f3536fdd6ede772bf619af97bf64c740498ccbea
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29
30 /* This file handles functionality common to the different MIPS ABI's. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
83 {
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
113 };
114
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118 struct mips_got_page_range
119 {
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123 };
124
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
128 {
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137 };
138
139 /* This structure is used to hold .got information when linking. */
140
141 struct mips_got_info
142 {
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
148 /* The number of .got slots used for TLS. */
149 unsigned int tls_gotno;
150 /* The first unused TLS .got entry. Used only during
151 mips_elf_initialize_tls_index. */
152 unsigned int tls_assigned_gotno;
153 /* The number of local .got entries, eventually including page entries. */
154 unsigned int local_gotno;
155 /* The maximum number of page entries needed. */
156 unsigned int page_gotno;
157 /* The number of local .got entries we have used. */
158 unsigned int assigned_gotno;
159 /* A hash table holding members of the got. */
160 struct htab *got_entries;
161 /* A hash table of mips_got_page_entry structures. */
162 struct htab *got_page_entries;
163 /* A hash table mapping input bfds to other mips_got_info. NULL
164 unless multi-got was necessary. */
165 struct htab *bfd2got;
166 /* In multi-got links, a pointer to the next got (err, rather, most
167 of the time, it points to the previous got). */
168 struct mips_got_info *next;
169 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
170 for none, or MINUS_TWO for not yet assigned. This is needed
171 because a single-GOT link may have multiple hash table entries
172 for the LDM. It does not get initialized in multi-GOT mode. */
173 bfd_vma tls_ldm_offset;
174 };
175
176 /* Map an input bfd to a got in a multi-got link. */
177
178 struct mips_elf_bfd2got_hash {
179 bfd *bfd;
180 struct mips_got_info *g;
181 };
182
183 /* Structure passed when traversing the bfd2got hash table, used to
184 create and merge bfd's gots. */
185
186 struct mips_elf_got_per_bfd_arg
187 {
188 /* A hashtable that maps bfds to gots. */
189 htab_t bfd2got;
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* Another structure used to pass arguments for got entries traversal. */
214
215 struct mips_elf_set_global_got_offset_arg
216 {
217 struct mips_got_info *g;
218 int value;
219 unsigned int needed_relocs;
220 struct bfd_link_info *info;
221 };
222
223 /* A structure used to count TLS relocations or GOT entries, for GOT
224 entry or ELF symbol table traversal. */
225
226 struct mips_elf_count_tls_arg
227 {
228 struct bfd_link_info *info;
229 unsigned int needed;
230 };
231
232 struct _mips_elf_section_data
233 {
234 struct bfd_elf_section_data elf;
235 union
236 {
237 bfd_byte *tdata;
238 } u;
239 };
240
241 #define mips_elf_section_data(sec) \
242 ((struct _mips_elf_section_data *) elf_section_data (sec))
243
244 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
245 the dynamic symbols. */
246
247 struct mips_elf_hash_sort_data
248 {
249 /* The symbol in the global GOT with the lowest dynamic symbol table
250 index. */
251 struct elf_link_hash_entry *low;
252 /* The least dynamic symbol table index corresponding to a non-TLS
253 symbol with a GOT entry. */
254 long min_got_dynindx;
255 /* The greatest dynamic symbol table index corresponding to a symbol
256 with a GOT entry that is not referenced (e.g., a dynamic symbol
257 with dynamic relocations pointing to it from non-primary GOTs). */
258 long max_unref_got_dynindx;
259 /* The greatest dynamic symbol table index not corresponding to a
260 symbol without a GOT entry. */
261 long max_non_got_dynindx;
262 };
263
264 /* The MIPS ELF linker needs additional information for each symbol in
265 the global hash table. */
266
267 struct mips_elf_link_hash_entry
268 {
269 struct elf_link_hash_entry root;
270
271 /* External symbol information. */
272 EXTR esym;
273
274 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
275 this symbol. */
276 unsigned int possibly_dynamic_relocs;
277
278 /* If there is a stub that 32 bit functions should use to call this
279 16 bit function, this points to the section containing the stub. */
280 asection *fn_stub;
281
282 /* If there is a stub that 16 bit functions should use to call this
283 32 bit function, this points to the section containing the stub. */
284 asection *call_stub;
285
286 /* This is like the call_stub field, but it is used if the function
287 being called returns a floating point value. */
288 asection *call_fp_stub;
289
290 #define GOT_NORMAL 0
291 #define GOT_TLS_GD 1
292 #define GOT_TLS_LDM 2
293 #define GOT_TLS_IE 4
294 #define GOT_TLS_OFFSET_DONE 0x40
295 #define GOT_TLS_DONE 0x80
296 unsigned char tls_type;
297
298 /* This is only used in single-GOT mode; in multi-GOT mode there
299 is one mips_got_entry per GOT entry, so the offset is stored
300 there. In single-GOT mode there may be many mips_got_entry
301 structures all referring to the same GOT slot. It might be
302 possible to use root.got.offset instead, but that field is
303 overloaded already. */
304 bfd_vma tls_got_offset;
305
306 /* True if one of the relocations described by possibly_dynamic_relocs
307 is against a readonly section. */
308 unsigned int readonly_reloc : 1;
309
310 /* True if we must not create a .MIPS.stubs entry for this symbol.
311 This is set, for example, if there are relocations related to
312 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
313 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
314 unsigned int no_fn_stub : 1;
315
316 /* Whether we need the fn_stub; this is true if this symbol appears
317 in any relocs other than a 16 bit call. */
318 unsigned int need_fn_stub : 1;
319
320 /* Are we forced local? This will only be set if we have converted
321 the initial global GOT entry to a local GOT entry. */
322 unsigned int forced_local : 1;
323
324 /* Are we referenced by some kind of relocation? */
325 unsigned int is_relocation_target : 1;
326
327 /* Are we referenced by branch relocations? */
328 unsigned int is_branch_target : 1;
329 };
330
331 /* MIPS ELF linker hash table. */
332
333 struct mips_elf_link_hash_table
334 {
335 struct elf_link_hash_table root;
336 #if 0
337 /* We no longer use this. */
338 /* String section indices for the dynamic section symbols. */
339 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
340 #endif
341 /* The number of .rtproc entries. */
342 bfd_size_type procedure_count;
343 /* The size of the .compact_rel section (if SGI_COMPAT). */
344 bfd_size_type compact_rel_size;
345 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
346 entry is set to the address of __rld_obj_head as in IRIX5. */
347 bfd_boolean use_rld_obj_head;
348 /* This is the value of the __rld_map or __rld_obj_head symbol. */
349 bfd_vma rld_value;
350 /* This is set if we see any mips16 stub sections. */
351 bfd_boolean mips16_stubs_seen;
352 /* True if we've computed the size of the GOT. */
353 bfd_boolean computed_got_sizes;
354 /* True if we're generating code for VxWorks. */
355 bfd_boolean is_vxworks;
356 /* True if we already reported the small-data section overflow. */
357 bfd_boolean small_data_overflow_reported;
358 /* Shortcuts to some dynamic sections, or NULL if they are not
359 being used. */
360 asection *srelbss;
361 asection *sdynbss;
362 asection *srelplt;
363 asection *srelplt2;
364 asection *sgotplt;
365 asection *splt;
366 asection *sstubs;
367 asection *sgot;
368 /* The master GOT information. */
369 struct mips_got_info *got_info;
370 /* The size of the PLT header in bytes (VxWorks only). */
371 bfd_vma plt_header_size;
372 /* The size of a PLT entry in bytes (VxWorks only). */
373 bfd_vma plt_entry_size;
374 /* The size of a function stub entry in bytes. */
375 bfd_vma function_stub_size;
376 };
377
378 #define TLS_RELOC_P(r_type) \
379 (r_type == R_MIPS_TLS_DTPMOD32 \
380 || r_type == R_MIPS_TLS_DTPMOD64 \
381 || r_type == R_MIPS_TLS_DTPREL32 \
382 || r_type == R_MIPS_TLS_DTPREL64 \
383 || r_type == R_MIPS_TLS_GD \
384 || r_type == R_MIPS_TLS_LDM \
385 || r_type == R_MIPS_TLS_DTPREL_HI16 \
386 || r_type == R_MIPS_TLS_DTPREL_LO16 \
387 || r_type == R_MIPS_TLS_GOTTPREL \
388 || r_type == R_MIPS_TLS_TPREL32 \
389 || r_type == R_MIPS_TLS_TPREL64 \
390 || r_type == R_MIPS_TLS_TPREL_HI16 \
391 || r_type == R_MIPS_TLS_TPREL_LO16)
392
393 /* Structure used to pass information to mips_elf_output_extsym. */
394
395 struct extsym_info
396 {
397 bfd *abfd;
398 struct bfd_link_info *info;
399 struct ecoff_debug_info *debug;
400 const struct ecoff_debug_swap *swap;
401 bfd_boolean failed;
402 };
403
404 /* The names of the runtime procedure table symbols used on IRIX5. */
405
406 static const char * const mips_elf_dynsym_rtproc_names[] =
407 {
408 "_procedure_table",
409 "_procedure_string_table",
410 "_procedure_table_size",
411 NULL
412 };
413
414 /* These structures are used to generate the .compact_rel section on
415 IRIX5. */
416
417 typedef struct
418 {
419 unsigned long id1; /* Always one? */
420 unsigned long num; /* Number of compact relocation entries. */
421 unsigned long id2; /* Always two? */
422 unsigned long offset; /* The file offset of the first relocation. */
423 unsigned long reserved0; /* Zero? */
424 unsigned long reserved1; /* Zero? */
425 } Elf32_compact_rel;
426
427 typedef struct
428 {
429 bfd_byte id1[4];
430 bfd_byte num[4];
431 bfd_byte id2[4];
432 bfd_byte offset[4];
433 bfd_byte reserved0[4];
434 bfd_byte reserved1[4];
435 } Elf32_External_compact_rel;
436
437 typedef struct
438 {
439 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
440 unsigned int rtype : 4; /* Relocation types. See below. */
441 unsigned int dist2to : 8;
442 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
443 unsigned long konst; /* KONST field. See below. */
444 unsigned long vaddr; /* VADDR to be relocated. */
445 } Elf32_crinfo;
446
447 typedef struct
448 {
449 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
450 unsigned int rtype : 4; /* Relocation types. See below. */
451 unsigned int dist2to : 8;
452 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
453 unsigned long konst; /* KONST field. See below. */
454 } Elf32_crinfo2;
455
456 typedef struct
457 {
458 bfd_byte info[4];
459 bfd_byte konst[4];
460 bfd_byte vaddr[4];
461 } Elf32_External_crinfo;
462
463 typedef struct
464 {
465 bfd_byte info[4];
466 bfd_byte konst[4];
467 } Elf32_External_crinfo2;
468
469 /* These are the constants used to swap the bitfields in a crinfo. */
470
471 #define CRINFO_CTYPE (0x1)
472 #define CRINFO_CTYPE_SH (31)
473 #define CRINFO_RTYPE (0xf)
474 #define CRINFO_RTYPE_SH (27)
475 #define CRINFO_DIST2TO (0xff)
476 #define CRINFO_DIST2TO_SH (19)
477 #define CRINFO_RELVADDR (0x7ffff)
478 #define CRINFO_RELVADDR_SH (0)
479
480 /* A compact relocation info has long (3 words) or short (2 words)
481 formats. A short format doesn't have VADDR field and relvaddr
482 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
483 #define CRF_MIPS_LONG 1
484 #define CRF_MIPS_SHORT 0
485
486 /* There are 4 types of compact relocation at least. The value KONST
487 has different meaning for each type:
488
489 (type) (konst)
490 CT_MIPS_REL32 Address in data
491 CT_MIPS_WORD Address in word (XXX)
492 CT_MIPS_GPHI_LO GP - vaddr
493 CT_MIPS_JMPAD Address to jump
494 */
495
496 #define CRT_MIPS_REL32 0xa
497 #define CRT_MIPS_WORD 0xb
498 #define CRT_MIPS_GPHI_LO 0xc
499 #define CRT_MIPS_JMPAD 0xd
500
501 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
502 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
503 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
504 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
505 \f
506 /* The structure of the runtime procedure descriptor created by the
507 loader for use by the static exception system. */
508
509 typedef struct runtime_pdr {
510 bfd_vma adr; /* Memory address of start of procedure. */
511 long regmask; /* Save register mask. */
512 long regoffset; /* Save register offset. */
513 long fregmask; /* Save floating point register mask. */
514 long fregoffset; /* Save floating point register offset. */
515 long frameoffset; /* Frame size. */
516 short framereg; /* Frame pointer register. */
517 short pcreg; /* Offset or reg of return pc. */
518 long irpss; /* Index into the runtime string table. */
519 long reserved;
520 struct exception_info *exception_info;/* Pointer to exception array. */
521 } RPDR, *pRPDR;
522 #define cbRPDR sizeof (RPDR)
523 #define rpdNil ((pRPDR) 0)
524 \f
525 static struct mips_got_entry *mips_elf_create_local_got_entry
526 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
527 struct mips_elf_link_hash_entry *, int);
528 static bfd_boolean mips_elf_sort_hash_table_f
529 (struct mips_elf_link_hash_entry *, void *);
530 static bfd_vma mips_elf_high
531 (bfd_vma);
532 static bfd_boolean mips_elf_create_dynamic_relocation
533 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
534 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
535 bfd_vma *, asection *);
536 static hashval_t mips_elf_got_entry_hash
537 (const void *);
538 static bfd_vma mips_elf_adjust_gp
539 (bfd *, struct mips_got_info *, bfd *);
540 static struct mips_got_info *mips_elf_got_for_ibfd
541 (struct mips_got_info *, bfd *);
542
543 /* This will be used when we sort the dynamic relocation records. */
544 static bfd *reldyn_sorting_bfd;
545
546 /* Nonzero if ABFD is using the N32 ABI. */
547 #define ABI_N32_P(abfd) \
548 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
549
550 /* Nonzero if ABFD is using the N64 ABI. */
551 #define ABI_64_P(abfd) \
552 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
553
554 /* Nonzero if ABFD is using NewABI conventions. */
555 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
556
557 /* The IRIX compatibility level we are striving for. */
558 #define IRIX_COMPAT(abfd) \
559 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
560
561 /* Whether we are trying to be compatible with IRIX at all. */
562 #define SGI_COMPAT(abfd) \
563 (IRIX_COMPAT (abfd) != ict_none)
564
565 /* The name of the options section. */
566 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
567 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
568
569 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
570 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
571 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
572 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
573
574 /* Whether the section is readonly. */
575 #define MIPS_ELF_READONLY_SECTION(sec) \
576 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
577 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
578
579 /* The name of the stub section. */
580 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
581
582 /* The size of an external REL relocation. */
583 #define MIPS_ELF_REL_SIZE(abfd) \
584 (get_elf_backend_data (abfd)->s->sizeof_rel)
585
586 /* The size of an external RELA relocation. */
587 #define MIPS_ELF_RELA_SIZE(abfd) \
588 (get_elf_backend_data (abfd)->s->sizeof_rela)
589
590 /* The size of an external dynamic table entry. */
591 #define MIPS_ELF_DYN_SIZE(abfd) \
592 (get_elf_backend_data (abfd)->s->sizeof_dyn)
593
594 /* The size of a GOT entry. */
595 #define MIPS_ELF_GOT_SIZE(abfd) \
596 (get_elf_backend_data (abfd)->s->arch_size / 8)
597
598 /* The size of a symbol-table entry. */
599 #define MIPS_ELF_SYM_SIZE(abfd) \
600 (get_elf_backend_data (abfd)->s->sizeof_sym)
601
602 /* The default alignment for sections, as a power of two. */
603 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
604 (get_elf_backend_data (abfd)->s->log_file_align)
605
606 /* Get word-sized data. */
607 #define MIPS_ELF_GET_WORD(abfd, ptr) \
608 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
609
610 /* Put out word-sized data. */
611 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
612 (ABI_64_P (abfd) \
613 ? bfd_put_64 (abfd, val, ptr) \
614 : bfd_put_32 (abfd, val, ptr))
615
616 /* Add a dynamic symbol table-entry. */
617 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
618 _bfd_elf_add_dynamic_entry (info, tag, val)
619
620 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
621 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
622
623 /* Determine whether the internal relocation of index REL_IDX is REL
624 (zero) or RELA (non-zero). The assumption is that, if there are
625 two relocation sections for this section, one of them is REL and
626 the other is RELA. If the index of the relocation we're testing is
627 in range for the first relocation section, check that the external
628 relocation size is that for RELA. It is also assumed that, if
629 rel_idx is not in range for the first section, and this first
630 section contains REL relocs, then the relocation is in the second
631 section, that is RELA. */
632 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
633 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
634 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
635 > (bfd_vma)(rel_idx)) \
636 == (elf_section_data (sec)->rel_hdr.sh_entsize \
637 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
638 : sizeof (Elf32_External_Rela))))
639
640 /* The name of the dynamic relocation section. */
641 #define MIPS_ELF_REL_DYN_NAME(INFO) \
642 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
643
644 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
645 from smaller values. Start with zero, widen, *then* decrement. */
646 #define MINUS_ONE (((bfd_vma)0) - 1)
647 #define MINUS_TWO (((bfd_vma)0) - 2)
648
649 /* The number of local .got entries we reserve. */
650 #define MIPS_RESERVED_GOTNO(INFO) \
651 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
652
653 /* The value to write into got[1] for SVR4 targets, to identify it is
654 a GNU object. The dynamic linker can then use got[1] to store the
655 module pointer. */
656 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
657 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
658
659 /* The offset of $gp from the beginning of the .got section. */
660 #define ELF_MIPS_GP_OFFSET(INFO) \
661 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
662
663 /* The maximum size of the GOT for it to be addressable using 16-bit
664 offsets from $gp. */
665 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
666
667 /* Instructions which appear in a stub. */
668 #define STUB_LW(abfd) \
669 ((ABI_64_P (abfd) \
670 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
671 : 0x8f998010)) /* lw t9,0x8010(gp) */
672 #define STUB_MOVE(abfd) \
673 ((ABI_64_P (abfd) \
674 ? 0x03e0782d /* daddu t7,ra */ \
675 : 0x03e07821)) /* addu t7,ra */
676 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
677 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
678 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
679 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
680 #define STUB_LI16S(abfd, VAL) \
681 ((ABI_64_P (abfd) \
682 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
683 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
684
685 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
686 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
687
688 /* The name of the dynamic interpreter. This is put in the .interp
689 section. */
690
691 #define ELF_DYNAMIC_INTERPRETER(abfd) \
692 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
693 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
694 : "/usr/lib/libc.so.1")
695
696 #ifdef BFD64
697 #define MNAME(bfd,pre,pos) \
698 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
699 #define ELF_R_SYM(bfd, i) \
700 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
701 #define ELF_R_TYPE(bfd, i) \
702 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
703 #define ELF_R_INFO(bfd, s, t) \
704 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
705 #else
706 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
707 #define ELF_R_SYM(bfd, i) \
708 (ELF32_R_SYM (i))
709 #define ELF_R_TYPE(bfd, i) \
710 (ELF32_R_TYPE (i))
711 #define ELF_R_INFO(bfd, s, t) \
712 (ELF32_R_INFO (s, t))
713 #endif
714 \f
715 /* The mips16 compiler uses a couple of special sections to handle
716 floating point arguments.
717
718 Section names that look like .mips16.fn.FNNAME contain stubs that
719 copy floating point arguments from the fp regs to the gp regs and
720 then jump to FNNAME. If any 32 bit function calls FNNAME, the
721 call should be redirected to the stub instead. If no 32 bit
722 function calls FNNAME, the stub should be discarded. We need to
723 consider any reference to the function, not just a call, because
724 if the address of the function is taken we will need the stub,
725 since the address might be passed to a 32 bit function.
726
727 Section names that look like .mips16.call.FNNAME contain stubs
728 that copy floating point arguments from the gp regs to the fp
729 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
730 then any 16 bit function that calls FNNAME should be redirected
731 to the stub instead. If FNNAME is not a 32 bit function, the
732 stub should be discarded.
733
734 .mips16.call.fp.FNNAME sections are similar, but contain stubs
735 which call FNNAME and then copy the return value from the fp regs
736 to the gp regs. These stubs store the return value in $18 while
737 calling FNNAME; any function which might call one of these stubs
738 must arrange to save $18 around the call. (This case is not
739 needed for 32 bit functions that call 16 bit functions, because
740 16 bit functions always return floating point values in both
741 $f0/$f1 and $2/$3.)
742
743 Note that in all cases FNNAME might be defined statically.
744 Therefore, FNNAME is not used literally. Instead, the relocation
745 information will indicate which symbol the section is for.
746
747 We record any stubs that we find in the symbol table. */
748
749 #define FN_STUB ".mips16.fn."
750 #define CALL_STUB ".mips16.call."
751 #define CALL_FP_STUB ".mips16.call.fp."
752
753 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
754 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
755 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
756 \f
757 /* The format of the first PLT entry in a VxWorks executable. */
758 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
759 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
760 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
761 0x8f390008, /* lw t9, 8(t9) */
762 0x00000000, /* nop */
763 0x03200008, /* jr t9 */
764 0x00000000 /* nop */
765 };
766
767 /* The format of subsequent PLT entries. */
768 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
769 0x10000000, /* b .PLT_resolver */
770 0x24180000, /* li t8, <pltindex> */
771 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
772 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
773 0x8f390000, /* lw t9, 0(t9) */
774 0x00000000, /* nop */
775 0x03200008, /* jr t9 */
776 0x00000000 /* nop */
777 };
778
779 /* The format of the first PLT entry in a VxWorks shared object. */
780 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
781 0x8f990008, /* lw t9, 8(gp) */
782 0x00000000, /* nop */
783 0x03200008, /* jr t9 */
784 0x00000000, /* nop */
785 0x00000000, /* nop */
786 0x00000000 /* nop */
787 };
788
789 /* The format of subsequent PLT entries. */
790 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
791 0x10000000, /* b .PLT_resolver */
792 0x24180000 /* li t8, <pltindex> */
793 };
794 \f
795 /* Look up an entry in a MIPS ELF linker hash table. */
796
797 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
798 ((struct mips_elf_link_hash_entry *) \
799 elf_link_hash_lookup (&(table)->root, (string), (create), \
800 (copy), (follow)))
801
802 /* Traverse a MIPS ELF linker hash table. */
803
804 #define mips_elf_link_hash_traverse(table, func, info) \
805 (elf_link_hash_traverse \
806 (&(table)->root, \
807 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
808 (info)))
809
810 /* Get the MIPS ELF linker hash table from a link_info structure. */
811
812 #define mips_elf_hash_table(p) \
813 ((struct mips_elf_link_hash_table *) ((p)->hash))
814
815 /* Find the base offsets for thread-local storage in this object,
816 for GD/LD and IE/LE respectively. */
817
818 #define TP_OFFSET 0x7000
819 #define DTP_OFFSET 0x8000
820
821 static bfd_vma
822 dtprel_base (struct bfd_link_info *info)
823 {
824 /* If tls_sec is NULL, we should have signalled an error already. */
825 if (elf_hash_table (info)->tls_sec == NULL)
826 return 0;
827 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
828 }
829
830 static bfd_vma
831 tprel_base (struct bfd_link_info *info)
832 {
833 /* If tls_sec is NULL, we should have signalled an error already. */
834 if (elf_hash_table (info)->tls_sec == NULL)
835 return 0;
836 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
837 }
838
839 /* Create an entry in a MIPS ELF linker hash table. */
840
841 static struct bfd_hash_entry *
842 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
843 struct bfd_hash_table *table, const char *string)
844 {
845 struct mips_elf_link_hash_entry *ret =
846 (struct mips_elf_link_hash_entry *) entry;
847
848 /* Allocate the structure if it has not already been allocated by a
849 subclass. */
850 if (ret == NULL)
851 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
852 if (ret == NULL)
853 return (struct bfd_hash_entry *) ret;
854
855 /* Call the allocation method of the superclass. */
856 ret = ((struct mips_elf_link_hash_entry *)
857 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
858 table, string));
859 if (ret != NULL)
860 {
861 /* Set local fields. */
862 memset (&ret->esym, 0, sizeof (EXTR));
863 /* We use -2 as a marker to indicate that the information has
864 not been set. -1 means there is no associated ifd. */
865 ret->esym.ifd = -2;
866 ret->possibly_dynamic_relocs = 0;
867 ret->fn_stub = NULL;
868 ret->call_stub = NULL;
869 ret->call_fp_stub = NULL;
870 ret->tls_type = GOT_NORMAL;
871 ret->readonly_reloc = FALSE;
872 ret->no_fn_stub = FALSE;
873 ret->need_fn_stub = FALSE;
874 ret->forced_local = FALSE;
875 ret->is_relocation_target = FALSE;
876 ret->is_branch_target = FALSE;
877 }
878
879 return (struct bfd_hash_entry *) ret;
880 }
881
882 bfd_boolean
883 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
884 {
885 if (!sec->used_by_bfd)
886 {
887 struct _mips_elf_section_data *sdata;
888 bfd_size_type amt = sizeof (*sdata);
889
890 sdata = bfd_zalloc (abfd, amt);
891 if (sdata == NULL)
892 return FALSE;
893 sec->used_by_bfd = sdata;
894 }
895
896 return _bfd_elf_new_section_hook (abfd, sec);
897 }
898 \f
899 /* Read ECOFF debugging information from a .mdebug section into a
900 ecoff_debug_info structure. */
901
902 bfd_boolean
903 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
904 struct ecoff_debug_info *debug)
905 {
906 HDRR *symhdr;
907 const struct ecoff_debug_swap *swap;
908 char *ext_hdr;
909
910 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
911 memset (debug, 0, sizeof (*debug));
912
913 ext_hdr = bfd_malloc (swap->external_hdr_size);
914 if (ext_hdr == NULL && swap->external_hdr_size != 0)
915 goto error_return;
916
917 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
918 swap->external_hdr_size))
919 goto error_return;
920
921 symhdr = &debug->symbolic_header;
922 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
923
924 /* The symbolic header contains absolute file offsets and sizes to
925 read. */
926 #define READ(ptr, offset, count, size, type) \
927 if (symhdr->count == 0) \
928 debug->ptr = NULL; \
929 else \
930 { \
931 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
932 debug->ptr = bfd_malloc (amt); \
933 if (debug->ptr == NULL) \
934 goto error_return; \
935 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
936 || bfd_bread (debug->ptr, amt, abfd) != amt) \
937 goto error_return; \
938 }
939
940 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
941 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
942 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
943 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
944 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
945 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
946 union aux_ext *);
947 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
948 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
949 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
950 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
951 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
952 #undef READ
953
954 debug->fdr = NULL;
955
956 return TRUE;
957
958 error_return:
959 if (ext_hdr != NULL)
960 free (ext_hdr);
961 if (debug->line != NULL)
962 free (debug->line);
963 if (debug->external_dnr != NULL)
964 free (debug->external_dnr);
965 if (debug->external_pdr != NULL)
966 free (debug->external_pdr);
967 if (debug->external_sym != NULL)
968 free (debug->external_sym);
969 if (debug->external_opt != NULL)
970 free (debug->external_opt);
971 if (debug->external_aux != NULL)
972 free (debug->external_aux);
973 if (debug->ss != NULL)
974 free (debug->ss);
975 if (debug->ssext != NULL)
976 free (debug->ssext);
977 if (debug->external_fdr != NULL)
978 free (debug->external_fdr);
979 if (debug->external_rfd != NULL)
980 free (debug->external_rfd);
981 if (debug->external_ext != NULL)
982 free (debug->external_ext);
983 return FALSE;
984 }
985 \f
986 /* Swap RPDR (runtime procedure table entry) for output. */
987
988 static void
989 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
990 {
991 H_PUT_S32 (abfd, in->adr, ex->p_adr);
992 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
993 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
994 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
995 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
996 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
997
998 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
999 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1000
1001 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1002 }
1003
1004 /* Create a runtime procedure table from the .mdebug section. */
1005
1006 static bfd_boolean
1007 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1008 struct bfd_link_info *info, asection *s,
1009 struct ecoff_debug_info *debug)
1010 {
1011 const struct ecoff_debug_swap *swap;
1012 HDRR *hdr = &debug->symbolic_header;
1013 RPDR *rpdr, *rp;
1014 struct rpdr_ext *erp;
1015 void *rtproc;
1016 struct pdr_ext *epdr;
1017 struct sym_ext *esym;
1018 char *ss, **sv;
1019 char *str;
1020 bfd_size_type size;
1021 bfd_size_type count;
1022 unsigned long sindex;
1023 unsigned long i;
1024 PDR pdr;
1025 SYMR sym;
1026 const char *no_name_func = _("static procedure (no name)");
1027
1028 epdr = NULL;
1029 rpdr = NULL;
1030 esym = NULL;
1031 ss = NULL;
1032 sv = NULL;
1033
1034 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1035
1036 sindex = strlen (no_name_func) + 1;
1037 count = hdr->ipdMax;
1038 if (count > 0)
1039 {
1040 size = swap->external_pdr_size;
1041
1042 epdr = bfd_malloc (size * count);
1043 if (epdr == NULL)
1044 goto error_return;
1045
1046 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1047 goto error_return;
1048
1049 size = sizeof (RPDR);
1050 rp = rpdr = bfd_malloc (size * count);
1051 if (rpdr == NULL)
1052 goto error_return;
1053
1054 size = sizeof (char *);
1055 sv = bfd_malloc (size * count);
1056 if (sv == NULL)
1057 goto error_return;
1058
1059 count = hdr->isymMax;
1060 size = swap->external_sym_size;
1061 esym = bfd_malloc (size * count);
1062 if (esym == NULL)
1063 goto error_return;
1064
1065 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1066 goto error_return;
1067
1068 count = hdr->issMax;
1069 ss = bfd_malloc (count);
1070 if (ss == NULL)
1071 goto error_return;
1072 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1073 goto error_return;
1074
1075 count = hdr->ipdMax;
1076 for (i = 0; i < (unsigned long) count; i++, rp++)
1077 {
1078 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1079 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1080 rp->adr = sym.value;
1081 rp->regmask = pdr.regmask;
1082 rp->regoffset = pdr.regoffset;
1083 rp->fregmask = pdr.fregmask;
1084 rp->fregoffset = pdr.fregoffset;
1085 rp->frameoffset = pdr.frameoffset;
1086 rp->framereg = pdr.framereg;
1087 rp->pcreg = pdr.pcreg;
1088 rp->irpss = sindex;
1089 sv[i] = ss + sym.iss;
1090 sindex += strlen (sv[i]) + 1;
1091 }
1092 }
1093
1094 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1095 size = BFD_ALIGN (size, 16);
1096 rtproc = bfd_alloc (abfd, size);
1097 if (rtproc == NULL)
1098 {
1099 mips_elf_hash_table (info)->procedure_count = 0;
1100 goto error_return;
1101 }
1102
1103 mips_elf_hash_table (info)->procedure_count = count + 2;
1104
1105 erp = rtproc;
1106 memset (erp, 0, sizeof (struct rpdr_ext));
1107 erp++;
1108 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1109 strcpy (str, no_name_func);
1110 str += strlen (no_name_func) + 1;
1111 for (i = 0; i < count; i++)
1112 {
1113 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1114 strcpy (str, sv[i]);
1115 str += strlen (sv[i]) + 1;
1116 }
1117 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1118
1119 /* Set the size and contents of .rtproc section. */
1120 s->size = size;
1121 s->contents = rtproc;
1122
1123 /* Skip this section later on (I don't think this currently
1124 matters, but someday it might). */
1125 s->map_head.link_order = NULL;
1126
1127 if (epdr != NULL)
1128 free (epdr);
1129 if (rpdr != NULL)
1130 free (rpdr);
1131 if (esym != NULL)
1132 free (esym);
1133 if (ss != NULL)
1134 free (ss);
1135 if (sv != NULL)
1136 free (sv);
1137
1138 return TRUE;
1139
1140 error_return:
1141 if (epdr != NULL)
1142 free (epdr);
1143 if (rpdr != NULL)
1144 free (rpdr);
1145 if (esym != NULL)
1146 free (esym);
1147 if (ss != NULL)
1148 free (ss);
1149 if (sv != NULL)
1150 free (sv);
1151 return FALSE;
1152 }
1153 \f
1154 /* We're about to redefine H. Create a symbol to represent H's
1155 current value and size, to help make the disassembly easier
1156 to read. */
1157
1158 static bfd_boolean
1159 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1160 struct mips_elf_link_hash_entry *h,
1161 const char *prefix)
1162 {
1163 struct bfd_link_hash_entry *bh;
1164 struct elf_link_hash_entry *elfh;
1165 const char *name;
1166 asection *s;
1167 bfd_vma value;
1168
1169 /* Read the symbol's value. */
1170 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1171 || h->root.root.type == bfd_link_hash_defweak);
1172 s = h->root.root.u.def.section;
1173 value = h->root.root.u.def.value;
1174
1175 /* Create a new symbol. */
1176 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1177 bh = NULL;
1178 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1179 BSF_LOCAL, s, value, NULL,
1180 TRUE, FALSE, &bh))
1181 return FALSE;
1182
1183 /* Make it local and copy the other attributes from H. */
1184 elfh = (struct elf_link_hash_entry *) bh;
1185 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1186 elfh->other = h->root.other;
1187 elfh->size = h->root.size;
1188 elfh->forced_local = 1;
1189 return TRUE;
1190 }
1191
1192 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1193 function rather than to a hard-float stub. */
1194
1195 static bfd_boolean
1196 section_allows_mips16_refs_p (asection *section)
1197 {
1198 const char *name;
1199
1200 name = bfd_get_section_name (section->owner, section);
1201 return (FN_STUB_P (name)
1202 || CALL_STUB_P (name)
1203 || CALL_FP_STUB_P (name)
1204 || strcmp (name, ".pdr") == 0);
1205 }
1206
1207 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1208 stub section of some kind. Return the R_SYMNDX of the target
1209 function, or 0 if we can't decide which function that is. */
1210
1211 static unsigned long
1212 mips16_stub_symndx (asection *sec, const Elf_Internal_Rela *relocs,
1213 const Elf_Internal_Rela *relend)
1214 {
1215 const Elf_Internal_Rela *rel;
1216
1217 /* Trust the first R_MIPS_NONE relocation, if any. */
1218 for (rel = relocs; rel < relend; rel++)
1219 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1220 return ELF_R_SYM (sec->owner, rel->r_info);
1221
1222 /* Otherwise trust the first relocation, whatever its kind. This is
1223 the traditional behavior. */
1224 if (relocs < relend)
1225 return ELF_R_SYM (sec->owner, relocs->r_info);
1226
1227 return 0;
1228 }
1229
1230 /* Check the mips16 stubs for a particular symbol, and see if we can
1231 discard them. */
1232
1233 static bfd_boolean
1234 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h, void *data)
1235 {
1236 struct bfd_link_info *info;
1237
1238 info = (struct bfd_link_info *) data;
1239 if (h->root.root.type == bfd_link_hash_warning)
1240 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1241
1242 /* Dynamic symbols must use the standard call interface, in case other
1243 objects try to call them. */
1244 if (h->fn_stub != NULL
1245 && h->root.dynindx != -1)
1246 {
1247 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1248 h->need_fn_stub = TRUE;
1249 }
1250
1251 if (h->fn_stub != NULL
1252 && ! h->need_fn_stub)
1253 {
1254 /* We don't need the fn_stub; the only references to this symbol
1255 are 16 bit calls. Clobber the size to 0 to prevent it from
1256 being included in the link. */
1257 h->fn_stub->size = 0;
1258 h->fn_stub->flags &= ~SEC_RELOC;
1259 h->fn_stub->reloc_count = 0;
1260 h->fn_stub->flags |= SEC_EXCLUDE;
1261 }
1262
1263 if (h->call_stub != NULL
1264 && ELF_ST_IS_MIPS16 (h->root.other))
1265 {
1266 /* We don't need the call_stub; this is a 16 bit function, so
1267 calls from other 16 bit functions are OK. Clobber the size
1268 to 0 to prevent it from being included in the link. */
1269 h->call_stub->size = 0;
1270 h->call_stub->flags &= ~SEC_RELOC;
1271 h->call_stub->reloc_count = 0;
1272 h->call_stub->flags |= SEC_EXCLUDE;
1273 }
1274
1275 if (h->call_fp_stub != NULL
1276 && ELF_ST_IS_MIPS16 (h->root.other))
1277 {
1278 /* We don't need the call_stub; this is a 16 bit function, so
1279 calls from other 16 bit functions are OK. Clobber the size
1280 to 0 to prevent it from being included in the link. */
1281 h->call_fp_stub->size = 0;
1282 h->call_fp_stub->flags &= ~SEC_RELOC;
1283 h->call_fp_stub->reloc_count = 0;
1284 h->call_fp_stub->flags |= SEC_EXCLUDE;
1285 }
1286
1287 return TRUE;
1288 }
1289 \f
1290 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1291 Most mips16 instructions are 16 bits, but these instructions
1292 are 32 bits.
1293
1294 The format of these instructions is:
1295
1296 +--------------+--------------------------------+
1297 | JALX | X| Imm 20:16 | Imm 25:21 |
1298 +--------------+--------------------------------+
1299 | Immediate 15:0 |
1300 +-----------------------------------------------+
1301
1302 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1303 Note that the immediate value in the first word is swapped.
1304
1305 When producing a relocatable object file, R_MIPS16_26 is
1306 handled mostly like R_MIPS_26. In particular, the addend is
1307 stored as a straight 26-bit value in a 32-bit instruction.
1308 (gas makes life simpler for itself by never adjusting a
1309 R_MIPS16_26 reloc to be against a section, so the addend is
1310 always zero). However, the 32 bit instruction is stored as 2
1311 16-bit values, rather than a single 32-bit value. In a
1312 big-endian file, the result is the same; in a little-endian
1313 file, the two 16-bit halves of the 32 bit value are swapped.
1314 This is so that a disassembler can recognize the jal
1315 instruction.
1316
1317 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1318 instruction stored as two 16-bit values. The addend A is the
1319 contents of the targ26 field. The calculation is the same as
1320 R_MIPS_26. When storing the calculated value, reorder the
1321 immediate value as shown above, and don't forget to store the
1322 value as two 16-bit values.
1323
1324 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1325 defined as
1326
1327 big-endian:
1328 +--------+----------------------+
1329 | | |
1330 | | targ26-16 |
1331 |31 26|25 0|
1332 +--------+----------------------+
1333
1334 little-endian:
1335 +----------+------+-------------+
1336 | | | |
1337 | sub1 | | sub2 |
1338 |0 9|10 15|16 31|
1339 +----------+--------------------+
1340 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1341 ((sub1 << 16) | sub2)).
1342
1343 When producing a relocatable object file, the calculation is
1344 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1345 When producing a fully linked file, the calculation is
1346 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1347 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1348
1349 The table below lists the other MIPS16 instruction relocations.
1350 Each one is calculated in the same way as the non-MIPS16 relocation
1351 given on the right, but using the extended MIPS16 layout of 16-bit
1352 immediate fields:
1353
1354 R_MIPS16_GPREL R_MIPS_GPREL16
1355 R_MIPS16_GOT16 R_MIPS_GOT16
1356 R_MIPS16_CALL16 R_MIPS_CALL16
1357 R_MIPS16_HI16 R_MIPS_HI16
1358 R_MIPS16_LO16 R_MIPS_LO16
1359
1360 A typical instruction will have a format like this:
1361
1362 +--------------+--------------------------------+
1363 | EXTEND | Imm 10:5 | Imm 15:11 |
1364 +--------------+--------------------------------+
1365 | Major | rx | ry | Imm 4:0 |
1366 +--------------+--------------------------------+
1367
1368 EXTEND is the five bit value 11110. Major is the instruction
1369 opcode.
1370
1371 All we need to do here is shuffle the bits appropriately.
1372 As above, the two 16-bit halves must be swapped on a
1373 little-endian system. */
1374
1375 static inline bfd_boolean
1376 mips16_reloc_p (int r_type)
1377 {
1378 switch (r_type)
1379 {
1380 case R_MIPS16_26:
1381 case R_MIPS16_GPREL:
1382 case R_MIPS16_GOT16:
1383 case R_MIPS16_CALL16:
1384 case R_MIPS16_HI16:
1385 case R_MIPS16_LO16:
1386 return TRUE;
1387
1388 default:
1389 return FALSE;
1390 }
1391 }
1392
1393 static inline bfd_boolean
1394 got16_reloc_p (int r_type)
1395 {
1396 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1397 }
1398
1399 static inline bfd_boolean
1400 call16_reloc_p (int r_type)
1401 {
1402 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1403 }
1404
1405 static inline bfd_boolean
1406 hi16_reloc_p (int r_type)
1407 {
1408 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1409 }
1410
1411 static inline bfd_boolean
1412 lo16_reloc_p (int r_type)
1413 {
1414 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1415 }
1416
1417 static inline bfd_boolean
1418 mips16_call_reloc_p (int r_type)
1419 {
1420 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1421 }
1422
1423 void
1424 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1425 bfd_boolean jal_shuffle, bfd_byte *data)
1426 {
1427 bfd_vma extend, insn, val;
1428
1429 if (!mips16_reloc_p (r_type))
1430 return;
1431
1432 /* Pick up the mips16 extend instruction and the real instruction. */
1433 extend = bfd_get_16 (abfd, data);
1434 insn = bfd_get_16 (abfd, data + 2);
1435 if (r_type == R_MIPS16_26)
1436 {
1437 if (jal_shuffle)
1438 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1439 | ((extend & 0x1f) << 21) | insn;
1440 else
1441 val = extend << 16 | insn;
1442 }
1443 else
1444 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1445 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1446 bfd_put_32 (abfd, val, data);
1447 }
1448
1449 void
1450 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1451 bfd_boolean jal_shuffle, bfd_byte *data)
1452 {
1453 bfd_vma extend, insn, val;
1454
1455 if (!mips16_reloc_p (r_type))
1456 return;
1457
1458 val = bfd_get_32 (abfd, data);
1459 if (r_type == R_MIPS16_26)
1460 {
1461 if (jal_shuffle)
1462 {
1463 insn = val & 0xffff;
1464 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1465 | ((val >> 21) & 0x1f);
1466 }
1467 else
1468 {
1469 insn = val & 0xffff;
1470 extend = val >> 16;
1471 }
1472 }
1473 else
1474 {
1475 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1476 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1477 }
1478 bfd_put_16 (abfd, insn, data + 2);
1479 bfd_put_16 (abfd, extend, data);
1480 }
1481
1482 bfd_reloc_status_type
1483 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1484 arelent *reloc_entry, asection *input_section,
1485 bfd_boolean relocatable, void *data, bfd_vma gp)
1486 {
1487 bfd_vma relocation;
1488 bfd_signed_vma val;
1489 bfd_reloc_status_type status;
1490
1491 if (bfd_is_com_section (symbol->section))
1492 relocation = 0;
1493 else
1494 relocation = symbol->value;
1495
1496 relocation += symbol->section->output_section->vma;
1497 relocation += symbol->section->output_offset;
1498
1499 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1500 return bfd_reloc_outofrange;
1501
1502 /* Set val to the offset into the section or symbol. */
1503 val = reloc_entry->addend;
1504
1505 _bfd_mips_elf_sign_extend (val, 16);
1506
1507 /* Adjust val for the final section location and GP value. If we
1508 are producing relocatable output, we don't want to do this for
1509 an external symbol. */
1510 if (! relocatable
1511 || (symbol->flags & BSF_SECTION_SYM) != 0)
1512 val += relocation - gp;
1513
1514 if (reloc_entry->howto->partial_inplace)
1515 {
1516 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1517 (bfd_byte *) data
1518 + reloc_entry->address);
1519 if (status != bfd_reloc_ok)
1520 return status;
1521 }
1522 else
1523 reloc_entry->addend = val;
1524
1525 if (relocatable)
1526 reloc_entry->address += input_section->output_offset;
1527
1528 return bfd_reloc_ok;
1529 }
1530
1531 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1532 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1533 that contains the relocation field and DATA points to the start of
1534 INPUT_SECTION. */
1535
1536 struct mips_hi16
1537 {
1538 struct mips_hi16 *next;
1539 bfd_byte *data;
1540 asection *input_section;
1541 arelent rel;
1542 };
1543
1544 /* FIXME: This should not be a static variable. */
1545
1546 static struct mips_hi16 *mips_hi16_list;
1547
1548 /* A howto special_function for REL *HI16 relocations. We can only
1549 calculate the correct value once we've seen the partnering
1550 *LO16 relocation, so just save the information for later.
1551
1552 The ABI requires that the *LO16 immediately follow the *HI16.
1553 However, as a GNU extension, we permit an arbitrary number of
1554 *HI16s to be associated with a single *LO16. This significantly
1555 simplies the relocation handling in gcc. */
1556
1557 bfd_reloc_status_type
1558 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1559 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1560 asection *input_section, bfd *output_bfd,
1561 char **error_message ATTRIBUTE_UNUSED)
1562 {
1563 struct mips_hi16 *n;
1564
1565 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1566 return bfd_reloc_outofrange;
1567
1568 n = bfd_malloc (sizeof *n);
1569 if (n == NULL)
1570 return bfd_reloc_outofrange;
1571
1572 n->next = mips_hi16_list;
1573 n->data = data;
1574 n->input_section = input_section;
1575 n->rel = *reloc_entry;
1576 mips_hi16_list = n;
1577
1578 if (output_bfd != NULL)
1579 reloc_entry->address += input_section->output_offset;
1580
1581 return bfd_reloc_ok;
1582 }
1583
1584 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
1585 like any other 16-bit relocation when applied to global symbols, but is
1586 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1587
1588 bfd_reloc_status_type
1589 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1590 void *data, asection *input_section,
1591 bfd *output_bfd, char **error_message)
1592 {
1593 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1594 || bfd_is_und_section (bfd_get_section (symbol))
1595 || bfd_is_com_section (bfd_get_section (symbol)))
1596 /* The relocation is against a global symbol. */
1597 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1598 input_section, output_bfd,
1599 error_message);
1600
1601 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1602 input_section, output_bfd, error_message);
1603 }
1604
1605 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1606 is a straightforward 16 bit inplace relocation, but we must deal with
1607 any partnering high-part relocations as well. */
1608
1609 bfd_reloc_status_type
1610 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1611 void *data, asection *input_section,
1612 bfd *output_bfd, char **error_message)
1613 {
1614 bfd_vma vallo;
1615 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1616
1617 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1618 return bfd_reloc_outofrange;
1619
1620 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1621 location);
1622 vallo = bfd_get_32 (abfd, location);
1623 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1624 location);
1625
1626 while (mips_hi16_list != NULL)
1627 {
1628 bfd_reloc_status_type ret;
1629 struct mips_hi16 *hi;
1630
1631 hi = mips_hi16_list;
1632
1633 /* R_MIPS*_GOT16 relocations are something of a special case. We
1634 want to install the addend in the same way as for a R_MIPS*_HI16
1635 relocation (with a rightshift of 16). However, since GOT16
1636 relocations can also be used with global symbols, their howto
1637 has a rightshift of 0. */
1638 if (hi->rel.howto->type == R_MIPS_GOT16)
1639 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1640 else if (hi->rel.howto->type == R_MIPS16_GOT16)
1641 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
1642
1643 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1644 carry or borrow will induce a change of +1 or -1 in the high part. */
1645 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1646
1647 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1648 hi->input_section, output_bfd,
1649 error_message);
1650 if (ret != bfd_reloc_ok)
1651 return ret;
1652
1653 mips_hi16_list = hi->next;
1654 free (hi);
1655 }
1656
1657 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1658 input_section, output_bfd,
1659 error_message);
1660 }
1661
1662 /* A generic howto special_function. This calculates and installs the
1663 relocation itself, thus avoiding the oft-discussed problems in
1664 bfd_perform_relocation and bfd_install_relocation. */
1665
1666 bfd_reloc_status_type
1667 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1668 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1669 asection *input_section, bfd *output_bfd,
1670 char **error_message ATTRIBUTE_UNUSED)
1671 {
1672 bfd_signed_vma val;
1673 bfd_reloc_status_type status;
1674 bfd_boolean relocatable;
1675
1676 relocatable = (output_bfd != NULL);
1677
1678 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1679 return bfd_reloc_outofrange;
1680
1681 /* Build up the field adjustment in VAL. */
1682 val = 0;
1683 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1684 {
1685 /* Either we're calculating the final field value or we have a
1686 relocation against a section symbol. Add in the section's
1687 offset or address. */
1688 val += symbol->section->output_section->vma;
1689 val += symbol->section->output_offset;
1690 }
1691
1692 if (!relocatable)
1693 {
1694 /* We're calculating the final field value. Add in the symbol's value
1695 and, if pc-relative, subtract the address of the field itself. */
1696 val += symbol->value;
1697 if (reloc_entry->howto->pc_relative)
1698 {
1699 val -= input_section->output_section->vma;
1700 val -= input_section->output_offset;
1701 val -= reloc_entry->address;
1702 }
1703 }
1704
1705 /* VAL is now the final adjustment. If we're keeping this relocation
1706 in the output file, and if the relocation uses a separate addend,
1707 we just need to add VAL to that addend. Otherwise we need to add
1708 VAL to the relocation field itself. */
1709 if (relocatable && !reloc_entry->howto->partial_inplace)
1710 reloc_entry->addend += val;
1711 else
1712 {
1713 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1714
1715 /* Add in the separate addend, if any. */
1716 val += reloc_entry->addend;
1717
1718 /* Add VAL to the relocation field. */
1719 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1720 location);
1721 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1722 location);
1723 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1724 location);
1725
1726 if (status != bfd_reloc_ok)
1727 return status;
1728 }
1729
1730 if (relocatable)
1731 reloc_entry->address += input_section->output_offset;
1732
1733 return bfd_reloc_ok;
1734 }
1735 \f
1736 /* Swap an entry in a .gptab section. Note that these routines rely
1737 on the equivalence of the two elements of the union. */
1738
1739 static void
1740 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1741 Elf32_gptab *in)
1742 {
1743 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1744 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1745 }
1746
1747 static void
1748 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1749 Elf32_External_gptab *ex)
1750 {
1751 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1752 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1753 }
1754
1755 static void
1756 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1757 Elf32_External_compact_rel *ex)
1758 {
1759 H_PUT_32 (abfd, in->id1, ex->id1);
1760 H_PUT_32 (abfd, in->num, ex->num);
1761 H_PUT_32 (abfd, in->id2, ex->id2);
1762 H_PUT_32 (abfd, in->offset, ex->offset);
1763 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1764 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1765 }
1766
1767 static void
1768 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1769 Elf32_External_crinfo *ex)
1770 {
1771 unsigned long l;
1772
1773 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1774 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1775 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1776 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1777 H_PUT_32 (abfd, l, ex->info);
1778 H_PUT_32 (abfd, in->konst, ex->konst);
1779 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1780 }
1781 \f
1782 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1783 routines swap this structure in and out. They are used outside of
1784 BFD, so they are globally visible. */
1785
1786 void
1787 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1788 Elf32_RegInfo *in)
1789 {
1790 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1791 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1792 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1793 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1794 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1795 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1796 }
1797
1798 void
1799 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1800 Elf32_External_RegInfo *ex)
1801 {
1802 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1803 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1804 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1805 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1806 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1807 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1808 }
1809
1810 /* In the 64 bit ABI, the .MIPS.options section holds register
1811 information in an Elf64_Reginfo structure. These routines swap
1812 them in and out. They are globally visible because they are used
1813 outside of BFD. These routines are here so that gas can call them
1814 without worrying about whether the 64 bit ABI has been included. */
1815
1816 void
1817 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1818 Elf64_Internal_RegInfo *in)
1819 {
1820 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1821 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1822 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1823 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1824 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1825 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1826 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1827 }
1828
1829 void
1830 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1831 Elf64_External_RegInfo *ex)
1832 {
1833 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1834 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1835 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1836 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1837 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1838 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1839 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1840 }
1841
1842 /* Swap in an options header. */
1843
1844 void
1845 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1846 Elf_Internal_Options *in)
1847 {
1848 in->kind = H_GET_8 (abfd, ex->kind);
1849 in->size = H_GET_8 (abfd, ex->size);
1850 in->section = H_GET_16 (abfd, ex->section);
1851 in->info = H_GET_32 (abfd, ex->info);
1852 }
1853
1854 /* Swap out an options header. */
1855
1856 void
1857 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1858 Elf_External_Options *ex)
1859 {
1860 H_PUT_8 (abfd, in->kind, ex->kind);
1861 H_PUT_8 (abfd, in->size, ex->size);
1862 H_PUT_16 (abfd, in->section, ex->section);
1863 H_PUT_32 (abfd, in->info, ex->info);
1864 }
1865 \f
1866 /* This function is called via qsort() to sort the dynamic relocation
1867 entries by increasing r_symndx value. */
1868
1869 static int
1870 sort_dynamic_relocs (const void *arg1, const void *arg2)
1871 {
1872 Elf_Internal_Rela int_reloc1;
1873 Elf_Internal_Rela int_reloc2;
1874 int diff;
1875
1876 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1877 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1878
1879 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1880 if (diff != 0)
1881 return diff;
1882
1883 if (int_reloc1.r_offset < int_reloc2.r_offset)
1884 return -1;
1885 if (int_reloc1.r_offset > int_reloc2.r_offset)
1886 return 1;
1887 return 0;
1888 }
1889
1890 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1891
1892 static int
1893 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1894 const void *arg2 ATTRIBUTE_UNUSED)
1895 {
1896 #ifdef BFD64
1897 Elf_Internal_Rela int_reloc1[3];
1898 Elf_Internal_Rela int_reloc2[3];
1899
1900 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1901 (reldyn_sorting_bfd, arg1, int_reloc1);
1902 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1903 (reldyn_sorting_bfd, arg2, int_reloc2);
1904
1905 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1906 return -1;
1907 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1908 return 1;
1909
1910 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1911 return -1;
1912 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1913 return 1;
1914 return 0;
1915 #else
1916 abort ();
1917 #endif
1918 }
1919
1920
1921 /* This routine is used to write out ECOFF debugging external symbol
1922 information. It is called via mips_elf_link_hash_traverse. The
1923 ECOFF external symbol information must match the ELF external
1924 symbol information. Unfortunately, at this point we don't know
1925 whether a symbol is required by reloc information, so the two
1926 tables may wind up being different. We must sort out the external
1927 symbol information before we can set the final size of the .mdebug
1928 section, and we must set the size of the .mdebug section before we
1929 can relocate any sections, and we can't know which symbols are
1930 required by relocation until we relocate the sections.
1931 Fortunately, it is relatively unlikely that any symbol will be
1932 stripped but required by a reloc. In particular, it can not happen
1933 when generating a final executable. */
1934
1935 static bfd_boolean
1936 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1937 {
1938 struct extsym_info *einfo = data;
1939 bfd_boolean strip;
1940 asection *sec, *output_section;
1941
1942 if (h->root.root.type == bfd_link_hash_warning)
1943 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1944
1945 if (h->root.indx == -2)
1946 strip = FALSE;
1947 else if ((h->root.def_dynamic
1948 || h->root.ref_dynamic
1949 || h->root.type == bfd_link_hash_new)
1950 && !h->root.def_regular
1951 && !h->root.ref_regular)
1952 strip = TRUE;
1953 else if (einfo->info->strip == strip_all
1954 || (einfo->info->strip == strip_some
1955 && bfd_hash_lookup (einfo->info->keep_hash,
1956 h->root.root.root.string,
1957 FALSE, FALSE) == NULL))
1958 strip = TRUE;
1959 else
1960 strip = FALSE;
1961
1962 if (strip)
1963 return TRUE;
1964
1965 if (h->esym.ifd == -2)
1966 {
1967 h->esym.jmptbl = 0;
1968 h->esym.cobol_main = 0;
1969 h->esym.weakext = 0;
1970 h->esym.reserved = 0;
1971 h->esym.ifd = ifdNil;
1972 h->esym.asym.value = 0;
1973 h->esym.asym.st = stGlobal;
1974
1975 if (h->root.root.type == bfd_link_hash_undefined
1976 || h->root.root.type == bfd_link_hash_undefweak)
1977 {
1978 const char *name;
1979
1980 /* Use undefined class. Also, set class and type for some
1981 special symbols. */
1982 name = h->root.root.root.string;
1983 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1984 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1985 {
1986 h->esym.asym.sc = scData;
1987 h->esym.asym.st = stLabel;
1988 h->esym.asym.value = 0;
1989 }
1990 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1991 {
1992 h->esym.asym.sc = scAbs;
1993 h->esym.asym.st = stLabel;
1994 h->esym.asym.value =
1995 mips_elf_hash_table (einfo->info)->procedure_count;
1996 }
1997 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1998 {
1999 h->esym.asym.sc = scAbs;
2000 h->esym.asym.st = stLabel;
2001 h->esym.asym.value = elf_gp (einfo->abfd);
2002 }
2003 else
2004 h->esym.asym.sc = scUndefined;
2005 }
2006 else if (h->root.root.type != bfd_link_hash_defined
2007 && h->root.root.type != bfd_link_hash_defweak)
2008 h->esym.asym.sc = scAbs;
2009 else
2010 {
2011 const char *name;
2012
2013 sec = h->root.root.u.def.section;
2014 output_section = sec->output_section;
2015
2016 /* When making a shared library and symbol h is the one from
2017 the another shared library, OUTPUT_SECTION may be null. */
2018 if (output_section == NULL)
2019 h->esym.asym.sc = scUndefined;
2020 else
2021 {
2022 name = bfd_section_name (output_section->owner, output_section);
2023
2024 if (strcmp (name, ".text") == 0)
2025 h->esym.asym.sc = scText;
2026 else if (strcmp (name, ".data") == 0)
2027 h->esym.asym.sc = scData;
2028 else if (strcmp (name, ".sdata") == 0)
2029 h->esym.asym.sc = scSData;
2030 else if (strcmp (name, ".rodata") == 0
2031 || strcmp (name, ".rdata") == 0)
2032 h->esym.asym.sc = scRData;
2033 else if (strcmp (name, ".bss") == 0)
2034 h->esym.asym.sc = scBss;
2035 else if (strcmp (name, ".sbss") == 0)
2036 h->esym.asym.sc = scSBss;
2037 else if (strcmp (name, ".init") == 0)
2038 h->esym.asym.sc = scInit;
2039 else if (strcmp (name, ".fini") == 0)
2040 h->esym.asym.sc = scFini;
2041 else
2042 h->esym.asym.sc = scAbs;
2043 }
2044 }
2045
2046 h->esym.asym.reserved = 0;
2047 h->esym.asym.index = indexNil;
2048 }
2049
2050 if (h->root.root.type == bfd_link_hash_common)
2051 h->esym.asym.value = h->root.root.u.c.size;
2052 else if (h->root.root.type == bfd_link_hash_defined
2053 || h->root.root.type == bfd_link_hash_defweak)
2054 {
2055 if (h->esym.asym.sc == scCommon)
2056 h->esym.asym.sc = scBss;
2057 else if (h->esym.asym.sc == scSCommon)
2058 h->esym.asym.sc = scSBss;
2059
2060 sec = h->root.root.u.def.section;
2061 output_section = sec->output_section;
2062 if (output_section != NULL)
2063 h->esym.asym.value = (h->root.root.u.def.value
2064 + sec->output_offset
2065 + output_section->vma);
2066 else
2067 h->esym.asym.value = 0;
2068 }
2069 else if (h->root.needs_plt)
2070 {
2071 struct mips_elf_link_hash_entry *hd = h;
2072 bfd_boolean no_fn_stub = h->no_fn_stub;
2073
2074 while (hd->root.root.type == bfd_link_hash_indirect)
2075 {
2076 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2077 no_fn_stub = no_fn_stub || hd->no_fn_stub;
2078 }
2079
2080 if (!no_fn_stub)
2081 {
2082 /* Set type and value for a symbol with a function stub. */
2083 h->esym.asym.st = stProc;
2084 sec = hd->root.root.u.def.section;
2085 if (sec == NULL)
2086 h->esym.asym.value = 0;
2087 else
2088 {
2089 output_section = sec->output_section;
2090 if (output_section != NULL)
2091 h->esym.asym.value = (hd->root.plt.offset
2092 + sec->output_offset
2093 + output_section->vma);
2094 else
2095 h->esym.asym.value = 0;
2096 }
2097 }
2098 }
2099
2100 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2101 h->root.root.root.string,
2102 &h->esym))
2103 {
2104 einfo->failed = TRUE;
2105 return FALSE;
2106 }
2107
2108 return TRUE;
2109 }
2110
2111 /* A comparison routine used to sort .gptab entries. */
2112
2113 static int
2114 gptab_compare (const void *p1, const void *p2)
2115 {
2116 const Elf32_gptab *a1 = p1;
2117 const Elf32_gptab *a2 = p2;
2118
2119 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2120 }
2121 \f
2122 /* Functions to manage the got entry hash table. */
2123
2124 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2125 hash number. */
2126
2127 static INLINE hashval_t
2128 mips_elf_hash_bfd_vma (bfd_vma addr)
2129 {
2130 #ifdef BFD64
2131 return addr + (addr >> 32);
2132 #else
2133 return addr;
2134 #endif
2135 }
2136
2137 /* got_entries only match if they're identical, except for gotidx, so
2138 use all fields to compute the hash, and compare the appropriate
2139 union members. */
2140
2141 static hashval_t
2142 mips_elf_got_entry_hash (const void *entry_)
2143 {
2144 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2145
2146 return entry->symndx
2147 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2148 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2149 : entry->abfd->id
2150 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2151 : entry->d.h->root.root.root.hash));
2152 }
2153
2154 static int
2155 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2156 {
2157 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2158 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2159
2160 /* An LDM entry can only match another LDM entry. */
2161 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2162 return 0;
2163
2164 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2165 && (! e1->abfd ? e1->d.address == e2->d.address
2166 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2167 : e1->d.h == e2->d.h);
2168 }
2169
2170 /* multi_got_entries are still a match in the case of global objects,
2171 even if the input bfd in which they're referenced differs, so the
2172 hash computation and compare functions are adjusted
2173 accordingly. */
2174
2175 static hashval_t
2176 mips_elf_multi_got_entry_hash (const void *entry_)
2177 {
2178 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2179
2180 return entry->symndx
2181 + (! entry->abfd
2182 ? mips_elf_hash_bfd_vma (entry->d.address)
2183 : entry->symndx >= 0
2184 ? ((entry->tls_type & GOT_TLS_LDM)
2185 ? (GOT_TLS_LDM << 17)
2186 : (entry->abfd->id
2187 + mips_elf_hash_bfd_vma (entry->d.addend)))
2188 : entry->d.h->root.root.root.hash);
2189 }
2190
2191 static int
2192 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2193 {
2194 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2195 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2196
2197 /* Any two LDM entries match. */
2198 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2199 return 1;
2200
2201 /* Nothing else matches an LDM entry. */
2202 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2203 return 0;
2204
2205 return e1->symndx == e2->symndx
2206 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2207 : e1->abfd == NULL || e2->abfd == NULL
2208 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2209 : e1->d.h == e2->d.h);
2210 }
2211
2212 static hashval_t
2213 mips_got_page_entry_hash (const void *entry_)
2214 {
2215 const struct mips_got_page_entry *entry;
2216
2217 entry = (const struct mips_got_page_entry *) entry_;
2218 return entry->abfd->id + entry->symndx;
2219 }
2220
2221 static int
2222 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2223 {
2224 const struct mips_got_page_entry *entry1, *entry2;
2225
2226 entry1 = (const struct mips_got_page_entry *) entry1_;
2227 entry2 = (const struct mips_got_page_entry *) entry2_;
2228 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2229 }
2230 \f
2231 /* Return the dynamic relocation section. If it doesn't exist, try to
2232 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2233 if creation fails. */
2234
2235 static asection *
2236 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2237 {
2238 const char *dname;
2239 asection *sreloc;
2240 bfd *dynobj;
2241
2242 dname = MIPS_ELF_REL_DYN_NAME (info);
2243 dynobj = elf_hash_table (info)->dynobj;
2244 sreloc = bfd_get_section_by_name (dynobj, dname);
2245 if (sreloc == NULL && create_p)
2246 {
2247 sreloc = bfd_make_section_with_flags (dynobj, dname,
2248 (SEC_ALLOC
2249 | SEC_LOAD
2250 | SEC_HAS_CONTENTS
2251 | SEC_IN_MEMORY
2252 | SEC_LINKER_CREATED
2253 | SEC_READONLY));
2254 if (sreloc == NULL
2255 || ! bfd_set_section_alignment (dynobj, sreloc,
2256 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2257 return NULL;
2258 }
2259 return sreloc;
2260 }
2261
2262 /* Returns the GOT section, if it hasn't been excluded. */
2263
2264 static asection *
2265 mips_elf_got_section (struct bfd_link_info *info)
2266 {
2267 struct mips_elf_link_hash_table *htab;
2268
2269 htab = mips_elf_hash_table (info);
2270 if (htab->sgot == NULL || (htab->sgot->flags & SEC_EXCLUDE) != 0)
2271 return NULL;
2272 return htab->sgot;
2273 }
2274
2275 /* Count the number of relocations needed for a TLS GOT entry, with
2276 access types from TLS_TYPE, and symbol H (or a local symbol if H
2277 is NULL). */
2278
2279 static int
2280 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2281 struct elf_link_hash_entry *h)
2282 {
2283 int indx = 0;
2284 int ret = 0;
2285 bfd_boolean need_relocs = FALSE;
2286 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2287
2288 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2289 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2290 indx = h->dynindx;
2291
2292 if ((info->shared || indx != 0)
2293 && (h == NULL
2294 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2295 || h->root.type != bfd_link_hash_undefweak))
2296 need_relocs = TRUE;
2297
2298 if (!need_relocs)
2299 return FALSE;
2300
2301 if (tls_type & GOT_TLS_GD)
2302 {
2303 ret++;
2304 if (indx != 0)
2305 ret++;
2306 }
2307
2308 if (tls_type & GOT_TLS_IE)
2309 ret++;
2310
2311 if ((tls_type & GOT_TLS_LDM) && info->shared)
2312 ret++;
2313
2314 return ret;
2315 }
2316
2317 /* Count the number of TLS relocations required for the GOT entry in
2318 ARG1, if it describes a local symbol. */
2319
2320 static int
2321 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2322 {
2323 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2324 struct mips_elf_count_tls_arg *arg = arg2;
2325
2326 if (entry->abfd != NULL && entry->symndx != -1)
2327 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2328
2329 return 1;
2330 }
2331
2332 /* Count the number of TLS GOT entries required for the global (or
2333 forced-local) symbol in ARG1. */
2334
2335 static int
2336 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2337 {
2338 struct mips_elf_link_hash_entry *hm
2339 = (struct mips_elf_link_hash_entry *) arg1;
2340 struct mips_elf_count_tls_arg *arg = arg2;
2341
2342 if (hm->tls_type & GOT_TLS_GD)
2343 arg->needed += 2;
2344 if (hm->tls_type & GOT_TLS_IE)
2345 arg->needed += 1;
2346
2347 return 1;
2348 }
2349
2350 /* Count the number of TLS relocations required for the global (or
2351 forced-local) symbol in ARG1. */
2352
2353 static int
2354 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2355 {
2356 struct mips_elf_link_hash_entry *hm
2357 = (struct mips_elf_link_hash_entry *) arg1;
2358 struct mips_elf_count_tls_arg *arg = arg2;
2359
2360 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2361
2362 return 1;
2363 }
2364
2365 /* Output a simple dynamic relocation into SRELOC. */
2366
2367 static void
2368 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2369 asection *sreloc,
2370 unsigned long indx,
2371 int r_type,
2372 bfd_vma offset)
2373 {
2374 Elf_Internal_Rela rel[3];
2375
2376 memset (rel, 0, sizeof (rel));
2377
2378 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2379 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2380
2381 if (ABI_64_P (output_bfd))
2382 {
2383 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2384 (output_bfd, &rel[0],
2385 (sreloc->contents
2386 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2387 }
2388 else
2389 bfd_elf32_swap_reloc_out
2390 (output_bfd, &rel[0],
2391 (sreloc->contents
2392 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2393 ++sreloc->reloc_count;
2394 }
2395
2396 /* Initialize a set of TLS GOT entries for one symbol. */
2397
2398 static void
2399 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2400 unsigned char *tls_type_p,
2401 struct bfd_link_info *info,
2402 struct mips_elf_link_hash_entry *h,
2403 bfd_vma value)
2404 {
2405 int indx;
2406 asection *sreloc, *sgot;
2407 bfd_vma offset, offset2;
2408 bfd_boolean need_relocs = FALSE;
2409
2410 sgot = mips_elf_got_section (info);
2411
2412 indx = 0;
2413 if (h != NULL)
2414 {
2415 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2416
2417 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2418 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2419 indx = h->root.dynindx;
2420 }
2421
2422 if (*tls_type_p & GOT_TLS_DONE)
2423 return;
2424
2425 if ((info->shared || indx != 0)
2426 && (h == NULL
2427 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2428 || h->root.type != bfd_link_hash_undefweak))
2429 need_relocs = TRUE;
2430
2431 /* MINUS_ONE means the symbol is not defined in this object. It may not
2432 be defined at all; assume that the value doesn't matter in that
2433 case. Otherwise complain if we would use the value. */
2434 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2435 || h->root.root.type == bfd_link_hash_undefweak);
2436
2437 /* Emit necessary relocations. */
2438 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2439
2440 /* General Dynamic. */
2441 if (*tls_type_p & GOT_TLS_GD)
2442 {
2443 offset = got_offset;
2444 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2445
2446 if (need_relocs)
2447 {
2448 mips_elf_output_dynamic_relocation
2449 (abfd, sreloc, indx,
2450 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2451 sgot->output_offset + sgot->output_section->vma + offset);
2452
2453 if (indx)
2454 mips_elf_output_dynamic_relocation
2455 (abfd, sreloc, indx,
2456 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2457 sgot->output_offset + sgot->output_section->vma + offset2);
2458 else
2459 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2460 sgot->contents + offset2);
2461 }
2462 else
2463 {
2464 MIPS_ELF_PUT_WORD (abfd, 1,
2465 sgot->contents + offset);
2466 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2467 sgot->contents + offset2);
2468 }
2469
2470 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2471 }
2472
2473 /* Initial Exec model. */
2474 if (*tls_type_p & GOT_TLS_IE)
2475 {
2476 offset = got_offset;
2477
2478 if (need_relocs)
2479 {
2480 if (indx == 0)
2481 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2482 sgot->contents + offset);
2483 else
2484 MIPS_ELF_PUT_WORD (abfd, 0,
2485 sgot->contents + offset);
2486
2487 mips_elf_output_dynamic_relocation
2488 (abfd, sreloc, indx,
2489 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2490 sgot->output_offset + sgot->output_section->vma + offset);
2491 }
2492 else
2493 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2494 sgot->contents + offset);
2495 }
2496
2497 if (*tls_type_p & GOT_TLS_LDM)
2498 {
2499 /* The initial offset is zero, and the LD offsets will include the
2500 bias by DTP_OFFSET. */
2501 MIPS_ELF_PUT_WORD (abfd, 0,
2502 sgot->contents + got_offset
2503 + MIPS_ELF_GOT_SIZE (abfd));
2504
2505 if (!info->shared)
2506 MIPS_ELF_PUT_WORD (abfd, 1,
2507 sgot->contents + got_offset);
2508 else
2509 mips_elf_output_dynamic_relocation
2510 (abfd, sreloc, indx,
2511 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2512 sgot->output_offset + sgot->output_section->vma + got_offset);
2513 }
2514
2515 *tls_type_p |= GOT_TLS_DONE;
2516 }
2517
2518 /* Return the GOT index to use for a relocation of type R_TYPE against
2519 a symbol accessed using TLS_TYPE models. The GOT entries for this
2520 symbol in this GOT start at GOT_INDEX. This function initializes the
2521 GOT entries and corresponding relocations. */
2522
2523 static bfd_vma
2524 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2525 int r_type, struct bfd_link_info *info,
2526 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2527 {
2528 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2529 || r_type == R_MIPS_TLS_LDM);
2530
2531 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2532
2533 if (r_type == R_MIPS_TLS_GOTTPREL)
2534 {
2535 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2536 if (*tls_type & GOT_TLS_GD)
2537 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2538 else
2539 return got_index;
2540 }
2541
2542 if (r_type == R_MIPS_TLS_GD)
2543 {
2544 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2545 return got_index;
2546 }
2547
2548 if (r_type == R_MIPS_TLS_LDM)
2549 {
2550 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2551 return got_index;
2552 }
2553
2554 return got_index;
2555 }
2556
2557 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2558 for global symbol H. .got.plt comes before the GOT, so the offset
2559 will be negative. */
2560
2561 static bfd_vma
2562 mips_elf_gotplt_index (struct bfd_link_info *info,
2563 struct elf_link_hash_entry *h)
2564 {
2565 bfd_vma plt_index, got_address, got_value;
2566 struct mips_elf_link_hash_table *htab;
2567
2568 htab = mips_elf_hash_table (info);
2569 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2570
2571 /* Calculate the index of the symbol's PLT entry. */
2572 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2573
2574 /* Calculate the address of the associated .got.plt entry. */
2575 got_address = (htab->sgotplt->output_section->vma
2576 + htab->sgotplt->output_offset
2577 + plt_index * 4);
2578
2579 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2580 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2581 + htab->root.hgot->root.u.def.section->output_offset
2582 + htab->root.hgot->root.u.def.value);
2583
2584 return got_address - got_value;
2585 }
2586
2587 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2588 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2589 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2590 offset can be found. */
2591
2592 static bfd_vma
2593 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2594 bfd_vma value, unsigned long r_symndx,
2595 struct mips_elf_link_hash_entry *h, int r_type)
2596 {
2597 struct mips_elf_link_hash_table *htab;
2598 struct mips_got_entry *entry;
2599
2600 htab = mips_elf_hash_table (info);
2601 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
2602 r_symndx, h, r_type);
2603 if (!entry)
2604 return MINUS_ONE;
2605
2606 if (TLS_RELOC_P (r_type))
2607 {
2608 if (entry->symndx == -1 && htab->got_info->next == NULL)
2609 /* A type (3) entry in the single-GOT case. We use the symbol's
2610 hash table entry to track the index. */
2611 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2612 r_type, info, h, value);
2613 else
2614 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2615 r_type, info, h, value);
2616 }
2617 else
2618 return entry->gotidx;
2619 }
2620
2621 /* Returns the GOT index for the global symbol indicated by H. */
2622
2623 static bfd_vma
2624 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2625 int r_type, struct bfd_link_info *info)
2626 {
2627 struct mips_elf_link_hash_table *htab;
2628 bfd_vma index;
2629 struct mips_got_info *g, *gg;
2630 long global_got_dynindx = 0;
2631
2632 htab = mips_elf_hash_table (info);
2633 gg = g = htab->got_info;
2634 if (g->bfd2got && ibfd)
2635 {
2636 struct mips_got_entry e, *p;
2637
2638 BFD_ASSERT (h->dynindx >= 0);
2639
2640 g = mips_elf_got_for_ibfd (g, ibfd);
2641 if (g->next != gg || TLS_RELOC_P (r_type))
2642 {
2643 e.abfd = ibfd;
2644 e.symndx = -1;
2645 e.d.h = (struct mips_elf_link_hash_entry *)h;
2646 e.tls_type = 0;
2647
2648 p = htab_find (g->got_entries, &e);
2649
2650 BFD_ASSERT (p->gotidx > 0);
2651
2652 if (TLS_RELOC_P (r_type))
2653 {
2654 bfd_vma value = MINUS_ONE;
2655 if ((h->root.type == bfd_link_hash_defined
2656 || h->root.type == bfd_link_hash_defweak)
2657 && h->root.u.def.section->output_section)
2658 value = (h->root.u.def.value
2659 + h->root.u.def.section->output_offset
2660 + h->root.u.def.section->output_section->vma);
2661
2662 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2663 info, e.d.h, value);
2664 }
2665 else
2666 return p->gotidx;
2667 }
2668 }
2669
2670 if (gg->global_gotsym != NULL)
2671 global_got_dynindx = gg->global_gotsym->dynindx;
2672
2673 if (TLS_RELOC_P (r_type))
2674 {
2675 struct mips_elf_link_hash_entry *hm
2676 = (struct mips_elf_link_hash_entry *) h;
2677 bfd_vma value = MINUS_ONE;
2678
2679 if ((h->root.type == bfd_link_hash_defined
2680 || h->root.type == bfd_link_hash_defweak)
2681 && h->root.u.def.section->output_section)
2682 value = (h->root.u.def.value
2683 + h->root.u.def.section->output_offset
2684 + h->root.u.def.section->output_section->vma);
2685
2686 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2687 r_type, info, hm, value);
2688 }
2689 else
2690 {
2691 /* Once we determine the global GOT entry with the lowest dynamic
2692 symbol table index, we must put all dynamic symbols with greater
2693 indices into the GOT. That makes it easy to calculate the GOT
2694 offset. */
2695 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2696 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2697 * MIPS_ELF_GOT_SIZE (abfd));
2698 }
2699 BFD_ASSERT (index < htab->sgot->size);
2700
2701 return index;
2702 }
2703
2704 /* Find a GOT page entry that points to within 32KB of VALUE. These
2705 entries are supposed to be placed at small offsets in the GOT, i.e.,
2706 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2707 entry could be created. If OFFSETP is nonnull, use it to return the
2708 offset of the GOT entry from VALUE. */
2709
2710 static bfd_vma
2711 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2712 bfd_vma value, bfd_vma *offsetp)
2713 {
2714 bfd_vma page, index;
2715 struct mips_got_entry *entry;
2716
2717 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2718 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
2719 NULL, R_MIPS_GOT_PAGE);
2720
2721 if (!entry)
2722 return MINUS_ONE;
2723
2724 index = entry->gotidx;
2725
2726 if (offsetp)
2727 *offsetp = value - entry->d.address;
2728
2729 return index;
2730 }
2731
2732 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
2733 EXTERNAL is true if the relocation was against a global symbol
2734 that has been forced local. */
2735
2736 static bfd_vma
2737 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2738 bfd_vma value, bfd_boolean external)
2739 {
2740 struct mips_got_entry *entry;
2741
2742 /* GOT16 relocations against local symbols are followed by a LO16
2743 relocation; those against global symbols are not. Thus if the
2744 symbol was originally local, the GOT16 relocation should load the
2745 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2746 if (! external)
2747 value = mips_elf_high (value) << 16;
2748
2749 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
2750 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
2751 same in all cases. */
2752 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
2753 NULL, R_MIPS_GOT16);
2754 if (entry)
2755 return entry->gotidx;
2756 else
2757 return MINUS_ONE;
2758 }
2759
2760 /* Returns the offset for the entry at the INDEXth position
2761 in the GOT. */
2762
2763 static bfd_vma
2764 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
2765 bfd *input_bfd, bfd_vma index)
2766 {
2767 struct mips_elf_link_hash_table *htab;
2768 asection *sgot;
2769 bfd_vma gp;
2770
2771 htab = mips_elf_hash_table (info);
2772 sgot = htab->sgot;
2773 gp = _bfd_get_gp_value (output_bfd)
2774 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
2775
2776 return sgot->output_section->vma + sgot->output_offset + index - gp;
2777 }
2778
2779 /* Create and return a local GOT entry for VALUE, which was calculated
2780 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2781 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2782 instead. */
2783
2784 static struct mips_got_entry *
2785 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2786 bfd *ibfd, bfd_vma value,
2787 unsigned long r_symndx,
2788 struct mips_elf_link_hash_entry *h,
2789 int r_type)
2790 {
2791 struct mips_got_entry entry, **loc;
2792 struct mips_got_info *g;
2793 struct mips_elf_link_hash_table *htab;
2794
2795 htab = mips_elf_hash_table (info);
2796
2797 entry.abfd = NULL;
2798 entry.symndx = -1;
2799 entry.d.address = value;
2800 entry.tls_type = 0;
2801
2802 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
2803 if (g == NULL)
2804 {
2805 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
2806 BFD_ASSERT (g != NULL);
2807 }
2808
2809 /* We might have a symbol, H, if it has been forced local. Use the
2810 global entry then. It doesn't matter whether an entry is local
2811 or global for TLS, since the dynamic linker does not
2812 automatically relocate TLS GOT entries. */
2813 BFD_ASSERT (h == NULL || h->root.forced_local);
2814 if (TLS_RELOC_P (r_type))
2815 {
2816 struct mips_got_entry *p;
2817
2818 entry.abfd = ibfd;
2819 if (r_type == R_MIPS_TLS_LDM)
2820 {
2821 entry.tls_type = GOT_TLS_LDM;
2822 entry.symndx = 0;
2823 entry.d.addend = 0;
2824 }
2825 else if (h == NULL)
2826 {
2827 entry.symndx = r_symndx;
2828 entry.d.addend = 0;
2829 }
2830 else
2831 entry.d.h = h;
2832
2833 p = (struct mips_got_entry *)
2834 htab_find (g->got_entries, &entry);
2835
2836 BFD_ASSERT (p);
2837 return p;
2838 }
2839
2840 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2841 INSERT);
2842 if (*loc)
2843 return *loc;
2844
2845 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2846 entry.tls_type = 0;
2847
2848 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2849
2850 if (! *loc)
2851 return NULL;
2852
2853 memcpy (*loc, &entry, sizeof entry);
2854
2855 if (g->assigned_gotno > g->local_gotno)
2856 {
2857 (*loc)->gotidx = -1;
2858 /* We didn't allocate enough space in the GOT. */
2859 (*_bfd_error_handler)
2860 (_("not enough GOT space for local GOT entries"));
2861 bfd_set_error (bfd_error_bad_value);
2862 return NULL;
2863 }
2864
2865 MIPS_ELF_PUT_WORD (abfd, value,
2866 (htab->sgot->contents + entry.gotidx));
2867
2868 /* These GOT entries need a dynamic relocation on VxWorks. */
2869 if (htab->is_vxworks)
2870 {
2871 Elf_Internal_Rela outrel;
2872 asection *s;
2873 bfd_byte *loc;
2874 bfd_vma got_address;
2875
2876 s = mips_elf_rel_dyn_section (info, FALSE);
2877 got_address = (htab->sgot->output_section->vma
2878 + htab->sgot->output_offset
2879 + entry.gotidx);
2880
2881 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2882 outrel.r_offset = got_address;
2883 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2884 outrel.r_addend = value;
2885 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2886 }
2887
2888 return *loc;
2889 }
2890
2891 /* Sort the dynamic symbol table so that symbols that need GOT entries
2892 appear towards the end. This reduces the amount of GOT space
2893 required. MAX_LOCAL is used to set the number of local symbols
2894 known to be in the dynamic symbol table. During
2895 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2896 section symbols are added and the count is higher. */
2897
2898 static bfd_boolean
2899 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2900 {
2901 struct mips_elf_link_hash_table *htab;
2902 struct mips_elf_hash_sort_data hsd;
2903 struct mips_got_info *g;
2904
2905 htab = mips_elf_hash_table (info);
2906 g = htab->got_info;
2907
2908 hsd.low = NULL;
2909 hsd.max_unref_got_dynindx =
2910 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2911 /* In the multi-got case, assigned_gotno of the master got_info
2912 indicate the number of entries that aren't referenced in the
2913 primary GOT, but that must have entries because there are
2914 dynamic relocations that reference it. Since they aren't
2915 referenced, we move them to the end of the GOT, so that they
2916 don't prevent other entries that are referenced from getting
2917 too large offsets. */
2918 - (g->next ? g->assigned_gotno : 0);
2919 hsd.max_non_got_dynindx = max_local;
2920 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2921 elf_hash_table (info)),
2922 mips_elf_sort_hash_table_f,
2923 &hsd);
2924
2925 /* There should have been enough room in the symbol table to
2926 accommodate both the GOT and non-GOT symbols. */
2927 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2928 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2929 <= elf_hash_table (info)->dynsymcount);
2930
2931 /* Now we know which dynamic symbol has the lowest dynamic symbol
2932 table index in the GOT. */
2933 g->global_gotsym = hsd.low;
2934
2935 return TRUE;
2936 }
2937
2938 /* If H needs a GOT entry, assign it the highest available dynamic
2939 index. Otherwise, assign it the lowest available dynamic
2940 index. */
2941
2942 static bfd_boolean
2943 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2944 {
2945 struct mips_elf_hash_sort_data *hsd = data;
2946
2947 if (h->root.root.type == bfd_link_hash_warning)
2948 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2949
2950 /* Symbols without dynamic symbol table entries aren't interesting
2951 at all. */
2952 if (h->root.dynindx == -1)
2953 return TRUE;
2954
2955 /* Global symbols that need GOT entries that are not explicitly
2956 referenced are marked with got offset 2. Those that are
2957 referenced get a 1, and those that don't need GOT entries get
2958 -1. Forced local symbols may also be marked with got offset 1,
2959 but are never given global GOT entries. */
2960 if (h->root.got.offset == 2)
2961 {
2962 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2963
2964 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2965 hsd->low = (struct elf_link_hash_entry *) h;
2966 h->root.dynindx = hsd->max_unref_got_dynindx++;
2967 }
2968 else if (h->root.got.offset != 1 || h->forced_local)
2969 h->root.dynindx = hsd->max_non_got_dynindx++;
2970 else
2971 {
2972 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2973
2974 h->root.dynindx = --hsd->min_got_dynindx;
2975 hsd->low = (struct elf_link_hash_entry *) h;
2976 }
2977
2978 return TRUE;
2979 }
2980
2981 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2982 symbol table index lower than any we've seen to date, record it for
2983 posterity. */
2984
2985 static bfd_boolean
2986 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2987 bfd *abfd, struct bfd_link_info *info,
2988 unsigned char tls_flag)
2989 {
2990 struct mips_elf_link_hash_table *htab;
2991 struct mips_got_entry entry, **loc;
2992 struct mips_got_info *g;
2993
2994 htab = mips_elf_hash_table (info);
2995
2996 /* A global symbol in the GOT must also be in the dynamic symbol
2997 table. */
2998 if (h->dynindx == -1)
2999 {
3000 switch (ELF_ST_VISIBILITY (h->other))
3001 {
3002 case STV_INTERNAL:
3003 case STV_HIDDEN:
3004 _bfd_mips_elf_hide_symbol (info, h, TRUE);
3005 break;
3006 }
3007 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3008 return FALSE;
3009 }
3010
3011 /* Make sure we have a GOT to put this entry into. */
3012 g = htab->got_info;
3013 BFD_ASSERT (g != NULL);
3014
3015 entry.abfd = abfd;
3016 entry.symndx = -1;
3017 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3018 entry.tls_type = 0;
3019
3020 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3021 INSERT);
3022
3023 /* If we've already marked this entry as needing GOT space, we don't
3024 need to do it again. */
3025 if (*loc)
3026 {
3027 (*loc)->tls_type |= tls_flag;
3028 return TRUE;
3029 }
3030
3031 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3032
3033 if (! *loc)
3034 return FALSE;
3035
3036 entry.gotidx = -1;
3037 entry.tls_type = tls_flag;
3038
3039 memcpy (*loc, &entry, sizeof entry);
3040
3041 if (h->got.offset != MINUS_ONE)
3042 return TRUE;
3043
3044 if (tls_flag == 0)
3045 {
3046 /* By setting this to a value other than -1, we are indicating that
3047 there needs to be a GOT entry for H. Avoid using zero, as the
3048 generic ELF copy_indirect_symbol tests for <= 0. */
3049 h->got.offset = 1;
3050 if (h->forced_local)
3051 g->local_gotno++;
3052 }
3053
3054 return TRUE;
3055 }
3056
3057 /* Reserve space in G for a GOT entry containing the value of symbol
3058 SYMNDX in input bfd ABDF, plus ADDEND. */
3059
3060 static bfd_boolean
3061 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3062 struct bfd_link_info *info,
3063 unsigned char tls_flag)
3064 {
3065 struct mips_elf_link_hash_table *htab;
3066 struct mips_got_info *g;
3067 struct mips_got_entry entry, **loc;
3068
3069 htab = mips_elf_hash_table (info);
3070 g = htab->got_info;
3071 BFD_ASSERT (g != NULL);
3072
3073 entry.abfd = abfd;
3074 entry.symndx = symndx;
3075 entry.d.addend = addend;
3076 entry.tls_type = tls_flag;
3077 loc = (struct mips_got_entry **)
3078 htab_find_slot (g->got_entries, &entry, INSERT);
3079
3080 if (*loc)
3081 {
3082 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3083 {
3084 g->tls_gotno += 2;
3085 (*loc)->tls_type |= tls_flag;
3086 }
3087 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3088 {
3089 g->tls_gotno += 1;
3090 (*loc)->tls_type |= tls_flag;
3091 }
3092 return TRUE;
3093 }
3094
3095 if (tls_flag != 0)
3096 {
3097 entry.gotidx = -1;
3098 entry.tls_type = tls_flag;
3099 if (tls_flag == GOT_TLS_IE)
3100 g->tls_gotno += 1;
3101 else if (tls_flag == GOT_TLS_GD)
3102 g->tls_gotno += 2;
3103 else if (g->tls_ldm_offset == MINUS_ONE)
3104 {
3105 g->tls_ldm_offset = MINUS_TWO;
3106 g->tls_gotno += 2;
3107 }
3108 }
3109 else
3110 {
3111 entry.gotidx = g->local_gotno++;
3112 entry.tls_type = 0;
3113 }
3114
3115 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3116
3117 if (! *loc)
3118 return FALSE;
3119
3120 memcpy (*loc, &entry, sizeof entry);
3121
3122 return TRUE;
3123 }
3124
3125 /* Return the maximum number of GOT page entries required for RANGE. */
3126
3127 static bfd_vma
3128 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3129 {
3130 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3131 }
3132
3133 /* Record that ABFD has a page relocation against symbol SYMNDX and
3134 that ADDEND is the addend for that relocation.
3135
3136 This function creates an upper bound on the number of GOT slots
3137 required; no attempt is made to combine references to non-overridable
3138 global symbols across multiple input files. */
3139
3140 static bfd_boolean
3141 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3142 long symndx, bfd_signed_vma addend)
3143 {
3144 struct mips_elf_link_hash_table *htab;
3145 struct mips_got_info *g;
3146 struct mips_got_page_entry lookup, *entry;
3147 struct mips_got_page_range **range_ptr, *range;
3148 bfd_vma old_pages, new_pages;
3149 void **loc;
3150
3151 htab = mips_elf_hash_table (info);
3152 g = htab->got_info;
3153 BFD_ASSERT (g != NULL);
3154
3155 /* Find the mips_got_page_entry hash table entry for this symbol. */
3156 lookup.abfd = abfd;
3157 lookup.symndx = symndx;
3158 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3159 if (loc == NULL)
3160 return FALSE;
3161
3162 /* Create a mips_got_page_entry if this is the first time we've
3163 seen the symbol. */
3164 entry = (struct mips_got_page_entry *) *loc;
3165 if (!entry)
3166 {
3167 entry = bfd_alloc (abfd, sizeof (*entry));
3168 if (!entry)
3169 return FALSE;
3170
3171 entry->abfd = abfd;
3172 entry->symndx = symndx;
3173 entry->ranges = NULL;
3174 entry->num_pages = 0;
3175 *loc = entry;
3176 }
3177
3178 /* Skip over ranges whose maximum extent cannot share a page entry
3179 with ADDEND. */
3180 range_ptr = &entry->ranges;
3181 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3182 range_ptr = &(*range_ptr)->next;
3183
3184 /* If we scanned to the end of the list, or found a range whose
3185 minimum extent cannot share a page entry with ADDEND, create
3186 a new singleton range. */
3187 range = *range_ptr;
3188 if (!range || addend < range->min_addend - 0xffff)
3189 {
3190 range = bfd_alloc (abfd, sizeof (*range));
3191 if (!range)
3192 return FALSE;
3193
3194 range->next = *range_ptr;
3195 range->min_addend = addend;
3196 range->max_addend = addend;
3197
3198 *range_ptr = range;
3199 entry->num_pages++;
3200 g->page_gotno++;
3201 return TRUE;
3202 }
3203
3204 /* Remember how many pages the old range contributed. */
3205 old_pages = mips_elf_pages_for_range (range);
3206
3207 /* Update the ranges. */
3208 if (addend < range->min_addend)
3209 range->min_addend = addend;
3210 else if (addend > range->max_addend)
3211 {
3212 if (range->next && addend >= range->next->min_addend - 0xffff)
3213 {
3214 old_pages += mips_elf_pages_for_range (range->next);
3215 range->max_addend = range->next->max_addend;
3216 range->next = range->next->next;
3217 }
3218 else
3219 range->max_addend = addend;
3220 }
3221
3222 /* Record any change in the total estimate. */
3223 new_pages = mips_elf_pages_for_range (range);
3224 if (old_pages != new_pages)
3225 {
3226 entry->num_pages += new_pages - old_pages;
3227 g->page_gotno += new_pages - old_pages;
3228 }
3229
3230 return TRUE;
3231 }
3232 \f
3233 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3234
3235 static hashval_t
3236 mips_elf_bfd2got_entry_hash (const void *entry_)
3237 {
3238 const struct mips_elf_bfd2got_hash *entry
3239 = (struct mips_elf_bfd2got_hash *)entry_;
3240
3241 return entry->bfd->id;
3242 }
3243
3244 /* Check whether two hash entries have the same bfd. */
3245
3246 static int
3247 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3248 {
3249 const struct mips_elf_bfd2got_hash *e1
3250 = (const struct mips_elf_bfd2got_hash *)entry1;
3251 const struct mips_elf_bfd2got_hash *e2
3252 = (const struct mips_elf_bfd2got_hash *)entry2;
3253
3254 return e1->bfd == e2->bfd;
3255 }
3256
3257 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3258 be the master GOT data. */
3259
3260 static struct mips_got_info *
3261 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3262 {
3263 struct mips_elf_bfd2got_hash e, *p;
3264
3265 if (! g->bfd2got)
3266 return g;
3267
3268 e.bfd = ibfd;
3269 p = htab_find (g->bfd2got, &e);
3270 return p ? p->g : NULL;
3271 }
3272
3273 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3274 Return NULL if an error occured. */
3275
3276 static struct mips_got_info *
3277 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3278 bfd *input_bfd)
3279 {
3280 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3281 struct mips_got_info *g;
3282 void **bfdgotp;
3283
3284 bfdgot_entry.bfd = input_bfd;
3285 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3286 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3287
3288 if (bfdgot == NULL)
3289 {
3290 bfdgot = ((struct mips_elf_bfd2got_hash *)
3291 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3292 if (bfdgot == NULL)
3293 return NULL;
3294
3295 *bfdgotp = bfdgot;
3296
3297 g = ((struct mips_got_info *)
3298 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3299 if (g == NULL)
3300 return NULL;
3301
3302 bfdgot->bfd = input_bfd;
3303 bfdgot->g = g;
3304
3305 g->global_gotsym = NULL;
3306 g->global_gotno = 0;
3307 g->local_gotno = 0;
3308 g->page_gotno = 0;
3309 g->assigned_gotno = -1;
3310 g->tls_gotno = 0;
3311 g->tls_assigned_gotno = 0;
3312 g->tls_ldm_offset = MINUS_ONE;
3313 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3314 mips_elf_multi_got_entry_eq, NULL);
3315 if (g->got_entries == NULL)
3316 return NULL;
3317
3318 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3319 mips_got_page_entry_eq, NULL);
3320 if (g->got_page_entries == NULL)
3321 return NULL;
3322
3323 g->bfd2got = NULL;
3324 g->next = NULL;
3325 }
3326
3327 return bfdgot->g;
3328 }
3329
3330 /* A htab_traverse callback for the entries in the master got.
3331 Create one separate got for each bfd that has entries in the global
3332 got, such that we can tell how many local and global entries each
3333 bfd requires. */
3334
3335 static int
3336 mips_elf_make_got_per_bfd (void **entryp, void *p)
3337 {
3338 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3339 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3340 struct mips_got_info *g;
3341
3342 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3343 if (g == NULL)
3344 {
3345 arg->obfd = NULL;
3346 return 0;
3347 }
3348
3349 /* Insert the GOT entry in the bfd's got entry hash table. */
3350 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3351 if (*entryp != NULL)
3352 return 1;
3353
3354 *entryp = entry;
3355
3356 if (entry->tls_type)
3357 {
3358 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3359 g->tls_gotno += 2;
3360 if (entry->tls_type & GOT_TLS_IE)
3361 g->tls_gotno += 1;
3362 }
3363 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3364 ++g->local_gotno;
3365 else
3366 ++g->global_gotno;
3367
3368 return 1;
3369 }
3370
3371 /* A htab_traverse callback for the page entries in the master got.
3372 Associate each page entry with the bfd's got. */
3373
3374 static int
3375 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3376 {
3377 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3378 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3379 struct mips_got_info *g;
3380
3381 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3382 if (g == NULL)
3383 {
3384 arg->obfd = NULL;
3385 return 0;
3386 }
3387
3388 /* Insert the GOT entry in the bfd's got entry hash table. */
3389 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3390 if (*entryp != NULL)
3391 return 1;
3392
3393 *entryp = entry;
3394 g->page_gotno += entry->num_pages;
3395 return 1;
3396 }
3397
3398 /* Consider merging the got described by BFD2GOT with TO, using the
3399 information given by ARG. Return -1 if this would lead to overflow,
3400 1 if they were merged successfully, and 0 if a merge failed due to
3401 lack of memory. (These values are chosen so that nonnegative return
3402 values can be returned by a htab_traverse callback.) */
3403
3404 static int
3405 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
3406 struct mips_got_info *to,
3407 struct mips_elf_got_per_bfd_arg *arg)
3408 {
3409 struct mips_got_info *from = bfd2got->g;
3410 unsigned int estimate;
3411
3412 /* Work out how many page entries we would need for the combined GOT. */
3413 estimate = arg->max_pages;
3414 if (estimate >= from->page_gotno + to->page_gotno)
3415 estimate = from->page_gotno + to->page_gotno;
3416
3417 /* And conservatively estimate how many local, global and TLS entries
3418 would be needed. */
3419 estimate += (from->local_gotno
3420 + from->global_gotno
3421 + from->tls_gotno
3422 + to->local_gotno
3423 + to->global_gotno
3424 + to->tls_gotno);
3425
3426 /* Bail out if the combined GOT might be too big. */
3427 if (estimate > arg->max_count)
3428 return -1;
3429
3430 /* Commit to the merge. Record that TO is now the bfd for this got. */
3431 bfd2got->g = to;
3432
3433 /* Transfer the bfd's got information from FROM to TO. */
3434 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
3435 if (arg->obfd == NULL)
3436 return 0;
3437
3438 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
3439 if (arg->obfd == NULL)
3440 return 0;
3441
3442 /* We don't have to worry about releasing memory of the actual
3443 got entries, since they're all in the master got_entries hash
3444 table anyway. */
3445 htab_delete (from->got_entries);
3446 htab_delete (from->got_page_entries);
3447 return 1;
3448 }
3449
3450 /* Attempt to merge gots of different input bfds. Try to use as much
3451 as possible of the primary got, since it doesn't require explicit
3452 dynamic relocations, but don't use bfds that would reference global
3453 symbols out of the addressable range. Failing the primary got,
3454 attempt to merge with the current got, or finish the current got
3455 and then make make the new got current. */
3456
3457 static int
3458 mips_elf_merge_gots (void **bfd2got_, void *p)
3459 {
3460 struct mips_elf_bfd2got_hash *bfd2got
3461 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3462 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3463 struct mips_got_info *g;
3464 unsigned int estimate;
3465 int result;
3466
3467 g = bfd2got->g;
3468
3469 /* Work out the number of page, local and TLS entries. */
3470 estimate = arg->max_pages;
3471 if (estimate > g->page_gotno)
3472 estimate = g->page_gotno;
3473 estimate += g->local_gotno + g->tls_gotno;
3474
3475 /* We place TLS GOT entries after both locals and globals. The globals
3476 for the primary GOT may overflow the normal GOT size limit, so be
3477 sure not to merge a GOT which requires TLS with the primary GOT in that
3478 case. This doesn't affect non-primary GOTs. */
3479 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
3480
3481 if (estimate <= arg->max_count)
3482 {
3483 /* If we don't have a primary GOT, use it as
3484 a starting point for the primary GOT. */
3485 if (!arg->primary)
3486 {
3487 arg->primary = bfd2got->g;
3488 return 1;
3489 }
3490
3491 /* Try merging with the primary GOT. */
3492 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
3493 if (result >= 0)
3494 return result;
3495 }
3496
3497 /* If we can merge with the last-created got, do it. */
3498 if (arg->current)
3499 {
3500 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
3501 if (result >= 0)
3502 return result;
3503 }
3504
3505 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3506 fits; if it turns out that it doesn't, we'll get relocation
3507 overflows anyway. */
3508 g->next = arg->current;
3509 arg->current = g;
3510
3511 return 1;
3512 }
3513
3514 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3515 is null iff there is just a single GOT. */
3516
3517 static int
3518 mips_elf_initialize_tls_index (void **entryp, void *p)
3519 {
3520 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3521 struct mips_got_info *g = p;
3522 bfd_vma next_index;
3523 unsigned char tls_type;
3524
3525 /* We're only interested in TLS symbols. */
3526 if (entry->tls_type == 0)
3527 return 1;
3528
3529 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3530
3531 if (entry->symndx == -1 && g->next == NULL)
3532 {
3533 /* A type (3) got entry in the single-GOT case. We use the symbol's
3534 hash table entry to track its index. */
3535 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3536 return 1;
3537 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3538 entry->d.h->tls_got_offset = next_index;
3539 tls_type = entry->d.h->tls_type;
3540 }
3541 else
3542 {
3543 if (entry->tls_type & GOT_TLS_LDM)
3544 {
3545 /* There are separate mips_got_entry objects for each input bfd
3546 that requires an LDM entry. Make sure that all LDM entries in
3547 a GOT resolve to the same index. */
3548 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3549 {
3550 entry->gotidx = g->tls_ldm_offset;
3551 return 1;
3552 }
3553 g->tls_ldm_offset = next_index;
3554 }
3555 entry->gotidx = next_index;
3556 tls_type = entry->tls_type;
3557 }
3558
3559 /* Account for the entries we've just allocated. */
3560 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3561 g->tls_assigned_gotno += 2;
3562 if (tls_type & GOT_TLS_IE)
3563 g->tls_assigned_gotno += 1;
3564
3565 return 1;
3566 }
3567
3568 /* If passed a NULL mips_got_info in the argument, set the marker used
3569 to tell whether a global symbol needs a got entry (in the primary
3570 got) to the given VALUE.
3571
3572 If passed a pointer G to a mips_got_info in the argument (it must
3573 not be the primary GOT), compute the offset from the beginning of
3574 the (primary) GOT section to the entry in G corresponding to the
3575 global symbol. G's assigned_gotno must contain the index of the
3576 first available global GOT entry in G. VALUE must contain the size
3577 of a GOT entry in bytes. For each global GOT entry that requires a
3578 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3579 marked as not eligible for lazy resolution through a function
3580 stub. */
3581 static int
3582 mips_elf_set_global_got_offset (void **entryp, void *p)
3583 {
3584 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3585 struct mips_elf_set_global_got_offset_arg *arg
3586 = (struct mips_elf_set_global_got_offset_arg *)p;
3587 struct mips_got_info *g = arg->g;
3588
3589 if (g && entry->tls_type != GOT_NORMAL)
3590 arg->needed_relocs +=
3591 mips_tls_got_relocs (arg->info, entry->tls_type,
3592 entry->symndx == -1 ? &entry->d.h->root : NULL);
3593
3594 if (entry->abfd != NULL && entry->symndx == -1
3595 && entry->d.h->root.dynindx != -1
3596 && !entry->d.h->forced_local
3597 && entry->d.h->tls_type == GOT_NORMAL)
3598 {
3599 if (g)
3600 {
3601 BFD_ASSERT (g->global_gotsym == NULL);
3602
3603 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3604 if (arg->info->shared
3605 || (elf_hash_table (arg->info)->dynamic_sections_created
3606 && entry->d.h->root.def_dynamic
3607 && !entry->d.h->root.def_regular))
3608 ++arg->needed_relocs;
3609 }
3610 else
3611 entry->d.h->root.got.offset = arg->value;
3612 }
3613
3614 return 1;
3615 }
3616
3617 /* Mark any global symbols referenced in the GOT we are iterating over
3618 as inelligible for lazy resolution stubs. */
3619 static int
3620 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3621 {
3622 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3623
3624 if (entry->abfd != NULL
3625 && entry->symndx == -1
3626 && entry->d.h->root.dynindx != -1)
3627 entry->d.h->no_fn_stub = TRUE;
3628
3629 return 1;
3630 }
3631
3632 /* Follow indirect and warning hash entries so that each got entry
3633 points to the final symbol definition. P must point to a pointer
3634 to the hash table we're traversing. Since this traversal may
3635 modify the hash table, we set this pointer to NULL to indicate
3636 we've made a potentially-destructive change to the hash table, so
3637 the traversal must be restarted. */
3638 static int
3639 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3640 {
3641 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3642 htab_t got_entries = *(htab_t *)p;
3643
3644 if (entry->abfd != NULL && entry->symndx == -1)
3645 {
3646 struct mips_elf_link_hash_entry *h = entry->d.h;
3647
3648 while (h->root.root.type == bfd_link_hash_indirect
3649 || h->root.root.type == bfd_link_hash_warning)
3650 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3651
3652 if (entry->d.h == h)
3653 return 1;
3654
3655 entry->d.h = h;
3656
3657 /* If we can't find this entry with the new bfd hash, re-insert
3658 it, and get the traversal restarted. */
3659 if (! htab_find (got_entries, entry))
3660 {
3661 htab_clear_slot (got_entries, entryp);
3662 entryp = htab_find_slot (got_entries, entry, INSERT);
3663 if (! *entryp)
3664 *entryp = entry;
3665 /* Abort the traversal, since the whole table may have
3666 moved, and leave it up to the parent to restart the
3667 process. */
3668 *(htab_t *)p = NULL;
3669 return 0;
3670 }
3671 /* We might want to decrement the global_gotno count, but it's
3672 either too early or too late for that at this point. */
3673 }
3674
3675 return 1;
3676 }
3677
3678 /* Turn indirect got entries in a got_entries table into their final
3679 locations. */
3680 static void
3681 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3682 {
3683 htab_t got_entries;
3684
3685 do
3686 {
3687 got_entries = g->got_entries;
3688
3689 htab_traverse (got_entries,
3690 mips_elf_resolve_final_got_entry,
3691 &got_entries);
3692 }
3693 while (got_entries == NULL);
3694 }
3695
3696 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3697 the primary GOT. */
3698 static bfd_vma
3699 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3700 {
3701 if (g->bfd2got == NULL)
3702 return 0;
3703
3704 g = mips_elf_got_for_ibfd (g, ibfd);
3705 if (! g)
3706 return 0;
3707
3708 BFD_ASSERT (g->next);
3709
3710 g = g->next;
3711
3712 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3713 * MIPS_ELF_GOT_SIZE (abfd);
3714 }
3715
3716 /* Turn a single GOT that is too big for 16-bit addressing into
3717 a sequence of GOTs, each one 16-bit addressable. */
3718
3719 static bfd_boolean
3720 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3721 asection *got, bfd_size_type pages)
3722 {
3723 struct mips_elf_link_hash_table *htab;
3724 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3725 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3726 struct mips_got_info *g, *gg;
3727 unsigned int assign;
3728
3729 htab = mips_elf_hash_table (info);
3730 g = htab->got_info;
3731 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3732 mips_elf_bfd2got_entry_eq, NULL);
3733 if (g->bfd2got == NULL)
3734 return FALSE;
3735
3736 got_per_bfd_arg.bfd2got = g->bfd2got;
3737 got_per_bfd_arg.obfd = abfd;
3738 got_per_bfd_arg.info = info;
3739
3740 /* Count how many GOT entries each input bfd requires, creating a
3741 map from bfd to got info while at that. */
3742 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3743 if (got_per_bfd_arg.obfd == NULL)
3744 return FALSE;
3745
3746 /* Also count how many page entries each input bfd requires. */
3747 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
3748 &got_per_bfd_arg);
3749 if (got_per_bfd_arg.obfd == NULL)
3750 return FALSE;
3751
3752 got_per_bfd_arg.current = NULL;
3753 got_per_bfd_arg.primary = NULL;
3754 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3755 / MIPS_ELF_GOT_SIZE (abfd))
3756 - MIPS_RESERVED_GOTNO (info));
3757 got_per_bfd_arg.max_pages = pages;
3758 /* The number of globals that will be included in the primary GOT.
3759 See the calls to mips_elf_set_global_got_offset below for more
3760 information. */
3761 got_per_bfd_arg.global_count = g->global_gotno;
3762
3763 /* Try to merge the GOTs of input bfds together, as long as they
3764 don't seem to exceed the maximum GOT size, choosing one of them
3765 to be the primary GOT. */
3766 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3767 if (got_per_bfd_arg.obfd == NULL)
3768 return FALSE;
3769
3770 /* If we do not find any suitable primary GOT, create an empty one. */
3771 if (got_per_bfd_arg.primary == NULL)
3772 {
3773 g->next = (struct mips_got_info *)
3774 bfd_alloc (abfd, sizeof (struct mips_got_info));
3775 if (g->next == NULL)
3776 return FALSE;
3777
3778 g->next->global_gotsym = NULL;
3779 g->next->global_gotno = 0;
3780 g->next->local_gotno = 0;
3781 g->next->page_gotno = 0;
3782 g->next->tls_gotno = 0;
3783 g->next->assigned_gotno = 0;
3784 g->next->tls_assigned_gotno = 0;
3785 g->next->tls_ldm_offset = MINUS_ONE;
3786 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3787 mips_elf_multi_got_entry_eq,
3788 NULL);
3789 if (g->next->got_entries == NULL)
3790 return FALSE;
3791 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3792 mips_got_page_entry_eq,
3793 NULL);
3794 if (g->next->got_page_entries == NULL)
3795 return FALSE;
3796 g->next->bfd2got = NULL;
3797 }
3798 else
3799 g->next = got_per_bfd_arg.primary;
3800 g->next->next = got_per_bfd_arg.current;
3801
3802 /* GG is now the master GOT, and G is the primary GOT. */
3803 gg = g;
3804 g = g->next;
3805
3806 /* Map the output bfd to the primary got. That's what we're going
3807 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3808 didn't mark in check_relocs, and we want a quick way to find it.
3809 We can't just use gg->next because we're going to reverse the
3810 list. */
3811 {
3812 struct mips_elf_bfd2got_hash *bfdgot;
3813 void **bfdgotp;
3814
3815 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3816 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3817
3818 if (bfdgot == NULL)
3819 return FALSE;
3820
3821 bfdgot->bfd = abfd;
3822 bfdgot->g = g;
3823 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3824
3825 BFD_ASSERT (*bfdgotp == NULL);
3826 *bfdgotp = bfdgot;
3827 }
3828
3829 /* The IRIX dynamic linker requires every symbol that is referenced
3830 in a dynamic relocation to be present in the primary GOT, so
3831 arrange for them to appear after those that are actually
3832 referenced.
3833
3834 GNU/Linux could very well do without it, but it would slow down
3835 the dynamic linker, since it would have to resolve every dynamic
3836 symbol referenced in other GOTs more than once, without help from
3837 the cache. Also, knowing that every external symbol has a GOT
3838 helps speed up the resolution of local symbols too, so GNU/Linux
3839 follows IRIX's practice.
3840
3841 The number 2 is used by mips_elf_sort_hash_table_f to count
3842 global GOT symbols that are unreferenced in the primary GOT, with
3843 an initial dynamic index computed from gg->assigned_gotno, where
3844 the number of unreferenced global entries in the primary GOT is
3845 preserved. */
3846 if (1)
3847 {
3848 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3849 g->global_gotno = gg->global_gotno;
3850 set_got_offset_arg.value = 2;
3851 }
3852 else
3853 {
3854 /* This could be used for dynamic linkers that don't optimize
3855 symbol resolution while applying relocations so as to use
3856 primary GOT entries or assuming the symbol is locally-defined.
3857 With this code, we assign lower dynamic indices to global
3858 symbols that are not referenced in the primary GOT, so that
3859 their entries can be omitted. */
3860 gg->assigned_gotno = 0;
3861 set_got_offset_arg.value = -1;
3862 }
3863
3864 /* Reorder dynamic symbols as described above (which behavior
3865 depends on the setting of VALUE). */
3866 set_got_offset_arg.g = NULL;
3867 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3868 &set_got_offset_arg);
3869 set_got_offset_arg.value = 1;
3870 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3871 &set_got_offset_arg);
3872 if (! mips_elf_sort_hash_table (info, 1))
3873 return FALSE;
3874
3875 /* Now go through the GOTs assigning them offset ranges.
3876 [assigned_gotno, local_gotno[ will be set to the range of local
3877 entries in each GOT. We can then compute the end of a GOT by
3878 adding local_gotno to global_gotno. We reverse the list and make
3879 it circular since then we'll be able to quickly compute the
3880 beginning of a GOT, by computing the end of its predecessor. To
3881 avoid special cases for the primary GOT, while still preserving
3882 assertions that are valid for both single- and multi-got links,
3883 we arrange for the main got struct to have the right number of
3884 global entries, but set its local_gotno such that the initial
3885 offset of the primary GOT is zero. Remember that the primary GOT
3886 will become the last item in the circular linked list, so it
3887 points back to the master GOT. */
3888 gg->local_gotno = -g->global_gotno;
3889 gg->global_gotno = g->global_gotno;
3890 gg->tls_gotno = 0;
3891 assign = 0;
3892 gg->next = gg;
3893
3894 do
3895 {
3896 struct mips_got_info *gn;
3897
3898 assign += MIPS_RESERVED_GOTNO (info);
3899 g->assigned_gotno = assign;
3900 g->local_gotno += assign;
3901 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
3902 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3903
3904 /* Take g out of the direct list, and push it onto the reversed
3905 list that gg points to. g->next is guaranteed to be nonnull after
3906 this operation, as required by mips_elf_initialize_tls_index. */
3907 gn = g->next;
3908 g->next = gg->next;
3909 gg->next = g;
3910
3911 /* Set up any TLS entries. We always place the TLS entries after
3912 all non-TLS entries. */
3913 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3914 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3915
3916 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3917 g = gn;
3918
3919 /* Mark global symbols in every non-primary GOT as ineligible for
3920 stubs. */
3921 if (g)
3922 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3923 }
3924 while (g);
3925
3926 got->size = (gg->next->local_gotno
3927 + gg->next->global_gotno
3928 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3929
3930 return TRUE;
3931 }
3932
3933 \f
3934 /* Returns the first relocation of type r_type found, beginning with
3935 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3936
3937 static const Elf_Internal_Rela *
3938 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3939 const Elf_Internal_Rela *relocation,
3940 const Elf_Internal_Rela *relend)
3941 {
3942 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3943
3944 while (relocation < relend)
3945 {
3946 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3947 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3948 return relocation;
3949
3950 ++relocation;
3951 }
3952
3953 /* We didn't find it. */
3954 return NULL;
3955 }
3956
3957 /* Return whether a relocation is against a local symbol. */
3958
3959 static bfd_boolean
3960 mips_elf_local_relocation_p (bfd *input_bfd,
3961 const Elf_Internal_Rela *relocation,
3962 asection **local_sections,
3963 bfd_boolean check_forced)
3964 {
3965 unsigned long r_symndx;
3966 Elf_Internal_Shdr *symtab_hdr;
3967 struct mips_elf_link_hash_entry *h;
3968 size_t extsymoff;
3969
3970 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3971 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3972 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3973
3974 if (r_symndx < extsymoff)
3975 return TRUE;
3976 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3977 return TRUE;
3978
3979 if (check_forced)
3980 {
3981 /* Look up the hash table to check whether the symbol
3982 was forced local. */
3983 h = (struct mips_elf_link_hash_entry *)
3984 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3985 /* Find the real hash-table entry for this symbol. */
3986 while (h->root.root.type == bfd_link_hash_indirect
3987 || h->root.root.type == bfd_link_hash_warning)
3988 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3989 if (h->root.forced_local)
3990 return TRUE;
3991 }
3992
3993 return FALSE;
3994 }
3995 \f
3996 /* Sign-extend VALUE, which has the indicated number of BITS. */
3997
3998 bfd_vma
3999 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4000 {
4001 if (value & ((bfd_vma) 1 << (bits - 1)))
4002 /* VALUE is negative. */
4003 value |= ((bfd_vma) - 1) << bits;
4004
4005 return value;
4006 }
4007
4008 /* Return non-zero if the indicated VALUE has overflowed the maximum
4009 range expressible by a signed number with the indicated number of
4010 BITS. */
4011
4012 static bfd_boolean
4013 mips_elf_overflow_p (bfd_vma value, int bits)
4014 {
4015 bfd_signed_vma svalue = (bfd_signed_vma) value;
4016
4017 if (svalue > (1 << (bits - 1)) - 1)
4018 /* The value is too big. */
4019 return TRUE;
4020 else if (svalue < -(1 << (bits - 1)))
4021 /* The value is too small. */
4022 return TRUE;
4023
4024 /* All is well. */
4025 return FALSE;
4026 }
4027
4028 /* Calculate the %high function. */
4029
4030 static bfd_vma
4031 mips_elf_high (bfd_vma value)
4032 {
4033 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4034 }
4035
4036 /* Calculate the %higher function. */
4037
4038 static bfd_vma
4039 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4040 {
4041 #ifdef BFD64
4042 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4043 #else
4044 abort ();
4045 return MINUS_ONE;
4046 #endif
4047 }
4048
4049 /* Calculate the %highest function. */
4050
4051 static bfd_vma
4052 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4053 {
4054 #ifdef BFD64
4055 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4056 #else
4057 abort ();
4058 return MINUS_ONE;
4059 #endif
4060 }
4061 \f
4062 /* Create the .compact_rel section. */
4063
4064 static bfd_boolean
4065 mips_elf_create_compact_rel_section
4066 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4067 {
4068 flagword flags;
4069 register asection *s;
4070
4071 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4072 {
4073 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4074 | SEC_READONLY);
4075
4076 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4077 if (s == NULL
4078 || ! bfd_set_section_alignment (abfd, s,
4079 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4080 return FALSE;
4081
4082 s->size = sizeof (Elf32_External_compact_rel);
4083 }
4084
4085 return TRUE;
4086 }
4087
4088 /* Create the .got section to hold the global offset table. */
4089
4090 static bfd_boolean
4091 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
4092 bfd_boolean maybe_exclude)
4093 {
4094 flagword flags;
4095 register asection *s;
4096 struct elf_link_hash_entry *h;
4097 struct bfd_link_hash_entry *bh;
4098 struct mips_got_info *g;
4099 bfd_size_type amt;
4100 struct mips_elf_link_hash_table *htab;
4101
4102 htab = mips_elf_hash_table (info);
4103
4104 /* This function may be called more than once. */
4105 s = htab->sgot;
4106 if (s)
4107 {
4108 if (! maybe_exclude)
4109 s->flags &= ~SEC_EXCLUDE;
4110 return TRUE;
4111 }
4112
4113 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4114 | SEC_LINKER_CREATED);
4115
4116 if (maybe_exclude)
4117 flags |= SEC_EXCLUDE;
4118
4119 /* We have to use an alignment of 2**4 here because this is hardcoded
4120 in the function stub generation and in the linker script. */
4121 s = bfd_make_section_with_flags (abfd, ".got", flags);
4122 if (s == NULL
4123 || ! bfd_set_section_alignment (abfd, s, 4))
4124 return FALSE;
4125 htab->sgot = s;
4126
4127 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4128 linker script because we don't want to define the symbol if we
4129 are not creating a global offset table. */
4130 bh = NULL;
4131 if (! (_bfd_generic_link_add_one_symbol
4132 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4133 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4134 return FALSE;
4135
4136 h = (struct elf_link_hash_entry *) bh;
4137 h->non_elf = 0;
4138 h->def_regular = 1;
4139 h->type = STT_OBJECT;
4140 elf_hash_table (info)->hgot = h;
4141
4142 if (info->shared
4143 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4144 return FALSE;
4145
4146 amt = sizeof (struct mips_got_info);
4147 g = bfd_alloc (abfd, amt);
4148 if (g == NULL)
4149 return FALSE;
4150 g->global_gotsym = NULL;
4151 g->global_gotno = 0;
4152 g->tls_gotno = 0;
4153 g->local_gotno = MIPS_RESERVED_GOTNO (info);
4154 g->page_gotno = 0;
4155 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
4156 g->bfd2got = NULL;
4157 g->next = NULL;
4158 g->tls_ldm_offset = MINUS_ONE;
4159 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4160 mips_elf_got_entry_eq, NULL);
4161 if (g->got_entries == NULL)
4162 return FALSE;
4163 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4164 mips_got_page_entry_eq, NULL);
4165 if (g->got_page_entries == NULL)
4166 return FALSE;
4167 htab->got_info = g;
4168 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4169 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4170
4171 /* VxWorks also needs a .got.plt section. */
4172 if (htab->is_vxworks)
4173 {
4174 s = bfd_make_section_with_flags (abfd, ".got.plt",
4175 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4176 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4177 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
4178 return FALSE;
4179
4180 htab->sgotplt = s;
4181 }
4182 return TRUE;
4183 }
4184 \f
4185 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4186 __GOTT_INDEX__ symbols. These symbols are only special for
4187 shared objects; they are not used in executables. */
4188
4189 static bfd_boolean
4190 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4191 {
4192 return (mips_elf_hash_table (info)->is_vxworks
4193 && info->shared
4194 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4195 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4196 }
4197 \f
4198 /* Calculate the value produced by the RELOCATION (which comes from
4199 the INPUT_BFD). The ADDEND is the addend to use for this
4200 RELOCATION; RELOCATION->R_ADDEND is ignored.
4201
4202 The result of the relocation calculation is stored in VALUEP.
4203 REQUIRE_JALXP indicates whether or not the opcode used with this
4204 relocation must be JALX.
4205
4206 This function returns bfd_reloc_continue if the caller need take no
4207 further action regarding this relocation, bfd_reloc_notsupported if
4208 something goes dramatically wrong, bfd_reloc_overflow if an
4209 overflow occurs, and bfd_reloc_ok to indicate success. */
4210
4211 static bfd_reloc_status_type
4212 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4213 asection *input_section,
4214 struct bfd_link_info *info,
4215 const Elf_Internal_Rela *relocation,
4216 bfd_vma addend, reloc_howto_type *howto,
4217 Elf_Internal_Sym *local_syms,
4218 asection **local_sections, bfd_vma *valuep,
4219 const char **namep, bfd_boolean *require_jalxp,
4220 bfd_boolean save_addend)
4221 {
4222 /* The eventual value we will return. */
4223 bfd_vma value;
4224 /* The address of the symbol against which the relocation is
4225 occurring. */
4226 bfd_vma symbol = 0;
4227 /* The final GP value to be used for the relocatable, executable, or
4228 shared object file being produced. */
4229 bfd_vma gp;
4230 /* The place (section offset or address) of the storage unit being
4231 relocated. */
4232 bfd_vma p;
4233 /* The value of GP used to create the relocatable object. */
4234 bfd_vma gp0;
4235 /* The offset into the global offset table at which the address of
4236 the relocation entry symbol, adjusted by the addend, resides
4237 during execution. */
4238 bfd_vma g = MINUS_ONE;
4239 /* The section in which the symbol referenced by the relocation is
4240 located. */
4241 asection *sec = NULL;
4242 struct mips_elf_link_hash_entry *h = NULL;
4243 /* TRUE if the symbol referred to by this relocation is a local
4244 symbol. */
4245 bfd_boolean local_p, was_local_p;
4246 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4247 bfd_boolean gp_disp_p = FALSE;
4248 /* TRUE if the symbol referred to by this relocation is
4249 "__gnu_local_gp". */
4250 bfd_boolean gnu_local_gp_p = FALSE;
4251 Elf_Internal_Shdr *symtab_hdr;
4252 size_t extsymoff;
4253 unsigned long r_symndx;
4254 int r_type;
4255 /* TRUE if overflow occurred during the calculation of the
4256 relocation value. */
4257 bfd_boolean overflowed_p;
4258 /* TRUE if this relocation refers to a MIPS16 function. */
4259 bfd_boolean target_is_16_bit_code_p = FALSE;
4260 struct mips_elf_link_hash_table *htab;
4261 bfd *dynobj;
4262
4263 dynobj = elf_hash_table (info)->dynobj;
4264 htab = mips_elf_hash_table (info);
4265
4266 /* Parse the relocation. */
4267 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4268 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4269 p = (input_section->output_section->vma
4270 + input_section->output_offset
4271 + relocation->r_offset);
4272
4273 /* Assume that there will be no overflow. */
4274 overflowed_p = FALSE;
4275
4276 /* Figure out whether or not the symbol is local, and get the offset
4277 used in the array of hash table entries. */
4278 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4279 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4280 local_sections, FALSE);
4281 was_local_p = local_p;
4282 if (! elf_bad_symtab (input_bfd))
4283 extsymoff = symtab_hdr->sh_info;
4284 else
4285 {
4286 /* The symbol table does not follow the rule that local symbols
4287 must come before globals. */
4288 extsymoff = 0;
4289 }
4290
4291 /* Figure out the value of the symbol. */
4292 if (local_p)
4293 {
4294 Elf_Internal_Sym *sym;
4295
4296 sym = local_syms + r_symndx;
4297 sec = local_sections[r_symndx];
4298
4299 symbol = sec->output_section->vma + sec->output_offset;
4300 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4301 || (sec->flags & SEC_MERGE))
4302 symbol += sym->st_value;
4303 if ((sec->flags & SEC_MERGE)
4304 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4305 {
4306 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4307 addend -= symbol;
4308 addend += sec->output_section->vma + sec->output_offset;
4309 }
4310
4311 /* MIPS16 text labels should be treated as odd. */
4312 if (ELF_ST_IS_MIPS16 (sym->st_other))
4313 ++symbol;
4314
4315 /* Record the name of this symbol, for our caller. */
4316 *namep = bfd_elf_string_from_elf_section (input_bfd,
4317 symtab_hdr->sh_link,
4318 sym->st_name);
4319 if (*namep == '\0')
4320 *namep = bfd_section_name (input_bfd, sec);
4321
4322 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4323 }
4324 else
4325 {
4326 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4327
4328 /* For global symbols we look up the symbol in the hash-table. */
4329 h = ((struct mips_elf_link_hash_entry *)
4330 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4331 /* Find the real hash-table entry for this symbol. */
4332 while (h->root.root.type == bfd_link_hash_indirect
4333 || h->root.root.type == bfd_link_hash_warning)
4334 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4335
4336 /* Record the name of this symbol, for our caller. */
4337 *namep = h->root.root.root.string;
4338
4339 /* See if this is the special _gp_disp symbol. Note that such a
4340 symbol must always be a global symbol. */
4341 if (strcmp (*namep, "_gp_disp") == 0
4342 && ! NEWABI_P (input_bfd))
4343 {
4344 /* Relocations against _gp_disp are permitted only with
4345 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4346 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4347 return bfd_reloc_notsupported;
4348
4349 gp_disp_p = TRUE;
4350 }
4351 /* See if this is the special _gp symbol. Note that such a
4352 symbol must always be a global symbol. */
4353 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4354 gnu_local_gp_p = TRUE;
4355
4356
4357 /* If this symbol is defined, calculate its address. Note that
4358 _gp_disp is a magic symbol, always implicitly defined by the
4359 linker, so it's inappropriate to check to see whether or not
4360 its defined. */
4361 else if ((h->root.root.type == bfd_link_hash_defined
4362 || h->root.root.type == bfd_link_hash_defweak)
4363 && h->root.root.u.def.section)
4364 {
4365 sec = h->root.root.u.def.section;
4366 if (sec->output_section)
4367 symbol = (h->root.root.u.def.value
4368 + sec->output_section->vma
4369 + sec->output_offset);
4370 else
4371 symbol = h->root.root.u.def.value;
4372 }
4373 else if (h->root.root.type == bfd_link_hash_undefweak)
4374 /* We allow relocations against undefined weak symbols, giving
4375 it the value zero, so that you can undefined weak functions
4376 and check to see if they exist by looking at their
4377 addresses. */
4378 symbol = 0;
4379 else if (info->unresolved_syms_in_objects == RM_IGNORE
4380 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4381 symbol = 0;
4382 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4383 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4384 {
4385 /* If this is a dynamic link, we should have created a
4386 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4387 in in _bfd_mips_elf_create_dynamic_sections.
4388 Otherwise, we should define the symbol with a value of 0.
4389 FIXME: It should probably get into the symbol table
4390 somehow as well. */
4391 BFD_ASSERT (! info->shared);
4392 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4393 symbol = 0;
4394 }
4395 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4396 {
4397 /* This is an optional symbol - an Irix specific extension to the
4398 ELF spec. Ignore it for now.
4399 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4400 than simply ignoring them, but we do not handle this for now.
4401 For information see the "64-bit ELF Object File Specification"
4402 which is available from here:
4403 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4404 symbol = 0;
4405 }
4406 else
4407 {
4408 if (! ((*info->callbacks->undefined_symbol)
4409 (info, h->root.root.root.string, input_bfd,
4410 input_section, relocation->r_offset,
4411 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4412 || ELF_ST_VISIBILITY (h->root.other))))
4413 return bfd_reloc_undefined;
4414 symbol = 0;
4415 }
4416
4417 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
4418 }
4419
4420 /* If this is a reference to a 16-bit function with a stub, we need
4421 to redirect the relocation to the stub unless:
4422
4423 (a) the relocation is for a MIPS16 JAL;
4424
4425 (b) the relocation is for a MIPS16 PIC call, and there are no
4426 non-MIPS16 uses of the GOT slot; or
4427
4428 (c) the section allows direct references to MIPS16 functions. */
4429 if (r_type != R_MIPS16_26
4430 && !info->relocatable
4431 && ((h != NULL
4432 && h->fn_stub != NULL
4433 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
4434 || (local_p
4435 && elf_tdata (input_bfd)->local_stubs != NULL
4436 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4437 && !section_allows_mips16_refs_p (input_section))
4438 {
4439 /* This is a 32- or 64-bit call to a 16-bit function. We should
4440 have already noticed that we were going to need the
4441 stub. */
4442 if (local_p)
4443 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4444 else
4445 {
4446 BFD_ASSERT (h->need_fn_stub);
4447 sec = h->fn_stub;
4448 }
4449
4450 symbol = sec->output_section->vma + sec->output_offset;
4451 /* The target is 16-bit, but the stub isn't. */
4452 target_is_16_bit_code_p = FALSE;
4453 }
4454 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4455 need to redirect the call to the stub. Note that we specifically
4456 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
4457 use an indirect stub instead. */
4458 else if (r_type == R_MIPS16_26 && !info->relocatable
4459 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
4460 || (local_p
4461 && elf_tdata (input_bfd)->local_call_stubs != NULL
4462 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4463 && !target_is_16_bit_code_p)
4464 {
4465 if (local_p)
4466 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4467 else
4468 {
4469 /* If both call_stub and call_fp_stub are defined, we can figure
4470 out which one to use by checking which one appears in the input
4471 file. */
4472 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4473 {
4474 asection *o;
4475
4476 sec = NULL;
4477 for (o = input_bfd->sections; o != NULL; o = o->next)
4478 {
4479 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4480 {
4481 sec = h->call_fp_stub;
4482 break;
4483 }
4484 }
4485 if (sec == NULL)
4486 sec = h->call_stub;
4487 }
4488 else if (h->call_stub != NULL)
4489 sec = h->call_stub;
4490 else
4491 sec = h->call_fp_stub;
4492 }
4493
4494 BFD_ASSERT (sec->size > 0);
4495 symbol = sec->output_section->vma + sec->output_offset;
4496 }
4497
4498 /* Calls from 16-bit code to 32-bit code and vice versa require the
4499 special jalx instruction. */
4500 *require_jalxp = (!info->relocatable
4501 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4502 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4503
4504 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4505 local_sections, TRUE);
4506
4507 gp0 = _bfd_get_gp_value (input_bfd);
4508 gp = _bfd_get_gp_value (abfd);
4509 if (dynobj)
4510 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
4511
4512 if (gnu_local_gp_p)
4513 symbol = gp;
4514
4515 /* If we haven't already determined the GOT offset, oand we're going
4516 to need it, get it now. */
4517 switch (r_type)
4518 {
4519 case R_MIPS_GOT_PAGE:
4520 case R_MIPS_GOT_OFST:
4521 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4522 bind locally. */
4523 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4524 if (local_p || r_type == R_MIPS_GOT_OFST)
4525 break;
4526 /* Fall through. */
4527
4528 case R_MIPS16_CALL16:
4529 case R_MIPS16_GOT16:
4530 case R_MIPS_CALL16:
4531 case R_MIPS_GOT16:
4532 case R_MIPS_GOT_DISP:
4533 case R_MIPS_GOT_HI16:
4534 case R_MIPS_CALL_HI16:
4535 case R_MIPS_GOT_LO16:
4536 case R_MIPS_CALL_LO16:
4537 case R_MIPS_TLS_GD:
4538 case R_MIPS_TLS_GOTTPREL:
4539 case R_MIPS_TLS_LDM:
4540 /* Find the index into the GOT where this value is located. */
4541 if (r_type == R_MIPS_TLS_LDM)
4542 {
4543 g = mips_elf_local_got_index (abfd, input_bfd, info,
4544 0, 0, NULL, r_type);
4545 if (g == MINUS_ONE)
4546 return bfd_reloc_outofrange;
4547 }
4548 else if (!local_p)
4549 {
4550 /* On VxWorks, CALL relocations should refer to the .got.plt
4551 entry, which is initialized to point at the PLT stub. */
4552 if (htab->is_vxworks
4553 && (r_type == R_MIPS_CALL_HI16
4554 || r_type == R_MIPS_CALL_LO16
4555 || call16_reloc_p (r_type)))
4556 {
4557 BFD_ASSERT (addend == 0);
4558 BFD_ASSERT (h->root.needs_plt);
4559 g = mips_elf_gotplt_index (info, &h->root);
4560 }
4561 else
4562 {
4563 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4564 GOT_PAGE relocation that decays to GOT_DISP because the
4565 symbol turns out to be global. The addend is then added
4566 as GOT_OFST. */
4567 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4568 g = mips_elf_global_got_index (dynobj, input_bfd,
4569 &h->root, r_type, info);
4570 if (h->tls_type == GOT_NORMAL
4571 && (! elf_hash_table(info)->dynamic_sections_created
4572 || (info->shared
4573 && (info->symbolic || h->root.forced_local)
4574 && h->root.def_regular)))
4575 /* This is a static link or a -Bsymbolic link. The
4576 symbol is defined locally, or was forced to be local.
4577 We must initialize this entry in the GOT. */
4578 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
4579 }
4580 }
4581 else if (!htab->is_vxworks
4582 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
4583 /* The calculation below does not involve "g". */
4584 break;
4585 else
4586 {
4587 g = mips_elf_local_got_index (abfd, input_bfd, info,
4588 symbol + addend, r_symndx, h, r_type);
4589 if (g == MINUS_ONE)
4590 return bfd_reloc_outofrange;
4591 }
4592
4593 /* Convert GOT indices to actual offsets. */
4594 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
4595 break;
4596 }
4597
4598 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4599 symbols are resolved by the loader. Add them to .rela.dyn. */
4600 if (h != NULL && is_gott_symbol (info, &h->root))
4601 {
4602 Elf_Internal_Rela outrel;
4603 bfd_byte *loc;
4604 asection *s;
4605
4606 s = mips_elf_rel_dyn_section (info, FALSE);
4607 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4608
4609 outrel.r_offset = (input_section->output_section->vma
4610 + input_section->output_offset
4611 + relocation->r_offset);
4612 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4613 outrel.r_addend = addend;
4614 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4615
4616 /* If we've written this relocation for a readonly section,
4617 we need to set DF_TEXTREL again, so that we do not delete the
4618 DT_TEXTREL tag. */
4619 if (MIPS_ELF_READONLY_SECTION (input_section))
4620 info->flags |= DF_TEXTREL;
4621
4622 *valuep = 0;
4623 return bfd_reloc_ok;
4624 }
4625
4626 /* Figure out what kind of relocation is being performed. */
4627 switch (r_type)
4628 {
4629 case R_MIPS_NONE:
4630 return bfd_reloc_continue;
4631
4632 case R_MIPS_16:
4633 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4634 overflowed_p = mips_elf_overflow_p (value, 16);
4635 break;
4636
4637 case R_MIPS_32:
4638 case R_MIPS_REL32:
4639 case R_MIPS_64:
4640 if ((info->shared
4641 || (!htab->is_vxworks
4642 && htab->root.dynamic_sections_created
4643 && h != NULL
4644 && h->root.def_dynamic
4645 && !h->root.def_regular))
4646 && r_symndx != 0
4647 && (h == NULL
4648 || h->root.root.type != bfd_link_hash_undefweak
4649 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4650 && (input_section->flags & SEC_ALLOC) != 0)
4651 {
4652 /* If we're creating a shared library, or this relocation is
4653 against a symbol in a shared library, then we can't know
4654 where the symbol will end up. So, we create a relocation
4655 record in the output, and leave the job up to the dynamic
4656 linker.
4657
4658 In VxWorks executables, references to external symbols
4659 are handled using copy relocs or PLT stubs, so there's
4660 no need to add a dynamic relocation here. */
4661 value = addend;
4662 if (!mips_elf_create_dynamic_relocation (abfd,
4663 info,
4664 relocation,
4665 h,
4666 sec,
4667 symbol,
4668 &value,
4669 input_section))
4670 return bfd_reloc_undefined;
4671 }
4672 else
4673 {
4674 if (r_type != R_MIPS_REL32)
4675 value = symbol + addend;
4676 else
4677 value = addend;
4678 }
4679 value &= howto->dst_mask;
4680 break;
4681
4682 case R_MIPS_PC32:
4683 value = symbol + addend - p;
4684 value &= howto->dst_mask;
4685 break;
4686
4687 case R_MIPS16_26:
4688 /* The calculation for R_MIPS16_26 is just the same as for an
4689 R_MIPS_26. It's only the storage of the relocated field into
4690 the output file that's different. That's handled in
4691 mips_elf_perform_relocation. So, we just fall through to the
4692 R_MIPS_26 case here. */
4693 case R_MIPS_26:
4694 if (local_p)
4695 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4696 else
4697 {
4698 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4699 if (h->root.root.type != bfd_link_hash_undefweak)
4700 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4701 }
4702 value &= howto->dst_mask;
4703 break;
4704
4705 case R_MIPS_TLS_DTPREL_HI16:
4706 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4707 & howto->dst_mask);
4708 break;
4709
4710 case R_MIPS_TLS_DTPREL_LO16:
4711 case R_MIPS_TLS_DTPREL32:
4712 case R_MIPS_TLS_DTPREL64:
4713 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4714 break;
4715
4716 case R_MIPS_TLS_TPREL_HI16:
4717 value = (mips_elf_high (addend + symbol - tprel_base (info))
4718 & howto->dst_mask);
4719 break;
4720
4721 case R_MIPS_TLS_TPREL_LO16:
4722 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4723 break;
4724
4725 case R_MIPS_HI16:
4726 case R_MIPS16_HI16:
4727 if (!gp_disp_p)
4728 {
4729 value = mips_elf_high (addend + symbol);
4730 value &= howto->dst_mask;
4731 }
4732 else
4733 {
4734 /* For MIPS16 ABI code we generate this sequence
4735 0: li $v0,%hi(_gp_disp)
4736 4: addiupc $v1,%lo(_gp_disp)
4737 8: sll $v0,16
4738 12: addu $v0,$v1
4739 14: move $gp,$v0
4740 So the offsets of hi and lo relocs are the same, but the
4741 $pc is four higher than $t9 would be, so reduce
4742 both reloc addends by 4. */
4743 if (r_type == R_MIPS16_HI16)
4744 value = mips_elf_high (addend + gp - p - 4);
4745 else
4746 value = mips_elf_high (addend + gp - p);
4747 overflowed_p = mips_elf_overflow_p (value, 16);
4748 }
4749 break;
4750
4751 case R_MIPS_LO16:
4752 case R_MIPS16_LO16:
4753 if (!gp_disp_p)
4754 value = (symbol + addend) & howto->dst_mask;
4755 else
4756 {
4757 /* See the comment for R_MIPS16_HI16 above for the reason
4758 for this conditional. */
4759 if (r_type == R_MIPS16_LO16)
4760 value = addend + gp - p;
4761 else
4762 value = addend + gp - p + 4;
4763 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4764 for overflow. But, on, say, IRIX5, relocations against
4765 _gp_disp are normally generated from the .cpload
4766 pseudo-op. It generates code that normally looks like
4767 this:
4768
4769 lui $gp,%hi(_gp_disp)
4770 addiu $gp,$gp,%lo(_gp_disp)
4771 addu $gp,$gp,$t9
4772
4773 Here $t9 holds the address of the function being called,
4774 as required by the MIPS ELF ABI. The R_MIPS_LO16
4775 relocation can easily overflow in this situation, but the
4776 R_MIPS_HI16 relocation will handle the overflow.
4777 Therefore, we consider this a bug in the MIPS ABI, and do
4778 not check for overflow here. */
4779 }
4780 break;
4781
4782 case R_MIPS_LITERAL:
4783 /* Because we don't merge literal sections, we can handle this
4784 just like R_MIPS_GPREL16. In the long run, we should merge
4785 shared literals, and then we will need to additional work
4786 here. */
4787
4788 /* Fall through. */
4789
4790 case R_MIPS16_GPREL:
4791 /* The R_MIPS16_GPREL performs the same calculation as
4792 R_MIPS_GPREL16, but stores the relocated bits in a different
4793 order. We don't need to do anything special here; the
4794 differences are handled in mips_elf_perform_relocation. */
4795 case R_MIPS_GPREL16:
4796 /* Only sign-extend the addend if it was extracted from the
4797 instruction. If the addend was separate, leave it alone,
4798 otherwise we may lose significant bits. */
4799 if (howto->partial_inplace)
4800 addend = _bfd_mips_elf_sign_extend (addend, 16);
4801 value = symbol + addend - gp;
4802 /* If the symbol was local, any earlier relocatable links will
4803 have adjusted its addend with the gp offset, so compensate
4804 for that now. Don't do it for symbols forced local in this
4805 link, though, since they won't have had the gp offset applied
4806 to them before. */
4807 if (was_local_p)
4808 value += gp0;
4809 overflowed_p = mips_elf_overflow_p (value, 16);
4810 break;
4811
4812 case R_MIPS16_GOT16:
4813 case R_MIPS16_CALL16:
4814 case R_MIPS_GOT16:
4815 case R_MIPS_CALL16:
4816 /* VxWorks does not have separate local and global semantics for
4817 R_MIPS*_GOT16; every relocation evaluates to "G". */
4818 if (!htab->is_vxworks && local_p)
4819 {
4820 bfd_boolean forced;
4821
4822 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4823 local_sections, FALSE);
4824 value = mips_elf_got16_entry (abfd, input_bfd, info,
4825 symbol + addend, forced);
4826 if (value == MINUS_ONE)
4827 return bfd_reloc_outofrange;
4828 value
4829 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
4830 overflowed_p = mips_elf_overflow_p (value, 16);
4831 break;
4832 }
4833
4834 /* Fall through. */
4835
4836 case R_MIPS_TLS_GD:
4837 case R_MIPS_TLS_GOTTPREL:
4838 case R_MIPS_TLS_LDM:
4839 case R_MIPS_GOT_DISP:
4840 got_disp:
4841 value = g;
4842 overflowed_p = mips_elf_overflow_p (value, 16);
4843 break;
4844
4845 case R_MIPS_GPREL32:
4846 value = (addend + symbol + gp0 - gp);
4847 if (!save_addend)
4848 value &= howto->dst_mask;
4849 break;
4850
4851 case R_MIPS_PC16:
4852 case R_MIPS_GNU_REL16_S2:
4853 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4854 overflowed_p = mips_elf_overflow_p (value, 18);
4855 value >>= howto->rightshift;
4856 value &= howto->dst_mask;
4857 break;
4858
4859 case R_MIPS_GOT_HI16:
4860 case R_MIPS_CALL_HI16:
4861 /* We're allowed to handle these two relocations identically.
4862 The dynamic linker is allowed to handle the CALL relocations
4863 differently by creating a lazy evaluation stub. */
4864 value = g;
4865 value = mips_elf_high (value);
4866 value &= howto->dst_mask;
4867 break;
4868
4869 case R_MIPS_GOT_LO16:
4870 case R_MIPS_CALL_LO16:
4871 value = g & howto->dst_mask;
4872 break;
4873
4874 case R_MIPS_GOT_PAGE:
4875 /* GOT_PAGE relocations that reference non-local symbols decay
4876 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4877 0. */
4878 if (! local_p)
4879 goto got_disp;
4880 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4881 if (value == MINUS_ONE)
4882 return bfd_reloc_outofrange;
4883 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
4884 overflowed_p = mips_elf_overflow_p (value, 16);
4885 break;
4886
4887 case R_MIPS_GOT_OFST:
4888 if (local_p)
4889 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4890 else
4891 value = addend;
4892 overflowed_p = mips_elf_overflow_p (value, 16);
4893 break;
4894
4895 case R_MIPS_SUB:
4896 value = symbol - addend;
4897 value &= howto->dst_mask;
4898 break;
4899
4900 case R_MIPS_HIGHER:
4901 value = mips_elf_higher (addend + symbol);
4902 value &= howto->dst_mask;
4903 break;
4904
4905 case R_MIPS_HIGHEST:
4906 value = mips_elf_highest (addend + symbol);
4907 value &= howto->dst_mask;
4908 break;
4909
4910 case R_MIPS_SCN_DISP:
4911 value = symbol + addend - sec->output_offset;
4912 value &= howto->dst_mask;
4913 break;
4914
4915 case R_MIPS_JALR:
4916 /* This relocation is only a hint. In some cases, we optimize
4917 it into a bal instruction. But we don't try to optimize
4918 branches to the PLT; that will wind up wasting time. */
4919 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4920 return bfd_reloc_continue;
4921 value = symbol + addend;
4922 break;
4923
4924 case R_MIPS_PJUMP:
4925 case R_MIPS_GNU_VTINHERIT:
4926 case R_MIPS_GNU_VTENTRY:
4927 /* We don't do anything with these at present. */
4928 return bfd_reloc_continue;
4929
4930 default:
4931 /* An unrecognized relocation type. */
4932 return bfd_reloc_notsupported;
4933 }
4934
4935 /* Store the VALUE for our caller. */
4936 *valuep = value;
4937 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4938 }
4939
4940 /* Obtain the field relocated by RELOCATION. */
4941
4942 static bfd_vma
4943 mips_elf_obtain_contents (reloc_howto_type *howto,
4944 const Elf_Internal_Rela *relocation,
4945 bfd *input_bfd, bfd_byte *contents)
4946 {
4947 bfd_vma x;
4948 bfd_byte *location = contents + relocation->r_offset;
4949
4950 /* Obtain the bytes. */
4951 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4952
4953 return x;
4954 }
4955
4956 /* It has been determined that the result of the RELOCATION is the
4957 VALUE. Use HOWTO to place VALUE into the output file at the
4958 appropriate position. The SECTION is the section to which the
4959 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4960 for the relocation must be either JAL or JALX, and it is
4961 unconditionally converted to JALX.
4962
4963 Returns FALSE if anything goes wrong. */
4964
4965 static bfd_boolean
4966 mips_elf_perform_relocation (struct bfd_link_info *info,
4967 reloc_howto_type *howto,
4968 const Elf_Internal_Rela *relocation,
4969 bfd_vma value, bfd *input_bfd,
4970 asection *input_section, bfd_byte *contents,
4971 bfd_boolean require_jalx)
4972 {
4973 bfd_vma x;
4974 bfd_byte *location;
4975 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4976
4977 /* Figure out where the relocation is occurring. */
4978 location = contents + relocation->r_offset;
4979
4980 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4981
4982 /* Obtain the current value. */
4983 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4984
4985 /* Clear the field we are setting. */
4986 x &= ~howto->dst_mask;
4987
4988 /* Set the field. */
4989 x |= (value & howto->dst_mask);
4990
4991 /* If required, turn JAL into JALX. */
4992 if (require_jalx)
4993 {
4994 bfd_boolean ok;
4995 bfd_vma opcode = x >> 26;
4996 bfd_vma jalx_opcode;
4997
4998 /* Check to see if the opcode is already JAL or JALX. */
4999 if (r_type == R_MIPS16_26)
5000 {
5001 ok = ((opcode == 0x6) || (opcode == 0x7));
5002 jalx_opcode = 0x7;
5003 }
5004 else
5005 {
5006 ok = ((opcode == 0x3) || (opcode == 0x1d));
5007 jalx_opcode = 0x1d;
5008 }
5009
5010 /* If the opcode is not JAL or JALX, there's a problem. */
5011 if (!ok)
5012 {
5013 (*_bfd_error_handler)
5014 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5015 input_bfd,
5016 input_section,
5017 (unsigned long) relocation->r_offset);
5018 bfd_set_error (bfd_error_bad_value);
5019 return FALSE;
5020 }
5021
5022 /* Make this the JALX opcode. */
5023 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5024 }
5025
5026 /* On the RM9000, bal is faster than jal, because bal uses branch
5027 prediction hardware. If we are linking for the RM9000, and we
5028 see jal, and bal fits, use it instead. Note that this
5029 transformation should be safe for all architectures. */
5030 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
5031 && !info->relocatable
5032 && !require_jalx
5033 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
5034 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
5035 {
5036 bfd_vma addr;
5037 bfd_vma dest;
5038 bfd_signed_vma off;
5039
5040 addr = (input_section->output_section->vma
5041 + input_section->output_offset
5042 + relocation->r_offset
5043 + 4);
5044 if (r_type == R_MIPS_26)
5045 dest = (value << 2) | ((addr >> 28) << 28);
5046 else
5047 dest = value;
5048 off = dest - addr;
5049 if (off <= 0x1ffff && off >= -0x20000)
5050 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5051 }
5052
5053 /* Put the value into the output. */
5054 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5055
5056 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5057 location);
5058
5059 return TRUE;
5060 }
5061 \f
5062 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
5063
5064 static void
5065 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
5066 unsigned int n)
5067 {
5068 asection *s;
5069 struct mips_elf_link_hash_table *htab;
5070
5071 htab = mips_elf_hash_table (info);
5072 s = mips_elf_rel_dyn_section (info, FALSE);
5073 BFD_ASSERT (s != NULL);
5074
5075 if (htab->is_vxworks)
5076 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
5077 else
5078 {
5079 if (s->size == 0)
5080 {
5081 /* Make room for a null element. */
5082 s->size += MIPS_ELF_REL_SIZE (abfd);
5083 ++s->reloc_count;
5084 }
5085 s->size += n * MIPS_ELF_REL_SIZE (abfd);
5086 }
5087 }
5088
5089 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5090 is the original relocation, which is now being transformed into a
5091 dynamic relocation. The ADDENDP is adjusted if necessary; the
5092 caller should store the result in place of the original addend. */
5093
5094 static bfd_boolean
5095 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5096 struct bfd_link_info *info,
5097 const Elf_Internal_Rela *rel,
5098 struct mips_elf_link_hash_entry *h,
5099 asection *sec, bfd_vma symbol,
5100 bfd_vma *addendp, asection *input_section)
5101 {
5102 Elf_Internal_Rela outrel[3];
5103 asection *sreloc;
5104 bfd *dynobj;
5105 int r_type;
5106 long indx;
5107 bfd_boolean defined_p;
5108 struct mips_elf_link_hash_table *htab;
5109
5110 htab = mips_elf_hash_table (info);
5111 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5112 dynobj = elf_hash_table (info)->dynobj;
5113 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5114 BFD_ASSERT (sreloc != NULL);
5115 BFD_ASSERT (sreloc->contents != NULL);
5116 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5117 < sreloc->size);
5118
5119 outrel[0].r_offset =
5120 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5121 if (ABI_64_P (output_bfd))
5122 {
5123 outrel[1].r_offset =
5124 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5125 outrel[2].r_offset =
5126 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5127 }
5128
5129 if (outrel[0].r_offset == MINUS_ONE)
5130 /* The relocation field has been deleted. */
5131 return TRUE;
5132
5133 if (outrel[0].r_offset == MINUS_TWO)
5134 {
5135 /* The relocation field has been converted into a relative value of
5136 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5137 the field to be fully relocated, so add in the symbol's value. */
5138 *addendp += symbol;
5139 return TRUE;
5140 }
5141
5142 /* We must now calculate the dynamic symbol table index to use
5143 in the relocation. */
5144 if (h != NULL
5145 && (!h->root.def_regular
5146 || (info->shared && !info->symbolic && !h->root.forced_local)))
5147 {
5148 indx = h->root.dynindx;
5149 if (SGI_COMPAT (output_bfd))
5150 defined_p = h->root.def_regular;
5151 else
5152 /* ??? glibc's ld.so just adds the final GOT entry to the
5153 relocation field. It therefore treats relocs against
5154 defined symbols in the same way as relocs against
5155 undefined symbols. */
5156 defined_p = FALSE;
5157 }
5158 else
5159 {
5160 if (sec != NULL && bfd_is_abs_section (sec))
5161 indx = 0;
5162 else if (sec == NULL || sec->owner == NULL)
5163 {
5164 bfd_set_error (bfd_error_bad_value);
5165 return FALSE;
5166 }
5167 else
5168 {
5169 indx = elf_section_data (sec->output_section)->dynindx;
5170 if (indx == 0)
5171 {
5172 asection *osec = htab->root.text_index_section;
5173 indx = elf_section_data (osec)->dynindx;
5174 }
5175 if (indx == 0)
5176 abort ();
5177 }
5178
5179 /* Instead of generating a relocation using the section
5180 symbol, we may as well make it a fully relative
5181 relocation. We want to avoid generating relocations to
5182 local symbols because we used to generate them
5183 incorrectly, without adding the original symbol value,
5184 which is mandated by the ABI for section symbols. In
5185 order to give dynamic loaders and applications time to
5186 phase out the incorrect use, we refrain from emitting
5187 section-relative relocations. It's not like they're
5188 useful, after all. This should be a bit more efficient
5189 as well. */
5190 /* ??? Although this behavior is compatible with glibc's ld.so,
5191 the ABI says that relocations against STN_UNDEF should have
5192 a symbol value of 0. Irix rld honors this, so relocations
5193 against STN_UNDEF have no effect. */
5194 if (!SGI_COMPAT (output_bfd))
5195 indx = 0;
5196 defined_p = TRUE;
5197 }
5198
5199 /* If the relocation was previously an absolute relocation and
5200 this symbol will not be referred to by the relocation, we must
5201 adjust it by the value we give it in the dynamic symbol table.
5202 Otherwise leave the job up to the dynamic linker. */
5203 if (defined_p && r_type != R_MIPS_REL32)
5204 *addendp += symbol;
5205
5206 if (htab->is_vxworks)
5207 /* VxWorks uses non-relative relocations for this. */
5208 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5209 else
5210 /* The relocation is always an REL32 relocation because we don't
5211 know where the shared library will wind up at load-time. */
5212 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5213 R_MIPS_REL32);
5214
5215 /* For strict adherence to the ABI specification, we should
5216 generate a R_MIPS_64 relocation record by itself before the
5217 _REL32/_64 record as well, such that the addend is read in as
5218 a 64-bit value (REL32 is a 32-bit relocation, after all).
5219 However, since none of the existing ELF64 MIPS dynamic
5220 loaders seems to care, we don't waste space with these
5221 artificial relocations. If this turns out to not be true,
5222 mips_elf_allocate_dynamic_relocation() should be tweaked so
5223 as to make room for a pair of dynamic relocations per
5224 invocation if ABI_64_P, and here we should generate an
5225 additional relocation record with R_MIPS_64 by itself for a
5226 NULL symbol before this relocation record. */
5227 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5228 ABI_64_P (output_bfd)
5229 ? R_MIPS_64
5230 : R_MIPS_NONE);
5231 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5232
5233 /* Adjust the output offset of the relocation to reference the
5234 correct location in the output file. */
5235 outrel[0].r_offset += (input_section->output_section->vma
5236 + input_section->output_offset);
5237 outrel[1].r_offset += (input_section->output_section->vma
5238 + input_section->output_offset);
5239 outrel[2].r_offset += (input_section->output_section->vma
5240 + input_section->output_offset);
5241
5242 /* Put the relocation back out. We have to use the special
5243 relocation outputter in the 64-bit case since the 64-bit
5244 relocation format is non-standard. */
5245 if (ABI_64_P (output_bfd))
5246 {
5247 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5248 (output_bfd, &outrel[0],
5249 (sreloc->contents
5250 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5251 }
5252 else if (htab->is_vxworks)
5253 {
5254 /* VxWorks uses RELA rather than REL dynamic relocations. */
5255 outrel[0].r_addend = *addendp;
5256 bfd_elf32_swap_reloca_out
5257 (output_bfd, &outrel[0],
5258 (sreloc->contents
5259 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5260 }
5261 else
5262 bfd_elf32_swap_reloc_out
5263 (output_bfd, &outrel[0],
5264 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5265
5266 /* We've now added another relocation. */
5267 ++sreloc->reloc_count;
5268
5269 /* Make sure the output section is writable. The dynamic linker
5270 will be writing to it. */
5271 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5272 |= SHF_WRITE;
5273
5274 /* On IRIX5, make an entry of compact relocation info. */
5275 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5276 {
5277 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5278 bfd_byte *cr;
5279
5280 if (scpt)
5281 {
5282 Elf32_crinfo cptrel;
5283
5284 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5285 cptrel.vaddr = (rel->r_offset
5286 + input_section->output_section->vma
5287 + input_section->output_offset);
5288 if (r_type == R_MIPS_REL32)
5289 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5290 else
5291 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5292 mips_elf_set_cr_dist2to (cptrel, 0);
5293 cptrel.konst = *addendp;
5294
5295 cr = (scpt->contents
5296 + sizeof (Elf32_External_compact_rel));
5297 mips_elf_set_cr_relvaddr (cptrel, 0);
5298 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5299 ((Elf32_External_crinfo *) cr
5300 + scpt->reloc_count));
5301 ++scpt->reloc_count;
5302 }
5303 }
5304
5305 /* If we've written this relocation for a readonly section,
5306 we need to set DF_TEXTREL again, so that we do not delete the
5307 DT_TEXTREL tag. */
5308 if (MIPS_ELF_READONLY_SECTION (input_section))
5309 info->flags |= DF_TEXTREL;
5310
5311 return TRUE;
5312 }
5313 \f
5314 /* Return the MACH for a MIPS e_flags value. */
5315
5316 unsigned long
5317 _bfd_elf_mips_mach (flagword flags)
5318 {
5319 switch (flags & EF_MIPS_MACH)
5320 {
5321 case E_MIPS_MACH_3900:
5322 return bfd_mach_mips3900;
5323
5324 case E_MIPS_MACH_4010:
5325 return bfd_mach_mips4010;
5326
5327 case E_MIPS_MACH_4100:
5328 return bfd_mach_mips4100;
5329
5330 case E_MIPS_MACH_4111:
5331 return bfd_mach_mips4111;
5332
5333 case E_MIPS_MACH_4120:
5334 return bfd_mach_mips4120;
5335
5336 case E_MIPS_MACH_4650:
5337 return bfd_mach_mips4650;
5338
5339 case E_MIPS_MACH_5400:
5340 return bfd_mach_mips5400;
5341
5342 case E_MIPS_MACH_5500:
5343 return bfd_mach_mips5500;
5344
5345 case E_MIPS_MACH_9000:
5346 return bfd_mach_mips9000;
5347
5348 case E_MIPS_MACH_SB1:
5349 return bfd_mach_mips_sb1;
5350
5351 case E_MIPS_MACH_LS2E:
5352 return bfd_mach_mips_loongson_2e;
5353
5354 case E_MIPS_MACH_LS2F:
5355 return bfd_mach_mips_loongson_2f;
5356
5357 case E_MIPS_MACH_OCTEON:
5358 return bfd_mach_mips_octeon;
5359
5360 default:
5361 switch (flags & EF_MIPS_ARCH)
5362 {
5363 default:
5364 case E_MIPS_ARCH_1:
5365 return bfd_mach_mips3000;
5366
5367 case E_MIPS_ARCH_2:
5368 return bfd_mach_mips6000;
5369
5370 case E_MIPS_ARCH_3:
5371 return bfd_mach_mips4000;
5372
5373 case E_MIPS_ARCH_4:
5374 return bfd_mach_mips8000;
5375
5376 case E_MIPS_ARCH_5:
5377 return bfd_mach_mips5;
5378
5379 case E_MIPS_ARCH_32:
5380 return bfd_mach_mipsisa32;
5381
5382 case E_MIPS_ARCH_64:
5383 return bfd_mach_mipsisa64;
5384
5385 case E_MIPS_ARCH_32R2:
5386 return bfd_mach_mipsisa32r2;
5387
5388 case E_MIPS_ARCH_64R2:
5389 return bfd_mach_mipsisa64r2;
5390 }
5391 }
5392
5393 return 0;
5394 }
5395
5396 /* Return printable name for ABI. */
5397
5398 static INLINE char *
5399 elf_mips_abi_name (bfd *abfd)
5400 {
5401 flagword flags;
5402
5403 flags = elf_elfheader (abfd)->e_flags;
5404 switch (flags & EF_MIPS_ABI)
5405 {
5406 case 0:
5407 if (ABI_N32_P (abfd))
5408 return "N32";
5409 else if (ABI_64_P (abfd))
5410 return "64";
5411 else
5412 return "none";
5413 case E_MIPS_ABI_O32:
5414 return "O32";
5415 case E_MIPS_ABI_O64:
5416 return "O64";
5417 case E_MIPS_ABI_EABI32:
5418 return "EABI32";
5419 case E_MIPS_ABI_EABI64:
5420 return "EABI64";
5421 default:
5422 return "unknown abi";
5423 }
5424 }
5425 \f
5426 /* MIPS ELF uses two common sections. One is the usual one, and the
5427 other is for small objects. All the small objects are kept
5428 together, and then referenced via the gp pointer, which yields
5429 faster assembler code. This is what we use for the small common
5430 section. This approach is copied from ecoff.c. */
5431 static asection mips_elf_scom_section;
5432 static asymbol mips_elf_scom_symbol;
5433 static asymbol *mips_elf_scom_symbol_ptr;
5434
5435 /* MIPS ELF also uses an acommon section, which represents an
5436 allocated common symbol which may be overridden by a
5437 definition in a shared library. */
5438 static asection mips_elf_acom_section;
5439 static asymbol mips_elf_acom_symbol;
5440 static asymbol *mips_elf_acom_symbol_ptr;
5441
5442 /* This is used for both the 32-bit and the 64-bit ABI. */
5443
5444 void
5445 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5446 {
5447 elf_symbol_type *elfsym;
5448
5449 /* Handle the special MIPS section numbers that a symbol may use. */
5450 elfsym = (elf_symbol_type *) asym;
5451 switch (elfsym->internal_elf_sym.st_shndx)
5452 {
5453 case SHN_MIPS_ACOMMON:
5454 /* This section is used in a dynamically linked executable file.
5455 It is an allocated common section. The dynamic linker can
5456 either resolve these symbols to something in a shared
5457 library, or it can just leave them here. For our purposes,
5458 we can consider these symbols to be in a new section. */
5459 if (mips_elf_acom_section.name == NULL)
5460 {
5461 /* Initialize the acommon section. */
5462 mips_elf_acom_section.name = ".acommon";
5463 mips_elf_acom_section.flags = SEC_ALLOC;
5464 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5465 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5466 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5467 mips_elf_acom_symbol.name = ".acommon";
5468 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5469 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5470 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5471 }
5472 asym->section = &mips_elf_acom_section;
5473 break;
5474
5475 case SHN_COMMON:
5476 /* Common symbols less than the GP size are automatically
5477 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5478 if (asym->value > elf_gp_size (abfd)
5479 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5480 || IRIX_COMPAT (abfd) == ict_irix6)
5481 break;
5482 /* Fall through. */
5483 case SHN_MIPS_SCOMMON:
5484 if (mips_elf_scom_section.name == NULL)
5485 {
5486 /* Initialize the small common section. */
5487 mips_elf_scom_section.name = ".scommon";
5488 mips_elf_scom_section.flags = SEC_IS_COMMON;
5489 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5490 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5491 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5492 mips_elf_scom_symbol.name = ".scommon";
5493 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5494 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5495 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5496 }
5497 asym->section = &mips_elf_scom_section;
5498 asym->value = elfsym->internal_elf_sym.st_size;
5499 break;
5500
5501 case SHN_MIPS_SUNDEFINED:
5502 asym->section = bfd_und_section_ptr;
5503 break;
5504
5505 case SHN_MIPS_TEXT:
5506 {
5507 asection *section = bfd_get_section_by_name (abfd, ".text");
5508
5509 BFD_ASSERT (SGI_COMPAT (abfd));
5510 if (section != NULL)
5511 {
5512 asym->section = section;
5513 /* MIPS_TEXT is a bit special, the address is not an offset
5514 to the base of the .text section. So substract the section
5515 base address to make it an offset. */
5516 asym->value -= section->vma;
5517 }
5518 }
5519 break;
5520
5521 case SHN_MIPS_DATA:
5522 {
5523 asection *section = bfd_get_section_by_name (abfd, ".data");
5524
5525 BFD_ASSERT (SGI_COMPAT (abfd));
5526 if (section != NULL)
5527 {
5528 asym->section = section;
5529 /* MIPS_DATA is a bit special, the address is not an offset
5530 to the base of the .data section. So substract the section
5531 base address to make it an offset. */
5532 asym->value -= section->vma;
5533 }
5534 }
5535 break;
5536 }
5537
5538 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
5539 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
5540 && (asym->value & 1) != 0)
5541 {
5542 asym->value--;
5543 elfsym->internal_elf_sym.st_other
5544 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
5545 }
5546 }
5547 \f
5548 /* Implement elf_backend_eh_frame_address_size. This differs from
5549 the default in the way it handles EABI64.
5550
5551 EABI64 was originally specified as an LP64 ABI, and that is what
5552 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5553 historically accepted the combination of -mabi=eabi and -mlong32,
5554 and this ILP32 variation has become semi-official over time.
5555 Both forms use elf32 and have pointer-sized FDE addresses.
5556
5557 If an EABI object was generated by GCC 4.0 or above, it will have
5558 an empty .gcc_compiled_longXX section, where XX is the size of longs
5559 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5560 have no special marking to distinguish them from LP64 objects.
5561
5562 We don't want users of the official LP64 ABI to be punished for the
5563 existence of the ILP32 variant, but at the same time, we don't want
5564 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5565 We therefore take the following approach:
5566
5567 - If ABFD contains a .gcc_compiled_longXX section, use it to
5568 determine the pointer size.
5569
5570 - Otherwise check the type of the first relocation. Assume that
5571 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5572
5573 - Otherwise punt.
5574
5575 The second check is enough to detect LP64 objects generated by pre-4.0
5576 compilers because, in the kind of output generated by those compilers,
5577 the first relocation will be associated with either a CIE personality
5578 routine or an FDE start address. Furthermore, the compilers never
5579 used a special (non-pointer) encoding for this ABI.
5580
5581 Checking the relocation type should also be safe because there is no
5582 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5583 did so. */
5584
5585 unsigned int
5586 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5587 {
5588 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5589 return 8;
5590 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5591 {
5592 bfd_boolean long32_p, long64_p;
5593
5594 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5595 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5596 if (long32_p && long64_p)
5597 return 0;
5598 if (long32_p)
5599 return 4;
5600 if (long64_p)
5601 return 8;
5602
5603 if (sec->reloc_count > 0
5604 && elf_section_data (sec)->relocs != NULL
5605 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5606 == R_MIPS_64))
5607 return 8;
5608
5609 return 0;
5610 }
5611 return 4;
5612 }
5613 \f
5614 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5615 relocations against two unnamed section symbols to resolve to the
5616 same address. For example, if we have code like:
5617
5618 lw $4,%got_disp(.data)($gp)
5619 lw $25,%got_disp(.text)($gp)
5620 jalr $25
5621
5622 then the linker will resolve both relocations to .data and the program
5623 will jump there rather than to .text.
5624
5625 We can work around this problem by giving names to local section symbols.
5626 This is also what the MIPSpro tools do. */
5627
5628 bfd_boolean
5629 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5630 {
5631 return SGI_COMPAT (abfd);
5632 }
5633 \f
5634 /* Work over a section just before writing it out. This routine is
5635 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5636 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5637 a better way. */
5638
5639 bfd_boolean
5640 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5641 {
5642 if (hdr->sh_type == SHT_MIPS_REGINFO
5643 && hdr->sh_size > 0)
5644 {
5645 bfd_byte buf[4];
5646
5647 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5648 BFD_ASSERT (hdr->contents == NULL);
5649
5650 if (bfd_seek (abfd,
5651 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5652 SEEK_SET) != 0)
5653 return FALSE;
5654 H_PUT_32 (abfd, elf_gp (abfd), buf);
5655 if (bfd_bwrite (buf, 4, abfd) != 4)
5656 return FALSE;
5657 }
5658
5659 if (hdr->sh_type == SHT_MIPS_OPTIONS
5660 && hdr->bfd_section != NULL
5661 && mips_elf_section_data (hdr->bfd_section) != NULL
5662 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5663 {
5664 bfd_byte *contents, *l, *lend;
5665
5666 /* We stored the section contents in the tdata field in the
5667 set_section_contents routine. We save the section contents
5668 so that we don't have to read them again.
5669 At this point we know that elf_gp is set, so we can look
5670 through the section contents to see if there is an
5671 ODK_REGINFO structure. */
5672
5673 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5674 l = contents;
5675 lend = contents + hdr->sh_size;
5676 while (l + sizeof (Elf_External_Options) <= lend)
5677 {
5678 Elf_Internal_Options intopt;
5679
5680 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5681 &intopt);
5682 if (intopt.size < sizeof (Elf_External_Options))
5683 {
5684 (*_bfd_error_handler)
5685 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5686 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5687 break;
5688 }
5689 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5690 {
5691 bfd_byte buf[8];
5692
5693 if (bfd_seek (abfd,
5694 (hdr->sh_offset
5695 + (l - contents)
5696 + sizeof (Elf_External_Options)
5697 + (sizeof (Elf64_External_RegInfo) - 8)),
5698 SEEK_SET) != 0)
5699 return FALSE;
5700 H_PUT_64 (abfd, elf_gp (abfd), buf);
5701 if (bfd_bwrite (buf, 8, abfd) != 8)
5702 return FALSE;
5703 }
5704 else if (intopt.kind == ODK_REGINFO)
5705 {
5706 bfd_byte buf[4];
5707
5708 if (bfd_seek (abfd,
5709 (hdr->sh_offset
5710 + (l - contents)
5711 + sizeof (Elf_External_Options)
5712 + (sizeof (Elf32_External_RegInfo) - 4)),
5713 SEEK_SET) != 0)
5714 return FALSE;
5715 H_PUT_32 (abfd, elf_gp (abfd), buf);
5716 if (bfd_bwrite (buf, 4, abfd) != 4)
5717 return FALSE;
5718 }
5719 l += intopt.size;
5720 }
5721 }
5722
5723 if (hdr->bfd_section != NULL)
5724 {
5725 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5726
5727 if (strcmp (name, ".sdata") == 0
5728 || strcmp (name, ".lit8") == 0
5729 || strcmp (name, ".lit4") == 0)
5730 {
5731 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5732 hdr->sh_type = SHT_PROGBITS;
5733 }
5734 else if (strcmp (name, ".sbss") == 0)
5735 {
5736 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5737 hdr->sh_type = SHT_NOBITS;
5738 }
5739 else if (strcmp (name, ".srdata") == 0)
5740 {
5741 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5742 hdr->sh_type = SHT_PROGBITS;
5743 }
5744 else if (strcmp (name, ".compact_rel") == 0)
5745 {
5746 hdr->sh_flags = 0;
5747 hdr->sh_type = SHT_PROGBITS;
5748 }
5749 else if (strcmp (name, ".rtproc") == 0)
5750 {
5751 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5752 {
5753 unsigned int adjust;
5754
5755 adjust = hdr->sh_size % hdr->sh_addralign;
5756 if (adjust != 0)
5757 hdr->sh_size += hdr->sh_addralign - adjust;
5758 }
5759 }
5760 }
5761
5762 return TRUE;
5763 }
5764
5765 /* Handle a MIPS specific section when reading an object file. This
5766 is called when elfcode.h finds a section with an unknown type.
5767 This routine supports both the 32-bit and 64-bit ELF ABI.
5768
5769 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5770 how to. */
5771
5772 bfd_boolean
5773 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5774 Elf_Internal_Shdr *hdr,
5775 const char *name,
5776 int shindex)
5777 {
5778 flagword flags = 0;
5779
5780 /* There ought to be a place to keep ELF backend specific flags, but
5781 at the moment there isn't one. We just keep track of the
5782 sections by their name, instead. Fortunately, the ABI gives
5783 suggested names for all the MIPS specific sections, so we will
5784 probably get away with this. */
5785 switch (hdr->sh_type)
5786 {
5787 case SHT_MIPS_LIBLIST:
5788 if (strcmp (name, ".liblist") != 0)
5789 return FALSE;
5790 break;
5791 case SHT_MIPS_MSYM:
5792 if (strcmp (name, ".msym") != 0)
5793 return FALSE;
5794 break;
5795 case SHT_MIPS_CONFLICT:
5796 if (strcmp (name, ".conflict") != 0)
5797 return FALSE;
5798 break;
5799 case SHT_MIPS_GPTAB:
5800 if (! CONST_STRNEQ (name, ".gptab."))
5801 return FALSE;
5802 break;
5803 case SHT_MIPS_UCODE:
5804 if (strcmp (name, ".ucode") != 0)
5805 return FALSE;
5806 break;
5807 case SHT_MIPS_DEBUG:
5808 if (strcmp (name, ".mdebug") != 0)
5809 return FALSE;
5810 flags = SEC_DEBUGGING;
5811 break;
5812 case SHT_MIPS_REGINFO:
5813 if (strcmp (name, ".reginfo") != 0
5814 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5815 return FALSE;
5816 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5817 break;
5818 case SHT_MIPS_IFACE:
5819 if (strcmp (name, ".MIPS.interfaces") != 0)
5820 return FALSE;
5821 break;
5822 case SHT_MIPS_CONTENT:
5823 if (! CONST_STRNEQ (name, ".MIPS.content"))
5824 return FALSE;
5825 break;
5826 case SHT_MIPS_OPTIONS:
5827 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5828 return FALSE;
5829 break;
5830 case SHT_MIPS_DWARF:
5831 if (! CONST_STRNEQ (name, ".debug_")
5832 && ! CONST_STRNEQ (name, ".zdebug_"))
5833 return FALSE;
5834 break;
5835 case SHT_MIPS_SYMBOL_LIB:
5836 if (strcmp (name, ".MIPS.symlib") != 0)
5837 return FALSE;
5838 break;
5839 case SHT_MIPS_EVENTS:
5840 if (! CONST_STRNEQ (name, ".MIPS.events")
5841 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5842 return FALSE;
5843 break;
5844 default:
5845 break;
5846 }
5847
5848 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5849 return FALSE;
5850
5851 if (flags)
5852 {
5853 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5854 (bfd_get_section_flags (abfd,
5855 hdr->bfd_section)
5856 | flags)))
5857 return FALSE;
5858 }
5859
5860 /* FIXME: We should record sh_info for a .gptab section. */
5861
5862 /* For a .reginfo section, set the gp value in the tdata information
5863 from the contents of this section. We need the gp value while
5864 processing relocs, so we just get it now. The .reginfo section
5865 is not used in the 64-bit MIPS ELF ABI. */
5866 if (hdr->sh_type == SHT_MIPS_REGINFO)
5867 {
5868 Elf32_External_RegInfo ext;
5869 Elf32_RegInfo s;
5870
5871 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5872 &ext, 0, sizeof ext))
5873 return FALSE;
5874 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5875 elf_gp (abfd) = s.ri_gp_value;
5876 }
5877
5878 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5879 set the gp value based on what we find. We may see both
5880 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5881 they should agree. */
5882 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5883 {
5884 bfd_byte *contents, *l, *lend;
5885
5886 contents = bfd_malloc (hdr->sh_size);
5887 if (contents == NULL)
5888 return FALSE;
5889 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5890 0, hdr->sh_size))
5891 {
5892 free (contents);
5893 return FALSE;
5894 }
5895 l = contents;
5896 lend = contents + hdr->sh_size;
5897 while (l + sizeof (Elf_External_Options) <= lend)
5898 {
5899 Elf_Internal_Options intopt;
5900
5901 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5902 &intopt);
5903 if (intopt.size < sizeof (Elf_External_Options))
5904 {
5905 (*_bfd_error_handler)
5906 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5907 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5908 break;
5909 }
5910 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5911 {
5912 Elf64_Internal_RegInfo intreg;
5913
5914 bfd_mips_elf64_swap_reginfo_in
5915 (abfd,
5916 ((Elf64_External_RegInfo *)
5917 (l + sizeof (Elf_External_Options))),
5918 &intreg);
5919 elf_gp (abfd) = intreg.ri_gp_value;
5920 }
5921 else if (intopt.kind == ODK_REGINFO)
5922 {
5923 Elf32_RegInfo intreg;
5924
5925 bfd_mips_elf32_swap_reginfo_in
5926 (abfd,
5927 ((Elf32_External_RegInfo *)
5928 (l + sizeof (Elf_External_Options))),
5929 &intreg);
5930 elf_gp (abfd) = intreg.ri_gp_value;
5931 }
5932 l += intopt.size;
5933 }
5934 free (contents);
5935 }
5936
5937 return TRUE;
5938 }
5939
5940 /* Set the correct type for a MIPS ELF section. We do this by the
5941 section name, which is a hack, but ought to work. This routine is
5942 used by both the 32-bit and the 64-bit ABI. */
5943
5944 bfd_boolean
5945 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5946 {
5947 const char *name = bfd_get_section_name (abfd, sec);
5948
5949 if (strcmp (name, ".liblist") == 0)
5950 {
5951 hdr->sh_type = SHT_MIPS_LIBLIST;
5952 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5953 /* The sh_link field is set in final_write_processing. */
5954 }
5955 else if (strcmp (name, ".conflict") == 0)
5956 hdr->sh_type = SHT_MIPS_CONFLICT;
5957 else if (CONST_STRNEQ (name, ".gptab."))
5958 {
5959 hdr->sh_type = SHT_MIPS_GPTAB;
5960 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5961 /* The sh_info field is set in final_write_processing. */
5962 }
5963 else if (strcmp (name, ".ucode") == 0)
5964 hdr->sh_type = SHT_MIPS_UCODE;
5965 else if (strcmp (name, ".mdebug") == 0)
5966 {
5967 hdr->sh_type = SHT_MIPS_DEBUG;
5968 /* In a shared object on IRIX 5.3, the .mdebug section has an
5969 entsize of 0. FIXME: Does this matter? */
5970 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5971 hdr->sh_entsize = 0;
5972 else
5973 hdr->sh_entsize = 1;
5974 }
5975 else if (strcmp (name, ".reginfo") == 0)
5976 {
5977 hdr->sh_type = SHT_MIPS_REGINFO;
5978 /* In a shared object on IRIX 5.3, the .reginfo section has an
5979 entsize of 0x18. FIXME: Does this matter? */
5980 if (SGI_COMPAT (abfd))
5981 {
5982 if ((abfd->flags & DYNAMIC) != 0)
5983 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5984 else
5985 hdr->sh_entsize = 1;
5986 }
5987 else
5988 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5989 }
5990 else if (SGI_COMPAT (abfd)
5991 && (strcmp (name, ".hash") == 0
5992 || strcmp (name, ".dynamic") == 0
5993 || strcmp (name, ".dynstr") == 0))
5994 {
5995 if (SGI_COMPAT (abfd))
5996 hdr->sh_entsize = 0;
5997 #if 0
5998 /* This isn't how the IRIX6 linker behaves. */
5999 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6000 #endif
6001 }
6002 else if (strcmp (name, ".got") == 0
6003 || strcmp (name, ".srdata") == 0
6004 || strcmp (name, ".sdata") == 0
6005 || strcmp (name, ".sbss") == 0
6006 || strcmp (name, ".lit4") == 0
6007 || strcmp (name, ".lit8") == 0)
6008 hdr->sh_flags |= SHF_MIPS_GPREL;
6009 else if (strcmp (name, ".MIPS.interfaces") == 0)
6010 {
6011 hdr->sh_type = SHT_MIPS_IFACE;
6012 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6013 }
6014 else if (CONST_STRNEQ (name, ".MIPS.content"))
6015 {
6016 hdr->sh_type = SHT_MIPS_CONTENT;
6017 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6018 /* The sh_info field is set in final_write_processing. */
6019 }
6020 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6021 {
6022 hdr->sh_type = SHT_MIPS_OPTIONS;
6023 hdr->sh_entsize = 1;
6024 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6025 }
6026 else if (CONST_STRNEQ (name, ".debug_")
6027 || CONST_STRNEQ (name, ".zdebug_"))
6028 {
6029 hdr->sh_type = SHT_MIPS_DWARF;
6030
6031 /* Irix facilities such as libexc expect a single .debug_frame
6032 per executable, the system ones have NOSTRIP set and the linker
6033 doesn't merge sections with different flags so ... */
6034 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6035 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6036 }
6037 else if (strcmp (name, ".MIPS.symlib") == 0)
6038 {
6039 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6040 /* The sh_link and sh_info fields are set in
6041 final_write_processing. */
6042 }
6043 else if (CONST_STRNEQ (name, ".MIPS.events")
6044 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6045 {
6046 hdr->sh_type = SHT_MIPS_EVENTS;
6047 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6048 /* The sh_link field is set in final_write_processing. */
6049 }
6050 else if (strcmp (name, ".msym") == 0)
6051 {
6052 hdr->sh_type = SHT_MIPS_MSYM;
6053 hdr->sh_flags |= SHF_ALLOC;
6054 hdr->sh_entsize = 8;
6055 }
6056
6057 /* The generic elf_fake_sections will set up REL_HDR using the default
6058 kind of relocations. We used to set up a second header for the
6059 non-default kind of relocations here, but only NewABI would use
6060 these, and the IRIX ld doesn't like resulting empty RELA sections.
6061 Thus we create those header only on demand now. */
6062
6063 return TRUE;
6064 }
6065
6066 /* Given a BFD section, try to locate the corresponding ELF section
6067 index. This is used by both the 32-bit and the 64-bit ABI.
6068 Actually, it's not clear to me that the 64-bit ABI supports these,
6069 but for non-PIC objects we will certainly want support for at least
6070 the .scommon section. */
6071
6072 bfd_boolean
6073 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6074 asection *sec, int *retval)
6075 {
6076 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6077 {
6078 *retval = SHN_MIPS_SCOMMON;
6079 return TRUE;
6080 }
6081 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6082 {
6083 *retval = SHN_MIPS_ACOMMON;
6084 return TRUE;
6085 }
6086 return FALSE;
6087 }
6088 \f
6089 /* Hook called by the linker routine which adds symbols from an object
6090 file. We must handle the special MIPS section numbers here. */
6091
6092 bfd_boolean
6093 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6094 Elf_Internal_Sym *sym, const char **namep,
6095 flagword *flagsp ATTRIBUTE_UNUSED,
6096 asection **secp, bfd_vma *valp)
6097 {
6098 if (SGI_COMPAT (abfd)
6099 && (abfd->flags & DYNAMIC) != 0
6100 && strcmp (*namep, "_rld_new_interface") == 0)
6101 {
6102 /* Skip IRIX5 rld entry name. */
6103 *namep = NULL;
6104 return TRUE;
6105 }
6106
6107 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6108 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6109 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6110 a magic symbol resolved by the linker, we ignore this bogus definition
6111 of _gp_disp. New ABI objects do not suffer from this problem so this
6112 is not done for them. */
6113 if (!NEWABI_P(abfd)
6114 && (sym->st_shndx == SHN_ABS)
6115 && (strcmp (*namep, "_gp_disp") == 0))
6116 {
6117 *namep = NULL;
6118 return TRUE;
6119 }
6120
6121 switch (sym->st_shndx)
6122 {
6123 case SHN_COMMON:
6124 /* Common symbols less than the GP size are automatically
6125 treated as SHN_MIPS_SCOMMON symbols. */
6126 if (sym->st_size > elf_gp_size (abfd)
6127 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6128 || IRIX_COMPAT (abfd) == ict_irix6)
6129 break;
6130 /* Fall through. */
6131 case SHN_MIPS_SCOMMON:
6132 *secp = bfd_make_section_old_way (abfd, ".scommon");
6133 (*secp)->flags |= SEC_IS_COMMON;
6134 *valp = sym->st_size;
6135 break;
6136
6137 case SHN_MIPS_TEXT:
6138 /* This section is used in a shared object. */
6139 if (elf_tdata (abfd)->elf_text_section == NULL)
6140 {
6141 asymbol *elf_text_symbol;
6142 asection *elf_text_section;
6143 bfd_size_type amt = sizeof (asection);
6144
6145 elf_text_section = bfd_zalloc (abfd, amt);
6146 if (elf_text_section == NULL)
6147 return FALSE;
6148
6149 amt = sizeof (asymbol);
6150 elf_text_symbol = bfd_zalloc (abfd, amt);
6151 if (elf_text_symbol == NULL)
6152 return FALSE;
6153
6154 /* Initialize the section. */
6155
6156 elf_tdata (abfd)->elf_text_section = elf_text_section;
6157 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6158
6159 elf_text_section->symbol = elf_text_symbol;
6160 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6161
6162 elf_text_section->name = ".text";
6163 elf_text_section->flags = SEC_NO_FLAGS;
6164 elf_text_section->output_section = NULL;
6165 elf_text_section->owner = abfd;
6166 elf_text_symbol->name = ".text";
6167 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6168 elf_text_symbol->section = elf_text_section;
6169 }
6170 /* This code used to do *secp = bfd_und_section_ptr if
6171 info->shared. I don't know why, and that doesn't make sense,
6172 so I took it out. */
6173 *secp = elf_tdata (abfd)->elf_text_section;
6174 break;
6175
6176 case SHN_MIPS_ACOMMON:
6177 /* Fall through. XXX Can we treat this as allocated data? */
6178 case SHN_MIPS_DATA:
6179 /* This section is used in a shared object. */
6180 if (elf_tdata (abfd)->elf_data_section == NULL)
6181 {
6182 asymbol *elf_data_symbol;
6183 asection *elf_data_section;
6184 bfd_size_type amt = sizeof (asection);
6185
6186 elf_data_section = bfd_zalloc (abfd, amt);
6187 if (elf_data_section == NULL)
6188 return FALSE;
6189
6190 amt = sizeof (asymbol);
6191 elf_data_symbol = bfd_zalloc (abfd, amt);
6192 if (elf_data_symbol == NULL)
6193 return FALSE;
6194
6195 /* Initialize the section. */
6196
6197 elf_tdata (abfd)->elf_data_section = elf_data_section;
6198 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6199
6200 elf_data_section->symbol = elf_data_symbol;
6201 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6202
6203 elf_data_section->name = ".data";
6204 elf_data_section->flags = SEC_NO_FLAGS;
6205 elf_data_section->output_section = NULL;
6206 elf_data_section->owner = abfd;
6207 elf_data_symbol->name = ".data";
6208 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6209 elf_data_symbol->section = elf_data_section;
6210 }
6211 /* This code used to do *secp = bfd_und_section_ptr if
6212 info->shared. I don't know why, and that doesn't make sense,
6213 so I took it out. */
6214 *secp = elf_tdata (abfd)->elf_data_section;
6215 break;
6216
6217 case SHN_MIPS_SUNDEFINED:
6218 *secp = bfd_und_section_ptr;
6219 break;
6220 }
6221
6222 if (SGI_COMPAT (abfd)
6223 && ! info->shared
6224 && info->output_bfd->xvec == abfd->xvec
6225 && strcmp (*namep, "__rld_obj_head") == 0)
6226 {
6227 struct elf_link_hash_entry *h;
6228 struct bfd_link_hash_entry *bh;
6229
6230 /* Mark __rld_obj_head as dynamic. */
6231 bh = NULL;
6232 if (! (_bfd_generic_link_add_one_symbol
6233 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6234 get_elf_backend_data (abfd)->collect, &bh)))
6235 return FALSE;
6236
6237 h = (struct elf_link_hash_entry *) bh;
6238 h->non_elf = 0;
6239 h->def_regular = 1;
6240 h->type = STT_OBJECT;
6241
6242 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6243 return FALSE;
6244
6245 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6246 }
6247
6248 /* If this is a mips16 text symbol, add 1 to the value to make it
6249 odd. This will cause something like .word SYM to come up with
6250 the right value when it is loaded into the PC. */
6251 if (ELF_ST_IS_MIPS16 (sym->st_other))
6252 ++*valp;
6253
6254 return TRUE;
6255 }
6256
6257 /* This hook function is called before the linker writes out a global
6258 symbol. We mark symbols as small common if appropriate. This is
6259 also where we undo the increment of the value for a mips16 symbol. */
6260
6261 bfd_boolean
6262 _bfd_mips_elf_link_output_symbol_hook
6263 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6264 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6265 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6266 {
6267 /* If we see a common symbol, which implies a relocatable link, then
6268 if a symbol was small common in an input file, mark it as small
6269 common in the output file. */
6270 if (sym->st_shndx == SHN_COMMON
6271 && strcmp (input_sec->name, ".scommon") == 0)
6272 sym->st_shndx = SHN_MIPS_SCOMMON;
6273
6274 if (ELF_ST_IS_MIPS16 (sym->st_other))
6275 sym->st_value &= ~1;
6276
6277 return TRUE;
6278 }
6279 \f
6280 /* Functions for the dynamic linker. */
6281
6282 /* Create dynamic sections when linking against a dynamic object. */
6283
6284 bfd_boolean
6285 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6286 {
6287 struct elf_link_hash_entry *h;
6288 struct bfd_link_hash_entry *bh;
6289 flagword flags;
6290 register asection *s;
6291 const char * const *namep;
6292 struct mips_elf_link_hash_table *htab;
6293
6294 htab = mips_elf_hash_table (info);
6295 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6296 | SEC_LINKER_CREATED | SEC_READONLY);
6297
6298 /* The psABI requires a read-only .dynamic section, but the VxWorks
6299 EABI doesn't. */
6300 if (!htab->is_vxworks)
6301 {
6302 s = bfd_get_section_by_name (abfd, ".dynamic");
6303 if (s != NULL)
6304 {
6305 if (! bfd_set_section_flags (abfd, s, flags))
6306 return FALSE;
6307 }
6308 }
6309
6310 /* We need to create .got section. */
6311 if (! mips_elf_create_got_section (abfd, info, FALSE))
6312 return FALSE;
6313
6314 if (! mips_elf_rel_dyn_section (info, TRUE))
6315 return FALSE;
6316
6317 /* Create .stub section. */
6318 s = bfd_make_section_with_flags (abfd,
6319 MIPS_ELF_STUB_SECTION_NAME (abfd),
6320 flags | SEC_CODE);
6321 if (s == NULL
6322 || ! bfd_set_section_alignment (abfd, s,
6323 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6324 return FALSE;
6325 htab->sstubs = s;
6326
6327 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6328 && !info->shared
6329 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6330 {
6331 s = bfd_make_section_with_flags (abfd, ".rld_map",
6332 flags &~ (flagword) SEC_READONLY);
6333 if (s == NULL
6334 || ! bfd_set_section_alignment (abfd, s,
6335 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6336 return FALSE;
6337 }
6338
6339 /* On IRIX5, we adjust add some additional symbols and change the
6340 alignments of several sections. There is no ABI documentation
6341 indicating that this is necessary on IRIX6, nor any evidence that
6342 the linker takes such action. */
6343 if (IRIX_COMPAT (abfd) == ict_irix5)
6344 {
6345 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6346 {
6347 bh = NULL;
6348 if (! (_bfd_generic_link_add_one_symbol
6349 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6350 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6351 return FALSE;
6352
6353 h = (struct elf_link_hash_entry *) bh;
6354 h->non_elf = 0;
6355 h->def_regular = 1;
6356 h->type = STT_SECTION;
6357
6358 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6359 return FALSE;
6360 }
6361
6362 /* We need to create a .compact_rel section. */
6363 if (SGI_COMPAT (abfd))
6364 {
6365 if (!mips_elf_create_compact_rel_section (abfd, info))
6366 return FALSE;
6367 }
6368
6369 /* Change alignments of some sections. */
6370 s = bfd_get_section_by_name (abfd, ".hash");
6371 if (s != NULL)
6372 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6373 s = bfd_get_section_by_name (abfd, ".dynsym");
6374 if (s != NULL)
6375 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6376 s = bfd_get_section_by_name (abfd, ".dynstr");
6377 if (s != NULL)
6378 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6379 s = bfd_get_section_by_name (abfd, ".reginfo");
6380 if (s != NULL)
6381 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6382 s = bfd_get_section_by_name (abfd, ".dynamic");
6383 if (s != NULL)
6384 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6385 }
6386
6387 if (!info->shared)
6388 {
6389 const char *name;
6390
6391 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6392 bh = NULL;
6393 if (!(_bfd_generic_link_add_one_symbol
6394 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6395 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6396 return FALSE;
6397
6398 h = (struct elf_link_hash_entry *) bh;
6399 h->non_elf = 0;
6400 h->def_regular = 1;
6401 h->type = STT_SECTION;
6402
6403 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6404 return FALSE;
6405
6406 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6407 {
6408 /* __rld_map is a four byte word located in the .data section
6409 and is filled in by the rtld to contain a pointer to
6410 the _r_debug structure. Its symbol value will be set in
6411 _bfd_mips_elf_finish_dynamic_symbol. */
6412 s = bfd_get_section_by_name (abfd, ".rld_map");
6413 BFD_ASSERT (s != NULL);
6414
6415 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6416 bh = NULL;
6417 if (!(_bfd_generic_link_add_one_symbol
6418 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6419 get_elf_backend_data (abfd)->collect, &bh)))
6420 return FALSE;
6421
6422 h = (struct elf_link_hash_entry *) bh;
6423 h->non_elf = 0;
6424 h->def_regular = 1;
6425 h->type = STT_OBJECT;
6426
6427 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6428 return FALSE;
6429 }
6430 }
6431
6432 if (htab->is_vxworks)
6433 {
6434 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6435 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6436 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6437 return FALSE;
6438
6439 /* Cache the sections created above. */
6440 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6441 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6442 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6443 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6444 if (!htab->sdynbss
6445 || (!htab->srelbss && !info->shared)
6446 || !htab->srelplt
6447 || !htab->splt)
6448 abort ();
6449
6450 /* Do the usual VxWorks handling. */
6451 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6452 return FALSE;
6453
6454 /* Work out the PLT sizes. */
6455 if (info->shared)
6456 {
6457 htab->plt_header_size
6458 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6459 htab->plt_entry_size
6460 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6461 }
6462 else
6463 {
6464 htab->plt_header_size
6465 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6466 htab->plt_entry_size
6467 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6468 }
6469 }
6470
6471 return TRUE;
6472 }
6473 \f
6474 /* Return true if relocation REL against section SEC is a REL rather than
6475 RELA relocation. RELOCS is the first relocation in the section and
6476 ABFD is the bfd that contains SEC. */
6477
6478 static bfd_boolean
6479 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
6480 const Elf_Internal_Rela *relocs,
6481 const Elf_Internal_Rela *rel)
6482 {
6483 Elf_Internal_Shdr *rel_hdr;
6484 const struct elf_backend_data *bed;
6485
6486 /* To determine which flavor or relocation this is, we depend on the
6487 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
6488 rel_hdr = &elf_section_data (sec)->rel_hdr;
6489 bed = get_elf_backend_data (abfd);
6490 if ((size_t) (rel - relocs)
6491 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6492 rel_hdr = elf_section_data (sec)->rel_hdr2;
6493 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
6494 }
6495
6496 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
6497 HOWTO is the relocation's howto and CONTENTS points to the contents
6498 of the section that REL is against. */
6499
6500 static bfd_vma
6501 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
6502 reloc_howto_type *howto, bfd_byte *contents)
6503 {
6504 bfd_byte *location;
6505 unsigned int r_type;
6506 bfd_vma addend;
6507
6508 r_type = ELF_R_TYPE (abfd, rel->r_info);
6509 location = contents + rel->r_offset;
6510
6511 /* Get the addend, which is stored in the input file. */
6512 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
6513 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
6514 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
6515
6516 return addend & howto->src_mask;
6517 }
6518
6519 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
6520 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
6521 and update *ADDEND with the final addend. Return true on success
6522 or false if the LO16 could not be found. RELEND is the exclusive
6523 upper bound on the relocations for REL's section. */
6524
6525 static bfd_boolean
6526 mips_elf_add_lo16_rel_addend (bfd *abfd,
6527 const Elf_Internal_Rela *rel,
6528 const Elf_Internal_Rela *relend,
6529 bfd_byte *contents, bfd_vma *addend)
6530 {
6531 unsigned int r_type, lo16_type;
6532 const Elf_Internal_Rela *lo16_relocation;
6533 reloc_howto_type *lo16_howto;
6534 bfd_vma l;
6535
6536 r_type = ELF_R_TYPE (abfd, rel->r_info);
6537 if (mips16_reloc_p (r_type))
6538 lo16_type = R_MIPS16_LO16;
6539 else
6540 lo16_type = R_MIPS_LO16;
6541
6542 /* The combined value is the sum of the HI16 addend, left-shifted by
6543 sixteen bits, and the LO16 addend, sign extended. (Usually, the
6544 code does a `lui' of the HI16 value, and then an `addiu' of the
6545 LO16 value.)
6546
6547 Scan ahead to find a matching LO16 relocation.
6548
6549 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
6550 be immediately following. However, for the IRIX6 ABI, the next
6551 relocation may be a composed relocation consisting of several
6552 relocations for the same address. In that case, the R_MIPS_LO16
6553 relocation may occur as one of these. We permit a similar
6554 extension in general, as that is useful for GCC.
6555
6556 In some cases GCC dead code elimination removes the LO16 but keeps
6557 the corresponding HI16. This is strictly speaking a violation of
6558 the ABI but not immediately harmful. */
6559 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
6560 if (lo16_relocation == NULL)
6561 return FALSE;
6562
6563 /* Obtain the addend kept there. */
6564 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
6565 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
6566
6567 l <<= lo16_howto->rightshift;
6568 l = _bfd_mips_elf_sign_extend (l, 16);
6569
6570 *addend <<= 16;
6571 *addend += l;
6572 return TRUE;
6573 }
6574
6575 /* Try to read the contents of section SEC in bfd ABFD. Return true and
6576 store the contents in *CONTENTS on success. Assume that *CONTENTS
6577 already holds the contents if it is nonull on entry. */
6578
6579 static bfd_boolean
6580 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
6581 {
6582 if (*contents)
6583 return TRUE;
6584
6585 /* Get cached copy if it exists. */
6586 if (elf_section_data (sec)->this_hdr.contents != NULL)
6587 {
6588 *contents = elf_section_data (sec)->this_hdr.contents;
6589 return TRUE;
6590 }
6591
6592 return bfd_malloc_and_get_section (abfd, sec, contents);
6593 }
6594
6595 /* Look through the relocs for a section during the first phase, and
6596 allocate space in the global offset table. */
6597
6598 bfd_boolean
6599 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6600 asection *sec, const Elf_Internal_Rela *relocs)
6601 {
6602 const char *name;
6603 bfd *dynobj;
6604 Elf_Internal_Shdr *symtab_hdr;
6605 struct elf_link_hash_entry **sym_hashes;
6606 size_t extsymoff;
6607 const Elf_Internal_Rela *rel;
6608 const Elf_Internal_Rela *rel_end;
6609 asection *sreloc;
6610 const struct elf_backend_data *bed;
6611 struct mips_elf_link_hash_table *htab;
6612 bfd_byte *contents;
6613 bfd_vma addend;
6614 reloc_howto_type *howto;
6615
6616 if (info->relocatable)
6617 return TRUE;
6618
6619 htab = mips_elf_hash_table (info);
6620 dynobj = elf_hash_table (info)->dynobj;
6621 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6622 sym_hashes = elf_sym_hashes (abfd);
6623 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6624
6625 bed = get_elf_backend_data (abfd);
6626 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6627
6628 /* Check for the mips16 stub sections. */
6629
6630 name = bfd_get_section_name (abfd, sec);
6631 if (FN_STUB_P (name))
6632 {
6633 unsigned long r_symndx;
6634
6635 /* Look at the relocation information to figure out which symbol
6636 this is for. */
6637
6638 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
6639 if (r_symndx == 0)
6640 {
6641 (*_bfd_error_handler)
6642 (_("%B: Warning: cannot determine the target function for"
6643 " stub section `%s'"),
6644 abfd, name);
6645 bfd_set_error (bfd_error_bad_value);
6646 return FALSE;
6647 }
6648
6649 if (r_symndx < extsymoff
6650 || sym_hashes[r_symndx - extsymoff] == NULL)
6651 {
6652 asection *o;
6653
6654 /* This stub is for a local symbol. This stub will only be
6655 needed if there is some relocation in this BFD, other
6656 than a 16 bit function call, which refers to this symbol. */
6657 for (o = abfd->sections; o != NULL; o = o->next)
6658 {
6659 Elf_Internal_Rela *sec_relocs;
6660 const Elf_Internal_Rela *r, *rend;
6661
6662 /* We can ignore stub sections when looking for relocs. */
6663 if ((o->flags & SEC_RELOC) == 0
6664 || o->reloc_count == 0
6665 || section_allows_mips16_refs_p (o))
6666 continue;
6667
6668 sec_relocs
6669 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6670 info->keep_memory);
6671 if (sec_relocs == NULL)
6672 return FALSE;
6673
6674 rend = sec_relocs + o->reloc_count;
6675 for (r = sec_relocs; r < rend; r++)
6676 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6677 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
6678 break;
6679
6680 if (elf_section_data (o)->relocs != sec_relocs)
6681 free (sec_relocs);
6682
6683 if (r < rend)
6684 break;
6685 }
6686
6687 if (o == NULL)
6688 {
6689 /* There is no non-call reloc for this stub, so we do
6690 not need it. Since this function is called before
6691 the linker maps input sections to output sections, we
6692 can easily discard it by setting the SEC_EXCLUDE
6693 flag. */
6694 sec->flags |= SEC_EXCLUDE;
6695 return TRUE;
6696 }
6697
6698 /* Record this stub in an array of local symbol stubs for
6699 this BFD. */
6700 if (elf_tdata (abfd)->local_stubs == NULL)
6701 {
6702 unsigned long symcount;
6703 asection **n;
6704 bfd_size_type amt;
6705
6706 if (elf_bad_symtab (abfd))
6707 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6708 else
6709 symcount = symtab_hdr->sh_info;
6710 amt = symcount * sizeof (asection *);
6711 n = bfd_zalloc (abfd, amt);
6712 if (n == NULL)
6713 return FALSE;
6714 elf_tdata (abfd)->local_stubs = n;
6715 }
6716
6717 sec->flags |= SEC_KEEP;
6718 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6719
6720 /* We don't need to set mips16_stubs_seen in this case.
6721 That flag is used to see whether we need to look through
6722 the global symbol table for stubs. We don't need to set
6723 it here, because we just have a local stub. */
6724 }
6725 else
6726 {
6727 struct mips_elf_link_hash_entry *h;
6728
6729 h = ((struct mips_elf_link_hash_entry *)
6730 sym_hashes[r_symndx - extsymoff]);
6731
6732 while (h->root.root.type == bfd_link_hash_indirect
6733 || h->root.root.type == bfd_link_hash_warning)
6734 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6735
6736 /* H is the symbol this stub is for. */
6737
6738 /* If we already have an appropriate stub for this function, we
6739 don't need another one, so we can discard this one. Since
6740 this function is called before the linker maps input sections
6741 to output sections, we can easily discard it by setting the
6742 SEC_EXCLUDE flag. */
6743 if (h->fn_stub != NULL)
6744 {
6745 sec->flags |= SEC_EXCLUDE;
6746 return TRUE;
6747 }
6748
6749 sec->flags |= SEC_KEEP;
6750 h->fn_stub = sec;
6751 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6752 }
6753 }
6754 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6755 {
6756 unsigned long r_symndx;
6757 struct mips_elf_link_hash_entry *h;
6758 asection **loc;
6759
6760 /* Look at the relocation information to figure out which symbol
6761 this is for. */
6762
6763 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
6764 if (r_symndx == 0)
6765 {
6766 (*_bfd_error_handler)
6767 (_("%B: Warning: cannot determine the target function for"
6768 " stub section `%s'"),
6769 abfd, name);
6770 bfd_set_error (bfd_error_bad_value);
6771 return FALSE;
6772 }
6773
6774 if (r_symndx < extsymoff
6775 || sym_hashes[r_symndx - extsymoff] == NULL)
6776 {
6777 asection *o;
6778
6779 /* This stub is for a local symbol. This stub will only be
6780 needed if there is some relocation (R_MIPS16_26) in this BFD
6781 that refers to this symbol. */
6782 for (o = abfd->sections; o != NULL; o = o->next)
6783 {
6784 Elf_Internal_Rela *sec_relocs;
6785 const Elf_Internal_Rela *r, *rend;
6786
6787 /* We can ignore stub sections when looking for relocs. */
6788 if ((o->flags & SEC_RELOC) == 0
6789 || o->reloc_count == 0
6790 || section_allows_mips16_refs_p (o))
6791 continue;
6792
6793 sec_relocs
6794 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6795 info->keep_memory);
6796 if (sec_relocs == NULL)
6797 return FALSE;
6798
6799 rend = sec_relocs + o->reloc_count;
6800 for (r = sec_relocs; r < rend; r++)
6801 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6802 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6803 break;
6804
6805 if (elf_section_data (o)->relocs != sec_relocs)
6806 free (sec_relocs);
6807
6808 if (r < rend)
6809 break;
6810 }
6811
6812 if (o == NULL)
6813 {
6814 /* There is no non-call reloc for this stub, so we do
6815 not need it. Since this function is called before
6816 the linker maps input sections to output sections, we
6817 can easily discard it by setting the SEC_EXCLUDE
6818 flag. */
6819 sec->flags |= SEC_EXCLUDE;
6820 return TRUE;
6821 }
6822
6823 /* Record this stub in an array of local symbol call_stubs for
6824 this BFD. */
6825 if (elf_tdata (abfd)->local_call_stubs == NULL)
6826 {
6827 unsigned long symcount;
6828 asection **n;
6829 bfd_size_type amt;
6830
6831 if (elf_bad_symtab (abfd))
6832 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6833 else
6834 symcount = symtab_hdr->sh_info;
6835 amt = symcount * sizeof (asection *);
6836 n = bfd_zalloc (abfd, amt);
6837 if (n == NULL)
6838 return FALSE;
6839 elf_tdata (abfd)->local_call_stubs = n;
6840 }
6841
6842 sec->flags |= SEC_KEEP;
6843 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6844
6845 /* We don't need to set mips16_stubs_seen in this case.
6846 That flag is used to see whether we need to look through
6847 the global symbol table for stubs. We don't need to set
6848 it here, because we just have a local stub. */
6849 }
6850 else
6851 {
6852 h = ((struct mips_elf_link_hash_entry *)
6853 sym_hashes[r_symndx - extsymoff]);
6854
6855 /* H is the symbol this stub is for. */
6856
6857 if (CALL_FP_STUB_P (name))
6858 loc = &h->call_fp_stub;
6859 else
6860 loc = &h->call_stub;
6861
6862 /* If we already have an appropriate stub for this function, we
6863 don't need another one, so we can discard this one. Since
6864 this function is called before the linker maps input sections
6865 to output sections, we can easily discard it by setting the
6866 SEC_EXCLUDE flag. */
6867 if (*loc != NULL)
6868 {
6869 sec->flags |= SEC_EXCLUDE;
6870 return TRUE;
6871 }
6872
6873 sec->flags |= SEC_KEEP;
6874 *loc = sec;
6875 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6876 }
6877 }
6878
6879 sreloc = NULL;
6880 contents = NULL;
6881 for (rel = relocs; rel < rel_end; ++rel)
6882 {
6883 unsigned long r_symndx;
6884 unsigned int r_type;
6885 struct elf_link_hash_entry *h;
6886
6887 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6888 r_type = ELF_R_TYPE (abfd, rel->r_info);
6889
6890 if (r_symndx < extsymoff)
6891 h = NULL;
6892 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6893 {
6894 (*_bfd_error_handler)
6895 (_("%B: Malformed reloc detected for section %s"),
6896 abfd, name);
6897 bfd_set_error (bfd_error_bad_value);
6898 return FALSE;
6899 }
6900 else
6901 {
6902 h = sym_hashes[r_symndx - extsymoff];
6903
6904 /* This may be an indirect symbol created because of a version. */
6905 if (h != NULL)
6906 {
6907 while (h->root.type == bfd_link_hash_indirect)
6908 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6909 }
6910 }
6911
6912 /* Some relocs require a global offset table. */
6913 if (dynobj == NULL || htab->sgot == NULL)
6914 {
6915 switch (r_type)
6916 {
6917 case R_MIPS16_GOT16:
6918 case R_MIPS16_CALL16:
6919 case R_MIPS_GOT16:
6920 case R_MIPS_CALL16:
6921 case R_MIPS_CALL_HI16:
6922 case R_MIPS_CALL_LO16:
6923 case R_MIPS_GOT_HI16:
6924 case R_MIPS_GOT_LO16:
6925 case R_MIPS_GOT_PAGE:
6926 case R_MIPS_GOT_OFST:
6927 case R_MIPS_GOT_DISP:
6928 case R_MIPS_TLS_GOTTPREL:
6929 case R_MIPS_TLS_GD:
6930 case R_MIPS_TLS_LDM:
6931 if (dynobj == NULL)
6932 elf_hash_table (info)->dynobj = dynobj = abfd;
6933 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6934 return FALSE;
6935 if (htab->is_vxworks && !info->shared)
6936 {
6937 (*_bfd_error_handler)
6938 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6939 abfd, (unsigned long) rel->r_offset);
6940 bfd_set_error (bfd_error_bad_value);
6941 return FALSE;
6942 }
6943 break;
6944
6945 case R_MIPS_32:
6946 case R_MIPS_REL32:
6947 case R_MIPS_64:
6948 /* In VxWorks executables, references to external symbols
6949 are handled using copy relocs or PLT stubs, so there's
6950 no need to add a dynamic relocation here. */
6951 if (dynobj == NULL
6952 && (info->shared || (h != NULL && !htab->is_vxworks))
6953 && (sec->flags & SEC_ALLOC) != 0)
6954 elf_hash_table (info)->dynobj = dynobj = abfd;
6955 break;
6956
6957 default:
6958 break;
6959 }
6960 }
6961
6962 if (h)
6963 {
6964 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6965
6966 /* Relocations against the special VxWorks __GOTT_BASE__ and
6967 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6968 room for them in .rela.dyn. */
6969 if (is_gott_symbol (info, h))
6970 {
6971 if (sreloc == NULL)
6972 {
6973 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6974 if (sreloc == NULL)
6975 return FALSE;
6976 }
6977 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6978 if (MIPS_ELF_READONLY_SECTION (sec))
6979 /* We tell the dynamic linker that there are
6980 relocations against the text segment. */
6981 info->flags |= DF_TEXTREL;
6982 }
6983 }
6984 else if (r_type == R_MIPS_CALL_LO16
6985 || r_type == R_MIPS_GOT_LO16
6986 || r_type == R_MIPS_GOT_DISP
6987 || (got16_reloc_p (r_type) && htab->is_vxworks))
6988 {
6989 /* We may need a local GOT entry for this relocation. We
6990 don't count R_MIPS_GOT_PAGE because we can estimate the
6991 maximum number of pages needed by looking at the size of
6992 the segment. Similar comments apply to R_MIPS*_GOT16 and
6993 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
6994 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6995 R_MIPS_CALL_HI16 because these are always followed by an
6996 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6997 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
6998 rel->r_addend, info, 0))
6999 return FALSE;
7000 }
7001
7002 switch (r_type)
7003 {
7004 case R_MIPS_CALL16:
7005 case R_MIPS16_CALL16:
7006 if (h == NULL)
7007 {
7008 (*_bfd_error_handler)
7009 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7010 abfd, (unsigned long) rel->r_offset);
7011 bfd_set_error (bfd_error_bad_value);
7012 return FALSE;
7013 }
7014 /* Fall through. */
7015
7016 case R_MIPS_CALL_HI16:
7017 case R_MIPS_CALL_LO16:
7018 if (h != NULL)
7019 {
7020 /* VxWorks call relocations point the function's .got.plt
7021 entry, which will be allocated by adjust_dynamic_symbol.
7022 Otherwise, this symbol requires a global GOT entry. */
7023 if ((!htab->is_vxworks || h->forced_local)
7024 && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7025 return FALSE;
7026
7027 /* We need a stub, not a plt entry for the undefined
7028 function. But we record it as if it needs plt. See
7029 _bfd_elf_adjust_dynamic_symbol. */
7030 h->needs_plt = 1;
7031 h->type = STT_FUNC;
7032 }
7033 break;
7034
7035 case R_MIPS_GOT_PAGE:
7036 /* If this is a global, overridable symbol, GOT_PAGE will
7037 decay to GOT_DISP, so we'll need a GOT entry for it. */
7038 if (h)
7039 {
7040 struct mips_elf_link_hash_entry *hmips =
7041 (struct mips_elf_link_hash_entry *) h;
7042
7043 while (hmips->root.root.type == bfd_link_hash_indirect
7044 || hmips->root.root.type == bfd_link_hash_warning)
7045 hmips = (struct mips_elf_link_hash_entry *)
7046 hmips->root.root.u.i.link;
7047
7048 /* This symbol is definitely not overridable. */
7049 if (hmips->root.def_regular
7050 && ! (info->shared && ! info->symbolic
7051 && ! hmips->root.forced_local))
7052 h = NULL;
7053 }
7054 /* Fall through. */
7055
7056 case R_MIPS16_GOT16:
7057 case R_MIPS_GOT16:
7058 case R_MIPS_GOT_HI16:
7059 case R_MIPS_GOT_LO16:
7060 if (!h || r_type == R_MIPS_GOT_PAGE)
7061 {
7062 /* This relocation needs (or may need, if h != NULL) a
7063 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7064 know for sure until we know whether the symbol is
7065 preemptible. */
7066 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7067 {
7068 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7069 return FALSE;
7070 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7071 addend = mips_elf_read_rel_addend (abfd, rel,
7072 howto, contents);
7073 if (r_type == R_MIPS_GOT16)
7074 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7075 contents, &addend);
7076 else
7077 addend <<= howto->rightshift;
7078 }
7079 else
7080 addend = rel->r_addend;
7081 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7082 addend))
7083 return FALSE;
7084 break;
7085 }
7086 /* Fall through. */
7087
7088 case R_MIPS_GOT_DISP:
7089 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7090 return FALSE;
7091 break;
7092
7093 case R_MIPS_TLS_GOTTPREL:
7094 if (info->shared)
7095 info->flags |= DF_STATIC_TLS;
7096 /* Fall through */
7097
7098 case R_MIPS_TLS_LDM:
7099 if (r_type == R_MIPS_TLS_LDM)
7100 {
7101 r_symndx = 0;
7102 h = NULL;
7103 }
7104 /* Fall through */
7105
7106 case R_MIPS_TLS_GD:
7107 /* This symbol requires a global offset table entry, or two
7108 for TLS GD relocations. */
7109 {
7110 unsigned char flag = (r_type == R_MIPS_TLS_GD
7111 ? GOT_TLS_GD
7112 : r_type == R_MIPS_TLS_LDM
7113 ? GOT_TLS_LDM
7114 : GOT_TLS_IE);
7115 if (h != NULL)
7116 {
7117 struct mips_elf_link_hash_entry *hmips =
7118 (struct mips_elf_link_hash_entry *) h;
7119 hmips->tls_type |= flag;
7120
7121 if (h && !mips_elf_record_global_got_symbol (h, abfd,
7122 info, flag))
7123 return FALSE;
7124 }
7125 else
7126 {
7127 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7128
7129 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7130 rel->r_addend,
7131 info, flag))
7132 return FALSE;
7133 }
7134 }
7135 break;
7136
7137 case R_MIPS_32:
7138 case R_MIPS_REL32:
7139 case R_MIPS_64:
7140 /* In VxWorks executables, references to external symbols
7141 are handled using copy relocs or PLT stubs, so there's
7142 no need to add a .rela.dyn entry for this relocation. */
7143 if ((info->shared || (h != NULL && !htab->is_vxworks))
7144 && !(h && strcmp (h->root.root.string, "__gnu_local_gp") == 0)
7145 && (sec->flags & SEC_ALLOC) != 0)
7146 {
7147 if (sreloc == NULL)
7148 {
7149 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7150 if (sreloc == NULL)
7151 return FALSE;
7152 }
7153 if (info->shared && h == NULL)
7154 {
7155 /* When creating a shared object, we must copy these
7156 reloc types into the output file as R_MIPS_REL32
7157 relocs. Make room for this reloc in .rel(a).dyn. */
7158 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7159 if (MIPS_ELF_READONLY_SECTION (sec))
7160 /* We tell the dynamic linker that there are
7161 relocations against the text segment. */
7162 info->flags |= DF_TEXTREL;
7163 }
7164 else
7165 {
7166 struct mips_elf_link_hash_entry *hmips;
7167
7168 /* For a shared object, we must copy this relocation
7169 unless the symbol turns out to be undefined and
7170 weak with non-default visibility, in which case
7171 it will be left as zero.
7172
7173 We could elide R_MIPS_REL32 for locally binding symbols
7174 in shared libraries, but do not yet do so.
7175
7176 For an executable, we only need to copy this
7177 reloc if the symbol is defined in a dynamic
7178 object. */
7179 hmips = (struct mips_elf_link_hash_entry *) h;
7180 ++hmips->possibly_dynamic_relocs;
7181 if (MIPS_ELF_READONLY_SECTION (sec))
7182 /* We need it to tell the dynamic linker if there
7183 are relocations against the text segment. */
7184 hmips->readonly_reloc = TRUE;
7185 }
7186
7187 /* Even though we don't directly need a GOT entry for
7188 this symbol, a symbol must have a dynamic symbol
7189 table index greater that DT_MIPS_GOTSYM if there are
7190 dynamic relocations against it. This does not apply
7191 to VxWorks, which does not have the usual coupling
7192 between global GOT entries and .dynsym entries. */
7193 if (h != NULL && !htab->is_vxworks)
7194 {
7195 if (dynobj == NULL)
7196 elf_hash_table (info)->dynobj = dynobj = abfd;
7197 if (! mips_elf_create_got_section (dynobj, info, TRUE))
7198 return FALSE;
7199 if (!mips_elf_record_global_got_symbol (h, abfd, info, 0))
7200 return FALSE;
7201 }
7202 }
7203
7204 if (SGI_COMPAT (abfd))
7205 mips_elf_hash_table (info)->compact_rel_size +=
7206 sizeof (Elf32_External_crinfo);
7207 break;
7208
7209 case R_MIPS_PC16:
7210 if (h)
7211 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7212 break;
7213
7214 case R_MIPS_26:
7215 if (h)
7216 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7217 /* Fall through. */
7218
7219 case R_MIPS_GPREL16:
7220 case R_MIPS_LITERAL:
7221 case R_MIPS_GPREL32:
7222 if (SGI_COMPAT (abfd))
7223 mips_elf_hash_table (info)->compact_rel_size +=
7224 sizeof (Elf32_External_crinfo);
7225 break;
7226
7227 /* This relocation describes the C++ object vtable hierarchy.
7228 Reconstruct it for later use during GC. */
7229 case R_MIPS_GNU_VTINHERIT:
7230 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7231 return FALSE;
7232 break;
7233
7234 /* This relocation describes which C++ vtable entries are actually
7235 used. Record for later use during GC. */
7236 case R_MIPS_GNU_VTENTRY:
7237 BFD_ASSERT (h != NULL);
7238 if (h != NULL
7239 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7240 return FALSE;
7241 break;
7242
7243 default:
7244 break;
7245 }
7246
7247 /* We must not create a stub for a symbol that has relocations
7248 related to taking the function's address. This doesn't apply to
7249 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7250 a normal .got entry. */
7251 if (!htab->is_vxworks && h != NULL)
7252 switch (r_type)
7253 {
7254 default:
7255 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7256 break;
7257 case R_MIPS16_CALL16:
7258 case R_MIPS_CALL16:
7259 case R_MIPS_CALL_HI16:
7260 case R_MIPS_CALL_LO16:
7261 case R_MIPS_JALR:
7262 break;
7263 }
7264
7265 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7266 if there is one. We only need to handle global symbols here;
7267 we decide whether to keep or delete stubs for local symbols
7268 when processing the stub's relocations. */
7269 if (h != NULL
7270 && !mips16_call_reloc_p (r_type)
7271 && !section_allows_mips16_refs_p (sec))
7272 {
7273 struct mips_elf_link_hash_entry *mh;
7274
7275 mh = (struct mips_elf_link_hash_entry *) h;
7276 mh->need_fn_stub = TRUE;
7277 }
7278 }
7279
7280 return TRUE;
7281 }
7282 \f
7283 bfd_boolean
7284 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7285 struct bfd_link_info *link_info,
7286 bfd_boolean *again)
7287 {
7288 Elf_Internal_Rela *internal_relocs;
7289 Elf_Internal_Rela *irel, *irelend;
7290 Elf_Internal_Shdr *symtab_hdr;
7291 bfd_byte *contents = NULL;
7292 size_t extsymoff;
7293 bfd_boolean changed_contents = FALSE;
7294 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7295 Elf_Internal_Sym *isymbuf = NULL;
7296
7297 /* We are not currently changing any sizes, so only one pass. */
7298 *again = FALSE;
7299
7300 if (link_info->relocatable)
7301 return TRUE;
7302
7303 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7304 link_info->keep_memory);
7305 if (internal_relocs == NULL)
7306 return TRUE;
7307
7308 irelend = internal_relocs + sec->reloc_count
7309 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7310 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7311 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7312
7313 for (irel = internal_relocs; irel < irelend; irel++)
7314 {
7315 bfd_vma symval;
7316 bfd_signed_vma sym_offset;
7317 unsigned int r_type;
7318 unsigned long r_symndx;
7319 asection *sym_sec;
7320 unsigned long instruction;
7321
7322 /* Turn jalr into bgezal, and jr into beq, if they're marked
7323 with a JALR relocation, that indicate where they jump to.
7324 This saves some pipeline bubbles. */
7325 r_type = ELF_R_TYPE (abfd, irel->r_info);
7326 if (r_type != R_MIPS_JALR)
7327 continue;
7328
7329 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7330 /* Compute the address of the jump target. */
7331 if (r_symndx >= extsymoff)
7332 {
7333 struct mips_elf_link_hash_entry *h
7334 = ((struct mips_elf_link_hash_entry *)
7335 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7336
7337 while (h->root.root.type == bfd_link_hash_indirect
7338 || h->root.root.type == bfd_link_hash_warning)
7339 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7340
7341 /* If a symbol is undefined, or if it may be overridden,
7342 skip it. */
7343 if (! ((h->root.root.type == bfd_link_hash_defined
7344 || h->root.root.type == bfd_link_hash_defweak)
7345 && h->root.root.u.def.section)
7346 || (link_info->shared && ! link_info->symbolic
7347 && !h->root.forced_local))
7348 continue;
7349
7350 sym_sec = h->root.root.u.def.section;
7351 if (sym_sec->output_section)
7352 symval = (h->root.root.u.def.value
7353 + sym_sec->output_section->vma
7354 + sym_sec->output_offset);
7355 else
7356 symval = h->root.root.u.def.value;
7357 }
7358 else
7359 {
7360 Elf_Internal_Sym *isym;
7361
7362 /* Read this BFD's symbols if we haven't done so already. */
7363 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7364 {
7365 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7366 if (isymbuf == NULL)
7367 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7368 symtab_hdr->sh_info, 0,
7369 NULL, NULL, NULL);
7370 if (isymbuf == NULL)
7371 goto relax_return;
7372 }
7373
7374 isym = isymbuf + r_symndx;
7375 if (isym->st_shndx == SHN_UNDEF)
7376 continue;
7377 else if (isym->st_shndx == SHN_ABS)
7378 sym_sec = bfd_abs_section_ptr;
7379 else if (isym->st_shndx == SHN_COMMON)
7380 sym_sec = bfd_com_section_ptr;
7381 else
7382 sym_sec
7383 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7384 symval = isym->st_value
7385 + sym_sec->output_section->vma
7386 + sym_sec->output_offset;
7387 }
7388
7389 /* Compute branch offset, from delay slot of the jump to the
7390 branch target. */
7391 sym_offset = (symval + irel->r_addend)
7392 - (sec_start + irel->r_offset + 4);
7393
7394 /* Branch offset must be properly aligned. */
7395 if ((sym_offset & 3) != 0)
7396 continue;
7397
7398 sym_offset >>= 2;
7399
7400 /* Check that it's in range. */
7401 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
7402 continue;
7403
7404 /* Get the section contents if we haven't done so already. */
7405 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7406 goto relax_return;
7407
7408 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
7409
7410 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7411 if ((instruction & 0xfc1fffff) == 0x0000f809)
7412 instruction = 0x04110000;
7413 /* If it was jr <reg>, turn it into b <target>. */
7414 else if ((instruction & 0xfc1fffff) == 0x00000008)
7415 instruction = 0x10000000;
7416 else
7417 continue;
7418
7419 instruction |= (sym_offset & 0xffff);
7420 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
7421 changed_contents = TRUE;
7422 }
7423
7424 if (contents != NULL
7425 && elf_section_data (sec)->this_hdr.contents != contents)
7426 {
7427 if (!changed_contents && !link_info->keep_memory)
7428 free (contents);
7429 else
7430 {
7431 /* Cache the section contents for elf_link_input_bfd. */
7432 elf_section_data (sec)->this_hdr.contents = contents;
7433 }
7434 }
7435 return TRUE;
7436
7437 relax_return:
7438 if (contents != NULL
7439 && elf_section_data (sec)->this_hdr.contents != contents)
7440 free (contents);
7441 return FALSE;
7442 }
7443 \f
7444 /* Allocate space for global sym dynamic relocs. */
7445
7446 static bfd_boolean
7447 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7448 {
7449 struct bfd_link_info *info = inf;
7450 bfd *dynobj;
7451 struct mips_elf_link_hash_entry *hmips;
7452 struct mips_elf_link_hash_table *htab;
7453
7454 htab = mips_elf_hash_table (info);
7455 dynobj = elf_hash_table (info)->dynobj;
7456 hmips = (struct mips_elf_link_hash_entry *) h;
7457
7458 /* VxWorks executables are handled elsewhere; we only need to
7459 allocate relocations in shared objects. */
7460 if (htab->is_vxworks && !info->shared)
7461 return TRUE;
7462
7463 /* Ignore indirect and warning symbols. All relocations against
7464 such symbols will be redirected to the target symbol. */
7465 if (h->root.type == bfd_link_hash_indirect
7466 || h->root.type == bfd_link_hash_warning)
7467 return TRUE;
7468
7469 /* If this symbol is defined in a dynamic object, or we are creating
7470 a shared library, we will need to copy any R_MIPS_32 or
7471 R_MIPS_REL32 relocs against it into the output file. */
7472 if (! info->relocatable
7473 && hmips->possibly_dynamic_relocs != 0
7474 && (h->root.type == bfd_link_hash_defweak
7475 || !h->def_regular
7476 || info->shared))
7477 {
7478 bfd_boolean do_copy = TRUE;
7479
7480 if (h->root.type == bfd_link_hash_undefweak)
7481 {
7482 /* Do not copy relocations for undefined weak symbols with
7483 non-default visibility. */
7484 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7485 do_copy = FALSE;
7486
7487 /* Make sure undefined weak symbols are output as a dynamic
7488 symbol in PIEs. */
7489 else if (h->dynindx == -1 && !h->forced_local)
7490 {
7491 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7492 return FALSE;
7493 }
7494 }
7495
7496 if (do_copy)
7497 {
7498 mips_elf_allocate_dynamic_relocations
7499 (dynobj, info, hmips->possibly_dynamic_relocs);
7500 if (hmips->readonly_reloc)
7501 /* We tell the dynamic linker that there are relocations
7502 against the text segment. */
7503 info->flags |= DF_TEXTREL;
7504 }
7505 }
7506
7507 return TRUE;
7508 }
7509
7510 /* Adjust a symbol defined by a dynamic object and referenced by a
7511 regular object. The current definition is in some section of the
7512 dynamic object, but we're not including those sections. We have to
7513 change the definition to something the rest of the link can
7514 understand. */
7515
7516 bfd_boolean
7517 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
7518 struct elf_link_hash_entry *h)
7519 {
7520 bfd *dynobj;
7521 struct mips_elf_link_hash_entry *hmips;
7522 struct mips_elf_link_hash_table *htab;
7523
7524 htab = mips_elf_hash_table (info);
7525 dynobj = elf_hash_table (info)->dynobj;
7526
7527 /* Make sure we know what is going on here. */
7528 BFD_ASSERT (dynobj != NULL
7529 && (h->needs_plt
7530 || h->u.weakdef != NULL
7531 || (h->def_dynamic
7532 && h->ref_regular
7533 && !h->def_regular)));
7534
7535 hmips = (struct mips_elf_link_hash_entry *) h;
7536
7537 /* For a function, create a stub, if allowed. */
7538 if (! hmips->no_fn_stub
7539 && h->needs_plt)
7540 {
7541 if (! elf_hash_table (info)->dynamic_sections_created)
7542 return TRUE;
7543
7544 /* If this symbol is not defined in a regular file, then set
7545 the symbol to the stub location. This is required to make
7546 function pointers compare as equal between the normal
7547 executable and the shared library. */
7548 if (!h->def_regular)
7549 {
7550 /* We need .stub section. */
7551 h->root.u.def.section = htab->sstubs;
7552 h->root.u.def.value = htab->sstubs->size;
7553
7554 /* XXX Write this stub address somewhere. */
7555 h->plt.offset = htab->sstubs->size;
7556
7557 /* Make room for this stub code. */
7558 htab->sstubs->size += htab->function_stub_size;
7559
7560 /* The last half word of the stub will be filled with the index
7561 of this symbol in .dynsym section. */
7562 return TRUE;
7563 }
7564 }
7565 else if ((h->type == STT_FUNC)
7566 && !h->needs_plt)
7567 {
7568 /* This will set the entry for this symbol in the GOT to 0, and
7569 the dynamic linker will take care of this. */
7570 h->root.u.def.value = 0;
7571 return TRUE;
7572 }
7573
7574 /* If this is a weak symbol, and there is a real definition, the
7575 processor independent code will have arranged for us to see the
7576 real definition first, and we can just use the same value. */
7577 if (h->u.weakdef != NULL)
7578 {
7579 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7580 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7581 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7582 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7583 return TRUE;
7584 }
7585
7586 /* This is a reference to a symbol defined by a dynamic object which
7587 is not a function. */
7588
7589 return TRUE;
7590 }
7591
7592 /* Likewise, for VxWorks. */
7593
7594 bfd_boolean
7595 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7596 struct elf_link_hash_entry *h)
7597 {
7598 bfd *dynobj;
7599 struct mips_elf_link_hash_entry *hmips;
7600 struct mips_elf_link_hash_table *htab;
7601
7602 htab = mips_elf_hash_table (info);
7603 dynobj = elf_hash_table (info)->dynobj;
7604 hmips = (struct mips_elf_link_hash_entry *) h;
7605
7606 /* Make sure we know what is going on here. */
7607 BFD_ASSERT (dynobj != NULL
7608 && (h->needs_plt
7609 || h->needs_copy
7610 || h->u.weakdef != NULL
7611 || (h->def_dynamic
7612 && h->ref_regular
7613 && !h->def_regular)));
7614
7615 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7616 either (a) we want to branch to the symbol or (b) we're linking an
7617 executable that needs a canonical function address. In the latter
7618 case, the canonical address will be the address of the executable's
7619 load stub. */
7620 if ((hmips->is_branch_target
7621 || (!info->shared
7622 && h->type == STT_FUNC
7623 && hmips->is_relocation_target))
7624 && h->def_dynamic
7625 && h->ref_regular
7626 && !h->def_regular
7627 && !h->forced_local)
7628 h->needs_plt = 1;
7629
7630 /* Locally-binding symbols do not need a PLT stub; we can refer to
7631 the functions directly. */
7632 else if (h->needs_plt
7633 && (SYMBOL_CALLS_LOCAL (info, h)
7634 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7635 && h->root.type == bfd_link_hash_undefweak)))
7636 {
7637 h->needs_plt = 0;
7638 return TRUE;
7639 }
7640
7641 if (h->needs_plt)
7642 {
7643 /* If this is the first symbol to need a PLT entry, allocate room
7644 for the header, and for the header's .rela.plt.unloaded entries. */
7645 if (htab->splt->size == 0)
7646 {
7647 htab->splt->size += htab->plt_header_size;
7648 if (!info->shared)
7649 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7650 }
7651
7652 /* Assign the next .plt entry to this symbol. */
7653 h->plt.offset = htab->splt->size;
7654 htab->splt->size += htab->plt_entry_size;
7655
7656 /* If the output file has no definition of the symbol, set the
7657 symbol's value to the address of the stub. Point at the PLT
7658 load stub rather than the lazy resolution stub; this stub
7659 will become the canonical function address. */
7660 if (!info->shared && !h->def_regular)
7661 {
7662 h->root.u.def.section = htab->splt;
7663 h->root.u.def.value = h->plt.offset;
7664 h->root.u.def.value += 8;
7665 }
7666
7667 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7668 htab->sgotplt->size += 4;
7669 htab->srelplt->size += sizeof (Elf32_External_Rela);
7670
7671 /* Make room for the .rela.plt.unloaded relocations. */
7672 if (!info->shared)
7673 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7674
7675 return TRUE;
7676 }
7677
7678 /* If a function symbol is defined by a dynamic object, and we do not
7679 need a PLT stub for it, the symbol's value should be zero. */
7680 if (h->type == STT_FUNC
7681 && h->def_dynamic
7682 && h->ref_regular
7683 && !h->def_regular)
7684 {
7685 h->root.u.def.value = 0;
7686 return TRUE;
7687 }
7688
7689 /* If this is a weak symbol, and there is a real definition, the
7690 processor independent code will have arranged for us to see the
7691 real definition first, and we can just use the same value. */
7692 if (h->u.weakdef != NULL)
7693 {
7694 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7695 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7696 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7697 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7698 return TRUE;
7699 }
7700
7701 /* This is a reference to a symbol defined by a dynamic object which
7702 is not a function. */
7703 if (info->shared)
7704 return TRUE;
7705
7706 /* We must allocate the symbol in our .dynbss section, which will
7707 become part of the .bss section of the executable. There will be
7708 an entry for this symbol in the .dynsym section. The dynamic
7709 object will contain position independent code, so all references
7710 from the dynamic object to this symbol will go through the global
7711 offset table. The dynamic linker will use the .dynsym entry to
7712 determine the address it must put in the global offset table, so
7713 both the dynamic object and the regular object will refer to the
7714 same memory location for the variable. */
7715
7716 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7717 {
7718 htab->srelbss->size += sizeof (Elf32_External_Rela);
7719 h->needs_copy = 1;
7720 }
7721
7722 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7723 }
7724 \f
7725 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7726 The number might be exact or a worst-case estimate, depending on how
7727 much information is available to elf_backend_omit_section_dynsym at
7728 the current linking stage. */
7729
7730 static bfd_size_type
7731 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7732 {
7733 bfd_size_type count;
7734
7735 count = 0;
7736 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7737 {
7738 asection *p;
7739 const struct elf_backend_data *bed;
7740
7741 bed = get_elf_backend_data (output_bfd);
7742 for (p = output_bfd->sections; p ; p = p->next)
7743 if ((p->flags & SEC_EXCLUDE) == 0
7744 && (p->flags & SEC_ALLOC) != 0
7745 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7746 ++count;
7747 }
7748 return count;
7749 }
7750
7751 /* This function is called after all the input files have been read,
7752 and the input sections have been assigned to output sections. We
7753 check for any mips16 stub sections that we can discard. */
7754
7755 bfd_boolean
7756 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7757 struct bfd_link_info *info)
7758 {
7759 asection *ri;
7760
7761 asection *s;
7762 struct mips_got_info *g;
7763 int i;
7764 bfd_size_type loadable_size = 0;
7765 bfd_size_type page_gotno;
7766 bfd_size_type dynsymcount;
7767 bfd *sub;
7768 struct mips_elf_count_tls_arg count_tls_arg;
7769 struct mips_elf_link_hash_table *htab;
7770
7771 htab = mips_elf_hash_table (info);
7772
7773 /* The .reginfo section has a fixed size. */
7774 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7775 if (ri != NULL)
7776 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7777
7778 if (! (info->relocatable
7779 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7780 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7781 mips_elf_check_mips16_stubs, info);
7782
7783 s = htab->sgot;
7784 if (s == NULL)
7785 return TRUE;
7786
7787 g = htab->got_info;
7788
7789 /* Calculate the total loadable size of the output. That
7790 will give us the maximum number of GOT_PAGE entries
7791 required. */
7792 for (sub = info->input_bfds; sub; sub = sub->link_next)
7793 {
7794 asection *subsection;
7795
7796 for (subsection = sub->sections;
7797 subsection;
7798 subsection = subsection->next)
7799 {
7800 if ((subsection->flags & SEC_ALLOC) == 0)
7801 continue;
7802 loadable_size += ((subsection->size + 0xf)
7803 &~ (bfd_size_type) 0xf);
7804 }
7805 }
7806
7807 /* There has to be a global GOT entry for every symbol with
7808 a dynamic symbol table index of DT_MIPS_GOTSYM or
7809 higher. Therefore, it make sense to put those symbols
7810 that need GOT entries at the end of the symbol table. We
7811 do that here. */
7812 if (! mips_elf_sort_hash_table (info, 1))
7813 return FALSE;
7814
7815 if (g->global_gotsym != NULL)
7816 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7817 else
7818 /* If there are no global symbols, or none requiring
7819 relocations, then GLOBAL_GOTSYM will be NULL. */
7820 i = 0;
7821
7822 /* Get a worst-case estimate of the number of dynamic symbols needed.
7823 At this point, dynsymcount does not account for section symbols
7824 and count_section_dynsyms may overestimate the number that will
7825 be needed. */
7826 dynsymcount = (elf_hash_table (info)->dynsymcount
7827 + count_section_dynsyms (output_bfd, info));
7828
7829 /* Determine the size of one stub entry. */
7830 htab->function_stub_size = (dynsymcount > 0x10000
7831 ? MIPS_FUNCTION_STUB_BIG_SIZE
7832 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7833
7834 /* In the worst case, we'll get one stub per dynamic symbol, plus
7835 one to account for the dummy entry at the end required by IRIX
7836 rld. */
7837 loadable_size += htab->function_stub_size * (i + 1);
7838
7839 if (htab->is_vxworks)
7840 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
7841 relocations against local symbols evaluate to "G", and the EABI does
7842 not include R_MIPS_GOT_PAGE. */
7843 page_gotno = 0;
7844 else
7845 /* Assume there are two loadable segments consisting of contiguous
7846 sections. Is 5 enough? */
7847 page_gotno = (loadable_size >> 16) + 5;
7848
7849 /* Choose the smaller of the two estimates; both are intended to be
7850 conservative. */
7851 if (page_gotno > g->page_gotno)
7852 page_gotno = g->page_gotno;
7853
7854 g->local_gotno += page_gotno;
7855 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7856
7857 g->global_gotno = i;
7858 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7859
7860 /* We need to calculate tls_gotno for global symbols at this point
7861 instead of building it up earlier, to avoid doublecounting
7862 entries for one global symbol from multiple input files. */
7863 count_tls_arg.info = info;
7864 count_tls_arg.needed = 0;
7865 elf_link_hash_traverse (elf_hash_table (info),
7866 mips_elf_count_global_tls_entries,
7867 &count_tls_arg);
7868 g->tls_gotno += count_tls_arg.needed;
7869 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7870
7871 mips_elf_resolve_final_got_entries (g);
7872
7873 /* VxWorks does not support multiple GOTs. It initializes $gp to
7874 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7875 dynamic loader. */
7876 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7877 {
7878 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
7879 return FALSE;
7880 }
7881 else
7882 {
7883 /* Set up TLS entries for the first GOT. */
7884 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7885 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7886 }
7887 htab->computed_got_sizes = TRUE;
7888
7889 return TRUE;
7890 }
7891
7892 /* Set the sizes of the dynamic sections. */
7893
7894 bfd_boolean
7895 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7896 struct bfd_link_info *info)
7897 {
7898 bfd *dynobj;
7899 asection *s, *sreldyn;
7900 bfd_boolean reltext;
7901 struct mips_elf_link_hash_table *htab;
7902
7903 htab = mips_elf_hash_table (info);
7904 dynobj = elf_hash_table (info)->dynobj;
7905 BFD_ASSERT (dynobj != NULL);
7906
7907 if (elf_hash_table (info)->dynamic_sections_created)
7908 {
7909 /* Set the contents of the .interp section to the interpreter. */
7910 if (info->executable)
7911 {
7912 s = bfd_get_section_by_name (dynobj, ".interp");
7913 BFD_ASSERT (s != NULL);
7914 s->size
7915 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7916 s->contents
7917 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7918 }
7919 }
7920
7921 /* IRIX rld assumes that the function stub isn't at the end
7922 of the .text section, so add a dummy entry to the end. */
7923 if (htab->sstubs && htab->sstubs->size > 0)
7924 htab->sstubs->size += htab->function_stub_size;
7925
7926 /* Allocate space for global sym dynamic relocs. */
7927 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
7928
7929 /* The check_relocs and adjust_dynamic_symbol entry points have
7930 determined the sizes of the various dynamic sections. Allocate
7931 memory for them. */
7932 reltext = FALSE;
7933 sreldyn = NULL;
7934 for (s = dynobj->sections; s != NULL; s = s->next)
7935 {
7936 const char *name;
7937
7938 /* It's OK to base decisions on the section name, because none
7939 of the dynobj section names depend upon the input files. */
7940 name = bfd_get_section_name (dynobj, s);
7941
7942 if ((s->flags & SEC_LINKER_CREATED) == 0)
7943 continue;
7944
7945 if (CONST_STRNEQ (name, ".rel"))
7946 {
7947 if (s->size != 0)
7948 {
7949 const char *outname;
7950 asection *target;
7951
7952 /* If this relocation section applies to a read only
7953 section, then we probably need a DT_TEXTREL entry.
7954 If the relocation section is .rel(a).dyn, we always
7955 assert a DT_TEXTREL entry rather than testing whether
7956 there exists a relocation to a read only section or
7957 not. */
7958 outname = bfd_get_section_name (output_bfd,
7959 s->output_section);
7960 target = bfd_get_section_by_name (output_bfd, outname + 4);
7961 if ((target != NULL
7962 && (target->flags & SEC_READONLY) != 0
7963 && (target->flags & SEC_ALLOC) != 0)
7964 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7965 reltext = TRUE;
7966
7967 /* We use the reloc_count field as a counter if we need
7968 to copy relocs into the output file. */
7969 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7970 s->reloc_count = 0;
7971
7972 /* If combreloc is enabled, elf_link_sort_relocs() will
7973 sort relocations, but in a different way than we do,
7974 and before we're done creating relocations. Also, it
7975 will move them around between input sections'
7976 relocation's contents, so our sorting would be
7977 broken, so don't let it run. */
7978 info->combreloc = 0;
7979 }
7980 }
7981 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7982 {
7983 /* Executables do not need a GOT. */
7984 if (info->shared)
7985 {
7986 /* Allocate relocations for all but the reserved entries. */
7987 unsigned int count;
7988
7989 count = (htab->got_info->global_gotno
7990 + htab->got_info->local_gotno
7991 - MIPS_RESERVED_GOTNO (info));
7992 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7993 }
7994 }
7995 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7996 {
7997 /* _bfd_mips_elf_always_size_sections() has already done
7998 most of the work, but some symbols may have been mapped
7999 to versions that we must now resolve in the got_entries
8000 hash tables. */
8001 struct mips_got_info *gg = htab->got_info;
8002 struct mips_got_info *g = gg;
8003 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
8004 unsigned int needed_relocs = 0;
8005
8006 if (gg->next)
8007 {
8008 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
8009 set_got_offset_arg.info = info;
8010
8011 /* NOTE 2005-02-03: How can this call, or the next, ever
8012 find any indirect entries to resolve? They were all
8013 resolved in mips_elf_multi_got. */
8014 mips_elf_resolve_final_got_entries (gg);
8015 for (g = gg->next; g && g->next != gg; g = g->next)
8016 {
8017 unsigned int save_assign;
8018
8019 mips_elf_resolve_final_got_entries (g);
8020
8021 /* Assign offsets to global GOT entries. */
8022 save_assign = g->assigned_gotno;
8023 g->assigned_gotno = g->local_gotno;
8024 set_got_offset_arg.g = g;
8025 set_got_offset_arg.needed_relocs = 0;
8026 htab_traverse (g->got_entries,
8027 mips_elf_set_global_got_offset,
8028 &set_got_offset_arg);
8029 needed_relocs += set_got_offset_arg.needed_relocs;
8030 BFD_ASSERT (g->assigned_gotno - g->local_gotno
8031 <= g->global_gotno);
8032
8033 g->assigned_gotno = save_assign;
8034 if (info->shared)
8035 {
8036 needed_relocs += g->local_gotno - g->assigned_gotno;
8037 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
8038 + g->next->global_gotno
8039 + g->next->tls_gotno
8040 + MIPS_RESERVED_GOTNO (info));
8041 }
8042 }
8043 }
8044 else
8045 {
8046 struct mips_elf_count_tls_arg arg;
8047 arg.info = info;
8048 arg.needed = 0;
8049
8050 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
8051 &arg);
8052 elf_link_hash_traverse (elf_hash_table (info),
8053 mips_elf_count_global_tls_relocs,
8054 &arg);
8055
8056 needed_relocs += arg.needed;
8057 }
8058
8059 if (needed_relocs)
8060 mips_elf_allocate_dynamic_relocations (dynobj, info,
8061 needed_relocs);
8062 }
8063 else if (! info->shared
8064 && ! mips_elf_hash_table (info)->use_rld_obj_head
8065 && CONST_STRNEQ (name, ".rld_map"))
8066 {
8067 /* We add a room for __rld_map. It will be filled in by the
8068 rtld to contain a pointer to the _r_debug structure. */
8069 s->size += 4;
8070 }
8071 else if (SGI_COMPAT (output_bfd)
8072 && CONST_STRNEQ (name, ".compact_rel"))
8073 s->size += mips_elf_hash_table (info)->compact_rel_size;
8074 else if (! CONST_STRNEQ (name, ".init")
8075 && s != htab->sgotplt
8076 && s != htab->splt
8077 && s != htab->sstubs)
8078 {
8079 /* It's not one of our sections, so don't allocate space. */
8080 continue;
8081 }
8082
8083 if (s->size == 0)
8084 {
8085 s->flags |= SEC_EXCLUDE;
8086 continue;
8087 }
8088
8089 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8090 continue;
8091
8092 /* Allocate memory for this section last, since we may increase its
8093 size above. */
8094 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8095 {
8096 sreldyn = s;
8097 continue;
8098 }
8099
8100 /* Allocate memory for the section contents. */
8101 s->contents = bfd_zalloc (dynobj, s->size);
8102 if (s->contents == NULL)
8103 {
8104 bfd_set_error (bfd_error_no_memory);
8105 return FALSE;
8106 }
8107 }
8108
8109 /* Allocate memory for the .rel(a).dyn section. */
8110 if (sreldyn != NULL)
8111 {
8112 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
8113 if (sreldyn->contents == NULL)
8114 {
8115 bfd_set_error (bfd_error_no_memory);
8116 return FALSE;
8117 }
8118 }
8119
8120 if (elf_hash_table (info)->dynamic_sections_created)
8121 {
8122 /* Add some entries to the .dynamic section. We fill in the
8123 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8124 must add the entries now so that we get the correct size for
8125 the .dynamic section. */
8126
8127 /* SGI object has the equivalence of DT_DEBUG in the
8128 DT_MIPS_RLD_MAP entry. This must come first because glibc
8129 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8130 looks at the first one it sees. */
8131 if (!info->shared
8132 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8133 return FALSE;
8134
8135 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8136 used by the debugger. */
8137 if (info->executable
8138 && !SGI_COMPAT (output_bfd)
8139 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8140 return FALSE;
8141
8142 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8143 info->flags |= DF_TEXTREL;
8144
8145 if ((info->flags & DF_TEXTREL) != 0)
8146 {
8147 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8148 return FALSE;
8149
8150 /* Clear the DF_TEXTREL flag. It will be set again if we
8151 write out an actual text relocation; we may not, because
8152 at this point we do not know whether e.g. any .eh_frame
8153 absolute relocations have been converted to PC-relative. */
8154 info->flags &= ~DF_TEXTREL;
8155 }
8156
8157 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8158 return FALSE;
8159
8160 if (htab->is_vxworks)
8161 {
8162 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8163 use any of the DT_MIPS_* tags. */
8164 if (mips_elf_rel_dyn_section (info, FALSE))
8165 {
8166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8167 return FALSE;
8168
8169 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8170 return FALSE;
8171
8172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8173 return FALSE;
8174 }
8175 if (htab->splt->size > 0)
8176 {
8177 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8178 return FALSE;
8179
8180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8181 return FALSE;
8182
8183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8184 return FALSE;
8185 }
8186 }
8187 else
8188 {
8189 if (mips_elf_rel_dyn_section (info, FALSE))
8190 {
8191 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8192 return FALSE;
8193
8194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8195 return FALSE;
8196
8197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8198 return FALSE;
8199 }
8200
8201 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8202 return FALSE;
8203
8204 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8205 return FALSE;
8206
8207 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8208 return FALSE;
8209
8210 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8211 return FALSE;
8212
8213 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8214 return FALSE;
8215
8216 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8217 return FALSE;
8218
8219 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8220 return FALSE;
8221
8222 if (IRIX_COMPAT (dynobj) == ict_irix5
8223 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8224 return FALSE;
8225
8226 if (IRIX_COMPAT (dynobj) == ict_irix6
8227 && (bfd_get_section_by_name
8228 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8229 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8230 return FALSE;
8231 }
8232 if (htab->is_vxworks
8233 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8234 return FALSE;
8235 }
8236
8237 return TRUE;
8238 }
8239 \f
8240 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8241 Adjust its R_ADDEND field so that it is correct for the output file.
8242 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8243 and sections respectively; both use symbol indexes. */
8244
8245 static void
8246 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8247 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8248 asection **local_sections, Elf_Internal_Rela *rel)
8249 {
8250 unsigned int r_type, r_symndx;
8251 Elf_Internal_Sym *sym;
8252 asection *sec;
8253
8254 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8255 {
8256 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8257 if (r_type == R_MIPS16_GPREL
8258 || r_type == R_MIPS_GPREL16
8259 || r_type == R_MIPS_GPREL32
8260 || r_type == R_MIPS_LITERAL)
8261 {
8262 rel->r_addend += _bfd_get_gp_value (input_bfd);
8263 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8264 }
8265
8266 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8267 sym = local_syms + r_symndx;
8268
8269 /* Adjust REL's addend to account for section merging. */
8270 if (!info->relocatable)
8271 {
8272 sec = local_sections[r_symndx];
8273 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8274 }
8275
8276 /* This would normally be done by the rela_normal code in elflink.c. */
8277 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8278 rel->r_addend += local_sections[r_symndx]->output_offset;
8279 }
8280 }
8281
8282 /* Relocate a MIPS ELF section. */
8283
8284 bfd_boolean
8285 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8286 bfd *input_bfd, asection *input_section,
8287 bfd_byte *contents, Elf_Internal_Rela *relocs,
8288 Elf_Internal_Sym *local_syms,
8289 asection **local_sections)
8290 {
8291 Elf_Internal_Rela *rel;
8292 const Elf_Internal_Rela *relend;
8293 bfd_vma addend = 0;
8294 bfd_boolean use_saved_addend_p = FALSE;
8295 const struct elf_backend_data *bed;
8296
8297 bed = get_elf_backend_data (output_bfd);
8298 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8299 for (rel = relocs; rel < relend; ++rel)
8300 {
8301 const char *name;
8302 bfd_vma value = 0;
8303 reloc_howto_type *howto;
8304 bfd_boolean require_jalx;
8305 /* TRUE if the relocation is a RELA relocation, rather than a
8306 REL relocation. */
8307 bfd_boolean rela_relocation_p = TRUE;
8308 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8309 const char *msg;
8310 unsigned long r_symndx;
8311 asection *sec;
8312 Elf_Internal_Shdr *symtab_hdr;
8313 struct elf_link_hash_entry *h;
8314
8315 /* Find the relocation howto for this relocation. */
8316 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8317 NEWABI_P (input_bfd)
8318 && (MIPS_RELOC_RELA_P
8319 (input_bfd, input_section,
8320 rel - relocs)));
8321
8322 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8323 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8324 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8325 {
8326 sec = local_sections[r_symndx];
8327 h = NULL;
8328 }
8329 else
8330 {
8331 unsigned long extsymoff;
8332
8333 extsymoff = 0;
8334 if (!elf_bad_symtab (input_bfd))
8335 extsymoff = symtab_hdr->sh_info;
8336 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8337 while (h->root.type == bfd_link_hash_indirect
8338 || h->root.type == bfd_link_hash_warning)
8339 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8340
8341 sec = NULL;
8342 if (h->root.type == bfd_link_hash_defined
8343 || h->root.type == bfd_link_hash_defweak)
8344 sec = h->root.u.def.section;
8345 }
8346
8347 if (sec != NULL && elf_discarded_section (sec))
8348 {
8349 /* For relocs against symbols from removed linkonce sections,
8350 or sections discarded by a linker script, we just want the
8351 section contents zeroed. Avoid any special processing. */
8352 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8353 rel->r_info = 0;
8354 rel->r_addend = 0;
8355 continue;
8356 }
8357
8358 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
8359 {
8360 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8361 64-bit code, but make sure all their addresses are in the
8362 lowermost or uppermost 32-bit section of the 64-bit address
8363 space. Thus, when they use an R_MIPS_64 they mean what is
8364 usually meant by R_MIPS_32, with the exception that the
8365 stored value is sign-extended to 64 bits. */
8366 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
8367
8368 /* On big-endian systems, we need to lie about the position
8369 of the reloc. */
8370 if (bfd_big_endian (input_bfd))
8371 rel->r_offset += 4;
8372 }
8373
8374 if (!use_saved_addend_p)
8375 {
8376 /* If these relocations were originally of the REL variety,
8377 we must pull the addend out of the field that will be
8378 relocated. Otherwise, we simply use the contents of the
8379 RELA relocation. */
8380 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8381 relocs, rel))
8382 {
8383 rela_relocation_p = FALSE;
8384 addend = mips_elf_read_rel_addend (input_bfd, rel,
8385 howto, contents);
8386 if (hi16_reloc_p (r_type)
8387 || (got16_reloc_p (r_type)
8388 && mips_elf_local_relocation_p (input_bfd, rel,
8389 local_sections, FALSE)))
8390 {
8391 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8392 contents, &addend))
8393 {
8394 const char *name;
8395
8396 if (h)
8397 name = h->root.root.string;
8398 else
8399 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8400 local_syms + r_symndx,
8401 sec);
8402 (*_bfd_error_handler)
8403 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8404 input_bfd, input_section, name, howto->name,
8405 rel->r_offset);
8406 }
8407 }
8408 else
8409 addend <<= howto->rightshift;
8410 }
8411 else
8412 addend = rel->r_addend;
8413 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8414 local_syms, local_sections, rel);
8415 }
8416
8417 if (info->relocatable)
8418 {
8419 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
8420 && bfd_big_endian (input_bfd))
8421 rel->r_offset -= 4;
8422
8423 if (!rela_relocation_p && rel->r_addend)
8424 {
8425 addend += rel->r_addend;
8426 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
8427 addend = mips_elf_high (addend);
8428 else if (r_type == R_MIPS_HIGHER)
8429 addend = mips_elf_higher (addend);
8430 else if (r_type == R_MIPS_HIGHEST)
8431 addend = mips_elf_highest (addend);
8432 else
8433 addend >>= howto->rightshift;
8434
8435 /* We use the source mask, rather than the destination
8436 mask because the place to which we are writing will be
8437 source of the addend in the final link. */
8438 addend &= howto->src_mask;
8439
8440 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8441 /* See the comment above about using R_MIPS_64 in the 32-bit
8442 ABI. Here, we need to update the addend. It would be
8443 possible to get away with just using the R_MIPS_32 reloc
8444 but for endianness. */
8445 {
8446 bfd_vma sign_bits;
8447 bfd_vma low_bits;
8448 bfd_vma high_bits;
8449
8450 if (addend & ((bfd_vma) 1 << 31))
8451 #ifdef BFD64
8452 sign_bits = ((bfd_vma) 1 << 32) - 1;
8453 #else
8454 sign_bits = -1;
8455 #endif
8456 else
8457 sign_bits = 0;
8458
8459 /* If we don't know that we have a 64-bit type,
8460 do two separate stores. */
8461 if (bfd_big_endian (input_bfd))
8462 {
8463 /* Store the sign-bits (which are most significant)
8464 first. */
8465 low_bits = sign_bits;
8466 high_bits = addend;
8467 }
8468 else
8469 {
8470 low_bits = addend;
8471 high_bits = sign_bits;
8472 }
8473 bfd_put_32 (input_bfd, low_bits,
8474 contents + rel->r_offset);
8475 bfd_put_32 (input_bfd, high_bits,
8476 contents + rel->r_offset + 4);
8477 continue;
8478 }
8479
8480 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8481 input_bfd, input_section,
8482 contents, FALSE))
8483 return FALSE;
8484 }
8485
8486 /* Go on to the next relocation. */
8487 continue;
8488 }
8489
8490 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8491 relocations for the same offset. In that case we are
8492 supposed to treat the output of each relocation as the addend
8493 for the next. */
8494 if (rel + 1 < relend
8495 && rel->r_offset == rel[1].r_offset
8496 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8497 use_saved_addend_p = TRUE;
8498 else
8499 use_saved_addend_p = FALSE;
8500
8501 /* Figure out what value we are supposed to relocate. */
8502 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8503 input_section, info, rel,
8504 addend, howto, local_syms,
8505 local_sections, &value,
8506 &name, &require_jalx,
8507 use_saved_addend_p))
8508 {
8509 case bfd_reloc_continue:
8510 /* There's nothing to do. */
8511 continue;
8512
8513 case bfd_reloc_undefined:
8514 /* mips_elf_calculate_relocation already called the
8515 undefined_symbol callback. There's no real point in
8516 trying to perform the relocation at this point, so we
8517 just skip ahead to the next relocation. */
8518 continue;
8519
8520 case bfd_reloc_notsupported:
8521 msg = _("internal error: unsupported relocation error");
8522 info->callbacks->warning
8523 (info, msg, name, input_bfd, input_section, rel->r_offset);
8524 return FALSE;
8525
8526 case bfd_reloc_overflow:
8527 if (use_saved_addend_p)
8528 /* Ignore overflow until we reach the last relocation for
8529 a given location. */
8530 ;
8531 else
8532 {
8533 struct mips_elf_link_hash_table *htab;
8534
8535 htab = mips_elf_hash_table (info);
8536 BFD_ASSERT (name != NULL);
8537 if (!htab->small_data_overflow_reported
8538 && (howto->type == R_MIPS_GPREL16
8539 || howto->type == R_MIPS_LITERAL))
8540 {
8541 const char *msg =
8542 _("small-data section exceeds 64KB;"
8543 " lower small-data size limit (see option -G)");
8544
8545 htab->small_data_overflow_reported = TRUE;
8546 (*info->callbacks->einfo) ("%P: %s\n", msg);
8547 }
8548 if (! ((*info->callbacks->reloc_overflow)
8549 (info, NULL, name, howto->name, (bfd_vma) 0,
8550 input_bfd, input_section, rel->r_offset)))
8551 return FALSE;
8552 }
8553 break;
8554
8555 case bfd_reloc_ok:
8556 break;
8557
8558 default:
8559 abort ();
8560 break;
8561 }
8562
8563 /* If we've got another relocation for the address, keep going
8564 until we reach the last one. */
8565 if (use_saved_addend_p)
8566 {
8567 addend = value;
8568 continue;
8569 }
8570
8571 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8572 /* See the comment above about using R_MIPS_64 in the 32-bit
8573 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8574 that calculated the right value. Now, however, we
8575 sign-extend the 32-bit result to 64-bits, and store it as a
8576 64-bit value. We are especially generous here in that we
8577 go to extreme lengths to support this usage on systems with
8578 only a 32-bit VMA. */
8579 {
8580 bfd_vma sign_bits;
8581 bfd_vma low_bits;
8582 bfd_vma high_bits;
8583
8584 if (value & ((bfd_vma) 1 << 31))
8585 #ifdef BFD64
8586 sign_bits = ((bfd_vma) 1 << 32) - 1;
8587 #else
8588 sign_bits = -1;
8589 #endif
8590 else
8591 sign_bits = 0;
8592
8593 /* If we don't know that we have a 64-bit type,
8594 do two separate stores. */
8595 if (bfd_big_endian (input_bfd))
8596 {
8597 /* Undo what we did above. */
8598 rel->r_offset -= 4;
8599 /* Store the sign-bits (which are most significant)
8600 first. */
8601 low_bits = sign_bits;
8602 high_bits = value;
8603 }
8604 else
8605 {
8606 low_bits = value;
8607 high_bits = sign_bits;
8608 }
8609 bfd_put_32 (input_bfd, low_bits,
8610 contents + rel->r_offset);
8611 bfd_put_32 (input_bfd, high_bits,
8612 contents + rel->r_offset + 4);
8613 continue;
8614 }
8615
8616 /* Actually perform the relocation. */
8617 if (! mips_elf_perform_relocation (info, howto, rel, value,
8618 input_bfd, input_section,
8619 contents, require_jalx))
8620 return FALSE;
8621 }
8622
8623 return TRUE;
8624 }
8625 \f
8626 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8627 adjust it appropriately now. */
8628
8629 static void
8630 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8631 const char *name, Elf_Internal_Sym *sym)
8632 {
8633 /* The linker script takes care of providing names and values for
8634 these, but we must place them into the right sections. */
8635 static const char* const text_section_symbols[] = {
8636 "_ftext",
8637 "_etext",
8638 "__dso_displacement",
8639 "__elf_header",
8640 "__program_header_table",
8641 NULL
8642 };
8643
8644 static const char* const data_section_symbols[] = {
8645 "_fdata",
8646 "_edata",
8647 "_end",
8648 "_fbss",
8649 NULL
8650 };
8651
8652 const char* const *p;
8653 int i;
8654
8655 for (i = 0; i < 2; ++i)
8656 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8657 *p;
8658 ++p)
8659 if (strcmp (*p, name) == 0)
8660 {
8661 /* All of these symbols are given type STT_SECTION by the
8662 IRIX6 linker. */
8663 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8664 sym->st_other = STO_PROTECTED;
8665
8666 /* The IRIX linker puts these symbols in special sections. */
8667 if (i == 0)
8668 sym->st_shndx = SHN_MIPS_TEXT;
8669 else
8670 sym->st_shndx = SHN_MIPS_DATA;
8671
8672 break;
8673 }
8674 }
8675
8676 /* Finish up dynamic symbol handling. We set the contents of various
8677 dynamic sections here. */
8678
8679 bfd_boolean
8680 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8681 struct bfd_link_info *info,
8682 struct elf_link_hash_entry *h,
8683 Elf_Internal_Sym *sym)
8684 {
8685 bfd *dynobj;
8686 asection *sgot;
8687 struct mips_got_info *g, *gg;
8688 const char *name;
8689 int idx;
8690 struct mips_elf_link_hash_table *htab;
8691 struct mips_elf_link_hash_entry *hmips;
8692
8693 htab = mips_elf_hash_table (info);
8694 dynobj = elf_hash_table (info)->dynobj;
8695 hmips = (struct mips_elf_link_hash_entry *) h;
8696
8697 if (h->plt.offset != MINUS_ONE)
8698 {
8699 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8700
8701 /* This symbol has a stub. Set it up. */
8702
8703 BFD_ASSERT (h->dynindx != -1);
8704
8705 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8706 || (h->dynindx <= 0xffff));
8707
8708 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8709 sign extension at runtime in the stub, resulting in a negative
8710 index value. */
8711 if (h->dynindx & ~0x7fffffff)
8712 return FALSE;
8713
8714 /* Fill the stub. */
8715 idx = 0;
8716 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8717 idx += 4;
8718 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8719 idx += 4;
8720 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8721 {
8722 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8723 stub + idx);
8724 idx += 4;
8725 }
8726 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8727 idx += 4;
8728
8729 /* If a large stub is not required and sign extension is not a
8730 problem, then use legacy code in the stub. */
8731 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8732 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8733 else if (h->dynindx & ~0x7fff)
8734 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8735 else
8736 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8737 stub + idx);
8738
8739 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
8740 memcpy (htab->sstubs->contents + h->plt.offset,
8741 stub, htab->function_stub_size);
8742
8743 /* Mark the symbol as undefined. plt.offset != -1 occurs
8744 only for the referenced symbol. */
8745 sym->st_shndx = SHN_UNDEF;
8746
8747 /* The run-time linker uses the st_value field of the symbol
8748 to reset the global offset table entry for this external
8749 to its stub address when unlinking a shared object. */
8750 sym->st_value = (htab->sstubs->output_section->vma
8751 + htab->sstubs->output_offset
8752 + h->plt.offset);
8753 }
8754
8755 /* If we have a MIPS16 function with a stub, the dynamic symbol must
8756 refer to the stub, since only the stub uses the standard calling
8757 conventions. */
8758 if (h->dynindx != -1 && hmips->fn_stub != NULL)
8759 {
8760 BFD_ASSERT (hmips->need_fn_stub);
8761 sym->st_value = (hmips->fn_stub->output_section->vma
8762 + hmips->fn_stub->output_offset);
8763 sym->st_size = hmips->fn_stub->size;
8764 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
8765 }
8766
8767 BFD_ASSERT (h->dynindx != -1
8768 || h->forced_local);
8769
8770 sgot = mips_elf_got_section (info);
8771 BFD_ASSERT (sgot != NULL);
8772 g = htab->got_info;
8773 BFD_ASSERT (g != NULL);
8774
8775 /* Run through the global symbol table, creating GOT entries for all
8776 the symbols that need them. */
8777 if (g->global_gotsym != NULL
8778 && h->dynindx >= g->global_gotsym->dynindx)
8779 {
8780 bfd_vma offset;
8781 bfd_vma value;
8782
8783 value = sym->st_value;
8784 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8785 R_MIPS_GOT16, info);
8786 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8787 }
8788
8789 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8790 {
8791 struct mips_got_entry e, *p;
8792 bfd_vma entry;
8793 bfd_vma offset;
8794
8795 gg = g;
8796
8797 e.abfd = output_bfd;
8798 e.symndx = -1;
8799 e.d.h = hmips;
8800 e.tls_type = 0;
8801
8802 for (g = g->next; g->next != gg; g = g->next)
8803 {
8804 if (g->got_entries
8805 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8806 &e)))
8807 {
8808 offset = p->gotidx;
8809 if (info->shared
8810 || (elf_hash_table (info)->dynamic_sections_created
8811 && p->d.h != NULL
8812 && p->d.h->root.def_dynamic
8813 && !p->d.h->root.def_regular))
8814 {
8815 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8816 the various compatibility problems, it's easier to mock
8817 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8818 mips_elf_create_dynamic_relocation to calculate the
8819 appropriate addend. */
8820 Elf_Internal_Rela rel[3];
8821
8822 memset (rel, 0, sizeof (rel));
8823 if (ABI_64_P (output_bfd))
8824 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8825 else
8826 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8827 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8828
8829 entry = 0;
8830 if (! (mips_elf_create_dynamic_relocation
8831 (output_bfd, info, rel,
8832 e.d.h, NULL, sym->st_value, &entry, sgot)))
8833 return FALSE;
8834 }
8835 else
8836 entry = sym->st_value;
8837 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8838 }
8839 }
8840 }
8841
8842 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8843 name = h->root.root.string;
8844 if (strcmp (name, "_DYNAMIC") == 0
8845 || h == elf_hash_table (info)->hgot)
8846 sym->st_shndx = SHN_ABS;
8847 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8848 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8849 {
8850 sym->st_shndx = SHN_ABS;
8851 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8852 sym->st_value = 1;
8853 }
8854 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8855 {
8856 sym->st_shndx = SHN_ABS;
8857 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8858 sym->st_value = elf_gp (output_bfd);
8859 }
8860 else if (SGI_COMPAT (output_bfd))
8861 {
8862 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8863 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8864 {
8865 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8866 sym->st_other = STO_PROTECTED;
8867 sym->st_value = 0;
8868 sym->st_shndx = SHN_MIPS_DATA;
8869 }
8870 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8871 {
8872 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8873 sym->st_other = STO_PROTECTED;
8874 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8875 sym->st_shndx = SHN_ABS;
8876 }
8877 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8878 {
8879 if (h->type == STT_FUNC)
8880 sym->st_shndx = SHN_MIPS_TEXT;
8881 else if (h->type == STT_OBJECT)
8882 sym->st_shndx = SHN_MIPS_DATA;
8883 }
8884 }
8885
8886 /* Handle the IRIX6-specific symbols. */
8887 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8888 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8889
8890 if (! info->shared)
8891 {
8892 if (! mips_elf_hash_table (info)->use_rld_obj_head
8893 && (strcmp (name, "__rld_map") == 0
8894 || strcmp (name, "__RLD_MAP") == 0))
8895 {
8896 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8897 BFD_ASSERT (s != NULL);
8898 sym->st_value = s->output_section->vma + s->output_offset;
8899 bfd_put_32 (output_bfd, 0, s->contents);
8900 if (mips_elf_hash_table (info)->rld_value == 0)
8901 mips_elf_hash_table (info)->rld_value = sym->st_value;
8902 }
8903 else if (mips_elf_hash_table (info)->use_rld_obj_head
8904 && strcmp (name, "__rld_obj_head") == 0)
8905 {
8906 /* IRIX6 does not use a .rld_map section. */
8907 if (IRIX_COMPAT (output_bfd) == ict_irix5
8908 || IRIX_COMPAT (output_bfd) == ict_none)
8909 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8910 != NULL);
8911 mips_elf_hash_table (info)->rld_value = sym->st_value;
8912 }
8913 }
8914
8915 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
8916 treat MIPS16 symbols like any other. */
8917 if (ELF_ST_IS_MIPS16 (sym->st_other))
8918 {
8919 BFD_ASSERT (sym->st_value & 1);
8920 sym->st_other -= STO_MIPS16;
8921 }
8922
8923 return TRUE;
8924 }
8925
8926 /* Likewise, for VxWorks. */
8927
8928 bfd_boolean
8929 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8930 struct bfd_link_info *info,
8931 struct elf_link_hash_entry *h,
8932 Elf_Internal_Sym *sym)
8933 {
8934 bfd *dynobj;
8935 asection *sgot;
8936 struct mips_got_info *g;
8937 struct mips_elf_link_hash_table *htab;
8938
8939 htab = mips_elf_hash_table (info);
8940 dynobj = elf_hash_table (info)->dynobj;
8941
8942 if (h->plt.offset != (bfd_vma) -1)
8943 {
8944 bfd_byte *loc;
8945 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8946 Elf_Internal_Rela rel;
8947 static const bfd_vma *plt_entry;
8948
8949 BFD_ASSERT (h->dynindx != -1);
8950 BFD_ASSERT (htab->splt != NULL);
8951 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8952
8953 /* Calculate the address of the .plt entry. */
8954 plt_address = (htab->splt->output_section->vma
8955 + htab->splt->output_offset
8956 + h->plt.offset);
8957
8958 /* Calculate the index of the entry. */
8959 plt_index = ((h->plt.offset - htab->plt_header_size)
8960 / htab->plt_entry_size);
8961
8962 /* Calculate the address of the .got.plt entry. */
8963 got_address = (htab->sgotplt->output_section->vma
8964 + htab->sgotplt->output_offset
8965 + plt_index * 4);
8966
8967 /* Calculate the offset of the .got.plt entry from
8968 _GLOBAL_OFFSET_TABLE_. */
8969 got_offset = mips_elf_gotplt_index (info, h);
8970
8971 /* Calculate the offset for the branch at the start of the PLT
8972 entry. The branch jumps to the beginning of .plt. */
8973 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8974
8975 /* Fill in the initial value of the .got.plt entry. */
8976 bfd_put_32 (output_bfd, plt_address,
8977 htab->sgotplt->contents + plt_index * 4);
8978
8979 /* Find out where the .plt entry should go. */
8980 loc = htab->splt->contents + h->plt.offset;
8981
8982 if (info->shared)
8983 {
8984 plt_entry = mips_vxworks_shared_plt_entry;
8985 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8986 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8987 }
8988 else
8989 {
8990 bfd_vma got_address_high, got_address_low;
8991
8992 plt_entry = mips_vxworks_exec_plt_entry;
8993 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8994 got_address_low = got_address & 0xffff;
8995
8996 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8997 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8998 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8999 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9000 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9001 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9002 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9003 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9004
9005 loc = (htab->srelplt2->contents
9006 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9007
9008 /* Emit a relocation for the .got.plt entry. */
9009 rel.r_offset = got_address;
9010 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9011 rel.r_addend = h->plt.offset;
9012 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9013
9014 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9015 loc += sizeof (Elf32_External_Rela);
9016 rel.r_offset = plt_address + 8;
9017 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9018 rel.r_addend = got_offset;
9019 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9020
9021 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9022 loc += sizeof (Elf32_External_Rela);
9023 rel.r_offset += 4;
9024 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9025 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9026 }
9027
9028 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9029 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9030 rel.r_offset = got_address;
9031 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9032 rel.r_addend = 0;
9033 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9034
9035 if (!h->def_regular)
9036 sym->st_shndx = SHN_UNDEF;
9037 }
9038
9039 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9040
9041 sgot = mips_elf_got_section (info);
9042 BFD_ASSERT (sgot != NULL);
9043 g = htab->got_info;
9044 BFD_ASSERT (g != NULL);
9045
9046 /* See if this symbol has an entry in the GOT. */
9047 if (g->global_gotsym != NULL
9048 && h->dynindx >= g->global_gotsym->dynindx)
9049 {
9050 bfd_vma offset;
9051 Elf_Internal_Rela outrel;
9052 bfd_byte *loc;
9053 asection *s;
9054
9055 /* Install the symbol value in the GOT. */
9056 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9057 R_MIPS_GOT16, info);
9058 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9059
9060 /* Add a dynamic relocation for it. */
9061 s = mips_elf_rel_dyn_section (info, FALSE);
9062 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9063 outrel.r_offset = (sgot->output_section->vma
9064 + sgot->output_offset
9065 + offset);
9066 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9067 outrel.r_addend = 0;
9068 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9069 }
9070
9071 /* Emit a copy reloc, if needed. */
9072 if (h->needs_copy)
9073 {
9074 Elf_Internal_Rela rel;
9075
9076 BFD_ASSERT (h->dynindx != -1);
9077
9078 rel.r_offset = (h->root.u.def.section->output_section->vma
9079 + h->root.u.def.section->output_offset
9080 + h->root.u.def.value);
9081 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9082 rel.r_addend = 0;
9083 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9084 htab->srelbss->contents
9085 + (htab->srelbss->reloc_count
9086 * sizeof (Elf32_External_Rela)));
9087 ++htab->srelbss->reloc_count;
9088 }
9089
9090 /* If this is a mips16 symbol, force the value to be even. */
9091 if (ELF_ST_IS_MIPS16 (sym->st_other))
9092 sym->st_value &= ~1;
9093
9094 return TRUE;
9095 }
9096
9097 /* Install the PLT header for a VxWorks executable and finalize the
9098 contents of .rela.plt.unloaded. */
9099
9100 static void
9101 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9102 {
9103 Elf_Internal_Rela rela;
9104 bfd_byte *loc;
9105 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9106 static const bfd_vma *plt_entry;
9107 struct mips_elf_link_hash_table *htab;
9108
9109 htab = mips_elf_hash_table (info);
9110 plt_entry = mips_vxworks_exec_plt0_entry;
9111
9112 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9113 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9114 + htab->root.hgot->root.u.def.section->output_offset
9115 + htab->root.hgot->root.u.def.value);
9116
9117 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9118 got_value_low = got_value & 0xffff;
9119
9120 /* Calculate the address of the PLT header. */
9121 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9122
9123 /* Install the PLT header. */
9124 loc = htab->splt->contents;
9125 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9126 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9127 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9128 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9129 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9130 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9131
9132 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9133 loc = htab->srelplt2->contents;
9134 rela.r_offset = plt_address;
9135 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9136 rela.r_addend = 0;
9137 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9138 loc += sizeof (Elf32_External_Rela);
9139
9140 /* Output the relocation for the following addiu of
9141 %lo(_GLOBAL_OFFSET_TABLE_). */
9142 rela.r_offset += 4;
9143 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9144 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9145 loc += sizeof (Elf32_External_Rela);
9146
9147 /* Fix up the remaining relocations. They may have the wrong
9148 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9149 in which symbols were output. */
9150 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
9151 {
9152 Elf_Internal_Rela rel;
9153
9154 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9155 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9156 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9157 loc += sizeof (Elf32_External_Rela);
9158
9159 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9160 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9161 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9162 loc += sizeof (Elf32_External_Rela);
9163
9164 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9165 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9166 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9167 loc += sizeof (Elf32_External_Rela);
9168 }
9169 }
9170
9171 /* Install the PLT header for a VxWorks shared library. */
9172
9173 static void
9174 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
9175 {
9176 unsigned int i;
9177 struct mips_elf_link_hash_table *htab;
9178
9179 htab = mips_elf_hash_table (info);
9180
9181 /* We just need to copy the entry byte-by-byte. */
9182 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
9183 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
9184 htab->splt->contents + i * 4);
9185 }
9186
9187 /* Finish up the dynamic sections. */
9188
9189 bfd_boolean
9190 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
9191 struct bfd_link_info *info)
9192 {
9193 bfd *dynobj;
9194 asection *sdyn;
9195 asection *sgot;
9196 struct mips_got_info *gg, *g;
9197 struct mips_elf_link_hash_table *htab;
9198
9199 htab = mips_elf_hash_table (info);
9200 dynobj = elf_hash_table (info)->dynobj;
9201
9202 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9203
9204 sgot = mips_elf_got_section (info);
9205 if (sgot == NULL)
9206 gg = g = NULL;
9207 else
9208 {
9209 gg = htab->got_info;
9210 g = mips_elf_got_for_ibfd (gg, output_bfd);
9211 BFD_ASSERT (g != NULL);
9212 }
9213
9214 if (elf_hash_table (info)->dynamic_sections_created)
9215 {
9216 bfd_byte *b;
9217 int dyn_to_skip = 0, dyn_skipped = 0;
9218
9219 BFD_ASSERT (sdyn != NULL);
9220 BFD_ASSERT (g != NULL);
9221
9222 for (b = sdyn->contents;
9223 b < sdyn->contents + sdyn->size;
9224 b += MIPS_ELF_DYN_SIZE (dynobj))
9225 {
9226 Elf_Internal_Dyn dyn;
9227 const char *name;
9228 size_t elemsize;
9229 asection *s;
9230 bfd_boolean swap_out_p;
9231
9232 /* Read in the current dynamic entry. */
9233 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9234
9235 /* Assume that we're going to modify it and write it out. */
9236 swap_out_p = TRUE;
9237
9238 switch (dyn.d_tag)
9239 {
9240 case DT_RELENT:
9241 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9242 break;
9243
9244 case DT_RELAENT:
9245 BFD_ASSERT (htab->is_vxworks);
9246 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
9247 break;
9248
9249 case DT_STRSZ:
9250 /* Rewrite DT_STRSZ. */
9251 dyn.d_un.d_val =
9252 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9253 break;
9254
9255 case DT_PLTGOT:
9256 name = ".got";
9257 if (htab->is_vxworks)
9258 {
9259 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
9260 of the ".got" section in DYNOBJ. */
9261 s = bfd_get_section_by_name (dynobj, name);
9262 BFD_ASSERT (s != NULL);
9263 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9264 }
9265 else
9266 {
9267 s = bfd_get_section_by_name (output_bfd, name);
9268 BFD_ASSERT (s != NULL);
9269 dyn.d_un.d_ptr = s->vma;
9270 }
9271 break;
9272
9273 case DT_MIPS_RLD_VERSION:
9274 dyn.d_un.d_val = 1; /* XXX */
9275 break;
9276
9277 case DT_MIPS_FLAGS:
9278 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9279 break;
9280
9281 case DT_MIPS_TIME_STAMP:
9282 {
9283 time_t t;
9284 time (&t);
9285 dyn.d_un.d_val = t;
9286 }
9287 break;
9288
9289 case DT_MIPS_ICHECKSUM:
9290 /* XXX FIXME: */
9291 swap_out_p = FALSE;
9292 break;
9293
9294 case DT_MIPS_IVERSION:
9295 /* XXX FIXME: */
9296 swap_out_p = FALSE;
9297 break;
9298
9299 case DT_MIPS_BASE_ADDRESS:
9300 s = output_bfd->sections;
9301 BFD_ASSERT (s != NULL);
9302 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
9303 break;
9304
9305 case DT_MIPS_LOCAL_GOTNO:
9306 dyn.d_un.d_val = g->local_gotno;
9307 break;
9308
9309 case DT_MIPS_UNREFEXTNO:
9310 /* The index into the dynamic symbol table which is the
9311 entry of the first external symbol that is not
9312 referenced within the same object. */
9313 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
9314 break;
9315
9316 case DT_MIPS_GOTSYM:
9317 if (gg->global_gotsym)
9318 {
9319 dyn.d_un.d_val = gg->global_gotsym->dynindx;
9320 break;
9321 }
9322 /* In case if we don't have global got symbols we default
9323 to setting DT_MIPS_GOTSYM to the same value as
9324 DT_MIPS_SYMTABNO, so we just fall through. */
9325
9326 case DT_MIPS_SYMTABNO:
9327 name = ".dynsym";
9328 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
9329 s = bfd_get_section_by_name (output_bfd, name);
9330 BFD_ASSERT (s != NULL);
9331
9332 dyn.d_un.d_val = s->size / elemsize;
9333 break;
9334
9335 case DT_MIPS_HIPAGENO:
9336 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
9337 break;
9338
9339 case DT_MIPS_RLD_MAP:
9340 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9341 break;
9342
9343 case DT_MIPS_OPTIONS:
9344 s = (bfd_get_section_by_name
9345 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9346 dyn.d_un.d_ptr = s->vma;
9347 break;
9348
9349 case DT_RELASZ:
9350 BFD_ASSERT (htab->is_vxworks);
9351 /* The count does not include the JUMP_SLOT relocations. */
9352 if (htab->srelplt)
9353 dyn.d_un.d_val -= htab->srelplt->size;
9354 break;
9355
9356 case DT_PLTREL:
9357 BFD_ASSERT (htab->is_vxworks);
9358 dyn.d_un.d_val = DT_RELA;
9359 break;
9360
9361 case DT_PLTRELSZ:
9362 BFD_ASSERT (htab->is_vxworks);
9363 dyn.d_un.d_val = htab->srelplt->size;
9364 break;
9365
9366 case DT_JMPREL:
9367 BFD_ASSERT (htab->is_vxworks);
9368 dyn.d_un.d_val = (htab->srelplt->output_section->vma
9369 + htab->srelplt->output_offset);
9370 break;
9371
9372 case DT_TEXTREL:
9373 /* If we didn't need any text relocations after all, delete
9374 the dynamic tag. */
9375 if (!(info->flags & DF_TEXTREL))
9376 {
9377 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
9378 swap_out_p = FALSE;
9379 }
9380 break;
9381
9382 case DT_FLAGS:
9383 /* If we didn't need any text relocations after all, clear
9384 DF_TEXTREL from DT_FLAGS. */
9385 if (!(info->flags & DF_TEXTREL))
9386 dyn.d_un.d_val &= ~DF_TEXTREL;
9387 else
9388 swap_out_p = FALSE;
9389 break;
9390
9391 default:
9392 swap_out_p = FALSE;
9393 if (htab->is_vxworks
9394 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
9395 swap_out_p = TRUE;
9396 break;
9397 }
9398
9399 if (swap_out_p || dyn_skipped)
9400 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9401 (dynobj, &dyn, b - dyn_skipped);
9402
9403 if (dyn_to_skip)
9404 {
9405 dyn_skipped += dyn_to_skip;
9406 dyn_to_skip = 0;
9407 }
9408 }
9409
9410 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
9411 if (dyn_skipped > 0)
9412 memset (b - dyn_skipped, 0, dyn_skipped);
9413 }
9414
9415 if (sgot != NULL && sgot->size > 0
9416 && !bfd_is_abs_section (sgot->output_section))
9417 {
9418 if (htab->is_vxworks)
9419 {
9420 /* The first entry of the global offset table points to the
9421 ".dynamic" section. The second is initialized by the
9422 loader and contains the shared library identifier.
9423 The third is also initialized by the loader and points
9424 to the lazy resolution stub. */
9425 MIPS_ELF_PUT_WORD (output_bfd,
9426 sdyn->output_offset + sdyn->output_section->vma,
9427 sgot->contents);
9428 MIPS_ELF_PUT_WORD (output_bfd, 0,
9429 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9430 MIPS_ELF_PUT_WORD (output_bfd, 0,
9431 sgot->contents
9432 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
9433 }
9434 else
9435 {
9436 /* The first entry of the global offset table will be filled at
9437 runtime. The second entry will be used by some runtime loaders.
9438 This isn't the case of IRIX rld. */
9439 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9440 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
9441 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9442 }
9443
9444 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9445 = MIPS_ELF_GOT_SIZE (output_bfd);
9446 }
9447
9448 /* Generate dynamic relocations for the non-primary gots. */
9449 if (gg != NULL && gg->next)
9450 {
9451 Elf_Internal_Rela rel[3];
9452 bfd_vma addend = 0;
9453
9454 memset (rel, 0, sizeof (rel));
9455 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
9456
9457 for (g = gg->next; g->next != gg; g = g->next)
9458 {
9459 bfd_vma index = g->next->local_gotno + g->next->global_gotno
9460 + g->next->tls_gotno;
9461
9462 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
9463 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9464 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
9465 sgot->contents
9466 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9467
9468 if (! info->shared)
9469 continue;
9470
9471 while (index < g->assigned_gotno)
9472 {
9473 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
9474 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
9475 if (!(mips_elf_create_dynamic_relocation
9476 (output_bfd, info, rel, NULL,
9477 bfd_abs_section_ptr,
9478 0, &addend, sgot)))
9479 return FALSE;
9480 BFD_ASSERT (addend == 0);
9481 }
9482 }
9483 }
9484
9485 /* The generation of dynamic relocations for the non-primary gots
9486 adds more dynamic relocations. We cannot count them until
9487 here. */
9488
9489 if (elf_hash_table (info)->dynamic_sections_created)
9490 {
9491 bfd_byte *b;
9492 bfd_boolean swap_out_p;
9493
9494 BFD_ASSERT (sdyn != NULL);
9495
9496 for (b = sdyn->contents;
9497 b < sdyn->contents + sdyn->size;
9498 b += MIPS_ELF_DYN_SIZE (dynobj))
9499 {
9500 Elf_Internal_Dyn dyn;
9501 asection *s;
9502
9503 /* Read in the current dynamic entry. */
9504 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9505
9506 /* Assume that we're going to modify it and write it out. */
9507 swap_out_p = TRUE;
9508
9509 switch (dyn.d_tag)
9510 {
9511 case DT_RELSZ:
9512 /* Reduce DT_RELSZ to account for any relocations we
9513 decided not to make. This is for the n64 irix rld,
9514 which doesn't seem to apply any relocations if there
9515 are trailing null entries. */
9516 s = mips_elf_rel_dyn_section (info, FALSE);
9517 dyn.d_un.d_val = (s->reloc_count
9518 * (ABI_64_P (output_bfd)
9519 ? sizeof (Elf64_Mips_External_Rel)
9520 : sizeof (Elf32_External_Rel)));
9521 /* Adjust the section size too. Tools like the prelinker
9522 can reasonably expect the values to the same. */
9523 elf_section_data (s->output_section)->this_hdr.sh_size
9524 = dyn.d_un.d_val;
9525 break;
9526
9527 default:
9528 swap_out_p = FALSE;
9529 break;
9530 }
9531
9532 if (swap_out_p)
9533 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9534 (dynobj, &dyn, b);
9535 }
9536 }
9537
9538 {
9539 asection *s;
9540 Elf32_compact_rel cpt;
9541
9542 if (SGI_COMPAT (output_bfd))
9543 {
9544 /* Write .compact_rel section out. */
9545 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9546 if (s != NULL)
9547 {
9548 cpt.id1 = 1;
9549 cpt.num = s->reloc_count;
9550 cpt.id2 = 2;
9551 cpt.offset = (s->output_section->filepos
9552 + sizeof (Elf32_External_compact_rel));
9553 cpt.reserved0 = 0;
9554 cpt.reserved1 = 0;
9555 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9556 ((Elf32_External_compact_rel *)
9557 s->contents));
9558
9559 /* Clean up a dummy stub function entry in .text. */
9560 if (htab->sstubs != NULL)
9561 {
9562 file_ptr dummy_offset;
9563
9564 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
9565 dummy_offset = htab->sstubs->size - htab->function_stub_size;
9566 memset (htab->sstubs->contents + dummy_offset, 0,
9567 htab->function_stub_size);
9568 }
9569 }
9570 }
9571
9572 /* The psABI says that the dynamic relocations must be sorted in
9573 increasing order of r_symndx. The VxWorks EABI doesn't require
9574 this, and because the code below handles REL rather than RELA
9575 relocations, using it for VxWorks would be outright harmful. */
9576 if (!htab->is_vxworks)
9577 {
9578 s = mips_elf_rel_dyn_section (info, FALSE);
9579 if (s != NULL
9580 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9581 {
9582 reldyn_sorting_bfd = output_bfd;
9583
9584 if (ABI_64_P (output_bfd))
9585 qsort ((Elf64_External_Rel *) s->contents + 1,
9586 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9587 sort_dynamic_relocs_64);
9588 else
9589 qsort ((Elf32_External_Rel *) s->contents + 1,
9590 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9591 sort_dynamic_relocs);
9592 }
9593 }
9594 }
9595
9596 if (htab->is_vxworks && htab->splt->size > 0)
9597 {
9598 if (info->shared)
9599 mips_vxworks_finish_shared_plt (output_bfd, info);
9600 else
9601 mips_vxworks_finish_exec_plt (output_bfd, info);
9602 }
9603 return TRUE;
9604 }
9605
9606
9607 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9608
9609 static void
9610 mips_set_isa_flags (bfd *abfd)
9611 {
9612 flagword val;
9613
9614 switch (bfd_get_mach (abfd))
9615 {
9616 default:
9617 case bfd_mach_mips3000:
9618 val = E_MIPS_ARCH_1;
9619 break;
9620
9621 case bfd_mach_mips3900:
9622 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9623 break;
9624
9625 case bfd_mach_mips6000:
9626 val = E_MIPS_ARCH_2;
9627 break;
9628
9629 case bfd_mach_mips4000:
9630 case bfd_mach_mips4300:
9631 case bfd_mach_mips4400:
9632 case bfd_mach_mips4600:
9633 val = E_MIPS_ARCH_3;
9634 break;
9635
9636 case bfd_mach_mips4010:
9637 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9638 break;
9639
9640 case bfd_mach_mips4100:
9641 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9642 break;
9643
9644 case bfd_mach_mips4111:
9645 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9646 break;
9647
9648 case bfd_mach_mips4120:
9649 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9650 break;
9651
9652 case bfd_mach_mips4650:
9653 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9654 break;
9655
9656 case bfd_mach_mips5400:
9657 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9658 break;
9659
9660 case bfd_mach_mips5500:
9661 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9662 break;
9663
9664 case bfd_mach_mips9000:
9665 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9666 break;
9667
9668 case bfd_mach_mips5000:
9669 case bfd_mach_mips7000:
9670 case bfd_mach_mips8000:
9671 case bfd_mach_mips10000:
9672 case bfd_mach_mips12000:
9673 val = E_MIPS_ARCH_4;
9674 break;
9675
9676 case bfd_mach_mips5:
9677 val = E_MIPS_ARCH_5;
9678 break;
9679
9680 case bfd_mach_mips_loongson_2e:
9681 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
9682 break;
9683
9684 case bfd_mach_mips_loongson_2f:
9685 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
9686 break;
9687
9688 case bfd_mach_mips_sb1:
9689 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9690 break;
9691
9692 case bfd_mach_mips_octeon:
9693 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
9694 break;
9695
9696 case bfd_mach_mipsisa32:
9697 val = E_MIPS_ARCH_32;
9698 break;
9699
9700 case bfd_mach_mipsisa64:
9701 val = E_MIPS_ARCH_64;
9702 break;
9703
9704 case bfd_mach_mipsisa32r2:
9705 val = E_MIPS_ARCH_32R2;
9706 break;
9707
9708 case bfd_mach_mipsisa64r2:
9709 val = E_MIPS_ARCH_64R2;
9710 break;
9711 }
9712 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9713 elf_elfheader (abfd)->e_flags |= val;
9714
9715 }
9716
9717
9718 /* The final processing done just before writing out a MIPS ELF object
9719 file. This gets the MIPS architecture right based on the machine
9720 number. This is used by both the 32-bit and the 64-bit ABI. */
9721
9722 void
9723 _bfd_mips_elf_final_write_processing (bfd *abfd,
9724 bfd_boolean linker ATTRIBUTE_UNUSED)
9725 {
9726 unsigned int i;
9727 Elf_Internal_Shdr **hdrpp;
9728 const char *name;
9729 asection *sec;
9730
9731 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9732 is nonzero. This is for compatibility with old objects, which used
9733 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9734 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9735 mips_set_isa_flags (abfd);
9736
9737 /* Set the sh_info field for .gptab sections and other appropriate
9738 info for each special section. */
9739 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9740 i < elf_numsections (abfd);
9741 i++, hdrpp++)
9742 {
9743 switch ((*hdrpp)->sh_type)
9744 {
9745 case SHT_MIPS_MSYM:
9746 case SHT_MIPS_LIBLIST:
9747 sec = bfd_get_section_by_name (abfd, ".dynstr");
9748 if (sec != NULL)
9749 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9750 break;
9751
9752 case SHT_MIPS_GPTAB:
9753 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9754 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9755 BFD_ASSERT (name != NULL
9756 && CONST_STRNEQ (name, ".gptab."));
9757 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9758 BFD_ASSERT (sec != NULL);
9759 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9760 break;
9761
9762 case SHT_MIPS_CONTENT:
9763 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9764 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9765 BFD_ASSERT (name != NULL
9766 && CONST_STRNEQ (name, ".MIPS.content"));
9767 sec = bfd_get_section_by_name (abfd,
9768 name + sizeof ".MIPS.content" - 1);
9769 BFD_ASSERT (sec != NULL);
9770 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9771 break;
9772
9773 case SHT_MIPS_SYMBOL_LIB:
9774 sec = bfd_get_section_by_name (abfd, ".dynsym");
9775 if (sec != NULL)
9776 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9777 sec = bfd_get_section_by_name (abfd, ".liblist");
9778 if (sec != NULL)
9779 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9780 break;
9781
9782 case SHT_MIPS_EVENTS:
9783 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9784 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9785 BFD_ASSERT (name != NULL);
9786 if (CONST_STRNEQ (name, ".MIPS.events"))
9787 sec = bfd_get_section_by_name (abfd,
9788 name + sizeof ".MIPS.events" - 1);
9789 else
9790 {
9791 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9792 sec = bfd_get_section_by_name (abfd,
9793 (name
9794 + sizeof ".MIPS.post_rel" - 1));
9795 }
9796 BFD_ASSERT (sec != NULL);
9797 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9798 break;
9799
9800 }
9801 }
9802 }
9803 \f
9804 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9805 segments. */
9806
9807 int
9808 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9809 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9810 {
9811 asection *s;
9812 int ret = 0;
9813
9814 /* See if we need a PT_MIPS_REGINFO segment. */
9815 s = bfd_get_section_by_name (abfd, ".reginfo");
9816 if (s && (s->flags & SEC_LOAD))
9817 ++ret;
9818
9819 /* See if we need a PT_MIPS_OPTIONS segment. */
9820 if (IRIX_COMPAT (abfd) == ict_irix6
9821 && bfd_get_section_by_name (abfd,
9822 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9823 ++ret;
9824
9825 /* See if we need a PT_MIPS_RTPROC segment. */
9826 if (IRIX_COMPAT (abfd) == ict_irix5
9827 && bfd_get_section_by_name (abfd, ".dynamic")
9828 && bfd_get_section_by_name (abfd, ".mdebug"))
9829 ++ret;
9830
9831 /* Allocate a PT_NULL header in dynamic objects. See
9832 _bfd_mips_elf_modify_segment_map for details. */
9833 if (!SGI_COMPAT (abfd)
9834 && bfd_get_section_by_name (abfd, ".dynamic"))
9835 ++ret;
9836
9837 return ret;
9838 }
9839
9840 /* Modify the segment map for an IRIX5 executable. */
9841
9842 bfd_boolean
9843 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9844 struct bfd_link_info *info)
9845 {
9846 asection *s;
9847 struct elf_segment_map *m, **pm;
9848 bfd_size_type amt;
9849
9850 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9851 segment. */
9852 s = bfd_get_section_by_name (abfd, ".reginfo");
9853 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9854 {
9855 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9856 if (m->p_type == PT_MIPS_REGINFO)
9857 break;
9858 if (m == NULL)
9859 {
9860 amt = sizeof *m;
9861 m = bfd_zalloc (abfd, amt);
9862 if (m == NULL)
9863 return FALSE;
9864
9865 m->p_type = PT_MIPS_REGINFO;
9866 m->count = 1;
9867 m->sections[0] = s;
9868
9869 /* We want to put it after the PHDR and INTERP segments. */
9870 pm = &elf_tdata (abfd)->segment_map;
9871 while (*pm != NULL
9872 && ((*pm)->p_type == PT_PHDR
9873 || (*pm)->p_type == PT_INTERP))
9874 pm = &(*pm)->next;
9875
9876 m->next = *pm;
9877 *pm = m;
9878 }
9879 }
9880
9881 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9882 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9883 PT_MIPS_OPTIONS segment immediately following the program header
9884 table. */
9885 if (NEWABI_P (abfd)
9886 /* On non-IRIX6 new abi, we'll have already created a segment
9887 for this section, so don't create another. I'm not sure this
9888 is not also the case for IRIX 6, but I can't test it right
9889 now. */
9890 && IRIX_COMPAT (abfd) == ict_irix6)
9891 {
9892 for (s = abfd->sections; s; s = s->next)
9893 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9894 break;
9895
9896 if (s)
9897 {
9898 struct elf_segment_map *options_segment;
9899
9900 pm = &elf_tdata (abfd)->segment_map;
9901 while (*pm != NULL
9902 && ((*pm)->p_type == PT_PHDR
9903 || (*pm)->p_type == PT_INTERP))
9904 pm = &(*pm)->next;
9905
9906 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9907 {
9908 amt = sizeof (struct elf_segment_map);
9909 options_segment = bfd_zalloc (abfd, amt);
9910 options_segment->next = *pm;
9911 options_segment->p_type = PT_MIPS_OPTIONS;
9912 options_segment->p_flags = PF_R;
9913 options_segment->p_flags_valid = TRUE;
9914 options_segment->count = 1;
9915 options_segment->sections[0] = s;
9916 *pm = options_segment;
9917 }
9918 }
9919 }
9920 else
9921 {
9922 if (IRIX_COMPAT (abfd) == ict_irix5)
9923 {
9924 /* If there are .dynamic and .mdebug sections, we make a room
9925 for the RTPROC header. FIXME: Rewrite without section names. */
9926 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9927 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9928 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9929 {
9930 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9931 if (m->p_type == PT_MIPS_RTPROC)
9932 break;
9933 if (m == NULL)
9934 {
9935 amt = sizeof *m;
9936 m = bfd_zalloc (abfd, amt);
9937 if (m == NULL)
9938 return FALSE;
9939
9940 m->p_type = PT_MIPS_RTPROC;
9941
9942 s = bfd_get_section_by_name (abfd, ".rtproc");
9943 if (s == NULL)
9944 {
9945 m->count = 0;
9946 m->p_flags = 0;
9947 m->p_flags_valid = 1;
9948 }
9949 else
9950 {
9951 m->count = 1;
9952 m->sections[0] = s;
9953 }
9954
9955 /* We want to put it after the DYNAMIC segment. */
9956 pm = &elf_tdata (abfd)->segment_map;
9957 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9958 pm = &(*pm)->next;
9959 if (*pm != NULL)
9960 pm = &(*pm)->next;
9961
9962 m->next = *pm;
9963 *pm = m;
9964 }
9965 }
9966 }
9967 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9968 .dynstr, .dynsym, and .hash sections, and everything in
9969 between. */
9970 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9971 pm = &(*pm)->next)
9972 if ((*pm)->p_type == PT_DYNAMIC)
9973 break;
9974 m = *pm;
9975 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9976 {
9977 /* For a normal mips executable the permissions for the PT_DYNAMIC
9978 segment are read, write and execute. We do that here since
9979 the code in elf.c sets only the read permission. This matters
9980 sometimes for the dynamic linker. */
9981 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9982 {
9983 m->p_flags = PF_R | PF_W | PF_X;
9984 m->p_flags_valid = 1;
9985 }
9986 }
9987 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9988 glibc's dynamic linker has traditionally derived the number of
9989 tags from the p_filesz field, and sometimes allocates stack
9990 arrays of that size. An overly-big PT_DYNAMIC segment can
9991 be actively harmful in such cases. Making PT_DYNAMIC contain
9992 other sections can also make life hard for the prelinker,
9993 which might move one of the other sections to a different
9994 PT_LOAD segment. */
9995 if (SGI_COMPAT (abfd)
9996 && m != NULL
9997 && m->count == 1
9998 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9999 {
10000 static const char *sec_names[] =
10001 {
10002 ".dynamic", ".dynstr", ".dynsym", ".hash"
10003 };
10004 bfd_vma low, high;
10005 unsigned int i, c;
10006 struct elf_segment_map *n;
10007
10008 low = ~(bfd_vma) 0;
10009 high = 0;
10010 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10011 {
10012 s = bfd_get_section_by_name (abfd, sec_names[i]);
10013 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10014 {
10015 bfd_size_type sz;
10016
10017 if (low > s->vma)
10018 low = s->vma;
10019 sz = s->size;
10020 if (high < s->vma + sz)
10021 high = s->vma + sz;
10022 }
10023 }
10024
10025 c = 0;
10026 for (s = abfd->sections; s != NULL; s = s->next)
10027 if ((s->flags & SEC_LOAD) != 0
10028 && s->vma >= low
10029 && s->vma + s->size <= high)
10030 ++c;
10031
10032 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10033 n = bfd_zalloc (abfd, amt);
10034 if (n == NULL)
10035 return FALSE;
10036 *n = *m;
10037 n->count = c;
10038
10039 i = 0;
10040 for (s = abfd->sections; s != NULL; s = s->next)
10041 {
10042 if ((s->flags & SEC_LOAD) != 0
10043 && s->vma >= low
10044 && s->vma + s->size <= high)
10045 {
10046 n->sections[i] = s;
10047 ++i;
10048 }
10049 }
10050
10051 *pm = n;
10052 }
10053 }
10054
10055 /* Allocate a spare program header in dynamic objects so that tools
10056 like the prelinker can add an extra PT_LOAD entry.
10057
10058 If the prelinker needs to make room for a new PT_LOAD entry, its
10059 standard procedure is to move the first (read-only) sections into
10060 the new (writable) segment. However, the MIPS ABI requires
10061 .dynamic to be in a read-only segment, and the section will often
10062 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10063
10064 Although the prelinker could in principle move .dynamic to a
10065 writable segment, it seems better to allocate a spare program
10066 header instead, and avoid the need to move any sections.
10067 There is a long tradition of allocating spare dynamic tags,
10068 so allocating a spare program header seems like a natural
10069 extension.
10070
10071 If INFO is NULL, we may be copying an already prelinked binary
10072 with objcopy or strip, so do not add this header. */
10073 if (info != NULL
10074 && !SGI_COMPAT (abfd)
10075 && bfd_get_section_by_name (abfd, ".dynamic"))
10076 {
10077 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10078 if ((*pm)->p_type == PT_NULL)
10079 break;
10080 if (*pm == NULL)
10081 {
10082 m = bfd_zalloc (abfd, sizeof (*m));
10083 if (m == NULL)
10084 return FALSE;
10085
10086 m->p_type = PT_NULL;
10087 *pm = m;
10088 }
10089 }
10090
10091 return TRUE;
10092 }
10093 \f
10094 /* Return the section that should be marked against GC for a given
10095 relocation. */
10096
10097 asection *
10098 _bfd_mips_elf_gc_mark_hook (asection *sec,
10099 struct bfd_link_info *info,
10100 Elf_Internal_Rela *rel,
10101 struct elf_link_hash_entry *h,
10102 Elf_Internal_Sym *sym)
10103 {
10104 /* ??? Do mips16 stub sections need to be handled special? */
10105
10106 if (h != NULL)
10107 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10108 {
10109 case R_MIPS_GNU_VTINHERIT:
10110 case R_MIPS_GNU_VTENTRY:
10111 return NULL;
10112 }
10113
10114 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10115 }
10116
10117 /* Update the got entry reference counts for the section being removed. */
10118
10119 bfd_boolean
10120 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10121 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10122 asection *sec ATTRIBUTE_UNUSED,
10123 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
10124 {
10125 #if 0
10126 Elf_Internal_Shdr *symtab_hdr;
10127 struct elf_link_hash_entry **sym_hashes;
10128 bfd_signed_vma *local_got_refcounts;
10129 const Elf_Internal_Rela *rel, *relend;
10130 unsigned long r_symndx;
10131 struct elf_link_hash_entry *h;
10132
10133 if (info->relocatable)
10134 return TRUE;
10135
10136 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10137 sym_hashes = elf_sym_hashes (abfd);
10138 local_got_refcounts = elf_local_got_refcounts (abfd);
10139
10140 relend = relocs + sec->reloc_count;
10141 for (rel = relocs; rel < relend; rel++)
10142 switch (ELF_R_TYPE (abfd, rel->r_info))
10143 {
10144 case R_MIPS16_GOT16:
10145 case R_MIPS16_CALL16:
10146 case R_MIPS_GOT16:
10147 case R_MIPS_CALL16:
10148 case R_MIPS_CALL_HI16:
10149 case R_MIPS_CALL_LO16:
10150 case R_MIPS_GOT_HI16:
10151 case R_MIPS_GOT_LO16:
10152 case R_MIPS_GOT_DISP:
10153 case R_MIPS_GOT_PAGE:
10154 case R_MIPS_GOT_OFST:
10155 /* ??? It would seem that the existing MIPS code does no sort
10156 of reference counting or whatnot on its GOT and PLT entries,
10157 so it is not possible to garbage collect them at this time. */
10158 break;
10159
10160 default:
10161 break;
10162 }
10163 #endif
10164
10165 return TRUE;
10166 }
10167 \f
10168 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10169 hiding the old indirect symbol. Process additional relocation
10170 information. Also called for weakdefs, in which case we just let
10171 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10172
10173 void
10174 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
10175 struct elf_link_hash_entry *dir,
10176 struct elf_link_hash_entry *ind)
10177 {
10178 struct mips_elf_link_hash_entry *dirmips, *indmips;
10179
10180 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
10181
10182 if (ind->root.type != bfd_link_hash_indirect)
10183 return;
10184
10185 dirmips = (struct mips_elf_link_hash_entry *) dir;
10186 indmips = (struct mips_elf_link_hash_entry *) ind;
10187 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
10188 if (indmips->readonly_reloc)
10189 dirmips->readonly_reloc = TRUE;
10190 if (indmips->no_fn_stub)
10191 dirmips->no_fn_stub = TRUE;
10192
10193 if (dirmips->tls_type == 0)
10194 dirmips->tls_type = indmips->tls_type;
10195 }
10196
10197 void
10198 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
10199 struct elf_link_hash_entry *entry,
10200 bfd_boolean force_local)
10201 {
10202 bfd *dynobj;
10203 struct mips_got_info *g;
10204 struct mips_elf_link_hash_entry *h;
10205 struct mips_elf_link_hash_table *htab;
10206
10207 h = (struct mips_elf_link_hash_entry *) entry;
10208 if (h->forced_local)
10209 return;
10210 h->forced_local = force_local;
10211
10212 dynobj = elf_hash_table (info)->dynobj;
10213 htab = mips_elf_hash_table (info);
10214 if (dynobj != NULL
10215 && force_local
10216 && h->root.type != STT_TLS
10217 && htab->got_info != NULL)
10218 {
10219 g = htab->got_info;
10220 if (g->next)
10221 {
10222 struct mips_got_entry e;
10223 struct mips_got_info *gg = g;
10224
10225 /* Since we're turning what used to be a global symbol into a
10226 local one, bump up the number of local entries of each GOT
10227 that had an entry for it. This will automatically decrease
10228 the number of global entries, since global_gotno is actually
10229 the upper limit of global entries. */
10230 e.abfd = dynobj;
10231 e.symndx = -1;
10232 e.d.h = h;
10233 e.tls_type = 0;
10234
10235 for (g = g->next; g != gg; g = g->next)
10236 if (htab_find (g->got_entries, &e))
10237 {
10238 BFD_ASSERT (g->global_gotno > 0);
10239 g->local_gotno++;
10240 g->global_gotno--;
10241 }
10242
10243 /* If this was a global symbol forced into the primary GOT, we
10244 no longer need an entry for it. We can't release the entry
10245 at this point, but we must at least stop counting it as one
10246 of the symbols that required a forced got entry. */
10247 if (h->root.got.offset == 2)
10248 {
10249 BFD_ASSERT (gg->assigned_gotno > 0);
10250 gg->assigned_gotno--;
10251 }
10252 }
10253 else if (h->root.got.offset == 1)
10254 {
10255 /* check_relocs didn't know that this symbol would be
10256 forced-local, so add an extra local got entry. */
10257 g->local_gotno++;
10258 if (htab->computed_got_sizes)
10259 {
10260 /* We'll have treated this symbol as global rather
10261 than local. */
10262 BFD_ASSERT (g->global_gotno > 0);
10263 g->global_gotno--;
10264 }
10265 }
10266 else if (htab->is_vxworks && h->root.needs_plt)
10267 {
10268 /* check_relocs didn't know that this symbol would be
10269 forced-local, so add an extra local got entry. */
10270 g->local_gotno++;
10271 if (htab->computed_got_sizes)
10272 /* The symbol is only used in call relocations, so we'll
10273 have assumed it only needs a .got.plt entry. Increase
10274 the size of .got accordingly. */
10275 htab->sgot->size += MIPS_ELF_GOT_SIZE (dynobj);
10276 }
10277 }
10278
10279 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
10280 }
10281 \f
10282 #define PDR_SIZE 32
10283
10284 bfd_boolean
10285 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
10286 struct bfd_link_info *info)
10287 {
10288 asection *o;
10289 bfd_boolean ret = FALSE;
10290 unsigned char *tdata;
10291 size_t i, skip;
10292
10293 o = bfd_get_section_by_name (abfd, ".pdr");
10294 if (! o)
10295 return FALSE;
10296 if (o->size == 0)
10297 return FALSE;
10298 if (o->size % PDR_SIZE != 0)
10299 return FALSE;
10300 if (o->output_section != NULL
10301 && bfd_is_abs_section (o->output_section))
10302 return FALSE;
10303
10304 tdata = bfd_zmalloc (o->size / PDR_SIZE);
10305 if (! tdata)
10306 return FALSE;
10307
10308 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
10309 info->keep_memory);
10310 if (!cookie->rels)
10311 {
10312 free (tdata);
10313 return FALSE;
10314 }
10315
10316 cookie->rel = cookie->rels;
10317 cookie->relend = cookie->rels + o->reloc_count;
10318
10319 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
10320 {
10321 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
10322 {
10323 tdata[i] = 1;
10324 skip ++;
10325 }
10326 }
10327
10328 if (skip != 0)
10329 {
10330 mips_elf_section_data (o)->u.tdata = tdata;
10331 o->size -= skip * PDR_SIZE;
10332 ret = TRUE;
10333 }
10334 else
10335 free (tdata);
10336
10337 if (! info->keep_memory)
10338 free (cookie->rels);
10339
10340 return ret;
10341 }
10342
10343 bfd_boolean
10344 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
10345 {
10346 if (strcmp (sec->name, ".pdr") == 0)
10347 return TRUE;
10348 return FALSE;
10349 }
10350
10351 bfd_boolean
10352 _bfd_mips_elf_write_section (bfd *output_bfd,
10353 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
10354 asection *sec, bfd_byte *contents)
10355 {
10356 bfd_byte *to, *from, *end;
10357 int i;
10358
10359 if (strcmp (sec->name, ".pdr") != 0)
10360 return FALSE;
10361
10362 if (mips_elf_section_data (sec)->u.tdata == NULL)
10363 return FALSE;
10364
10365 to = contents;
10366 end = contents + sec->size;
10367 for (from = contents, i = 0;
10368 from < end;
10369 from += PDR_SIZE, i++)
10370 {
10371 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
10372 continue;
10373 if (to != from)
10374 memcpy (to, from, PDR_SIZE);
10375 to += PDR_SIZE;
10376 }
10377 bfd_set_section_contents (output_bfd, sec->output_section, contents,
10378 sec->output_offset, sec->size);
10379 return TRUE;
10380 }
10381 \f
10382 /* MIPS ELF uses a special find_nearest_line routine in order the
10383 handle the ECOFF debugging information. */
10384
10385 struct mips_elf_find_line
10386 {
10387 struct ecoff_debug_info d;
10388 struct ecoff_find_line i;
10389 };
10390
10391 bfd_boolean
10392 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
10393 asymbol **symbols, bfd_vma offset,
10394 const char **filename_ptr,
10395 const char **functionname_ptr,
10396 unsigned int *line_ptr)
10397 {
10398 asection *msec;
10399
10400 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
10401 filename_ptr, functionname_ptr,
10402 line_ptr))
10403 return TRUE;
10404
10405 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10406 filename_ptr, functionname_ptr,
10407 line_ptr, ABI_64_P (abfd) ? 8 : 0,
10408 &elf_tdata (abfd)->dwarf2_find_line_info))
10409 return TRUE;
10410
10411 msec = bfd_get_section_by_name (abfd, ".mdebug");
10412 if (msec != NULL)
10413 {
10414 flagword origflags;
10415 struct mips_elf_find_line *fi;
10416 const struct ecoff_debug_swap * const swap =
10417 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
10418
10419 /* If we are called during a link, mips_elf_final_link may have
10420 cleared the SEC_HAS_CONTENTS field. We force it back on here
10421 if appropriate (which it normally will be). */
10422 origflags = msec->flags;
10423 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
10424 msec->flags |= SEC_HAS_CONTENTS;
10425
10426 fi = elf_tdata (abfd)->find_line_info;
10427 if (fi == NULL)
10428 {
10429 bfd_size_type external_fdr_size;
10430 char *fraw_src;
10431 char *fraw_end;
10432 struct fdr *fdr_ptr;
10433 bfd_size_type amt = sizeof (struct mips_elf_find_line);
10434
10435 fi = bfd_zalloc (abfd, amt);
10436 if (fi == NULL)
10437 {
10438 msec->flags = origflags;
10439 return FALSE;
10440 }
10441
10442 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
10443 {
10444 msec->flags = origflags;
10445 return FALSE;
10446 }
10447
10448 /* Swap in the FDR information. */
10449 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
10450 fi->d.fdr = bfd_alloc (abfd, amt);
10451 if (fi->d.fdr == NULL)
10452 {
10453 msec->flags = origflags;
10454 return FALSE;
10455 }
10456 external_fdr_size = swap->external_fdr_size;
10457 fdr_ptr = fi->d.fdr;
10458 fraw_src = (char *) fi->d.external_fdr;
10459 fraw_end = (fraw_src
10460 + fi->d.symbolic_header.ifdMax * external_fdr_size);
10461 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
10462 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
10463
10464 elf_tdata (abfd)->find_line_info = fi;
10465
10466 /* Note that we don't bother to ever free this information.
10467 find_nearest_line is either called all the time, as in
10468 objdump -l, so the information should be saved, or it is
10469 rarely called, as in ld error messages, so the memory
10470 wasted is unimportant. Still, it would probably be a
10471 good idea for free_cached_info to throw it away. */
10472 }
10473
10474 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
10475 &fi->i, filename_ptr, functionname_ptr,
10476 line_ptr))
10477 {
10478 msec->flags = origflags;
10479 return TRUE;
10480 }
10481
10482 msec->flags = origflags;
10483 }
10484
10485 /* Fall back on the generic ELF find_nearest_line routine. */
10486
10487 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
10488 filename_ptr, functionname_ptr,
10489 line_ptr);
10490 }
10491
10492 bfd_boolean
10493 _bfd_mips_elf_find_inliner_info (bfd *abfd,
10494 const char **filename_ptr,
10495 const char **functionname_ptr,
10496 unsigned int *line_ptr)
10497 {
10498 bfd_boolean found;
10499 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10500 functionname_ptr, line_ptr,
10501 & elf_tdata (abfd)->dwarf2_find_line_info);
10502 return found;
10503 }
10504
10505 \f
10506 /* When are writing out the .options or .MIPS.options section,
10507 remember the bytes we are writing out, so that we can install the
10508 GP value in the section_processing routine. */
10509
10510 bfd_boolean
10511 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
10512 const void *location,
10513 file_ptr offset, bfd_size_type count)
10514 {
10515 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
10516 {
10517 bfd_byte *c;
10518
10519 if (elf_section_data (section) == NULL)
10520 {
10521 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
10522 section->used_by_bfd = bfd_zalloc (abfd, amt);
10523 if (elf_section_data (section) == NULL)
10524 return FALSE;
10525 }
10526 c = mips_elf_section_data (section)->u.tdata;
10527 if (c == NULL)
10528 {
10529 c = bfd_zalloc (abfd, section->size);
10530 if (c == NULL)
10531 return FALSE;
10532 mips_elf_section_data (section)->u.tdata = c;
10533 }
10534
10535 memcpy (c + offset, location, count);
10536 }
10537
10538 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10539 count);
10540 }
10541
10542 /* This is almost identical to bfd_generic_get_... except that some
10543 MIPS relocations need to be handled specially. Sigh. */
10544
10545 bfd_byte *
10546 _bfd_elf_mips_get_relocated_section_contents
10547 (bfd *abfd,
10548 struct bfd_link_info *link_info,
10549 struct bfd_link_order *link_order,
10550 bfd_byte *data,
10551 bfd_boolean relocatable,
10552 asymbol **symbols)
10553 {
10554 /* Get enough memory to hold the stuff */
10555 bfd *input_bfd = link_order->u.indirect.section->owner;
10556 asection *input_section = link_order->u.indirect.section;
10557 bfd_size_type sz;
10558
10559 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10560 arelent **reloc_vector = NULL;
10561 long reloc_count;
10562
10563 if (reloc_size < 0)
10564 goto error_return;
10565
10566 reloc_vector = bfd_malloc (reloc_size);
10567 if (reloc_vector == NULL && reloc_size != 0)
10568 goto error_return;
10569
10570 /* read in the section */
10571 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10572 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10573 goto error_return;
10574
10575 reloc_count = bfd_canonicalize_reloc (input_bfd,
10576 input_section,
10577 reloc_vector,
10578 symbols);
10579 if (reloc_count < 0)
10580 goto error_return;
10581
10582 if (reloc_count > 0)
10583 {
10584 arelent **parent;
10585 /* for mips */
10586 int gp_found;
10587 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10588
10589 {
10590 struct bfd_hash_entry *h;
10591 struct bfd_link_hash_entry *lh;
10592 /* Skip all this stuff if we aren't mixing formats. */
10593 if (abfd && input_bfd
10594 && abfd->xvec == input_bfd->xvec)
10595 lh = 0;
10596 else
10597 {
10598 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10599 lh = (struct bfd_link_hash_entry *) h;
10600 }
10601 lookup:
10602 if (lh)
10603 {
10604 switch (lh->type)
10605 {
10606 case bfd_link_hash_undefined:
10607 case bfd_link_hash_undefweak:
10608 case bfd_link_hash_common:
10609 gp_found = 0;
10610 break;
10611 case bfd_link_hash_defined:
10612 case bfd_link_hash_defweak:
10613 gp_found = 1;
10614 gp = lh->u.def.value;
10615 break;
10616 case bfd_link_hash_indirect:
10617 case bfd_link_hash_warning:
10618 lh = lh->u.i.link;
10619 /* @@FIXME ignoring warning for now */
10620 goto lookup;
10621 case bfd_link_hash_new:
10622 default:
10623 abort ();
10624 }
10625 }
10626 else
10627 gp_found = 0;
10628 }
10629 /* end mips */
10630 for (parent = reloc_vector; *parent != NULL; parent++)
10631 {
10632 char *error_message = NULL;
10633 bfd_reloc_status_type r;
10634
10635 /* Specific to MIPS: Deal with relocation types that require
10636 knowing the gp of the output bfd. */
10637 asymbol *sym = *(*parent)->sym_ptr_ptr;
10638
10639 /* If we've managed to find the gp and have a special
10640 function for the relocation then go ahead, else default
10641 to the generic handling. */
10642 if (gp_found
10643 && (*parent)->howto->special_function
10644 == _bfd_mips_elf32_gprel16_reloc)
10645 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10646 input_section, relocatable,
10647 data, gp);
10648 else
10649 r = bfd_perform_relocation (input_bfd, *parent, data,
10650 input_section,
10651 relocatable ? abfd : NULL,
10652 &error_message);
10653
10654 if (relocatable)
10655 {
10656 asection *os = input_section->output_section;
10657
10658 /* A partial link, so keep the relocs */
10659 os->orelocation[os->reloc_count] = *parent;
10660 os->reloc_count++;
10661 }
10662
10663 if (r != bfd_reloc_ok)
10664 {
10665 switch (r)
10666 {
10667 case bfd_reloc_undefined:
10668 if (!((*link_info->callbacks->undefined_symbol)
10669 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10670 input_bfd, input_section, (*parent)->address, TRUE)))
10671 goto error_return;
10672 break;
10673 case bfd_reloc_dangerous:
10674 BFD_ASSERT (error_message != NULL);
10675 if (!((*link_info->callbacks->reloc_dangerous)
10676 (link_info, error_message, input_bfd, input_section,
10677 (*parent)->address)))
10678 goto error_return;
10679 break;
10680 case bfd_reloc_overflow:
10681 if (!((*link_info->callbacks->reloc_overflow)
10682 (link_info, NULL,
10683 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10684 (*parent)->howto->name, (*parent)->addend,
10685 input_bfd, input_section, (*parent)->address)))
10686 goto error_return;
10687 break;
10688 case bfd_reloc_outofrange:
10689 default:
10690 abort ();
10691 break;
10692 }
10693
10694 }
10695 }
10696 }
10697 if (reloc_vector != NULL)
10698 free (reloc_vector);
10699 return data;
10700
10701 error_return:
10702 if (reloc_vector != NULL)
10703 free (reloc_vector);
10704 return NULL;
10705 }
10706 \f
10707 /* Create a MIPS ELF linker hash table. */
10708
10709 struct bfd_link_hash_table *
10710 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10711 {
10712 struct mips_elf_link_hash_table *ret;
10713 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10714
10715 ret = bfd_malloc (amt);
10716 if (ret == NULL)
10717 return NULL;
10718
10719 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10720 mips_elf_link_hash_newfunc,
10721 sizeof (struct mips_elf_link_hash_entry)))
10722 {
10723 free (ret);
10724 return NULL;
10725 }
10726
10727 #if 0
10728 /* We no longer use this. */
10729 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10730 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10731 #endif
10732 ret->procedure_count = 0;
10733 ret->compact_rel_size = 0;
10734 ret->use_rld_obj_head = FALSE;
10735 ret->rld_value = 0;
10736 ret->mips16_stubs_seen = FALSE;
10737 ret->computed_got_sizes = FALSE;
10738 ret->is_vxworks = FALSE;
10739 ret->small_data_overflow_reported = FALSE;
10740 ret->srelbss = NULL;
10741 ret->sdynbss = NULL;
10742 ret->srelplt = NULL;
10743 ret->srelplt2 = NULL;
10744 ret->sgotplt = NULL;
10745 ret->splt = NULL;
10746 ret->sstubs = NULL;
10747 ret->sgot = NULL;
10748 ret->got_info = NULL;
10749 ret->plt_header_size = 0;
10750 ret->plt_entry_size = 0;
10751 ret->function_stub_size = 0;
10752
10753 return &ret->root.root;
10754 }
10755
10756 /* Likewise, but indicate that the target is VxWorks. */
10757
10758 struct bfd_link_hash_table *
10759 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10760 {
10761 struct bfd_link_hash_table *ret;
10762
10763 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10764 if (ret)
10765 {
10766 struct mips_elf_link_hash_table *htab;
10767
10768 htab = (struct mips_elf_link_hash_table *) ret;
10769 htab->is_vxworks = 1;
10770 }
10771 return ret;
10772 }
10773 \f
10774 /* We need to use a special link routine to handle the .reginfo and
10775 the .mdebug sections. We need to merge all instances of these
10776 sections together, not write them all out sequentially. */
10777
10778 bfd_boolean
10779 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10780 {
10781 asection *o;
10782 struct bfd_link_order *p;
10783 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10784 asection *rtproc_sec;
10785 Elf32_RegInfo reginfo;
10786 struct ecoff_debug_info debug;
10787 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10788 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10789 HDRR *symhdr = &debug.symbolic_header;
10790 void *mdebug_handle = NULL;
10791 asection *s;
10792 EXTR esym;
10793 unsigned int i;
10794 bfd_size_type amt;
10795 struct mips_elf_link_hash_table *htab;
10796
10797 static const char * const secname[] =
10798 {
10799 ".text", ".init", ".fini", ".data",
10800 ".rodata", ".sdata", ".sbss", ".bss"
10801 };
10802 static const int sc[] =
10803 {
10804 scText, scInit, scFini, scData,
10805 scRData, scSData, scSBss, scBss
10806 };
10807
10808 /* We'd carefully arranged the dynamic symbol indices, and then the
10809 generic size_dynamic_sections renumbered them out from under us.
10810 Rather than trying somehow to prevent the renumbering, just do
10811 the sort again. */
10812 htab = mips_elf_hash_table (info);
10813 if (elf_hash_table (info)->dynamic_sections_created)
10814 {
10815 struct mips_got_info *g;
10816 bfd_size_type dynsecsymcount;
10817
10818 /* When we resort, we must tell mips_elf_sort_hash_table what
10819 the lowest index it may use is. That's the number of section
10820 symbols we're going to add. The generic ELF linker only
10821 adds these symbols when building a shared object. Note that
10822 we count the sections after (possibly) removing the .options
10823 section above. */
10824
10825 dynsecsymcount = count_section_dynsyms (abfd, info);
10826 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10827 return FALSE;
10828
10829 /* Make sure we didn't grow the global .got region. */
10830 g = htab->got_info;
10831 if (g->global_gotsym != NULL)
10832 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10833 - g->global_gotsym->dynindx)
10834 <= g->global_gotno);
10835 }
10836
10837 /* Get a value for the GP register. */
10838 if (elf_gp (abfd) == 0)
10839 {
10840 struct bfd_link_hash_entry *h;
10841
10842 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10843 if (h != NULL && h->type == bfd_link_hash_defined)
10844 elf_gp (abfd) = (h->u.def.value
10845 + h->u.def.section->output_section->vma
10846 + h->u.def.section->output_offset);
10847 else if (htab->is_vxworks
10848 && (h = bfd_link_hash_lookup (info->hash,
10849 "_GLOBAL_OFFSET_TABLE_",
10850 FALSE, FALSE, TRUE))
10851 && h->type == bfd_link_hash_defined)
10852 elf_gp (abfd) = (h->u.def.section->output_section->vma
10853 + h->u.def.section->output_offset
10854 + h->u.def.value);
10855 else if (info->relocatable)
10856 {
10857 bfd_vma lo = MINUS_ONE;
10858
10859 /* Find the GP-relative section with the lowest offset. */
10860 for (o = abfd->sections; o != NULL; o = o->next)
10861 if (o->vma < lo
10862 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10863 lo = o->vma;
10864
10865 /* And calculate GP relative to that. */
10866 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10867 }
10868 else
10869 {
10870 /* If the relocate_section function needs to do a reloc
10871 involving the GP value, it should make a reloc_dangerous
10872 callback to warn that GP is not defined. */
10873 }
10874 }
10875
10876 /* Go through the sections and collect the .reginfo and .mdebug
10877 information. */
10878 reginfo_sec = NULL;
10879 mdebug_sec = NULL;
10880 gptab_data_sec = NULL;
10881 gptab_bss_sec = NULL;
10882 for (o = abfd->sections; o != NULL; o = o->next)
10883 {
10884 if (strcmp (o->name, ".reginfo") == 0)
10885 {
10886 memset (&reginfo, 0, sizeof reginfo);
10887
10888 /* We have found the .reginfo section in the output file.
10889 Look through all the link_orders comprising it and merge
10890 the information together. */
10891 for (p = o->map_head.link_order; p != NULL; p = p->next)
10892 {
10893 asection *input_section;
10894 bfd *input_bfd;
10895 Elf32_External_RegInfo ext;
10896 Elf32_RegInfo sub;
10897
10898 if (p->type != bfd_indirect_link_order)
10899 {
10900 if (p->type == bfd_data_link_order)
10901 continue;
10902 abort ();
10903 }
10904
10905 input_section = p->u.indirect.section;
10906 input_bfd = input_section->owner;
10907
10908 if (! bfd_get_section_contents (input_bfd, input_section,
10909 &ext, 0, sizeof ext))
10910 return FALSE;
10911
10912 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10913
10914 reginfo.ri_gprmask |= sub.ri_gprmask;
10915 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10916 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10917 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10918 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10919
10920 /* ri_gp_value is set by the function
10921 mips_elf32_section_processing when the section is
10922 finally written out. */
10923
10924 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10925 elf_link_input_bfd ignores this section. */
10926 input_section->flags &= ~SEC_HAS_CONTENTS;
10927 }
10928
10929 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10930 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10931
10932 /* Skip this section later on (I don't think this currently
10933 matters, but someday it might). */
10934 o->map_head.link_order = NULL;
10935
10936 reginfo_sec = o;
10937 }
10938
10939 if (strcmp (o->name, ".mdebug") == 0)
10940 {
10941 struct extsym_info einfo;
10942 bfd_vma last;
10943
10944 /* We have found the .mdebug section in the output file.
10945 Look through all the link_orders comprising it and merge
10946 the information together. */
10947 symhdr->magic = swap->sym_magic;
10948 /* FIXME: What should the version stamp be? */
10949 symhdr->vstamp = 0;
10950 symhdr->ilineMax = 0;
10951 symhdr->cbLine = 0;
10952 symhdr->idnMax = 0;
10953 symhdr->ipdMax = 0;
10954 symhdr->isymMax = 0;
10955 symhdr->ioptMax = 0;
10956 symhdr->iauxMax = 0;
10957 symhdr->issMax = 0;
10958 symhdr->issExtMax = 0;
10959 symhdr->ifdMax = 0;
10960 symhdr->crfd = 0;
10961 symhdr->iextMax = 0;
10962
10963 /* We accumulate the debugging information itself in the
10964 debug_info structure. */
10965 debug.line = NULL;
10966 debug.external_dnr = NULL;
10967 debug.external_pdr = NULL;
10968 debug.external_sym = NULL;
10969 debug.external_opt = NULL;
10970 debug.external_aux = NULL;
10971 debug.ss = NULL;
10972 debug.ssext = debug.ssext_end = NULL;
10973 debug.external_fdr = NULL;
10974 debug.external_rfd = NULL;
10975 debug.external_ext = debug.external_ext_end = NULL;
10976
10977 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10978 if (mdebug_handle == NULL)
10979 return FALSE;
10980
10981 esym.jmptbl = 0;
10982 esym.cobol_main = 0;
10983 esym.weakext = 0;
10984 esym.reserved = 0;
10985 esym.ifd = ifdNil;
10986 esym.asym.iss = issNil;
10987 esym.asym.st = stLocal;
10988 esym.asym.reserved = 0;
10989 esym.asym.index = indexNil;
10990 last = 0;
10991 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10992 {
10993 esym.asym.sc = sc[i];
10994 s = bfd_get_section_by_name (abfd, secname[i]);
10995 if (s != NULL)
10996 {
10997 esym.asym.value = s->vma;
10998 last = s->vma + s->size;
10999 }
11000 else
11001 esym.asym.value = last;
11002 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11003 secname[i], &esym))
11004 return FALSE;
11005 }
11006
11007 for (p = o->map_head.link_order; p != NULL; p = p->next)
11008 {
11009 asection *input_section;
11010 bfd *input_bfd;
11011 const struct ecoff_debug_swap *input_swap;
11012 struct ecoff_debug_info input_debug;
11013 char *eraw_src;
11014 char *eraw_end;
11015
11016 if (p->type != bfd_indirect_link_order)
11017 {
11018 if (p->type == bfd_data_link_order)
11019 continue;
11020 abort ();
11021 }
11022
11023 input_section = p->u.indirect.section;
11024 input_bfd = input_section->owner;
11025
11026 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
11027 || (get_elf_backend_data (input_bfd)
11028 ->elf_backend_ecoff_debug_swap) == NULL)
11029 {
11030 /* I don't know what a non MIPS ELF bfd would be
11031 doing with a .mdebug section, but I don't really
11032 want to deal with it. */
11033 continue;
11034 }
11035
11036 input_swap = (get_elf_backend_data (input_bfd)
11037 ->elf_backend_ecoff_debug_swap);
11038
11039 BFD_ASSERT (p->size == input_section->size);
11040
11041 /* The ECOFF linking code expects that we have already
11042 read in the debugging information and set up an
11043 ecoff_debug_info structure, so we do that now. */
11044 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11045 &input_debug))
11046 return FALSE;
11047
11048 if (! (bfd_ecoff_debug_accumulate
11049 (mdebug_handle, abfd, &debug, swap, input_bfd,
11050 &input_debug, input_swap, info)))
11051 return FALSE;
11052
11053 /* Loop through the external symbols. For each one with
11054 interesting information, try to find the symbol in
11055 the linker global hash table and save the information
11056 for the output external symbols. */
11057 eraw_src = input_debug.external_ext;
11058 eraw_end = (eraw_src
11059 + (input_debug.symbolic_header.iextMax
11060 * input_swap->external_ext_size));
11061 for (;
11062 eraw_src < eraw_end;
11063 eraw_src += input_swap->external_ext_size)
11064 {
11065 EXTR ext;
11066 const char *name;
11067 struct mips_elf_link_hash_entry *h;
11068
11069 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11070 if (ext.asym.sc == scNil
11071 || ext.asym.sc == scUndefined
11072 || ext.asym.sc == scSUndefined)
11073 continue;
11074
11075 name = input_debug.ssext + ext.asym.iss;
11076 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11077 name, FALSE, FALSE, TRUE);
11078 if (h == NULL || h->esym.ifd != -2)
11079 continue;
11080
11081 if (ext.ifd != -1)
11082 {
11083 BFD_ASSERT (ext.ifd
11084 < input_debug.symbolic_header.ifdMax);
11085 ext.ifd = input_debug.ifdmap[ext.ifd];
11086 }
11087
11088 h->esym = ext;
11089 }
11090
11091 /* Free up the information we just read. */
11092 free (input_debug.line);
11093 free (input_debug.external_dnr);
11094 free (input_debug.external_pdr);
11095 free (input_debug.external_sym);
11096 free (input_debug.external_opt);
11097 free (input_debug.external_aux);
11098 free (input_debug.ss);
11099 free (input_debug.ssext);
11100 free (input_debug.external_fdr);
11101 free (input_debug.external_rfd);
11102 free (input_debug.external_ext);
11103
11104 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11105 elf_link_input_bfd ignores this section. */
11106 input_section->flags &= ~SEC_HAS_CONTENTS;
11107 }
11108
11109 if (SGI_COMPAT (abfd) && info->shared)
11110 {
11111 /* Create .rtproc section. */
11112 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11113 if (rtproc_sec == NULL)
11114 {
11115 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11116 | SEC_LINKER_CREATED | SEC_READONLY);
11117
11118 rtproc_sec = bfd_make_section_with_flags (abfd,
11119 ".rtproc",
11120 flags);
11121 if (rtproc_sec == NULL
11122 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11123 return FALSE;
11124 }
11125
11126 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11127 info, rtproc_sec,
11128 &debug))
11129 return FALSE;
11130 }
11131
11132 /* Build the external symbol information. */
11133 einfo.abfd = abfd;
11134 einfo.info = info;
11135 einfo.debug = &debug;
11136 einfo.swap = swap;
11137 einfo.failed = FALSE;
11138 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11139 mips_elf_output_extsym, &einfo);
11140 if (einfo.failed)
11141 return FALSE;
11142
11143 /* Set the size of the .mdebug section. */
11144 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11145
11146 /* Skip this section later on (I don't think this currently
11147 matters, but someday it might). */
11148 o->map_head.link_order = NULL;
11149
11150 mdebug_sec = o;
11151 }
11152
11153 if (CONST_STRNEQ (o->name, ".gptab."))
11154 {
11155 const char *subname;
11156 unsigned int c;
11157 Elf32_gptab *tab;
11158 Elf32_External_gptab *ext_tab;
11159 unsigned int j;
11160
11161 /* The .gptab.sdata and .gptab.sbss sections hold
11162 information describing how the small data area would
11163 change depending upon the -G switch. These sections
11164 not used in executables files. */
11165 if (! info->relocatable)
11166 {
11167 for (p = o->map_head.link_order; p != NULL; p = p->next)
11168 {
11169 asection *input_section;
11170
11171 if (p->type != bfd_indirect_link_order)
11172 {
11173 if (p->type == bfd_data_link_order)
11174 continue;
11175 abort ();
11176 }
11177
11178 input_section = p->u.indirect.section;
11179
11180 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11181 elf_link_input_bfd ignores this section. */
11182 input_section->flags &= ~SEC_HAS_CONTENTS;
11183 }
11184
11185 /* Skip this section later on (I don't think this
11186 currently matters, but someday it might). */
11187 o->map_head.link_order = NULL;
11188
11189 /* Really remove the section. */
11190 bfd_section_list_remove (abfd, o);
11191 --abfd->section_count;
11192
11193 continue;
11194 }
11195
11196 /* There is one gptab for initialized data, and one for
11197 uninitialized data. */
11198 if (strcmp (o->name, ".gptab.sdata") == 0)
11199 gptab_data_sec = o;
11200 else if (strcmp (o->name, ".gptab.sbss") == 0)
11201 gptab_bss_sec = o;
11202 else
11203 {
11204 (*_bfd_error_handler)
11205 (_("%s: illegal section name `%s'"),
11206 bfd_get_filename (abfd), o->name);
11207 bfd_set_error (bfd_error_nonrepresentable_section);
11208 return FALSE;
11209 }
11210
11211 /* The linker script always combines .gptab.data and
11212 .gptab.sdata into .gptab.sdata, and likewise for
11213 .gptab.bss and .gptab.sbss. It is possible that there is
11214 no .sdata or .sbss section in the output file, in which
11215 case we must change the name of the output section. */
11216 subname = o->name + sizeof ".gptab" - 1;
11217 if (bfd_get_section_by_name (abfd, subname) == NULL)
11218 {
11219 if (o == gptab_data_sec)
11220 o->name = ".gptab.data";
11221 else
11222 o->name = ".gptab.bss";
11223 subname = o->name + sizeof ".gptab" - 1;
11224 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11225 }
11226
11227 /* Set up the first entry. */
11228 c = 1;
11229 amt = c * sizeof (Elf32_gptab);
11230 tab = bfd_malloc (amt);
11231 if (tab == NULL)
11232 return FALSE;
11233 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11234 tab[0].gt_header.gt_unused = 0;
11235
11236 /* Combine the input sections. */
11237 for (p = o->map_head.link_order; p != NULL; p = p->next)
11238 {
11239 asection *input_section;
11240 bfd *input_bfd;
11241 bfd_size_type size;
11242 unsigned long last;
11243 bfd_size_type gpentry;
11244
11245 if (p->type != bfd_indirect_link_order)
11246 {
11247 if (p->type == bfd_data_link_order)
11248 continue;
11249 abort ();
11250 }
11251
11252 input_section = p->u.indirect.section;
11253 input_bfd = input_section->owner;
11254
11255 /* Combine the gptab entries for this input section one
11256 by one. We know that the input gptab entries are
11257 sorted by ascending -G value. */
11258 size = input_section->size;
11259 last = 0;
11260 for (gpentry = sizeof (Elf32_External_gptab);
11261 gpentry < size;
11262 gpentry += sizeof (Elf32_External_gptab))
11263 {
11264 Elf32_External_gptab ext_gptab;
11265 Elf32_gptab int_gptab;
11266 unsigned long val;
11267 unsigned long add;
11268 bfd_boolean exact;
11269 unsigned int look;
11270
11271 if (! (bfd_get_section_contents
11272 (input_bfd, input_section, &ext_gptab, gpentry,
11273 sizeof (Elf32_External_gptab))))
11274 {
11275 free (tab);
11276 return FALSE;
11277 }
11278
11279 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
11280 &int_gptab);
11281 val = int_gptab.gt_entry.gt_g_value;
11282 add = int_gptab.gt_entry.gt_bytes - last;
11283
11284 exact = FALSE;
11285 for (look = 1; look < c; look++)
11286 {
11287 if (tab[look].gt_entry.gt_g_value >= val)
11288 tab[look].gt_entry.gt_bytes += add;
11289
11290 if (tab[look].gt_entry.gt_g_value == val)
11291 exact = TRUE;
11292 }
11293
11294 if (! exact)
11295 {
11296 Elf32_gptab *new_tab;
11297 unsigned int max;
11298
11299 /* We need a new table entry. */
11300 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
11301 new_tab = bfd_realloc (tab, amt);
11302 if (new_tab == NULL)
11303 {
11304 free (tab);
11305 return FALSE;
11306 }
11307 tab = new_tab;
11308 tab[c].gt_entry.gt_g_value = val;
11309 tab[c].gt_entry.gt_bytes = add;
11310
11311 /* Merge in the size for the next smallest -G
11312 value, since that will be implied by this new
11313 value. */
11314 max = 0;
11315 for (look = 1; look < c; look++)
11316 {
11317 if (tab[look].gt_entry.gt_g_value < val
11318 && (max == 0
11319 || (tab[look].gt_entry.gt_g_value
11320 > tab[max].gt_entry.gt_g_value)))
11321 max = look;
11322 }
11323 if (max != 0)
11324 tab[c].gt_entry.gt_bytes +=
11325 tab[max].gt_entry.gt_bytes;
11326
11327 ++c;
11328 }
11329
11330 last = int_gptab.gt_entry.gt_bytes;
11331 }
11332
11333 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11334 elf_link_input_bfd ignores this section. */
11335 input_section->flags &= ~SEC_HAS_CONTENTS;
11336 }
11337
11338 /* The table must be sorted by -G value. */
11339 if (c > 2)
11340 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
11341
11342 /* Swap out the table. */
11343 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
11344 ext_tab = bfd_alloc (abfd, amt);
11345 if (ext_tab == NULL)
11346 {
11347 free (tab);
11348 return FALSE;
11349 }
11350
11351 for (j = 0; j < c; j++)
11352 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
11353 free (tab);
11354
11355 o->size = c * sizeof (Elf32_External_gptab);
11356 o->contents = (bfd_byte *) ext_tab;
11357
11358 /* Skip this section later on (I don't think this currently
11359 matters, but someday it might). */
11360 o->map_head.link_order = NULL;
11361 }
11362 }
11363
11364 /* Invoke the regular ELF backend linker to do all the work. */
11365 if (!bfd_elf_final_link (abfd, info))
11366 return FALSE;
11367
11368 /* Now write out the computed sections. */
11369
11370 if (reginfo_sec != NULL)
11371 {
11372 Elf32_External_RegInfo ext;
11373
11374 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
11375 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
11376 return FALSE;
11377 }
11378
11379 if (mdebug_sec != NULL)
11380 {
11381 BFD_ASSERT (abfd->output_has_begun);
11382 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
11383 swap, info,
11384 mdebug_sec->filepos))
11385 return FALSE;
11386
11387 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
11388 }
11389
11390 if (gptab_data_sec != NULL)
11391 {
11392 if (! bfd_set_section_contents (abfd, gptab_data_sec,
11393 gptab_data_sec->contents,
11394 0, gptab_data_sec->size))
11395 return FALSE;
11396 }
11397
11398 if (gptab_bss_sec != NULL)
11399 {
11400 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
11401 gptab_bss_sec->contents,
11402 0, gptab_bss_sec->size))
11403 return FALSE;
11404 }
11405
11406 if (SGI_COMPAT (abfd))
11407 {
11408 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11409 if (rtproc_sec != NULL)
11410 {
11411 if (! bfd_set_section_contents (abfd, rtproc_sec,
11412 rtproc_sec->contents,
11413 0, rtproc_sec->size))
11414 return FALSE;
11415 }
11416 }
11417
11418 return TRUE;
11419 }
11420 \f
11421 /* Structure for saying that BFD machine EXTENSION extends BASE. */
11422
11423 struct mips_mach_extension {
11424 unsigned long extension, base;
11425 };
11426
11427
11428 /* An array describing how BFD machines relate to one another. The entries
11429 are ordered topologically with MIPS I extensions listed last. */
11430
11431 static const struct mips_mach_extension mips_mach_extensions[] = {
11432 /* MIPS64r2 extensions. */
11433 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
11434
11435 /* MIPS64 extensions. */
11436 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
11437 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
11438
11439 /* MIPS V extensions. */
11440 { bfd_mach_mipsisa64, bfd_mach_mips5 },
11441
11442 /* R10000 extensions. */
11443 { bfd_mach_mips12000, bfd_mach_mips10000 },
11444
11445 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
11446 vr5400 ISA, but doesn't include the multimedia stuff. It seems
11447 better to allow vr5400 and vr5500 code to be merged anyway, since
11448 many libraries will just use the core ISA. Perhaps we could add
11449 some sort of ASE flag if this ever proves a problem. */
11450 { bfd_mach_mips5500, bfd_mach_mips5400 },
11451 { bfd_mach_mips5400, bfd_mach_mips5000 },
11452
11453 /* MIPS IV extensions. */
11454 { bfd_mach_mips5, bfd_mach_mips8000 },
11455 { bfd_mach_mips10000, bfd_mach_mips8000 },
11456 { bfd_mach_mips5000, bfd_mach_mips8000 },
11457 { bfd_mach_mips7000, bfd_mach_mips8000 },
11458 { bfd_mach_mips9000, bfd_mach_mips8000 },
11459
11460 /* VR4100 extensions. */
11461 { bfd_mach_mips4120, bfd_mach_mips4100 },
11462 { bfd_mach_mips4111, bfd_mach_mips4100 },
11463
11464 /* MIPS III extensions. */
11465 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
11466 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
11467 { bfd_mach_mips8000, bfd_mach_mips4000 },
11468 { bfd_mach_mips4650, bfd_mach_mips4000 },
11469 { bfd_mach_mips4600, bfd_mach_mips4000 },
11470 { bfd_mach_mips4400, bfd_mach_mips4000 },
11471 { bfd_mach_mips4300, bfd_mach_mips4000 },
11472 { bfd_mach_mips4100, bfd_mach_mips4000 },
11473 { bfd_mach_mips4010, bfd_mach_mips4000 },
11474
11475 /* MIPS32 extensions. */
11476 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
11477
11478 /* MIPS II extensions. */
11479 { bfd_mach_mips4000, bfd_mach_mips6000 },
11480 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
11481
11482 /* MIPS I extensions. */
11483 { bfd_mach_mips6000, bfd_mach_mips3000 },
11484 { bfd_mach_mips3900, bfd_mach_mips3000 }
11485 };
11486
11487
11488 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
11489
11490 static bfd_boolean
11491 mips_mach_extends_p (unsigned long base, unsigned long extension)
11492 {
11493 size_t i;
11494
11495 if (extension == base)
11496 return TRUE;
11497
11498 if (base == bfd_mach_mipsisa32
11499 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
11500 return TRUE;
11501
11502 if (base == bfd_mach_mipsisa32r2
11503 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
11504 return TRUE;
11505
11506 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
11507 if (extension == mips_mach_extensions[i].extension)
11508 {
11509 extension = mips_mach_extensions[i].base;
11510 if (extension == base)
11511 return TRUE;
11512 }
11513
11514 return FALSE;
11515 }
11516
11517
11518 /* Return true if the given ELF header flags describe a 32-bit binary. */
11519
11520 static bfd_boolean
11521 mips_32bit_flags_p (flagword flags)
11522 {
11523 return ((flags & EF_MIPS_32BITMODE) != 0
11524 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
11525 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11526 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11527 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11528 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11529 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
11530 }
11531
11532
11533 /* Merge object attributes from IBFD into OBFD. Raise an error if
11534 there are conflicting attributes. */
11535 static bfd_boolean
11536 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
11537 {
11538 obj_attribute *in_attr;
11539 obj_attribute *out_attr;
11540
11541 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11542 {
11543 /* This is the first object. Copy the attributes. */
11544 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11545
11546 /* Use the Tag_null value to indicate the attributes have been
11547 initialized. */
11548 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11549
11550 return TRUE;
11551 }
11552
11553 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11554 non-conflicting ones. */
11555 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11556 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11557 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11558 {
11559 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11560 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11561 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11562 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11563 ;
11564 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
11565 _bfd_error_handler
11566 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11567 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11568 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
11569 _bfd_error_handler
11570 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11571 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11572 else
11573 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11574 {
11575 case 1:
11576 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11577 {
11578 case 2:
11579 _bfd_error_handler
11580 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11581 obfd, ibfd);
11582 break;
11583
11584 case 3:
11585 _bfd_error_handler
11586 (_("Warning: %B uses hard float, %B uses soft float"),
11587 obfd, ibfd);
11588 break;
11589
11590 case 4:
11591 _bfd_error_handler
11592 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11593 obfd, ibfd);
11594 break;
11595
11596 default:
11597 abort ();
11598 }
11599 break;
11600
11601 case 2:
11602 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11603 {
11604 case 1:
11605 _bfd_error_handler
11606 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11607 ibfd, obfd);
11608 break;
11609
11610 case 3:
11611 _bfd_error_handler
11612 (_("Warning: %B uses hard float, %B uses soft float"),
11613 obfd, ibfd);
11614 break;
11615
11616 case 4:
11617 _bfd_error_handler
11618 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11619 obfd, ibfd);
11620 break;
11621
11622 default:
11623 abort ();
11624 }
11625 break;
11626
11627 case 3:
11628 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11629 {
11630 case 1:
11631 case 2:
11632 case 4:
11633 _bfd_error_handler
11634 (_("Warning: %B uses hard float, %B uses soft float"),
11635 ibfd, obfd);
11636 break;
11637
11638 default:
11639 abort ();
11640 }
11641 break;
11642
11643 case 4:
11644 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11645 {
11646 case 1:
11647 _bfd_error_handler
11648 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11649 ibfd, obfd);
11650 break;
11651
11652 case 2:
11653 _bfd_error_handler
11654 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11655 ibfd, obfd);
11656 break;
11657
11658 case 3:
11659 _bfd_error_handler
11660 (_("Warning: %B uses hard float, %B uses soft float"),
11661 obfd, ibfd);
11662 break;
11663
11664 default:
11665 abort ();
11666 }
11667 break;
11668
11669 default:
11670 abort ();
11671 }
11672 }
11673
11674 /* Merge Tag_compatibility attributes and any common GNU ones. */
11675 _bfd_elf_merge_object_attributes (ibfd, obfd);
11676
11677 return TRUE;
11678 }
11679
11680 /* Merge backend specific data from an object file to the output
11681 object file when linking. */
11682
11683 bfd_boolean
11684 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11685 {
11686 flagword old_flags;
11687 flagword new_flags;
11688 bfd_boolean ok;
11689 bfd_boolean null_input_bfd = TRUE;
11690 asection *sec;
11691
11692 /* Check if we have the same endianess */
11693 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11694 {
11695 (*_bfd_error_handler)
11696 (_("%B: endianness incompatible with that of the selected emulation"),
11697 ibfd);
11698 return FALSE;
11699 }
11700
11701 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11702 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11703 return TRUE;
11704
11705 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11706 {
11707 (*_bfd_error_handler)
11708 (_("%B: ABI is incompatible with that of the selected emulation"),
11709 ibfd);
11710 return FALSE;
11711 }
11712
11713 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11714 return FALSE;
11715
11716 new_flags = elf_elfheader (ibfd)->e_flags;
11717 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11718 old_flags = elf_elfheader (obfd)->e_flags;
11719
11720 if (! elf_flags_init (obfd))
11721 {
11722 elf_flags_init (obfd) = TRUE;
11723 elf_elfheader (obfd)->e_flags = new_flags;
11724 elf_elfheader (obfd)->e_ident[EI_CLASS]
11725 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11726
11727 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11728 && (bfd_get_arch_info (obfd)->the_default
11729 || mips_mach_extends_p (bfd_get_mach (obfd),
11730 bfd_get_mach (ibfd))))
11731 {
11732 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11733 bfd_get_mach (ibfd)))
11734 return FALSE;
11735 }
11736
11737 return TRUE;
11738 }
11739
11740 /* Check flag compatibility. */
11741
11742 new_flags &= ~EF_MIPS_NOREORDER;
11743 old_flags &= ~EF_MIPS_NOREORDER;
11744
11745 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11746 doesn't seem to matter. */
11747 new_flags &= ~EF_MIPS_XGOT;
11748 old_flags &= ~EF_MIPS_XGOT;
11749
11750 /* MIPSpro generates ucode info in n64 objects. Again, we should
11751 just be able to ignore this. */
11752 new_flags &= ~EF_MIPS_UCODE;
11753 old_flags &= ~EF_MIPS_UCODE;
11754
11755 /* Don't care about the PIC flags from dynamic objects; they are
11756 PIC by design. */
11757 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11758 && (ibfd->flags & DYNAMIC) != 0)
11759 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11760
11761 if (new_flags == old_flags)
11762 return TRUE;
11763
11764 /* Check to see if the input BFD actually contains any sections.
11765 If not, its flags may not have been initialised either, but it cannot
11766 actually cause any incompatibility. */
11767 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11768 {
11769 /* Ignore synthetic sections and empty .text, .data and .bss sections
11770 which are automatically generated by gas. */
11771 if (strcmp (sec->name, ".reginfo")
11772 && strcmp (sec->name, ".mdebug")
11773 && (sec->size != 0
11774 || (strcmp (sec->name, ".text")
11775 && strcmp (sec->name, ".data")
11776 && strcmp (sec->name, ".bss"))))
11777 {
11778 null_input_bfd = FALSE;
11779 break;
11780 }
11781 }
11782 if (null_input_bfd)
11783 return TRUE;
11784
11785 ok = TRUE;
11786
11787 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11788 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11789 {
11790 (*_bfd_error_handler)
11791 (_("%B: warning: linking PIC files with non-PIC files"),
11792 ibfd);
11793 ok = TRUE;
11794 }
11795
11796 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11797 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11798 if (! (new_flags & EF_MIPS_PIC))
11799 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11800
11801 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11802 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11803
11804 /* Compare the ISAs. */
11805 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11806 {
11807 (*_bfd_error_handler)
11808 (_("%B: linking 32-bit code with 64-bit code"),
11809 ibfd);
11810 ok = FALSE;
11811 }
11812 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11813 {
11814 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11815 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11816 {
11817 /* Copy the architecture info from IBFD to OBFD. Also copy
11818 the 32-bit flag (if set) so that we continue to recognise
11819 OBFD as a 32-bit binary. */
11820 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11821 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11822 elf_elfheader (obfd)->e_flags
11823 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11824
11825 /* Copy across the ABI flags if OBFD doesn't use them
11826 and if that was what caused us to treat IBFD as 32-bit. */
11827 if ((old_flags & EF_MIPS_ABI) == 0
11828 && mips_32bit_flags_p (new_flags)
11829 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11830 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11831 }
11832 else
11833 {
11834 /* The ISAs aren't compatible. */
11835 (*_bfd_error_handler)
11836 (_("%B: linking %s module with previous %s modules"),
11837 ibfd,
11838 bfd_printable_name (ibfd),
11839 bfd_printable_name (obfd));
11840 ok = FALSE;
11841 }
11842 }
11843
11844 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11845 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11846
11847 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11848 does set EI_CLASS differently from any 32-bit ABI. */
11849 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11850 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11851 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11852 {
11853 /* Only error if both are set (to different values). */
11854 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11855 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11856 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11857 {
11858 (*_bfd_error_handler)
11859 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11860 ibfd,
11861 elf_mips_abi_name (ibfd),
11862 elf_mips_abi_name (obfd));
11863 ok = FALSE;
11864 }
11865 new_flags &= ~EF_MIPS_ABI;
11866 old_flags &= ~EF_MIPS_ABI;
11867 }
11868
11869 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11870 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11871 {
11872 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11873
11874 new_flags &= ~ EF_MIPS_ARCH_ASE;
11875 old_flags &= ~ EF_MIPS_ARCH_ASE;
11876 }
11877
11878 /* Warn about any other mismatches */
11879 if (new_flags != old_flags)
11880 {
11881 (*_bfd_error_handler)
11882 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11883 ibfd, (unsigned long) new_flags,
11884 (unsigned long) old_flags);
11885 ok = FALSE;
11886 }
11887
11888 if (! ok)
11889 {
11890 bfd_set_error (bfd_error_bad_value);
11891 return FALSE;
11892 }
11893
11894 return TRUE;
11895 }
11896
11897 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11898
11899 bfd_boolean
11900 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11901 {
11902 BFD_ASSERT (!elf_flags_init (abfd)
11903 || elf_elfheader (abfd)->e_flags == flags);
11904
11905 elf_elfheader (abfd)->e_flags = flags;
11906 elf_flags_init (abfd) = TRUE;
11907 return TRUE;
11908 }
11909
11910 char *
11911 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
11912 {
11913 switch (dtag)
11914 {
11915 default: return "";
11916 case DT_MIPS_RLD_VERSION:
11917 return "MIPS_RLD_VERSION";
11918 case DT_MIPS_TIME_STAMP:
11919 return "MIPS_TIME_STAMP";
11920 case DT_MIPS_ICHECKSUM:
11921 return "MIPS_ICHECKSUM";
11922 case DT_MIPS_IVERSION:
11923 return "MIPS_IVERSION";
11924 case DT_MIPS_FLAGS:
11925 return "MIPS_FLAGS";
11926 case DT_MIPS_BASE_ADDRESS:
11927 return "MIPS_BASE_ADDRESS";
11928 case DT_MIPS_MSYM:
11929 return "MIPS_MSYM";
11930 case DT_MIPS_CONFLICT:
11931 return "MIPS_CONFLICT";
11932 case DT_MIPS_LIBLIST:
11933 return "MIPS_LIBLIST";
11934 case DT_MIPS_LOCAL_GOTNO:
11935 return "MIPS_LOCAL_GOTNO";
11936 case DT_MIPS_CONFLICTNO:
11937 return "MIPS_CONFLICTNO";
11938 case DT_MIPS_LIBLISTNO:
11939 return "MIPS_LIBLISTNO";
11940 case DT_MIPS_SYMTABNO:
11941 return "MIPS_SYMTABNO";
11942 case DT_MIPS_UNREFEXTNO:
11943 return "MIPS_UNREFEXTNO";
11944 case DT_MIPS_GOTSYM:
11945 return "MIPS_GOTSYM";
11946 case DT_MIPS_HIPAGENO:
11947 return "MIPS_HIPAGENO";
11948 case DT_MIPS_RLD_MAP:
11949 return "MIPS_RLD_MAP";
11950 case DT_MIPS_DELTA_CLASS:
11951 return "MIPS_DELTA_CLASS";
11952 case DT_MIPS_DELTA_CLASS_NO:
11953 return "MIPS_DELTA_CLASS_NO";
11954 case DT_MIPS_DELTA_INSTANCE:
11955 return "MIPS_DELTA_INSTANCE";
11956 case DT_MIPS_DELTA_INSTANCE_NO:
11957 return "MIPS_DELTA_INSTANCE_NO";
11958 case DT_MIPS_DELTA_RELOC:
11959 return "MIPS_DELTA_RELOC";
11960 case DT_MIPS_DELTA_RELOC_NO:
11961 return "MIPS_DELTA_RELOC_NO";
11962 case DT_MIPS_DELTA_SYM:
11963 return "MIPS_DELTA_SYM";
11964 case DT_MIPS_DELTA_SYM_NO:
11965 return "MIPS_DELTA_SYM_NO";
11966 case DT_MIPS_DELTA_CLASSSYM:
11967 return "MIPS_DELTA_CLASSSYM";
11968 case DT_MIPS_DELTA_CLASSSYM_NO:
11969 return "MIPS_DELTA_CLASSSYM_NO";
11970 case DT_MIPS_CXX_FLAGS:
11971 return "MIPS_CXX_FLAGS";
11972 case DT_MIPS_PIXIE_INIT:
11973 return "MIPS_PIXIE_INIT";
11974 case DT_MIPS_SYMBOL_LIB:
11975 return "MIPS_SYMBOL_LIB";
11976 case DT_MIPS_LOCALPAGE_GOTIDX:
11977 return "MIPS_LOCALPAGE_GOTIDX";
11978 case DT_MIPS_LOCAL_GOTIDX:
11979 return "MIPS_LOCAL_GOTIDX";
11980 case DT_MIPS_HIDDEN_GOTIDX:
11981 return "MIPS_HIDDEN_GOTIDX";
11982 case DT_MIPS_PROTECTED_GOTIDX:
11983 return "MIPS_PROTECTED_GOT_IDX";
11984 case DT_MIPS_OPTIONS:
11985 return "MIPS_OPTIONS";
11986 case DT_MIPS_INTERFACE:
11987 return "MIPS_INTERFACE";
11988 case DT_MIPS_DYNSTR_ALIGN:
11989 return "DT_MIPS_DYNSTR_ALIGN";
11990 case DT_MIPS_INTERFACE_SIZE:
11991 return "DT_MIPS_INTERFACE_SIZE";
11992 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
11993 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
11994 case DT_MIPS_PERF_SUFFIX:
11995 return "DT_MIPS_PERF_SUFFIX";
11996 case DT_MIPS_COMPACT_SIZE:
11997 return "DT_MIPS_COMPACT_SIZE";
11998 case DT_MIPS_GP_VALUE:
11999 return "DT_MIPS_GP_VALUE";
12000 case DT_MIPS_AUX_DYNAMIC:
12001 return "DT_MIPS_AUX_DYNAMIC";
12002 }
12003 }
12004
12005 bfd_boolean
12006 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12007 {
12008 FILE *file = ptr;
12009
12010 BFD_ASSERT (abfd != NULL && ptr != NULL);
12011
12012 /* Print normal ELF private data. */
12013 _bfd_elf_print_private_bfd_data (abfd, ptr);
12014
12015 /* xgettext:c-format */
12016 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12017
12018 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12019 fprintf (file, _(" [abi=O32]"));
12020 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12021 fprintf (file, _(" [abi=O64]"));
12022 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12023 fprintf (file, _(" [abi=EABI32]"));
12024 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12025 fprintf (file, _(" [abi=EABI64]"));
12026 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12027 fprintf (file, _(" [abi unknown]"));
12028 else if (ABI_N32_P (abfd))
12029 fprintf (file, _(" [abi=N32]"));
12030 else if (ABI_64_P (abfd))
12031 fprintf (file, _(" [abi=64]"));
12032 else
12033 fprintf (file, _(" [no abi set]"));
12034
12035 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12036 fprintf (file, " [mips1]");
12037 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12038 fprintf (file, " [mips2]");
12039 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12040 fprintf (file, " [mips3]");
12041 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12042 fprintf (file, " [mips4]");
12043 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12044 fprintf (file, " [mips5]");
12045 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12046 fprintf (file, " [mips32]");
12047 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12048 fprintf (file, " [mips64]");
12049 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12050 fprintf (file, " [mips32r2]");
12051 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12052 fprintf (file, " [mips64r2]");
12053 else
12054 fprintf (file, _(" [unknown ISA]"));
12055
12056 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12057 fprintf (file, " [mdmx]");
12058
12059 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12060 fprintf (file, " [mips16]");
12061
12062 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12063 fprintf (file, " [32bitmode]");
12064 else
12065 fprintf (file, _(" [not 32bitmode]"));
12066
12067 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12068 fprintf (file, " [noreorder]");
12069
12070 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12071 fprintf (file, " [PIC]");
12072
12073 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12074 fprintf (file, " [CPIC]");
12075
12076 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12077 fprintf (file, " [XGOT]");
12078
12079 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12080 fprintf (file, " [UCODE]");
12081
12082 fputc ('\n', file);
12083
12084 return TRUE;
12085 }
12086
12087 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12088 {
12089 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12090 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12091 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12092 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12093 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12094 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12095 { NULL, 0, 0, 0, 0 }
12096 };
12097
12098 /* Merge non visibility st_other attributes. Ensure that the
12099 STO_OPTIONAL flag is copied into h->other, even if this is not a
12100 definiton of the symbol. */
12101 void
12102 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12103 const Elf_Internal_Sym *isym,
12104 bfd_boolean definition,
12105 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12106 {
12107 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12108 {
12109 unsigned char other;
12110
12111 other = (definition ? isym->st_other : h->other);
12112 other &= ~ELF_ST_VISIBILITY (-1);
12113 h->other = other | ELF_ST_VISIBILITY (h->other);
12114 }
12115
12116 if (!definition
12117 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12118 h->other |= STO_OPTIONAL;
12119 }
12120
12121 /* Decide whether an undefined symbol is special and can be ignored.
12122 This is the case for OPTIONAL symbols on IRIX. */
12123 bfd_boolean
12124 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12125 {
12126 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12127 }
12128
12129 bfd_boolean
12130 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12131 {
12132 return (sym->st_shndx == SHN_COMMON
12133 || sym->st_shndx == SHN_MIPS_ACOMMON
12134 || sym->st_shndx == SHN_MIPS_SCOMMON);
12135 }
This page took 0.282916 seconds and 4 git commands to generate.