_target))
6964 && h->def_dynamic
6965 && h->ref_regular
6966 && !h->def_regular
6967 && !h->forced_local)
6968 h->needs_plt = 1;
6969
6970 /* Locally-binding symbols do not need a PLT stub; we can refer to
6971 the functions directly. */
6972 else if (h->needs_plt
6973 && (SYMBOL_CALLS_LOCAL (info, h)
6974 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6975 && h->root.type == bfd_link_hash_undefweak)))
6976 {
6977 h->needs_plt = 0;
6978 return TRUE;
6979 }
6980
6981 if (h->needs_plt)
6982 {
6983 /* If this is the first symbol to need a PLT entry, allocate room
6984 for the header, and for the header's .rela.plt.unloaded entries. */
6985 if (htab->splt->size == 0)
6986 {
6987 htab->splt->size += htab->plt_header_size;
6988 if (!info->shared)
6989 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6990 }
6991
6992 /* Assign the next .plt entry to this symbol. */
6993 h->plt.offset = htab->splt->size;
6994 htab->splt->size += htab->plt_entry_size;
6995
6996 /* If the output file has no definition of the symbol, set the
6997 symbol's value to the address of the stub. For executables,
6998 point at the PLT load stub rather than the lazy resolution stub;
6999 this stub will become the canonical function address. */
7000 if (!h->def_regular)
7001 {
7002 h->root.u.def.section = htab->splt;
7003 h->root.u.def.value = h->plt.offset;
7004 if (!info->shared)
7005 h->root.u.def.value += 8;
7006 }
7007
7008 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7009 htab->sgotplt->size += 4;
7010 htab->srelplt->size += sizeof (Elf32_External_Rela);
7011
7012 /* Make room for the .rela.plt.unloaded relocations. */
7013 if (!info->shared)
7014 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7015
7016 return TRUE;
7017 }
7018
7019 /* If a function symbol is defined by a dynamic object, and we do not
7020 need a PLT stub for it, the symbol's value should be zero. */
7021 if (h->type == STT_FUNC
7022 && h->def_dynamic
7023 && h->ref_regular
7024 && !h->def_regular)
7025 {
7026 h->root.u.def.value = 0;
7027 return TRUE;
7028 }
7029
7030 /* If this is a weak symbol, and there is a real definition, the
7031 processor independent code will have arranged for us to see the
7032 real definition first, and we can just use the same value. */
7033 if (h->u.weakdef != NULL)
7034 {
7035 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7036 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7037 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7038 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7039 return TRUE;
7040 }
7041
7042 /* This is a reference to a symbol defined by a dynamic object which
7043 is not a function. */
7044 if (info->shared)
7045 return TRUE;
7046
7047 /* We must allocate the symbol in our .dynbss section, which will
7048 become part of the .bss section of the executable. There will be
7049 an entry for this symbol in the .dynsym section. The dynamic
7050 object will contain position independent code, so all references
7051 from the dynamic object to this symbol will go through the global
7052 offset table. The dynamic linker will use the .dynsym entry to
7053 determine the address it must put in the global offset table, so
7054 both the dynamic object and the regular object will refer to the
7055 same memory location for the variable. */
7056
7057 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7058 {
7059 htab->srelbss->size += sizeof (Elf32_External_Rela);
7060 h->needs_copy = 1;
7061 }
7062
7063 /* We need to figure out the alignment required for this symbol. */
7064 power_of_two = bfd_log2 (h->size);
7065 if (power_of_two > 4)
7066 power_of_two = 4;
7067
7068 /* Apply the required alignment. */
7069 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7070 (bfd_size_type) 1 << power_of_two);
7071 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7072 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7073 return FALSE;
7074
7075 /* Define the symbol as being at this point in the section. */
7076 h->root.u.def.section = htab->sdynbss;
7077 h->root.u.def.value = htab->sdynbss->size;
7078
7079 /* Increment the section size to make room for the symbol. */
7080 htab->sdynbss->size += h->size;
7081
7082 return TRUE;
7083 }
7084 \f
7085 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7086 The number might be exact or a worst-case estimate, depending on how
7087 much information is available to elf_backend_omit_section_dynsym at
7088 the current linking stage. */
7089
7090 static bfd_size_type
7091 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7092 {
7093 bfd_size_type count;
7094
7095 count = 0;
7096 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7097 {
7098 asection *p;
7099 const struct elf_backend_data *bed;
7100
7101 bed = get_elf_backend_data (output_bfd);
7102 for (p = output_bfd->sections; p ; p = p->next)
7103 if ((p->flags & SEC_EXCLUDE) == 0
7104 && (p->flags & SEC_ALLOC) != 0
7105 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7106 ++count;
7107 }
7108 return count;
7109 }
7110
7111 /* This function is called after all the input files have been read,
7112 and the input sections have been assigned to output sections. We
7113 check for any mips16 stub sections that we can discard. */
7114
7115 bfd_boolean
7116 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7117 struct bfd_link_info *info)
7118 {
7119 asection *ri;
7120
7121 bfd *dynobj;
7122 asection *s;
7123 struct mips_got_info *g;
7124 int i;
7125 bfd_size_type loadable_size = 0;
7126 bfd_size_type local_gotno;
7127 bfd_size_type dynsymcount;
7128 bfd *sub;
7129 struct mips_elf_count_tls_arg count_tls_arg;
7130 struct mips_elf_link_hash_table *htab;
7131
7132 htab = mips_elf_hash_table (info);
7133
7134 /* The .reginfo section has a fixed size. */
7135 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7136 if (ri != NULL)
7137 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7138
7139 if (! (info->relocatable
7140 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7141 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7142 mips_elf_check_mips16_stubs, NULL);
7143
7144 dynobj = elf_hash_table (info)->dynobj;
7145 if (dynobj == NULL)
7146 /* Relocatable links don't have it. */
7147 return TRUE;
7148
7149 g = mips_elf_got_info (dynobj, &s);
7150 if (s == NULL)
7151 return TRUE;
7152
7153 /* Calculate the total loadable size of the output. That
7154 will give us the maximum number of GOT_PAGE entries
7155 required. */
7156 for (sub = info->input_bfds; sub; sub = sub->link_next)
7157 {
7158 asection *subsection;
7159
7160 for (subsection = sub->sections;
7161 subsection;
7162 subsection = subsection->next)
7163 {
7164 if ((subsection->flags & SEC_ALLOC) == 0)
7165 continue;
7166 loadable_size += ((subsection->size + 0xf)
7167 &~ (bfd_size_type) 0xf);
7168 }
7169 }
7170
7171 /* There has to be a global GOT entry for every symbol with
7172 a dynamic symbol table index of DT_MIPS_GOTSYM or
7173 higher. Therefore, it make sense to put those symbols
7174 that need GOT entries at the end of the symbol table. We
7175 do that here. */
7176 if (! mips_elf_sort_hash_table (info, 1))
7177 return FALSE;
7178
7179 if (g->global_gotsym != NULL)
7180 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7181 else
7182 /* If there are no global symbols, or none requiring
7183 relocations, then GLOBAL_GOTSYM will be NULL. */
7184 i = 0;
7185
7186 /* Get a worst-case estimate of the number of dynamic symbols needed.
7187 At this point, dynsymcount does not account for section symbols
7188 and count_section_dynsyms may overestimate the number that will
7189 be needed. */
7190 dynsymcount = (elf_hash_table (info)->dynsymcount
7191 + count_section_dynsyms (output_bfd, info));
7192
7193 /* Determine the size of one stub entry. */
7194 htab->function_stub_size = (dynsymcount > 0x10000
7195 ? MIPS_FUNCTION_STUB_BIG_SIZE
7196 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7197
7198 /* In the worst case, we'll get one stub per dynamic symbol, plus
7199 one to account for the dummy entry at the end required by IRIX
7200 rld. */
7201 loadable_size += htab->function_stub_size * (i + 1);
7202
7203 if (htab->is_vxworks)
7204 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7205 relocations against local symbols evaluate to "G", and the EABI does
7206 not include R_MIPS_GOT_PAGE. */
7207 local_gotno = 0;
7208 else
7209 /* Assume there are two loadable segments consisting of contiguous
7210 sections. Is 5 enough? */
7211 local_gotno = (loadable_size >> 16) + 5;
7212
7213 g->local_gotno += local_gotno;
7214 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7215
7216 g->global_gotno = i;
7217 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7218
7219 /* We need to calculate tls_gotno for global symbols at this point
7220 instead of building it up earlier, to avoid doublecounting
7221 entries for one global symbol from multiple input files. */
7222 count_tls_arg.info = info;
7223 count_tls_arg.needed = 0;
7224 elf_link_hash_traverse (elf_hash_table (info),
7225 mips_elf_count_global_tls_entries,
7226 &count_tls_arg);
7227 g->tls_gotno += count_tls_arg.needed;
7228 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7229
7230 mips_elf_resolve_final_got_entries (g);
7231
7232 /* VxWorks does not support multiple GOTs. It initializes $gp to
7233 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7234 dynamic loader. */
7235 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7236 {
7237 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7238 return FALSE;
7239 }
7240 else
7241 {
7242 /* Set up TLS entries for the first GOT. */
7243 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7244 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7245 }
7246
7247 return TRUE;
7248 }
7249
7250 /* Set the sizes of the dynamic sections. */
7251
7252 bfd_boolean
7253 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7254 struct bfd_link_info *info)
7255 {
7256 bfd *dynobj;
7257 asection *s, *sreldyn;
7258 bfd_boolean reltext;
7259 struct mips_elf_link_hash_table *htab;
7260
7261 htab = mips_elf_hash_table (info);
7262 dynobj = elf_hash_table (info)->dynobj;
7263 BFD_ASSERT (dynobj != NULL);
7264
7265 if (elf_hash_table (info)->dynamic_sections_created)
7266 {
7267 /* Set the contents of the .interp section to the interpreter. */
7268 if (info->executable)
7269 {
7270 s = bfd_get_section_by_name (dynobj, ".interp");
7271 BFD_ASSERT (s != NULL);
7272 s->size
7273 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7274 s->contents
7275 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7276 }
7277 }
7278
7279 /* The check_relocs and adjust_dynamic_symbol entry points have
7280 determined the sizes of the various dynamic sections. Allocate
7281 memory for them. */
7282 reltext = FALSE;
7283 sreldyn = NULL;
7284 for (s = dynobj->sections; s != NULL; s = s->next)
7285 {
7286 const char *name;
7287
7288 /* It's OK to base decisions on the section name, because none
7289 of the dynobj section names depend upon the input files. */
7290 name = bfd_get_section_name (dynobj, s);
7291
7292 if ((s->flags & SEC_LINKER_CREATED) == 0)
7293 continue;
7294
7295 if (strncmp (name, ".rel", 4) == 0)
7296 {
7297 if (s->size != 0)
7298 {
7299 const char *outname;
7300 asection *target;
7301
7302 /* If this relocation section applies to a read only
7303 section, then we probably need a DT_TEXTREL entry.
7304 If the relocation section is .rel(a).dyn, we always
7305 assert a DT_TEXTREL entry rather than testing whether
7306 there exists a relocation to a read only section or
7307 not. */
7308 outname = bfd_get_section_name (output_bfd,
7309 s->output_section);
7310 target = bfd_get_section_by_name (output_bfd, outname + 4);
7311 if ((target != NULL
7312 && (target->flags & SEC_READONLY) != 0
7313 && (target->flags & SEC_ALLOC) != 0)
7314 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7315 reltext = TRUE;
7316
7317 /* We use the reloc_count field as a counter if we need
7318 to copy relocs into the output file. */
7319 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7320 s->reloc_count = 0;
7321
7322 /* If combreloc is enabled, elf_link_sort_relocs() will
7323 sort relocations, but in a different way than we do,
7324 and before we're done creating relocations. Also, it
7325 will move them around between input sections'
7326 relocation's contents, so our sorting would be
7327 broken, so don't let it run. */
7328 info->combreloc = 0;
7329 }
7330 }
7331 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7332 {
7333 /* Executables do not need a GOT. */
7334 if (info->shared)
7335 {
7336 /* Allocate relocations for all but the reserved entries. */
7337 struct mips_got_info *g;
7338 unsigned int count;
7339
7340 g = mips_elf_got_info (dynobj, NULL);
7341 count = (g->global_gotno
7342 + g->local_gotno
7343 - MIPS_RESERVED_GOTNO (info));
7344 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7345 }
7346 }
7347 else if (!htab->is_vxworks && strncmp (name, ".got", 4) == 0)
7348 {
7349 /* _bfd_mips_elf_always_size_sections() has already done
7350 most of the work, but some symbols may have been mapped
7351 to versions that we must now resolve in the got_entries
7352 hash tables. */
7353 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7354 struct mips_got_info *g = gg;
7355 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7356 unsigned int needed_relocs = 0;
7357
7358 if (gg->next)
7359 {
7360 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7361 set_got_offset_arg.info = info;
7362
7363 /* NOTE 2005-02-03: How can this call, or the next, ever
7364 find any indirect entries to resolve? They were all
7365 resolved in mips_elf_multi_got. */
7366 mips_elf_resolve_final_got_entries (gg);
7367 for (g = gg->next; g && g->next != gg; g = g->next)
7368 {
7369 unsigned int save_assign;
7370
7371 mips_elf_resolve_final_got_entries (g);
7372
7373 /* Assign offsets to global GOT entries. */
7374 save_assign = g->assigned_gotno;
7375 g->assigned_gotno = g->local_gotno;
7376 set_got_offset_arg.g = g;
7377 set_got_offset_arg.needed_relocs = 0;
7378 htab_traverse (g->got_entries,
7379 mips_elf_set_global_got_offset,
7380 &set_got_offset_arg);
7381 needed_relocs += set_got_offset_arg.needed_relocs;
7382 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7383 <= g->global_gotno);
7384
7385 g->assigned_gotno = save_assign;
7386 if (info->shared)
7387 {
7388 needed_relocs += g->local_gotno - g->assigned_gotno;
7389 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7390 + g->next->global_gotno
7391 + g->next->tls_gotno
7392 + MIPS_RESERVED_GOTNO (info));
7393 }
7394 }
7395 }
7396 else
7397 {
7398 struct mips_elf_count_tls_arg arg;
7399 arg.info = info;
7400 arg.needed = 0;
7401
7402 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7403 &arg);
7404 elf_link_hash_traverse (elf_hash_table (info),
7405 mips_elf_count_global_tls_relocs,
7406 &arg);
7407
7408 needed_relocs += arg.needed;
7409 }
7410
7411 if (needed_relocs)
7412 mips_elf_allocate_dynamic_relocations (dynobj, info,
7413 needed_relocs);
7414 }
7415 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7416 {
7417 /* IRIX rld assumes that the function stub isn't at the end
7418 of .text section. So put a dummy. XXX */
7419 s->size += htab->function_stub_size;
7420 }
7421 else if (! info->shared
7422 && ! mips_elf_hash_table (info)->use_rld_obj_head
7423 && strncmp (name, ".rld_map", 8) == 0)
7424 {
7425 /* We add a room for __rld_map. It will be filled in by the
7426 rtld to contain a pointer to the _r_debug structure. */
7427 s->size += 4;
7428 }
7429 else if (SGI_COMPAT (output_bfd)
7430 && strncmp (name, ".compact_rel", 12) == 0)
7431 s->size += mips_elf_hash_table (info)->compact_rel_size;
7432 else if (strncmp (name, ".init", 5) != 0
7433 && s != htab->sgotplt
7434 && s != htab->splt)
7435 {
7436 /* It's not one of our sections, so don't allocate space. */
7437 continue;
7438 }
7439
7440 if (s->size == 0)
7441 {
7442 s->flags |= SEC_EXCLUDE;
7443 continue;
7444 }
7445
7446 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7447 continue;
7448
7449 /* Allocate memory for this section last, since we may increase its
7450 size above. */
7451 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7452 {
7453 sreldyn = s;
7454 continue;
7455 }
7456
7457 /* Allocate memory for the section contents. */
7458 s->contents = bfd_zalloc (dynobj, s->size);
7459 if (s->contents == NULL)
7460 {
7461 bfd_set_error (bfd_error_no_memory);
7462 return FALSE;
7463 }
7464 }
7465
7466 /* Allocate memory for the .rel(a).dyn section. */
7467 if (sreldyn != NULL)
7468 {
7469 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7470 if (sreldyn->contents == NULL)
7471 {
7472 bfd_set_error (bfd_error_no_memory);
7473 return FALSE;
7474 }
7475 }
7476
7477 if (elf_hash_table (info)->dynamic_sections_created)
7478 {
7479 /* Add some entries to the .dynamic section. We fill in the
7480 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7481 must add the entries now so that we get the correct size for
7482 the .dynamic section. The DT_DEBUG entry is filled in by the
7483 dynamic linker and used by the debugger. */
7484 if (! info->shared)
7485 {
7486 /* SGI object has the equivalence of DT_DEBUG in the
7487 DT_MIPS_RLD_MAP entry. */
7488 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7489 return FALSE;
7490 if (!SGI_COMPAT (output_bfd))
7491 {
7492 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7493 return FALSE;
7494 }
7495 }
7496 else
7497 {
7498 /* Shared libraries on traditional mips have DT_DEBUG. */
7499 if (!SGI_COMPAT (output_bfd))
7500 {
7501 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7502 return FALSE;
7503 }
7504 }
7505
7506 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7507 info->flags |= DF_TEXTREL;
7508
7509 if ((info->flags & DF_TEXTREL) != 0)
7510 {
7511 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7512 return FALSE;
7513
7514 /* Clear the DF_TEXTREL flag. It will be set again if we
7515 write out an actual text relocation; we may not, because
7516 at this point we do not know whether e.g. any .eh_frame
7517 absolute relocations have been converted to PC-relative. */
7518 info->flags &= ~DF_TEXTREL;
7519 }
7520
7521 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7522 return FALSE;
7523
7524 if (htab->is_vxworks)
7525 {
7526 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7527 use any of the DT_MIPS_* tags. */
7528 if (mips_elf_rel_dyn_section (info, FALSE))
7529 {
7530 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7531 return FALSE;
7532
7533 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7534 return FALSE;
7535
7536 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7537 return FALSE;
7538 }
7539 if (htab->splt->size > 0)
7540 {
7541 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7542 return FALSE;
7543
7544 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7545 return FALSE;
7546
7547 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7548 return FALSE;
7549 }
7550 }
7551 else
7552 {
7553 if (mips_elf_rel_dyn_section (info, FALSE))
7554 {
7555 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7556 return FALSE;
7557
7558 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7559 return FALSE;
7560
7561 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7562 return FALSE;
7563 }
7564
7565 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7566 return FALSE;
7567
7568 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7569 return FALSE;
7570
7571 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7572 return FALSE;
7573
7574 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7575 return FALSE;
7576
7577 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7578 return FALSE;
7579
7580 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7581 return FALSE;
7582
7583 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7584 return FALSE;
7585
7586 if (IRIX_COMPAT (dynobj) == ict_irix5
7587 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7588 return FALSE;
7589
7590 if (IRIX_COMPAT (dynobj) == ict_irix6
7591 && (bfd_get_section_by_name
7592 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7593 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7594 return FALSE;
7595 }
7596 }
7597
7598 return TRUE;
7599 }
7600 \f
7601 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7602 Adjust its R_ADDEND field so that it is correct for the output file.
7603 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7604 and sections respectively; both use symbol indexes. */
7605
7606 static void
7607 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7608 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7609 asection **local_sections, Elf_Internal_Rela *rel)
7610 {
7611 unsigned int r_type, r_symndx;
7612 Elf_Internal_Sym *sym;
7613 asection *sec;
7614
7615 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7616 {
7617 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7618 if (r_type == R_MIPS16_GPREL
7619 || r_type == R_MIPS_GPREL16
7620 || r_type == R_MIPS_GPREL32
7621 || r_type == R_MIPS_LITERAL)
7622 {
7623 rel->r_addend += _bfd_get_gp_value (input_bfd);
7624 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7625 }
7626
7627 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7628 sym = local_syms + r_symndx;
7629
7630 /* Adjust REL's addend to account for section merging. */
7631 if (!info->relocatable)
7632 {
7633 sec = local_sections[r_symndx];
7634 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7635 }
7636
7637 /* This would normally be done by the rela_normal code in elflink.c. */
7638 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7639 rel->r_addend += local_sections[r_symndx]->output_offset;
7640 }
7641 }
7642
7643 /* Relocate a MIPS ELF section. */
7644
7645 bfd_boolean
7646 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7647 bfd *input_bfd, asection *input_section,
7648 bfd_byte *contents, Elf_Internal_Rela *relocs,
7649 Elf_Internal_Sym *local_syms,
7650 asection **local_sections)
7651 {
7652 Elf_Internal_Rela *rel;
7653 const Elf_Internal_Rela *relend;
7654 bfd_vma addend = 0;
7655 bfd_boolean use_saved_addend_p = FALSE;
7656 const struct elf_backend_data *bed;
7657
7658 bed = get_elf_backend_data (output_bfd);
7659 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7660 for (rel = relocs; rel < relend; ++rel)
7661 {
7662 const char *name;
7663 bfd_vma value = 0;
7664 reloc_howto_type *howto;
7665 bfd_boolean require_jalx;
7666 /* TRUE if the relocation is a RELA relocation, rather than a
7667 REL relocation. */
7668 bfd_boolean rela_relocation_p = TRUE;
7669 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7670 const char *msg;
7671
7672 /* Find the relocation howto for this relocation. */
7673 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7674 {
7675 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7676 64-bit code, but make sure all their addresses are in the
7677 lowermost or uppermost 32-bit section of the 64-bit address
7678 space. Thus, when they use an R_MIPS_64 they mean what is
7679 usually meant by R_MIPS_32, with the exception that the
7680 stored value is sign-extended to 64 bits. */
7681 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7682
7683 /* On big-endian systems, we need to lie about the position
7684 of the reloc. */
7685 if (bfd_big_endian (input_bfd))
7686 rel->r_offset += 4;
7687 }
7688 else
7689 /* NewABI defaults to RELA relocations. */
7690 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7691 NEWABI_P (input_bfd)
7692 && (MIPS_RELOC_RELA_P
7693 (input_bfd, input_section,
7694 rel - relocs)));
7695
7696 if (!use_saved_addend_p)
7697 {
7698 Elf_Internal_Shdr *rel_hdr;
7699
7700 /* If these relocations were originally of the REL variety,
7701 we must pull the addend out of the field that will be
7702 relocated. Otherwise, we simply use the contents of the
7703 RELA relocation. To determine which flavor or relocation
7704 this is, we depend on the fact that the INPUT_SECTION's
7705 REL_HDR is read before its REL_HDR2. */
7706 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7707 if ((size_t) (rel - relocs)
7708 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7709 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7710 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7711 {
7712 bfd_byte *location = contents + rel->r_offset;
7713
7714 /* Note that this is a REL relocation. */
7715 rela_relocation_p = FALSE;
7716
7717 /* Get the addend, which is stored in the input file. */
7718 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7719 location);
7720 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7721 contents);
7722 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7723 location);
7724
7725 addend &= howto->src_mask;
7726
7727 /* For some kinds of relocations, the ADDEND is a
7728 combination of the addend stored in two different
7729 relocations. */
7730 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7731 || (r_type == R_MIPS_GOT16
7732 && mips_elf_local_relocation_p (input_bfd, rel,
7733 local_sections, FALSE)))
7734 {
7735 bfd_vma l;
7736 const Elf_Internal_Rela *lo16_relocation;
7737 reloc_howto_type *lo16_howto;
7738 bfd_byte *lo16_location;
7739 int lo16_type;
7740
7741 if (r_type == R_MIPS16_HI16)
7742 lo16_type = R_MIPS16_LO16;
7743 else
7744 lo16_type = R_MIPS_LO16;
7745
7746 /* The combined value is the sum of the HI16 addend,
7747 left-shifted by sixteen bits, and the LO16
7748 addend, sign extended. (Usually, the code does
7749 a `lui' of the HI16 value, and then an `addiu' of
7750 the LO16 value.)
7751
7752 Scan ahead to find a matching LO16 relocation.
7753
7754 According to the MIPS ELF ABI, the R_MIPS_LO16
7755 relocation must be immediately following.
7756 However, for the IRIX6 ABI, the next relocation
7757 may be a composed relocation consisting of
7758 several relocations for the same address. In
7759 that case, the R_MIPS_LO16 relocation may occur
7760 as one of these. We permit a similar extension
7761 in general, as that is useful for GCC. */
7762 lo16_relocation = mips_elf_next_relocation (input_bfd,
7763 lo16_type,
7764 rel, relend);
7765 if (lo16_relocation == NULL)
7766 return FALSE;
7767
7768 lo16_location = contents + lo16_relocation->r_offset;
7769
7770 /* Obtain the addend kept there. */
7771 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7772 lo16_type, FALSE);
7773 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7774 lo16_location);
7775 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7776 input_bfd, contents);
7777 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7778 lo16_location);
7779 l &= lo16_howto->src_mask;
7780 l <<= lo16_howto->rightshift;
7781 l = _bfd_mips_elf_sign_extend (l, 16);
7782
7783 addend <<= 16;
7784
7785 /* Compute the combined addend. */
7786 addend += l;
7787 }
7788 else
7789 addend <<= howto->rightshift;
7790 }
7791 else
7792 addend = rel->r_addend;
7793 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7794 local_syms, local_sections, rel);
7795 }
7796
7797 if (info->relocatable)
7798 {
7799 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7800 && bfd_big_endian (input_bfd))
7801 rel->r_offset -= 4;
7802
7803 if (!rela_relocation_p && rel->r_addend)
7804 {
7805 addend += rel->r_addend;
7806 if (r_type == R_MIPS_HI16
7807 || r_type == R_MIPS_GOT16)
7808 addend = mips_elf_high (addend);
7809 else if (r_type == R_MIPS_HIGHER)
7810 addend = mips_elf_higher (addend);
7811 else if (r_type == R_MIPS_HIGHEST)
7812 addend = mips_elf_highest (addend);
7813 else
7814 addend >>= howto->rightshift;
7815
7816 /* We use the source mask, rather than the destination
7817 mask because the place to which we are writing will be
7818 source of the addend in the final link. */
7819 addend &= howto->src_mask;
7820
7821 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7822 /* See the comment above about using R_MIPS_64 in the 32-bit
7823 ABI. Here, we need to update the addend. It would be
7824 possible to get away with just using the R_MIPS_32 reloc
7825 but for endianness. */
7826 {
7827 bfd_vma sign_bits;
7828 bfd_vma low_bits;
7829 bfd_vma high_bits;
7830
7831 if (addend & ((bfd_vma) 1 << 31))
7832 #ifdef BFD64
7833 sign_bits = ((bfd_vma) 1 << 32) - 1;
7834 #else
7835 sign_bits = -1;
7836 #endif
7837 else
7838 sign_bits = 0;
7839
7840 /* If we don't know that we have a 64-bit type,
7841 do two separate stores. */
7842 if (bfd_big_endian (input_bfd))
7843 {
7844 /* Store the sign-bits (which are most significant)
7845 first. */
7846 low_bits = sign_bits;
7847 high_bits = addend;
7848 }
7849 else
7850 {
7851 low_bits = addend;
7852 high_bits = sign_bits;
7853 }
7854 bfd_put_32 (input_bfd, low_bits,
7855 contents + rel->r_offset);
7856 bfd_put_32 (input_bfd, high_bits,
7857 contents + rel->r_offset + 4);
7858 continue;
7859 }
7860
7861 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7862 input_bfd, input_section,
7863 contents, FALSE))
7864 return FALSE;
7865 }
7866
7867 /* Go on to the next relocation. */
7868 continue;
7869 }
7870
7871 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7872 relocations for the same offset. In that case we are
7873 supposed to treat the output of each relocation as the addend
7874 for the next. */
7875 if (rel + 1 < relend
7876 && rel->r_offset == rel[1].r_offset
7877 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7878 use_saved_addend_p = TRUE;
7879 else
7880 use_saved_addend_p = FALSE;
7881
7882 /* Figure out what value we are supposed to relocate. */
7883 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7884 input_section, info, rel,
7885 addend, howto, local_syms,
7886 local_sections, &value,
7887 &name, &require_jalx,
7888 use_saved_addend_p))
7889 {
7890 case bfd_reloc_continue:
7891 /* There's nothing to do. */
7892 continue;
7893
7894 case bfd_reloc_undefined:
7895 /* mips_elf_calculate_relocation already called the
7896 undefined_symbol callback. There's no real point in
7897 trying to perform the relocation at this point, so we
7898 just skip ahead to the next relocation. */
7899 continue;
7900
7901 case bfd_reloc_notsupported:
7902 msg = _("internal error: unsupported relocation error");
7903 info->callbacks->warning
7904 (info, msg, name, input_bfd, input_section, rel->r_offset);
7905 return FALSE;
7906
7907 case bfd_reloc_overflow:
7908 if (use_saved_addend_p)
7909 /* Ignore overflow until we reach the last relocation for
7910 a given location. */
7911 ;
7912 else
7913 {
7914 BFD_ASSERT (name != NULL);
7915 if (! ((*info->callbacks->reloc_overflow)
7916 (info, NULL, name, howto->name, (bfd_vma) 0,
7917 input_bfd, input_section, rel->r_offset)))
7918 return FALSE;
7919 }
7920 break;
7921
7922 case bfd_reloc_ok:
7923 break;
7924
7925 default:
7926 abort ();
7927 break;
7928 }
7929
7930 /* If we've got another relocation for the address, keep going
7931 until we reach the last one. */
7932 if (use_saved_addend_p)
7933 {
7934 addend = value;
7935 continue;
7936 }
7937
7938 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7939 /* See the comment above about using R_MIPS_64 in the 32-bit
7940 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7941 that calculated the right value. Now, however, we
7942 sign-extend the 32-bit result to 64-bits, and store it as a
7943 64-bit value. We are especially generous here in that we
7944 go to extreme lengths to support this usage on systems with
7945 only a 32-bit VMA. */
7946 {
7947 bfd_vma sign_bits;
7948 bfd_vma low_bits;
7949 bfd_vma high_bits;
7950
7951 if (value & ((bfd_vma) 1 << 31))
7952 #ifdef BFD64
7953 sign_bits = ((bfd_vma) 1 << 32) - 1;
7954 #else
7955 sign_bits = -1;
7956 #endif
7957 else
7958 sign_bits = 0;
7959
7960 /* If we don't know that we have a 64-bit type,
7961 do two separate stores. */
7962 if (bfd_big_endian (input_bfd))
7963 {
7964 /* Undo what we did above. */
7965 rel->r_offset -= 4;
7966 /* Store the sign-bits (which are most significant)
7967 first. */
7968 low_bits = sign_bits;
7969 high_bits = value;
7970 }
7971 else
7972 {
7973 low_bits = value;
7974 high_bits = sign_bits;
7975 }
7976 bfd_put_32 (input_bfd, low_bits,
7977 contents + rel->r_offset);
7978 bfd_put_32 (input_bfd, high_bits,
7979 contents + rel->r_offset + 4);
7980 continue;
7981 }
7982
7983 /* Actually perform the relocation. */
7984 if (! mips_elf_perform_relocation (info, howto, rel, value,
7985 input_bfd, input_section,
7986 contents, require_jalx))
7987 return FALSE;
7988 }
7989
7990 return TRUE;
7991 }
7992 \f
7993 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7994 adjust it appropriately now. */
7995
7996 static void
7997 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7998 const char *name, Elf_Internal_Sym *sym)
7999 {
8000 /* The linker script takes care of providing names and values for
8001 these, but we must place them into the right sections. */
8002 static const char* const text_section_symbols[] = {
8003 "_ftext",
8004 "_etext",
8005 "__dso_displacement",
8006 "__elf_header",
8007 "__program_header_table",
8008 NULL
8009 };
8010
8011 static const char* const data_section_symbols[] = {
8012 "_fdata",
8013 "_edata",
8014 "_end",
8015 "_fbss",
8016 NULL
8017 };
8018
8019 const char* const *p;
8020 int i;
8021
8022 for (i = 0; i < 2; ++i)
8023 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8024 *p;
8025 ++p)
8026 if (strcmp (*p, name) == 0)
8027 {
8028 /* All of these symbols are given type STT_SECTION by the
8029 IRIX6 linker. */
8030 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8031 sym->st_other = STO_PROTECTED;
8032
8033 /* The IRIX linker puts these symbols in special sections. */
8034 if (i == 0)
8035 sym->st_shndx = SHN_MIPS_TEXT;
8036 else
8037 sym->st_shndx = SHN_MIPS_DATA;
8038
8039 break;
8040 }
8041 }
8042
8043 /* Finish up dynamic symbol handling. We set the contents of various
8044 dynamic sections here. */
8045
8046 bfd_boolean
8047 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8048 struct bfd_link_info *info,
8049 struct elf_link_hash_entry *h,
8050 Elf_Internal_Sym *sym)
8051 {
8052 bfd *dynobj;
8053 asection *sgot;
8054 struct mips_got_info *g, *gg;
8055 const char *name;
8056 int idx;
8057 struct mips_elf_link_hash_table *htab;
8058
8059 htab = mips_elf_hash_table (info);
8060 dynobj = elf_hash_table (info)->dynobj;
8061
8062 if (h->plt.offset != MINUS_ONE)
8063 {
8064 asection *s;
8065 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8066
8067 /* This symbol has a stub. Set it up. */
8068
8069 BFD_ASSERT (h->dynindx != -1);
8070
8071 s = bfd_get_section_by_name (dynobj,
8072 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8073 BFD_ASSERT (s != NULL);
8074
8075 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8076 || (h->dynindx <= 0xffff));
8077
8078 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8079 sign extension at runtime in the stub, resulting in a negative
8080 index value. */
8081 if (h->dynindx & ~0x7fffffff)
8082 return FALSE;
8083
8084 /* Fill the stub. */
8085 idx = 0;
8086 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8087 idx += 4;
8088 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8089 idx += 4;
8090 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8091 {
8092 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8093 stub + idx);
8094 idx += 4;
8095 }
8096 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8097 idx += 4;
8098
8099 /* If a large stub is not required and sign extension is not a
8100 problem, then use legacy code in the stub. */
8101 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8102 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8103 else if (h->dynindx & ~0x7fff)
8104 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8105 else
8106 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8107 stub + idx);
8108
8109 BFD_ASSERT (h->plt.offset <= s->size);
8110 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8111
8112 /* Mark the symbol as undefined. plt.offset != -1 occurs
8113 only for the referenced symbol. */
8114 sym->st_shndx = SHN_UNDEF;
8115
8116 /* The run-time linker uses the st_value field of the symbol
8117 to reset the global offset table entry for this external
8118 to its stub address when unlinking a shared object. */
8119 sym->st_value = (s->output_section->vma + s->output_offset
8120 + h->plt.offset);
8121 }
8122
8123 BFD_ASSERT (h->dynindx != -1
8124 || h->forced_local);
8125
8126 sgot = mips_elf_got_section (dynobj, FALSE);
8127 BFD_ASSERT (sgot != NULL);
8128 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8129 g = mips_elf_section_data (sgot)->u.got_info;
8130 BFD_ASSERT (g != NULL);
8131
8132 /* Run through the global symbol table, creating GOT entries for all
8133 the symbols that need them. */
8134 if (g->global_gotsym != NULL
8135 && h->dynindx >= g->global_gotsym->dynindx)
8136 {
8137 bfd_vma offset;
8138 bfd_vma value;
8139
8140 value = sym->st_value;
8141 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8142 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8143 }
8144
8145 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8146 {
8147 struct mips_got_entry e, *p;
8148 bfd_vma entry;
8149 bfd_vma offset;
8150
8151 gg = g;
8152
8153 e.abfd = output_bfd;
8154 e.symndx = -1;
8155 e.d.h = (struct mips_elf_link_hash_entry *)h;
8156 e.tls_type = 0;
8157
8158 for (g = g->next; g->next != gg; g = g->next)
8159 {
8160 if (g->got_entries
8161 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8162 &e)))
8163 {
8164 offset = p->gotidx;
8165 if (info->shared
8166 || (elf_hash_table (info)->dynamic_sections_created
8167 && p->d.h != NULL
8168 && p->d.h->root.def_dynamic
8169 && !p->d.h->root.def_regular))
8170 {
8171 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8172 the various compatibility problems, it's easier to mock
8173 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8174 mips_elf_create_dynamic_relocation to calculate the
8175 appropriate addend. */
8176 Elf_Internal_Rela rel[3];
8177
8178 memset (rel, 0, sizeof (rel));
8179 if (ABI_64_P (output_bfd))
8180 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8181 else
8182 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8183 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8184
8185 entry = 0;
8186 if (! (mips_elf_create_dynamic_relocation
8187 (output_bfd, info, rel,
8188 e.d.h, NULL, sym->st_value, &entry, sgot)))
8189 return FALSE;
8190 }
8191 else
8192 entry = sym->st_value;
8193 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8194 }
8195 }
8196 }
8197
8198 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8199 name = h->root.root.string;
8200 if (strcmp (name, "_DYNAMIC") == 0
8201 || h == elf_hash_table (info)->hgot)
8202 sym->st_shndx = SHN_ABS;
8203 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8204 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8205 {
8206 sym->st_shndx = SHN_ABS;
8207 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8208 sym->st_value = 1;
8209 }
8210 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8211 {
8212 sym->st_shndx = SHN_ABS;
8213 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8214 sym->st_value = elf_gp (output_bfd);
8215 }
8216 else if (SGI_COMPAT (output_bfd))
8217 {
8218 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8219 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8220 {
8221 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8222 sym->st_other = STO_PROTECTED;
8223 sym->st_value = 0;
8224 sym->st_shndx = SHN_MIPS_DATA;
8225 }
8226 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8227 {
8228 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8229 sym->st_other = STO_PROTECTED;
8230 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8231 sym->st_shndx = SHN_ABS;
8232 }
8233 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8234 {
8235 if (h->type == STT_FUNC)
8236 sym->st_shndx = SHN_MIPS_TEXT;
8237 else if (h->type == STT_OBJECT)
8238 sym->st_shndx = SHN_MIPS_DATA;
8239 }
8240 }
8241
8242 /* Handle the IRIX6-specific symbols. */
8243 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8244 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8245
8246 if (! info->shared)
8247 {
8248 if (! mips_elf_hash_table (info)->use_rld_obj_head
8249 && (strcmp (name, "__rld_map") == 0
8250 || strcmp (name, "__RLD_MAP") == 0))
8251 {
8252 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8253 BFD_ASSERT (s != NULL);
8254 sym->st_value = s->output_section->vma + s->output_offset;
8255 bfd_put_32 (output_bfd, 0, s->contents);
8256 if (mips_elf_hash_table (info)->rld_value == 0)
8257 mips_elf_hash_table (info)->rld_value = sym->st_value;
8258 }
8259 else if (mips_elf_hash_table (info)->use_rld_obj_head
8260 && strcmp (name, "__rld_obj_head") == 0)
8261 {
8262 /* IRIX6 does not use a .rld_map section. */
8263 if (IRIX_COMPAT (output_bfd) == ict_irix5
8264 || IRIX_COMPAT (output_bfd) == ict_none)
8265 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8266 != NULL);
8267 mips_elf_hash_table (info)->rld_value = sym->st_value;
8268 }
8269 }
8270
8271 /* If this is a mips16 symbol, force the value to be even. */
8272 if (sym->st_other == STO_MIPS16)
8273 sym->st_value &= ~1;
8274
8275 return TRUE;
8276 }
8277
8278 /* Likewise, for VxWorks. */
8279
8280 bfd_boolean
8281 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8282 struct bfd_link_info *info,
8283 struct elf_link_hash_entry *h,
8284 Elf_Internal_Sym *sym)
8285 {
8286 bfd *dynobj;
8287 asection *sgot;
8288 struct mips_got_info *g;
8289 struct mips_elf_link_hash_table *htab;
8290
8291 htab = mips_elf_hash_table (info);
8292 dynobj = elf_hash_table (info)->dynobj;
8293
8294 if (h->plt.offset != (bfd_vma) -1)
8295 {
8296 bfd_byte *loc;
8297 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8298 Elf_Internal_Rela rel;
8299 static const bfd_vma *plt_entry;
8300
8301 BFD_ASSERT (h->dynindx != -1);
8302 BFD_ASSERT (htab->splt != NULL);
8303 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8304
8305 /* Calculate the address of the .plt entry. */
8306 plt_address = (htab->splt->output_section->vma
8307 + htab->splt->output_offset
8308 + h->plt.offset);
8309
8310 /* Calculate the index of the entry. */
8311 plt_index = ((h->plt.offset - htab->plt_header_size)
8312 / htab->plt_entry_size);
8313
8314 /* Calculate the address of the .got.plt entry. */
8315 got_address = (htab->sgotplt->output_section->vma
8316 + htab->sgotplt->output_offset
8317 + plt_index * 4);
8318
8319 /* Calculate the offset of the .got.plt entry from
8320 _GLOBAL_OFFSET_TABLE_. */
8321 got_offset = mips_elf_gotplt_index (info, h);
8322
8323 /* Calculate the offset for the branch at the start of the PLT
8324 entry. The branch jumps to the beginning of .plt. */
8325 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8326
8327 /* Fill in the initial value of the .got.plt entry. */
8328 bfd_put_32 (output_bfd, plt_address,
8329 htab->sgotplt->contents + plt_index * 4);
8330
8331 /* Find out where the .plt entry should go. */
8332 loc = htab->splt->contents + h->plt.offset;
8333
8334 if (info->shared)
8335 {
8336 plt_entry = mips_vxworks_shared_plt_entry;
8337 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8338 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8339 }
8340 else
8341 {
8342 bfd_vma got_address_high, got_address_low;
8343
8344 plt_entry = mips_vxworks_exec_plt_entry;
8345 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8346 got_address_low = got_address & 0xffff;
8347
8348 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8349 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8350 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8351 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8352 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8353 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8354 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8355 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8356
8357 loc = (htab->srelplt2->contents
8358 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8359
8360 /* Emit a relocation for the .got.plt entry. */
8361 rel.r_offset = got_address;
8362 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8363 rel.r_addend = h->plt.offset;
8364 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8365
8366 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8367 loc += sizeof (Elf32_External_Rela);
8368 rel.r_offset = plt_address + 8;
8369 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8370 rel.r_addend = got_offset;
8371 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8372
8373 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8374 loc += sizeof (Elf32_External_Rela);
8375 rel.r_offset += 4;
8376 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8377 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8378 }
8379
8380 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8381 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8382 rel.r_offset = got_address;
8383 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8384 rel.r_addend = 0;
8385 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8386
8387 if (!h->def_regular)
8388 sym->st_shndx = SHN_UNDEF;
8389 }
8390
8391 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8392
8393 sgot = mips_elf_got_section (dynobj, FALSE);
8394 BFD_ASSERT (sgot != NULL);
8395 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8396 g = mips_elf_section_data (sgot)->u.got_info;
8397 BFD_ASSERT (g != NULL);
8398
8399 /* See if this symbol has an entry in the GOT. */
8400 if (g->global_gotsym != NULL
8401 && h->dynindx >= g->global_gotsym->dynindx)
8402 {
8403 bfd_vma offset;
8404 Elf_Internal_Rela outrel;
8405 bfd_byte *loc;
8406 asection *s;
8407
8408 /* Install the symbol value in the GOT. */
8409 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8410 R_MIPS_GOT16, info);
8411 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8412
8413 /* Add a dynamic relocation for it. */
8414 s = mips_elf_rel_dyn_section (info, FALSE);
8415 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8416 outrel.r_offset = (sgot->output_section->vma
8417 + sgot->output_offset
8418 + offset);
8419 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8420 outrel.r_addend = 0;
8421 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8422 }
8423
8424 /* Emit a copy reloc, if needed. */
8425 if (h->needs_copy)
8426 {
8427 Elf_Internal_Rela rel;
8428
8429 BFD_ASSERT (h->dynindx != -1);
8430
8431 rel.r_offset = (h->root.u.def.section->output_section->vma
8432 + h->root.u.def.section->output_offset
8433 + h->root.u.def.value);
8434 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8435 rel.r_addend = 0;
8436 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8437 htab->srelbss->contents
8438 + (htab->srelbss->reloc_count
8439 * sizeof (Elf32_External_Rela)));
8440 ++htab->srelbss->reloc_count;
8441 }
8442
8443 /* If this is a mips16 symbol, force the value to be even. */
8444 if (sym->st_other == STO_MIPS16)
8445 sym->st_value &= ~1;
8446
8447 return TRUE;
8448 }
8449
8450 /* Install the PLT header for a VxWorks executable and finalize the
8451 contents of .rela.plt.unloaded. */
8452
8453 static void
8454 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8455 {
8456 Elf_Internal_Rela rela;
8457 bfd_byte *loc;
8458 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8459 static const bfd_vma *plt_entry;
8460 struct mips_elf_link_hash_table *htab;
8461
8462 htab = mips_elf_hash_table (info);
8463 plt_entry = mips_vxworks_exec_plt0_entry;
8464
8465 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8466 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8467 + htab->root.hgot->root.u.def.section->output_offset
8468 + htab->root.hgot->root.u.def.value);
8469
8470 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8471 got_value_low = got_value & 0xffff;
8472
8473 /* Calculate the address of the PLT header. */
8474 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8475
8476 /* Install the PLT header. */
8477 loc = htab->splt->contents;
8478 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8479 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8480 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8481 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8482 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8483 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8484
8485 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8486 loc = htab->srelplt2->contents;
8487 rela.r_offset = plt_address;
8488 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8489 rela.r_addend = 0;
8490 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8491 loc += sizeof (Elf32_External_Rela);
8492
8493 /* Output the relocation for the following addiu of
8494 %lo(_GLOBAL_OFFSET_TABLE_). */
8495 rela.r_offset += 4;
8496 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8497 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8498 loc += sizeof (Elf32_External_Rela);
8499
8500 /* Fix up the remaining relocations. They may have the wrong
8501 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8502 in which symbols were output. */
8503 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8504 {
8505 Elf_Internal_Rela rel;
8506
8507 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8508 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8509 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8510 loc += sizeof (Elf32_External_Rela);
8511
8512 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8513 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8514 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8515 loc += sizeof (Elf32_External_Rela);
8516
8517 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8518 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8519 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8520 loc += sizeof (Elf32_External_Rela);
8521 }
8522 }
8523
8524 /* Install the PLT header for a VxWorks shared library. */
8525
8526 static void
8527 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8528 {
8529 unsigned int i;
8530 struct mips_elf_link_hash_table *htab;
8531
8532 htab = mips_elf_hash_table (info);
8533
8534 /* We just need to copy the entry byte-by-byte. */
8535 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8536 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8537 htab->splt->contents + i * 4);
8538 }
8539
8540 /* Finish up the dynamic sections. */
8541
8542 bfd_boolean
8543 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8544 struct bfd_link_info *info)
8545 {
8546 bfd *dynobj;
8547 asection *sdyn;
8548 asection *sgot;
8549 struct mips_got_info *gg, *g;
8550 struct mips_elf_link_hash_table *htab;
8551
8552 htab = mips_elf_hash_table (info);
8553 dynobj = elf_hash_table (info)->dynobj;
8554
8555 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8556
8557 sgot = mips_elf_got_section (dynobj, FALSE);
8558 if (sgot == NULL)
8559 gg = g = NULL;
8560 else
8561 {
8562 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8563 gg = mips_elf_section_data (sgot)->u.got_info;
8564 BFD_ASSERT (gg != NULL);
8565 g = mips_elf_got_for_ibfd (gg, output_bfd);
8566 BFD_ASSERT (g != NULL);
8567 }
8568
8569 if (elf_hash_table (info)->dynamic_sections_created)
8570 {
8571 bfd_byte *b;
8572 int dyn_to_skip = 0, dyn_skipped = 0;
8573
8574 BFD_ASSERT (sdyn != NULL);
8575 BFD_ASSERT (g != NULL);
8576
8577 for (b = sdyn->contents;
8578 b < sdyn->contents + sdyn->size;
8579 b += MIPS_ELF_DYN_SIZE (dynobj))
8580 {
8581 Elf_Internal_Dyn dyn;
8582 const char *name;
8583 size_t elemsize;
8584 asection *s;
8585 bfd_boolean swap_out_p;
8586
8587 /* Read in the current dynamic entry. */
8588 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8589
8590 /* Assume that we're going to modify it and write it out. */
8591 swap_out_p = TRUE;
8592
8593 switch (dyn.d_tag)
8594 {
8595 case DT_RELENT:
8596 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8597 break;
8598
8599 case DT_RELAENT:
8600 BFD_ASSERT (htab->is_vxworks);
8601 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8602 break;
8603
8604 case DT_STRSZ:
8605 /* Rewrite DT_STRSZ. */
8606 dyn.d_un.d_val =
8607 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8608 break;
8609
8610 case DT_PLTGOT:
8611 name = ".got";
8612 if (htab->is_vxworks)
8613 {
8614 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8615 of the ".got" section in DYNOBJ. */
8616 s = bfd_get_section_by_name (dynobj, name);
8617 BFD_ASSERT (s != NULL);
8618 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8619 }
8620 else
8621 {
8622 s = bfd_get_section_by_name (output_bfd, name);
8623 BFD_ASSERT (s != NULL);
8624 dyn.d_un.d_ptr = s->vma;
8625 }
8626 break;
8627
8628 case DT_MIPS_RLD_VERSION:
8629 dyn.d_un.d_val = 1; /* XXX */
8630 break;
8631
8632 case DT_MIPS_FLAGS:
8633 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8634 break;
8635
8636 case DT_MIPS_TIME_STAMP:
8637 {
8638 time_t t;
8639 time (&t);
8640 dyn.d_un.d_val = t;
8641 }
8642 break;
8643
8644 case DT_MIPS_ICHECKSUM:
8645 /* XXX FIXME: */
8646 swap_out_p = FALSE;
8647 break;
8648
8649 case DT_MIPS_IVERSION:
8650 /* XXX FIXME: */
8651 swap_out_p = FALSE;
8652 break;
8653
8654 case DT_MIPS_BASE_ADDRESS:
8655 s = output_bfd->sections;
8656 BFD_ASSERT (s != NULL);
8657 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8658 break;
8659
8660 case DT_MIPS_LOCAL_GOTNO:
8661 dyn.d_un.d_val = g->local_gotno;
8662 break;
8663
8664 case DT_MIPS_UNREFEXTNO:
8665 /* The index into the dynamic symbol table which is the
8666 entry of the first external symbol that is not
8667 referenced within the same object. */
8668 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8669 break;
8670
8671 case DT_MIPS_GOTSYM:
8672 if (gg->global_gotsym)
8673 {
8674 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8675 break;
8676 }
8677 /* In case if we don't have global got symbols we default
8678 to setting DT_MIPS_GOTSYM to the same value as
8679 DT_MIPS_SYMTABNO, so we just fall through. */
8680
8681 case DT_MIPS_SYMTABNO:
8682 name = ".dynsym";
8683 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8684 s = bfd_get_section_by_name (output_bfd, name);
8685 BFD_ASSERT (s != NULL);
8686
8687 dyn.d_un.d_val = s->size / elemsize;
8688 break;
8689
8690 case DT_MIPS_HIPAGENO:
8691 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8692 break;
8693
8694 case DT_MIPS_RLD_MAP:
8695 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8696 break;
8697
8698 case DT_MIPS_OPTIONS:
8699 s = (bfd_get_section_by_name
8700 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8701 dyn.d_un.d_ptr = s->vma;
8702 break;
8703
8704 case DT_RELASZ:
8705 BFD_ASSERT (htab->is_vxworks);
8706 /* The count does not include the JUMP_SLOT relocations. */
8707 if (htab->srelplt)
8708 dyn.d_un.d_val -= htab->srelplt->size;
8709 break;
8710
8711 case DT_PLTREL:
8712 BFD_ASSERT (htab->is_vxworks);
8713 dyn.d_un.d_val = DT_RELA;
8714 break;
8715
8716 case DT_PLTRELSZ:
8717 BFD_ASSERT (htab->is_vxworks);
8718 dyn.d_un.d_val = htab->srelplt->size;
8719 break;
8720
8721 case DT_JMPREL:
8722 BFD_ASSERT (htab->is_vxworks);
8723 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8724 + htab->srelplt->output_offset);
8725 break;
8726
8727 case DT_TEXTREL:
8728 /* If we didn't need any text relocations after all, delete
8729 the dynamic tag. */
8730 if (!(info->flags & DF_TEXTREL))
8731 {
8732 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8733 swap_out_p = FALSE;
8734 }
8735 break;
8736
8737 case DT_FLAGS:
8738 /* If we didn't need any text relocations after all, clear
8739 DF_TEXTREL from DT_FLAGS. */
8740 if (!(info->flags & DF_TEXTREL))
8741 dyn.d_un.d_val &= ~DF_TEXTREL;
8742 else
8743 swap_out_p = FALSE;
8744 break;
8745
8746 default:
8747 swap_out_p = FALSE;
8748 break;
8749 }
8750
8751 if (swap_out_p || dyn_skipped)
8752 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8753 (dynobj, &dyn, b - dyn_skipped);
8754
8755 if (dyn_to_skip)
8756 {
8757 dyn_skipped += dyn_to_skip;
8758 dyn_to_skip = 0;
8759 }
8760 }
8761
8762 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8763 if (dyn_skipped > 0)
8764 memset (b - dyn_skipped, 0, dyn_skipped);
8765 }
8766
8767 if (sgot != NULL && sgot->size > 0)
8768 {
8769 if (htab->is_vxworks)
8770 {
8771 /* The first entry of the global offset table points to the
8772 ".dynamic" section. The second is initialized by the
8773 loader and contains the shared library identifier.
8774 The third is also initialized by the loader and points
8775 to the lazy resolution stub. */
8776 MIPS_ELF_PUT_WORD (output_bfd,
8777 sdyn->output_offset + sdyn->output_section->vma,
8778 sgot->contents);
8779 MIPS_ELF_PUT_WORD (output_bfd, 0,
8780 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8781 MIPS_ELF_PUT_WORD (output_bfd, 0,
8782 sgot->contents
8783 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8784 }
8785 else
8786 {
8787 /* The first entry of the global offset table will be filled at
8788 runtime. The second entry will be used by some runtime loaders.
8789 This isn't the case of IRIX rld. */
8790 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8791 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8792 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8793 }
8794
8795 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8796 = MIPS_ELF_GOT_SIZE (output_bfd);
8797 }
8798
8799 /* Generate dynamic relocations for the non-primary gots. */
8800 if (gg != NULL && gg->next)
8801 {
8802 Elf_Internal_Rela rel[3];
8803 bfd_vma addend = 0;
8804
8805 memset (rel, 0, sizeof (rel));
8806 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8807
8808 for (g = gg->next; g->next != gg; g = g->next)
8809 {
8810 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8811 + g->next->tls_gotno;
8812
8813 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8814 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8815 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8816 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8817
8818 if (! info->shared)
8819 continue;
8820
8821 while (index < g->assigned_gotno)
8822 {
8823 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8824 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8825 if (!(mips_elf_create_dynamic_relocation
8826 (output_bfd, info, rel, NULL,
8827 bfd_abs_section_ptr,
8828 0, &addend, sgot)))
8829 return FALSE;
8830 BFD_ASSERT (addend == 0);
8831 }
8832 }
8833 }
8834
8835 /* The generation of dynamic relocations for the non-primary gots
8836 adds more dynamic relocations. We cannot count them until
8837 here. */
8838
8839 if (elf_hash_table (info)->dynamic_sections_created)
8840 {
8841 bfd_byte *b;
8842 bfd_boolean swap_out_p;
8843
8844 BFD_ASSERT (sdyn != NULL);
8845
8846 for (b = sdyn->contents;
8847 b < sdyn->contents + sdyn->size;
8848 b += MIPS_ELF_DYN_SIZE (dynobj))
8849 {
8850 Elf_Internal_Dyn dyn;
8851 asection *s;
8852
8853 /* Read in the current dynamic entry. */
8854 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8855
8856 /* Assume that we're going to modify it and write it out. */
8857 swap_out_p = TRUE;
8858
8859 switch (dyn.d_tag)
8860 {
8861 case DT_RELSZ:
8862 /* Reduce DT_RELSZ to account for any relocations we
8863 decided not to make. This is for the n64 irix rld,
8864 which doesn't seem to apply any relocations if there
8865 are trailing null entries. */
8866 s = mips_elf_rel_dyn_section (info, FALSE);
8867 dyn.d_un.d_val = (s->reloc_count
8868 * (ABI_64_P (output_bfd)
8869 ? sizeof (Elf64_Mips_External_Rel)
8870 : sizeof (Elf32_External_Rel)));
8871 break;
8872
8873 default:
8874 swap_out_p = FALSE;
8875 break;
8876 }
8877
8878 if (swap_out_p)
8879 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8880 (dynobj, &dyn, b);
8881 }
8882 }
8883
8884 {
8885 asection *s;
8886 Elf32_compact_rel cpt;
8887
8888 if (SGI_COMPAT (output_bfd))
8889 {
8890 /* Write .compact_rel section out. */
8891 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8892 if (s != NULL)
8893 {
8894 cpt.id1 = 1;
8895 cpt.num = s->reloc_count;
8896 cpt.id2 = 2;
8897 cpt.offset = (s->output_section->filepos
8898 + sizeof (Elf32_External_compact_rel));
8899 cpt.reserved0 = 0;
8900 cpt.reserved1 = 0;
8901 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8902 ((Elf32_External_compact_rel *)
8903 s->contents));
8904
8905 /* Clean up a dummy stub function entry in .text. */
8906 s = bfd_get_section_by_name (dynobj,
8907 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8908 if (s != NULL)
8909 {
8910 file_ptr dummy_offset;
8911
8912 BFD_ASSERT (s->size >= htab->function_stub_size);
8913 dummy_offset = s->size - htab->function_stub_size;
8914 memset (s->contents + dummy_offset, 0,
8915 htab->function_stub_size);
8916 }
8917 }
8918 }
8919
8920 /* The psABI says that the dynamic relocations must be sorted in
8921 increasing order of r_symndx. The VxWorks EABI doesn't require
8922 this, and because the code below handles REL rather than RELA
8923 relocations, using it for VxWorks would be outright harmful. */
8924 if (!htab->is_vxworks)
8925 {
8926 s = mips_elf_rel_dyn_section (info, FALSE);
8927 if (s != NULL
8928 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8929 {
8930 reldyn_sorting_bfd = output_bfd;
8931
8932 if (ABI_64_P (output_bfd))
8933 qsort ((Elf64_External_Rel *) s->contents + 1,
8934 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8935 sort_dynamic_relocs_64);
8936 else
8937 qsort ((Elf32_External_Rel *) s->contents + 1,
8938 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8939 sort_dynamic_relocs);
8940 }
8941 }
8942 }
8943
8944 if (htab->is_vxworks && htab->splt->size > 0)
8945 {
8946 if (info->shared)
8947 mips_vxworks_finish_shared_plt (output_bfd, info);
8948 else
8949 mips_vxworks_finish_exec_plt (output_bfd, info);
8950 }
8951 return TRUE;
8952 }
8953
8954
8955 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8956
8957 static void
8958 mips_set_isa_flags (bfd *abfd)
8959 {
8960 flagword val;
8961
8962 switch (bfd_get_mach (abfd))
8963 {
8964 default:
8965 case bfd_mach_mips3000:
8966 val = E_MIPS_ARCH_1;
8967 break;
8968
8969 case bfd_mach_mips3900:
8970 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8971 break;
8972
8973 case bfd_mach_mips6000:
8974 val = E_MIPS_ARCH_2;
8975 break;
8976
8977 case bfd_mach_mips4000:
8978 case bfd_mach_mips4300:
8979 case bfd_mach_mips4400:
8980 case bfd_mach_mips4600:
8981 val = E_MIPS_ARCH_3;
8982 break;
8983
8984 case bfd_mach_mips4010:
8985 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8986 break;
8987
8988 case bfd_mach_mips4100:
8989 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8990 break;
8991
8992 case bfd_mach_mips4111:
8993 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8994 break;
8995
8996 case bfd_mach_mips4120:
8997 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8998 break;
8999
9000 case bfd_mach_mips4650:
9001 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9002 break;
9003
9004 case bfd_mach_mips5400:
9005 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9006 break;
9007
9008 case bfd_mach_mips5500:
9009 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9010 break;
9011
9012 case bfd_mach_mips9000:
9013 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9014 break;
9015
9016 case bfd_mach_mips5000:
9017 case bfd_mach_mips7000:
9018 case bfd_mach_mips8000:
9019 case bfd_mach_mips10000:
9020 case bfd_mach_mips12000:
9021 val = E_MIPS_ARCH_4;
9022 break;
9023
9024 case bfd_mach_mips5:
9025 val = E_MIPS_ARCH_5;
9026 break;
9027
9028 case bfd_mach_mips_sb1:
9029 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9030 break;
9031
9032 case bfd_mach_mipsisa32:
9033 val = E_MIPS_ARCH_32;
9034 break;
9035
9036 case bfd_mach_mipsisa64:
9037 val = E_MIPS_ARCH_64;
9038 break;
9039
9040 case bfd_mach_mipsisa32r2:
9041 val = E_MIPS_ARCH_32R2;
9042 break;
9043
9044 case bfd_mach_mipsisa64r2:
9045 val = E_MIPS_ARCH_64R2;
9046 break;
9047 }
9048 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9049 elf_elfheader (abfd)->e_flags |= val;
9050
9051 }
9052
9053
9054 /* The final processing done just before writing out a MIPS ELF object
9055 file. This gets the MIPS architecture right based on the machine
9056 number. This is used by both the 32-bit and the 64-bit ABI. */
9057
9058 void
9059 _bfd_mips_elf_final_write_processing (bfd *abfd,
9060 bfd_boolean linker ATTRIBUTE_UNUSED)
9061 {
9062 unsigned int i;
9063 Elf_Internal_Shdr **hdrpp;
9064 const char *name;
9065 asection *sec;
9066
9067 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9068 is nonzero. This is for compatibility with old objects, which used
9069 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9070 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9071 mips_set_isa_flags (abfd);
9072
9073 /* Set the sh_info field for .gptab sections and other appropriate
9074 info for each special section. */
9075 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9076 i < elf_numsections (abfd);
9077 i++, hdrpp++)
9078 {
9079 switch ((*hdrpp)->sh_type)
9080 {
9081 case SHT_MIPS_MSYM:
9082 case SHT_MIPS_LIBLIST:
9083 sec = bfd_get_section_by_name (abfd, ".dynstr");
9084 if (sec != NULL)
9085 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9086 break;
9087
9088 case SHT_MIPS_GPTAB:
9089 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9090 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9091 BFD_ASSERT (name != NULL
9092 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
9093 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9094 BFD_ASSERT (sec != NULL);
9095 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9096 break;
9097
9098 case SHT_MIPS_CONTENT:
9099 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9100 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9101 BFD_ASSERT (name != NULL
9102 && strncmp (name, ".MIPS.content",
9103 sizeof ".MIPS.content" - 1) == 0);
9104 sec = bfd_get_section_by_name (abfd,
9105 name + sizeof ".MIPS.content" - 1);
9106 BFD_ASSERT (sec != NULL);
9107 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9108 break;
9109
9110 case SHT_MIPS_SYMBOL_LIB:
9111 sec = bfd_get_section_by_name (abfd, ".dynsym");
9112 if (sec != NULL)
9113 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9114 sec = bfd_get_section_by_name (abfd, ".liblist");
9115 if (sec != NULL)
9116 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9117 break;
9118
9119 case SHT_MIPS_EVENTS:
9120 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9121 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9122 BFD_ASSERT (name != NULL);
9123 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
9124 sec = bfd_get_section_by_name (abfd,
9125 name + sizeof ".MIPS.events" - 1);
9126 else
9127 {
9128 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
9129 sizeof ".MIPS.post_rel" - 1) == 0);
9130 sec = bfd_get_section_by_name (abfd,
9131 (name
9132 + sizeof ".MIPS.post_rel" - 1));
9133 }
9134 BFD_ASSERT (sec != NULL);
9135 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9136 break;
9137
9138 }
9139 }
9140 }
9141 \f
9142 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9143 segments. */
9144
9145 int
9146 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9147 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9148 {
9149 asection *s;
9150 int ret = 0;
9151
9152 /* See if we need a PT_MIPS_REGINFO segment. */
9153 s = bfd_get_section_by_name (abfd, ".reginfo");
9154 if (s && (s->flags & SEC_LOAD))
9155 ++ret;
9156
9157 /* See if we need a PT_MIPS_OPTIONS segment. */
9158 if (IRIX_COMPAT (abfd) == ict_irix6
9159 && bfd_get_section_by_name (abfd,
9160 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9161 ++ret;
9162
9163 /* See if we need a PT_MIPS_RTPROC segment. */
9164 if (IRIX_COMPAT (abfd) == ict_irix5
9165 && bfd_get_section_by_name (abfd, ".dynamic")
9166 && bfd_get_section_by_name (abfd, ".mdebug"))
9167 ++ret;
9168
9169 return ret;
9170 }
9171
9172 /* Modify the segment map for an IRIX5 executable. */
9173
9174 bfd_boolean
9175 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9176 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9177 {
9178 asection *s;
9179 struct elf_segment_map *m, **pm;
9180 bfd_size_type amt;
9181
9182 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9183 segment. */
9184 s = bfd_get_section_by_name (abfd, ".reginfo");
9185 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9186 {
9187 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9188 if (m->p_type == PT_MIPS_REGINFO)
9189 break;
9190 if (m == NULL)
9191 {
9192 amt = sizeof *m;
9193 m = bfd_zalloc (abfd, amt);
9194 if (m == NULL)
9195 return FALSE;
9196
9197 m->p_type = PT_MIPS_REGINFO;
9198 m->count = 1;
9199 m->sections[0] = s;
9200
9201 /* We want to put it after the PHDR and INTERP segments. */
9202 pm = &elf_tdata (abfd)->segment_map;
9203 while (*pm != NULL
9204 && ((*pm)->p_type == PT_PHDR
9205 || (*pm)->p_type == PT_INTERP))
9206 pm = &(*pm)->next;
9207
9208 m->next = *pm;
9209 *pm = m;
9210 }
9211 }
9212
9213 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9214 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9215 PT_MIPS_OPTIONS segment immediately following the program header
9216 table. */
9217 if (NEWABI_P (abfd)
9218 /* On non-IRIX6 new abi, we'll have already created a segment
9219 for this section, so don't create another. I'm not sure this
9220 is not also the case for IRIX 6, but I can't test it right
9221 now. */
9222 && IRIX_COMPAT (abfd) == ict_irix6)
9223 {
9224 for (s = abfd->sections; s; s = s->next)
9225 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9226 break;
9227
9228 if (s)
9229 {
9230 struct elf_segment_map *options_segment;
9231
9232 pm = &elf_tdata (abfd)->segment_map;
9233 while (*pm != NULL
9234 && ((*pm)->p_type == PT_PHDR
9235 || (*pm)->p_type == PT_INTERP))
9236 pm = &(*pm)->next;
9237
9238 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9239 {
9240 amt = sizeof (struct elf_segment_map);
9241 options_segment = bfd_zalloc (abfd, amt);
9242 options_segment->next = *pm;
9243 options_segment->p_type = PT_MIPS_OPTIONS;
9244 options_segment->p_flags = PF_R;
9245 options_segment->p_flags_valid = TRUE;
9246 options_segment->count = 1;
9247 options_segment->sections[0] = s;
9248 *pm = options_segment;
9249 }
9250 }
9251 }
9252 else
9253 {
9254 if (IRIX_COMPAT (abfd) == ict_irix5)
9255 {
9256 /* If there are .dynamic and .mdebug sections, we make a room
9257 for the RTPROC header. FIXME: Rewrite without section names. */
9258 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9259 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9260 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9261 {
9262 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9263 if (m->p_type == PT_MIPS_RTPROC)
9264 break;
9265 if (m == NULL)
9266 {
9267 amt = sizeof *m;
9268 m = bfd_zalloc (abfd, amt);
9269 if (m == NULL)
9270 return FALSE;
9271
9272 m->p_type = PT_MIPS_RTPROC;
9273
9274 s = bfd_get_section_by_name (abfd, ".rtproc");
9275 if (s == NULL)
9276 {
9277 m->count = 0;
9278 m->p_flags = 0;
9279 m->p_flags_valid = 1;
9280 }
9281 else
9282 {
9283 m->count = 1;
9284 m->sections[0] = s;
9285 }
9286
9287 /* We want to put it after the DYNAMIC segment. */
9288 pm = &elf_tdata (abfd)->segment_map;
9289 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9290 pm = &(*pm)->next;
9291 if (*pm != NULL)
9292 pm = &(*pm)->next;
9293
9294 m->next = *pm;
9295 *pm = m;
9296 }
9297 }
9298 }
9299 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9300 .dynstr, .dynsym, and .hash sections, and everything in
9301 between. */
9302 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9303 pm = &(*pm)->next)
9304 if ((*pm)->p_type == PT_DYNAMIC)
9305 break;
9306 m = *pm;
9307 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9308 {
9309 /* For a normal mips executable the permissions for the PT_DYNAMIC
9310 segment are read, write and execute. We do that here since
9311 the code in elf.c sets only the read permission. This matters
9312 sometimes for the dynamic linker. */
9313 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9314 {
9315 m->p_flags = PF_R | PF_W | PF_X;
9316 m->p_flags_valid = 1;
9317 }
9318 }
9319 if (m != NULL
9320 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9321 {
9322 static const char *sec_names[] =
9323 {
9324 ".dynamic", ".dynstr", ".dynsym", ".hash"
9325 };
9326 bfd_vma low, high;
9327 unsigned int i, c;
9328 struct elf_segment_map *n;
9329
9330 low = ~(bfd_vma) 0;
9331 high = 0;
9332 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9333 {
9334 s = bfd_get_section_by_name (abfd, sec_names[i]);
9335 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9336 {
9337 bfd_size_type sz;
9338
9339 if (low > s->vma)
9340 low = s->vma;
9341 sz = s->size;
9342 if (high < s->vma + sz)
9343 high = s->vma + sz;
9344 }
9345 }
9346
9347 c = 0;
9348 for (s = abfd->sections; s != NULL; s = s->next)
9349 if ((s->flags & SEC_LOAD) != 0
9350 && s->vma >= low
9351 && s->vma + s->size <= high)
9352 ++c;
9353
9354 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9355 n = bfd_zalloc (abfd, amt);
9356 if (n == NULL)
9357 return FALSE;
9358 *n = *m;
9359 n->count = c;
9360
9361 i = 0;
9362 for (s = abfd->sections; s != NULL; s = s->next)
9363 {
9364 if ((s->flags & SEC_LOAD) != 0
9365 && s->vma >= low
9366 && s->vma + s->size <= high)
9367 {
9368 n->sections[i] = s;
9369 ++i;
9370 }
9371 }
9372
9373 *pm = n;
9374 }
9375 }
9376
9377 return TRUE;
9378 }
9379 \f
9380 /* Return the section that should be marked against GC for a given
9381 relocation. */
9382
9383 asection *
9384 _bfd_mips_elf_gc_mark_hook (asection *sec,
9385 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9386 Elf_Internal_Rela *rel,
9387 struct elf_link_hash_entry *h,
9388 Elf_Internal_Sym *sym)
9389 {
9390 /* ??? Do mips16 stub sections need to be handled special? */
9391
9392 if (h != NULL)
9393 {
9394 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9395 {
9396 case R_MIPS_GNU_VTINHERIT:
9397 case R_MIPS_GNU_VTENTRY:
9398 break;
9399
9400 default:
9401 switch (h->root.type)
9402 {
9403 case bfd_link_hash_defined:
9404 case bfd_link_hash_defweak:
9405 return h->root.u.def.section;
9406
9407 case bfd_link_hash_common:
9408 return h->root.u.c.p->section;
9409
9410 default:
9411 break;
9412 }
9413 }
9414 }
9415 else
9416 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
9417
9418 return NULL;
9419 }
9420
9421 /* Update the got entry reference counts for the section being removed. */
9422
9423 bfd_boolean
9424 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9425 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9426 asection *sec ATTRIBUTE_UNUSED,
9427 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9428 {
9429 #if 0
9430 Elf_Internal_Shdr *symtab_hdr;
9431 struct elf_link_hash_entry **sym_hashes;
9432 bfd_signed_vma *local_got_refcounts;
9433 const Elf_Internal_Rela *rel, *relend;
9434 unsigned long r_symndx;
9435 struct elf_link_hash_entry *h;
9436
9437 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9438 sym_hashes = elf_sym_hashes (abfd);
9439 local_got_refcounts = elf_local_got_refcounts (abfd);
9440
9441 relend = relocs + sec->reloc_count;
9442 for (rel = relocs; rel < relend; rel++)
9443 switch (ELF_R_TYPE (abfd, rel->r_info))
9444 {
9445 case R_MIPS_GOT16:
9446 case R_MIPS_CALL16:
9447 case R_MIPS_CALL_HI16:
9448 case R_MIPS_CALL_LO16:
9449 case R_MIPS_GOT_HI16:
9450 case R_MIPS_GOT_LO16:
9451 case R_MIPS_GOT_DISP:
9452 case R_MIPS_GOT_PAGE:
9453 case R_MIPS_GOT_OFST:
9454 /* ??? It would seem that the existing MIPS code does no sort
9455 of reference counting or whatnot on its GOT and PLT entries,
9456 so it is not possible to garbage collect them at this time. */
9457 break;
9458
9459 default:
9460 break;
9461 }
9462 #endif
9463
9464 return TRUE;
9465 }
9466 \f
9467 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9468 hiding the old indirect symbol. Process additional relocation
9469 information. Also called for weakdefs, in which case we just let
9470 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9471
9472 void
9473 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9474 struct elf_link_hash_entry *dir,
9475 struct elf_link_hash_entry *ind)
9476 {
9477 struct mips_elf_link_hash_entry *dirmips, *indmips;
9478
9479 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9480
9481 if (ind->root.type != bfd_link_hash_indirect)
9482 return;
9483
9484 dirmips = (struct mips_elf_link_hash_entry *) dir;
9485 indmips = (struct mips_elf_link_hash_entry *) ind;
9486 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9487 if (indmips->readonly_reloc)
9488 dirmips->readonly_reloc = TRUE;
9489 if (indmips->no_fn_stub)
9490 dirmips->no_fn_stub = TRUE;
9491
9492 if (dirmips->tls_type == 0)
9493 dirmips->tls_type = indmips->tls_type;
9494 }
9495
9496 void
9497 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9498 struct elf_link_hash_entry *entry,
9499 bfd_boolean force_local)
9500 {
9501 bfd *dynobj;
9502 asection *got;
9503 struct mips_got_info *g;
9504 struct mips_elf_link_hash_entry *h;
9505
9506 h = (struct mips_elf_link_hash_entry *) entry;
9507 if (h->forced_local)
9508 return;
9509 h->forced_local = force_local;
9510
9511 dynobj = elf_hash_table (info)->dynobj;
9512 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9513 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9514 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9515 {
9516 if (g->next)
9517 {
9518 struct mips_got_entry e;
9519 struct mips_got_info *gg = g;
9520
9521 /* Since we're turning what used to be a global symbol into a
9522 local one, bump up the number of local entries of each GOT
9523 that had an entry for it. This will automatically decrease
9524 the number of global entries, since global_gotno is actually
9525 the upper limit of global entries. */
9526 e.abfd = dynobj;
9527 e.symndx = -1;
9528 e.d.h = h;
9529 e.tls_type = 0;
9530
9531 for (g = g->next; g != gg; g = g->next)
9532 if (htab_find (g->got_entries, &e))
9533 {
9534 BFD_ASSERT (g->global_gotno > 0);
9535 g->local_gotno++;
9536 g->global_gotno--;
9537 }
9538
9539 /* If this was a global symbol forced into the primary GOT, we
9540 no longer need an entry for it. We can't release the entry
9541 at this point, but we must at least stop counting it as one
9542 of the symbols that required a forced got entry. */
9543 if (h->root.got.offset == 2)
9544 {
9545 BFD_ASSERT (gg->assigned_gotno > 0);
9546 gg->assigned_gotno--;
9547 }
9548 }
9549 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9550 /* If we haven't got through GOT allocation yet, just bump up the
9551 number of local entries, as this symbol won't be counted as
9552 global. */
9553 g->local_gotno++;
9554 else if (h->root.got.offset == 1)
9555 {
9556 /* If we're past non-multi-GOT allocation and this symbol had
9557 been marked for a global got entry, give it a local entry
9558 instead. */
9559 BFD_ASSERT (g->global_gotno > 0);
9560 g->local_gotno++;
9561 g->global_gotno--;
9562 }
9563 }
9564
9565 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9566 }
9567 \f
9568 #define PDR_SIZE 32
9569
9570 bfd_boolean
9571 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9572 struct bfd_link_info *info)
9573 {
9574 asection *o;
9575 bfd_boolean ret = FALSE;
9576 unsigned char *tdata;
9577 size_t i, skip;
9578
9579 o = bfd_get_section_by_name (abfd, ".pdr");
9580 if (! o)
9581 return FALSE;
9582 if (o->size == 0)
9583 return FALSE;
9584 if (o->size % PDR_SIZE != 0)
9585 return FALSE;
9586 if (o->output_section != NULL
9587 && bfd_is_abs_section (o->output_section))
9588 return FALSE;
9589
9590 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9591 if (! tdata)
9592 return FALSE;
9593
9594 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9595 info->keep_memory);
9596 if (!cookie->rels)
9597 {
9598 free (tdata);
9599 return FALSE;
9600 }
9601
9602 cookie->rel = cookie->rels;
9603 cookie->relend = cookie->rels + o->reloc_count;
9604
9605 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9606 {
9607 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9608 {
9609 tdata[i] = 1;
9610 skip ++;
9611 }
9612 }
9613
9614 if (skip != 0)
9615 {
9616 mips_elf_section_data (o)->u.tdata = tdata;
9617 o->size -= skip * PDR_SIZE;
9618 ret = TRUE;
9619 }
9620 else
9621 free (tdata);
9622
9623 if (! info->keep_memory)
9624 free (cookie->rels);
9625
9626 return ret;
9627 }
9628
9629 bfd_boolean
9630 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9631 {
9632 if (strcmp (sec->name, ".pdr") == 0)
9633 return TRUE;
9634 return FALSE;
9635 }
9636
9637 bfd_boolean
9638 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9639 bfd_byte *contents)
9640 {
9641 bfd_byte *to, *from, *end;
9642 int i;
9643
9644 if (strcmp (sec->name, ".pdr") != 0)
9645 return FALSE;
9646
9647 if (mips_elf_section_data (sec)->u.tdata == NULL)
9648 return FALSE;
9649
9650 to = contents;
9651 end = contents + sec->size;
9652 for (from = contents, i = 0;
9653 from < end;
9654 from += PDR_SIZE, i++)
9655 {
9656 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9657 continue;
9658 if (to != from)
9659 memcpy (to, from, PDR_SIZE);
9660 to += PDR_SIZE;
9661 }
9662 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9663 sec->output_offset, sec->size);
9664 return TRUE;
9665 }
9666 \f
9667 /* MIPS ELF uses a special find_nearest_line routine in order the
9668 handle the ECOFF debugging information. */
9669
9670 struct mips_elf_find_line
9671 {
9672 struct ecoff_debug_info d;
9673 struct ecoff_find_line i;
9674 };
9675
9676 bfd_boolean
9677 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9678 asymbol **symbols, bfd_vma offset,
9679 const char **filename_ptr,
9680 const char **functionname_ptr,
9681 unsigned int *line_ptr)
9682 {
9683 asection *msec;
9684
9685 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9686 filename_ptr, functionname_ptr,
9687 line_ptr))
9688 return TRUE;
9689
9690 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9691 filename_ptr, functionname_ptr,
9692 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9693 &elf_tdata (abfd)->dwarf2_find_line_info))
9694 return TRUE;
9695
9696 msec = bfd_get_section_by_name (abfd, ".mdebug");
9697 if (msec != NULL)
9698 {
9699 flagword origflags;
9700 struct mips_elf_find_line *fi;
9701 const struct ecoff_debug_swap * const swap =
9702 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9703
9704 /* If we are called during a link, mips_elf_final_link may have
9705 cleared the SEC_HAS_CONTENTS field. We force it back on here
9706 if appropriate (which it normally will be). */
9707 origflags = msec->flags;
9708 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9709 msec->flags |= SEC_HAS_CONTENTS;
9710
9711 fi = elf_tdata (abfd)->find_line_info;
9712 if (fi == NULL)
9713 {
9714 bfd_size_type external_fdr_size;
9715 char *fraw_src;
9716 char *fraw_end;
9717 struct fdr *fdr_ptr;
9718 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9719
9720 fi = bfd_zalloc (abfd, amt);
9721 if (fi == NULL)
9722 {
9723 msec->flags = origflags;
9724 return FALSE;
9725 }
9726
9727 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9728 {
9729 msec->flags = origflags;
9730 return FALSE;
9731 }
9732
9733 /* Swap in the FDR information. */
9734 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9735 fi->d.fdr = bfd_alloc (abfd, amt);
9736 if (fi->d.fdr == NULL)
9737 {
9738 msec->flags = origflags;
9739 return FALSE;
9740 }
9741 external_fdr_size = swap->external_fdr_size;
9742 fdr_ptr = fi->d.fdr;
9743 fraw_src = (char *) fi->d.external_fdr;
9744 fraw_end = (fraw_src
9745 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9746 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9747 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9748
9749 elf_tdata (abfd)->find_line_info = fi;
9750
9751 /* Note that we don't bother to ever free this information.
9752 find_nearest_line is either called all the time, as in
9753 objdump -l, so the information should be saved, or it is
9754 rarely called, as in ld error messages, so the memory
9755 wasted is unimportant. Still, it would probably be a
9756 good idea for free_cached_info to throw it away. */
9757 }
9758
9759 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9760 &fi->i, filename_ptr, functionname_ptr,
9761 line_ptr))
9762 {
9763 msec->flags = origflags;
9764 return TRUE;
9765 }
9766
9767 msec->flags = origflags;
9768 }
9769
9770 /* Fall back on the generic ELF find_nearest_line routine. */
9771
9772 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9773 filename_ptr, functionname_ptr,
9774 line_ptr);
9775 }
9776
9777 bfd_boolean
9778 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9779 const char **filename_ptr,
9780 const char **functionname_ptr,
9781 unsigned int *line_ptr)
9782 {
9783 bfd_boolean found;
9784 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9785 functionname_ptr, line_ptr,
9786 & elf_tdata (abfd)->dwarf2_find_line_info);
9787 return found;
9788 }
9789
9790 \f
9791 /* When are writing out the .options or .MIPS.options section,
9792 remember the bytes we are writing out, so that we can install the
9793 GP value in the section_processing routine. */
9794
9795 bfd_boolean
9796 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9797 const void *location,
9798 file_ptr offset, bfd_size_type count)
9799 {
9800 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9801 {
9802 bfd_byte *c;
9803
9804 if (elf_section_data (section) == NULL)
9805 {
9806 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9807 section->used_by_bfd = bfd_zalloc (abfd, amt);
9808 if (elf_section_data (section) == NULL)
9809 return FALSE;
9810 }
9811 c = mips_elf_section_data (section)->u.tdata;
9812 if (c == NULL)
9813 {
9814 c = bfd_zalloc (abfd, section->size);
9815 if (c == NULL)
9816 return FALSE;
9817 mips_elf_section_data (section)->u.tdata = c;
9818 }
9819
9820 memcpy (c + offset, location, count);
9821 }
9822
9823 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9824 count);
9825 }
9826
9827 /* This is almost identical to bfd_generic_get_... except that some
9828 MIPS relocations need to be handled specially. Sigh. */
9829
9830 bfd_byte *
9831 _bfd_elf_mips_get_relocated_section_contents
9832 (bfd *abfd,
9833 struct bfd_link_info *link_info,
9834 struct bfd_link_order *link_order,
9835 bfd_byte *data,
9836 bfd_boolean relocatable,
9837 asymbol **symbols)
9838 {
9839 /* Get enough memory to hold the stuff */
9840 bfd *input_bfd = link_order->u.indirect.section->owner;
9841 asection *input_section = link_order->u.indirect.section;
9842 bfd_size_type sz;
9843
9844 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9845 arelent **reloc_vector = NULL;
9846 long reloc_count;
9847
9848 if (reloc_size < 0)
9849 goto error_return;
9850
9851 reloc_vector = bfd_malloc (reloc_size);
9852 if (reloc_vector == NULL && reloc_size != 0)
9853 goto error_return;
9854
9855 /* read in the section */
9856 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9857 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
9858 goto error_return;
9859
9860 reloc_count = bfd_canonicalize_reloc (input_bfd,
9861 input_section,
9862 reloc_vector,
9863 symbols);
9864 if (reloc_count < 0)
9865 goto error_return;
9866
9867 if (reloc_count > 0)
9868 {
9869 arelent **parent;
9870 /* for mips */
9871 int gp_found;
9872 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9873
9874 {
9875 struct bfd_hash_entry *h;
9876 struct bfd_link_hash_entry *lh;
9877 /* Skip all this stuff if we aren't mixing formats. */
9878 if (abfd && input_bfd
9879 && abfd->xvec == input_bfd->xvec)
9880 lh = 0;
9881 else
9882 {
9883 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
9884 lh = (struct bfd_link_hash_entry *) h;
9885 }
9886 lookup:
9887 if (lh)
9888 {
9889 switch (lh->type)
9890 {
9891 case bfd_link_hash_undefined:
9892 case bfd_link_hash_undefweak:
9893 case bfd_link_hash_common:
9894 gp_found = 0;
9895 break;
9896 case bfd_link_hash_defined:
9897 case bfd_link_hash_defweak:
9898 gp_found = 1;
9899 gp = lh->u.def.value;
9900 break;
9901 case bfd_link_hash_indirect:
9902 case bfd_link_hash_warning:
9903 lh = lh->u.i.link;
9904 /* @@FIXME ignoring warning for now */
9905 goto lookup;
9906 case bfd_link_hash_new:
9907 default:
9908 abort ();
9909 }
9910 }
9911 else
9912 gp_found = 0;
9913 }
9914 /* end mips */
9915 for (parent = reloc_vector; *parent != NULL; parent++)
9916 {
9917 char *error_message = NULL;
9918 bfd_reloc_status_type r;
9919
9920 /* Specific to MIPS: Deal with relocation types that require
9921 knowing the gp of the output bfd. */
9922 asymbol *sym = *(*parent)->sym_ptr_ptr;
9923
9924 /* If we've managed to find the gp and have a special
9925 function for the relocation then go ahead, else default
9926 to the generic handling. */
9927 if (gp_found
9928 && (*parent)->howto->special_function
9929 == _bfd_mips_elf32_gprel16_reloc)
9930 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9931 input_section, relocatable,
9932 data, gp);
9933 else
9934 r = bfd_perform_relocation (input_bfd, *parent, data,
9935 input_section,
9936 relocatable ? abfd : NULL,
9937 &error_message);
9938
9939 if (relocatable)
9940 {
9941 asection *os = input_section->output_section;
9942
9943 /* A partial link, so keep the relocs */
9944 os->orelocation[os->reloc_count] = *parent;
9945 os->reloc_count++;
9946 }
9947
9948 if (r != bfd_reloc_ok)
9949 {
9950 switch (r)
9951 {
9952 case bfd_reloc_undefined:
9953 if (!((*link_info->callbacks->undefined_symbol)
9954 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9955 input_bfd, input_section, (*parent)->address, TRUE)))
9956 goto error_return;
9957 break;
9958 case bfd_reloc_dangerous:
9959 BFD_ASSERT (error_message != NULL);
9960 if (!((*link_info->callbacks->reloc_dangerous)
9961 (link_info, error_message, input_bfd, input_section,
9962 (*parent)->address)))
9963 goto error_return;
9964 break;
9965 case bfd_reloc_overflow:
9966 if (!((*link_info->callbacks->reloc_overflow)
9967 (link_info, NULL,
9968 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9969 (*parent)->howto->name, (*parent)->addend,
9970 input_bfd, input_section, (*parent)->address)))
9971 goto error_return;
9972 break;
9973 case bfd_reloc_outofrange:
9974 default:
9975 abort ();
9976 break;
9977 }
9978
9979 }
9980 }
9981 }
9982 if (reloc_vector != NULL)
9983 free (reloc_vector);
9984 return data;
9985
9986 error_return:
9987 if (reloc_vector != NULL)
9988 free (reloc_vector);
9989 return NULL;
9990 }
9991 \f
9992 /* Create a MIPS ELF linker hash table. */
9993
9994 struct bfd_link_hash_table *
9995 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
9996 {
9997 struct mips_elf_link_hash_table *ret;
9998 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9999
10000 ret = bfd_malloc (amt);
10001 if (ret == NULL)
10002 return NULL;
10003
10004 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10005 mips_elf_link_hash_newfunc,
10006 sizeof (struct mips_elf_link_hash_entry)))
10007 {
10008 free (ret);
10009 return NULL;
10010 }
10011
10012 #if 0
10013 /* We no longer use this. */
10014 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10015 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10016 #endif
10017 ret->procedure_count = 0;
10018 ret->compact_rel_size = 0;
10019 ret->use_rld_obj_head = FALSE;
10020 ret->rld_value = 0;
10021 ret->mips16_stubs_seen = FALSE;
10022 ret->is_vxworks = FALSE;
10023 ret->srelbss = NULL;
10024 ret->sdynbss = NULL;
10025 ret->srelplt = NULL;
10026 ret->srelplt2 = NULL;
10027 ret->sgotplt = NULL;
10028 ret->splt = NULL;
10029 ret->plt_header_size = 0;
10030 ret->plt_entry_size = 0;
10031 ret->function_stub_size = 0;
10032
10033 return &ret->root.root;
10034 }
10035
10036 /* Likewise, but indicate that the target is VxWorks. */
10037
10038 struct bfd_link_hash_table *
10039 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10040 {
10041 struct bfd_link_hash_table *ret;
10042
10043 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10044 if (ret)
10045 {
10046 struct mips_elf_link_hash_table *htab;
10047
10048 htab = (struct mips_elf_link_hash_table *) ret;
10049 htab->is_vxworks = 1;
10050 }
10051 return ret;
10052 }
10053 \f
10054 /* We need to use a special link routine to handle the .reginfo and
10055 the .mdebug sections. We need to merge all instances of these
10056 sections together, not write them all out sequentially. */
10057
10058 bfd_boolean
10059 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10060 {
10061 asection *o;
10062 struct bfd_link_order *p;
10063 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10064 asection *rtproc_sec;
10065 Elf32_RegInfo reginfo;
10066 struct ecoff_debug_info debug;
10067 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10068 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10069 HDRR *symhdr = &debug.symbolic_header;
10070 void *mdebug_handle = NULL;
10071 asection *s;
10072 EXTR esym;
10073 unsigned int i;
10074 bfd_size_type amt;
10075 struct mips_elf_link_hash_table *htab;
10076
10077 static const char * const secname[] =
10078 {
10079 ".text", ".init", ".fini", ".data",
10080 ".rodata", ".sdata", ".sbss", ".bss"
10081 };
10082 static const int sc[] =
10083 {
10084 scText, scInit, scFini, scData,
10085 scRData, scSData, scSBss, scBss
10086 };
10087
10088 /* We'd carefully arranged the dynamic symbol indices, and then the
10089 generic size_dynamic_sections renumbered them out from under us.
10090 Rather than trying somehow to prevent the renumbering, just do
10091 the sort again. */
10092 htab = mips_elf_hash_table (info);
10093 if (elf_hash_table (info)->dynamic_sections_created)
10094 {
10095 bfd *dynobj;
10096 asection *got;
10097 struct mips_got_info *g;
10098 bfd_size_type dynsecsymcount;
10099
10100 /* When we resort, we must tell mips_elf_sort_hash_table what
10101 the lowest index it may use is. That's the number of section
10102 symbols we're going to add. The generic ELF linker only
10103 adds these symbols when building a shared object. Note that
10104 we count the sections after (possibly) removing the .options
10105 section above. */
10106
10107 dynsecsymcount = count_section_dynsyms (abfd, info);
10108 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10109 return FALSE;
10110
10111 /* Make sure we didn't grow the global .got region. */
10112 dynobj = elf_hash_table (info)->dynobj;
10113 got = mips_elf_got_section (dynobj, FALSE);
10114 g = mips_elf_section_data (got)->u.got_info;
10115
10116 if (g->global_gotsym != NULL)
10117 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10118 - g->global_gotsym->dynindx)
10119 <= g->global_gotno);
10120 }
10121
10122 /* Get a value for the GP register. */
10123 if (elf_gp (abfd) == 0)
10124 {
10125 struct bfd_link_hash_entry *h;
10126
10127 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10128 if (h != NULL && h->type == bfd_link_hash_defined)
10129 elf_gp (abfd) = (h->u.def.value
10130 + h->u.def.section->output_section->vma
10131 + h->u.def.section->output_offset);
10132 else if (htab->is_vxworks
10133 && (h = bfd_link_hash_lookup (info->hash,
10134 "_GLOBAL_OFFSET_TABLE_",
10135 FALSE, FALSE, TRUE))
10136 && h->type == bfd_link_hash_defined)
10137 elf_gp (abfd) = (h->u.def.section->output_section->vma
10138 + h->u.def.section->output_offset
10139 + h->u.def.value);
10140 else if (info->relocatable)
10141 {
10142 bfd_vma lo = MINUS_ONE;
10143
10144 /* Find the GP-relative section with the lowest offset. */
10145 for (o = abfd->sections; o != NULL; o = o->next)
10146 if (o->vma < lo
10147 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10148 lo = o->vma;
10149
10150 /* And calculate GP relative to that. */
10151 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10152 }
10153 else
10154 {
10155 /* If the relocate_section function needs to do a reloc
10156 involving the GP value, it should make a reloc_dangerous
10157 callback to warn that GP is not defined. */
10158 }
10159 }
10160
10161 /* Go through the sections and collect the .reginfo and .mdebug
10162 information. */
10163 reginfo_sec = NULL;
10164 mdebug_sec = NULL;
10165 gptab_data_sec = NULL;
10166 gptab_bss_sec = NULL;
10167 for (o = abfd->sections; o != NULL; o = o->next)
10168 {
10169 if (strcmp (o->name, ".reginfo") == 0)
10170 {
10171 memset (&reginfo, 0, sizeof reginfo);
10172
10173 /* We have found the .reginfo section in the output file.
10174 Look through all the link_orders comprising it and merge
10175 the information together. */
10176 for (p = o->map_head.link_order; p != NULL; p = p->next)
10177 {
10178 asection *input_section;
10179 bfd *input_bfd;
10180 Elf32_External_RegInfo ext;
10181 Elf32_RegInfo sub;
10182
10183 if (p->type != bfd_indirect_link_order)
10184 {
10185 if (p->type == bfd_data_link_order)
10186 continue;
10187 abort ();
10188 }
10189
10190 input_section = p->u.indirect.section;
10191 input_bfd = input_section->owner;
10192
10193 if (! bfd_get_section_contents (input_bfd, input_section,
10194 &ext, 0, sizeof ext))
10195 return FALSE;
10196
10197 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10198
10199 reginfo.ri_gprmask |= sub.ri_gprmask;
10200 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10201 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10202 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10203 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10204
10205 /* ri_gp_value is set by the function
10206 mips_elf32_section_processing when the section is
10207 finally written out. */
10208
10209 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10210 elf_link_input_bfd ignores this section. */
10211 input_section->flags &= ~SEC_HAS_CONTENTS;
10212 }
10213
10214 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10215 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10216
10217 /* Skip this section later on (I don't think this currently
10218 matters, but someday it might). */
10219 o->map_head.link_order = NULL;
10220
10221 reginfo_sec = o;
10222 }
10223
10224 if (strcmp (o->name, ".mdebug") == 0)
10225 {
10226 struct extsym_info einfo;
10227 bfd_vma last;
10228
10229 /* We have found the .mdebug section in the output file.
10230 Look through all the link_orders comprising it and merge
10231 the information together. */
10232 symhdr->magic = swap->sym_magic;
10233 /* FIXME: What should the version stamp be? */
10234 symhdr->vstamp = 0;
10235 symhdr->ilineMax = 0;
10236 symhdr->cbLine = 0;
10237 symhdr->idnMax = 0;
10238 symhdr->ipdMax = 0;
10239 symhdr->isymMax = 0;
10240 symhdr->ioptMax = 0;
10241 symhdr->iauxMax = 0;
10242 symhdr->issMax = 0;
10243 symhdr->issExtMax = 0;
10244 symhdr->ifdMax = 0;
10245 symhdr->crfd = 0;
10246 symhdr->iextMax = 0;
10247
10248 /* We accumulate the debugging information itself in the
10249 debug_info structure. */
10250 debug.line = NULL;
10251 debug.external_dnr = NULL;
10252 debug.external_pdr = NULL;
10253 debug.external_sym = NULL;
10254 debug.external_opt = NULL;
10255 debug.external_aux = NULL;
10256 debug.ss = NULL;
10257 debug.ssext = debug.ssext_end = NULL;
10258 debug.external_fdr = NULL;
10259 debug.external_rfd = NULL;
10260 debug.external_ext = debug.external_ext_end = NULL;
10261
10262 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10263 if (mdebug_handle == NULL)
10264 return FALSE;
10265
10266 esym.jmptbl = 0;
10267 esym.cobol_main = 0;
10268 esym.weakext = 0;
10269 esym.reserved = 0;
10270 esym.ifd = ifdNil;
10271 esym.asym.iss = issNil;
10272 esym.asym.st = stLocal;
10273 esym.asym.reserved = 0;
10274 esym.asym.index = indexNil;
10275 last = 0;
10276 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10277 {
10278 esym.asym.sc = sc[i];
10279 s = bfd_get_section_by_name (abfd, secname[i]);
10280 if (s != NULL)
10281 {
10282 esym.asym.value = s->vma;
10283 last = s->vma + s->size;
10284 }
10285 else
10286 esym.asym.value = last;
10287 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10288 secname[i], &esym))
10289 return FALSE;
10290 }
10291
10292 for (p = o->map_head.link_order; p != NULL; p = p->next)
10293 {
10294 asection *input_section;
10295 bfd *input_bfd;
10296 const struct ecoff_debug_swap *input_swap;
10297 struct ecoff_debug_info input_debug;
10298 char *eraw_src;
10299 char *eraw_end;
10300
10301 if (p->type != bfd_indirect_link_order)
10302 {
10303 if (p->type == bfd_data_link_order)
10304 continue;
10305 abort ();
10306 }
10307
10308 input_section = p->u.indirect.section;
10309 input_bfd = input_section->owner;
10310
10311 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10312 || (get_elf_backend_data (input_bfd)
10313 ->elf_backend_ecoff_debug_swap) == NULL)
10314 {
10315 /* I don't know what a non MIPS ELF bfd would be
10316 doing with a .mdebug section, but I don't really
10317 want to deal with it. */
10318 continue;
10319 }
10320
10321 input_swap = (get_elf_backend_data (input_bfd)
10322 ->elf_backend_ecoff_debug_swap);
10323
10324 BFD_ASSERT (p->size == input_section->size);
10325
10326 /* The ECOFF linking code expects that we have already
10327 read in the debugging information and set up an
10328 ecoff_debug_info structure, so we do that now. */
10329 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10330 &input_debug))
10331 return FALSE;
10332
10333 if (! (bfd_ecoff_debug_accumulate
10334 (mdebug_handle, abfd, &debug, swap, input_bfd,
10335 &input_debug, input_swap, info)))
10336 return FALSE;
10337
10338 /* Loop through the external symbols. For each one with
10339 interesting information, try to find the symbol in
10340 the linker global hash table and save the information
10341 for the output external symbols. */
10342 eraw_src = input_debug.external_ext;
10343 eraw_end = (eraw_src
10344 + (input_debug.symbolic_header.iextMax
10345 * input_swap->external_ext_size));
10346 for (;
10347 eraw_src < eraw_end;
10348 eraw_src += input_swap->external_ext_size)
10349 {
10350 EXTR ext;
10351 const char *name;
10352 struct mips_elf_link_hash_entry *h;
10353
10354 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10355 if (ext.asym.sc == scNil
10356 || ext.asym.sc == scUndefined
10357 || ext.asym.sc == scSUndefined)
10358 continue;
10359
10360 name = input_debug.ssext + ext.asym.iss;
10361 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10362 name, FALSE, FALSE, TRUE);
10363 if (h == NULL || h->esym.ifd != -2)
10364 continue;
10365
10366 if (ext.ifd != -1)
10367 {
10368 BFD_ASSERT (ext.ifd
10369 < input_debug.symbolic_header.ifdMax);
10370 ext.ifd = input_debug.ifdmap[ext.ifd];
10371 }
10372
10373 h->esym = ext;
10374 }
10375
10376 /* Free up the information we just read. */
10377 free (input_debug.line);
10378 free (input_debug.external_dnr);
10379 free (input_debug.external_pdr);
10380 free (input_debug.external_sym);
10381 free (input_debug.external_opt);
10382 free (input_debug.external_aux);
10383 free (input_debug.ss);
10384 free (input_debug.ssext);
10385 free (input_debug.external_fdr);
10386 free (input_debug.external_rfd);
10387 free (input_debug.external_ext);
10388
10389 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10390 elf_link_input_bfd ignores this section. */
10391 input_section->flags &= ~SEC_HAS_CONTENTS;
10392 }
10393
10394 if (SGI_COMPAT (abfd) && info->shared)
10395 {
10396 /* Create .rtproc section. */
10397 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10398 if (rtproc_sec == NULL)
10399 {
10400 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10401 | SEC_LINKER_CREATED | SEC_READONLY);
10402
10403 rtproc_sec = bfd_make_section_with_flags (abfd,
10404 ".rtproc",
10405 flags);
10406 if (rtproc_sec == NULL
10407 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10408 return FALSE;
10409 }
10410
10411 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10412 info, rtproc_sec,
10413 &debug))
10414 return FALSE;
10415 }
10416
10417 /* Build the external symbol information. */
10418 einfo.abfd = abfd;
10419 einfo.info = info;
10420 einfo.debug = &debug;
10421 einfo.swap = swap;
10422 einfo.failed = FALSE;
10423 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10424 mips_elf_output_extsym, &einfo);
10425 if (einfo.failed)
10426 return FALSE;
10427
10428 /* Set the size of the .mdebug section. */
10429 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10430
10431 /* Skip this section later on (I don't think this currently
10432 matters, but someday it might). */
10433 o->map_head.link_order = NULL;
10434
10435 mdebug_sec = o;
10436 }
10437
10438 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
10439 {
10440 const char *subname;
10441 unsigned int c;
10442 Elf32_gptab *tab;
10443 Elf32_External_gptab *ext_tab;
10444 unsigned int j;
10445
10446 /* The .gptab.sdata and .gptab.sbss sections hold
10447 information describing how the small data area would
10448 change depending upon the -G switch. These sections
10449 not used in executables files. */
10450 if (! info->relocatable)
10451 {
10452 for (p = o->map_head.link_order; p != NULL; p = p->next)
10453 {
10454 asection *input_section;
10455
10456 if (p->type != bfd_indirect_link_order)
10457 {
10458 if (p->type == bfd_data_link_order)
10459 continue;
10460 abort ();
10461 }
10462
10463 input_section = p->u.indirect.section;
10464
10465 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10466 elf_link_input_bfd ignores this section. */
10467 input_section->flags &= ~SEC_HAS_CONTENTS;
10468 }
10469
10470 /* Skip this section later on (I don't think this
10471 currently matters, but someday it might). */
10472 o->map_head.link_order = NULL;
10473
10474 /* Really remove the section. */
10475 bfd_section_list_remove (abfd, o);
10476 --abfd->section_count;
10477
10478 continue;
10479 }
10480
10481 /* There is one gptab for initialized data, and one for
10482 uninitialized data. */
10483 if (strcmp (o->name, ".gptab.sdata") == 0)
10484 gptab_data_sec = o;
10485 else if (strcmp (o->name, ".gptab.sbss") == 0)
10486 gptab_bss_sec = o;
10487 else
10488 {
10489 (*_bfd_error_handler)
10490 (_("%s: illegal section name `%s'"),
10491 bfd_get_filename (abfd), o->name);
10492 bfd_set_error (bfd_error_nonrepresentable_section);
10493 return FALSE;
10494 }
10495
10496 /* The linker script always combines .gptab.data and
10497 .gptab.sdata into .gptab.sdata, and likewise for
10498 .gptab.bss and .gptab.sbss. It is possible that there is
10499 no .sdata or .sbss section in the output file, in which
10500 case we must change the name of the output section. */
10501 subname = o->name + sizeof ".gptab" - 1;
10502 if (bfd_get_section_by_name (abfd, subname) == NULL)
10503 {
10504 if (o == gptab_data_sec)
10505 o->name = ".gptab.data";
10506 else
10507 o->name = ".gptab.bss";
10508 subname = o->name + sizeof ".gptab" - 1;
10509 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10510 }
10511
10512 /* Set up the first entry. */
10513 c = 1;
10514 amt = c * sizeof (Elf32_gptab);
10515 tab = bfd_malloc (amt);
10516 if (tab == NULL)
10517 return FALSE;
10518 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10519 tab[0].gt_header.gt_unused = 0;
10520
10521 /* Combine the input sections. */
10522 for (p = o->map_head.link_order; p != NULL; p = p->next)
10523 {
10524 asection *input_section;
10525 bfd *input_bfd;
10526 bfd_size_type size;
10527 unsigned long last;
10528 bfd_size_type gpentry;
10529
10530 if (p->type != bfd_indirect_link_order)
10531 {
10532 if (p->type == bfd_data_link_order)
10533 continue;
10534 abort ();
10535 }
10536
10537 input_section = p->u.indirect.section;
10538 input_bfd = input_section->owner;
10539
10540 /* Combine the gptab entries for this input section one
10541 by one. We know that the input gptab entries are
10542 sorted by ascending -G value. */
10543 size = input_section->size;
10544 last = 0;
10545 for (gpentry = sizeof (Elf32_External_gptab);
10546 gpentry < size;
10547 gpentry += sizeof (Elf32_External_gptab))
10548 {
10549 Elf32_External_gptab ext_gptab;
10550 Elf32_gptab int_gptab;
10551 unsigned long val;
10552 unsigned long add;
10553 bfd_boolean exact;
10554 unsigned int look;
10555
10556 if (! (bfd_get_section_contents
10557 (input_bfd, input_section, &ext_gptab, gpentry,
10558 sizeof (Elf32_External_gptab))))
10559 {
10560 free (tab);
10561 return FALSE;
10562 }
10563
10564 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10565 &int_gptab);
10566 val = int_gptab.gt_entry.gt_g_value;
10567 add = int_gptab.gt_entry.gt_bytes - last;
10568
10569 exact = FALSE;
10570 for (look = 1; look < c; look++)
10571 {
10572 if (tab[look].gt_entry.gt_g_value >= val)
10573 tab[look].gt_entry.gt_bytes += add;
10574
10575 if (tab[look].gt_entry.gt_g_value == val)
10576 exact = TRUE;
10577 }
10578
10579 if (! exact)
10580 {
10581 Elf32_gptab *new_tab;
10582 unsigned int max;
10583
10584 /* We need a new table entry. */
10585 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10586 new_tab = bfd_realloc (tab, amt);
10587 if (new_tab == NULL)
10588 {
10589 free (tab);
10590 return FALSE;
10591 }
10592 tab = new_tab;
10593 tab[c].gt_entry.gt_g_value = val;
10594 tab[c].gt_entry.gt_bytes = add;
10595
10596 /* Merge in the size for the next smallest -G
10597 value, since that will be implied by this new
10598 value. */
10599 max = 0;
10600 for (look = 1; look < c; look++)
10601 {
10602 if (tab[look].gt_entry.gt_g_value < val
10603 && (max == 0
10604 || (tab[look].gt_entry.gt_g_value
10605 > tab[max].gt_entry.gt_g_value)))
10606 max = look;
10607 }
10608 if (max != 0)
10609 tab[c].gt_entry.gt_bytes +=
10610 tab[max].gt_entry.gt_bytes;
10611
10612 ++c;
10613 }
10614
10615 last = int_gptab.gt_entry.gt_bytes;
10616 }
10617
10618 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10619 elf_link_input_bfd ignores this section. */
10620 input_section->flags &= ~SEC_HAS_CONTENTS;
10621 }
10622
10623 /* The table must be sorted by -G value. */
10624 if (c > 2)
10625 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10626
10627 /* Swap out the table. */
10628 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10629 ext_tab = bfd_alloc (abfd, amt);
10630 if (ext_tab == NULL)
10631 {
10632 free (tab);
10633 return FALSE;
10634 }
10635
10636 for (j = 0; j < c; j++)
10637 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10638 free (tab);
10639
10640 o->size = c * sizeof (Elf32_External_gptab);
10641 o->contents = (bfd_byte *) ext_tab;
10642
10643 /* Skip this section later on (I don't think this currently
10644 matters, but someday it might). */
10645 o->map_head.link_order = NULL;
10646 }
10647 }
10648
10649 /* Invoke the regular ELF backend linker to do all the work. */
10650 if (!bfd_elf_final_link (abfd, info))
10651 return FALSE;
10652
10653 /* Now write out the computed sections. */
10654
10655 if (reginfo_sec != NULL)
10656 {
10657 Elf32_External_RegInfo ext;
10658
10659 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10660 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10661 return FALSE;
10662 }
10663
10664 if (mdebug_sec != NULL)
10665 {
10666 BFD_ASSERT (abfd->output_has_begun);
10667 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10668 swap, info,
10669 mdebug_sec->filepos))
10670 return FALSE;
10671
10672 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10673 }
10674
10675 if (gptab_data_sec != NULL)
10676 {
10677 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10678 gptab_data_sec->contents,
10679 0, gptab_data_sec->size))
10680 return FALSE;
10681 }
10682
10683 if (gptab_bss_sec != NULL)
10684 {
10685 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10686 gptab_bss_sec->contents,
10687 0, gptab_bss_sec->size))
10688 return FALSE;
10689 }
10690
10691 if (SGI_COMPAT (abfd))
10692 {
10693 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10694 if (rtproc_sec != NULL)
10695 {
10696 if (! bfd_set_section_contents (abfd, rtproc_sec,
10697 rtproc_sec->contents,
10698 0, rtproc_sec->size))
10699 return FALSE;
10700 }
10701 }
10702
10703 return TRUE;
10704 }
10705 \f
10706 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10707
10708 struct mips_mach_extension {
10709 unsigned long extension, base;
10710 };
10711
10712
10713 /* An array describing how BFD machines relate to one another. The entries
10714 are ordered topologically with MIPS I extensions listed last. */
10715
10716 static const struct mips_mach_extension mips_mach_extensions[] = {
10717 /* MIPS64 extensions. */
10718 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10719 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10720
10721 /* MIPS V extensions. */
10722 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10723
10724 /* R10000 extensions. */
10725 { bfd_mach_mips12000, bfd_mach_mips10000 },
10726
10727 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10728 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10729 better to allow vr5400 and vr5500 code to be merged anyway, since
10730 many libraries will just use the core ISA. Perhaps we could add
10731 some sort of ASE flag if this ever proves a problem. */
10732 { bfd_mach_mips5500, bfd_mach_mips5400 },
10733 { bfd_mach_mips5400, bfd_mach_mips5000 },
10734
10735 /* MIPS IV extensions. */
10736 { bfd_mach_mips5, bfd_mach_mips8000 },
10737 { bfd_mach_mips10000, bfd_mach_mips8000 },
10738 { bfd_mach_mips5000, bfd_mach_mips8000 },
10739 { bfd_mach_mips7000, bfd_mach_mips8000 },
10740 { bfd_mach_mips9000, bfd_mach_mips8000 },
10741
10742 /* VR4100 extensions. */
10743 { bfd_mach_mips4120, bfd_mach_mips4100 },
10744 { bfd_mach_mips4111, bfd_mach_mips4100 },
10745
10746 /* MIPS III extensions. */
10747 { bfd_mach_mips8000, bfd_mach_mips4000 },
10748 { bfd_mach_mips4650, bfd_mach_mips4000 },
10749 { bfd_mach_mips4600, bfd_mach_mips4000 },
10750 { bfd_mach_mips4400, bfd_mach_mips4000 },
10751 { bfd_mach_mips4300, bfd_mach_mips4000 },
10752 { bfd_mach_mips4100, bfd_mach_mips4000 },
10753 { bfd_mach_mips4010, bfd_mach_mips4000 },
10754
10755 /* MIPS32 extensions. */
10756 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10757
10758 /* MIPS II extensions. */
10759 { bfd_mach_mips4000, bfd_mach_mips6000 },
10760 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10761
10762 /* MIPS I extensions. */
10763 { bfd_mach_mips6000, bfd_mach_mips3000 },
10764 { bfd_mach_mips3900, bfd_mach_mips3000 }
10765 };
10766
10767
10768 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10769
10770 static bfd_boolean
10771 mips_mach_extends_p (unsigned long base, unsigned long extension)
10772 {
10773 size_t i;
10774
10775 if (extension == base)
10776 return TRUE;
10777
10778 if (base == bfd_mach_mipsisa32
10779 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10780 return TRUE;
10781
10782 if (base == bfd_mach_mipsisa32r2
10783 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10784 return TRUE;
10785
10786 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10787 if (extension == mips_mach_extensions[i].extension)
10788 {
10789 extension = mips_mach_extensions[i].base;
10790 if (extension == base)
10791 return TRUE;
10792 }
10793
10794 return FALSE;
10795 }
10796
10797
10798 /* Return true if the given ELF header flags describe a 32-bit binary. */
10799
10800 static bfd_boolean
10801 mips_32bit_flags_p (flagword flags)
10802 {
10803 return ((flags & EF_MIPS_32BITMODE) != 0
10804 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10805 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10806 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10807 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10808 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10809 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10810 }
10811
10812
10813 /* Merge backend specific data from an object file to the output
10814 object file when linking. */
10815
10816 bfd_boolean
10817 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10818 {
10819 flagword old_flags;
10820 flagword new_flags;
10821 bfd_boolean ok;
10822 bfd_boolean null_input_bfd = TRUE;
10823 asection *sec;
10824
10825 /* Check if we have the same endianess */
10826 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10827 {
10828 (*_bfd_error_handler)
10829 (_("%B: endianness incompatible with that of the selected emulation"),
10830 ibfd);
10831 return FALSE;
10832 }
10833
10834 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10835 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10836 return TRUE;
10837
10838 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10839 {
10840 (*_bfd_error_handler)
10841 (_("%B: ABI is incompatible with that of the selected emulation"),
10842 ibfd);
10843 return FALSE;
10844 }
10845
10846 new_flags = elf_elfheader (ibfd)->e_flags;
10847 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10848 old_flags = elf_elfheader (obfd)->e_flags;
10849
10850 if (! elf_flags_init (obfd))
10851 {
10852 elf_flags_init (obfd) = TRUE;
10853 elf_elfheader (obfd)->e_flags = new_flags;
10854 elf_elfheader (obfd)->e_ident[EI_CLASS]
10855 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10856
10857 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10858 && (bfd_get_arch_info (obfd)->the_default
10859 || mips_mach_extends_p (bfd_get_mach (obfd),
10860 bfd_get_mach (ibfd))))
10861 {
10862 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10863 bfd_get_mach (ibfd)))
10864 return FALSE;
10865 }
10866
10867 return TRUE;
10868 }
10869
10870 /* Check flag compatibility. */
10871
10872 new_flags &= ~EF_MIPS_NOREORDER;
10873 old_flags &= ~EF_MIPS_NOREORDER;
10874
10875 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10876 doesn't seem to matter. */
10877 new_flags &= ~EF_MIPS_XGOT;
10878 old_flags &= ~EF_MIPS_XGOT;
10879
10880 /* MIPSpro generates ucode info in n64 objects. Again, we should
10881 just be able to ignore this. */
10882 new_flags &= ~EF_MIPS_UCODE;
10883 old_flags &= ~EF_MIPS_UCODE;
10884
10885 /* Don't care about the PIC flags from dynamic objects; they are
10886 PIC by design. */
10887 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10888 && (ibfd->flags & DYNAMIC) != 0)
10889 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10890
10891 if (new_flags == old_flags)
10892 return TRUE;
10893
10894 /* Check to see if the input BFD actually contains any sections.
10895 If not, its flags may not have been initialised either, but it cannot
10896 actually cause any incompatibility. */
10897 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10898 {
10899 /* Ignore synthetic sections and empty .text, .data and .bss sections
10900 which are automatically generated by gas. */
10901 if (strcmp (sec->name, ".reginfo")
10902 && strcmp (sec->name, ".mdebug")
10903 && (sec->size != 0
10904 || (strcmp (sec->name, ".text")
10905 && strcmp (sec->name, ".data")
10906 && strcmp (sec->name, ".bss"))))
10907 {
10908 null_input_bfd = FALSE;
10909 break;
10910 }
10911 }
10912 if (null_input_bfd)
10913 return TRUE;
10914
10915 ok = TRUE;
10916
10917 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10918 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
10919 {
10920 (*_bfd_error_handler)
10921 (_("%B: warning: linking PIC files with non-PIC files"),
10922 ibfd);
10923 ok = TRUE;
10924 }
10925
10926 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10927 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10928 if (! (new_flags & EF_MIPS_PIC))
10929 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10930
10931 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10932 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10933
10934 /* Compare the ISAs. */
10935 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
10936 {
10937 (*_bfd_error_handler)
10938 (_("%B: linking 32-bit code with 64-bit code"),
10939 ibfd);
10940 ok = FALSE;
10941 }
10942 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10943 {
10944 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10945 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
10946 {
10947 /* Copy the architecture info from IBFD to OBFD. Also copy
10948 the 32-bit flag (if set) so that we continue to recognise
10949 OBFD as a 32-bit binary. */
10950 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10951 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10952 elf_elfheader (obfd)->e_flags
10953 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10954
10955 /* Copy across the ABI flags if OBFD doesn't use them
10956 and if that was what caused us to treat IBFD as 32-bit. */
10957 if ((old_flags & EF_MIPS_ABI) == 0
10958 && mips_32bit_flags_p (new_flags)
10959 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10960 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
10961 }
10962 else
10963 {
10964 /* The ISAs aren't compatible. */
10965 (*_bfd_error_handler)
10966 (_("%B: linking %s module with previous %s modules"),
10967 ibfd,
10968 bfd_printable_name (ibfd),
10969 bfd_printable_name (obfd));
10970 ok = FALSE;
10971 }
10972 }
10973
10974 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10975 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10976
10977 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
10978 does set EI_CLASS differently from any 32-bit ABI. */
10979 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10980 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10981 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10982 {
10983 /* Only error if both are set (to different values). */
10984 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10985 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10986 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10987 {
10988 (*_bfd_error_handler)
10989 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10990 ibfd,
10991 elf_mips_abi_name (ibfd),
10992 elf_mips_abi_name (obfd));
10993 ok = FALSE;
10994 }
10995 new_flags &= ~EF_MIPS_ABI;
10996 old_flags &= ~EF_MIPS_ABI;
10997 }
10998
10999 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11000 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11001 {
11002 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11003
11004 new_flags &= ~ EF_MIPS_ARCH_ASE;
11005 old_flags &= ~ EF_MIPS_ARCH_ASE;
11006 }
11007
11008 /* Warn about any other mismatches */
11009 if (new_flags != old_flags)
11010 {
11011 (*_bfd_error_handler)
11012 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11013 ibfd, (unsigned long) new_flags,
11014 (unsigned long) old_flags);
11015 ok = FALSE;
11016 }
11017
11018 if (! ok)
11019 {
11020 bfd_set_error (bfd_error_bad_value);
11021 return FALSE;
11022 }
11023
11024 return TRUE;
11025 }
11026
11027 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11028
11029 bfd_boolean
11030 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11031 {
11032 BFD_ASSERT (!elf_flags_init (abfd)
11033 || elf_elfheader (abfd)->e_flags == flags);
11034
11035 elf_elfheader (abfd)->e_flags = flags;
11036 elf_flags_init (abfd) = TRUE;
11037 return TRUE;
11038 }
11039
11040 bfd_boolean
11041 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11042 {
11043 FILE *file = ptr;
11044
11045 BFD_ASSERT (abfd != NULL && ptr != NULL);
11046
11047 /* Print normal ELF private data. */
11048 _bfd_elf_print_private_bfd_data (abfd, ptr);
11049
11050 /* xgettext:c-format */
11051 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11052
11053 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11054 fprintf (file, _(" [abi=O32]"));
11055 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11056 fprintf (file, _(" [abi=O64]"));
11057 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11058 fprintf (file, _(" [abi=EABI32]"));
11059 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11060 fprintf (file, _(" [abi=EABI64]"));
11061 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11062 fprintf (file, _(" [abi unknown]"));
11063 else if (ABI_N32_P (abfd))
11064 fprintf (file, _(" [abi=N32]"));
11065 else if (ABI_64_P (abfd))
11066 fprintf (file, _(" [abi=64]"));
11067 else
11068 fprintf (file, _(" [no abi set]"));
11069
11070 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11071 fprintf (file, _(" [mips1]"));
11072 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11073 fprintf (file, _(" [mips2]"));
11074 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11075 fprintf (file, _(" [mips3]"));
11076 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11077 fprintf (file, _(" [mips4]"));
11078 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11079 fprintf (file, _(" [mips5]"));
11080 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11081 fprintf (file, _(" [mips32]"));
11082 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11083 fprintf (file, _(" [mips64]"));
11084 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11085 fprintf (file, _(" [mips32r2]"));
11086 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11087 fprintf (file, _(" [mips64r2]"));
11088 else
11089 fprintf (file, _(" [unknown ISA]"));
11090
11091 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11092 fprintf (file, _(" [mdmx]"));
11093
11094 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11095 fprintf (file, _(" [mips16]"));
11096
11097 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11098 fprintf (file, _(" [32bitmode]"));
11099 else
11100 fprintf (file, _(" [not 32bitmode]"));
11101
11102 fputc ('\n', file);
11103
11104 return TRUE;
11105 }
11106
11107 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11108 {
11109 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11110 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11111 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
11112 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11113 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11114 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
11115 { NULL, 0, 0, 0, 0 }
11116 };
11117
11118 /* Merge non visibility st_other attributes. Ensure that the
11119 STO_OPTIONAL flag is copied into h->other, even if this is not a
11120 definiton of the symbol. */
11121 void
11122 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11123 const Elf_Internal_Sym *isym,
11124 bfd_boolean definition,
11125 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11126 {
11127 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11128 {
11129 unsigned char other;
11130
11131 other = (definition ? isym->st_other : h->other);
11132 other &= ~ELF_ST_VISIBILITY (-1);
11133 h->other = other | ELF_ST_VISIBILITY (h->other);
11134 }
11135
11136 if (!definition
11137 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11138 h->other |= STO_OPTIONAL;
11139 }
11140
11141 /* Decide whether an undefined symbol is special and can be ignored.
11142 This is the case for OPTIONAL symbols on IRIX. */
11143 bfd_boolean
11144 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11145 {
11146 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11147 }
11148
11149 bfd_boolean
11150 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11151 {
11152 return (sym->st_shndx == SHN_COMMON
11153 || sym->st_shndx == SHN_MIPS_ACOMMON
11154 || sym->st_shndx == SHN_MIPS_SCOMMON);
11155 }
This page took 0.267358 seconds and 4 git commands to generate.