daily update
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "sysdep.h"
31 #include "bfd.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 \f
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488 \f
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips16_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
571
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
585
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
614
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
618
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
622
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
626
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
647
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
674 \f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
712
713 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
716 \f
717 /* The format of the first PLT entry in a VxWorks executable. */
718 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725 };
726
727 /* The format of subsequent PLT entries. */
728 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737 };
738
739 /* The format of the first PLT entry in a VxWorks shared object. */
740 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747 };
748
749 /* The format of subsequent PLT entries. */
750 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753 };
754 \f
755 /* Look up an entry in a MIPS ELF linker hash table. */
756
757 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762 /* Traverse a MIPS ELF linker hash table. */
763
764 #define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
768 (info)))
769
770 /* Get the MIPS ELF linker hash table from a link_info structure. */
771
772 #define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
775 /* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778 #define TP_OFFSET 0x7000
779 #define DTP_OFFSET 0x8000
780
781 static bfd_vma
782 dtprel_base (struct bfd_link_info *info)
783 {
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788 }
789
790 static bfd_vma
791 tprel_base (struct bfd_link_info *info)
792 {
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797 }
798
799 /* Create an entry in a MIPS ELF linker hash table. */
800
801 static struct bfd_hash_entry *
802 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
804 {
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
819 if (ret != NULL)
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
827 ret->readonly_reloc = FALSE;
828 ret->no_fn_stub = FALSE;
829 ret->fn_stub = NULL;
830 ret->need_fn_stub = FALSE;
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
833 ret->forced_local = FALSE;
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
836 ret->tls_type = GOT_NORMAL;
837 }
838
839 return (struct bfd_hash_entry *) ret;
840 }
841
842 bfd_boolean
843 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
844 {
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
849
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857 }
858 \f
859 /* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
862 bfd_boolean
863 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
865 {
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
868 char *ext_hdr;
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
873 ext_hdr = bfd_malloc (swap->external_hdr_size);
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
878 swap->external_hdr_size))
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886 #define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
892 debug->ptr = bfd_malloc (amt); \
893 if (debug->ptr == NULL) \
894 goto error_return; \
895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
912 #undef READ
913
914 debug->fdr = NULL;
915
916 return TRUE;
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
943 return FALSE;
944 }
945 \f
946 /* Swap RPDR (runtime procedure table entry) for output. */
947
948 static void
949 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
950 {
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
962 }
963
964 /* Create a runtime procedure table from the .mdebug section. */
965
966 static bfd_boolean
967 mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
970 {
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
975 void *rtproc;
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
1002 epdr = bfd_malloc (size * count);
1003 if (epdr == NULL)
1004 goto error_return;
1005
1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
1010 rp = rpdr = bfd_malloc (size * count);
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
1015 sv = bfd_malloc (size * count);
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
1021 esym = bfd_malloc (size * count);
1022 if (esym == NULL)
1023 goto error_return;
1024
1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1026 goto error_return;
1027
1028 count = hdr->issMax;
1029 ss = bfd_malloc (count);
1030 if (ss == NULL)
1031 goto error_return;
1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
1056 rtproc = bfd_alloc (abfd, size);
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
1065 erp = rtproc;
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
1080 s->size = size;
1081 s->contents = rtproc;
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
1085 s->map_head.link_order = NULL;
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
1098 return TRUE;
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
1111 return FALSE;
1112 }
1113
1114 /* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
1117 static bfd_boolean
1118 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
1120 {
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
1130 h->fn_stub->size = 0;
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
1142 h->call_stub->size = 0;
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
1154 h->call_fp_stub->size = 0;
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
1160 return TRUE;
1161 }
1162 \f
1163 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248 void
1249 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251 {
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273 }
1274
1275 void
1276 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278 {
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307 }
1308
1309 bfd_reloc_status_type
1310 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
1313 {
1314 bfd_vma relocation;
1315 bfd_signed_vma val;
1316 bfd_reloc_status_type status;
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1327 return bfd_reloc_outofrange;
1328
1329 /* Set val to the offset into the section or symbol. */
1330 val = reloc_entry->addend;
1331
1332 _bfd_mips_elf_sign_extend (val, 16);
1333
1334 /* Adjust val for the final section location and GP value. If we
1335 are producing relocatable output, we don't want to do this for
1336 an external symbol. */
1337 if (! relocatable
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
1341 if (reloc_entry->howto->partial_inplace)
1342 {
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
1348 }
1349 else
1350 reloc_entry->addend = val;
1351
1352 if (relocatable)
1353 reloc_entry->address += input_section->output_offset;
1354
1355 return bfd_reloc_ok;
1356 }
1357
1358 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363 struct mips_hi16
1364 {
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369 };
1370
1371 /* FIXME: This should not be a static variable. */
1372
1373 static struct mips_hi16 *mips_hi16_list;
1374
1375 /* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384 bfd_reloc_status_type
1385 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389 {
1390 struct mips_hi16 *n;
1391
1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409 }
1410
1411 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415 bfd_reloc_status_type
1416 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419 {
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430 }
1431
1432 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436 bfd_reloc_status_type
1437 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440 {
1441 bfd_vma vallo;
1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1443
1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1445 return bfd_reloc_outofrange;
1446
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485 }
1486
1487 /* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491 bfd_reloc_status_type
1492 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496 {
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
1557
1558 return bfd_reloc_ok;
1559 }
1560 \f
1561 /* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564 static void
1565 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
1567 {
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570 }
1571
1572 static void
1573 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
1575 {
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578 }
1579
1580 static void
1581 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
1583 {
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590 }
1591
1592 static void
1593 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
1595 {
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605 }
1606 \f
1607 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611 void
1612 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
1614 {
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621 }
1622
1623 void
1624 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
1626 {
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633 }
1634
1635 /* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641 void
1642 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
1644 {
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652 }
1653
1654 void
1655 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
1657 {
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665 }
1666
1667 /* Swap in an options header. */
1668
1669 void
1670 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
1672 {
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677 }
1678
1679 /* Swap out an options header. */
1680
1681 void
1682 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
1684 {
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689 }
1690 \f
1691 /* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694 static int
1695 sort_dynamic_relocs (const void *arg1, const void *arg2)
1696 {
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
1699 int diff;
1700
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1703
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
1713 }
1714
1715 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717 static int
1718 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
1720 {
1721 #ifdef BFD64
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
1740 #else
1741 abort ();
1742 #endif
1743 }
1744
1745
1746 /* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
1760 static bfd_boolean
1761 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1762 {
1763 struct extsym_info *einfo = data;
1764 bfd_boolean strip;
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
1771 strip = FALSE;
1772 else if ((h->root.def_dynamic
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
1777 strip = TRUE;
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
1784 else
1785 strip = FALSE;
1786
1787 if (strip)
1788 return TRUE;
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
1894 else if (h->root.needs_plt)
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
1897 bfd_boolean no_fn_stub = h->no_fn_stub;
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
1929 einfo->failed = TRUE;
1930 return FALSE;
1931 }
1932
1933 return TRUE;
1934 }
1935
1936 /* A comparison routine used to sort .gptab entries. */
1937
1938 static int
1939 gptab_compare (const void *p1, const void *p2)
1940 {
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945 }
1946 \f
1947 /* Functions to manage the got entry hash table. */
1948
1949 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952 static INLINE hashval_t
1953 mips_elf_hash_bfd_vma (bfd_vma addr)
1954 {
1955 #ifdef BFD64
1956 return addr + (addr >> 32);
1957 #else
1958 return addr;
1959 #endif
1960 }
1961
1962 /* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
1966 static hashval_t
1967 mips_elf_got_entry_hash (const void *entry_)
1968 {
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
1971 return entry->symndx
1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
1977 }
1978
1979 static int
1980 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1981 {
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993 }
1994
1995 /* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000 static hashval_t
2001 mips_elf_multi_got_entry_hash (const void *entry_)
2002 {
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
2013 : entry->d.h->root.root.root.hash);
2014 }
2015
2016 static int
2017 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2018 {
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
2035 }
2036 \f
2037 /* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
2040
2041 static asection *
2042 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2043 {
2044 const char *dname;
2045 asection *sreloc;
2046 bfd *dynobj;
2047
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
2060 if (sreloc == NULL
2061 || ! bfd_set_section_alignment (dynobj, sreloc,
2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2063 return NULL;
2064 }
2065 return sreloc;
2066 }
2067
2068 /* Returns the GOT section for ABFD. */
2069
2070 static asection *
2071 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2072 {
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
2078 }
2079
2080 /* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084 static struct mips_got_info *
2085 mips_elf_got_info (bfd *abfd, asection **sgotp)
2086 {
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
2090 sgot = mips_elf_got_section (abfd, TRUE);
2091 BFD_ASSERT (sgot != NULL);
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
2099 return g;
2100 }
2101
2102 /* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106 static int
2107 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109 {
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142 }
2143
2144 /* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147 static int
2148 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149 {
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157 }
2158
2159 /* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162 static int
2163 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164 {
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175 }
2176
2177 /* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180 static int
2181 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182 {
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190 }
2191
2192 /* Output a simple dynamic relocation into SRELOC. */
2193
2194 static void
2195 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200 {
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221 }
2222
2223 /* Initialize a set of TLS GOT entries for one symbol. */
2224
2225 static void
2226 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231 {
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345 }
2346
2347 /* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352 static bfd_vma
2353 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356 {
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384 }
2385
2386 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390 static bfd_vma
2391 mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393 {
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414 }
2415
2416 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2417 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2418 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2419 offset can be found. */
2420
2421 static bfd_vma
2422 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2423 bfd_vma value, unsigned long r_symndx,
2424 struct mips_elf_link_hash_entry *h, int r_type)
2425 {
2426 asection *sgot;
2427 struct mips_got_info *g;
2428 struct mips_got_entry *entry;
2429
2430 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2431
2432 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2433 value, r_symndx, h, r_type);
2434 if (!entry)
2435 return MINUS_ONE;
2436
2437 if (TLS_RELOC_P (r_type))
2438 {
2439 if (entry->symndx == -1 && g->next == NULL)
2440 /* A type (3) entry in the single-GOT case. We use the symbol's
2441 hash table entry to track the index. */
2442 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2443 r_type, info, h, value);
2444 else
2445 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2446 r_type, info, h, value);
2447 }
2448 else
2449 return entry->gotidx;
2450 }
2451
2452 /* Returns the GOT index for the global symbol indicated by H. */
2453
2454 static bfd_vma
2455 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2456 int r_type, struct bfd_link_info *info)
2457 {
2458 bfd_vma index;
2459 asection *sgot;
2460 struct mips_got_info *g, *gg;
2461 long global_got_dynindx = 0;
2462
2463 gg = g = mips_elf_got_info (abfd, &sgot);
2464 if (g->bfd2got && ibfd)
2465 {
2466 struct mips_got_entry e, *p;
2467
2468 BFD_ASSERT (h->dynindx >= 0);
2469
2470 g = mips_elf_got_for_ibfd (g, ibfd);
2471 if (g->next != gg || TLS_RELOC_P (r_type))
2472 {
2473 e.abfd = ibfd;
2474 e.symndx = -1;
2475 e.d.h = (struct mips_elf_link_hash_entry *)h;
2476 e.tls_type = 0;
2477
2478 p = htab_find (g->got_entries, &e);
2479
2480 BFD_ASSERT (p->gotidx > 0);
2481
2482 if (TLS_RELOC_P (r_type))
2483 {
2484 bfd_vma value = MINUS_ONE;
2485 if ((h->root.type == bfd_link_hash_defined
2486 || h->root.type == bfd_link_hash_defweak)
2487 && h->root.u.def.section->output_section)
2488 value = (h->root.u.def.value
2489 + h->root.u.def.section->output_offset
2490 + h->root.u.def.section->output_section->vma);
2491
2492 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2493 info, e.d.h, value);
2494 }
2495 else
2496 return p->gotidx;
2497 }
2498 }
2499
2500 if (gg->global_gotsym != NULL)
2501 global_got_dynindx = gg->global_gotsym->dynindx;
2502
2503 if (TLS_RELOC_P (r_type))
2504 {
2505 struct mips_elf_link_hash_entry *hm
2506 = (struct mips_elf_link_hash_entry *) h;
2507 bfd_vma value = MINUS_ONE;
2508
2509 if ((h->root.type == bfd_link_hash_defined
2510 || h->root.type == bfd_link_hash_defweak)
2511 && h->root.u.def.section->output_section)
2512 value = (h->root.u.def.value
2513 + h->root.u.def.section->output_offset
2514 + h->root.u.def.section->output_section->vma);
2515
2516 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2517 r_type, info, hm, value);
2518 }
2519 else
2520 {
2521 /* Once we determine the global GOT entry with the lowest dynamic
2522 symbol table index, we must put all dynamic symbols with greater
2523 indices into the GOT. That makes it easy to calculate the GOT
2524 offset. */
2525 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2526 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2527 * MIPS_ELF_GOT_SIZE (abfd));
2528 }
2529 BFD_ASSERT (index < sgot->size);
2530
2531 return index;
2532 }
2533
2534 /* Find a GOT page entry that points to within 32KB of VALUE. These
2535 entries are supposed to be placed at small offsets in the GOT, i.e.,
2536 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2537 entry could be created. If OFFSETP is nonnull, use it to return the
2538 offset of the GOT entry from VALUE. */
2539
2540 static bfd_vma
2541 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2542 bfd_vma value, bfd_vma *offsetp)
2543 {
2544 asection *sgot;
2545 struct mips_got_info *g;
2546 bfd_vma page, index;
2547 struct mips_got_entry *entry;
2548
2549 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2550
2551 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2552 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2553 page, 0, NULL, R_MIPS_GOT_PAGE);
2554
2555 if (!entry)
2556 return MINUS_ONE;
2557
2558 index = entry->gotidx;
2559
2560 if (offsetp)
2561 *offsetp = value - entry->d.address;
2562
2563 return index;
2564 }
2565
2566 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2567 EXTERNAL is true if the relocation was against a global symbol
2568 that has been forced local. */
2569
2570 static bfd_vma
2571 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2572 bfd_vma value, bfd_boolean external)
2573 {
2574 asection *sgot;
2575 struct mips_got_info *g;
2576 struct mips_got_entry *entry;
2577
2578 /* GOT16 relocations against local symbols are followed by a LO16
2579 relocation; those against global symbols are not. Thus if the
2580 symbol was originally local, the GOT16 relocation should load the
2581 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2582 if (! external)
2583 value = mips_elf_high (value) << 16;
2584
2585 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2586
2587 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2588 value, 0, NULL, R_MIPS_GOT16);
2589 if (entry)
2590 return entry->gotidx;
2591 else
2592 return MINUS_ONE;
2593 }
2594
2595 /* Returns the offset for the entry at the INDEXth position
2596 in the GOT. */
2597
2598 static bfd_vma
2599 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2600 bfd *input_bfd, bfd_vma index)
2601 {
2602 asection *sgot;
2603 bfd_vma gp;
2604 struct mips_got_info *g;
2605
2606 g = mips_elf_got_info (dynobj, &sgot);
2607 gp = _bfd_get_gp_value (output_bfd)
2608 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2609
2610 return sgot->output_section->vma + sgot->output_offset + index - gp;
2611 }
2612
2613 /* Create and return a local GOT entry for VALUE, which was calculated
2614 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2615 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2616 instead. */
2617
2618 static struct mips_got_entry *
2619 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2620 bfd *ibfd, struct mips_got_info *gg,
2621 asection *sgot, bfd_vma value,
2622 unsigned long r_symndx,
2623 struct mips_elf_link_hash_entry *h,
2624 int r_type)
2625 {
2626 struct mips_got_entry entry, **loc;
2627 struct mips_got_info *g;
2628 struct mips_elf_link_hash_table *htab;
2629
2630 htab = mips_elf_hash_table (info);
2631
2632 entry.abfd = NULL;
2633 entry.symndx = -1;
2634 entry.d.address = value;
2635 entry.tls_type = 0;
2636
2637 g = mips_elf_got_for_ibfd (gg, ibfd);
2638 if (g == NULL)
2639 {
2640 g = mips_elf_got_for_ibfd (gg, abfd);
2641 BFD_ASSERT (g != NULL);
2642 }
2643
2644 /* We might have a symbol, H, if it has been forced local. Use the
2645 global entry then. It doesn't matter whether an entry is local
2646 or global for TLS, since the dynamic linker does not
2647 automatically relocate TLS GOT entries. */
2648 BFD_ASSERT (h == NULL || h->root.forced_local);
2649 if (TLS_RELOC_P (r_type))
2650 {
2651 struct mips_got_entry *p;
2652
2653 entry.abfd = ibfd;
2654 if (r_type == R_MIPS_TLS_LDM)
2655 {
2656 entry.tls_type = GOT_TLS_LDM;
2657 entry.symndx = 0;
2658 entry.d.addend = 0;
2659 }
2660 else if (h == NULL)
2661 {
2662 entry.symndx = r_symndx;
2663 entry.d.addend = 0;
2664 }
2665 else
2666 entry.d.h = h;
2667
2668 p = (struct mips_got_entry *)
2669 htab_find (g->got_entries, &entry);
2670
2671 BFD_ASSERT (p);
2672 return p;
2673 }
2674
2675 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2676 INSERT);
2677 if (*loc)
2678 return *loc;
2679
2680 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2681 entry.tls_type = 0;
2682
2683 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2684
2685 if (! *loc)
2686 return NULL;
2687
2688 memcpy (*loc, &entry, sizeof entry);
2689
2690 if (g->assigned_gotno >= g->local_gotno)
2691 {
2692 (*loc)->gotidx = -1;
2693 /* We didn't allocate enough space in the GOT. */
2694 (*_bfd_error_handler)
2695 (_("not enough GOT space for local GOT entries"));
2696 bfd_set_error (bfd_error_bad_value);
2697 return NULL;
2698 }
2699
2700 MIPS_ELF_PUT_WORD (abfd, value,
2701 (sgot->contents + entry.gotidx));
2702
2703 /* These GOT entries need a dynamic relocation on VxWorks. */
2704 if (htab->is_vxworks)
2705 {
2706 Elf_Internal_Rela outrel;
2707 asection *s;
2708 bfd_byte *loc;
2709 bfd_vma got_address;
2710
2711 s = mips_elf_rel_dyn_section (info, FALSE);
2712 got_address = (sgot->output_section->vma
2713 + sgot->output_offset
2714 + entry.gotidx);
2715
2716 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2717 outrel.r_offset = got_address;
2718 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2719 outrel.r_addend = value;
2720 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2721 }
2722
2723 return *loc;
2724 }
2725
2726 /* Sort the dynamic symbol table so that symbols that need GOT entries
2727 appear towards the end. This reduces the amount of GOT space
2728 required. MAX_LOCAL is used to set the number of local symbols
2729 known to be in the dynamic symbol table. During
2730 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2731 section symbols are added and the count is higher. */
2732
2733 static bfd_boolean
2734 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2735 {
2736 struct mips_elf_hash_sort_data hsd;
2737 struct mips_got_info *g;
2738 bfd *dynobj;
2739
2740 dynobj = elf_hash_table (info)->dynobj;
2741
2742 g = mips_elf_got_info (dynobj, NULL);
2743
2744 hsd.low = NULL;
2745 hsd.max_unref_got_dynindx =
2746 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2747 /* In the multi-got case, assigned_gotno of the master got_info
2748 indicate the number of entries that aren't referenced in the
2749 primary GOT, but that must have entries because there are
2750 dynamic relocations that reference it. Since they aren't
2751 referenced, we move them to the end of the GOT, so that they
2752 don't prevent other entries that are referenced from getting
2753 too large offsets. */
2754 - (g->next ? g->assigned_gotno : 0);
2755 hsd.max_non_got_dynindx = max_local;
2756 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2757 elf_hash_table (info)),
2758 mips_elf_sort_hash_table_f,
2759 &hsd);
2760
2761 /* There should have been enough room in the symbol table to
2762 accommodate both the GOT and non-GOT symbols. */
2763 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2764 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2765 <= elf_hash_table (info)->dynsymcount);
2766
2767 /* Now we know which dynamic symbol has the lowest dynamic symbol
2768 table index in the GOT. */
2769 g->global_gotsym = hsd.low;
2770
2771 return TRUE;
2772 }
2773
2774 /* If H needs a GOT entry, assign it the highest available dynamic
2775 index. Otherwise, assign it the lowest available dynamic
2776 index. */
2777
2778 static bfd_boolean
2779 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2780 {
2781 struct mips_elf_hash_sort_data *hsd = data;
2782
2783 if (h->root.root.type == bfd_link_hash_warning)
2784 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2785
2786 /* Symbols without dynamic symbol table entries aren't interesting
2787 at all. */
2788 if (h->root.dynindx == -1)
2789 return TRUE;
2790
2791 /* Global symbols that need GOT entries that are not explicitly
2792 referenced are marked with got offset 2. Those that are
2793 referenced get a 1, and those that don't need GOT entries get
2794 -1. */
2795 if (h->root.got.offset == 2)
2796 {
2797 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2798
2799 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2800 hsd->low = (struct elf_link_hash_entry *) h;
2801 h->root.dynindx = hsd->max_unref_got_dynindx++;
2802 }
2803 else if (h->root.got.offset != 1)
2804 h->root.dynindx = hsd->max_non_got_dynindx++;
2805 else
2806 {
2807 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2808
2809 h->root.dynindx = --hsd->min_got_dynindx;
2810 hsd->low = (struct elf_link_hash_entry *) h;
2811 }
2812
2813 return TRUE;
2814 }
2815
2816 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2817 symbol table index lower than any we've seen to date, record it for
2818 posterity. */
2819
2820 static bfd_boolean
2821 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2822 bfd *abfd, struct bfd_link_info *info,
2823 struct mips_got_info *g,
2824 unsigned char tls_flag)
2825 {
2826 struct mips_got_entry entry, **loc;
2827
2828 /* A global symbol in the GOT must also be in the dynamic symbol
2829 table. */
2830 if (h->dynindx == -1)
2831 {
2832 switch (ELF_ST_VISIBILITY (h->other))
2833 {
2834 case STV_INTERNAL:
2835 case STV_HIDDEN:
2836 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2837 break;
2838 }
2839 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2840 return FALSE;
2841 }
2842
2843 /* Make sure we have a GOT to put this entry into. */
2844 BFD_ASSERT (g != NULL);
2845
2846 entry.abfd = abfd;
2847 entry.symndx = -1;
2848 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2849 entry.tls_type = 0;
2850
2851 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2852 INSERT);
2853
2854 /* If we've already marked this entry as needing GOT space, we don't
2855 need to do it again. */
2856 if (*loc)
2857 {
2858 (*loc)->tls_type |= tls_flag;
2859 return TRUE;
2860 }
2861
2862 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2863
2864 if (! *loc)
2865 return FALSE;
2866
2867 entry.gotidx = -1;
2868 entry.tls_type = tls_flag;
2869
2870 memcpy (*loc, &entry, sizeof entry);
2871
2872 if (h->got.offset != MINUS_ONE)
2873 return TRUE;
2874
2875 /* By setting this to a value other than -1, we are indicating that
2876 there needs to be a GOT entry for H. Avoid using zero, as the
2877 generic ELF copy_indirect_symbol tests for <= 0. */
2878 if (tls_flag == 0)
2879 h->got.offset = 1;
2880
2881 return TRUE;
2882 }
2883
2884 /* Reserve space in G for a GOT entry containing the value of symbol
2885 SYMNDX in input bfd ABDF, plus ADDEND. */
2886
2887 static bfd_boolean
2888 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2889 struct mips_got_info *g,
2890 unsigned char tls_flag)
2891 {
2892 struct mips_got_entry entry, **loc;
2893
2894 entry.abfd = abfd;
2895 entry.symndx = symndx;
2896 entry.d.addend = addend;
2897 entry.tls_type = tls_flag;
2898 loc = (struct mips_got_entry **)
2899 htab_find_slot (g->got_entries, &entry, INSERT);
2900
2901 if (*loc)
2902 {
2903 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2904 {
2905 g->tls_gotno += 2;
2906 (*loc)->tls_type |= tls_flag;
2907 }
2908 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2909 {
2910 g->tls_gotno += 1;
2911 (*loc)->tls_type |= tls_flag;
2912 }
2913 return TRUE;
2914 }
2915
2916 if (tls_flag != 0)
2917 {
2918 entry.gotidx = -1;
2919 entry.tls_type = tls_flag;
2920 if (tls_flag == GOT_TLS_IE)
2921 g->tls_gotno += 1;
2922 else if (tls_flag == GOT_TLS_GD)
2923 g->tls_gotno += 2;
2924 else if (g->tls_ldm_offset == MINUS_ONE)
2925 {
2926 g->tls_ldm_offset = MINUS_TWO;
2927 g->tls_gotno += 2;
2928 }
2929 }
2930 else
2931 {
2932 entry.gotidx = g->local_gotno++;
2933 entry.tls_type = 0;
2934 }
2935
2936 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2937
2938 if (! *loc)
2939 return FALSE;
2940
2941 memcpy (*loc, &entry, sizeof entry);
2942
2943 return TRUE;
2944 }
2945 \f
2946 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2947
2948 static hashval_t
2949 mips_elf_bfd2got_entry_hash (const void *entry_)
2950 {
2951 const struct mips_elf_bfd2got_hash *entry
2952 = (struct mips_elf_bfd2got_hash *)entry_;
2953
2954 return entry->bfd->id;
2955 }
2956
2957 /* Check whether two hash entries have the same bfd. */
2958
2959 static int
2960 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2961 {
2962 const struct mips_elf_bfd2got_hash *e1
2963 = (const struct mips_elf_bfd2got_hash *)entry1;
2964 const struct mips_elf_bfd2got_hash *e2
2965 = (const struct mips_elf_bfd2got_hash *)entry2;
2966
2967 return e1->bfd == e2->bfd;
2968 }
2969
2970 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2971 be the master GOT data. */
2972
2973 static struct mips_got_info *
2974 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2975 {
2976 struct mips_elf_bfd2got_hash e, *p;
2977
2978 if (! g->bfd2got)
2979 return g;
2980
2981 e.bfd = ibfd;
2982 p = htab_find (g->bfd2got, &e);
2983 return p ? p->g : NULL;
2984 }
2985
2986 /* Create one separate got for each bfd that has entries in the global
2987 got, such that we can tell how many local and global entries each
2988 bfd requires. */
2989
2990 static int
2991 mips_elf_make_got_per_bfd (void **entryp, void *p)
2992 {
2993 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2994 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2995 htab_t bfd2got = arg->bfd2got;
2996 struct mips_got_info *g;
2997 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2998 void **bfdgotp;
2999
3000 /* Find the got_info for this GOT entry's input bfd. Create one if
3001 none exists. */
3002 bfdgot_entry.bfd = entry->abfd;
3003 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3004 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3005
3006 if (bfdgot != NULL)
3007 g = bfdgot->g;
3008 else
3009 {
3010 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3011 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3012
3013 if (bfdgot == NULL)
3014 {
3015 arg->obfd = 0;
3016 return 0;
3017 }
3018
3019 *bfdgotp = bfdgot;
3020
3021 bfdgot->bfd = entry->abfd;
3022 bfdgot->g = g = (struct mips_got_info *)
3023 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3024 if (g == NULL)
3025 {
3026 arg->obfd = 0;
3027 return 0;
3028 }
3029
3030 g->global_gotsym = NULL;
3031 g->global_gotno = 0;
3032 g->local_gotno = 0;
3033 g->assigned_gotno = -1;
3034 g->tls_gotno = 0;
3035 g->tls_assigned_gotno = 0;
3036 g->tls_ldm_offset = MINUS_ONE;
3037 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3038 mips_elf_multi_got_entry_eq, NULL);
3039 if (g->got_entries == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->bfd2got = NULL;
3046 g->next = NULL;
3047 }
3048
3049 /* Insert the GOT entry in the bfd's got entry hash table. */
3050 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3051 if (*entryp != NULL)
3052 return 1;
3053
3054 *entryp = entry;
3055
3056 if (entry->tls_type)
3057 {
3058 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3059 g->tls_gotno += 2;
3060 if (entry->tls_type & GOT_TLS_IE)
3061 g->tls_gotno += 1;
3062 }
3063 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3064 ++g->local_gotno;
3065 else
3066 ++g->global_gotno;
3067
3068 return 1;
3069 }
3070
3071 /* Attempt to merge gots of different input bfds. Try to use as much
3072 as possible of the primary got, since it doesn't require explicit
3073 dynamic relocations, but don't use bfds that would reference global
3074 symbols out of the addressable range. Failing the primary got,
3075 attempt to merge with the current got, or finish the current got
3076 and then make make the new got current. */
3077
3078 static int
3079 mips_elf_merge_gots (void **bfd2got_, void *p)
3080 {
3081 struct mips_elf_bfd2got_hash *bfd2got
3082 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3083 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3084 unsigned int lcount = bfd2got->g->local_gotno;
3085 unsigned int gcount = bfd2got->g->global_gotno;
3086 unsigned int tcount = bfd2got->g->tls_gotno;
3087 unsigned int maxcnt = arg->max_count;
3088 bfd_boolean too_many_for_tls = FALSE;
3089
3090 /* We place TLS GOT entries after both locals and globals. The globals
3091 for the primary GOT may overflow the normal GOT size limit, so be
3092 sure not to merge a GOT which requires TLS with the primary GOT in that
3093 case. This doesn't affect non-primary GOTs. */
3094 if (tcount > 0)
3095 {
3096 unsigned int primary_total = lcount + tcount + arg->global_count;
3097 if (primary_total > maxcnt)
3098 too_many_for_tls = TRUE;
3099 }
3100
3101 /* If we don't have a primary GOT and this is not too big, use it as
3102 a starting point for the primary GOT. */
3103 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3104 && ! too_many_for_tls)
3105 {
3106 arg->primary = bfd2got->g;
3107 arg->primary_count = lcount + gcount;
3108 }
3109 /* If it looks like we can merge this bfd's entries with those of
3110 the primary, merge them. The heuristics is conservative, but we
3111 don't have to squeeze it too hard. */
3112 else if (arg->primary && ! too_many_for_tls
3113 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3114 {
3115 struct mips_got_info *g = bfd2got->g;
3116 int old_lcount = arg->primary->local_gotno;
3117 int old_gcount = arg->primary->global_gotno;
3118 int old_tcount = arg->primary->tls_gotno;
3119
3120 bfd2got->g = arg->primary;
3121
3122 htab_traverse (g->got_entries,
3123 mips_elf_make_got_per_bfd,
3124 arg);
3125 if (arg->obfd == NULL)
3126 return 0;
3127
3128 htab_delete (g->got_entries);
3129 /* We don't have to worry about releasing memory of the actual
3130 got entries, since they're all in the master got_entries hash
3131 table anyway. */
3132
3133 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3134 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3135 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3136
3137 arg->primary_count = arg->primary->local_gotno
3138 + arg->primary->global_gotno + arg->primary->tls_gotno;
3139 }
3140 /* If we can merge with the last-created got, do it. */
3141 else if (arg->current
3142 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3143 {
3144 struct mips_got_info *g = bfd2got->g;
3145 int old_lcount = arg->current->local_gotno;
3146 int old_gcount = arg->current->global_gotno;
3147 int old_tcount = arg->current->tls_gotno;
3148
3149 bfd2got->g = arg->current;
3150
3151 htab_traverse (g->got_entries,
3152 mips_elf_make_got_per_bfd,
3153 arg);
3154 if (arg->obfd == NULL)
3155 return 0;
3156
3157 htab_delete (g->got_entries);
3158
3159 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3160 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3161 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3162
3163 arg->current_count = arg->current->local_gotno
3164 + arg->current->global_gotno + arg->current->tls_gotno;
3165 }
3166 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3167 fits; if it turns out that it doesn't, we'll get relocation
3168 overflows anyway. */
3169 else
3170 {
3171 bfd2got->g->next = arg->current;
3172 arg->current = bfd2got->g;
3173
3174 arg->current_count = lcount + gcount + 2 * tcount;
3175 }
3176
3177 return 1;
3178 }
3179
3180 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3181 is null iff there is just a single GOT. */
3182
3183 static int
3184 mips_elf_initialize_tls_index (void **entryp, void *p)
3185 {
3186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3187 struct mips_got_info *g = p;
3188 bfd_vma next_index;
3189 unsigned char tls_type;
3190
3191 /* We're only interested in TLS symbols. */
3192 if (entry->tls_type == 0)
3193 return 1;
3194
3195 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3196
3197 if (entry->symndx == -1 && g->next == NULL)
3198 {
3199 /* A type (3) got entry in the single-GOT case. We use the symbol's
3200 hash table entry to track its index. */
3201 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3202 return 1;
3203 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3204 entry->d.h->tls_got_offset = next_index;
3205 tls_type = entry->d.h->tls_type;
3206 }
3207 else
3208 {
3209 if (entry->tls_type & GOT_TLS_LDM)
3210 {
3211 /* There are separate mips_got_entry objects for each input bfd
3212 that requires an LDM entry. Make sure that all LDM entries in
3213 a GOT resolve to the same index. */
3214 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3215 {
3216 entry->gotidx = g->tls_ldm_offset;
3217 return 1;
3218 }
3219 g->tls_ldm_offset = next_index;
3220 }
3221 entry->gotidx = next_index;
3222 tls_type = entry->tls_type;
3223 }
3224
3225 /* Account for the entries we've just allocated. */
3226 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3227 g->tls_assigned_gotno += 2;
3228 if (tls_type & GOT_TLS_IE)
3229 g->tls_assigned_gotno += 1;
3230
3231 return 1;
3232 }
3233
3234 /* If passed a NULL mips_got_info in the argument, set the marker used
3235 to tell whether a global symbol needs a got entry (in the primary
3236 got) to the given VALUE.
3237
3238 If passed a pointer G to a mips_got_info in the argument (it must
3239 not be the primary GOT), compute the offset from the beginning of
3240 the (primary) GOT section to the entry in G corresponding to the
3241 global symbol. G's assigned_gotno must contain the index of the
3242 first available global GOT entry in G. VALUE must contain the size
3243 of a GOT entry in bytes. For each global GOT entry that requires a
3244 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3245 marked as not eligible for lazy resolution through a function
3246 stub. */
3247 static int
3248 mips_elf_set_global_got_offset (void **entryp, void *p)
3249 {
3250 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3251 struct mips_elf_set_global_got_offset_arg *arg
3252 = (struct mips_elf_set_global_got_offset_arg *)p;
3253 struct mips_got_info *g = arg->g;
3254
3255 if (g && entry->tls_type != GOT_NORMAL)
3256 arg->needed_relocs +=
3257 mips_tls_got_relocs (arg->info, entry->tls_type,
3258 entry->symndx == -1 ? &entry->d.h->root : NULL);
3259
3260 if (entry->abfd != NULL && entry->symndx == -1
3261 && entry->d.h->root.dynindx != -1
3262 && entry->d.h->tls_type == GOT_NORMAL)
3263 {
3264 if (g)
3265 {
3266 BFD_ASSERT (g->global_gotsym == NULL);
3267
3268 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3269 if (arg->info->shared
3270 || (elf_hash_table (arg->info)->dynamic_sections_created
3271 && entry->d.h->root.def_dynamic
3272 && !entry->d.h->root.def_regular))
3273 ++arg->needed_relocs;
3274 }
3275 else
3276 entry->d.h->root.got.offset = arg->value;
3277 }
3278
3279 return 1;
3280 }
3281
3282 /* Mark any global symbols referenced in the GOT we are iterating over
3283 as inelligible for lazy resolution stubs. */
3284 static int
3285 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3286 {
3287 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3288
3289 if (entry->abfd != NULL
3290 && entry->symndx == -1
3291 && entry->d.h->root.dynindx != -1)
3292 entry->d.h->no_fn_stub = TRUE;
3293
3294 return 1;
3295 }
3296
3297 /* Follow indirect and warning hash entries so that each got entry
3298 points to the final symbol definition. P must point to a pointer
3299 to the hash table we're traversing. Since this traversal may
3300 modify the hash table, we set this pointer to NULL to indicate
3301 we've made a potentially-destructive change to the hash table, so
3302 the traversal must be restarted. */
3303 static int
3304 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3305 {
3306 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3307 htab_t got_entries = *(htab_t *)p;
3308
3309 if (entry->abfd != NULL && entry->symndx == -1)
3310 {
3311 struct mips_elf_link_hash_entry *h = entry->d.h;
3312
3313 while (h->root.root.type == bfd_link_hash_indirect
3314 || h->root.root.type == bfd_link_hash_warning)
3315 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3316
3317 if (entry->d.h == h)
3318 return 1;
3319
3320 entry->d.h = h;
3321
3322 /* If we can't find this entry with the new bfd hash, re-insert
3323 it, and get the traversal restarted. */
3324 if (! htab_find (got_entries, entry))
3325 {
3326 htab_clear_slot (got_entries, entryp);
3327 entryp = htab_find_slot (got_entries, entry, INSERT);
3328 if (! *entryp)
3329 *entryp = entry;
3330 /* Abort the traversal, since the whole table may have
3331 moved, and leave it up to the parent to restart the
3332 process. */
3333 *(htab_t *)p = NULL;
3334 return 0;
3335 }
3336 /* We might want to decrement the global_gotno count, but it's
3337 either too early or too late for that at this point. */
3338 }
3339
3340 return 1;
3341 }
3342
3343 /* Turn indirect got entries in a got_entries table into their final
3344 locations. */
3345 static void
3346 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3347 {
3348 htab_t got_entries;
3349
3350 do
3351 {
3352 got_entries = g->got_entries;
3353
3354 htab_traverse (got_entries,
3355 mips_elf_resolve_final_got_entry,
3356 &got_entries);
3357 }
3358 while (got_entries == NULL);
3359 }
3360
3361 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3362 the primary GOT. */
3363 static bfd_vma
3364 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3365 {
3366 if (g->bfd2got == NULL)
3367 return 0;
3368
3369 g = mips_elf_got_for_ibfd (g, ibfd);
3370 if (! g)
3371 return 0;
3372
3373 BFD_ASSERT (g->next);
3374
3375 g = g->next;
3376
3377 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3378 * MIPS_ELF_GOT_SIZE (abfd);
3379 }
3380
3381 /* Turn a single GOT that is too big for 16-bit addressing into
3382 a sequence of GOTs, each one 16-bit addressable. */
3383
3384 static bfd_boolean
3385 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3386 struct mips_got_info *g, asection *got,
3387 bfd_size_type pages)
3388 {
3389 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3390 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3391 struct mips_got_info *gg;
3392 unsigned int assign;
3393
3394 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3395 mips_elf_bfd2got_entry_eq, NULL);
3396 if (g->bfd2got == NULL)
3397 return FALSE;
3398
3399 got_per_bfd_arg.bfd2got = g->bfd2got;
3400 got_per_bfd_arg.obfd = abfd;
3401 got_per_bfd_arg.info = info;
3402
3403 /* Count how many GOT entries each input bfd requires, creating a
3404 map from bfd to got info while at that. */
3405 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3406 if (got_per_bfd_arg.obfd == NULL)
3407 return FALSE;
3408
3409 got_per_bfd_arg.current = NULL;
3410 got_per_bfd_arg.primary = NULL;
3411 /* Taking out PAGES entries is a worst-case estimate. We could
3412 compute the maximum number of pages that each separate input bfd
3413 uses, but it's probably not worth it. */
3414 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3415 / MIPS_ELF_GOT_SIZE (abfd))
3416 - MIPS_RESERVED_GOTNO (info) - pages);
3417 /* The number of globals that will be included in the primary GOT.
3418 See the calls to mips_elf_set_global_got_offset below for more
3419 information. */
3420 got_per_bfd_arg.global_count = g->global_gotno;
3421
3422 /* Try to merge the GOTs of input bfds together, as long as they
3423 don't seem to exceed the maximum GOT size, choosing one of them
3424 to be the primary GOT. */
3425 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3426 if (got_per_bfd_arg.obfd == NULL)
3427 return FALSE;
3428
3429 /* If we do not find any suitable primary GOT, create an empty one. */
3430 if (got_per_bfd_arg.primary == NULL)
3431 {
3432 g->next = (struct mips_got_info *)
3433 bfd_alloc (abfd, sizeof (struct mips_got_info));
3434 if (g->next == NULL)
3435 return FALSE;
3436
3437 g->next->global_gotsym = NULL;
3438 g->next->global_gotno = 0;
3439 g->next->local_gotno = 0;
3440 g->next->tls_gotno = 0;
3441 g->next->assigned_gotno = 0;
3442 g->next->tls_assigned_gotno = 0;
3443 g->next->tls_ldm_offset = MINUS_ONE;
3444 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3445 mips_elf_multi_got_entry_eq,
3446 NULL);
3447 if (g->next->got_entries == NULL)
3448 return FALSE;
3449 g->next->bfd2got = NULL;
3450 }
3451 else
3452 g->next = got_per_bfd_arg.primary;
3453 g->next->next = got_per_bfd_arg.current;
3454
3455 /* GG is now the master GOT, and G is the primary GOT. */
3456 gg = g;
3457 g = g->next;
3458
3459 /* Map the output bfd to the primary got. That's what we're going
3460 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3461 didn't mark in check_relocs, and we want a quick way to find it.
3462 We can't just use gg->next because we're going to reverse the
3463 list. */
3464 {
3465 struct mips_elf_bfd2got_hash *bfdgot;
3466 void **bfdgotp;
3467
3468 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3469 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3470
3471 if (bfdgot == NULL)
3472 return FALSE;
3473
3474 bfdgot->bfd = abfd;
3475 bfdgot->g = g;
3476 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3477
3478 BFD_ASSERT (*bfdgotp == NULL);
3479 *bfdgotp = bfdgot;
3480 }
3481
3482 /* The IRIX dynamic linker requires every symbol that is referenced
3483 in a dynamic relocation to be present in the primary GOT, so
3484 arrange for them to appear after those that are actually
3485 referenced.
3486
3487 GNU/Linux could very well do without it, but it would slow down
3488 the dynamic linker, since it would have to resolve every dynamic
3489 symbol referenced in other GOTs more than once, without help from
3490 the cache. Also, knowing that every external symbol has a GOT
3491 helps speed up the resolution of local symbols too, so GNU/Linux
3492 follows IRIX's practice.
3493
3494 The number 2 is used by mips_elf_sort_hash_table_f to count
3495 global GOT symbols that are unreferenced in the primary GOT, with
3496 an initial dynamic index computed from gg->assigned_gotno, where
3497 the number of unreferenced global entries in the primary GOT is
3498 preserved. */
3499 if (1)
3500 {
3501 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3502 g->global_gotno = gg->global_gotno;
3503 set_got_offset_arg.value = 2;
3504 }
3505 else
3506 {
3507 /* This could be used for dynamic linkers that don't optimize
3508 symbol resolution while applying relocations so as to use
3509 primary GOT entries or assuming the symbol is locally-defined.
3510 With this code, we assign lower dynamic indices to global
3511 symbols that are not referenced in the primary GOT, so that
3512 their entries can be omitted. */
3513 gg->assigned_gotno = 0;
3514 set_got_offset_arg.value = -1;
3515 }
3516
3517 /* Reorder dynamic symbols as described above (which behavior
3518 depends on the setting of VALUE). */
3519 set_got_offset_arg.g = NULL;
3520 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3521 &set_got_offset_arg);
3522 set_got_offset_arg.value = 1;
3523 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3524 &set_got_offset_arg);
3525 if (! mips_elf_sort_hash_table (info, 1))
3526 return FALSE;
3527
3528 /* Now go through the GOTs assigning them offset ranges.
3529 [assigned_gotno, local_gotno[ will be set to the range of local
3530 entries in each GOT. We can then compute the end of a GOT by
3531 adding local_gotno to global_gotno. We reverse the list and make
3532 it circular since then we'll be able to quickly compute the
3533 beginning of a GOT, by computing the end of its predecessor. To
3534 avoid special cases for the primary GOT, while still preserving
3535 assertions that are valid for both single- and multi-got links,
3536 we arrange for the main got struct to have the right number of
3537 global entries, but set its local_gotno such that the initial
3538 offset of the primary GOT is zero. Remember that the primary GOT
3539 will become the last item in the circular linked list, so it
3540 points back to the master GOT. */
3541 gg->local_gotno = -g->global_gotno;
3542 gg->global_gotno = g->global_gotno;
3543 gg->tls_gotno = 0;
3544 assign = 0;
3545 gg->next = gg;
3546
3547 do
3548 {
3549 struct mips_got_info *gn;
3550
3551 assign += MIPS_RESERVED_GOTNO (info);
3552 g->assigned_gotno = assign;
3553 g->local_gotno += assign + pages;
3554 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3555
3556 /* Take g out of the direct list, and push it onto the reversed
3557 list that gg points to. g->next is guaranteed to be nonnull after
3558 this operation, as required by mips_elf_initialize_tls_index. */
3559 gn = g->next;
3560 g->next = gg->next;
3561 gg->next = g;
3562
3563 /* Set up any TLS entries. We always place the TLS entries after
3564 all non-TLS entries. */
3565 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3566 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3567
3568 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3569 g = gn;
3570
3571 /* Mark global symbols in every non-primary GOT as ineligible for
3572 stubs. */
3573 if (g)
3574 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3575 }
3576 while (g);
3577
3578 got->size = (gg->next->local_gotno
3579 + gg->next->global_gotno
3580 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3581
3582 return TRUE;
3583 }
3584
3585 \f
3586 /* Returns the first relocation of type r_type found, beginning with
3587 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3588
3589 static const Elf_Internal_Rela *
3590 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3591 const Elf_Internal_Rela *relocation,
3592 const Elf_Internal_Rela *relend)
3593 {
3594 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3595
3596 while (relocation < relend)
3597 {
3598 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3599 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3600 return relocation;
3601
3602 ++relocation;
3603 }
3604
3605 /* We didn't find it. */
3606 return NULL;
3607 }
3608
3609 /* Return whether a relocation is against a local symbol. */
3610
3611 static bfd_boolean
3612 mips_elf_local_relocation_p (bfd *input_bfd,
3613 const Elf_Internal_Rela *relocation,
3614 asection **local_sections,
3615 bfd_boolean check_forced)
3616 {
3617 unsigned long r_symndx;
3618 Elf_Internal_Shdr *symtab_hdr;
3619 struct mips_elf_link_hash_entry *h;
3620 size_t extsymoff;
3621
3622 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3623 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3624 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3625
3626 if (r_symndx < extsymoff)
3627 return TRUE;
3628 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3629 return TRUE;
3630
3631 if (check_forced)
3632 {
3633 /* Look up the hash table to check whether the symbol
3634 was forced local. */
3635 h = (struct mips_elf_link_hash_entry *)
3636 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3637 /* Find the real hash-table entry for this symbol. */
3638 while (h->root.root.type == bfd_link_hash_indirect
3639 || h->root.root.type == bfd_link_hash_warning)
3640 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3641 if (h->root.forced_local)
3642 return TRUE;
3643 }
3644
3645 return FALSE;
3646 }
3647 \f
3648 /* Sign-extend VALUE, which has the indicated number of BITS. */
3649
3650 bfd_vma
3651 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3652 {
3653 if (value & ((bfd_vma) 1 << (bits - 1)))
3654 /* VALUE is negative. */
3655 value |= ((bfd_vma) - 1) << bits;
3656
3657 return value;
3658 }
3659
3660 /* Return non-zero if the indicated VALUE has overflowed the maximum
3661 range expressible by a signed number with the indicated number of
3662 BITS. */
3663
3664 static bfd_boolean
3665 mips_elf_overflow_p (bfd_vma value, int bits)
3666 {
3667 bfd_signed_vma svalue = (bfd_signed_vma) value;
3668
3669 if (svalue > (1 << (bits - 1)) - 1)
3670 /* The value is too big. */
3671 return TRUE;
3672 else if (svalue < -(1 << (bits - 1)))
3673 /* The value is too small. */
3674 return TRUE;
3675
3676 /* All is well. */
3677 return FALSE;
3678 }
3679
3680 /* Calculate the %high function. */
3681
3682 static bfd_vma
3683 mips_elf_high (bfd_vma value)
3684 {
3685 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3686 }
3687
3688 /* Calculate the %higher function. */
3689
3690 static bfd_vma
3691 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3692 {
3693 #ifdef BFD64
3694 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3695 #else
3696 abort ();
3697 return MINUS_ONE;
3698 #endif
3699 }
3700
3701 /* Calculate the %highest function. */
3702
3703 static bfd_vma
3704 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3705 {
3706 #ifdef BFD64
3707 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3708 #else
3709 abort ();
3710 return MINUS_ONE;
3711 #endif
3712 }
3713 \f
3714 /* Create the .compact_rel section. */
3715
3716 static bfd_boolean
3717 mips_elf_create_compact_rel_section
3718 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3719 {
3720 flagword flags;
3721 register asection *s;
3722
3723 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3724 {
3725 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3726 | SEC_READONLY);
3727
3728 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3729 if (s == NULL
3730 || ! bfd_set_section_alignment (abfd, s,
3731 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3732 return FALSE;
3733
3734 s->size = sizeof (Elf32_External_compact_rel);
3735 }
3736
3737 return TRUE;
3738 }
3739
3740 /* Create the .got section to hold the global offset table. */
3741
3742 static bfd_boolean
3743 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3744 bfd_boolean maybe_exclude)
3745 {
3746 flagword flags;
3747 register asection *s;
3748 struct elf_link_hash_entry *h;
3749 struct bfd_link_hash_entry *bh;
3750 struct mips_got_info *g;
3751 bfd_size_type amt;
3752 struct mips_elf_link_hash_table *htab;
3753
3754 htab = mips_elf_hash_table (info);
3755
3756 /* This function may be called more than once. */
3757 s = mips_elf_got_section (abfd, TRUE);
3758 if (s)
3759 {
3760 if (! maybe_exclude)
3761 s->flags &= ~SEC_EXCLUDE;
3762 return TRUE;
3763 }
3764
3765 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3766 | SEC_LINKER_CREATED);
3767
3768 if (maybe_exclude)
3769 flags |= SEC_EXCLUDE;
3770
3771 /* We have to use an alignment of 2**4 here because this is hardcoded
3772 in the function stub generation and in the linker script. */
3773 s = bfd_make_section_with_flags (abfd, ".got", flags);
3774 if (s == NULL
3775 || ! bfd_set_section_alignment (abfd, s, 4))
3776 return FALSE;
3777
3778 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3779 linker script because we don't want to define the symbol if we
3780 are not creating a global offset table. */
3781 bh = NULL;
3782 if (! (_bfd_generic_link_add_one_symbol
3783 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3784 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3785 return FALSE;
3786
3787 h = (struct elf_link_hash_entry *) bh;
3788 h->non_elf = 0;
3789 h->def_regular = 1;
3790 h->type = STT_OBJECT;
3791 elf_hash_table (info)->hgot = h;
3792
3793 if (info->shared
3794 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3795 return FALSE;
3796
3797 amt = sizeof (struct mips_got_info);
3798 g = bfd_alloc (abfd, amt);
3799 if (g == NULL)
3800 return FALSE;
3801 g->global_gotsym = NULL;
3802 g->global_gotno = 0;
3803 g->tls_gotno = 0;
3804 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3805 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3806 g->bfd2got = NULL;
3807 g->next = NULL;
3808 g->tls_ldm_offset = MINUS_ONE;
3809 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3810 mips_elf_got_entry_eq, NULL);
3811 if (g->got_entries == NULL)
3812 return FALSE;
3813 mips_elf_section_data (s)->u.got_info = g;
3814 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3815 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3816
3817 /* VxWorks also needs a .got.plt section. */
3818 if (htab->is_vxworks)
3819 {
3820 s = bfd_make_section_with_flags (abfd, ".got.plt",
3821 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3822 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3823 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3824 return FALSE;
3825
3826 htab->sgotplt = s;
3827 }
3828 return TRUE;
3829 }
3830 \f
3831 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3832 __GOTT_INDEX__ symbols. These symbols are only special for
3833 shared objects; they are not used in executables. */
3834
3835 static bfd_boolean
3836 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3837 {
3838 return (mips_elf_hash_table (info)->is_vxworks
3839 && info->shared
3840 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3841 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3842 }
3843 \f
3844 /* Calculate the value produced by the RELOCATION (which comes from
3845 the INPUT_BFD). The ADDEND is the addend to use for this
3846 RELOCATION; RELOCATION->R_ADDEND is ignored.
3847
3848 The result of the relocation calculation is stored in VALUEP.
3849 REQUIRE_JALXP indicates whether or not the opcode used with this
3850 relocation must be JALX.
3851
3852 This function returns bfd_reloc_continue if the caller need take no
3853 further action regarding this relocation, bfd_reloc_notsupported if
3854 something goes dramatically wrong, bfd_reloc_overflow if an
3855 overflow occurs, and bfd_reloc_ok to indicate success. */
3856
3857 static bfd_reloc_status_type
3858 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3859 asection *input_section,
3860 struct bfd_link_info *info,
3861 const Elf_Internal_Rela *relocation,
3862 bfd_vma addend, reloc_howto_type *howto,
3863 Elf_Internal_Sym *local_syms,
3864 asection **local_sections, bfd_vma *valuep,
3865 const char **namep, bfd_boolean *require_jalxp,
3866 bfd_boolean save_addend)
3867 {
3868 /* The eventual value we will return. */
3869 bfd_vma value;
3870 /* The address of the symbol against which the relocation is
3871 occurring. */
3872 bfd_vma symbol = 0;
3873 /* The final GP value to be used for the relocatable, executable, or
3874 shared object file being produced. */
3875 bfd_vma gp = MINUS_ONE;
3876 /* The place (section offset or address) of the storage unit being
3877 relocated. */
3878 bfd_vma p;
3879 /* The value of GP used to create the relocatable object. */
3880 bfd_vma gp0 = MINUS_ONE;
3881 /* The offset into the global offset table at which the address of
3882 the relocation entry symbol, adjusted by the addend, resides
3883 during execution. */
3884 bfd_vma g = MINUS_ONE;
3885 /* The section in which the symbol referenced by the relocation is
3886 located. */
3887 asection *sec = NULL;
3888 struct mips_elf_link_hash_entry *h = NULL;
3889 /* TRUE if the symbol referred to by this relocation is a local
3890 symbol. */
3891 bfd_boolean local_p, was_local_p;
3892 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3893 bfd_boolean gp_disp_p = FALSE;
3894 /* TRUE if the symbol referred to by this relocation is
3895 "__gnu_local_gp". */
3896 bfd_boolean gnu_local_gp_p = FALSE;
3897 Elf_Internal_Shdr *symtab_hdr;
3898 size_t extsymoff;
3899 unsigned long r_symndx;
3900 int r_type;
3901 /* TRUE if overflow occurred during the calculation of the
3902 relocation value. */
3903 bfd_boolean overflowed_p;
3904 /* TRUE if this relocation refers to a MIPS16 function. */
3905 bfd_boolean target_is_16_bit_code_p = FALSE;
3906 struct mips_elf_link_hash_table *htab;
3907 bfd *dynobj;
3908
3909 dynobj = elf_hash_table (info)->dynobj;
3910 htab = mips_elf_hash_table (info);
3911
3912 /* Parse the relocation. */
3913 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3914 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3915 p = (input_section->output_section->vma
3916 + input_section->output_offset
3917 + relocation->r_offset);
3918
3919 /* Assume that there will be no overflow. */
3920 overflowed_p = FALSE;
3921
3922 /* Figure out whether or not the symbol is local, and get the offset
3923 used in the array of hash table entries. */
3924 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3925 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3926 local_sections, FALSE);
3927 was_local_p = local_p;
3928 if (! elf_bad_symtab (input_bfd))
3929 extsymoff = symtab_hdr->sh_info;
3930 else
3931 {
3932 /* The symbol table does not follow the rule that local symbols
3933 must come before globals. */
3934 extsymoff = 0;
3935 }
3936
3937 /* Figure out the value of the symbol. */
3938 if (local_p)
3939 {
3940 Elf_Internal_Sym *sym;
3941
3942 sym = local_syms + r_symndx;
3943 sec = local_sections[r_symndx];
3944
3945 symbol = sec->output_section->vma + sec->output_offset;
3946 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3947 || (sec->flags & SEC_MERGE))
3948 symbol += sym->st_value;
3949 if ((sec->flags & SEC_MERGE)
3950 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3951 {
3952 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3953 addend -= symbol;
3954 addend += sec->output_section->vma + sec->output_offset;
3955 }
3956
3957 /* MIPS16 text labels should be treated as odd. */
3958 if (sym->st_other == STO_MIPS16)
3959 ++symbol;
3960
3961 /* Record the name of this symbol, for our caller. */
3962 *namep = bfd_elf_string_from_elf_section (input_bfd,
3963 symtab_hdr->sh_link,
3964 sym->st_name);
3965 if (*namep == '\0')
3966 *namep = bfd_section_name (input_bfd, sec);
3967
3968 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3969 }
3970 else
3971 {
3972 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3973
3974 /* For global symbols we look up the symbol in the hash-table. */
3975 h = ((struct mips_elf_link_hash_entry *)
3976 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3977 /* Find the real hash-table entry for this symbol. */
3978 while (h->root.root.type == bfd_link_hash_indirect
3979 || h->root.root.type == bfd_link_hash_warning)
3980 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3981
3982 /* Record the name of this symbol, for our caller. */
3983 *namep = h->root.root.root.string;
3984
3985 /* See if this is the special _gp_disp symbol. Note that such a
3986 symbol must always be a global symbol. */
3987 if (strcmp (*namep, "_gp_disp") == 0
3988 && ! NEWABI_P (input_bfd))
3989 {
3990 /* Relocations against _gp_disp are permitted only with
3991 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3992 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3993 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3994 return bfd_reloc_notsupported;
3995
3996 gp_disp_p = TRUE;
3997 }
3998 /* See if this is the special _gp symbol. Note that such a
3999 symbol must always be a global symbol. */
4000 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4001 gnu_local_gp_p = TRUE;
4002
4003
4004 /* If this symbol is defined, calculate its address. Note that
4005 _gp_disp is a magic symbol, always implicitly defined by the
4006 linker, so it's inappropriate to check to see whether or not
4007 its defined. */
4008 else if ((h->root.root.type == bfd_link_hash_defined
4009 || h->root.root.type == bfd_link_hash_defweak)
4010 && h->root.root.u.def.section)
4011 {
4012 sec = h->root.root.u.def.section;
4013 if (sec->output_section)
4014 symbol = (h->root.root.u.def.value
4015 + sec->output_section->vma
4016 + sec->output_offset);
4017 else
4018 symbol = h->root.root.u.def.value;
4019 }
4020 else if (h->root.root.type == bfd_link_hash_undefweak)
4021 /* We allow relocations against undefined weak symbols, giving
4022 it the value zero, so that you can undefined weak functions
4023 and check to see if they exist by looking at their
4024 addresses. */
4025 symbol = 0;
4026 else if (info->unresolved_syms_in_objects == RM_IGNORE
4027 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4028 symbol = 0;
4029 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4030 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4031 {
4032 /* If this is a dynamic link, we should have created a
4033 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4034 in in _bfd_mips_elf_create_dynamic_sections.
4035 Otherwise, we should define the symbol with a value of 0.
4036 FIXME: It should probably get into the symbol table
4037 somehow as well. */
4038 BFD_ASSERT (! info->shared);
4039 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4040 symbol = 0;
4041 }
4042 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4043 {
4044 /* This is an optional symbol - an Irix specific extension to the
4045 ELF spec. Ignore it for now.
4046 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4047 than simply ignoring them, but we do not handle this for now.
4048 For information see the "64-bit ELF Object File Specification"
4049 which is available from here:
4050 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4051 symbol = 0;
4052 }
4053 else
4054 {
4055 if (! ((*info->callbacks->undefined_symbol)
4056 (info, h->root.root.root.string, input_bfd,
4057 input_section, relocation->r_offset,
4058 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4059 || ELF_ST_VISIBILITY (h->root.other))))
4060 return bfd_reloc_undefined;
4061 symbol = 0;
4062 }
4063
4064 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4065 }
4066
4067 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4068 need to redirect the call to the stub, unless we're already *in*
4069 a stub. */
4070 if (r_type != R_MIPS16_26 && !info->relocatable
4071 && ((h != NULL && h->fn_stub != NULL)
4072 || (local_p
4073 && elf_tdata (input_bfd)->local_stubs != NULL
4074 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4075 && !mips16_stub_section_p (input_bfd, input_section))
4076 {
4077 /* This is a 32- or 64-bit call to a 16-bit function. We should
4078 have already noticed that we were going to need the
4079 stub. */
4080 if (local_p)
4081 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4082 else
4083 {
4084 BFD_ASSERT (h->need_fn_stub);
4085 sec = h->fn_stub;
4086 }
4087
4088 symbol = sec->output_section->vma + sec->output_offset;
4089 /* The target is 16-bit, but the stub isn't. */
4090 target_is_16_bit_code_p = FALSE;
4091 }
4092 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4093 need to redirect the call to the stub. */
4094 else if (r_type == R_MIPS16_26 && !info->relocatable
4095 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
4096 || (local_p
4097 && elf_tdata (input_bfd)->local_call_stubs != NULL
4098 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4099 && !target_is_16_bit_code_p)
4100 {
4101 if (local_p)
4102 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4103 else
4104 {
4105 /* If both call_stub and call_fp_stub are defined, we can figure
4106 out which one to use by checking which one appears in the input
4107 file. */
4108 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4109 {
4110 asection *o;
4111
4112 sec = NULL;
4113 for (o = input_bfd->sections; o != NULL; o = o->next)
4114 {
4115 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4116 {
4117 sec = h->call_fp_stub;
4118 break;
4119 }
4120 }
4121 if (sec == NULL)
4122 sec = h->call_stub;
4123 }
4124 else if (h->call_stub != NULL)
4125 sec = h->call_stub;
4126 else
4127 sec = h->call_fp_stub;
4128 }
4129
4130 BFD_ASSERT (sec->size > 0);
4131 symbol = sec->output_section->vma + sec->output_offset;
4132 }
4133
4134 /* Calls from 16-bit code to 32-bit code and vice versa require the
4135 special jalx instruction. */
4136 *require_jalxp = (!info->relocatable
4137 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4138 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4139
4140 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4141 local_sections, TRUE);
4142
4143 /* If we haven't already determined the GOT offset, or the GP value,
4144 and we're going to need it, get it now. */
4145 switch (r_type)
4146 {
4147 case R_MIPS_GOT_PAGE:
4148 case R_MIPS_GOT_OFST:
4149 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4150 bind locally. */
4151 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4152 if (local_p || r_type == R_MIPS_GOT_OFST)
4153 break;
4154 /* Fall through. */
4155
4156 case R_MIPS_CALL16:
4157 case R_MIPS_GOT16:
4158 case R_MIPS_GOT_DISP:
4159 case R_MIPS_GOT_HI16:
4160 case R_MIPS_CALL_HI16:
4161 case R_MIPS_GOT_LO16:
4162 case R_MIPS_CALL_LO16:
4163 case R_MIPS_TLS_GD:
4164 case R_MIPS_TLS_GOTTPREL:
4165 case R_MIPS_TLS_LDM:
4166 /* Find the index into the GOT where this value is located. */
4167 if (r_type == R_MIPS_TLS_LDM)
4168 {
4169 g = mips_elf_local_got_index (abfd, input_bfd, info,
4170 0, 0, NULL, r_type);
4171 if (g == MINUS_ONE)
4172 return bfd_reloc_outofrange;
4173 }
4174 else if (!local_p)
4175 {
4176 /* On VxWorks, CALL relocations should refer to the .got.plt
4177 entry, which is initialized to point at the PLT stub. */
4178 if (htab->is_vxworks
4179 && (r_type == R_MIPS_CALL_HI16
4180 || r_type == R_MIPS_CALL_LO16
4181 || r_type == R_MIPS_CALL16))
4182 {
4183 BFD_ASSERT (addend == 0);
4184 BFD_ASSERT (h->root.needs_plt);
4185 g = mips_elf_gotplt_index (info, &h->root);
4186 }
4187 else
4188 {
4189 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4190 GOT_PAGE relocation that decays to GOT_DISP because the
4191 symbol turns out to be global. The addend is then added
4192 as GOT_OFST. */
4193 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4194 g = mips_elf_global_got_index (dynobj, input_bfd,
4195 &h->root, r_type, info);
4196 if (h->tls_type == GOT_NORMAL
4197 && (! elf_hash_table(info)->dynamic_sections_created
4198 || (info->shared
4199 && (info->symbolic || h->root.forced_local)
4200 && h->root.def_regular)))
4201 {
4202 /* This is a static link or a -Bsymbolic link. The
4203 symbol is defined locally, or was forced to be local.
4204 We must initialize this entry in the GOT. */
4205 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4206 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4207 }
4208 }
4209 }
4210 else if (!htab->is_vxworks
4211 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4212 /* The calculation below does not involve "g". */
4213 break;
4214 else
4215 {
4216 g = mips_elf_local_got_index (abfd, input_bfd, info,
4217 symbol + addend, r_symndx, h, r_type);
4218 if (g == MINUS_ONE)
4219 return bfd_reloc_outofrange;
4220 }
4221
4222 /* Convert GOT indices to actual offsets. */
4223 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4224 break;
4225
4226 case R_MIPS_HI16:
4227 case R_MIPS_LO16:
4228 case R_MIPS_GPREL16:
4229 case R_MIPS_GPREL32:
4230 case R_MIPS_LITERAL:
4231 case R_MIPS16_HI16:
4232 case R_MIPS16_LO16:
4233 case R_MIPS16_GPREL:
4234 gp0 = _bfd_get_gp_value (input_bfd);
4235 gp = _bfd_get_gp_value (abfd);
4236 if (dynobj)
4237 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4238 input_bfd);
4239 break;
4240
4241 default:
4242 break;
4243 }
4244
4245 if (gnu_local_gp_p)
4246 symbol = gp;
4247
4248 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4249 symbols are resolved by the loader. Add them to .rela.dyn. */
4250 if (h != NULL && is_gott_symbol (info, &h->root))
4251 {
4252 Elf_Internal_Rela outrel;
4253 bfd_byte *loc;
4254 asection *s;
4255
4256 s = mips_elf_rel_dyn_section (info, FALSE);
4257 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4258
4259 outrel.r_offset = (input_section->output_section->vma
4260 + input_section->output_offset
4261 + relocation->r_offset);
4262 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4263 outrel.r_addend = addend;
4264 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4265
4266 /* If we've written this relocation for a readonly section,
4267 we need to set DF_TEXTREL again, so that we do not delete the
4268 DT_TEXTREL tag. */
4269 if (MIPS_ELF_READONLY_SECTION (input_section))
4270 info->flags |= DF_TEXTREL;
4271
4272 *valuep = 0;
4273 return bfd_reloc_ok;
4274 }
4275
4276 /* Figure out what kind of relocation is being performed. */
4277 switch (r_type)
4278 {
4279 case R_MIPS_NONE:
4280 return bfd_reloc_continue;
4281
4282 case R_MIPS_16:
4283 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4284 overflowed_p = mips_elf_overflow_p (value, 16);
4285 break;
4286
4287 case R_MIPS_32:
4288 case R_MIPS_REL32:
4289 case R_MIPS_64:
4290 if ((info->shared
4291 || (!htab->is_vxworks
4292 && htab->root.dynamic_sections_created
4293 && h != NULL
4294 && h->root.def_dynamic
4295 && !h->root.def_regular))
4296 && r_symndx != 0
4297 && (input_section->flags & SEC_ALLOC) != 0)
4298 {
4299 /* If we're creating a shared library, or this relocation is
4300 against a symbol in a shared library, then we can't know
4301 where the symbol will end up. So, we create a relocation
4302 record in the output, and leave the job up to the dynamic
4303 linker.
4304
4305 In VxWorks executables, references to external symbols
4306 are handled using copy relocs or PLT stubs, so there's
4307 no need to add a dynamic relocation here. */
4308 value = addend;
4309 if (!mips_elf_create_dynamic_relocation (abfd,
4310 info,
4311 relocation,
4312 h,
4313 sec,
4314 symbol,
4315 &value,
4316 input_section))
4317 return bfd_reloc_undefined;
4318 }
4319 else
4320 {
4321 if (r_type != R_MIPS_REL32)
4322 value = symbol + addend;
4323 else
4324 value = addend;
4325 }
4326 value &= howto->dst_mask;
4327 break;
4328
4329 case R_MIPS_PC32:
4330 value = symbol + addend - p;
4331 value &= howto->dst_mask;
4332 break;
4333
4334 case R_MIPS16_26:
4335 /* The calculation for R_MIPS16_26 is just the same as for an
4336 R_MIPS_26. It's only the storage of the relocated field into
4337 the output file that's different. That's handled in
4338 mips_elf_perform_relocation. So, we just fall through to the
4339 R_MIPS_26 case here. */
4340 case R_MIPS_26:
4341 if (local_p)
4342 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4343 else
4344 {
4345 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4346 if (h->root.root.type != bfd_link_hash_undefweak)
4347 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4348 }
4349 value &= howto->dst_mask;
4350 break;
4351
4352 case R_MIPS_TLS_DTPREL_HI16:
4353 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4354 & howto->dst_mask);
4355 break;
4356
4357 case R_MIPS_TLS_DTPREL_LO16:
4358 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4359 break;
4360
4361 case R_MIPS_TLS_TPREL_HI16:
4362 value = (mips_elf_high (addend + symbol - tprel_base (info))
4363 & howto->dst_mask);
4364 break;
4365
4366 case R_MIPS_TLS_TPREL_LO16:
4367 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4368 break;
4369
4370 case R_MIPS_HI16:
4371 case R_MIPS16_HI16:
4372 if (!gp_disp_p)
4373 {
4374 value = mips_elf_high (addend + symbol);
4375 value &= howto->dst_mask;
4376 }
4377 else
4378 {
4379 /* For MIPS16 ABI code we generate this sequence
4380 0: li $v0,%hi(_gp_disp)
4381 4: addiupc $v1,%lo(_gp_disp)
4382 8: sll $v0,16
4383 12: addu $v0,$v1
4384 14: move $gp,$v0
4385 So the offsets of hi and lo relocs are the same, but the
4386 $pc is four higher than $t9 would be, so reduce
4387 both reloc addends by 4. */
4388 if (r_type == R_MIPS16_HI16)
4389 value = mips_elf_high (addend + gp - p - 4);
4390 else
4391 value = mips_elf_high (addend + gp - p);
4392 overflowed_p = mips_elf_overflow_p (value, 16);
4393 }
4394 break;
4395
4396 case R_MIPS_LO16:
4397 case R_MIPS16_LO16:
4398 if (!gp_disp_p)
4399 value = (symbol + addend) & howto->dst_mask;
4400 else
4401 {
4402 /* See the comment for R_MIPS16_HI16 above for the reason
4403 for this conditional. */
4404 if (r_type == R_MIPS16_LO16)
4405 value = addend + gp - p;
4406 else
4407 value = addend + gp - p + 4;
4408 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4409 for overflow. But, on, say, IRIX5, relocations against
4410 _gp_disp are normally generated from the .cpload
4411 pseudo-op. It generates code that normally looks like
4412 this:
4413
4414 lui $gp,%hi(_gp_disp)
4415 addiu $gp,$gp,%lo(_gp_disp)
4416 addu $gp,$gp,$t9
4417
4418 Here $t9 holds the address of the function being called,
4419 as required by the MIPS ELF ABI. The R_MIPS_LO16
4420 relocation can easily overflow in this situation, but the
4421 R_MIPS_HI16 relocation will handle the overflow.
4422 Therefore, we consider this a bug in the MIPS ABI, and do
4423 not check for overflow here. */
4424 }
4425 break;
4426
4427 case R_MIPS_LITERAL:
4428 /* Because we don't merge literal sections, we can handle this
4429 just like R_MIPS_GPREL16. In the long run, we should merge
4430 shared literals, and then we will need to additional work
4431 here. */
4432
4433 /* Fall through. */
4434
4435 case R_MIPS16_GPREL:
4436 /* The R_MIPS16_GPREL performs the same calculation as
4437 R_MIPS_GPREL16, but stores the relocated bits in a different
4438 order. We don't need to do anything special here; the
4439 differences are handled in mips_elf_perform_relocation. */
4440 case R_MIPS_GPREL16:
4441 /* Only sign-extend the addend if it was extracted from the
4442 instruction. If the addend was separate, leave it alone,
4443 otherwise we may lose significant bits. */
4444 if (howto->partial_inplace)
4445 addend = _bfd_mips_elf_sign_extend (addend, 16);
4446 value = symbol + addend - gp;
4447 /* If the symbol was local, any earlier relocatable links will
4448 have adjusted its addend with the gp offset, so compensate
4449 for that now. Don't do it for symbols forced local in this
4450 link, though, since they won't have had the gp offset applied
4451 to them before. */
4452 if (was_local_p)
4453 value += gp0;
4454 overflowed_p = mips_elf_overflow_p (value, 16);
4455 break;
4456
4457 case R_MIPS_GOT16:
4458 case R_MIPS_CALL16:
4459 /* VxWorks does not have separate local and global semantics for
4460 R_MIPS_GOT16; every relocation evaluates to "G". */
4461 if (!htab->is_vxworks && local_p)
4462 {
4463 bfd_boolean forced;
4464
4465 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4466 local_sections, FALSE);
4467 value = mips_elf_got16_entry (abfd, input_bfd, info,
4468 symbol + addend, forced);
4469 if (value == MINUS_ONE)
4470 return bfd_reloc_outofrange;
4471 value
4472 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4473 overflowed_p = mips_elf_overflow_p (value, 16);
4474 break;
4475 }
4476
4477 /* Fall through. */
4478
4479 case R_MIPS_TLS_GD:
4480 case R_MIPS_TLS_GOTTPREL:
4481 case R_MIPS_TLS_LDM:
4482 case R_MIPS_GOT_DISP:
4483 got_disp:
4484 value = g;
4485 overflowed_p = mips_elf_overflow_p (value, 16);
4486 break;
4487
4488 case R_MIPS_GPREL32:
4489 value = (addend + symbol + gp0 - gp);
4490 if (!save_addend)
4491 value &= howto->dst_mask;
4492 break;
4493
4494 case R_MIPS_PC16:
4495 case R_MIPS_GNU_REL16_S2:
4496 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4497 overflowed_p = mips_elf_overflow_p (value, 18);
4498 value >>= howto->rightshift;
4499 value &= howto->dst_mask;
4500 break;
4501
4502 case R_MIPS_GOT_HI16:
4503 case R_MIPS_CALL_HI16:
4504 /* We're allowed to handle these two relocations identically.
4505 The dynamic linker is allowed to handle the CALL relocations
4506 differently by creating a lazy evaluation stub. */
4507 value = g;
4508 value = mips_elf_high (value);
4509 value &= howto->dst_mask;
4510 break;
4511
4512 case R_MIPS_GOT_LO16:
4513 case R_MIPS_CALL_LO16:
4514 value = g & howto->dst_mask;
4515 break;
4516
4517 case R_MIPS_GOT_PAGE:
4518 /* GOT_PAGE relocations that reference non-local symbols decay
4519 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4520 0. */
4521 if (! local_p)
4522 goto got_disp;
4523 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4524 if (value == MINUS_ONE)
4525 return bfd_reloc_outofrange;
4526 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4527 overflowed_p = mips_elf_overflow_p (value, 16);
4528 break;
4529
4530 case R_MIPS_GOT_OFST:
4531 if (local_p)
4532 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4533 else
4534 value = addend;
4535 overflowed_p = mips_elf_overflow_p (value, 16);
4536 break;
4537
4538 case R_MIPS_SUB:
4539 value = symbol - addend;
4540 value &= howto->dst_mask;
4541 break;
4542
4543 case R_MIPS_HIGHER:
4544 value = mips_elf_higher (addend + symbol);
4545 value &= howto->dst_mask;
4546 break;
4547
4548 case R_MIPS_HIGHEST:
4549 value = mips_elf_highest (addend + symbol);
4550 value &= howto->dst_mask;
4551 break;
4552
4553 case R_MIPS_SCN_DISP:
4554 value = symbol + addend - sec->output_offset;
4555 value &= howto->dst_mask;
4556 break;
4557
4558 case R_MIPS_JALR:
4559 /* This relocation is only a hint. In some cases, we optimize
4560 it into a bal instruction. But we don't try to optimize
4561 branches to the PLT; that will wind up wasting time. */
4562 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4563 return bfd_reloc_continue;
4564 value = symbol + addend;
4565 break;
4566
4567 case R_MIPS_PJUMP:
4568 case R_MIPS_GNU_VTINHERIT:
4569 case R_MIPS_GNU_VTENTRY:
4570 /* We don't do anything with these at present. */
4571 return bfd_reloc_continue;
4572
4573 default:
4574 /* An unrecognized relocation type. */
4575 return bfd_reloc_notsupported;
4576 }
4577
4578 /* Store the VALUE for our caller. */
4579 *valuep = value;
4580 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4581 }
4582
4583 /* Obtain the field relocated by RELOCATION. */
4584
4585 static bfd_vma
4586 mips_elf_obtain_contents (reloc_howto_type *howto,
4587 const Elf_Internal_Rela *relocation,
4588 bfd *input_bfd, bfd_byte *contents)
4589 {
4590 bfd_vma x;
4591 bfd_byte *location = contents + relocation->r_offset;
4592
4593 /* Obtain the bytes. */
4594 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4595
4596 return x;
4597 }
4598
4599 /* It has been determined that the result of the RELOCATION is the
4600 VALUE. Use HOWTO to place VALUE into the output file at the
4601 appropriate position. The SECTION is the section to which the
4602 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4603 for the relocation must be either JAL or JALX, and it is
4604 unconditionally converted to JALX.
4605
4606 Returns FALSE if anything goes wrong. */
4607
4608 static bfd_boolean
4609 mips_elf_perform_relocation (struct bfd_link_info *info,
4610 reloc_howto_type *howto,
4611 const Elf_Internal_Rela *relocation,
4612 bfd_vma value, bfd *input_bfd,
4613 asection *input_section, bfd_byte *contents,
4614 bfd_boolean require_jalx)
4615 {
4616 bfd_vma x;
4617 bfd_byte *location;
4618 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4619
4620 /* Figure out where the relocation is occurring. */
4621 location = contents + relocation->r_offset;
4622
4623 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4624
4625 /* Obtain the current value. */
4626 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4627
4628 /* Clear the field we are setting. */
4629 x &= ~howto->dst_mask;
4630
4631 /* Set the field. */
4632 x |= (value & howto->dst_mask);
4633
4634 /* If required, turn JAL into JALX. */
4635 if (require_jalx)
4636 {
4637 bfd_boolean ok;
4638 bfd_vma opcode = x >> 26;
4639 bfd_vma jalx_opcode;
4640
4641 /* Check to see if the opcode is already JAL or JALX. */
4642 if (r_type == R_MIPS16_26)
4643 {
4644 ok = ((opcode == 0x6) || (opcode == 0x7));
4645 jalx_opcode = 0x7;
4646 }
4647 else
4648 {
4649 ok = ((opcode == 0x3) || (opcode == 0x1d));
4650 jalx_opcode = 0x1d;
4651 }
4652
4653 /* If the opcode is not JAL or JALX, there's a problem. */
4654 if (!ok)
4655 {
4656 (*_bfd_error_handler)
4657 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4658 input_bfd,
4659 input_section,
4660 (unsigned long) relocation->r_offset);
4661 bfd_set_error (bfd_error_bad_value);
4662 return FALSE;
4663 }
4664
4665 /* Make this the JALX opcode. */
4666 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4667 }
4668
4669 /* On the RM9000, bal is faster than jal, because bal uses branch
4670 prediction hardware. If we are linking for the RM9000, and we
4671 see jal, and bal fits, use it instead. Note that this
4672 transformation should be safe for all architectures. */
4673 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4674 && !info->relocatable
4675 && !require_jalx
4676 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4677 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4678 {
4679 bfd_vma addr;
4680 bfd_vma dest;
4681 bfd_signed_vma off;
4682
4683 addr = (input_section->output_section->vma
4684 + input_section->output_offset
4685 + relocation->r_offset
4686 + 4);
4687 if (r_type == R_MIPS_26)
4688 dest = (value << 2) | ((addr >> 28) << 28);
4689 else
4690 dest = value;
4691 off = dest - addr;
4692 if (off <= 0x1ffff && off >= -0x20000)
4693 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4694 }
4695
4696 /* Put the value into the output. */
4697 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4698
4699 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4700 location);
4701
4702 return TRUE;
4703 }
4704
4705 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4706
4707 static bfd_boolean
4708 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4709 {
4710 const char *name = bfd_get_section_name (abfd, section);
4711
4712 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4713 }
4714 \f
4715 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4716
4717 static void
4718 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4719 unsigned int n)
4720 {
4721 asection *s;
4722 struct mips_elf_link_hash_table *htab;
4723
4724 htab = mips_elf_hash_table (info);
4725 s = mips_elf_rel_dyn_section (info, FALSE);
4726 BFD_ASSERT (s != NULL);
4727
4728 if (htab->is_vxworks)
4729 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4730 else
4731 {
4732 if (s->size == 0)
4733 {
4734 /* Make room for a null element. */
4735 s->size += MIPS_ELF_REL_SIZE (abfd);
4736 ++s->reloc_count;
4737 }
4738 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4739 }
4740 }
4741
4742 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4743 is the original relocation, which is now being transformed into a
4744 dynamic relocation. The ADDENDP is adjusted if necessary; the
4745 caller should store the result in place of the original addend. */
4746
4747 static bfd_boolean
4748 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4749 struct bfd_link_info *info,
4750 const Elf_Internal_Rela *rel,
4751 struct mips_elf_link_hash_entry *h,
4752 asection *sec, bfd_vma symbol,
4753 bfd_vma *addendp, asection *input_section)
4754 {
4755 Elf_Internal_Rela outrel[3];
4756 asection *sreloc;
4757 bfd *dynobj;
4758 int r_type;
4759 long indx;
4760 bfd_boolean defined_p;
4761 struct mips_elf_link_hash_table *htab;
4762
4763 htab = mips_elf_hash_table (info);
4764 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4765 dynobj = elf_hash_table (info)->dynobj;
4766 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4767 BFD_ASSERT (sreloc != NULL);
4768 BFD_ASSERT (sreloc->contents != NULL);
4769 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4770 < sreloc->size);
4771
4772 outrel[0].r_offset =
4773 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4774 if (ABI_64_P (output_bfd))
4775 {
4776 outrel[1].r_offset =
4777 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4778 outrel[2].r_offset =
4779 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4780 }
4781
4782 if (outrel[0].r_offset == MINUS_ONE)
4783 /* The relocation field has been deleted. */
4784 return TRUE;
4785
4786 if (outrel[0].r_offset == MINUS_TWO)
4787 {
4788 /* The relocation field has been converted into a relative value of
4789 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4790 the field to be fully relocated, so add in the symbol's value. */
4791 *addendp += symbol;
4792 return TRUE;
4793 }
4794
4795 /* We must now calculate the dynamic symbol table index to use
4796 in the relocation. */
4797 if (h != NULL
4798 && (!h->root.def_regular
4799 || (info->shared && !info->symbolic && !h->root.forced_local)))
4800 {
4801 indx = h->root.dynindx;
4802 if (SGI_COMPAT (output_bfd))
4803 defined_p = h->root.def_regular;
4804 else
4805 /* ??? glibc's ld.so just adds the final GOT entry to the
4806 relocation field. It therefore treats relocs against
4807 defined symbols in the same way as relocs against
4808 undefined symbols. */
4809 defined_p = FALSE;
4810 }
4811 else
4812 {
4813 if (sec != NULL && bfd_is_abs_section (sec))
4814 indx = 0;
4815 else if (sec == NULL || sec->owner == NULL)
4816 {
4817 bfd_set_error (bfd_error_bad_value);
4818 return FALSE;
4819 }
4820 else
4821 {
4822 indx = elf_section_data (sec->output_section)->dynindx;
4823 if (indx == 0)
4824 {
4825 asection *osec = htab->root.text_index_section;
4826 indx = elf_section_data (osec)->dynindx;
4827 }
4828 if (indx == 0)
4829 abort ();
4830 }
4831
4832 /* Instead of generating a relocation using the section
4833 symbol, we may as well make it a fully relative
4834 relocation. We want to avoid generating relocations to
4835 local symbols because we used to generate them
4836 incorrectly, without adding the original symbol value,
4837 which is mandated by the ABI for section symbols. In
4838 order to give dynamic loaders and applications time to
4839 phase out the incorrect use, we refrain from emitting
4840 section-relative relocations. It's not like they're
4841 useful, after all. This should be a bit more efficient
4842 as well. */
4843 /* ??? Although this behavior is compatible with glibc's ld.so,
4844 the ABI says that relocations against STN_UNDEF should have
4845 a symbol value of 0. Irix rld honors this, so relocations
4846 against STN_UNDEF have no effect. */
4847 if (!SGI_COMPAT (output_bfd))
4848 indx = 0;
4849 defined_p = TRUE;
4850 }
4851
4852 /* If the relocation was previously an absolute relocation and
4853 this symbol will not be referred to by the relocation, we must
4854 adjust it by the value we give it in the dynamic symbol table.
4855 Otherwise leave the job up to the dynamic linker. */
4856 if (defined_p && r_type != R_MIPS_REL32)
4857 *addendp += symbol;
4858
4859 if (htab->is_vxworks)
4860 /* VxWorks uses non-relative relocations for this. */
4861 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4862 else
4863 /* The relocation is always an REL32 relocation because we don't
4864 know where the shared library will wind up at load-time. */
4865 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4866 R_MIPS_REL32);
4867
4868 /* For strict adherence to the ABI specification, we should
4869 generate a R_MIPS_64 relocation record by itself before the
4870 _REL32/_64 record as well, such that the addend is read in as
4871 a 64-bit value (REL32 is a 32-bit relocation, after all).
4872 However, since none of the existing ELF64 MIPS dynamic
4873 loaders seems to care, we don't waste space with these
4874 artificial relocations. If this turns out to not be true,
4875 mips_elf_allocate_dynamic_relocation() should be tweaked so
4876 as to make room for a pair of dynamic relocations per
4877 invocation if ABI_64_P, and here we should generate an
4878 additional relocation record with R_MIPS_64 by itself for a
4879 NULL symbol before this relocation record. */
4880 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4881 ABI_64_P (output_bfd)
4882 ? R_MIPS_64
4883 : R_MIPS_NONE);
4884 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4885
4886 /* Adjust the output offset of the relocation to reference the
4887 correct location in the output file. */
4888 outrel[0].r_offset += (input_section->output_section->vma
4889 + input_section->output_offset);
4890 outrel[1].r_offset += (input_section->output_section->vma
4891 + input_section->output_offset);
4892 outrel[2].r_offset += (input_section->output_section->vma
4893 + input_section->output_offset);
4894
4895 /* Put the relocation back out. We have to use the special
4896 relocation outputter in the 64-bit case since the 64-bit
4897 relocation format is non-standard. */
4898 if (ABI_64_P (output_bfd))
4899 {
4900 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4901 (output_bfd, &outrel[0],
4902 (sreloc->contents
4903 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4904 }
4905 else if (htab->is_vxworks)
4906 {
4907 /* VxWorks uses RELA rather than REL dynamic relocations. */
4908 outrel[0].r_addend = *addendp;
4909 bfd_elf32_swap_reloca_out
4910 (output_bfd, &outrel[0],
4911 (sreloc->contents
4912 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4913 }
4914 else
4915 bfd_elf32_swap_reloc_out
4916 (output_bfd, &outrel[0],
4917 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4918
4919 /* We've now added another relocation. */
4920 ++sreloc->reloc_count;
4921
4922 /* Make sure the output section is writable. The dynamic linker
4923 will be writing to it. */
4924 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4925 |= SHF_WRITE;
4926
4927 /* On IRIX5, make an entry of compact relocation info. */
4928 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4929 {
4930 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4931 bfd_byte *cr;
4932
4933 if (scpt)
4934 {
4935 Elf32_crinfo cptrel;
4936
4937 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4938 cptrel.vaddr = (rel->r_offset
4939 + input_section->output_section->vma
4940 + input_section->output_offset);
4941 if (r_type == R_MIPS_REL32)
4942 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4943 else
4944 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4945 mips_elf_set_cr_dist2to (cptrel, 0);
4946 cptrel.konst = *addendp;
4947
4948 cr = (scpt->contents
4949 + sizeof (Elf32_External_compact_rel));
4950 mips_elf_set_cr_relvaddr (cptrel, 0);
4951 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4952 ((Elf32_External_crinfo *) cr
4953 + scpt->reloc_count));
4954 ++scpt->reloc_count;
4955 }
4956 }
4957
4958 /* If we've written this relocation for a readonly section,
4959 we need to set DF_TEXTREL again, so that we do not delete the
4960 DT_TEXTREL tag. */
4961 if (MIPS_ELF_READONLY_SECTION (input_section))
4962 info->flags |= DF_TEXTREL;
4963
4964 return TRUE;
4965 }
4966 \f
4967 /* Return the MACH for a MIPS e_flags value. */
4968
4969 unsigned long
4970 _bfd_elf_mips_mach (flagword flags)
4971 {
4972 switch (flags & EF_MIPS_MACH)
4973 {
4974 case E_MIPS_MACH_3900:
4975 return bfd_mach_mips3900;
4976
4977 case E_MIPS_MACH_4010:
4978 return bfd_mach_mips4010;
4979
4980 case E_MIPS_MACH_4100:
4981 return bfd_mach_mips4100;
4982
4983 case E_MIPS_MACH_4111:
4984 return bfd_mach_mips4111;
4985
4986 case E_MIPS_MACH_4120:
4987 return bfd_mach_mips4120;
4988
4989 case E_MIPS_MACH_4650:
4990 return bfd_mach_mips4650;
4991
4992 case E_MIPS_MACH_5400:
4993 return bfd_mach_mips5400;
4994
4995 case E_MIPS_MACH_5500:
4996 return bfd_mach_mips5500;
4997
4998 case E_MIPS_MACH_9000:
4999 return bfd_mach_mips9000;
5000
5001 case E_MIPS_MACH_SB1:
5002 return bfd_mach_mips_sb1;
5003
5004 default:
5005 switch (flags & EF_MIPS_ARCH)
5006 {
5007 default:
5008 case E_MIPS_ARCH_1:
5009 return bfd_mach_mips3000;
5010
5011 case E_MIPS_ARCH_2:
5012 return bfd_mach_mips6000;
5013
5014 case E_MIPS_ARCH_3:
5015 return bfd_mach_mips4000;
5016
5017 case E_MIPS_ARCH_4:
5018 return bfd_mach_mips8000;
5019
5020 case E_MIPS_ARCH_5:
5021 return bfd_mach_mips5;
5022
5023 case E_MIPS_ARCH_32:
5024 return bfd_mach_mipsisa32;
5025
5026 case E_MIPS_ARCH_64:
5027 return bfd_mach_mipsisa64;
5028
5029 case E_MIPS_ARCH_32R2:
5030 return bfd_mach_mipsisa32r2;
5031
5032 case E_MIPS_ARCH_64R2:
5033 return bfd_mach_mipsisa64r2;
5034 }
5035 }
5036
5037 return 0;
5038 }
5039
5040 /* Return printable name for ABI. */
5041
5042 static INLINE char *
5043 elf_mips_abi_name (bfd *abfd)
5044 {
5045 flagword flags;
5046
5047 flags = elf_elfheader (abfd)->e_flags;
5048 switch (flags & EF_MIPS_ABI)
5049 {
5050 case 0:
5051 if (ABI_N32_P (abfd))
5052 return "N32";
5053 else if (ABI_64_P (abfd))
5054 return "64";
5055 else
5056 return "none";
5057 case E_MIPS_ABI_O32:
5058 return "O32";
5059 case E_MIPS_ABI_O64:
5060 return "O64";
5061 case E_MIPS_ABI_EABI32:
5062 return "EABI32";
5063 case E_MIPS_ABI_EABI64:
5064 return "EABI64";
5065 default:
5066 return "unknown abi";
5067 }
5068 }
5069 \f
5070 /* MIPS ELF uses two common sections. One is the usual one, and the
5071 other is for small objects. All the small objects are kept
5072 together, and then referenced via the gp pointer, which yields
5073 faster assembler code. This is what we use for the small common
5074 section. This approach is copied from ecoff.c. */
5075 static asection mips_elf_scom_section;
5076 static asymbol mips_elf_scom_symbol;
5077 static asymbol *mips_elf_scom_symbol_ptr;
5078
5079 /* MIPS ELF also uses an acommon section, which represents an
5080 allocated common symbol which may be overridden by a
5081 definition in a shared library. */
5082 static asection mips_elf_acom_section;
5083 static asymbol mips_elf_acom_symbol;
5084 static asymbol *mips_elf_acom_symbol_ptr;
5085
5086 /* Handle the special MIPS section numbers that a symbol may use.
5087 This is used for both the 32-bit and the 64-bit ABI. */
5088
5089 void
5090 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5091 {
5092 elf_symbol_type *elfsym;
5093
5094 elfsym = (elf_symbol_type *) asym;
5095 switch (elfsym->internal_elf_sym.st_shndx)
5096 {
5097 case SHN_MIPS_ACOMMON:
5098 /* This section is used in a dynamically linked executable file.
5099 It is an allocated common section. The dynamic linker can
5100 either resolve these symbols to something in a shared
5101 library, or it can just leave them here. For our purposes,
5102 we can consider these symbols to be in a new section. */
5103 if (mips_elf_acom_section.name == NULL)
5104 {
5105 /* Initialize the acommon section. */
5106 mips_elf_acom_section.name = ".acommon";
5107 mips_elf_acom_section.flags = SEC_ALLOC;
5108 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5109 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5110 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5111 mips_elf_acom_symbol.name = ".acommon";
5112 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5113 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5114 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5115 }
5116 asym->section = &mips_elf_acom_section;
5117 break;
5118
5119 case SHN_COMMON:
5120 /* Common symbols less than the GP size are automatically
5121 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5122 if (asym->value > elf_gp_size (abfd)
5123 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5124 || IRIX_COMPAT (abfd) == ict_irix6)
5125 break;
5126 /* Fall through. */
5127 case SHN_MIPS_SCOMMON:
5128 if (mips_elf_scom_section.name == NULL)
5129 {
5130 /* Initialize the small common section. */
5131 mips_elf_scom_section.name = ".scommon";
5132 mips_elf_scom_section.flags = SEC_IS_COMMON;
5133 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5134 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5135 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5136 mips_elf_scom_symbol.name = ".scommon";
5137 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5138 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5139 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5140 }
5141 asym->section = &mips_elf_scom_section;
5142 asym->value = elfsym->internal_elf_sym.st_size;
5143 break;
5144
5145 case SHN_MIPS_SUNDEFINED:
5146 asym->section = bfd_und_section_ptr;
5147 break;
5148
5149 case SHN_MIPS_TEXT:
5150 {
5151 asection *section = bfd_get_section_by_name (abfd, ".text");
5152
5153 BFD_ASSERT (SGI_COMPAT (abfd));
5154 if (section != NULL)
5155 {
5156 asym->section = section;
5157 /* MIPS_TEXT is a bit special, the address is not an offset
5158 to the base of the .text section. So substract the section
5159 base address to make it an offset. */
5160 asym->value -= section->vma;
5161 }
5162 }
5163 break;
5164
5165 case SHN_MIPS_DATA:
5166 {
5167 asection *section = bfd_get_section_by_name (abfd, ".data");
5168
5169 BFD_ASSERT (SGI_COMPAT (abfd));
5170 if (section != NULL)
5171 {
5172 asym->section = section;
5173 /* MIPS_DATA is a bit special, the address is not an offset
5174 to the base of the .data section. So substract the section
5175 base address to make it an offset. */
5176 asym->value -= section->vma;
5177 }
5178 }
5179 break;
5180 }
5181 }
5182 \f
5183 /* Implement elf_backend_eh_frame_address_size. This differs from
5184 the default in the way it handles EABI64.
5185
5186 EABI64 was originally specified as an LP64 ABI, and that is what
5187 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5188 historically accepted the combination of -mabi=eabi and -mlong32,
5189 and this ILP32 variation has become semi-official over time.
5190 Both forms use elf32 and have pointer-sized FDE addresses.
5191
5192 If an EABI object was generated by GCC 4.0 or above, it will have
5193 an empty .gcc_compiled_longXX section, where XX is the size of longs
5194 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5195 have no special marking to distinguish them from LP64 objects.
5196
5197 We don't want users of the official LP64 ABI to be punished for the
5198 existence of the ILP32 variant, but at the same time, we don't want
5199 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5200 We therefore take the following approach:
5201
5202 - If ABFD contains a .gcc_compiled_longXX section, use it to
5203 determine the pointer size.
5204
5205 - Otherwise check the type of the first relocation. Assume that
5206 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5207
5208 - Otherwise punt.
5209
5210 The second check is enough to detect LP64 objects generated by pre-4.0
5211 compilers because, in the kind of output generated by those compilers,
5212 the first relocation will be associated with either a CIE personality
5213 routine or an FDE start address. Furthermore, the compilers never
5214 used a special (non-pointer) encoding for this ABI.
5215
5216 Checking the relocation type should also be safe because there is no
5217 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5218 did so. */
5219
5220 unsigned int
5221 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5222 {
5223 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5224 return 8;
5225 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5226 {
5227 bfd_boolean long32_p, long64_p;
5228
5229 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5230 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5231 if (long32_p && long64_p)
5232 return 0;
5233 if (long32_p)
5234 return 4;
5235 if (long64_p)
5236 return 8;
5237
5238 if (sec->reloc_count > 0
5239 && elf_section_data (sec)->relocs != NULL
5240 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5241 == R_MIPS_64))
5242 return 8;
5243
5244 return 0;
5245 }
5246 return 4;
5247 }
5248 \f
5249 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5250 relocations against two unnamed section symbols to resolve to the
5251 same address. For example, if we have code like:
5252
5253 lw $4,%got_disp(.data)($gp)
5254 lw $25,%got_disp(.text)($gp)
5255 jalr $25
5256
5257 then the linker will resolve both relocations to .data and the program
5258 will jump there rather than to .text.
5259
5260 We can work around this problem by giving names to local section symbols.
5261 This is also what the MIPSpro tools do. */
5262
5263 bfd_boolean
5264 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5265 {
5266 return SGI_COMPAT (abfd);
5267 }
5268 \f
5269 /* Work over a section just before writing it out. This routine is
5270 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5271 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5272 a better way. */
5273
5274 bfd_boolean
5275 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5276 {
5277 if (hdr->sh_type == SHT_MIPS_REGINFO
5278 && hdr->sh_size > 0)
5279 {
5280 bfd_byte buf[4];
5281
5282 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5283 BFD_ASSERT (hdr->contents == NULL);
5284
5285 if (bfd_seek (abfd,
5286 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5287 SEEK_SET) != 0)
5288 return FALSE;
5289 H_PUT_32 (abfd, elf_gp (abfd), buf);
5290 if (bfd_bwrite (buf, 4, abfd) != 4)
5291 return FALSE;
5292 }
5293
5294 if (hdr->sh_type == SHT_MIPS_OPTIONS
5295 && hdr->bfd_section != NULL
5296 && mips_elf_section_data (hdr->bfd_section) != NULL
5297 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5298 {
5299 bfd_byte *contents, *l, *lend;
5300
5301 /* We stored the section contents in the tdata field in the
5302 set_section_contents routine. We save the section contents
5303 so that we don't have to read them again.
5304 At this point we know that elf_gp is set, so we can look
5305 through the section contents to see if there is an
5306 ODK_REGINFO structure. */
5307
5308 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5309 l = contents;
5310 lend = contents + hdr->sh_size;
5311 while (l + sizeof (Elf_External_Options) <= lend)
5312 {
5313 Elf_Internal_Options intopt;
5314
5315 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5316 &intopt);
5317 if (intopt.size < sizeof (Elf_External_Options))
5318 {
5319 (*_bfd_error_handler)
5320 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5321 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5322 break;
5323 }
5324 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5325 {
5326 bfd_byte buf[8];
5327
5328 if (bfd_seek (abfd,
5329 (hdr->sh_offset
5330 + (l - contents)
5331 + sizeof (Elf_External_Options)
5332 + (sizeof (Elf64_External_RegInfo) - 8)),
5333 SEEK_SET) != 0)
5334 return FALSE;
5335 H_PUT_64 (abfd, elf_gp (abfd), buf);
5336 if (bfd_bwrite (buf, 8, abfd) != 8)
5337 return FALSE;
5338 }
5339 else if (intopt.kind == ODK_REGINFO)
5340 {
5341 bfd_byte buf[4];
5342
5343 if (bfd_seek (abfd,
5344 (hdr->sh_offset
5345 + (l - contents)
5346 + sizeof (Elf_External_Options)
5347 + (sizeof (Elf32_External_RegInfo) - 4)),
5348 SEEK_SET) != 0)
5349 return FALSE;
5350 H_PUT_32 (abfd, elf_gp (abfd), buf);
5351 if (bfd_bwrite (buf, 4, abfd) != 4)
5352 return FALSE;
5353 }
5354 l += intopt.size;
5355 }
5356 }
5357
5358 if (hdr->bfd_section != NULL)
5359 {
5360 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5361
5362 if (strcmp (name, ".sdata") == 0
5363 || strcmp (name, ".lit8") == 0
5364 || strcmp (name, ".lit4") == 0)
5365 {
5366 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5367 hdr->sh_type = SHT_PROGBITS;
5368 }
5369 else if (strcmp (name, ".sbss") == 0)
5370 {
5371 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5372 hdr->sh_type = SHT_NOBITS;
5373 }
5374 else if (strcmp (name, ".srdata") == 0)
5375 {
5376 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5377 hdr->sh_type = SHT_PROGBITS;
5378 }
5379 else if (strcmp (name, ".compact_rel") == 0)
5380 {
5381 hdr->sh_flags = 0;
5382 hdr->sh_type = SHT_PROGBITS;
5383 }
5384 else if (strcmp (name, ".rtproc") == 0)
5385 {
5386 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5387 {
5388 unsigned int adjust;
5389
5390 adjust = hdr->sh_size % hdr->sh_addralign;
5391 if (adjust != 0)
5392 hdr->sh_size += hdr->sh_addralign - adjust;
5393 }
5394 }
5395 }
5396
5397 return TRUE;
5398 }
5399
5400 /* Handle a MIPS specific section when reading an object file. This
5401 is called when elfcode.h finds a section with an unknown type.
5402 This routine supports both the 32-bit and 64-bit ELF ABI.
5403
5404 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5405 how to. */
5406
5407 bfd_boolean
5408 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5409 Elf_Internal_Shdr *hdr,
5410 const char *name,
5411 int shindex)
5412 {
5413 flagword flags = 0;
5414
5415 /* There ought to be a place to keep ELF backend specific flags, but
5416 at the moment there isn't one. We just keep track of the
5417 sections by their name, instead. Fortunately, the ABI gives
5418 suggested names for all the MIPS specific sections, so we will
5419 probably get away with this. */
5420 switch (hdr->sh_type)
5421 {
5422 case SHT_MIPS_LIBLIST:
5423 if (strcmp (name, ".liblist") != 0)
5424 return FALSE;
5425 break;
5426 case SHT_MIPS_MSYM:
5427 if (strcmp (name, ".msym") != 0)
5428 return FALSE;
5429 break;
5430 case SHT_MIPS_CONFLICT:
5431 if (strcmp (name, ".conflict") != 0)
5432 return FALSE;
5433 break;
5434 case SHT_MIPS_GPTAB:
5435 if (! CONST_STRNEQ (name, ".gptab."))
5436 return FALSE;
5437 break;
5438 case SHT_MIPS_UCODE:
5439 if (strcmp (name, ".ucode") != 0)
5440 return FALSE;
5441 break;
5442 case SHT_MIPS_DEBUG:
5443 if (strcmp (name, ".mdebug") != 0)
5444 return FALSE;
5445 flags = SEC_DEBUGGING;
5446 break;
5447 case SHT_MIPS_REGINFO:
5448 if (strcmp (name, ".reginfo") != 0
5449 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5450 return FALSE;
5451 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5452 break;
5453 case SHT_MIPS_IFACE:
5454 if (strcmp (name, ".MIPS.interfaces") != 0)
5455 return FALSE;
5456 break;
5457 case SHT_MIPS_CONTENT:
5458 if (! CONST_STRNEQ (name, ".MIPS.content"))
5459 return FALSE;
5460 break;
5461 case SHT_MIPS_OPTIONS:
5462 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5463 return FALSE;
5464 break;
5465 case SHT_MIPS_DWARF:
5466 if (! CONST_STRNEQ (name, ".debug_"))
5467 return FALSE;
5468 break;
5469 case SHT_MIPS_SYMBOL_LIB:
5470 if (strcmp (name, ".MIPS.symlib") != 0)
5471 return FALSE;
5472 break;
5473 case SHT_MIPS_EVENTS:
5474 if (! CONST_STRNEQ (name, ".MIPS.events")
5475 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5476 return FALSE;
5477 break;
5478 default:
5479 break;
5480 }
5481
5482 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5483 return FALSE;
5484
5485 if (flags)
5486 {
5487 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5488 (bfd_get_section_flags (abfd,
5489 hdr->bfd_section)
5490 | flags)))
5491 return FALSE;
5492 }
5493
5494 /* FIXME: We should record sh_info for a .gptab section. */
5495
5496 /* For a .reginfo section, set the gp value in the tdata information
5497 from the contents of this section. We need the gp value while
5498 processing relocs, so we just get it now. The .reginfo section
5499 is not used in the 64-bit MIPS ELF ABI. */
5500 if (hdr->sh_type == SHT_MIPS_REGINFO)
5501 {
5502 Elf32_External_RegInfo ext;
5503 Elf32_RegInfo s;
5504
5505 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5506 &ext, 0, sizeof ext))
5507 return FALSE;
5508 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5509 elf_gp (abfd) = s.ri_gp_value;
5510 }
5511
5512 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5513 set the gp value based on what we find. We may see both
5514 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5515 they should agree. */
5516 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5517 {
5518 bfd_byte *contents, *l, *lend;
5519
5520 contents = bfd_malloc (hdr->sh_size);
5521 if (contents == NULL)
5522 return FALSE;
5523 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5524 0, hdr->sh_size))
5525 {
5526 free (contents);
5527 return FALSE;
5528 }
5529 l = contents;
5530 lend = contents + hdr->sh_size;
5531 while (l + sizeof (Elf_External_Options) <= lend)
5532 {
5533 Elf_Internal_Options intopt;
5534
5535 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5536 &intopt);
5537 if (intopt.size < sizeof (Elf_External_Options))
5538 {
5539 (*_bfd_error_handler)
5540 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5541 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5542 break;
5543 }
5544 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5545 {
5546 Elf64_Internal_RegInfo intreg;
5547
5548 bfd_mips_elf64_swap_reginfo_in
5549 (abfd,
5550 ((Elf64_External_RegInfo *)
5551 (l + sizeof (Elf_External_Options))),
5552 &intreg);
5553 elf_gp (abfd) = intreg.ri_gp_value;
5554 }
5555 else if (intopt.kind == ODK_REGINFO)
5556 {
5557 Elf32_RegInfo intreg;
5558
5559 bfd_mips_elf32_swap_reginfo_in
5560 (abfd,
5561 ((Elf32_External_RegInfo *)
5562 (l + sizeof (Elf_External_Options))),
5563 &intreg);
5564 elf_gp (abfd) = intreg.ri_gp_value;
5565 }
5566 l += intopt.size;
5567 }
5568 free (contents);
5569 }
5570
5571 return TRUE;
5572 }
5573
5574 /* Set the correct type for a MIPS ELF section. We do this by the
5575 section name, which is a hack, but ought to work. This routine is
5576 used by both the 32-bit and the 64-bit ABI. */
5577
5578 bfd_boolean
5579 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5580 {
5581 const char *name = bfd_get_section_name (abfd, sec);
5582
5583 if (strcmp (name, ".liblist") == 0)
5584 {
5585 hdr->sh_type = SHT_MIPS_LIBLIST;
5586 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5587 /* The sh_link field is set in final_write_processing. */
5588 }
5589 else if (strcmp (name, ".conflict") == 0)
5590 hdr->sh_type = SHT_MIPS_CONFLICT;
5591 else if (CONST_STRNEQ (name, ".gptab."))
5592 {
5593 hdr->sh_type = SHT_MIPS_GPTAB;
5594 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5595 /* The sh_info field is set in final_write_processing. */
5596 }
5597 else if (strcmp (name, ".ucode") == 0)
5598 hdr->sh_type = SHT_MIPS_UCODE;
5599 else if (strcmp (name, ".mdebug") == 0)
5600 {
5601 hdr->sh_type = SHT_MIPS_DEBUG;
5602 /* In a shared object on IRIX 5.3, the .mdebug section has an
5603 entsize of 0. FIXME: Does this matter? */
5604 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5605 hdr->sh_entsize = 0;
5606 else
5607 hdr->sh_entsize = 1;
5608 }
5609 else if (strcmp (name, ".reginfo") == 0)
5610 {
5611 hdr->sh_type = SHT_MIPS_REGINFO;
5612 /* In a shared object on IRIX 5.3, the .reginfo section has an
5613 entsize of 0x18. FIXME: Does this matter? */
5614 if (SGI_COMPAT (abfd))
5615 {
5616 if ((abfd->flags & DYNAMIC) != 0)
5617 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5618 else
5619 hdr->sh_entsize = 1;
5620 }
5621 else
5622 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5623 }
5624 else if (SGI_COMPAT (abfd)
5625 && (strcmp (name, ".hash") == 0
5626 || strcmp (name, ".dynamic") == 0
5627 || strcmp (name, ".dynstr") == 0))
5628 {
5629 if (SGI_COMPAT (abfd))
5630 hdr->sh_entsize = 0;
5631 #if 0
5632 /* This isn't how the IRIX6 linker behaves. */
5633 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5634 #endif
5635 }
5636 else if (strcmp (name, ".got") == 0
5637 || strcmp (name, ".srdata") == 0
5638 || strcmp (name, ".sdata") == 0
5639 || strcmp (name, ".sbss") == 0
5640 || strcmp (name, ".lit4") == 0
5641 || strcmp (name, ".lit8") == 0)
5642 hdr->sh_flags |= SHF_MIPS_GPREL;
5643 else if (strcmp (name, ".MIPS.interfaces") == 0)
5644 {
5645 hdr->sh_type = SHT_MIPS_IFACE;
5646 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5647 }
5648 else if (CONST_STRNEQ (name, ".MIPS.content"))
5649 {
5650 hdr->sh_type = SHT_MIPS_CONTENT;
5651 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5652 /* The sh_info field is set in final_write_processing. */
5653 }
5654 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5655 {
5656 hdr->sh_type = SHT_MIPS_OPTIONS;
5657 hdr->sh_entsize = 1;
5658 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5659 }
5660 else if (CONST_STRNEQ (name, ".debug_"))
5661 hdr->sh_type = SHT_MIPS_DWARF;
5662 else if (strcmp (name, ".MIPS.symlib") == 0)
5663 {
5664 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5665 /* The sh_link and sh_info fields are set in
5666 final_write_processing. */
5667 }
5668 else if (CONST_STRNEQ (name, ".MIPS.events")
5669 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5670 {
5671 hdr->sh_type = SHT_MIPS_EVENTS;
5672 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5673 /* The sh_link field is set in final_write_processing. */
5674 }
5675 else if (strcmp (name, ".msym") == 0)
5676 {
5677 hdr->sh_type = SHT_MIPS_MSYM;
5678 hdr->sh_flags |= SHF_ALLOC;
5679 hdr->sh_entsize = 8;
5680 }
5681
5682 /* The generic elf_fake_sections will set up REL_HDR using the default
5683 kind of relocations. We used to set up a second header for the
5684 non-default kind of relocations here, but only NewABI would use
5685 these, and the IRIX ld doesn't like resulting empty RELA sections.
5686 Thus we create those header only on demand now. */
5687
5688 return TRUE;
5689 }
5690
5691 /* Given a BFD section, try to locate the corresponding ELF section
5692 index. This is used by both the 32-bit and the 64-bit ABI.
5693 Actually, it's not clear to me that the 64-bit ABI supports these,
5694 but for non-PIC objects we will certainly want support for at least
5695 the .scommon section. */
5696
5697 bfd_boolean
5698 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5699 asection *sec, int *retval)
5700 {
5701 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5702 {
5703 *retval = SHN_MIPS_SCOMMON;
5704 return TRUE;
5705 }
5706 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5707 {
5708 *retval = SHN_MIPS_ACOMMON;
5709 return TRUE;
5710 }
5711 return FALSE;
5712 }
5713 \f
5714 /* Hook called by the linker routine which adds symbols from an object
5715 file. We must handle the special MIPS section numbers here. */
5716
5717 bfd_boolean
5718 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5719 Elf_Internal_Sym *sym, const char **namep,
5720 flagword *flagsp ATTRIBUTE_UNUSED,
5721 asection **secp, bfd_vma *valp)
5722 {
5723 if (SGI_COMPAT (abfd)
5724 && (abfd->flags & DYNAMIC) != 0
5725 && strcmp (*namep, "_rld_new_interface") == 0)
5726 {
5727 /* Skip IRIX5 rld entry name. */
5728 *namep = NULL;
5729 return TRUE;
5730 }
5731
5732 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5733 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5734 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5735 a magic symbol resolved by the linker, we ignore this bogus definition
5736 of _gp_disp. New ABI objects do not suffer from this problem so this
5737 is not done for them. */
5738 if (!NEWABI_P(abfd)
5739 && (sym->st_shndx == SHN_ABS)
5740 && (strcmp (*namep, "_gp_disp") == 0))
5741 {
5742 *namep = NULL;
5743 return TRUE;
5744 }
5745
5746 switch (sym->st_shndx)
5747 {
5748 case SHN_COMMON:
5749 /* Common symbols less than the GP size are automatically
5750 treated as SHN_MIPS_SCOMMON symbols. */
5751 if (sym->st_size > elf_gp_size (abfd)
5752 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5753 || IRIX_COMPAT (abfd) == ict_irix6)
5754 break;
5755 /* Fall through. */
5756 case SHN_MIPS_SCOMMON:
5757 *secp = bfd_make_section_old_way (abfd, ".scommon");
5758 (*secp)->flags |= SEC_IS_COMMON;
5759 *valp = sym->st_size;
5760 break;
5761
5762 case SHN_MIPS_TEXT:
5763 /* This section is used in a shared object. */
5764 if (elf_tdata (abfd)->elf_text_section == NULL)
5765 {
5766 asymbol *elf_text_symbol;
5767 asection *elf_text_section;
5768 bfd_size_type amt = sizeof (asection);
5769
5770 elf_text_section = bfd_zalloc (abfd, amt);
5771 if (elf_text_section == NULL)
5772 return FALSE;
5773
5774 amt = sizeof (asymbol);
5775 elf_text_symbol = bfd_zalloc (abfd, amt);
5776 if (elf_text_symbol == NULL)
5777 return FALSE;
5778
5779 /* Initialize the section. */
5780
5781 elf_tdata (abfd)->elf_text_section = elf_text_section;
5782 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5783
5784 elf_text_section->symbol = elf_text_symbol;
5785 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5786
5787 elf_text_section->name = ".text";
5788 elf_text_section->flags = SEC_NO_FLAGS;
5789 elf_text_section->output_section = NULL;
5790 elf_text_section->owner = abfd;
5791 elf_text_symbol->name = ".text";
5792 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5793 elf_text_symbol->section = elf_text_section;
5794 }
5795 /* This code used to do *secp = bfd_und_section_ptr if
5796 info->shared. I don't know why, and that doesn't make sense,
5797 so I took it out. */
5798 *secp = elf_tdata (abfd)->elf_text_section;
5799 break;
5800
5801 case SHN_MIPS_ACOMMON:
5802 /* Fall through. XXX Can we treat this as allocated data? */
5803 case SHN_MIPS_DATA:
5804 /* This section is used in a shared object. */
5805 if (elf_tdata (abfd)->elf_data_section == NULL)
5806 {
5807 asymbol *elf_data_symbol;
5808 asection *elf_data_section;
5809 bfd_size_type amt = sizeof (asection);
5810
5811 elf_data_section = bfd_zalloc (abfd, amt);
5812 if (elf_data_section == NULL)
5813 return FALSE;
5814
5815 amt = sizeof (asymbol);
5816 elf_data_symbol = bfd_zalloc (abfd, amt);
5817 if (elf_data_symbol == NULL)
5818 return FALSE;
5819
5820 /* Initialize the section. */
5821
5822 elf_tdata (abfd)->elf_data_section = elf_data_section;
5823 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5824
5825 elf_data_section->symbol = elf_data_symbol;
5826 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5827
5828 elf_data_section->name = ".data";
5829 elf_data_section->flags = SEC_NO_FLAGS;
5830 elf_data_section->output_section = NULL;
5831 elf_data_section->owner = abfd;
5832 elf_data_symbol->name = ".data";
5833 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5834 elf_data_symbol->section = elf_data_section;
5835 }
5836 /* This code used to do *secp = bfd_und_section_ptr if
5837 info->shared. I don't know why, and that doesn't make sense,
5838 so I took it out. */
5839 *secp = elf_tdata (abfd)->elf_data_section;
5840 break;
5841
5842 case SHN_MIPS_SUNDEFINED:
5843 *secp = bfd_und_section_ptr;
5844 break;
5845 }
5846
5847 if (SGI_COMPAT (abfd)
5848 && ! info->shared
5849 && info->hash->creator == abfd->xvec
5850 && strcmp (*namep, "__rld_obj_head") == 0)
5851 {
5852 struct elf_link_hash_entry *h;
5853 struct bfd_link_hash_entry *bh;
5854
5855 /* Mark __rld_obj_head as dynamic. */
5856 bh = NULL;
5857 if (! (_bfd_generic_link_add_one_symbol
5858 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5859 get_elf_backend_data (abfd)->collect, &bh)))
5860 return FALSE;
5861
5862 h = (struct elf_link_hash_entry *) bh;
5863 h->non_elf = 0;
5864 h->def_regular = 1;
5865 h->type = STT_OBJECT;
5866
5867 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5868 return FALSE;
5869
5870 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5871 }
5872
5873 /* If this is a mips16 text symbol, add 1 to the value to make it
5874 odd. This will cause something like .word SYM to come up with
5875 the right value when it is loaded into the PC. */
5876 if (sym->st_other == STO_MIPS16)
5877 ++*valp;
5878
5879 return TRUE;
5880 }
5881
5882 /* This hook function is called before the linker writes out a global
5883 symbol. We mark symbols as small common if appropriate. This is
5884 also where we undo the increment of the value for a mips16 symbol. */
5885
5886 bfd_boolean
5887 _bfd_mips_elf_link_output_symbol_hook
5888 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5889 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5890 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5891 {
5892 /* If we see a common symbol, which implies a relocatable link, then
5893 if a symbol was small common in an input file, mark it as small
5894 common in the output file. */
5895 if (sym->st_shndx == SHN_COMMON
5896 && strcmp (input_sec->name, ".scommon") == 0)
5897 sym->st_shndx = SHN_MIPS_SCOMMON;
5898
5899 if (sym->st_other == STO_MIPS16)
5900 sym->st_value &= ~1;
5901
5902 return TRUE;
5903 }
5904 \f
5905 /* Functions for the dynamic linker. */
5906
5907 /* Create dynamic sections when linking against a dynamic object. */
5908
5909 bfd_boolean
5910 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5911 {
5912 struct elf_link_hash_entry *h;
5913 struct bfd_link_hash_entry *bh;
5914 flagword flags;
5915 register asection *s;
5916 const char * const *namep;
5917 struct mips_elf_link_hash_table *htab;
5918
5919 htab = mips_elf_hash_table (info);
5920 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5921 | SEC_LINKER_CREATED | SEC_READONLY);
5922
5923 /* The psABI requires a read-only .dynamic section, but the VxWorks
5924 EABI doesn't. */
5925 if (!htab->is_vxworks)
5926 {
5927 s = bfd_get_section_by_name (abfd, ".dynamic");
5928 if (s != NULL)
5929 {
5930 if (! bfd_set_section_flags (abfd, s, flags))
5931 return FALSE;
5932 }
5933 }
5934
5935 /* We need to create .got section. */
5936 if (! mips_elf_create_got_section (abfd, info, FALSE))
5937 return FALSE;
5938
5939 if (! mips_elf_rel_dyn_section (info, TRUE))
5940 return FALSE;
5941
5942 /* Create .stub section. */
5943 if (bfd_get_section_by_name (abfd,
5944 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5945 {
5946 s = bfd_make_section_with_flags (abfd,
5947 MIPS_ELF_STUB_SECTION_NAME (abfd),
5948 flags | SEC_CODE);
5949 if (s == NULL
5950 || ! bfd_set_section_alignment (abfd, s,
5951 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5952 return FALSE;
5953 }
5954
5955 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5956 && !info->shared
5957 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5958 {
5959 s = bfd_make_section_with_flags (abfd, ".rld_map",
5960 flags &~ (flagword) SEC_READONLY);
5961 if (s == NULL
5962 || ! bfd_set_section_alignment (abfd, s,
5963 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5964 return FALSE;
5965 }
5966
5967 /* On IRIX5, we adjust add some additional symbols and change the
5968 alignments of several sections. There is no ABI documentation
5969 indicating that this is necessary on IRIX6, nor any evidence that
5970 the linker takes such action. */
5971 if (IRIX_COMPAT (abfd) == ict_irix5)
5972 {
5973 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5974 {
5975 bh = NULL;
5976 if (! (_bfd_generic_link_add_one_symbol
5977 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5978 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5979 return FALSE;
5980
5981 h = (struct elf_link_hash_entry *) bh;
5982 h->non_elf = 0;
5983 h->def_regular = 1;
5984 h->type = STT_SECTION;
5985
5986 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5987 return FALSE;
5988 }
5989
5990 /* We need to create a .compact_rel section. */
5991 if (SGI_COMPAT (abfd))
5992 {
5993 if (!mips_elf_create_compact_rel_section (abfd, info))
5994 return FALSE;
5995 }
5996
5997 /* Change alignments of some sections. */
5998 s = bfd_get_section_by_name (abfd, ".hash");
5999 if (s != NULL)
6000 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6001 s = bfd_get_section_by_name (abfd, ".dynsym");
6002 if (s != NULL)
6003 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6004 s = bfd_get_section_by_name (abfd, ".dynstr");
6005 if (s != NULL)
6006 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6007 s = bfd_get_section_by_name (abfd, ".reginfo");
6008 if (s != NULL)
6009 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6010 s = bfd_get_section_by_name (abfd, ".dynamic");
6011 if (s != NULL)
6012 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6013 }
6014
6015 if (!info->shared)
6016 {
6017 const char *name;
6018
6019 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6020 bh = NULL;
6021 if (!(_bfd_generic_link_add_one_symbol
6022 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6023 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6024 return FALSE;
6025
6026 h = (struct elf_link_hash_entry *) bh;
6027 h->non_elf = 0;
6028 h->def_regular = 1;
6029 h->type = STT_SECTION;
6030
6031 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6032 return FALSE;
6033
6034 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6035 {
6036 /* __rld_map is a four byte word located in the .data section
6037 and is filled in by the rtld to contain a pointer to
6038 the _r_debug structure. Its symbol value will be set in
6039 _bfd_mips_elf_finish_dynamic_symbol. */
6040 s = bfd_get_section_by_name (abfd, ".rld_map");
6041 BFD_ASSERT (s != NULL);
6042
6043 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6044 bh = NULL;
6045 if (!(_bfd_generic_link_add_one_symbol
6046 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6047 get_elf_backend_data (abfd)->collect, &bh)))
6048 return FALSE;
6049
6050 h = (struct elf_link_hash_entry *) bh;
6051 h->non_elf = 0;
6052 h->def_regular = 1;
6053 h->type = STT_OBJECT;
6054
6055 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6056 return FALSE;
6057 }
6058 }
6059
6060 if (htab->is_vxworks)
6061 {
6062 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6063 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6064 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6065 return FALSE;
6066
6067 /* Cache the sections created above. */
6068 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6069 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6070 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6071 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6072 if (!htab->sdynbss
6073 || (!htab->srelbss && !info->shared)
6074 || !htab->srelplt
6075 || !htab->splt)
6076 abort ();
6077
6078 /* Do the usual VxWorks handling. */
6079 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6080 return FALSE;
6081
6082 /* Work out the PLT sizes. */
6083 if (info->shared)
6084 {
6085 htab->plt_header_size
6086 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6087 htab->plt_entry_size
6088 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6089 }
6090 else
6091 {
6092 htab->plt_header_size
6093 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6094 htab->plt_entry_size
6095 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6096 }
6097 }
6098
6099 return TRUE;
6100 }
6101 \f
6102 /* Look through the relocs for a section during the first phase, and
6103 allocate space in the global offset table. */
6104
6105 bfd_boolean
6106 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6107 asection *sec, const Elf_Internal_Rela *relocs)
6108 {
6109 const char *name;
6110 bfd *dynobj;
6111 Elf_Internal_Shdr *symtab_hdr;
6112 struct elf_link_hash_entry **sym_hashes;
6113 struct mips_got_info *g;
6114 size_t extsymoff;
6115 const Elf_Internal_Rela *rel;
6116 const Elf_Internal_Rela *rel_end;
6117 asection *sgot;
6118 asection *sreloc;
6119 const struct elf_backend_data *bed;
6120 struct mips_elf_link_hash_table *htab;
6121
6122 if (info->relocatable)
6123 return TRUE;
6124
6125 htab = mips_elf_hash_table (info);
6126 dynobj = elf_hash_table (info)->dynobj;
6127 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6128 sym_hashes = elf_sym_hashes (abfd);
6129 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6130
6131 /* Check for the mips16 stub sections. */
6132
6133 name = bfd_get_section_name (abfd, sec);
6134 if (FN_STUB_P (name))
6135 {
6136 unsigned long r_symndx;
6137
6138 /* Look at the relocation information to figure out which symbol
6139 this is for. */
6140
6141 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6142
6143 if (r_symndx < extsymoff
6144 || sym_hashes[r_symndx - extsymoff] == NULL)
6145 {
6146 asection *o;
6147
6148 /* This stub is for a local symbol. This stub will only be
6149 needed if there is some relocation in this BFD, other
6150 than a 16 bit function call, which refers to this symbol. */
6151 for (o = abfd->sections; o != NULL; o = o->next)
6152 {
6153 Elf_Internal_Rela *sec_relocs;
6154 const Elf_Internal_Rela *r, *rend;
6155
6156 /* We can ignore stub sections when looking for relocs. */
6157 if ((o->flags & SEC_RELOC) == 0
6158 || o->reloc_count == 0
6159 || mips16_stub_section_p (abfd, o))
6160 continue;
6161
6162 sec_relocs
6163 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6164 info->keep_memory);
6165 if (sec_relocs == NULL)
6166 return FALSE;
6167
6168 rend = sec_relocs + o->reloc_count;
6169 for (r = sec_relocs; r < rend; r++)
6170 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6171 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6172 break;
6173
6174 if (elf_section_data (o)->relocs != sec_relocs)
6175 free (sec_relocs);
6176
6177 if (r < rend)
6178 break;
6179 }
6180
6181 if (o == NULL)
6182 {
6183 /* There is no non-call reloc for this stub, so we do
6184 not need it. Since this function is called before
6185 the linker maps input sections to output sections, we
6186 can easily discard it by setting the SEC_EXCLUDE
6187 flag. */
6188 sec->flags |= SEC_EXCLUDE;
6189 return TRUE;
6190 }
6191
6192 /* Record this stub in an array of local symbol stubs for
6193 this BFD. */
6194 if (elf_tdata (abfd)->local_stubs == NULL)
6195 {
6196 unsigned long symcount;
6197 asection **n;
6198 bfd_size_type amt;
6199
6200 if (elf_bad_symtab (abfd))
6201 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6202 else
6203 symcount = symtab_hdr->sh_info;
6204 amt = symcount * sizeof (asection *);
6205 n = bfd_zalloc (abfd, amt);
6206 if (n == NULL)
6207 return FALSE;
6208 elf_tdata (abfd)->local_stubs = n;
6209 }
6210
6211 sec->flags |= SEC_KEEP;
6212 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6213
6214 /* We don't need to set mips16_stubs_seen in this case.
6215 That flag is used to see whether we need to look through
6216 the global symbol table for stubs. We don't need to set
6217 it here, because we just have a local stub. */
6218 }
6219 else
6220 {
6221 struct mips_elf_link_hash_entry *h;
6222
6223 h = ((struct mips_elf_link_hash_entry *)
6224 sym_hashes[r_symndx - extsymoff]);
6225
6226 while (h->root.root.type == bfd_link_hash_indirect
6227 || h->root.root.type == bfd_link_hash_warning)
6228 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6229
6230 /* H is the symbol this stub is for. */
6231
6232 /* If we already have an appropriate stub for this function, we
6233 don't need another one, so we can discard this one. Since
6234 this function is called before the linker maps input sections
6235 to output sections, we can easily discard it by setting the
6236 SEC_EXCLUDE flag. */
6237 if (h->fn_stub != NULL)
6238 {
6239 sec->flags |= SEC_EXCLUDE;
6240 return TRUE;
6241 }
6242
6243 sec->flags |= SEC_KEEP;
6244 h->fn_stub = sec;
6245 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6246 }
6247 }
6248 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6249 {
6250 unsigned long r_symndx;
6251 struct mips_elf_link_hash_entry *h;
6252 asection **loc;
6253
6254 /* Look at the relocation information to figure out which symbol
6255 this is for. */
6256
6257 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6258
6259 if (r_symndx < extsymoff
6260 || sym_hashes[r_symndx - extsymoff] == NULL)
6261 {
6262 asection *o;
6263
6264 /* This stub is for a local symbol. This stub will only be
6265 needed if there is some relocation (R_MIPS16_26) in this BFD
6266 that refers to this symbol. */
6267 for (o = abfd->sections; o != NULL; o = o->next)
6268 {
6269 Elf_Internal_Rela *sec_relocs;
6270 const Elf_Internal_Rela *r, *rend;
6271
6272 /* We can ignore stub sections when looking for relocs. */
6273 if ((o->flags & SEC_RELOC) == 0
6274 || o->reloc_count == 0
6275 || mips16_stub_section_p (abfd, o))
6276 continue;
6277
6278 sec_relocs
6279 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6280 info->keep_memory);
6281 if (sec_relocs == NULL)
6282 return FALSE;
6283
6284 rend = sec_relocs + o->reloc_count;
6285 for (r = sec_relocs; r < rend; r++)
6286 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6287 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6288 break;
6289
6290 if (elf_section_data (o)->relocs != sec_relocs)
6291 free (sec_relocs);
6292
6293 if (r < rend)
6294 break;
6295 }
6296
6297 if (o == NULL)
6298 {
6299 /* There is no non-call reloc for this stub, so we do
6300 not need it. Since this function is called before
6301 the linker maps input sections to output sections, we
6302 can easily discard it by setting the SEC_EXCLUDE
6303 flag. */
6304 sec->flags |= SEC_EXCLUDE;
6305 return TRUE;
6306 }
6307
6308 /* Record this stub in an array of local symbol call_stubs for
6309 this BFD. */
6310 if (elf_tdata (abfd)->local_call_stubs == NULL)
6311 {
6312 unsigned long symcount;
6313 asection **n;
6314 bfd_size_type amt;
6315
6316 if (elf_bad_symtab (abfd))
6317 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6318 else
6319 symcount = symtab_hdr->sh_info;
6320 amt = symcount * sizeof (asection *);
6321 n = bfd_zalloc (abfd, amt);
6322 if (n == NULL)
6323 return FALSE;
6324 elf_tdata (abfd)->local_call_stubs = n;
6325 }
6326
6327 sec->flags |= SEC_KEEP;
6328 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6329
6330 /* We don't need to set mips16_stubs_seen in this case.
6331 That flag is used to see whether we need to look through
6332 the global symbol table for stubs. We don't need to set
6333 it here, because we just have a local stub. */
6334 }
6335 else
6336 {
6337 h = ((struct mips_elf_link_hash_entry *)
6338 sym_hashes[r_symndx - extsymoff]);
6339
6340 /* H is the symbol this stub is for. */
6341
6342 if (CALL_FP_STUB_P (name))
6343 loc = &h->call_fp_stub;
6344 else
6345 loc = &h->call_stub;
6346
6347 /* If we already have an appropriate stub for this function, we
6348 don't need another one, so we can discard this one. Since
6349 this function is called before the linker maps input sections
6350 to output sections, we can easily discard it by setting the
6351 SEC_EXCLUDE flag. */
6352 if (*loc != NULL)
6353 {
6354 sec->flags |= SEC_EXCLUDE;
6355 return TRUE;
6356 }
6357
6358 sec->flags |= SEC_KEEP;
6359 *loc = sec;
6360 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6361 }
6362 }
6363
6364 if (dynobj == NULL)
6365 {
6366 sgot = NULL;
6367 g = NULL;
6368 }
6369 else
6370 {
6371 sgot = mips_elf_got_section (dynobj, FALSE);
6372 if (sgot == NULL)
6373 g = NULL;
6374 else
6375 {
6376 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6377 g = mips_elf_section_data (sgot)->u.got_info;
6378 BFD_ASSERT (g != NULL);
6379 }
6380 }
6381
6382 sreloc = NULL;
6383 bed = get_elf_backend_data (abfd);
6384 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6385 for (rel = relocs; rel < rel_end; ++rel)
6386 {
6387 unsigned long r_symndx;
6388 unsigned int r_type;
6389 struct elf_link_hash_entry *h;
6390
6391 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6392 r_type = ELF_R_TYPE (abfd, rel->r_info);
6393
6394 if (r_symndx < extsymoff)
6395 h = NULL;
6396 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6397 {
6398 (*_bfd_error_handler)
6399 (_("%B: Malformed reloc detected for section %s"),
6400 abfd, name);
6401 bfd_set_error (bfd_error_bad_value);
6402 return FALSE;
6403 }
6404 else
6405 {
6406 h = sym_hashes[r_symndx - extsymoff];
6407
6408 /* This may be an indirect symbol created because of a version. */
6409 if (h != NULL)
6410 {
6411 while (h->root.type == bfd_link_hash_indirect)
6412 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6413 }
6414 }
6415
6416 /* Some relocs require a global offset table. */
6417 if (dynobj == NULL || sgot == NULL)
6418 {
6419 switch (r_type)
6420 {
6421 case R_MIPS_GOT16:
6422 case R_MIPS_CALL16:
6423 case R_MIPS_CALL_HI16:
6424 case R_MIPS_CALL_LO16:
6425 case R_MIPS_GOT_HI16:
6426 case R_MIPS_GOT_LO16:
6427 case R_MIPS_GOT_PAGE:
6428 case R_MIPS_GOT_OFST:
6429 case R_MIPS_GOT_DISP:
6430 case R_MIPS_TLS_GOTTPREL:
6431 case R_MIPS_TLS_GD:
6432 case R_MIPS_TLS_LDM:
6433 if (dynobj == NULL)
6434 elf_hash_table (info)->dynobj = dynobj = abfd;
6435 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6436 return FALSE;
6437 g = mips_elf_got_info (dynobj, &sgot);
6438 if (htab->is_vxworks && !info->shared)
6439 {
6440 (*_bfd_error_handler)
6441 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6442 abfd, (unsigned long) rel->r_offset);
6443 bfd_set_error (bfd_error_bad_value);
6444 return FALSE;
6445 }
6446 break;
6447
6448 case R_MIPS_32:
6449 case R_MIPS_REL32:
6450 case R_MIPS_64:
6451 /* In VxWorks executables, references to external symbols
6452 are handled using copy relocs or PLT stubs, so there's
6453 no need to add a dynamic relocation here. */
6454 if (dynobj == NULL
6455 && (info->shared || (h != NULL && !htab->is_vxworks))
6456 && (sec->flags & SEC_ALLOC) != 0)
6457 elf_hash_table (info)->dynobj = dynobj = abfd;
6458 break;
6459
6460 default:
6461 break;
6462 }
6463 }
6464
6465 if (h)
6466 {
6467 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6468
6469 /* Relocations against the special VxWorks __GOTT_BASE__ and
6470 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6471 room for them in .rela.dyn. */
6472 if (is_gott_symbol (info, h))
6473 {
6474 if (sreloc == NULL)
6475 {
6476 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6477 if (sreloc == NULL)
6478 return FALSE;
6479 }
6480 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6481 if (MIPS_ELF_READONLY_SECTION (sec))
6482 /* We tell the dynamic linker that there are
6483 relocations against the text segment. */
6484 info->flags |= DF_TEXTREL;
6485 }
6486 }
6487 else if (r_type == R_MIPS_CALL_LO16
6488 || r_type == R_MIPS_GOT_LO16
6489 || r_type == R_MIPS_GOT_DISP
6490 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6491 {
6492 /* We may need a local GOT entry for this relocation. We
6493 don't count R_MIPS_GOT_PAGE because we can estimate the
6494 maximum number of pages needed by looking at the size of
6495 the segment. Similar comments apply to R_MIPS_GOT16 and
6496 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6497 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6498 R_MIPS_CALL_HI16 because these are always followed by an
6499 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6500 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6501 rel->r_addend, g, 0))
6502 return FALSE;
6503 }
6504
6505 switch (r_type)
6506 {
6507 case R_MIPS_CALL16:
6508 if (h == NULL)
6509 {
6510 (*_bfd_error_handler)
6511 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6512 abfd, (unsigned long) rel->r_offset);
6513 bfd_set_error (bfd_error_bad_value);
6514 return FALSE;
6515 }
6516 /* Fall through. */
6517
6518 case R_MIPS_CALL_HI16:
6519 case R_MIPS_CALL_LO16:
6520 if (h != NULL)
6521 {
6522 /* VxWorks call relocations point the function's .got.plt
6523 entry, which will be allocated by adjust_dynamic_symbol.
6524 Otherwise, this symbol requires a global GOT entry. */
6525 if (!htab->is_vxworks
6526 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6527 return FALSE;
6528
6529 /* We need a stub, not a plt entry for the undefined
6530 function. But we record it as if it needs plt. See
6531 _bfd_elf_adjust_dynamic_symbol. */
6532 h->needs_plt = 1;
6533 h->type = STT_FUNC;
6534 }
6535 break;
6536
6537 case R_MIPS_GOT_PAGE:
6538 /* If this is a global, overridable symbol, GOT_PAGE will
6539 decay to GOT_DISP, so we'll need a GOT entry for it. */
6540 if (h == NULL)
6541 break;
6542 else
6543 {
6544 struct mips_elf_link_hash_entry *hmips =
6545 (struct mips_elf_link_hash_entry *) h;
6546
6547 while (hmips->root.root.type == bfd_link_hash_indirect
6548 || hmips->root.root.type == bfd_link_hash_warning)
6549 hmips = (struct mips_elf_link_hash_entry *)
6550 hmips->root.root.u.i.link;
6551
6552 if (hmips->root.def_regular
6553 && ! (info->shared && ! info->symbolic
6554 && ! hmips->root.forced_local))
6555 break;
6556 }
6557 /* Fall through. */
6558
6559 case R_MIPS_GOT16:
6560 case R_MIPS_GOT_HI16:
6561 case R_MIPS_GOT_LO16:
6562 case R_MIPS_GOT_DISP:
6563 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6564 return FALSE;
6565 break;
6566
6567 case R_MIPS_TLS_GOTTPREL:
6568 if (info->shared)
6569 info->flags |= DF_STATIC_TLS;
6570 /* Fall through */
6571
6572 case R_MIPS_TLS_LDM:
6573 if (r_type == R_MIPS_TLS_LDM)
6574 {
6575 r_symndx = 0;
6576 h = NULL;
6577 }
6578 /* Fall through */
6579
6580 case R_MIPS_TLS_GD:
6581 /* This symbol requires a global offset table entry, or two
6582 for TLS GD relocations. */
6583 {
6584 unsigned char flag = (r_type == R_MIPS_TLS_GD
6585 ? GOT_TLS_GD
6586 : r_type == R_MIPS_TLS_LDM
6587 ? GOT_TLS_LDM
6588 : GOT_TLS_IE);
6589 if (h != NULL)
6590 {
6591 struct mips_elf_link_hash_entry *hmips =
6592 (struct mips_elf_link_hash_entry *) h;
6593 hmips->tls_type |= flag;
6594
6595 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6596 return FALSE;
6597 }
6598 else
6599 {
6600 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6601
6602 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6603 rel->r_addend, g, flag))
6604 return FALSE;
6605 }
6606 }
6607 break;
6608
6609 case R_MIPS_32:
6610 case R_MIPS_REL32:
6611 case R_MIPS_64:
6612 /* In VxWorks executables, references to external symbols
6613 are handled using copy relocs or PLT stubs, so there's
6614 no need to add a .rela.dyn entry for this relocation. */
6615 if ((info->shared || (h != NULL && !htab->is_vxworks))
6616 && (sec->flags & SEC_ALLOC) != 0)
6617 {
6618 if (sreloc == NULL)
6619 {
6620 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6621 if (sreloc == NULL)
6622 return FALSE;
6623 }
6624 if (info->shared)
6625 {
6626 /* When creating a shared object, we must copy these
6627 reloc types into the output file as R_MIPS_REL32
6628 relocs. Make room for this reloc in .rel(a).dyn. */
6629 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6630 if (MIPS_ELF_READONLY_SECTION (sec))
6631 /* We tell the dynamic linker that there are
6632 relocations against the text segment. */
6633 info->flags |= DF_TEXTREL;
6634 }
6635 else
6636 {
6637 struct mips_elf_link_hash_entry *hmips;
6638
6639 /* We only need to copy this reloc if the symbol is
6640 defined in a dynamic object. */
6641 hmips = (struct mips_elf_link_hash_entry *) h;
6642 ++hmips->possibly_dynamic_relocs;
6643 if (MIPS_ELF_READONLY_SECTION (sec))
6644 /* We need it to tell the dynamic linker if there
6645 are relocations against the text segment. */
6646 hmips->readonly_reloc = TRUE;
6647 }
6648
6649 /* Even though we don't directly need a GOT entry for
6650 this symbol, a symbol must have a dynamic symbol
6651 table index greater that DT_MIPS_GOTSYM if there are
6652 dynamic relocations against it. This does not apply
6653 to VxWorks, which does not have the usual coupling
6654 between global GOT entries and .dynsym entries. */
6655 if (h != NULL && !htab->is_vxworks)
6656 {
6657 if (dynobj == NULL)
6658 elf_hash_table (info)->dynobj = dynobj = abfd;
6659 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6660 return FALSE;
6661 g = mips_elf_got_info (dynobj, &sgot);
6662 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6663 return FALSE;
6664 }
6665 }
6666
6667 if (SGI_COMPAT (abfd))
6668 mips_elf_hash_table (info)->compact_rel_size +=
6669 sizeof (Elf32_External_crinfo);
6670 break;
6671
6672 case R_MIPS_PC16:
6673 if (h)
6674 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6675 break;
6676
6677 case R_MIPS_26:
6678 if (h)
6679 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6680 /* Fall through. */
6681
6682 case R_MIPS_GPREL16:
6683 case R_MIPS_LITERAL:
6684 case R_MIPS_GPREL32:
6685 if (SGI_COMPAT (abfd))
6686 mips_elf_hash_table (info)->compact_rel_size +=
6687 sizeof (Elf32_External_crinfo);
6688 break;
6689
6690 /* This relocation describes the C++ object vtable hierarchy.
6691 Reconstruct it for later use during GC. */
6692 case R_MIPS_GNU_VTINHERIT:
6693 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6694 return FALSE;
6695 break;
6696
6697 /* This relocation describes which C++ vtable entries are actually
6698 used. Record for later use during GC. */
6699 case R_MIPS_GNU_VTENTRY:
6700 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6701 return FALSE;
6702 break;
6703
6704 default:
6705 break;
6706 }
6707
6708 /* We must not create a stub for a symbol that has relocations
6709 related to taking the function's address. This doesn't apply to
6710 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6711 a normal .got entry. */
6712 if (!htab->is_vxworks && h != NULL)
6713 switch (r_type)
6714 {
6715 default:
6716 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6717 break;
6718 case R_MIPS_CALL16:
6719 case R_MIPS_CALL_HI16:
6720 case R_MIPS_CALL_LO16:
6721 case R_MIPS_JALR:
6722 break;
6723 }
6724
6725 /* If this reloc is not a 16 bit call, and it has a global
6726 symbol, then we will need the fn_stub if there is one.
6727 References from a stub section do not count. */
6728 if (h != NULL
6729 && r_type != R_MIPS16_26
6730 && !mips16_stub_section_p (abfd, sec))
6731 {
6732 struct mips_elf_link_hash_entry *mh;
6733
6734 mh = (struct mips_elf_link_hash_entry *) h;
6735 mh->need_fn_stub = TRUE;
6736 }
6737 }
6738
6739 return TRUE;
6740 }
6741 \f
6742 bfd_boolean
6743 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6744 struct bfd_link_info *link_info,
6745 bfd_boolean *again)
6746 {
6747 Elf_Internal_Rela *internal_relocs;
6748 Elf_Internal_Rela *irel, *irelend;
6749 Elf_Internal_Shdr *symtab_hdr;
6750 bfd_byte *contents = NULL;
6751 size_t extsymoff;
6752 bfd_boolean changed_contents = FALSE;
6753 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6754 Elf_Internal_Sym *isymbuf = NULL;
6755
6756 /* We are not currently changing any sizes, so only one pass. */
6757 *again = FALSE;
6758
6759 if (link_info->relocatable)
6760 return TRUE;
6761
6762 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6763 link_info->keep_memory);
6764 if (internal_relocs == NULL)
6765 return TRUE;
6766
6767 irelend = internal_relocs + sec->reloc_count
6768 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6769 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6770 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6771
6772 for (irel = internal_relocs; irel < irelend; irel++)
6773 {
6774 bfd_vma symval;
6775 bfd_signed_vma sym_offset;
6776 unsigned int r_type;
6777 unsigned long r_symndx;
6778 asection *sym_sec;
6779 unsigned long instruction;
6780
6781 /* Turn jalr into bgezal, and jr into beq, if they're marked
6782 with a JALR relocation, that indicate where they jump to.
6783 This saves some pipeline bubbles. */
6784 r_type = ELF_R_TYPE (abfd, irel->r_info);
6785 if (r_type != R_MIPS_JALR)
6786 continue;
6787
6788 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6789 /* Compute the address of the jump target. */
6790 if (r_symndx >= extsymoff)
6791 {
6792 struct mips_elf_link_hash_entry *h
6793 = ((struct mips_elf_link_hash_entry *)
6794 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6795
6796 while (h->root.root.type == bfd_link_hash_indirect
6797 || h->root.root.type == bfd_link_hash_warning)
6798 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6799
6800 /* If a symbol is undefined, or if it may be overridden,
6801 skip it. */
6802 if (! ((h->root.root.type == bfd_link_hash_defined
6803 || h->root.root.type == bfd_link_hash_defweak)
6804 && h->root.root.u.def.section)
6805 || (link_info->shared && ! link_info->symbolic
6806 && !h->root.forced_local))
6807 continue;
6808
6809 sym_sec = h->root.root.u.def.section;
6810 if (sym_sec->output_section)
6811 symval = (h->root.root.u.def.value
6812 + sym_sec->output_section->vma
6813 + sym_sec->output_offset);
6814 else
6815 symval = h->root.root.u.def.value;
6816 }
6817 else
6818 {
6819 Elf_Internal_Sym *isym;
6820
6821 /* Read this BFD's symbols if we haven't done so already. */
6822 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6823 {
6824 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6825 if (isymbuf == NULL)
6826 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6827 symtab_hdr->sh_info, 0,
6828 NULL, NULL, NULL);
6829 if (isymbuf == NULL)
6830 goto relax_return;
6831 }
6832
6833 isym = isymbuf + r_symndx;
6834 if (isym->st_shndx == SHN_UNDEF)
6835 continue;
6836 else if (isym->st_shndx == SHN_ABS)
6837 sym_sec = bfd_abs_section_ptr;
6838 else if (isym->st_shndx == SHN_COMMON)
6839 sym_sec = bfd_com_section_ptr;
6840 else
6841 sym_sec
6842 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6843 symval = isym->st_value
6844 + sym_sec->output_section->vma
6845 + sym_sec->output_offset;
6846 }
6847
6848 /* Compute branch offset, from delay slot of the jump to the
6849 branch target. */
6850 sym_offset = (symval + irel->r_addend)
6851 - (sec_start + irel->r_offset + 4);
6852
6853 /* Branch offset must be properly aligned. */
6854 if ((sym_offset & 3) != 0)
6855 continue;
6856
6857 sym_offset >>= 2;
6858
6859 /* Check that it's in range. */
6860 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6861 continue;
6862
6863 /* Get the section contents if we haven't done so already. */
6864 if (contents == NULL)
6865 {
6866 /* Get cached copy if it exists. */
6867 if (elf_section_data (sec)->this_hdr.contents != NULL)
6868 contents = elf_section_data (sec)->this_hdr.contents;
6869 else
6870 {
6871 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6872 goto relax_return;
6873 }
6874 }
6875
6876 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6877
6878 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6879 if ((instruction & 0xfc1fffff) == 0x0000f809)
6880 instruction = 0x04110000;
6881 /* If it was jr <reg>, turn it into b <target>. */
6882 else if ((instruction & 0xfc1fffff) == 0x00000008)
6883 instruction = 0x10000000;
6884 else
6885 continue;
6886
6887 instruction |= (sym_offset & 0xffff);
6888 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6889 changed_contents = TRUE;
6890 }
6891
6892 if (contents != NULL
6893 && elf_section_data (sec)->this_hdr.contents != contents)
6894 {
6895 if (!changed_contents && !link_info->keep_memory)
6896 free (contents);
6897 else
6898 {
6899 /* Cache the section contents for elf_link_input_bfd. */
6900 elf_section_data (sec)->this_hdr.contents = contents;
6901 }
6902 }
6903 return TRUE;
6904
6905 relax_return:
6906 if (contents != NULL
6907 && elf_section_data (sec)->this_hdr.contents != contents)
6908 free (contents);
6909 return FALSE;
6910 }
6911 \f
6912 /* Adjust a symbol defined by a dynamic object and referenced by a
6913 regular object. The current definition is in some section of the
6914 dynamic object, but we're not including those sections. We have to
6915 change the definition to something the rest of the link can
6916 understand. */
6917
6918 bfd_boolean
6919 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6920 struct elf_link_hash_entry *h)
6921 {
6922 bfd *dynobj;
6923 struct mips_elf_link_hash_entry *hmips;
6924 asection *s;
6925 struct mips_elf_link_hash_table *htab;
6926
6927 htab = mips_elf_hash_table (info);
6928 dynobj = elf_hash_table (info)->dynobj;
6929
6930 /* Make sure we know what is going on here. */
6931 BFD_ASSERT (dynobj != NULL
6932 && (h->needs_plt
6933 || h->u.weakdef != NULL
6934 || (h->def_dynamic
6935 && h->ref_regular
6936 && !h->def_regular)));
6937
6938 /* If this symbol is defined in a dynamic object, we need to copy
6939 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6940 file. */
6941 hmips = (struct mips_elf_link_hash_entry *) h;
6942 if (! info->relocatable
6943 && hmips->possibly_dynamic_relocs != 0
6944 && (h->root.type == bfd_link_hash_defweak
6945 || !h->def_regular))
6946 {
6947 mips_elf_allocate_dynamic_relocations
6948 (dynobj, info, hmips->possibly_dynamic_relocs);
6949 if (hmips->readonly_reloc)
6950 /* We tell the dynamic linker that there are relocations
6951 against the text segment. */
6952 info->flags |= DF_TEXTREL;
6953 }
6954
6955 /* For a function, create a stub, if allowed. */
6956 if (! hmips->no_fn_stub
6957 && h->needs_plt)
6958 {
6959 if (! elf_hash_table (info)->dynamic_sections_created)
6960 return TRUE;
6961
6962 /* If this symbol is not defined in a regular file, then set
6963 the symbol to the stub location. This is required to make
6964 function pointers compare as equal between the normal
6965 executable and the shared library. */
6966 if (!h->def_regular)
6967 {
6968 /* We need .stub section. */
6969 s = bfd_get_section_by_name (dynobj,
6970 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6971 BFD_ASSERT (s != NULL);
6972
6973 h->root.u.def.section = s;
6974 h->root.u.def.value = s->size;
6975
6976 /* XXX Write this stub address somewhere. */
6977 h->plt.offset = s->size;
6978
6979 /* Make room for this stub code. */
6980 s->size += htab->function_stub_size;
6981
6982 /* The last half word of the stub will be filled with the index
6983 of this symbol in .dynsym section. */
6984 return TRUE;
6985 }
6986 }
6987 else if ((h->type == STT_FUNC)
6988 && !h->needs_plt)
6989 {
6990 /* This will set the entry for this symbol in the GOT to 0, and
6991 the dynamic linker will take care of this. */
6992 h->root.u.def.value = 0;
6993 return TRUE;
6994 }
6995
6996 /* If this is a weak symbol, and there is a real definition, the
6997 processor independent code will have arranged for us to see the
6998 real definition first, and we can just use the same value. */
6999 if (h->u.weakdef != NULL)
7000 {
7001 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7002 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7003 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7004 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7005 return TRUE;
7006 }
7007
7008 /* This is a reference to a symbol defined by a dynamic object which
7009 is not a function. */
7010
7011 return TRUE;
7012 }
7013
7014 /* Likewise, for VxWorks. */
7015
7016 bfd_boolean
7017 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7018 struct elf_link_hash_entry *h)
7019 {
7020 bfd *dynobj;
7021 struct mips_elf_link_hash_entry *hmips;
7022 struct mips_elf_link_hash_table *htab;
7023
7024 htab = mips_elf_hash_table (info);
7025 dynobj = elf_hash_table (info)->dynobj;
7026 hmips = (struct mips_elf_link_hash_entry *) h;
7027
7028 /* Make sure we know what is going on here. */
7029 BFD_ASSERT (dynobj != NULL
7030 && (h->needs_plt
7031 || h->needs_copy
7032 || h->u.weakdef != NULL
7033 || (h->def_dynamic
7034 && h->ref_regular
7035 && !h->def_regular)));
7036
7037 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7038 either (a) we want to branch to the symbol or (b) we're linking an
7039 executable that needs a canonical function address. In the latter
7040 case, the canonical address will be the address of the executable's
7041 load stub. */
7042 if ((hmips->is_branch_target
7043 || (!info->shared
7044 && h->type == STT_FUNC
7045 && hmips->is_relocation_target))
7046 && h->def_dynamic
7047 && h->ref_regular
7048 && !h->def_regular
7049 && !h->forced_local)
7050 h->needs_plt = 1;
7051
7052 /* Locally-binding symbols do not need a PLT stub; we can refer to
7053 the functions directly. */
7054 else if (h->needs_plt
7055 && (SYMBOL_CALLS_LOCAL (info, h)
7056 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7057 && h->root.type == bfd_link_hash_undefweak)))
7058 {
7059 h->needs_plt = 0;
7060 return TRUE;
7061 }
7062
7063 if (h->needs_plt)
7064 {
7065 /* If this is the first symbol to need a PLT entry, allocate room
7066 for the header, and for the header's .rela.plt.unloaded entries. */
7067 if (htab->splt->size == 0)
7068 {
7069 htab->splt->size += htab->plt_header_size;
7070 if (!info->shared)
7071 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7072 }
7073
7074 /* Assign the next .plt entry to this symbol. */
7075 h->plt.offset = htab->splt->size;
7076 htab->splt->size += htab->plt_entry_size;
7077
7078 /* If the output file has no definition of the symbol, set the
7079 symbol's value to the address of the stub. For executables,
7080 point at the PLT load stub rather than the lazy resolution stub;
7081 this stub will become the canonical function address. */
7082 if (!h->def_regular)
7083 {
7084 h->root.u.def.section = htab->splt;
7085 h->root.u.def.value = h->plt.offset;
7086 if (!info->shared)
7087 h->root.u.def.value += 8;
7088 }
7089
7090 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7091 htab->sgotplt->size += 4;
7092 htab->srelplt->size += sizeof (Elf32_External_Rela);
7093
7094 /* Make room for the .rela.plt.unloaded relocations. */
7095 if (!info->shared)
7096 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7097
7098 return TRUE;
7099 }
7100
7101 /* If a function symbol is defined by a dynamic object, and we do not
7102 need a PLT stub for it, the symbol's value should be zero. */
7103 if (h->type == STT_FUNC
7104 && h->def_dynamic
7105 && h->ref_regular
7106 && !h->def_regular)
7107 {
7108 h->root.u.def.value = 0;
7109 return TRUE;
7110 }
7111
7112 /* If this is a weak symbol, and there is a real definition, the
7113 processor independent code will have arranged for us to see the
7114 real definition first, and we can just use the same value. */
7115 if (h->u.weakdef != NULL)
7116 {
7117 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7118 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7119 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7120 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7121 return TRUE;
7122 }
7123
7124 /* This is a reference to a symbol defined by a dynamic object which
7125 is not a function. */
7126 if (info->shared)
7127 return TRUE;
7128
7129 /* We must allocate the symbol in our .dynbss section, which will
7130 become part of the .bss section of the executable. There will be
7131 an entry for this symbol in the .dynsym section. The dynamic
7132 object will contain position independent code, so all references
7133 from the dynamic object to this symbol will go through the global
7134 offset table. The dynamic linker will use the .dynsym entry to
7135 determine the address it must put in the global offset table, so
7136 both the dynamic object and the regular object will refer to the
7137 same memory location for the variable. */
7138
7139 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7140 {
7141 htab->srelbss->size += sizeof (Elf32_External_Rela);
7142 h->needs_copy = 1;
7143 }
7144
7145 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7146 }
7147 \f
7148 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7149 The number might be exact or a worst-case estimate, depending on how
7150 much information is available to elf_backend_omit_section_dynsym at
7151 the current linking stage. */
7152
7153 static bfd_size_type
7154 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7155 {
7156 bfd_size_type count;
7157
7158 count = 0;
7159 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7160 {
7161 asection *p;
7162 const struct elf_backend_data *bed;
7163
7164 bed = get_elf_backend_data (output_bfd);
7165 for (p = output_bfd->sections; p ; p = p->next)
7166 if ((p->flags & SEC_EXCLUDE) == 0
7167 && (p->flags & SEC_ALLOC) != 0
7168 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7169 ++count;
7170 }
7171 return count;
7172 }
7173
7174 /* This function is called after all the input files have been read,
7175 and the input sections have been assigned to output sections. We
7176 check for any mips16 stub sections that we can discard. */
7177
7178 bfd_boolean
7179 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7180 struct bfd_link_info *info)
7181 {
7182 asection *ri;
7183
7184 bfd *dynobj;
7185 asection *s;
7186 struct mips_got_info *g;
7187 int i;
7188 bfd_size_type loadable_size = 0;
7189 bfd_size_type local_gotno;
7190 bfd_size_type dynsymcount;
7191 bfd *sub;
7192 struct mips_elf_count_tls_arg count_tls_arg;
7193 struct mips_elf_link_hash_table *htab;
7194
7195 htab = mips_elf_hash_table (info);
7196
7197 /* The .reginfo section has a fixed size. */
7198 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7199 if (ri != NULL)
7200 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7201
7202 if (! (info->relocatable
7203 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7204 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7205 mips_elf_check_mips16_stubs, NULL);
7206
7207 dynobj = elf_hash_table (info)->dynobj;
7208 if (dynobj == NULL)
7209 /* Relocatable links don't have it. */
7210 return TRUE;
7211
7212 g = mips_elf_got_info (dynobj, &s);
7213 if (s == NULL)
7214 return TRUE;
7215
7216 /* Calculate the total loadable size of the output. That
7217 will give us the maximum number of GOT_PAGE entries
7218 required. */
7219 for (sub = info->input_bfds; sub; sub = sub->link_next)
7220 {
7221 asection *subsection;
7222
7223 for (subsection = sub->sections;
7224 subsection;
7225 subsection = subsection->next)
7226 {
7227 if ((subsection->flags & SEC_ALLOC) == 0)
7228 continue;
7229 loadable_size += ((subsection->size + 0xf)
7230 &~ (bfd_size_type) 0xf);
7231 }
7232 }
7233
7234 /* There has to be a global GOT entry for every symbol with
7235 a dynamic symbol table index of DT_MIPS_GOTSYM or
7236 higher. Therefore, it make sense to put those symbols
7237 that need GOT entries at the end of the symbol table. We
7238 do that here. */
7239 if (! mips_elf_sort_hash_table (info, 1))
7240 return FALSE;
7241
7242 if (g->global_gotsym != NULL)
7243 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7244 else
7245 /* If there are no global symbols, or none requiring
7246 relocations, then GLOBAL_GOTSYM will be NULL. */
7247 i = 0;
7248
7249 /* Get a worst-case estimate of the number of dynamic symbols needed.
7250 At this point, dynsymcount does not account for section symbols
7251 and count_section_dynsyms may overestimate the number that will
7252 be needed. */
7253 dynsymcount = (elf_hash_table (info)->dynsymcount
7254 + count_section_dynsyms (output_bfd, info));
7255
7256 /* Determine the size of one stub entry. */
7257 htab->function_stub_size = (dynsymcount > 0x10000
7258 ? MIPS_FUNCTION_STUB_BIG_SIZE
7259 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7260
7261 /* In the worst case, we'll get one stub per dynamic symbol, plus
7262 one to account for the dummy entry at the end required by IRIX
7263 rld. */
7264 loadable_size += htab->function_stub_size * (i + 1);
7265
7266 if (htab->is_vxworks)
7267 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7268 relocations against local symbols evaluate to "G", and the EABI does
7269 not include R_MIPS_GOT_PAGE. */
7270 local_gotno = 0;
7271 else
7272 /* Assume there are two loadable segments consisting of contiguous
7273 sections. Is 5 enough? */
7274 local_gotno = (loadable_size >> 16) + 5;
7275
7276 g->local_gotno += local_gotno;
7277 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7278
7279 g->global_gotno = i;
7280 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7281
7282 /* We need to calculate tls_gotno for global symbols at this point
7283 instead of building it up earlier, to avoid doublecounting
7284 entries for one global symbol from multiple input files. */
7285 count_tls_arg.info = info;
7286 count_tls_arg.needed = 0;
7287 elf_link_hash_traverse (elf_hash_table (info),
7288 mips_elf_count_global_tls_entries,
7289 &count_tls_arg);
7290 g->tls_gotno += count_tls_arg.needed;
7291 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7292
7293 mips_elf_resolve_final_got_entries (g);
7294
7295 /* VxWorks does not support multiple GOTs. It initializes $gp to
7296 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7297 dynamic loader. */
7298 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7299 {
7300 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7301 return FALSE;
7302 }
7303 else
7304 {
7305 /* Set up TLS entries for the first GOT. */
7306 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7307 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7308 }
7309
7310 return TRUE;
7311 }
7312
7313 /* Set the sizes of the dynamic sections. */
7314
7315 bfd_boolean
7316 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7317 struct bfd_link_info *info)
7318 {
7319 bfd *dynobj;
7320 asection *s, *sreldyn;
7321 bfd_boolean reltext;
7322 struct mips_elf_link_hash_table *htab;
7323
7324 htab = mips_elf_hash_table (info);
7325 dynobj = elf_hash_table (info)->dynobj;
7326 BFD_ASSERT (dynobj != NULL);
7327
7328 if (elf_hash_table (info)->dynamic_sections_created)
7329 {
7330 /* Set the contents of the .interp section to the interpreter. */
7331 if (info->executable)
7332 {
7333 s = bfd_get_section_by_name (dynobj, ".interp");
7334 BFD_ASSERT (s != NULL);
7335 s->size
7336 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7337 s->contents
7338 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7339 }
7340 }
7341
7342 /* The check_relocs and adjust_dynamic_symbol entry points have
7343 determined the sizes of the various dynamic sections. Allocate
7344 memory for them. */
7345 reltext = FALSE;
7346 sreldyn = NULL;
7347 for (s = dynobj->sections; s != NULL; s = s->next)
7348 {
7349 const char *name;
7350
7351 /* It's OK to base decisions on the section name, because none
7352 of the dynobj section names depend upon the input files. */
7353 name = bfd_get_section_name (dynobj, s);
7354
7355 if ((s->flags & SEC_LINKER_CREATED) == 0)
7356 continue;
7357
7358 if (CONST_STRNEQ (name, ".rel"))
7359 {
7360 if (s->size != 0)
7361 {
7362 const char *outname;
7363 asection *target;
7364
7365 /* If this relocation section applies to a read only
7366 section, then we probably need a DT_TEXTREL entry.
7367 If the relocation section is .rel(a).dyn, we always
7368 assert a DT_TEXTREL entry rather than testing whether
7369 there exists a relocation to a read only section or
7370 not. */
7371 outname = bfd_get_section_name (output_bfd,
7372 s->output_section);
7373 target = bfd_get_section_by_name (output_bfd, outname + 4);
7374 if ((target != NULL
7375 && (target->flags & SEC_READONLY) != 0
7376 && (target->flags & SEC_ALLOC) != 0)
7377 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7378 reltext = TRUE;
7379
7380 /* We use the reloc_count field as a counter if we need
7381 to copy relocs into the output file. */
7382 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7383 s->reloc_count = 0;
7384
7385 /* If combreloc is enabled, elf_link_sort_relocs() will
7386 sort relocations, but in a different way than we do,
7387 and before we're done creating relocations. Also, it
7388 will move them around between input sections'
7389 relocation's contents, so our sorting would be
7390 broken, so don't let it run. */
7391 info->combreloc = 0;
7392 }
7393 }
7394 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7395 {
7396 /* Executables do not need a GOT. */
7397 if (info->shared)
7398 {
7399 /* Allocate relocations for all but the reserved entries. */
7400 struct mips_got_info *g;
7401 unsigned int count;
7402
7403 g = mips_elf_got_info (dynobj, NULL);
7404 count = (g->global_gotno
7405 + g->local_gotno
7406 - MIPS_RESERVED_GOTNO (info));
7407 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7408 }
7409 }
7410 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7411 {
7412 /* _bfd_mips_elf_always_size_sections() has already done
7413 most of the work, but some symbols may have been mapped
7414 to versions that we must now resolve in the got_entries
7415 hash tables. */
7416 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7417 struct mips_got_info *g = gg;
7418 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7419 unsigned int needed_relocs = 0;
7420
7421 if (gg->next)
7422 {
7423 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7424 set_got_offset_arg.info = info;
7425
7426 /* NOTE 2005-02-03: How can this call, or the next, ever
7427 find any indirect entries to resolve? They were all
7428 resolved in mips_elf_multi_got. */
7429 mips_elf_resolve_final_got_entries (gg);
7430 for (g = gg->next; g && g->next != gg; g = g->next)
7431 {
7432 unsigned int save_assign;
7433
7434 mips_elf_resolve_final_got_entries (g);
7435
7436 /* Assign offsets to global GOT entries. */
7437 save_assign = g->assigned_gotno;
7438 g->assigned_gotno = g->local_gotno;
7439 set_got_offset_arg.g = g;
7440 set_got_offset_arg.needed_relocs = 0;
7441 htab_traverse (g->got_entries,
7442 mips_elf_set_global_got_offset,
7443 &set_got_offset_arg);
7444 needed_relocs += set_got_offset_arg.needed_relocs;
7445 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7446 <= g->global_gotno);
7447
7448 g->assigned_gotno = save_assign;
7449 if (info->shared)
7450 {
7451 needed_relocs += g->local_gotno - g->assigned_gotno;
7452 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7453 + g->next->global_gotno
7454 + g->next->tls_gotno
7455 + MIPS_RESERVED_GOTNO (info));
7456 }
7457 }
7458 }
7459 else
7460 {
7461 struct mips_elf_count_tls_arg arg;
7462 arg.info = info;
7463 arg.needed = 0;
7464
7465 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7466 &arg);
7467 elf_link_hash_traverse (elf_hash_table (info),
7468 mips_elf_count_global_tls_relocs,
7469 &arg);
7470
7471 needed_relocs += arg.needed;
7472 }
7473
7474 if (needed_relocs)
7475 mips_elf_allocate_dynamic_relocations (dynobj, info,
7476 needed_relocs);
7477 }
7478 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7479 {
7480 /* IRIX rld assumes that the function stub isn't at the end
7481 of .text section. So put a dummy. XXX */
7482 s->size += htab->function_stub_size;
7483 }
7484 else if (! info->shared
7485 && ! mips_elf_hash_table (info)->use_rld_obj_head
7486 && CONST_STRNEQ (name, ".rld_map"))
7487 {
7488 /* We add a room for __rld_map. It will be filled in by the
7489 rtld to contain a pointer to the _r_debug structure. */
7490 s->size += 4;
7491 }
7492 else if (SGI_COMPAT (output_bfd)
7493 && CONST_STRNEQ (name, ".compact_rel"))
7494 s->size += mips_elf_hash_table (info)->compact_rel_size;
7495 else if (! CONST_STRNEQ (name, ".init")
7496 && s != htab->sgotplt
7497 && s != htab->splt)
7498 {
7499 /* It's not one of our sections, so don't allocate space. */
7500 continue;
7501 }
7502
7503 if (s->size == 0)
7504 {
7505 s->flags |= SEC_EXCLUDE;
7506 continue;
7507 }
7508
7509 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7510 continue;
7511
7512 /* Allocate memory for this section last, since we may increase its
7513 size above. */
7514 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7515 {
7516 sreldyn = s;
7517 continue;
7518 }
7519
7520 /* Allocate memory for the section contents. */
7521 s->contents = bfd_zalloc (dynobj, s->size);
7522 if (s->contents == NULL)
7523 {
7524 bfd_set_error (bfd_error_no_memory);
7525 return FALSE;
7526 }
7527 }
7528
7529 /* Allocate memory for the .rel(a).dyn section. */
7530 if (sreldyn != NULL)
7531 {
7532 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7533 if (sreldyn->contents == NULL)
7534 {
7535 bfd_set_error (bfd_error_no_memory);
7536 return FALSE;
7537 }
7538 }
7539
7540 if (elf_hash_table (info)->dynamic_sections_created)
7541 {
7542 /* Add some entries to the .dynamic section. We fill in the
7543 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7544 must add the entries now so that we get the correct size for
7545 the .dynamic section. */
7546
7547 /* SGI object has the equivalence of DT_DEBUG in the
7548 DT_MIPS_RLD_MAP entry. This must come first because glibc
7549 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7550 looks at the first one it sees. */
7551 if (!info->shared
7552 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7553 return FALSE;
7554
7555 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7556 used by the debugger. */
7557 if (info->executable
7558 && !SGI_COMPAT (output_bfd)
7559 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7560 return FALSE;
7561
7562 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7563 info->flags |= DF_TEXTREL;
7564
7565 if ((info->flags & DF_TEXTREL) != 0)
7566 {
7567 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7568 return FALSE;
7569
7570 /* Clear the DF_TEXTREL flag. It will be set again if we
7571 write out an actual text relocation; we may not, because
7572 at this point we do not know whether e.g. any .eh_frame
7573 absolute relocations have been converted to PC-relative. */
7574 info->flags &= ~DF_TEXTREL;
7575 }
7576
7577 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7578 return FALSE;
7579
7580 if (htab->is_vxworks)
7581 {
7582 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7583 use any of the DT_MIPS_* tags. */
7584 if (mips_elf_rel_dyn_section (info, FALSE))
7585 {
7586 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7587 return FALSE;
7588
7589 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7590 return FALSE;
7591
7592 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7593 return FALSE;
7594 }
7595 if (htab->splt->size > 0)
7596 {
7597 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7598 return FALSE;
7599
7600 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7601 return FALSE;
7602
7603 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7604 return FALSE;
7605 }
7606 }
7607 else
7608 {
7609 if (mips_elf_rel_dyn_section (info, FALSE))
7610 {
7611 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7612 return FALSE;
7613
7614 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7615 return FALSE;
7616
7617 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7618 return FALSE;
7619 }
7620
7621 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7622 return FALSE;
7623
7624 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7625 return FALSE;
7626
7627 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7628 return FALSE;
7629
7630 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7631 return FALSE;
7632
7633 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7634 return FALSE;
7635
7636 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7637 return FALSE;
7638
7639 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7640 return FALSE;
7641
7642 if (IRIX_COMPAT (dynobj) == ict_irix5
7643 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7644 return FALSE;
7645
7646 if (IRIX_COMPAT (dynobj) == ict_irix6
7647 && (bfd_get_section_by_name
7648 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7649 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7650 return FALSE;
7651 }
7652 }
7653
7654 return TRUE;
7655 }
7656 \f
7657 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7658 Adjust its R_ADDEND field so that it is correct for the output file.
7659 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7660 and sections respectively; both use symbol indexes. */
7661
7662 static void
7663 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7664 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7665 asection **local_sections, Elf_Internal_Rela *rel)
7666 {
7667 unsigned int r_type, r_symndx;
7668 Elf_Internal_Sym *sym;
7669 asection *sec;
7670
7671 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7672 {
7673 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7674 if (r_type == R_MIPS16_GPREL
7675 || r_type == R_MIPS_GPREL16
7676 || r_type == R_MIPS_GPREL32
7677 || r_type == R_MIPS_LITERAL)
7678 {
7679 rel->r_addend += _bfd_get_gp_value (input_bfd);
7680 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7681 }
7682
7683 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7684 sym = local_syms + r_symndx;
7685
7686 /* Adjust REL's addend to account for section merging. */
7687 if (!info->relocatable)
7688 {
7689 sec = local_sections[r_symndx];
7690 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7691 }
7692
7693 /* This would normally be done by the rela_normal code in elflink.c. */
7694 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7695 rel->r_addend += local_sections[r_symndx]->output_offset;
7696 }
7697 }
7698
7699 /* Relocate a MIPS ELF section. */
7700
7701 bfd_boolean
7702 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7703 bfd *input_bfd, asection *input_section,
7704 bfd_byte *contents, Elf_Internal_Rela *relocs,
7705 Elf_Internal_Sym *local_syms,
7706 asection **local_sections)
7707 {
7708 Elf_Internal_Rela *rel;
7709 const Elf_Internal_Rela *relend;
7710 bfd_vma addend = 0;
7711 bfd_boolean use_saved_addend_p = FALSE;
7712 const struct elf_backend_data *bed;
7713
7714 bed = get_elf_backend_data (output_bfd);
7715 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7716 for (rel = relocs; rel < relend; ++rel)
7717 {
7718 const char *name;
7719 bfd_vma value = 0;
7720 reloc_howto_type *howto;
7721 bfd_boolean require_jalx;
7722 /* TRUE if the relocation is a RELA relocation, rather than a
7723 REL relocation. */
7724 bfd_boolean rela_relocation_p = TRUE;
7725 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7726 const char *msg;
7727 unsigned long r_symndx;
7728 asection *sec;
7729 Elf_Internal_Shdr *symtab_hdr;
7730 struct elf_link_hash_entry *h;
7731
7732 /* Find the relocation howto for this relocation. */
7733 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7734 NEWABI_P (input_bfd)
7735 && (MIPS_RELOC_RELA_P
7736 (input_bfd, input_section,
7737 rel - relocs)));
7738
7739 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7740 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7741 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7742 {
7743 sec = local_sections[r_symndx];
7744 h = NULL;
7745 }
7746 else
7747 {
7748 unsigned long extsymoff;
7749
7750 extsymoff = 0;
7751 if (!elf_bad_symtab (input_bfd))
7752 extsymoff = symtab_hdr->sh_info;
7753 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7754 while (h->root.type == bfd_link_hash_indirect
7755 || h->root.type == bfd_link_hash_warning)
7756 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7757
7758 sec = NULL;
7759 if (h->root.type == bfd_link_hash_defined
7760 || h->root.type == bfd_link_hash_defweak)
7761 sec = h->root.u.def.section;
7762 }
7763
7764 if (sec != NULL && elf_discarded_section (sec))
7765 {
7766 /* For relocs against symbols from removed linkonce sections,
7767 or sections discarded by a linker script, we just want the
7768 section contents zeroed. Avoid any special processing. */
7769 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7770 rel->r_info = 0;
7771 rel->r_addend = 0;
7772 continue;
7773 }
7774
7775 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7776 {
7777 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7778 64-bit code, but make sure all their addresses are in the
7779 lowermost or uppermost 32-bit section of the 64-bit address
7780 space. Thus, when they use an R_MIPS_64 they mean what is
7781 usually meant by R_MIPS_32, with the exception that the
7782 stored value is sign-extended to 64 bits. */
7783 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7784
7785 /* On big-endian systems, we need to lie about the position
7786 of the reloc. */
7787 if (bfd_big_endian (input_bfd))
7788 rel->r_offset += 4;
7789 }
7790
7791 if (!use_saved_addend_p)
7792 {
7793 Elf_Internal_Shdr *rel_hdr;
7794
7795 /* If these relocations were originally of the REL variety,
7796 we must pull the addend out of the field that will be
7797 relocated. Otherwise, we simply use the contents of the
7798 RELA relocation. To determine which flavor or relocation
7799 this is, we depend on the fact that the INPUT_SECTION's
7800 REL_HDR is read before its REL_HDR2. */
7801 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7802 if ((size_t) (rel - relocs)
7803 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7804 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7805 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7806 {
7807 bfd_byte *location = contents + rel->r_offset;
7808
7809 /* Note that this is a REL relocation. */
7810 rela_relocation_p = FALSE;
7811
7812 /* Get the addend, which is stored in the input file. */
7813 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7814 location);
7815 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7816 contents);
7817 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7818 location);
7819
7820 addend &= howto->src_mask;
7821
7822 /* For some kinds of relocations, the ADDEND is a
7823 combination of the addend stored in two different
7824 relocations. */
7825 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7826 || (r_type == R_MIPS_GOT16
7827 && mips_elf_local_relocation_p (input_bfd, rel,
7828 local_sections, FALSE)))
7829 {
7830 const Elf_Internal_Rela *lo16_relocation;
7831 reloc_howto_type *lo16_howto;
7832 int lo16_type;
7833
7834 if (r_type == R_MIPS16_HI16)
7835 lo16_type = R_MIPS16_LO16;
7836 else
7837 lo16_type = R_MIPS_LO16;
7838
7839 /* The combined value is the sum of the HI16 addend,
7840 left-shifted by sixteen bits, and the LO16
7841 addend, sign extended. (Usually, the code does
7842 a `lui' of the HI16 value, and then an `addiu' of
7843 the LO16 value.)
7844
7845 Scan ahead to find a matching LO16 relocation.
7846
7847 According to the MIPS ELF ABI, the R_MIPS_LO16
7848 relocation must be immediately following.
7849 However, for the IRIX6 ABI, the next relocation
7850 may be a composed relocation consisting of
7851 several relocations for the same address. In
7852 that case, the R_MIPS_LO16 relocation may occur
7853 as one of these. We permit a similar extension
7854 in general, as that is useful for GCC.
7855
7856 In some cases GCC dead code elimination removes
7857 the LO16 but keeps the corresponding HI16. This
7858 is strictly speaking a violation of the ABI but
7859 not immediately harmful. */
7860 lo16_relocation = mips_elf_next_relocation (input_bfd,
7861 lo16_type,
7862 rel, relend);
7863 if (lo16_relocation == NULL)
7864 {
7865 const char *name;
7866
7867 if (h)
7868 name = h->root.root.string;
7869 else
7870 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7871 local_syms + r_symndx,
7872 sec);
7873 (*_bfd_error_handler)
7874 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7875 input_bfd, input_section, name, howto->name,
7876 rel->r_offset);
7877 }
7878 else
7879 {
7880 bfd_byte *lo16_location;
7881 bfd_vma l;
7882
7883 lo16_location = contents + lo16_relocation->r_offset;
7884
7885 /* Obtain the addend kept there. */
7886 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7887 lo16_type, FALSE);
7888 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7889 FALSE, lo16_location);
7890 l = mips_elf_obtain_contents (lo16_howto,
7891 lo16_relocation,
7892 input_bfd, contents);
7893 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7894 FALSE, lo16_location);
7895 l &= lo16_howto->src_mask;
7896 l <<= lo16_howto->rightshift;
7897 l = _bfd_mips_elf_sign_extend (l, 16);
7898
7899 addend <<= 16;
7900
7901 /* Compute the combined addend. */
7902 addend += l;
7903 }
7904 }
7905 else
7906 addend <<= howto->rightshift;
7907 }
7908 else
7909 addend = rel->r_addend;
7910 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7911 local_syms, local_sections, rel);
7912 }
7913
7914 if (info->relocatable)
7915 {
7916 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7917 && bfd_big_endian (input_bfd))
7918 rel->r_offset -= 4;
7919
7920 if (!rela_relocation_p && rel->r_addend)
7921 {
7922 addend += rel->r_addend;
7923 if (r_type == R_MIPS_HI16
7924 || r_type == R_MIPS_GOT16)
7925 addend = mips_elf_high (addend);
7926 else if (r_type == R_MIPS_HIGHER)
7927 addend = mips_elf_higher (addend);
7928 else if (r_type == R_MIPS_HIGHEST)
7929 addend = mips_elf_highest (addend);
7930 else
7931 addend >>= howto->rightshift;
7932
7933 /* We use the source mask, rather than the destination
7934 mask because the place to which we are writing will be
7935 source of the addend in the final link. */
7936 addend &= howto->src_mask;
7937
7938 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7939 /* See the comment above about using R_MIPS_64 in the 32-bit
7940 ABI. Here, we need to update the addend. It would be
7941 possible to get away with just using the R_MIPS_32 reloc
7942 but for endianness. */
7943 {
7944 bfd_vma sign_bits;
7945 bfd_vma low_bits;
7946 bfd_vma high_bits;
7947
7948 if (addend & ((bfd_vma) 1 << 31))
7949 #ifdef BFD64
7950 sign_bits = ((bfd_vma) 1 << 32) - 1;
7951 #else
7952 sign_bits = -1;
7953 #endif
7954 else
7955 sign_bits = 0;
7956
7957 /* If we don't know that we have a 64-bit type,
7958 do two separate stores. */
7959 if (bfd_big_endian (input_bfd))
7960 {
7961 /* Store the sign-bits (which are most significant)
7962 first. */
7963 low_bits = sign_bits;
7964 high_bits = addend;
7965 }
7966 else
7967 {
7968 low_bits = addend;
7969 high_bits = sign_bits;
7970 }
7971 bfd_put_32 (input_bfd, low_bits,
7972 contents + rel->r_offset);
7973 bfd_put_32 (input_bfd, high_bits,
7974 contents + rel->r_offset + 4);
7975 continue;
7976 }
7977
7978 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7979 input_bfd, input_section,
7980 contents, FALSE))
7981 return FALSE;
7982 }
7983
7984 /* Go on to the next relocation. */
7985 continue;
7986 }
7987
7988 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7989 relocations for the same offset. In that case we are
7990 supposed to treat the output of each relocation as the addend
7991 for the next. */
7992 if (rel + 1 < relend
7993 && rel->r_offset == rel[1].r_offset
7994 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7995 use_saved_addend_p = TRUE;
7996 else
7997 use_saved_addend_p = FALSE;
7998
7999 /* Figure out what value we are supposed to relocate. */
8000 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8001 input_section, info, rel,
8002 addend, howto, local_syms,
8003 local_sections, &value,
8004 &name, &require_jalx,
8005 use_saved_addend_p))
8006 {
8007 case bfd_reloc_continue:
8008 /* There's nothing to do. */
8009 continue;
8010
8011 case bfd_reloc_undefined:
8012 /* mips_elf_calculate_relocation already called the
8013 undefined_symbol callback. There's no real point in
8014 trying to perform the relocation at this point, so we
8015 just skip ahead to the next relocation. */
8016 continue;
8017
8018 case bfd_reloc_notsupported:
8019 msg = _("internal error: unsupported relocation error");
8020 info->callbacks->warning
8021 (info, msg, name, input_bfd, input_section, rel->r_offset);
8022 return FALSE;
8023
8024 case bfd_reloc_overflow:
8025 if (use_saved_addend_p)
8026 /* Ignore overflow until we reach the last relocation for
8027 a given location. */
8028 ;
8029 else
8030 {
8031 BFD_ASSERT (name != NULL);
8032 if (! ((*info->callbacks->reloc_overflow)
8033 (info, NULL, name, howto->name, (bfd_vma) 0,
8034 input_bfd, input_section, rel->r_offset)))
8035 return FALSE;
8036 }
8037 break;
8038
8039 case bfd_reloc_ok:
8040 break;
8041
8042 default:
8043 abort ();
8044 break;
8045 }
8046
8047 /* If we've got another relocation for the address, keep going
8048 until we reach the last one. */
8049 if (use_saved_addend_p)
8050 {
8051 addend = value;
8052 continue;
8053 }
8054
8055 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8056 /* See the comment above about using R_MIPS_64 in the 32-bit
8057 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8058 that calculated the right value. Now, however, we
8059 sign-extend the 32-bit result to 64-bits, and store it as a
8060 64-bit value. We are especially generous here in that we
8061 go to extreme lengths to support this usage on systems with
8062 only a 32-bit VMA. */
8063 {
8064 bfd_vma sign_bits;
8065 bfd_vma low_bits;
8066 bfd_vma high_bits;
8067
8068 if (value & ((bfd_vma) 1 << 31))
8069 #ifdef BFD64
8070 sign_bits = ((bfd_vma) 1 << 32) - 1;
8071 #else
8072 sign_bits = -1;
8073 #endif
8074 else
8075 sign_bits = 0;
8076
8077 /* If we don't know that we have a 64-bit type,
8078 do two separate stores. */
8079 if (bfd_big_endian (input_bfd))
8080 {
8081 /* Undo what we did above. */
8082 rel->r_offset -= 4;
8083 /* Store the sign-bits (which are most significant)
8084 first. */
8085 low_bits = sign_bits;
8086 high_bits = value;
8087 }
8088 else
8089 {
8090 low_bits = value;
8091 high_bits = sign_bits;
8092 }
8093 bfd_put_32 (input_bfd, low_bits,
8094 contents + rel->r_offset);
8095 bfd_put_32 (input_bfd, high_bits,
8096 contents + rel->r_offset + 4);
8097 continue;
8098 }
8099
8100 /* Actually perform the relocation. */
8101 if (! mips_elf_perform_relocation (info, howto, rel, value,
8102 input_bfd, input_section,
8103 contents, require_jalx))
8104 return FALSE;
8105 }
8106
8107 return TRUE;
8108 }
8109 \f
8110 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8111 adjust it appropriately now. */
8112
8113 static void
8114 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8115 const char *name, Elf_Internal_Sym *sym)
8116 {
8117 /* The linker script takes care of providing names and values for
8118 these, but we must place them into the right sections. */
8119 static const char* const text_section_symbols[] = {
8120 "_ftext",
8121 "_etext",
8122 "__dso_displacement",
8123 "__elf_header",
8124 "__program_header_table",
8125 NULL
8126 };
8127
8128 static const char* const data_section_symbols[] = {
8129 "_fdata",
8130 "_edata",
8131 "_end",
8132 "_fbss",
8133 NULL
8134 };
8135
8136 const char* const *p;
8137 int i;
8138
8139 for (i = 0; i < 2; ++i)
8140 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8141 *p;
8142 ++p)
8143 if (strcmp (*p, name) == 0)
8144 {
8145 /* All of these symbols are given type STT_SECTION by the
8146 IRIX6 linker. */
8147 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8148 sym->st_other = STO_PROTECTED;
8149
8150 /* The IRIX linker puts these symbols in special sections. */
8151 if (i == 0)
8152 sym->st_shndx = SHN_MIPS_TEXT;
8153 else
8154 sym->st_shndx = SHN_MIPS_DATA;
8155
8156 break;
8157 }
8158 }
8159
8160 /* Finish up dynamic symbol handling. We set the contents of various
8161 dynamic sections here. */
8162
8163 bfd_boolean
8164 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8165 struct bfd_link_info *info,
8166 struct elf_link_hash_entry *h,
8167 Elf_Internal_Sym *sym)
8168 {
8169 bfd *dynobj;
8170 asection *sgot;
8171 struct mips_got_info *g, *gg;
8172 const char *name;
8173 int idx;
8174 struct mips_elf_link_hash_table *htab;
8175
8176 htab = mips_elf_hash_table (info);
8177 dynobj = elf_hash_table (info)->dynobj;
8178
8179 if (h->plt.offset != MINUS_ONE)
8180 {
8181 asection *s;
8182 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8183
8184 /* This symbol has a stub. Set it up. */
8185
8186 BFD_ASSERT (h->dynindx != -1);
8187
8188 s = bfd_get_section_by_name (dynobj,
8189 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8190 BFD_ASSERT (s != NULL);
8191
8192 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8193 || (h->dynindx <= 0xffff));
8194
8195 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8196 sign extension at runtime in the stub, resulting in a negative
8197 index value. */
8198 if (h->dynindx & ~0x7fffffff)
8199 return FALSE;
8200
8201 /* Fill the stub. */
8202 idx = 0;
8203 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8204 idx += 4;
8205 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8206 idx += 4;
8207 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8208 {
8209 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8210 stub + idx);
8211 idx += 4;
8212 }
8213 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8214 idx += 4;
8215
8216 /* If a large stub is not required and sign extension is not a
8217 problem, then use legacy code in the stub. */
8218 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8219 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8220 else if (h->dynindx & ~0x7fff)
8221 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8222 else
8223 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8224 stub + idx);
8225
8226 BFD_ASSERT (h->plt.offset <= s->size);
8227 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8228
8229 /* Mark the symbol as undefined. plt.offset != -1 occurs
8230 only for the referenced symbol. */
8231 sym->st_shndx = SHN_UNDEF;
8232
8233 /* The run-time linker uses the st_value field of the symbol
8234 to reset the global offset table entry for this external
8235 to its stub address when unlinking a shared object. */
8236 sym->st_value = (s->output_section->vma + s->output_offset
8237 + h->plt.offset);
8238 }
8239
8240 BFD_ASSERT (h->dynindx != -1
8241 || h->forced_local);
8242
8243 sgot = mips_elf_got_section (dynobj, FALSE);
8244 BFD_ASSERT (sgot != NULL);
8245 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8246 g = mips_elf_section_data (sgot)->u.got_info;
8247 BFD_ASSERT (g != NULL);
8248
8249 /* Run through the global symbol table, creating GOT entries for all
8250 the symbols that need them. */
8251 if (g->global_gotsym != NULL
8252 && h->dynindx >= g->global_gotsym->dynindx)
8253 {
8254 bfd_vma offset;
8255 bfd_vma value;
8256
8257 value = sym->st_value;
8258 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8259 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8260 }
8261
8262 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8263 {
8264 struct mips_got_entry e, *p;
8265 bfd_vma entry;
8266 bfd_vma offset;
8267
8268 gg = g;
8269
8270 e.abfd = output_bfd;
8271 e.symndx = -1;
8272 e.d.h = (struct mips_elf_link_hash_entry *)h;
8273 e.tls_type = 0;
8274
8275 for (g = g->next; g->next != gg; g = g->next)
8276 {
8277 if (g->got_entries
8278 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8279 &e)))
8280 {
8281 offset = p->gotidx;
8282 if (info->shared
8283 || (elf_hash_table (info)->dynamic_sections_created
8284 && p->d.h != NULL
8285 && p->d.h->root.def_dynamic
8286 && !p->d.h->root.def_regular))
8287 {
8288 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8289 the various compatibility problems, it's easier to mock
8290 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8291 mips_elf_create_dynamic_relocation to calculate the
8292 appropriate addend. */
8293 Elf_Internal_Rela rel[3];
8294
8295 memset (rel, 0, sizeof (rel));
8296 if (ABI_64_P (output_bfd))
8297 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8298 else
8299 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8300 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8301
8302 entry = 0;
8303 if (! (mips_elf_create_dynamic_relocation
8304 (output_bfd, info, rel,
8305 e.d.h, NULL, sym->st_value, &entry, sgot)))
8306 return FALSE;
8307 }
8308 else
8309 entry = sym->st_value;
8310 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8311 }
8312 }
8313 }
8314
8315 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8316 name = h->root.root.string;
8317 if (strcmp (name, "_DYNAMIC") == 0
8318 || h == elf_hash_table (info)->hgot)
8319 sym->st_shndx = SHN_ABS;
8320 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8321 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8322 {
8323 sym->st_shndx = SHN_ABS;
8324 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8325 sym->st_value = 1;
8326 }
8327 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8328 {
8329 sym->st_shndx = SHN_ABS;
8330 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8331 sym->st_value = elf_gp (output_bfd);
8332 }
8333 else if (SGI_COMPAT (output_bfd))
8334 {
8335 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8336 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8337 {
8338 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8339 sym->st_other = STO_PROTECTED;
8340 sym->st_value = 0;
8341 sym->st_shndx = SHN_MIPS_DATA;
8342 }
8343 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8344 {
8345 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8346 sym->st_other = STO_PROTECTED;
8347 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8348 sym->st_shndx = SHN_ABS;
8349 }
8350 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8351 {
8352 if (h->type == STT_FUNC)
8353 sym->st_shndx = SHN_MIPS_TEXT;
8354 else if (h->type == STT_OBJECT)
8355 sym->st_shndx = SHN_MIPS_DATA;
8356 }
8357 }
8358
8359 /* Handle the IRIX6-specific symbols. */
8360 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8361 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8362
8363 if (! info->shared)
8364 {
8365 if (! mips_elf_hash_table (info)->use_rld_obj_head
8366 && (strcmp (name, "__rld_map") == 0
8367 || strcmp (name, "__RLD_MAP") == 0))
8368 {
8369 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8370 BFD_ASSERT (s != NULL);
8371 sym->st_value = s->output_section->vma + s->output_offset;
8372 bfd_put_32 (output_bfd, 0, s->contents);
8373 if (mips_elf_hash_table (info)->rld_value == 0)
8374 mips_elf_hash_table (info)->rld_value = sym->st_value;
8375 }
8376 else if (mips_elf_hash_table (info)->use_rld_obj_head
8377 && strcmp (name, "__rld_obj_head") == 0)
8378 {
8379 /* IRIX6 does not use a .rld_map section. */
8380 if (IRIX_COMPAT (output_bfd) == ict_irix5
8381 || IRIX_COMPAT (output_bfd) == ict_none)
8382 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8383 != NULL);
8384 mips_elf_hash_table (info)->rld_value = sym->st_value;
8385 }
8386 }
8387
8388 /* If this is a mips16 symbol, force the value to be even. */
8389 if (sym->st_other == STO_MIPS16)
8390 sym->st_value &= ~1;
8391
8392 return TRUE;
8393 }
8394
8395 /* Likewise, for VxWorks. */
8396
8397 bfd_boolean
8398 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8399 struct bfd_link_info *info,
8400 struct elf_link_hash_entry *h,
8401 Elf_Internal_Sym *sym)
8402 {
8403 bfd *dynobj;
8404 asection *sgot;
8405 struct mips_got_info *g;
8406 struct mips_elf_link_hash_table *htab;
8407
8408 htab = mips_elf_hash_table (info);
8409 dynobj = elf_hash_table (info)->dynobj;
8410
8411 if (h->plt.offset != (bfd_vma) -1)
8412 {
8413 bfd_byte *loc;
8414 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8415 Elf_Internal_Rela rel;
8416 static const bfd_vma *plt_entry;
8417
8418 BFD_ASSERT (h->dynindx != -1);
8419 BFD_ASSERT (htab->splt != NULL);
8420 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8421
8422 /* Calculate the address of the .plt entry. */
8423 plt_address = (htab->splt->output_section->vma
8424 + htab->splt->output_offset
8425 + h->plt.offset);
8426
8427 /* Calculate the index of the entry. */
8428 plt_index = ((h->plt.offset - htab->plt_header_size)
8429 / htab->plt_entry_size);
8430
8431 /* Calculate the address of the .got.plt entry. */
8432 got_address = (htab->sgotplt->output_section->vma
8433 + htab->sgotplt->output_offset
8434 + plt_index * 4);
8435
8436 /* Calculate the offset of the .got.plt entry from
8437 _GLOBAL_OFFSET_TABLE_. */
8438 got_offset = mips_elf_gotplt_index (info, h);
8439
8440 /* Calculate the offset for the branch at the start of the PLT
8441 entry. The branch jumps to the beginning of .plt. */
8442 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8443
8444 /* Fill in the initial value of the .got.plt entry. */
8445 bfd_put_32 (output_bfd, plt_address,
8446 htab->sgotplt->contents + plt_index * 4);
8447
8448 /* Find out where the .plt entry should go. */
8449 loc = htab->splt->contents + h->plt.offset;
8450
8451 if (info->shared)
8452 {
8453 plt_entry = mips_vxworks_shared_plt_entry;
8454 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8455 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8456 }
8457 else
8458 {
8459 bfd_vma got_address_high, got_address_low;
8460
8461 plt_entry = mips_vxworks_exec_plt_entry;
8462 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8463 got_address_low = got_address & 0xffff;
8464
8465 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8466 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8467 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8468 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8469 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8470 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8471 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8472 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8473
8474 loc = (htab->srelplt2->contents
8475 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8476
8477 /* Emit a relocation for the .got.plt entry. */
8478 rel.r_offset = got_address;
8479 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8480 rel.r_addend = h->plt.offset;
8481 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8482
8483 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8484 loc += sizeof (Elf32_External_Rela);
8485 rel.r_offset = plt_address + 8;
8486 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8487 rel.r_addend = got_offset;
8488 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8489
8490 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8491 loc += sizeof (Elf32_External_Rela);
8492 rel.r_offset += 4;
8493 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8494 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8495 }
8496
8497 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8498 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8499 rel.r_offset = got_address;
8500 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8501 rel.r_addend = 0;
8502 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8503
8504 if (!h->def_regular)
8505 sym->st_shndx = SHN_UNDEF;
8506 }
8507
8508 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8509
8510 sgot = mips_elf_got_section (dynobj, FALSE);
8511 BFD_ASSERT (sgot != NULL);
8512 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8513 g = mips_elf_section_data (sgot)->u.got_info;
8514 BFD_ASSERT (g != NULL);
8515
8516 /* See if this symbol has an entry in the GOT. */
8517 if (g->global_gotsym != NULL
8518 && h->dynindx >= g->global_gotsym->dynindx)
8519 {
8520 bfd_vma offset;
8521 Elf_Internal_Rela outrel;
8522 bfd_byte *loc;
8523 asection *s;
8524
8525 /* Install the symbol value in the GOT. */
8526 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8527 R_MIPS_GOT16, info);
8528 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8529
8530 /* Add a dynamic relocation for it. */
8531 s = mips_elf_rel_dyn_section (info, FALSE);
8532 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8533 outrel.r_offset = (sgot->output_section->vma
8534 + sgot->output_offset
8535 + offset);
8536 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8537 outrel.r_addend = 0;
8538 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8539 }
8540
8541 /* Emit a copy reloc, if needed. */
8542 if (h->needs_copy)
8543 {
8544 Elf_Internal_Rela rel;
8545
8546 BFD_ASSERT (h->dynindx != -1);
8547
8548 rel.r_offset = (h->root.u.def.section->output_section->vma
8549 + h->root.u.def.section->output_offset
8550 + h->root.u.def.value);
8551 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8552 rel.r_addend = 0;
8553 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8554 htab->srelbss->contents
8555 + (htab->srelbss->reloc_count
8556 * sizeof (Elf32_External_Rela)));
8557 ++htab->srelbss->reloc_count;
8558 }
8559
8560 /* If this is a mips16 symbol, force the value to be even. */
8561 if (sym->st_other == STO_MIPS16)
8562 sym->st_value &= ~1;
8563
8564 return TRUE;
8565 }
8566
8567 /* Install the PLT header for a VxWorks executable and finalize the
8568 contents of .rela.plt.unloaded. */
8569
8570 static void
8571 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8572 {
8573 Elf_Internal_Rela rela;
8574 bfd_byte *loc;
8575 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8576 static const bfd_vma *plt_entry;
8577 struct mips_elf_link_hash_table *htab;
8578
8579 htab = mips_elf_hash_table (info);
8580 plt_entry = mips_vxworks_exec_plt0_entry;
8581
8582 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8583 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8584 + htab->root.hgot->root.u.def.section->output_offset
8585 + htab->root.hgot->root.u.def.value);
8586
8587 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8588 got_value_low = got_value & 0xffff;
8589
8590 /* Calculate the address of the PLT header. */
8591 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8592
8593 /* Install the PLT header. */
8594 loc = htab->splt->contents;
8595 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8596 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8597 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8598 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8599 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8600 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8601
8602 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8603 loc = htab->srelplt2->contents;
8604 rela.r_offset = plt_address;
8605 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8606 rela.r_addend = 0;
8607 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8608 loc += sizeof (Elf32_External_Rela);
8609
8610 /* Output the relocation for the following addiu of
8611 %lo(_GLOBAL_OFFSET_TABLE_). */
8612 rela.r_offset += 4;
8613 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8614 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8615 loc += sizeof (Elf32_External_Rela);
8616
8617 /* Fix up the remaining relocations. They may have the wrong
8618 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8619 in which symbols were output. */
8620 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8621 {
8622 Elf_Internal_Rela rel;
8623
8624 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8625 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8626 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8627 loc += sizeof (Elf32_External_Rela);
8628
8629 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8630 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8631 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8632 loc += sizeof (Elf32_External_Rela);
8633
8634 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8635 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8636 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8637 loc += sizeof (Elf32_External_Rela);
8638 }
8639 }
8640
8641 /* Install the PLT header for a VxWorks shared library. */
8642
8643 static void
8644 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8645 {
8646 unsigned int i;
8647 struct mips_elf_link_hash_table *htab;
8648
8649 htab = mips_elf_hash_table (info);
8650
8651 /* We just need to copy the entry byte-by-byte. */
8652 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8653 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8654 htab->splt->contents + i * 4);
8655 }
8656
8657 /* Finish up the dynamic sections. */
8658
8659 bfd_boolean
8660 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8661 struct bfd_link_info *info)
8662 {
8663 bfd *dynobj;
8664 asection *sdyn;
8665 asection *sgot;
8666 struct mips_got_info *gg, *g;
8667 struct mips_elf_link_hash_table *htab;
8668
8669 htab = mips_elf_hash_table (info);
8670 dynobj = elf_hash_table (info)->dynobj;
8671
8672 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8673
8674 sgot = mips_elf_got_section (dynobj, FALSE);
8675 if (sgot == NULL)
8676 gg = g = NULL;
8677 else
8678 {
8679 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8680 gg = mips_elf_section_data (sgot)->u.got_info;
8681 BFD_ASSERT (gg != NULL);
8682 g = mips_elf_got_for_ibfd (gg, output_bfd);
8683 BFD_ASSERT (g != NULL);
8684 }
8685
8686 if (elf_hash_table (info)->dynamic_sections_created)
8687 {
8688 bfd_byte *b;
8689 int dyn_to_skip = 0, dyn_skipped = 0;
8690
8691 BFD_ASSERT (sdyn != NULL);
8692 BFD_ASSERT (g != NULL);
8693
8694 for (b = sdyn->contents;
8695 b < sdyn->contents + sdyn->size;
8696 b += MIPS_ELF_DYN_SIZE (dynobj))
8697 {
8698 Elf_Internal_Dyn dyn;
8699 const char *name;
8700 size_t elemsize;
8701 asection *s;
8702 bfd_boolean swap_out_p;
8703
8704 /* Read in the current dynamic entry. */
8705 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8706
8707 /* Assume that we're going to modify it and write it out. */
8708 swap_out_p = TRUE;
8709
8710 switch (dyn.d_tag)
8711 {
8712 case DT_RELENT:
8713 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8714 break;
8715
8716 case DT_RELAENT:
8717 BFD_ASSERT (htab->is_vxworks);
8718 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8719 break;
8720
8721 case DT_STRSZ:
8722 /* Rewrite DT_STRSZ. */
8723 dyn.d_un.d_val =
8724 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8725 break;
8726
8727 case DT_PLTGOT:
8728 name = ".got";
8729 if (htab->is_vxworks)
8730 {
8731 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8732 of the ".got" section in DYNOBJ. */
8733 s = bfd_get_section_by_name (dynobj, name);
8734 BFD_ASSERT (s != NULL);
8735 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8736 }
8737 else
8738 {
8739 s = bfd_get_section_by_name (output_bfd, name);
8740 BFD_ASSERT (s != NULL);
8741 dyn.d_un.d_ptr = s->vma;
8742 }
8743 break;
8744
8745 case DT_MIPS_RLD_VERSION:
8746 dyn.d_un.d_val = 1; /* XXX */
8747 break;
8748
8749 case DT_MIPS_FLAGS:
8750 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8751 break;
8752
8753 case DT_MIPS_TIME_STAMP:
8754 {
8755 time_t t;
8756 time (&t);
8757 dyn.d_un.d_val = t;
8758 }
8759 break;
8760
8761 case DT_MIPS_ICHECKSUM:
8762 /* XXX FIXME: */
8763 swap_out_p = FALSE;
8764 break;
8765
8766 case DT_MIPS_IVERSION:
8767 /* XXX FIXME: */
8768 swap_out_p = FALSE;
8769 break;
8770
8771 case DT_MIPS_BASE_ADDRESS:
8772 s = output_bfd->sections;
8773 BFD_ASSERT (s != NULL);
8774 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8775 break;
8776
8777 case DT_MIPS_LOCAL_GOTNO:
8778 dyn.d_un.d_val = g->local_gotno;
8779 break;
8780
8781 case DT_MIPS_UNREFEXTNO:
8782 /* The index into the dynamic symbol table which is the
8783 entry of the first external symbol that is not
8784 referenced within the same object. */
8785 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8786 break;
8787
8788 case DT_MIPS_GOTSYM:
8789 if (gg->global_gotsym)
8790 {
8791 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8792 break;
8793 }
8794 /* In case if we don't have global got symbols we default
8795 to setting DT_MIPS_GOTSYM to the same value as
8796 DT_MIPS_SYMTABNO, so we just fall through. */
8797
8798 case DT_MIPS_SYMTABNO:
8799 name = ".dynsym";
8800 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8801 s = bfd_get_section_by_name (output_bfd, name);
8802 BFD_ASSERT (s != NULL);
8803
8804 dyn.d_un.d_val = s->size / elemsize;
8805 break;
8806
8807 case DT_MIPS_HIPAGENO:
8808 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8809 break;
8810
8811 case DT_MIPS_RLD_MAP:
8812 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8813 break;
8814
8815 case DT_MIPS_OPTIONS:
8816 s = (bfd_get_section_by_name
8817 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8818 dyn.d_un.d_ptr = s->vma;
8819 break;
8820
8821 case DT_RELASZ:
8822 BFD_ASSERT (htab->is_vxworks);
8823 /* The count does not include the JUMP_SLOT relocations. */
8824 if (htab->srelplt)
8825 dyn.d_un.d_val -= htab->srelplt->size;
8826 break;
8827
8828 case DT_PLTREL:
8829 BFD_ASSERT (htab->is_vxworks);
8830 dyn.d_un.d_val = DT_RELA;
8831 break;
8832
8833 case DT_PLTRELSZ:
8834 BFD_ASSERT (htab->is_vxworks);
8835 dyn.d_un.d_val = htab->srelplt->size;
8836 break;
8837
8838 case DT_JMPREL:
8839 BFD_ASSERT (htab->is_vxworks);
8840 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8841 + htab->srelplt->output_offset);
8842 break;
8843
8844 case DT_TEXTREL:
8845 /* If we didn't need any text relocations after all, delete
8846 the dynamic tag. */
8847 if (!(info->flags & DF_TEXTREL))
8848 {
8849 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8850 swap_out_p = FALSE;
8851 }
8852 break;
8853
8854 case DT_FLAGS:
8855 /* If we didn't need any text relocations after all, clear
8856 DF_TEXTREL from DT_FLAGS. */
8857 if (!(info->flags & DF_TEXTREL))
8858 dyn.d_un.d_val &= ~DF_TEXTREL;
8859 else
8860 swap_out_p = FALSE;
8861 break;
8862
8863 default:
8864 swap_out_p = FALSE;
8865 break;
8866 }
8867
8868 if (swap_out_p || dyn_skipped)
8869 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8870 (dynobj, &dyn, b - dyn_skipped);
8871
8872 if (dyn_to_skip)
8873 {
8874 dyn_skipped += dyn_to_skip;
8875 dyn_to_skip = 0;
8876 }
8877 }
8878
8879 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8880 if (dyn_skipped > 0)
8881 memset (b - dyn_skipped, 0, dyn_skipped);
8882 }
8883
8884 if (sgot != NULL && sgot->size > 0)
8885 {
8886 if (htab->is_vxworks)
8887 {
8888 /* The first entry of the global offset table points to the
8889 ".dynamic" section. The second is initialized by the
8890 loader and contains the shared library identifier.
8891 The third is also initialized by the loader and points
8892 to the lazy resolution stub. */
8893 MIPS_ELF_PUT_WORD (output_bfd,
8894 sdyn->output_offset + sdyn->output_section->vma,
8895 sgot->contents);
8896 MIPS_ELF_PUT_WORD (output_bfd, 0,
8897 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8898 MIPS_ELF_PUT_WORD (output_bfd, 0,
8899 sgot->contents
8900 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8901 }
8902 else
8903 {
8904 /* The first entry of the global offset table will be filled at
8905 runtime. The second entry will be used by some runtime loaders.
8906 This isn't the case of IRIX rld. */
8907 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8908 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8909 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8910 }
8911
8912 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8913 = MIPS_ELF_GOT_SIZE (output_bfd);
8914 }
8915
8916 /* Generate dynamic relocations for the non-primary gots. */
8917 if (gg != NULL && gg->next)
8918 {
8919 Elf_Internal_Rela rel[3];
8920 bfd_vma addend = 0;
8921
8922 memset (rel, 0, sizeof (rel));
8923 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8924
8925 for (g = gg->next; g->next != gg; g = g->next)
8926 {
8927 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8928 + g->next->tls_gotno;
8929
8930 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8931 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8932 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8933 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8934
8935 if (! info->shared)
8936 continue;
8937
8938 while (index < g->assigned_gotno)
8939 {
8940 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8941 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8942 if (!(mips_elf_create_dynamic_relocation
8943 (output_bfd, info, rel, NULL,
8944 bfd_abs_section_ptr,
8945 0, &addend, sgot)))
8946 return FALSE;
8947 BFD_ASSERT (addend == 0);
8948 }
8949 }
8950 }
8951
8952 /* The generation of dynamic relocations for the non-primary gots
8953 adds more dynamic relocations. We cannot count them until
8954 here. */
8955
8956 if (elf_hash_table (info)->dynamic_sections_created)
8957 {
8958 bfd_byte *b;
8959 bfd_boolean swap_out_p;
8960
8961 BFD_ASSERT (sdyn != NULL);
8962
8963 for (b = sdyn->contents;
8964 b < sdyn->contents + sdyn->size;
8965 b += MIPS_ELF_DYN_SIZE (dynobj))
8966 {
8967 Elf_Internal_Dyn dyn;
8968 asection *s;
8969
8970 /* Read in the current dynamic entry. */
8971 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8972
8973 /* Assume that we're going to modify it and write it out. */
8974 swap_out_p = TRUE;
8975
8976 switch (dyn.d_tag)
8977 {
8978 case DT_RELSZ:
8979 /* Reduce DT_RELSZ to account for any relocations we
8980 decided not to make. This is for the n64 irix rld,
8981 which doesn't seem to apply any relocations if there
8982 are trailing null entries. */
8983 s = mips_elf_rel_dyn_section (info, FALSE);
8984 dyn.d_un.d_val = (s->reloc_count
8985 * (ABI_64_P (output_bfd)
8986 ? sizeof (Elf64_Mips_External_Rel)
8987 : sizeof (Elf32_External_Rel)));
8988 /* Adjust the section size too. Tools like the prelinker
8989 can reasonably expect the values to the same. */
8990 elf_section_data (s->output_section)->this_hdr.sh_size
8991 = dyn.d_un.d_val;
8992 break;
8993
8994 default:
8995 swap_out_p = FALSE;
8996 break;
8997 }
8998
8999 if (swap_out_p)
9000 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9001 (dynobj, &dyn, b);
9002 }
9003 }
9004
9005 {
9006 asection *s;
9007 Elf32_compact_rel cpt;
9008
9009 if (SGI_COMPAT (output_bfd))
9010 {
9011 /* Write .compact_rel section out. */
9012 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9013 if (s != NULL)
9014 {
9015 cpt.id1 = 1;
9016 cpt.num = s->reloc_count;
9017 cpt.id2 = 2;
9018 cpt.offset = (s->output_section->filepos
9019 + sizeof (Elf32_External_compact_rel));
9020 cpt.reserved0 = 0;
9021 cpt.reserved1 = 0;
9022 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9023 ((Elf32_External_compact_rel *)
9024 s->contents));
9025
9026 /* Clean up a dummy stub function entry in .text. */
9027 s = bfd_get_section_by_name (dynobj,
9028 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9029 if (s != NULL)
9030 {
9031 file_ptr dummy_offset;
9032
9033 BFD_ASSERT (s->size >= htab->function_stub_size);
9034 dummy_offset = s->size - htab->function_stub_size;
9035 memset (s->contents + dummy_offset, 0,
9036 htab->function_stub_size);
9037 }
9038 }
9039 }
9040
9041 /* The psABI says that the dynamic relocations must be sorted in
9042 increasing order of r_symndx. The VxWorks EABI doesn't require
9043 this, and because the code below handles REL rather than RELA
9044 relocations, using it for VxWorks would be outright harmful. */
9045 if (!htab->is_vxworks)
9046 {
9047 s = mips_elf_rel_dyn_section (info, FALSE);
9048 if (s != NULL
9049 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9050 {
9051 reldyn_sorting_bfd = output_bfd;
9052
9053 if (ABI_64_P (output_bfd))
9054 qsort ((Elf64_External_Rel *) s->contents + 1,
9055 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9056 sort_dynamic_relocs_64);
9057 else
9058 qsort ((Elf32_External_Rel *) s->contents + 1,
9059 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9060 sort_dynamic_relocs);
9061 }
9062 }
9063 }
9064
9065 if (htab->is_vxworks && htab->splt->size > 0)
9066 {
9067 if (info->shared)
9068 mips_vxworks_finish_shared_plt (output_bfd, info);
9069 else
9070 mips_vxworks_finish_exec_plt (output_bfd, info);
9071 }
9072 return TRUE;
9073 }
9074
9075
9076 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9077
9078 static void
9079 mips_set_isa_flags (bfd *abfd)
9080 {
9081 flagword val;
9082
9083 switch (bfd_get_mach (abfd))
9084 {
9085 default:
9086 case bfd_mach_mips3000:
9087 val = E_MIPS_ARCH_1;
9088 break;
9089
9090 case bfd_mach_mips3900:
9091 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9092 break;
9093
9094 case bfd_mach_mips6000:
9095 val = E_MIPS_ARCH_2;
9096 break;
9097
9098 case bfd_mach_mips4000:
9099 case bfd_mach_mips4300:
9100 case bfd_mach_mips4400:
9101 case bfd_mach_mips4600:
9102 val = E_MIPS_ARCH_3;
9103 break;
9104
9105 case bfd_mach_mips4010:
9106 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9107 break;
9108
9109 case bfd_mach_mips4100:
9110 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9111 break;
9112
9113 case bfd_mach_mips4111:
9114 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9115 break;
9116
9117 case bfd_mach_mips4120:
9118 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9119 break;
9120
9121 case bfd_mach_mips4650:
9122 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9123 break;
9124
9125 case bfd_mach_mips5400:
9126 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9127 break;
9128
9129 case bfd_mach_mips5500:
9130 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9131 break;
9132
9133 case bfd_mach_mips9000:
9134 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9135 break;
9136
9137 case bfd_mach_mips5000:
9138 case bfd_mach_mips7000:
9139 case bfd_mach_mips8000:
9140 case bfd_mach_mips10000:
9141 case bfd_mach_mips12000:
9142 val = E_MIPS_ARCH_4;
9143 break;
9144
9145 case bfd_mach_mips5:
9146 val = E_MIPS_ARCH_5;
9147 break;
9148
9149 case bfd_mach_mips_sb1:
9150 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9151 break;
9152
9153 case bfd_mach_mipsisa32:
9154 val = E_MIPS_ARCH_32;
9155 break;
9156
9157 case bfd_mach_mipsisa64:
9158 val = E_MIPS_ARCH_64;
9159 break;
9160
9161 case bfd_mach_mipsisa32r2:
9162 val = E_MIPS_ARCH_32R2;
9163 break;
9164
9165 case bfd_mach_mipsisa64r2:
9166 val = E_MIPS_ARCH_64R2;
9167 break;
9168 }
9169 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9170 elf_elfheader (abfd)->e_flags |= val;
9171
9172 }
9173
9174
9175 /* The final processing done just before writing out a MIPS ELF object
9176 file. This gets the MIPS architecture right based on the machine
9177 number. This is used by both the 32-bit and the 64-bit ABI. */
9178
9179 void
9180 _bfd_mips_elf_final_write_processing (bfd *abfd,
9181 bfd_boolean linker ATTRIBUTE_UNUSED)
9182 {
9183 unsigned int i;
9184 Elf_Internal_Shdr **hdrpp;
9185 const char *name;
9186 asection *sec;
9187
9188 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9189 is nonzero. This is for compatibility with old objects, which used
9190 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9191 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9192 mips_set_isa_flags (abfd);
9193
9194 /* Set the sh_info field for .gptab sections and other appropriate
9195 info for each special section. */
9196 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9197 i < elf_numsections (abfd);
9198 i++, hdrpp++)
9199 {
9200 switch ((*hdrpp)->sh_type)
9201 {
9202 case SHT_MIPS_MSYM:
9203 case SHT_MIPS_LIBLIST:
9204 sec = bfd_get_section_by_name (abfd, ".dynstr");
9205 if (sec != NULL)
9206 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9207 break;
9208
9209 case SHT_MIPS_GPTAB:
9210 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9211 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9212 BFD_ASSERT (name != NULL
9213 && CONST_STRNEQ (name, ".gptab."));
9214 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9215 BFD_ASSERT (sec != NULL);
9216 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9217 break;
9218
9219 case SHT_MIPS_CONTENT:
9220 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9221 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9222 BFD_ASSERT (name != NULL
9223 && CONST_STRNEQ (name, ".MIPS.content"));
9224 sec = bfd_get_section_by_name (abfd,
9225 name + sizeof ".MIPS.content" - 1);
9226 BFD_ASSERT (sec != NULL);
9227 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9228 break;
9229
9230 case SHT_MIPS_SYMBOL_LIB:
9231 sec = bfd_get_section_by_name (abfd, ".dynsym");
9232 if (sec != NULL)
9233 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9234 sec = bfd_get_section_by_name (abfd, ".liblist");
9235 if (sec != NULL)
9236 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9237 break;
9238
9239 case SHT_MIPS_EVENTS:
9240 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9241 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9242 BFD_ASSERT (name != NULL);
9243 if (CONST_STRNEQ (name, ".MIPS.events"))
9244 sec = bfd_get_section_by_name (abfd,
9245 name + sizeof ".MIPS.events" - 1);
9246 else
9247 {
9248 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9249 sec = bfd_get_section_by_name (abfd,
9250 (name
9251 + sizeof ".MIPS.post_rel" - 1));
9252 }
9253 BFD_ASSERT (sec != NULL);
9254 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9255 break;
9256
9257 }
9258 }
9259 }
9260 \f
9261 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9262 segments. */
9263
9264 int
9265 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9266 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9267 {
9268 asection *s;
9269 int ret = 0;
9270
9271 /* See if we need a PT_MIPS_REGINFO segment. */
9272 s = bfd_get_section_by_name (abfd, ".reginfo");
9273 if (s && (s->flags & SEC_LOAD))
9274 ++ret;
9275
9276 /* See if we need a PT_MIPS_OPTIONS segment. */
9277 if (IRIX_COMPAT (abfd) == ict_irix6
9278 && bfd_get_section_by_name (abfd,
9279 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9280 ++ret;
9281
9282 /* See if we need a PT_MIPS_RTPROC segment. */
9283 if (IRIX_COMPAT (abfd) == ict_irix5
9284 && bfd_get_section_by_name (abfd, ".dynamic")
9285 && bfd_get_section_by_name (abfd, ".mdebug"))
9286 ++ret;
9287
9288 /* Allocate a PT_NULL header in dynamic objects. See
9289 _bfd_mips_elf_modify_segment_map for details. */
9290 if (!SGI_COMPAT (abfd)
9291 && bfd_get_section_by_name (abfd, ".dynamic"))
9292 ++ret;
9293
9294 return ret;
9295 }
9296
9297 /* Modify the segment map for an IRIX5 executable. */
9298
9299 bfd_boolean
9300 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9301 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9302 {
9303 asection *s;
9304 struct elf_segment_map *m, **pm;
9305 bfd_size_type amt;
9306
9307 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9308 segment. */
9309 s = bfd_get_section_by_name (abfd, ".reginfo");
9310 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9311 {
9312 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9313 if (m->p_type == PT_MIPS_REGINFO)
9314 break;
9315 if (m == NULL)
9316 {
9317 amt = sizeof *m;
9318 m = bfd_zalloc (abfd, amt);
9319 if (m == NULL)
9320 return FALSE;
9321
9322 m->p_type = PT_MIPS_REGINFO;
9323 m->count = 1;
9324 m->sections[0] = s;
9325
9326 /* We want to put it after the PHDR and INTERP segments. */
9327 pm = &elf_tdata (abfd)->segment_map;
9328 while (*pm != NULL
9329 && ((*pm)->p_type == PT_PHDR
9330 || (*pm)->p_type == PT_INTERP))
9331 pm = &(*pm)->next;
9332
9333 m->next = *pm;
9334 *pm = m;
9335 }
9336 }
9337
9338 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9339 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9340 PT_MIPS_OPTIONS segment immediately following the program header
9341 table. */
9342 if (NEWABI_P (abfd)
9343 /* On non-IRIX6 new abi, we'll have already created a segment
9344 for this section, so don't create another. I'm not sure this
9345 is not also the case for IRIX 6, but I can't test it right
9346 now. */
9347 && IRIX_COMPAT (abfd) == ict_irix6)
9348 {
9349 for (s = abfd->sections; s; s = s->next)
9350 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9351 break;
9352
9353 if (s)
9354 {
9355 struct elf_segment_map *options_segment;
9356
9357 pm = &elf_tdata (abfd)->segment_map;
9358 while (*pm != NULL
9359 && ((*pm)->p_type == PT_PHDR
9360 || (*pm)->p_type == PT_INTERP))
9361 pm = &(*pm)->next;
9362
9363 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9364 {
9365 amt = sizeof (struct elf_segment_map);
9366 options_segment = bfd_zalloc (abfd, amt);
9367 options_segment->next = *pm;
9368 options_segment->p_type = PT_MIPS_OPTIONS;
9369 options_segment->p_flags = PF_R;
9370 options_segment->p_flags_valid = TRUE;
9371 options_segment->count = 1;
9372 options_segment->sections[0] = s;
9373 *pm = options_segment;
9374 }
9375 }
9376 }
9377 else
9378 {
9379 if (IRIX_COMPAT (abfd) == ict_irix5)
9380 {
9381 /* If there are .dynamic and .mdebug sections, we make a room
9382 for the RTPROC header. FIXME: Rewrite without section names. */
9383 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9384 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9385 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9386 {
9387 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9388 if (m->p_type == PT_MIPS_RTPROC)
9389 break;
9390 if (m == NULL)
9391 {
9392 amt = sizeof *m;
9393 m = bfd_zalloc (abfd, amt);
9394 if (m == NULL)
9395 return FALSE;
9396
9397 m->p_type = PT_MIPS_RTPROC;
9398
9399 s = bfd_get_section_by_name (abfd, ".rtproc");
9400 if (s == NULL)
9401 {
9402 m->count = 0;
9403 m->p_flags = 0;
9404 m->p_flags_valid = 1;
9405 }
9406 else
9407 {
9408 m->count = 1;
9409 m->sections[0] = s;
9410 }
9411
9412 /* We want to put it after the DYNAMIC segment. */
9413 pm = &elf_tdata (abfd)->segment_map;
9414 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9415 pm = &(*pm)->next;
9416 if (*pm != NULL)
9417 pm = &(*pm)->next;
9418
9419 m->next = *pm;
9420 *pm = m;
9421 }
9422 }
9423 }
9424 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9425 .dynstr, .dynsym, and .hash sections, and everything in
9426 between. */
9427 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9428 pm = &(*pm)->next)
9429 if ((*pm)->p_type == PT_DYNAMIC)
9430 break;
9431 m = *pm;
9432 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9433 {
9434 /* For a normal mips executable the permissions for the PT_DYNAMIC
9435 segment are read, write and execute. We do that here since
9436 the code in elf.c sets only the read permission. This matters
9437 sometimes for the dynamic linker. */
9438 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9439 {
9440 m->p_flags = PF_R | PF_W | PF_X;
9441 m->p_flags_valid = 1;
9442 }
9443 }
9444 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9445 glibc's dynamic linker has traditionally derived the number of
9446 tags from the p_filesz field, and sometimes allocates stack
9447 arrays of that size. An overly-big PT_DYNAMIC segment can
9448 be actively harmful in such cases. Making PT_DYNAMIC contain
9449 other sections can also make life hard for the prelinker,
9450 which might move one of the other sections to a different
9451 PT_LOAD segment. */
9452 if (SGI_COMPAT (abfd)
9453 && m != NULL
9454 && m->count == 1
9455 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9456 {
9457 static const char *sec_names[] =
9458 {
9459 ".dynamic", ".dynstr", ".dynsym", ".hash"
9460 };
9461 bfd_vma low, high;
9462 unsigned int i, c;
9463 struct elf_segment_map *n;
9464
9465 low = ~(bfd_vma) 0;
9466 high = 0;
9467 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9468 {
9469 s = bfd_get_section_by_name (abfd, sec_names[i]);
9470 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9471 {
9472 bfd_size_type sz;
9473
9474 if (low > s->vma)
9475 low = s->vma;
9476 sz = s->size;
9477 if (high < s->vma + sz)
9478 high = s->vma + sz;
9479 }
9480 }
9481
9482 c = 0;
9483 for (s = abfd->sections; s != NULL; s = s->next)
9484 if ((s->flags & SEC_LOAD) != 0
9485 && s->vma >= low
9486 && s->vma + s->size <= high)
9487 ++c;
9488
9489 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9490 n = bfd_zalloc (abfd, amt);
9491 if (n == NULL)
9492 return FALSE;
9493 *n = *m;
9494 n->count = c;
9495
9496 i = 0;
9497 for (s = abfd->sections; s != NULL; s = s->next)
9498 {
9499 if ((s->flags & SEC_LOAD) != 0
9500 && s->vma >= low
9501 && s->vma + s->size <= high)
9502 {
9503 n->sections[i] = s;
9504 ++i;
9505 }
9506 }
9507
9508 *pm = n;
9509 }
9510 }
9511
9512 /* Allocate a spare program header in dynamic objects so that tools
9513 like the prelinker can add an extra PT_LOAD entry.
9514
9515 If the prelinker needs to make room for a new PT_LOAD entry, its
9516 standard procedure is to move the first (read-only) sections into
9517 the new (writable) segment. However, the MIPS ABI requires
9518 .dynamic to be in a read-only segment, and the section will often
9519 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9520
9521 Although the prelinker could in principle move .dynamic to a
9522 writable segment, it seems better to allocate a spare program
9523 header instead, and avoid the need to move any sections.
9524 There is a long tradition of allocating spare dynamic tags,
9525 so allocating a spare program header seems like a natural
9526 extension. */
9527 if (!SGI_COMPAT (abfd)
9528 && bfd_get_section_by_name (abfd, ".dynamic"))
9529 {
9530 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9531 if ((*pm)->p_type == PT_NULL)
9532 break;
9533 if (*pm == NULL)
9534 {
9535 m = bfd_zalloc (abfd, sizeof (*m));
9536 if (m == NULL)
9537 return FALSE;
9538
9539 m->p_type = PT_NULL;
9540 *pm = m;
9541 }
9542 }
9543
9544 return TRUE;
9545 }
9546 \f
9547 /* Return the section that should be marked against GC for a given
9548 relocation. */
9549
9550 asection *
9551 _bfd_mips_elf_gc_mark_hook (asection *sec,
9552 struct bfd_link_info *info,
9553 Elf_Internal_Rela *rel,
9554 struct elf_link_hash_entry *h,
9555 Elf_Internal_Sym *sym)
9556 {
9557 /* ??? Do mips16 stub sections need to be handled special? */
9558
9559 if (h != NULL)
9560 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9561 {
9562 case R_MIPS_GNU_VTINHERIT:
9563 case R_MIPS_GNU_VTENTRY:
9564 return NULL;
9565 }
9566
9567 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9568 }
9569
9570 /* Update the got entry reference counts for the section being removed. */
9571
9572 bfd_boolean
9573 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9574 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9575 asection *sec ATTRIBUTE_UNUSED,
9576 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9577 {
9578 #if 0
9579 Elf_Internal_Shdr *symtab_hdr;
9580 struct elf_link_hash_entry **sym_hashes;
9581 bfd_signed_vma *local_got_refcounts;
9582 const Elf_Internal_Rela *rel, *relend;
9583 unsigned long r_symndx;
9584 struct elf_link_hash_entry *h;
9585
9586 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9587 sym_hashes = elf_sym_hashes (abfd);
9588 local_got_refcounts = elf_local_got_refcounts (abfd);
9589
9590 relend = relocs + sec->reloc_count;
9591 for (rel = relocs; rel < relend; rel++)
9592 switch (ELF_R_TYPE (abfd, rel->r_info))
9593 {
9594 case R_MIPS_GOT16:
9595 case R_MIPS_CALL16:
9596 case R_MIPS_CALL_HI16:
9597 case R_MIPS_CALL_LO16:
9598 case R_MIPS_GOT_HI16:
9599 case R_MIPS_GOT_LO16:
9600 case R_MIPS_GOT_DISP:
9601 case R_MIPS_GOT_PAGE:
9602 case R_MIPS_GOT_OFST:
9603 /* ??? It would seem that the existing MIPS code does no sort
9604 of reference counting or whatnot on its GOT and PLT entries,
9605 so it is not possible to garbage collect them at this time. */
9606 break;
9607
9608 default:
9609 break;
9610 }
9611 #endif
9612
9613 return TRUE;
9614 }
9615 \f
9616 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9617 hiding the old indirect symbol. Process additional relocation
9618 information. Also called for weakdefs, in which case we just let
9619 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9620
9621 void
9622 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9623 struct elf_link_hash_entry *dir,
9624 struct elf_link_hash_entry *ind)
9625 {
9626 struct mips_elf_link_hash_entry *dirmips, *indmips;
9627
9628 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9629
9630 if (ind->root.type != bfd_link_hash_indirect)
9631 return;
9632
9633 dirmips = (struct mips_elf_link_hash_entry *) dir;
9634 indmips = (struct mips_elf_link_hash_entry *) ind;
9635 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9636 if (indmips->readonly_reloc)
9637 dirmips->readonly_reloc = TRUE;
9638 if (indmips->no_fn_stub)
9639 dirmips->no_fn_stub = TRUE;
9640
9641 if (dirmips->tls_type == 0)
9642 dirmips->tls_type = indmips->tls_type;
9643 }
9644
9645 void
9646 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9647 struct elf_link_hash_entry *entry,
9648 bfd_boolean force_local)
9649 {
9650 bfd *dynobj;
9651 asection *got;
9652 struct mips_got_info *g;
9653 struct mips_elf_link_hash_entry *h;
9654
9655 h = (struct mips_elf_link_hash_entry *) entry;
9656 if (h->forced_local)
9657 return;
9658 h->forced_local = force_local;
9659
9660 dynobj = elf_hash_table (info)->dynobj;
9661 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9662 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9663 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9664 {
9665 if (g->next)
9666 {
9667 struct mips_got_entry e;
9668 struct mips_got_info *gg = g;
9669
9670 /* Since we're turning what used to be a global symbol into a
9671 local one, bump up the number of local entries of each GOT
9672 that had an entry for it. This will automatically decrease
9673 the number of global entries, since global_gotno is actually
9674 the upper limit of global entries. */
9675 e.abfd = dynobj;
9676 e.symndx = -1;
9677 e.d.h = h;
9678 e.tls_type = 0;
9679
9680 for (g = g->next; g != gg; g = g->next)
9681 if (htab_find (g->got_entries, &e))
9682 {
9683 BFD_ASSERT (g->global_gotno > 0);
9684 g->local_gotno++;
9685 g->global_gotno--;
9686 }
9687
9688 /* If this was a global symbol forced into the primary GOT, we
9689 no longer need an entry for it. We can't release the entry
9690 at this point, but we must at least stop counting it as one
9691 of the symbols that required a forced got entry. */
9692 if (h->root.got.offset == 2)
9693 {
9694 BFD_ASSERT (gg->assigned_gotno > 0);
9695 gg->assigned_gotno--;
9696 }
9697 }
9698 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9699 /* If we haven't got through GOT allocation yet, just bump up the
9700 number of local entries, as this symbol won't be counted as
9701 global. */
9702 g->local_gotno++;
9703 else if (h->root.got.offset == 1)
9704 {
9705 /* If we're past non-multi-GOT allocation and this symbol had
9706 been marked for a global got entry, give it a local entry
9707 instead. */
9708 BFD_ASSERT (g->global_gotno > 0);
9709 g->local_gotno++;
9710 g->global_gotno--;
9711 }
9712 }
9713
9714 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9715 }
9716 \f
9717 #define PDR_SIZE 32
9718
9719 bfd_boolean
9720 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9721 struct bfd_link_info *info)
9722 {
9723 asection *o;
9724 bfd_boolean ret = FALSE;
9725 unsigned char *tdata;
9726 size_t i, skip;
9727
9728 o = bfd_get_section_by_name (abfd, ".pdr");
9729 if (! o)
9730 return FALSE;
9731 if (o->size == 0)
9732 return FALSE;
9733 if (o->size % PDR_SIZE != 0)
9734 return FALSE;
9735 if (o->output_section != NULL
9736 && bfd_is_abs_section (o->output_section))
9737 return FALSE;
9738
9739 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9740 if (! tdata)
9741 return FALSE;
9742
9743 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9744 info->keep_memory);
9745 if (!cookie->rels)
9746 {
9747 free (tdata);
9748 return FALSE;
9749 }
9750
9751 cookie->rel = cookie->rels;
9752 cookie->relend = cookie->rels + o->reloc_count;
9753
9754 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9755 {
9756 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9757 {
9758 tdata[i] = 1;
9759 skip ++;
9760 }
9761 }
9762
9763 if (skip != 0)
9764 {
9765 mips_elf_section_data (o)->u.tdata = tdata;
9766 o->size -= skip * PDR_SIZE;
9767 ret = TRUE;
9768 }
9769 else
9770 free (tdata);
9771
9772 if (! info->keep_memory)
9773 free (cookie->rels);
9774
9775 return ret;
9776 }
9777
9778 bfd_boolean
9779 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9780 {
9781 if (strcmp (sec->name, ".pdr") == 0)
9782 return TRUE;
9783 return FALSE;
9784 }
9785
9786 bfd_boolean
9787 _bfd_mips_elf_write_section (bfd *output_bfd,
9788 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9789 asection *sec, bfd_byte *contents)
9790 {
9791 bfd_byte *to, *from, *end;
9792 int i;
9793
9794 if (strcmp (sec->name, ".pdr") != 0)
9795 return FALSE;
9796
9797 if (mips_elf_section_data (sec)->u.tdata == NULL)
9798 return FALSE;
9799
9800 to = contents;
9801 end = contents + sec->size;
9802 for (from = contents, i = 0;
9803 from < end;
9804 from += PDR_SIZE, i++)
9805 {
9806 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9807 continue;
9808 if (to != from)
9809 memcpy (to, from, PDR_SIZE);
9810 to += PDR_SIZE;
9811 }
9812 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9813 sec->output_offset, sec->size);
9814 return TRUE;
9815 }
9816 \f
9817 /* MIPS ELF uses a special find_nearest_line routine in order the
9818 handle the ECOFF debugging information. */
9819
9820 struct mips_elf_find_line
9821 {
9822 struct ecoff_debug_info d;
9823 struct ecoff_find_line i;
9824 };
9825
9826 bfd_boolean
9827 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9828 asymbol **symbols, bfd_vma offset,
9829 const char **filename_ptr,
9830 const char **functionname_ptr,
9831 unsigned int *line_ptr)
9832 {
9833 asection *msec;
9834
9835 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9836 filename_ptr, functionname_ptr,
9837 line_ptr))
9838 return TRUE;
9839
9840 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9841 filename_ptr, functionname_ptr,
9842 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9843 &elf_tdata (abfd)->dwarf2_find_line_info))
9844 return TRUE;
9845
9846 msec = bfd_get_section_by_name (abfd, ".mdebug");
9847 if (msec != NULL)
9848 {
9849 flagword origflags;
9850 struct mips_elf_find_line *fi;
9851 const struct ecoff_debug_swap * const swap =
9852 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9853
9854 /* If we are called during a link, mips_elf_final_link may have
9855 cleared the SEC_HAS_CONTENTS field. We force it back on here
9856 if appropriate (which it normally will be). */
9857 origflags = msec->flags;
9858 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9859 msec->flags |= SEC_HAS_CONTENTS;
9860
9861 fi = elf_tdata (abfd)->find_line_info;
9862 if (fi == NULL)
9863 {
9864 bfd_size_type external_fdr_size;
9865 char *fraw_src;
9866 char *fraw_end;
9867 struct fdr *fdr_ptr;
9868 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9869
9870 fi = bfd_zalloc (abfd, amt);
9871 if (fi == NULL)
9872 {
9873 msec->flags = origflags;
9874 return FALSE;
9875 }
9876
9877 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9878 {
9879 msec->flags = origflags;
9880 return FALSE;
9881 }
9882
9883 /* Swap in the FDR information. */
9884 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9885 fi->d.fdr = bfd_alloc (abfd, amt);
9886 if (fi->d.fdr == NULL)
9887 {
9888 msec->flags = origflags;
9889 return FALSE;
9890 }
9891 external_fdr_size = swap->external_fdr_size;
9892 fdr_ptr = fi->d.fdr;
9893 fraw_src = (char *) fi->d.external_fdr;
9894 fraw_end = (fraw_src
9895 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9896 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9897 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9898
9899 elf_tdata (abfd)->find_line_info = fi;
9900
9901 /* Note that we don't bother to ever free this information.
9902 find_nearest_line is either called all the time, as in
9903 objdump -l, so the information should be saved, or it is
9904 rarely called, as in ld error messages, so the memory
9905 wasted is unimportant. Still, it would probably be a
9906 good idea for free_cached_info to throw it away. */
9907 }
9908
9909 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9910 &fi->i, filename_ptr, functionname_ptr,
9911 line_ptr))
9912 {
9913 msec->flags = origflags;
9914 return TRUE;
9915 }
9916
9917 msec->flags = origflags;
9918 }
9919
9920 /* Fall back on the generic ELF find_nearest_line routine. */
9921
9922 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9923 filename_ptr, functionname_ptr,
9924 line_ptr);
9925 }
9926
9927 bfd_boolean
9928 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9929 const char **filename_ptr,
9930 const char **functionname_ptr,
9931 unsigned int *line_ptr)
9932 {
9933 bfd_boolean found;
9934 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9935 functionname_ptr, line_ptr,
9936 & elf_tdata (abfd)->dwarf2_find_line_info);
9937 return found;
9938 }
9939
9940 \f
9941 /* When are writing out the .options or .MIPS.options section,
9942 remember the bytes we are writing out, so that we can install the
9943 GP value in the section_processing routine. */
9944
9945 bfd_boolean
9946 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9947 const void *location,
9948 file_ptr offset, bfd_size_type count)
9949 {
9950 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9951 {
9952 bfd_byte *c;
9953
9954 if (elf_section_data (section) == NULL)
9955 {
9956 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9957 section->used_by_bfd = bfd_zalloc (abfd, amt);
9958 if (elf_section_data (section) == NULL)
9959 return FALSE;
9960 }
9961 c = mips_elf_section_data (section)->u.tdata;
9962 if (c == NULL)
9963 {
9964 c = bfd_zalloc (abfd, section->size);
9965 if (c == NULL)
9966 return FALSE;
9967 mips_elf_section_data (section)->u.tdata = c;
9968 }
9969
9970 memcpy (c + offset, location, count);
9971 }
9972
9973 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9974 count);
9975 }
9976
9977 /* This is almost identical to bfd_generic_get_... except that some
9978 MIPS relocations need to be handled specially. Sigh. */
9979
9980 bfd_byte *
9981 _bfd_elf_mips_get_relocated_section_contents
9982 (bfd *abfd,
9983 struct bfd_link_info *link_info,
9984 struct bfd_link_order *link_order,
9985 bfd_byte *data,
9986 bfd_boolean relocatable,
9987 asymbol **symbols)
9988 {
9989 /* Get enough memory to hold the stuff */
9990 bfd *input_bfd = link_order->u.indirect.section->owner;
9991 asection *input_section = link_order->u.indirect.section;
9992 bfd_size_type sz;
9993
9994 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9995 arelent **reloc_vector = NULL;
9996 long reloc_count;
9997
9998 if (reloc_size < 0)
9999 goto error_return;
10000
10001 reloc_vector = bfd_malloc (reloc_size);
10002 if (reloc_vector == NULL && reloc_size != 0)
10003 goto error_return;
10004
10005 /* read in the section */
10006 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10007 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10008 goto error_return;
10009
10010 reloc_count = bfd_canonicalize_reloc (input_bfd,
10011 input_section,
10012 reloc_vector,
10013 symbols);
10014 if (reloc_count < 0)
10015 goto error_return;
10016
10017 if (reloc_count > 0)
10018 {
10019 arelent **parent;
10020 /* for mips */
10021 int gp_found;
10022 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10023
10024 {
10025 struct bfd_hash_entry *h;
10026 struct bfd_link_hash_entry *lh;
10027 /* Skip all this stuff if we aren't mixing formats. */
10028 if (abfd && input_bfd
10029 && abfd->xvec == input_bfd->xvec)
10030 lh = 0;
10031 else
10032 {
10033 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10034 lh = (struct bfd_link_hash_entry *) h;
10035 }
10036 lookup:
10037 if (lh)
10038 {
10039 switch (lh->type)
10040 {
10041 case bfd_link_hash_undefined:
10042 case bfd_link_hash_undefweak:
10043 case bfd_link_hash_common:
10044 gp_found = 0;
10045 break;
10046 case bfd_link_hash_defined:
10047 case bfd_link_hash_defweak:
10048 gp_found = 1;
10049 gp = lh->u.def.value;
10050 break;
10051 case bfd_link_hash_indirect:
10052 case bfd_link_hash_warning:
10053 lh = lh->u.i.link;
10054 /* @@FIXME ignoring warning for now */
10055 goto lookup;
10056 case bfd_link_hash_new:
10057 default:
10058 abort ();
10059 }
10060 }
10061 else
10062 gp_found = 0;
10063 }
10064 /* end mips */
10065 for (parent = reloc_vector; *parent != NULL; parent++)
10066 {
10067 char *error_message = NULL;
10068 bfd_reloc_status_type r;
10069
10070 /* Specific to MIPS: Deal with relocation types that require
10071 knowing the gp of the output bfd. */
10072 asymbol *sym = *(*parent)->sym_ptr_ptr;
10073
10074 /* If we've managed to find the gp and have a special
10075 function for the relocation then go ahead, else default
10076 to the generic handling. */
10077 if (gp_found
10078 && (*parent)->howto->special_function
10079 == _bfd_mips_elf32_gprel16_reloc)
10080 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10081 input_section, relocatable,
10082 data, gp);
10083 else
10084 r = bfd_perform_relocation (input_bfd, *parent, data,
10085 input_section,
10086 relocatable ? abfd : NULL,
10087 &error_message);
10088
10089 if (relocatable)
10090 {
10091 asection *os = input_section->output_section;
10092
10093 /* A partial link, so keep the relocs */
10094 os->orelocation[os->reloc_count] = *parent;
10095 os->reloc_count++;
10096 }
10097
10098 if (r != bfd_reloc_ok)
10099 {
10100 switch (r)
10101 {
10102 case bfd_reloc_undefined:
10103 if (!((*link_info->callbacks->undefined_symbol)
10104 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10105 input_bfd, input_section, (*parent)->address, TRUE)))
10106 goto error_return;
10107 break;
10108 case bfd_reloc_dangerous:
10109 BFD_ASSERT (error_message != NULL);
10110 if (!((*link_info->callbacks->reloc_dangerous)
10111 (link_info, error_message, input_bfd, input_section,
10112 (*parent)->address)))
10113 goto error_return;
10114 break;
10115 case bfd_reloc_overflow:
10116 if (!((*link_info->callbacks->reloc_overflow)
10117 (link_info, NULL,
10118 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10119 (*parent)->howto->name, (*parent)->addend,
10120 input_bfd, input_section, (*parent)->address)))
10121 goto error_return;
10122 break;
10123 case bfd_reloc_outofrange:
10124 default:
10125 abort ();
10126 break;
10127 }
10128
10129 }
10130 }
10131 }
10132 if (reloc_vector != NULL)
10133 free (reloc_vector);
10134 return data;
10135
10136 error_return:
10137 if (reloc_vector != NULL)
10138 free (reloc_vector);
10139 return NULL;
10140 }
10141 \f
10142 /* Create a MIPS ELF linker hash table. */
10143
10144 struct bfd_link_hash_table *
10145 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10146 {
10147 struct mips_elf_link_hash_table *ret;
10148 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10149
10150 ret = bfd_malloc (amt);
10151 if (ret == NULL)
10152 return NULL;
10153
10154 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10155 mips_elf_link_hash_newfunc,
10156 sizeof (struct mips_elf_link_hash_entry)))
10157 {
10158 free (ret);
10159 return NULL;
10160 }
10161
10162 #if 0
10163 /* We no longer use this. */
10164 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10165 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10166 #endif
10167 ret->procedure_count = 0;
10168 ret->compact_rel_size = 0;
10169 ret->use_rld_obj_head = FALSE;
10170 ret->rld_value = 0;
10171 ret->mips16_stubs_seen = FALSE;
10172 ret->is_vxworks = FALSE;
10173 ret->srelbss = NULL;
10174 ret->sdynbss = NULL;
10175 ret->srelplt = NULL;
10176 ret->srelplt2 = NULL;
10177 ret->sgotplt = NULL;
10178 ret->splt = NULL;
10179 ret->plt_header_size = 0;
10180 ret->plt_entry_size = 0;
10181 ret->function_stub_size = 0;
10182
10183 return &ret->root.root;
10184 }
10185
10186 /* Likewise, but indicate that the target is VxWorks. */
10187
10188 struct bfd_link_hash_table *
10189 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10190 {
10191 struct bfd_link_hash_table *ret;
10192
10193 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10194 if (ret)
10195 {
10196 struct mips_elf_link_hash_table *htab;
10197
10198 htab = (struct mips_elf_link_hash_table *) ret;
10199 htab->is_vxworks = 1;
10200 }
10201 return ret;
10202 }
10203 \f
10204 /* We need to use a special link routine to handle the .reginfo and
10205 the .mdebug sections. We need to merge all instances of these
10206 sections together, not write them all out sequentially. */
10207
10208 bfd_boolean
10209 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10210 {
10211 asection *o;
10212 struct bfd_link_order *p;
10213 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10214 asection *rtproc_sec;
10215 Elf32_RegInfo reginfo;
10216 struct ecoff_debug_info debug;
10217 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10218 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10219 HDRR *symhdr = &debug.symbolic_header;
10220 void *mdebug_handle = NULL;
10221 asection *s;
10222 EXTR esym;
10223 unsigned int i;
10224 bfd_size_type amt;
10225 struct mips_elf_link_hash_table *htab;
10226
10227 static const char * const secname[] =
10228 {
10229 ".text", ".init", ".fini", ".data",
10230 ".rodata", ".sdata", ".sbss", ".bss"
10231 };
10232 static const int sc[] =
10233 {
10234 scText, scInit, scFini, scData,
10235 scRData, scSData, scSBss, scBss
10236 };
10237
10238 /* We'd carefully arranged the dynamic symbol indices, and then the
10239 generic size_dynamic_sections renumbered them out from under us.
10240 Rather than trying somehow to prevent the renumbering, just do
10241 the sort again. */
10242 htab = mips_elf_hash_table (info);
10243 if (elf_hash_table (info)->dynamic_sections_created)
10244 {
10245 bfd *dynobj;
10246 asection *got;
10247 struct mips_got_info *g;
10248 bfd_size_type dynsecsymcount;
10249
10250 /* When we resort, we must tell mips_elf_sort_hash_table what
10251 the lowest index it may use is. That's the number of section
10252 symbols we're going to add. The generic ELF linker only
10253 adds these symbols when building a shared object. Note that
10254 we count the sections after (possibly) removing the .options
10255 section above. */
10256
10257 dynsecsymcount = count_section_dynsyms (abfd, info);
10258 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10259 return FALSE;
10260
10261 /* Make sure we didn't grow the global .got region. */
10262 dynobj = elf_hash_table (info)->dynobj;
10263 got = mips_elf_got_section (dynobj, FALSE);
10264 g = mips_elf_section_data (got)->u.got_info;
10265
10266 if (g->global_gotsym != NULL)
10267 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10268 - g->global_gotsym->dynindx)
10269 <= g->global_gotno);
10270 }
10271
10272 /* Get a value for the GP register. */
10273 if (elf_gp (abfd) == 0)
10274 {
10275 struct bfd_link_hash_entry *h;
10276
10277 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10278 if (h != NULL && h->type == bfd_link_hash_defined)
10279 elf_gp (abfd) = (h->u.def.value
10280 + h->u.def.section->output_section->vma
10281 + h->u.def.section->output_offset);
10282 else if (htab->is_vxworks
10283 && (h = bfd_link_hash_lookup (info->hash,
10284 "_GLOBAL_OFFSET_TABLE_",
10285 FALSE, FALSE, TRUE))
10286 && h->type == bfd_link_hash_defined)
10287 elf_gp (abfd) = (h->u.def.section->output_section->vma
10288 + h->u.def.section->output_offset
10289 + h->u.def.value);
10290 else if (info->relocatable)
10291 {
10292 bfd_vma lo = MINUS_ONE;
10293
10294 /* Find the GP-relative section with the lowest offset. */
10295 for (o = abfd->sections; o != NULL; o = o->next)
10296 if (o->vma < lo
10297 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10298 lo = o->vma;
10299
10300 /* And calculate GP relative to that. */
10301 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10302 }
10303 else
10304 {
10305 /* If the relocate_section function needs to do a reloc
10306 involving the GP value, it should make a reloc_dangerous
10307 callback to warn that GP is not defined. */
10308 }
10309 }
10310
10311 /* Go through the sections and collect the .reginfo and .mdebug
10312 information. */
10313 reginfo_sec = NULL;
10314 mdebug_sec = NULL;
10315 gptab_data_sec = NULL;
10316 gptab_bss_sec = NULL;
10317 for (o = abfd->sections; o != NULL; o = o->next)
10318 {
10319 if (strcmp (o->name, ".reginfo") == 0)
10320 {
10321 memset (&reginfo, 0, sizeof reginfo);
10322
10323 /* We have found the .reginfo section in the output file.
10324 Look through all the link_orders comprising it and merge
10325 the information together. */
10326 for (p = o->map_head.link_order; p != NULL; p = p->next)
10327 {
10328 asection *input_section;
10329 bfd *input_bfd;
10330 Elf32_External_RegInfo ext;
10331 Elf32_RegInfo sub;
10332
10333 if (p->type != bfd_indirect_link_order)
10334 {
10335 if (p->type == bfd_data_link_order)
10336 continue;
10337 abort ();
10338 }
10339
10340 input_section = p->u.indirect.section;
10341 input_bfd = input_section->owner;
10342
10343 if (! bfd_get_section_contents (input_bfd, input_section,
10344 &ext, 0, sizeof ext))
10345 return FALSE;
10346
10347 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10348
10349 reginfo.ri_gprmask |= sub.ri_gprmask;
10350 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10351 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10352 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10353 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10354
10355 /* ri_gp_value is set by the function
10356 mips_elf32_section_processing when the section is
10357 finally written out. */
10358
10359 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10360 elf_link_input_bfd ignores this section. */
10361 input_section->flags &= ~SEC_HAS_CONTENTS;
10362 }
10363
10364 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10365 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10366
10367 /* Skip this section later on (I don't think this currently
10368 matters, but someday it might). */
10369 o->map_head.link_order = NULL;
10370
10371 reginfo_sec = o;
10372 }
10373
10374 if (strcmp (o->name, ".mdebug") == 0)
10375 {
10376 struct extsym_info einfo;
10377 bfd_vma last;
10378
10379 /* We have found the .mdebug section in the output file.
10380 Look through all the link_orders comprising it and merge
10381 the information together. */
10382 symhdr->magic = swap->sym_magic;
10383 /* FIXME: What should the version stamp be? */
10384 symhdr->vstamp = 0;
10385 symhdr->ilineMax = 0;
10386 symhdr->cbLine = 0;
10387 symhdr->idnMax = 0;
10388 symhdr->ipdMax = 0;
10389 symhdr->isymMax = 0;
10390 symhdr->ioptMax = 0;
10391 symhdr->iauxMax = 0;
10392 symhdr->issMax = 0;
10393 symhdr->issExtMax = 0;
10394 symhdr->ifdMax = 0;
10395 symhdr->crfd = 0;
10396 symhdr->iextMax = 0;
10397
10398 /* We accumulate the debugging information itself in the
10399 debug_info structure. */
10400 debug.line = NULL;
10401 debug.external_dnr = NULL;
10402 debug.external_pdr = NULL;
10403 debug.external_sym = NULL;
10404 debug.external_opt = NULL;
10405 debug.external_aux = NULL;
10406 debug.ss = NULL;
10407 debug.ssext = debug.ssext_end = NULL;
10408 debug.external_fdr = NULL;
10409 debug.external_rfd = NULL;
10410 debug.external_ext = debug.external_ext_end = NULL;
10411
10412 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10413 if (mdebug_handle == NULL)
10414 return FALSE;
10415
10416 esym.jmptbl = 0;
10417 esym.cobol_main = 0;
10418 esym.weakext = 0;
10419 esym.reserved = 0;
10420 esym.ifd = ifdNil;
10421 esym.asym.iss = issNil;
10422 esym.asym.st = stLocal;
10423 esym.asym.reserved = 0;
10424 esym.asym.index = indexNil;
10425 last = 0;
10426 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10427 {
10428 esym.asym.sc = sc[i];
10429 s = bfd_get_section_by_name (abfd, secname[i]);
10430 if (s != NULL)
10431 {
10432 esym.asym.value = s->vma;
10433 last = s->vma + s->size;
10434 }
10435 else
10436 esym.asym.value = last;
10437 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10438 secname[i], &esym))
10439 return FALSE;
10440 }
10441
10442 for (p = o->map_head.link_order; p != NULL; p = p->next)
10443 {
10444 asection *input_section;
10445 bfd *input_bfd;
10446 const struct ecoff_debug_swap *input_swap;
10447 struct ecoff_debug_info input_debug;
10448 char *eraw_src;
10449 char *eraw_end;
10450
10451 if (p->type != bfd_indirect_link_order)
10452 {
10453 if (p->type == bfd_data_link_order)
10454 continue;
10455 abort ();
10456 }
10457
10458 input_section = p->u.indirect.section;
10459 input_bfd = input_section->owner;
10460
10461 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10462 || (get_elf_backend_data (input_bfd)
10463 ->elf_backend_ecoff_debug_swap) == NULL)
10464 {
10465 /* I don't know what a non MIPS ELF bfd would be
10466 doing with a .mdebug section, but I don't really
10467 want to deal with it. */
10468 continue;
10469 }
10470
10471 input_swap = (get_elf_backend_data (input_bfd)
10472 ->elf_backend_ecoff_debug_swap);
10473
10474 BFD_ASSERT (p->size == input_section->size);
10475
10476 /* The ECOFF linking code expects that we have already
10477 read in the debugging information and set up an
10478 ecoff_debug_info structure, so we do that now. */
10479 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10480 &input_debug))
10481 return FALSE;
10482
10483 if (! (bfd_ecoff_debug_accumulate
10484 (mdebug_handle, abfd, &debug, swap, input_bfd,
10485 &input_debug, input_swap, info)))
10486 return FALSE;
10487
10488 /* Loop through the external symbols. For each one with
10489 interesting information, try to find the symbol in
10490 the linker global hash table and save the information
10491 for the output external symbols. */
10492 eraw_src = input_debug.external_ext;
10493 eraw_end = (eraw_src
10494 + (input_debug.symbolic_header.iextMax
10495 * input_swap->external_ext_size));
10496 for (;
10497 eraw_src < eraw_end;
10498 eraw_src += input_swap->external_ext_size)
10499 {
10500 EXTR ext;
10501 const char *name;
10502 struct mips_elf_link_hash_entry *h;
10503
10504 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10505 if (ext.asym.sc == scNil
10506 || ext.asym.sc == scUndefined
10507 || ext.asym.sc == scSUndefined)
10508 continue;
10509
10510 name = input_debug.ssext + ext.asym.iss;
10511 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10512 name, FALSE, FALSE, TRUE);
10513 if (h == NULL || h->esym.ifd != -2)
10514 continue;
10515
10516 if (ext.ifd != -1)
10517 {
10518 BFD_ASSERT (ext.ifd
10519 < input_debug.symbolic_header.ifdMax);
10520 ext.ifd = input_debug.ifdmap[ext.ifd];
10521 }
10522
10523 h->esym = ext;
10524 }
10525
10526 /* Free up the information we just read. */
10527 free (input_debug.line);
10528 free (input_debug.external_dnr);
10529 free (input_debug.external_pdr);
10530 free (input_debug.external_sym);
10531 free (input_debug.external_opt);
10532 free (input_debug.external_aux);
10533 free (input_debug.ss);
10534 free (input_debug.ssext);
10535 free (input_debug.external_fdr);
10536 free (input_debug.external_rfd);
10537 free (input_debug.external_ext);
10538
10539 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10540 elf_link_input_bfd ignores this section. */
10541 input_section->flags &= ~SEC_HAS_CONTENTS;
10542 }
10543
10544 if (SGI_COMPAT (abfd) && info->shared)
10545 {
10546 /* Create .rtproc section. */
10547 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10548 if (rtproc_sec == NULL)
10549 {
10550 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10551 | SEC_LINKER_CREATED | SEC_READONLY);
10552
10553 rtproc_sec = bfd_make_section_with_flags (abfd,
10554 ".rtproc",
10555 flags);
10556 if (rtproc_sec == NULL
10557 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10558 return FALSE;
10559 }
10560
10561 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10562 info, rtproc_sec,
10563 &debug))
10564 return FALSE;
10565 }
10566
10567 /* Build the external symbol information. */
10568 einfo.abfd = abfd;
10569 einfo.info = info;
10570 einfo.debug = &debug;
10571 einfo.swap = swap;
10572 einfo.failed = FALSE;
10573 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10574 mips_elf_output_extsym, &einfo);
10575 if (einfo.failed)
10576 return FALSE;
10577
10578 /* Set the size of the .mdebug section. */
10579 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10580
10581 /* Skip this section later on (I don't think this currently
10582 matters, but someday it might). */
10583 o->map_head.link_order = NULL;
10584
10585 mdebug_sec = o;
10586 }
10587
10588 if (CONST_STRNEQ (o->name, ".gptab."))
10589 {
10590 const char *subname;
10591 unsigned int c;
10592 Elf32_gptab *tab;
10593 Elf32_External_gptab *ext_tab;
10594 unsigned int j;
10595
10596 /* The .gptab.sdata and .gptab.sbss sections hold
10597 information describing how the small data area would
10598 change depending upon the -G switch. These sections
10599 not used in executables files. */
10600 if (! info->relocatable)
10601 {
10602 for (p = o->map_head.link_order; p != NULL; p = p->next)
10603 {
10604 asection *input_section;
10605
10606 if (p->type != bfd_indirect_link_order)
10607 {
10608 if (p->type == bfd_data_link_order)
10609 continue;
10610 abort ();
10611 }
10612
10613 input_section = p->u.indirect.section;
10614
10615 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10616 elf_link_input_bfd ignores this section. */
10617 input_section->flags &= ~SEC_HAS_CONTENTS;
10618 }
10619
10620 /* Skip this section later on (I don't think this
10621 currently matters, but someday it might). */
10622 o->map_head.link_order = NULL;
10623
10624 /* Really remove the section. */
10625 bfd_section_list_remove (abfd, o);
10626 --abfd->section_count;
10627
10628 continue;
10629 }
10630
10631 /* There is one gptab for initialized data, and one for
10632 uninitialized data. */
10633 if (strcmp (o->name, ".gptab.sdata") == 0)
10634 gptab_data_sec = o;
10635 else if (strcmp (o->name, ".gptab.sbss") == 0)
10636 gptab_bss_sec = o;
10637 else
10638 {
10639 (*_bfd_error_handler)
10640 (_("%s: illegal section name `%s'"),
10641 bfd_get_filename (abfd), o->name);
10642 bfd_set_error (bfd_error_nonrepresentable_section);
10643 return FALSE;
10644 }
10645
10646 /* The linker script always combines .gptab.data and
10647 .gptab.sdata into .gptab.sdata, and likewise for
10648 .gptab.bss and .gptab.sbss. It is possible that there is
10649 no .sdata or .sbss section in the output file, in which
10650 case we must change the name of the output section. */
10651 subname = o->name + sizeof ".gptab" - 1;
10652 if (bfd_get_section_by_name (abfd, subname) == NULL)
10653 {
10654 if (o == gptab_data_sec)
10655 o->name = ".gptab.data";
10656 else
10657 o->name = ".gptab.bss";
10658 subname = o->name + sizeof ".gptab" - 1;
10659 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10660 }
10661
10662 /* Set up the first entry. */
10663 c = 1;
10664 amt = c * sizeof (Elf32_gptab);
10665 tab = bfd_malloc (amt);
10666 if (tab == NULL)
10667 return FALSE;
10668 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10669 tab[0].gt_header.gt_unused = 0;
10670
10671 /* Combine the input sections. */
10672 for (p = o->map_head.link_order; p != NULL; p = p->next)
10673 {
10674 asection *input_section;
10675 bfd *input_bfd;
10676 bfd_size_type size;
10677 unsigned long last;
10678 bfd_size_type gpentry;
10679
10680 if (p->type != bfd_indirect_link_order)
10681 {
10682 if (p->type == bfd_data_link_order)
10683 continue;
10684 abort ();
10685 }
10686
10687 input_section = p->u.indirect.section;
10688 input_bfd = input_section->owner;
10689
10690 /* Combine the gptab entries for this input section one
10691 by one. We know that the input gptab entries are
10692 sorted by ascending -G value. */
10693 size = input_section->size;
10694 last = 0;
10695 for (gpentry = sizeof (Elf32_External_gptab);
10696 gpentry < size;
10697 gpentry += sizeof (Elf32_External_gptab))
10698 {
10699 Elf32_External_gptab ext_gptab;
10700 Elf32_gptab int_gptab;
10701 unsigned long val;
10702 unsigned long add;
10703 bfd_boolean exact;
10704 unsigned int look;
10705
10706 if (! (bfd_get_section_contents
10707 (input_bfd, input_section, &ext_gptab, gpentry,
10708 sizeof (Elf32_External_gptab))))
10709 {
10710 free (tab);
10711 return FALSE;
10712 }
10713
10714 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10715 &int_gptab);
10716 val = int_gptab.gt_entry.gt_g_value;
10717 add = int_gptab.gt_entry.gt_bytes - last;
10718
10719 exact = FALSE;
10720 for (look = 1; look < c; look++)
10721 {
10722 if (tab[look].gt_entry.gt_g_value >= val)
10723 tab[look].gt_entry.gt_bytes += add;
10724
10725 if (tab[look].gt_entry.gt_g_value == val)
10726 exact = TRUE;
10727 }
10728
10729 if (! exact)
10730 {
10731 Elf32_gptab *new_tab;
10732 unsigned int max;
10733
10734 /* We need a new table entry. */
10735 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10736 new_tab = bfd_realloc (tab, amt);
10737 if (new_tab == NULL)
10738 {
10739 free (tab);
10740 return FALSE;
10741 }
10742 tab = new_tab;
10743 tab[c].gt_entry.gt_g_value = val;
10744 tab[c].gt_entry.gt_bytes = add;
10745
10746 /* Merge in the size for the next smallest -G
10747 value, since that will be implied by this new
10748 value. */
10749 max = 0;
10750 for (look = 1; look < c; look++)
10751 {
10752 if (tab[look].gt_entry.gt_g_value < val
10753 && (max == 0
10754 || (tab[look].gt_entry.gt_g_value
10755 > tab[max].gt_entry.gt_g_value)))
10756 max = look;
10757 }
10758 if (max != 0)
10759 tab[c].gt_entry.gt_bytes +=
10760 tab[max].gt_entry.gt_bytes;
10761
10762 ++c;
10763 }
10764
10765 last = int_gptab.gt_entry.gt_bytes;
10766 }
10767
10768 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10769 elf_link_input_bfd ignores this section. */
10770 input_section->flags &= ~SEC_HAS_CONTENTS;
10771 }
10772
10773 /* The table must be sorted by -G value. */
10774 if (c > 2)
10775 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10776
10777 /* Swap out the table. */
10778 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10779 ext_tab = bfd_alloc (abfd, amt);
10780 if (ext_tab == NULL)
10781 {
10782 free (tab);
10783 return FALSE;
10784 }
10785
10786 for (j = 0; j < c; j++)
10787 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10788 free (tab);
10789
10790 o->size = c * sizeof (Elf32_External_gptab);
10791 o->contents = (bfd_byte *) ext_tab;
10792
10793 /* Skip this section later on (I don't think this currently
10794 matters, but someday it might). */
10795 o->map_head.link_order = NULL;
10796 }
10797 }
10798
10799 /* Invoke the regular ELF backend linker to do all the work. */
10800 if (!bfd_elf_final_link (abfd, info))
10801 return FALSE;
10802
10803 /* Now write out the computed sections. */
10804
10805 if (reginfo_sec != NULL)
10806 {
10807 Elf32_External_RegInfo ext;
10808
10809 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10810 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10811 return FALSE;
10812 }
10813
10814 if (mdebug_sec != NULL)
10815 {
10816 BFD_ASSERT (abfd->output_has_begun);
10817 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10818 swap, info,
10819 mdebug_sec->filepos))
10820 return FALSE;
10821
10822 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10823 }
10824
10825 if (gptab_data_sec != NULL)
10826 {
10827 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10828 gptab_data_sec->contents,
10829 0, gptab_data_sec->size))
10830 return FALSE;
10831 }
10832
10833 if (gptab_bss_sec != NULL)
10834 {
10835 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10836 gptab_bss_sec->contents,
10837 0, gptab_bss_sec->size))
10838 return FALSE;
10839 }
10840
10841 if (SGI_COMPAT (abfd))
10842 {
10843 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10844 if (rtproc_sec != NULL)
10845 {
10846 if (! bfd_set_section_contents (abfd, rtproc_sec,
10847 rtproc_sec->contents,
10848 0, rtproc_sec->size))
10849 return FALSE;
10850 }
10851 }
10852
10853 return TRUE;
10854 }
10855 \f
10856 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10857
10858 struct mips_mach_extension {
10859 unsigned long extension, base;
10860 };
10861
10862
10863 /* An array describing how BFD machines relate to one another. The entries
10864 are ordered topologically with MIPS I extensions listed last. */
10865
10866 static const struct mips_mach_extension mips_mach_extensions[] = {
10867 /* MIPS64 extensions. */
10868 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10869 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10870
10871 /* MIPS V extensions. */
10872 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10873
10874 /* R10000 extensions. */
10875 { bfd_mach_mips12000, bfd_mach_mips10000 },
10876
10877 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10878 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10879 better to allow vr5400 and vr5500 code to be merged anyway, since
10880 many libraries will just use the core ISA. Perhaps we could add
10881 some sort of ASE flag if this ever proves a problem. */
10882 { bfd_mach_mips5500, bfd_mach_mips5400 },
10883 { bfd_mach_mips5400, bfd_mach_mips5000 },
10884
10885 /* MIPS IV extensions. */
10886 { bfd_mach_mips5, bfd_mach_mips8000 },
10887 { bfd_mach_mips10000, bfd_mach_mips8000 },
10888 { bfd_mach_mips5000, bfd_mach_mips8000 },
10889 { bfd_mach_mips7000, bfd_mach_mips8000 },
10890 { bfd_mach_mips9000, bfd_mach_mips8000 },
10891
10892 /* VR4100 extensions. */
10893 { bfd_mach_mips4120, bfd_mach_mips4100 },
10894 { bfd_mach_mips4111, bfd_mach_mips4100 },
10895
10896 /* MIPS III extensions. */
10897 { bfd_mach_mips8000, bfd_mach_mips4000 },
10898 { bfd_mach_mips4650, bfd_mach_mips4000 },
10899 { bfd_mach_mips4600, bfd_mach_mips4000 },
10900 { bfd_mach_mips4400, bfd_mach_mips4000 },
10901 { bfd_mach_mips4300, bfd_mach_mips4000 },
10902 { bfd_mach_mips4100, bfd_mach_mips4000 },
10903 { bfd_mach_mips4010, bfd_mach_mips4000 },
10904
10905 /* MIPS32 extensions. */
10906 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10907
10908 /* MIPS II extensions. */
10909 { bfd_mach_mips4000, bfd_mach_mips6000 },
10910 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10911
10912 /* MIPS I extensions. */
10913 { bfd_mach_mips6000, bfd_mach_mips3000 },
10914 { bfd_mach_mips3900, bfd_mach_mips3000 }
10915 };
10916
10917
10918 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10919
10920 static bfd_boolean
10921 mips_mach_extends_p (unsigned long base, unsigned long extension)
10922 {
10923 size_t i;
10924
10925 if (extension == base)
10926 return TRUE;
10927
10928 if (base == bfd_mach_mipsisa32
10929 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10930 return TRUE;
10931
10932 if (base == bfd_mach_mipsisa32r2
10933 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10934 return TRUE;
10935
10936 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10937 if (extension == mips_mach_extensions[i].extension)
10938 {
10939 extension = mips_mach_extensions[i].base;
10940 if (extension == base)
10941 return TRUE;
10942 }
10943
10944 return FALSE;
10945 }
10946
10947
10948 /* Return true if the given ELF header flags describe a 32-bit binary. */
10949
10950 static bfd_boolean
10951 mips_32bit_flags_p (flagword flags)
10952 {
10953 return ((flags & EF_MIPS_32BITMODE) != 0
10954 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10955 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10956 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10957 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10958 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10959 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10960 }
10961
10962
10963 /* Merge backend specific data from an object file to the output
10964 object file when linking. */
10965
10966 bfd_boolean
10967 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10968 {
10969 flagword old_flags;
10970 flagword new_flags;
10971 bfd_boolean ok;
10972 bfd_boolean null_input_bfd = TRUE;
10973 asection *sec;
10974
10975 /* Check if we have the same endianess */
10976 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10977 {
10978 (*_bfd_error_handler)
10979 (_("%B: endianness incompatible with that of the selected emulation"),
10980 ibfd);
10981 return FALSE;
10982 }
10983
10984 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10985 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10986 return TRUE;
10987
10988 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10989 {
10990 (*_bfd_error_handler)
10991 (_("%B: ABI is incompatible with that of the selected emulation"),
10992 ibfd);
10993 return FALSE;
10994 }
10995
10996 new_flags = elf_elfheader (ibfd)->e_flags;
10997 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10998 old_flags = elf_elfheader (obfd)->e_flags;
10999
11000 if (! elf_flags_init (obfd))
11001 {
11002 elf_flags_init (obfd) = TRUE;
11003 elf_elfheader (obfd)->e_flags = new_flags;
11004 elf_elfheader (obfd)->e_ident[EI_CLASS]
11005 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11006
11007 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11008 && (bfd_get_arch_info (obfd)->the_default
11009 || mips_mach_extends_p (bfd_get_mach (obfd),
11010 bfd_get_mach (ibfd))))
11011 {
11012 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11013 bfd_get_mach (ibfd)))
11014 return FALSE;
11015 }
11016
11017 return TRUE;
11018 }
11019
11020 /* Check flag compatibility. */
11021
11022 new_flags &= ~EF_MIPS_NOREORDER;
11023 old_flags &= ~EF_MIPS_NOREORDER;
11024
11025 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11026 doesn't seem to matter. */
11027 new_flags &= ~EF_MIPS_XGOT;
11028 old_flags &= ~EF_MIPS_XGOT;
11029
11030 /* MIPSpro generates ucode info in n64 objects. Again, we should
11031 just be able to ignore this. */
11032 new_flags &= ~EF_MIPS_UCODE;
11033 old_flags &= ~EF_MIPS_UCODE;
11034
11035 /* Don't care about the PIC flags from dynamic objects; they are
11036 PIC by design. */
11037 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11038 && (ibfd->flags & DYNAMIC) != 0)
11039 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11040
11041 if (new_flags == old_flags)
11042 return TRUE;
11043
11044 /* Check to see if the input BFD actually contains any sections.
11045 If not, its flags may not have been initialised either, but it cannot
11046 actually cause any incompatibility. */
11047 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11048 {
11049 /* Ignore synthetic sections and empty .text, .data and .bss sections
11050 which are automatically generated by gas. */
11051 if (strcmp (sec->name, ".reginfo")
11052 && strcmp (sec->name, ".mdebug")
11053 && (sec->size != 0
11054 || (strcmp (sec->name, ".text")
11055 && strcmp (sec->name, ".data")
11056 && strcmp (sec->name, ".bss"))))
11057 {
11058 null_input_bfd = FALSE;
11059 break;
11060 }
11061 }
11062 if (null_input_bfd)
11063 return TRUE;
11064
11065 ok = TRUE;
11066
11067 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11068 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11069 {
11070 (*_bfd_error_handler)
11071 (_("%B: warning: linking PIC files with non-PIC files"),
11072 ibfd);
11073 ok = TRUE;
11074 }
11075
11076 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11077 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11078 if (! (new_flags & EF_MIPS_PIC))
11079 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11080
11081 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11082 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11083
11084 /* Compare the ISAs. */
11085 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11086 {
11087 (*_bfd_error_handler)
11088 (_("%B: linking 32-bit code with 64-bit code"),
11089 ibfd);
11090 ok = FALSE;
11091 }
11092 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11093 {
11094 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11095 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11096 {
11097 /* Copy the architecture info from IBFD to OBFD. Also copy
11098 the 32-bit flag (if set) so that we continue to recognise
11099 OBFD as a 32-bit binary. */
11100 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11101 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11102 elf_elfheader (obfd)->e_flags
11103 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11104
11105 /* Copy across the ABI flags if OBFD doesn't use them
11106 and if that was what caused us to treat IBFD as 32-bit. */
11107 if ((old_flags & EF_MIPS_ABI) == 0
11108 && mips_32bit_flags_p (new_flags)
11109 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11110 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11111 }
11112 else
11113 {
11114 /* The ISAs aren't compatible. */
11115 (*_bfd_error_handler)
11116 (_("%B: linking %s module with previous %s modules"),
11117 ibfd,
11118 bfd_printable_name (ibfd),
11119 bfd_printable_name (obfd));
11120 ok = FALSE;
11121 }
11122 }
11123
11124 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11125 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11126
11127 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11128 does set EI_CLASS differently from any 32-bit ABI. */
11129 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11130 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11131 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11132 {
11133 /* Only error if both are set (to different values). */
11134 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11135 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11136 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11137 {
11138 (*_bfd_error_handler)
11139 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11140 ibfd,
11141 elf_mips_abi_name (ibfd),
11142 elf_mips_abi_name (obfd));
11143 ok = FALSE;
11144 }
11145 new_flags &= ~EF_MIPS_ABI;
11146 old_flags &= ~EF_MIPS_ABI;
11147 }
11148
11149 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11150 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11151 {
11152 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11153
11154 new_flags &= ~ EF_MIPS_ARCH_ASE;
11155 old_flags &= ~ EF_MIPS_ARCH_ASE;
11156 }
11157
11158 /* Warn about any other mismatches */
11159 if (new_flags != old_flags)
11160 {
11161 (*_bfd_error_handler)
11162 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11163 ibfd, (unsigned long) new_flags,
11164 (unsigned long) old_flags);
11165 ok = FALSE;
11166 }
11167
11168 if (! ok)
11169 {
11170 bfd_set_error (bfd_error_bad_value);
11171 return FALSE;
11172 }
11173
11174 return TRUE;
11175 }
11176
11177 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11178
11179 bfd_boolean
11180 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11181 {
11182 BFD_ASSERT (!elf_flags_init (abfd)
11183 || elf_elfheader (abfd)->e_flags == flags);
11184
11185 elf_elfheader (abfd)->e_flags = flags;
11186 elf_flags_init (abfd) = TRUE;
11187 return TRUE;
11188 }
11189
11190 bfd_boolean
11191 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11192 {
11193 FILE *file = ptr;
11194
11195 BFD_ASSERT (abfd != NULL && ptr != NULL);
11196
11197 /* Print normal ELF private data. */
11198 _bfd_elf_print_private_bfd_data (abfd, ptr);
11199
11200 /* xgettext:c-format */
11201 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11202
11203 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11204 fprintf (file, _(" [abi=O32]"));
11205 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11206 fprintf (file, _(" [abi=O64]"));
11207 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11208 fprintf (file, _(" [abi=EABI32]"));
11209 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11210 fprintf (file, _(" [abi=EABI64]"));
11211 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11212 fprintf (file, _(" [abi unknown]"));
11213 else if (ABI_N32_P (abfd))
11214 fprintf (file, _(" [abi=N32]"));
11215 else if (ABI_64_P (abfd))
11216 fprintf (file, _(" [abi=64]"));
11217 else
11218 fprintf (file, _(" [no abi set]"));
11219
11220 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11221 fprintf (file, " [mips1]");
11222 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11223 fprintf (file, " [mips2]");
11224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11225 fprintf (file, " [mips3]");
11226 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11227 fprintf (file, " [mips4]");
11228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11229 fprintf (file, " [mips5]");
11230 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11231 fprintf (file, " [mips32]");
11232 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11233 fprintf (file, " [mips64]");
11234 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11235 fprintf (file, " [mips32r2]");
11236 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11237 fprintf (file, " [mips64r2]");
11238 else
11239 fprintf (file, _(" [unknown ISA]"));
11240
11241 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11242 fprintf (file, " [mdmx]");
11243
11244 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11245 fprintf (file, " [mips16]");
11246
11247 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11248 fprintf (file, " [32bitmode]");
11249 else
11250 fprintf (file, _(" [not 32bitmode]"));
11251
11252 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11253 fprintf (file, " [noreorder]");
11254
11255 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11256 fprintf (file, " [PIC]");
11257
11258 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11259 fprintf (file, " [CPIC]");
11260
11261 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11262 fprintf (file, " [XGOT]");
11263
11264 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11265 fprintf (file, " [UCODE]");
11266
11267 fputc ('\n', file);
11268
11269 return TRUE;
11270 }
11271
11272 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11273 {
11274 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11275 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11276 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11277 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11278 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11279 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11280 { NULL, 0, 0, 0, 0 }
11281 };
11282
11283 /* Merge non visibility st_other attributes. Ensure that the
11284 STO_OPTIONAL flag is copied into h->other, even if this is not a
11285 definiton of the symbol. */
11286 void
11287 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11288 const Elf_Internal_Sym *isym,
11289 bfd_boolean definition,
11290 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11291 {
11292 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11293 {
11294 unsigned char other;
11295
11296 other = (definition ? isym->st_other : h->other);
11297 other &= ~ELF_ST_VISIBILITY (-1);
11298 h->other = other | ELF_ST_VISIBILITY (h->other);
11299 }
11300
11301 if (!definition
11302 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11303 h->other |= STO_OPTIONAL;
11304 }
11305
11306 /* Decide whether an undefined symbol is special and can be ignored.
11307 This is the case for OPTIONAL symbols on IRIX. */
11308 bfd_boolean
11309 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11310 {
11311 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11312 }
11313
11314 bfd_boolean
11315 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11316 {
11317 return (sym->st_shndx == SHN_COMMON
11318 || sym->st_shndx == SHN_MIPS_ACOMMON
11319 || sym->st_shndx == SHN_MIPS_SCOMMON);
11320 }
This page took 0.585271 seconds and 4 git commands to generate.