Fix feature checks based on ARM architecture value
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 char *name;
1584 bfd_boolean res;
1585
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1587 value |= 1;
1588
1589 /* Create a new symbol. */
1590 name = concat (prefix, h->root.root.root.string, NULL);
1591 bh = NULL;
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1594 TRUE, FALSE, &bh);
1595 free (name);
1596 if (! res)
1597 return FALSE;
1598
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1602 elfh->size = size;
1603 elfh->forced_local = 1;
1604 return TRUE;
1605 }
1606
1607 /* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611 static bfd_boolean
1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615 {
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1618 char *name;
1619 asection *s;
1620 bfd_vma value;
1621 bfd_boolean res;
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1631 bh = NULL;
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646 }
1647
1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651 static bfd_boolean
1652 section_allows_mips16_refs_p (asection *section)
1653 {
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661 }
1662
1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667 static unsigned long
1668 mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1672 {
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1675
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688 }
1689
1690 /* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
1693 static void
1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1696 {
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1717 }
1718
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1730 }
1731
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1743 }
1744 }
1745
1746 /* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748 static hashval_t
1749 mips_elf_la25_stub_hash (const void *entry_)
1750 {
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756 }
1757
1758 static int
1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760 {
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769 }
1770
1771 /* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775 bfd_boolean
1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779 {
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
1783 if (htab == NULL)
1784 return FALSE;
1785
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793 }
1794
1795 /* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1800
1801 static bfd_boolean
1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803 {
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812 }
1813
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817 static bfd_vma
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820 {
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832 }
1833
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838 static bfd_boolean
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841 {
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
1848 if (htab == NULL)
1849 return FALSE;
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879 }
1880
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885 static bfd_boolean
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888 {
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
1893 if (htab == NULL)
1894 return FALSE;
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916 }
1917
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921 static bfd_boolean
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924 {
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970 }
1971
1972 /* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975 static bfd_boolean
1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977 {
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
1981 if (!bfd_link_relocatable (hti->info))
1982 mips_elf_check_mips16_stubs (hti->info, h);
1983
1984 if (mips_elf_local_pic_function_p (h))
1985 {
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
1996 if (bfd_link_relocatable (hti->info))
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
2007 return TRUE;
2008 }
2009 \f
2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system. */
2094
2095 static inline bfd_boolean
2096 mips16_reloc_p (int r_type)
2097 {
2098 switch (r_type)
2099 {
2100 case R_MIPS16_26:
2101 case R_MIPS16_GPREL:
2102 case R_MIPS16_GOT16:
2103 case R_MIPS16_CALL16:
2104 case R_MIPS16_HI16:
2105 case R_MIPS16_LO16:
2106 case R_MIPS16_TLS_GD:
2107 case R_MIPS16_TLS_LDM:
2108 case R_MIPS16_TLS_DTPREL_HI16:
2109 case R_MIPS16_TLS_DTPREL_LO16:
2110 case R_MIPS16_TLS_GOTTPREL:
2111 case R_MIPS16_TLS_TPREL_HI16:
2112 case R_MIPS16_TLS_TPREL_LO16:
2113 return TRUE;
2114
2115 default:
2116 return FALSE;
2117 }
2118 }
2119
2120 /* Check if a microMIPS reloc. */
2121
2122 static inline bfd_boolean
2123 micromips_reloc_p (unsigned int r_type)
2124 {
2125 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2126 }
2127
2128 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2129 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2130 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2131
2132 static inline bfd_boolean
2133 micromips_reloc_shuffle_p (unsigned int r_type)
2134 {
2135 return (micromips_reloc_p (r_type)
2136 && r_type != R_MICROMIPS_PC7_S1
2137 && r_type != R_MICROMIPS_PC10_S1);
2138 }
2139
2140 static inline bfd_boolean
2141 got16_reloc_p (int r_type)
2142 {
2143 return (r_type == R_MIPS_GOT16
2144 || r_type == R_MIPS16_GOT16
2145 || r_type == R_MICROMIPS_GOT16);
2146 }
2147
2148 static inline bfd_boolean
2149 call16_reloc_p (int r_type)
2150 {
2151 return (r_type == R_MIPS_CALL16
2152 || r_type == R_MIPS16_CALL16
2153 || r_type == R_MICROMIPS_CALL16);
2154 }
2155
2156 static inline bfd_boolean
2157 got_disp_reloc_p (unsigned int r_type)
2158 {
2159 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2160 }
2161
2162 static inline bfd_boolean
2163 got_page_reloc_p (unsigned int r_type)
2164 {
2165 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2166 }
2167
2168 static inline bfd_boolean
2169 got_lo16_reloc_p (unsigned int r_type)
2170 {
2171 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2172 }
2173
2174 static inline bfd_boolean
2175 call_hi16_reloc_p (unsigned int r_type)
2176 {
2177 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2178 }
2179
2180 static inline bfd_boolean
2181 call_lo16_reloc_p (unsigned int r_type)
2182 {
2183 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2184 }
2185
2186 static inline bfd_boolean
2187 hi16_reloc_p (int r_type)
2188 {
2189 return (r_type == R_MIPS_HI16
2190 || r_type == R_MIPS16_HI16
2191 || r_type == R_MICROMIPS_HI16
2192 || r_type == R_MIPS_PCHI16);
2193 }
2194
2195 static inline bfd_boolean
2196 lo16_reloc_p (int r_type)
2197 {
2198 return (r_type == R_MIPS_LO16
2199 || r_type == R_MIPS16_LO16
2200 || r_type == R_MICROMIPS_LO16
2201 || r_type == R_MIPS_PCLO16);
2202 }
2203
2204 static inline bfd_boolean
2205 mips16_call_reloc_p (int r_type)
2206 {
2207 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2208 }
2209
2210 static inline bfd_boolean
2211 jal_reloc_p (int r_type)
2212 {
2213 return (r_type == R_MIPS_26
2214 || r_type == R_MIPS16_26
2215 || r_type == R_MICROMIPS_26_S1);
2216 }
2217
2218 static inline bfd_boolean
2219 b_reloc_p (int r_type)
2220 {
2221 return (r_type == R_MIPS_PC26_S2
2222 || r_type == R_MIPS_PC21_S2
2223 || r_type == R_MIPS_PC16
2224 || r_type == R_MIPS_GNU_REL16_S2);
2225 }
2226
2227 static inline bfd_boolean
2228 aligned_pcrel_reloc_p (int r_type)
2229 {
2230 return (r_type == R_MIPS_PC18_S3
2231 || r_type == R_MIPS_PC19_S2);
2232 }
2233
2234 static inline bfd_boolean
2235 micromips_branch_reloc_p (int r_type)
2236 {
2237 return (r_type == R_MICROMIPS_26_S1
2238 || r_type == R_MICROMIPS_PC16_S1
2239 || r_type == R_MICROMIPS_PC10_S1
2240 || r_type == R_MICROMIPS_PC7_S1);
2241 }
2242
2243 static inline bfd_boolean
2244 tls_gd_reloc_p (unsigned int r_type)
2245 {
2246 return (r_type == R_MIPS_TLS_GD
2247 || r_type == R_MIPS16_TLS_GD
2248 || r_type == R_MICROMIPS_TLS_GD);
2249 }
2250
2251 static inline bfd_boolean
2252 tls_ldm_reloc_p (unsigned int r_type)
2253 {
2254 return (r_type == R_MIPS_TLS_LDM
2255 || r_type == R_MIPS16_TLS_LDM
2256 || r_type == R_MICROMIPS_TLS_LDM);
2257 }
2258
2259 static inline bfd_boolean
2260 tls_gottprel_reloc_p (unsigned int r_type)
2261 {
2262 return (r_type == R_MIPS_TLS_GOTTPREL
2263 || r_type == R_MIPS16_TLS_GOTTPREL
2264 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2265 }
2266
2267 void
2268 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2269 bfd_boolean jal_shuffle, bfd_byte *data)
2270 {
2271 bfd_vma first, second, val;
2272
2273 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2274 return;
2275
2276 /* Pick up the first and second halfwords of the instruction. */
2277 first = bfd_get_16 (abfd, data);
2278 second = bfd_get_16 (abfd, data + 2);
2279 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2280 val = first << 16 | second;
2281 else if (r_type != R_MIPS16_26)
2282 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2283 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2284 else
2285 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2286 | ((first & 0x1f) << 21) | second);
2287 bfd_put_32 (abfd, val, data);
2288 }
2289
2290 void
2291 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2292 bfd_boolean jal_shuffle, bfd_byte *data)
2293 {
2294 bfd_vma first, second, val;
2295
2296 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2297 return;
2298
2299 val = bfd_get_32 (abfd, data);
2300 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2301 {
2302 second = val & 0xffff;
2303 first = val >> 16;
2304 }
2305 else if (r_type != R_MIPS16_26)
2306 {
2307 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2308 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2309 }
2310 else
2311 {
2312 second = val & 0xffff;
2313 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2314 | ((val >> 21) & 0x1f);
2315 }
2316 bfd_put_16 (abfd, second, data + 2);
2317 bfd_put_16 (abfd, first, data);
2318 }
2319
2320 bfd_reloc_status_type
2321 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2322 arelent *reloc_entry, asection *input_section,
2323 bfd_boolean relocatable, void *data, bfd_vma gp)
2324 {
2325 bfd_vma relocation;
2326 bfd_signed_vma val;
2327 bfd_reloc_status_type status;
2328
2329 if (bfd_is_com_section (symbol->section))
2330 relocation = 0;
2331 else
2332 relocation = symbol->value;
2333
2334 relocation += symbol->section->output_section->vma;
2335 relocation += symbol->section->output_offset;
2336
2337 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2338 return bfd_reloc_outofrange;
2339
2340 /* Set val to the offset into the section or symbol. */
2341 val = reloc_entry->addend;
2342
2343 _bfd_mips_elf_sign_extend (val, 16);
2344
2345 /* Adjust val for the final section location and GP value. If we
2346 are producing relocatable output, we don't want to do this for
2347 an external symbol. */
2348 if (! relocatable
2349 || (symbol->flags & BSF_SECTION_SYM) != 0)
2350 val += relocation - gp;
2351
2352 if (reloc_entry->howto->partial_inplace)
2353 {
2354 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2355 (bfd_byte *) data
2356 + reloc_entry->address);
2357 if (status != bfd_reloc_ok)
2358 return status;
2359 }
2360 else
2361 reloc_entry->addend = val;
2362
2363 if (relocatable)
2364 reloc_entry->address += input_section->output_offset;
2365
2366 return bfd_reloc_ok;
2367 }
2368
2369 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2370 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2371 that contains the relocation field and DATA points to the start of
2372 INPUT_SECTION. */
2373
2374 struct mips_hi16
2375 {
2376 struct mips_hi16 *next;
2377 bfd_byte *data;
2378 asection *input_section;
2379 arelent rel;
2380 };
2381
2382 /* FIXME: This should not be a static variable. */
2383
2384 static struct mips_hi16 *mips_hi16_list;
2385
2386 /* A howto special_function for REL *HI16 relocations. We can only
2387 calculate the correct value once we've seen the partnering
2388 *LO16 relocation, so just save the information for later.
2389
2390 The ABI requires that the *LO16 immediately follow the *HI16.
2391 However, as a GNU extension, we permit an arbitrary number of
2392 *HI16s to be associated with a single *LO16. This significantly
2393 simplies the relocation handling in gcc. */
2394
2395 bfd_reloc_status_type
2396 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2397 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2398 asection *input_section, bfd *output_bfd,
2399 char **error_message ATTRIBUTE_UNUSED)
2400 {
2401 struct mips_hi16 *n;
2402
2403 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2404 return bfd_reloc_outofrange;
2405
2406 n = bfd_malloc (sizeof *n);
2407 if (n == NULL)
2408 return bfd_reloc_outofrange;
2409
2410 n->next = mips_hi16_list;
2411 n->data = data;
2412 n->input_section = input_section;
2413 n->rel = *reloc_entry;
2414 mips_hi16_list = n;
2415
2416 if (output_bfd != NULL)
2417 reloc_entry->address += input_section->output_offset;
2418
2419 return bfd_reloc_ok;
2420 }
2421
2422 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2423 like any other 16-bit relocation when applied to global symbols, but is
2424 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2425
2426 bfd_reloc_status_type
2427 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2428 void *data, asection *input_section,
2429 bfd *output_bfd, char **error_message)
2430 {
2431 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2432 || bfd_is_und_section (bfd_get_section (symbol))
2433 || bfd_is_com_section (bfd_get_section (symbol)))
2434 /* The relocation is against a global symbol. */
2435 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2436 input_section, output_bfd,
2437 error_message);
2438
2439 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2440 input_section, output_bfd, error_message);
2441 }
2442
2443 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2444 is a straightforward 16 bit inplace relocation, but we must deal with
2445 any partnering high-part relocations as well. */
2446
2447 bfd_reloc_status_type
2448 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2449 void *data, asection *input_section,
2450 bfd *output_bfd, char **error_message)
2451 {
2452 bfd_vma vallo;
2453 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2454
2455 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2456 return bfd_reloc_outofrange;
2457
2458 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2459 location);
2460 vallo = bfd_get_32 (abfd, location);
2461 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2462 location);
2463
2464 while (mips_hi16_list != NULL)
2465 {
2466 bfd_reloc_status_type ret;
2467 struct mips_hi16 *hi;
2468
2469 hi = mips_hi16_list;
2470
2471 /* R_MIPS*_GOT16 relocations are something of a special case. We
2472 want to install the addend in the same way as for a R_MIPS*_HI16
2473 relocation (with a rightshift of 16). However, since GOT16
2474 relocations can also be used with global symbols, their howto
2475 has a rightshift of 0. */
2476 if (hi->rel.howto->type == R_MIPS_GOT16)
2477 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2478 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2479 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2480 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2481 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2482
2483 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2484 carry or borrow will induce a change of +1 or -1 in the high part. */
2485 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2486
2487 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2488 hi->input_section, output_bfd,
2489 error_message);
2490 if (ret != bfd_reloc_ok)
2491 return ret;
2492
2493 mips_hi16_list = hi->next;
2494 free (hi);
2495 }
2496
2497 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2498 input_section, output_bfd,
2499 error_message);
2500 }
2501
2502 /* A generic howto special_function. This calculates and installs the
2503 relocation itself, thus avoiding the oft-discussed problems in
2504 bfd_perform_relocation and bfd_install_relocation. */
2505
2506 bfd_reloc_status_type
2507 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2508 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2509 asection *input_section, bfd *output_bfd,
2510 char **error_message ATTRIBUTE_UNUSED)
2511 {
2512 bfd_signed_vma val;
2513 bfd_reloc_status_type status;
2514 bfd_boolean relocatable;
2515
2516 relocatable = (output_bfd != NULL);
2517
2518 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2519 return bfd_reloc_outofrange;
2520
2521 /* Build up the field adjustment in VAL. */
2522 val = 0;
2523 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2524 {
2525 /* Either we're calculating the final field value or we have a
2526 relocation against a section symbol. Add in the section's
2527 offset or address. */
2528 val += symbol->section->output_section->vma;
2529 val += symbol->section->output_offset;
2530 }
2531
2532 if (!relocatable)
2533 {
2534 /* We're calculating the final field value. Add in the symbol's value
2535 and, if pc-relative, subtract the address of the field itself. */
2536 val += symbol->value;
2537 if (reloc_entry->howto->pc_relative)
2538 {
2539 val -= input_section->output_section->vma;
2540 val -= input_section->output_offset;
2541 val -= reloc_entry->address;
2542 }
2543 }
2544
2545 /* VAL is now the final adjustment. If we're keeping this relocation
2546 in the output file, and if the relocation uses a separate addend,
2547 we just need to add VAL to that addend. Otherwise we need to add
2548 VAL to the relocation field itself. */
2549 if (relocatable && !reloc_entry->howto->partial_inplace)
2550 reloc_entry->addend += val;
2551 else
2552 {
2553 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2554
2555 /* Add in the separate addend, if any. */
2556 val += reloc_entry->addend;
2557
2558 /* Add VAL to the relocation field. */
2559 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2560 location);
2561 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2562 location);
2563 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2564 location);
2565
2566 if (status != bfd_reloc_ok)
2567 return status;
2568 }
2569
2570 if (relocatable)
2571 reloc_entry->address += input_section->output_offset;
2572
2573 return bfd_reloc_ok;
2574 }
2575 \f
2576 /* Swap an entry in a .gptab section. Note that these routines rely
2577 on the equivalence of the two elements of the union. */
2578
2579 static void
2580 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2581 Elf32_gptab *in)
2582 {
2583 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2584 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2585 }
2586
2587 static void
2588 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2589 Elf32_External_gptab *ex)
2590 {
2591 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2592 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2593 }
2594
2595 static void
2596 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2597 Elf32_External_compact_rel *ex)
2598 {
2599 H_PUT_32 (abfd, in->id1, ex->id1);
2600 H_PUT_32 (abfd, in->num, ex->num);
2601 H_PUT_32 (abfd, in->id2, ex->id2);
2602 H_PUT_32 (abfd, in->offset, ex->offset);
2603 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2604 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2605 }
2606
2607 static void
2608 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2609 Elf32_External_crinfo *ex)
2610 {
2611 unsigned long l;
2612
2613 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2614 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2615 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2616 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2617 H_PUT_32 (abfd, l, ex->info);
2618 H_PUT_32 (abfd, in->konst, ex->konst);
2619 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2620 }
2621 \f
2622 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2623 routines swap this structure in and out. They are used outside of
2624 BFD, so they are globally visible. */
2625
2626 void
2627 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2628 Elf32_RegInfo *in)
2629 {
2630 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2631 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2632 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2633 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2634 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2635 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2636 }
2637
2638 void
2639 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2640 Elf32_External_RegInfo *ex)
2641 {
2642 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2643 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2644 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2645 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2646 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2647 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2648 }
2649
2650 /* In the 64 bit ABI, the .MIPS.options section holds register
2651 information in an Elf64_Reginfo structure. These routines swap
2652 them in and out. They are globally visible because they are used
2653 outside of BFD. These routines are here so that gas can call them
2654 without worrying about whether the 64 bit ABI has been included. */
2655
2656 void
2657 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2658 Elf64_Internal_RegInfo *in)
2659 {
2660 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2661 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2662 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2663 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2664 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2665 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2666 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2667 }
2668
2669 void
2670 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2671 Elf64_External_RegInfo *ex)
2672 {
2673 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2674 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* Swap in an options header. */
2683
2684 void
2685 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2686 Elf_Internal_Options *in)
2687 {
2688 in->kind = H_GET_8 (abfd, ex->kind);
2689 in->size = H_GET_8 (abfd, ex->size);
2690 in->section = H_GET_16 (abfd, ex->section);
2691 in->info = H_GET_32 (abfd, ex->info);
2692 }
2693
2694 /* Swap out an options header. */
2695
2696 void
2697 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2698 Elf_External_Options *ex)
2699 {
2700 H_PUT_8 (abfd, in->kind, ex->kind);
2701 H_PUT_8 (abfd, in->size, ex->size);
2702 H_PUT_16 (abfd, in->section, ex->section);
2703 H_PUT_32 (abfd, in->info, ex->info);
2704 }
2705
2706 /* Swap in an abiflags structure. */
2707
2708 void
2709 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2710 const Elf_External_ABIFlags_v0 *ex,
2711 Elf_Internal_ABIFlags_v0 *in)
2712 {
2713 in->version = H_GET_16 (abfd, ex->version);
2714 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2715 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2716 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2717 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2718 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2719 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2720 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2721 in->ases = H_GET_32 (abfd, ex->ases);
2722 in->flags1 = H_GET_32 (abfd, ex->flags1);
2723 in->flags2 = H_GET_32 (abfd, ex->flags2);
2724 }
2725
2726 /* Swap out an abiflags structure. */
2727
2728 void
2729 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2730 const Elf_Internal_ABIFlags_v0 *in,
2731 Elf_External_ABIFlags_v0 *ex)
2732 {
2733 H_PUT_16 (abfd, in->version, ex->version);
2734 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2735 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2736 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2737 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2738 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2739 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2740 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2741 H_PUT_32 (abfd, in->ases, ex->ases);
2742 H_PUT_32 (abfd, in->flags1, ex->flags1);
2743 H_PUT_32 (abfd, in->flags2, ex->flags2);
2744 }
2745 \f
2746 /* This function is called via qsort() to sort the dynamic relocation
2747 entries by increasing r_symndx value. */
2748
2749 static int
2750 sort_dynamic_relocs (const void *arg1, const void *arg2)
2751 {
2752 Elf_Internal_Rela int_reloc1;
2753 Elf_Internal_Rela int_reloc2;
2754 int diff;
2755
2756 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2757 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2758
2759 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2760 if (diff != 0)
2761 return diff;
2762
2763 if (int_reloc1.r_offset < int_reloc2.r_offset)
2764 return -1;
2765 if (int_reloc1.r_offset > int_reloc2.r_offset)
2766 return 1;
2767 return 0;
2768 }
2769
2770 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2771
2772 static int
2773 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2774 const void *arg2 ATTRIBUTE_UNUSED)
2775 {
2776 #ifdef BFD64
2777 Elf_Internal_Rela int_reloc1[3];
2778 Elf_Internal_Rela int_reloc2[3];
2779
2780 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2781 (reldyn_sorting_bfd, arg1, int_reloc1);
2782 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2783 (reldyn_sorting_bfd, arg2, int_reloc2);
2784
2785 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2786 return -1;
2787 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2788 return 1;
2789
2790 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2791 return -1;
2792 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2793 return 1;
2794 return 0;
2795 #else
2796 abort ();
2797 #endif
2798 }
2799
2800
2801 /* This routine is used to write out ECOFF debugging external symbol
2802 information. It is called via mips_elf_link_hash_traverse. The
2803 ECOFF external symbol information must match the ELF external
2804 symbol information. Unfortunately, at this point we don't know
2805 whether a symbol is required by reloc information, so the two
2806 tables may wind up being different. We must sort out the external
2807 symbol information before we can set the final size of the .mdebug
2808 section, and we must set the size of the .mdebug section before we
2809 can relocate any sections, and we can't know which symbols are
2810 required by relocation until we relocate the sections.
2811 Fortunately, it is relatively unlikely that any symbol will be
2812 stripped but required by a reloc. In particular, it can not happen
2813 when generating a final executable. */
2814
2815 static bfd_boolean
2816 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2817 {
2818 struct extsym_info *einfo = data;
2819 bfd_boolean strip;
2820 asection *sec, *output_section;
2821
2822 if (h->root.indx == -2)
2823 strip = FALSE;
2824 else if ((h->root.def_dynamic
2825 || h->root.ref_dynamic
2826 || h->root.type == bfd_link_hash_new)
2827 && !h->root.def_regular
2828 && !h->root.ref_regular)
2829 strip = TRUE;
2830 else if (einfo->info->strip == strip_all
2831 || (einfo->info->strip == strip_some
2832 && bfd_hash_lookup (einfo->info->keep_hash,
2833 h->root.root.root.string,
2834 FALSE, FALSE) == NULL))
2835 strip = TRUE;
2836 else
2837 strip = FALSE;
2838
2839 if (strip)
2840 return TRUE;
2841
2842 if (h->esym.ifd == -2)
2843 {
2844 h->esym.jmptbl = 0;
2845 h->esym.cobol_main = 0;
2846 h->esym.weakext = 0;
2847 h->esym.reserved = 0;
2848 h->esym.ifd = ifdNil;
2849 h->esym.asym.value = 0;
2850 h->esym.asym.st = stGlobal;
2851
2852 if (h->root.root.type == bfd_link_hash_undefined
2853 || h->root.root.type == bfd_link_hash_undefweak)
2854 {
2855 const char *name;
2856
2857 /* Use undefined class. Also, set class and type for some
2858 special symbols. */
2859 name = h->root.root.root.string;
2860 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2861 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2862 {
2863 h->esym.asym.sc = scData;
2864 h->esym.asym.st = stLabel;
2865 h->esym.asym.value = 0;
2866 }
2867 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2868 {
2869 h->esym.asym.sc = scAbs;
2870 h->esym.asym.st = stLabel;
2871 h->esym.asym.value =
2872 mips_elf_hash_table (einfo->info)->procedure_count;
2873 }
2874 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2875 {
2876 h->esym.asym.sc = scAbs;
2877 h->esym.asym.st = stLabel;
2878 h->esym.asym.value = elf_gp (einfo->abfd);
2879 }
2880 else
2881 h->esym.asym.sc = scUndefined;
2882 }
2883 else if (h->root.root.type != bfd_link_hash_defined
2884 && h->root.root.type != bfd_link_hash_defweak)
2885 h->esym.asym.sc = scAbs;
2886 else
2887 {
2888 const char *name;
2889
2890 sec = h->root.root.u.def.section;
2891 output_section = sec->output_section;
2892
2893 /* When making a shared library and symbol h is the one from
2894 the another shared library, OUTPUT_SECTION may be null. */
2895 if (output_section == NULL)
2896 h->esym.asym.sc = scUndefined;
2897 else
2898 {
2899 name = bfd_section_name (output_section->owner, output_section);
2900
2901 if (strcmp (name, ".text") == 0)
2902 h->esym.asym.sc = scText;
2903 else if (strcmp (name, ".data") == 0)
2904 h->esym.asym.sc = scData;
2905 else if (strcmp (name, ".sdata") == 0)
2906 h->esym.asym.sc = scSData;
2907 else if (strcmp (name, ".rodata") == 0
2908 || strcmp (name, ".rdata") == 0)
2909 h->esym.asym.sc = scRData;
2910 else if (strcmp (name, ".bss") == 0)
2911 h->esym.asym.sc = scBss;
2912 else if (strcmp (name, ".sbss") == 0)
2913 h->esym.asym.sc = scSBss;
2914 else if (strcmp (name, ".init") == 0)
2915 h->esym.asym.sc = scInit;
2916 else if (strcmp (name, ".fini") == 0)
2917 h->esym.asym.sc = scFini;
2918 else
2919 h->esym.asym.sc = scAbs;
2920 }
2921 }
2922
2923 h->esym.asym.reserved = 0;
2924 h->esym.asym.index = indexNil;
2925 }
2926
2927 if (h->root.root.type == bfd_link_hash_common)
2928 h->esym.asym.value = h->root.root.u.c.size;
2929 else if (h->root.root.type == bfd_link_hash_defined
2930 || h->root.root.type == bfd_link_hash_defweak)
2931 {
2932 if (h->esym.asym.sc == scCommon)
2933 h->esym.asym.sc = scBss;
2934 else if (h->esym.asym.sc == scSCommon)
2935 h->esym.asym.sc = scSBss;
2936
2937 sec = h->root.root.u.def.section;
2938 output_section = sec->output_section;
2939 if (output_section != NULL)
2940 h->esym.asym.value = (h->root.root.u.def.value
2941 + sec->output_offset
2942 + output_section->vma);
2943 else
2944 h->esym.asym.value = 0;
2945 }
2946 else
2947 {
2948 struct mips_elf_link_hash_entry *hd = h;
2949
2950 while (hd->root.root.type == bfd_link_hash_indirect)
2951 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2952
2953 if (hd->needs_lazy_stub)
2954 {
2955 BFD_ASSERT (hd->root.plt.plist != NULL);
2956 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2957 /* Set type and value for a symbol with a function stub. */
2958 h->esym.asym.st = stProc;
2959 sec = hd->root.root.u.def.section;
2960 if (sec == NULL)
2961 h->esym.asym.value = 0;
2962 else
2963 {
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 }
2973 }
2974
2975 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2976 h->root.root.root.string,
2977 &h->esym))
2978 {
2979 einfo->failed = TRUE;
2980 return FALSE;
2981 }
2982
2983 return TRUE;
2984 }
2985
2986 /* A comparison routine used to sort .gptab entries. */
2987
2988 static int
2989 gptab_compare (const void *p1, const void *p2)
2990 {
2991 const Elf32_gptab *a1 = p1;
2992 const Elf32_gptab *a2 = p2;
2993
2994 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2995 }
2996 \f
2997 /* Functions to manage the got entry hash table. */
2998
2999 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3000 hash number. */
3001
3002 static INLINE hashval_t
3003 mips_elf_hash_bfd_vma (bfd_vma addr)
3004 {
3005 #ifdef BFD64
3006 return addr + (addr >> 32);
3007 #else
3008 return addr;
3009 #endif
3010 }
3011
3012 static hashval_t
3013 mips_elf_got_entry_hash (const void *entry_)
3014 {
3015 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3016
3017 return (entry->symndx
3018 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3019 + (entry->tls_type == GOT_TLS_LDM ? 0
3020 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3021 : entry->symndx >= 0 ? (entry->abfd->id
3022 + mips_elf_hash_bfd_vma (entry->d.addend))
3023 : entry->d.h->root.root.root.hash));
3024 }
3025
3026 static int
3027 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3028 {
3029 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3030 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3031
3032 return (e1->symndx == e2->symndx
3033 && e1->tls_type == e2->tls_type
3034 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3035 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3036 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3037 && e1->d.addend == e2->d.addend)
3038 : e2->abfd && e1->d.h == e2->d.h));
3039 }
3040
3041 static hashval_t
3042 mips_got_page_ref_hash (const void *ref_)
3043 {
3044 const struct mips_got_page_ref *ref;
3045
3046 ref = (const struct mips_got_page_ref *) ref_;
3047 return ((ref->symndx >= 0
3048 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3049 : ref->u.h->root.root.root.hash)
3050 + mips_elf_hash_bfd_vma (ref->addend));
3051 }
3052
3053 static int
3054 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3055 {
3056 const struct mips_got_page_ref *ref1, *ref2;
3057
3058 ref1 = (const struct mips_got_page_ref *) ref1_;
3059 ref2 = (const struct mips_got_page_ref *) ref2_;
3060 return (ref1->symndx == ref2->symndx
3061 && (ref1->symndx < 0
3062 ? ref1->u.h == ref2->u.h
3063 : ref1->u.abfd == ref2->u.abfd)
3064 && ref1->addend == ref2->addend);
3065 }
3066
3067 static hashval_t
3068 mips_got_page_entry_hash (const void *entry_)
3069 {
3070 const struct mips_got_page_entry *entry;
3071
3072 entry = (const struct mips_got_page_entry *) entry_;
3073 return entry->sec->id;
3074 }
3075
3076 static int
3077 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3078 {
3079 const struct mips_got_page_entry *entry1, *entry2;
3080
3081 entry1 = (const struct mips_got_page_entry *) entry1_;
3082 entry2 = (const struct mips_got_page_entry *) entry2_;
3083 return entry1->sec == entry2->sec;
3084 }
3085 \f
3086 /* Create and return a new mips_got_info structure. */
3087
3088 static struct mips_got_info *
3089 mips_elf_create_got_info (bfd *abfd)
3090 {
3091 struct mips_got_info *g;
3092
3093 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3094 if (g == NULL)
3095 return NULL;
3096
3097 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3098 mips_elf_got_entry_eq, NULL);
3099 if (g->got_entries == NULL)
3100 return NULL;
3101
3102 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3103 mips_got_page_ref_eq, NULL);
3104 if (g->got_page_refs == NULL)
3105 return NULL;
3106
3107 return g;
3108 }
3109
3110 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3111 CREATE_P and if ABFD doesn't already have a GOT. */
3112
3113 static struct mips_got_info *
3114 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3115 {
3116 struct mips_elf_obj_tdata *tdata;
3117
3118 if (!is_mips_elf (abfd))
3119 return NULL;
3120
3121 tdata = mips_elf_tdata (abfd);
3122 if (!tdata->got && create_p)
3123 tdata->got = mips_elf_create_got_info (abfd);
3124 return tdata->got;
3125 }
3126
3127 /* Record that ABFD should use output GOT G. */
3128
3129 static void
3130 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3131 {
3132 struct mips_elf_obj_tdata *tdata;
3133
3134 BFD_ASSERT (is_mips_elf (abfd));
3135 tdata = mips_elf_tdata (abfd);
3136 if (tdata->got)
3137 {
3138 /* The GOT structure itself and the hash table entries are
3139 allocated to a bfd, but the hash tables aren't. */
3140 htab_delete (tdata->got->got_entries);
3141 htab_delete (tdata->got->got_page_refs);
3142 if (tdata->got->got_page_entries)
3143 htab_delete (tdata->got->got_page_entries);
3144 }
3145 tdata->got = g;
3146 }
3147
3148 /* Return the dynamic relocation section. If it doesn't exist, try to
3149 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3150 if creation fails. */
3151
3152 static asection *
3153 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3154 {
3155 const char *dname;
3156 asection *sreloc;
3157 bfd *dynobj;
3158
3159 dname = MIPS_ELF_REL_DYN_NAME (info);
3160 dynobj = elf_hash_table (info)->dynobj;
3161 sreloc = bfd_get_linker_section (dynobj, dname);
3162 if (sreloc == NULL && create_p)
3163 {
3164 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3165 (SEC_ALLOC
3166 | SEC_LOAD
3167 | SEC_HAS_CONTENTS
3168 | SEC_IN_MEMORY
3169 | SEC_LINKER_CREATED
3170 | SEC_READONLY));
3171 if (sreloc == NULL
3172 || ! bfd_set_section_alignment (dynobj, sreloc,
3173 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3174 return NULL;
3175 }
3176 return sreloc;
3177 }
3178
3179 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3180
3181 static int
3182 mips_elf_reloc_tls_type (unsigned int r_type)
3183 {
3184 if (tls_gd_reloc_p (r_type))
3185 return GOT_TLS_GD;
3186
3187 if (tls_ldm_reloc_p (r_type))
3188 return GOT_TLS_LDM;
3189
3190 if (tls_gottprel_reloc_p (r_type))
3191 return GOT_TLS_IE;
3192
3193 return GOT_TLS_NONE;
3194 }
3195
3196 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3197
3198 static int
3199 mips_tls_got_entries (unsigned int type)
3200 {
3201 switch (type)
3202 {
3203 case GOT_TLS_GD:
3204 case GOT_TLS_LDM:
3205 return 2;
3206
3207 case GOT_TLS_IE:
3208 return 1;
3209
3210 case GOT_TLS_NONE:
3211 return 0;
3212 }
3213 abort ();
3214 }
3215
3216 /* Count the number of relocations needed for a TLS GOT entry, with
3217 access types from TLS_TYPE, and symbol H (or a local symbol if H
3218 is NULL). */
3219
3220 static int
3221 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3222 struct elf_link_hash_entry *h)
3223 {
3224 int indx = 0;
3225 bfd_boolean need_relocs = FALSE;
3226 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3227
3228 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3229 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3230 indx = h->dynindx;
3231
3232 if ((bfd_link_pic (info) || indx != 0)
3233 && (h == NULL
3234 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3235 || h->root.type != bfd_link_hash_undefweak))
3236 need_relocs = TRUE;
3237
3238 if (!need_relocs)
3239 return 0;
3240
3241 switch (tls_type)
3242 {
3243 case GOT_TLS_GD:
3244 return indx != 0 ? 2 : 1;
3245
3246 case GOT_TLS_IE:
3247 return 1;
3248
3249 case GOT_TLS_LDM:
3250 return bfd_link_pic (info) ? 1 : 0;
3251
3252 default:
3253 return 0;
3254 }
3255 }
3256
3257 /* Add the number of GOT entries and TLS relocations required by ENTRY
3258 to G. */
3259
3260 static void
3261 mips_elf_count_got_entry (struct bfd_link_info *info,
3262 struct mips_got_info *g,
3263 struct mips_got_entry *entry)
3264 {
3265 if (entry->tls_type)
3266 {
3267 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3268 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3269 entry->symndx < 0
3270 ? &entry->d.h->root : NULL);
3271 }
3272 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3273 g->local_gotno += 1;
3274 else
3275 g->global_gotno += 1;
3276 }
3277
3278 /* Output a simple dynamic relocation into SRELOC. */
3279
3280 static void
3281 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3282 asection *sreloc,
3283 unsigned long reloc_index,
3284 unsigned long indx,
3285 int r_type,
3286 bfd_vma offset)
3287 {
3288 Elf_Internal_Rela rel[3];
3289
3290 memset (rel, 0, sizeof (rel));
3291
3292 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3293 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3294
3295 if (ABI_64_P (output_bfd))
3296 {
3297 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3298 (output_bfd, &rel[0],
3299 (sreloc->contents
3300 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3301 }
3302 else
3303 bfd_elf32_swap_reloc_out
3304 (output_bfd, &rel[0],
3305 (sreloc->contents
3306 + reloc_index * sizeof (Elf32_External_Rel)));
3307 }
3308
3309 /* Initialize a set of TLS GOT entries for one symbol. */
3310
3311 static void
3312 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3313 struct mips_got_entry *entry,
3314 struct mips_elf_link_hash_entry *h,
3315 bfd_vma value)
3316 {
3317 struct mips_elf_link_hash_table *htab;
3318 int indx;
3319 asection *sreloc, *sgot;
3320 bfd_vma got_offset, got_offset2;
3321 bfd_boolean need_relocs = FALSE;
3322
3323 htab = mips_elf_hash_table (info);
3324 if (htab == NULL)
3325 return;
3326
3327 sgot = htab->sgot;
3328
3329 indx = 0;
3330 if (h != NULL)
3331 {
3332 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3333
3334 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3335 &h->root)
3336 && (!bfd_link_pic (info)
3337 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3338 indx = h->root.dynindx;
3339 }
3340
3341 if (entry->tls_initialized)
3342 return;
3343
3344 if ((bfd_link_pic (info) || indx != 0)
3345 && (h == NULL
3346 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3347 || h->root.type != bfd_link_hash_undefweak))
3348 need_relocs = TRUE;
3349
3350 /* MINUS_ONE means the symbol is not defined in this object. It may not
3351 be defined at all; assume that the value doesn't matter in that
3352 case. Otherwise complain if we would use the value. */
3353 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3354 || h->root.root.type == bfd_link_hash_undefweak);
3355
3356 /* Emit necessary relocations. */
3357 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3358 got_offset = entry->gotidx;
3359
3360 switch (entry->tls_type)
3361 {
3362 case GOT_TLS_GD:
3363 /* General Dynamic. */
3364 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3365
3366 if (need_relocs)
3367 {
3368 mips_elf_output_dynamic_relocation
3369 (abfd, sreloc, sreloc->reloc_count++, indx,
3370 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3371 sgot->output_offset + sgot->output_section->vma + got_offset);
3372
3373 if (indx)
3374 mips_elf_output_dynamic_relocation
3375 (abfd, sreloc, sreloc->reloc_count++, indx,
3376 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3377 sgot->output_offset + sgot->output_section->vma + got_offset2);
3378 else
3379 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3380 sgot->contents + got_offset2);
3381 }
3382 else
3383 {
3384 MIPS_ELF_PUT_WORD (abfd, 1,
3385 sgot->contents + got_offset);
3386 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3387 sgot->contents + got_offset2);
3388 }
3389 break;
3390
3391 case GOT_TLS_IE:
3392 /* Initial Exec model. */
3393 if (need_relocs)
3394 {
3395 if (indx == 0)
3396 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3397 sgot->contents + got_offset);
3398 else
3399 MIPS_ELF_PUT_WORD (abfd, 0,
3400 sgot->contents + got_offset);
3401
3402 mips_elf_output_dynamic_relocation
3403 (abfd, sreloc, sreloc->reloc_count++, indx,
3404 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3405 sgot->output_offset + sgot->output_section->vma + got_offset);
3406 }
3407 else
3408 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3409 sgot->contents + got_offset);
3410 break;
3411
3412 case GOT_TLS_LDM:
3413 /* The initial offset is zero, and the LD offsets will include the
3414 bias by DTP_OFFSET. */
3415 MIPS_ELF_PUT_WORD (abfd, 0,
3416 sgot->contents + got_offset
3417 + MIPS_ELF_GOT_SIZE (abfd));
3418
3419 if (!bfd_link_pic (info))
3420 MIPS_ELF_PUT_WORD (abfd, 1,
3421 sgot->contents + got_offset);
3422 else
3423 mips_elf_output_dynamic_relocation
3424 (abfd, sreloc, sreloc->reloc_count++, indx,
3425 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3426 sgot->output_offset + sgot->output_section->vma + got_offset);
3427 break;
3428
3429 default:
3430 abort ();
3431 }
3432
3433 entry->tls_initialized = TRUE;
3434 }
3435
3436 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3437 for global symbol H. .got.plt comes before the GOT, so the offset
3438 will be negative. */
3439
3440 static bfd_vma
3441 mips_elf_gotplt_index (struct bfd_link_info *info,
3442 struct elf_link_hash_entry *h)
3443 {
3444 bfd_vma got_address, got_value;
3445 struct mips_elf_link_hash_table *htab;
3446
3447 htab = mips_elf_hash_table (info);
3448 BFD_ASSERT (htab != NULL);
3449
3450 BFD_ASSERT (h->plt.plist != NULL);
3451 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3452
3453 /* Calculate the address of the associated .got.plt entry. */
3454 got_address = (htab->sgotplt->output_section->vma
3455 + htab->sgotplt->output_offset
3456 + (h->plt.plist->gotplt_index
3457 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3458
3459 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3460 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3461 + htab->root.hgot->root.u.def.section->output_offset
3462 + htab->root.hgot->root.u.def.value);
3463
3464 return got_address - got_value;
3465 }
3466
3467 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3468 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3469 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3470 offset can be found. */
3471
3472 static bfd_vma
3473 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3474 bfd_vma value, unsigned long r_symndx,
3475 struct mips_elf_link_hash_entry *h, int r_type)
3476 {
3477 struct mips_elf_link_hash_table *htab;
3478 struct mips_got_entry *entry;
3479
3480 htab = mips_elf_hash_table (info);
3481 BFD_ASSERT (htab != NULL);
3482
3483 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3484 r_symndx, h, r_type);
3485 if (!entry)
3486 return MINUS_ONE;
3487
3488 if (entry->tls_type)
3489 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3490 return entry->gotidx;
3491 }
3492
3493 /* Return the GOT index of global symbol H in the primary GOT. */
3494
3495 static bfd_vma
3496 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3497 struct elf_link_hash_entry *h)
3498 {
3499 struct mips_elf_link_hash_table *htab;
3500 long global_got_dynindx;
3501 struct mips_got_info *g;
3502 bfd_vma got_index;
3503
3504 htab = mips_elf_hash_table (info);
3505 BFD_ASSERT (htab != NULL);
3506
3507 global_got_dynindx = 0;
3508 if (htab->global_gotsym != NULL)
3509 global_got_dynindx = htab->global_gotsym->dynindx;
3510
3511 /* Once we determine the global GOT entry with the lowest dynamic
3512 symbol table index, we must put all dynamic symbols with greater
3513 indices into the primary GOT. That makes it easy to calculate the
3514 GOT offset. */
3515 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3516 g = mips_elf_bfd_got (obfd, FALSE);
3517 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3518 * MIPS_ELF_GOT_SIZE (obfd));
3519 BFD_ASSERT (got_index < htab->sgot->size);
3520
3521 return got_index;
3522 }
3523
3524 /* Return the GOT index for the global symbol indicated by H, which is
3525 referenced by a relocation of type R_TYPE in IBFD. */
3526
3527 static bfd_vma
3528 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3529 struct elf_link_hash_entry *h, int r_type)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 struct mips_got_info *g;
3533 struct mips_got_entry lookup, *entry;
3534 bfd_vma gotidx;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 g = mips_elf_bfd_got (ibfd, FALSE);
3540 BFD_ASSERT (g);
3541
3542 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3543 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3544 return mips_elf_primary_global_got_index (obfd, info, h);
3545
3546 lookup.abfd = ibfd;
3547 lookup.symndx = -1;
3548 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3549 entry = htab_find (g->got_entries, &lookup);
3550 BFD_ASSERT (entry);
3551
3552 gotidx = entry->gotidx;
3553 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3554
3555 if (lookup.tls_type)
3556 {
3557 bfd_vma value = MINUS_ONE;
3558
3559 if ((h->root.type == bfd_link_hash_defined
3560 || h->root.type == bfd_link_hash_defweak)
3561 && h->root.u.def.section->output_section)
3562 value = (h->root.u.def.value
3563 + h->root.u.def.section->output_offset
3564 + h->root.u.def.section->output_section->vma);
3565
3566 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3567 }
3568 return gotidx;
3569 }
3570
3571 /* Find a GOT page entry that points to within 32KB of VALUE. These
3572 entries are supposed to be placed at small offsets in the GOT, i.e.,
3573 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3574 entry could be created. If OFFSETP is nonnull, use it to return the
3575 offset of the GOT entry from VALUE. */
3576
3577 static bfd_vma
3578 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3579 bfd_vma value, bfd_vma *offsetp)
3580 {
3581 bfd_vma page, got_index;
3582 struct mips_got_entry *entry;
3583
3584 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3585 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3586 NULL, R_MIPS_GOT_PAGE);
3587
3588 if (!entry)
3589 return MINUS_ONE;
3590
3591 got_index = entry->gotidx;
3592
3593 if (offsetp)
3594 *offsetp = value - entry->d.address;
3595
3596 return got_index;
3597 }
3598
3599 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3600 EXTERNAL is true if the relocation was originally against a global
3601 symbol that binds locally. */
3602
3603 static bfd_vma
3604 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_boolean external)
3606 {
3607 struct mips_got_entry *entry;
3608
3609 /* GOT16 relocations against local symbols are followed by a LO16
3610 relocation; those against global symbols are not. Thus if the
3611 symbol was originally local, the GOT16 relocation should load the
3612 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3613 if (! external)
3614 value = mips_elf_high (value) << 16;
3615
3616 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3617 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3618 same in all cases. */
3619 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3620 NULL, R_MIPS_GOT16);
3621 if (entry)
3622 return entry->gotidx;
3623 else
3624 return MINUS_ONE;
3625 }
3626
3627 /* Returns the offset for the entry at the INDEXth position
3628 in the GOT. */
3629
3630 static bfd_vma
3631 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3632 bfd *input_bfd, bfd_vma got_index)
3633 {
3634 struct mips_elf_link_hash_table *htab;
3635 asection *sgot;
3636 bfd_vma gp;
3637
3638 htab = mips_elf_hash_table (info);
3639 BFD_ASSERT (htab != NULL);
3640
3641 sgot = htab->sgot;
3642 gp = _bfd_get_gp_value (output_bfd)
3643 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3644
3645 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3646 }
3647
3648 /* Create and return a local GOT entry for VALUE, which was calculated
3649 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3650 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3651 instead. */
3652
3653 static struct mips_got_entry *
3654 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3655 bfd *ibfd, bfd_vma value,
3656 unsigned long r_symndx,
3657 struct mips_elf_link_hash_entry *h,
3658 int r_type)
3659 {
3660 struct mips_got_entry lookup, *entry;
3661 void **loc;
3662 struct mips_got_info *g;
3663 struct mips_elf_link_hash_table *htab;
3664 bfd_vma gotidx;
3665
3666 htab = mips_elf_hash_table (info);
3667 BFD_ASSERT (htab != NULL);
3668
3669 g = mips_elf_bfd_got (ibfd, FALSE);
3670 if (g == NULL)
3671 {
3672 g = mips_elf_bfd_got (abfd, FALSE);
3673 BFD_ASSERT (g != NULL);
3674 }
3675
3676 /* This function shouldn't be called for symbols that live in the global
3677 area of the GOT. */
3678 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3679
3680 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3681 if (lookup.tls_type)
3682 {
3683 lookup.abfd = ibfd;
3684 if (tls_ldm_reloc_p (r_type))
3685 {
3686 lookup.symndx = 0;
3687 lookup.d.addend = 0;
3688 }
3689 else if (h == NULL)
3690 {
3691 lookup.symndx = r_symndx;
3692 lookup.d.addend = 0;
3693 }
3694 else
3695 {
3696 lookup.symndx = -1;
3697 lookup.d.h = h;
3698 }
3699
3700 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3701 BFD_ASSERT (entry);
3702
3703 gotidx = entry->gotidx;
3704 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3705
3706 return entry;
3707 }
3708
3709 lookup.abfd = NULL;
3710 lookup.symndx = -1;
3711 lookup.d.address = value;
3712 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3713 if (!loc)
3714 return NULL;
3715
3716 entry = (struct mips_got_entry *) *loc;
3717 if (entry)
3718 return entry;
3719
3720 if (g->assigned_low_gotno > g->assigned_high_gotno)
3721 {
3722 /* We didn't allocate enough space in the GOT. */
3723 (*_bfd_error_handler)
3724 (_("not enough GOT space for local GOT entries"));
3725 bfd_set_error (bfd_error_bad_value);
3726 return NULL;
3727 }
3728
3729 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3730 if (!entry)
3731 return NULL;
3732
3733 if (got16_reloc_p (r_type)
3734 || call16_reloc_p (r_type)
3735 || got_page_reloc_p (r_type)
3736 || got_disp_reloc_p (r_type))
3737 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3738 else
3739 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3740
3741 *entry = lookup;
3742 *loc = entry;
3743
3744 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3745
3746 /* These GOT entries need a dynamic relocation on VxWorks. */
3747 if (htab->is_vxworks)
3748 {
3749 Elf_Internal_Rela outrel;
3750 asection *s;
3751 bfd_byte *rloc;
3752 bfd_vma got_address;
3753
3754 s = mips_elf_rel_dyn_section (info, FALSE);
3755 got_address = (htab->sgot->output_section->vma
3756 + htab->sgot->output_offset
3757 + entry->gotidx);
3758
3759 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3760 outrel.r_offset = got_address;
3761 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3762 outrel.r_addend = value;
3763 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3764 }
3765
3766 return entry;
3767 }
3768
3769 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3770 The number might be exact or a worst-case estimate, depending on how
3771 much information is available to elf_backend_omit_section_dynsym at
3772 the current linking stage. */
3773
3774 static bfd_size_type
3775 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3776 {
3777 bfd_size_type count;
3778
3779 count = 0;
3780 if (bfd_link_pic (info)
3781 || elf_hash_table (info)->is_relocatable_executable)
3782 {
3783 asection *p;
3784 const struct elf_backend_data *bed;
3785
3786 bed = get_elf_backend_data (output_bfd);
3787 for (p = output_bfd->sections; p ; p = p->next)
3788 if ((p->flags & SEC_EXCLUDE) == 0
3789 && (p->flags & SEC_ALLOC) != 0
3790 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3791 ++count;
3792 }
3793 return count;
3794 }
3795
3796 /* Sort the dynamic symbol table so that symbols that need GOT entries
3797 appear towards the end. */
3798
3799 static bfd_boolean
3800 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3801 {
3802 struct mips_elf_link_hash_table *htab;
3803 struct mips_elf_hash_sort_data hsd;
3804 struct mips_got_info *g;
3805
3806 if (elf_hash_table (info)->dynsymcount == 0)
3807 return TRUE;
3808
3809 htab = mips_elf_hash_table (info);
3810 BFD_ASSERT (htab != NULL);
3811
3812 g = htab->got_info;
3813 if (g == NULL)
3814 return TRUE;
3815
3816 hsd.low = NULL;
3817 hsd.max_unref_got_dynindx
3818 = hsd.min_got_dynindx
3819 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3820 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3821 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3822 elf_hash_table (info)),
3823 mips_elf_sort_hash_table_f,
3824 &hsd);
3825
3826 /* There should have been enough room in the symbol table to
3827 accommodate both the GOT and non-GOT symbols. */
3828 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3829 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3830 == elf_hash_table (info)->dynsymcount);
3831 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3832 == g->global_gotno);
3833
3834 /* Now we know which dynamic symbol has the lowest dynamic symbol
3835 table index in the GOT. */
3836 htab->global_gotsym = hsd.low;
3837
3838 return TRUE;
3839 }
3840
3841 /* If H needs a GOT entry, assign it the highest available dynamic
3842 index. Otherwise, assign it the lowest available dynamic
3843 index. */
3844
3845 static bfd_boolean
3846 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3847 {
3848 struct mips_elf_hash_sort_data *hsd = data;
3849
3850 /* Symbols without dynamic symbol table entries aren't interesting
3851 at all. */
3852 if (h->root.dynindx == -1)
3853 return TRUE;
3854
3855 switch (h->global_got_area)
3856 {
3857 case GGA_NONE:
3858 h->root.dynindx = hsd->max_non_got_dynindx++;
3859 break;
3860
3861 case GGA_NORMAL:
3862 h->root.dynindx = --hsd->min_got_dynindx;
3863 hsd->low = (struct elf_link_hash_entry *) h;
3864 break;
3865
3866 case GGA_RELOC_ONLY:
3867 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3868 hsd->low = (struct elf_link_hash_entry *) h;
3869 h->root.dynindx = hsd->max_unref_got_dynindx++;
3870 break;
3871 }
3872
3873 return TRUE;
3874 }
3875
3876 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3877 (which is owned by the caller and shouldn't be added to the
3878 hash table directly). */
3879
3880 static bfd_boolean
3881 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3882 struct mips_got_entry *lookup)
3883 {
3884 struct mips_elf_link_hash_table *htab;
3885 struct mips_got_entry *entry;
3886 struct mips_got_info *g;
3887 void **loc, **bfd_loc;
3888
3889 /* Make sure there's a slot for this entry in the master GOT. */
3890 htab = mips_elf_hash_table (info);
3891 g = htab->got_info;
3892 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3893 if (!loc)
3894 return FALSE;
3895
3896 /* Populate the entry if it isn't already. */
3897 entry = (struct mips_got_entry *) *loc;
3898 if (!entry)
3899 {
3900 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3901 if (!entry)
3902 return FALSE;
3903
3904 lookup->tls_initialized = FALSE;
3905 lookup->gotidx = -1;
3906 *entry = *lookup;
3907 *loc = entry;
3908 }
3909
3910 /* Reuse the same GOT entry for the BFD's GOT. */
3911 g = mips_elf_bfd_got (abfd, TRUE);
3912 if (!g)
3913 return FALSE;
3914
3915 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3916 if (!bfd_loc)
3917 return FALSE;
3918
3919 if (!*bfd_loc)
3920 *bfd_loc = entry;
3921 return TRUE;
3922 }
3923
3924 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3925 entry for it. FOR_CALL is true if the caller is only interested in
3926 using the GOT entry for calls. */
3927
3928 static bfd_boolean
3929 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3930 bfd *abfd, struct bfd_link_info *info,
3931 bfd_boolean for_call, int r_type)
3932 {
3933 struct mips_elf_link_hash_table *htab;
3934 struct mips_elf_link_hash_entry *hmips;
3935 struct mips_got_entry entry;
3936 unsigned char tls_type;
3937
3938 htab = mips_elf_hash_table (info);
3939 BFD_ASSERT (htab != NULL);
3940
3941 hmips = (struct mips_elf_link_hash_entry *) h;
3942 if (!for_call)
3943 hmips->got_only_for_calls = FALSE;
3944
3945 /* A global symbol in the GOT must also be in the dynamic symbol
3946 table. */
3947 if (h->dynindx == -1)
3948 {
3949 switch (ELF_ST_VISIBILITY (h->other))
3950 {
3951 case STV_INTERNAL:
3952 case STV_HIDDEN:
3953 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3954 break;
3955 }
3956 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3957 return FALSE;
3958 }
3959
3960 tls_type = mips_elf_reloc_tls_type (r_type);
3961 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3962 hmips->global_got_area = GGA_NORMAL;
3963
3964 entry.abfd = abfd;
3965 entry.symndx = -1;
3966 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3967 entry.tls_type = tls_type;
3968 return mips_elf_record_got_entry (info, abfd, &entry);
3969 }
3970
3971 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3972 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3973
3974 static bfd_boolean
3975 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3976 struct bfd_link_info *info, int r_type)
3977 {
3978 struct mips_elf_link_hash_table *htab;
3979 struct mips_got_info *g;
3980 struct mips_got_entry entry;
3981
3982 htab = mips_elf_hash_table (info);
3983 BFD_ASSERT (htab != NULL);
3984
3985 g = htab->got_info;
3986 BFD_ASSERT (g != NULL);
3987
3988 entry.abfd = abfd;
3989 entry.symndx = symndx;
3990 entry.d.addend = addend;
3991 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3992 return mips_elf_record_got_entry (info, abfd, &entry);
3993 }
3994
3995 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3996 H is the symbol's hash table entry, or null if SYMNDX is local
3997 to ABFD. */
3998
3999 static bfd_boolean
4000 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4001 long symndx, struct elf_link_hash_entry *h,
4002 bfd_signed_vma addend)
4003 {
4004 struct mips_elf_link_hash_table *htab;
4005 struct mips_got_info *g1, *g2;
4006 struct mips_got_page_ref lookup, *entry;
4007 void **loc, **bfd_loc;
4008
4009 htab = mips_elf_hash_table (info);
4010 BFD_ASSERT (htab != NULL);
4011
4012 g1 = htab->got_info;
4013 BFD_ASSERT (g1 != NULL);
4014
4015 if (h)
4016 {
4017 lookup.symndx = -1;
4018 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4019 }
4020 else
4021 {
4022 lookup.symndx = symndx;
4023 lookup.u.abfd = abfd;
4024 }
4025 lookup.addend = addend;
4026 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4027 if (loc == NULL)
4028 return FALSE;
4029
4030 entry = (struct mips_got_page_ref *) *loc;
4031 if (!entry)
4032 {
4033 entry = bfd_alloc (abfd, sizeof (*entry));
4034 if (!entry)
4035 return FALSE;
4036
4037 *entry = lookup;
4038 *loc = entry;
4039 }
4040
4041 /* Add the same entry to the BFD's GOT. */
4042 g2 = mips_elf_bfd_got (abfd, TRUE);
4043 if (!g2)
4044 return FALSE;
4045
4046 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4047 if (!bfd_loc)
4048 return FALSE;
4049
4050 if (!*bfd_loc)
4051 *bfd_loc = entry;
4052
4053 return TRUE;
4054 }
4055
4056 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4057
4058 static void
4059 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4060 unsigned int n)
4061 {
4062 asection *s;
4063 struct mips_elf_link_hash_table *htab;
4064
4065 htab = mips_elf_hash_table (info);
4066 BFD_ASSERT (htab != NULL);
4067
4068 s = mips_elf_rel_dyn_section (info, FALSE);
4069 BFD_ASSERT (s != NULL);
4070
4071 if (htab->is_vxworks)
4072 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4073 else
4074 {
4075 if (s->size == 0)
4076 {
4077 /* Make room for a null element. */
4078 s->size += MIPS_ELF_REL_SIZE (abfd);
4079 ++s->reloc_count;
4080 }
4081 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4082 }
4083 }
4084 \f
4085 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4086 mips_elf_traverse_got_arg structure. Count the number of GOT
4087 entries and TLS relocs. Set DATA->value to true if we need
4088 to resolve indirect or warning symbols and then recreate the GOT. */
4089
4090 static int
4091 mips_elf_check_recreate_got (void **entryp, void *data)
4092 {
4093 struct mips_got_entry *entry;
4094 struct mips_elf_traverse_got_arg *arg;
4095
4096 entry = (struct mips_got_entry *) *entryp;
4097 arg = (struct mips_elf_traverse_got_arg *) data;
4098 if (entry->abfd != NULL && entry->symndx == -1)
4099 {
4100 struct mips_elf_link_hash_entry *h;
4101
4102 h = entry->d.h;
4103 if (h->root.root.type == bfd_link_hash_indirect
4104 || h->root.root.type == bfd_link_hash_warning)
4105 {
4106 arg->value = TRUE;
4107 return 0;
4108 }
4109 }
4110 mips_elf_count_got_entry (arg->info, arg->g, entry);
4111 return 1;
4112 }
4113
4114 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4115 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4116 converting entries for indirect and warning symbols into entries
4117 for the target symbol. Set DATA->g to null on error. */
4118
4119 static int
4120 mips_elf_recreate_got (void **entryp, void *data)
4121 {
4122 struct mips_got_entry new_entry, *entry;
4123 struct mips_elf_traverse_got_arg *arg;
4124 void **slot;
4125
4126 entry = (struct mips_got_entry *) *entryp;
4127 arg = (struct mips_elf_traverse_got_arg *) data;
4128 if (entry->abfd != NULL
4129 && entry->symndx == -1
4130 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4131 || entry->d.h->root.root.type == bfd_link_hash_warning))
4132 {
4133 struct mips_elf_link_hash_entry *h;
4134
4135 new_entry = *entry;
4136 entry = &new_entry;
4137 h = entry->d.h;
4138 do
4139 {
4140 BFD_ASSERT (h->global_got_area == GGA_NONE);
4141 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4142 }
4143 while (h->root.root.type == bfd_link_hash_indirect
4144 || h->root.root.type == bfd_link_hash_warning);
4145 entry->d.h = h;
4146 }
4147 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4148 if (slot == NULL)
4149 {
4150 arg->g = NULL;
4151 return 0;
4152 }
4153 if (*slot == NULL)
4154 {
4155 if (entry == &new_entry)
4156 {
4157 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4158 if (!entry)
4159 {
4160 arg->g = NULL;
4161 return 0;
4162 }
4163 *entry = new_entry;
4164 }
4165 *slot = entry;
4166 mips_elf_count_got_entry (arg->info, arg->g, entry);
4167 }
4168 return 1;
4169 }
4170
4171 /* Return the maximum number of GOT page entries required for RANGE. */
4172
4173 static bfd_vma
4174 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4175 {
4176 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4177 }
4178
4179 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4180
4181 static bfd_boolean
4182 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4183 asection *sec, bfd_signed_vma addend)
4184 {
4185 struct mips_got_info *g = arg->g;
4186 struct mips_got_page_entry lookup, *entry;
4187 struct mips_got_page_range **range_ptr, *range;
4188 bfd_vma old_pages, new_pages;
4189 void **loc;
4190
4191 /* Find the mips_got_page_entry hash table entry for this section. */
4192 lookup.sec = sec;
4193 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4194 if (loc == NULL)
4195 return FALSE;
4196
4197 /* Create a mips_got_page_entry if this is the first time we've
4198 seen the section. */
4199 entry = (struct mips_got_page_entry *) *loc;
4200 if (!entry)
4201 {
4202 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4203 if (!entry)
4204 return FALSE;
4205
4206 entry->sec = sec;
4207 *loc = entry;
4208 }
4209
4210 /* Skip over ranges whose maximum extent cannot share a page entry
4211 with ADDEND. */
4212 range_ptr = &entry->ranges;
4213 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4214 range_ptr = &(*range_ptr)->next;
4215
4216 /* If we scanned to the end of the list, or found a range whose
4217 minimum extent cannot share a page entry with ADDEND, create
4218 a new singleton range. */
4219 range = *range_ptr;
4220 if (!range || addend < range->min_addend - 0xffff)
4221 {
4222 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4223 if (!range)
4224 return FALSE;
4225
4226 range->next = *range_ptr;
4227 range->min_addend = addend;
4228 range->max_addend = addend;
4229
4230 *range_ptr = range;
4231 entry->num_pages++;
4232 g->page_gotno++;
4233 return TRUE;
4234 }
4235
4236 /* Remember how many pages the old range contributed. */
4237 old_pages = mips_elf_pages_for_range (range);
4238
4239 /* Update the ranges. */
4240 if (addend < range->min_addend)
4241 range->min_addend = addend;
4242 else if (addend > range->max_addend)
4243 {
4244 if (range->next && addend >= range->next->min_addend - 0xffff)
4245 {
4246 old_pages += mips_elf_pages_for_range (range->next);
4247 range->max_addend = range->next->max_addend;
4248 range->next = range->next->next;
4249 }
4250 else
4251 range->max_addend = addend;
4252 }
4253
4254 /* Record any change in the total estimate. */
4255 new_pages = mips_elf_pages_for_range (range);
4256 if (old_pages != new_pages)
4257 {
4258 entry->num_pages += new_pages - old_pages;
4259 g->page_gotno += new_pages - old_pages;
4260 }
4261
4262 return TRUE;
4263 }
4264
4265 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4266 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4267 whether the page reference described by *REFP needs a GOT page entry,
4268 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4269
4270 static bfd_boolean
4271 mips_elf_resolve_got_page_ref (void **refp, void *data)
4272 {
4273 struct mips_got_page_ref *ref;
4274 struct mips_elf_traverse_got_arg *arg;
4275 struct mips_elf_link_hash_table *htab;
4276 asection *sec;
4277 bfd_vma addend;
4278
4279 ref = (struct mips_got_page_ref *) *refp;
4280 arg = (struct mips_elf_traverse_got_arg *) data;
4281 htab = mips_elf_hash_table (arg->info);
4282
4283 if (ref->symndx < 0)
4284 {
4285 struct mips_elf_link_hash_entry *h;
4286
4287 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4288 h = ref->u.h;
4289 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4290 return 1;
4291
4292 /* Ignore undefined symbols; we'll issue an error later if
4293 appropriate. */
4294 if (!((h->root.root.type == bfd_link_hash_defined
4295 || h->root.root.type == bfd_link_hash_defweak)
4296 && h->root.root.u.def.section))
4297 return 1;
4298
4299 sec = h->root.root.u.def.section;
4300 addend = h->root.root.u.def.value + ref->addend;
4301 }
4302 else
4303 {
4304 Elf_Internal_Sym *isym;
4305
4306 /* Read in the symbol. */
4307 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4308 ref->symndx);
4309 if (isym == NULL)
4310 {
4311 arg->g = NULL;
4312 return 0;
4313 }
4314
4315 /* Get the associated input section. */
4316 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4317 if (sec == NULL)
4318 {
4319 arg->g = NULL;
4320 return 0;
4321 }
4322
4323 /* If this is a mergable section, work out the section and offset
4324 of the merged data. For section symbols, the addend specifies
4325 of the offset _of_ the first byte in the data, otherwise it
4326 specifies the offset _from_ the first byte. */
4327 if (sec->flags & SEC_MERGE)
4328 {
4329 void *secinfo;
4330
4331 secinfo = elf_section_data (sec)->sec_info;
4332 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4333 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4334 isym->st_value + ref->addend);
4335 else
4336 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4337 isym->st_value) + ref->addend;
4338 }
4339 else
4340 addend = isym->st_value + ref->addend;
4341 }
4342 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4343 {
4344 arg->g = NULL;
4345 return 0;
4346 }
4347 return 1;
4348 }
4349
4350 /* If any entries in G->got_entries are for indirect or warning symbols,
4351 replace them with entries for the target symbol. Convert g->got_page_refs
4352 into got_page_entry structures and estimate the number of page entries
4353 that they require. */
4354
4355 static bfd_boolean
4356 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4357 struct mips_got_info *g)
4358 {
4359 struct mips_elf_traverse_got_arg tga;
4360 struct mips_got_info oldg;
4361
4362 oldg = *g;
4363
4364 tga.info = info;
4365 tga.g = g;
4366 tga.value = FALSE;
4367 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4368 if (tga.value)
4369 {
4370 *g = oldg;
4371 g->got_entries = htab_create (htab_size (oldg.got_entries),
4372 mips_elf_got_entry_hash,
4373 mips_elf_got_entry_eq, NULL);
4374 if (!g->got_entries)
4375 return FALSE;
4376
4377 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4378 if (!tga.g)
4379 return FALSE;
4380
4381 htab_delete (oldg.got_entries);
4382 }
4383
4384 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4385 mips_got_page_entry_eq, NULL);
4386 if (g->got_page_entries == NULL)
4387 return FALSE;
4388
4389 tga.info = info;
4390 tga.g = g;
4391 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4392
4393 return TRUE;
4394 }
4395
4396 /* Return true if a GOT entry for H should live in the local rather than
4397 global GOT area. */
4398
4399 static bfd_boolean
4400 mips_use_local_got_p (struct bfd_link_info *info,
4401 struct mips_elf_link_hash_entry *h)
4402 {
4403 /* Symbols that aren't in the dynamic symbol table must live in the
4404 local GOT. This includes symbols that are completely undefined
4405 and which therefore don't bind locally. We'll report undefined
4406 symbols later if appropriate. */
4407 if (h->root.dynindx == -1)
4408 return TRUE;
4409
4410 /* Symbols that bind locally can (and in the case of forced-local
4411 symbols, must) live in the local GOT. */
4412 if (h->got_only_for_calls
4413 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4414 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4415 return TRUE;
4416
4417 /* If this is an executable that must provide a definition of the symbol,
4418 either though PLTs or copy relocations, then that address should go in
4419 the local rather than global GOT. */
4420 if (bfd_link_executable (info) && h->has_static_relocs)
4421 return TRUE;
4422
4423 return FALSE;
4424 }
4425
4426 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4427 link_info structure. Decide whether the hash entry needs an entry in
4428 the global part of the primary GOT, setting global_got_area accordingly.
4429 Count the number of global symbols that are in the primary GOT only
4430 because they have relocations against them (reloc_only_gotno). */
4431
4432 static int
4433 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4434 {
4435 struct bfd_link_info *info;
4436 struct mips_elf_link_hash_table *htab;
4437 struct mips_got_info *g;
4438
4439 info = (struct bfd_link_info *) data;
4440 htab = mips_elf_hash_table (info);
4441 g = htab->got_info;
4442 if (h->global_got_area != GGA_NONE)
4443 {
4444 /* Make a final decision about whether the symbol belongs in the
4445 local or global GOT. */
4446 if (mips_use_local_got_p (info, h))
4447 /* The symbol belongs in the local GOT. We no longer need this
4448 entry if it was only used for relocations; those relocations
4449 will be against the null or section symbol instead of H. */
4450 h->global_got_area = GGA_NONE;
4451 else if (htab->is_vxworks
4452 && h->got_only_for_calls
4453 && h->root.plt.plist->mips_offset != MINUS_ONE)
4454 /* On VxWorks, calls can refer directly to the .got.plt entry;
4455 they don't need entries in the regular GOT. .got.plt entries
4456 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4457 h->global_got_area = GGA_NONE;
4458 else if (h->global_got_area == GGA_RELOC_ONLY)
4459 {
4460 g->reloc_only_gotno++;
4461 g->global_gotno++;
4462 }
4463 }
4464 return 1;
4465 }
4466 \f
4467 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4468 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4469
4470 static int
4471 mips_elf_add_got_entry (void **entryp, void *data)
4472 {
4473 struct mips_got_entry *entry;
4474 struct mips_elf_traverse_got_arg *arg;
4475 void **slot;
4476
4477 entry = (struct mips_got_entry *) *entryp;
4478 arg = (struct mips_elf_traverse_got_arg *) data;
4479 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4480 if (!slot)
4481 {
4482 arg->g = NULL;
4483 return 0;
4484 }
4485 if (!*slot)
4486 {
4487 *slot = entry;
4488 mips_elf_count_got_entry (arg->info, arg->g, entry);
4489 }
4490 return 1;
4491 }
4492
4493 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4494 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4495
4496 static int
4497 mips_elf_add_got_page_entry (void **entryp, void *data)
4498 {
4499 struct mips_got_page_entry *entry;
4500 struct mips_elf_traverse_got_arg *arg;
4501 void **slot;
4502
4503 entry = (struct mips_got_page_entry *) *entryp;
4504 arg = (struct mips_elf_traverse_got_arg *) data;
4505 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4506 if (!slot)
4507 {
4508 arg->g = NULL;
4509 return 0;
4510 }
4511 if (!*slot)
4512 {
4513 *slot = entry;
4514 arg->g->page_gotno += entry->num_pages;
4515 }
4516 return 1;
4517 }
4518
4519 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4520 this would lead to overflow, 1 if they were merged successfully,
4521 and 0 if a merge failed due to lack of memory. (These values are chosen
4522 so that nonnegative return values can be returned by a htab_traverse
4523 callback.) */
4524
4525 static int
4526 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4527 struct mips_got_info *to,
4528 struct mips_elf_got_per_bfd_arg *arg)
4529 {
4530 struct mips_elf_traverse_got_arg tga;
4531 unsigned int estimate;
4532
4533 /* Work out how many page entries we would need for the combined GOT. */
4534 estimate = arg->max_pages;
4535 if (estimate >= from->page_gotno + to->page_gotno)
4536 estimate = from->page_gotno + to->page_gotno;
4537
4538 /* And conservatively estimate how many local and TLS entries
4539 would be needed. */
4540 estimate += from->local_gotno + to->local_gotno;
4541 estimate += from->tls_gotno + to->tls_gotno;
4542
4543 /* If we're merging with the primary got, any TLS relocations will
4544 come after the full set of global entries. Otherwise estimate those
4545 conservatively as well. */
4546 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4547 estimate += arg->global_count;
4548 else
4549 estimate += from->global_gotno + to->global_gotno;
4550
4551 /* Bail out if the combined GOT might be too big. */
4552 if (estimate > arg->max_count)
4553 return -1;
4554
4555 /* Transfer the bfd's got information from FROM to TO. */
4556 tga.info = arg->info;
4557 tga.g = to;
4558 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4559 if (!tga.g)
4560 return 0;
4561
4562 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4563 if (!tga.g)
4564 return 0;
4565
4566 mips_elf_replace_bfd_got (abfd, to);
4567 return 1;
4568 }
4569
4570 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4571 as possible of the primary got, since it doesn't require explicit
4572 dynamic relocations, but don't use bfds that would reference global
4573 symbols out of the addressable range. Failing the primary got,
4574 attempt to merge with the current got, or finish the current got
4575 and then make make the new got current. */
4576
4577 static bfd_boolean
4578 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4579 struct mips_elf_got_per_bfd_arg *arg)
4580 {
4581 unsigned int estimate;
4582 int result;
4583
4584 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4585 return FALSE;
4586
4587 /* Work out the number of page, local and TLS entries. */
4588 estimate = arg->max_pages;
4589 if (estimate > g->page_gotno)
4590 estimate = g->page_gotno;
4591 estimate += g->local_gotno + g->tls_gotno;
4592
4593 /* We place TLS GOT entries after both locals and globals. The globals
4594 for the primary GOT may overflow the normal GOT size limit, so be
4595 sure not to merge a GOT which requires TLS with the primary GOT in that
4596 case. This doesn't affect non-primary GOTs. */
4597 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4598
4599 if (estimate <= arg->max_count)
4600 {
4601 /* If we don't have a primary GOT, use it as
4602 a starting point for the primary GOT. */
4603 if (!arg->primary)
4604 {
4605 arg->primary = g;
4606 return TRUE;
4607 }
4608
4609 /* Try merging with the primary GOT. */
4610 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4611 if (result >= 0)
4612 return result;
4613 }
4614
4615 /* If we can merge with the last-created got, do it. */
4616 if (arg->current)
4617 {
4618 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4619 if (result >= 0)
4620 return result;
4621 }
4622
4623 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4624 fits; if it turns out that it doesn't, we'll get relocation
4625 overflows anyway. */
4626 g->next = arg->current;
4627 arg->current = g;
4628
4629 return TRUE;
4630 }
4631
4632 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4633 to GOTIDX, duplicating the entry if it has already been assigned
4634 an index in a different GOT. */
4635
4636 static bfd_boolean
4637 mips_elf_set_gotidx (void **entryp, long gotidx)
4638 {
4639 struct mips_got_entry *entry;
4640
4641 entry = (struct mips_got_entry *) *entryp;
4642 if (entry->gotidx > 0)
4643 {
4644 struct mips_got_entry *new_entry;
4645
4646 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4647 if (!new_entry)
4648 return FALSE;
4649
4650 *new_entry = *entry;
4651 *entryp = new_entry;
4652 entry = new_entry;
4653 }
4654 entry->gotidx = gotidx;
4655 return TRUE;
4656 }
4657
4658 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4659 mips_elf_traverse_got_arg in which DATA->value is the size of one
4660 GOT entry. Set DATA->g to null on failure. */
4661
4662 static int
4663 mips_elf_initialize_tls_index (void **entryp, void *data)
4664 {
4665 struct mips_got_entry *entry;
4666 struct mips_elf_traverse_got_arg *arg;
4667
4668 /* We're only interested in TLS symbols. */
4669 entry = (struct mips_got_entry *) *entryp;
4670 if (entry->tls_type == GOT_TLS_NONE)
4671 return 1;
4672
4673 arg = (struct mips_elf_traverse_got_arg *) data;
4674 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4675 {
4676 arg->g = NULL;
4677 return 0;
4678 }
4679
4680 /* Account for the entries we've just allocated. */
4681 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4682 return 1;
4683 }
4684
4685 /* A htab_traverse callback for GOT entries, where DATA points to a
4686 mips_elf_traverse_got_arg. Set the global_got_area of each global
4687 symbol to DATA->value. */
4688
4689 static int
4690 mips_elf_set_global_got_area (void **entryp, void *data)
4691 {
4692 struct mips_got_entry *entry;
4693 struct mips_elf_traverse_got_arg *arg;
4694
4695 entry = (struct mips_got_entry *) *entryp;
4696 arg = (struct mips_elf_traverse_got_arg *) data;
4697 if (entry->abfd != NULL
4698 && entry->symndx == -1
4699 && entry->d.h->global_got_area != GGA_NONE)
4700 entry->d.h->global_got_area = arg->value;
4701 return 1;
4702 }
4703
4704 /* A htab_traverse callback for secondary GOT entries, where DATA points
4705 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4706 and record the number of relocations they require. DATA->value is
4707 the size of one GOT entry. Set DATA->g to null on failure. */
4708
4709 static int
4710 mips_elf_set_global_gotidx (void **entryp, void *data)
4711 {
4712 struct mips_got_entry *entry;
4713 struct mips_elf_traverse_got_arg *arg;
4714
4715 entry = (struct mips_got_entry *) *entryp;
4716 arg = (struct mips_elf_traverse_got_arg *) data;
4717 if (entry->abfd != NULL
4718 && entry->symndx == -1
4719 && entry->d.h->global_got_area != GGA_NONE)
4720 {
4721 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4722 {
4723 arg->g = NULL;
4724 return 0;
4725 }
4726 arg->g->assigned_low_gotno += 1;
4727
4728 if (bfd_link_pic (arg->info)
4729 || (elf_hash_table (arg->info)->dynamic_sections_created
4730 && entry->d.h->root.def_dynamic
4731 && !entry->d.h->root.def_regular))
4732 arg->g->relocs += 1;
4733 }
4734
4735 return 1;
4736 }
4737
4738 /* A htab_traverse callback for GOT entries for which DATA is the
4739 bfd_link_info. Forbid any global symbols from having traditional
4740 lazy-binding stubs. */
4741
4742 static int
4743 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4744 {
4745 struct bfd_link_info *info;
4746 struct mips_elf_link_hash_table *htab;
4747 struct mips_got_entry *entry;
4748
4749 entry = (struct mips_got_entry *) *entryp;
4750 info = (struct bfd_link_info *) data;
4751 htab = mips_elf_hash_table (info);
4752 BFD_ASSERT (htab != NULL);
4753
4754 if (entry->abfd != NULL
4755 && entry->symndx == -1
4756 && entry->d.h->needs_lazy_stub)
4757 {
4758 entry->d.h->needs_lazy_stub = FALSE;
4759 htab->lazy_stub_count--;
4760 }
4761
4762 return 1;
4763 }
4764
4765 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4766 the primary GOT. */
4767 static bfd_vma
4768 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4769 {
4770 if (!g->next)
4771 return 0;
4772
4773 g = mips_elf_bfd_got (ibfd, FALSE);
4774 if (! g)
4775 return 0;
4776
4777 BFD_ASSERT (g->next);
4778
4779 g = g->next;
4780
4781 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4782 * MIPS_ELF_GOT_SIZE (abfd);
4783 }
4784
4785 /* Turn a single GOT that is too big for 16-bit addressing into
4786 a sequence of GOTs, each one 16-bit addressable. */
4787
4788 static bfd_boolean
4789 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4790 asection *got, bfd_size_type pages)
4791 {
4792 struct mips_elf_link_hash_table *htab;
4793 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4794 struct mips_elf_traverse_got_arg tga;
4795 struct mips_got_info *g, *gg;
4796 unsigned int assign, needed_relocs;
4797 bfd *dynobj, *ibfd;
4798
4799 dynobj = elf_hash_table (info)->dynobj;
4800 htab = mips_elf_hash_table (info);
4801 BFD_ASSERT (htab != NULL);
4802
4803 g = htab->got_info;
4804
4805 got_per_bfd_arg.obfd = abfd;
4806 got_per_bfd_arg.info = info;
4807 got_per_bfd_arg.current = NULL;
4808 got_per_bfd_arg.primary = NULL;
4809 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4810 / MIPS_ELF_GOT_SIZE (abfd))
4811 - htab->reserved_gotno);
4812 got_per_bfd_arg.max_pages = pages;
4813 /* The number of globals that will be included in the primary GOT.
4814 See the calls to mips_elf_set_global_got_area below for more
4815 information. */
4816 got_per_bfd_arg.global_count = g->global_gotno;
4817
4818 /* Try to merge the GOTs of input bfds together, as long as they
4819 don't seem to exceed the maximum GOT size, choosing one of them
4820 to be the primary GOT. */
4821 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4822 {
4823 gg = mips_elf_bfd_got (ibfd, FALSE);
4824 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4825 return FALSE;
4826 }
4827
4828 /* If we do not find any suitable primary GOT, create an empty one. */
4829 if (got_per_bfd_arg.primary == NULL)
4830 g->next = mips_elf_create_got_info (abfd);
4831 else
4832 g->next = got_per_bfd_arg.primary;
4833 g->next->next = got_per_bfd_arg.current;
4834
4835 /* GG is now the master GOT, and G is the primary GOT. */
4836 gg = g;
4837 g = g->next;
4838
4839 /* Map the output bfd to the primary got. That's what we're going
4840 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4841 didn't mark in check_relocs, and we want a quick way to find it.
4842 We can't just use gg->next because we're going to reverse the
4843 list. */
4844 mips_elf_replace_bfd_got (abfd, g);
4845
4846 /* Every symbol that is referenced in a dynamic relocation must be
4847 present in the primary GOT, so arrange for them to appear after
4848 those that are actually referenced. */
4849 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4850 g->global_gotno = gg->global_gotno;
4851
4852 tga.info = info;
4853 tga.value = GGA_RELOC_ONLY;
4854 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4855 tga.value = GGA_NORMAL;
4856 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4857
4858 /* Now go through the GOTs assigning them offset ranges.
4859 [assigned_low_gotno, local_gotno[ will be set to the range of local
4860 entries in each GOT. We can then compute the end of a GOT by
4861 adding local_gotno to global_gotno. We reverse the list and make
4862 it circular since then we'll be able to quickly compute the
4863 beginning of a GOT, by computing the end of its predecessor. To
4864 avoid special cases for the primary GOT, while still preserving
4865 assertions that are valid for both single- and multi-got links,
4866 we arrange for the main got struct to have the right number of
4867 global entries, but set its local_gotno such that the initial
4868 offset of the primary GOT is zero. Remember that the primary GOT
4869 will become the last item in the circular linked list, so it
4870 points back to the master GOT. */
4871 gg->local_gotno = -g->global_gotno;
4872 gg->global_gotno = g->global_gotno;
4873 gg->tls_gotno = 0;
4874 assign = 0;
4875 gg->next = gg;
4876
4877 do
4878 {
4879 struct mips_got_info *gn;
4880
4881 assign += htab->reserved_gotno;
4882 g->assigned_low_gotno = assign;
4883 g->local_gotno += assign;
4884 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4885 g->assigned_high_gotno = g->local_gotno - 1;
4886 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4887
4888 /* Take g out of the direct list, and push it onto the reversed
4889 list that gg points to. g->next is guaranteed to be nonnull after
4890 this operation, as required by mips_elf_initialize_tls_index. */
4891 gn = g->next;
4892 g->next = gg->next;
4893 gg->next = g;
4894
4895 /* Set up any TLS entries. We always place the TLS entries after
4896 all non-TLS entries. */
4897 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4898 tga.g = g;
4899 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4900 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4901 if (!tga.g)
4902 return FALSE;
4903 BFD_ASSERT (g->tls_assigned_gotno == assign);
4904
4905 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4906 g = gn;
4907
4908 /* Forbid global symbols in every non-primary GOT from having
4909 lazy-binding stubs. */
4910 if (g)
4911 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4912 }
4913 while (g);
4914
4915 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4916
4917 needed_relocs = 0;
4918 for (g = gg->next; g && g->next != gg; g = g->next)
4919 {
4920 unsigned int save_assign;
4921
4922 /* Assign offsets to global GOT entries and count how many
4923 relocations they need. */
4924 save_assign = g->assigned_low_gotno;
4925 g->assigned_low_gotno = g->local_gotno;
4926 tga.info = info;
4927 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4928 tga.g = g;
4929 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4930 if (!tga.g)
4931 return FALSE;
4932 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4933 g->assigned_low_gotno = save_assign;
4934
4935 if (bfd_link_pic (info))
4936 {
4937 g->relocs += g->local_gotno - g->assigned_low_gotno;
4938 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4939 + g->next->global_gotno
4940 + g->next->tls_gotno
4941 + htab->reserved_gotno);
4942 }
4943 needed_relocs += g->relocs;
4944 }
4945 needed_relocs += g->relocs;
4946
4947 if (needed_relocs)
4948 mips_elf_allocate_dynamic_relocations (dynobj, info,
4949 needed_relocs);
4950
4951 return TRUE;
4952 }
4953
4954 \f
4955 /* Returns the first relocation of type r_type found, beginning with
4956 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4957
4958 static const Elf_Internal_Rela *
4959 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4960 const Elf_Internal_Rela *relocation,
4961 const Elf_Internal_Rela *relend)
4962 {
4963 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4964
4965 while (relocation < relend)
4966 {
4967 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4968 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4969 return relocation;
4970
4971 ++relocation;
4972 }
4973
4974 /* We didn't find it. */
4975 return NULL;
4976 }
4977
4978 /* Return whether an input relocation is against a local symbol. */
4979
4980 static bfd_boolean
4981 mips_elf_local_relocation_p (bfd *input_bfd,
4982 const Elf_Internal_Rela *relocation,
4983 asection **local_sections)
4984 {
4985 unsigned long r_symndx;
4986 Elf_Internal_Shdr *symtab_hdr;
4987 size_t extsymoff;
4988
4989 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4990 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4991 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4992
4993 if (r_symndx < extsymoff)
4994 return TRUE;
4995 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4996 return TRUE;
4997
4998 return FALSE;
4999 }
5000 \f
5001 /* Sign-extend VALUE, which has the indicated number of BITS. */
5002
5003 bfd_vma
5004 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5005 {
5006 if (value & ((bfd_vma) 1 << (bits - 1)))
5007 /* VALUE is negative. */
5008 value |= ((bfd_vma) - 1) << bits;
5009
5010 return value;
5011 }
5012
5013 /* Return non-zero if the indicated VALUE has overflowed the maximum
5014 range expressible by a signed number with the indicated number of
5015 BITS. */
5016
5017 static bfd_boolean
5018 mips_elf_overflow_p (bfd_vma value, int bits)
5019 {
5020 bfd_signed_vma svalue = (bfd_signed_vma) value;
5021
5022 if (svalue > (1 << (bits - 1)) - 1)
5023 /* The value is too big. */
5024 return TRUE;
5025 else if (svalue < -(1 << (bits - 1)))
5026 /* The value is too small. */
5027 return TRUE;
5028
5029 /* All is well. */
5030 return FALSE;
5031 }
5032
5033 /* Calculate the %high function. */
5034
5035 static bfd_vma
5036 mips_elf_high (bfd_vma value)
5037 {
5038 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5039 }
5040
5041 /* Calculate the %higher function. */
5042
5043 static bfd_vma
5044 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5045 {
5046 #ifdef BFD64
5047 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5048 #else
5049 abort ();
5050 return MINUS_ONE;
5051 #endif
5052 }
5053
5054 /* Calculate the %highest function. */
5055
5056 static bfd_vma
5057 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5058 {
5059 #ifdef BFD64
5060 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5061 #else
5062 abort ();
5063 return MINUS_ONE;
5064 #endif
5065 }
5066 \f
5067 /* Create the .compact_rel section. */
5068
5069 static bfd_boolean
5070 mips_elf_create_compact_rel_section
5071 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5072 {
5073 flagword flags;
5074 register asection *s;
5075
5076 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5077 {
5078 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5079 | SEC_READONLY);
5080
5081 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5082 if (s == NULL
5083 || ! bfd_set_section_alignment (abfd, s,
5084 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5085 return FALSE;
5086
5087 s->size = sizeof (Elf32_External_compact_rel);
5088 }
5089
5090 return TRUE;
5091 }
5092
5093 /* Create the .got section to hold the global offset table. */
5094
5095 static bfd_boolean
5096 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5097 {
5098 flagword flags;
5099 register asection *s;
5100 struct elf_link_hash_entry *h;
5101 struct bfd_link_hash_entry *bh;
5102 struct mips_elf_link_hash_table *htab;
5103
5104 htab = mips_elf_hash_table (info);
5105 BFD_ASSERT (htab != NULL);
5106
5107 /* This function may be called more than once. */
5108 if (htab->sgot)
5109 return TRUE;
5110
5111 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5112 | SEC_LINKER_CREATED);
5113
5114 /* We have to use an alignment of 2**4 here because this is hardcoded
5115 in the function stub generation and in the linker script. */
5116 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5117 if (s == NULL
5118 || ! bfd_set_section_alignment (abfd, s, 4))
5119 return FALSE;
5120 htab->sgot = s;
5121
5122 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5123 linker script because we don't want to define the symbol if we
5124 are not creating a global offset table. */
5125 bh = NULL;
5126 if (! (_bfd_generic_link_add_one_symbol
5127 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5128 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5129 return FALSE;
5130
5131 h = (struct elf_link_hash_entry *) bh;
5132 h->non_elf = 0;
5133 h->def_regular = 1;
5134 h->type = STT_OBJECT;
5135 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5136 elf_hash_table (info)->hgot = h;
5137
5138 if (bfd_link_pic (info)
5139 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5140 return FALSE;
5141
5142 htab->got_info = mips_elf_create_got_info (abfd);
5143 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5144 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5145
5146 /* We also need a .got.plt section when generating PLTs. */
5147 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5148 SEC_ALLOC | SEC_LOAD
5149 | SEC_HAS_CONTENTS
5150 | SEC_IN_MEMORY
5151 | SEC_LINKER_CREATED);
5152 if (s == NULL)
5153 return FALSE;
5154 htab->sgotplt = s;
5155
5156 return TRUE;
5157 }
5158 \f
5159 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5160 __GOTT_INDEX__ symbols. These symbols are only special for
5161 shared objects; they are not used in executables. */
5162
5163 static bfd_boolean
5164 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5165 {
5166 return (mips_elf_hash_table (info)->is_vxworks
5167 && bfd_link_pic (info)
5168 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5169 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5170 }
5171
5172 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5173 require an la25 stub. See also mips_elf_local_pic_function_p,
5174 which determines whether the destination function ever requires a
5175 stub. */
5176
5177 static bfd_boolean
5178 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5179 bfd_boolean target_is_16_bit_code_p)
5180 {
5181 /* We specifically ignore branches and jumps from EF_PIC objects,
5182 where the onus is on the compiler or programmer to perform any
5183 necessary initialization of $25. Sometimes such initialization
5184 is unnecessary; for example, -mno-shared functions do not use
5185 the incoming value of $25, and may therefore be called directly. */
5186 if (PIC_OBJECT_P (input_bfd))
5187 return FALSE;
5188
5189 switch (r_type)
5190 {
5191 case R_MIPS_26:
5192 case R_MIPS_PC16:
5193 case R_MIPS_PC21_S2:
5194 case R_MIPS_PC26_S2:
5195 case R_MICROMIPS_26_S1:
5196 case R_MICROMIPS_PC7_S1:
5197 case R_MICROMIPS_PC10_S1:
5198 case R_MICROMIPS_PC16_S1:
5199 case R_MICROMIPS_PC23_S2:
5200 return TRUE;
5201
5202 case R_MIPS16_26:
5203 return !target_is_16_bit_code_p;
5204
5205 default:
5206 return FALSE;
5207 }
5208 }
5209 \f
5210 /* Calculate the value produced by the RELOCATION (which comes from
5211 the INPUT_BFD). The ADDEND is the addend to use for this
5212 RELOCATION; RELOCATION->R_ADDEND is ignored.
5213
5214 The result of the relocation calculation is stored in VALUEP.
5215 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5216 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5217
5218 This function returns bfd_reloc_continue if the caller need take no
5219 further action regarding this relocation, bfd_reloc_notsupported if
5220 something goes dramatically wrong, bfd_reloc_overflow if an
5221 overflow occurs, and bfd_reloc_ok to indicate success. */
5222
5223 static bfd_reloc_status_type
5224 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5225 asection *input_section,
5226 struct bfd_link_info *info,
5227 const Elf_Internal_Rela *relocation,
5228 bfd_vma addend, reloc_howto_type *howto,
5229 Elf_Internal_Sym *local_syms,
5230 asection **local_sections, bfd_vma *valuep,
5231 const char **namep,
5232 bfd_boolean *cross_mode_jump_p,
5233 bfd_boolean save_addend)
5234 {
5235 /* The eventual value we will return. */
5236 bfd_vma value;
5237 /* The address of the symbol against which the relocation is
5238 occurring. */
5239 bfd_vma symbol = 0;
5240 /* The final GP value to be used for the relocatable, executable, or
5241 shared object file being produced. */
5242 bfd_vma gp;
5243 /* The place (section offset or address) of the storage unit being
5244 relocated. */
5245 bfd_vma p;
5246 /* The value of GP used to create the relocatable object. */
5247 bfd_vma gp0;
5248 /* The offset into the global offset table at which the address of
5249 the relocation entry symbol, adjusted by the addend, resides
5250 during execution. */
5251 bfd_vma g = MINUS_ONE;
5252 /* The section in which the symbol referenced by the relocation is
5253 located. */
5254 asection *sec = NULL;
5255 struct mips_elf_link_hash_entry *h = NULL;
5256 /* TRUE if the symbol referred to by this relocation is a local
5257 symbol. */
5258 bfd_boolean local_p, was_local_p;
5259 /* TRUE if the symbol referred to by this relocation is a section
5260 symbol. */
5261 bfd_boolean section_p = FALSE;
5262 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5263 bfd_boolean gp_disp_p = FALSE;
5264 /* TRUE if the symbol referred to by this relocation is
5265 "__gnu_local_gp". */
5266 bfd_boolean gnu_local_gp_p = FALSE;
5267 Elf_Internal_Shdr *symtab_hdr;
5268 size_t extsymoff;
5269 unsigned long r_symndx;
5270 int r_type;
5271 /* TRUE if overflow occurred during the calculation of the
5272 relocation value. */
5273 bfd_boolean overflowed_p;
5274 /* TRUE if this relocation refers to a MIPS16 function. */
5275 bfd_boolean target_is_16_bit_code_p = FALSE;
5276 bfd_boolean target_is_micromips_code_p = FALSE;
5277 struct mips_elf_link_hash_table *htab;
5278 bfd *dynobj;
5279
5280 dynobj = elf_hash_table (info)->dynobj;
5281 htab = mips_elf_hash_table (info);
5282 BFD_ASSERT (htab != NULL);
5283
5284 /* Parse the relocation. */
5285 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5286 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5287 p = (input_section->output_section->vma
5288 + input_section->output_offset
5289 + relocation->r_offset);
5290
5291 /* Assume that there will be no overflow. */
5292 overflowed_p = FALSE;
5293
5294 /* Figure out whether or not the symbol is local, and get the offset
5295 used in the array of hash table entries. */
5296 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5297 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5298 local_sections);
5299 was_local_p = local_p;
5300 if (! elf_bad_symtab (input_bfd))
5301 extsymoff = symtab_hdr->sh_info;
5302 else
5303 {
5304 /* The symbol table does not follow the rule that local symbols
5305 must come before globals. */
5306 extsymoff = 0;
5307 }
5308
5309 /* Figure out the value of the symbol. */
5310 if (local_p)
5311 {
5312 Elf_Internal_Sym *sym;
5313
5314 sym = local_syms + r_symndx;
5315 sec = local_sections[r_symndx];
5316
5317 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5318
5319 symbol = sec->output_section->vma + sec->output_offset;
5320 if (!section_p || (sec->flags & SEC_MERGE))
5321 symbol += sym->st_value;
5322 if ((sec->flags & SEC_MERGE) && section_p)
5323 {
5324 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5325 addend -= symbol;
5326 addend += sec->output_section->vma + sec->output_offset;
5327 }
5328
5329 /* MIPS16/microMIPS text labels should be treated as odd. */
5330 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5331 ++symbol;
5332
5333 /* Record the name of this symbol, for our caller. */
5334 *namep = bfd_elf_string_from_elf_section (input_bfd,
5335 symtab_hdr->sh_link,
5336 sym->st_name);
5337 if (*namep == NULL || **namep == '\0')
5338 *namep = bfd_section_name (input_bfd, sec);
5339
5340 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5341 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5342 }
5343 else
5344 {
5345 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5346
5347 /* For global symbols we look up the symbol in the hash-table. */
5348 h = ((struct mips_elf_link_hash_entry *)
5349 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5350 /* Find the real hash-table entry for this symbol. */
5351 while (h->root.root.type == bfd_link_hash_indirect
5352 || h->root.root.type == bfd_link_hash_warning)
5353 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5354
5355 /* Record the name of this symbol, for our caller. */
5356 *namep = h->root.root.root.string;
5357
5358 /* See if this is the special _gp_disp symbol. Note that such a
5359 symbol must always be a global symbol. */
5360 if (strcmp (*namep, "_gp_disp") == 0
5361 && ! NEWABI_P (input_bfd))
5362 {
5363 /* Relocations against _gp_disp are permitted only with
5364 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5365 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5366 return bfd_reloc_notsupported;
5367
5368 gp_disp_p = TRUE;
5369 }
5370 /* See if this is the special _gp symbol. Note that such a
5371 symbol must always be a global symbol. */
5372 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5373 gnu_local_gp_p = TRUE;
5374
5375
5376 /* If this symbol is defined, calculate its address. Note that
5377 _gp_disp is a magic symbol, always implicitly defined by the
5378 linker, so it's inappropriate to check to see whether or not
5379 its defined. */
5380 else if ((h->root.root.type == bfd_link_hash_defined
5381 || h->root.root.type == bfd_link_hash_defweak)
5382 && h->root.root.u.def.section)
5383 {
5384 sec = h->root.root.u.def.section;
5385 if (sec->output_section)
5386 symbol = (h->root.root.u.def.value
5387 + sec->output_section->vma
5388 + sec->output_offset);
5389 else
5390 symbol = h->root.root.u.def.value;
5391 }
5392 else if (h->root.root.type == bfd_link_hash_undefweak)
5393 /* We allow relocations against undefined weak symbols, giving
5394 it the value zero, so that you can undefined weak functions
5395 and check to see if they exist by looking at their
5396 addresses. */
5397 symbol = 0;
5398 else if (info->unresolved_syms_in_objects == RM_IGNORE
5399 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5400 symbol = 0;
5401 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5402 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5403 {
5404 /* If this is a dynamic link, we should have created a
5405 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5406 in in _bfd_mips_elf_create_dynamic_sections.
5407 Otherwise, we should define the symbol with a value of 0.
5408 FIXME: It should probably get into the symbol table
5409 somehow as well. */
5410 BFD_ASSERT (! bfd_link_pic (info));
5411 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5412 symbol = 0;
5413 }
5414 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5415 {
5416 /* This is an optional symbol - an Irix specific extension to the
5417 ELF spec. Ignore it for now.
5418 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5419 than simply ignoring them, but we do not handle this for now.
5420 For information see the "64-bit ELF Object File Specification"
5421 which is available from here:
5422 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5423 symbol = 0;
5424 }
5425 else
5426 {
5427 (*info->callbacks->undefined_symbol)
5428 (info, h->root.root.root.string, input_bfd,
5429 input_section, relocation->r_offset,
5430 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5431 || ELF_ST_VISIBILITY (h->root.other));
5432 return bfd_reloc_undefined;
5433 }
5434
5435 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5436 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5437 }
5438
5439 /* If this is a reference to a 16-bit function with a stub, we need
5440 to redirect the relocation to the stub unless:
5441
5442 (a) the relocation is for a MIPS16 JAL;
5443
5444 (b) the relocation is for a MIPS16 PIC call, and there are no
5445 non-MIPS16 uses of the GOT slot; or
5446
5447 (c) the section allows direct references to MIPS16 functions. */
5448 if (r_type != R_MIPS16_26
5449 && !bfd_link_relocatable (info)
5450 && ((h != NULL
5451 && h->fn_stub != NULL
5452 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5453 || (local_p
5454 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5455 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5456 && !section_allows_mips16_refs_p (input_section))
5457 {
5458 /* This is a 32- or 64-bit call to a 16-bit function. We should
5459 have already noticed that we were going to need the
5460 stub. */
5461 if (local_p)
5462 {
5463 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5464 value = 0;
5465 }
5466 else
5467 {
5468 BFD_ASSERT (h->need_fn_stub);
5469 if (h->la25_stub)
5470 {
5471 /* If a LA25 header for the stub itself exists, point to the
5472 prepended LUI/ADDIU sequence. */
5473 sec = h->la25_stub->stub_section;
5474 value = h->la25_stub->offset;
5475 }
5476 else
5477 {
5478 sec = h->fn_stub;
5479 value = 0;
5480 }
5481 }
5482
5483 symbol = sec->output_section->vma + sec->output_offset + value;
5484 /* The target is 16-bit, but the stub isn't. */
5485 target_is_16_bit_code_p = FALSE;
5486 }
5487 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5488 to a standard MIPS function, we need to redirect the call to the stub.
5489 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5490 indirect calls should use an indirect stub instead. */
5491 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5492 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5493 || (local_p
5494 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5495 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5496 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5497 {
5498 if (local_p)
5499 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5500 else
5501 {
5502 /* If both call_stub and call_fp_stub are defined, we can figure
5503 out which one to use by checking which one appears in the input
5504 file. */
5505 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5506 {
5507 asection *o;
5508
5509 sec = NULL;
5510 for (o = input_bfd->sections; o != NULL; o = o->next)
5511 {
5512 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5513 {
5514 sec = h->call_fp_stub;
5515 break;
5516 }
5517 }
5518 if (sec == NULL)
5519 sec = h->call_stub;
5520 }
5521 else if (h->call_stub != NULL)
5522 sec = h->call_stub;
5523 else
5524 sec = h->call_fp_stub;
5525 }
5526
5527 BFD_ASSERT (sec->size > 0);
5528 symbol = sec->output_section->vma + sec->output_offset;
5529 }
5530 /* If this is a direct call to a PIC function, redirect to the
5531 non-PIC stub. */
5532 else if (h != NULL && h->la25_stub
5533 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5534 target_is_16_bit_code_p))
5535 symbol = (h->la25_stub->stub_section->output_section->vma
5536 + h->la25_stub->stub_section->output_offset
5537 + h->la25_stub->offset);
5538 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5539 entry is used if a standard PLT entry has also been made. In this
5540 case the symbol will have been set by mips_elf_set_plt_sym_value
5541 to point to the standard PLT entry, so redirect to the compressed
5542 one. */
5543 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5544 && !bfd_link_relocatable (info)
5545 && h != NULL
5546 && h->use_plt_entry
5547 && h->root.plt.plist->comp_offset != MINUS_ONE
5548 && h->root.plt.plist->mips_offset != MINUS_ONE)
5549 {
5550 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5551
5552 sec = htab->splt;
5553 symbol = (sec->output_section->vma
5554 + sec->output_offset
5555 + htab->plt_header_size
5556 + htab->plt_mips_offset
5557 + h->root.plt.plist->comp_offset
5558 + 1);
5559
5560 target_is_16_bit_code_p = !micromips_p;
5561 target_is_micromips_code_p = micromips_p;
5562 }
5563
5564 /* Make sure MIPS16 and microMIPS are not used together. */
5565 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5566 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5567 {
5568 (*_bfd_error_handler)
5569 (_("MIPS16 and microMIPS functions cannot call each other"));
5570 return bfd_reloc_notsupported;
5571 }
5572
5573 /* Calls from 16-bit code to 32-bit code and vice versa require the
5574 mode change. However, we can ignore calls to undefined weak symbols,
5575 which should never be executed at runtime. This exception is important
5576 because the assembly writer may have "known" that any definition of the
5577 symbol would be 16-bit code, and that direct jumps were therefore
5578 acceptable. */
5579 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5580 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5581 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5582 || (r_type == R_MICROMIPS_26_S1
5583 && !target_is_micromips_code_p)
5584 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5585 && (target_is_16_bit_code_p
5586 || target_is_micromips_code_p))));
5587
5588 local_p = (h == NULL || mips_use_local_got_p (info, h));
5589
5590 gp0 = _bfd_get_gp_value (input_bfd);
5591 gp = _bfd_get_gp_value (abfd);
5592 if (htab->got_info)
5593 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5594
5595 if (gnu_local_gp_p)
5596 symbol = gp;
5597
5598 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5599 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5600 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5601 if (got_page_reloc_p (r_type) && !local_p)
5602 {
5603 r_type = (micromips_reloc_p (r_type)
5604 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5605 addend = 0;
5606 }
5607
5608 /* If we haven't already determined the GOT offset, and we're going
5609 to need it, get it now. */
5610 switch (r_type)
5611 {
5612 case R_MIPS16_CALL16:
5613 case R_MIPS16_GOT16:
5614 case R_MIPS_CALL16:
5615 case R_MIPS_GOT16:
5616 case R_MIPS_GOT_DISP:
5617 case R_MIPS_GOT_HI16:
5618 case R_MIPS_CALL_HI16:
5619 case R_MIPS_GOT_LO16:
5620 case R_MIPS_CALL_LO16:
5621 case R_MICROMIPS_CALL16:
5622 case R_MICROMIPS_GOT16:
5623 case R_MICROMIPS_GOT_DISP:
5624 case R_MICROMIPS_GOT_HI16:
5625 case R_MICROMIPS_CALL_HI16:
5626 case R_MICROMIPS_GOT_LO16:
5627 case R_MICROMIPS_CALL_LO16:
5628 case R_MIPS_TLS_GD:
5629 case R_MIPS_TLS_GOTTPREL:
5630 case R_MIPS_TLS_LDM:
5631 case R_MIPS16_TLS_GD:
5632 case R_MIPS16_TLS_GOTTPREL:
5633 case R_MIPS16_TLS_LDM:
5634 case R_MICROMIPS_TLS_GD:
5635 case R_MICROMIPS_TLS_GOTTPREL:
5636 case R_MICROMIPS_TLS_LDM:
5637 /* Find the index into the GOT where this value is located. */
5638 if (tls_ldm_reloc_p (r_type))
5639 {
5640 g = mips_elf_local_got_index (abfd, input_bfd, info,
5641 0, 0, NULL, r_type);
5642 if (g == MINUS_ONE)
5643 return bfd_reloc_outofrange;
5644 }
5645 else if (!local_p)
5646 {
5647 /* On VxWorks, CALL relocations should refer to the .got.plt
5648 entry, which is initialized to point at the PLT stub. */
5649 if (htab->is_vxworks
5650 && (call_hi16_reloc_p (r_type)
5651 || call_lo16_reloc_p (r_type)
5652 || call16_reloc_p (r_type)))
5653 {
5654 BFD_ASSERT (addend == 0);
5655 BFD_ASSERT (h->root.needs_plt);
5656 g = mips_elf_gotplt_index (info, &h->root);
5657 }
5658 else
5659 {
5660 BFD_ASSERT (addend == 0);
5661 g = mips_elf_global_got_index (abfd, info, input_bfd,
5662 &h->root, r_type);
5663 if (!TLS_RELOC_P (r_type)
5664 && !elf_hash_table (info)->dynamic_sections_created)
5665 /* This is a static link. We must initialize the GOT entry. */
5666 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5667 }
5668 }
5669 else if (!htab->is_vxworks
5670 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5671 /* The calculation below does not involve "g". */
5672 break;
5673 else
5674 {
5675 g = mips_elf_local_got_index (abfd, input_bfd, info,
5676 symbol + addend, r_symndx, h, r_type);
5677 if (g == MINUS_ONE)
5678 return bfd_reloc_outofrange;
5679 }
5680
5681 /* Convert GOT indices to actual offsets. */
5682 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5683 break;
5684 }
5685
5686 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5687 symbols are resolved by the loader. Add them to .rela.dyn. */
5688 if (h != NULL && is_gott_symbol (info, &h->root))
5689 {
5690 Elf_Internal_Rela outrel;
5691 bfd_byte *loc;
5692 asection *s;
5693
5694 s = mips_elf_rel_dyn_section (info, FALSE);
5695 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5696
5697 outrel.r_offset = (input_section->output_section->vma
5698 + input_section->output_offset
5699 + relocation->r_offset);
5700 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5701 outrel.r_addend = addend;
5702 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5703
5704 /* If we've written this relocation for a readonly section,
5705 we need to set DF_TEXTREL again, so that we do not delete the
5706 DT_TEXTREL tag. */
5707 if (MIPS_ELF_READONLY_SECTION (input_section))
5708 info->flags |= DF_TEXTREL;
5709
5710 *valuep = 0;
5711 return bfd_reloc_ok;
5712 }
5713
5714 /* Figure out what kind of relocation is being performed. */
5715 switch (r_type)
5716 {
5717 case R_MIPS_NONE:
5718 return bfd_reloc_continue;
5719
5720 case R_MIPS_16:
5721 if (howto->partial_inplace)
5722 addend = _bfd_mips_elf_sign_extend (addend, 16);
5723 value = symbol + addend;
5724 overflowed_p = mips_elf_overflow_p (value, 16);
5725 break;
5726
5727 case R_MIPS_32:
5728 case R_MIPS_REL32:
5729 case R_MIPS_64:
5730 if ((bfd_link_pic (info)
5731 || (htab->root.dynamic_sections_created
5732 && h != NULL
5733 && h->root.def_dynamic
5734 && !h->root.def_regular
5735 && !h->has_static_relocs))
5736 && r_symndx != STN_UNDEF
5737 && (h == NULL
5738 || h->root.root.type != bfd_link_hash_undefweak
5739 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5740 && (input_section->flags & SEC_ALLOC) != 0)
5741 {
5742 /* If we're creating a shared library, then we can't know
5743 where the symbol will end up. So, we create a relocation
5744 record in the output, and leave the job up to the dynamic
5745 linker. We must do the same for executable references to
5746 shared library symbols, unless we've decided to use copy
5747 relocs or PLTs instead. */
5748 value = addend;
5749 if (!mips_elf_create_dynamic_relocation (abfd,
5750 info,
5751 relocation,
5752 h,
5753 sec,
5754 symbol,
5755 &value,
5756 input_section))
5757 return bfd_reloc_undefined;
5758 }
5759 else
5760 {
5761 if (r_type != R_MIPS_REL32)
5762 value = symbol + addend;
5763 else
5764 value = addend;
5765 }
5766 value &= howto->dst_mask;
5767 break;
5768
5769 case R_MIPS_PC32:
5770 value = symbol + addend - p;
5771 value &= howto->dst_mask;
5772 break;
5773
5774 case R_MIPS16_26:
5775 /* The calculation for R_MIPS16_26 is just the same as for an
5776 R_MIPS_26. It's only the storage of the relocated field into
5777 the output file that's different. That's handled in
5778 mips_elf_perform_relocation. So, we just fall through to the
5779 R_MIPS_26 case here. */
5780 case R_MIPS_26:
5781 case R_MICROMIPS_26_S1:
5782 {
5783 unsigned int shift;
5784
5785 /* Shift is 2, unusually, for microMIPS JALX. */
5786 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5787
5788 if (howto->partial_inplace && !section_p)
5789 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5790 else
5791 value = addend;
5792 value += symbol;
5793
5794 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5795 the correct ISA mode selector and bit 1 must be 0. */
5796 if (*cross_mode_jump_p && (value & 3) != (r_type == R_MIPS_26))
5797 return bfd_reloc_outofrange;
5798
5799 value >>= shift;
5800 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5801 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5802 value &= howto->dst_mask;
5803 }
5804 break;
5805
5806 case R_MIPS_TLS_DTPREL_HI16:
5807 case R_MIPS16_TLS_DTPREL_HI16:
5808 case R_MICROMIPS_TLS_DTPREL_HI16:
5809 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5810 & howto->dst_mask);
5811 break;
5812
5813 case R_MIPS_TLS_DTPREL_LO16:
5814 case R_MIPS_TLS_DTPREL32:
5815 case R_MIPS_TLS_DTPREL64:
5816 case R_MIPS16_TLS_DTPREL_LO16:
5817 case R_MICROMIPS_TLS_DTPREL_LO16:
5818 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5819 break;
5820
5821 case R_MIPS_TLS_TPREL_HI16:
5822 case R_MIPS16_TLS_TPREL_HI16:
5823 case R_MICROMIPS_TLS_TPREL_HI16:
5824 value = (mips_elf_high (addend + symbol - tprel_base (info))
5825 & howto->dst_mask);
5826 break;
5827
5828 case R_MIPS_TLS_TPREL_LO16:
5829 case R_MIPS_TLS_TPREL32:
5830 case R_MIPS_TLS_TPREL64:
5831 case R_MIPS16_TLS_TPREL_LO16:
5832 case R_MICROMIPS_TLS_TPREL_LO16:
5833 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5834 break;
5835
5836 case R_MIPS_HI16:
5837 case R_MIPS16_HI16:
5838 case R_MICROMIPS_HI16:
5839 if (!gp_disp_p)
5840 {
5841 value = mips_elf_high (addend + symbol);
5842 value &= howto->dst_mask;
5843 }
5844 else
5845 {
5846 /* For MIPS16 ABI code we generate this sequence
5847 0: li $v0,%hi(_gp_disp)
5848 4: addiupc $v1,%lo(_gp_disp)
5849 8: sll $v0,16
5850 12: addu $v0,$v1
5851 14: move $gp,$v0
5852 So the offsets of hi and lo relocs are the same, but the
5853 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5854 ADDIUPC clears the low two bits of the instruction address,
5855 so the base is ($t9 + 4) & ~3. */
5856 if (r_type == R_MIPS16_HI16)
5857 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5858 /* The microMIPS .cpload sequence uses the same assembly
5859 instructions as the traditional psABI version, but the
5860 incoming $t9 has the low bit set. */
5861 else if (r_type == R_MICROMIPS_HI16)
5862 value = mips_elf_high (addend + gp - p - 1);
5863 else
5864 value = mips_elf_high (addend + gp - p);
5865 overflowed_p = mips_elf_overflow_p (value, 16);
5866 }
5867 break;
5868
5869 case R_MIPS_LO16:
5870 case R_MIPS16_LO16:
5871 case R_MICROMIPS_LO16:
5872 case R_MICROMIPS_HI0_LO16:
5873 if (!gp_disp_p)
5874 value = (symbol + addend) & howto->dst_mask;
5875 else
5876 {
5877 /* See the comment for R_MIPS16_HI16 above for the reason
5878 for this conditional. */
5879 if (r_type == R_MIPS16_LO16)
5880 value = addend + gp - (p & ~(bfd_vma) 0x3);
5881 else if (r_type == R_MICROMIPS_LO16
5882 || r_type == R_MICROMIPS_HI0_LO16)
5883 value = addend + gp - p + 3;
5884 else
5885 value = addend + gp - p + 4;
5886 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5887 for overflow. But, on, say, IRIX5, relocations against
5888 _gp_disp are normally generated from the .cpload
5889 pseudo-op. It generates code that normally looks like
5890 this:
5891
5892 lui $gp,%hi(_gp_disp)
5893 addiu $gp,$gp,%lo(_gp_disp)
5894 addu $gp,$gp,$t9
5895
5896 Here $t9 holds the address of the function being called,
5897 as required by the MIPS ELF ABI. The R_MIPS_LO16
5898 relocation can easily overflow in this situation, but the
5899 R_MIPS_HI16 relocation will handle the overflow.
5900 Therefore, we consider this a bug in the MIPS ABI, and do
5901 not check for overflow here. */
5902 }
5903 break;
5904
5905 case R_MIPS_LITERAL:
5906 case R_MICROMIPS_LITERAL:
5907 /* Because we don't merge literal sections, we can handle this
5908 just like R_MIPS_GPREL16. In the long run, we should merge
5909 shared literals, and then we will need to additional work
5910 here. */
5911
5912 /* Fall through. */
5913
5914 case R_MIPS16_GPREL:
5915 /* The R_MIPS16_GPREL performs the same calculation as
5916 R_MIPS_GPREL16, but stores the relocated bits in a different
5917 order. We don't need to do anything special here; the
5918 differences are handled in mips_elf_perform_relocation. */
5919 case R_MIPS_GPREL16:
5920 case R_MICROMIPS_GPREL7_S2:
5921 case R_MICROMIPS_GPREL16:
5922 /* Only sign-extend the addend if it was extracted from the
5923 instruction. If the addend was separate, leave it alone,
5924 otherwise we may lose significant bits. */
5925 if (howto->partial_inplace)
5926 addend = _bfd_mips_elf_sign_extend (addend, 16);
5927 value = symbol + addend - gp;
5928 /* If the symbol was local, any earlier relocatable links will
5929 have adjusted its addend with the gp offset, so compensate
5930 for that now. Don't do it for symbols forced local in this
5931 link, though, since they won't have had the gp offset applied
5932 to them before. */
5933 if (was_local_p)
5934 value += gp0;
5935 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5936 overflowed_p = mips_elf_overflow_p (value, 16);
5937 break;
5938
5939 case R_MIPS16_GOT16:
5940 case R_MIPS16_CALL16:
5941 case R_MIPS_GOT16:
5942 case R_MIPS_CALL16:
5943 case R_MICROMIPS_GOT16:
5944 case R_MICROMIPS_CALL16:
5945 /* VxWorks does not have separate local and global semantics for
5946 R_MIPS*_GOT16; every relocation evaluates to "G". */
5947 if (!htab->is_vxworks && local_p)
5948 {
5949 value = mips_elf_got16_entry (abfd, input_bfd, info,
5950 symbol + addend, !was_local_p);
5951 if (value == MINUS_ONE)
5952 return bfd_reloc_outofrange;
5953 value
5954 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5955 overflowed_p = mips_elf_overflow_p (value, 16);
5956 break;
5957 }
5958
5959 /* Fall through. */
5960
5961 case R_MIPS_TLS_GD:
5962 case R_MIPS_TLS_GOTTPREL:
5963 case R_MIPS_TLS_LDM:
5964 case R_MIPS_GOT_DISP:
5965 case R_MIPS16_TLS_GD:
5966 case R_MIPS16_TLS_GOTTPREL:
5967 case R_MIPS16_TLS_LDM:
5968 case R_MICROMIPS_TLS_GD:
5969 case R_MICROMIPS_TLS_GOTTPREL:
5970 case R_MICROMIPS_TLS_LDM:
5971 case R_MICROMIPS_GOT_DISP:
5972 value = g;
5973 overflowed_p = mips_elf_overflow_p (value, 16);
5974 break;
5975
5976 case R_MIPS_GPREL32:
5977 value = (addend + symbol + gp0 - gp);
5978 if (!save_addend)
5979 value &= howto->dst_mask;
5980 break;
5981
5982 case R_MIPS_PC16:
5983 case R_MIPS_GNU_REL16_S2:
5984 if (howto->partial_inplace)
5985 addend = _bfd_mips_elf_sign_extend (addend, 18);
5986
5987 if ((symbol + addend) & 3)
5988 return bfd_reloc_outofrange;
5989
5990 value = symbol + addend - p;
5991 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5992 overflowed_p = mips_elf_overflow_p (value, 18);
5993 value >>= howto->rightshift;
5994 value &= howto->dst_mask;
5995 break;
5996
5997 case R_MIPS_PC21_S2:
5998 if (howto->partial_inplace)
5999 addend = _bfd_mips_elf_sign_extend (addend, 23);
6000
6001 if ((symbol + addend) & 3)
6002 return bfd_reloc_outofrange;
6003
6004 value = symbol + addend - p;
6005 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6006 overflowed_p = mips_elf_overflow_p (value, 23);
6007 value >>= howto->rightshift;
6008 value &= howto->dst_mask;
6009 break;
6010
6011 case R_MIPS_PC26_S2:
6012 if (howto->partial_inplace)
6013 addend = _bfd_mips_elf_sign_extend (addend, 28);
6014
6015 if ((symbol + addend) & 3)
6016 return bfd_reloc_outofrange;
6017
6018 value = symbol + addend - p;
6019 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6020 overflowed_p = mips_elf_overflow_p (value, 28);
6021 value >>= howto->rightshift;
6022 value &= howto->dst_mask;
6023 break;
6024
6025 case R_MIPS_PC18_S3:
6026 if (howto->partial_inplace)
6027 addend = _bfd_mips_elf_sign_extend (addend, 21);
6028
6029 if ((symbol + addend) & 7)
6030 return bfd_reloc_outofrange;
6031
6032 value = symbol + addend - ((p | 7) ^ 7);
6033 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6034 overflowed_p = mips_elf_overflow_p (value, 21);
6035 value >>= howto->rightshift;
6036 value &= howto->dst_mask;
6037 break;
6038
6039 case R_MIPS_PC19_S2:
6040 if (howto->partial_inplace)
6041 addend = _bfd_mips_elf_sign_extend (addend, 21);
6042
6043 if ((symbol + addend) & 3)
6044 return bfd_reloc_outofrange;
6045
6046 value = symbol + addend - p;
6047 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6048 overflowed_p = mips_elf_overflow_p (value, 21);
6049 value >>= howto->rightshift;
6050 value &= howto->dst_mask;
6051 break;
6052
6053 case R_MIPS_PCHI16:
6054 value = mips_elf_high (symbol + addend - p);
6055 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6056 overflowed_p = mips_elf_overflow_p (value, 16);
6057 value &= howto->dst_mask;
6058 break;
6059
6060 case R_MIPS_PCLO16:
6061 if (howto->partial_inplace)
6062 addend = _bfd_mips_elf_sign_extend (addend, 16);
6063 value = symbol + addend - p;
6064 value &= howto->dst_mask;
6065 break;
6066
6067 case R_MICROMIPS_PC7_S1:
6068 if (howto->partial_inplace)
6069 addend = _bfd_mips_elf_sign_extend (addend, 8);
6070 value = symbol + addend - p;
6071 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6072 overflowed_p = mips_elf_overflow_p (value, 8);
6073 value >>= howto->rightshift;
6074 value &= howto->dst_mask;
6075 break;
6076
6077 case R_MICROMIPS_PC10_S1:
6078 if (howto->partial_inplace)
6079 addend = _bfd_mips_elf_sign_extend (addend, 11);
6080 value = symbol + addend - p;
6081 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6082 overflowed_p = mips_elf_overflow_p (value, 11);
6083 value >>= howto->rightshift;
6084 value &= howto->dst_mask;
6085 break;
6086
6087 case R_MICROMIPS_PC16_S1:
6088 if (howto->partial_inplace)
6089 addend = _bfd_mips_elf_sign_extend (addend, 17);
6090 value = symbol + addend - p;
6091 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6092 overflowed_p = mips_elf_overflow_p (value, 17);
6093 value >>= howto->rightshift;
6094 value &= howto->dst_mask;
6095 break;
6096
6097 case R_MICROMIPS_PC23_S2:
6098 if (howto->partial_inplace)
6099 addend = _bfd_mips_elf_sign_extend (addend, 25);
6100 value = symbol + addend - ((p | 3) ^ 3);
6101 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6102 overflowed_p = mips_elf_overflow_p (value, 25);
6103 value >>= howto->rightshift;
6104 value &= howto->dst_mask;
6105 break;
6106
6107 case R_MIPS_GOT_HI16:
6108 case R_MIPS_CALL_HI16:
6109 case R_MICROMIPS_GOT_HI16:
6110 case R_MICROMIPS_CALL_HI16:
6111 /* We're allowed to handle these two relocations identically.
6112 The dynamic linker is allowed to handle the CALL relocations
6113 differently by creating a lazy evaluation stub. */
6114 value = g;
6115 value = mips_elf_high (value);
6116 value &= howto->dst_mask;
6117 break;
6118
6119 case R_MIPS_GOT_LO16:
6120 case R_MIPS_CALL_LO16:
6121 case R_MICROMIPS_GOT_LO16:
6122 case R_MICROMIPS_CALL_LO16:
6123 value = g & howto->dst_mask;
6124 break;
6125
6126 case R_MIPS_GOT_PAGE:
6127 case R_MICROMIPS_GOT_PAGE:
6128 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6129 if (value == MINUS_ONE)
6130 return bfd_reloc_outofrange;
6131 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6132 overflowed_p = mips_elf_overflow_p (value, 16);
6133 break;
6134
6135 case R_MIPS_GOT_OFST:
6136 case R_MICROMIPS_GOT_OFST:
6137 if (local_p)
6138 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6139 else
6140 value = addend;
6141 overflowed_p = mips_elf_overflow_p (value, 16);
6142 break;
6143
6144 case R_MIPS_SUB:
6145 case R_MICROMIPS_SUB:
6146 value = symbol - addend;
6147 value &= howto->dst_mask;
6148 break;
6149
6150 case R_MIPS_HIGHER:
6151 case R_MICROMIPS_HIGHER:
6152 value = mips_elf_higher (addend + symbol);
6153 value &= howto->dst_mask;
6154 break;
6155
6156 case R_MIPS_HIGHEST:
6157 case R_MICROMIPS_HIGHEST:
6158 value = mips_elf_highest (addend + symbol);
6159 value &= howto->dst_mask;
6160 break;
6161
6162 case R_MIPS_SCN_DISP:
6163 case R_MICROMIPS_SCN_DISP:
6164 value = symbol + addend - sec->output_offset;
6165 value &= howto->dst_mask;
6166 break;
6167
6168 case R_MIPS_JALR:
6169 case R_MICROMIPS_JALR:
6170 /* This relocation is only a hint. In some cases, we optimize
6171 it into a bal instruction. But we don't try to optimize
6172 when the symbol does not resolve locally. */
6173 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6174 return bfd_reloc_continue;
6175 value = symbol + addend;
6176 break;
6177
6178 case R_MIPS_PJUMP:
6179 case R_MIPS_GNU_VTINHERIT:
6180 case R_MIPS_GNU_VTENTRY:
6181 /* We don't do anything with these at present. */
6182 return bfd_reloc_continue;
6183
6184 default:
6185 /* An unrecognized relocation type. */
6186 return bfd_reloc_notsupported;
6187 }
6188
6189 /* Store the VALUE for our caller. */
6190 *valuep = value;
6191 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6192 }
6193
6194 /* Obtain the field relocated by RELOCATION. */
6195
6196 static bfd_vma
6197 mips_elf_obtain_contents (reloc_howto_type *howto,
6198 const Elf_Internal_Rela *relocation,
6199 bfd *input_bfd, bfd_byte *contents)
6200 {
6201 bfd_vma x = 0;
6202 bfd_byte *location = contents + relocation->r_offset;
6203 unsigned int size = bfd_get_reloc_size (howto);
6204
6205 /* Obtain the bytes. */
6206 if (size != 0)
6207 x = bfd_get (8 * size, input_bfd, location);
6208
6209 return x;
6210 }
6211
6212 /* It has been determined that the result of the RELOCATION is the
6213 VALUE. Use HOWTO to place VALUE into the output file at the
6214 appropriate position. The SECTION is the section to which the
6215 relocation applies.
6216 CROSS_MODE_JUMP_P is true if the relocation field
6217 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6218
6219 Returns FALSE if anything goes wrong. */
6220
6221 static bfd_boolean
6222 mips_elf_perform_relocation (struct bfd_link_info *info,
6223 reloc_howto_type *howto,
6224 const Elf_Internal_Rela *relocation,
6225 bfd_vma value, bfd *input_bfd,
6226 asection *input_section, bfd_byte *contents,
6227 bfd_boolean cross_mode_jump_p)
6228 {
6229 bfd_vma x;
6230 bfd_byte *location;
6231 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6232 unsigned int size;
6233
6234 /* Figure out where the relocation is occurring. */
6235 location = contents + relocation->r_offset;
6236
6237 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6238
6239 /* Obtain the current value. */
6240 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6241
6242 /* Clear the field we are setting. */
6243 x &= ~howto->dst_mask;
6244
6245 /* Set the field. */
6246 x |= (value & howto->dst_mask);
6247
6248 /* If required, turn JAL into JALX. */
6249 if (cross_mode_jump_p && jal_reloc_p (r_type))
6250 {
6251 bfd_boolean ok;
6252 bfd_vma opcode = x >> 26;
6253 bfd_vma jalx_opcode;
6254
6255 /* Check to see if the opcode is already JAL or JALX. */
6256 if (r_type == R_MIPS16_26)
6257 {
6258 ok = ((opcode == 0x6) || (opcode == 0x7));
6259 jalx_opcode = 0x7;
6260 }
6261 else if (r_type == R_MICROMIPS_26_S1)
6262 {
6263 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6264 jalx_opcode = 0x3c;
6265 }
6266 else
6267 {
6268 ok = ((opcode == 0x3) || (opcode == 0x1d));
6269 jalx_opcode = 0x1d;
6270 }
6271
6272 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6273 convert J or JALS to JALX. */
6274 if (!ok)
6275 {
6276 (*_bfd_error_handler)
6277 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6278 input_bfd,
6279 input_section,
6280 (unsigned long) relocation->r_offset);
6281 bfd_set_error (bfd_error_bad_value);
6282 return FALSE;
6283 }
6284
6285 /* Make this the JALX opcode. */
6286 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6287 }
6288
6289 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6290 range. */
6291 if (!bfd_link_relocatable (info)
6292 && !cross_mode_jump_p
6293 && ((JAL_TO_BAL_P (input_bfd)
6294 && r_type == R_MIPS_26
6295 && (x >> 26) == 0x3) /* jal addr */
6296 || (JALR_TO_BAL_P (input_bfd)
6297 && r_type == R_MIPS_JALR
6298 && x == 0x0320f809) /* jalr t9 */
6299 || (JR_TO_B_P (input_bfd)
6300 && r_type == R_MIPS_JALR
6301 && x == 0x03200008))) /* jr t9 */
6302 {
6303 bfd_vma addr;
6304 bfd_vma dest;
6305 bfd_signed_vma off;
6306
6307 addr = (input_section->output_section->vma
6308 + input_section->output_offset
6309 + relocation->r_offset
6310 + 4);
6311 if (r_type == R_MIPS_26)
6312 dest = (value << 2) | ((addr >> 28) << 28);
6313 else
6314 dest = value;
6315 off = dest - addr;
6316 if (off <= 0x1ffff && off >= -0x20000)
6317 {
6318 if (x == 0x03200008) /* jr t9 */
6319 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6320 else
6321 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6322 }
6323 }
6324
6325 /* Put the value into the output. */
6326 size = bfd_get_reloc_size (howto);
6327 if (size != 0)
6328 bfd_put (8 * size, input_bfd, x, location);
6329
6330 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6331 location);
6332
6333 return TRUE;
6334 }
6335 \f
6336 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6337 is the original relocation, which is now being transformed into a
6338 dynamic relocation. The ADDENDP is adjusted if necessary; the
6339 caller should store the result in place of the original addend. */
6340
6341 static bfd_boolean
6342 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6343 struct bfd_link_info *info,
6344 const Elf_Internal_Rela *rel,
6345 struct mips_elf_link_hash_entry *h,
6346 asection *sec, bfd_vma symbol,
6347 bfd_vma *addendp, asection *input_section)
6348 {
6349 Elf_Internal_Rela outrel[3];
6350 asection *sreloc;
6351 bfd *dynobj;
6352 int r_type;
6353 long indx;
6354 bfd_boolean defined_p;
6355 struct mips_elf_link_hash_table *htab;
6356
6357 htab = mips_elf_hash_table (info);
6358 BFD_ASSERT (htab != NULL);
6359
6360 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6361 dynobj = elf_hash_table (info)->dynobj;
6362 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6363 BFD_ASSERT (sreloc != NULL);
6364 BFD_ASSERT (sreloc->contents != NULL);
6365 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6366 < sreloc->size);
6367
6368 outrel[0].r_offset =
6369 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6370 if (ABI_64_P (output_bfd))
6371 {
6372 outrel[1].r_offset =
6373 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6374 outrel[2].r_offset =
6375 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6376 }
6377
6378 if (outrel[0].r_offset == MINUS_ONE)
6379 /* The relocation field has been deleted. */
6380 return TRUE;
6381
6382 if (outrel[0].r_offset == MINUS_TWO)
6383 {
6384 /* The relocation field has been converted into a relative value of
6385 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6386 the field to be fully relocated, so add in the symbol's value. */
6387 *addendp += symbol;
6388 return TRUE;
6389 }
6390
6391 /* We must now calculate the dynamic symbol table index to use
6392 in the relocation. */
6393 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6394 {
6395 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6396 indx = h->root.dynindx;
6397 if (SGI_COMPAT (output_bfd))
6398 defined_p = h->root.def_regular;
6399 else
6400 /* ??? glibc's ld.so just adds the final GOT entry to the
6401 relocation field. It therefore treats relocs against
6402 defined symbols in the same way as relocs against
6403 undefined symbols. */
6404 defined_p = FALSE;
6405 }
6406 else
6407 {
6408 if (sec != NULL && bfd_is_abs_section (sec))
6409 indx = 0;
6410 else if (sec == NULL || sec->owner == NULL)
6411 {
6412 bfd_set_error (bfd_error_bad_value);
6413 return FALSE;
6414 }
6415 else
6416 {
6417 indx = elf_section_data (sec->output_section)->dynindx;
6418 if (indx == 0)
6419 {
6420 asection *osec = htab->root.text_index_section;
6421 indx = elf_section_data (osec)->dynindx;
6422 }
6423 if (indx == 0)
6424 abort ();
6425 }
6426
6427 /* Instead of generating a relocation using the section
6428 symbol, we may as well make it a fully relative
6429 relocation. We want to avoid generating relocations to
6430 local symbols because we used to generate them
6431 incorrectly, without adding the original symbol value,
6432 which is mandated by the ABI for section symbols. In
6433 order to give dynamic loaders and applications time to
6434 phase out the incorrect use, we refrain from emitting
6435 section-relative relocations. It's not like they're
6436 useful, after all. This should be a bit more efficient
6437 as well. */
6438 /* ??? Although this behavior is compatible with glibc's ld.so,
6439 the ABI says that relocations against STN_UNDEF should have
6440 a symbol value of 0. Irix rld honors this, so relocations
6441 against STN_UNDEF have no effect. */
6442 if (!SGI_COMPAT (output_bfd))
6443 indx = 0;
6444 defined_p = TRUE;
6445 }
6446
6447 /* If the relocation was previously an absolute relocation and
6448 this symbol will not be referred to by the relocation, we must
6449 adjust it by the value we give it in the dynamic symbol table.
6450 Otherwise leave the job up to the dynamic linker. */
6451 if (defined_p && r_type != R_MIPS_REL32)
6452 *addendp += symbol;
6453
6454 if (htab->is_vxworks)
6455 /* VxWorks uses non-relative relocations for this. */
6456 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6457 else
6458 /* The relocation is always an REL32 relocation because we don't
6459 know where the shared library will wind up at load-time. */
6460 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6461 R_MIPS_REL32);
6462
6463 /* For strict adherence to the ABI specification, we should
6464 generate a R_MIPS_64 relocation record by itself before the
6465 _REL32/_64 record as well, such that the addend is read in as
6466 a 64-bit value (REL32 is a 32-bit relocation, after all).
6467 However, since none of the existing ELF64 MIPS dynamic
6468 loaders seems to care, we don't waste space with these
6469 artificial relocations. If this turns out to not be true,
6470 mips_elf_allocate_dynamic_relocation() should be tweaked so
6471 as to make room for a pair of dynamic relocations per
6472 invocation if ABI_64_P, and here we should generate an
6473 additional relocation record with R_MIPS_64 by itself for a
6474 NULL symbol before this relocation record. */
6475 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6476 ABI_64_P (output_bfd)
6477 ? R_MIPS_64
6478 : R_MIPS_NONE);
6479 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6480
6481 /* Adjust the output offset of the relocation to reference the
6482 correct location in the output file. */
6483 outrel[0].r_offset += (input_section->output_section->vma
6484 + input_section->output_offset);
6485 outrel[1].r_offset += (input_section->output_section->vma
6486 + input_section->output_offset);
6487 outrel[2].r_offset += (input_section->output_section->vma
6488 + input_section->output_offset);
6489
6490 /* Put the relocation back out. We have to use the special
6491 relocation outputter in the 64-bit case since the 64-bit
6492 relocation format is non-standard. */
6493 if (ABI_64_P (output_bfd))
6494 {
6495 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6496 (output_bfd, &outrel[0],
6497 (sreloc->contents
6498 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6499 }
6500 else if (htab->is_vxworks)
6501 {
6502 /* VxWorks uses RELA rather than REL dynamic relocations. */
6503 outrel[0].r_addend = *addendp;
6504 bfd_elf32_swap_reloca_out
6505 (output_bfd, &outrel[0],
6506 (sreloc->contents
6507 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6508 }
6509 else
6510 bfd_elf32_swap_reloc_out
6511 (output_bfd, &outrel[0],
6512 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6513
6514 /* We've now added another relocation. */
6515 ++sreloc->reloc_count;
6516
6517 /* Make sure the output section is writable. The dynamic linker
6518 will be writing to it. */
6519 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6520 |= SHF_WRITE;
6521
6522 /* On IRIX5, make an entry of compact relocation info. */
6523 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6524 {
6525 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6526 bfd_byte *cr;
6527
6528 if (scpt)
6529 {
6530 Elf32_crinfo cptrel;
6531
6532 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6533 cptrel.vaddr = (rel->r_offset
6534 + input_section->output_section->vma
6535 + input_section->output_offset);
6536 if (r_type == R_MIPS_REL32)
6537 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6538 else
6539 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6540 mips_elf_set_cr_dist2to (cptrel, 0);
6541 cptrel.konst = *addendp;
6542
6543 cr = (scpt->contents
6544 + sizeof (Elf32_External_compact_rel));
6545 mips_elf_set_cr_relvaddr (cptrel, 0);
6546 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6547 ((Elf32_External_crinfo *) cr
6548 + scpt->reloc_count));
6549 ++scpt->reloc_count;
6550 }
6551 }
6552
6553 /* If we've written this relocation for a readonly section,
6554 we need to set DF_TEXTREL again, so that we do not delete the
6555 DT_TEXTREL tag. */
6556 if (MIPS_ELF_READONLY_SECTION (input_section))
6557 info->flags |= DF_TEXTREL;
6558
6559 return TRUE;
6560 }
6561 \f
6562 /* Return the MACH for a MIPS e_flags value. */
6563
6564 unsigned long
6565 _bfd_elf_mips_mach (flagword flags)
6566 {
6567 switch (flags & EF_MIPS_MACH)
6568 {
6569 case E_MIPS_MACH_3900:
6570 return bfd_mach_mips3900;
6571
6572 case E_MIPS_MACH_4010:
6573 return bfd_mach_mips4010;
6574
6575 case E_MIPS_MACH_4100:
6576 return bfd_mach_mips4100;
6577
6578 case E_MIPS_MACH_4111:
6579 return bfd_mach_mips4111;
6580
6581 case E_MIPS_MACH_4120:
6582 return bfd_mach_mips4120;
6583
6584 case E_MIPS_MACH_4650:
6585 return bfd_mach_mips4650;
6586
6587 case E_MIPS_MACH_5400:
6588 return bfd_mach_mips5400;
6589
6590 case E_MIPS_MACH_5500:
6591 return bfd_mach_mips5500;
6592
6593 case E_MIPS_MACH_5900:
6594 return bfd_mach_mips5900;
6595
6596 case E_MIPS_MACH_9000:
6597 return bfd_mach_mips9000;
6598
6599 case E_MIPS_MACH_SB1:
6600 return bfd_mach_mips_sb1;
6601
6602 case E_MIPS_MACH_LS2E:
6603 return bfd_mach_mips_loongson_2e;
6604
6605 case E_MIPS_MACH_LS2F:
6606 return bfd_mach_mips_loongson_2f;
6607
6608 case E_MIPS_MACH_LS3A:
6609 return bfd_mach_mips_loongson_3a;
6610
6611 case E_MIPS_MACH_OCTEON3:
6612 return bfd_mach_mips_octeon3;
6613
6614 case E_MIPS_MACH_OCTEON2:
6615 return bfd_mach_mips_octeon2;
6616
6617 case E_MIPS_MACH_OCTEON:
6618 return bfd_mach_mips_octeon;
6619
6620 case E_MIPS_MACH_XLR:
6621 return bfd_mach_mips_xlr;
6622
6623 default:
6624 switch (flags & EF_MIPS_ARCH)
6625 {
6626 default:
6627 case E_MIPS_ARCH_1:
6628 return bfd_mach_mips3000;
6629
6630 case E_MIPS_ARCH_2:
6631 return bfd_mach_mips6000;
6632
6633 case E_MIPS_ARCH_3:
6634 return bfd_mach_mips4000;
6635
6636 case E_MIPS_ARCH_4:
6637 return bfd_mach_mips8000;
6638
6639 case E_MIPS_ARCH_5:
6640 return bfd_mach_mips5;
6641
6642 case E_MIPS_ARCH_32:
6643 return bfd_mach_mipsisa32;
6644
6645 case E_MIPS_ARCH_64:
6646 return bfd_mach_mipsisa64;
6647
6648 case E_MIPS_ARCH_32R2:
6649 return bfd_mach_mipsisa32r2;
6650
6651 case E_MIPS_ARCH_64R2:
6652 return bfd_mach_mipsisa64r2;
6653
6654 case E_MIPS_ARCH_32R6:
6655 return bfd_mach_mipsisa32r6;
6656
6657 case E_MIPS_ARCH_64R6:
6658 return bfd_mach_mipsisa64r6;
6659 }
6660 }
6661
6662 return 0;
6663 }
6664
6665 /* Return printable name for ABI. */
6666
6667 static INLINE char *
6668 elf_mips_abi_name (bfd *abfd)
6669 {
6670 flagword flags;
6671
6672 flags = elf_elfheader (abfd)->e_flags;
6673 switch (flags & EF_MIPS_ABI)
6674 {
6675 case 0:
6676 if (ABI_N32_P (abfd))
6677 return "N32";
6678 else if (ABI_64_P (abfd))
6679 return "64";
6680 else
6681 return "none";
6682 case E_MIPS_ABI_O32:
6683 return "O32";
6684 case E_MIPS_ABI_O64:
6685 return "O64";
6686 case E_MIPS_ABI_EABI32:
6687 return "EABI32";
6688 case E_MIPS_ABI_EABI64:
6689 return "EABI64";
6690 default:
6691 return "unknown abi";
6692 }
6693 }
6694 \f
6695 /* MIPS ELF uses two common sections. One is the usual one, and the
6696 other is for small objects. All the small objects are kept
6697 together, and then referenced via the gp pointer, which yields
6698 faster assembler code. This is what we use for the small common
6699 section. This approach is copied from ecoff.c. */
6700 static asection mips_elf_scom_section;
6701 static asymbol mips_elf_scom_symbol;
6702 static asymbol *mips_elf_scom_symbol_ptr;
6703
6704 /* MIPS ELF also uses an acommon section, which represents an
6705 allocated common symbol which may be overridden by a
6706 definition in a shared library. */
6707 static asection mips_elf_acom_section;
6708 static asymbol mips_elf_acom_symbol;
6709 static asymbol *mips_elf_acom_symbol_ptr;
6710
6711 /* This is used for both the 32-bit and the 64-bit ABI. */
6712
6713 void
6714 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6715 {
6716 elf_symbol_type *elfsym;
6717
6718 /* Handle the special MIPS section numbers that a symbol may use. */
6719 elfsym = (elf_symbol_type *) asym;
6720 switch (elfsym->internal_elf_sym.st_shndx)
6721 {
6722 case SHN_MIPS_ACOMMON:
6723 /* This section is used in a dynamically linked executable file.
6724 It is an allocated common section. The dynamic linker can
6725 either resolve these symbols to something in a shared
6726 library, or it can just leave them here. For our purposes,
6727 we can consider these symbols to be in a new section. */
6728 if (mips_elf_acom_section.name == NULL)
6729 {
6730 /* Initialize the acommon section. */
6731 mips_elf_acom_section.name = ".acommon";
6732 mips_elf_acom_section.flags = SEC_ALLOC;
6733 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6734 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6735 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6736 mips_elf_acom_symbol.name = ".acommon";
6737 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6738 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6739 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6740 }
6741 asym->section = &mips_elf_acom_section;
6742 break;
6743
6744 case SHN_COMMON:
6745 /* Common symbols less than the GP size are automatically
6746 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6747 if (asym->value > elf_gp_size (abfd)
6748 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6749 || IRIX_COMPAT (abfd) == ict_irix6)
6750 break;
6751 /* Fall through. */
6752 case SHN_MIPS_SCOMMON:
6753 if (mips_elf_scom_section.name == NULL)
6754 {
6755 /* Initialize the small common section. */
6756 mips_elf_scom_section.name = ".scommon";
6757 mips_elf_scom_section.flags = SEC_IS_COMMON;
6758 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6759 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6760 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6761 mips_elf_scom_symbol.name = ".scommon";
6762 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6763 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6764 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6765 }
6766 asym->section = &mips_elf_scom_section;
6767 asym->value = elfsym->internal_elf_sym.st_size;
6768 break;
6769
6770 case SHN_MIPS_SUNDEFINED:
6771 asym->section = bfd_und_section_ptr;
6772 break;
6773
6774 case SHN_MIPS_TEXT:
6775 {
6776 asection *section = bfd_get_section_by_name (abfd, ".text");
6777
6778 if (section != NULL)
6779 {
6780 asym->section = section;
6781 /* MIPS_TEXT is a bit special, the address is not an offset
6782 to the base of the .text section. So substract the section
6783 base address to make it an offset. */
6784 asym->value -= section->vma;
6785 }
6786 }
6787 break;
6788
6789 case SHN_MIPS_DATA:
6790 {
6791 asection *section = bfd_get_section_by_name (abfd, ".data");
6792
6793 if (section != NULL)
6794 {
6795 asym->section = section;
6796 /* MIPS_DATA is a bit special, the address is not an offset
6797 to the base of the .data section. So substract the section
6798 base address to make it an offset. */
6799 asym->value -= section->vma;
6800 }
6801 }
6802 break;
6803 }
6804
6805 /* If this is an odd-valued function symbol, assume it's a MIPS16
6806 or microMIPS one. */
6807 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6808 && (asym->value & 1) != 0)
6809 {
6810 asym->value--;
6811 if (MICROMIPS_P (abfd))
6812 elfsym->internal_elf_sym.st_other
6813 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6814 else
6815 elfsym->internal_elf_sym.st_other
6816 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6817 }
6818 }
6819 \f
6820 /* Implement elf_backend_eh_frame_address_size. This differs from
6821 the default in the way it handles EABI64.
6822
6823 EABI64 was originally specified as an LP64 ABI, and that is what
6824 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6825 historically accepted the combination of -mabi=eabi and -mlong32,
6826 and this ILP32 variation has become semi-official over time.
6827 Both forms use elf32 and have pointer-sized FDE addresses.
6828
6829 If an EABI object was generated by GCC 4.0 or above, it will have
6830 an empty .gcc_compiled_longXX section, where XX is the size of longs
6831 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6832 have no special marking to distinguish them from LP64 objects.
6833
6834 We don't want users of the official LP64 ABI to be punished for the
6835 existence of the ILP32 variant, but at the same time, we don't want
6836 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6837 We therefore take the following approach:
6838
6839 - If ABFD contains a .gcc_compiled_longXX section, use it to
6840 determine the pointer size.
6841
6842 - Otherwise check the type of the first relocation. Assume that
6843 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6844
6845 - Otherwise punt.
6846
6847 The second check is enough to detect LP64 objects generated by pre-4.0
6848 compilers because, in the kind of output generated by those compilers,
6849 the first relocation will be associated with either a CIE personality
6850 routine or an FDE start address. Furthermore, the compilers never
6851 used a special (non-pointer) encoding for this ABI.
6852
6853 Checking the relocation type should also be safe because there is no
6854 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6855 did so. */
6856
6857 unsigned int
6858 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6859 {
6860 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6861 return 8;
6862 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6863 {
6864 bfd_boolean long32_p, long64_p;
6865
6866 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6867 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6868 if (long32_p && long64_p)
6869 return 0;
6870 if (long32_p)
6871 return 4;
6872 if (long64_p)
6873 return 8;
6874
6875 if (sec->reloc_count > 0
6876 && elf_section_data (sec)->relocs != NULL
6877 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6878 == R_MIPS_64))
6879 return 8;
6880
6881 return 0;
6882 }
6883 return 4;
6884 }
6885 \f
6886 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6887 relocations against two unnamed section symbols to resolve to the
6888 same address. For example, if we have code like:
6889
6890 lw $4,%got_disp(.data)($gp)
6891 lw $25,%got_disp(.text)($gp)
6892 jalr $25
6893
6894 then the linker will resolve both relocations to .data and the program
6895 will jump there rather than to .text.
6896
6897 We can work around this problem by giving names to local section symbols.
6898 This is also what the MIPSpro tools do. */
6899
6900 bfd_boolean
6901 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6902 {
6903 return SGI_COMPAT (abfd);
6904 }
6905 \f
6906 /* Work over a section just before writing it out. This routine is
6907 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6908 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6909 a better way. */
6910
6911 bfd_boolean
6912 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6913 {
6914 if (hdr->sh_type == SHT_MIPS_REGINFO
6915 && hdr->sh_size > 0)
6916 {
6917 bfd_byte buf[4];
6918
6919 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6920 BFD_ASSERT (hdr->contents == NULL);
6921
6922 if (bfd_seek (abfd,
6923 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6924 SEEK_SET) != 0)
6925 return FALSE;
6926 H_PUT_32 (abfd, elf_gp (abfd), buf);
6927 if (bfd_bwrite (buf, 4, abfd) != 4)
6928 return FALSE;
6929 }
6930
6931 if (hdr->sh_type == SHT_MIPS_OPTIONS
6932 && hdr->bfd_section != NULL
6933 && mips_elf_section_data (hdr->bfd_section) != NULL
6934 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6935 {
6936 bfd_byte *contents, *l, *lend;
6937
6938 /* We stored the section contents in the tdata field in the
6939 set_section_contents routine. We save the section contents
6940 so that we don't have to read them again.
6941 At this point we know that elf_gp is set, so we can look
6942 through the section contents to see if there is an
6943 ODK_REGINFO structure. */
6944
6945 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6946 l = contents;
6947 lend = contents + hdr->sh_size;
6948 while (l + sizeof (Elf_External_Options) <= lend)
6949 {
6950 Elf_Internal_Options intopt;
6951
6952 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6953 &intopt);
6954 if (intopt.size < sizeof (Elf_External_Options))
6955 {
6956 (*_bfd_error_handler)
6957 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6958 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6959 break;
6960 }
6961 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6962 {
6963 bfd_byte buf[8];
6964
6965 if (bfd_seek (abfd,
6966 (hdr->sh_offset
6967 + (l - contents)
6968 + sizeof (Elf_External_Options)
6969 + (sizeof (Elf64_External_RegInfo) - 8)),
6970 SEEK_SET) != 0)
6971 return FALSE;
6972 H_PUT_64 (abfd, elf_gp (abfd), buf);
6973 if (bfd_bwrite (buf, 8, abfd) != 8)
6974 return FALSE;
6975 }
6976 else if (intopt.kind == ODK_REGINFO)
6977 {
6978 bfd_byte buf[4];
6979
6980 if (bfd_seek (abfd,
6981 (hdr->sh_offset
6982 + (l - contents)
6983 + sizeof (Elf_External_Options)
6984 + (sizeof (Elf32_External_RegInfo) - 4)),
6985 SEEK_SET) != 0)
6986 return FALSE;
6987 H_PUT_32 (abfd, elf_gp (abfd), buf);
6988 if (bfd_bwrite (buf, 4, abfd) != 4)
6989 return FALSE;
6990 }
6991 l += intopt.size;
6992 }
6993 }
6994
6995 if (hdr->bfd_section != NULL)
6996 {
6997 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6998
6999 /* .sbss is not handled specially here because the GNU/Linux
7000 prelinker can convert .sbss from NOBITS to PROGBITS and
7001 changing it back to NOBITS breaks the binary. The entry in
7002 _bfd_mips_elf_special_sections will ensure the correct flags
7003 are set on .sbss if BFD creates it without reading it from an
7004 input file, and without special handling here the flags set
7005 on it in an input file will be followed. */
7006 if (strcmp (name, ".sdata") == 0
7007 || strcmp (name, ".lit8") == 0
7008 || strcmp (name, ".lit4") == 0)
7009 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7010 else if (strcmp (name, ".srdata") == 0)
7011 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7012 else if (strcmp (name, ".compact_rel") == 0)
7013 hdr->sh_flags = 0;
7014 else if (strcmp (name, ".rtproc") == 0)
7015 {
7016 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7017 {
7018 unsigned int adjust;
7019
7020 adjust = hdr->sh_size % hdr->sh_addralign;
7021 if (adjust != 0)
7022 hdr->sh_size += hdr->sh_addralign - adjust;
7023 }
7024 }
7025 }
7026
7027 return TRUE;
7028 }
7029
7030 /* Handle a MIPS specific section when reading an object file. This
7031 is called when elfcode.h finds a section with an unknown type.
7032 This routine supports both the 32-bit and 64-bit ELF ABI.
7033
7034 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7035 how to. */
7036
7037 bfd_boolean
7038 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7039 Elf_Internal_Shdr *hdr,
7040 const char *name,
7041 int shindex)
7042 {
7043 flagword flags = 0;
7044
7045 /* There ought to be a place to keep ELF backend specific flags, but
7046 at the moment there isn't one. We just keep track of the
7047 sections by their name, instead. Fortunately, the ABI gives
7048 suggested names for all the MIPS specific sections, so we will
7049 probably get away with this. */
7050 switch (hdr->sh_type)
7051 {
7052 case SHT_MIPS_LIBLIST:
7053 if (strcmp (name, ".liblist") != 0)
7054 return FALSE;
7055 break;
7056 case SHT_MIPS_MSYM:
7057 if (strcmp (name, ".msym") != 0)
7058 return FALSE;
7059 break;
7060 case SHT_MIPS_CONFLICT:
7061 if (strcmp (name, ".conflict") != 0)
7062 return FALSE;
7063 break;
7064 case SHT_MIPS_GPTAB:
7065 if (! CONST_STRNEQ (name, ".gptab."))
7066 return FALSE;
7067 break;
7068 case SHT_MIPS_UCODE:
7069 if (strcmp (name, ".ucode") != 0)
7070 return FALSE;
7071 break;
7072 case SHT_MIPS_DEBUG:
7073 if (strcmp (name, ".mdebug") != 0)
7074 return FALSE;
7075 flags = SEC_DEBUGGING;
7076 break;
7077 case SHT_MIPS_REGINFO:
7078 if (strcmp (name, ".reginfo") != 0
7079 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7080 return FALSE;
7081 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7082 break;
7083 case SHT_MIPS_IFACE:
7084 if (strcmp (name, ".MIPS.interfaces") != 0)
7085 return FALSE;
7086 break;
7087 case SHT_MIPS_CONTENT:
7088 if (! CONST_STRNEQ (name, ".MIPS.content"))
7089 return FALSE;
7090 break;
7091 case SHT_MIPS_OPTIONS:
7092 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7093 return FALSE;
7094 break;
7095 case SHT_MIPS_ABIFLAGS:
7096 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7097 return FALSE;
7098 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7099 break;
7100 case SHT_MIPS_DWARF:
7101 if (! CONST_STRNEQ (name, ".debug_")
7102 && ! CONST_STRNEQ (name, ".zdebug_"))
7103 return FALSE;
7104 break;
7105 case SHT_MIPS_SYMBOL_LIB:
7106 if (strcmp (name, ".MIPS.symlib") != 0)
7107 return FALSE;
7108 break;
7109 case SHT_MIPS_EVENTS:
7110 if (! CONST_STRNEQ (name, ".MIPS.events")
7111 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7112 return FALSE;
7113 break;
7114 default:
7115 break;
7116 }
7117
7118 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7119 return FALSE;
7120
7121 if (flags)
7122 {
7123 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7124 (bfd_get_section_flags (abfd,
7125 hdr->bfd_section)
7126 | flags)))
7127 return FALSE;
7128 }
7129
7130 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7131 {
7132 Elf_External_ABIFlags_v0 ext;
7133
7134 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7135 &ext, 0, sizeof ext))
7136 return FALSE;
7137 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7138 &mips_elf_tdata (abfd)->abiflags);
7139 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7140 return FALSE;
7141 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7142 }
7143
7144 /* FIXME: We should record sh_info for a .gptab section. */
7145
7146 /* For a .reginfo section, set the gp value in the tdata information
7147 from the contents of this section. We need the gp value while
7148 processing relocs, so we just get it now. The .reginfo section
7149 is not used in the 64-bit MIPS ELF ABI. */
7150 if (hdr->sh_type == SHT_MIPS_REGINFO)
7151 {
7152 Elf32_External_RegInfo ext;
7153 Elf32_RegInfo s;
7154
7155 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7156 &ext, 0, sizeof ext))
7157 return FALSE;
7158 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7159 elf_gp (abfd) = s.ri_gp_value;
7160 }
7161
7162 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7163 set the gp value based on what we find. We may see both
7164 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7165 they should agree. */
7166 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7167 {
7168 bfd_byte *contents, *l, *lend;
7169
7170 contents = bfd_malloc (hdr->sh_size);
7171 if (contents == NULL)
7172 return FALSE;
7173 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7174 0, hdr->sh_size))
7175 {
7176 free (contents);
7177 return FALSE;
7178 }
7179 l = contents;
7180 lend = contents + hdr->sh_size;
7181 while (l + sizeof (Elf_External_Options) <= lend)
7182 {
7183 Elf_Internal_Options intopt;
7184
7185 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7186 &intopt);
7187 if (intopt.size < sizeof (Elf_External_Options))
7188 {
7189 (*_bfd_error_handler)
7190 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7191 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7192 break;
7193 }
7194 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7195 {
7196 Elf64_Internal_RegInfo intreg;
7197
7198 bfd_mips_elf64_swap_reginfo_in
7199 (abfd,
7200 ((Elf64_External_RegInfo *)
7201 (l + sizeof (Elf_External_Options))),
7202 &intreg);
7203 elf_gp (abfd) = intreg.ri_gp_value;
7204 }
7205 else if (intopt.kind == ODK_REGINFO)
7206 {
7207 Elf32_RegInfo intreg;
7208
7209 bfd_mips_elf32_swap_reginfo_in
7210 (abfd,
7211 ((Elf32_External_RegInfo *)
7212 (l + sizeof (Elf_External_Options))),
7213 &intreg);
7214 elf_gp (abfd) = intreg.ri_gp_value;
7215 }
7216 l += intopt.size;
7217 }
7218 free (contents);
7219 }
7220
7221 return TRUE;
7222 }
7223
7224 /* Set the correct type for a MIPS ELF section. We do this by the
7225 section name, which is a hack, but ought to work. This routine is
7226 used by both the 32-bit and the 64-bit ABI. */
7227
7228 bfd_boolean
7229 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7230 {
7231 const char *name = bfd_get_section_name (abfd, sec);
7232
7233 if (strcmp (name, ".liblist") == 0)
7234 {
7235 hdr->sh_type = SHT_MIPS_LIBLIST;
7236 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7237 /* The sh_link field is set in final_write_processing. */
7238 }
7239 else if (strcmp (name, ".conflict") == 0)
7240 hdr->sh_type = SHT_MIPS_CONFLICT;
7241 else if (CONST_STRNEQ (name, ".gptab."))
7242 {
7243 hdr->sh_type = SHT_MIPS_GPTAB;
7244 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7245 /* The sh_info field is set in final_write_processing. */
7246 }
7247 else if (strcmp (name, ".ucode") == 0)
7248 hdr->sh_type = SHT_MIPS_UCODE;
7249 else if (strcmp (name, ".mdebug") == 0)
7250 {
7251 hdr->sh_type = SHT_MIPS_DEBUG;
7252 /* In a shared object on IRIX 5.3, the .mdebug section has an
7253 entsize of 0. FIXME: Does this matter? */
7254 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7255 hdr->sh_entsize = 0;
7256 else
7257 hdr->sh_entsize = 1;
7258 }
7259 else if (strcmp (name, ".reginfo") == 0)
7260 {
7261 hdr->sh_type = SHT_MIPS_REGINFO;
7262 /* In a shared object on IRIX 5.3, the .reginfo section has an
7263 entsize of 0x18. FIXME: Does this matter? */
7264 if (SGI_COMPAT (abfd))
7265 {
7266 if ((abfd->flags & DYNAMIC) != 0)
7267 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7268 else
7269 hdr->sh_entsize = 1;
7270 }
7271 else
7272 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7273 }
7274 else if (SGI_COMPAT (abfd)
7275 && (strcmp (name, ".hash") == 0
7276 || strcmp (name, ".dynamic") == 0
7277 || strcmp (name, ".dynstr") == 0))
7278 {
7279 if (SGI_COMPAT (abfd))
7280 hdr->sh_entsize = 0;
7281 #if 0
7282 /* This isn't how the IRIX6 linker behaves. */
7283 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7284 #endif
7285 }
7286 else if (strcmp (name, ".got") == 0
7287 || strcmp (name, ".srdata") == 0
7288 || strcmp (name, ".sdata") == 0
7289 || strcmp (name, ".sbss") == 0
7290 || strcmp (name, ".lit4") == 0
7291 || strcmp (name, ".lit8") == 0)
7292 hdr->sh_flags |= SHF_MIPS_GPREL;
7293 else if (strcmp (name, ".MIPS.interfaces") == 0)
7294 {
7295 hdr->sh_type = SHT_MIPS_IFACE;
7296 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7297 }
7298 else if (CONST_STRNEQ (name, ".MIPS.content"))
7299 {
7300 hdr->sh_type = SHT_MIPS_CONTENT;
7301 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7302 /* The sh_info field is set in final_write_processing. */
7303 }
7304 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7305 {
7306 hdr->sh_type = SHT_MIPS_OPTIONS;
7307 hdr->sh_entsize = 1;
7308 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7309 }
7310 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7311 {
7312 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7313 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7314 }
7315 else if (CONST_STRNEQ (name, ".debug_")
7316 || CONST_STRNEQ (name, ".zdebug_"))
7317 {
7318 hdr->sh_type = SHT_MIPS_DWARF;
7319
7320 /* Irix facilities such as libexc expect a single .debug_frame
7321 per executable, the system ones have NOSTRIP set and the linker
7322 doesn't merge sections with different flags so ... */
7323 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7324 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7325 }
7326 else if (strcmp (name, ".MIPS.symlib") == 0)
7327 {
7328 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7329 /* The sh_link and sh_info fields are set in
7330 final_write_processing. */
7331 }
7332 else if (CONST_STRNEQ (name, ".MIPS.events")
7333 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7334 {
7335 hdr->sh_type = SHT_MIPS_EVENTS;
7336 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7337 /* The sh_link field is set in final_write_processing. */
7338 }
7339 else if (strcmp (name, ".msym") == 0)
7340 {
7341 hdr->sh_type = SHT_MIPS_MSYM;
7342 hdr->sh_flags |= SHF_ALLOC;
7343 hdr->sh_entsize = 8;
7344 }
7345
7346 /* The generic elf_fake_sections will set up REL_HDR using the default
7347 kind of relocations. We used to set up a second header for the
7348 non-default kind of relocations here, but only NewABI would use
7349 these, and the IRIX ld doesn't like resulting empty RELA sections.
7350 Thus we create those header only on demand now. */
7351
7352 return TRUE;
7353 }
7354
7355 /* Given a BFD section, try to locate the corresponding ELF section
7356 index. This is used by both the 32-bit and the 64-bit ABI.
7357 Actually, it's not clear to me that the 64-bit ABI supports these,
7358 but for non-PIC objects we will certainly want support for at least
7359 the .scommon section. */
7360
7361 bfd_boolean
7362 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7363 asection *sec, int *retval)
7364 {
7365 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7366 {
7367 *retval = SHN_MIPS_SCOMMON;
7368 return TRUE;
7369 }
7370 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7371 {
7372 *retval = SHN_MIPS_ACOMMON;
7373 return TRUE;
7374 }
7375 return FALSE;
7376 }
7377 \f
7378 /* Hook called by the linker routine which adds symbols from an object
7379 file. We must handle the special MIPS section numbers here. */
7380
7381 bfd_boolean
7382 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7383 Elf_Internal_Sym *sym, const char **namep,
7384 flagword *flagsp ATTRIBUTE_UNUSED,
7385 asection **secp, bfd_vma *valp)
7386 {
7387 if (SGI_COMPAT (abfd)
7388 && (abfd->flags & DYNAMIC) != 0
7389 && strcmp (*namep, "_rld_new_interface") == 0)
7390 {
7391 /* Skip IRIX5 rld entry name. */
7392 *namep = NULL;
7393 return TRUE;
7394 }
7395
7396 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7397 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7398 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7399 a magic symbol resolved by the linker, we ignore this bogus definition
7400 of _gp_disp. New ABI objects do not suffer from this problem so this
7401 is not done for them. */
7402 if (!NEWABI_P(abfd)
7403 && (sym->st_shndx == SHN_ABS)
7404 && (strcmp (*namep, "_gp_disp") == 0))
7405 {
7406 *namep = NULL;
7407 return TRUE;
7408 }
7409
7410 switch (sym->st_shndx)
7411 {
7412 case SHN_COMMON:
7413 /* Common symbols less than the GP size are automatically
7414 treated as SHN_MIPS_SCOMMON symbols. */
7415 if (sym->st_size > elf_gp_size (abfd)
7416 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7417 || IRIX_COMPAT (abfd) == ict_irix6)
7418 break;
7419 /* Fall through. */
7420 case SHN_MIPS_SCOMMON:
7421 *secp = bfd_make_section_old_way (abfd, ".scommon");
7422 (*secp)->flags |= SEC_IS_COMMON;
7423 *valp = sym->st_size;
7424 break;
7425
7426 case SHN_MIPS_TEXT:
7427 /* This section is used in a shared object. */
7428 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7429 {
7430 asymbol *elf_text_symbol;
7431 asection *elf_text_section;
7432 bfd_size_type amt = sizeof (asection);
7433
7434 elf_text_section = bfd_zalloc (abfd, amt);
7435 if (elf_text_section == NULL)
7436 return FALSE;
7437
7438 amt = sizeof (asymbol);
7439 elf_text_symbol = bfd_zalloc (abfd, amt);
7440 if (elf_text_symbol == NULL)
7441 return FALSE;
7442
7443 /* Initialize the section. */
7444
7445 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7446 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7447
7448 elf_text_section->symbol = elf_text_symbol;
7449 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7450
7451 elf_text_section->name = ".text";
7452 elf_text_section->flags = SEC_NO_FLAGS;
7453 elf_text_section->output_section = NULL;
7454 elf_text_section->owner = abfd;
7455 elf_text_symbol->name = ".text";
7456 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7457 elf_text_symbol->section = elf_text_section;
7458 }
7459 /* This code used to do *secp = bfd_und_section_ptr if
7460 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7461 so I took it out. */
7462 *secp = mips_elf_tdata (abfd)->elf_text_section;
7463 break;
7464
7465 case SHN_MIPS_ACOMMON:
7466 /* Fall through. XXX Can we treat this as allocated data? */
7467 case SHN_MIPS_DATA:
7468 /* This section is used in a shared object. */
7469 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7470 {
7471 asymbol *elf_data_symbol;
7472 asection *elf_data_section;
7473 bfd_size_type amt = sizeof (asection);
7474
7475 elf_data_section = bfd_zalloc (abfd, amt);
7476 if (elf_data_section == NULL)
7477 return FALSE;
7478
7479 amt = sizeof (asymbol);
7480 elf_data_symbol = bfd_zalloc (abfd, amt);
7481 if (elf_data_symbol == NULL)
7482 return FALSE;
7483
7484 /* Initialize the section. */
7485
7486 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7487 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7488
7489 elf_data_section->symbol = elf_data_symbol;
7490 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7491
7492 elf_data_section->name = ".data";
7493 elf_data_section->flags = SEC_NO_FLAGS;
7494 elf_data_section->output_section = NULL;
7495 elf_data_section->owner = abfd;
7496 elf_data_symbol->name = ".data";
7497 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7498 elf_data_symbol->section = elf_data_section;
7499 }
7500 /* This code used to do *secp = bfd_und_section_ptr if
7501 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7502 so I took it out. */
7503 *secp = mips_elf_tdata (abfd)->elf_data_section;
7504 break;
7505
7506 case SHN_MIPS_SUNDEFINED:
7507 *secp = bfd_und_section_ptr;
7508 break;
7509 }
7510
7511 if (SGI_COMPAT (abfd)
7512 && ! bfd_link_pic (info)
7513 && info->output_bfd->xvec == abfd->xvec
7514 && strcmp (*namep, "__rld_obj_head") == 0)
7515 {
7516 struct elf_link_hash_entry *h;
7517 struct bfd_link_hash_entry *bh;
7518
7519 /* Mark __rld_obj_head as dynamic. */
7520 bh = NULL;
7521 if (! (_bfd_generic_link_add_one_symbol
7522 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7523 get_elf_backend_data (abfd)->collect, &bh)))
7524 return FALSE;
7525
7526 h = (struct elf_link_hash_entry *) bh;
7527 h->non_elf = 0;
7528 h->def_regular = 1;
7529 h->type = STT_OBJECT;
7530
7531 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7532 return FALSE;
7533
7534 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7535 mips_elf_hash_table (info)->rld_symbol = h;
7536 }
7537
7538 /* If this is a mips16 text symbol, add 1 to the value to make it
7539 odd. This will cause something like .word SYM to come up with
7540 the right value when it is loaded into the PC. */
7541 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7542 ++*valp;
7543
7544 return TRUE;
7545 }
7546
7547 /* This hook function is called before the linker writes out a global
7548 symbol. We mark symbols as small common if appropriate. This is
7549 also where we undo the increment of the value for a mips16 symbol. */
7550
7551 int
7552 _bfd_mips_elf_link_output_symbol_hook
7553 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7554 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7555 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7556 {
7557 /* If we see a common symbol, which implies a relocatable link, then
7558 if a symbol was small common in an input file, mark it as small
7559 common in the output file. */
7560 if (sym->st_shndx == SHN_COMMON
7561 && strcmp (input_sec->name, ".scommon") == 0)
7562 sym->st_shndx = SHN_MIPS_SCOMMON;
7563
7564 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7565 sym->st_value &= ~1;
7566
7567 return 1;
7568 }
7569 \f
7570 /* Functions for the dynamic linker. */
7571
7572 /* Create dynamic sections when linking against a dynamic object. */
7573
7574 bfd_boolean
7575 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7576 {
7577 struct elf_link_hash_entry *h;
7578 struct bfd_link_hash_entry *bh;
7579 flagword flags;
7580 register asection *s;
7581 const char * const *namep;
7582 struct mips_elf_link_hash_table *htab;
7583
7584 htab = mips_elf_hash_table (info);
7585 BFD_ASSERT (htab != NULL);
7586
7587 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7588 | SEC_LINKER_CREATED | SEC_READONLY);
7589
7590 /* The psABI requires a read-only .dynamic section, but the VxWorks
7591 EABI doesn't. */
7592 if (!htab->is_vxworks)
7593 {
7594 s = bfd_get_linker_section (abfd, ".dynamic");
7595 if (s != NULL)
7596 {
7597 if (! bfd_set_section_flags (abfd, s, flags))
7598 return FALSE;
7599 }
7600 }
7601
7602 /* We need to create .got section. */
7603 if (!mips_elf_create_got_section (abfd, info))
7604 return FALSE;
7605
7606 if (! mips_elf_rel_dyn_section (info, TRUE))
7607 return FALSE;
7608
7609 /* Create .stub section. */
7610 s = bfd_make_section_anyway_with_flags (abfd,
7611 MIPS_ELF_STUB_SECTION_NAME (abfd),
7612 flags | SEC_CODE);
7613 if (s == NULL
7614 || ! bfd_set_section_alignment (abfd, s,
7615 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7616 return FALSE;
7617 htab->sstubs = s;
7618
7619 if (!mips_elf_hash_table (info)->use_rld_obj_head
7620 && bfd_link_executable (info)
7621 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7622 {
7623 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7624 flags &~ (flagword) SEC_READONLY);
7625 if (s == NULL
7626 || ! bfd_set_section_alignment (abfd, s,
7627 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7628 return FALSE;
7629 }
7630
7631 /* On IRIX5, we adjust add some additional symbols and change the
7632 alignments of several sections. There is no ABI documentation
7633 indicating that this is necessary on IRIX6, nor any evidence that
7634 the linker takes such action. */
7635 if (IRIX_COMPAT (abfd) == ict_irix5)
7636 {
7637 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7638 {
7639 bh = NULL;
7640 if (! (_bfd_generic_link_add_one_symbol
7641 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7642 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7643 return FALSE;
7644
7645 h = (struct elf_link_hash_entry *) bh;
7646 h->non_elf = 0;
7647 h->def_regular = 1;
7648 h->type = STT_SECTION;
7649
7650 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7651 return FALSE;
7652 }
7653
7654 /* We need to create a .compact_rel section. */
7655 if (SGI_COMPAT (abfd))
7656 {
7657 if (!mips_elf_create_compact_rel_section (abfd, info))
7658 return FALSE;
7659 }
7660
7661 /* Change alignments of some sections. */
7662 s = bfd_get_linker_section (abfd, ".hash");
7663 if (s != NULL)
7664 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7665
7666 s = bfd_get_linker_section (abfd, ".dynsym");
7667 if (s != NULL)
7668 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7669
7670 s = bfd_get_linker_section (abfd, ".dynstr");
7671 if (s != NULL)
7672 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7673
7674 /* ??? */
7675 s = bfd_get_section_by_name (abfd, ".reginfo");
7676 if (s != NULL)
7677 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7678
7679 s = bfd_get_linker_section (abfd, ".dynamic");
7680 if (s != NULL)
7681 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7682 }
7683
7684 if (bfd_link_executable (info))
7685 {
7686 const char *name;
7687
7688 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7689 bh = NULL;
7690 if (!(_bfd_generic_link_add_one_symbol
7691 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7692 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7693 return FALSE;
7694
7695 h = (struct elf_link_hash_entry *) bh;
7696 h->non_elf = 0;
7697 h->def_regular = 1;
7698 h->type = STT_SECTION;
7699
7700 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7701 return FALSE;
7702
7703 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7704 {
7705 /* __rld_map is a four byte word located in the .data section
7706 and is filled in by the rtld to contain a pointer to
7707 the _r_debug structure. Its symbol value will be set in
7708 _bfd_mips_elf_finish_dynamic_symbol. */
7709 s = bfd_get_linker_section (abfd, ".rld_map");
7710 BFD_ASSERT (s != NULL);
7711
7712 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7713 bh = NULL;
7714 if (!(_bfd_generic_link_add_one_symbol
7715 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7716 get_elf_backend_data (abfd)->collect, &bh)))
7717 return FALSE;
7718
7719 h = (struct elf_link_hash_entry *) bh;
7720 h->non_elf = 0;
7721 h->def_regular = 1;
7722 h->type = STT_OBJECT;
7723
7724 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7725 return FALSE;
7726 mips_elf_hash_table (info)->rld_symbol = h;
7727 }
7728 }
7729
7730 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7731 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7732 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7733 return FALSE;
7734
7735 /* Cache the sections created above. */
7736 htab->splt = bfd_get_linker_section (abfd, ".plt");
7737 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7738 if (htab->is_vxworks)
7739 {
7740 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7741 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7742 }
7743 else
7744 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7745 if (!htab->sdynbss
7746 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7747 || !htab->srelplt
7748 || !htab->splt)
7749 abort ();
7750
7751 /* Do the usual VxWorks handling. */
7752 if (htab->is_vxworks
7753 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7754 return FALSE;
7755
7756 return TRUE;
7757 }
7758 \f
7759 /* Return true if relocation REL against section SEC is a REL rather than
7760 RELA relocation. RELOCS is the first relocation in the section and
7761 ABFD is the bfd that contains SEC. */
7762
7763 static bfd_boolean
7764 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7765 const Elf_Internal_Rela *relocs,
7766 const Elf_Internal_Rela *rel)
7767 {
7768 Elf_Internal_Shdr *rel_hdr;
7769 const struct elf_backend_data *bed;
7770
7771 /* To determine which flavor of relocation this is, we depend on the
7772 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7773 rel_hdr = elf_section_data (sec)->rel.hdr;
7774 if (rel_hdr == NULL)
7775 return FALSE;
7776 bed = get_elf_backend_data (abfd);
7777 return ((size_t) (rel - relocs)
7778 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7779 }
7780
7781 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7782 HOWTO is the relocation's howto and CONTENTS points to the contents
7783 of the section that REL is against. */
7784
7785 static bfd_vma
7786 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7787 reloc_howto_type *howto, bfd_byte *contents)
7788 {
7789 bfd_byte *location;
7790 unsigned int r_type;
7791 bfd_vma addend;
7792 bfd_vma bytes;
7793
7794 r_type = ELF_R_TYPE (abfd, rel->r_info);
7795 location = contents + rel->r_offset;
7796
7797 /* Get the addend, which is stored in the input file. */
7798 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7799 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7800 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7801
7802 addend = bytes & howto->src_mask;
7803
7804 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7805 accordingly. */
7806 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7807 addend <<= 1;
7808
7809 return addend;
7810 }
7811
7812 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7813 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7814 and update *ADDEND with the final addend. Return true on success
7815 or false if the LO16 could not be found. RELEND is the exclusive
7816 upper bound on the relocations for REL's section. */
7817
7818 static bfd_boolean
7819 mips_elf_add_lo16_rel_addend (bfd *abfd,
7820 const Elf_Internal_Rela *rel,
7821 const Elf_Internal_Rela *relend,
7822 bfd_byte *contents, bfd_vma *addend)
7823 {
7824 unsigned int r_type, lo16_type;
7825 const Elf_Internal_Rela *lo16_relocation;
7826 reloc_howto_type *lo16_howto;
7827 bfd_vma l;
7828
7829 r_type = ELF_R_TYPE (abfd, rel->r_info);
7830 if (mips16_reloc_p (r_type))
7831 lo16_type = R_MIPS16_LO16;
7832 else if (micromips_reloc_p (r_type))
7833 lo16_type = R_MICROMIPS_LO16;
7834 else if (r_type == R_MIPS_PCHI16)
7835 lo16_type = R_MIPS_PCLO16;
7836 else
7837 lo16_type = R_MIPS_LO16;
7838
7839 /* The combined value is the sum of the HI16 addend, left-shifted by
7840 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7841 code does a `lui' of the HI16 value, and then an `addiu' of the
7842 LO16 value.)
7843
7844 Scan ahead to find a matching LO16 relocation.
7845
7846 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7847 be immediately following. However, for the IRIX6 ABI, the next
7848 relocation may be a composed relocation consisting of several
7849 relocations for the same address. In that case, the R_MIPS_LO16
7850 relocation may occur as one of these. We permit a similar
7851 extension in general, as that is useful for GCC.
7852
7853 In some cases GCC dead code elimination removes the LO16 but keeps
7854 the corresponding HI16. This is strictly speaking a violation of
7855 the ABI but not immediately harmful. */
7856 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7857 if (lo16_relocation == NULL)
7858 return FALSE;
7859
7860 /* Obtain the addend kept there. */
7861 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7862 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7863
7864 l <<= lo16_howto->rightshift;
7865 l = _bfd_mips_elf_sign_extend (l, 16);
7866
7867 *addend <<= 16;
7868 *addend += l;
7869 return TRUE;
7870 }
7871
7872 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7873 store the contents in *CONTENTS on success. Assume that *CONTENTS
7874 already holds the contents if it is nonull on entry. */
7875
7876 static bfd_boolean
7877 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7878 {
7879 if (*contents)
7880 return TRUE;
7881
7882 /* Get cached copy if it exists. */
7883 if (elf_section_data (sec)->this_hdr.contents != NULL)
7884 {
7885 *contents = elf_section_data (sec)->this_hdr.contents;
7886 return TRUE;
7887 }
7888
7889 return bfd_malloc_and_get_section (abfd, sec, contents);
7890 }
7891
7892 /* Make a new PLT record to keep internal data. */
7893
7894 static struct plt_entry *
7895 mips_elf_make_plt_record (bfd *abfd)
7896 {
7897 struct plt_entry *entry;
7898
7899 entry = bfd_zalloc (abfd, sizeof (*entry));
7900 if (entry == NULL)
7901 return NULL;
7902
7903 entry->stub_offset = MINUS_ONE;
7904 entry->mips_offset = MINUS_ONE;
7905 entry->comp_offset = MINUS_ONE;
7906 entry->gotplt_index = MINUS_ONE;
7907 return entry;
7908 }
7909
7910 /* Look through the relocs for a section during the first phase, and
7911 allocate space in the global offset table and record the need for
7912 standard MIPS and compressed procedure linkage table entries. */
7913
7914 bfd_boolean
7915 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7916 asection *sec, const Elf_Internal_Rela *relocs)
7917 {
7918 const char *name;
7919 bfd *dynobj;
7920 Elf_Internal_Shdr *symtab_hdr;
7921 struct elf_link_hash_entry **sym_hashes;
7922 size_t extsymoff;
7923 const Elf_Internal_Rela *rel;
7924 const Elf_Internal_Rela *rel_end;
7925 asection *sreloc;
7926 const struct elf_backend_data *bed;
7927 struct mips_elf_link_hash_table *htab;
7928 bfd_byte *contents;
7929 bfd_vma addend;
7930 reloc_howto_type *howto;
7931
7932 if (bfd_link_relocatable (info))
7933 return TRUE;
7934
7935 htab = mips_elf_hash_table (info);
7936 BFD_ASSERT (htab != NULL);
7937
7938 dynobj = elf_hash_table (info)->dynobj;
7939 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7940 sym_hashes = elf_sym_hashes (abfd);
7941 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7942
7943 bed = get_elf_backend_data (abfd);
7944 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7945
7946 /* Check for the mips16 stub sections. */
7947
7948 name = bfd_get_section_name (abfd, sec);
7949 if (FN_STUB_P (name))
7950 {
7951 unsigned long r_symndx;
7952
7953 /* Look at the relocation information to figure out which symbol
7954 this is for. */
7955
7956 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7957 if (r_symndx == 0)
7958 {
7959 (*_bfd_error_handler)
7960 (_("%B: Warning: cannot determine the target function for"
7961 " stub section `%s'"),
7962 abfd, name);
7963 bfd_set_error (bfd_error_bad_value);
7964 return FALSE;
7965 }
7966
7967 if (r_symndx < extsymoff
7968 || sym_hashes[r_symndx - extsymoff] == NULL)
7969 {
7970 asection *o;
7971
7972 /* This stub is for a local symbol. This stub will only be
7973 needed if there is some relocation in this BFD, other
7974 than a 16 bit function call, which refers to this symbol. */
7975 for (o = abfd->sections; o != NULL; o = o->next)
7976 {
7977 Elf_Internal_Rela *sec_relocs;
7978 const Elf_Internal_Rela *r, *rend;
7979
7980 /* We can ignore stub sections when looking for relocs. */
7981 if ((o->flags & SEC_RELOC) == 0
7982 || o->reloc_count == 0
7983 || section_allows_mips16_refs_p (o))
7984 continue;
7985
7986 sec_relocs
7987 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7988 info->keep_memory);
7989 if (sec_relocs == NULL)
7990 return FALSE;
7991
7992 rend = sec_relocs + o->reloc_count;
7993 for (r = sec_relocs; r < rend; r++)
7994 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7995 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7996 break;
7997
7998 if (elf_section_data (o)->relocs != sec_relocs)
7999 free (sec_relocs);
8000
8001 if (r < rend)
8002 break;
8003 }
8004
8005 if (o == NULL)
8006 {
8007 /* There is no non-call reloc for this stub, so we do
8008 not need it. Since this function is called before
8009 the linker maps input sections to output sections, we
8010 can easily discard it by setting the SEC_EXCLUDE
8011 flag. */
8012 sec->flags |= SEC_EXCLUDE;
8013 return TRUE;
8014 }
8015
8016 /* Record this stub in an array of local symbol stubs for
8017 this BFD. */
8018 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8019 {
8020 unsigned long symcount;
8021 asection **n;
8022 bfd_size_type amt;
8023
8024 if (elf_bad_symtab (abfd))
8025 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8026 else
8027 symcount = symtab_hdr->sh_info;
8028 amt = symcount * sizeof (asection *);
8029 n = bfd_zalloc (abfd, amt);
8030 if (n == NULL)
8031 return FALSE;
8032 mips_elf_tdata (abfd)->local_stubs = n;
8033 }
8034
8035 sec->flags |= SEC_KEEP;
8036 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8037
8038 /* We don't need to set mips16_stubs_seen in this case.
8039 That flag is used to see whether we need to look through
8040 the global symbol table for stubs. We don't need to set
8041 it here, because we just have a local stub. */
8042 }
8043 else
8044 {
8045 struct mips_elf_link_hash_entry *h;
8046
8047 h = ((struct mips_elf_link_hash_entry *)
8048 sym_hashes[r_symndx - extsymoff]);
8049
8050 while (h->root.root.type == bfd_link_hash_indirect
8051 || h->root.root.type == bfd_link_hash_warning)
8052 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8053
8054 /* H is the symbol this stub is for. */
8055
8056 /* If we already have an appropriate stub for this function, we
8057 don't need another one, so we can discard this one. Since
8058 this function is called before the linker maps input sections
8059 to output sections, we can easily discard it by setting the
8060 SEC_EXCLUDE flag. */
8061 if (h->fn_stub != NULL)
8062 {
8063 sec->flags |= SEC_EXCLUDE;
8064 return TRUE;
8065 }
8066
8067 sec->flags |= SEC_KEEP;
8068 h->fn_stub = sec;
8069 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8070 }
8071 }
8072 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8073 {
8074 unsigned long r_symndx;
8075 struct mips_elf_link_hash_entry *h;
8076 asection **loc;
8077
8078 /* Look at the relocation information to figure out which symbol
8079 this is for. */
8080
8081 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8082 if (r_symndx == 0)
8083 {
8084 (*_bfd_error_handler)
8085 (_("%B: Warning: cannot determine the target function for"
8086 " stub section `%s'"),
8087 abfd, name);
8088 bfd_set_error (bfd_error_bad_value);
8089 return FALSE;
8090 }
8091
8092 if (r_symndx < extsymoff
8093 || sym_hashes[r_symndx - extsymoff] == NULL)
8094 {
8095 asection *o;
8096
8097 /* This stub is for a local symbol. This stub will only be
8098 needed if there is some relocation (R_MIPS16_26) in this BFD
8099 that refers to this symbol. */
8100 for (o = abfd->sections; o != NULL; o = o->next)
8101 {
8102 Elf_Internal_Rela *sec_relocs;
8103 const Elf_Internal_Rela *r, *rend;
8104
8105 /* We can ignore stub sections when looking for relocs. */
8106 if ((o->flags & SEC_RELOC) == 0
8107 || o->reloc_count == 0
8108 || section_allows_mips16_refs_p (o))
8109 continue;
8110
8111 sec_relocs
8112 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8113 info->keep_memory);
8114 if (sec_relocs == NULL)
8115 return FALSE;
8116
8117 rend = sec_relocs + o->reloc_count;
8118 for (r = sec_relocs; r < rend; r++)
8119 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8120 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8121 break;
8122
8123 if (elf_section_data (o)->relocs != sec_relocs)
8124 free (sec_relocs);
8125
8126 if (r < rend)
8127 break;
8128 }
8129
8130 if (o == NULL)
8131 {
8132 /* There is no non-call reloc for this stub, so we do
8133 not need it. Since this function is called before
8134 the linker maps input sections to output sections, we
8135 can easily discard it by setting the SEC_EXCLUDE
8136 flag. */
8137 sec->flags |= SEC_EXCLUDE;
8138 return TRUE;
8139 }
8140
8141 /* Record this stub in an array of local symbol call_stubs for
8142 this BFD. */
8143 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8144 {
8145 unsigned long symcount;
8146 asection **n;
8147 bfd_size_type amt;
8148
8149 if (elf_bad_symtab (abfd))
8150 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8151 else
8152 symcount = symtab_hdr->sh_info;
8153 amt = symcount * sizeof (asection *);
8154 n = bfd_zalloc (abfd, amt);
8155 if (n == NULL)
8156 return FALSE;
8157 mips_elf_tdata (abfd)->local_call_stubs = n;
8158 }
8159
8160 sec->flags |= SEC_KEEP;
8161 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8162
8163 /* We don't need to set mips16_stubs_seen in this case.
8164 That flag is used to see whether we need to look through
8165 the global symbol table for stubs. We don't need to set
8166 it here, because we just have a local stub. */
8167 }
8168 else
8169 {
8170 h = ((struct mips_elf_link_hash_entry *)
8171 sym_hashes[r_symndx - extsymoff]);
8172
8173 /* H is the symbol this stub is for. */
8174
8175 if (CALL_FP_STUB_P (name))
8176 loc = &h->call_fp_stub;
8177 else
8178 loc = &h->call_stub;
8179
8180 /* If we already have an appropriate stub for this function, we
8181 don't need another one, so we can discard this one. Since
8182 this function is called before the linker maps input sections
8183 to output sections, we can easily discard it by setting the
8184 SEC_EXCLUDE flag. */
8185 if (*loc != NULL)
8186 {
8187 sec->flags |= SEC_EXCLUDE;
8188 return TRUE;
8189 }
8190
8191 sec->flags |= SEC_KEEP;
8192 *loc = sec;
8193 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8194 }
8195 }
8196
8197 sreloc = NULL;
8198 contents = NULL;
8199 for (rel = relocs; rel < rel_end; ++rel)
8200 {
8201 unsigned long r_symndx;
8202 unsigned int r_type;
8203 struct elf_link_hash_entry *h;
8204 bfd_boolean can_make_dynamic_p;
8205 bfd_boolean call_reloc_p;
8206 bfd_boolean constrain_symbol_p;
8207
8208 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8209 r_type = ELF_R_TYPE (abfd, rel->r_info);
8210
8211 if (r_symndx < extsymoff)
8212 h = NULL;
8213 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8214 {
8215 (*_bfd_error_handler)
8216 (_("%B: Malformed reloc detected for section %s"),
8217 abfd, name);
8218 bfd_set_error (bfd_error_bad_value);
8219 return FALSE;
8220 }
8221 else
8222 {
8223 h = sym_hashes[r_symndx - extsymoff];
8224 if (h != NULL)
8225 {
8226 while (h->root.type == bfd_link_hash_indirect
8227 || h->root.type == bfd_link_hash_warning)
8228 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8229
8230 /* PR15323, ref flags aren't set for references in the
8231 same object. */
8232 h->root.non_ir_ref = 1;
8233 }
8234 }
8235
8236 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8237 relocation into a dynamic one. */
8238 can_make_dynamic_p = FALSE;
8239
8240 /* Set CALL_RELOC_P to true if the relocation is for a call,
8241 and if pointer equality therefore doesn't matter. */
8242 call_reloc_p = FALSE;
8243
8244 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8245 into account when deciding how to define the symbol.
8246 Relocations in nonallocatable sections such as .pdr and
8247 .debug* should have no effect. */
8248 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8249
8250 switch (r_type)
8251 {
8252 case R_MIPS_CALL16:
8253 case R_MIPS_CALL_HI16:
8254 case R_MIPS_CALL_LO16:
8255 case R_MIPS16_CALL16:
8256 case R_MICROMIPS_CALL16:
8257 case R_MICROMIPS_CALL_HI16:
8258 case R_MICROMIPS_CALL_LO16:
8259 call_reloc_p = TRUE;
8260 /* Fall through. */
8261
8262 case R_MIPS_GOT16:
8263 case R_MIPS_GOT_HI16:
8264 case R_MIPS_GOT_LO16:
8265 case R_MIPS_GOT_PAGE:
8266 case R_MIPS_GOT_OFST:
8267 case R_MIPS_GOT_DISP:
8268 case R_MIPS_TLS_GOTTPREL:
8269 case R_MIPS_TLS_GD:
8270 case R_MIPS_TLS_LDM:
8271 case R_MIPS16_GOT16:
8272 case R_MIPS16_TLS_GOTTPREL:
8273 case R_MIPS16_TLS_GD:
8274 case R_MIPS16_TLS_LDM:
8275 case R_MICROMIPS_GOT16:
8276 case R_MICROMIPS_GOT_HI16:
8277 case R_MICROMIPS_GOT_LO16:
8278 case R_MICROMIPS_GOT_PAGE:
8279 case R_MICROMIPS_GOT_OFST:
8280 case R_MICROMIPS_GOT_DISP:
8281 case R_MICROMIPS_TLS_GOTTPREL:
8282 case R_MICROMIPS_TLS_GD:
8283 case R_MICROMIPS_TLS_LDM:
8284 if (dynobj == NULL)
8285 elf_hash_table (info)->dynobj = dynobj = abfd;
8286 if (!mips_elf_create_got_section (dynobj, info))
8287 return FALSE;
8288 if (htab->is_vxworks && !bfd_link_pic (info))
8289 {
8290 (*_bfd_error_handler)
8291 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8292 abfd, (unsigned long) rel->r_offset);
8293 bfd_set_error (bfd_error_bad_value);
8294 return FALSE;
8295 }
8296 can_make_dynamic_p = TRUE;
8297 break;
8298
8299 case R_MIPS_NONE:
8300 case R_MIPS_JALR:
8301 case R_MICROMIPS_JALR:
8302 /* These relocations have empty fields and are purely there to
8303 provide link information. The symbol value doesn't matter. */
8304 constrain_symbol_p = FALSE;
8305 break;
8306
8307 case R_MIPS_GPREL16:
8308 case R_MIPS_GPREL32:
8309 case R_MIPS16_GPREL:
8310 case R_MICROMIPS_GPREL16:
8311 /* GP-relative relocations always resolve to a definition in a
8312 regular input file, ignoring the one-definition rule. This is
8313 important for the GP setup sequence in NewABI code, which
8314 always resolves to a local function even if other relocations
8315 against the symbol wouldn't. */
8316 constrain_symbol_p = FALSE;
8317 break;
8318
8319 case R_MIPS_32:
8320 case R_MIPS_REL32:
8321 case R_MIPS_64:
8322 /* In VxWorks executables, references to external symbols
8323 must be handled using copy relocs or PLT entries; it is not
8324 possible to convert this relocation into a dynamic one.
8325
8326 For executables that use PLTs and copy-relocs, we have a
8327 choice between converting the relocation into a dynamic
8328 one or using copy relocations or PLT entries. It is
8329 usually better to do the former, unless the relocation is
8330 against a read-only section. */
8331 if ((bfd_link_pic (info)
8332 || (h != NULL
8333 && !htab->is_vxworks
8334 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8335 && !(!info->nocopyreloc
8336 && !PIC_OBJECT_P (abfd)
8337 && MIPS_ELF_READONLY_SECTION (sec))))
8338 && (sec->flags & SEC_ALLOC) != 0)
8339 {
8340 can_make_dynamic_p = TRUE;
8341 if (dynobj == NULL)
8342 elf_hash_table (info)->dynobj = dynobj = abfd;
8343 }
8344 break;
8345
8346 case R_MIPS_26:
8347 case R_MIPS_PC16:
8348 case R_MIPS_PC21_S2:
8349 case R_MIPS_PC26_S2:
8350 case R_MIPS16_26:
8351 case R_MICROMIPS_26_S1:
8352 case R_MICROMIPS_PC7_S1:
8353 case R_MICROMIPS_PC10_S1:
8354 case R_MICROMIPS_PC16_S1:
8355 case R_MICROMIPS_PC23_S2:
8356 call_reloc_p = TRUE;
8357 break;
8358 }
8359
8360 if (h)
8361 {
8362 if (constrain_symbol_p)
8363 {
8364 if (!can_make_dynamic_p)
8365 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8366
8367 if (!call_reloc_p)
8368 h->pointer_equality_needed = 1;
8369
8370 /* We must not create a stub for a symbol that has
8371 relocations related to taking the function's address.
8372 This doesn't apply to VxWorks, where CALL relocs refer
8373 to a .got.plt entry instead of a normal .got entry. */
8374 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8375 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8376 }
8377
8378 /* Relocations against the special VxWorks __GOTT_BASE__ and
8379 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8380 room for them in .rela.dyn. */
8381 if (is_gott_symbol (info, h))
8382 {
8383 if (sreloc == NULL)
8384 {
8385 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8386 if (sreloc == NULL)
8387 return FALSE;
8388 }
8389 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8390 if (MIPS_ELF_READONLY_SECTION (sec))
8391 /* We tell the dynamic linker that there are
8392 relocations against the text segment. */
8393 info->flags |= DF_TEXTREL;
8394 }
8395 }
8396 else if (call_lo16_reloc_p (r_type)
8397 || got_lo16_reloc_p (r_type)
8398 || got_disp_reloc_p (r_type)
8399 || (got16_reloc_p (r_type) && htab->is_vxworks))
8400 {
8401 /* We may need a local GOT entry for this relocation. We
8402 don't count R_MIPS_GOT_PAGE because we can estimate the
8403 maximum number of pages needed by looking at the size of
8404 the segment. Similar comments apply to R_MIPS*_GOT16 and
8405 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8406 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8407 R_MIPS_CALL_HI16 because these are always followed by an
8408 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8409 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8410 rel->r_addend, info, r_type))
8411 return FALSE;
8412 }
8413
8414 if (h != NULL
8415 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8416 ELF_ST_IS_MIPS16 (h->other)))
8417 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8418
8419 switch (r_type)
8420 {
8421 case R_MIPS_CALL16:
8422 case R_MIPS16_CALL16:
8423 case R_MICROMIPS_CALL16:
8424 if (h == NULL)
8425 {
8426 (*_bfd_error_handler)
8427 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8428 abfd, (unsigned long) rel->r_offset);
8429 bfd_set_error (bfd_error_bad_value);
8430 return FALSE;
8431 }
8432 /* Fall through. */
8433
8434 case R_MIPS_CALL_HI16:
8435 case R_MIPS_CALL_LO16:
8436 case R_MICROMIPS_CALL_HI16:
8437 case R_MICROMIPS_CALL_LO16:
8438 if (h != NULL)
8439 {
8440 /* Make sure there is room in the regular GOT to hold the
8441 function's address. We may eliminate it in favour of
8442 a .got.plt entry later; see mips_elf_count_got_symbols. */
8443 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8444 r_type))
8445 return FALSE;
8446
8447 /* We need a stub, not a plt entry for the undefined
8448 function. But we record it as if it needs plt. See
8449 _bfd_elf_adjust_dynamic_symbol. */
8450 h->needs_plt = 1;
8451 h->type = STT_FUNC;
8452 }
8453 break;
8454
8455 case R_MIPS_GOT_PAGE:
8456 case R_MICROMIPS_GOT_PAGE:
8457 case R_MIPS16_GOT16:
8458 case R_MIPS_GOT16:
8459 case R_MIPS_GOT_HI16:
8460 case R_MIPS_GOT_LO16:
8461 case R_MICROMIPS_GOT16:
8462 case R_MICROMIPS_GOT_HI16:
8463 case R_MICROMIPS_GOT_LO16:
8464 if (!h || got_page_reloc_p (r_type))
8465 {
8466 /* This relocation needs (or may need, if h != NULL) a
8467 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8468 know for sure until we know whether the symbol is
8469 preemptible. */
8470 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8471 {
8472 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8473 return FALSE;
8474 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8475 addend = mips_elf_read_rel_addend (abfd, rel,
8476 howto, contents);
8477 if (got16_reloc_p (r_type))
8478 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8479 contents, &addend);
8480 else
8481 addend <<= howto->rightshift;
8482 }
8483 else
8484 addend = rel->r_addend;
8485 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8486 h, addend))
8487 return FALSE;
8488
8489 if (h)
8490 {
8491 struct mips_elf_link_hash_entry *hmips =
8492 (struct mips_elf_link_hash_entry *) h;
8493
8494 /* This symbol is definitely not overridable. */
8495 if (hmips->root.def_regular
8496 && ! (bfd_link_pic (info) && ! info->symbolic
8497 && ! hmips->root.forced_local))
8498 h = NULL;
8499 }
8500 }
8501 /* If this is a global, overridable symbol, GOT_PAGE will
8502 decay to GOT_DISP, so we'll need a GOT entry for it. */
8503 /* Fall through. */
8504
8505 case R_MIPS_GOT_DISP:
8506 case R_MICROMIPS_GOT_DISP:
8507 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8508 FALSE, r_type))
8509 return FALSE;
8510 break;
8511
8512 case R_MIPS_TLS_GOTTPREL:
8513 case R_MIPS16_TLS_GOTTPREL:
8514 case R_MICROMIPS_TLS_GOTTPREL:
8515 if (bfd_link_pic (info))
8516 info->flags |= DF_STATIC_TLS;
8517 /* Fall through */
8518
8519 case R_MIPS_TLS_LDM:
8520 case R_MIPS16_TLS_LDM:
8521 case R_MICROMIPS_TLS_LDM:
8522 if (tls_ldm_reloc_p (r_type))
8523 {
8524 r_symndx = STN_UNDEF;
8525 h = NULL;
8526 }
8527 /* Fall through */
8528
8529 case R_MIPS_TLS_GD:
8530 case R_MIPS16_TLS_GD:
8531 case R_MICROMIPS_TLS_GD:
8532 /* This symbol requires a global offset table entry, or two
8533 for TLS GD relocations. */
8534 if (h != NULL)
8535 {
8536 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8537 FALSE, r_type))
8538 return FALSE;
8539 }
8540 else
8541 {
8542 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8543 rel->r_addend,
8544 info, r_type))
8545 return FALSE;
8546 }
8547 break;
8548
8549 case R_MIPS_32:
8550 case R_MIPS_REL32:
8551 case R_MIPS_64:
8552 /* In VxWorks executables, references to external symbols
8553 are handled using copy relocs or PLT stubs, so there's
8554 no need to add a .rela.dyn entry for this relocation. */
8555 if (can_make_dynamic_p)
8556 {
8557 if (sreloc == NULL)
8558 {
8559 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8560 if (sreloc == NULL)
8561 return FALSE;
8562 }
8563 if (bfd_link_pic (info) && h == NULL)
8564 {
8565 /* When creating a shared object, we must copy these
8566 reloc types into the output file as R_MIPS_REL32
8567 relocs. Make room for this reloc in .rel(a).dyn. */
8568 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8569 if (MIPS_ELF_READONLY_SECTION (sec))
8570 /* We tell the dynamic linker that there are
8571 relocations against the text segment. */
8572 info->flags |= DF_TEXTREL;
8573 }
8574 else
8575 {
8576 struct mips_elf_link_hash_entry *hmips;
8577
8578 /* For a shared object, we must copy this relocation
8579 unless the symbol turns out to be undefined and
8580 weak with non-default visibility, in which case
8581 it will be left as zero.
8582
8583 We could elide R_MIPS_REL32 for locally binding symbols
8584 in shared libraries, but do not yet do so.
8585
8586 For an executable, we only need to copy this
8587 reloc if the symbol is defined in a dynamic
8588 object. */
8589 hmips = (struct mips_elf_link_hash_entry *) h;
8590 ++hmips->possibly_dynamic_relocs;
8591 if (MIPS_ELF_READONLY_SECTION (sec))
8592 /* We need it to tell the dynamic linker if there
8593 are relocations against the text segment. */
8594 hmips->readonly_reloc = TRUE;
8595 }
8596 }
8597
8598 if (SGI_COMPAT (abfd))
8599 mips_elf_hash_table (info)->compact_rel_size +=
8600 sizeof (Elf32_External_crinfo);
8601 break;
8602
8603 case R_MIPS_26:
8604 case R_MIPS_GPREL16:
8605 case R_MIPS_LITERAL:
8606 case R_MIPS_GPREL32:
8607 case R_MICROMIPS_26_S1:
8608 case R_MICROMIPS_GPREL16:
8609 case R_MICROMIPS_LITERAL:
8610 case R_MICROMIPS_GPREL7_S2:
8611 if (SGI_COMPAT (abfd))
8612 mips_elf_hash_table (info)->compact_rel_size +=
8613 sizeof (Elf32_External_crinfo);
8614 break;
8615
8616 /* This relocation describes the C++ object vtable hierarchy.
8617 Reconstruct it for later use during GC. */
8618 case R_MIPS_GNU_VTINHERIT:
8619 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8620 return FALSE;
8621 break;
8622
8623 /* This relocation describes which C++ vtable entries are actually
8624 used. Record for later use during GC. */
8625 case R_MIPS_GNU_VTENTRY:
8626 BFD_ASSERT (h != NULL);
8627 if (h != NULL
8628 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8629 return FALSE;
8630 break;
8631
8632 default:
8633 break;
8634 }
8635
8636 /* Record the need for a PLT entry. At this point we don't know
8637 yet if we are going to create a PLT in the first place, but
8638 we only record whether the relocation requires a standard MIPS
8639 or a compressed code entry anyway. If we don't make a PLT after
8640 all, then we'll just ignore these arrangements. Likewise if
8641 a PLT entry is not created because the symbol is satisfied
8642 locally. */
8643 if (h != NULL
8644 && jal_reloc_p (r_type)
8645 && !SYMBOL_CALLS_LOCAL (info, h))
8646 {
8647 if (h->plt.plist == NULL)
8648 h->plt.plist = mips_elf_make_plt_record (abfd);
8649 if (h->plt.plist == NULL)
8650 return FALSE;
8651
8652 if (r_type == R_MIPS_26)
8653 h->plt.plist->need_mips = TRUE;
8654 else
8655 h->plt.plist->need_comp = TRUE;
8656 }
8657
8658 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8659 if there is one. We only need to handle global symbols here;
8660 we decide whether to keep or delete stubs for local symbols
8661 when processing the stub's relocations. */
8662 if (h != NULL
8663 && !mips16_call_reloc_p (r_type)
8664 && !section_allows_mips16_refs_p (sec))
8665 {
8666 struct mips_elf_link_hash_entry *mh;
8667
8668 mh = (struct mips_elf_link_hash_entry *) h;
8669 mh->need_fn_stub = TRUE;
8670 }
8671
8672 /* Refuse some position-dependent relocations when creating a
8673 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8674 not PIC, but we can create dynamic relocations and the result
8675 will be fine. Also do not refuse R_MIPS_LO16, which can be
8676 combined with R_MIPS_GOT16. */
8677 if (bfd_link_pic (info))
8678 {
8679 switch (r_type)
8680 {
8681 case R_MIPS16_HI16:
8682 case R_MIPS_HI16:
8683 case R_MIPS_HIGHER:
8684 case R_MIPS_HIGHEST:
8685 case R_MICROMIPS_HI16:
8686 case R_MICROMIPS_HIGHER:
8687 case R_MICROMIPS_HIGHEST:
8688 /* Don't refuse a high part relocation if it's against
8689 no symbol (e.g. part of a compound relocation). */
8690 if (r_symndx == STN_UNDEF)
8691 break;
8692
8693 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8694 and has a special meaning. */
8695 if (!NEWABI_P (abfd) && h != NULL
8696 && strcmp (h->root.root.string, "_gp_disp") == 0)
8697 break;
8698
8699 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8700 if (is_gott_symbol (info, h))
8701 break;
8702
8703 /* FALLTHROUGH */
8704
8705 case R_MIPS16_26:
8706 case R_MIPS_26:
8707 case R_MICROMIPS_26_S1:
8708 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8709 (*_bfd_error_handler)
8710 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8711 abfd, howto->name,
8712 (h) ? h->root.root.string : "a local symbol");
8713 bfd_set_error (bfd_error_bad_value);
8714 return FALSE;
8715 default:
8716 break;
8717 }
8718 }
8719 }
8720
8721 return TRUE;
8722 }
8723 \f
8724 bfd_boolean
8725 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8726 struct bfd_link_info *link_info,
8727 bfd_boolean *again)
8728 {
8729 Elf_Internal_Rela *internal_relocs;
8730 Elf_Internal_Rela *irel, *irelend;
8731 Elf_Internal_Shdr *symtab_hdr;
8732 bfd_byte *contents = NULL;
8733 size_t extsymoff;
8734 bfd_boolean changed_contents = FALSE;
8735 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8736 Elf_Internal_Sym *isymbuf = NULL;
8737
8738 /* We are not currently changing any sizes, so only one pass. */
8739 *again = FALSE;
8740
8741 if (bfd_link_relocatable (link_info))
8742 return TRUE;
8743
8744 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8745 link_info->keep_memory);
8746 if (internal_relocs == NULL)
8747 return TRUE;
8748
8749 irelend = internal_relocs + sec->reloc_count
8750 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8751 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8752 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8753
8754 for (irel = internal_relocs; irel < irelend; irel++)
8755 {
8756 bfd_vma symval;
8757 bfd_signed_vma sym_offset;
8758 unsigned int r_type;
8759 unsigned long r_symndx;
8760 asection *sym_sec;
8761 unsigned long instruction;
8762
8763 /* Turn jalr into bgezal, and jr into beq, if they're marked
8764 with a JALR relocation, that indicate where they jump to.
8765 This saves some pipeline bubbles. */
8766 r_type = ELF_R_TYPE (abfd, irel->r_info);
8767 if (r_type != R_MIPS_JALR)
8768 continue;
8769
8770 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8771 /* Compute the address of the jump target. */
8772 if (r_symndx >= extsymoff)
8773 {
8774 struct mips_elf_link_hash_entry *h
8775 = ((struct mips_elf_link_hash_entry *)
8776 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8777
8778 while (h->root.root.type == bfd_link_hash_indirect
8779 || h->root.root.type == bfd_link_hash_warning)
8780 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8781
8782 /* If a symbol is undefined, or if it may be overridden,
8783 skip it. */
8784 if (! ((h->root.root.type == bfd_link_hash_defined
8785 || h->root.root.type == bfd_link_hash_defweak)
8786 && h->root.root.u.def.section)
8787 || (bfd_link_pic (link_info) && ! link_info->symbolic
8788 && !h->root.forced_local))
8789 continue;
8790
8791 sym_sec = h->root.root.u.def.section;
8792 if (sym_sec->output_section)
8793 symval = (h->root.root.u.def.value
8794 + sym_sec->output_section->vma
8795 + sym_sec->output_offset);
8796 else
8797 symval = h->root.root.u.def.value;
8798 }
8799 else
8800 {
8801 Elf_Internal_Sym *isym;
8802
8803 /* Read this BFD's symbols if we haven't done so already. */
8804 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8805 {
8806 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8807 if (isymbuf == NULL)
8808 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8809 symtab_hdr->sh_info, 0,
8810 NULL, NULL, NULL);
8811 if (isymbuf == NULL)
8812 goto relax_return;
8813 }
8814
8815 isym = isymbuf + r_symndx;
8816 if (isym->st_shndx == SHN_UNDEF)
8817 continue;
8818 else if (isym->st_shndx == SHN_ABS)
8819 sym_sec = bfd_abs_section_ptr;
8820 else if (isym->st_shndx == SHN_COMMON)
8821 sym_sec = bfd_com_section_ptr;
8822 else
8823 sym_sec
8824 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8825 symval = isym->st_value
8826 + sym_sec->output_section->vma
8827 + sym_sec->output_offset;
8828 }
8829
8830 /* Compute branch offset, from delay slot of the jump to the
8831 branch target. */
8832 sym_offset = (symval + irel->r_addend)
8833 - (sec_start + irel->r_offset + 4);
8834
8835 /* Branch offset must be properly aligned. */
8836 if ((sym_offset & 3) != 0)
8837 continue;
8838
8839 sym_offset >>= 2;
8840
8841 /* Check that it's in range. */
8842 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8843 continue;
8844
8845 /* Get the section contents if we haven't done so already. */
8846 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8847 goto relax_return;
8848
8849 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8850
8851 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8852 if ((instruction & 0xfc1fffff) == 0x0000f809)
8853 instruction = 0x04110000;
8854 /* If it was jr <reg>, turn it into b <target>. */
8855 else if ((instruction & 0xfc1fffff) == 0x00000008)
8856 instruction = 0x10000000;
8857 else
8858 continue;
8859
8860 instruction |= (sym_offset & 0xffff);
8861 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8862 changed_contents = TRUE;
8863 }
8864
8865 if (contents != NULL
8866 && elf_section_data (sec)->this_hdr.contents != contents)
8867 {
8868 if (!changed_contents && !link_info->keep_memory)
8869 free (contents);
8870 else
8871 {
8872 /* Cache the section contents for elf_link_input_bfd. */
8873 elf_section_data (sec)->this_hdr.contents = contents;
8874 }
8875 }
8876 return TRUE;
8877
8878 relax_return:
8879 if (contents != NULL
8880 && elf_section_data (sec)->this_hdr.contents != contents)
8881 free (contents);
8882 return FALSE;
8883 }
8884 \f
8885 /* Allocate space for global sym dynamic relocs. */
8886
8887 static bfd_boolean
8888 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8889 {
8890 struct bfd_link_info *info = inf;
8891 bfd *dynobj;
8892 struct mips_elf_link_hash_entry *hmips;
8893 struct mips_elf_link_hash_table *htab;
8894
8895 htab = mips_elf_hash_table (info);
8896 BFD_ASSERT (htab != NULL);
8897
8898 dynobj = elf_hash_table (info)->dynobj;
8899 hmips = (struct mips_elf_link_hash_entry *) h;
8900
8901 /* VxWorks executables are handled elsewhere; we only need to
8902 allocate relocations in shared objects. */
8903 if (htab->is_vxworks && !bfd_link_pic (info))
8904 return TRUE;
8905
8906 /* Ignore indirect symbols. All relocations against such symbols
8907 will be redirected to the target symbol. */
8908 if (h->root.type == bfd_link_hash_indirect)
8909 return TRUE;
8910
8911 /* If this symbol is defined in a dynamic object, or we are creating
8912 a shared library, we will need to copy any R_MIPS_32 or
8913 R_MIPS_REL32 relocs against it into the output file. */
8914 if (! bfd_link_relocatable (info)
8915 && hmips->possibly_dynamic_relocs != 0
8916 && (h->root.type == bfd_link_hash_defweak
8917 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8918 || bfd_link_pic (info)))
8919 {
8920 bfd_boolean do_copy = TRUE;
8921
8922 if (h->root.type == bfd_link_hash_undefweak)
8923 {
8924 /* Do not copy relocations for undefined weak symbols with
8925 non-default visibility. */
8926 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8927 do_copy = FALSE;
8928
8929 /* Make sure undefined weak symbols are output as a dynamic
8930 symbol in PIEs. */
8931 else if (h->dynindx == -1 && !h->forced_local)
8932 {
8933 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8934 return FALSE;
8935 }
8936 }
8937
8938 if (do_copy)
8939 {
8940 /* Even though we don't directly need a GOT entry for this symbol,
8941 the SVR4 psABI requires it to have a dynamic symbol table
8942 index greater that DT_MIPS_GOTSYM if there are dynamic
8943 relocations against it.
8944
8945 VxWorks does not enforce the same mapping between the GOT
8946 and the symbol table, so the same requirement does not
8947 apply there. */
8948 if (!htab->is_vxworks)
8949 {
8950 if (hmips->global_got_area > GGA_RELOC_ONLY)
8951 hmips->global_got_area = GGA_RELOC_ONLY;
8952 hmips->got_only_for_calls = FALSE;
8953 }
8954
8955 mips_elf_allocate_dynamic_relocations
8956 (dynobj, info, hmips->possibly_dynamic_relocs);
8957 if (hmips->readonly_reloc)
8958 /* We tell the dynamic linker that there are relocations
8959 against the text segment. */
8960 info->flags |= DF_TEXTREL;
8961 }
8962 }
8963
8964 return TRUE;
8965 }
8966
8967 /* Adjust a symbol defined by a dynamic object and referenced by a
8968 regular object. The current definition is in some section of the
8969 dynamic object, but we're not including those sections. We have to
8970 change the definition to something the rest of the link can
8971 understand. */
8972
8973 bfd_boolean
8974 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8975 struct elf_link_hash_entry *h)
8976 {
8977 bfd *dynobj;
8978 struct mips_elf_link_hash_entry *hmips;
8979 struct mips_elf_link_hash_table *htab;
8980
8981 htab = mips_elf_hash_table (info);
8982 BFD_ASSERT (htab != NULL);
8983
8984 dynobj = elf_hash_table (info)->dynobj;
8985 hmips = (struct mips_elf_link_hash_entry *) h;
8986
8987 /* Make sure we know what is going on here. */
8988 BFD_ASSERT (dynobj != NULL
8989 && (h->needs_plt
8990 || h->u.weakdef != NULL
8991 || (h->def_dynamic
8992 && h->ref_regular
8993 && !h->def_regular)));
8994
8995 hmips = (struct mips_elf_link_hash_entry *) h;
8996
8997 /* If there are call relocations against an externally-defined symbol,
8998 see whether we can create a MIPS lazy-binding stub for it. We can
8999 only do this if all references to the function are through call
9000 relocations, and in that case, the traditional lazy-binding stubs
9001 are much more efficient than PLT entries.
9002
9003 Traditional stubs are only available on SVR4 psABI-based systems;
9004 VxWorks always uses PLTs instead. */
9005 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9006 {
9007 if (! elf_hash_table (info)->dynamic_sections_created)
9008 return TRUE;
9009
9010 /* If this symbol is not defined in a regular file, then set
9011 the symbol to the stub location. This is required to make
9012 function pointers compare as equal between the normal
9013 executable and the shared library. */
9014 if (!h->def_regular)
9015 {
9016 hmips->needs_lazy_stub = TRUE;
9017 htab->lazy_stub_count++;
9018 return TRUE;
9019 }
9020 }
9021 /* As above, VxWorks requires PLT entries for externally-defined
9022 functions that are only accessed through call relocations.
9023
9024 Both VxWorks and non-VxWorks targets also need PLT entries if there
9025 are static-only relocations against an externally-defined function.
9026 This can technically occur for shared libraries if there are
9027 branches to the symbol, although it is unlikely that this will be
9028 used in practice due to the short ranges involved. It can occur
9029 for any relative or absolute relocation in executables; in that
9030 case, the PLT entry becomes the function's canonical address. */
9031 else if (((h->needs_plt && !hmips->no_fn_stub)
9032 || (h->type == STT_FUNC && hmips->has_static_relocs))
9033 && htab->use_plts_and_copy_relocs
9034 && !SYMBOL_CALLS_LOCAL (info, h)
9035 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9036 && h->root.type == bfd_link_hash_undefweak))
9037 {
9038 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9039 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9040
9041 /* If this is the first symbol to need a PLT entry, then make some
9042 basic setup. Also work out PLT entry sizes. We'll need them
9043 for PLT offset calculations. */
9044 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9045 {
9046 BFD_ASSERT (htab->sgotplt->size == 0);
9047 BFD_ASSERT (htab->plt_got_index == 0);
9048
9049 /* If we're using the PLT additions to the psABI, each PLT
9050 entry is 16 bytes and the PLT0 entry is 32 bytes.
9051 Encourage better cache usage by aligning. We do this
9052 lazily to avoid pessimizing traditional objects. */
9053 if (!htab->is_vxworks
9054 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9055 return FALSE;
9056
9057 /* Make sure that .got.plt is word-aligned. We do this lazily
9058 for the same reason as above. */
9059 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9060 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9061 return FALSE;
9062
9063 /* On non-VxWorks targets, the first two entries in .got.plt
9064 are reserved. */
9065 if (!htab->is_vxworks)
9066 htab->plt_got_index
9067 += (get_elf_backend_data (dynobj)->got_header_size
9068 / MIPS_ELF_GOT_SIZE (dynobj));
9069
9070 /* On VxWorks, also allocate room for the header's
9071 .rela.plt.unloaded entries. */
9072 if (htab->is_vxworks && !bfd_link_pic (info))
9073 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9074
9075 /* Now work out the sizes of individual PLT entries. */
9076 if (htab->is_vxworks && bfd_link_pic (info))
9077 htab->plt_mips_entry_size
9078 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9079 else if (htab->is_vxworks)
9080 htab->plt_mips_entry_size
9081 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9082 else if (newabi_p)
9083 htab->plt_mips_entry_size
9084 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9085 else if (!micromips_p)
9086 {
9087 htab->plt_mips_entry_size
9088 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9089 htab->plt_comp_entry_size
9090 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9091 }
9092 else if (htab->insn32)
9093 {
9094 htab->plt_mips_entry_size
9095 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9096 htab->plt_comp_entry_size
9097 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9098 }
9099 else
9100 {
9101 htab->plt_mips_entry_size
9102 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9103 htab->plt_comp_entry_size
9104 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9105 }
9106 }
9107
9108 if (h->plt.plist == NULL)
9109 h->plt.plist = mips_elf_make_plt_record (dynobj);
9110 if (h->plt.plist == NULL)
9111 return FALSE;
9112
9113 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9114 n32 or n64, so always use a standard entry there.
9115
9116 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9117 all MIPS16 calls will go via that stub, and there is no benefit
9118 to having a MIPS16 entry. And in the case of call_stub a
9119 standard entry actually has to be used as the stub ends with a J
9120 instruction. */
9121 if (newabi_p
9122 || htab->is_vxworks
9123 || hmips->call_stub
9124 || hmips->call_fp_stub)
9125 {
9126 h->plt.plist->need_mips = TRUE;
9127 h->plt.plist->need_comp = FALSE;
9128 }
9129
9130 /* Otherwise, if there are no direct calls to the function, we
9131 have a free choice of whether to use standard or compressed
9132 entries. Prefer microMIPS entries if the object is known to
9133 contain microMIPS code, so that it becomes possible to create
9134 pure microMIPS binaries. Prefer standard entries otherwise,
9135 because MIPS16 ones are no smaller and are usually slower. */
9136 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9137 {
9138 if (micromips_p)
9139 h->plt.plist->need_comp = TRUE;
9140 else
9141 h->plt.plist->need_mips = TRUE;
9142 }
9143
9144 if (h->plt.plist->need_mips)
9145 {
9146 h->plt.plist->mips_offset = htab->plt_mips_offset;
9147 htab->plt_mips_offset += htab->plt_mips_entry_size;
9148 }
9149 if (h->plt.plist->need_comp)
9150 {
9151 h->plt.plist->comp_offset = htab->plt_comp_offset;
9152 htab->plt_comp_offset += htab->plt_comp_entry_size;
9153 }
9154
9155 /* Reserve the corresponding .got.plt entry now too. */
9156 h->plt.plist->gotplt_index = htab->plt_got_index++;
9157
9158 /* If the output file has no definition of the symbol, set the
9159 symbol's value to the address of the stub. */
9160 if (!bfd_link_pic (info) && !h->def_regular)
9161 hmips->use_plt_entry = TRUE;
9162
9163 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9164 htab->srelplt->size += (htab->is_vxworks
9165 ? MIPS_ELF_RELA_SIZE (dynobj)
9166 : MIPS_ELF_REL_SIZE (dynobj));
9167
9168 /* Make room for the .rela.plt.unloaded relocations. */
9169 if (htab->is_vxworks && !bfd_link_pic (info))
9170 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9171
9172 /* All relocations against this symbol that could have been made
9173 dynamic will now refer to the PLT entry instead. */
9174 hmips->possibly_dynamic_relocs = 0;
9175
9176 return TRUE;
9177 }
9178
9179 /* If this is a weak symbol, and there is a real definition, the
9180 processor independent code will have arranged for us to see the
9181 real definition first, and we can just use the same value. */
9182 if (h->u.weakdef != NULL)
9183 {
9184 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9185 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9186 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9187 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9188 return TRUE;
9189 }
9190
9191 /* Otherwise, there is nothing further to do for symbols defined
9192 in regular objects. */
9193 if (h->def_regular)
9194 return TRUE;
9195
9196 /* There's also nothing more to do if we'll convert all relocations
9197 against this symbol into dynamic relocations. */
9198 if (!hmips->has_static_relocs)
9199 return TRUE;
9200
9201 /* We're now relying on copy relocations. Complain if we have
9202 some that we can't convert. */
9203 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9204 {
9205 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9206 "dynamic symbol %s"),
9207 h->root.root.string);
9208 bfd_set_error (bfd_error_bad_value);
9209 return FALSE;
9210 }
9211
9212 /* We must allocate the symbol in our .dynbss section, which will
9213 become part of the .bss section of the executable. There will be
9214 an entry for this symbol in the .dynsym section. The dynamic
9215 object will contain position independent code, so all references
9216 from the dynamic object to this symbol will go through the global
9217 offset table. The dynamic linker will use the .dynsym entry to
9218 determine the address it must put in the global offset table, so
9219 both the dynamic object and the regular object will refer to the
9220 same memory location for the variable. */
9221
9222 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9223 {
9224 if (htab->is_vxworks)
9225 htab->srelbss->size += sizeof (Elf32_External_Rela);
9226 else
9227 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9228 h->needs_copy = 1;
9229 }
9230
9231 /* All relocations against this symbol that could have been made
9232 dynamic will now refer to the local copy instead. */
9233 hmips->possibly_dynamic_relocs = 0;
9234
9235 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9236 }
9237 \f
9238 /* This function is called after all the input files have been read,
9239 and the input sections have been assigned to output sections. We
9240 check for any mips16 stub sections that we can discard. */
9241
9242 bfd_boolean
9243 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9244 struct bfd_link_info *info)
9245 {
9246 asection *sect;
9247 struct mips_elf_link_hash_table *htab;
9248 struct mips_htab_traverse_info hti;
9249
9250 htab = mips_elf_hash_table (info);
9251 BFD_ASSERT (htab != NULL);
9252
9253 /* The .reginfo section has a fixed size. */
9254 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9255 if (sect != NULL)
9256 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9257
9258 /* The .MIPS.abiflags section has a fixed size. */
9259 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9260 if (sect != NULL)
9261 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9262
9263 hti.info = info;
9264 hti.output_bfd = output_bfd;
9265 hti.error = FALSE;
9266 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9267 mips_elf_check_symbols, &hti);
9268 if (hti.error)
9269 return FALSE;
9270
9271 return TRUE;
9272 }
9273
9274 /* If the link uses a GOT, lay it out and work out its size. */
9275
9276 static bfd_boolean
9277 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9278 {
9279 bfd *dynobj;
9280 asection *s;
9281 struct mips_got_info *g;
9282 bfd_size_type loadable_size = 0;
9283 bfd_size_type page_gotno;
9284 bfd *ibfd;
9285 struct mips_elf_traverse_got_arg tga;
9286 struct mips_elf_link_hash_table *htab;
9287
9288 htab = mips_elf_hash_table (info);
9289 BFD_ASSERT (htab != NULL);
9290
9291 s = htab->sgot;
9292 if (s == NULL)
9293 return TRUE;
9294
9295 dynobj = elf_hash_table (info)->dynobj;
9296 g = htab->got_info;
9297
9298 /* Allocate room for the reserved entries. VxWorks always reserves
9299 3 entries; other objects only reserve 2 entries. */
9300 BFD_ASSERT (g->assigned_low_gotno == 0);
9301 if (htab->is_vxworks)
9302 htab->reserved_gotno = 3;
9303 else
9304 htab->reserved_gotno = 2;
9305 g->local_gotno += htab->reserved_gotno;
9306 g->assigned_low_gotno = htab->reserved_gotno;
9307
9308 /* Decide which symbols need to go in the global part of the GOT and
9309 count the number of reloc-only GOT symbols. */
9310 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9311
9312 if (!mips_elf_resolve_final_got_entries (info, g))
9313 return FALSE;
9314
9315 /* Calculate the total loadable size of the output. That
9316 will give us the maximum number of GOT_PAGE entries
9317 required. */
9318 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9319 {
9320 asection *subsection;
9321
9322 for (subsection = ibfd->sections;
9323 subsection;
9324 subsection = subsection->next)
9325 {
9326 if ((subsection->flags & SEC_ALLOC) == 0)
9327 continue;
9328 loadable_size += ((subsection->size + 0xf)
9329 &~ (bfd_size_type) 0xf);
9330 }
9331 }
9332
9333 if (htab->is_vxworks)
9334 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9335 relocations against local symbols evaluate to "G", and the EABI does
9336 not include R_MIPS_GOT_PAGE. */
9337 page_gotno = 0;
9338 else
9339 /* Assume there are two loadable segments consisting of contiguous
9340 sections. Is 5 enough? */
9341 page_gotno = (loadable_size >> 16) + 5;
9342
9343 /* Choose the smaller of the two page estimates; both are intended to be
9344 conservative. */
9345 if (page_gotno > g->page_gotno)
9346 page_gotno = g->page_gotno;
9347
9348 g->local_gotno += page_gotno;
9349 g->assigned_high_gotno = g->local_gotno - 1;
9350
9351 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9352 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9353 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9354
9355 /* VxWorks does not support multiple GOTs. It initializes $gp to
9356 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9357 dynamic loader. */
9358 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9359 {
9360 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9361 return FALSE;
9362 }
9363 else
9364 {
9365 /* Record that all bfds use G. This also has the effect of freeing
9366 the per-bfd GOTs, which we no longer need. */
9367 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9368 if (mips_elf_bfd_got (ibfd, FALSE))
9369 mips_elf_replace_bfd_got (ibfd, g);
9370 mips_elf_replace_bfd_got (output_bfd, g);
9371
9372 /* Set up TLS entries. */
9373 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9374 tga.info = info;
9375 tga.g = g;
9376 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9377 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9378 if (!tga.g)
9379 return FALSE;
9380 BFD_ASSERT (g->tls_assigned_gotno
9381 == g->global_gotno + g->local_gotno + g->tls_gotno);
9382
9383 /* Each VxWorks GOT entry needs an explicit relocation. */
9384 if (htab->is_vxworks && bfd_link_pic (info))
9385 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9386
9387 /* Allocate room for the TLS relocations. */
9388 if (g->relocs)
9389 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9390 }
9391
9392 return TRUE;
9393 }
9394
9395 /* Estimate the size of the .MIPS.stubs section. */
9396
9397 static void
9398 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9399 {
9400 struct mips_elf_link_hash_table *htab;
9401 bfd_size_type dynsymcount;
9402
9403 htab = mips_elf_hash_table (info);
9404 BFD_ASSERT (htab != NULL);
9405
9406 if (htab->lazy_stub_count == 0)
9407 return;
9408
9409 /* IRIX rld assumes that a function stub isn't at the end of the .text
9410 section, so add a dummy entry to the end. */
9411 htab->lazy_stub_count++;
9412
9413 /* Get a worst-case estimate of the number of dynamic symbols needed.
9414 At this point, dynsymcount does not account for section symbols
9415 and count_section_dynsyms may overestimate the number that will
9416 be needed. */
9417 dynsymcount = (elf_hash_table (info)->dynsymcount
9418 + count_section_dynsyms (output_bfd, info));
9419
9420 /* Determine the size of one stub entry. There's no disadvantage
9421 from using microMIPS code here, so for the sake of pure-microMIPS
9422 binaries we prefer it whenever there's any microMIPS code in
9423 output produced at all. This has a benefit of stubs being
9424 shorter by 4 bytes each too, unless in the insn32 mode. */
9425 if (!MICROMIPS_P (output_bfd))
9426 htab->function_stub_size = (dynsymcount > 0x10000
9427 ? MIPS_FUNCTION_STUB_BIG_SIZE
9428 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9429 else if (htab->insn32)
9430 htab->function_stub_size = (dynsymcount > 0x10000
9431 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9432 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9433 else
9434 htab->function_stub_size = (dynsymcount > 0x10000
9435 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9436 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9437
9438 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9439 }
9440
9441 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9442 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9443 stub, allocate an entry in the stubs section. */
9444
9445 static bfd_boolean
9446 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9447 {
9448 struct mips_htab_traverse_info *hti = data;
9449 struct mips_elf_link_hash_table *htab;
9450 struct bfd_link_info *info;
9451 bfd *output_bfd;
9452
9453 info = hti->info;
9454 output_bfd = hti->output_bfd;
9455 htab = mips_elf_hash_table (info);
9456 BFD_ASSERT (htab != NULL);
9457
9458 if (h->needs_lazy_stub)
9459 {
9460 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9461 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9462 bfd_vma isa_bit = micromips_p;
9463
9464 BFD_ASSERT (htab->root.dynobj != NULL);
9465 if (h->root.plt.plist == NULL)
9466 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9467 if (h->root.plt.plist == NULL)
9468 {
9469 hti->error = TRUE;
9470 return FALSE;
9471 }
9472 h->root.root.u.def.section = htab->sstubs;
9473 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9474 h->root.plt.plist->stub_offset = htab->sstubs->size;
9475 h->root.other = other;
9476 htab->sstubs->size += htab->function_stub_size;
9477 }
9478 return TRUE;
9479 }
9480
9481 /* Allocate offsets in the stubs section to each symbol that needs one.
9482 Set the final size of the .MIPS.stub section. */
9483
9484 static bfd_boolean
9485 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9486 {
9487 bfd *output_bfd = info->output_bfd;
9488 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9489 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9490 bfd_vma isa_bit = micromips_p;
9491 struct mips_elf_link_hash_table *htab;
9492 struct mips_htab_traverse_info hti;
9493 struct elf_link_hash_entry *h;
9494 bfd *dynobj;
9495
9496 htab = mips_elf_hash_table (info);
9497 BFD_ASSERT (htab != NULL);
9498
9499 if (htab->lazy_stub_count == 0)
9500 return TRUE;
9501
9502 htab->sstubs->size = 0;
9503 hti.info = info;
9504 hti.output_bfd = output_bfd;
9505 hti.error = FALSE;
9506 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9507 if (hti.error)
9508 return FALSE;
9509 htab->sstubs->size += htab->function_stub_size;
9510 BFD_ASSERT (htab->sstubs->size
9511 == htab->lazy_stub_count * htab->function_stub_size);
9512
9513 dynobj = elf_hash_table (info)->dynobj;
9514 BFD_ASSERT (dynobj != NULL);
9515 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9516 if (h == NULL)
9517 return FALSE;
9518 h->root.u.def.value = isa_bit;
9519 h->other = other;
9520 h->type = STT_FUNC;
9521
9522 return TRUE;
9523 }
9524
9525 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9526 bfd_link_info. If H uses the address of a PLT entry as the value
9527 of the symbol, then set the entry in the symbol table now. Prefer
9528 a standard MIPS PLT entry. */
9529
9530 static bfd_boolean
9531 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9532 {
9533 struct bfd_link_info *info = data;
9534 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9535 struct mips_elf_link_hash_table *htab;
9536 unsigned int other;
9537 bfd_vma isa_bit;
9538 bfd_vma val;
9539
9540 htab = mips_elf_hash_table (info);
9541 BFD_ASSERT (htab != NULL);
9542
9543 if (h->use_plt_entry)
9544 {
9545 BFD_ASSERT (h->root.plt.plist != NULL);
9546 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9547 || h->root.plt.plist->comp_offset != MINUS_ONE);
9548
9549 val = htab->plt_header_size;
9550 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9551 {
9552 isa_bit = 0;
9553 val += h->root.plt.plist->mips_offset;
9554 other = 0;
9555 }
9556 else
9557 {
9558 isa_bit = 1;
9559 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9560 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9561 }
9562 val += isa_bit;
9563 /* For VxWorks, point at the PLT load stub rather than the lazy
9564 resolution stub; this stub will become the canonical function
9565 address. */
9566 if (htab->is_vxworks)
9567 val += 8;
9568
9569 h->root.root.u.def.section = htab->splt;
9570 h->root.root.u.def.value = val;
9571 h->root.other = other;
9572 }
9573
9574 return TRUE;
9575 }
9576
9577 /* Set the sizes of the dynamic sections. */
9578
9579 bfd_boolean
9580 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9581 struct bfd_link_info *info)
9582 {
9583 bfd *dynobj;
9584 asection *s, *sreldyn;
9585 bfd_boolean reltext;
9586 struct mips_elf_link_hash_table *htab;
9587
9588 htab = mips_elf_hash_table (info);
9589 BFD_ASSERT (htab != NULL);
9590 dynobj = elf_hash_table (info)->dynobj;
9591 BFD_ASSERT (dynobj != NULL);
9592
9593 if (elf_hash_table (info)->dynamic_sections_created)
9594 {
9595 /* Set the contents of the .interp section to the interpreter. */
9596 if (bfd_link_executable (info) && !info->nointerp)
9597 {
9598 s = bfd_get_linker_section (dynobj, ".interp");
9599 BFD_ASSERT (s != NULL);
9600 s->size
9601 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9602 s->contents
9603 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9604 }
9605
9606 /* Figure out the size of the PLT header if we know that we
9607 are using it. For the sake of cache alignment always use
9608 a standard header whenever any standard entries are present
9609 even if microMIPS entries are present as well. This also
9610 lets the microMIPS header rely on the value of $v0 only set
9611 by microMIPS entries, for a small size reduction.
9612
9613 Set symbol table entry values for symbols that use the
9614 address of their PLT entry now that we can calculate it.
9615
9616 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9617 haven't already in _bfd_elf_create_dynamic_sections. */
9618 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9619 {
9620 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9621 && !htab->plt_mips_offset);
9622 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9623 bfd_vma isa_bit = micromips_p;
9624 struct elf_link_hash_entry *h;
9625 bfd_vma size;
9626
9627 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9628 BFD_ASSERT (htab->sgotplt->size == 0);
9629 BFD_ASSERT (htab->splt->size == 0);
9630
9631 if (htab->is_vxworks && bfd_link_pic (info))
9632 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9633 else if (htab->is_vxworks)
9634 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9635 else if (ABI_64_P (output_bfd))
9636 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9637 else if (ABI_N32_P (output_bfd))
9638 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9639 else if (!micromips_p)
9640 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9641 else if (htab->insn32)
9642 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9643 else
9644 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9645
9646 htab->plt_header_is_comp = micromips_p;
9647 htab->plt_header_size = size;
9648 htab->splt->size = (size
9649 + htab->plt_mips_offset
9650 + htab->plt_comp_offset);
9651 htab->sgotplt->size = (htab->plt_got_index
9652 * MIPS_ELF_GOT_SIZE (dynobj));
9653
9654 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9655
9656 if (htab->root.hplt == NULL)
9657 {
9658 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9659 "_PROCEDURE_LINKAGE_TABLE_");
9660 htab->root.hplt = h;
9661 if (h == NULL)
9662 return FALSE;
9663 }
9664
9665 h = htab->root.hplt;
9666 h->root.u.def.value = isa_bit;
9667 h->other = other;
9668 h->type = STT_FUNC;
9669 }
9670 }
9671
9672 /* Allocate space for global sym dynamic relocs. */
9673 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9674
9675 mips_elf_estimate_stub_size (output_bfd, info);
9676
9677 if (!mips_elf_lay_out_got (output_bfd, info))
9678 return FALSE;
9679
9680 mips_elf_lay_out_lazy_stubs (info);
9681
9682 /* The check_relocs and adjust_dynamic_symbol entry points have
9683 determined the sizes of the various dynamic sections. Allocate
9684 memory for them. */
9685 reltext = FALSE;
9686 for (s = dynobj->sections; s != NULL; s = s->next)
9687 {
9688 const char *name;
9689
9690 /* It's OK to base decisions on the section name, because none
9691 of the dynobj section names depend upon the input files. */
9692 name = bfd_get_section_name (dynobj, s);
9693
9694 if ((s->flags & SEC_LINKER_CREATED) == 0)
9695 continue;
9696
9697 if (CONST_STRNEQ (name, ".rel"))
9698 {
9699 if (s->size != 0)
9700 {
9701 const char *outname;
9702 asection *target;
9703
9704 /* If this relocation section applies to a read only
9705 section, then we probably need a DT_TEXTREL entry.
9706 If the relocation section is .rel(a).dyn, we always
9707 assert a DT_TEXTREL entry rather than testing whether
9708 there exists a relocation to a read only section or
9709 not. */
9710 outname = bfd_get_section_name (output_bfd,
9711 s->output_section);
9712 target = bfd_get_section_by_name (output_bfd, outname + 4);
9713 if ((target != NULL
9714 && (target->flags & SEC_READONLY) != 0
9715 && (target->flags & SEC_ALLOC) != 0)
9716 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9717 reltext = TRUE;
9718
9719 /* We use the reloc_count field as a counter if we need
9720 to copy relocs into the output file. */
9721 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9722 s->reloc_count = 0;
9723
9724 /* If combreloc is enabled, elf_link_sort_relocs() will
9725 sort relocations, but in a different way than we do,
9726 and before we're done creating relocations. Also, it
9727 will move them around between input sections'
9728 relocation's contents, so our sorting would be
9729 broken, so don't let it run. */
9730 info->combreloc = 0;
9731 }
9732 }
9733 else if (bfd_link_executable (info)
9734 && ! mips_elf_hash_table (info)->use_rld_obj_head
9735 && CONST_STRNEQ (name, ".rld_map"))
9736 {
9737 /* We add a room for __rld_map. It will be filled in by the
9738 rtld to contain a pointer to the _r_debug structure. */
9739 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9740 }
9741 else if (SGI_COMPAT (output_bfd)
9742 && CONST_STRNEQ (name, ".compact_rel"))
9743 s->size += mips_elf_hash_table (info)->compact_rel_size;
9744 else if (s == htab->splt)
9745 {
9746 /* If the last PLT entry has a branch delay slot, allocate
9747 room for an extra nop to fill the delay slot. This is
9748 for CPUs without load interlocking. */
9749 if (! LOAD_INTERLOCKS_P (output_bfd)
9750 && ! htab->is_vxworks && s->size > 0)
9751 s->size += 4;
9752 }
9753 else if (! CONST_STRNEQ (name, ".init")
9754 && s != htab->sgot
9755 && s != htab->sgotplt
9756 && s != htab->sstubs
9757 && s != htab->sdynbss)
9758 {
9759 /* It's not one of our sections, so don't allocate space. */
9760 continue;
9761 }
9762
9763 if (s->size == 0)
9764 {
9765 s->flags |= SEC_EXCLUDE;
9766 continue;
9767 }
9768
9769 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9770 continue;
9771
9772 /* Allocate memory for the section contents. */
9773 s->contents = bfd_zalloc (dynobj, s->size);
9774 if (s->contents == NULL)
9775 {
9776 bfd_set_error (bfd_error_no_memory);
9777 return FALSE;
9778 }
9779 }
9780
9781 if (elf_hash_table (info)->dynamic_sections_created)
9782 {
9783 /* Add some entries to the .dynamic section. We fill in the
9784 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9785 must add the entries now so that we get the correct size for
9786 the .dynamic section. */
9787
9788 /* SGI object has the equivalence of DT_DEBUG in the
9789 DT_MIPS_RLD_MAP entry. This must come first because glibc
9790 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9791 may only look at the first one they see. */
9792 if (!bfd_link_pic (info)
9793 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9794 return FALSE;
9795
9796 if (bfd_link_executable (info)
9797 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9798 return FALSE;
9799
9800 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9801 used by the debugger. */
9802 if (bfd_link_executable (info)
9803 && !SGI_COMPAT (output_bfd)
9804 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9805 return FALSE;
9806
9807 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9808 info->flags |= DF_TEXTREL;
9809
9810 if ((info->flags & DF_TEXTREL) != 0)
9811 {
9812 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9813 return FALSE;
9814
9815 /* Clear the DF_TEXTREL flag. It will be set again if we
9816 write out an actual text relocation; we may not, because
9817 at this point we do not know whether e.g. any .eh_frame
9818 absolute relocations have been converted to PC-relative. */
9819 info->flags &= ~DF_TEXTREL;
9820 }
9821
9822 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9823 return FALSE;
9824
9825 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9826 if (htab->is_vxworks)
9827 {
9828 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9829 use any of the DT_MIPS_* tags. */
9830 if (sreldyn && sreldyn->size > 0)
9831 {
9832 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9833 return FALSE;
9834
9835 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9836 return FALSE;
9837
9838 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9839 return FALSE;
9840 }
9841 }
9842 else
9843 {
9844 if (sreldyn && sreldyn->size > 0)
9845 {
9846 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9847 return FALSE;
9848
9849 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9850 return FALSE;
9851
9852 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9853 return FALSE;
9854 }
9855
9856 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9857 return FALSE;
9858
9859 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9860 return FALSE;
9861
9862 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9863 return FALSE;
9864
9865 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9866 return FALSE;
9867
9868 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9869 return FALSE;
9870
9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9872 return FALSE;
9873
9874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9875 return FALSE;
9876
9877 if (IRIX_COMPAT (dynobj) == ict_irix5
9878 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9879 return FALSE;
9880
9881 if (IRIX_COMPAT (dynobj) == ict_irix6
9882 && (bfd_get_section_by_name
9883 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9884 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9885 return FALSE;
9886 }
9887 if (htab->splt->size > 0)
9888 {
9889 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9890 return FALSE;
9891
9892 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9893 return FALSE;
9894
9895 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9896 return FALSE;
9897
9898 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9899 return FALSE;
9900 }
9901 if (htab->is_vxworks
9902 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9903 return FALSE;
9904 }
9905
9906 return TRUE;
9907 }
9908 \f
9909 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9910 Adjust its R_ADDEND field so that it is correct for the output file.
9911 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9912 and sections respectively; both use symbol indexes. */
9913
9914 static void
9915 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9916 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9917 asection **local_sections, Elf_Internal_Rela *rel)
9918 {
9919 unsigned int r_type, r_symndx;
9920 Elf_Internal_Sym *sym;
9921 asection *sec;
9922
9923 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9924 {
9925 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9926 if (gprel16_reloc_p (r_type)
9927 || r_type == R_MIPS_GPREL32
9928 || literal_reloc_p (r_type))
9929 {
9930 rel->r_addend += _bfd_get_gp_value (input_bfd);
9931 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9932 }
9933
9934 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9935 sym = local_syms + r_symndx;
9936
9937 /* Adjust REL's addend to account for section merging. */
9938 if (!bfd_link_relocatable (info))
9939 {
9940 sec = local_sections[r_symndx];
9941 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9942 }
9943
9944 /* This would normally be done by the rela_normal code in elflink.c. */
9945 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9946 rel->r_addend += local_sections[r_symndx]->output_offset;
9947 }
9948 }
9949
9950 /* Handle relocations against symbols from removed linkonce sections,
9951 or sections discarded by a linker script. We use this wrapper around
9952 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9953 on 64-bit ELF targets. In this case for any relocation handled, which
9954 always be the first in a triplet, the remaining two have to be processed
9955 together with the first, even if they are R_MIPS_NONE. It is the symbol
9956 index referred by the first reloc that applies to all the three and the
9957 remaining two never refer to an object symbol. And it is the final
9958 relocation (the last non-null one) that determines the output field of
9959 the whole relocation so retrieve the corresponding howto structure for
9960 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9961
9962 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9963 and therefore requires to be pasted in a loop. It also defines a block
9964 and does not protect any of its arguments, hence the extra brackets. */
9965
9966 static void
9967 mips_reloc_against_discarded_section (bfd *output_bfd,
9968 struct bfd_link_info *info,
9969 bfd *input_bfd, asection *input_section,
9970 Elf_Internal_Rela **rel,
9971 const Elf_Internal_Rela **relend,
9972 bfd_boolean rel_reloc,
9973 reloc_howto_type *howto,
9974 bfd_byte *contents)
9975 {
9976 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9977 int count = bed->s->int_rels_per_ext_rel;
9978 unsigned int r_type;
9979 int i;
9980
9981 for (i = count - 1; i > 0; i--)
9982 {
9983 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9984 if (r_type != R_MIPS_NONE)
9985 {
9986 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9987 break;
9988 }
9989 }
9990 do
9991 {
9992 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9993 (*rel), count, (*relend),
9994 howto, i, contents);
9995 }
9996 while (0);
9997 }
9998
9999 /* Relocate a MIPS ELF section. */
10000
10001 bfd_boolean
10002 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10003 bfd *input_bfd, asection *input_section,
10004 bfd_byte *contents, Elf_Internal_Rela *relocs,
10005 Elf_Internal_Sym *local_syms,
10006 asection **local_sections)
10007 {
10008 Elf_Internal_Rela *rel;
10009 const Elf_Internal_Rela *relend;
10010 bfd_vma addend = 0;
10011 bfd_boolean use_saved_addend_p = FALSE;
10012 const struct elf_backend_data *bed;
10013
10014 bed = get_elf_backend_data (output_bfd);
10015 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10016 for (rel = relocs; rel < relend; ++rel)
10017 {
10018 const char *name;
10019 bfd_vma value = 0;
10020 reloc_howto_type *howto;
10021 bfd_boolean cross_mode_jump_p = FALSE;
10022 /* TRUE if the relocation is a RELA relocation, rather than a
10023 REL relocation. */
10024 bfd_boolean rela_relocation_p = TRUE;
10025 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10026 const char *msg;
10027 unsigned long r_symndx;
10028 asection *sec;
10029 Elf_Internal_Shdr *symtab_hdr;
10030 struct elf_link_hash_entry *h;
10031 bfd_boolean rel_reloc;
10032
10033 rel_reloc = (NEWABI_P (input_bfd)
10034 && mips_elf_rel_relocation_p (input_bfd, input_section,
10035 relocs, rel));
10036 /* Find the relocation howto for this relocation. */
10037 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10038
10039 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10040 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10041 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10042 {
10043 sec = local_sections[r_symndx];
10044 h = NULL;
10045 }
10046 else
10047 {
10048 unsigned long extsymoff;
10049
10050 extsymoff = 0;
10051 if (!elf_bad_symtab (input_bfd))
10052 extsymoff = symtab_hdr->sh_info;
10053 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10054 while (h->root.type == bfd_link_hash_indirect
10055 || h->root.type == bfd_link_hash_warning)
10056 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10057
10058 sec = NULL;
10059 if (h->root.type == bfd_link_hash_defined
10060 || h->root.type == bfd_link_hash_defweak)
10061 sec = h->root.u.def.section;
10062 }
10063
10064 if (sec != NULL && discarded_section (sec))
10065 {
10066 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10067 input_section, &rel, &relend,
10068 rel_reloc, howto, contents);
10069 continue;
10070 }
10071
10072 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10073 {
10074 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10075 64-bit code, but make sure all their addresses are in the
10076 lowermost or uppermost 32-bit section of the 64-bit address
10077 space. Thus, when they use an R_MIPS_64 they mean what is
10078 usually meant by R_MIPS_32, with the exception that the
10079 stored value is sign-extended to 64 bits. */
10080 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10081
10082 /* On big-endian systems, we need to lie about the position
10083 of the reloc. */
10084 if (bfd_big_endian (input_bfd))
10085 rel->r_offset += 4;
10086 }
10087
10088 if (!use_saved_addend_p)
10089 {
10090 /* If these relocations were originally of the REL variety,
10091 we must pull the addend out of the field that will be
10092 relocated. Otherwise, we simply use the contents of the
10093 RELA relocation. */
10094 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10095 relocs, rel))
10096 {
10097 rela_relocation_p = FALSE;
10098 addend = mips_elf_read_rel_addend (input_bfd, rel,
10099 howto, contents);
10100 if (hi16_reloc_p (r_type)
10101 || (got16_reloc_p (r_type)
10102 && mips_elf_local_relocation_p (input_bfd, rel,
10103 local_sections)))
10104 {
10105 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10106 contents, &addend))
10107 {
10108 if (h)
10109 name = h->root.root.string;
10110 else
10111 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10112 local_syms + r_symndx,
10113 sec);
10114 (*_bfd_error_handler)
10115 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10116 input_bfd, input_section, name, howto->name,
10117 rel->r_offset);
10118 }
10119 }
10120 else
10121 addend <<= howto->rightshift;
10122 }
10123 else
10124 addend = rel->r_addend;
10125 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10126 local_syms, local_sections, rel);
10127 }
10128
10129 if (bfd_link_relocatable (info))
10130 {
10131 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10132 && bfd_big_endian (input_bfd))
10133 rel->r_offset -= 4;
10134
10135 if (!rela_relocation_p && rel->r_addend)
10136 {
10137 addend += rel->r_addend;
10138 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10139 addend = mips_elf_high (addend);
10140 else if (r_type == R_MIPS_HIGHER)
10141 addend = mips_elf_higher (addend);
10142 else if (r_type == R_MIPS_HIGHEST)
10143 addend = mips_elf_highest (addend);
10144 else
10145 addend >>= howto->rightshift;
10146
10147 /* We use the source mask, rather than the destination
10148 mask because the place to which we are writing will be
10149 source of the addend in the final link. */
10150 addend &= howto->src_mask;
10151
10152 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10153 /* See the comment above about using R_MIPS_64 in the 32-bit
10154 ABI. Here, we need to update the addend. It would be
10155 possible to get away with just using the R_MIPS_32 reloc
10156 but for endianness. */
10157 {
10158 bfd_vma sign_bits;
10159 bfd_vma low_bits;
10160 bfd_vma high_bits;
10161
10162 if (addend & ((bfd_vma) 1 << 31))
10163 #ifdef BFD64
10164 sign_bits = ((bfd_vma) 1 << 32) - 1;
10165 #else
10166 sign_bits = -1;
10167 #endif
10168 else
10169 sign_bits = 0;
10170
10171 /* If we don't know that we have a 64-bit type,
10172 do two separate stores. */
10173 if (bfd_big_endian (input_bfd))
10174 {
10175 /* Store the sign-bits (which are most significant)
10176 first. */
10177 low_bits = sign_bits;
10178 high_bits = addend;
10179 }
10180 else
10181 {
10182 low_bits = addend;
10183 high_bits = sign_bits;
10184 }
10185 bfd_put_32 (input_bfd, low_bits,
10186 contents + rel->r_offset);
10187 bfd_put_32 (input_bfd, high_bits,
10188 contents + rel->r_offset + 4);
10189 continue;
10190 }
10191
10192 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10193 input_bfd, input_section,
10194 contents, FALSE))
10195 return FALSE;
10196 }
10197
10198 /* Go on to the next relocation. */
10199 continue;
10200 }
10201
10202 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10203 relocations for the same offset. In that case we are
10204 supposed to treat the output of each relocation as the addend
10205 for the next. */
10206 if (rel + 1 < relend
10207 && rel->r_offset == rel[1].r_offset
10208 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10209 use_saved_addend_p = TRUE;
10210 else
10211 use_saved_addend_p = FALSE;
10212
10213 /* Figure out what value we are supposed to relocate. */
10214 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10215 input_section, info, rel,
10216 addend, howto, local_syms,
10217 local_sections, &value,
10218 &name, &cross_mode_jump_p,
10219 use_saved_addend_p))
10220 {
10221 case bfd_reloc_continue:
10222 /* There's nothing to do. */
10223 continue;
10224
10225 case bfd_reloc_undefined:
10226 /* mips_elf_calculate_relocation already called the
10227 undefined_symbol callback. There's no real point in
10228 trying to perform the relocation at this point, so we
10229 just skip ahead to the next relocation. */
10230 continue;
10231
10232 case bfd_reloc_notsupported:
10233 msg = _("internal error: unsupported relocation error");
10234 info->callbacks->warning
10235 (info, msg, name, input_bfd, input_section, rel->r_offset);
10236 return FALSE;
10237
10238 case bfd_reloc_overflow:
10239 if (use_saved_addend_p)
10240 /* Ignore overflow until we reach the last relocation for
10241 a given location. */
10242 ;
10243 else
10244 {
10245 struct mips_elf_link_hash_table *htab;
10246
10247 htab = mips_elf_hash_table (info);
10248 BFD_ASSERT (htab != NULL);
10249 BFD_ASSERT (name != NULL);
10250 if (!htab->small_data_overflow_reported
10251 && (gprel16_reloc_p (howto->type)
10252 || literal_reloc_p (howto->type)))
10253 {
10254 msg = _("small-data section exceeds 64KB;"
10255 " lower small-data size limit (see option -G)");
10256
10257 htab->small_data_overflow_reported = TRUE;
10258 (*info->callbacks->einfo) ("%P: %s\n", msg);
10259 }
10260 (*info->callbacks->reloc_overflow)
10261 (info, NULL, name, howto->name, (bfd_vma) 0,
10262 input_bfd, input_section, rel->r_offset);
10263 }
10264 break;
10265
10266 case bfd_reloc_ok:
10267 break;
10268
10269 case bfd_reloc_outofrange:
10270 msg = NULL;
10271 if (jal_reloc_p (howto->type))
10272 msg = _("JALX to a non-word-aligned address");
10273 else if (b_reloc_p (howto->type))
10274 msg = _("Branch to a non-instruction-aligned address");
10275 else if (aligned_pcrel_reloc_p (howto->type))
10276 msg = _("PC-relative load from unaligned address");
10277 if (msg)
10278 {
10279 info->callbacks->einfo
10280 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10281 break;
10282 }
10283 /* Fall through. */
10284
10285 default:
10286 abort ();
10287 break;
10288 }
10289
10290 /* If we've got another relocation for the address, keep going
10291 until we reach the last one. */
10292 if (use_saved_addend_p)
10293 {
10294 addend = value;
10295 continue;
10296 }
10297
10298 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10299 /* See the comment above about using R_MIPS_64 in the 32-bit
10300 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10301 that calculated the right value. Now, however, we
10302 sign-extend the 32-bit result to 64-bits, and store it as a
10303 64-bit value. We are especially generous here in that we
10304 go to extreme lengths to support this usage on systems with
10305 only a 32-bit VMA. */
10306 {
10307 bfd_vma sign_bits;
10308 bfd_vma low_bits;
10309 bfd_vma high_bits;
10310
10311 if (value & ((bfd_vma) 1 << 31))
10312 #ifdef BFD64
10313 sign_bits = ((bfd_vma) 1 << 32) - 1;
10314 #else
10315 sign_bits = -1;
10316 #endif
10317 else
10318 sign_bits = 0;
10319
10320 /* If we don't know that we have a 64-bit type,
10321 do two separate stores. */
10322 if (bfd_big_endian (input_bfd))
10323 {
10324 /* Undo what we did above. */
10325 rel->r_offset -= 4;
10326 /* Store the sign-bits (which are most significant)
10327 first. */
10328 low_bits = sign_bits;
10329 high_bits = value;
10330 }
10331 else
10332 {
10333 low_bits = value;
10334 high_bits = sign_bits;
10335 }
10336 bfd_put_32 (input_bfd, low_bits,
10337 contents + rel->r_offset);
10338 bfd_put_32 (input_bfd, high_bits,
10339 contents + rel->r_offset + 4);
10340 continue;
10341 }
10342
10343 /* Actually perform the relocation. */
10344 if (! mips_elf_perform_relocation (info, howto, rel, value,
10345 input_bfd, input_section,
10346 contents, cross_mode_jump_p))
10347 return FALSE;
10348 }
10349
10350 return TRUE;
10351 }
10352 \f
10353 /* A function that iterates over each entry in la25_stubs and fills
10354 in the code for each one. DATA points to a mips_htab_traverse_info. */
10355
10356 static int
10357 mips_elf_create_la25_stub (void **slot, void *data)
10358 {
10359 struct mips_htab_traverse_info *hti;
10360 struct mips_elf_link_hash_table *htab;
10361 struct mips_elf_la25_stub *stub;
10362 asection *s;
10363 bfd_byte *loc;
10364 bfd_vma offset, target, target_high, target_low;
10365
10366 stub = (struct mips_elf_la25_stub *) *slot;
10367 hti = (struct mips_htab_traverse_info *) data;
10368 htab = mips_elf_hash_table (hti->info);
10369 BFD_ASSERT (htab != NULL);
10370
10371 /* Create the section contents, if we haven't already. */
10372 s = stub->stub_section;
10373 loc = s->contents;
10374 if (loc == NULL)
10375 {
10376 loc = bfd_malloc (s->size);
10377 if (loc == NULL)
10378 {
10379 hti->error = TRUE;
10380 return FALSE;
10381 }
10382 s->contents = loc;
10383 }
10384
10385 /* Work out where in the section this stub should go. */
10386 offset = stub->offset;
10387
10388 /* Work out the target address. */
10389 target = mips_elf_get_la25_target (stub, &s);
10390 target += s->output_section->vma + s->output_offset;
10391
10392 target_high = ((target + 0x8000) >> 16) & 0xffff;
10393 target_low = (target & 0xffff);
10394
10395 if (stub->stub_section != htab->strampoline)
10396 {
10397 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10398 of the section and write the two instructions at the end. */
10399 memset (loc, 0, offset);
10400 loc += offset;
10401 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10402 {
10403 bfd_put_micromips_32 (hti->output_bfd,
10404 LA25_LUI_MICROMIPS (target_high),
10405 loc);
10406 bfd_put_micromips_32 (hti->output_bfd,
10407 LA25_ADDIU_MICROMIPS (target_low),
10408 loc + 4);
10409 }
10410 else
10411 {
10412 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10413 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10414 }
10415 }
10416 else
10417 {
10418 /* This is trampoline. */
10419 loc += offset;
10420 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10421 {
10422 bfd_put_micromips_32 (hti->output_bfd,
10423 LA25_LUI_MICROMIPS (target_high), loc);
10424 bfd_put_micromips_32 (hti->output_bfd,
10425 LA25_J_MICROMIPS (target), loc + 4);
10426 bfd_put_micromips_32 (hti->output_bfd,
10427 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10428 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10429 }
10430 else
10431 {
10432 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10433 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10434 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10435 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10436 }
10437 }
10438 return TRUE;
10439 }
10440
10441 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10442 adjust it appropriately now. */
10443
10444 static void
10445 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10446 const char *name, Elf_Internal_Sym *sym)
10447 {
10448 /* The linker script takes care of providing names and values for
10449 these, but we must place them into the right sections. */
10450 static const char* const text_section_symbols[] = {
10451 "_ftext",
10452 "_etext",
10453 "__dso_displacement",
10454 "__elf_header",
10455 "__program_header_table",
10456 NULL
10457 };
10458
10459 static const char* const data_section_symbols[] = {
10460 "_fdata",
10461 "_edata",
10462 "_end",
10463 "_fbss",
10464 NULL
10465 };
10466
10467 const char* const *p;
10468 int i;
10469
10470 for (i = 0; i < 2; ++i)
10471 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10472 *p;
10473 ++p)
10474 if (strcmp (*p, name) == 0)
10475 {
10476 /* All of these symbols are given type STT_SECTION by the
10477 IRIX6 linker. */
10478 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10479 sym->st_other = STO_PROTECTED;
10480
10481 /* The IRIX linker puts these symbols in special sections. */
10482 if (i == 0)
10483 sym->st_shndx = SHN_MIPS_TEXT;
10484 else
10485 sym->st_shndx = SHN_MIPS_DATA;
10486
10487 break;
10488 }
10489 }
10490
10491 /* Finish up dynamic symbol handling. We set the contents of various
10492 dynamic sections here. */
10493
10494 bfd_boolean
10495 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10496 struct bfd_link_info *info,
10497 struct elf_link_hash_entry *h,
10498 Elf_Internal_Sym *sym)
10499 {
10500 bfd *dynobj;
10501 asection *sgot;
10502 struct mips_got_info *g, *gg;
10503 const char *name;
10504 int idx;
10505 struct mips_elf_link_hash_table *htab;
10506 struct mips_elf_link_hash_entry *hmips;
10507
10508 htab = mips_elf_hash_table (info);
10509 BFD_ASSERT (htab != NULL);
10510 dynobj = elf_hash_table (info)->dynobj;
10511 hmips = (struct mips_elf_link_hash_entry *) h;
10512
10513 BFD_ASSERT (!htab->is_vxworks);
10514
10515 if (h->plt.plist != NULL
10516 && (h->plt.plist->mips_offset != MINUS_ONE
10517 || h->plt.plist->comp_offset != MINUS_ONE))
10518 {
10519 /* We've decided to create a PLT entry for this symbol. */
10520 bfd_byte *loc;
10521 bfd_vma header_address, got_address;
10522 bfd_vma got_address_high, got_address_low, load;
10523 bfd_vma got_index;
10524 bfd_vma isa_bit;
10525
10526 got_index = h->plt.plist->gotplt_index;
10527
10528 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10529 BFD_ASSERT (h->dynindx != -1);
10530 BFD_ASSERT (htab->splt != NULL);
10531 BFD_ASSERT (got_index != MINUS_ONE);
10532 BFD_ASSERT (!h->def_regular);
10533
10534 /* Calculate the address of the PLT header. */
10535 isa_bit = htab->plt_header_is_comp;
10536 header_address = (htab->splt->output_section->vma
10537 + htab->splt->output_offset + isa_bit);
10538
10539 /* Calculate the address of the .got.plt entry. */
10540 got_address = (htab->sgotplt->output_section->vma
10541 + htab->sgotplt->output_offset
10542 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10543
10544 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10545 got_address_low = got_address & 0xffff;
10546
10547 /* Initially point the .got.plt entry at the PLT header. */
10548 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10549 if (ABI_64_P (output_bfd))
10550 bfd_put_64 (output_bfd, header_address, loc);
10551 else
10552 bfd_put_32 (output_bfd, header_address, loc);
10553
10554 /* Now handle the PLT itself. First the standard entry (the order
10555 does not matter, we just have to pick one). */
10556 if (h->plt.plist->mips_offset != MINUS_ONE)
10557 {
10558 const bfd_vma *plt_entry;
10559 bfd_vma plt_offset;
10560
10561 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10562
10563 BFD_ASSERT (plt_offset <= htab->splt->size);
10564
10565 /* Find out where the .plt entry should go. */
10566 loc = htab->splt->contents + plt_offset;
10567
10568 /* Pick the load opcode. */
10569 load = MIPS_ELF_LOAD_WORD (output_bfd);
10570
10571 /* Fill in the PLT entry itself. */
10572
10573 if (MIPSR6_P (output_bfd))
10574 plt_entry = mipsr6_exec_plt_entry;
10575 else
10576 plt_entry = mips_exec_plt_entry;
10577 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10578 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10579 loc + 4);
10580
10581 if (! LOAD_INTERLOCKS_P (output_bfd))
10582 {
10583 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10584 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10585 }
10586 else
10587 {
10588 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10589 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10590 loc + 12);
10591 }
10592 }
10593
10594 /* Now the compressed entry. They come after any standard ones. */
10595 if (h->plt.plist->comp_offset != MINUS_ONE)
10596 {
10597 bfd_vma plt_offset;
10598
10599 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10600 + h->plt.plist->comp_offset);
10601
10602 BFD_ASSERT (plt_offset <= htab->splt->size);
10603
10604 /* Find out where the .plt entry should go. */
10605 loc = htab->splt->contents + plt_offset;
10606
10607 /* Fill in the PLT entry itself. */
10608 if (!MICROMIPS_P (output_bfd))
10609 {
10610 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10611
10612 bfd_put_16 (output_bfd, plt_entry[0], loc);
10613 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10614 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10615 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10616 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10617 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10618 bfd_put_32 (output_bfd, got_address, loc + 12);
10619 }
10620 else if (htab->insn32)
10621 {
10622 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10623
10624 bfd_put_16 (output_bfd, plt_entry[0], loc);
10625 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10626 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10627 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10628 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10629 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10630 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10631 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10632 }
10633 else
10634 {
10635 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10636 bfd_signed_vma gotpc_offset;
10637 bfd_vma loc_address;
10638
10639 BFD_ASSERT (got_address % 4 == 0);
10640
10641 loc_address = (htab->splt->output_section->vma
10642 + htab->splt->output_offset + plt_offset);
10643 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10644
10645 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10646 if (gotpc_offset + 0x1000000 >= 0x2000000)
10647 {
10648 (*_bfd_error_handler)
10649 (_("%B: `%A' offset of %ld from `%A' "
10650 "beyond the range of ADDIUPC"),
10651 output_bfd,
10652 htab->sgotplt->output_section,
10653 htab->splt->output_section,
10654 (long) gotpc_offset);
10655 bfd_set_error (bfd_error_no_error);
10656 return FALSE;
10657 }
10658 bfd_put_16 (output_bfd,
10659 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10660 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10661 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10662 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10663 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10664 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10665 }
10666 }
10667
10668 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10669 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10670 got_index - 2, h->dynindx,
10671 R_MIPS_JUMP_SLOT, got_address);
10672
10673 /* We distinguish between PLT entries and lazy-binding stubs by
10674 giving the former an st_other value of STO_MIPS_PLT. Set the
10675 flag and leave the value if there are any relocations in the
10676 binary where pointer equality matters. */
10677 sym->st_shndx = SHN_UNDEF;
10678 if (h->pointer_equality_needed)
10679 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10680 else
10681 {
10682 sym->st_value = 0;
10683 sym->st_other = 0;
10684 }
10685 }
10686
10687 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10688 {
10689 /* We've decided to create a lazy-binding stub. */
10690 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10691 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10692 bfd_vma stub_size = htab->function_stub_size;
10693 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10694 bfd_vma isa_bit = micromips_p;
10695 bfd_vma stub_big_size;
10696
10697 if (!micromips_p)
10698 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10699 else if (htab->insn32)
10700 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10701 else
10702 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10703
10704 /* This symbol has a stub. Set it up. */
10705
10706 BFD_ASSERT (h->dynindx != -1);
10707
10708 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10709
10710 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10711 sign extension at runtime in the stub, resulting in a negative
10712 index value. */
10713 if (h->dynindx & ~0x7fffffff)
10714 return FALSE;
10715
10716 /* Fill the stub. */
10717 if (micromips_p)
10718 {
10719 idx = 0;
10720 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10721 stub + idx);
10722 idx += 4;
10723 if (htab->insn32)
10724 {
10725 bfd_put_micromips_32 (output_bfd,
10726 STUB_MOVE32_MICROMIPS, stub + idx);
10727 idx += 4;
10728 }
10729 else
10730 {
10731 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10732 idx += 2;
10733 }
10734 if (stub_size == stub_big_size)
10735 {
10736 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10737
10738 bfd_put_micromips_32 (output_bfd,
10739 STUB_LUI_MICROMIPS (dynindx_hi),
10740 stub + idx);
10741 idx += 4;
10742 }
10743 if (htab->insn32)
10744 {
10745 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10746 stub + idx);
10747 idx += 4;
10748 }
10749 else
10750 {
10751 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10752 idx += 2;
10753 }
10754
10755 /* If a large stub is not required and sign extension is not a
10756 problem, then use legacy code in the stub. */
10757 if (stub_size == stub_big_size)
10758 bfd_put_micromips_32 (output_bfd,
10759 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10760 stub + idx);
10761 else if (h->dynindx & ~0x7fff)
10762 bfd_put_micromips_32 (output_bfd,
10763 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10764 stub + idx);
10765 else
10766 bfd_put_micromips_32 (output_bfd,
10767 STUB_LI16S_MICROMIPS (output_bfd,
10768 h->dynindx),
10769 stub + idx);
10770 }
10771 else
10772 {
10773 idx = 0;
10774 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10775 idx += 4;
10776 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10777 idx += 4;
10778 if (stub_size == stub_big_size)
10779 {
10780 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10781 stub + idx);
10782 idx += 4;
10783 }
10784 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10785 idx += 4;
10786
10787 /* If a large stub is not required and sign extension is not a
10788 problem, then use legacy code in the stub. */
10789 if (stub_size == stub_big_size)
10790 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10791 stub + idx);
10792 else if (h->dynindx & ~0x7fff)
10793 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10794 stub + idx);
10795 else
10796 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10797 stub + idx);
10798 }
10799
10800 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10801 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10802 stub, stub_size);
10803
10804 /* Mark the symbol as undefined. stub_offset != -1 occurs
10805 only for the referenced symbol. */
10806 sym->st_shndx = SHN_UNDEF;
10807
10808 /* The run-time linker uses the st_value field of the symbol
10809 to reset the global offset table entry for this external
10810 to its stub address when unlinking a shared object. */
10811 sym->st_value = (htab->sstubs->output_section->vma
10812 + htab->sstubs->output_offset
10813 + h->plt.plist->stub_offset
10814 + isa_bit);
10815 sym->st_other = other;
10816 }
10817
10818 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10819 refer to the stub, since only the stub uses the standard calling
10820 conventions. */
10821 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10822 {
10823 BFD_ASSERT (hmips->need_fn_stub);
10824 sym->st_value = (hmips->fn_stub->output_section->vma
10825 + hmips->fn_stub->output_offset);
10826 sym->st_size = hmips->fn_stub->size;
10827 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10828 }
10829
10830 BFD_ASSERT (h->dynindx != -1
10831 || h->forced_local);
10832
10833 sgot = htab->sgot;
10834 g = htab->got_info;
10835 BFD_ASSERT (g != NULL);
10836
10837 /* Run through the global symbol table, creating GOT entries for all
10838 the symbols that need them. */
10839 if (hmips->global_got_area != GGA_NONE)
10840 {
10841 bfd_vma offset;
10842 bfd_vma value;
10843
10844 value = sym->st_value;
10845 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10846 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10847 }
10848
10849 if (hmips->global_got_area != GGA_NONE && g->next)
10850 {
10851 struct mips_got_entry e, *p;
10852 bfd_vma entry;
10853 bfd_vma offset;
10854
10855 gg = g;
10856
10857 e.abfd = output_bfd;
10858 e.symndx = -1;
10859 e.d.h = hmips;
10860 e.tls_type = GOT_TLS_NONE;
10861
10862 for (g = g->next; g->next != gg; g = g->next)
10863 {
10864 if (g->got_entries
10865 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10866 &e)))
10867 {
10868 offset = p->gotidx;
10869 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10870 if (bfd_link_pic (info)
10871 || (elf_hash_table (info)->dynamic_sections_created
10872 && p->d.h != NULL
10873 && p->d.h->root.def_dynamic
10874 && !p->d.h->root.def_regular))
10875 {
10876 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10877 the various compatibility problems, it's easier to mock
10878 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10879 mips_elf_create_dynamic_relocation to calculate the
10880 appropriate addend. */
10881 Elf_Internal_Rela rel[3];
10882
10883 memset (rel, 0, sizeof (rel));
10884 if (ABI_64_P (output_bfd))
10885 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10886 else
10887 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10888 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10889
10890 entry = 0;
10891 if (! (mips_elf_create_dynamic_relocation
10892 (output_bfd, info, rel,
10893 e.d.h, NULL, sym->st_value, &entry, sgot)))
10894 return FALSE;
10895 }
10896 else
10897 entry = sym->st_value;
10898 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10899 }
10900 }
10901 }
10902
10903 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10904 name = h->root.root.string;
10905 if (h == elf_hash_table (info)->hdynamic
10906 || h == elf_hash_table (info)->hgot)
10907 sym->st_shndx = SHN_ABS;
10908 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10909 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10910 {
10911 sym->st_shndx = SHN_ABS;
10912 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10913 sym->st_value = 1;
10914 }
10915 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10916 {
10917 sym->st_shndx = SHN_ABS;
10918 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10919 sym->st_value = elf_gp (output_bfd);
10920 }
10921 else if (SGI_COMPAT (output_bfd))
10922 {
10923 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10924 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10925 {
10926 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10927 sym->st_other = STO_PROTECTED;
10928 sym->st_value = 0;
10929 sym->st_shndx = SHN_MIPS_DATA;
10930 }
10931 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10932 {
10933 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10934 sym->st_other = STO_PROTECTED;
10935 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10936 sym->st_shndx = SHN_ABS;
10937 }
10938 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10939 {
10940 if (h->type == STT_FUNC)
10941 sym->st_shndx = SHN_MIPS_TEXT;
10942 else if (h->type == STT_OBJECT)
10943 sym->st_shndx = SHN_MIPS_DATA;
10944 }
10945 }
10946
10947 /* Emit a copy reloc, if needed. */
10948 if (h->needs_copy)
10949 {
10950 asection *s;
10951 bfd_vma symval;
10952
10953 BFD_ASSERT (h->dynindx != -1);
10954 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10955
10956 s = mips_elf_rel_dyn_section (info, FALSE);
10957 symval = (h->root.u.def.section->output_section->vma
10958 + h->root.u.def.section->output_offset
10959 + h->root.u.def.value);
10960 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10961 h->dynindx, R_MIPS_COPY, symval);
10962 }
10963
10964 /* Handle the IRIX6-specific symbols. */
10965 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10966 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10967
10968 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10969 to treat compressed symbols like any other. */
10970 if (ELF_ST_IS_MIPS16 (sym->st_other))
10971 {
10972 BFD_ASSERT (sym->st_value & 1);
10973 sym->st_other -= STO_MIPS16;
10974 }
10975 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10976 {
10977 BFD_ASSERT (sym->st_value & 1);
10978 sym->st_other -= STO_MICROMIPS;
10979 }
10980
10981 return TRUE;
10982 }
10983
10984 /* Likewise, for VxWorks. */
10985
10986 bfd_boolean
10987 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10988 struct bfd_link_info *info,
10989 struct elf_link_hash_entry *h,
10990 Elf_Internal_Sym *sym)
10991 {
10992 bfd *dynobj;
10993 asection *sgot;
10994 struct mips_got_info *g;
10995 struct mips_elf_link_hash_table *htab;
10996 struct mips_elf_link_hash_entry *hmips;
10997
10998 htab = mips_elf_hash_table (info);
10999 BFD_ASSERT (htab != NULL);
11000 dynobj = elf_hash_table (info)->dynobj;
11001 hmips = (struct mips_elf_link_hash_entry *) h;
11002
11003 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11004 {
11005 bfd_byte *loc;
11006 bfd_vma plt_address, got_address, got_offset, branch_offset;
11007 Elf_Internal_Rela rel;
11008 static const bfd_vma *plt_entry;
11009 bfd_vma gotplt_index;
11010 bfd_vma plt_offset;
11011
11012 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11013 gotplt_index = h->plt.plist->gotplt_index;
11014
11015 BFD_ASSERT (h->dynindx != -1);
11016 BFD_ASSERT (htab->splt != NULL);
11017 BFD_ASSERT (gotplt_index != MINUS_ONE);
11018 BFD_ASSERT (plt_offset <= htab->splt->size);
11019
11020 /* Calculate the address of the .plt entry. */
11021 plt_address = (htab->splt->output_section->vma
11022 + htab->splt->output_offset
11023 + plt_offset);
11024
11025 /* Calculate the address of the .got.plt entry. */
11026 got_address = (htab->sgotplt->output_section->vma
11027 + htab->sgotplt->output_offset
11028 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11029
11030 /* Calculate the offset of the .got.plt entry from
11031 _GLOBAL_OFFSET_TABLE_. */
11032 got_offset = mips_elf_gotplt_index (info, h);
11033
11034 /* Calculate the offset for the branch at the start of the PLT
11035 entry. The branch jumps to the beginning of .plt. */
11036 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11037
11038 /* Fill in the initial value of the .got.plt entry. */
11039 bfd_put_32 (output_bfd, plt_address,
11040 (htab->sgotplt->contents
11041 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11042
11043 /* Find out where the .plt entry should go. */
11044 loc = htab->splt->contents + plt_offset;
11045
11046 if (bfd_link_pic (info))
11047 {
11048 plt_entry = mips_vxworks_shared_plt_entry;
11049 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11050 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11051 }
11052 else
11053 {
11054 bfd_vma got_address_high, got_address_low;
11055
11056 plt_entry = mips_vxworks_exec_plt_entry;
11057 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11058 got_address_low = got_address & 0xffff;
11059
11060 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11061 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11062 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11063 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11064 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11065 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11066 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11067 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11068
11069 loc = (htab->srelplt2->contents
11070 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11071
11072 /* Emit a relocation for the .got.plt entry. */
11073 rel.r_offset = got_address;
11074 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11075 rel.r_addend = plt_offset;
11076 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11077
11078 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11079 loc += sizeof (Elf32_External_Rela);
11080 rel.r_offset = plt_address + 8;
11081 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11082 rel.r_addend = got_offset;
11083 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11084
11085 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11086 loc += sizeof (Elf32_External_Rela);
11087 rel.r_offset += 4;
11088 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11089 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11090 }
11091
11092 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11093 loc = (htab->srelplt->contents
11094 + gotplt_index * sizeof (Elf32_External_Rela));
11095 rel.r_offset = got_address;
11096 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11097 rel.r_addend = 0;
11098 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11099
11100 if (!h->def_regular)
11101 sym->st_shndx = SHN_UNDEF;
11102 }
11103
11104 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11105
11106 sgot = htab->sgot;
11107 g = htab->got_info;
11108 BFD_ASSERT (g != NULL);
11109
11110 /* See if this symbol has an entry in the GOT. */
11111 if (hmips->global_got_area != GGA_NONE)
11112 {
11113 bfd_vma offset;
11114 Elf_Internal_Rela outrel;
11115 bfd_byte *loc;
11116 asection *s;
11117
11118 /* Install the symbol value in the GOT. */
11119 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11120 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11121
11122 /* Add a dynamic relocation for it. */
11123 s = mips_elf_rel_dyn_section (info, FALSE);
11124 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11125 outrel.r_offset = (sgot->output_section->vma
11126 + sgot->output_offset
11127 + offset);
11128 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11129 outrel.r_addend = 0;
11130 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11131 }
11132
11133 /* Emit a copy reloc, if needed. */
11134 if (h->needs_copy)
11135 {
11136 Elf_Internal_Rela rel;
11137
11138 BFD_ASSERT (h->dynindx != -1);
11139
11140 rel.r_offset = (h->root.u.def.section->output_section->vma
11141 + h->root.u.def.section->output_offset
11142 + h->root.u.def.value);
11143 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11144 rel.r_addend = 0;
11145 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11146 htab->srelbss->contents
11147 + (htab->srelbss->reloc_count
11148 * sizeof (Elf32_External_Rela)));
11149 ++htab->srelbss->reloc_count;
11150 }
11151
11152 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11153 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11154 sym->st_value &= ~1;
11155
11156 return TRUE;
11157 }
11158
11159 /* Write out a plt0 entry to the beginning of .plt. */
11160
11161 static bfd_boolean
11162 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11163 {
11164 bfd_byte *loc;
11165 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11166 static const bfd_vma *plt_entry;
11167 struct mips_elf_link_hash_table *htab;
11168
11169 htab = mips_elf_hash_table (info);
11170 BFD_ASSERT (htab != NULL);
11171
11172 if (ABI_64_P (output_bfd))
11173 plt_entry = mips_n64_exec_plt0_entry;
11174 else if (ABI_N32_P (output_bfd))
11175 plt_entry = mips_n32_exec_plt0_entry;
11176 else if (!htab->plt_header_is_comp)
11177 plt_entry = mips_o32_exec_plt0_entry;
11178 else if (htab->insn32)
11179 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11180 else
11181 plt_entry = micromips_o32_exec_plt0_entry;
11182
11183 /* Calculate the value of .got.plt. */
11184 gotplt_value = (htab->sgotplt->output_section->vma
11185 + htab->sgotplt->output_offset);
11186 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11187 gotplt_value_low = gotplt_value & 0xffff;
11188
11189 /* The PLT sequence is not safe for N64 if .got.plt's address can
11190 not be loaded in two instructions. */
11191 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11192 || ~(gotplt_value | 0x7fffffff) == 0);
11193
11194 /* Install the PLT header. */
11195 loc = htab->splt->contents;
11196 if (plt_entry == micromips_o32_exec_plt0_entry)
11197 {
11198 bfd_vma gotpc_offset;
11199 bfd_vma loc_address;
11200 size_t i;
11201
11202 BFD_ASSERT (gotplt_value % 4 == 0);
11203
11204 loc_address = (htab->splt->output_section->vma
11205 + htab->splt->output_offset);
11206 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11207
11208 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11209 if (gotpc_offset + 0x1000000 >= 0x2000000)
11210 {
11211 (*_bfd_error_handler)
11212 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11213 output_bfd,
11214 htab->sgotplt->output_section,
11215 htab->splt->output_section,
11216 (long) gotpc_offset);
11217 bfd_set_error (bfd_error_no_error);
11218 return FALSE;
11219 }
11220 bfd_put_16 (output_bfd,
11221 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11222 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11223 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11224 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11225 }
11226 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11227 {
11228 size_t i;
11229
11230 bfd_put_16 (output_bfd, plt_entry[0], loc);
11231 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11232 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11233 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11234 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11235 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11236 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11237 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11238 }
11239 else
11240 {
11241 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11242 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11243 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11244 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11245 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11246 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11247 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11248 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11249 }
11250
11251 return TRUE;
11252 }
11253
11254 /* Install the PLT header for a VxWorks executable and finalize the
11255 contents of .rela.plt.unloaded. */
11256
11257 static void
11258 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11259 {
11260 Elf_Internal_Rela rela;
11261 bfd_byte *loc;
11262 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11263 static const bfd_vma *plt_entry;
11264 struct mips_elf_link_hash_table *htab;
11265
11266 htab = mips_elf_hash_table (info);
11267 BFD_ASSERT (htab != NULL);
11268
11269 plt_entry = mips_vxworks_exec_plt0_entry;
11270
11271 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11272 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11273 + htab->root.hgot->root.u.def.section->output_offset
11274 + htab->root.hgot->root.u.def.value);
11275
11276 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11277 got_value_low = got_value & 0xffff;
11278
11279 /* Calculate the address of the PLT header. */
11280 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11281
11282 /* Install the PLT header. */
11283 loc = htab->splt->contents;
11284 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11285 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11286 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11287 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11288 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11289 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11290
11291 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11292 loc = htab->srelplt2->contents;
11293 rela.r_offset = plt_address;
11294 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11295 rela.r_addend = 0;
11296 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11297 loc += sizeof (Elf32_External_Rela);
11298
11299 /* Output the relocation for the following addiu of
11300 %lo(_GLOBAL_OFFSET_TABLE_). */
11301 rela.r_offset += 4;
11302 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11303 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11304 loc += sizeof (Elf32_External_Rela);
11305
11306 /* Fix up the remaining relocations. They may have the wrong
11307 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11308 in which symbols were output. */
11309 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11310 {
11311 Elf_Internal_Rela rel;
11312
11313 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11314 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11315 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11316 loc += sizeof (Elf32_External_Rela);
11317
11318 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11319 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11320 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11321 loc += sizeof (Elf32_External_Rela);
11322
11323 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11324 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11325 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11326 loc += sizeof (Elf32_External_Rela);
11327 }
11328 }
11329
11330 /* Install the PLT header for a VxWorks shared library. */
11331
11332 static void
11333 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11334 {
11335 unsigned int i;
11336 struct mips_elf_link_hash_table *htab;
11337
11338 htab = mips_elf_hash_table (info);
11339 BFD_ASSERT (htab != NULL);
11340
11341 /* We just need to copy the entry byte-by-byte. */
11342 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11343 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11344 htab->splt->contents + i * 4);
11345 }
11346
11347 /* Finish up the dynamic sections. */
11348
11349 bfd_boolean
11350 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11351 struct bfd_link_info *info)
11352 {
11353 bfd *dynobj;
11354 asection *sdyn;
11355 asection *sgot;
11356 struct mips_got_info *gg, *g;
11357 struct mips_elf_link_hash_table *htab;
11358
11359 htab = mips_elf_hash_table (info);
11360 BFD_ASSERT (htab != NULL);
11361
11362 dynobj = elf_hash_table (info)->dynobj;
11363
11364 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11365
11366 sgot = htab->sgot;
11367 gg = htab->got_info;
11368
11369 if (elf_hash_table (info)->dynamic_sections_created)
11370 {
11371 bfd_byte *b;
11372 int dyn_to_skip = 0, dyn_skipped = 0;
11373
11374 BFD_ASSERT (sdyn != NULL);
11375 BFD_ASSERT (gg != NULL);
11376
11377 g = mips_elf_bfd_got (output_bfd, FALSE);
11378 BFD_ASSERT (g != NULL);
11379
11380 for (b = sdyn->contents;
11381 b < sdyn->contents + sdyn->size;
11382 b += MIPS_ELF_DYN_SIZE (dynobj))
11383 {
11384 Elf_Internal_Dyn dyn;
11385 const char *name;
11386 size_t elemsize;
11387 asection *s;
11388 bfd_boolean swap_out_p;
11389
11390 /* Read in the current dynamic entry. */
11391 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11392
11393 /* Assume that we're going to modify it and write it out. */
11394 swap_out_p = TRUE;
11395
11396 switch (dyn.d_tag)
11397 {
11398 case DT_RELENT:
11399 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11400 break;
11401
11402 case DT_RELAENT:
11403 BFD_ASSERT (htab->is_vxworks);
11404 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11405 break;
11406
11407 case DT_STRSZ:
11408 /* Rewrite DT_STRSZ. */
11409 dyn.d_un.d_val =
11410 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11411 break;
11412
11413 case DT_PLTGOT:
11414 s = htab->sgot;
11415 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11416 break;
11417
11418 case DT_MIPS_PLTGOT:
11419 s = htab->sgotplt;
11420 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11421 break;
11422
11423 case DT_MIPS_RLD_VERSION:
11424 dyn.d_un.d_val = 1; /* XXX */
11425 break;
11426
11427 case DT_MIPS_FLAGS:
11428 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11429 break;
11430
11431 case DT_MIPS_TIME_STAMP:
11432 {
11433 time_t t;
11434 time (&t);
11435 dyn.d_un.d_val = t;
11436 }
11437 break;
11438
11439 case DT_MIPS_ICHECKSUM:
11440 /* XXX FIXME: */
11441 swap_out_p = FALSE;
11442 break;
11443
11444 case DT_MIPS_IVERSION:
11445 /* XXX FIXME: */
11446 swap_out_p = FALSE;
11447 break;
11448
11449 case DT_MIPS_BASE_ADDRESS:
11450 s = output_bfd->sections;
11451 BFD_ASSERT (s != NULL);
11452 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11453 break;
11454
11455 case DT_MIPS_LOCAL_GOTNO:
11456 dyn.d_un.d_val = g->local_gotno;
11457 break;
11458
11459 case DT_MIPS_UNREFEXTNO:
11460 /* The index into the dynamic symbol table which is the
11461 entry of the first external symbol that is not
11462 referenced within the same object. */
11463 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11464 break;
11465
11466 case DT_MIPS_GOTSYM:
11467 if (htab->global_gotsym)
11468 {
11469 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11470 break;
11471 }
11472 /* In case if we don't have global got symbols we default
11473 to setting DT_MIPS_GOTSYM to the same value as
11474 DT_MIPS_SYMTABNO, so we just fall through. */
11475
11476 case DT_MIPS_SYMTABNO:
11477 name = ".dynsym";
11478 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11479 s = bfd_get_linker_section (dynobj, name);
11480
11481 if (s != NULL)
11482 dyn.d_un.d_val = s->size / elemsize;
11483 else
11484 dyn.d_un.d_val = 0;
11485 break;
11486
11487 case DT_MIPS_HIPAGENO:
11488 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11489 break;
11490
11491 case DT_MIPS_RLD_MAP:
11492 {
11493 struct elf_link_hash_entry *h;
11494 h = mips_elf_hash_table (info)->rld_symbol;
11495 if (!h)
11496 {
11497 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11498 swap_out_p = FALSE;
11499 break;
11500 }
11501 s = h->root.u.def.section;
11502
11503 /* The MIPS_RLD_MAP tag stores the absolute address of the
11504 debug pointer. */
11505 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11506 + h->root.u.def.value);
11507 }
11508 break;
11509
11510 case DT_MIPS_RLD_MAP_REL:
11511 {
11512 struct elf_link_hash_entry *h;
11513 bfd_vma dt_addr, rld_addr;
11514 h = mips_elf_hash_table (info)->rld_symbol;
11515 if (!h)
11516 {
11517 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11518 swap_out_p = FALSE;
11519 break;
11520 }
11521 s = h->root.u.def.section;
11522
11523 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11524 pointer, relative to the address of the tag. */
11525 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11526 + (b - sdyn->contents));
11527 rld_addr = (s->output_section->vma + s->output_offset
11528 + h->root.u.def.value);
11529 dyn.d_un.d_ptr = rld_addr - dt_addr;
11530 }
11531 break;
11532
11533 case DT_MIPS_OPTIONS:
11534 s = (bfd_get_section_by_name
11535 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11536 dyn.d_un.d_ptr = s->vma;
11537 break;
11538
11539 case DT_RELASZ:
11540 BFD_ASSERT (htab->is_vxworks);
11541 /* The count does not include the JUMP_SLOT relocations. */
11542 if (htab->srelplt)
11543 dyn.d_un.d_val -= htab->srelplt->size;
11544 break;
11545
11546 case DT_PLTREL:
11547 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11548 if (htab->is_vxworks)
11549 dyn.d_un.d_val = DT_RELA;
11550 else
11551 dyn.d_un.d_val = DT_REL;
11552 break;
11553
11554 case DT_PLTRELSZ:
11555 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11556 dyn.d_un.d_val = htab->srelplt->size;
11557 break;
11558
11559 case DT_JMPREL:
11560 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11561 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11562 + htab->srelplt->output_offset);
11563 break;
11564
11565 case DT_TEXTREL:
11566 /* If we didn't need any text relocations after all, delete
11567 the dynamic tag. */
11568 if (!(info->flags & DF_TEXTREL))
11569 {
11570 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11571 swap_out_p = FALSE;
11572 }
11573 break;
11574
11575 case DT_FLAGS:
11576 /* If we didn't need any text relocations after all, clear
11577 DF_TEXTREL from DT_FLAGS. */
11578 if (!(info->flags & DF_TEXTREL))
11579 dyn.d_un.d_val &= ~DF_TEXTREL;
11580 else
11581 swap_out_p = FALSE;
11582 break;
11583
11584 default:
11585 swap_out_p = FALSE;
11586 if (htab->is_vxworks
11587 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11588 swap_out_p = TRUE;
11589 break;
11590 }
11591
11592 if (swap_out_p || dyn_skipped)
11593 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11594 (dynobj, &dyn, b - dyn_skipped);
11595
11596 if (dyn_to_skip)
11597 {
11598 dyn_skipped += dyn_to_skip;
11599 dyn_to_skip = 0;
11600 }
11601 }
11602
11603 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11604 if (dyn_skipped > 0)
11605 memset (b - dyn_skipped, 0, dyn_skipped);
11606 }
11607
11608 if (sgot != NULL && sgot->size > 0
11609 && !bfd_is_abs_section (sgot->output_section))
11610 {
11611 if (htab->is_vxworks)
11612 {
11613 /* The first entry of the global offset table points to the
11614 ".dynamic" section. The second is initialized by the
11615 loader and contains the shared library identifier.
11616 The third is also initialized by the loader and points
11617 to the lazy resolution stub. */
11618 MIPS_ELF_PUT_WORD (output_bfd,
11619 sdyn->output_offset + sdyn->output_section->vma,
11620 sgot->contents);
11621 MIPS_ELF_PUT_WORD (output_bfd, 0,
11622 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11623 MIPS_ELF_PUT_WORD (output_bfd, 0,
11624 sgot->contents
11625 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11626 }
11627 else
11628 {
11629 /* The first entry of the global offset table will be filled at
11630 runtime. The second entry will be used by some runtime loaders.
11631 This isn't the case of IRIX rld. */
11632 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11633 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11634 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11635 }
11636
11637 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11638 = MIPS_ELF_GOT_SIZE (output_bfd);
11639 }
11640
11641 /* Generate dynamic relocations for the non-primary gots. */
11642 if (gg != NULL && gg->next)
11643 {
11644 Elf_Internal_Rela rel[3];
11645 bfd_vma addend = 0;
11646
11647 memset (rel, 0, sizeof (rel));
11648 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11649
11650 for (g = gg->next; g->next != gg; g = g->next)
11651 {
11652 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11653 + g->next->tls_gotno;
11654
11655 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11656 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11657 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11658 sgot->contents
11659 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11660
11661 if (! bfd_link_pic (info))
11662 continue;
11663
11664 for (; got_index < g->local_gotno; got_index++)
11665 {
11666 if (got_index >= g->assigned_low_gotno
11667 && got_index <= g->assigned_high_gotno)
11668 continue;
11669
11670 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11671 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11672 if (!(mips_elf_create_dynamic_relocation
11673 (output_bfd, info, rel, NULL,
11674 bfd_abs_section_ptr,
11675 0, &addend, sgot)))
11676 return FALSE;
11677 BFD_ASSERT (addend == 0);
11678 }
11679 }
11680 }
11681
11682 /* The generation of dynamic relocations for the non-primary gots
11683 adds more dynamic relocations. We cannot count them until
11684 here. */
11685
11686 if (elf_hash_table (info)->dynamic_sections_created)
11687 {
11688 bfd_byte *b;
11689 bfd_boolean swap_out_p;
11690
11691 BFD_ASSERT (sdyn != NULL);
11692
11693 for (b = sdyn->contents;
11694 b < sdyn->contents + sdyn->size;
11695 b += MIPS_ELF_DYN_SIZE (dynobj))
11696 {
11697 Elf_Internal_Dyn dyn;
11698 asection *s;
11699
11700 /* Read in the current dynamic entry. */
11701 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11702
11703 /* Assume that we're going to modify it and write it out. */
11704 swap_out_p = TRUE;
11705
11706 switch (dyn.d_tag)
11707 {
11708 case DT_RELSZ:
11709 /* Reduce DT_RELSZ to account for any relocations we
11710 decided not to make. This is for the n64 irix rld,
11711 which doesn't seem to apply any relocations if there
11712 are trailing null entries. */
11713 s = mips_elf_rel_dyn_section (info, FALSE);
11714 dyn.d_un.d_val = (s->reloc_count
11715 * (ABI_64_P (output_bfd)
11716 ? sizeof (Elf64_Mips_External_Rel)
11717 : sizeof (Elf32_External_Rel)));
11718 /* Adjust the section size too. Tools like the prelinker
11719 can reasonably expect the values to the same. */
11720 elf_section_data (s->output_section)->this_hdr.sh_size
11721 = dyn.d_un.d_val;
11722 break;
11723
11724 default:
11725 swap_out_p = FALSE;
11726 break;
11727 }
11728
11729 if (swap_out_p)
11730 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11731 (dynobj, &dyn, b);
11732 }
11733 }
11734
11735 {
11736 asection *s;
11737 Elf32_compact_rel cpt;
11738
11739 if (SGI_COMPAT (output_bfd))
11740 {
11741 /* Write .compact_rel section out. */
11742 s = bfd_get_linker_section (dynobj, ".compact_rel");
11743 if (s != NULL)
11744 {
11745 cpt.id1 = 1;
11746 cpt.num = s->reloc_count;
11747 cpt.id2 = 2;
11748 cpt.offset = (s->output_section->filepos
11749 + sizeof (Elf32_External_compact_rel));
11750 cpt.reserved0 = 0;
11751 cpt.reserved1 = 0;
11752 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11753 ((Elf32_External_compact_rel *)
11754 s->contents));
11755
11756 /* Clean up a dummy stub function entry in .text. */
11757 if (htab->sstubs != NULL)
11758 {
11759 file_ptr dummy_offset;
11760
11761 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11762 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11763 memset (htab->sstubs->contents + dummy_offset, 0,
11764 htab->function_stub_size);
11765 }
11766 }
11767 }
11768
11769 /* The psABI says that the dynamic relocations must be sorted in
11770 increasing order of r_symndx. The VxWorks EABI doesn't require
11771 this, and because the code below handles REL rather than RELA
11772 relocations, using it for VxWorks would be outright harmful. */
11773 if (!htab->is_vxworks)
11774 {
11775 s = mips_elf_rel_dyn_section (info, FALSE);
11776 if (s != NULL
11777 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11778 {
11779 reldyn_sorting_bfd = output_bfd;
11780
11781 if (ABI_64_P (output_bfd))
11782 qsort ((Elf64_External_Rel *) s->contents + 1,
11783 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11784 sort_dynamic_relocs_64);
11785 else
11786 qsort ((Elf32_External_Rel *) s->contents + 1,
11787 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11788 sort_dynamic_relocs);
11789 }
11790 }
11791 }
11792
11793 if (htab->splt && htab->splt->size > 0)
11794 {
11795 if (htab->is_vxworks)
11796 {
11797 if (bfd_link_pic (info))
11798 mips_vxworks_finish_shared_plt (output_bfd, info);
11799 else
11800 mips_vxworks_finish_exec_plt (output_bfd, info);
11801 }
11802 else
11803 {
11804 BFD_ASSERT (!bfd_link_pic (info));
11805 if (!mips_finish_exec_plt (output_bfd, info))
11806 return FALSE;
11807 }
11808 }
11809 return TRUE;
11810 }
11811
11812
11813 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11814
11815 static void
11816 mips_set_isa_flags (bfd *abfd)
11817 {
11818 flagword val;
11819
11820 switch (bfd_get_mach (abfd))
11821 {
11822 default:
11823 case bfd_mach_mips3000:
11824 val = E_MIPS_ARCH_1;
11825 break;
11826
11827 case bfd_mach_mips3900:
11828 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11829 break;
11830
11831 case bfd_mach_mips6000:
11832 val = E_MIPS_ARCH_2;
11833 break;
11834
11835 case bfd_mach_mips4000:
11836 case bfd_mach_mips4300:
11837 case bfd_mach_mips4400:
11838 case bfd_mach_mips4600:
11839 val = E_MIPS_ARCH_3;
11840 break;
11841
11842 case bfd_mach_mips4010:
11843 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11844 break;
11845
11846 case bfd_mach_mips4100:
11847 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11848 break;
11849
11850 case bfd_mach_mips4111:
11851 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11852 break;
11853
11854 case bfd_mach_mips4120:
11855 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11856 break;
11857
11858 case bfd_mach_mips4650:
11859 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11860 break;
11861
11862 case bfd_mach_mips5400:
11863 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11864 break;
11865
11866 case bfd_mach_mips5500:
11867 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11868 break;
11869
11870 case bfd_mach_mips5900:
11871 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11872 break;
11873
11874 case bfd_mach_mips9000:
11875 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11876 break;
11877
11878 case bfd_mach_mips5000:
11879 case bfd_mach_mips7000:
11880 case bfd_mach_mips8000:
11881 case bfd_mach_mips10000:
11882 case bfd_mach_mips12000:
11883 case bfd_mach_mips14000:
11884 case bfd_mach_mips16000:
11885 val = E_MIPS_ARCH_4;
11886 break;
11887
11888 case bfd_mach_mips5:
11889 val = E_MIPS_ARCH_5;
11890 break;
11891
11892 case bfd_mach_mips_loongson_2e:
11893 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11894 break;
11895
11896 case bfd_mach_mips_loongson_2f:
11897 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11898 break;
11899
11900 case bfd_mach_mips_sb1:
11901 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11902 break;
11903
11904 case bfd_mach_mips_loongson_3a:
11905 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11906 break;
11907
11908 case bfd_mach_mips_octeon:
11909 case bfd_mach_mips_octeonp:
11910 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11911 break;
11912
11913 case bfd_mach_mips_octeon3:
11914 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11915 break;
11916
11917 case bfd_mach_mips_xlr:
11918 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11919 break;
11920
11921 case bfd_mach_mips_octeon2:
11922 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11923 break;
11924
11925 case bfd_mach_mipsisa32:
11926 val = E_MIPS_ARCH_32;
11927 break;
11928
11929 case bfd_mach_mipsisa64:
11930 val = E_MIPS_ARCH_64;
11931 break;
11932
11933 case bfd_mach_mipsisa32r2:
11934 case bfd_mach_mipsisa32r3:
11935 case bfd_mach_mipsisa32r5:
11936 val = E_MIPS_ARCH_32R2;
11937 break;
11938
11939 case bfd_mach_mipsisa64r2:
11940 case bfd_mach_mipsisa64r3:
11941 case bfd_mach_mipsisa64r5:
11942 val = E_MIPS_ARCH_64R2;
11943 break;
11944
11945 case bfd_mach_mipsisa32r6:
11946 val = E_MIPS_ARCH_32R6;
11947 break;
11948
11949 case bfd_mach_mipsisa64r6:
11950 val = E_MIPS_ARCH_64R6;
11951 break;
11952 }
11953 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11954 elf_elfheader (abfd)->e_flags |= val;
11955
11956 }
11957
11958
11959 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11960 Don't do so for code sections. We want to keep ordering of HI16/LO16
11961 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11962 relocs to be sorted. */
11963
11964 bfd_boolean
11965 _bfd_mips_elf_sort_relocs_p (asection *sec)
11966 {
11967 return (sec->flags & SEC_CODE) == 0;
11968 }
11969
11970
11971 /* The final processing done just before writing out a MIPS ELF object
11972 file. This gets the MIPS architecture right based on the machine
11973 number. This is used by both the 32-bit and the 64-bit ABI. */
11974
11975 void
11976 _bfd_mips_elf_final_write_processing (bfd *abfd,
11977 bfd_boolean linker ATTRIBUTE_UNUSED)
11978 {
11979 unsigned int i;
11980 Elf_Internal_Shdr **hdrpp;
11981 const char *name;
11982 asection *sec;
11983
11984 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11985 is nonzero. This is for compatibility with old objects, which used
11986 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11987 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11988 mips_set_isa_flags (abfd);
11989
11990 /* Set the sh_info field for .gptab sections and other appropriate
11991 info for each special section. */
11992 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11993 i < elf_numsections (abfd);
11994 i++, hdrpp++)
11995 {
11996 switch ((*hdrpp)->sh_type)
11997 {
11998 case SHT_MIPS_MSYM:
11999 case SHT_MIPS_LIBLIST:
12000 sec = bfd_get_section_by_name (abfd, ".dynstr");
12001 if (sec != NULL)
12002 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12003 break;
12004
12005 case SHT_MIPS_GPTAB:
12006 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12007 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12008 BFD_ASSERT (name != NULL
12009 && CONST_STRNEQ (name, ".gptab."));
12010 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12011 BFD_ASSERT (sec != NULL);
12012 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12013 break;
12014
12015 case SHT_MIPS_CONTENT:
12016 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12017 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12018 BFD_ASSERT (name != NULL
12019 && CONST_STRNEQ (name, ".MIPS.content"));
12020 sec = bfd_get_section_by_name (abfd,
12021 name + sizeof ".MIPS.content" - 1);
12022 BFD_ASSERT (sec != NULL);
12023 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12024 break;
12025
12026 case SHT_MIPS_SYMBOL_LIB:
12027 sec = bfd_get_section_by_name (abfd, ".dynsym");
12028 if (sec != NULL)
12029 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12030 sec = bfd_get_section_by_name (abfd, ".liblist");
12031 if (sec != NULL)
12032 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12033 break;
12034
12035 case SHT_MIPS_EVENTS:
12036 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12037 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12038 BFD_ASSERT (name != NULL);
12039 if (CONST_STRNEQ (name, ".MIPS.events"))
12040 sec = bfd_get_section_by_name (abfd,
12041 name + sizeof ".MIPS.events" - 1);
12042 else
12043 {
12044 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12045 sec = bfd_get_section_by_name (abfd,
12046 (name
12047 + sizeof ".MIPS.post_rel" - 1));
12048 }
12049 BFD_ASSERT (sec != NULL);
12050 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12051 break;
12052
12053 }
12054 }
12055 }
12056 \f
12057 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12058 segments. */
12059
12060 int
12061 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12062 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12063 {
12064 asection *s;
12065 int ret = 0;
12066
12067 /* See if we need a PT_MIPS_REGINFO segment. */
12068 s = bfd_get_section_by_name (abfd, ".reginfo");
12069 if (s && (s->flags & SEC_LOAD))
12070 ++ret;
12071
12072 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12073 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12074 ++ret;
12075
12076 /* See if we need a PT_MIPS_OPTIONS segment. */
12077 if (IRIX_COMPAT (abfd) == ict_irix6
12078 && bfd_get_section_by_name (abfd,
12079 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12080 ++ret;
12081
12082 /* See if we need a PT_MIPS_RTPROC segment. */
12083 if (IRIX_COMPAT (abfd) == ict_irix5
12084 && bfd_get_section_by_name (abfd, ".dynamic")
12085 && bfd_get_section_by_name (abfd, ".mdebug"))
12086 ++ret;
12087
12088 /* Allocate a PT_NULL header in dynamic objects. See
12089 _bfd_mips_elf_modify_segment_map for details. */
12090 if (!SGI_COMPAT (abfd)
12091 && bfd_get_section_by_name (abfd, ".dynamic"))
12092 ++ret;
12093
12094 return ret;
12095 }
12096
12097 /* Modify the segment map for an IRIX5 executable. */
12098
12099 bfd_boolean
12100 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12101 struct bfd_link_info *info)
12102 {
12103 asection *s;
12104 struct elf_segment_map *m, **pm;
12105 bfd_size_type amt;
12106
12107 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12108 segment. */
12109 s = bfd_get_section_by_name (abfd, ".reginfo");
12110 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12111 {
12112 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12113 if (m->p_type == PT_MIPS_REGINFO)
12114 break;
12115 if (m == NULL)
12116 {
12117 amt = sizeof *m;
12118 m = bfd_zalloc (abfd, amt);
12119 if (m == NULL)
12120 return FALSE;
12121
12122 m->p_type = PT_MIPS_REGINFO;
12123 m->count = 1;
12124 m->sections[0] = s;
12125
12126 /* We want to put it after the PHDR and INTERP segments. */
12127 pm = &elf_seg_map (abfd);
12128 while (*pm != NULL
12129 && ((*pm)->p_type == PT_PHDR
12130 || (*pm)->p_type == PT_INTERP))
12131 pm = &(*pm)->next;
12132
12133 m->next = *pm;
12134 *pm = m;
12135 }
12136 }
12137
12138 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12139 segment. */
12140 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12141 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12142 {
12143 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12144 if (m->p_type == PT_MIPS_ABIFLAGS)
12145 break;
12146 if (m == NULL)
12147 {
12148 amt = sizeof *m;
12149 m = bfd_zalloc (abfd, amt);
12150 if (m == NULL)
12151 return FALSE;
12152
12153 m->p_type = PT_MIPS_ABIFLAGS;
12154 m->count = 1;
12155 m->sections[0] = s;
12156
12157 /* We want to put it after the PHDR and INTERP segments. */
12158 pm = &elf_seg_map (abfd);
12159 while (*pm != NULL
12160 && ((*pm)->p_type == PT_PHDR
12161 || (*pm)->p_type == PT_INTERP))
12162 pm = &(*pm)->next;
12163
12164 m->next = *pm;
12165 *pm = m;
12166 }
12167 }
12168
12169 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12170 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12171 PT_MIPS_OPTIONS segment immediately following the program header
12172 table. */
12173 if (NEWABI_P (abfd)
12174 /* On non-IRIX6 new abi, we'll have already created a segment
12175 for this section, so don't create another. I'm not sure this
12176 is not also the case for IRIX 6, but I can't test it right
12177 now. */
12178 && IRIX_COMPAT (abfd) == ict_irix6)
12179 {
12180 for (s = abfd->sections; s; s = s->next)
12181 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12182 break;
12183
12184 if (s)
12185 {
12186 struct elf_segment_map *options_segment;
12187
12188 pm = &elf_seg_map (abfd);
12189 while (*pm != NULL
12190 && ((*pm)->p_type == PT_PHDR
12191 || (*pm)->p_type == PT_INTERP))
12192 pm = &(*pm)->next;
12193
12194 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12195 {
12196 amt = sizeof (struct elf_segment_map);
12197 options_segment = bfd_zalloc (abfd, amt);
12198 options_segment->next = *pm;
12199 options_segment->p_type = PT_MIPS_OPTIONS;
12200 options_segment->p_flags = PF_R;
12201 options_segment->p_flags_valid = TRUE;
12202 options_segment->count = 1;
12203 options_segment->sections[0] = s;
12204 *pm = options_segment;
12205 }
12206 }
12207 }
12208 else
12209 {
12210 if (IRIX_COMPAT (abfd) == ict_irix5)
12211 {
12212 /* If there are .dynamic and .mdebug sections, we make a room
12213 for the RTPROC header. FIXME: Rewrite without section names. */
12214 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12215 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12216 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12217 {
12218 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12219 if (m->p_type == PT_MIPS_RTPROC)
12220 break;
12221 if (m == NULL)
12222 {
12223 amt = sizeof *m;
12224 m = bfd_zalloc (abfd, amt);
12225 if (m == NULL)
12226 return FALSE;
12227
12228 m->p_type = PT_MIPS_RTPROC;
12229
12230 s = bfd_get_section_by_name (abfd, ".rtproc");
12231 if (s == NULL)
12232 {
12233 m->count = 0;
12234 m->p_flags = 0;
12235 m->p_flags_valid = 1;
12236 }
12237 else
12238 {
12239 m->count = 1;
12240 m->sections[0] = s;
12241 }
12242
12243 /* We want to put it after the DYNAMIC segment. */
12244 pm = &elf_seg_map (abfd);
12245 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12246 pm = &(*pm)->next;
12247 if (*pm != NULL)
12248 pm = &(*pm)->next;
12249
12250 m->next = *pm;
12251 *pm = m;
12252 }
12253 }
12254 }
12255 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12256 .dynstr, .dynsym, and .hash sections, and everything in
12257 between. */
12258 for (pm = &elf_seg_map (abfd); *pm != NULL;
12259 pm = &(*pm)->next)
12260 if ((*pm)->p_type == PT_DYNAMIC)
12261 break;
12262 m = *pm;
12263 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12264 glibc's dynamic linker has traditionally derived the number of
12265 tags from the p_filesz field, and sometimes allocates stack
12266 arrays of that size. An overly-big PT_DYNAMIC segment can
12267 be actively harmful in such cases. Making PT_DYNAMIC contain
12268 other sections can also make life hard for the prelinker,
12269 which might move one of the other sections to a different
12270 PT_LOAD segment. */
12271 if (SGI_COMPAT (abfd)
12272 && m != NULL
12273 && m->count == 1
12274 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12275 {
12276 static const char *sec_names[] =
12277 {
12278 ".dynamic", ".dynstr", ".dynsym", ".hash"
12279 };
12280 bfd_vma low, high;
12281 unsigned int i, c;
12282 struct elf_segment_map *n;
12283
12284 low = ~(bfd_vma) 0;
12285 high = 0;
12286 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12287 {
12288 s = bfd_get_section_by_name (abfd, sec_names[i]);
12289 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12290 {
12291 bfd_size_type sz;
12292
12293 if (low > s->vma)
12294 low = s->vma;
12295 sz = s->size;
12296 if (high < s->vma + sz)
12297 high = s->vma + sz;
12298 }
12299 }
12300
12301 c = 0;
12302 for (s = abfd->sections; s != NULL; s = s->next)
12303 if ((s->flags & SEC_LOAD) != 0
12304 && s->vma >= low
12305 && s->vma + s->size <= high)
12306 ++c;
12307
12308 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12309 n = bfd_zalloc (abfd, amt);
12310 if (n == NULL)
12311 return FALSE;
12312 *n = *m;
12313 n->count = c;
12314
12315 i = 0;
12316 for (s = abfd->sections; s != NULL; s = s->next)
12317 {
12318 if ((s->flags & SEC_LOAD) != 0
12319 && s->vma >= low
12320 && s->vma + s->size <= high)
12321 {
12322 n->sections[i] = s;
12323 ++i;
12324 }
12325 }
12326
12327 *pm = n;
12328 }
12329 }
12330
12331 /* Allocate a spare program header in dynamic objects so that tools
12332 like the prelinker can add an extra PT_LOAD entry.
12333
12334 If the prelinker needs to make room for a new PT_LOAD entry, its
12335 standard procedure is to move the first (read-only) sections into
12336 the new (writable) segment. However, the MIPS ABI requires
12337 .dynamic to be in a read-only segment, and the section will often
12338 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12339
12340 Although the prelinker could in principle move .dynamic to a
12341 writable segment, it seems better to allocate a spare program
12342 header instead, and avoid the need to move any sections.
12343 There is a long tradition of allocating spare dynamic tags,
12344 so allocating a spare program header seems like a natural
12345 extension.
12346
12347 If INFO is NULL, we may be copying an already prelinked binary
12348 with objcopy or strip, so do not add this header. */
12349 if (info != NULL
12350 && !SGI_COMPAT (abfd)
12351 && bfd_get_section_by_name (abfd, ".dynamic"))
12352 {
12353 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12354 if ((*pm)->p_type == PT_NULL)
12355 break;
12356 if (*pm == NULL)
12357 {
12358 m = bfd_zalloc (abfd, sizeof (*m));
12359 if (m == NULL)
12360 return FALSE;
12361
12362 m->p_type = PT_NULL;
12363 *pm = m;
12364 }
12365 }
12366
12367 return TRUE;
12368 }
12369 \f
12370 /* Return the section that should be marked against GC for a given
12371 relocation. */
12372
12373 asection *
12374 _bfd_mips_elf_gc_mark_hook (asection *sec,
12375 struct bfd_link_info *info,
12376 Elf_Internal_Rela *rel,
12377 struct elf_link_hash_entry *h,
12378 Elf_Internal_Sym *sym)
12379 {
12380 /* ??? Do mips16 stub sections need to be handled special? */
12381
12382 if (h != NULL)
12383 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12384 {
12385 case R_MIPS_GNU_VTINHERIT:
12386 case R_MIPS_GNU_VTENTRY:
12387 return NULL;
12388 }
12389
12390 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12391 }
12392
12393 /* Update the got entry reference counts for the section being removed. */
12394
12395 bfd_boolean
12396 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12397 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12398 asection *sec ATTRIBUTE_UNUSED,
12399 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12400 {
12401 #if 0
12402 Elf_Internal_Shdr *symtab_hdr;
12403 struct elf_link_hash_entry **sym_hashes;
12404 bfd_signed_vma *local_got_refcounts;
12405 const Elf_Internal_Rela *rel, *relend;
12406 unsigned long r_symndx;
12407 struct elf_link_hash_entry *h;
12408
12409 if (bfd_link_relocatable (info))
12410 return TRUE;
12411
12412 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12413 sym_hashes = elf_sym_hashes (abfd);
12414 local_got_refcounts = elf_local_got_refcounts (abfd);
12415
12416 relend = relocs + sec->reloc_count;
12417 for (rel = relocs; rel < relend; rel++)
12418 switch (ELF_R_TYPE (abfd, rel->r_info))
12419 {
12420 case R_MIPS16_GOT16:
12421 case R_MIPS16_CALL16:
12422 case R_MIPS_GOT16:
12423 case R_MIPS_CALL16:
12424 case R_MIPS_CALL_HI16:
12425 case R_MIPS_CALL_LO16:
12426 case R_MIPS_GOT_HI16:
12427 case R_MIPS_GOT_LO16:
12428 case R_MIPS_GOT_DISP:
12429 case R_MIPS_GOT_PAGE:
12430 case R_MIPS_GOT_OFST:
12431 case R_MICROMIPS_GOT16:
12432 case R_MICROMIPS_CALL16:
12433 case R_MICROMIPS_CALL_HI16:
12434 case R_MICROMIPS_CALL_LO16:
12435 case R_MICROMIPS_GOT_HI16:
12436 case R_MICROMIPS_GOT_LO16:
12437 case R_MICROMIPS_GOT_DISP:
12438 case R_MICROMIPS_GOT_PAGE:
12439 case R_MICROMIPS_GOT_OFST:
12440 /* ??? It would seem that the existing MIPS code does no sort
12441 of reference counting or whatnot on its GOT and PLT entries,
12442 so it is not possible to garbage collect them at this time. */
12443 break;
12444
12445 default:
12446 break;
12447 }
12448 #endif
12449
12450 return TRUE;
12451 }
12452
12453 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12454
12455 bfd_boolean
12456 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12457 elf_gc_mark_hook_fn gc_mark_hook)
12458 {
12459 bfd *sub;
12460
12461 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12462
12463 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12464 {
12465 asection *o;
12466
12467 if (! is_mips_elf (sub))
12468 continue;
12469
12470 for (o = sub->sections; o != NULL; o = o->next)
12471 if (!o->gc_mark
12472 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12473 (bfd_get_section_name (sub, o)))
12474 {
12475 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12476 return FALSE;
12477 }
12478 }
12479
12480 return TRUE;
12481 }
12482 \f
12483 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12484 hiding the old indirect symbol. Process additional relocation
12485 information. Also called for weakdefs, in which case we just let
12486 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12487
12488 void
12489 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12490 struct elf_link_hash_entry *dir,
12491 struct elf_link_hash_entry *ind)
12492 {
12493 struct mips_elf_link_hash_entry *dirmips, *indmips;
12494
12495 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12496
12497 dirmips = (struct mips_elf_link_hash_entry *) dir;
12498 indmips = (struct mips_elf_link_hash_entry *) ind;
12499 /* Any absolute non-dynamic relocations against an indirect or weak
12500 definition will be against the target symbol. */
12501 if (indmips->has_static_relocs)
12502 dirmips->has_static_relocs = TRUE;
12503
12504 if (ind->root.type != bfd_link_hash_indirect)
12505 return;
12506
12507 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12508 if (indmips->readonly_reloc)
12509 dirmips->readonly_reloc = TRUE;
12510 if (indmips->no_fn_stub)
12511 dirmips->no_fn_stub = TRUE;
12512 if (indmips->fn_stub)
12513 {
12514 dirmips->fn_stub = indmips->fn_stub;
12515 indmips->fn_stub = NULL;
12516 }
12517 if (indmips->need_fn_stub)
12518 {
12519 dirmips->need_fn_stub = TRUE;
12520 indmips->need_fn_stub = FALSE;
12521 }
12522 if (indmips->call_stub)
12523 {
12524 dirmips->call_stub = indmips->call_stub;
12525 indmips->call_stub = NULL;
12526 }
12527 if (indmips->call_fp_stub)
12528 {
12529 dirmips->call_fp_stub = indmips->call_fp_stub;
12530 indmips->call_fp_stub = NULL;
12531 }
12532 if (indmips->global_got_area < dirmips->global_got_area)
12533 dirmips->global_got_area = indmips->global_got_area;
12534 if (indmips->global_got_area < GGA_NONE)
12535 indmips->global_got_area = GGA_NONE;
12536 if (indmips->has_nonpic_branches)
12537 dirmips->has_nonpic_branches = TRUE;
12538 }
12539 \f
12540 #define PDR_SIZE 32
12541
12542 bfd_boolean
12543 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12544 struct bfd_link_info *info)
12545 {
12546 asection *o;
12547 bfd_boolean ret = FALSE;
12548 unsigned char *tdata;
12549 size_t i, skip;
12550
12551 o = bfd_get_section_by_name (abfd, ".pdr");
12552 if (! o)
12553 return FALSE;
12554 if (o->size == 0)
12555 return FALSE;
12556 if (o->size % PDR_SIZE != 0)
12557 return FALSE;
12558 if (o->output_section != NULL
12559 && bfd_is_abs_section (o->output_section))
12560 return FALSE;
12561
12562 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12563 if (! tdata)
12564 return FALSE;
12565
12566 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12567 info->keep_memory);
12568 if (!cookie->rels)
12569 {
12570 free (tdata);
12571 return FALSE;
12572 }
12573
12574 cookie->rel = cookie->rels;
12575 cookie->relend = cookie->rels + o->reloc_count;
12576
12577 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12578 {
12579 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12580 {
12581 tdata[i] = 1;
12582 skip ++;
12583 }
12584 }
12585
12586 if (skip != 0)
12587 {
12588 mips_elf_section_data (o)->u.tdata = tdata;
12589 if (o->rawsize == 0)
12590 o->rawsize = o->size;
12591 o->size -= skip * PDR_SIZE;
12592 ret = TRUE;
12593 }
12594 else
12595 free (tdata);
12596
12597 if (! info->keep_memory)
12598 free (cookie->rels);
12599
12600 return ret;
12601 }
12602
12603 bfd_boolean
12604 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12605 {
12606 if (strcmp (sec->name, ".pdr") == 0)
12607 return TRUE;
12608 return FALSE;
12609 }
12610
12611 bfd_boolean
12612 _bfd_mips_elf_write_section (bfd *output_bfd,
12613 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12614 asection *sec, bfd_byte *contents)
12615 {
12616 bfd_byte *to, *from, *end;
12617 int i;
12618
12619 if (strcmp (sec->name, ".pdr") != 0)
12620 return FALSE;
12621
12622 if (mips_elf_section_data (sec)->u.tdata == NULL)
12623 return FALSE;
12624
12625 to = contents;
12626 end = contents + sec->size;
12627 for (from = contents, i = 0;
12628 from < end;
12629 from += PDR_SIZE, i++)
12630 {
12631 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12632 continue;
12633 if (to != from)
12634 memcpy (to, from, PDR_SIZE);
12635 to += PDR_SIZE;
12636 }
12637 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12638 sec->output_offset, sec->size);
12639 return TRUE;
12640 }
12641 \f
12642 /* microMIPS code retains local labels for linker relaxation. Omit them
12643 from output by default for clarity. */
12644
12645 bfd_boolean
12646 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12647 {
12648 return _bfd_elf_is_local_label_name (abfd, sym->name);
12649 }
12650
12651 /* MIPS ELF uses a special find_nearest_line routine in order the
12652 handle the ECOFF debugging information. */
12653
12654 struct mips_elf_find_line
12655 {
12656 struct ecoff_debug_info d;
12657 struct ecoff_find_line i;
12658 };
12659
12660 bfd_boolean
12661 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12662 asection *section, bfd_vma offset,
12663 const char **filename_ptr,
12664 const char **functionname_ptr,
12665 unsigned int *line_ptr,
12666 unsigned int *discriminator_ptr)
12667 {
12668 asection *msec;
12669
12670 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12671 filename_ptr, functionname_ptr,
12672 line_ptr, discriminator_ptr,
12673 dwarf_debug_sections,
12674 ABI_64_P (abfd) ? 8 : 0,
12675 &elf_tdata (abfd)->dwarf2_find_line_info))
12676 return TRUE;
12677
12678 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12679 filename_ptr, functionname_ptr,
12680 line_ptr))
12681 return TRUE;
12682
12683 msec = bfd_get_section_by_name (abfd, ".mdebug");
12684 if (msec != NULL)
12685 {
12686 flagword origflags;
12687 struct mips_elf_find_line *fi;
12688 const struct ecoff_debug_swap * const swap =
12689 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12690
12691 /* If we are called during a link, mips_elf_final_link may have
12692 cleared the SEC_HAS_CONTENTS field. We force it back on here
12693 if appropriate (which it normally will be). */
12694 origflags = msec->flags;
12695 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12696 msec->flags |= SEC_HAS_CONTENTS;
12697
12698 fi = mips_elf_tdata (abfd)->find_line_info;
12699 if (fi == NULL)
12700 {
12701 bfd_size_type external_fdr_size;
12702 char *fraw_src;
12703 char *fraw_end;
12704 struct fdr *fdr_ptr;
12705 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12706
12707 fi = bfd_zalloc (abfd, amt);
12708 if (fi == NULL)
12709 {
12710 msec->flags = origflags;
12711 return FALSE;
12712 }
12713
12714 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12715 {
12716 msec->flags = origflags;
12717 return FALSE;
12718 }
12719
12720 /* Swap in the FDR information. */
12721 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12722 fi->d.fdr = bfd_alloc (abfd, amt);
12723 if (fi->d.fdr == NULL)
12724 {
12725 msec->flags = origflags;
12726 return FALSE;
12727 }
12728 external_fdr_size = swap->external_fdr_size;
12729 fdr_ptr = fi->d.fdr;
12730 fraw_src = (char *) fi->d.external_fdr;
12731 fraw_end = (fraw_src
12732 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12733 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12734 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12735
12736 mips_elf_tdata (abfd)->find_line_info = fi;
12737
12738 /* Note that we don't bother to ever free this information.
12739 find_nearest_line is either called all the time, as in
12740 objdump -l, so the information should be saved, or it is
12741 rarely called, as in ld error messages, so the memory
12742 wasted is unimportant. Still, it would probably be a
12743 good idea for free_cached_info to throw it away. */
12744 }
12745
12746 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12747 &fi->i, filename_ptr, functionname_ptr,
12748 line_ptr))
12749 {
12750 msec->flags = origflags;
12751 return TRUE;
12752 }
12753
12754 msec->flags = origflags;
12755 }
12756
12757 /* Fall back on the generic ELF find_nearest_line routine. */
12758
12759 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12760 filename_ptr, functionname_ptr,
12761 line_ptr, discriminator_ptr);
12762 }
12763
12764 bfd_boolean
12765 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12766 const char **filename_ptr,
12767 const char **functionname_ptr,
12768 unsigned int *line_ptr)
12769 {
12770 bfd_boolean found;
12771 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12772 functionname_ptr, line_ptr,
12773 & elf_tdata (abfd)->dwarf2_find_line_info);
12774 return found;
12775 }
12776
12777 \f
12778 /* When are writing out the .options or .MIPS.options section,
12779 remember the bytes we are writing out, so that we can install the
12780 GP value in the section_processing routine. */
12781
12782 bfd_boolean
12783 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12784 const void *location,
12785 file_ptr offset, bfd_size_type count)
12786 {
12787 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12788 {
12789 bfd_byte *c;
12790
12791 if (elf_section_data (section) == NULL)
12792 {
12793 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12794 section->used_by_bfd = bfd_zalloc (abfd, amt);
12795 if (elf_section_data (section) == NULL)
12796 return FALSE;
12797 }
12798 c = mips_elf_section_data (section)->u.tdata;
12799 if (c == NULL)
12800 {
12801 c = bfd_zalloc (abfd, section->size);
12802 if (c == NULL)
12803 return FALSE;
12804 mips_elf_section_data (section)->u.tdata = c;
12805 }
12806
12807 memcpy (c + offset, location, count);
12808 }
12809
12810 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12811 count);
12812 }
12813
12814 /* This is almost identical to bfd_generic_get_... except that some
12815 MIPS relocations need to be handled specially. Sigh. */
12816
12817 bfd_byte *
12818 _bfd_elf_mips_get_relocated_section_contents
12819 (bfd *abfd,
12820 struct bfd_link_info *link_info,
12821 struct bfd_link_order *link_order,
12822 bfd_byte *data,
12823 bfd_boolean relocatable,
12824 asymbol **symbols)
12825 {
12826 /* Get enough memory to hold the stuff */
12827 bfd *input_bfd = link_order->u.indirect.section->owner;
12828 asection *input_section = link_order->u.indirect.section;
12829 bfd_size_type sz;
12830
12831 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12832 arelent **reloc_vector = NULL;
12833 long reloc_count;
12834
12835 if (reloc_size < 0)
12836 goto error_return;
12837
12838 reloc_vector = bfd_malloc (reloc_size);
12839 if (reloc_vector == NULL && reloc_size != 0)
12840 goto error_return;
12841
12842 /* read in the section */
12843 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12844 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12845 goto error_return;
12846
12847 reloc_count = bfd_canonicalize_reloc (input_bfd,
12848 input_section,
12849 reloc_vector,
12850 symbols);
12851 if (reloc_count < 0)
12852 goto error_return;
12853
12854 if (reloc_count > 0)
12855 {
12856 arelent **parent;
12857 /* for mips */
12858 int gp_found;
12859 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12860
12861 {
12862 struct bfd_hash_entry *h;
12863 struct bfd_link_hash_entry *lh;
12864 /* Skip all this stuff if we aren't mixing formats. */
12865 if (abfd && input_bfd
12866 && abfd->xvec == input_bfd->xvec)
12867 lh = 0;
12868 else
12869 {
12870 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12871 lh = (struct bfd_link_hash_entry *) h;
12872 }
12873 lookup:
12874 if (lh)
12875 {
12876 switch (lh->type)
12877 {
12878 case bfd_link_hash_undefined:
12879 case bfd_link_hash_undefweak:
12880 case bfd_link_hash_common:
12881 gp_found = 0;
12882 break;
12883 case bfd_link_hash_defined:
12884 case bfd_link_hash_defweak:
12885 gp_found = 1;
12886 gp = lh->u.def.value;
12887 break;
12888 case bfd_link_hash_indirect:
12889 case bfd_link_hash_warning:
12890 lh = lh->u.i.link;
12891 /* @@FIXME ignoring warning for now */
12892 goto lookup;
12893 case bfd_link_hash_new:
12894 default:
12895 abort ();
12896 }
12897 }
12898 else
12899 gp_found = 0;
12900 }
12901 /* end mips */
12902 for (parent = reloc_vector; *parent != NULL; parent++)
12903 {
12904 char *error_message = NULL;
12905 bfd_reloc_status_type r;
12906
12907 /* Specific to MIPS: Deal with relocation types that require
12908 knowing the gp of the output bfd. */
12909 asymbol *sym = *(*parent)->sym_ptr_ptr;
12910
12911 /* If we've managed to find the gp and have a special
12912 function for the relocation then go ahead, else default
12913 to the generic handling. */
12914 if (gp_found
12915 && (*parent)->howto->special_function
12916 == _bfd_mips_elf32_gprel16_reloc)
12917 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12918 input_section, relocatable,
12919 data, gp);
12920 else
12921 r = bfd_perform_relocation (input_bfd, *parent, data,
12922 input_section,
12923 relocatable ? abfd : NULL,
12924 &error_message);
12925
12926 if (relocatable)
12927 {
12928 asection *os = input_section->output_section;
12929
12930 /* A partial link, so keep the relocs */
12931 os->orelocation[os->reloc_count] = *parent;
12932 os->reloc_count++;
12933 }
12934
12935 if (r != bfd_reloc_ok)
12936 {
12937 switch (r)
12938 {
12939 case bfd_reloc_undefined:
12940 (*link_info->callbacks->undefined_symbol)
12941 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12942 input_bfd, input_section, (*parent)->address, TRUE);
12943 break;
12944 case bfd_reloc_dangerous:
12945 BFD_ASSERT (error_message != NULL);
12946 (*link_info->callbacks->reloc_dangerous)
12947 (link_info, error_message,
12948 input_bfd, input_section, (*parent)->address);
12949 break;
12950 case bfd_reloc_overflow:
12951 (*link_info->callbacks->reloc_overflow)
12952 (link_info, NULL,
12953 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12954 (*parent)->howto->name, (*parent)->addend,
12955 input_bfd, input_section, (*parent)->address);
12956 break;
12957 case bfd_reloc_outofrange:
12958 default:
12959 abort ();
12960 break;
12961 }
12962
12963 }
12964 }
12965 }
12966 if (reloc_vector != NULL)
12967 free (reloc_vector);
12968 return data;
12969
12970 error_return:
12971 if (reloc_vector != NULL)
12972 free (reloc_vector);
12973 return NULL;
12974 }
12975 \f
12976 static bfd_boolean
12977 mips_elf_relax_delete_bytes (bfd *abfd,
12978 asection *sec, bfd_vma addr, int count)
12979 {
12980 Elf_Internal_Shdr *symtab_hdr;
12981 unsigned int sec_shndx;
12982 bfd_byte *contents;
12983 Elf_Internal_Rela *irel, *irelend;
12984 Elf_Internal_Sym *isym;
12985 Elf_Internal_Sym *isymend;
12986 struct elf_link_hash_entry **sym_hashes;
12987 struct elf_link_hash_entry **end_hashes;
12988 struct elf_link_hash_entry **start_hashes;
12989 unsigned int symcount;
12990
12991 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12992 contents = elf_section_data (sec)->this_hdr.contents;
12993
12994 irel = elf_section_data (sec)->relocs;
12995 irelend = irel + sec->reloc_count;
12996
12997 /* Actually delete the bytes. */
12998 memmove (contents + addr, contents + addr + count,
12999 (size_t) (sec->size - addr - count));
13000 sec->size -= count;
13001
13002 /* Adjust all the relocs. */
13003 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13004 {
13005 /* Get the new reloc address. */
13006 if (irel->r_offset > addr)
13007 irel->r_offset -= count;
13008 }
13009
13010 BFD_ASSERT (addr % 2 == 0);
13011 BFD_ASSERT (count % 2 == 0);
13012
13013 /* Adjust the local symbols defined in this section. */
13014 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13015 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13016 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13017 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13018 isym->st_value -= count;
13019
13020 /* Now adjust the global symbols defined in this section. */
13021 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13022 - symtab_hdr->sh_info);
13023 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13024 end_hashes = sym_hashes + symcount;
13025
13026 for (; sym_hashes < end_hashes; sym_hashes++)
13027 {
13028 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13029
13030 if ((sym_hash->root.type == bfd_link_hash_defined
13031 || sym_hash->root.type == bfd_link_hash_defweak)
13032 && sym_hash->root.u.def.section == sec)
13033 {
13034 bfd_vma value = sym_hash->root.u.def.value;
13035
13036 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13037 value &= MINUS_TWO;
13038 if (value > addr)
13039 sym_hash->root.u.def.value -= count;
13040 }
13041 }
13042
13043 return TRUE;
13044 }
13045
13046
13047 /* Opcodes needed for microMIPS relaxation as found in
13048 opcodes/micromips-opc.c. */
13049
13050 struct opcode_descriptor {
13051 unsigned long match;
13052 unsigned long mask;
13053 };
13054
13055 /* The $ra register aka $31. */
13056
13057 #define RA 31
13058
13059 /* 32-bit instruction format register fields. */
13060
13061 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13062 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13063
13064 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13065
13066 #define OP16_VALID_REG(r) \
13067 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13068
13069
13070 /* 32-bit and 16-bit branches. */
13071
13072 static const struct opcode_descriptor b_insns_32[] = {
13073 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13074 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13075 { 0, 0 } /* End marker for find_match(). */
13076 };
13077
13078 static const struct opcode_descriptor bc_insn_32 =
13079 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13080
13081 static const struct opcode_descriptor bz_insn_32 =
13082 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13083
13084 static const struct opcode_descriptor bzal_insn_32 =
13085 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13086
13087 static const struct opcode_descriptor beq_insn_32 =
13088 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13089
13090 static const struct opcode_descriptor b_insn_16 =
13091 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13092
13093 static const struct opcode_descriptor bz_insn_16 =
13094 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13095
13096
13097 /* 32-bit and 16-bit branch EQ and NE zero. */
13098
13099 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13100 eq and second the ne. This convention is used when replacing a
13101 32-bit BEQ/BNE with the 16-bit version. */
13102
13103 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13104
13105 static const struct opcode_descriptor bz_rs_insns_32[] = {
13106 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13107 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13108 { 0, 0 } /* End marker for find_match(). */
13109 };
13110
13111 static const struct opcode_descriptor bz_rt_insns_32[] = {
13112 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13113 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13114 { 0, 0 } /* End marker for find_match(). */
13115 };
13116
13117 static const struct opcode_descriptor bzc_insns_32[] = {
13118 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13119 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13120 { 0, 0 } /* End marker for find_match(). */
13121 };
13122
13123 static const struct opcode_descriptor bz_insns_16[] = {
13124 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13125 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13126 { 0, 0 } /* End marker for find_match(). */
13127 };
13128
13129 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13130
13131 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13132 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13133
13134
13135 /* 32-bit instructions with a delay slot. */
13136
13137 static const struct opcode_descriptor jal_insn_32_bd16 =
13138 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13139
13140 static const struct opcode_descriptor jal_insn_32_bd32 =
13141 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13142
13143 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13144 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13145
13146 static const struct opcode_descriptor j_insn_32 =
13147 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13148
13149 static const struct opcode_descriptor jalr_insn_32 =
13150 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13151
13152 /* This table can be compacted, because no opcode replacement is made. */
13153
13154 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13155 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13156
13157 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13158 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13159
13160 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13161 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13162 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13163 { 0, 0 } /* End marker for find_match(). */
13164 };
13165
13166 /* This table can be compacted, because no opcode replacement is made. */
13167
13168 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13169 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13170
13171 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13172 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13173 { 0, 0 } /* End marker for find_match(). */
13174 };
13175
13176
13177 /* 16-bit instructions with a delay slot. */
13178
13179 static const struct opcode_descriptor jalr_insn_16_bd16 =
13180 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13181
13182 static const struct opcode_descriptor jalr_insn_16_bd32 =
13183 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13184
13185 static const struct opcode_descriptor jr_insn_16 =
13186 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13187
13188 #define JR16_REG(opcode) ((opcode) & 0x1f)
13189
13190 /* This table can be compacted, because no opcode replacement is made. */
13191
13192 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13193 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13194
13195 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13196 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13197 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13198 { 0, 0 } /* End marker for find_match(). */
13199 };
13200
13201
13202 /* LUI instruction. */
13203
13204 static const struct opcode_descriptor lui_insn =
13205 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13206
13207
13208 /* ADDIU instruction. */
13209
13210 static const struct opcode_descriptor addiu_insn =
13211 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13212
13213 static const struct opcode_descriptor addiupc_insn =
13214 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13215
13216 #define ADDIUPC_REG_FIELD(r) \
13217 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13218
13219
13220 /* Relaxable instructions in a JAL delay slot: MOVE. */
13221
13222 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13223 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13224 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13225 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13226
13227 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13228 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13229
13230 static const struct opcode_descriptor move_insns_32[] = {
13231 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13232 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13233 { 0, 0 } /* End marker for find_match(). */
13234 };
13235
13236 static const struct opcode_descriptor move_insn_16 =
13237 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13238
13239
13240 /* NOP instructions. */
13241
13242 static const struct opcode_descriptor nop_insn_32 =
13243 { /* "nop", "", */ 0x00000000, 0xffffffff };
13244
13245 static const struct opcode_descriptor nop_insn_16 =
13246 { /* "nop", "", */ 0x0c00, 0xffff };
13247
13248
13249 /* Instruction match support. */
13250
13251 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13252
13253 static int
13254 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13255 {
13256 unsigned long indx;
13257
13258 for (indx = 0; insn[indx].mask != 0; indx++)
13259 if (MATCH (opcode, insn[indx]))
13260 return indx;
13261
13262 return -1;
13263 }
13264
13265
13266 /* Branch and delay slot decoding support. */
13267
13268 /* If PTR points to what *might* be a 16-bit branch or jump, then
13269 return the minimum length of its delay slot, otherwise return 0.
13270 Non-zero results are not definitive as we might be checking against
13271 the second half of another instruction. */
13272
13273 static int
13274 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13275 {
13276 unsigned long opcode;
13277 int bdsize;
13278
13279 opcode = bfd_get_16 (abfd, ptr);
13280 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13281 /* 16-bit branch/jump with a 32-bit delay slot. */
13282 bdsize = 4;
13283 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13284 || find_match (opcode, ds_insns_16_bd16) >= 0)
13285 /* 16-bit branch/jump with a 16-bit delay slot. */
13286 bdsize = 2;
13287 else
13288 /* No delay slot. */
13289 bdsize = 0;
13290
13291 return bdsize;
13292 }
13293
13294 /* If PTR points to what *might* be a 32-bit branch or jump, then
13295 return the minimum length of its delay slot, otherwise return 0.
13296 Non-zero results are not definitive as we might be checking against
13297 the second half of another instruction. */
13298
13299 static int
13300 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13301 {
13302 unsigned long opcode;
13303 int bdsize;
13304
13305 opcode = bfd_get_micromips_32 (abfd, ptr);
13306 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13307 /* 32-bit branch/jump with a 32-bit delay slot. */
13308 bdsize = 4;
13309 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13310 /* 32-bit branch/jump with a 16-bit delay slot. */
13311 bdsize = 2;
13312 else
13313 /* No delay slot. */
13314 bdsize = 0;
13315
13316 return bdsize;
13317 }
13318
13319 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13320 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13321
13322 static bfd_boolean
13323 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13324 {
13325 unsigned long opcode;
13326
13327 opcode = bfd_get_16 (abfd, ptr);
13328 if (MATCH (opcode, b_insn_16)
13329 /* B16 */
13330 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13331 /* JR16 */
13332 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13333 /* BEQZ16, BNEZ16 */
13334 || (MATCH (opcode, jalr_insn_16_bd32)
13335 /* JALR16 */
13336 && reg != JR16_REG (opcode) && reg != RA))
13337 return TRUE;
13338
13339 return FALSE;
13340 }
13341
13342 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13343 then return TRUE, otherwise FALSE. */
13344
13345 static bfd_boolean
13346 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13347 {
13348 unsigned long opcode;
13349
13350 opcode = bfd_get_micromips_32 (abfd, ptr);
13351 if (MATCH (opcode, j_insn_32)
13352 /* J */
13353 || MATCH (opcode, bc_insn_32)
13354 /* BC1F, BC1T, BC2F, BC2T */
13355 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13356 /* JAL, JALX */
13357 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13358 /* BGEZ, BGTZ, BLEZ, BLTZ */
13359 || (MATCH (opcode, bzal_insn_32)
13360 /* BGEZAL, BLTZAL */
13361 && reg != OP32_SREG (opcode) && reg != RA)
13362 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13363 /* JALR, JALR.HB, BEQ, BNE */
13364 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13365 return TRUE;
13366
13367 return FALSE;
13368 }
13369
13370 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13371 IRELEND) at OFFSET indicate that there must be a compact branch there,
13372 then return TRUE, otherwise FALSE. */
13373
13374 static bfd_boolean
13375 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13376 const Elf_Internal_Rela *internal_relocs,
13377 const Elf_Internal_Rela *irelend)
13378 {
13379 const Elf_Internal_Rela *irel;
13380 unsigned long opcode;
13381
13382 opcode = bfd_get_micromips_32 (abfd, ptr);
13383 if (find_match (opcode, bzc_insns_32) < 0)
13384 return FALSE;
13385
13386 for (irel = internal_relocs; irel < irelend; irel++)
13387 if (irel->r_offset == offset
13388 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13389 return TRUE;
13390
13391 return FALSE;
13392 }
13393
13394 /* Bitsize checking. */
13395 #define IS_BITSIZE(val, N) \
13396 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13397 - (1ULL << ((N) - 1))) == (val))
13398
13399 \f
13400 bfd_boolean
13401 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13402 struct bfd_link_info *link_info,
13403 bfd_boolean *again)
13404 {
13405 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13406 Elf_Internal_Shdr *symtab_hdr;
13407 Elf_Internal_Rela *internal_relocs;
13408 Elf_Internal_Rela *irel, *irelend;
13409 bfd_byte *contents = NULL;
13410 Elf_Internal_Sym *isymbuf = NULL;
13411
13412 /* Assume nothing changes. */
13413 *again = FALSE;
13414
13415 /* We don't have to do anything for a relocatable link, if
13416 this section does not have relocs, or if this is not a
13417 code section. */
13418
13419 if (bfd_link_relocatable (link_info)
13420 || (sec->flags & SEC_RELOC) == 0
13421 || sec->reloc_count == 0
13422 || (sec->flags & SEC_CODE) == 0)
13423 return TRUE;
13424
13425 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13426
13427 /* Get a copy of the native relocations. */
13428 internal_relocs = (_bfd_elf_link_read_relocs
13429 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13430 link_info->keep_memory));
13431 if (internal_relocs == NULL)
13432 goto error_return;
13433
13434 /* Walk through them looking for relaxing opportunities. */
13435 irelend = internal_relocs + sec->reloc_count;
13436 for (irel = internal_relocs; irel < irelend; irel++)
13437 {
13438 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13439 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13440 bfd_boolean target_is_micromips_code_p;
13441 unsigned long opcode;
13442 bfd_vma symval;
13443 bfd_vma pcrval;
13444 bfd_byte *ptr;
13445 int fndopc;
13446
13447 /* The number of bytes to delete for relaxation and from where
13448 to delete these bytes starting at irel->r_offset. */
13449 int delcnt = 0;
13450 int deloff = 0;
13451
13452 /* If this isn't something that can be relaxed, then ignore
13453 this reloc. */
13454 if (r_type != R_MICROMIPS_HI16
13455 && r_type != R_MICROMIPS_PC16_S1
13456 && r_type != R_MICROMIPS_26_S1)
13457 continue;
13458
13459 /* Get the section contents if we haven't done so already. */
13460 if (contents == NULL)
13461 {
13462 /* Get cached copy if it exists. */
13463 if (elf_section_data (sec)->this_hdr.contents != NULL)
13464 contents = elf_section_data (sec)->this_hdr.contents;
13465 /* Go get them off disk. */
13466 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13467 goto error_return;
13468 }
13469 ptr = contents + irel->r_offset;
13470
13471 /* Read this BFD's local symbols if we haven't done so already. */
13472 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13473 {
13474 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13475 if (isymbuf == NULL)
13476 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13477 symtab_hdr->sh_info, 0,
13478 NULL, NULL, NULL);
13479 if (isymbuf == NULL)
13480 goto error_return;
13481 }
13482
13483 /* Get the value of the symbol referred to by the reloc. */
13484 if (r_symndx < symtab_hdr->sh_info)
13485 {
13486 /* A local symbol. */
13487 Elf_Internal_Sym *isym;
13488 asection *sym_sec;
13489
13490 isym = isymbuf + r_symndx;
13491 if (isym->st_shndx == SHN_UNDEF)
13492 sym_sec = bfd_und_section_ptr;
13493 else if (isym->st_shndx == SHN_ABS)
13494 sym_sec = bfd_abs_section_ptr;
13495 else if (isym->st_shndx == SHN_COMMON)
13496 sym_sec = bfd_com_section_ptr;
13497 else
13498 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13499 symval = (isym->st_value
13500 + sym_sec->output_section->vma
13501 + sym_sec->output_offset);
13502 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13503 }
13504 else
13505 {
13506 unsigned long indx;
13507 struct elf_link_hash_entry *h;
13508
13509 /* An external symbol. */
13510 indx = r_symndx - symtab_hdr->sh_info;
13511 h = elf_sym_hashes (abfd)[indx];
13512 BFD_ASSERT (h != NULL);
13513
13514 if (h->root.type != bfd_link_hash_defined
13515 && h->root.type != bfd_link_hash_defweak)
13516 /* This appears to be a reference to an undefined
13517 symbol. Just ignore it -- it will be caught by the
13518 regular reloc processing. */
13519 continue;
13520
13521 symval = (h->root.u.def.value
13522 + h->root.u.def.section->output_section->vma
13523 + h->root.u.def.section->output_offset);
13524 target_is_micromips_code_p = (!h->needs_plt
13525 && ELF_ST_IS_MICROMIPS (h->other));
13526 }
13527
13528
13529 /* For simplicity of coding, we are going to modify the
13530 section contents, the section relocs, and the BFD symbol
13531 table. We must tell the rest of the code not to free up this
13532 information. It would be possible to instead create a table
13533 of changes which have to be made, as is done in coff-mips.c;
13534 that would be more work, but would require less memory when
13535 the linker is run. */
13536
13537 /* Only 32-bit instructions relaxed. */
13538 if (irel->r_offset + 4 > sec->size)
13539 continue;
13540
13541 opcode = bfd_get_micromips_32 (abfd, ptr);
13542
13543 /* This is the pc-relative distance from the instruction the
13544 relocation is applied to, to the symbol referred. */
13545 pcrval = (symval
13546 - (sec->output_section->vma + sec->output_offset)
13547 - irel->r_offset);
13548
13549 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13550 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13551 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13552
13553 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13554
13555 where pcrval has first to be adjusted to apply against the LO16
13556 location (we make the adjustment later on, when we have figured
13557 out the offset). */
13558 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13559 {
13560 bfd_boolean bzc = FALSE;
13561 unsigned long nextopc;
13562 unsigned long reg;
13563 bfd_vma offset;
13564
13565 /* Give up if the previous reloc was a HI16 against this symbol
13566 too. */
13567 if (irel > internal_relocs
13568 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13569 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13570 continue;
13571
13572 /* Or if the next reloc is not a LO16 against this symbol. */
13573 if (irel + 1 >= irelend
13574 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13575 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13576 continue;
13577
13578 /* Or if the second next reloc is a LO16 against this symbol too. */
13579 if (irel + 2 >= irelend
13580 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13581 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13582 continue;
13583
13584 /* See if the LUI instruction *might* be in a branch delay slot.
13585 We check whether what looks like a 16-bit branch or jump is
13586 actually an immediate argument to a compact branch, and let
13587 it through if so. */
13588 if (irel->r_offset >= 2
13589 && check_br16_dslot (abfd, ptr - 2)
13590 && !(irel->r_offset >= 4
13591 && (bzc = check_relocated_bzc (abfd,
13592 ptr - 4, irel->r_offset - 4,
13593 internal_relocs, irelend))))
13594 continue;
13595 if (irel->r_offset >= 4
13596 && !bzc
13597 && check_br32_dslot (abfd, ptr - 4))
13598 continue;
13599
13600 reg = OP32_SREG (opcode);
13601
13602 /* We only relax adjacent instructions or ones separated with
13603 a branch or jump that has a delay slot. The branch or jump
13604 must not fiddle with the register used to hold the address.
13605 Subtract 4 for the LUI itself. */
13606 offset = irel[1].r_offset - irel[0].r_offset;
13607 switch (offset - 4)
13608 {
13609 case 0:
13610 break;
13611 case 2:
13612 if (check_br16 (abfd, ptr + 4, reg))
13613 break;
13614 continue;
13615 case 4:
13616 if (check_br32 (abfd, ptr + 4, reg))
13617 break;
13618 continue;
13619 default:
13620 continue;
13621 }
13622
13623 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13624
13625 /* Give up unless the same register is used with both
13626 relocations. */
13627 if (OP32_SREG (nextopc) != reg)
13628 continue;
13629
13630 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13631 and rounding up to take masking of the two LSBs into account. */
13632 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13633
13634 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13635 if (IS_BITSIZE (symval, 16))
13636 {
13637 /* Fix the relocation's type. */
13638 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13639
13640 /* Instructions using R_MICROMIPS_LO16 have the base or
13641 source register in bits 20:16. This register becomes $0
13642 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13643 nextopc &= ~0x001f0000;
13644 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13645 contents + irel[1].r_offset);
13646 }
13647
13648 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13649 We add 4 to take LUI deletion into account while checking
13650 the PC-relative distance. */
13651 else if (symval % 4 == 0
13652 && IS_BITSIZE (pcrval + 4, 25)
13653 && MATCH (nextopc, addiu_insn)
13654 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13655 && OP16_VALID_REG (OP32_TREG (nextopc)))
13656 {
13657 /* Fix the relocation's type. */
13658 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13659
13660 /* Replace ADDIU with the ADDIUPC version. */
13661 nextopc = (addiupc_insn.match
13662 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13663
13664 bfd_put_micromips_32 (abfd, nextopc,
13665 contents + irel[1].r_offset);
13666 }
13667
13668 /* Can't do anything, give up, sigh... */
13669 else
13670 continue;
13671
13672 /* Fix the relocation's type. */
13673 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13674
13675 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13676 delcnt = 4;
13677 deloff = 0;
13678 }
13679
13680 /* Compact branch relaxation -- due to the multitude of macros
13681 employed by the compiler/assembler, compact branches are not
13682 always generated. Obviously, this can/will be fixed elsewhere,
13683 but there is no drawback in double checking it here. */
13684 else if (r_type == R_MICROMIPS_PC16_S1
13685 && irel->r_offset + 5 < sec->size
13686 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13687 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13688 && ((!insn32
13689 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13690 nop_insn_16) ? 2 : 0))
13691 || (irel->r_offset + 7 < sec->size
13692 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13693 ptr + 4),
13694 nop_insn_32) ? 4 : 0))))
13695 {
13696 unsigned long reg;
13697
13698 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13699
13700 /* Replace BEQZ/BNEZ with the compact version. */
13701 opcode = (bzc_insns_32[fndopc].match
13702 | BZC32_REG_FIELD (reg)
13703 | (opcode & 0xffff)); /* Addend value. */
13704
13705 bfd_put_micromips_32 (abfd, opcode, ptr);
13706
13707 /* Delete the delay slot NOP: two or four bytes from
13708 irel->offset + 4; delcnt has already been set above. */
13709 deloff = 4;
13710 }
13711
13712 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13713 to check the distance from the next instruction, so subtract 2. */
13714 else if (!insn32
13715 && r_type == R_MICROMIPS_PC16_S1
13716 && IS_BITSIZE (pcrval - 2, 11)
13717 && find_match (opcode, b_insns_32) >= 0)
13718 {
13719 /* Fix the relocation's type. */
13720 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13721
13722 /* Replace the 32-bit opcode with a 16-bit opcode. */
13723 bfd_put_16 (abfd,
13724 (b_insn_16.match
13725 | (opcode & 0x3ff)), /* Addend value. */
13726 ptr);
13727
13728 /* Delete 2 bytes from irel->r_offset + 2. */
13729 delcnt = 2;
13730 deloff = 2;
13731 }
13732
13733 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13734 to check the distance from the next instruction, so subtract 2. */
13735 else if (!insn32
13736 && r_type == R_MICROMIPS_PC16_S1
13737 && IS_BITSIZE (pcrval - 2, 8)
13738 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13739 && OP16_VALID_REG (OP32_SREG (opcode)))
13740 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13741 && OP16_VALID_REG (OP32_TREG (opcode)))))
13742 {
13743 unsigned long reg;
13744
13745 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13746
13747 /* Fix the relocation's type. */
13748 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13749
13750 /* Replace the 32-bit opcode with a 16-bit opcode. */
13751 bfd_put_16 (abfd,
13752 (bz_insns_16[fndopc].match
13753 | BZ16_REG_FIELD (reg)
13754 | (opcode & 0x7f)), /* Addend value. */
13755 ptr);
13756
13757 /* Delete 2 bytes from irel->r_offset + 2. */
13758 delcnt = 2;
13759 deloff = 2;
13760 }
13761
13762 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13763 else if (!insn32
13764 && r_type == R_MICROMIPS_26_S1
13765 && target_is_micromips_code_p
13766 && irel->r_offset + 7 < sec->size
13767 && MATCH (opcode, jal_insn_32_bd32))
13768 {
13769 unsigned long n32opc;
13770 bfd_boolean relaxed = FALSE;
13771
13772 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13773
13774 if (MATCH (n32opc, nop_insn_32))
13775 {
13776 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13777 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13778
13779 relaxed = TRUE;
13780 }
13781 else if (find_match (n32opc, move_insns_32) >= 0)
13782 {
13783 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13784 bfd_put_16 (abfd,
13785 (move_insn_16.match
13786 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13787 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13788 ptr + 4);
13789
13790 relaxed = TRUE;
13791 }
13792 /* Other 32-bit instructions relaxable to 16-bit
13793 instructions will be handled here later. */
13794
13795 if (relaxed)
13796 {
13797 /* JAL with 32-bit delay slot that is changed to a JALS
13798 with 16-bit delay slot. */
13799 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13800
13801 /* Delete 2 bytes from irel->r_offset + 6. */
13802 delcnt = 2;
13803 deloff = 6;
13804 }
13805 }
13806
13807 if (delcnt != 0)
13808 {
13809 /* Note that we've changed the relocs, section contents, etc. */
13810 elf_section_data (sec)->relocs = internal_relocs;
13811 elf_section_data (sec)->this_hdr.contents = contents;
13812 symtab_hdr->contents = (unsigned char *) isymbuf;
13813
13814 /* Delete bytes depending on the delcnt and deloff. */
13815 if (!mips_elf_relax_delete_bytes (abfd, sec,
13816 irel->r_offset + deloff, delcnt))
13817 goto error_return;
13818
13819 /* That will change things, so we should relax again.
13820 Note that this is not required, and it may be slow. */
13821 *again = TRUE;
13822 }
13823 }
13824
13825 if (isymbuf != NULL
13826 && symtab_hdr->contents != (unsigned char *) isymbuf)
13827 {
13828 if (! link_info->keep_memory)
13829 free (isymbuf);
13830 else
13831 {
13832 /* Cache the symbols for elf_link_input_bfd. */
13833 symtab_hdr->contents = (unsigned char *) isymbuf;
13834 }
13835 }
13836
13837 if (contents != NULL
13838 && elf_section_data (sec)->this_hdr.contents != contents)
13839 {
13840 if (! link_info->keep_memory)
13841 free (contents);
13842 else
13843 {
13844 /* Cache the section contents for elf_link_input_bfd. */
13845 elf_section_data (sec)->this_hdr.contents = contents;
13846 }
13847 }
13848
13849 if (internal_relocs != NULL
13850 && elf_section_data (sec)->relocs != internal_relocs)
13851 free (internal_relocs);
13852
13853 return TRUE;
13854
13855 error_return:
13856 if (isymbuf != NULL
13857 && symtab_hdr->contents != (unsigned char *) isymbuf)
13858 free (isymbuf);
13859 if (contents != NULL
13860 && elf_section_data (sec)->this_hdr.contents != contents)
13861 free (contents);
13862 if (internal_relocs != NULL
13863 && elf_section_data (sec)->relocs != internal_relocs)
13864 free (internal_relocs);
13865
13866 return FALSE;
13867 }
13868 \f
13869 /* Create a MIPS ELF linker hash table. */
13870
13871 struct bfd_link_hash_table *
13872 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13873 {
13874 struct mips_elf_link_hash_table *ret;
13875 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13876
13877 ret = bfd_zmalloc (amt);
13878 if (ret == NULL)
13879 return NULL;
13880
13881 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13882 mips_elf_link_hash_newfunc,
13883 sizeof (struct mips_elf_link_hash_entry),
13884 MIPS_ELF_DATA))
13885 {
13886 free (ret);
13887 return NULL;
13888 }
13889 ret->root.init_plt_refcount.plist = NULL;
13890 ret->root.init_plt_offset.plist = NULL;
13891
13892 return &ret->root.root;
13893 }
13894
13895 /* Likewise, but indicate that the target is VxWorks. */
13896
13897 struct bfd_link_hash_table *
13898 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13899 {
13900 struct bfd_link_hash_table *ret;
13901
13902 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13903 if (ret)
13904 {
13905 struct mips_elf_link_hash_table *htab;
13906
13907 htab = (struct mips_elf_link_hash_table *) ret;
13908 htab->use_plts_and_copy_relocs = TRUE;
13909 htab->is_vxworks = TRUE;
13910 }
13911 return ret;
13912 }
13913
13914 /* A function that the linker calls if we are allowed to use PLTs
13915 and copy relocs. */
13916
13917 void
13918 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13919 {
13920 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13921 }
13922
13923 /* A function that the linker calls to select between all or only
13924 32-bit microMIPS instructions. */
13925
13926 void
13927 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13928 {
13929 mips_elf_hash_table (info)->insn32 = on;
13930 }
13931 \f
13932 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13933
13934 struct mips_mach_extension
13935 {
13936 unsigned long extension, base;
13937 };
13938
13939
13940 /* An array describing how BFD machines relate to one another. The entries
13941 are ordered topologically with MIPS I extensions listed last. */
13942
13943 static const struct mips_mach_extension mips_mach_extensions[] =
13944 {
13945 /* MIPS64r2 extensions. */
13946 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13947 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13948 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13949 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13950 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13951
13952 /* MIPS64 extensions. */
13953 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13954 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13955 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13956
13957 /* MIPS V extensions. */
13958 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13959
13960 /* R10000 extensions. */
13961 { bfd_mach_mips12000, bfd_mach_mips10000 },
13962 { bfd_mach_mips14000, bfd_mach_mips10000 },
13963 { bfd_mach_mips16000, bfd_mach_mips10000 },
13964
13965 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13966 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13967 better to allow vr5400 and vr5500 code to be merged anyway, since
13968 many libraries will just use the core ISA. Perhaps we could add
13969 some sort of ASE flag if this ever proves a problem. */
13970 { bfd_mach_mips5500, bfd_mach_mips5400 },
13971 { bfd_mach_mips5400, bfd_mach_mips5000 },
13972
13973 /* MIPS IV extensions. */
13974 { bfd_mach_mips5, bfd_mach_mips8000 },
13975 { bfd_mach_mips10000, bfd_mach_mips8000 },
13976 { bfd_mach_mips5000, bfd_mach_mips8000 },
13977 { bfd_mach_mips7000, bfd_mach_mips8000 },
13978 { bfd_mach_mips9000, bfd_mach_mips8000 },
13979
13980 /* VR4100 extensions. */
13981 { bfd_mach_mips4120, bfd_mach_mips4100 },
13982 { bfd_mach_mips4111, bfd_mach_mips4100 },
13983
13984 /* MIPS III extensions. */
13985 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13986 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13987 { bfd_mach_mips8000, bfd_mach_mips4000 },
13988 { bfd_mach_mips4650, bfd_mach_mips4000 },
13989 { bfd_mach_mips4600, bfd_mach_mips4000 },
13990 { bfd_mach_mips4400, bfd_mach_mips4000 },
13991 { bfd_mach_mips4300, bfd_mach_mips4000 },
13992 { bfd_mach_mips4100, bfd_mach_mips4000 },
13993 { bfd_mach_mips4010, bfd_mach_mips4000 },
13994 { bfd_mach_mips5900, bfd_mach_mips4000 },
13995
13996 /* MIPS32 extensions. */
13997 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13998
13999 /* MIPS II extensions. */
14000 { bfd_mach_mips4000, bfd_mach_mips6000 },
14001 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14002
14003 /* MIPS I extensions. */
14004 { bfd_mach_mips6000, bfd_mach_mips3000 },
14005 { bfd_mach_mips3900, bfd_mach_mips3000 }
14006 };
14007
14008 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14009
14010 static bfd_boolean
14011 mips_mach_extends_p (unsigned long base, unsigned long extension)
14012 {
14013 size_t i;
14014
14015 if (extension == base)
14016 return TRUE;
14017
14018 if (base == bfd_mach_mipsisa32
14019 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14020 return TRUE;
14021
14022 if (base == bfd_mach_mipsisa32r2
14023 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14024 return TRUE;
14025
14026 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14027 if (extension == mips_mach_extensions[i].extension)
14028 {
14029 extension = mips_mach_extensions[i].base;
14030 if (extension == base)
14031 return TRUE;
14032 }
14033
14034 return FALSE;
14035 }
14036
14037 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14038
14039 static unsigned long
14040 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14041 {
14042 switch (isa_ext)
14043 {
14044 case AFL_EXT_3900: return bfd_mach_mips3900;
14045 case AFL_EXT_4010: return bfd_mach_mips4010;
14046 case AFL_EXT_4100: return bfd_mach_mips4100;
14047 case AFL_EXT_4111: return bfd_mach_mips4111;
14048 case AFL_EXT_4120: return bfd_mach_mips4120;
14049 case AFL_EXT_4650: return bfd_mach_mips4650;
14050 case AFL_EXT_5400: return bfd_mach_mips5400;
14051 case AFL_EXT_5500: return bfd_mach_mips5500;
14052 case AFL_EXT_5900: return bfd_mach_mips5900;
14053 case AFL_EXT_10000: return bfd_mach_mips10000;
14054 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14055 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14056 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14057 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14058 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14059 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14060 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14061 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14062 default: return bfd_mach_mips3000;
14063 }
14064 }
14065
14066 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14067
14068 unsigned int
14069 bfd_mips_isa_ext (bfd *abfd)
14070 {
14071 switch (bfd_get_mach (abfd))
14072 {
14073 case bfd_mach_mips3900: return AFL_EXT_3900;
14074 case bfd_mach_mips4010: return AFL_EXT_4010;
14075 case bfd_mach_mips4100: return AFL_EXT_4100;
14076 case bfd_mach_mips4111: return AFL_EXT_4111;
14077 case bfd_mach_mips4120: return AFL_EXT_4120;
14078 case bfd_mach_mips4650: return AFL_EXT_4650;
14079 case bfd_mach_mips5400: return AFL_EXT_5400;
14080 case bfd_mach_mips5500: return AFL_EXT_5500;
14081 case bfd_mach_mips5900: return AFL_EXT_5900;
14082 case bfd_mach_mips10000: return AFL_EXT_10000;
14083 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14084 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14085 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14086 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14087 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14088 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14089 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14090 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14091 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14092 default: return 0;
14093 }
14094 }
14095
14096 /* Encode ISA level and revision as a single value. */
14097 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14098
14099 /* Decode a single value into level and revision. */
14100 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14101 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14102
14103 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14104
14105 static void
14106 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14107 {
14108 int new_isa = 0;
14109 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14110 {
14111 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14112 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14113 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14114 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14115 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14116 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14117 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14118 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14119 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14120 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14121 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14122 default:
14123 (*_bfd_error_handler)
14124 (_("%B: Unknown architecture %s"),
14125 abfd, bfd_printable_name (abfd));
14126 }
14127
14128 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14129 {
14130 abiflags->isa_level = ISA_LEVEL (new_isa);
14131 abiflags->isa_rev = ISA_REV (new_isa);
14132 }
14133
14134 /* Update the isa_ext if ABFD describes a further extension. */
14135 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14136 bfd_get_mach (abfd)))
14137 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14138 }
14139
14140 /* Return true if the given ELF header flags describe a 32-bit binary. */
14141
14142 static bfd_boolean
14143 mips_32bit_flags_p (flagword flags)
14144 {
14145 return ((flags & EF_MIPS_32BITMODE) != 0
14146 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14147 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14148 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14149 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14150 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14151 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14152 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14153 }
14154
14155 /* Infer the content of the ABI flags based on the elf header. */
14156
14157 static void
14158 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14159 {
14160 obj_attribute *in_attr;
14161
14162 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14163 update_mips_abiflags_isa (abfd, abiflags);
14164
14165 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14166 abiflags->gpr_size = AFL_REG_32;
14167 else
14168 abiflags->gpr_size = AFL_REG_64;
14169
14170 abiflags->cpr1_size = AFL_REG_NONE;
14171
14172 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14173 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14174
14175 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14176 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14177 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14178 && abiflags->gpr_size == AFL_REG_32))
14179 abiflags->cpr1_size = AFL_REG_32;
14180 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14181 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14182 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14183 abiflags->cpr1_size = AFL_REG_64;
14184
14185 abiflags->cpr2_size = AFL_REG_NONE;
14186
14187 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14188 abiflags->ases |= AFL_ASE_MDMX;
14189 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14190 abiflags->ases |= AFL_ASE_MIPS16;
14191 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14192 abiflags->ases |= AFL_ASE_MICROMIPS;
14193
14194 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14195 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14196 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14197 && abiflags->isa_level >= 32
14198 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14199 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14200 }
14201
14202 /* We need to use a special link routine to handle the .reginfo and
14203 the .mdebug sections. We need to merge all instances of these
14204 sections together, not write them all out sequentially. */
14205
14206 bfd_boolean
14207 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14208 {
14209 asection *o;
14210 struct bfd_link_order *p;
14211 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14212 asection *rtproc_sec, *abiflags_sec;
14213 Elf32_RegInfo reginfo;
14214 struct ecoff_debug_info debug;
14215 struct mips_htab_traverse_info hti;
14216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14217 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14218 HDRR *symhdr = &debug.symbolic_header;
14219 void *mdebug_handle = NULL;
14220 asection *s;
14221 EXTR esym;
14222 unsigned int i;
14223 bfd_size_type amt;
14224 struct mips_elf_link_hash_table *htab;
14225
14226 static const char * const secname[] =
14227 {
14228 ".text", ".init", ".fini", ".data",
14229 ".rodata", ".sdata", ".sbss", ".bss"
14230 };
14231 static const int sc[] =
14232 {
14233 scText, scInit, scFini, scData,
14234 scRData, scSData, scSBss, scBss
14235 };
14236
14237 /* Sort the dynamic symbols so that those with GOT entries come after
14238 those without. */
14239 htab = mips_elf_hash_table (info);
14240 BFD_ASSERT (htab != NULL);
14241
14242 if (!mips_elf_sort_hash_table (abfd, info))
14243 return FALSE;
14244
14245 /* Create any scheduled LA25 stubs. */
14246 hti.info = info;
14247 hti.output_bfd = abfd;
14248 hti.error = FALSE;
14249 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14250 if (hti.error)
14251 return FALSE;
14252
14253 /* Get a value for the GP register. */
14254 if (elf_gp (abfd) == 0)
14255 {
14256 struct bfd_link_hash_entry *h;
14257
14258 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14259 if (h != NULL && h->type == bfd_link_hash_defined)
14260 elf_gp (abfd) = (h->u.def.value
14261 + h->u.def.section->output_section->vma
14262 + h->u.def.section->output_offset);
14263 else if (htab->is_vxworks
14264 && (h = bfd_link_hash_lookup (info->hash,
14265 "_GLOBAL_OFFSET_TABLE_",
14266 FALSE, FALSE, TRUE))
14267 && h->type == bfd_link_hash_defined)
14268 elf_gp (abfd) = (h->u.def.section->output_section->vma
14269 + h->u.def.section->output_offset
14270 + h->u.def.value);
14271 else if (bfd_link_relocatable (info))
14272 {
14273 bfd_vma lo = MINUS_ONE;
14274
14275 /* Find the GP-relative section with the lowest offset. */
14276 for (o = abfd->sections; o != NULL; o = o->next)
14277 if (o->vma < lo
14278 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14279 lo = o->vma;
14280
14281 /* And calculate GP relative to that. */
14282 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14283 }
14284 else
14285 {
14286 /* If the relocate_section function needs to do a reloc
14287 involving the GP value, it should make a reloc_dangerous
14288 callback to warn that GP is not defined. */
14289 }
14290 }
14291
14292 /* Go through the sections and collect the .reginfo and .mdebug
14293 information. */
14294 abiflags_sec = NULL;
14295 reginfo_sec = NULL;
14296 mdebug_sec = NULL;
14297 gptab_data_sec = NULL;
14298 gptab_bss_sec = NULL;
14299 for (o = abfd->sections; o != NULL; o = o->next)
14300 {
14301 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14302 {
14303 /* We have found the .MIPS.abiflags section in the output file.
14304 Look through all the link_orders comprising it and remove them.
14305 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14306 for (p = o->map_head.link_order; p != NULL; p = p->next)
14307 {
14308 asection *input_section;
14309
14310 if (p->type != bfd_indirect_link_order)
14311 {
14312 if (p->type == bfd_data_link_order)
14313 continue;
14314 abort ();
14315 }
14316
14317 input_section = p->u.indirect.section;
14318
14319 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14320 elf_link_input_bfd ignores this section. */
14321 input_section->flags &= ~SEC_HAS_CONTENTS;
14322 }
14323
14324 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14325 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14326
14327 /* Skip this section later on (I don't think this currently
14328 matters, but someday it might). */
14329 o->map_head.link_order = NULL;
14330
14331 abiflags_sec = o;
14332 }
14333
14334 if (strcmp (o->name, ".reginfo") == 0)
14335 {
14336 memset (&reginfo, 0, sizeof reginfo);
14337
14338 /* We have found the .reginfo section in the output file.
14339 Look through all the link_orders comprising it and merge
14340 the information together. */
14341 for (p = o->map_head.link_order; p != NULL; p = p->next)
14342 {
14343 asection *input_section;
14344 bfd *input_bfd;
14345 Elf32_External_RegInfo ext;
14346 Elf32_RegInfo sub;
14347
14348 if (p->type != bfd_indirect_link_order)
14349 {
14350 if (p->type == bfd_data_link_order)
14351 continue;
14352 abort ();
14353 }
14354
14355 input_section = p->u.indirect.section;
14356 input_bfd = input_section->owner;
14357
14358 if (! bfd_get_section_contents (input_bfd, input_section,
14359 &ext, 0, sizeof ext))
14360 return FALSE;
14361
14362 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14363
14364 reginfo.ri_gprmask |= sub.ri_gprmask;
14365 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14366 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14367 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14368 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14369
14370 /* ri_gp_value is set by the function
14371 mips_elf32_section_processing when the section is
14372 finally written out. */
14373
14374 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14375 elf_link_input_bfd ignores this section. */
14376 input_section->flags &= ~SEC_HAS_CONTENTS;
14377 }
14378
14379 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14380 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14381
14382 /* Skip this section later on (I don't think this currently
14383 matters, but someday it might). */
14384 o->map_head.link_order = NULL;
14385
14386 reginfo_sec = o;
14387 }
14388
14389 if (strcmp (o->name, ".mdebug") == 0)
14390 {
14391 struct extsym_info einfo;
14392 bfd_vma last;
14393
14394 /* We have found the .mdebug section in the output file.
14395 Look through all the link_orders comprising it and merge
14396 the information together. */
14397 symhdr->magic = swap->sym_magic;
14398 /* FIXME: What should the version stamp be? */
14399 symhdr->vstamp = 0;
14400 symhdr->ilineMax = 0;
14401 symhdr->cbLine = 0;
14402 symhdr->idnMax = 0;
14403 symhdr->ipdMax = 0;
14404 symhdr->isymMax = 0;
14405 symhdr->ioptMax = 0;
14406 symhdr->iauxMax = 0;
14407 symhdr->issMax = 0;
14408 symhdr->issExtMax = 0;
14409 symhdr->ifdMax = 0;
14410 symhdr->crfd = 0;
14411 symhdr->iextMax = 0;
14412
14413 /* We accumulate the debugging information itself in the
14414 debug_info structure. */
14415 debug.line = NULL;
14416 debug.external_dnr = NULL;
14417 debug.external_pdr = NULL;
14418 debug.external_sym = NULL;
14419 debug.external_opt = NULL;
14420 debug.external_aux = NULL;
14421 debug.ss = NULL;
14422 debug.ssext = debug.ssext_end = NULL;
14423 debug.external_fdr = NULL;
14424 debug.external_rfd = NULL;
14425 debug.external_ext = debug.external_ext_end = NULL;
14426
14427 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14428 if (mdebug_handle == NULL)
14429 return FALSE;
14430
14431 esym.jmptbl = 0;
14432 esym.cobol_main = 0;
14433 esym.weakext = 0;
14434 esym.reserved = 0;
14435 esym.ifd = ifdNil;
14436 esym.asym.iss = issNil;
14437 esym.asym.st = stLocal;
14438 esym.asym.reserved = 0;
14439 esym.asym.index = indexNil;
14440 last = 0;
14441 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14442 {
14443 esym.asym.sc = sc[i];
14444 s = bfd_get_section_by_name (abfd, secname[i]);
14445 if (s != NULL)
14446 {
14447 esym.asym.value = s->vma;
14448 last = s->vma + s->size;
14449 }
14450 else
14451 esym.asym.value = last;
14452 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14453 secname[i], &esym))
14454 return FALSE;
14455 }
14456
14457 for (p = o->map_head.link_order; p != NULL; p = p->next)
14458 {
14459 asection *input_section;
14460 bfd *input_bfd;
14461 const struct ecoff_debug_swap *input_swap;
14462 struct ecoff_debug_info input_debug;
14463 char *eraw_src;
14464 char *eraw_end;
14465
14466 if (p->type != bfd_indirect_link_order)
14467 {
14468 if (p->type == bfd_data_link_order)
14469 continue;
14470 abort ();
14471 }
14472
14473 input_section = p->u.indirect.section;
14474 input_bfd = input_section->owner;
14475
14476 if (!is_mips_elf (input_bfd))
14477 {
14478 /* I don't know what a non MIPS ELF bfd would be
14479 doing with a .mdebug section, but I don't really
14480 want to deal with it. */
14481 continue;
14482 }
14483
14484 input_swap = (get_elf_backend_data (input_bfd)
14485 ->elf_backend_ecoff_debug_swap);
14486
14487 BFD_ASSERT (p->size == input_section->size);
14488
14489 /* The ECOFF linking code expects that we have already
14490 read in the debugging information and set up an
14491 ecoff_debug_info structure, so we do that now. */
14492 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14493 &input_debug))
14494 return FALSE;
14495
14496 if (! (bfd_ecoff_debug_accumulate
14497 (mdebug_handle, abfd, &debug, swap, input_bfd,
14498 &input_debug, input_swap, info)))
14499 return FALSE;
14500
14501 /* Loop through the external symbols. For each one with
14502 interesting information, try to find the symbol in
14503 the linker global hash table and save the information
14504 for the output external symbols. */
14505 eraw_src = input_debug.external_ext;
14506 eraw_end = (eraw_src
14507 + (input_debug.symbolic_header.iextMax
14508 * input_swap->external_ext_size));
14509 for (;
14510 eraw_src < eraw_end;
14511 eraw_src += input_swap->external_ext_size)
14512 {
14513 EXTR ext;
14514 const char *name;
14515 struct mips_elf_link_hash_entry *h;
14516
14517 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14518 if (ext.asym.sc == scNil
14519 || ext.asym.sc == scUndefined
14520 || ext.asym.sc == scSUndefined)
14521 continue;
14522
14523 name = input_debug.ssext + ext.asym.iss;
14524 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14525 name, FALSE, FALSE, TRUE);
14526 if (h == NULL || h->esym.ifd != -2)
14527 continue;
14528
14529 if (ext.ifd != -1)
14530 {
14531 BFD_ASSERT (ext.ifd
14532 < input_debug.symbolic_header.ifdMax);
14533 ext.ifd = input_debug.ifdmap[ext.ifd];
14534 }
14535
14536 h->esym = ext;
14537 }
14538
14539 /* Free up the information we just read. */
14540 free (input_debug.line);
14541 free (input_debug.external_dnr);
14542 free (input_debug.external_pdr);
14543 free (input_debug.external_sym);
14544 free (input_debug.external_opt);
14545 free (input_debug.external_aux);
14546 free (input_debug.ss);
14547 free (input_debug.ssext);
14548 free (input_debug.external_fdr);
14549 free (input_debug.external_rfd);
14550 free (input_debug.external_ext);
14551
14552 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14553 elf_link_input_bfd ignores this section. */
14554 input_section->flags &= ~SEC_HAS_CONTENTS;
14555 }
14556
14557 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14558 {
14559 /* Create .rtproc section. */
14560 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14561 if (rtproc_sec == NULL)
14562 {
14563 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14564 | SEC_LINKER_CREATED | SEC_READONLY);
14565
14566 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14567 ".rtproc",
14568 flags);
14569 if (rtproc_sec == NULL
14570 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14571 return FALSE;
14572 }
14573
14574 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14575 info, rtproc_sec,
14576 &debug))
14577 return FALSE;
14578 }
14579
14580 /* Build the external symbol information. */
14581 einfo.abfd = abfd;
14582 einfo.info = info;
14583 einfo.debug = &debug;
14584 einfo.swap = swap;
14585 einfo.failed = FALSE;
14586 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14587 mips_elf_output_extsym, &einfo);
14588 if (einfo.failed)
14589 return FALSE;
14590
14591 /* Set the size of the .mdebug section. */
14592 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14593
14594 /* Skip this section later on (I don't think this currently
14595 matters, but someday it might). */
14596 o->map_head.link_order = NULL;
14597
14598 mdebug_sec = o;
14599 }
14600
14601 if (CONST_STRNEQ (o->name, ".gptab."))
14602 {
14603 const char *subname;
14604 unsigned int c;
14605 Elf32_gptab *tab;
14606 Elf32_External_gptab *ext_tab;
14607 unsigned int j;
14608
14609 /* The .gptab.sdata and .gptab.sbss sections hold
14610 information describing how the small data area would
14611 change depending upon the -G switch. These sections
14612 not used in executables files. */
14613 if (! bfd_link_relocatable (info))
14614 {
14615 for (p = o->map_head.link_order; p != NULL; p = p->next)
14616 {
14617 asection *input_section;
14618
14619 if (p->type != bfd_indirect_link_order)
14620 {
14621 if (p->type == bfd_data_link_order)
14622 continue;
14623 abort ();
14624 }
14625
14626 input_section = p->u.indirect.section;
14627
14628 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14629 elf_link_input_bfd ignores this section. */
14630 input_section->flags &= ~SEC_HAS_CONTENTS;
14631 }
14632
14633 /* Skip this section later on (I don't think this
14634 currently matters, but someday it might). */
14635 o->map_head.link_order = NULL;
14636
14637 /* Really remove the section. */
14638 bfd_section_list_remove (abfd, o);
14639 --abfd->section_count;
14640
14641 continue;
14642 }
14643
14644 /* There is one gptab for initialized data, and one for
14645 uninitialized data. */
14646 if (strcmp (o->name, ".gptab.sdata") == 0)
14647 gptab_data_sec = o;
14648 else if (strcmp (o->name, ".gptab.sbss") == 0)
14649 gptab_bss_sec = o;
14650 else
14651 {
14652 (*_bfd_error_handler)
14653 (_("%s: illegal section name `%s'"),
14654 bfd_get_filename (abfd), o->name);
14655 bfd_set_error (bfd_error_nonrepresentable_section);
14656 return FALSE;
14657 }
14658
14659 /* The linker script always combines .gptab.data and
14660 .gptab.sdata into .gptab.sdata, and likewise for
14661 .gptab.bss and .gptab.sbss. It is possible that there is
14662 no .sdata or .sbss section in the output file, in which
14663 case we must change the name of the output section. */
14664 subname = o->name + sizeof ".gptab" - 1;
14665 if (bfd_get_section_by_name (abfd, subname) == NULL)
14666 {
14667 if (o == gptab_data_sec)
14668 o->name = ".gptab.data";
14669 else
14670 o->name = ".gptab.bss";
14671 subname = o->name + sizeof ".gptab" - 1;
14672 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14673 }
14674
14675 /* Set up the first entry. */
14676 c = 1;
14677 amt = c * sizeof (Elf32_gptab);
14678 tab = bfd_malloc (amt);
14679 if (tab == NULL)
14680 return FALSE;
14681 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14682 tab[0].gt_header.gt_unused = 0;
14683
14684 /* Combine the input sections. */
14685 for (p = o->map_head.link_order; p != NULL; p = p->next)
14686 {
14687 asection *input_section;
14688 bfd *input_bfd;
14689 bfd_size_type size;
14690 unsigned long last;
14691 bfd_size_type gpentry;
14692
14693 if (p->type != bfd_indirect_link_order)
14694 {
14695 if (p->type == bfd_data_link_order)
14696 continue;
14697 abort ();
14698 }
14699
14700 input_section = p->u.indirect.section;
14701 input_bfd = input_section->owner;
14702
14703 /* Combine the gptab entries for this input section one
14704 by one. We know that the input gptab entries are
14705 sorted by ascending -G value. */
14706 size = input_section->size;
14707 last = 0;
14708 for (gpentry = sizeof (Elf32_External_gptab);
14709 gpentry < size;
14710 gpentry += sizeof (Elf32_External_gptab))
14711 {
14712 Elf32_External_gptab ext_gptab;
14713 Elf32_gptab int_gptab;
14714 unsigned long val;
14715 unsigned long add;
14716 bfd_boolean exact;
14717 unsigned int look;
14718
14719 if (! (bfd_get_section_contents
14720 (input_bfd, input_section, &ext_gptab, gpentry,
14721 sizeof (Elf32_External_gptab))))
14722 {
14723 free (tab);
14724 return FALSE;
14725 }
14726
14727 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14728 &int_gptab);
14729 val = int_gptab.gt_entry.gt_g_value;
14730 add = int_gptab.gt_entry.gt_bytes - last;
14731
14732 exact = FALSE;
14733 for (look = 1; look < c; look++)
14734 {
14735 if (tab[look].gt_entry.gt_g_value >= val)
14736 tab[look].gt_entry.gt_bytes += add;
14737
14738 if (tab[look].gt_entry.gt_g_value == val)
14739 exact = TRUE;
14740 }
14741
14742 if (! exact)
14743 {
14744 Elf32_gptab *new_tab;
14745 unsigned int max;
14746
14747 /* We need a new table entry. */
14748 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14749 new_tab = bfd_realloc (tab, amt);
14750 if (new_tab == NULL)
14751 {
14752 free (tab);
14753 return FALSE;
14754 }
14755 tab = new_tab;
14756 tab[c].gt_entry.gt_g_value = val;
14757 tab[c].gt_entry.gt_bytes = add;
14758
14759 /* Merge in the size for the next smallest -G
14760 value, since that will be implied by this new
14761 value. */
14762 max = 0;
14763 for (look = 1; look < c; look++)
14764 {
14765 if (tab[look].gt_entry.gt_g_value < val
14766 && (max == 0
14767 || (tab[look].gt_entry.gt_g_value
14768 > tab[max].gt_entry.gt_g_value)))
14769 max = look;
14770 }
14771 if (max != 0)
14772 tab[c].gt_entry.gt_bytes +=
14773 tab[max].gt_entry.gt_bytes;
14774
14775 ++c;
14776 }
14777
14778 last = int_gptab.gt_entry.gt_bytes;
14779 }
14780
14781 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14782 elf_link_input_bfd ignores this section. */
14783 input_section->flags &= ~SEC_HAS_CONTENTS;
14784 }
14785
14786 /* The table must be sorted by -G value. */
14787 if (c > 2)
14788 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14789
14790 /* Swap out the table. */
14791 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14792 ext_tab = bfd_alloc (abfd, amt);
14793 if (ext_tab == NULL)
14794 {
14795 free (tab);
14796 return FALSE;
14797 }
14798
14799 for (j = 0; j < c; j++)
14800 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14801 free (tab);
14802
14803 o->size = c * sizeof (Elf32_External_gptab);
14804 o->contents = (bfd_byte *) ext_tab;
14805
14806 /* Skip this section later on (I don't think this currently
14807 matters, but someday it might). */
14808 o->map_head.link_order = NULL;
14809 }
14810 }
14811
14812 /* Invoke the regular ELF backend linker to do all the work. */
14813 if (!bfd_elf_final_link (abfd, info))
14814 return FALSE;
14815
14816 /* Now write out the computed sections. */
14817
14818 if (abiflags_sec != NULL)
14819 {
14820 Elf_External_ABIFlags_v0 ext;
14821 Elf_Internal_ABIFlags_v0 *abiflags;
14822
14823 abiflags = &mips_elf_tdata (abfd)->abiflags;
14824
14825 /* Set up the abiflags if no valid input sections were found. */
14826 if (!mips_elf_tdata (abfd)->abiflags_valid)
14827 {
14828 infer_mips_abiflags (abfd, abiflags);
14829 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14830 }
14831 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14832 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14833 return FALSE;
14834 }
14835
14836 if (reginfo_sec != NULL)
14837 {
14838 Elf32_External_RegInfo ext;
14839
14840 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14841 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14842 return FALSE;
14843 }
14844
14845 if (mdebug_sec != NULL)
14846 {
14847 BFD_ASSERT (abfd->output_has_begun);
14848 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14849 swap, info,
14850 mdebug_sec->filepos))
14851 return FALSE;
14852
14853 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14854 }
14855
14856 if (gptab_data_sec != NULL)
14857 {
14858 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14859 gptab_data_sec->contents,
14860 0, gptab_data_sec->size))
14861 return FALSE;
14862 }
14863
14864 if (gptab_bss_sec != NULL)
14865 {
14866 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14867 gptab_bss_sec->contents,
14868 0, gptab_bss_sec->size))
14869 return FALSE;
14870 }
14871
14872 if (SGI_COMPAT (abfd))
14873 {
14874 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14875 if (rtproc_sec != NULL)
14876 {
14877 if (! bfd_set_section_contents (abfd, rtproc_sec,
14878 rtproc_sec->contents,
14879 0, rtproc_sec->size))
14880 return FALSE;
14881 }
14882 }
14883
14884 return TRUE;
14885 }
14886 \f
14887 /* Merge object file header flags from IBFD into OBFD. Raise an error
14888 if there are conflicting settings. */
14889
14890 static bfd_boolean
14891 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
14892 {
14893 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14894 flagword old_flags;
14895 flagword new_flags;
14896 bfd_boolean ok;
14897
14898 new_flags = elf_elfheader (ibfd)->e_flags;
14899 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14900 old_flags = elf_elfheader (obfd)->e_flags;
14901
14902 /* Check flag compatibility. */
14903
14904 new_flags &= ~EF_MIPS_NOREORDER;
14905 old_flags &= ~EF_MIPS_NOREORDER;
14906
14907 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14908 doesn't seem to matter. */
14909 new_flags &= ~EF_MIPS_XGOT;
14910 old_flags &= ~EF_MIPS_XGOT;
14911
14912 /* MIPSpro generates ucode info in n64 objects. Again, we should
14913 just be able to ignore this. */
14914 new_flags &= ~EF_MIPS_UCODE;
14915 old_flags &= ~EF_MIPS_UCODE;
14916
14917 /* DSOs should only be linked with CPIC code. */
14918 if ((ibfd->flags & DYNAMIC) != 0)
14919 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14920
14921 if (new_flags == old_flags)
14922 return TRUE;
14923
14924 ok = TRUE;
14925
14926 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14927 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14928 {
14929 (*_bfd_error_handler)
14930 (_("%B: warning: linking abicalls files with non-abicalls files"),
14931 ibfd);
14932 ok = TRUE;
14933 }
14934
14935 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14936 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14937 if (! (new_flags & EF_MIPS_PIC))
14938 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14939
14940 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14941 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14942
14943 /* Compare the ISAs. */
14944 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14945 {
14946 (*_bfd_error_handler)
14947 (_("%B: linking 32-bit code with 64-bit code"),
14948 ibfd);
14949 ok = FALSE;
14950 }
14951 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14952 {
14953 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14954 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14955 {
14956 /* Copy the architecture info from IBFD to OBFD. Also copy
14957 the 32-bit flag (if set) so that we continue to recognise
14958 OBFD as a 32-bit binary. */
14959 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14960 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14961 elf_elfheader (obfd)->e_flags
14962 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14963
14964 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14965 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14966
14967 /* Copy across the ABI flags if OBFD doesn't use them
14968 and if that was what caused us to treat IBFD as 32-bit. */
14969 if ((old_flags & EF_MIPS_ABI) == 0
14970 && mips_32bit_flags_p (new_flags)
14971 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14972 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14973 }
14974 else
14975 {
14976 /* The ISAs aren't compatible. */
14977 (*_bfd_error_handler)
14978 (_("%B: linking %s module with previous %s modules"),
14979 ibfd,
14980 bfd_printable_name (ibfd),
14981 bfd_printable_name (obfd));
14982 ok = FALSE;
14983 }
14984 }
14985
14986 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14987 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14988
14989 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14990 does set EI_CLASS differently from any 32-bit ABI. */
14991 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14992 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14993 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14994 {
14995 /* Only error if both are set (to different values). */
14996 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14997 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14998 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14999 {
15000 (*_bfd_error_handler)
15001 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15002 ibfd,
15003 elf_mips_abi_name (ibfd),
15004 elf_mips_abi_name (obfd));
15005 ok = FALSE;
15006 }
15007 new_flags &= ~EF_MIPS_ABI;
15008 old_flags &= ~EF_MIPS_ABI;
15009 }
15010
15011 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15012 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15013 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15014 {
15015 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15016 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15017 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15018 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15019 int micro_mis = old_m16 && new_micro;
15020 int m16_mis = old_micro && new_m16;
15021
15022 if (m16_mis || micro_mis)
15023 {
15024 (*_bfd_error_handler)
15025 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15026 ibfd,
15027 m16_mis ? "MIPS16" : "microMIPS",
15028 m16_mis ? "microMIPS" : "MIPS16");
15029 ok = FALSE;
15030 }
15031
15032 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15033
15034 new_flags &= ~ EF_MIPS_ARCH_ASE;
15035 old_flags &= ~ EF_MIPS_ARCH_ASE;
15036 }
15037
15038 /* Compare NaN encodings. */
15039 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15040 {
15041 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15042 ibfd,
15043 (new_flags & EF_MIPS_NAN2008
15044 ? "-mnan=2008" : "-mnan=legacy"),
15045 (old_flags & EF_MIPS_NAN2008
15046 ? "-mnan=2008" : "-mnan=legacy"));
15047 ok = FALSE;
15048 new_flags &= ~EF_MIPS_NAN2008;
15049 old_flags &= ~EF_MIPS_NAN2008;
15050 }
15051
15052 /* Compare FP64 state. */
15053 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15054 {
15055 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15056 ibfd,
15057 (new_flags & EF_MIPS_FP64
15058 ? "-mfp64" : "-mfp32"),
15059 (old_flags & EF_MIPS_FP64
15060 ? "-mfp64" : "-mfp32"));
15061 ok = FALSE;
15062 new_flags &= ~EF_MIPS_FP64;
15063 old_flags &= ~EF_MIPS_FP64;
15064 }
15065
15066 /* Warn about any other mismatches */
15067 if (new_flags != old_flags)
15068 {
15069 (*_bfd_error_handler)
15070 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15071 "(0x%lx)"),
15072 ibfd, (unsigned long) new_flags,
15073 (unsigned long) old_flags);
15074 ok = FALSE;
15075 }
15076
15077 return ok;
15078 }
15079
15080 /* Merge object attributes from IBFD into OBFD. Raise an error if
15081 there are conflicting attributes. */
15082 static bfd_boolean
15083 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15084 {
15085 obj_attribute *in_attr;
15086 obj_attribute *out_attr;
15087 bfd *abi_fp_bfd;
15088 bfd *abi_msa_bfd;
15089
15090 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15091 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15092 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15093 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15094
15095 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15096 if (!abi_msa_bfd
15097 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15098 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15099
15100 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15101 {
15102 /* This is the first object. Copy the attributes. */
15103 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15104
15105 /* Use the Tag_null value to indicate the attributes have been
15106 initialized. */
15107 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15108
15109 return TRUE;
15110 }
15111
15112 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15113 non-conflicting ones. */
15114 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15115 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15116 {
15117 int out_fp, in_fp;
15118
15119 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15120 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15121 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15122 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15123 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15124 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15125 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15126 || in_fp == Val_GNU_MIPS_ABI_FP_64
15127 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15128 {
15129 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15130 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15131 }
15132 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15133 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15134 || out_fp == Val_GNU_MIPS_ABI_FP_64
15135 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15136 /* Keep the current setting. */;
15137 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15138 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15139 {
15140 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15141 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15142 }
15143 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15144 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15145 /* Keep the current setting. */;
15146 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15147 {
15148 const char *out_string, *in_string;
15149
15150 out_string = _bfd_mips_fp_abi_string (out_fp);
15151 in_string = _bfd_mips_fp_abi_string (in_fp);
15152 /* First warn about cases involving unrecognised ABIs. */
15153 if (!out_string && !in_string)
15154 _bfd_error_handler
15155 (_("Warning: %B uses unknown floating point ABI %d "
15156 "(set by %B), %B uses unknown floating point ABI %d"),
15157 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15158 else if (!out_string)
15159 _bfd_error_handler
15160 (_("Warning: %B uses unknown floating point ABI %d "
15161 "(set by %B), %B uses %s"),
15162 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15163 else if (!in_string)
15164 _bfd_error_handler
15165 (_("Warning: %B uses %s (set by %B), "
15166 "%B uses unknown floating point ABI %d"),
15167 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15168 else
15169 {
15170 /* If one of the bfds is soft-float, the other must be
15171 hard-float. The exact choice of hard-float ABI isn't
15172 really relevant to the error message. */
15173 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15174 out_string = "-mhard-float";
15175 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15176 in_string = "-mhard-float";
15177 _bfd_error_handler
15178 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15179 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15180 }
15181 }
15182 }
15183
15184 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15185 non-conflicting ones. */
15186 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15187 {
15188 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15189 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15190 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15191 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15192 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15193 {
15194 case Val_GNU_MIPS_ABI_MSA_128:
15195 _bfd_error_handler
15196 (_("Warning: %B uses %s (set by %B), "
15197 "%B uses unknown MSA ABI %d"),
15198 obfd, abi_msa_bfd, ibfd,
15199 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15200 break;
15201
15202 default:
15203 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15204 {
15205 case Val_GNU_MIPS_ABI_MSA_128:
15206 _bfd_error_handler
15207 (_("Warning: %B uses unknown MSA ABI %d "
15208 "(set by %B), %B uses %s"),
15209 obfd, abi_msa_bfd, ibfd,
15210 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15211 break;
15212
15213 default:
15214 _bfd_error_handler
15215 (_("Warning: %B uses unknown MSA ABI %d "
15216 "(set by %B), %B uses unknown MSA ABI %d"),
15217 obfd, abi_msa_bfd, ibfd,
15218 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15219 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15220 break;
15221 }
15222 }
15223 }
15224
15225 /* Merge Tag_compatibility attributes and any common GNU ones. */
15226 return _bfd_elf_merge_object_attributes (ibfd, obfd);
15227 }
15228
15229 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15230 there are conflicting settings. */
15231
15232 static bfd_boolean
15233 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15234 {
15235 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15236 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15237 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15238
15239 /* Update the output abiflags fp_abi using the computed fp_abi. */
15240 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15241
15242 #define max(a, b) ((a) > (b) ? (a) : (b))
15243 /* Merge abiflags. */
15244 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15245 in_tdata->abiflags.isa_level);
15246 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15247 in_tdata->abiflags.isa_rev);
15248 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15249 in_tdata->abiflags.gpr_size);
15250 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15251 in_tdata->abiflags.cpr1_size);
15252 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15253 in_tdata->abiflags.cpr2_size);
15254 #undef max
15255 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15256 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15257
15258 return TRUE;
15259 }
15260
15261 /* Merge backend specific data from an object file to the output
15262 object file when linking. */
15263
15264 bfd_boolean
15265 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15266 {
15267 struct mips_elf_obj_tdata *out_tdata;
15268 struct mips_elf_obj_tdata *in_tdata;
15269 bfd_boolean null_input_bfd = TRUE;
15270 asection *sec;
15271 bfd_boolean ok;
15272
15273 /* Check if we have the same endianness. */
15274 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15275 {
15276 (*_bfd_error_handler)
15277 (_("%B: endianness incompatible with that of the selected emulation"),
15278 ibfd);
15279 return FALSE;
15280 }
15281
15282 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15283 return TRUE;
15284
15285 in_tdata = mips_elf_tdata (ibfd);
15286 out_tdata = mips_elf_tdata (obfd);
15287
15288 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15289 {
15290 (*_bfd_error_handler)
15291 (_("%B: ABI is incompatible with that of the selected emulation"),
15292 ibfd);
15293 return FALSE;
15294 }
15295
15296 /* Check to see if the input BFD actually contains any sections. If not,
15297 then it has no attributes, and its flags may not have been initialized
15298 either, but it cannot actually cause any incompatibility. */
15299 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15300 {
15301 /* Ignore synthetic sections and empty .text, .data and .bss sections
15302 which are automatically generated by gas. Also ignore fake
15303 (s)common sections, since merely defining a common symbol does
15304 not affect compatibility. */
15305 if ((sec->flags & SEC_IS_COMMON) == 0
15306 && strcmp (sec->name, ".reginfo")
15307 && strcmp (sec->name, ".mdebug")
15308 && (sec->size != 0
15309 || (strcmp (sec->name, ".text")
15310 && strcmp (sec->name, ".data")
15311 && strcmp (sec->name, ".bss"))))
15312 {
15313 null_input_bfd = FALSE;
15314 break;
15315 }
15316 }
15317 if (null_input_bfd)
15318 return TRUE;
15319
15320 /* Populate abiflags using existing information. */
15321 if (in_tdata->abiflags_valid)
15322 {
15323 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15324 Elf_Internal_ABIFlags_v0 in_abiflags;
15325 Elf_Internal_ABIFlags_v0 abiflags;
15326
15327 /* Set up the FP ABI attribute from the abiflags if it is not already
15328 set. */
15329 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15330 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15331
15332 infer_mips_abiflags (ibfd, &abiflags);
15333 in_abiflags = in_tdata->abiflags;
15334
15335 /* It is not possible to infer the correct ISA revision
15336 for R3 or R5 so drop down to R2 for the checks. */
15337 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15338 in_abiflags.isa_rev = 2;
15339
15340 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15341 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15342 (*_bfd_error_handler)
15343 (_("%B: warning: Inconsistent ISA between e_flags and "
15344 ".MIPS.abiflags"), ibfd);
15345 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15346 && in_abiflags.fp_abi != abiflags.fp_abi)
15347 (*_bfd_error_handler)
15348 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15349 ".MIPS.abiflags"), ibfd);
15350 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15351 (*_bfd_error_handler)
15352 (_("%B: warning: Inconsistent ASEs between e_flags and "
15353 ".MIPS.abiflags"), ibfd);
15354 /* The isa_ext is allowed to be an extension of what can be inferred
15355 from e_flags. */
15356 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15357 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15358 (*_bfd_error_handler)
15359 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15360 ".MIPS.abiflags"), ibfd);
15361 if (in_abiflags.flags2 != 0)
15362 (*_bfd_error_handler)
15363 (_("%B: warning: Unexpected flag in the flags2 field of "
15364 ".MIPS.abiflags (0x%lx)"), ibfd,
15365 (unsigned long) in_abiflags.flags2);
15366 }
15367 else
15368 {
15369 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15370 in_tdata->abiflags_valid = TRUE;
15371 }
15372
15373 if (!out_tdata->abiflags_valid)
15374 {
15375 /* Copy input abiflags if output abiflags are not already valid. */
15376 out_tdata->abiflags = in_tdata->abiflags;
15377 out_tdata->abiflags_valid = TRUE;
15378 }
15379
15380 if (! elf_flags_init (obfd))
15381 {
15382 elf_flags_init (obfd) = TRUE;
15383 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15384 elf_elfheader (obfd)->e_ident[EI_CLASS]
15385 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15386
15387 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15388 && (bfd_get_arch_info (obfd)->the_default
15389 || mips_mach_extends_p (bfd_get_mach (obfd),
15390 bfd_get_mach (ibfd))))
15391 {
15392 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15393 bfd_get_mach (ibfd)))
15394 return FALSE;
15395
15396 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15397 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15398 }
15399
15400 ok = TRUE;
15401 }
15402 else
15403 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15404
15405 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
15406
15407 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15408
15409 if (!ok)
15410 {
15411 bfd_set_error (bfd_error_bad_value);
15412 return FALSE;
15413 }
15414
15415 return TRUE;
15416 }
15417
15418 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15419
15420 bfd_boolean
15421 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15422 {
15423 BFD_ASSERT (!elf_flags_init (abfd)
15424 || elf_elfheader (abfd)->e_flags == flags);
15425
15426 elf_elfheader (abfd)->e_flags = flags;
15427 elf_flags_init (abfd) = TRUE;
15428 return TRUE;
15429 }
15430
15431 char *
15432 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15433 {
15434 switch (dtag)
15435 {
15436 default: return "";
15437 case DT_MIPS_RLD_VERSION:
15438 return "MIPS_RLD_VERSION";
15439 case DT_MIPS_TIME_STAMP:
15440 return "MIPS_TIME_STAMP";
15441 case DT_MIPS_ICHECKSUM:
15442 return "MIPS_ICHECKSUM";
15443 case DT_MIPS_IVERSION:
15444 return "MIPS_IVERSION";
15445 case DT_MIPS_FLAGS:
15446 return "MIPS_FLAGS";
15447 case DT_MIPS_BASE_ADDRESS:
15448 return "MIPS_BASE_ADDRESS";
15449 case DT_MIPS_MSYM:
15450 return "MIPS_MSYM";
15451 case DT_MIPS_CONFLICT:
15452 return "MIPS_CONFLICT";
15453 case DT_MIPS_LIBLIST:
15454 return "MIPS_LIBLIST";
15455 case DT_MIPS_LOCAL_GOTNO:
15456 return "MIPS_LOCAL_GOTNO";
15457 case DT_MIPS_CONFLICTNO:
15458 return "MIPS_CONFLICTNO";
15459 case DT_MIPS_LIBLISTNO:
15460 return "MIPS_LIBLISTNO";
15461 case DT_MIPS_SYMTABNO:
15462 return "MIPS_SYMTABNO";
15463 case DT_MIPS_UNREFEXTNO:
15464 return "MIPS_UNREFEXTNO";
15465 case DT_MIPS_GOTSYM:
15466 return "MIPS_GOTSYM";
15467 case DT_MIPS_HIPAGENO:
15468 return "MIPS_HIPAGENO";
15469 case DT_MIPS_RLD_MAP:
15470 return "MIPS_RLD_MAP";
15471 case DT_MIPS_RLD_MAP_REL:
15472 return "MIPS_RLD_MAP_REL";
15473 case DT_MIPS_DELTA_CLASS:
15474 return "MIPS_DELTA_CLASS";
15475 case DT_MIPS_DELTA_CLASS_NO:
15476 return "MIPS_DELTA_CLASS_NO";
15477 case DT_MIPS_DELTA_INSTANCE:
15478 return "MIPS_DELTA_INSTANCE";
15479 case DT_MIPS_DELTA_INSTANCE_NO:
15480 return "MIPS_DELTA_INSTANCE_NO";
15481 case DT_MIPS_DELTA_RELOC:
15482 return "MIPS_DELTA_RELOC";
15483 case DT_MIPS_DELTA_RELOC_NO:
15484 return "MIPS_DELTA_RELOC_NO";
15485 case DT_MIPS_DELTA_SYM:
15486 return "MIPS_DELTA_SYM";
15487 case DT_MIPS_DELTA_SYM_NO:
15488 return "MIPS_DELTA_SYM_NO";
15489 case DT_MIPS_DELTA_CLASSSYM:
15490 return "MIPS_DELTA_CLASSSYM";
15491 case DT_MIPS_DELTA_CLASSSYM_NO:
15492 return "MIPS_DELTA_CLASSSYM_NO";
15493 case DT_MIPS_CXX_FLAGS:
15494 return "MIPS_CXX_FLAGS";
15495 case DT_MIPS_PIXIE_INIT:
15496 return "MIPS_PIXIE_INIT";
15497 case DT_MIPS_SYMBOL_LIB:
15498 return "MIPS_SYMBOL_LIB";
15499 case DT_MIPS_LOCALPAGE_GOTIDX:
15500 return "MIPS_LOCALPAGE_GOTIDX";
15501 case DT_MIPS_LOCAL_GOTIDX:
15502 return "MIPS_LOCAL_GOTIDX";
15503 case DT_MIPS_HIDDEN_GOTIDX:
15504 return "MIPS_HIDDEN_GOTIDX";
15505 case DT_MIPS_PROTECTED_GOTIDX:
15506 return "MIPS_PROTECTED_GOT_IDX";
15507 case DT_MIPS_OPTIONS:
15508 return "MIPS_OPTIONS";
15509 case DT_MIPS_INTERFACE:
15510 return "MIPS_INTERFACE";
15511 case DT_MIPS_DYNSTR_ALIGN:
15512 return "DT_MIPS_DYNSTR_ALIGN";
15513 case DT_MIPS_INTERFACE_SIZE:
15514 return "DT_MIPS_INTERFACE_SIZE";
15515 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15516 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15517 case DT_MIPS_PERF_SUFFIX:
15518 return "DT_MIPS_PERF_SUFFIX";
15519 case DT_MIPS_COMPACT_SIZE:
15520 return "DT_MIPS_COMPACT_SIZE";
15521 case DT_MIPS_GP_VALUE:
15522 return "DT_MIPS_GP_VALUE";
15523 case DT_MIPS_AUX_DYNAMIC:
15524 return "DT_MIPS_AUX_DYNAMIC";
15525 case DT_MIPS_PLTGOT:
15526 return "DT_MIPS_PLTGOT";
15527 case DT_MIPS_RWPLT:
15528 return "DT_MIPS_RWPLT";
15529 }
15530 }
15531
15532 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15533 not known. */
15534
15535 const char *
15536 _bfd_mips_fp_abi_string (int fp)
15537 {
15538 switch (fp)
15539 {
15540 /* These strings aren't translated because they're simply
15541 option lists. */
15542 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15543 return "-mdouble-float";
15544
15545 case Val_GNU_MIPS_ABI_FP_SINGLE:
15546 return "-msingle-float";
15547
15548 case Val_GNU_MIPS_ABI_FP_SOFT:
15549 return "-msoft-float";
15550
15551 case Val_GNU_MIPS_ABI_FP_OLD_64:
15552 return _("-mips32r2 -mfp64 (12 callee-saved)");
15553
15554 case Val_GNU_MIPS_ABI_FP_XX:
15555 return "-mfpxx";
15556
15557 case Val_GNU_MIPS_ABI_FP_64:
15558 return "-mgp32 -mfp64";
15559
15560 case Val_GNU_MIPS_ABI_FP_64A:
15561 return "-mgp32 -mfp64 -mno-odd-spreg";
15562
15563 default:
15564 return 0;
15565 }
15566 }
15567
15568 static void
15569 print_mips_ases (FILE *file, unsigned int mask)
15570 {
15571 if (mask & AFL_ASE_DSP)
15572 fputs ("\n\tDSP ASE", file);
15573 if (mask & AFL_ASE_DSPR2)
15574 fputs ("\n\tDSP R2 ASE", file);
15575 if (mask & AFL_ASE_DSPR3)
15576 fputs ("\n\tDSP R3 ASE", file);
15577 if (mask & AFL_ASE_EVA)
15578 fputs ("\n\tEnhanced VA Scheme", file);
15579 if (mask & AFL_ASE_MCU)
15580 fputs ("\n\tMCU (MicroController) ASE", file);
15581 if (mask & AFL_ASE_MDMX)
15582 fputs ("\n\tMDMX ASE", file);
15583 if (mask & AFL_ASE_MIPS3D)
15584 fputs ("\n\tMIPS-3D ASE", file);
15585 if (mask & AFL_ASE_MT)
15586 fputs ("\n\tMT ASE", file);
15587 if (mask & AFL_ASE_SMARTMIPS)
15588 fputs ("\n\tSmartMIPS ASE", file);
15589 if (mask & AFL_ASE_VIRT)
15590 fputs ("\n\tVZ ASE", file);
15591 if (mask & AFL_ASE_MSA)
15592 fputs ("\n\tMSA ASE", file);
15593 if (mask & AFL_ASE_MIPS16)
15594 fputs ("\n\tMIPS16 ASE", file);
15595 if (mask & AFL_ASE_MICROMIPS)
15596 fputs ("\n\tMICROMIPS ASE", file);
15597 if (mask & AFL_ASE_XPA)
15598 fputs ("\n\tXPA ASE", file);
15599 if (mask == 0)
15600 fprintf (file, "\n\t%s", _("None"));
15601 else if ((mask & ~AFL_ASE_MASK) != 0)
15602 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15603 }
15604
15605 static void
15606 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15607 {
15608 switch (isa_ext)
15609 {
15610 case 0:
15611 fputs (_("None"), file);
15612 break;
15613 case AFL_EXT_XLR:
15614 fputs ("RMI XLR", file);
15615 break;
15616 case AFL_EXT_OCTEON3:
15617 fputs ("Cavium Networks Octeon3", file);
15618 break;
15619 case AFL_EXT_OCTEON2:
15620 fputs ("Cavium Networks Octeon2", file);
15621 break;
15622 case AFL_EXT_OCTEONP:
15623 fputs ("Cavium Networks OcteonP", file);
15624 break;
15625 case AFL_EXT_LOONGSON_3A:
15626 fputs ("Loongson 3A", file);
15627 break;
15628 case AFL_EXT_OCTEON:
15629 fputs ("Cavium Networks Octeon", file);
15630 break;
15631 case AFL_EXT_5900:
15632 fputs ("Toshiba R5900", file);
15633 break;
15634 case AFL_EXT_4650:
15635 fputs ("MIPS R4650", file);
15636 break;
15637 case AFL_EXT_4010:
15638 fputs ("LSI R4010", file);
15639 break;
15640 case AFL_EXT_4100:
15641 fputs ("NEC VR4100", file);
15642 break;
15643 case AFL_EXT_3900:
15644 fputs ("Toshiba R3900", file);
15645 break;
15646 case AFL_EXT_10000:
15647 fputs ("MIPS R10000", file);
15648 break;
15649 case AFL_EXT_SB1:
15650 fputs ("Broadcom SB-1", file);
15651 break;
15652 case AFL_EXT_4111:
15653 fputs ("NEC VR4111/VR4181", file);
15654 break;
15655 case AFL_EXT_4120:
15656 fputs ("NEC VR4120", file);
15657 break;
15658 case AFL_EXT_5400:
15659 fputs ("NEC VR5400", file);
15660 break;
15661 case AFL_EXT_5500:
15662 fputs ("NEC VR5500", file);
15663 break;
15664 case AFL_EXT_LOONGSON_2E:
15665 fputs ("ST Microelectronics Loongson 2E", file);
15666 break;
15667 case AFL_EXT_LOONGSON_2F:
15668 fputs ("ST Microelectronics Loongson 2F", file);
15669 break;
15670 default:
15671 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15672 break;
15673 }
15674 }
15675
15676 static void
15677 print_mips_fp_abi_value (FILE *file, int val)
15678 {
15679 switch (val)
15680 {
15681 case Val_GNU_MIPS_ABI_FP_ANY:
15682 fprintf (file, _("Hard or soft float\n"));
15683 break;
15684 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15685 fprintf (file, _("Hard float (double precision)\n"));
15686 break;
15687 case Val_GNU_MIPS_ABI_FP_SINGLE:
15688 fprintf (file, _("Hard float (single precision)\n"));
15689 break;
15690 case Val_GNU_MIPS_ABI_FP_SOFT:
15691 fprintf (file, _("Soft float\n"));
15692 break;
15693 case Val_GNU_MIPS_ABI_FP_OLD_64:
15694 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15695 break;
15696 case Val_GNU_MIPS_ABI_FP_XX:
15697 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15698 break;
15699 case Val_GNU_MIPS_ABI_FP_64:
15700 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15701 break;
15702 case Val_GNU_MIPS_ABI_FP_64A:
15703 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15704 break;
15705 default:
15706 fprintf (file, "??? (%d)\n", val);
15707 break;
15708 }
15709 }
15710
15711 static int
15712 get_mips_reg_size (int reg_size)
15713 {
15714 return (reg_size == AFL_REG_NONE) ? 0
15715 : (reg_size == AFL_REG_32) ? 32
15716 : (reg_size == AFL_REG_64) ? 64
15717 : (reg_size == AFL_REG_128) ? 128
15718 : -1;
15719 }
15720
15721 bfd_boolean
15722 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15723 {
15724 FILE *file = ptr;
15725
15726 BFD_ASSERT (abfd != NULL && ptr != NULL);
15727
15728 /* Print normal ELF private data. */
15729 _bfd_elf_print_private_bfd_data (abfd, ptr);
15730
15731 /* xgettext:c-format */
15732 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15733
15734 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15735 fprintf (file, _(" [abi=O32]"));
15736 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15737 fprintf (file, _(" [abi=O64]"));
15738 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15739 fprintf (file, _(" [abi=EABI32]"));
15740 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15741 fprintf (file, _(" [abi=EABI64]"));
15742 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15743 fprintf (file, _(" [abi unknown]"));
15744 else if (ABI_N32_P (abfd))
15745 fprintf (file, _(" [abi=N32]"));
15746 else if (ABI_64_P (abfd))
15747 fprintf (file, _(" [abi=64]"));
15748 else
15749 fprintf (file, _(" [no abi set]"));
15750
15751 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15752 fprintf (file, " [mips1]");
15753 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15754 fprintf (file, " [mips2]");
15755 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15756 fprintf (file, " [mips3]");
15757 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15758 fprintf (file, " [mips4]");
15759 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15760 fprintf (file, " [mips5]");
15761 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15762 fprintf (file, " [mips32]");
15763 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15764 fprintf (file, " [mips64]");
15765 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15766 fprintf (file, " [mips32r2]");
15767 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15768 fprintf (file, " [mips64r2]");
15769 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15770 fprintf (file, " [mips32r6]");
15771 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15772 fprintf (file, " [mips64r6]");
15773 else
15774 fprintf (file, _(" [unknown ISA]"));
15775
15776 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15777 fprintf (file, " [mdmx]");
15778
15779 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15780 fprintf (file, " [mips16]");
15781
15782 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15783 fprintf (file, " [micromips]");
15784
15785 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15786 fprintf (file, " [nan2008]");
15787
15788 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15789 fprintf (file, " [old fp64]");
15790
15791 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15792 fprintf (file, " [32bitmode]");
15793 else
15794 fprintf (file, _(" [not 32bitmode]"));
15795
15796 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15797 fprintf (file, " [noreorder]");
15798
15799 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15800 fprintf (file, " [PIC]");
15801
15802 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15803 fprintf (file, " [CPIC]");
15804
15805 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15806 fprintf (file, " [XGOT]");
15807
15808 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15809 fprintf (file, " [UCODE]");
15810
15811 fputc ('\n', file);
15812
15813 if (mips_elf_tdata (abfd)->abiflags_valid)
15814 {
15815 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15816 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15817 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15818 if (abiflags->isa_rev > 1)
15819 fprintf (file, "r%d", abiflags->isa_rev);
15820 fprintf (file, "\nGPR size: %d",
15821 get_mips_reg_size (abiflags->gpr_size));
15822 fprintf (file, "\nCPR1 size: %d",
15823 get_mips_reg_size (abiflags->cpr1_size));
15824 fprintf (file, "\nCPR2 size: %d",
15825 get_mips_reg_size (abiflags->cpr2_size));
15826 fputs ("\nFP ABI: ", file);
15827 print_mips_fp_abi_value (file, abiflags->fp_abi);
15828 fputs ("ISA Extension: ", file);
15829 print_mips_isa_ext (file, abiflags->isa_ext);
15830 fputs ("\nASEs:", file);
15831 print_mips_ases (file, abiflags->ases);
15832 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15833 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15834 fputc ('\n', file);
15835 }
15836
15837 return TRUE;
15838 }
15839
15840 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15841 {
15842 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15843 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15844 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15845 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15846 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15847 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15848 { NULL, 0, 0, 0, 0 }
15849 };
15850
15851 /* Merge non visibility st_other attributes. Ensure that the
15852 STO_OPTIONAL flag is copied into h->other, even if this is not a
15853 definiton of the symbol. */
15854 void
15855 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15856 const Elf_Internal_Sym *isym,
15857 bfd_boolean definition,
15858 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15859 {
15860 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15861 {
15862 unsigned char other;
15863
15864 other = (definition ? isym->st_other : h->other);
15865 other &= ~ELF_ST_VISIBILITY (-1);
15866 h->other = other | ELF_ST_VISIBILITY (h->other);
15867 }
15868
15869 if (!definition
15870 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15871 h->other |= STO_OPTIONAL;
15872 }
15873
15874 /* Decide whether an undefined symbol is special and can be ignored.
15875 This is the case for OPTIONAL symbols on IRIX. */
15876 bfd_boolean
15877 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15878 {
15879 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15880 }
15881
15882 bfd_boolean
15883 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15884 {
15885 return (sym->st_shndx == SHN_COMMON
15886 || sym->st_shndx == SHN_MIPS_ACOMMON
15887 || sym->st_shndx == SHN_MIPS_SCOMMON);
15888 }
15889
15890 /* Return address for Ith PLT stub in section PLT, for relocation REL
15891 or (bfd_vma) -1 if it should not be included. */
15892
15893 bfd_vma
15894 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15895 const arelent *rel ATTRIBUTE_UNUSED)
15896 {
15897 return (plt->vma
15898 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15899 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15900 }
15901
15902 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15903 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15904 and .got.plt and also the slots may be of a different size each we walk
15905 the PLT manually fetching instructions and matching them against known
15906 patterns. To make things easier standard MIPS slots, if any, always come
15907 first. As we don't create proper ELF symbols we use the UDATA.I member
15908 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15909 with the ST_OTHER member of the ELF symbol. */
15910
15911 long
15912 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15913 long symcount ATTRIBUTE_UNUSED,
15914 asymbol **syms ATTRIBUTE_UNUSED,
15915 long dynsymcount, asymbol **dynsyms,
15916 asymbol **ret)
15917 {
15918 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15919 static const char microsuffix[] = "@micromipsplt";
15920 static const char m16suffix[] = "@mips16plt";
15921 static const char mipssuffix[] = "@plt";
15922
15923 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15924 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15925 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15926 Elf_Internal_Shdr *hdr;
15927 bfd_byte *plt_data;
15928 bfd_vma plt_offset;
15929 unsigned int other;
15930 bfd_vma entry_size;
15931 bfd_vma plt0_size;
15932 asection *relplt;
15933 bfd_vma opcode;
15934 asection *plt;
15935 asymbol *send;
15936 size_t size;
15937 char *names;
15938 long counti;
15939 arelent *p;
15940 asymbol *s;
15941 char *nend;
15942 long count;
15943 long pi;
15944 long i;
15945 long n;
15946
15947 *ret = NULL;
15948
15949 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15950 return 0;
15951
15952 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15953 if (relplt == NULL)
15954 return 0;
15955
15956 hdr = &elf_section_data (relplt)->this_hdr;
15957 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15958 return 0;
15959
15960 plt = bfd_get_section_by_name (abfd, ".plt");
15961 if (plt == NULL)
15962 return 0;
15963
15964 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15965 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15966 return -1;
15967 p = relplt->relocation;
15968
15969 /* Calculating the exact amount of space required for symbols would
15970 require two passes over the PLT, so just pessimise assuming two
15971 PLT slots per relocation. */
15972 count = relplt->size / hdr->sh_entsize;
15973 counti = count * bed->s->int_rels_per_ext_rel;
15974 size = 2 * count * sizeof (asymbol);
15975 size += count * (sizeof (mipssuffix) +
15976 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15977 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15978 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15979
15980 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15981 size += sizeof (asymbol) + sizeof (pltname);
15982
15983 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15984 return -1;
15985
15986 if (plt->size < 16)
15987 return -1;
15988
15989 s = *ret = bfd_malloc (size);
15990 if (s == NULL)
15991 return -1;
15992 send = s + 2 * count + 1;
15993
15994 names = (char *) send;
15995 nend = (char *) s + size;
15996 n = 0;
15997
15998 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15999 if (opcode == 0x3302fffe)
16000 {
16001 if (!micromips_p)
16002 return -1;
16003 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16004 other = STO_MICROMIPS;
16005 }
16006 else if (opcode == 0x0398c1d0)
16007 {
16008 if (!micromips_p)
16009 return -1;
16010 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16011 other = STO_MICROMIPS;
16012 }
16013 else
16014 {
16015 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16016 other = 0;
16017 }
16018
16019 s->the_bfd = abfd;
16020 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16021 s->section = plt;
16022 s->value = 0;
16023 s->name = names;
16024 s->udata.i = other;
16025 memcpy (names, pltname, sizeof (pltname));
16026 names += sizeof (pltname);
16027 ++s, ++n;
16028
16029 pi = 0;
16030 for (plt_offset = plt0_size;
16031 plt_offset + 8 <= plt->size && s < send;
16032 plt_offset += entry_size)
16033 {
16034 bfd_vma gotplt_addr;
16035 const char *suffix;
16036 bfd_vma gotplt_hi;
16037 bfd_vma gotplt_lo;
16038 size_t suffixlen;
16039
16040 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16041
16042 /* Check if the second word matches the expected MIPS16 instruction. */
16043 if (opcode == 0x651aeb00)
16044 {
16045 if (micromips_p)
16046 return -1;
16047 /* Truncated table??? */
16048 if (plt_offset + 16 > plt->size)
16049 break;
16050 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16051 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16052 suffixlen = sizeof (m16suffix);
16053 suffix = m16suffix;
16054 other = STO_MIPS16;
16055 }
16056 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16057 else if (opcode == 0xff220000)
16058 {
16059 if (!micromips_p)
16060 return -1;
16061 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16062 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16063 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16064 gotplt_lo <<= 2;
16065 gotplt_addr = gotplt_hi + gotplt_lo;
16066 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16067 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16068 suffixlen = sizeof (microsuffix);
16069 suffix = microsuffix;
16070 other = STO_MICROMIPS;
16071 }
16072 /* Likewise the expected microMIPS instruction (insn32 mode). */
16073 else if ((opcode & 0xffff0000) == 0xff2f0000)
16074 {
16075 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16076 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16077 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16078 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16079 gotplt_addr = gotplt_hi + gotplt_lo;
16080 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16081 suffixlen = sizeof (microsuffix);
16082 suffix = microsuffix;
16083 other = STO_MICROMIPS;
16084 }
16085 /* Otherwise assume standard MIPS code. */
16086 else
16087 {
16088 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16089 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16090 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16091 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16092 gotplt_addr = gotplt_hi + gotplt_lo;
16093 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16094 suffixlen = sizeof (mipssuffix);
16095 suffix = mipssuffix;
16096 other = 0;
16097 }
16098 /* Truncated table??? */
16099 if (plt_offset + entry_size > plt->size)
16100 break;
16101
16102 for (i = 0;
16103 i < count && p[pi].address != gotplt_addr;
16104 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16105
16106 if (i < count)
16107 {
16108 size_t namelen;
16109 size_t len;
16110
16111 *s = **p[pi].sym_ptr_ptr;
16112 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16113 we are defining a symbol, ensure one of them is set. */
16114 if ((s->flags & BSF_LOCAL) == 0)
16115 s->flags |= BSF_GLOBAL;
16116 s->flags |= BSF_SYNTHETIC;
16117 s->section = plt;
16118 s->value = plt_offset;
16119 s->name = names;
16120 s->udata.i = other;
16121
16122 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16123 namelen = len + suffixlen;
16124 if (names + namelen > nend)
16125 break;
16126
16127 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16128 names += len;
16129 memcpy (names, suffix, suffixlen);
16130 names += suffixlen;
16131
16132 ++s, ++n;
16133 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16134 }
16135 }
16136
16137 free (plt_data);
16138
16139 return n;
16140 }
16141
16142 void
16143 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16144 {
16145 struct mips_elf_link_hash_table *htab;
16146 Elf_Internal_Ehdr *i_ehdrp;
16147
16148 i_ehdrp = elf_elfheader (abfd);
16149 if (link_info)
16150 {
16151 htab = mips_elf_hash_table (link_info);
16152 BFD_ASSERT (htab != NULL);
16153
16154 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16155 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16156 }
16157
16158 _bfd_elf_post_process_headers (abfd, link_info);
16159
16160 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16161 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16162 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16163
16164 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16165 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16166 }
16167
16168 int
16169 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16170 {
16171 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16172 }
16173
16174 /* Return the opcode for can't unwind. */
16175
16176 int
16177 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16178 {
16179 return COMPACT_EH_CANT_UNWIND_OPCODE;
16180 }
This page took 0.40504 seconds and 4 git commands to generate.