* bfd-in.h (bfd_get_section_limit): Define.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
195 bfd_boolean no_fn_stub;
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
203 bfd_boolean need_fn_stub;
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
212
213 /* Are we forced local? .*/
214 bfd_boolean forced_local;
215 };
216
217 /* MIPS ELF linker hash table. */
218
219 struct mips_elf_link_hash_table
220 {
221 struct elf_link_hash_table root;
222 #if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226 #endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
232 entry is set to the address of __rld_obj_head as in IRIX5. */
233 bfd_boolean use_rld_obj_head;
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
237 bfd_boolean mips16_stubs_seen;
238 };
239
240 /* Structure used to pass information to mips_elf_output_extsym. */
241
242 struct extsym_info
243 {
244 bfd *abfd;
245 struct bfd_link_info *info;
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
248 bfd_boolean failed;
249 };
250
251 /* The names of the runtime procedure table symbols used on IRIX5. */
252
253 static const char * const mips_elf_dynsym_rtproc_names[] =
254 {
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259 };
260
261 /* These structures are used to generate the .compact_rel section on
262 IRIX5. */
263
264 typedef struct
265 {
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272 } Elf32_compact_rel;
273
274 typedef struct
275 {
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282 } Elf32_External_compact_rel;
283
284 typedef struct
285 {
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292 } Elf32_crinfo;
293
294 typedef struct
295 {
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301 } Elf32_crinfo2;
302
303 typedef struct
304 {
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308 } Elf32_External_crinfo;
309
310 typedef struct
311 {
312 bfd_byte info[4];
313 bfd_byte konst[4];
314 } Elf32_External_crinfo2;
315
316 /* These are the constants used to swap the bitfields in a crinfo. */
317
318 #define CRINFO_CTYPE (0x1)
319 #define CRINFO_CTYPE_SH (31)
320 #define CRINFO_RTYPE (0xf)
321 #define CRINFO_RTYPE_SH (27)
322 #define CRINFO_DIST2TO (0xff)
323 #define CRINFO_DIST2TO_SH (19)
324 #define CRINFO_RELVADDR (0x7ffff)
325 #define CRINFO_RELVADDR_SH (0)
326
327 /* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330 #define CRF_MIPS_LONG 1
331 #define CRF_MIPS_SHORT 0
332
333 /* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343 #define CRT_MIPS_REL32 0xa
344 #define CRT_MIPS_WORD 0xb
345 #define CRT_MIPS_GPHI_LO 0xc
346 #define CRT_MIPS_JMPAD 0xd
347
348 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352 \f
353 /* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356 typedef struct runtime_pdr {
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
366 long reserved;
367 struct exception_info *exception_info;/* Pointer to exception array. */
368 } RPDR, *pRPDR;
369 #define cbRPDR sizeof (RPDR)
370 #define rpdNil ((pRPDR) 0)
371 \f
372 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
374 static void ecoff_swap_rpdr_out
375 (bfd *, const RPDR *, struct rpdr_ext *);
376 static bfd_boolean mips_elf_create_procedure_table
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
379 static bfd_boolean mips_elf_check_mips16_stubs
380 (struct mips_elf_link_hash_entry *, void *);
381 static void bfd_mips_elf32_swap_gptab_in
382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
383 static void bfd_mips_elf32_swap_gptab_out
384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
385 static void bfd_elf32_swap_compact_rel_out
386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
387 static void bfd_elf32_swap_crinfo_out
388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
389 static int sort_dynamic_relocs
390 (const void *, const void *);
391 static int sort_dynamic_relocs_64
392 (const void *, const void *);
393 static bfd_boolean mips_elf_output_extsym
394 (struct mips_elf_link_hash_entry *, void *);
395 static int gptab_compare
396 (const void *, const void *);
397 static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399 static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
401 static struct mips_got_info *mips_elf_got_info
402 (bfd *, asection **);
403 static bfd_vma mips_elf_local_got_index
404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
405 static bfd_vma mips_elf_global_got_index
406 (bfd *, bfd *, struct elf_link_hash_entry *);
407 static bfd_vma mips_elf_got_page
408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
409 static bfd_vma mips_elf_got16_entry
410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
411 static bfd_vma mips_elf_got_offset_from_index
412 (bfd *, bfd *, bfd *, bfd_vma);
413 static struct mips_got_entry *mips_elf_create_local_got_entry
414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
415 static bfd_boolean mips_elf_sort_hash_table
416 (struct bfd_link_info *, unsigned long);
417 static bfd_boolean mips_elf_sort_hash_table_f
418 (struct mips_elf_link_hash_entry *, void *);
419 static bfd_boolean mips_elf_record_local_got_symbol
420 (bfd *, long, bfd_vma, struct mips_got_info *);
421 static bfd_boolean mips_elf_record_global_got_symbol
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
424 static const Elf_Internal_Rela *mips_elf_next_relocation
425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
426 static bfd_boolean mips_elf_local_relocation_p
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428 static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430 static bfd_vma mips_elf_high
431 (bfd_vma);
432 static bfd_vma mips_elf_higher
433 (bfd_vma);
434 static bfd_vma mips_elf_highest
435 (bfd_vma);
436 static bfd_boolean mips_elf_create_compact_rel_section
437 (bfd *, struct bfd_link_info *);
438 static bfd_boolean mips_elf_create_got_section
439 (bfd *, struct bfd_link_info *, bfd_boolean);
440 static bfd_reloc_status_type mips_elf_calculate_relocation
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
445 static bfd_vma mips_elf_obtain_contents
446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
447 static bfd_boolean mips_elf_perform_relocation
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
450 static bfd_boolean mips_elf_stub_section_p
451 (bfd *, asection *);
452 static void mips_elf_allocate_dynamic_relocations
453 (bfd *, unsigned int);
454 static bfd_boolean mips_elf_create_dynamic_relocation
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458 static void mips_set_isa_flags
459 (bfd *);
460 static INLINE char *elf_mips_abi_name
461 (bfd *);
462 static void mips_elf_irix6_finish_dynamic_symbol
463 (bfd *, const char *, Elf_Internal_Sym *);
464 static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466 static bfd_boolean mips_32bit_flags_p
467 (flagword);
468 static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470 static hashval_t mips_elf_got_entry_hash
471 (const void *);
472 static int mips_elf_got_entry_eq
473 (const void *, const void *);
474
475 static bfd_boolean mips_elf_multi_got
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478 static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480 static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482 static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484 static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486 static int mips_elf_make_got_per_bfd
487 (void **, void *);
488 static int mips_elf_merge_gots
489 (void **, void *);
490 static int mips_elf_set_global_got_offset
491 (void **, void *);
492 static int mips_elf_set_no_stub
493 (void **, void *);
494 static int mips_elf_resolve_final_got_entry
495 (void **, void *);
496 static void mips_elf_resolve_final_got_entries
497 (struct mips_got_info *);
498 static bfd_vma mips_elf_adjust_gp
499 (bfd *, struct mips_got_info *, bfd *);
500 static struct mips_got_info *mips_elf_got_for_ibfd
501 (struct mips_got_info *, bfd *);
502
503 /* This will be used when we sort the dynamic relocation records. */
504 static bfd *reldyn_sorting_bfd;
505
506 /* Nonzero if ABFD is using the N32 ABI. */
507
508 #define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
511 /* Nonzero if ABFD is using the N64 ABI. */
512 #define ABI_64_P(abfd) \
513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
514
515 /* Nonzero if ABFD is using NewABI conventions. */
516 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518 /* The IRIX compatibility level we are striving for. */
519 #define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
522 /* Whether we are trying to be compatible with IRIX at all. */
523 #define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526 /* The name of the options section. */
527 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
529
530 /* The name of the stub section. */
531 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
532
533 /* The size of an external REL relocation. */
534 #define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537 /* The size of an external dynamic table entry. */
538 #define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541 /* The size of a GOT entry. */
542 #define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545 /* The size of a symbol-table entry. */
546 #define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549 /* The default alignment for sections, as a power of two. */
550 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
551 (get_elf_backend_data (abfd)->s->log_file_align)
552
553 /* Get word-sized data. */
554 #define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557 /* Put out word-sized data. */
558 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563 /* Add a dynamic symbol table-entry. */
564 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
565 _bfd_elf_add_dynamic_entry (info, tag, val)
566
567 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
570 /* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
587 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589 #define MINUS_ONE (((bfd_vma)0) - 1)
590 #define MINUS_TWO (((bfd_vma)0) - 2)
591
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
594
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598 /* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602 /* Instructions which appear in a stub. */
603 #define STUB_LW(abfd) \
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
607 #define STUB_MOVE(abfd) \
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
612 #define STUB_LI16(abfd) \
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
616 #define MIPS_FUNCTION_STUB_SIZE (16)
617
618 /* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621 #define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626 #ifdef BFD64
627 #define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
629 #define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631 #define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633 #define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635 #else
636 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
637 #define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639 #define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641 #define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643 #endif
644 \f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679 #define FN_STUB ".mips16.fn."
680 #define CALL_STUB ".mips16.call."
681 #define CALL_FP_STUB ".mips16.call.fp."
682 \f
683 /* Look up an entry in a MIPS ELF linker hash table. */
684
685 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690 /* Traverse a MIPS ELF linker hash table. */
691
692 #define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
696 (info)))
697
698 /* Get the MIPS ELF linker hash table from a link_info structure. */
699
700 #define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703 /* Create an entry in a MIPS ELF linker hash table. */
704
705 static struct bfd_hash_entry *
706 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
708 {
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
723 if (ret != NULL)
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
731 ret->readonly_reloc = FALSE;
732 ret->no_fn_stub = FALSE;
733 ret->fn_stub = NULL;
734 ret->need_fn_stub = FALSE;
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
737 ret->forced_local = FALSE;
738 }
739
740 return (struct bfd_hash_entry *) ret;
741 }
742
743 bfd_boolean
744 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
745 {
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
749 sdata = bfd_zalloc (abfd, amt);
750 if (sdata == NULL)
751 return FALSE;
752 sec->used_by_bfd = sdata;
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755 }
756 \f
757 /* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
760 bfd_boolean
761 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
763 {
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
766 char *ext_hdr;
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
771 ext_hdr = bfd_malloc (swap->external_hdr_size);
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
776 swap->external_hdr_size))
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784 #define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
790 debug->ptr = bfd_malloc (amt); \
791 if (debug->ptr == NULL) \
792 goto error_return; \
793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
810 #undef READ
811
812 debug->fdr = NULL;
813
814 return TRUE;
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
841 return FALSE;
842 }
843 \f
844 /* Swap RPDR (runtime procedure table entry) for output. */
845
846 static void
847 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
848 {
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860 #if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862 #endif
863 }
864
865 /* Create a runtime procedure table from the .mdebug section. */
866
867 static bfd_boolean
868 mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
871 {
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
876 void *rtproc;
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
903 epdr = bfd_malloc (size * count);
904 if (epdr == NULL)
905 goto error_return;
906
907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
908 goto error_return;
909
910 size = sizeof (RPDR);
911 rp = rpdr = bfd_malloc (size * count);
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
916 sv = bfd_malloc (size * count);
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
922 esym = bfd_malloc (size * count);
923 if (esym == NULL)
924 goto error_return;
925
926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
927 goto error_return;
928
929 count = hdr->issMax;
930 ss = bfd_malloc (count);
931 if (ss == NULL)
932 goto error_return;
933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
957 rtproc = bfd_alloc (abfd, size);
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
966 erp = rtproc;
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
981 s->size = size;
982 s->contents = rtproc;
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
986 s->link_order_head = NULL;
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
999 return TRUE;
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012 return FALSE;
1013 }
1014
1015 /* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
1018 static bfd_boolean
1019 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
1021 {
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
1031 h->fn_stub->size = 0;
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
1043 h->call_stub->size = 0;
1044 h->call_stub->flags &= ~SEC_RELOC;
1045 h->call_stub->reloc_count = 0;
1046 h->call_stub->flags |= SEC_EXCLUDE;
1047 }
1048
1049 if (h->call_fp_stub != NULL
1050 && h->root.other == STO_MIPS16)
1051 {
1052 /* We don't need the call_stub; this is a 16 bit function, so
1053 calls from other 16 bit functions are OK. Clobber the size
1054 to 0 to prevent it from being included in the link. */
1055 h->call_fp_stub->size = 0;
1056 h->call_fp_stub->flags &= ~SEC_RELOC;
1057 h->call_fp_stub->reloc_count = 0;
1058 h->call_fp_stub->flags |= SEC_EXCLUDE;
1059 }
1060
1061 return TRUE;
1062 }
1063 \f
1064 bfd_reloc_status_type
1065 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1066 arelent *reloc_entry, asection *input_section,
1067 bfd_boolean relocatable, void *data, bfd_vma gp)
1068 {
1069 bfd_vma relocation;
1070 bfd_signed_vma val;
1071 bfd_reloc_status_type status;
1072
1073 if (bfd_is_com_section (symbol->section))
1074 relocation = 0;
1075 else
1076 relocation = symbol->value;
1077
1078 relocation += symbol->section->output_section->vma;
1079 relocation += symbol->section->output_offset;
1080
1081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1082 return bfd_reloc_outofrange;
1083
1084 /* Set val to the offset into the section or symbol. */
1085 val = reloc_entry->addend;
1086
1087 _bfd_mips_elf_sign_extend (val, 16);
1088
1089 /* Adjust val for the final section location and GP value. If we
1090 are producing relocatable output, we don't want to do this for
1091 an external symbol. */
1092 if (! relocatable
1093 || (symbol->flags & BSF_SECTION_SYM) != 0)
1094 val += relocation - gp;
1095
1096 if (reloc_entry->howto->partial_inplace)
1097 {
1098 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1099 (bfd_byte *) data
1100 + reloc_entry->address);
1101 if (status != bfd_reloc_ok)
1102 return status;
1103 }
1104 else
1105 reloc_entry->addend = val;
1106
1107 if (relocatable)
1108 reloc_entry->address += input_section->output_offset;
1109
1110 return bfd_reloc_ok;
1111 }
1112
1113 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1114 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1115 that contains the relocation field and DATA points to the start of
1116 INPUT_SECTION. */
1117
1118 struct mips_hi16
1119 {
1120 struct mips_hi16 *next;
1121 bfd_byte *data;
1122 asection *input_section;
1123 arelent rel;
1124 };
1125
1126 /* FIXME: This should not be a static variable. */
1127
1128 static struct mips_hi16 *mips_hi16_list;
1129
1130 /* A howto special_function for REL *HI16 relocations. We can only
1131 calculate the correct value once we've seen the partnering
1132 *LO16 relocation, so just save the information for later.
1133
1134 The ABI requires that the *LO16 immediately follow the *HI16.
1135 However, as a GNU extension, we permit an arbitrary number of
1136 *HI16s to be associated with a single *LO16. This significantly
1137 simplies the relocation handling in gcc. */
1138
1139 bfd_reloc_status_type
1140 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1141 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1142 asection *input_section, bfd *output_bfd,
1143 char **error_message ATTRIBUTE_UNUSED)
1144 {
1145 struct mips_hi16 *n;
1146
1147 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1148 return bfd_reloc_outofrange;
1149
1150 n = bfd_malloc (sizeof *n);
1151 if (n == NULL)
1152 return bfd_reloc_outofrange;
1153
1154 n->next = mips_hi16_list;
1155 n->data = data;
1156 n->input_section = input_section;
1157 n->rel = *reloc_entry;
1158 mips_hi16_list = n;
1159
1160 if (output_bfd != NULL)
1161 reloc_entry->address += input_section->output_offset;
1162
1163 return bfd_reloc_ok;
1164 }
1165
1166 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1167 like any other 16-bit relocation when applied to global symbols, but is
1168 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1169
1170 bfd_reloc_status_type
1171 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1172 void *data, asection *input_section,
1173 bfd *output_bfd, char **error_message)
1174 {
1175 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1176 || bfd_is_und_section (bfd_get_section (symbol))
1177 || bfd_is_com_section (bfd_get_section (symbol)))
1178 /* The relocation is against a global symbol. */
1179 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1180 input_section, output_bfd,
1181 error_message);
1182
1183 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1184 input_section, output_bfd, error_message);
1185 }
1186
1187 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1188 is a straightforward 16 bit inplace relocation, but we must deal with
1189 any partnering high-part relocations as well. */
1190
1191 bfd_reloc_status_type
1192 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1193 void *data, asection *input_section,
1194 bfd *output_bfd, char **error_message)
1195 {
1196 bfd_vma vallo;
1197
1198 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1199 return bfd_reloc_outofrange;
1200
1201 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1202 while (mips_hi16_list != NULL)
1203 {
1204 bfd_reloc_status_type ret;
1205 struct mips_hi16 *hi;
1206
1207 hi = mips_hi16_list;
1208
1209 /* R_MIPS_GOT16 relocations are something of a special case. We
1210 want to install the addend in the same way as for a R_MIPS_HI16
1211 relocation (with a rightshift of 16). However, since GOT16
1212 relocations can also be used with global symbols, their howto
1213 has a rightshift of 0. */
1214 if (hi->rel.howto->type == R_MIPS_GOT16)
1215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1216
1217 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1218 carry or borrow will induce a change of +1 or -1 in the high part. */
1219 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1220
1221 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1222 hi->input_section, output_bfd,
1223 error_message);
1224 if (ret != bfd_reloc_ok)
1225 return ret;
1226
1227 mips_hi16_list = hi->next;
1228 free (hi);
1229 }
1230
1231 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1232 input_section, output_bfd,
1233 error_message);
1234 }
1235
1236 /* A generic howto special_function. This calculates and installs the
1237 relocation itself, thus avoiding the oft-discussed problems in
1238 bfd_perform_relocation and bfd_install_relocation. */
1239
1240 bfd_reloc_status_type
1241 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1242 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1243 asection *input_section, bfd *output_bfd,
1244 char **error_message ATTRIBUTE_UNUSED)
1245 {
1246 bfd_signed_vma val;
1247 bfd_reloc_status_type status;
1248 bfd_boolean relocatable;
1249
1250 relocatable = (output_bfd != NULL);
1251
1252 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1253 return bfd_reloc_outofrange;
1254
1255 /* Build up the field adjustment in VAL. */
1256 val = 0;
1257 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1258 {
1259 /* Either we're calculating the final field value or we have a
1260 relocation against a section symbol. Add in the section's
1261 offset or address. */
1262 val += symbol->section->output_section->vma;
1263 val += symbol->section->output_offset;
1264 }
1265
1266 if (!relocatable)
1267 {
1268 /* We're calculating the final field value. Add in the symbol's value
1269 and, if pc-relative, subtract the address of the field itself. */
1270 val += symbol->value;
1271 if (reloc_entry->howto->pc_relative)
1272 {
1273 val -= input_section->output_section->vma;
1274 val -= input_section->output_offset;
1275 val -= reloc_entry->address;
1276 }
1277 }
1278
1279 /* VAL is now the final adjustment. If we're keeping this relocation
1280 in the output file, and if the relocation uses a separate addend,
1281 we just need to add VAL to that addend. Otherwise we need to add
1282 VAL to the relocation field itself. */
1283 if (relocatable && !reloc_entry->howto->partial_inplace)
1284 reloc_entry->addend += val;
1285 else
1286 {
1287 /* Add in the separate addend, if any. */
1288 val += reloc_entry->addend;
1289
1290 /* Add VAL to the relocation field. */
1291 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1292 (bfd_byte *) data
1293 + reloc_entry->address);
1294 if (status != bfd_reloc_ok)
1295 return status;
1296 }
1297
1298 if (relocatable)
1299 reloc_entry->address += input_section->output_offset;
1300
1301 return bfd_reloc_ok;
1302 }
1303 \f
1304 /* Swap an entry in a .gptab section. Note that these routines rely
1305 on the equivalence of the two elements of the union. */
1306
1307 static void
1308 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1309 Elf32_gptab *in)
1310 {
1311 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1312 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1313 }
1314
1315 static void
1316 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1317 Elf32_External_gptab *ex)
1318 {
1319 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1320 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1321 }
1322
1323 static void
1324 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1325 Elf32_External_compact_rel *ex)
1326 {
1327 H_PUT_32 (abfd, in->id1, ex->id1);
1328 H_PUT_32 (abfd, in->num, ex->num);
1329 H_PUT_32 (abfd, in->id2, ex->id2);
1330 H_PUT_32 (abfd, in->offset, ex->offset);
1331 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1332 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1333 }
1334
1335 static void
1336 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1337 Elf32_External_crinfo *ex)
1338 {
1339 unsigned long l;
1340
1341 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1342 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1343 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1344 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1345 H_PUT_32 (abfd, l, ex->info);
1346 H_PUT_32 (abfd, in->konst, ex->konst);
1347 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1348 }
1349 \f
1350 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1351 routines swap this structure in and out. They are used outside of
1352 BFD, so they are globally visible. */
1353
1354 void
1355 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1356 Elf32_RegInfo *in)
1357 {
1358 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1359 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1360 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1361 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1362 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1363 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1364 }
1365
1366 void
1367 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1368 Elf32_External_RegInfo *ex)
1369 {
1370 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1371 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1372 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1373 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1374 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1375 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1376 }
1377
1378 /* In the 64 bit ABI, the .MIPS.options section holds register
1379 information in an Elf64_Reginfo structure. These routines swap
1380 them in and out. They are globally visible because they are used
1381 outside of BFD. These routines are here so that gas can call them
1382 without worrying about whether the 64 bit ABI has been included. */
1383
1384 void
1385 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1386 Elf64_Internal_RegInfo *in)
1387 {
1388 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1389 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1390 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1391 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1392 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1393 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1394 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1395 }
1396
1397 void
1398 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1399 Elf64_External_RegInfo *ex)
1400 {
1401 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1402 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1403 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1404 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1405 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1406 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1407 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1408 }
1409
1410 /* Swap in an options header. */
1411
1412 void
1413 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1414 Elf_Internal_Options *in)
1415 {
1416 in->kind = H_GET_8 (abfd, ex->kind);
1417 in->size = H_GET_8 (abfd, ex->size);
1418 in->section = H_GET_16 (abfd, ex->section);
1419 in->info = H_GET_32 (abfd, ex->info);
1420 }
1421
1422 /* Swap out an options header. */
1423
1424 void
1425 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1426 Elf_External_Options *ex)
1427 {
1428 H_PUT_8 (abfd, in->kind, ex->kind);
1429 H_PUT_8 (abfd, in->size, ex->size);
1430 H_PUT_16 (abfd, in->section, ex->section);
1431 H_PUT_32 (abfd, in->info, ex->info);
1432 }
1433 \f
1434 /* This function is called via qsort() to sort the dynamic relocation
1435 entries by increasing r_symndx value. */
1436
1437 static int
1438 sort_dynamic_relocs (const void *arg1, const void *arg2)
1439 {
1440 Elf_Internal_Rela int_reloc1;
1441 Elf_Internal_Rela int_reloc2;
1442
1443 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1444 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1445
1446 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1447 }
1448
1449 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1450
1451 static int
1452 sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
1453 {
1454 Elf_Internal_Rela int_reloc1[3];
1455 Elf_Internal_Rela int_reloc2[3];
1456
1457 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1458 (reldyn_sorting_bfd, arg1, int_reloc1);
1459 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1460 (reldyn_sorting_bfd, arg2, int_reloc2);
1461
1462 return (ELF64_R_SYM (int_reloc1[0].r_info)
1463 - ELF64_R_SYM (int_reloc2[0].r_info));
1464 }
1465
1466
1467 /* This routine is used to write out ECOFF debugging external symbol
1468 information. It is called via mips_elf_link_hash_traverse. The
1469 ECOFF external symbol information must match the ELF external
1470 symbol information. Unfortunately, at this point we don't know
1471 whether a symbol is required by reloc information, so the two
1472 tables may wind up being different. We must sort out the external
1473 symbol information before we can set the final size of the .mdebug
1474 section, and we must set the size of the .mdebug section before we
1475 can relocate any sections, and we can't know which symbols are
1476 required by relocation until we relocate the sections.
1477 Fortunately, it is relatively unlikely that any symbol will be
1478 stripped but required by a reloc. In particular, it can not happen
1479 when generating a final executable. */
1480
1481 static bfd_boolean
1482 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1483 {
1484 struct extsym_info *einfo = data;
1485 bfd_boolean strip;
1486 asection *sec, *output_section;
1487
1488 if (h->root.root.type == bfd_link_hash_warning)
1489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1490
1491 if (h->root.indx == -2)
1492 strip = FALSE;
1493 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1494 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1495 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1496 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1497 strip = TRUE;
1498 else if (einfo->info->strip == strip_all
1499 || (einfo->info->strip == strip_some
1500 && bfd_hash_lookup (einfo->info->keep_hash,
1501 h->root.root.root.string,
1502 FALSE, FALSE) == NULL))
1503 strip = TRUE;
1504 else
1505 strip = FALSE;
1506
1507 if (strip)
1508 return TRUE;
1509
1510 if (h->esym.ifd == -2)
1511 {
1512 h->esym.jmptbl = 0;
1513 h->esym.cobol_main = 0;
1514 h->esym.weakext = 0;
1515 h->esym.reserved = 0;
1516 h->esym.ifd = ifdNil;
1517 h->esym.asym.value = 0;
1518 h->esym.asym.st = stGlobal;
1519
1520 if (h->root.root.type == bfd_link_hash_undefined
1521 || h->root.root.type == bfd_link_hash_undefweak)
1522 {
1523 const char *name;
1524
1525 /* Use undefined class. Also, set class and type for some
1526 special symbols. */
1527 name = h->root.root.root.string;
1528 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1529 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1530 {
1531 h->esym.asym.sc = scData;
1532 h->esym.asym.st = stLabel;
1533 h->esym.asym.value = 0;
1534 }
1535 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1536 {
1537 h->esym.asym.sc = scAbs;
1538 h->esym.asym.st = stLabel;
1539 h->esym.asym.value =
1540 mips_elf_hash_table (einfo->info)->procedure_count;
1541 }
1542 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1543 {
1544 h->esym.asym.sc = scAbs;
1545 h->esym.asym.st = stLabel;
1546 h->esym.asym.value = elf_gp (einfo->abfd);
1547 }
1548 else
1549 h->esym.asym.sc = scUndefined;
1550 }
1551 else if (h->root.root.type != bfd_link_hash_defined
1552 && h->root.root.type != bfd_link_hash_defweak)
1553 h->esym.asym.sc = scAbs;
1554 else
1555 {
1556 const char *name;
1557
1558 sec = h->root.root.u.def.section;
1559 output_section = sec->output_section;
1560
1561 /* When making a shared library and symbol h is the one from
1562 the another shared library, OUTPUT_SECTION may be null. */
1563 if (output_section == NULL)
1564 h->esym.asym.sc = scUndefined;
1565 else
1566 {
1567 name = bfd_section_name (output_section->owner, output_section);
1568
1569 if (strcmp (name, ".text") == 0)
1570 h->esym.asym.sc = scText;
1571 else if (strcmp (name, ".data") == 0)
1572 h->esym.asym.sc = scData;
1573 else if (strcmp (name, ".sdata") == 0)
1574 h->esym.asym.sc = scSData;
1575 else if (strcmp (name, ".rodata") == 0
1576 || strcmp (name, ".rdata") == 0)
1577 h->esym.asym.sc = scRData;
1578 else if (strcmp (name, ".bss") == 0)
1579 h->esym.asym.sc = scBss;
1580 else if (strcmp (name, ".sbss") == 0)
1581 h->esym.asym.sc = scSBss;
1582 else if (strcmp (name, ".init") == 0)
1583 h->esym.asym.sc = scInit;
1584 else if (strcmp (name, ".fini") == 0)
1585 h->esym.asym.sc = scFini;
1586 else
1587 h->esym.asym.sc = scAbs;
1588 }
1589 }
1590
1591 h->esym.asym.reserved = 0;
1592 h->esym.asym.index = indexNil;
1593 }
1594
1595 if (h->root.root.type == bfd_link_hash_common)
1596 h->esym.asym.value = h->root.root.u.c.size;
1597 else if (h->root.root.type == bfd_link_hash_defined
1598 || h->root.root.type == bfd_link_hash_defweak)
1599 {
1600 if (h->esym.asym.sc == scCommon)
1601 h->esym.asym.sc = scBss;
1602 else if (h->esym.asym.sc == scSCommon)
1603 h->esym.asym.sc = scSBss;
1604
1605 sec = h->root.root.u.def.section;
1606 output_section = sec->output_section;
1607 if (output_section != NULL)
1608 h->esym.asym.value = (h->root.root.u.def.value
1609 + sec->output_offset
1610 + output_section->vma);
1611 else
1612 h->esym.asym.value = 0;
1613 }
1614 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1615 {
1616 struct mips_elf_link_hash_entry *hd = h;
1617 bfd_boolean no_fn_stub = h->no_fn_stub;
1618
1619 while (hd->root.root.type == bfd_link_hash_indirect)
1620 {
1621 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1622 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1623 }
1624
1625 if (!no_fn_stub)
1626 {
1627 /* Set type and value for a symbol with a function stub. */
1628 h->esym.asym.st = stProc;
1629 sec = hd->root.root.u.def.section;
1630 if (sec == NULL)
1631 h->esym.asym.value = 0;
1632 else
1633 {
1634 output_section = sec->output_section;
1635 if (output_section != NULL)
1636 h->esym.asym.value = (hd->root.plt.offset
1637 + sec->output_offset
1638 + output_section->vma);
1639 else
1640 h->esym.asym.value = 0;
1641 }
1642 #if 0 /* FIXME? */
1643 h->esym.ifd = 0;
1644 #endif
1645 }
1646 }
1647
1648 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1649 h->root.root.root.string,
1650 &h->esym))
1651 {
1652 einfo->failed = TRUE;
1653 return FALSE;
1654 }
1655
1656 return TRUE;
1657 }
1658
1659 /* A comparison routine used to sort .gptab entries. */
1660
1661 static int
1662 gptab_compare (const void *p1, const void *p2)
1663 {
1664 const Elf32_gptab *a1 = p1;
1665 const Elf32_gptab *a2 = p2;
1666
1667 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1668 }
1669 \f
1670 /* Functions to manage the got entry hash table. */
1671
1672 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1673 hash number. */
1674
1675 static INLINE hashval_t
1676 mips_elf_hash_bfd_vma (bfd_vma addr)
1677 {
1678 #ifdef BFD64
1679 return addr + (addr >> 32);
1680 #else
1681 return addr;
1682 #endif
1683 }
1684
1685 /* got_entries only match if they're identical, except for gotidx, so
1686 use all fields to compute the hash, and compare the appropriate
1687 union members. */
1688
1689 static hashval_t
1690 mips_elf_got_entry_hash (const void *entry_)
1691 {
1692 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1693
1694 return entry->symndx
1695 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1696 : entry->abfd->id
1697 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1698 : entry->d.h->root.root.root.hash));
1699 }
1700
1701 static int
1702 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1703 {
1704 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1705 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1706
1707 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1708 && (! e1->abfd ? e1->d.address == e2->d.address
1709 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1710 : e1->d.h == e2->d.h);
1711 }
1712
1713 /* multi_got_entries are still a match in the case of global objects,
1714 even if the input bfd in which they're referenced differs, so the
1715 hash computation and compare functions are adjusted
1716 accordingly. */
1717
1718 static hashval_t
1719 mips_elf_multi_got_entry_hash (const void *entry_)
1720 {
1721 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1722
1723 return entry->symndx
1724 + (! entry->abfd
1725 ? mips_elf_hash_bfd_vma (entry->d.address)
1726 : entry->symndx >= 0
1727 ? (entry->abfd->id
1728 + mips_elf_hash_bfd_vma (entry->d.addend))
1729 : entry->d.h->root.root.root.hash);
1730 }
1731
1732 static int
1733 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1734 {
1735 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1736 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1737
1738 return e1->symndx == e2->symndx
1739 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1740 : e1->abfd == NULL || e2->abfd == NULL
1741 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1742 : e1->d.h == e2->d.h);
1743 }
1744 \f
1745 /* Returns the dynamic relocation section for DYNOBJ. */
1746
1747 static asection *
1748 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1749 {
1750 static const char dname[] = ".rel.dyn";
1751 asection *sreloc;
1752
1753 sreloc = bfd_get_section_by_name (dynobj, dname);
1754 if (sreloc == NULL && create_p)
1755 {
1756 sreloc = bfd_make_section (dynobj, dname);
1757 if (sreloc == NULL
1758 || ! bfd_set_section_flags (dynobj, sreloc,
1759 (SEC_ALLOC
1760 | SEC_LOAD
1761 | SEC_HAS_CONTENTS
1762 | SEC_IN_MEMORY
1763 | SEC_LINKER_CREATED
1764 | SEC_READONLY))
1765 || ! bfd_set_section_alignment (dynobj, sreloc,
1766 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1767 return NULL;
1768 }
1769 return sreloc;
1770 }
1771
1772 /* Returns the GOT section for ABFD. */
1773
1774 static asection *
1775 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1776 {
1777 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1778 if (sgot == NULL
1779 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1780 return NULL;
1781 return sgot;
1782 }
1783
1784 /* Returns the GOT information associated with the link indicated by
1785 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1786 section. */
1787
1788 static struct mips_got_info *
1789 mips_elf_got_info (bfd *abfd, asection **sgotp)
1790 {
1791 asection *sgot;
1792 struct mips_got_info *g;
1793
1794 sgot = mips_elf_got_section (abfd, TRUE);
1795 BFD_ASSERT (sgot != NULL);
1796 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1797 g = mips_elf_section_data (sgot)->u.got_info;
1798 BFD_ASSERT (g != NULL);
1799
1800 if (sgotp)
1801 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1802
1803 return g;
1804 }
1805
1806 /* Returns the GOT offset at which the indicated address can be found.
1807 If there is not yet a GOT entry for this value, create one. Returns
1808 -1 if no satisfactory GOT offset can be found. */
1809
1810 static bfd_vma
1811 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1812 bfd_vma value)
1813 {
1814 asection *sgot;
1815 struct mips_got_info *g;
1816 struct mips_got_entry *entry;
1817
1818 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1819
1820 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1821 if (entry)
1822 return entry->gotidx;
1823 else
1824 return MINUS_ONE;
1825 }
1826
1827 /* Returns the GOT index for the global symbol indicated by H. */
1828
1829 static bfd_vma
1830 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
1831 {
1832 bfd_vma index;
1833 asection *sgot;
1834 struct mips_got_info *g, *gg;
1835 long global_got_dynindx = 0;
1836
1837 gg = g = mips_elf_got_info (abfd, &sgot);
1838 if (g->bfd2got && ibfd)
1839 {
1840 struct mips_got_entry e, *p;
1841
1842 BFD_ASSERT (h->dynindx >= 0);
1843
1844 g = mips_elf_got_for_ibfd (g, ibfd);
1845 if (g->next != gg)
1846 {
1847 e.abfd = ibfd;
1848 e.symndx = -1;
1849 e.d.h = (struct mips_elf_link_hash_entry *)h;
1850
1851 p = htab_find (g->got_entries, &e);
1852
1853 BFD_ASSERT (p->gotidx > 0);
1854 return p->gotidx;
1855 }
1856 }
1857
1858 if (gg->global_gotsym != NULL)
1859 global_got_dynindx = gg->global_gotsym->dynindx;
1860
1861 /* Once we determine the global GOT entry with the lowest dynamic
1862 symbol table index, we must put all dynamic symbols with greater
1863 indices into the GOT. That makes it easy to calculate the GOT
1864 offset. */
1865 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1866 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1867 * MIPS_ELF_GOT_SIZE (abfd));
1868 BFD_ASSERT (index < sgot->size);
1869
1870 return index;
1871 }
1872
1873 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1874 are supposed to be placed at small offsets in the GOT, i.e.,
1875 within 32KB of GP. Return the index into the GOT for this page,
1876 and store the offset from this entry to the desired address in
1877 OFFSETP, if it is non-NULL. */
1878
1879 static bfd_vma
1880 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1881 bfd_vma value, bfd_vma *offsetp)
1882 {
1883 asection *sgot;
1884 struct mips_got_info *g;
1885 bfd_vma index;
1886 struct mips_got_entry *entry;
1887
1888 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1889
1890 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1891 (value + 0x8000)
1892 & (~(bfd_vma)0xffff));
1893
1894 if (!entry)
1895 return MINUS_ONE;
1896
1897 index = entry->gotidx;
1898
1899 if (offsetp)
1900 *offsetp = value - entry->d.address;
1901
1902 return index;
1903 }
1904
1905 /* Find a GOT entry whose higher-order 16 bits are the same as those
1906 for value. Return the index into the GOT for this entry. */
1907
1908 static bfd_vma
1909 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1910 bfd_vma value, bfd_boolean external)
1911 {
1912 asection *sgot;
1913 struct mips_got_info *g;
1914 struct mips_got_entry *entry;
1915
1916 if (! external)
1917 {
1918 /* Although the ABI says that it is "the high-order 16 bits" that we
1919 want, it is really the %high value. The complete value is
1920 calculated with a `addiu' of a LO16 relocation, just as with a
1921 HI16/LO16 pair. */
1922 value = mips_elf_high (value) << 16;
1923 }
1924
1925 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1926
1927 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1928 if (entry)
1929 return entry->gotidx;
1930 else
1931 return MINUS_ONE;
1932 }
1933
1934 /* Returns the offset for the entry at the INDEXth position
1935 in the GOT. */
1936
1937 static bfd_vma
1938 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1939 bfd *input_bfd, bfd_vma index)
1940 {
1941 asection *sgot;
1942 bfd_vma gp;
1943 struct mips_got_info *g;
1944
1945 g = mips_elf_got_info (dynobj, &sgot);
1946 gp = _bfd_get_gp_value (output_bfd)
1947 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1948
1949 return sgot->output_section->vma + sgot->output_offset + index - gp;
1950 }
1951
1952 /* Create a local GOT entry for VALUE. Return the index of the entry,
1953 or -1 if it could not be created. */
1954
1955 static struct mips_got_entry *
1956 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1957 struct mips_got_info *gg,
1958 asection *sgot, bfd_vma value)
1959 {
1960 struct mips_got_entry entry, **loc;
1961 struct mips_got_info *g;
1962
1963 entry.abfd = NULL;
1964 entry.symndx = -1;
1965 entry.d.address = value;
1966
1967 g = mips_elf_got_for_ibfd (gg, ibfd);
1968 if (g == NULL)
1969 {
1970 g = mips_elf_got_for_ibfd (gg, abfd);
1971 BFD_ASSERT (g != NULL);
1972 }
1973
1974 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1975 INSERT);
1976 if (*loc)
1977 return *loc;
1978
1979 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1980
1981 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1982
1983 if (! *loc)
1984 return NULL;
1985
1986 memcpy (*loc, &entry, sizeof entry);
1987
1988 if (g->assigned_gotno >= g->local_gotno)
1989 {
1990 (*loc)->gotidx = -1;
1991 /* We didn't allocate enough space in the GOT. */
1992 (*_bfd_error_handler)
1993 (_("not enough GOT space for local GOT entries"));
1994 bfd_set_error (bfd_error_bad_value);
1995 return NULL;
1996 }
1997
1998 MIPS_ELF_PUT_WORD (abfd, value,
1999 (sgot->contents + entry.gotidx));
2000
2001 return *loc;
2002 }
2003
2004 /* Sort the dynamic symbol table so that symbols that need GOT entries
2005 appear towards the end. This reduces the amount of GOT space
2006 required. MAX_LOCAL is used to set the number of local symbols
2007 known to be in the dynamic symbol table. During
2008 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2009 section symbols are added and the count is higher. */
2010
2011 static bfd_boolean
2012 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2013 {
2014 struct mips_elf_hash_sort_data hsd;
2015 struct mips_got_info *g;
2016 bfd *dynobj;
2017
2018 dynobj = elf_hash_table (info)->dynobj;
2019
2020 g = mips_elf_got_info (dynobj, NULL);
2021
2022 hsd.low = NULL;
2023 hsd.max_unref_got_dynindx =
2024 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2025 /* In the multi-got case, assigned_gotno of the master got_info
2026 indicate the number of entries that aren't referenced in the
2027 primary GOT, but that must have entries because there are
2028 dynamic relocations that reference it. Since they aren't
2029 referenced, we move them to the end of the GOT, so that they
2030 don't prevent other entries that are referenced from getting
2031 too large offsets. */
2032 - (g->next ? g->assigned_gotno : 0);
2033 hsd.max_non_got_dynindx = max_local;
2034 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2035 elf_hash_table (info)),
2036 mips_elf_sort_hash_table_f,
2037 &hsd);
2038
2039 /* There should have been enough room in the symbol table to
2040 accommodate both the GOT and non-GOT symbols. */
2041 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2042 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2043 <= elf_hash_table (info)->dynsymcount);
2044
2045 /* Now we know which dynamic symbol has the lowest dynamic symbol
2046 table index in the GOT. */
2047 g->global_gotsym = hsd.low;
2048
2049 return TRUE;
2050 }
2051
2052 /* If H needs a GOT entry, assign it the highest available dynamic
2053 index. Otherwise, assign it the lowest available dynamic
2054 index. */
2055
2056 static bfd_boolean
2057 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2058 {
2059 struct mips_elf_hash_sort_data *hsd = data;
2060
2061 if (h->root.root.type == bfd_link_hash_warning)
2062 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2063
2064 /* Symbols without dynamic symbol table entries aren't interesting
2065 at all. */
2066 if (h->root.dynindx == -1)
2067 return TRUE;
2068
2069 /* Global symbols that need GOT entries that are not explicitly
2070 referenced are marked with got offset 2. Those that are
2071 referenced get a 1, and those that don't need GOT entries get
2072 -1. */
2073 if (h->root.got.offset == 2)
2074 {
2075 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2076 hsd->low = (struct elf_link_hash_entry *) h;
2077 h->root.dynindx = hsd->max_unref_got_dynindx++;
2078 }
2079 else if (h->root.got.offset != 1)
2080 h->root.dynindx = hsd->max_non_got_dynindx++;
2081 else
2082 {
2083 h->root.dynindx = --hsd->min_got_dynindx;
2084 hsd->low = (struct elf_link_hash_entry *) h;
2085 }
2086
2087 return TRUE;
2088 }
2089
2090 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2091 symbol table index lower than any we've seen to date, record it for
2092 posterity. */
2093
2094 static bfd_boolean
2095 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2096 bfd *abfd, struct bfd_link_info *info,
2097 struct mips_got_info *g)
2098 {
2099 struct mips_got_entry entry, **loc;
2100
2101 /* A global symbol in the GOT must also be in the dynamic symbol
2102 table. */
2103 if (h->dynindx == -1)
2104 {
2105 switch (ELF_ST_VISIBILITY (h->other))
2106 {
2107 case STV_INTERNAL:
2108 case STV_HIDDEN:
2109 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2110 break;
2111 }
2112 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2113 return FALSE;
2114 }
2115
2116 entry.abfd = abfd;
2117 entry.symndx = -1;
2118 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2119
2120 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2121 INSERT);
2122
2123 /* If we've already marked this entry as needing GOT space, we don't
2124 need to do it again. */
2125 if (*loc)
2126 return TRUE;
2127
2128 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2129
2130 if (! *loc)
2131 return FALSE;
2132
2133 entry.gotidx = -1;
2134 memcpy (*loc, &entry, sizeof entry);
2135
2136 if (h->got.offset != MINUS_ONE)
2137 return TRUE;
2138
2139 /* By setting this to a value other than -1, we are indicating that
2140 there needs to be a GOT entry for H. Avoid using zero, as the
2141 generic ELF copy_indirect_symbol tests for <= 0. */
2142 h->got.offset = 1;
2143
2144 return TRUE;
2145 }
2146
2147 /* Reserve space in G for a GOT entry containing the value of symbol
2148 SYMNDX in input bfd ABDF, plus ADDEND. */
2149
2150 static bfd_boolean
2151 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2152 struct mips_got_info *g)
2153 {
2154 struct mips_got_entry entry, **loc;
2155
2156 entry.abfd = abfd;
2157 entry.symndx = symndx;
2158 entry.d.addend = addend;
2159 loc = (struct mips_got_entry **)
2160 htab_find_slot (g->got_entries, &entry, INSERT);
2161
2162 if (*loc)
2163 return TRUE;
2164
2165 entry.gotidx = g->local_gotno++;
2166
2167 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2168
2169 if (! *loc)
2170 return FALSE;
2171
2172 memcpy (*loc, &entry, sizeof entry);
2173
2174 return TRUE;
2175 }
2176 \f
2177 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2178
2179 static hashval_t
2180 mips_elf_bfd2got_entry_hash (const void *entry_)
2181 {
2182 const struct mips_elf_bfd2got_hash *entry
2183 = (struct mips_elf_bfd2got_hash *)entry_;
2184
2185 return entry->bfd->id;
2186 }
2187
2188 /* Check whether two hash entries have the same bfd. */
2189
2190 static int
2191 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2192 {
2193 const struct mips_elf_bfd2got_hash *e1
2194 = (const struct mips_elf_bfd2got_hash *)entry1;
2195 const struct mips_elf_bfd2got_hash *e2
2196 = (const struct mips_elf_bfd2got_hash *)entry2;
2197
2198 return e1->bfd == e2->bfd;
2199 }
2200
2201 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2202 be the master GOT data. */
2203
2204 static struct mips_got_info *
2205 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2206 {
2207 struct mips_elf_bfd2got_hash e, *p;
2208
2209 if (! g->bfd2got)
2210 return g;
2211
2212 e.bfd = ibfd;
2213 p = htab_find (g->bfd2got, &e);
2214 return p ? p->g : NULL;
2215 }
2216
2217 /* Create one separate got for each bfd that has entries in the global
2218 got, such that we can tell how many local and global entries each
2219 bfd requires. */
2220
2221 static int
2222 mips_elf_make_got_per_bfd (void **entryp, void *p)
2223 {
2224 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2225 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2226 htab_t bfd2got = arg->bfd2got;
2227 struct mips_got_info *g;
2228 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2229 void **bfdgotp;
2230
2231 /* Find the got_info for this GOT entry's input bfd. Create one if
2232 none exists. */
2233 bfdgot_entry.bfd = entry->abfd;
2234 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2235 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2236
2237 if (bfdgot != NULL)
2238 g = bfdgot->g;
2239 else
2240 {
2241 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2242 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2243
2244 if (bfdgot == NULL)
2245 {
2246 arg->obfd = 0;
2247 return 0;
2248 }
2249
2250 *bfdgotp = bfdgot;
2251
2252 bfdgot->bfd = entry->abfd;
2253 bfdgot->g = g = (struct mips_got_info *)
2254 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2255 if (g == NULL)
2256 {
2257 arg->obfd = 0;
2258 return 0;
2259 }
2260
2261 g->global_gotsym = NULL;
2262 g->global_gotno = 0;
2263 g->local_gotno = 0;
2264 g->assigned_gotno = -1;
2265 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2266 mips_elf_multi_got_entry_eq, NULL);
2267 if (g->got_entries == NULL)
2268 {
2269 arg->obfd = 0;
2270 return 0;
2271 }
2272
2273 g->bfd2got = NULL;
2274 g->next = NULL;
2275 }
2276
2277 /* Insert the GOT entry in the bfd's got entry hash table. */
2278 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2279 if (*entryp != NULL)
2280 return 1;
2281
2282 *entryp = entry;
2283
2284 if (entry->symndx >= 0 || entry->d.h->forced_local)
2285 ++g->local_gotno;
2286 else
2287 ++g->global_gotno;
2288
2289 return 1;
2290 }
2291
2292 /* Attempt to merge gots of different input bfds. Try to use as much
2293 as possible of the primary got, since it doesn't require explicit
2294 dynamic relocations, but don't use bfds that would reference global
2295 symbols out of the addressable range. Failing the primary got,
2296 attempt to merge with the current got, or finish the current got
2297 and then make make the new got current. */
2298
2299 static int
2300 mips_elf_merge_gots (void **bfd2got_, void *p)
2301 {
2302 struct mips_elf_bfd2got_hash *bfd2got
2303 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2304 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2305 unsigned int lcount = bfd2got->g->local_gotno;
2306 unsigned int gcount = bfd2got->g->global_gotno;
2307 unsigned int maxcnt = arg->max_count;
2308
2309 /* If we don't have a primary GOT and this is not too big, use it as
2310 a starting point for the primary GOT. */
2311 if (! arg->primary && lcount + gcount <= maxcnt)
2312 {
2313 arg->primary = bfd2got->g;
2314 arg->primary_count = lcount + gcount;
2315 }
2316 /* If it looks like we can merge this bfd's entries with those of
2317 the primary, merge them. The heuristics is conservative, but we
2318 don't have to squeeze it too hard. */
2319 else if (arg->primary
2320 && (arg->primary_count + lcount + gcount) <= maxcnt)
2321 {
2322 struct mips_got_info *g = bfd2got->g;
2323 int old_lcount = arg->primary->local_gotno;
2324 int old_gcount = arg->primary->global_gotno;
2325
2326 bfd2got->g = arg->primary;
2327
2328 htab_traverse (g->got_entries,
2329 mips_elf_make_got_per_bfd,
2330 arg);
2331 if (arg->obfd == NULL)
2332 return 0;
2333
2334 htab_delete (g->got_entries);
2335 /* We don't have to worry about releasing memory of the actual
2336 got entries, since they're all in the master got_entries hash
2337 table anyway. */
2338
2339 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2340 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2341
2342 arg->primary_count = arg->primary->local_gotno
2343 + arg->primary->global_gotno;
2344 }
2345 /* If we can merge with the last-created got, do it. */
2346 else if (arg->current
2347 && arg->current_count + lcount + gcount <= maxcnt)
2348 {
2349 struct mips_got_info *g = bfd2got->g;
2350 int old_lcount = arg->current->local_gotno;
2351 int old_gcount = arg->current->global_gotno;
2352
2353 bfd2got->g = arg->current;
2354
2355 htab_traverse (g->got_entries,
2356 mips_elf_make_got_per_bfd,
2357 arg);
2358 if (arg->obfd == NULL)
2359 return 0;
2360
2361 htab_delete (g->got_entries);
2362
2363 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2364 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2365
2366 arg->current_count = arg->current->local_gotno
2367 + arg->current->global_gotno;
2368 }
2369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2370 fits; if it turns out that it doesn't, we'll get relocation
2371 overflows anyway. */
2372 else
2373 {
2374 bfd2got->g->next = arg->current;
2375 arg->current = bfd2got->g;
2376
2377 arg->current_count = lcount + gcount;
2378 }
2379
2380 return 1;
2381 }
2382
2383 /* If passed a NULL mips_got_info in the argument, set the marker used
2384 to tell whether a global symbol needs a got entry (in the primary
2385 got) to the given VALUE.
2386
2387 If passed a pointer G to a mips_got_info in the argument (it must
2388 not be the primary GOT), compute the offset from the beginning of
2389 the (primary) GOT section to the entry in G corresponding to the
2390 global symbol. G's assigned_gotno must contain the index of the
2391 first available global GOT entry in G. VALUE must contain the size
2392 of a GOT entry in bytes. For each global GOT entry that requires a
2393 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2394 marked as not eligible for lazy resolution through a function
2395 stub. */
2396 static int
2397 mips_elf_set_global_got_offset (void **entryp, void *p)
2398 {
2399 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2400 struct mips_elf_set_global_got_offset_arg *arg
2401 = (struct mips_elf_set_global_got_offset_arg *)p;
2402 struct mips_got_info *g = arg->g;
2403
2404 if (entry->abfd != NULL && entry->symndx == -1
2405 && entry->d.h->root.dynindx != -1)
2406 {
2407 if (g)
2408 {
2409 BFD_ASSERT (g->global_gotsym == NULL);
2410
2411 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2412 if (arg->info->shared
2413 || (elf_hash_table (arg->info)->dynamic_sections_created
2414 && ((entry->d.h->root.elf_link_hash_flags
2415 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2416 && ((entry->d.h->root.elf_link_hash_flags
2417 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2418 ++arg->needed_relocs;
2419 }
2420 else
2421 entry->d.h->root.got.offset = arg->value;
2422 }
2423
2424 return 1;
2425 }
2426
2427 /* Mark any global symbols referenced in the GOT we are iterating over
2428 as inelligible for lazy resolution stubs. */
2429 static int
2430 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
2431 {
2432 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2433
2434 if (entry->abfd != NULL
2435 && entry->symndx == -1
2436 && entry->d.h->root.dynindx != -1)
2437 entry->d.h->no_fn_stub = TRUE;
2438
2439 return 1;
2440 }
2441
2442 /* Follow indirect and warning hash entries so that each got entry
2443 points to the final symbol definition. P must point to a pointer
2444 to the hash table we're traversing. Since this traversal may
2445 modify the hash table, we set this pointer to NULL to indicate
2446 we've made a potentially-destructive change to the hash table, so
2447 the traversal must be restarted. */
2448 static int
2449 mips_elf_resolve_final_got_entry (void **entryp, void *p)
2450 {
2451 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2452 htab_t got_entries = *(htab_t *)p;
2453
2454 if (entry->abfd != NULL && entry->symndx == -1)
2455 {
2456 struct mips_elf_link_hash_entry *h = entry->d.h;
2457
2458 while (h->root.root.type == bfd_link_hash_indirect
2459 || h->root.root.type == bfd_link_hash_warning)
2460 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2461
2462 if (entry->d.h == h)
2463 return 1;
2464
2465 entry->d.h = h;
2466
2467 /* If we can't find this entry with the new bfd hash, re-insert
2468 it, and get the traversal restarted. */
2469 if (! htab_find (got_entries, entry))
2470 {
2471 htab_clear_slot (got_entries, entryp);
2472 entryp = htab_find_slot (got_entries, entry, INSERT);
2473 if (! *entryp)
2474 *entryp = entry;
2475 /* Abort the traversal, since the whole table may have
2476 moved, and leave it up to the parent to restart the
2477 process. */
2478 *(htab_t *)p = NULL;
2479 return 0;
2480 }
2481 /* We might want to decrement the global_gotno count, but it's
2482 either too early or too late for that at this point. */
2483 }
2484
2485 return 1;
2486 }
2487
2488 /* Turn indirect got entries in a got_entries table into their final
2489 locations. */
2490 static void
2491 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
2492 {
2493 htab_t got_entries;
2494
2495 do
2496 {
2497 got_entries = g->got_entries;
2498
2499 htab_traverse (got_entries,
2500 mips_elf_resolve_final_got_entry,
2501 &got_entries);
2502 }
2503 while (got_entries == NULL);
2504 }
2505
2506 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2507 the primary GOT. */
2508 static bfd_vma
2509 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
2510 {
2511 if (g->bfd2got == NULL)
2512 return 0;
2513
2514 g = mips_elf_got_for_ibfd (g, ibfd);
2515 if (! g)
2516 return 0;
2517
2518 BFD_ASSERT (g->next);
2519
2520 g = g->next;
2521
2522 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2523 }
2524
2525 /* Turn a single GOT that is too big for 16-bit addressing into
2526 a sequence of GOTs, each one 16-bit addressable. */
2527
2528 static bfd_boolean
2529 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2530 struct mips_got_info *g, asection *got,
2531 bfd_size_type pages)
2532 {
2533 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2534 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2535 struct mips_got_info *gg;
2536 unsigned int assign;
2537
2538 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2539 mips_elf_bfd2got_entry_eq, NULL);
2540 if (g->bfd2got == NULL)
2541 return FALSE;
2542
2543 got_per_bfd_arg.bfd2got = g->bfd2got;
2544 got_per_bfd_arg.obfd = abfd;
2545 got_per_bfd_arg.info = info;
2546
2547 /* Count how many GOT entries each input bfd requires, creating a
2548 map from bfd to got info while at that. */
2549 mips_elf_resolve_final_got_entries (g);
2550 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2551 if (got_per_bfd_arg.obfd == NULL)
2552 return FALSE;
2553
2554 got_per_bfd_arg.current = NULL;
2555 got_per_bfd_arg.primary = NULL;
2556 /* Taking out PAGES entries is a worst-case estimate. We could
2557 compute the maximum number of pages that each separate input bfd
2558 uses, but it's probably not worth it. */
2559 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2560 / MIPS_ELF_GOT_SIZE (abfd))
2561 - MIPS_RESERVED_GOTNO - pages);
2562
2563 /* Try to merge the GOTs of input bfds together, as long as they
2564 don't seem to exceed the maximum GOT size, choosing one of them
2565 to be the primary GOT. */
2566 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2567 if (got_per_bfd_arg.obfd == NULL)
2568 return FALSE;
2569
2570 /* If we find any suitable primary GOT, create an empty one. */
2571 if (got_per_bfd_arg.primary == NULL)
2572 {
2573 g->next = (struct mips_got_info *)
2574 bfd_alloc (abfd, sizeof (struct mips_got_info));
2575 if (g->next == NULL)
2576 return FALSE;
2577
2578 g->next->global_gotsym = NULL;
2579 g->next->global_gotno = 0;
2580 g->next->local_gotno = 0;
2581 g->next->assigned_gotno = 0;
2582 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2583 mips_elf_multi_got_entry_eq,
2584 NULL);
2585 if (g->next->got_entries == NULL)
2586 return FALSE;
2587 g->next->bfd2got = NULL;
2588 }
2589 else
2590 g->next = got_per_bfd_arg.primary;
2591 g->next->next = got_per_bfd_arg.current;
2592
2593 /* GG is now the master GOT, and G is the primary GOT. */
2594 gg = g;
2595 g = g->next;
2596
2597 /* Map the output bfd to the primary got. That's what we're going
2598 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2599 didn't mark in check_relocs, and we want a quick way to find it.
2600 We can't just use gg->next because we're going to reverse the
2601 list. */
2602 {
2603 struct mips_elf_bfd2got_hash *bfdgot;
2604 void **bfdgotp;
2605
2606 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2607 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2608
2609 if (bfdgot == NULL)
2610 return FALSE;
2611
2612 bfdgot->bfd = abfd;
2613 bfdgot->g = g;
2614 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2615
2616 BFD_ASSERT (*bfdgotp == NULL);
2617 *bfdgotp = bfdgot;
2618 }
2619
2620 /* The IRIX dynamic linker requires every symbol that is referenced
2621 in a dynamic relocation to be present in the primary GOT, so
2622 arrange for them to appear after those that are actually
2623 referenced.
2624
2625 GNU/Linux could very well do without it, but it would slow down
2626 the dynamic linker, since it would have to resolve every dynamic
2627 symbol referenced in other GOTs more than once, without help from
2628 the cache. Also, knowing that every external symbol has a GOT
2629 helps speed up the resolution of local symbols too, so GNU/Linux
2630 follows IRIX's practice.
2631
2632 The number 2 is used by mips_elf_sort_hash_table_f to count
2633 global GOT symbols that are unreferenced in the primary GOT, with
2634 an initial dynamic index computed from gg->assigned_gotno, where
2635 the number of unreferenced global entries in the primary GOT is
2636 preserved. */
2637 if (1)
2638 {
2639 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2640 g->global_gotno = gg->global_gotno;
2641 set_got_offset_arg.value = 2;
2642 }
2643 else
2644 {
2645 /* This could be used for dynamic linkers that don't optimize
2646 symbol resolution while applying relocations so as to use
2647 primary GOT entries or assuming the symbol is locally-defined.
2648 With this code, we assign lower dynamic indices to global
2649 symbols that are not referenced in the primary GOT, so that
2650 their entries can be omitted. */
2651 gg->assigned_gotno = 0;
2652 set_got_offset_arg.value = -1;
2653 }
2654
2655 /* Reorder dynamic symbols as described above (which behavior
2656 depends on the setting of VALUE). */
2657 set_got_offset_arg.g = NULL;
2658 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2659 &set_got_offset_arg);
2660 set_got_offset_arg.value = 1;
2661 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2662 &set_got_offset_arg);
2663 if (! mips_elf_sort_hash_table (info, 1))
2664 return FALSE;
2665
2666 /* Now go through the GOTs assigning them offset ranges.
2667 [assigned_gotno, local_gotno[ will be set to the range of local
2668 entries in each GOT. We can then compute the end of a GOT by
2669 adding local_gotno to global_gotno. We reverse the list and make
2670 it circular since then we'll be able to quickly compute the
2671 beginning of a GOT, by computing the end of its predecessor. To
2672 avoid special cases for the primary GOT, while still preserving
2673 assertions that are valid for both single- and multi-got links,
2674 we arrange for the main got struct to have the right number of
2675 global entries, but set its local_gotno such that the initial
2676 offset of the primary GOT is zero. Remember that the primary GOT
2677 will become the last item in the circular linked list, so it
2678 points back to the master GOT. */
2679 gg->local_gotno = -g->global_gotno;
2680 gg->global_gotno = g->global_gotno;
2681 assign = 0;
2682 gg->next = gg;
2683
2684 do
2685 {
2686 struct mips_got_info *gn;
2687
2688 assign += MIPS_RESERVED_GOTNO;
2689 g->assigned_gotno = assign;
2690 g->local_gotno += assign + pages;
2691 assign = g->local_gotno + g->global_gotno;
2692
2693 /* Take g out of the direct list, and push it onto the reversed
2694 list that gg points to. */
2695 gn = g->next;
2696 g->next = gg->next;
2697 gg->next = g;
2698 g = gn;
2699
2700 /* Mark global symbols in every non-primary GOT as ineligible for
2701 stubs. */
2702 if (g)
2703 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
2704 }
2705 while (g);
2706
2707 got->size = (gg->next->local_gotno
2708 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2709
2710 return TRUE;
2711 }
2712
2713 \f
2714 /* Returns the first relocation of type r_type found, beginning with
2715 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2716
2717 static const Elf_Internal_Rela *
2718 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2719 const Elf_Internal_Rela *relocation,
2720 const Elf_Internal_Rela *relend)
2721 {
2722 while (relocation < relend)
2723 {
2724 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2725 return relocation;
2726
2727 ++relocation;
2728 }
2729
2730 /* We didn't find it. */
2731 bfd_set_error (bfd_error_bad_value);
2732 return NULL;
2733 }
2734
2735 /* Return whether a relocation is against a local symbol. */
2736
2737 static bfd_boolean
2738 mips_elf_local_relocation_p (bfd *input_bfd,
2739 const Elf_Internal_Rela *relocation,
2740 asection **local_sections,
2741 bfd_boolean check_forced)
2742 {
2743 unsigned long r_symndx;
2744 Elf_Internal_Shdr *symtab_hdr;
2745 struct mips_elf_link_hash_entry *h;
2746 size_t extsymoff;
2747
2748 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2749 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2750 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2751
2752 if (r_symndx < extsymoff)
2753 return TRUE;
2754 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2755 return TRUE;
2756
2757 if (check_forced)
2758 {
2759 /* Look up the hash table to check whether the symbol
2760 was forced local. */
2761 h = (struct mips_elf_link_hash_entry *)
2762 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2763 /* Find the real hash-table entry for this symbol. */
2764 while (h->root.root.type == bfd_link_hash_indirect
2765 || h->root.root.type == bfd_link_hash_warning)
2766 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2767 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2768 return TRUE;
2769 }
2770
2771 return FALSE;
2772 }
2773 \f
2774 /* Sign-extend VALUE, which has the indicated number of BITS. */
2775
2776 bfd_vma
2777 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
2778 {
2779 if (value & ((bfd_vma) 1 << (bits - 1)))
2780 /* VALUE is negative. */
2781 value |= ((bfd_vma) - 1) << bits;
2782
2783 return value;
2784 }
2785
2786 /* Return non-zero if the indicated VALUE has overflowed the maximum
2787 range expressible by a signed number with the indicated number of
2788 BITS. */
2789
2790 static bfd_boolean
2791 mips_elf_overflow_p (bfd_vma value, int bits)
2792 {
2793 bfd_signed_vma svalue = (bfd_signed_vma) value;
2794
2795 if (svalue > (1 << (bits - 1)) - 1)
2796 /* The value is too big. */
2797 return TRUE;
2798 else if (svalue < -(1 << (bits - 1)))
2799 /* The value is too small. */
2800 return TRUE;
2801
2802 /* All is well. */
2803 return FALSE;
2804 }
2805
2806 /* Calculate the %high function. */
2807
2808 static bfd_vma
2809 mips_elf_high (bfd_vma value)
2810 {
2811 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2812 }
2813
2814 /* Calculate the %higher function. */
2815
2816 static bfd_vma
2817 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
2818 {
2819 #ifdef BFD64
2820 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2821 #else
2822 abort ();
2823 return MINUS_ONE;
2824 #endif
2825 }
2826
2827 /* Calculate the %highest function. */
2828
2829 static bfd_vma
2830 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
2831 {
2832 #ifdef BFD64
2833 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2834 #else
2835 abort ();
2836 return MINUS_ONE;
2837 #endif
2838 }
2839 \f
2840 /* Create the .compact_rel section. */
2841
2842 static bfd_boolean
2843 mips_elf_create_compact_rel_section
2844 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
2845 {
2846 flagword flags;
2847 register asection *s;
2848
2849 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2850 {
2851 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2852 | SEC_READONLY);
2853
2854 s = bfd_make_section (abfd, ".compact_rel");
2855 if (s == NULL
2856 || ! bfd_set_section_flags (abfd, s, flags)
2857 || ! bfd_set_section_alignment (abfd, s,
2858 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2859 return FALSE;
2860
2861 s->size = sizeof (Elf32_External_compact_rel);
2862 }
2863
2864 return TRUE;
2865 }
2866
2867 /* Create the .got section to hold the global offset table. */
2868
2869 static bfd_boolean
2870 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2871 bfd_boolean maybe_exclude)
2872 {
2873 flagword flags;
2874 register asection *s;
2875 struct elf_link_hash_entry *h;
2876 struct bfd_link_hash_entry *bh;
2877 struct mips_got_info *g;
2878 bfd_size_type amt;
2879
2880 /* This function may be called more than once. */
2881 s = mips_elf_got_section (abfd, TRUE);
2882 if (s)
2883 {
2884 if (! maybe_exclude)
2885 s->flags &= ~SEC_EXCLUDE;
2886 return TRUE;
2887 }
2888
2889 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2890 | SEC_LINKER_CREATED);
2891
2892 if (maybe_exclude)
2893 flags |= SEC_EXCLUDE;
2894
2895 /* We have to use an alignment of 2**4 here because this is hardcoded
2896 in the function stub generation and in the linker script. */
2897 s = bfd_make_section (abfd, ".got");
2898 if (s == NULL
2899 || ! bfd_set_section_flags (abfd, s, flags)
2900 || ! bfd_set_section_alignment (abfd, s, 4))
2901 return FALSE;
2902
2903 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2904 linker script because we don't want to define the symbol if we
2905 are not creating a global offset table. */
2906 bh = NULL;
2907 if (! (_bfd_generic_link_add_one_symbol
2908 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2909 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
2910 return FALSE;
2911
2912 h = (struct elf_link_hash_entry *) bh;
2913 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2914 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2915 h->type = STT_OBJECT;
2916
2917 if (info->shared
2918 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2919 return FALSE;
2920
2921 amt = sizeof (struct mips_got_info);
2922 g = bfd_alloc (abfd, amt);
2923 if (g == NULL)
2924 return FALSE;
2925 g->global_gotsym = NULL;
2926 g->global_gotno = 0;
2927 g->local_gotno = MIPS_RESERVED_GOTNO;
2928 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2929 g->bfd2got = NULL;
2930 g->next = NULL;
2931 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2932 mips_elf_got_entry_eq, NULL);
2933 if (g->got_entries == NULL)
2934 return FALSE;
2935 mips_elf_section_data (s)->u.got_info = g;
2936 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2937 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2938
2939 return TRUE;
2940 }
2941 \f
2942 /* Calculate the value produced by the RELOCATION (which comes from
2943 the INPUT_BFD). The ADDEND is the addend to use for this
2944 RELOCATION; RELOCATION->R_ADDEND is ignored.
2945
2946 The result of the relocation calculation is stored in VALUEP.
2947 REQUIRE_JALXP indicates whether or not the opcode used with this
2948 relocation must be JALX.
2949
2950 This function returns bfd_reloc_continue if the caller need take no
2951 further action regarding this relocation, bfd_reloc_notsupported if
2952 something goes dramatically wrong, bfd_reloc_overflow if an
2953 overflow occurs, and bfd_reloc_ok to indicate success. */
2954
2955 static bfd_reloc_status_type
2956 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2957 asection *input_section,
2958 struct bfd_link_info *info,
2959 const Elf_Internal_Rela *relocation,
2960 bfd_vma addend, reloc_howto_type *howto,
2961 Elf_Internal_Sym *local_syms,
2962 asection **local_sections, bfd_vma *valuep,
2963 const char **namep, bfd_boolean *require_jalxp,
2964 bfd_boolean save_addend)
2965 {
2966 /* The eventual value we will return. */
2967 bfd_vma value;
2968 /* The address of the symbol against which the relocation is
2969 occurring. */
2970 bfd_vma symbol = 0;
2971 /* The final GP value to be used for the relocatable, executable, or
2972 shared object file being produced. */
2973 bfd_vma gp = MINUS_ONE;
2974 /* The place (section offset or address) of the storage unit being
2975 relocated. */
2976 bfd_vma p;
2977 /* The value of GP used to create the relocatable object. */
2978 bfd_vma gp0 = MINUS_ONE;
2979 /* The offset into the global offset table at which the address of
2980 the relocation entry symbol, adjusted by the addend, resides
2981 during execution. */
2982 bfd_vma g = MINUS_ONE;
2983 /* The section in which the symbol referenced by the relocation is
2984 located. */
2985 asection *sec = NULL;
2986 struct mips_elf_link_hash_entry *h = NULL;
2987 /* TRUE if the symbol referred to by this relocation is a local
2988 symbol. */
2989 bfd_boolean local_p, was_local_p;
2990 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2991 bfd_boolean gp_disp_p = FALSE;
2992 Elf_Internal_Shdr *symtab_hdr;
2993 size_t extsymoff;
2994 unsigned long r_symndx;
2995 int r_type;
2996 /* TRUE if overflow occurred during the calculation of the
2997 relocation value. */
2998 bfd_boolean overflowed_p;
2999 /* TRUE if this relocation refers to a MIPS16 function. */
3000 bfd_boolean target_is_16_bit_code_p = FALSE;
3001
3002 /* Parse the relocation. */
3003 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3004 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3005 p = (input_section->output_section->vma
3006 + input_section->output_offset
3007 + relocation->r_offset);
3008
3009 /* Assume that there will be no overflow. */
3010 overflowed_p = FALSE;
3011
3012 /* Figure out whether or not the symbol is local, and get the offset
3013 used in the array of hash table entries. */
3014 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3015 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3016 local_sections, FALSE);
3017 was_local_p = local_p;
3018 if (! elf_bad_symtab (input_bfd))
3019 extsymoff = symtab_hdr->sh_info;
3020 else
3021 {
3022 /* The symbol table does not follow the rule that local symbols
3023 must come before globals. */
3024 extsymoff = 0;
3025 }
3026
3027 /* Figure out the value of the symbol. */
3028 if (local_p)
3029 {
3030 Elf_Internal_Sym *sym;
3031
3032 sym = local_syms + r_symndx;
3033 sec = local_sections[r_symndx];
3034
3035 symbol = sec->output_section->vma + sec->output_offset;
3036 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3037 || (sec->flags & SEC_MERGE))
3038 symbol += sym->st_value;
3039 if ((sec->flags & SEC_MERGE)
3040 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3041 {
3042 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3043 addend -= symbol;
3044 addend += sec->output_section->vma + sec->output_offset;
3045 }
3046
3047 /* MIPS16 text labels should be treated as odd. */
3048 if (sym->st_other == STO_MIPS16)
3049 ++symbol;
3050
3051 /* Record the name of this symbol, for our caller. */
3052 *namep = bfd_elf_string_from_elf_section (input_bfd,
3053 symtab_hdr->sh_link,
3054 sym->st_name);
3055 if (*namep == '\0')
3056 *namep = bfd_section_name (input_bfd, sec);
3057
3058 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3059 }
3060 else
3061 {
3062 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3063
3064 /* For global symbols we look up the symbol in the hash-table. */
3065 h = ((struct mips_elf_link_hash_entry *)
3066 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3067 /* Find the real hash-table entry for this symbol. */
3068 while (h->root.root.type == bfd_link_hash_indirect
3069 || h->root.root.type == bfd_link_hash_warning)
3070 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3071
3072 /* Record the name of this symbol, for our caller. */
3073 *namep = h->root.root.root.string;
3074
3075 /* See if this is the special _gp_disp symbol. Note that such a
3076 symbol must always be a global symbol. */
3077 if (strcmp (*namep, "_gp_disp") == 0
3078 && ! NEWABI_P (input_bfd))
3079 {
3080 /* Relocations against _gp_disp are permitted only with
3081 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3082 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3083 return bfd_reloc_notsupported;
3084
3085 gp_disp_p = TRUE;
3086 }
3087 /* If this symbol is defined, calculate its address. Note that
3088 _gp_disp is a magic symbol, always implicitly defined by the
3089 linker, so it's inappropriate to check to see whether or not
3090 its defined. */
3091 else if ((h->root.root.type == bfd_link_hash_defined
3092 || h->root.root.type == bfd_link_hash_defweak)
3093 && h->root.root.u.def.section)
3094 {
3095 sec = h->root.root.u.def.section;
3096 if (sec->output_section)
3097 symbol = (h->root.root.u.def.value
3098 + sec->output_section->vma
3099 + sec->output_offset);
3100 else
3101 symbol = h->root.root.u.def.value;
3102 }
3103 else if (h->root.root.type == bfd_link_hash_undefweak)
3104 /* We allow relocations against undefined weak symbols, giving
3105 it the value zero, so that you can undefined weak functions
3106 and check to see if they exist by looking at their
3107 addresses. */
3108 symbol = 0;
3109 else if (info->unresolved_syms_in_objects == RM_IGNORE
3110 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3111 symbol = 0;
3112 else if (strcmp (*namep, "_DYNAMIC_LINK") == 0 ||
3113 strcmp (*namep, "_DYNAMIC_LINKING") == 0)
3114 {
3115 /* If this is a dynamic link, we should have created a
3116 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3117 in in _bfd_mips_elf_create_dynamic_sections.
3118 Otherwise, we should define the symbol with a value of 0.
3119 FIXME: It should probably get into the symbol table
3120 somehow as well. */
3121 BFD_ASSERT (! info->shared);
3122 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3123 symbol = 0;
3124 }
3125 else
3126 {
3127 if (! ((*info->callbacks->undefined_symbol)
3128 (info, h->root.root.root.string, input_bfd,
3129 input_section, relocation->r_offset,
3130 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3131 || ELF_ST_VISIBILITY (h->root.other))))
3132 return bfd_reloc_undefined;
3133 symbol = 0;
3134 }
3135
3136 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3137 }
3138
3139 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3140 need to redirect the call to the stub, unless we're already *in*
3141 a stub. */
3142 if (r_type != R_MIPS16_26 && !info->relocatable
3143 && ((h != NULL && h->fn_stub != NULL)
3144 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3145 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3146 && !mips_elf_stub_section_p (input_bfd, input_section))
3147 {
3148 /* This is a 32- or 64-bit call to a 16-bit function. We should
3149 have already noticed that we were going to need the
3150 stub. */
3151 if (local_p)
3152 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3153 else
3154 {
3155 BFD_ASSERT (h->need_fn_stub);
3156 sec = h->fn_stub;
3157 }
3158
3159 symbol = sec->output_section->vma + sec->output_offset;
3160 }
3161 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3162 need to redirect the call to the stub. */
3163 else if (r_type == R_MIPS16_26 && !info->relocatable
3164 && h != NULL
3165 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3166 && !target_is_16_bit_code_p)
3167 {
3168 /* If both call_stub and call_fp_stub are defined, we can figure
3169 out which one to use by seeing which one appears in the input
3170 file. */
3171 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3172 {
3173 asection *o;
3174
3175 sec = NULL;
3176 for (o = input_bfd->sections; o != NULL; o = o->next)
3177 {
3178 if (strncmp (bfd_get_section_name (input_bfd, o),
3179 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3180 {
3181 sec = h->call_fp_stub;
3182 break;
3183 }
3184 }
3185 if (sec == NULL)
3186 sec = h->call_stub;
3187 }
3188 else if (h->call_stub != NULL)
3189 sec = h->call_stub;
3190 else
3191 sec = h->call_fp_stub;
3192
3193 BFD_ASSERT (sec->size > 0);
3194 symbol = sec->output_section->vma + sec->output_offset;
3195 }
3196
3197 /* Calls from 16-bit code to 32-bit code and vice versa require the
3198 special jalx instruction. */
3199 *require_jalxp = (!info->relocatable
3200 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3201 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3202
3203 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3204 local_sections, TRUE);
3205
3206 /* If we haven't already determined the GOT offset, or the GP value,
3207 and we're going to need it, get it now. */
3208 switch (r_type)
3209 {
3210 case R_MIPS_GOT_PAGE:
3211 case R_MIPS_GOT_OFST:
3212 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3213 bind locally. */
3214 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3215 if (local_p || r_type == R_MIPS_GOT_OFST)
3216 break;
3217 /* Fall through. */
3218
3219 case R_MIPS_CALL16:
3220 case R_MIPS_GOT16:
3221 case R_MIPS_GOT_DISP:
3222 case R_MIPS_GOT_HI16:
3223 case R_MIPS_CALL_HI16:
3224 case R_MIPS_GOT_LO16:
3225 case R_MIPS_CALL_LO16:
3226 /* Find the index into the GOT where this value is located. */
3227 if (!local_p)
3228 {
3229 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3230 GOT_PAGE relocation that decays to GOT_DISP because the
3231 symbol turns out to be global. The addend is then added
3232 as GOT_OFST. */
3233 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3234 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3235 input_bfd,
3236 (struct elf_link_hash_entry *) h);
3237 if (! elf_hash_table(info)->dynamic_sections_created
3238 || (info->shared
3239 && (info->symbolic || h->root.dynindx == -1)
3240 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3241 {
3242 /* This is a static link or a -Bsymbolic link. The
3243 symbol is defined locally, or was forced to be local.
3244 We must initialize this entry in the GOT. */
3245 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3246 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3247 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3248 }
3249 }
3250 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3251 /* There's no need to create a local GOT entry here; the
3252 calculation for a local GOT16 entry does not involve G. */
3253 break;
3254 else
3255 {
3256 g = mips_elf_local_got_index (abfd, input_bfd,
3257 info, symbol + addend);
3258 if (g == MINUS_ONE)
3259 return bfd_reloc_outofrange;
3260 }
3261
3262 /* Convert GOT indices to actual offsets. */
3263 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3264 abfd, input_bfd, g);
3265 break;
3266
3267 case R_MIPS_HI16:
3268 case R_MIPS_LO16:
3269 case R_MIPS16_GPREL:
3270 case R_MIPS_GPREL16:
3271 case R_MIPS_GPREL32:
3272 case R_MIPS_LITERAL:
3273 gp0 = _bfd_get_gp_value (input_bfd);
3274 gp = _bfd_get_gp_value (abfd);
3275 if (elf_hash_table (info)->dynobj)
3276 gp += mips_elf_adjust_gp (abfd,
3277 mips_elf_got_info
3278 (elf_hash_table (info)->dynobj, NULL),
3279 input_bfd);
3280 break;
3281
3282 default:
3283 break;
3284 }
3285
3286 /* Figure out what kind of relocation is being performed. */
3287 switch (r_type)
3288 {
3289 case R_MIPS_NONE:
3290 return bfd_reloc_continue;
3291
3292 case R_MIPS_16:
3293 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3294 overflowed_p = mips_elf_overflow_p (value, 16);
3295 break;
3296
3297 case R_MIPS_32:
3298 case R_MIPS_REL32:
3299 case R_MIPS_64:
3300 if ((info->shared
3301 || (elf_hash_table (info)->dynamic_sections_created
3302 && h != NULL
3303 && ((h->root.elf_link_hash_flags
3304 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3305 && ((h->root.elf_link_hash_flags
3306 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3307 && r_symndx != 0
3308 && (input_section->flags & SEC_ALLOC) != 0)
3309 {
3310 /* If we're creating a shared library, or this relocation is
3311 against a symbol in a shared library, then we can't know
3312 where the symbol will end up. So, we create a relocation
3313 record in the output, and leave the job up to the dynamic
3314 linker. */
3315 value = addend;
3316 if (!mips_elf_create_dynamic_relocation (abfd,
3317 info,
3318 relocation,
3319 h,
3320 sec,
3321 symbol,
3322 &value,
3323 input_section))
3324 return bfd_reloc_undefined;
3325 }
3326 else
3327 {
3328 if (r_type != R_MIPS_REL32)
3329 value = symbol + addend;
3330 else
3331 value = addend;
3332 }
3333 value &= howto->dst_mask;
3334 break;
3335
3336 case R_MIPS_PC32:
3337 value = symbol + addend - p;
3338 value &= howto->dst_mask;
3339 break;
3340
3341 case R_MIPS_GNU_REL16_S2:
3342 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
3343 overflowed_p = mips_elf_overflow_p (value, 18);
3344 value = (value >> 2) & howto->dst_mask;
3345 break;
3346
3347 case R_MIPS16_26:
3348 /* The calculation for R_MIPS16_26 is just the same as for an
3349 R_MIPS_26. It's only the storage of the relocated field into
3350 the output file that's different. That's handled in
3351 mips_elf_perform_relocation. So, we just fall through to the
3352 R_MIPS_26 case here. */
3353 case R_MIPS_26:
3354 if (local_p)
3355 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3356 else
3357 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3358 value &= howto->dst_mask;
3359 break;
3360
3361 case R_MIPS_HI16:
3362 if (!gp_disp_p)
3363 {
3364 value = mips_elf_high (addend + symbol);
3365 value &= howto->dst_mask;
3366 }
3367 else
3368 {
3369 value = mips_elf_high (addend + gp - p);
3370 overflowed_p = mips_elf_overflow_p (value, 16);
3371 }
3372 break;
3373
3374 case R_MIPS_LO16:
3375 if (!gp_disp_p)
3376 value = (symbol + addend) & howto->dst_mask;
3377 else
3378 {
3379 value = addend + gp - p + 4;
3380 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3381 for overflow. But, on, say, IRIX5, relocations against
3382 _gp_disp are normally generated from the .cpload
3383 pseudo-op. It generates code that normally looks like
3384 this:
3385
3386 lui $gp,%hi(_gp_disp)
3387 addiu $gp,$gp,%lo(_gp_disp)
3388 addu $gp,$gp,$t9
3389
3390 Here $t9 holds the address of the function being called,
3391 as required by the MIPS ELF ABI. The R_MIPS_LO16
3392 relocation can easily overflow in this situation, but the
3393 R_MIPS_HI16 relocation will handle the overflow.
3394 Therefore, we consider this a bug in the MIPS ABI, and do
3395 not check for overflow here. */
3396 }
3397 break;
3398
3399 case R_MIPS_LITERAL:
3400 /* Because we don't merge literal sections, we can handle this
3401 just like R_MIPS_GPREL16. In the long run, we should merge
3402 shared literals, and then we will need to additional work
3403 here. */
3404
3405 /* Fall through. */
3406
3407 case R_MIPS16_GPREL:
3408 /* The R_MIPS16_GPREL performs the same calculation as
3409 R_MIPS_GPREL16, but stores the relocated bits in a different
3410 order. We don't need to do anything special here; the
3411 differences are handled in mips_elf_perform_relocation. */
3412 case R_MIPS_GPREL16:
3413 /* Only sign-extend the addend if it was extracted from the
3414 instruction. If the addend was separate, leave it alone,
3415 otherwise we may lose significant bits. */
3416 if (howto->partial_inplace)
3417 addend = _bfd_mips_elf_sign_extend (addend, 16);
3418 value = symbol + addend - gp;
3419 /* If the symbol was local, any earlier relocatable links will
3420 have adjusted its addend with the gp offset, so compensate
3421 for that now. Don't do it for symbols forced local in this
3422 link, though, since they won't have had the gp offset applied
3423 to them before. */
3424 if (was_local_p)
3425 value += gp0;
3426 overflowed_p = mips_elf_overflow_p (value, 16);
3427 break;
3428
3429 case R_MIPS_GOT16:
3430 case R_MIPS_CALL16:
3431 if (local_p)
3432 {
3433 bfd_boolean forced;
3434
3435 /* The special case is when the symbol is forced to be local. We
3436 need the full address in the GOT since no R_MIPS_LO16 relocation
3437 follows. */
3438 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3439 local_sections, FALSE);
3440 value = mips_elf_got16_entry (abfd, input_bfd, info,
3441 symbol + addend, forced);
3442 if (value == MINUS_ONE)
3443 return bfd_reloc_outofrange;
3444 value
3445 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3446 abfd, input_bfd, value);
3447 overflowed_p = mips_elf_overflow_p (value, 16);
3448 break;
3449 }
3450
3451 /* Fall through. */
3452
3453 case R_MIPS_GOT_DISP:
3454 got_disp:
3455 value = g;
3456 overflowed_p = mips_elf_overflow_p (value, 16);
3457 break;
3458
3459 case R_MIPS_GPREL32:
3460 value = (addend + symbol + gp0 - gp);
3461 if (!save_addend)
3462 value &= howto->dst_mask;
3463 break;
3464
3465 case R_MIPS_PC16:
3466 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3467 overflowed_p = mips_elf_overflow_p (value, 16);
3468 break;
3469
3470 case R_MIPS_GOT_HI16:
3471 case R_MIPS_CALL_HI16:
3472 /* We're allowed to handle these two relocations identically.
3473 The dynamic linker is allowed to handle the CALL relocations
3474 differently by creating a lazy evaluation stub. */
3475 value = g;
3476 value = mips_elf_high (value);
3477 value &= howto->dst_mask;
3478 break;
3479
3480 case R_MIPS_GOT_LO16:
3481 case R_MIPS_CALL_LO16:
3482 value = g & howto->dst_mask;
3483 break;
3484
3485 case R_MIPS_GOT_PAGE:
3486 /* GOT_PAGE relocations that reference non-local symbols decay
3487 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3488 0. */
3489 if (! local_p)
3490 goto got_disp;
3491 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3492 if (value == MINUS_ONE)
3493 return bfd_reloc_outofrange;
3494 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3495 abfd, input_bfd, value);
3496 overflowed_p = mips_elf_overflow_p (value, 16);
3497 break;
3498
3499 case R_MIPS_GOT_OFST:
3500 if (local_p)
3501 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3502 else
3503 value = addend;
3504 overflowed_p = mips_elf_overflow_p (value, 16);
3505 break;
3506
3507 case R_MIPS_SUB:
3508 value = symbol - addend;
3509 value &= howto->dst_mask;
3510 break;
3511
3512 case R_MIPS_HIGHER:
3513 value = mips_elf_higher (addend + symbol);
3514 value &= howto->dst_mask;
3515 break;
3516
3517 case R_MIPS_HIGHEST:
3518 value = mips_elf_highest (addend + symbol);
3519 value &= howto->dst_mask;
3520 break;
3521
3522 case R_MIPS_SCN_DISP:
3523 value = symbol + addend - sec->output_offset;
3524 value &= howto->dst_mask;
3525 break;
3526
3527 case R_MIPS_PJUMP:
3528 case R_MIPS_JALR:
3529 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3530 hint; we could improve performance by honoring that hint. */
3531 return bfd_reloc_continue;
3532
3533 case R_MIPS_GNU_VTINHERIT:
3534 case R_MIPS_GNU_VTENTRY:
3535 /* We don't do anything with these at present. */
3536 return bfd_reloc_continue;
3537
3538 default:
3539 /* An unrecognized relocation type. */
3540 return bfd_reloc_notsupported;
3541 }
3542
3543 /* Store the VALUE for our caller. */
3544 *valuep = value;
3545 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3546 }
3547
3548 /* Obtain the field relocated by RELOCATION. */
3549
3550 static bfd_vma
3551 mips_elf_obtain_contents (reloc_howto_type *howto,
3552 const Elf_Internal_Rela *relocation,
3553 bfd *input_bfd, bfd_byte *contents)
3554 {
3555 bfd_vma x;
3556 bfd_byte *location = contents + relocation->r_offset;
3557
3558 /* Obtain the bytes. */
3559 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3560
3561 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3562 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3563 && bfd_little_endian (input_bfd))
3564 /* The two 16-bit words will be reversed on a little-endian system.
3565 See mips_elf_perform_relocation for more details. */
3566 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3567
3568 return x;
3569 }
3570
3571 /* It has been determined that the result of the RELOCATION is the
3572 VALUE. Use HOWTO to place VALUE into the output file at the
3573 appropriate position. The SECTION is the section to which the
3574 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3575 for the relocation must be either JAL or JALX, and it is
3576 unconditionally converted to JALX.
3577
3578 Returns FALSE if anything goes wrong. */
3579
3580 static bfd_boolean
3581 mips_elf_perform_relocation (struct bfd_link_info *info,
3582 reloc_howto_type *howto,
3583 const Elf_Internal_Rela *relocation,
3584 bfd_vma value, bfd *input_bfd,
3585 asection *input_section, bfd_byte *contents,
3586 bfd_boolean require_jalx)
3587 {
3588 bfd_vma x;
3589 bfd_byte *location;
3590 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3591
3592 /* Figure out where the relocation is occurring. */
3593 location = contents + relocation->r_offset;
3594
3595 /* Obtain the current value. */
3596 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3597
3598 /* Clear the field we are setting. */
3599 x &= ~howto->dst_mask;
3600
3601 /* If this is the R_MIPS16_26 relocation, we must store the
3602 value in a funny way. */
3603 if (r_type == R_MIPS16_26)
3604 {
3605 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3606 Most mips16 instructions are 16 bits, but these instructions
3607 are 32 bits.
3608
3609 The format of these instructions is:
3610
3611 +--------------+--------------------------------+
3612 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3613 +--------------+--------------------------------+
3614 ! Immediate 15:0 !
3615 +-----------------------------------------------+
3616
3617 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3618 Note that the immediate value in the first word is swapped.
3619
3620 When producing a relocatable object file, R_MIPS16_26 is
3621 handled mostly like R_MIPS_26. In particular, the addend is
3622 stored as a straight 26-bit value in a 32-bit instruction.
3623 (gas makes life simpler for itself by never adjusting a
3624 R_MIPS16_26 reloc to be against a section, so the addend is
3625 always zero). However, the 32 bit instruction is stored as 2
3626 16-bit values, rather than a single 32-bit value. In a
3627 big-endian file, the result is the same; in a little-endian
3628 file, the two 16-bit halves of the 32 bit value are swapped.
3629 This is so that a disassembler can recognize the jal
3630 instruction.
3631
3632 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3633 instruction stored as two 16-bit values. The addend A is the
3634 contents of the targ26 field. The calculation is the same as
3635 R_MIPS_26. When storing the calculated value, reorder the
3636 immediate value as shown above, and don't forget to store the
3637 value as two 16-bit values.
3638
3639 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3640 defined as
3641
3642 big-endian:
3643 +--------+----------------------+
3644 | | |
3645 | | targ26-16 |
3646 |31 26|25 0|
3647 +--------+----------------------+
3648
3649 little-endian:
3650 +----------+------+-------------+
3651 | | | |
3652 | sub1 | | sub2 |
3653 |0 9|10 15|16 31|
3654 +----------+--------------------+
3655 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3656 ((sub1 << 16) | sub2)).
3657
3658 When producing a relocatable object file, the calculation is
3659 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3660 When producing a fully linked file, the calculation is
3661 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3662 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3663
3664 if (!info->relocatable)
3665 /* Shuffle the bits according to the formula above. */
3666 value = (((value & 0x1f0000) << 5)
3667 | ((value & 0x3e00000) >> 5)
3668 | (value & 0xffff));
3669 }
3670 else if (r_type == R_MIPS16_GPREL)
3671 {
3672 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3673 mode. A typical instruction will have a format like this:
3674
3675 +--------------+--------------------------------+
3676 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3677 +--------------+--------------------------------+
3678 ! Major ! rx ! ry ! Imm 4:0 !
3679 +--------------+--------------------------------+
3680
3681 EXTEND is the five bit value 11110. Major is the instruction
3682 opcode.
3683
3684 This is handled exactly like R_MIPS_GPREL16, except that the
3685 addend is retrieved and stored as shown in this diagram; that
3686 is, the Imm fields above replace the V-rel16 field.
3687
3688 All we need to do here is shuffle the bits appropriately. As
3689 above, the two 16-bit halves must be swapped on a
3690 little-endian system. */
3691 value = (((value & 0x7e0) << 16)
3692 | ((value & 0xf800) << 5)
3693 | (value & 0x1f));
3694 }
3695
3696 /* Set the field. */
3697 x |= (value & howto->dst_mask);
3698
3699 /* If required, turn JAL into JALX. */
3700 if (require_jalx)
3701 {
3702 bfd_boolean ok;
3703 bfd_vma opcode = x >> 26;
3704 bfd_vma jalx_opcode;
3705
3706 /* Check to see if the opcode is already JAL or JALX. */
3707 if (r_type == R_MIPS16_26)
3708 {
3709 ok = ((opcode == 0x6) || (opcode == 0x7));
3710 jalx_opcode = 0x7;
3711 }
3712 else
3713 {
3714 ok = ((opcode == 0x3) || (opcode == 0x1d));
3715 jalx_opcode = 0x1d;
3716 }
3717
3718 /* If the opcode is not JAL or JALX, there's a problem. */
3719 if (!ok)
3720 {
3721 (*_bfd_error_handler)
3722 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3723 bfd_archive_filename (input_bfd),
3724 input_section->name,
3725 (unsigned long) relocation->r_offset);
3726 bfd_set_error (bfd_error_bad_value);
3727 return FALSE;
3728 }
3729
3730 /* Make this the JALX opcode. */
3731 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3732 }
3733
3734 /* Swap the high- and low-order 16 bits on little-endian systems
3735 when doing a MIPS16 relocation. */
3736 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3737 && bfd_little_endian (input_bfd))
3738 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3739
3740 /* Put the value into the output. */
3741 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3742 return TRUE;
3743 }
3744
3745 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3746
3747 static bfd_boolean
3748 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
3749 {
3750 const char *name = bfd_get_section_name (abfd, section);
3751
3752 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3753 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3754 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3755 }
3756 \f
3757 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3758
3759 static void
3760 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
3761 {
3762 asection *s;
3763
3764 s = mips_elf_rel_dyn_section (abfd, FALSE);
3765 BFD_ASSERT (s != NULL);
3766
3767 if (s->size == 0)
3768 {
3769 /* Make room for a null element. */
3770 s->size += MIPS_ELF_REL_SIZE (abfd);
3771 ++s->reloc_count;
3772 }
3773 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3774 }
3775
3776 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3777 is the original relocation, which is now being transformed into a
3778 dynamic relocation. The ADDENDP is adjusted if necessary; the
3779 caller should store the result in place of the original addend. */
3780
3781 static bfd_boolean
3782 mips_elf_create_dynamic_relocation (bfd *output_bfd,
3783 struct bfd_link_info *info,
3784 const Elf_Internal_Rela *rel,
3785 struct mips_elf_link_hash_entry *h,
3786 asection *sec, bfd_vma symbol,
3787 bfd_vma *addendp, asection *input_section)
3788 {
3789 Elf_Internal_Rela outrel[3];
3790 bfd_boolean skip;
3791 asection *sreloc;
3792 bfd *dynobj;
3793 int r_type;
3794
3795 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3796 dynobj = elf_hash_table (info)->dynobj;
3797 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3798 BFD_ASSERT (sreloc != NULL);
3799 BFD_ASSERT (sreloc->contents != NULL);
3800 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3801 < sreloc->size);
3802
3803 skip = FALSE;
3804 outrel[0].r_offset =
3805 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3806 outrel[1].r_offset =
3807 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3808 outrel[2].r_offset =
3809 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3810
3811 #if 0
3812 /* We begin by assuming that the offset for the dynamic relocation
3813 is the same as for the original relocation. We'll adjust this
3814 later to reflect the correct output offsets. */
3815 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3816 {
3817 outrel[1].r_offset = rel[1].r_offset;
3818 outrel[2].r_offset = rel[2].r_offset;
3819 }
3820 else
3821 {
3822 /* Except that in a stab section things are more complex.
3823 Because we compress stab information, the offset given in the
3824 relocation may not be the one we want; we must let the stabs
3825 machinery tell us the offset. */
3826 outrel[1].r_offset = outrel[0].r_offset;
3827 outrel[2].r_offset = outrel[0].r_offset;
3828 /* If we didn't need the relocation at all, this value will be
3829 -1. */
3830 if (outrel[0].r_offset == MINUS_ONE)
3831 skip = TRUE;
3832 }
3833 #endif
3834
3835 if (outrel[0].r_offset == MINUS_ONE)
3836 /* The relocation field has been deleted. */
3837 skip = TRUE;
3838 else if (outrel[0].r_offset == MINUS_TWO)
3839 {
3840 /* The relocation field has been converted into a relative value of
3841 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3842 the field to be fully relocated, so add in the symbol's value. */
3843 skip = TRUE;
3844 *addendp += symbol;
3845 }
3846
3847 /* If we've decided to skip this relocation, just output an empty
3848 record. Note that R_MIPS_NONE == 0, so that this call to memset
3849 is a way of setting R_TYPE to R_MIPS_NONE. */
3850 if (skip)
3851 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3852 else
3853 {
3854 long indx;
3855 bfd_boolean defined_p;
3856
3857 /* We must now calculate the dynamic symbol table index to use
3858 in the relocation. */
3859 if (h != NULL
3860 && (! info->symbolic || (h->root.elf_link_hash_flags
3861 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3862 /* h->root.dynindx may be -1 if this symbol was marked to
3863 become local. */
3864 && h->root.dynindx != -1)
3865 {
3866 indx = h->root.dynindx;
3867 if (SGI_COMPAT (output_bfd))
3868 defined_p = ((h->root.elf_link_hash_flags
3869 & ELF_LINK_HASH_DEF_REGULAR) != 0);
3870 else
3871 /* ??? glibc's ld.so just adds the final GOT entry to the
3872 relocation field. It therefore treats relocs against
3873 defined symbols in the same way as relocs against
3874 undefined symbols. */
3875 defined_p = FALSE;
3876 }
3877 else
3878 {
3879 if (sec != NULL && bfd_is_abs_section (sec))
3880 indx = 0;
3881 else if (sec == NULL || sec->owner == NULL)
3882 {
3883 bfd_set_error (bfd_error_bad_value);
3884 return FALSE;
3885 }
3886 else
3887 {
3888 indx = elf_section_data (sec->output_section)->dynindx;
3889 if (indx == 0)
3890 abort ();
3891 }
3892
3893 /* Instead of generating a relocation using the section
3894 symbol, we may as well make it a fully relative
3895 relocation. We want to avoid generating relocations to
3896 local symbols because we used to generate them
3897 incorrectly, without adding the original symbol value,
3898 which is mandated by the ABI for section symbols. In
3899 order to give dynamic loaders and applications time to
3900 phase out the incorrect use, we refrain from emitting
3901 section-relative relocations. It's not like they're
3902 useful, after all. This should be a bit more efficient
3903 as well. */
3904 /* ??? Although this behavior is compatible with glibc's ld.so,
3905 the ABI says that relocations against STN_UNDEF should have
3906 a symbol value of 0. Irix rld honors this, so relocations
3907 against STN_UNDEF have no effect. */
3908 if (!SGI_COMPAT (output_bfd))
3909 indx = 0;
3910 defined_p = TRUE;
3911 }
3912
3913 /* If the relocation was previously an absolute relocation and
3914 this symbol will not be referred to by the relocation, we must
3915 adjust it by the value we give it in the dynamic symbol table.
3916 Otherwise leave the job up to the dynamic linker. */
3917 if (defined_p && r_type != R_MIPS_REL32)
3918 *addendp += symbol;
3919
3920 /* The relocation is always an REL32 relocation because we don't
3921 know where the shared library will wind up at load-time. */
3922 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3923 R_MIPS_REL32);
3924 /* For strict adherence to the ABI specification, we should
3925 generate a R_MIPS_64 relocation record by itself before the
3926 _REL32/_64 record as well, such that the addend is read in as
3927 a 64-bit value (REL32 is a 32-bit relocation, after all).
3928 However, since none of the existing ELF64 MIPS dynamic
3929 loaders seems to care, we don't waste space with these
3930 artificial relocations. If this turns out to not be true,
3931 mips_elf_allocate_dynamic_relocation() should be tweaked so
3932 as to make room for a pair of dynamic relocations per
3933 invocation if ABI_64_P, and here we should generate an
3934 additional relocation record with R_MIPS_64 by itself for a
3935 NULL symbol before this relocation record. */
3936 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3937 ABI_64_P (output_bfd)
3938 ? R_MIPS_64
3939 : R_MIPS_NONE);
3940 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3941
3942 /* Adjust the output offset of the relocation to reference the
3943 correct location in the output file. */
3944 outrel[0].r_offset += (input_section->output_section->vma
3945 + input_section->output_offset);
3946 outrel[1].r_offset += (input_section->output_section->vma
3947 + input_section->output_offset);
3948 outrel[2].r_offset += (input_section->output_section->vma
3949 + input_section->output_offset);
3950 }
3951
3952 /* Put the relocation back out. We have to use the special
3953 relocation outputter in the 64-bit case since the 64-bit
3954 relocation format is non-standard. */
3955 if (ABI_64_P (output_bfd))
3956 {
3957 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3958 (output_bfd, &outrel[0],
3959 (sreloc->contents
3960 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3961 }
3962 else
3963 bfd_elf32_swap_reloc_out
3964 (output_bfd, &outrel[0],
3965 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3966
3967 /* We've now added another relocation. */
3968 ++sreloc->reloc_count;
3969
3970 /* Make sure the output section is writable. The dynamic linker
3971 will be writing to it. */
3972 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3973 |= SHF_WRITE;
3974
3975 /* On IRIX5, make an entry of compact relocation info. */
3976 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3977 {
3978 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3979 bfd_byte *cr;
3980
3981 if (scpt)
3982 {
3983 Elf32_crinfo cptrel;
3984
3985 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3986 cptrel.vaddr = (rel->r_offset
3987 + input_section->output_section->vma
3988 + input_section->output_offset);
3989 if (r_type == R_MIPS_REL32)
3990 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3991 else
3992 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3993 mips_elf_set_cr_dist2to (cptrel, 0);
3994 cptrel.konst = *addendp;
3995
3996 cr = (scpt->contents
3997 + sizeof (Elf32_External_compact_rel));
3998 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3999 ((Elf32_External_crinfo *) cr
4000 + scpt->reloc_count));
4001 ++scpt->reloc_count;
4002 }
4003 }
4004
4005 return TRUE;
4006 }
4007 \f
4008 /* Return the MACH for a MIPS e_flags value. */
4009
4010 unsigned long
4011 _bfd_elf_mips_mach (flagword flags)
4012 {
4013 switch (flags & EF_MIPS_MACH)
4014 {
4015 case E_MIPS_MACH_3900:
4016 return bfd_mach_mips3900;
4017
4018 case E_MIPS_MACH_4010:
4019 return bfd_mach_mips4010;
4020
4021 case E_MIPS_MACH_4100:
4022 return bfd_mach_mips4100;
4023
4024 case E_MIPS_MACH_4111:
4025 return bfd_mach_mips4111;
4026
4027 case E_MIPS_MACH_4120:
4028 return bfd_mach_mips4120;
4029
4030 case E_MIPS_MACH_4650:
4031 return bfd_mach_mips4650;
4032
4033 case E_MIPS_MACH_5400:
4034 return bfd_mach_mips5400;
4035
4036 case E_MIPS_MACH_5500:
4037 return bfd_mach_mips5500;
4038
4039 case E_MIPS_MACH_SB1:
4040 return bfd_mach_mips_sb1;
4041
4042 default:
4043 switch (flags & EF_MIPS_ARCH)
4044 {
4045 default:
4046 case E_MIPS_ARCH_1:
4047 return bfd_mach_mips3000;
4048 break;
4049
4050 case E_MIPS_ARCH_2:
4051 return bfd_mach_mips6000;
4052 break;
4053
4054 case E_MIPS_ARCH_3:
4055 return bfd_mach_mips4000;
4056 break;
4057
4058 case E_MIPS_ARCH_4:
4059 return bfd_mach_mips8000;
4060 break;
4061
4062 case E_MIPS_ARCH_5:
4063 return bfd_mach_mips5;
4064 break;
4065
4066 case E_MIPS_ARCH_32:
4067 return bfd_mach_mipsisa32;
4068 break;
4069
4070 case E_MIPS_ARCH_64:
4071 return bfd_mach_mipsisa64;
4072 break;
4073
4074 case E_MIPS_ARCH_32R2:
4075 return bfd_mach_mipsisa32r2;
4076 break;
4077
4078 case E_MIPS_ARCH_64R2:
4079 return bfd_mach_mipsisa64r2;
4080 break;
4081 }
4082 }
4083
4084 return 0;
4085 }
4086
4087 /* Return printable name for ABI. */
4088
4089 static INLINE char *
4090 elf_mips_abi_name (bfd *abfd)
4091 {
4092 flagword flags;
4093
4094 flags = elf_elfheader (abfd)->e_flags;
4095 switch (flags & EF_MIPS_ABI)
4096 {
4097 case 0:
4098 if (ABI_N32_P (abfd))
4099 return "N32";
4100 else if (ABI_64_P (abfd))
4101 return "64";
4102 else
4103 return "none";
4104 case E_MIPS_ABI_O32:
4105 return "O32";
4106 case E_MIPS_ABI_O64:
4107 return "O64";
4108 case E_MIPS_ABI_EABI32:
4109 return "EABI32";
4110 case E_MIPS_ABI_EABI64:
4111 return "EABI64";
4112 default:
4113 return "unknown abi";
4114 }
4115 }
4116 \f
4117 /* MIPS ELF uses two common sections. One is the usual one, and the
4118 other is for small objects. All the small objects are kept
4119 together, and then referenced via the gp pointer, which yields
4120 faster assembler code. This is what we use for the small common
4121 section. This approach is copied from ecoff.c. */
4122 static asection mips_elf_scom_section;
4123 static asymbol mips_elf_scom_symbol;
4124 static asymbol *mips_elf_scom_symbol_ptr;
4125
4126 /* MIPS ELF also uses an acommon section, which represents an
4127 allocated common symbol which may be overridden by a
4128 definition in a shared library. */
4129 static asection mips_elf_acom_section;
4130 static asymbol mips_elf_acom_symbol;
4131 static asymbol *mips_elf_acom_symbol_ptr;
4132
4133 /* Handle the special MIPS section numbers that a symbol may use.
4134 This is used for both the 32-bit and the 64-bit ABI. */
4135
4136 void
4137 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4138 {
4139 elf_symbol_type *elfsym;
4140
4141 elfsym = (elf_symbol_type *) asym;
4142 switch (elfsym->internal_elf_sym.st_shndx)
4143 {
4144 case SHN_MIPS_ACOMMON:
4145 /* This section is used in a dynamically linked executable file.
4146 It is an allocated common section. The dynamic linker can
4147 either resolve these symbols to something in a shared
4148 library, or it can just leave them here. For our purposes,
4149 we can consider these symbols to be in a new section. */
4150 if (mips_elf_acom_section.name == NULL)
4151 {
4152 /* Initialize the acommon section. */
4153 mips_elf_acom_section.name = ".acommon";
4154 mips_elf_acom_section.flags = SEC_ALLOC;
4155 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4156 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4157 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4158 mips_elf_acom_symbol.name = ".acommon";
4159 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4160 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4161 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4162 }
4163 asym->section = &mips_elf_acom_section;
4164 break;
4165
4166 case SHN_COMMON:
4167 /* Common symbols less than the GP size are automatically
4168 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4169 if (asym->value > elf_gp_size (abfd)
4170 || IRIX_COMPAT (abfd) == ict_irix6)
4171 break;
4172 /* Fall through. */
4173 case SHN_MIPS_SCOMMON:
4174 if (mips_elf_scom_section.name == NULL)
4175 {
4176 /* Initialize the small common section. */
4177 mips_elf_scom_section.name = ".scommon";
4178 mips_elf_scom_section.flags = SEC_IS_COMMON;
4179 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4180 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4181 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4182 mips_elf_scom_symbol.name = ".scommon";
4183 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4184 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4185 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4186 }
4187 asym->section = &mips_elf_scom_section;
4188 asym->value = elfsym->internal_elf_sym.st_size;
4189 break;
4190
4191 case SHN_MIPS_SUNDEFINED:
4192 asym->section = bfd_und_section_ptr;
4193 break;
4194
4195 #if 0 /* for SGI_COMPAT */
4196 case SHN_MIPS_TEXT:
4197 asym->section = mips_elf_text_section_ptr;
4198 break;
4199
4200 case SHN_MIPS_DATA:
4201 asym->section = mips_elf_data_section_ptr;
4202 break;
4203 #endif
4204 }
4205 }
4206 \f
4207 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4208 relocations against two unnamed section symbols to resolve to the
4209 same address. For example, if we have code like:
4210
4211 lw $4,%got_disp(.data)($gp)
4212 lw $25,%got_disp(.text)($gp)
4213 jalr $25
4214
4215 then the linker will resolve both relocations to .data and the program
4216 will jump there rather than to .text.
4217
4218 We can work around this problem by giving names to local section symbols.
4219 This is also what the MIPSpro tools do. */
4220
4221 bfd_boolean
4222 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4223 {
4224 return SGI_COMPAT (abfd);
4225 }
4226 \f
4227 /* Work over a section just before writing it out. This routine is
4228 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4229 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4230 a better way. */
4231
4232 bfd_boolean
4233 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4234 {
4235 if (hdr->sh_type == SHT_MIPS_REGINFO
4236 && hdr->sh_size > 0)
4237 {
4238 bfd_byte buf[4];
4239
4240 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4241 BFD_ASSERT (hdr->contents == NULL);
4242
4243 if (bfd_seek (abfd,
4244 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4245 SEEK_SET) != 0)
4246 return FALSE;
4247 H_PUT_32 (abfd, elf_gp (abfd), buf);
4248 if (bfd_bwrite (buf, 4, abfd) != 4)
4249 return FALSE;
4250 }
4251
4252 if (hdr->sh_type == SHT_MIPS_OPTIONS
4253 && hdr->bfd_section != NULL
4254 && mips_elf_section_data (hdr->bfd_section) != NULL
4255 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4256 {
4257 bfd_byte *contents, *l, *lend;
4258
4259 /* We stored the section contents in the tdata field in the
4260 set_section_contents routine. We save the section contents
4261 so that we don't have to read them again.
4262 At this point we know that elf_gp is set, so we can look
4263 through the section contents to see if there is an
4264 ODK_REGINFO structure. */
4265
4266 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4267 l = contents;
4268 lend = contents + hdr->sh_size;
4269 while (l + sizeof (Elf_External_Options) <= lend)
4270 {
4271 Elf_Internal_Options intopt;
4272
4273 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4274 &intopt);
4275 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4276 {
4277 bfd_byte buf[8];
4278
4279 if (bfd_seek (abfd,
4280 (hdr->sh_offset
4281 + (l - contents)
4282 + sizeof (Elf_External_Options)
4283 + (sizeof (Elf64_External_RegInfo) - 8)),
4284 SEEK_SET) != 0)
4285 return FALSE;
4286 H_PUT_64 (abfd, elf_gp (abfd), buf);
4287 if (bfd_bwrite (buf, 8, abfd) != 8)
4288 return FALSE;
4289 }
4290 else if (intopt.kind == ODK_REGINFO)
4291 {
4292 bfd_byte buf[4];
4293
4294 if (bfd_seek (abfd,
4295 (hdr->sh_offset
4296 + (l - contents)
4297 + sizeof (Elf_External_Options)
4298 + (sizeof (Elf32_External_RegInfo) - 4)),
4299 SEEK_SET) != 0)
4300 return FALSE;
4301 H_PUT_32 (abfd, elf_gp (abfd), buf);
4302 if (bfd_bwrite (buf, 4, abfd) != 4)
4303 return FALSE;
4304 }
4305 l += intopt.size;
4306 }
4307 }
4308
4309 if (hdr->bfd_section != NULL)
4310 {
4311 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4312
4313 if (strcmp (name, ".sdata") == 0
4314 || strcmp (name, ".lit8") == 0
4315 || strcmp (name, ".lit4") == 0)
4316 {
4317 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4318 hdr->sh_type = SHT_PROGBITS;
4319 }
4320 else if (strcmp (name, ".sbss") == 0)
4321 {
4322 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4323 hdr->sh_type = SHT_NOBITS;
4324 }
4325 else if (strcmp (name, ".srdata") == 0)
4326 {
4327 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4328 hdr->sh_type = SHT_PROGBITS;
4329 }
4330 else if (strcmp (name, ".compact_rel") == 0)
4331 {
4332 hdr->sh_flags = 0;
4333 hdr->sh_type = SHT_PROGBITS;
4334 }
4335 else if (strcmp (name, ".rtproc") == 0)
4336 {
4337 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4338 {
4339 unsigned int adjust;
4340
4341 adjust = hdr->sh_size % hdr->sh_addralign;
4342 if (adjust != 0)
4343 hdr->sh_size += hdr->sh_addralign - adjust;
4344 }
4345 }
4346 }
4347
4348 return TRUE;
4349 }
4350
4351 /* Handle a MIPS specific section when reading an object file. This
4352 is called when elfcode.h finds a section with an unknown type.
4353 This routine supports both the 32-bit and 64-bit ELF ABI.
4354
4355 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4356 how to. */
4357
4358 bfd_boolean
4359 _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4360 const char *name)
4361 {
4362 flagword flags = 0;
4363
4364 /* There ought to be a place to keep ELF backend specific flags, but
4365 at the moment there isn't one. We just keep track of the
4366 sections by their name, instead. Fortunately, the ABI gives
4367 suggested names for all the MIPS specific sections, so we will
4368 probably get away with this. */
4369 switch (hdr->sh_type)
4370 {
4371 case SHT_MIPS_LIBLIST:
4372 if (strcmp (name, ".liblist") != 0)
4373 return FALSE;
4374 break;
4375 case SHT_MIPS_MSYM:
4376 if (strcmp (name, ".msym") != 0)
4377 return FALSE;
4378 break;
4379 case SHT_MIPS_CONFLICT:
4380 if (strcmp (name, ".conflict") != 0)
4381 return FALSE;
4382 break;
4383 case SHT_MIPS_GPTAB:
4384 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4385 return FALSE;
4386 break;
4387 case SHT_MIPS_UCODE:
4388 if (strcmp (name, ".ucode") != 0)
4389 return FALSE;
4390 break;
4391 case SHT_MIPS_DEBUG:
4392 if (strcmp (name, ".mdebug") != 0)
4393 return FALSE;
4394 flags = SEC_DEBUGGING;
4395 break;
4396 case SHT_MIPS_REGINFO:
4397 if (strcmp (name, ".reginfo") != 0
4398 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4399 return FALSE;
4400 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4401 break;
4402 case SHT_MIPS_IFACE:
4403 if (strcmp (name, ".MIPS.interfaces") != 0)
4404 return FALSE;
4405 break;
4406 case SHT_MIPS_CONTENT:
4407 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4408 return FALSE;
4409 break;
4410 case SHT_MIPS_OPTIONS:
4411 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4412 return FALSE;
4413 break;
4414 case SHT_MIPS_DWARF:
4415 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4416 return FALSE;
4417 break;
4418 case SHT_MIPS_SYMBOL_LIB:
4419 if (strcmp (name, ".MIPS.symlib") != 0)
4420 return FALSE;
4421 break;
4422 case SHT_MIPS_EVENTS:
4423 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4424 && strncmp (name, ".MIPS.post_rel",
4425 sizeof ".MIPS.post_rel" - 1) != 0)
4426 return FALSE;
4427 break;
4428 default:
4429 return FALSE;
4430 }
4431
4432 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4433 return FALSE;
4434
4435 if (flags)
4436 {
4437 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4438 (bfd_get_section_flags (abfd,
4439 hdr->bfd_section)
4440 | flags)))
4441 return FALSE;
4442 }
4443
4444 /* FIXME: We should record sh_info for a .gptab section. */
4445
4446 /* For a .reginfo section, set the gp value in the tdata information
4447 from the contents of this section. We need the gp value while
4448 processing relocs, so we just get it now. The .reginfo section
4449 is not used in the 64-bit MIPS ELF ABI. */
4450 if (hdr->sh_type == SHT_MIPS_REGINFO)
4451 {
4452 Elf32_External_RegInfo ext;
4453 Elf32_RegInfo s;
4454
4455 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4456 &ext, 0, sizeof ext))
4457 return FALSE;
4458 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4459 elf_gp (abfd) = s.ri_gp_value;
4460 }
4461
4462 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4463 set the gp value based on what we find. We may see both
4464 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4465 they should agree. */
4466 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4467 {
4468 bfd_byte *contents, *l, *lend;
4469
4470 contents = bfd_malloc (hdr->sh_size);
4471 if (contents == NULL)
4472 return FALSE;
4473 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4474 0, hdr->sh_size))
4475 {
4476 free (contents);
4477 return FALSE;
4478 }
4479 l = contents;
4480 lend = contents + hdr->sh_size;
4481 while (l + sizeof (Elf_External_Options) <= lend)
4482 {
4483 Elf_Internal_Options intopt;
4484
4485 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4486 &intopt);
4487 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4488 {
4489 Elf64_Internal_RegInfo intreg;
4490
4491 bfd_mips_elf64_swap_reginfo_in
4492 (abfd,
4493 ((Elf64_External_RegInfo *)
4494 (l + sizeof (Elf_External_Options))),
4495 &intreg);
4496 elf_gp (abfd) = intreg.ri_gp_value;
4497 }
4498 else if (intopt.kind == ODK_REGINFO)
4499 {
4500 Elf32_RegInfo intreg;
4501
4502 bfd_mips_elf32_swap_reginfo_in
4503 (abfd,
4504 ((Elf32_External_RegInfo *)
4505 (l + sizeof (Elf_External_Options))),
4506 &intreg);
4507 elf_gp (abfd) = intreg.ri_gp_value;
4508 }
4509 l += intopt.size;
4510 }
4511 free (contents);
4512 }
4513
4514 return TRUE;
4515 }
4516
4517 /* Set the correct type for a MIPS ELF section. We do this by the
4518 section name, which is a hack, but ought to work. This routine is
4519 used by both the 32-bit and the 64-bit ABI. */
4520
4521 bfd_boolean
4522 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
4523 {
4524 register const char *name;
4525
4526 name = bfd_get_section_name (abfd, sec);
4527
4528 if (strcmp (name, ".liblist") == 0)
4529 {
4530 hdr->sh_type = SHT_MIPS_LIBLIST;
4531 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
4532 /* The sh_link field is set in final_write_processing. */
4533 }
4534 else if (strcmp (name, ".conflict") == 0)
4535 hdr->sh_type = SHT_MIPS_CONFLICT;
4536 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4537 {
4538 hdr->sh_type = SHT_MIPS_GPTAB;
4539 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4540 /* The sh_info field is set in final_write_processing. */
4541 }
4542 else if (strcmp (name, ".ucode") == 0)
4543 hdr->sh_type = SHT_MIPS_UCODE;
4544 else if (strcmp (name, ".mdebug") == 0)
4545 {
4546 hdr->sh_type = SHT_MIPS_DEBUG;
4547 /* In a shared object on IRIX 5.3, the .mdebug section has an
4548 entsize of 0. FIXME: Does this matter? */
4549 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4550 hdr->sh_entsize = 0;
4551 else
4552 hdr->sh_entsize = 1;
4553 }
4554 else if (strcmp (name, ".reginfo") == 0)
4555 {
4556 hdr->sh_type = SHT_MIPS_REGINFO;
4557 /* In a shared object on IRIX 5.3, the .reginfo section has an
4558 entsize of 0x18. FIXME: Does this matter? */
4559 if (SGI_COMPAT (abfd))
4560 {
4561 if ((abfd->flags & DYNAMIC) != 0)
4562 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4563 else
4564 hdr->sh_entsize = 1;
4565 }
4566 else
4567 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4568 }
4569 else if (SGI_COMPAT (abfd)
4570 && (strcmp (name, ".hash") == 0
4571 || strcmp (name, ".dynamic") == 0
4572 || strcmp (name, ".dynstr") == 0))
4573 {
4574 if (SGI_COMPAT (abfd))
4575 hdr->sh_entsize = 0;
4576 #if 0
4577 /* This isn't how the IRIX6 linker behaves. */
4578 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4579 #endif
4580 }
4581 else if (strcmp (name, ".got") == 0
4582 || strcmp (name, ".srdata") == 0
4583 || strcmp (name, ".sdata") == 0
4584 || strcmp (name, ".sbss") == 0
4585 || strcmp (name, ".lit4") == 0
4586 || strcmp (name, ".lit8") == 0)
4587 hdr->sh_flags |= SHF_MIPS_GPREL;
4588 else if (strcmp (name, ".MIPS.interfaces") == 0)
4589 {
4590 hdr->sh_type = SHT_MIPS_IFACE;
4591 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4592 }
4593 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4594 {
4595 hdr->sh_type = SHT_MIPS_CONTENT;
4596 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4597 /* The sh_info field is set in final_write_processing. */
4598 }
4599 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4600 {
4601 hdr->sh_type = SHT_MIPS_OPTIONS;
4602 hdr->sh_entsize = 1;
4603 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4604 }
4605 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4606 hdr->sh_type = SHT_MIPS_DWARF;
4607 else if (strcmp (name, ".MIPS.symlib") == 0)
4608 {
4609 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4610 /* The sh_link and sh_info fields are set in
4611 final_write_processing. */
4612 }
4613 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4614 || strncmp (name, ".MIPS.post_rel",
4615 sizeof ".MIPS.post_rel" - 1) == 0)
4616 {
4617 hdr->sh_type = SHT_MIPS_EVENTS;
4618 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4619 /* The sh_link field is set in final_write_processing. */
4620 }
4621 else if (strcmp (name, ".msym") == 0)
4622 {
4623 hdr->sh_type = SHT_MIPS_MSYM;
4624 hdr->sh_flags |= SHF_ALLOC;
4625 hdr->sh_entsize = 8;
4626 }
4627
4628 /* The generic elf_fake_sections will set up REL_HDR using the default
4629 kind of relocations. We used to set up a second header for the
4630 non-default kind of relocations here, but only NewABI would use
4631 these, and the IRIX ld doesn't like resulting empty RELA sections.
4632 Thus we create those header only on demand now. */
4633
4634 return TRUE;
4635 }
4636
4637 /* Given a BFD section, try to locate the corresponding ELF section
4638 index. This is used by both the 32-bit and the 64-bit ABI.
4639 Actually, it's not clear to me that the 64-bit ABI supports these,
4640 but for non-PIC objects we will certainly want support for at least
4641 the .scommon section. */
4642
4643 bfd_boolean
4644 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4645 asection *sec, int *retval)
4646 {
4647 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4648 {
4649 *retval = SHN_MIPS_SCOMMON;
4650 return TRUE;
4651 }
4652 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4653 {
4654 *retval = SHN_MIPS_ACOMMON;
4655 return TRUE;
4656 }
4657 return FALSE;
4658 }
4659 \f
4660 /* Hook called by the linker routine which adds symbols from an object
4661 file. We must handle the special MIPS section numbers here. */
4662
4663 bfd_boolean
4664 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4665 Elf_Internal_Sym *sym, const char **namep,
4666 flagword *flagsp ATTRIBUTE_UNUSED,
4667 asection **secp, bfd_vma *valp)
4668 {
4669 if (SGI_COMPAT (abfd)
4670 && (abfd->flags & DYNAMIC) != 0
4671 && strcmp (*namep, "_rld_new_interface") == 0)
4672 {
4673 /* Skip IRIX5 rld entry name. */
4674 *namep = NULL;
4675 return TRUE;
4676 }
4677
4678 switch (sym->st_shndx)
4679 {
4680 case SHN_COMMON:
4681 /* Common symbols less than the GP size are automatically
4682 treated as SHN_MIPS_SCOMMON symbols. */
4683 if (sym->st_size > elf_gp_size (abfd)
4684 || IRIX_COMPAT (abfd) == ict_irix6)
4685 break;
4686 /* Fall through. */
4687 case SHN_MIPS_SCOMMON:
4688 *secp = bfd_make_section_old_way (abfd, ".scommon");
4689 (*secp)->flags |= SEC_IS_COMMON;
4690 *valp = sym->st_size;
4691 break;
4692
4693 case SHN_MIPS_TEXT:
4694 /* This section is used in a shared object. */
4695 if (elf_tdata (abfd)->elf_text_section == NULL)
4696 {
4697 asymbol *elf_text_symbol;
4698 asection *elf_text_section;
4699 bfd_size_type amt = sizeof (asection);
4700
4701 elf_text_section = bfd_zalloc (abfd, amt);
4702 if (elf_text_section == NULL)
4703 return FALSE;
4704
4705 amt = sizeof (asymbol);
4706 elf_text_symbol = bfd_zalloc (abfd, amt);
4707 if (elf_text_symbol == NULL)
4708 return FALSE;
4709
4710 /* Initialize the section. */
4711
4712 elf_tdata (abfd)->elf_text_section = elf_text_section;
4713 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4714
4715 elf_text_section->symbol = elf_text_symbol;
4716 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4717
4718 elf_text_section->name = ".text";
4719 elf_text_section->flags = SEC_NO_FLAGS;
4720 elf_text_section->output_section = NULL;
4721 elf_text_section->owner = abfd;
4722 elf_text_symbol->name = ".text";
4723 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4724 elf_text_symbol->section = elf_text_section;
4725 }
4726 /* This code used to do *secp = bfd_und_section_ptr if
4727 info->shared. I don't know why, and that doesn't make sense,
4728 so I took it out. */
4729 *secp = elf_tdata (abfd)->elf_text_section;
4730 break;
4731
4732 case SHN_MIPS_ACOMMON:
4733 /* Fall through. XXX Can we treat this as allocated data? */
4734 case SHN_MIPS_DATA:
4735 /* This section is used in a shared object. */
4736 if (elf_tdata (abfd)->elf_data_section == NULL)
4737 {
4738 asymbol *elf_data_symbol;
4739 asection *elf_data_section;
4740 bfd_size_type amt = sizeof (asection);
4741
4742 elf_data_section = bfd_zalloc (abfd, amt);
4743 if (elf_data_section == NULL)
4744 return FALSE;
4745
4746 amt = sizeof (asymbol);
4747 elf_data_symbol = bfd_zalloc (abfd, amt);
4748 if (elf_data_symbol == NULL)
4749 return FALSE;
4750
4751 /* Initialize the section. */
4752
4753 elf_tdata (abfd)->elf_data_section = elf_data_section;
4754 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4755
4756 elf_data_section->symbol = elf_data_symbol;
4757 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4758
4759 elf_data_section->name = ".data";
4760 elf_data_section->flags = SEC_NO_FLAGS;
4761 elf_data_section->output_section = NULL;
4762 elf_data_section->owner = abfd;
4763 elf_data_symbol->name = ".data";
4764 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4765 elf_data_symbol->section = elf_data_section;
4766 }
4767 /* This code used to do *secp = bfd_und_section_ptr if
4768 info->shared. I don't know why, and that doesn't make sense,
4769 so I took it out. */
4770 *secp = elf_tdata (abfd)->elf_data_section;
4771 break;
4772
4773 case SHN_MIPS_SUNDEFINED:
4774 *secp = bfd_und_section_ptr;
4775 break;
4776 }
4777
4778 if (SGI_COMPAT (abfd)
4779 && ! info->shared
4780 && info->hash->creator == abfd->xvec
4781 && strcmp (*namep, "__rld_obj_head") == 0)
4782 {
4783 struct elf_link_hash_entry *h;
4784 struct bfd_link_hash_entry *bh;
4785
4786 /* Mark __rld_obj_head as dynamic. */
4787 bh = NULL;
4788 if (! (_bfd_generic_link_add_one_symbol
4789 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
4790 get_elf_backend_data (abfd)->collect, &bh)))
4791 return FALSE;
4792
4793 h = (struct elf_link_hash_entry *) bh;
4794 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4795 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4796 h->type = STT_OBJECT;
4797
4798 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4799 return FALSE;
4800
4801 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4802 }
4803
4804 /* If this is a mips16 text symbol, add 1 to the value to make it
4805 odd. This will cause something like .word SYM to come up with
4806 the right value when it is loaded into the PC. */
4807 if (sym->st_other == STO_MIPS16)
4808 ++*valp;
4809
4810 return TRUE;
4811 }
4812
4813 /* This hook function is called before the linker writes out a global
4814 symbol. We mark symbols as small common if appropriate. This is
4815 also where we undo the increment of the value for a mips16 symbol. */
4816
4817 bfd_boolean
4818 _bfd_mips_elf_link_output_symbol_hook
4819 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4820 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4821 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4822 {
4823 /* If we see a common symbol, which implies a relocatable link, then
4824 if a symbol was small common in an input file, mark it as small
4825 common in the output file. */
4826 if (sym->st_shndx == SHN_COMMON
4827 && strcmp (input_sec->name, ".scommon") == 0)
4828 sym->st_shndx = SHN_MIPS_SCOMMON;
4829
4830 if (sym->st_other == STO_MIPS16)
4831 sym->st_value &= ~1;
4832
4833 return TRUE;
4834 }
4835 \f
4836 /* Functions for the dynamic linker. */
4837
4838 /* Create dynamic sections when linking against a dynamic object. */
4839
4840 bfd_boolean
4841 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4842 {
4843 struct elf_link_hash_entry *h;
4844 struct bfd_link_hash_entry *bh;
4845 flagword flags;
4846 register asection *s;
4847 const char * const *namep;
4848
4849 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4850 | SEC_LINKER_CREATED | SEC_READONLY);
4851
4852 /* Mips ABI requests the .dynamic section to be read only. */
4853 s = bfd_get_section_by_name (abfd, ".dynamic");
4854 if (s != NULL)
4855 {
4856 if (! bfd_set_section_flags (abfd, s, flags))
4857 return FALSE;
4858 }
4859
4860 /* We need to create .got section. */
4861 if (! mips_elf_create_got_section (abfd, info, FALSE))
4862 return FALSE;
4863
4864 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4865 return FALSE;
4866
4867 /* Create .stub section. */
4868 if (bfd_get_section_by_name (abfd,
4869 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4870 {
4871 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4872 if (s == NULL
4873 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4874 || ! bfd_set_section_alignment (abfd, s,
4875 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4876 return FALSE;
4877 }
4878
4879 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4880 && !info->shared
4881 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4882 {
4883 s = bfd_make_section (abfd, ".rld_map");
4884 if (s == NULL
4885 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4886 || ! bfd_set_section_alignment (abfd, s,
4887 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4888 return FALSE;
4889 }
4890
4891 /* On IRIX5, we adjust add some additional symbols and change the
4892 alignments of several sections. There is no ABI documentation
4893 indicating that this is necessary on IRIX6, nor any evidence that
4894 the linker takes such action. */
4895 if (IRIX_COMPAT (abfd) == ict_irix5)
4896 {
4897 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4898 {
4899 bh = NULL;
4900 if (! (_bfd_generic_link_add_one_symbol
4901 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4902 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4903 return FALSE;
4904
4905 h = (struct elf_link_hash_entry *) bh;
4906 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4907 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4908 h->type = STT_SECTION;
4909
4910 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4911 return FALSE;
4912 }
4913
4914 /* We need to create a .compact_rel section. */
4915 if (SGI_COMPAT (abfd))
4916 {
4917 if (!mips_elf_create_compact_rel_section (abfd, info))
4918 return FALSE;
4919 }
4920
4921 /* Change alignments of some sections. */
4922 s = bfd_get_section_by_name (abfd, ".hash");
4923 if (s != NULL)
4924 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4925 s = bfd_get_section_by_name (abfd, ".dynsym");
4926 if (s != NULL)
4927 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4928 s = bfd_get_section_by_name (abfd, ".dynstr");
4929 if (s != NULL)
4930 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4931 s = bfd_get_section_by_name (abfd, ".reginfo");
4932 if (s != NULL)
4933 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4934 s = bfd_get_section_by_name (abfd, ".dynamic");
4935 if (s != NULL)
4936 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4937 }
4938
4939 if (!info->shared)
4940 {
4941 const char *name;
4942
4943 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4944 bh = NULL;
4945 if (!(_bfd_generic_link_add_one_symbol
4946 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4947 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4948 return FALSE;
4949
4950 h = (struct elf_link_hash_entry *) bh;
4951 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4952 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4953 h->type = STT_SECTION;
4954
4955 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4956 return FALSE;
4957
4958 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4959 {
4960 /* __rld_map is a four byte word located in the .data section
4961 and is filled in by the rtld to contain a pointer to
4962 the _r_debug structure. Its symbol value will be set in
4963 _bfd_mips_elf_finish_dynamic_symbol. */
4964 s = bfd_get_section_by_name (abfd, ".rld_map");
4965 BFD_ASSERT (s != NULL);
4966
4967 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4968 bh = NULL;
4969 if (!(_bfd_generic_link_add_one_symbol
4970 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
4971 get_elf_backend_data (abfd)->collect, &bh)))
4972 return FALSE;
4973
4974 h = (struct elf_link_hash_entry *) bh;
4975 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4976 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4977 h->type = STT_OBJECT;
4978
4979 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4980 return FALSE;
4981 }
4982 }
4983
4984 return TRUE;
4985 }
4986 \f
4987 /* Look through the relocs for a section during the first phase, and
4988 allocate space in the global offset table. */
4989
4990 bfd_boolean
4991 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4992 asection *sec, const Elf_Internal_Rela *relocs)
4993 {
4994 const char *name;
4995 bfd *dynobj;
4996 Elf_Internal_Shdr *symtab_hdr;
4997 struct elf_link_hash_entry **sym_hashes;
4998 struct mips_got_info *g;
4999 size_t extsymoff;
5000 const Elf_Internal_Rela *rel;
5001 const Elf_Internal_Rela *rel_end;
5002 asection *sgot;
5003 asection *sreloc;
5004 const struct elf_backend_data *bed;
5005
5006 if (info->relocatable)
5007 return TRUE;
5008
5009 dynobj = elf_hash_table (info)->dynobj;
5010 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5011 sym_hashes = elf_sym_hashes (abfd);
5012 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5013
5014 /* Check for the mips16 stub sections. */
5015
5016 name = bfd_get_section_name (abfd, sec);
5017 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5018 {
5019 unsigned long r_symndx;
5020
5021 /* Look at the relocation information to figure out which symbol
5022 this is for. */
5023
5024 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5025
5026 if (r_symndx < extsymoff
5027 || sym_hashes[r_symndx - extsymoff] == NULL)
5028 {
5029 asection *o;
5030
5031 /* This stub is for a local symbol. This stub will only be
5032 needed if there is some relocation in this BFD, other
5033 than a 16 bit function call, which refers to this symbol. */
5034 for (o = abfd->sections; o != NULL; o = o->next)
5035 {
5036 Elf_Internal_Rela *sec_relocs;
5037 const Elf_Internal_Rela *r, *rend;
5038
5039 /* We can ignore stub sections when looking for relocs. */
5040 if ((o->flags & SEC_RELOC) == 0
5041 || o->reloc_count == 0
5042 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5043 sizeof FN_STUB - 1) == 0
5044 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5045 sizeof CALL_STUB - 1) == 0
5046 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5047 sizeof CALL_FP_STUB - 1) == 0)
5048 continue;
5049
5050 sec_relocs
5051 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5052 info->keep_memory);
5053 if (sec_relocs == NULL)
5054 return FALSE;
5055
5056 rend = sec_relocs + o->reloc_count;
5057 for (r = sec_relocs; r < rend; r++)
5058 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5059 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5060 break;
5061
5062 if (elf_section_data (o)->relocs != sec_relocs)
5063 free (sec_relocs);
5064
5065 if (r < rend)
5066 break;
5067 }
5068
5069 if (o == NULL)
5070 {
5071 /* There is no non-call reloc for this stub, so we do
5072 not need it. Since this function is called before
5073 the linker maps input sections to output sections, we
5074 can easily discard it by setting the SEC_EXCLUDE
5075 flag. */
5076 sec->flags |= SEC_EXCLUDE;
5077 return TRUE;
5078 }
5079
5080 /* Record this stub in an array of local symbol stubs for
5081 this BFD. */
5082 if (elf_tdata (abfd)->local_stubs == NULL)
5083 {
5084 unsigned long symcount;
5085 asection **n;
5086 bfd_size_type amt;
5087
5088 if (elf_bad_symtab (abfd))
5089 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5090 else
5091 symcount = symtab_hdr->sh_info;
5092 amt = symcount * sizeof (asection *);
5093 n = bfd_zalloc (abfd, amt);
5094 if (n == NULL)
5095 return FALSE;
5096 elf_tdata (abfd)->local_stubs = n;
5097 }
5098
5099 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5100
5101 /* We don't need to set mips16_stubs_seen in this case.
5102 That flag is used to see whether we need to look through
5103 the global symbol table for stubs. We don't need to set
5104 it here, because we just have a local stub. */
5105 }
5106 else
5107 {
5108 struct mips_elf_link_hash_entry *h;
5109
5110 h = ((struct mips_elf_link_hash_entry *)
5111 sym_hashes[r_symndx - extsymoff]);
5112
5113 /* H is the symbol this stub is for. */
5114
5115 h->fn_stub = sec;
5116 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5117 }
5118 }
5119 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5120 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5121 {
5122 unsigned long r_symndx;
5123 struct mips_elf_link_hash_entry *h;
5124 asection **loc;
5125
5126 /* Look at the relocation information to figure out which symbol
5127 this is for. */
5128
5129 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5130
5131 if (r_symndx < extsymoff
5132 || sym_hashes[r_symndx - extsymoff] == NULL)
5133 {
5134 /* This stub was actually built for a static symbol defined
5135 in the same file. We assume that all static symbols in
5136 mips16 code are themselves mips16, so we can simply
5137 discard this stub. Since this function is called before
5138 the linker maps input sections to output sections, we can
5139 easily discard it by setting the SEC_EXCLUDE flag. */
5140 sec->flags |= SEC_EXCLUDE;
5141 return TRUE;
5142 }
5143
5144 h = ((struct mips_elf_link_hash_entry *)
5145 sym_hashes[r_symndx - extsymoff]);
5146
5147 /* H is the symbol this stub is for. */
5148
5149 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5150 loc = &h->call_fp_stub;
5151 else
5152 loc = &h->call_stub;
5153
5154 /* If we already have an appropriate stub for this function, we
5155 don't need another one, so we can discard this one. Since
5156 this function is called before the linker maps input sections
5157 to output sections, we can easily discard it by setting the
5158 SEC_EXCLUDE flag. We can also discard this section if we
5159 happen to already know that this is a mips16 function; it is
5160 not necessary to check this here, as it is checked later, but
5161 it is slightly faster to check now. */
5162 if (*loc != NULL || h->root.other == STO_MIPS16)
5163 {
5164 sec->flags |= SEC_EXCLUDE;
5165 return TRUE;
5166 }
5167
5168 *loc = sec;
5169 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5170 }
5171
5172 if (dynobj == NULL)
5173 {
5174 sgot = NULL;
5175 g = NULL;
5176 }
5177 else
5178 {
5179 sgot = mips_elf_got_section (dynobj, FALSE);
5180 if (sgot == NULL)
5181 g = NULL;
5182 else
5183 {
5184 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5185 g = mips_elf_section_data (sgot)->u.got_info;
5186 BFD_ASSERT (g != NULL);
5187 }
5188 }
5189
5190 sreloc = NULL;
5191 bed = get_elf_backend_data (abfd);
5192 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5193 for (rel = relocs; rel < rel_end; ++rel)
5194 {
5195 unsigned long r_symndx;
5196 unsigned int r_type;
5197 struct elf_link_hash_entry *h;
5198
5199 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5200 r_type = ELF_R_TYPE (abfd, rel->r_info);
5201
5202 if (r_symndx < extsymoff)
5203 h = NULL;
5204 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5205 {
5206 (*_bfd_error_handler)
5207 (_("%s: Malformed reloc detected for section %s"),
5208 bfd_archive_filename (abfd), name);
5209 bfd_set_error (bfd_error_bad_value);
5210 return FALSE;
5211 }
5212 else
5213 {
5214 h = sym_hashes[r_symndx - extsymoff];
5215
5216 /* This may be an indirect symbol created because of a version. */
5217 if (h != NULL)
5218 {
5219 while (h->root.type == bfd_link_hash_indirect)
5220 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5221 }
5222 }
5223
5224 /* Some relocs require a global offset table. */
5225 if (dynobj == NULL || sgot == NULL)
5226 {
5227 switch (r_type)
5228 {
5229 case R_MIPS_GOT16:
5230 case R_MIPS_CALL16:
5231 case R_MIPS_CALL_HI16:
5232 case R_MIPS_CALL_LO16:
5233 case R_MIPS_GOT_HI16:
5234 case R_MIPS_GOT_LO16:
5235 case R_MIPS_GOT_PAGE:
5236 case R_MIPS_GOT_OFST:
5237 case R_MIPS_GOT_DISP:
5238 if (dynobj == NULL)
5239 elf_hash_table (info)->dynobj = dynobj = abfd;
5240 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5241 return FALSE;
5242 g = mips_elf_got_info (dynobj, &sgot);
5243 break;
5244
5245 case R_MIPS_32:
5246 case R_MIPS_REL32:
5247 case R_MIPS_64:
5248 if (dynobj == NULL
5249 && (info->shared || h != NULL)
5250 && (sec->flags & SEC_ALLOC) != 0)
5251 elf_hash_table (info)->dynobj = dynobj = abfd;
5252 break;
5253
5254 default:
5255 break;
5256 }
5257 }
5258
5259 if (!h && (r_type == R_MIPS_CALL_LO16
5260 || r_type == R_MIPS_GOT_LO16
5261 || r_type == R_MIPS_GOT_DISP))
5262 {
5263 /* We may need a local GOT entry for this relocation. We
5264 don't count R_MIPS_GOT_PAGE because we can estimate the
5265 maximum number of pages needed by looking at the size of
5266 the segment. Similar comments apply to R_MIPS_GOT16 and
5267 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5268 R_MIPS_CALL_HI16 because these are always followed by an
5269 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5270 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5271 rel->r_addend, g))
5272 return FALSE;
5273 }
5274
5275 switch (r_type)
5276 {
5277 case R_MIPS_CALL16:
5278 if (h == NULL)
5279 {
5280 (*_bfd_error_handler)
5281 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5282 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5283 bfd_set_error (bfd_error_bad_value);
5284 return FALSE;
5285 }
5286 /* Fall through. */
5287
5288 case R_MIPS_CALL_HI16:
5289 case R_MIPS_CALL_LO16:
5290 if (h != NULL)
5291 {
5292 /* This symbol requires a global offset table entry. */
5293 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5294 return FALSE;
5295
5296 /* We need a stub, not a plt entry for the undefined
5297 function. But we record it as if it needs plt. See
5298 _bfd_elf_adjust_dynamic_symbol. */
5299 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5300 h->type = STT_FUNC;
5301 }
5302 break;
5303
5304 case R_MIPS_GOT_PAGE:
5305 /* If this is a global, overridable symbol, GOT_PAGE will
5306 decay to GOT_DISP, so we'll need a GOT entry for it. */
5307 if (h == NULL)
5308 break;
5309 else
5310 {
5311 struct mips_elf_link_hash_entry *hmips =
5312 (struct mips_elf_link_hash_entry *) h;
5313
5314 while (hmips->root.root.type == bfd_link_hash_indirect
5315 || hmips->root.root.type == bfd_link_hash_warning)
5316 hmips = (struct mips_elf_link_hash_entry *)
5317 hmips->root.root.u.i.link;
5318
5319 if ((hmips->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
5320 && ! (info->shared && ! info->symbolic
5321 && ! (hmips->root.elf_link_hash_flags
5322 & ELF_LINK_FORCED_LOCAL)))
5323 break;
5324 }
5325 /* Fall through. */
5326
5327 case R_MIPS_GOT16:
5328 case R_MIPS_GOT_HI16:
5329 case R_MIPS_GOT_LO16:
5330 case R_MIPS_GOT_DISP:
5331 /* This symbol requires a global offset table entry. */
5332 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5333 return FALSE;
5334 break;
5335
5336 case R_MIPS_32:
5337 case R_MIPS_REL32:
5338 case R_MIPS_64:
5339 if ((info->shared || h != NULL)
5340 && (sec->flags & SEC_ALLOC) != 0)
5341 {
5342 if (sreloc == NULL)
5343 {
5344 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5345 if (sreloc == NULL)
5346 return FALSE;
5347 }
5348 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5349 if (info->shared)
5350 {
5351 /* When creating a shared object, we must copy these
5352 reloc types into the output file as R_MIPS_REL32
5353 relocs. We make room for this reloc in the
5354 .rel.dyn reloc section. */
5355 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5356 if ((sec->flags & MIPS_READONLY_SECTION)
5357 == MIPS_READONLY_SECTION)
5358 /* We tell the dynamic linker that there are
5359 relocations against the text segment. */
5360 info->flags |= DF_TEXTREL;
5361 }
5362 else
5363 {
5364 struct mips_elf_link_hash_entry *hmips;
5365
5366 /* We only need to copy this reloc if the symbol is
5367 defined in a dynamic object. */
5368 hmips = (struct mips_elf_link_hash_entry *) h;
5369 ++hmips->possibly_dynamic_relocs;
5370 if ((sec->flags & MIPS_READONLY_SECTION)
5371 == MIPS_READONLY_SECTION)
5372 /* We need it to tell the dynamic linker if there
5373 are relocations against the text segment. */
5374 hmips->readonly_reloc = TRUE;
5375 }
5376
5377 /* Even though we don't directly need a GOT entry for
5378 this symbol, a symbol must have a dynamic symbol
5379 table index greater that DT_MIPS_GOTSYM if there are
5380 dynamic relocations against it. */
5381 if (h != NULL)
5382 {
5383 if (dynobj == NULL)
5384 elf_hash_table (info)->dynobj = dynobj = abfd;
5385 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5386 return FALSE;
5387 g = mips_elf_got_info (dynobj, &sgot);
5388 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5389 return FALSE;
5390 }
5391 }
5392
5393 if (SGI_COMPAT (abfd))
5394 mips_elf_hash_table (info)->compact_rel_size +=
5395 sizeof (Elf32_External_crinfo);
5396 break;
5397
5398 case R_MIPS_26:
5399 case R_MIPS_GPREL16:
5400 case R_MIPS_LITERAL:
5401 case R_MIPS_GPREL32:
5402 if (SGI_COMPAT (abfd))
5403 mips_elf_hash_table (info)->compact_rel_size +=
5404 sizeof (Elf32_External_crinfo);
5405 break;
5406
5407 /* This relocation describes the C++ object vtable hierarchy.
5408 Reconstruct it for later use during GC. */
5409 case R_MIPS_GNU_VTINHERIT:
5410 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5411 return FALSE;
5412 break;
5413
5414 /* This relocation describes which C++ vtable entries are actually
5415 used. Record for later use during GC. */
5416 case R_MIPS_GNU_VTENTRY:
5417 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5418 return FALSE;
5419 break;
5420
5421 default:
5422 break;
5423 }
5424
5425 /* We must not create a stub for a symbol that has relocations
5426 related to taking the function's address. */
5427 switch (r_type)
5428 {
5429 default:
5430 if (h != NULL)
5431 {
5432 struct mips_elf_link_hash_entry *mh;
5433
5434 mh = (struct mips_elf_link_hash_entry *) h;
5435 mh->no_fn_stub = TRUE;
5436 }
5437 break;
5438 case R_MIPS_CALL16:
5439 case R_MIPS_CALL_HI16:
5440 case R_MIPS_CALL_LO16:
5441 case R_MIPS_JALR:
5442 break;
5443 }
5444
5445 /* If this reloc is not a 16 bit call, and it has a global
5446 symbol, then we will need the fn_stub if there is one.
5447 References from a stub section do not count. */
5448 if (h != NULL
5449 && r_type != R_MIPS16_26
5450 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5451 sizeof FN_STUB - 1) != 0
5452 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5453 sizeof CALL_STUB - 1) != 0
5454 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5455 sizeof CALL_FP_STUB - 1) != 0)
5456 {
5457 struct mips_elf_link_hash_entry *mh;
5458
5459 mh = (struct mips_elf_link_hash_entry *) h;
5460 mh->need_fn_stub = TRUE;
5461 }
5462 }
5463
5464 return TRUE;
5465 }
5466 \f
5467 bfd_boolean
5468 _bfd_mips_relax_section (bfd *abfd, asection *sec,
5469 struct bfd_link_info *link_info,
5470 bfd_boolean *again)
5471 {
5472 Elf_Internal_Rela *internal_relocs;
5473 Elf_Internal_Rela *irel, *irelend;
5474 Elf_Internal_Shdr *symtab_hdr;
5475 bfd_byte *contents = NULL;
5476 size_t extsymoff;
5477 bfd_boolean changed_contents = FALSE;
5478 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5479 Elf_Internal_Sym *isymbuf = NULL;
5480
5481 /* We are not currently changing any sizes, so only one pass. */
5482 *again = FALSE;
5483
5484 if (link_info->relocatable)
5485 return TRUE;
5486
5487 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
5488 link_info->keep_memory);
5489 if (internal_relocs == NULL)
5490 return TRUE;
5491
5492 irelend = internal_relocs + sec->reloc_count
5493 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5494 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5495 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5496
5497 for (irel = internal_relocs; irel < irelend; irel++)
5498 {
5499 bfd_vma symval;
5500 bfd_signed_vma sym_offset;
5501 unsigned int r_type;
5502 unsigned long r_symndx;
5503 asection *sym_sec;
5504 unsigned long instruction;
5505
5506 /* Turn jalr into bgezal, and jr into beq, if they're marked
5507 with a JALR relocation, that indicate where they jump to.
5508 This saves some pipeline bubbles. */
5509 r_type = ELF_R_TYPE (abfd, irel->r_info);
5510 if (r_type != R_MIPS_JALR)
5511 continue;
5512
5513 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5514 /* Compute the address of the jump target. */
5515 if (r_symndx >= extsymoff)
5516 {
5517 struct mips_elf_link_hash_entry *h
5518 = ((struct mips_elf_link_hash_entry *)
5519 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5520
5521 while (h->root.root.type == bfd_link_hash_indirect
5522 || h->root.root.type == bfd_link_hash_warning)
5523 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5524
5525 /* If a symbol is undefined, or if it may be overridden,
5526 skip it. */
5527 if (! ((h->root.root.type == bfd_link_hash_defined
5528 || h->root.root.type == bfd_link_hash_defweak)
5529 && h->root.root.u.def.section)
5530 || (link_info->shared && ! link_info->symbolic
5531 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5532 continue;
5533
5534 sym_sec = h->root.root.u.def.section;
5535 if (sym_sec->output_section)
5536 symval = (h->root.root.u.def.value
5537 + sym_sec->output_section->vma
5538 + sym_sec->output_offset);
5539 else
5540 symval = h->root.root.u.def.value;
5541 }
5542 else
5543 {
5544 Elf_Internal_Sym *isym;
5545
5546 /* Read this BFD's symbols if we haven't done so already. */
5547 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5548 {
5549 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5550 if (isymbuf == NULL)
5551 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5552 symtab_hdr->sh_info, 0,
5553 NULL, NULL, NULL);
5554 if (isymbuf == NULL)
5555 goto relax_return;
5556 }
5557
5558 isym = isymbuf + r_symndx;
5559 if (isym->st_shndx == SHN_UNDEF)
5560 continue;
5561 else if (isym->st_shndx == SHN_ABS)
5562 sym_sec = bfd_abs_section_ptr;
5563 else if (isym->st_shndx == SHN_COMMON)
5564 sym_sec = bfd_com_section_ptr;
5565 else
5566 sym_sec
5567 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5568 symval = isym->st_value
5569 + sym_sec->output_section->vma
5570 + sym_sec->output_offset;
5571 }
5572
5573 /* Compute branch offset, from delay slot of the jump to the
5574 branch target. */
5575 sym_offset = (symval + irel->r_addend)
5576 - (sec_start + irel->r_offset + 4);
5577
5578 /* Branch offset must be properly aligned. */
5579 if ((sym_offset & 3) != 0)
5580 continue;
5581
5582 sym_offset >>= 2;
5583
5584 /* Check that it's in range. */
5585 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5586 continue;
5587
5588 /* Get the section contents if we haven't done so already. */
5589 if (contents == NULL)
5590 {
5591 /* Get cached copy if it exists. */
5592 if (elf_section_data (sec)->this_hdr.contents != NULL)
5593 contents = elf_section_data (sec)->this_hdr.contents;
5594 else
5595 {
5596 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5597 goto relax_return;
5598 }
5599 }
5600
5601 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5602
5603 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5604 if ((instruction & 0xfc1fffff) == 0x0000f809)
5605 instruction = 0x04110000;
5606 /* If it was jr <reg>, turn it into b <target>. */
5607 else if ((instruction & 0xfc1fffff) == 0x00000008)
5608 instruction = 0x10000000;
5609 else
5610 continue;
5611
5612 instruction |= (sym_offset & 0xffff);
5613 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5614 changed_contents = TRUE;
5615 }
5616
5617 if (contents != NULL
5618 && elf_section_data (sec)->this_hdr.contents != contents)
5619 {
5620 if (!changed_contents && !link_info->keep_memory)
5621 free (contents);
5622 else
5623 {
5624 /* Cache the section contents for elf_link_input_bfd. */
5625 elf_section_data (sec)->this_hdr.contents = contents;
5626 }
5627 }
5628 return TRUE;
5629
5630 relax_return:
5631 if (contents != NULL
5632 && elf_section_data (sec)->this_hdr.contents != contents)
5633 free (contents);
5634 return FALSE;
5635 }
5636 \f
5637 /* Adjust a symbol defined by a dynamic object and referenced by a
5638 regular object. The current definition is in some section of the
5639 dynamic object, but we're not including those sections. We have to
5640 change the definition to something the rest of the link can
5641 understand. */
5642
5643 bfd_boolean
5644 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5645 struct elf_link_hash_entry *h)
5646 {
5647 bfd *dynobj;
5648 struct mips_elf_link_hash_entry *hmips;
5649 asection *s;
5650
5651 dynobj = elf_hash_table (info)->dynobj;
5652
5653 /* Make sure we know what is going on here. */
5654 BFD_ASSERT (dynobj != NULL
5655 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5656 || h->weakdef != NULL
5657 || ((h->elf_link_hash_flags
5658 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5659 && (h->elf_link_hash_flags
5660 & ELF_LINK_HASH_REF_REGULAR) != 0
5661 && (h->elf_link_hash_flags
5662 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5663
5664 /* If this symbol is defined in a dynamic object, we need to copy
5665 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5666 file. */
5667 hmips = (struct mips_elf_link_hash_entry *) h;
5668 if (! info->relocatable
5669 && hmips->possibly_dynamic_relocs != 0
5670 && (h->root.type == bfd_link_hash_defweak
5671 || (h->elf_link_hash_flags
5672 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5673 {
5674 mips_elf_allocate_dynamic_relocations (dynobj,
5675 hmips->possibly_dynamic_relocs);
5676 if (hmips->readonly_reloc)
5677 /* We tell the dynamic linker that there are relocations
5678 against the text segment. */
5679 info->flags |= DF_TEXTREL;
5680 }
5681
5682 /* For a function, create a stub, if allowed. */
5683 if (! hmips->no_fn_stub
5684 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5685 {
5686 if (! elf_hash_table (info)->dynamic_sections_created)
5687 return TRUE;
5688
5689 /* If this symbol is not defined in a regular file, then set
5690 the symbol to the stub location. This is required to make
5691 function pointers compare as equal between the normal
5692 executable and the shared library. */
5693 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5694 {
5695 /* We need .stub section. */
5696 s = bfd_get_section_by_name (dynobj,
5697 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5698 BFD_ASSERT (s != NULL);
5699
5700 h->root.u.def.section = s;
5701 h->root.u.def.value = s->size;
5702
5703 /* XXX Write this stub address somewhere. */
5704 h->plt.offset = s->size;
5705
5706 /* Make room for this stub code. */
5707 s->size += MIPS_FUNCTION_STUB_SIZE;
5708
5709 /* The last half word of the stub will be filled with the index
5710 of this symbol in .dynsym section. */
5711 return TRUE;
5712 }
5713 }
5714 else if ((h->type == STT_FUNC)
5715 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5716 {
5717 /* This will set the entry for this symbol in the GOT to 0, and
5718 the dynamic linker will take care of this. */
5719 h->root.u.def.value = 0;
5720 return TRUE;
5721 }
5722
5723 /* If this is a weak symbol, and there is a real definition, the
5724 processor independent code will have arranged for us to see the
5725 real definition first, and we can just use the same value. */
5726 if (h->weakdef != NULL)
5727 {
5728 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5729 || h->weakdef->root.type == bfd_link_hash_defweak);
5730 h->root.u.def.section = h->weakdef->root.u.def.section;
5731 h->root.u.def.value = h->weakdef->root.u.def.value;
5732 return TRUE;
5733 }
5734
5735 /* This is a reference to a symbol defined by a dynamic object which
5736 is not a function. */
5737
5738 return TRUE;
5739 }
5740 \f
5741 /* This function is called after all the input files have been read,
5742 and the input sections have been assigned to output sections. We
5743 check for any mips16 stub sections that we can discard. */
5744
5745 bfd_boolean
5746 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
5747 struct bfd_link_info *info)
5748 {
5749 asection *ri;
5750
5751 bfd *dynobj;
5752 asection *s;
5753 struct mips_got_info *g;
5754 int i;
5755 bfd_size_type loadable_size = 0;
5756 bfd_size_type local_gotno;
5757 bfd *sub;
5758
5759 /* The .reginfo section has a fixed size. */
5760 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5761 if (ri != NULL)
5762 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
5763
5764 if (! (info->relocatable
5765 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5766 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5767 mips_elf_check_mips16_stubs, NULL);
5768
5769 dynobj = elf_hash_table (info)->dynobj;
5770 if (dynobj == NULL)
5771 /* Relocatable links don't have it. */
5772 return TRUE;
5773
5774 g = mips_elf_got_info (dynobj, &s);
5775 if (s == NULL)
5776 return TRUE;
5777
5778 /* Calculate the total loadable size of the output. That
5779 will give us the maximum number of GOT_PAGE entries
5780 required. */
5781 for (sub = info->input_bfds; sub; sub = sub->link_next)
5782 {
5783 asection *subsection;
5784
5785 for (subsection = sub->sections;
5786 subsection;
5787 subsection = subsection->next)
5788 {
5789 if ((subsection->flags & SEC_ALLOC) == 0)
5790 continue;
5791 loadable_size += ((subsection->size + 0xf)
5792 &~ (bfd_size_type) 0xf);
5793 }
5794 }
5795
5796 /* There has to be a global GOT entry for every symbol with
5797 a dynamic symbol table index of DT_MIPS_GOTSYM or
5798 higher. Therefore, it make sense to put those symbols
5799 that need GOT entries at the end of the symbol table. We
5800 do that here. */
5801 if (! mips_elf_sort_hash_table (info, 1))
5802 return FALSE;
5803
5804 if (g->global_gotsym != NULL)
5805 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5806 else
5807 /* If there are no global symbols, or none requiring
5808 relocations, then GLOBAL_GOTSYM will be NULL. */
5809 i = 0;
5810
5811 /* In the worst case, we'll get one stub per dynamic symbol, plus
5812 one to account for the dummy entry at the end required by IRIX
5813 rld. */
5814 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5815
5816 /* Assume there are two loadable segments consisting of
5817 contiguous sections. Is 5 enough? */
5818 local_gotno = (loadable_size >> 16) + 5;
5819
5820 g->local_gotno += local_gotno;
5821 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5822
5823 g->global_gotno = i;
5824 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5825
5826 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5827 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5828 return FALSE;
5829
5830 return TRUE;
5831 }
5832
5833 /* Set the sizes of the dynamic sections. */
5834
5835 bfd_boolean
5836 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5837 struct bfd_link_info *info)
5838 {
5839 bfd *dynobj;
5840 asection *s;
5841 bfd_boolean reltext;
5842
5843 dynobj = elf_hash_table (info)->dynobj;
5844 BFD_ASSERT (dynobj != NULL);
5845
5846 if (elf_hash_table (info)->dynamic_sections_created)
5847 {
5848 /* Set the contents of the .interp section to the interpreter. */
5849 if (info->executable)
5850 {
5851 s = bfd_get_section_by_name (dynobj, ".interp");
5852 BFD_ASSERT (s != NULL);
5853 s->size
5854 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5855 s->contents
5856 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5857 }
5858 }
5859
5860 /* The check_relocs and adjust_dynamic_symbol entry points have
5861 determined the sizes of the various dynamic sections. Allocate
5862 memory for them. */
5863 reltext = FALSE;
5864 for (s = dynobj->sections; s != NULL; s = s->next)
5865 {
5866 const char *name;
5867 bfd_boolean strip;
5868
5869 /* It's OK to base decisions on the section name, because none
5870 of the dynobj section names depend upon the input files. */
5871 name = bfd_get_section_name (dynobj, s);
5872
5873 if ((s->flags & SEC_LINKER_CREATED) == 0)
5874 continue;
5875
5876 strip = FALSE;
5877
5878 if (strncmp (name, ".rel", 4) == 0)
5879 {
5880 if (s->size == 0)
5881 {
5882 /* We only strip the section if the output section name
5883 has the same name. Otherwise, there might be several
5884 input sections for this output section. FIXME: This
5885 code is probably not needed these days anyhow, since
5886 the linker now does not create empty output sections. */
5887 if (s->output_section != NULL
5888 && strcmp (name,
5889 bfd_get_section_name (s->output_section->owner,
5890 s->output_section)) == 0)
5891 strip = TRUE;
5892 }
5893 else
5894 {
5895 const char *outname;
5896 asection *target;
5897
5898 /* If this relocation section applies to a read only
5899 section, then we probably need a DT_TEXTREL entry.
5900 If the relocation section is .rel.dyn, we always
5901 assert a DT_TEXTREL entry rather than testing whether
5902 there exists a relocation to a read only section or
5903 not. */
5904 outname = bfd_get_section_name (output_bfd,
5905 s->output_section);
5906 target = bfd_get_section_by_name (output_bfd, outname + 4);
5907 if ((target != NULL
5908 && (target->flags & SEC_READONLY) != 0
5909 && (target->flags & SEC_ALLOC) != 0)
5910 || strcmp (outname, ".rel.dyn") == 0)
5911 reltext = TRUE;
5912
5913 /* We use the reloc_count field as a counter if we need
5914 to copy relocs into the output file. */
5915 if (strcmp (name, ".rel.dyn") != 0)
5916 s->reloc_count = 0;
5917
5918 /* If combreloc is enabled, elf_link_sort_relocs() will
5919 sort relocations, but in a different way than we do,
5920 and before we're done creating relocations. Also, it
5921 will move them around between input sections'
5922 relocation's contents, so our sorting would be
5923 broken, so don't let it run. */
5924 info->combreloc = 0;
5925 }
5926 }
5927 else if (strncmp (name, ".got", 4) == 0)
5928 {
5929 /* _bfd_mips_elf_always_size_sections() has already done
5930 most of the work, but some symbols may have been mapped
5931 to versions that we must now resolve in the got_entries
5932 hash tables. */
5933 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5934 struct mips_got_info *g = gg;
5935 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5936 unsigned int needed_relocs = 0;
5937
5938 if (gg->next)
5939 {
5940 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5941 set_got_offset_arg.info = info;
5942
5943 mips_elf_resolve_final_got_entries (gg);
5944 for (g = gg->next; g && g->next != gg; g = g->next)
5945 {
5946 unsigned int save_assign;
5947
5948 mips_elf_resolve_final_got_entries (g);
5949
5950 /* Assign offsets to global GOT entries. */
5951 save_assign = g->assigned_gotno;
5952 g->assigned_gotno = g->local_gotno;
5953 set_got_offset_arg.g = g;
5954 set_got_offset_arg.needed_relocs = 0;
5955 htab_traverse (g->got_entries,
5956 mips_elf_set_global_got_offset,
5957 &set_got_offset_arg);
5958 needed_relocs += set_got_offset_arg.needed_relocs;
5959 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5960 <= g->global_gotno);
5961
5962 g->assigned_gotno = save_assign;
5963 if (info->shared)
5964 {
5965 needed_relocs += g->local_gotno - g->assigned_gotno;
5966 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5967 + g->next->global_gotno
5968 + MIPS_RESERVED_GOTNO);
5969 }
5970 }
5971
5972 if (needed_relocs)
5973 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5974 }
5975 }
5976 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5977 {
5978 /* IRIX rld assumes that the function stub isn't at the end
5979 of .text section. So put a dummy. XXX */
5980 s->size += MIPS_FUNCTION_STUB_SIZE;
5981 }
5982 else if (! info->shared
5983 && ! mips_elf_hash_table (info)->use_rld_obj_head
5984 && strncmp (name, ".rld_map", 8) == 0)
5985 {
5986 /* We add a room for __rld_map. It will be filled in by the
5987 rtld to contain a pointer to the _r_debug structure. */
5988 s->size += 4;
5989 }
5990 else if (SGI_COMPAT (output_bfd)
5991 && strncmp (name, ".compact_rel", 12) == 0)
5992 s->size += mips_elf_hash_table (info)->compact_rel_size;
5993 else if (strncmp (name, ".init", 5) != 0)
5994 {
5995 /* It's not one of our sections, so don't allocate space. */
5996 continue;
5997 }
5998
5999 if (strip)
6000 {
6001 _bfd_strip_section_from_output (info, s);
6002 continue;
6003 }
6004
6005 /* Allocate memory for the section contents. */
6006 s->contents = bfd_zalloc (dynobj, s->size);
6007 if (s->contents == NULL && s->size != 0)
6008 {
6009 bfd_set_error (bfd_error_no_memory);
6010 return FALSE;
6011 }
6012 }
6013
6014 if (elf_hash_table (info)->dynamic_sections_created)
6015 {
6016 /* Add some entries to the .dynamic section. We fill in the
6017 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6018 must add the entries now so that we get the correct size for
6019 the .dynamic section. The DT_DEBUG entry is filled in by the
6020 dynamic linker and used by the debugger. */
6021 if (! info->shared)
6022 {
6023 /* SGI object has the equivalence of DT_DEBUG in the
6024 DT_MIPS_RLD_MAP entry. */
6025 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6026 return FALSE;
6027 if (!SGI_COMPAT (output_bfd))
6028 {
6029 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6030 return FALSE;
6031 }
6032 }
6033 else
6034 {
6035 /* Shared libraries on traditional mips have DT_DEBUG. */
6036 if (!SGI_COMPAT (output_bfd))
6037 {
6038 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6039 return FALSE;
6040 }
6041 }
6042
6043 if (reltext && SGI_COMPAT (output_bfd))
6044 info->flags |= DF_TEXTREL;
6045
6046 if ((info->flags & DF_TEXTREL) != 0)
6047 {
6048 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6049 return FALSE;
6050 }
6051
6052 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6053 return FALSE;
6054
6055 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6056 {
6057 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6058 return FALSE;
6059
6060 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6061 return FALSE;
6062
6063 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6064 return FALSE;
6065 }
6066
6067 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6068 return FALSE;
6069
6070 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6071 return FALSE;
6072
6073 #if 0
6074 /* Time stamps in executable files are a bad idea. */
6075 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6076 return FALSE;
6077 #endif
6078
6079 #if 0 /* FIXME */
6080 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6081 return FALSE;
6082 #endif
6083
6084 #if 0 /* FIXME */
6085 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6086 return FALSE;
6087 #endif
6088
6089 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6090 return FALSE;
6091
6092 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6093 return FALSE;
6094
6095 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6096 return FALSE;
6097
6098 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6099 return FALSE;
6100
6101 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6102 return FALSE;
6103
6104 if (IRIX_COMPAT (dynobj) == ict_irix5
6105 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6106 return FALSE;
6107
6108 if (IRIX_COMPAT (dynobj) == ict_irix6
6109 && (bfd_get_section_by_name
6110 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6111 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6112 return FALSE;
6113 }
6114
6115 return TRUE;
6116 }
6117 \f
6118 /* Relocate a MIPS ELF section. */
6119
6120 bfd_boolean
6121 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6122 bfd *input_bfd, asection *input_section,
6123 bfd_byte *contents, Elf_Internal_Rela *relocs,
6124 Elf_Internal_Sym *local_syms,
6125 asection **local_sections)
6126 {
6127 Elf_Internal_Rela *rel;
6128 const Elf_Internal_Rela *relend;
6129 bfd_vma addend = 0;
6130 bfd_boolean use_saved_addend_p = FALSE;
6131 const struct elf_backend_data *bed;
6132
6133 bed = get_elf_backend_data (output_bfd);
6134 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6135 for (rel = relocs; rel < relend; ++rel)
6136 {
6137 const char *name;
6138 bfd_vma value;
6139 reloc_howto_type *howto;
6140 bfd_boolean require_jalx;
6141 /* TRUE if the relocation is a RELA relocation, rather than a
6142 REL relocation. */
6143 bfd_boolean rela_relocation_p = TRUE;
6144 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6145 const char *msg;
6146
6147 /* Find the relocation howto for this relocation. */
6148 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6149 {
6150 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6151 64-bit code, but make sure all their addresses are in the
6152 lowermost or uppermost 32-bit section of the 64-bit address
6153 space. Thus, when they use an R_MIPS_64 they mean what is
6154 usually meant by R_MIPS_32, with the exception that the
6155 stored value is sign-extended to 64 bits. */
6156 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6157
6158 /* On big-endian systems, we need to lie about the position
6159 of the reloc. */
6160 if (bfd_big_endian (input_bfd))
6161 rel->r_offset += 4;
6162 }
6163 else
6164 /* NewABI defaults to RELA relocations. */
6165 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6166 NEWABI_P (input_bfd)
6167 && (MIPS_RELOC_RELA_P
6168 (input_bfd, input_section,
6169 rel - relocs)));
6170
6171 if (!use_saved_addend_p)
6172 {
6173 Elf_Internal_Shdr *rel_hdr;
6174
6175 /* If these relocations were originally of the REL variety,
6176 we must pull the addend out of the field that will be
6177 relocated. Otherwise, we simply use the contents of the
6178 RELA relocation. To determine which flavor or relocation
6179 this is, we depend on the fact that the INPUT_SECTION's
6180 REL_HDR is read before its REL_HDR2. */
6181 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6182 if ((size_t) (rel - relocs)
6183 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6184 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6185 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6186 {
6187 /* Note that this is a REL relocation. */
6188 rela_relocation_p = FALSE;
6189
6190 /* Get the addend, which is stored in the input file. */
6191 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6192 contents);
6193 addend &= howto->src_mask;
6194
6195 /* For some kinds of relocations, the ADDEND is a
6196 combination of the addend stored in two different
6197 relocations. */
6198 if (r_type == R_MIPS_HI16
6199 || (r_type == R_MIPS_GOT16
6200 && mips_elf_local_relocation_p (input_bfd, rel,
6201 local_sections, FALSE)))
6202 {
6203 bfd_vma l;
6204 const Elf_Internal_Rela *lo16_relocation;
6205 reloc_howto_type *lo16_howto;
6206
6207 /* The combined value is the sum of the HI16 addend,
6208 left-shifted by sixteen bits, and the LO16
6209 addend, sign extended. (Usually, the code does
6210 a `lui' of the HI16 value, and then an `addiu' of
6211 the LO16 value.)
6212
6213 Scan ahead to find a matching LO16 relocation.
6214
6215 According to the MIPS ELF ABI, the R_MIPS_LO16
6216 relocation must be immediately following.
6217 However, for the IRIX6 ABI, the next relocation
6218 may be a composed relocation consisting of
6219 several relocations for the same address. In
6220 that case, the R_MIPS_LO16 relocation may occur
6221 as one of these. We permit a similar extension
6222 in general, as that is useful for GCC. */
6223 lo16_relocation = mips_elf_next_relocation (input_bfd,
6224 R_MIPS_LO16,
6225 rel, relend);
6226 if (lo16_relocation == NULL)
6227 return FALSE;
6228
6229 /* Obtain the addend kept there. */
6230 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6231 R_MIPS_LO16, FALSE);
6232 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6233 input_bfd, contents);
6234 l &= lo16_howto->src_mask;
6235 l <<= lo16_howto->rightshift;
6236 l = _bfd_mips_elf_sign_extend (l, 16);
6237
6238 addend <<= 16;
6239
6240 /* Compute the combined addend. */
6241 addend += l;
6242 }
6243 else if (r_type == R_MIPS16_GPREL)
6244 {
6245 /* The addend is scrambled in the object file. See
6246 mips_elf_perform_relocation for details on the
6247 format. */
6248 addend = (((addend & 0x1f0000) >> 5)
6249 | ((addend & 0x7e00000) >> 16)
6250 | (addend & 0x1f));
6251 }
6252 else
6253 addend <<= howto->rightshift;
6254 }
6255 else
6256 addend = rel->r_addend;
6257 }
6258
6259 if (info->relocatable)
6260 {
6261 Elf_Internal_Sym *sym;
6262 unsigned long r_symndx;
6263
6264 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6265 && bfd_big_endian (input_bfd))
6266 rel->r_offset -= 4;
6267
6268 /* Since we're just relocating, all we need to do is copy
6269 the relocations back out to the object file, unless
6270 they're against a section symbol, in which case we need
6271 to adjust by the section offset, or unless they're GP
6272 relative in which case we need to adjust by the amount
6273 that we're adjusting GP in this relocatable object. */
6274
6275 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6276 FALSE))
6277 /* There's nothing to do for non-local relocations. */
6278 continue;
6279
6280 if (r_type == R_MIPS16_GPREL
6281 || r_type == R_MIPS_GPREL16
6282 || r_type == R_MIPS_GPREL32
6283 || r_type == R_MIPS_LITERAL)
6284 addend -= (_bfd_get_gp_value (output_bfd)
6285 - _bfd_get_gp_value (input_bfd));
6286
6287 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6288 sym = local_syms + r_symndx;
6289 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6290 /* Adjust the addend appropriately. */
6291 addend += local_sections[r_symndx]->output_offset;
6292
6293 if (rela_relocation_p)
6294 /* If this is a RELA relocation, just update the addend. */
6295 rel->r_addend = addend;
6296 else
6297 {
6298 if (r_type == R_MIPS_HI16
6299 || r_type == R_MIPS_GOT16)
6300 addend = mips_elf_high (addend);
6301 else if (r_type == R_MIPS_HIGHER)
6302 addend = mips_elf_higher (addend);
6303 else if (r_type == R_MIPS_HIGHEST)
6304 addend = mips_elf_highest (addend);
6305 else
6306 addend >>= howto->rightshift;
6307
6308 /* We use the source mask, rather than the destination
6309 mask because the place to which we are writing will be
6310 source of the addend in the final link. */
6311 addend &= howto->src_mask;
6312
6313 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6314 /* See the comment above about using R_MIPS_64 in the 32-bit
6315 ABI. Here, we need to update the addend. It would be
6316 possible to get away with just using the R_MIPS_32 reloc
6317 but for endianness. */
6318 {
6319 bfd_vma sign_bits;
6320 bfd_vma low_bits;
6321 bfd_vma high_bits;
6322
6323 if (addend & ((bfd_vma) 1 << 31))
6324 #ifdef BFD64
6325 sign_bits = ((bfd_vma) 1 << 32) - 1;
6326 #else
6327 sign_bits = -1;
6328 #endif
6329 else
6330 sign_bits = 0;
6331
6332 /* If we don't know that we have a 64-bit type,
6333 do two separate stores. */
6334 if (bfd_big_endian (input_bfd))
6335 {
6336 /* Store the sign-bits (which are most significant)
6337 first. */
6338 low_bits = sign_bits;
6339 high_bits = addend;
6340 }
6341 else
6342 {
6343 low_bits = addend;
6344 high_bits = sign_bits;
6345 }
6346 bfd_put_32 (input_bfd, low_bits,
6347 contents + rel->r_offset);
6348 bfd_put_32 (input_bfd, high_bits,
6349 contents + rel->r_offset + 4);
6350 continue;
6351 }
6352
6353 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6354 input_bfd, input_section,
6355 contents, FALSE))
6356 return FALSE;
6357 }
6358
6359 /* Go on to the next relocation. */
6360 continue;
6361 }
6362
6363 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6364 relocations for the same offset. In that case we are
6365 supposed to treat the output of each relocation as the addend
6366 for the next. */
6367 if (rel + 1 < relend
6368 && rel->r_offset == rel[1].r_offset
6369 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6370 use_saved_addend_p = TRUE;
6371 else
6372 use_saved_addend_p = FALSE;
6373
6374 /* Figure out what value we are supposed to relocate. */
6375 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6376 input_section, info, rel,
6377 addend, howto, local_syms,
6378 local_sections, &value,
6379 &name, &require_jalx,
6380 use_saved_addend_p))
6381 {
6382 case bfd_reloc_continue:
6383 /* There's nothing to do. */
6384 continue;
6385
6386 case bfd_reloc_undefined:
6387 /* mips_elf_calculate_relocation already called the
6388 undefined_symbol callback. There's no real point in
6389 trying to perform the relocation at this point, so we
6390 just skip ahead to the next relocation. */
6391 continue;
6392
6393 case bfd_reloc_notsupported:
6394 msg = _("internal error: unsupported relocation error");
6395 info->callbacks->warning
6396 (info, msg, name, input_bfd, input_section, rel->r_offset);
6397 return FALSE;
6398
6399 case bfd_reloc_overflow:
6400 if (use_saved_addend_p)
6401 /* Ignore overflow until we reach the last relocation for
6402 a given location. */
6403 ;
6404 else
6405 {
6406 BFD_ASSERT (name != NULL);
6407 if (! ((*info->callbacks->reloc_overflow)
6408 (info, name, howto->name, 0,
6409 input_bfd, input_section, rel->r_offset)))
6410 return FALSE;
6411 }
6412 break;
6413
6414 case bfd_reloc_ok:
6415 break;
6416
6417 default:
6418 abort ();
6419 break;
6420 }
6421
6422 /* If we've got another relocation for the address, keep going
6423 until we reach the last one. */
6424 if (use_saved_addend_p)
6425 {
6426 addend = value;
6427 continue;
6428 }
6429
6430 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6431 /* See the comment above about using R_MIPS_64 in the 32-bit
6432 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6433 that calculated the right value. Now, however, we
6434 sign-extend the 32-bit result to 64-bits, and store it as a
6435 64-bit value. We are especially generous here in that we
6436 go to extreme lengths to support this usage on systems with
6437 only a 32-bit VMA. */
6438 {
6439 bfd_vma sign_bits;
6440 bfd_vma low_bits;
6441 bfd_vma high_bits;
6442
6443 if (value & ((bfd_vma) 1 << 31))
6444 #ifdef BFD64
6445 sign_bits = ((bfd_vma) 1 << 32) - 1;
6446 #else
6447 sign_bits = -1;
6448 #endif
6449 else
6450 sign_bits = 0;
6451
6452 /* If we don't know that we have a 64-bit type,
6453 do two separate stores. */
6454 if (bfd_big_endian (input_bfd))
6455 {
6456 /* Undo what we did above. */
6457 rel->r_offset -= 4;
6458 /* Store the sign-bits (which are most significant)
6459 first. */
6460 low_bits = sign_bits;
6461 high_bits = value;
6462 }
6463 else
6464 {
6465 low_bits = value;
6466 high_bits = sign_bits;
6467 }
6468 bfd_put_32 (input_bfd, low_bits,
6469 contents + rel->r_offset);
6470 bfd_put_32 (input_bfd, high_bits,
6471 contents + rel->r_offset + 4);
6472 continue;
6473 }
6474
6475 /* Actually perform the relocation. */
6476 if (! mips_elf_perform_relocation (info, howto, rel, value,
6477 input_bfd, input_section,
6478 contents, require_jalx))
6479 return FALSE;
6480 }
6481
6482 return TRUE;
6483 }
6484 \f
6485 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6486 adjust it appropriately now. */
6487
6488 static void
6489 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6490 const char *name, Elf_Internal_Sym *sym)
6491 {
6492 /* The linker script takes care of providing names and values for
6493 these, but we must place them into the right sections. */
6494 static const char* const text_section_symbols[] = {
6495 "_ftext",
6496 "_etext",
6497 "__dso_displacement",
6498 "__elf_header",
6499 "__program_header_table",
6500 NULL
6501 };
6502
6503 static const char* const data_section_symbols[] = {
6504 "_fdata",
6505 "_edata",
6506 "_end",
6507 "_fbss",
6508 NULL
6509 };
6510
6511 const char* const *p;
6512 int i;
6513
6514 for (i = 0; i < 2; ++i)
6515 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6516 *p;
6517 ++p)
6518 if (strcmp (*p, name) == 0)
6519 {
6520 /* All of these symbols are given type STT_SECTION by the
6521 IRIX6 linker. */
6522 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6523 sym->st_other = STO_PROTECTED;
6524
6525 /* The IRIX linker puts these symbols in special sections. */
6526 if (i == 0)
6527 sym->st_shndx = SHN_MIPS_TEXT;
6528 else
6529 sym->st_shndx = SHN_MIPS_DATA;
6530
6531 break;
6532 }
6533 }
6534
6535 /* Finish up dynamic symbol handling. We set the contents of various
6536 dynamic sections here. */
6537
6538 bfd_boolean
6539 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6540 struct bfd_link_info *info,
6541 struct elf_link_hash_entry *h,
6542 Elf_Internal_Sym *sym)
6543 {
6544 bfd *dynobj;
6545 asection *sgot;
6546 struct mips_got_info *g, *gg;
6547 const char *name;
6548
6549 dynobj = elf_hash_table (info)->dynobj;
6550
6551 if (h->plt.offset != MINUS_ONE)
6552 {
6553 asection *s;
6554 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6555
6556 /* This symbol has a stub. Set it up. */
6557
6558 BFD_ASSERT (h->dynindx != -1);
6559
6560 s = bfd_get_section_by_name (dynobj,
6561 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6562 BFD_ASSERT (s != NULL);
6563
6564 /* FIXME: Can h->dynindex be more than 64K? */
6565 if (h->dynindx & 0xffff0000)
6566 return FALSE;
6567
6568 /* Fill the stub. */
6569 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6570 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6571 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6572 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6573
6574 BFD_ASSERT (h->plt.offset <= s->size);
6575 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6576
6577 /* Mark the symbol as undefined. plt.offset != -1 occurs
6578 only for the referenced symbol. */
6579 sym->st_shndx = SHN_UNDEF;
6580
6581 /* The run-time linker uses the st_value field of the symbol
6582 to reset the global offset table entry for this external
6583 to its stub address when unlinking a shared object. */
6584 sym->st_value = (s->output_section->vma + s->output_offset
6585 + h->plt.offset);
6586 }
6587
6588 BFD_ASSERT (h->dynindx != -1
6589 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6590
6591 sgot = mips_elf_got_section (dynobj, FALSE);
6592 BFD_ASSERT (sgot != NULL);
6593 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6594 g = mips_elf_section_data (sgot)->u.got_info;
6595 BFD_ASSERT (g != NULL);
6596
6597 /* Run through the global symbol table, creating GOT entries for all
6598 the symbols that need them. */
6599 if (g->global_gotsym != NULL
6600 && h->dynindx >= g->global_gotsym->dynindx)
6601 {
6602 bfd_vma offset;
6603 bfd_vma value;
6604
6605 value = sym->st_value;
6606 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6607 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6608 }
6609
6610 if (g->next && h->dynindx != -1)
6611 {
6612 struct mips_got_entry e, *p;
6613 bfd_vma entry;
6614 bfd_vma offset;
6615
6616 gg = g;
6617
6618 e.abfd = output_bfd;
6619 e.symndx = -1;
6620 e.d.h = (struct mips_elf_link_hash_entry *)h;
6621
6622 for (g = g->next; g->next != gg; g = g->next)
6623 {
6624 if (g->got_entries
6625 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6626 &e)))
6627 {
6628 offset = p->gotidx;
6629 if (info->shared
6630 || (elf_hash_table (info)->dynamic_sections_created
6631 && p->d.h != NULL
6632 && ((p->d.h->root.elf_link_hash_flags
6633 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6634 && ((p->d.h->root.elf_link_hash_flags
6635 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6636 {
6637 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6638 the various compatibility problems, it's easier to mock
6639 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6640 mips_elf_create_dynamic_relocation to calculate the
6641 appropriate addend. */
6642 Elf_Internal_Rela rel[3];
6643
6644 memset (rel, 0, sizeof (rel));
6645 if (ABI_64_P (output_bfd))
6646 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6647 else
6648 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6649 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6650
6651 entry = 0;
6652 if (! (mips_elf_create_dynamic_relocation
6653 (output_bfd, info, rel,
6654 e.d.h, NULL, sym->st_value, &entry, sgot)))
6655 return FALSE;
6656 }
6657 else
6658 entry = sym->st_value;
6659 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
6660 }
6661 }
6662 }
6663
6664 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6665 name = h->root.root.string;
6666 if (strcmp (name, "_DYNAMIC") == 0
6667 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6668 sym->st_shndx = SHN_ABS;
6669 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6670 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6671 {
6672 sym->st_shndx = SHN_ABS;
6673 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6674 sym->st_value = 1;
6675 }
6676 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6677 {
6678 sym->st_shndx = SHN_ABS;
6679 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6680 sym->st_value = elf_gp (output_bfd);
6681 }
6682 else if (SGI_COMPAT (output_bfd))
6683 {
6684 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6685 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6686 {
6687 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6688 sym->st_other = STO_PROTECTED;
6689 sym->st_value = 0;
6690 sym->st_shndx = SHN_MIPS_DATA;
6691 }
6692 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6693 {
6694 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6695 sym->st_other = STO_PROTECTED;
6696 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6697 sym->st_shndx = SHN_ABS;
6698 }
6699 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6700 {
6701 if (h->type == STT_FUNC)
6702 sym->st_shndx = SHN_MIPS_TEXT;
6703 else if (h->type == STT_OBJECT)
6704 sym->st_shndx = SHN_MIPS_DATA;
6705 }
6706 }
6707
6708 /* Handle the IRIX6-specific symbols. */
6709 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6710 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6711
6712 if (! info->shared)
6713 {
6714 if (! mips_elf_hash_table (info)->use_rld_obj_head
6715 && (strcmp (name, "__rld_map") == 0
6716 || strcmp (name, "__RLD_MAP") == 0))
6717 {
6718 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6719 BFD_ASSERT (s != NULL);
6720 sym->st_value = s->output_section->vma + s->output_offset;
6721 bfd_put_32 (output_bfd, 0, s->contents);
6722 if (mips_elf_hash_table (info)->rld_value == 0)
6723 mips_elf_hash_table (info)->rld_value = sym->st_value;
6724 }
6725 else if (mips_elf_hash_table (info)->use_rld_obj_head
6726 && strcmp (name, "__rld_obj_head") == 0)
6727 {
6728 /* IRIX6 does not use a .rld_map section. */
6729 if (IRIX_COMPAT (output_bfd) == ict_irix5
6730 || IRIX_COMPAT (output_bfd) == ict_none)
6731 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6732 != NULL);
6733 mips_elf_hash_table (info)->rld_value = sym->st_value;
6734 }
6735 }
6736
6737 /* If this is a mips16 symbol, force the value to be even. */
6738 if (sym->st_other == STO_MIPS16)
6739 sym->st_value &= ~1;
6740
6741 return TRUE;
6742 }
6743
6744 /* Finish up the dynamic sections. */
6745
6746 bfd_boolean
6747 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6748 struct bfd_link_info *info)
6749 {
6750 bfd *dynobj;
6751 asection *sdyn;
6752 asection *sgot;
6753 struct mips_got_info *gg, *g;
6754
6755 dynobj = elf_hash_table (info)->dynobj;
6756
6757 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6758
6759 sgot = mips_elf_got_section (dynobj, FALSE);
6760 if (sgot == NULL)
6761 gg = g = NULL;
6762 else
6763 {
6764 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6765 gg = mips_elf_section_data (sgot)->u.got_info;
6766 BFD_ASSERT (gg != NULL);
6767 g = mips_elf_got_for_ibfd (gg, output_bfd);
6768 BFD_ASSERT (g != NULL);
6769 }
6770
6771 if (elf_hash_table (info)->dynamic_sections_created)
6772 {
6773 bfd_byte *b;
6774
6775 BFD_ASSERT (sdyn != NULL);
6776 BFD_ASSERT (g != NULL);
6777
6778 for (b = sdyn->contents;
6779 b < sdyn->contents + sdyn->size;
6780 b += MIPS_ELF_DYN_SIZE (dynobj))
6781 {
6782 Elf_Internal_Dyn dyn;
6783 const char *name;
6784 size_t elemsize;
6785 asection *s;
6786 bfd_boolean swap_out_p;
6787
6788 /* Read in the current dynamic entry. */
6789 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6790
6791 /* Assume that we're going to modify it and write it out. */
6792 swap_out_p = TRUE;
6793
6794 switch (dyn.d_tag)
6795 {
6796 case DT_RELENT:
6797 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6798 BFD_ASSERT (s != NULL);
6799 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6800 break;
6801
6802 case DT_STRSZ:
6803 /* Rewrite DT_STRSZ. */
6804 dyn.d_un.d_val =
6805 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6806 break;
6807
6808 case DT_PLTGOT:
6809 name = ".got";
6810 s = bfd_get_section_by_name (output_bfd, name);
6811 BFD_ASSERT (s != NULL);
6812 dyn.d_un.d_ptr = s->vma;
6813 break;
6814
6815 case DT_MIPS_RLD_VERSION:
6816 dyn.d_un.d_val = 1; /* XXX */
6817 break;
6818
6819 case DT_MIPS_FLAGS:
6820 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6821 break;
6822
6823 case DT_MIPS_TIME_STAMP:
6824 time ((time_t *) &dyn.d_un.d_val);
6825 break;
6826
6827 case DT_MIPS_ICHECKSUM:
6828 /* XXX FIXME: */
6829 swap_out_p = FALSE;
6830 break;
6831
6832 case DT_MIPS_IVERSION:
6833 /* XXX FIXME: */
6834 swap_out_p = FALSE;
6835 break;
6836
6837 case DT_MIPS_BASE_ADDRESS:
6838 s = output_bfd->sections;
6839 BFD_ASSERT (s != NULL);
6840 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6841 break;
6842
6843 case DT_MIPS_LOCAL_GOTNO:
6844 dyn.d_un.d_val = g->local_gotno;
6845 break;
6846
6847 case DT_MIPS_UNREFEXTNO:
6848 /* The index into the dynamic symbol table which is the
6849 entry of the first external symbol that is not
6850 referenced within the same object. */
6851 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6852 break;
6853
6854 case DT_MIPS_GOTSYM:
6855 if (gg->global_gotsym)
6856 {
6857 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6858 break;
6859 }
6860 /* In case if we don't have global got symbols we default
6861 to setting DT_MIPS_GOTSYM to the same value as
6862 DT_MIPS_SYMTABNO, so we just fall through. */
6863
6864 case DT_MIPS_SYMTABNO:
6865 name = ".dynsym";
6866 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6867 s = bfd_get_section_by_name (output_bfd, name);
6868 BFD_ASSERT (s != NULL);
6869
6870 dyn.d_un.d_val = s->size / elemsize;
6871 break;
6872
6873 case DT_MIPS_HIPAGENO:
6874 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6875 break;
6876
6877 case DT_MIPS_RLD_MAP:
6878 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6879 break;
6880
6881 case DT_MIPS_OPTIONS:
6882 s = (bfd_get_section_by_name
6883 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6884 dyn.d_un.d_ptr = s->vma;
6885 break;
6886
6887 case DT_RELSZ:
6888 /* Reduce DT_RELSZ to account for any relocations we
6889 decided not to make. This is for the n64 irix rld,
6890 which doesn't seem to apply any relocations if there
6891 are trailing null entries. */
6892 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6893 dyn.d_un.d_val = (s->reloc_count
6894 * (ABI_64_P (output_bfd)
6895 ? sizeof (Elf64_Mips_External_Rel)
6896 : sizeof (Elf32_External_Rel)));
6897 break;
6898
6899 default:
6900 swap_out_p = FALSE;
6901 break;
6902 }
6903
6904 if (swap_out_p)
6905 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6906 (dynobj, &dyn, b);
6907 }
6908 }
6909
6910 /* The first entry of the global offset table will be filled at
6911 runtime. The second entry will be used by some runtime loaders.
6912 This isn't the case of IRIX rld. */
6913 if (sgot != NULL && sgot->size > 0)
6914 {
6915 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6916 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
6917 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6918 }
6919
6920 if (sgot != NULL)
6921 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6922 = MIPS_ELF_GOT_SIZE (output_bfd);
6923
6924 /* Generate dynamic relocations for the non-primary gots. */
6925 if (gg != NULL && gg->next)
6926 {
6927 Elf_Internal_Rela rel[3];
6928 bfd_vma addend = 0;
6929
6930 memset (rel, 0, sizeof (rel));
6931 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6932
6933 for (g = gg->next; g->next != gg; g = g->next)
6934 {
6935 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6936
6937 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
6938 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6939 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
6940 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6941
6942 if (! info->shared)
6943 continue;
6944
6945 while (index < g->assigned_gotno)
6946 {
6947 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6948 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6949 if (!(mips_elf_create_dynamic_relocation
6950 (output_bfd, info, rel, NULL,
6951 bfd_abs_section_ptr,
6952 0, &addend, sgot)))
6953 return FALSE;
6954 BFD_ASSERT (addend == 0);
6955 }
6956 }
6957 }
6958
6959 {
6960 asection *s;
6961 Elf32_compact_rel cpt;
6962
6963 if (SGI_COMPAT (output_bfd))
6964 {
6965 /* Write .compact_rel section out. */
6966 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6967 if (s != NULL)
6968 {
6969 cpt.id1 = 1;
6970 cpt.num = s->reloc_count;
6971 cpt.id2 = 2;
6972 cpt.offset = (s->output_section->filepos
6973 + sizeof (Elf32_External_compact_rel));
6974 cpt.reserved0 = 0;
6975 cpt.reserved1 = 0;
6976 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6977 ((Elf32_External_compact_rel *)
6978 s->contents));
6979
6980 /* Clean up a dummy stub function entry in .text. */
6981 s = bfd_get_section_by_name (dynobj,
6982 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6983 if (s != NULL)
6984 {
6985 file_ptr dummy_offset;
6986
6987 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
6988 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
6989 memset (s->contents + dummy_offset, 0,
6990 MIPS_FUNCTION_STUB_SIZE);
6991 }
6992 }
6993 }
6994
6995 /* We need to sort the entries of the dynamic relocation section. */
6996
6997 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6998
6999 if (s != NULL
7000 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7001 {
7002 reldyn_sorting_bfd = output_bfd;
7003
7004 if (ABI_64_P (output_bfd))
7005 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7006 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7007 else
7008 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7009 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7010 }
7011 }
7012
7013 return TRUE;
7014 }
7015
7016
7017 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7018
7019 static void
7020 mips_set_isa_flags (bfd *abfd)
7021 {
7022 flagword val;
7023
7024 switch (bfd_get_mach (abfd))
7025 {
7026 default:
7027 case bfd_mach_mips3000:
7028 val = E_MIPS_ARCH_1;
7029 break;
7030
7031 case bfd_mach_mips3900:
7032 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7033 break;
7034
7035 case bfd_mach_mips6000:
7036 val = E_MIPS_ARCH_2;
7037 break;
7038
7039 case bfd_mach_mips4000:
7040 case bfd_mach_mips4300:
7041 case bfd_mach_mips4400:
7042 case bfd_mach_mips4600:
7043 val = E_MIPS_ARCH_3;
7044 break;
7045
7046 case bfd_mach_mips4010:
7047 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7048 break;
7049
7050 case bfd_mach_mips4100:
7051 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7052 break;
7053
7054 case bfd_mach_mips4111:
7055 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7056 break;
7057
7058 case bfd_mach_mips4120:
7059 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7060 break;
7061
7062 case bfd_mach_mips4650:
7063 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7064 break;
7065
7066 case bfd_mach_mips5400:
7067 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7068 break;
7069
7070 case bfd_mach_mips5500:
7071 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7072 break;
7073
7074 case bfd_mach_mips5000:
7075 case bfd_mach_mips7000:
7076 case bfd_mach_mips8000:
7077 case bfd_mach_mips10000:
7078 case bfd_mach_mips12000:
7079 val = E_MIPS_ARCH_4;
7080 break;
7081
7082 case bfd_mach_mips5:
7083 val = E_MIPS_ARCH_5;
7084 break;
7085
7086 case bfd_mach_mips_sb1:
7087 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7088 break;
7089
7090 case bfd_mach_mipsisa32:
7091 val = E_MIPS_ARCH_32;
7092 break;
7093
7094 case bfd_mach_mipsisa64:
7095 val = E_MIPS_ARCH_64;
7096 break;
7097
7098 case bfd_mach_mipsisa32r2:
7099 val = E_MIPS_ARCH_32R2;
7100 break;
7101
7102 case bfd_mach_mipsisa64r2:
7103 val = E_MIPS_ARCH_64R2;
7104 break;
7105 }
7106 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7107 elf_elfheader (abfd)->e_flags |= val;
7108
7109 }
7110
7111
7112 /* The final processing done just before writing out a MIPS ELF object
7113 file. This gets the MIPS architecture right based on the machine
7114 number. This is used by both the 32-bit and the 64-bit ABI. */
7115
7116 void
7117 _bfd_mips_elf_final_write_processing (bfd *abfd,
7118 bfd_boolean linker ATTRIBUTE_UNUSED)
7119 {
7120 unsigned int i;
7121 Elf_Internal_Shdr **hdrpp;
7122 const char *name;
7123 asection *sec;
7124
7125 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7126 is nonzero. This is for compatibility with old objects, which used
7127 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7128 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7129 mips_set_isa_flags (abfd);
7130
7131 /* Set the sh_info field for .gptab sections and other appropriate
7132 info for each special section. */
7133 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7134 i < elf_numsections (abfd);
7135 i++, hdrpp++)
7136 {
7137 switch ((*hdrpp)->sh_type)
7138 {
7139 case SHT_MIPS_MSYM:
7140 case SHT_MIPS_LIBLIST:
7141 sec = bfd_get_section_by_name (abfd, ".dynstr");
7142 if (sec != NULL)
7143 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7144 break;
7145
7146 case SHT_MIPS_GPTAB:
7147 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7148 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7149 BFD_ASSERT (name != NULL
7150 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7151 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7152 BFD_ASSERT (sec != NULL);
7153 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7154 break;
7155
7156 case SHT_MIPS_CONTENT:
7157 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7158 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7159 BFD_ASSERT (name != NULL
7160 && strncmp (name, ".MIPS.content",
7161 sizeof ".MIPS.content" - 1) == 0);
7162 sec = bfd_get_section_by_name (abfd,
7163 name + sizeof ".MIPS.content" - 1);
7164 BFD_ASSERT (sec != NULL);
7165 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7166 break;
7167
7168 case SHT_MIPS_SYMBOL_LIB:
7169 sec = bfd_get_section_by_name (abfd, ".dynsym");
7170 if (sec != NULL)
7171 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7172 sec = bfd_get_section_by_name (abfd, ".liblist");
7173 if (sec != NULL)
7174 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7175 break;
7176
7177 case SHT_MIPS_EVENTS:
7178 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7179 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7180 BFD_ASSERT (name != NULL);
7181 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7182 sec = bfd_get_section_by_name (abfd,
7183 name + sizeof ".MIPS.events" - 1);
7184 else
7185 {
7186 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7187 sizeof ".MIPS.post_rel" - 1) == 0);
7188 sec = bfd_get_section_by_name (abfd,
7189 (name
7190 + sizeof ".MIPS.post_rel" - 1));
7191 }
7192 BFD_ASSERT (sec != NULL);
7193 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7194 break;
7195
7196 }
7197 }
7198 }
7199 \f
7200 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7201 segments. */
7202
7203 int
7204 _bfd_mips_elf_additional_program_headers (bfd *abfd)
7205 {
7206 asection *s;
7207 int ret = 0;
7208
7209 /* See if we need a PT_MIPS_REGINFO segment. */
7210 s = bfd_get_section_by_name (abfd, ".reginfo");
7211 if (s && (s->flags & SEC_LOAD))
7212 ++ret;
7213
7214 /* See if we need a PT_MIPS_OPTIONS segment. */
7215 if (IRIX_COMPAT (abfd) == ict_irix6
7216 && bfd_get_section_by_name (abfd,
7217 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7218 ++ret;
7219
7220 /* See if we need a PT_MIPS_RTPROC segment. */
7221 if (IRIX_COMPAT (abfd) == ict_irix5
7222 && bfd_get_section_by_name (abfd, ".dynamic")
7223 && bfd_get_section_by_name (abfd, ".mdebug"))
7224 ++ret;
7225
7226 return ret;
7227 }
7228
7229 /* Modify the segment map for an IRIX5 executable. */
7230
7231 bfd_boolean
7232 _bfd_mips_elf_modify_segment_map (bfd *abfd,
7233 struct bfd_link_info *info ATTRIBUTE_UNUSED)
7234 {
7235 asection *s;
7236 struct elf_segment_map *m, **pm;
7237 bfd_size_type amt;
7238
7239 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7240 segment. */
7241 s = bfd_get_section_by_name (abfd, ".reginfo");
7242 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7243 {
7244 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7245 if (m->p_type == PT_MIPS_REGINFO)
7246 break;
7247 if (m == NULL)
7248 {
7249 amt = sizeof *m;
7250 m = bfd_zalloc (abfd, amt);
7251 if (m == NULL)
7252 return FALSE;
7253
7254 m->p_type = PT_MIPS_REGINFO;
7255 m->count = 1;
7256 m->sections[0] = s;
7257
7258 /* We want to put it after the PHDR and INTERP segments. */
7259 pm = &elf_tdata (abfd)->segment_map;
7260 while (*pm != NULL
7261 && ((*pm)->p_type == PT_PHDR
7262 || (*pm)->p_type == PT_INTERP))
7263 pm = &(*pm)->next;
7264
7265 m->next = *pm;
7266 *pm = m;
7267 }
7268 }
7269
7270 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7271 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7272 PT_MIPS_OPTIONS segment immediately following the program header
7273 table. */
7274 if (NEWABI_P (abfd)
7275 /* On non-IRIX6 new abi, we'll have already created a segment
7276 for this section, so don't create another. I'm not sure this
7277 is not also the case for IRIX 6, but I can't test it right
7278 now. */
7279 && IRIX_COMPAT (abfd) == ict_irix6)
7280 {
7281 for (s = abfd->sections; s; s = s->next)
7282 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7283 break;
7284
7285 if (s)
7286 {
7287 struct elf_segment_map *options_segment;
7288
7289 pm = &elf_tdata (abfd)->segment_map;
7290 while (*pm != NULL
7291 && ((*pm)->p_type == PT_PHDR
7292 || (*pm)->p_type == PT_INTERP))
7293 pm = &(*pm)->next;
7294
7295 amt = sizeof (struct elf_segment_map);
7296 options_segment = bfd_zalloc (abfd, amt);
7297 options_segment->next = *pm;
7298 options_segment->p_type = PT_MIPS_OPTIONS;
7299 options_segment->p_flags = PF_R;
7300 options_segment->p_flags_valid = TRUE;
7301 options_segment->count = 1;
7302 options_segment->sections[0] = s;
7303 *pm = options_segment;
7304 }
7305 }
7306 else
7307 {
7308 if (IRIX_COMPAT (abfd) == ict_irix5)
7309 {
7310 /* If there are .dynamic and .mdebug sections, we make a room
7311 for the RTPROC header. FIXME: Rewrite without section names. */
7312 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7313 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7314 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7315 {
7316 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7317 if (m->p_type == PT_MIPS_RTPROC)
7318 break;
7319 if (m == NULL)
7320 {
7321 amt = sizeof *m;
7322 m = bfd_zalloc (abfd, amt);
7323 if (m == NULL)
7324 return FALSE;
7325
7326 m->p_type = PT_MIPS_RTPROC;
7327
7328 s = bfd_get_section_by_name (abfd, ".rtproc");
7329 if (s == NULL)
7330 {
7331 m->count = 0;
7332 m->p_flags = 0;
7333 m->p_flags_valid = 1;
7334 }
7335 else
7336 {
7337 m->count = 1;
7338 m->sections[0] = s;
7339 }
7340
7341 /* We want to put it after the DYNAMIC segment. */
7342 pm = &elf_tdata (abfd)->segment_map;
7343 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7344 pm = &(*pm)->next;
7345 if (*pm != NULL)
7346 pm = &(*pm)->next;
7347
7348 m->next = *pm;
7349 *pm = m;
7350 }
7351 }
7352 }
7353 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7354 .dynstr, .dynsym, and .hash sections, and everything in
7355 between. */
7356 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7357 pm = &(*pm)->next)
7358 if ((*pm)->p_type == PT_DYNAMIC)
7359 break;
7360 m = *pm;
7361 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7362 {
7363 /* For a normal mips executable the permissions for the PT_DYNAMIC
7364 segment are read, write and execute. We do that here since
7365 the code in elf.c sets only the read permission. This matters
7366 sometimes for the dynamic linker. */
7367 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7368 {
7369 m->p_flags = PF_R | PF_W | PF_X;
7370 m->p_flags_valid = 1;
7371 }
7372 }
7373 if (m != NULL
7374 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7375 {
7376 static const char *sec_names[] =
7377 {
7378 ".dynamic", ".dynstr", ".dynsym", ".hash"
7379 };
7380 bfd_vma low, high;
7381 unsigned int i, c;
7382 struct elf_segment_map *n;
7383
7384 low = ~(bfd_vma) 0;
7385 high = 0;
7386 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7387 {
7388 s = bfd_get_section_by_name (abfd, sec_names[i]);
7389 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7390 {
7391 bfd_size_type sz;
7392
7393 if (low > s->vma)
7394 low = s->vma;
7395 sz = s->size;
7396 if (high < s->vma + sz)
7397 high = s->vma + sz;
7398 }
7399 }
7400
7401 c = 0;
7402 for (s = abfd->sections; s != NULL; s = s->next)
7403 if ((s->flags & SEC_LOAD) != 0
7404 && s->vma >= low
7405 && s->vma + s->size <= high)
7406 ++c;
7407
7408 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7409 n = bfd_zalloc (abfd, amt);
7410 if (n == NULL)
7411 return FALSE;
7412 *n = *m;
7413 n->count = c;
7414
7415 i = 0;
7416 for (s = abfd->sections; s != NULL; s = s->next)
7417 {
7418 if ((s->flags & SEC_LOAD) != 0
7419 && s->vma >= low
7420 && s->vma + s->size <= high)
7421 {
7422 n->sections[i] = s;
7423 ++i;
7424 }
7425 }
7426
7427 *pm = n;
7428 }
7429 }
7430
7431 return TRUE;
7432 }
7433 \f
7434 /* Return the section that should be marked against GC for a given
7435 relocation. */
7436
7437 asection *
7438 _bfd_mips_elf_gc_mark_hook (asection *sec,
7439 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7440 Elf_Internal_Rela *rel,
7441 struct elf_link_hash_entry *h,
7442 Elf_Internal_Sym *sym)
7443 {
7444 /* ??? Do mips16 stub sections need to be handled special? */
7445
7446 if (h != NULL)
7447 {
7448 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7449 {
7450 case R_MIPS_GNU_VTINHERIT:
7451 case R_MIPS_GNU_VTENTRY:
7452 break;
7453
7454 default:
7455 switch (h->root.type)
7456 {
7457 case bfd_link_hash_defined:
7458 case bfd_link_hash_defweak:
7459 return h->root.u.def.section;
7460
7461 case bfd_link_hash_common:
7462 return h->root.u.c.p->section;
7463
7464 default:
7465 break;
7466 }
7467 }
7468 }
7469 else
7470 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7471
7472 return NULL;
7473 }
7474
7475 /* Update the got entry reference counts for the section being removed. */
7476
7477 bfd_boolean
7478 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7479 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7480 asection *sec ATTRIBUTE_UNUSED,
7481 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
7482 {
7483 #if 0
7484 Elf_Internal_Shdr *symtab_hdr;
7485 struct elf_link_hash_entry **sym_hashes;
7486 bfd_signed_vma *local_got_refcounts;
7487 const Elf_Internal_Rela *rel, *relend;
7488 unsigned long r_symndx;
7489 struct elf_link_hash_entry *h;
7490
7491 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7492 sym_hashes = elf_sym_hashes (abfd);
7493 local_got_refcounts = elf_local_got_refcounts (abfd);
7494
7495 relend = relocs + sec->reloc_count;
7496 for (rel = relocs; rel < relend; rel++)
7497 switch (ELF_R_TYPE (abfd, rel->r_info))
7498 {
7499 case R_MIPS_GOT16:
7500 case R_MIPS_CALL16:
7501 case R_MIPS_CALL_HI16:
7502 case R_MIPS_CALL_LO16:
7503 case R_MIPS_GOT_HI16:
7504 case R_MIPS_GOT_LO16:
7505 case R_MIPS_GOT_DISP:
7506 case R_MIPS_GOT_PAGE:
7507 case R_MIPS_GOT_OFST:
7508 /* ??? It would seem that the existing MIPS code does no sort
7509 of reference counting or whatnot on its GOT and PLT entries,
7510 so it is not possible to garbage collect them at this time. */
7511 break;
7512
7513 default:
7514 break;
7515 }
7516 #endif
7517
7518 return TRUE;
7519 }
7520 \f
7521 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7522 hiding the old indirect symbol. Process additional relocation
7523 information. Also called for weakdefs, in which case we just let
7524 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7525
7526 void
7527 _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7528 struct elf_link_hash_entry *dir,
7529 struct elf_link_hash_entry *ind)
7530 {
7531 struct mips_elf_link_hash_entry *dirmips, *indmips;
7532
7533 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7534
7535 if (ind->root.type != bfd_link_hash_indirect)
7536 return;
7537
7538 dirmips = (struct mips_elf_link_hash_entry *) dir;
7539 indmips = (struct mips_elf_link_hash_entry *) ind;
7540 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7541 if (indmips->readonly_reloc)
7542 dirmips->readonly_reloc = TRUE;
7543 if (indmips->no_fn_stub)
7544 dirmips->no_fn_stub = TRUE;
7545 }
7546
7547 void
7548 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7549 struct elf_link_hash_entry *entry,
7550 bfd_boolean force_local)
7551 {
7552 bfd *dynobj;
7553 asection *got;
7554 struct mips_got_info *g;
7555 struct mips_elf_link_hash_entry *h;
7556
7557 h = (struct mips_elf_link_hash_entry *) entry;
7558 if (h->forced_local)
7559 return;
7560 h->forced_local = force_local;
7561
7562 dynobj = elf_hash_table (info)->dynobj;
7563 if (dynobj != NULL && force_local)
7564 {
7565 got = mips_elf_got_section (dynobj, FALSE);
7566 g = mips_elf_section_data (got)->u.got_info;
7567
7568 if (g->next)
7569 {
7570 struct mips_got_entry e;
7571 struct mips_got_info *gg = g;
7572
7573 /* Since we're turning what used to be a global symbol into a
7574 local one, bump up the number of local entries of each GOT
7575 that had an entry for it. This will automatically decrease
7576 the number of global entries, since global_gotno is actually
7577 the upper limit of global entries. */
7578 e.abfd = dynobj;
7579 e.symndx = -1;
7580 e.d.h = h;
7581
7582 for (g = g->next; g != gg; g = g->next)
7583 if (htab_find (g->got_entries, &e))
7584 {
7585 BFD_ASSERT (g->global_gotno > 0);
7586 g->local_gotno++;
7587 g->global_gotno--;
7588 }
7589
7590 /* If this was a global symbol forced into the primary GOT, we
7591 no longer need an entry for it. We can't release the entry
7592 at this point, but we must at least stop counting it as one
7593 of the symbols that required a forced got entry. */
7594 if (h->root.got.offset == 2)
7595 {
7596 BFD_ASSERT (gg->assigned_gotno > 0);
7597 gg->assigned_gotno--;
7598 }
7599 }
7600 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7601 /* If we haven't got through GOT allocation yet, just bump up the
7602 number of local entries, as this symbol won't be counted as
7603 global. */
7604 g->local_gotno++;
7605 else if (h->root.got.offset == 1)
7606 {
7607 /* If we're past non-multi-GOT allocation and this symbol had
7608 been marked for a global got entry, give it a local entry
7609 instead. */
7610 BFD_ASSERT (g->global_gotno > 0);
7611 g->local_gotno++;
7612 g->global_gotno--;
7613 }
7614 }
7615
7616 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7617 }
7618 \f
7619 #define PDR_SIZE 32
7620
7621 bfd_boolean
7622 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7623 struct bfd_link_info *info)
7624 {
7625 asection *o;
7626 bfd_boolean ret = FALSE;
7627 unsigned char *tdata;
7628 size_t i, skip;
7629
7630 o = bfd_get_section_by_name (abfd, ".pdr");
7631 if (! o)
7632 return FALSE;
7633 if (o->size == 0)
7634 return FALSE;
7635 if (o->size % PDR_SIZE != 0)
7636 return FALSE;
7637 if (o->output_section != NULL
7638 && bfd_is_abs_section (o->output_section))
7639 return FALSE;
7640
7641 tdata = bfd_zmalloc (o->size / PDR_SIZE);
7642 if (! tdata)
7643 return FALSE;
7644
7645 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7646 info->keep_memory);
7647 if (!cookie->rels)
7648 {
7649 free (tdata);
7650 return FALSE;
7651 }
7652
7653 cookie->rel = cookie->rels;
7654 cookie->relend = cookie->rels + o->reloc_count;
7655
7656 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
7657 {
7658 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
7659 {
7660 tdata[i] = 1;
7661 skip ++;
7662 }
7663 }
7664
7665 if (skip != 0)
7666 {
7667 mips_elf_section_data (o)->u.tdata = tdata;
7668 o->size -= skip * PDR_SIZE;
7669 ret = TRUE;
7670 }
7671 else
7672 free (tdata);
7673
7674 if (! info->keep_memory)
7675 free (cookie->rels);
7676
7677 return ret;
7678 }
7679
7680 bfd_boolean
7681 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
7682 {
7683 if (strcmp (sec->name, ".pdr") == 0)
7684 return TRUE;
7685 return FALSE;
7686 }
7687
7688 bfd_boolean
7689 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7690 bfd_byte *contents)
7691 {
7692 bfd_byte *to, *from, *end;
7693 int i;
7694
7695 if (strcmp (sec->name, ".pdr") != 0)
7696 return FALSE;
7697
7698 if (mips_elf_section_data (sec)->u.tdata == NULL)
7699 return FALSE;
7700
7701 to = contents;
7702 end = contents + sec->size;
7703 for (from = contents, i = 0;
7704 from < end;
7705 from += PDR_SIZE, i++)
7706 {
7707 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7708 continue;
7709 if (to != from)
7710 memcpy (to, from, PDR_SIZE);
7711 to += PDR_SIZE;
7712 }
7713 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7714 sec->output_offset, sec->size);
7715 return TRUE;
7716 }
7717 \f
7718 /* MIPS ELF uses a special find_nearest_line routine in order the
7719 handle the ECOFF debugging information. */
7720
7721 struct mips_elf_find_line
7722 {
7723 struct ecoff_debug_info d;
7724 struct ecoff_find_line i;
7725 };
7726
7727 bfd_boolean
7728 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7729 asymbol **symbols, bfd_vma offset,
7730 const char **filename_ptr,
7731 const char **functionname_ptr,
7732 unsigned int *line_ptr)
7733 {
7734 asection *msec;
7735
7736 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7737 filename_ptr, functionname_ptr,
7738 line_ptr))
7739 return TRUE;
7740
7741 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7742 filename_ptr, functionname_ptr,
7743 line_ptr, ABI_64_P (abfd) ? 8 : 0,
7744 &elf_tdata (abfd)->dwarf2_find_line_info))
7745 return TRUE;
7746
7747 msec = bfd_get_section_by_name (abfd, ".mdebug");
7748 if (msec != NULL)
7749 {
7750 flagword origflags;
7751 struct mips_elf_find_line *fi;
7752 const struct ecoff_debug_swap * const swap =
7753 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7754
7755 /* If we are called during a link, mips_elf_final_link may have
7756 cleared the SEC_HAS_CONTENTS field. We force it back on here
7757 if appropriate (which it normally will be). */
7758 origflags = msec->flags;
7759 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7760 msec->flags |= SEC_HAS_CONTENTS;
7761
7762 fi = elf_tdata (abfd)->find_line_info;
7763 if (fi == NULL)
7764 {
7765 bfd_size_type external_fdr_size;
7766 char *fraw_src;
7767 char *fraw_end;
7768 struct fdr *fdr_ptr;
7769 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7770
7771 fi = bfd_zalloc (abfd, amt);
7772 if (fi == NULL)
7773 {
7774 msec->flags = origflags;
7775 return FALSE;
7776 }
7777
7778 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7779 {
7780 msec->flags = origflags;
7781 return FALSE;
7782 }
7783
7784 /* Swap in the FDR information. */
7785 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7786 fi->d.fdr = bfd_alloc (abfd, amt);
7787 if (fi->d.fdr == NULL)
7788 {
7789 msec->flags = origflags;
7790 return FALSE;
7791 }
7792 external_fdr_size = swap->external_fdr_size;
7793 fdr_ptr = fi->d.fdr;
7794 fraw_src = (char *) fi->d.external_fdr;
7795 fraw_end = (fraw_src
7796 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7797 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7798 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
7799
7800 elf_tdata (abfd)->find_line_info = fi;
7801
7802 /* Note that we don't bother to ever free this information.
7803 find_nearest_line is either called all the time, as in
7804 objdump -l, so the information should be saved, or it is
7805 rarely called, as in ld error messages, so the memory
7806 wasted is unimportant. Still, it would probably be a
7807 good idea for free_cached_info to throw it away. */
7808 }
7809
7810 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7811 &fi->i, filename_ptr, functionname_ptr,
7812 line_ptr))
7813 {
7814 msec->flags = origflags;
7815 return TRUE;
7816 }
7817
7818 msec->flags = origflags;
7819 }
7820
7821 /* Fall back on the generic ELF find_nearest_line routine. */
7822
7823 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7824 filename_ptr, functionname_ptr,
7825 line_ptr);
7826 }
7827 \f
7828 /* When are writing out the .options or .MIPS.options section,
7829 remember the bytes we are writing out, so that we can install the
7830 GP value in the section_processing routine. */
7831
7832 bfd_boolean
7833 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7834 const void *location,
7835 file_ptr offset, bfd_size_type count)
7836 {
7837 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7838 {
7839 bfd_byte *c;
7840
7841 if (elf_section_data (section) == NULL)
7842 {
7843 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7844 section->used_by_bfd = bfd_zalloc (abfd, amt);
7845 if (elf_section_data (section) == NULL)
7846 return FALSE;
7847 }
7848 c = mips_elf_section_data (section)->u.tdata;
7849 if (c == NULL)
7850 {
7851 c = bfd_zalloc (abfd, section->size);
7852 if (c == NULL)
7853 return FALSE;
7854 mips_elf_section_data (section)->u.tdata = c;
7855 }
7856
7857 memcpy (c + offset, location, count);
7858 }
7859
7860 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7861 count);
7862 }
7863
7864 /* This is almost identical to bfd_generic_get_... except that some
7865 MIPS relocations need to be handled specially. Sigh. */
7866
7867 bfd_byte *
7868 _bfd_elf_mips_get_relocated_section_contents
7869 (bfd *abfd,
7870 struct bfd_link_info *link_info,
7871 struct bfd_link_order *link_order,
7872 bfd_byte *data,
7873 bfd_boolean relocatable,
7874 asymbol **symbols)
7875 {
7876 /* Get enough memory to hold the stuff */
7877 bfd *input_bfd = link_order->u.indirect.section->owner;
7878 asection *input_section = link_order->u.indirect.section;
7879 bfd_size_type sz;
7880
7881 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7882 arelent **reloc_vector = NULL;
7883 long reloc_count;
7884
7885 if (reloc_size < 0)
7886 goto error_return;
7887
7888 reloc_vector = bfd_malloc (reloc_size);
7889 if (reloc_vector == NULL && reloc_size != 0)
7890 goto error_return;
7891
7892 /* read in the section */
7893 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
7894 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
7895 goto error_return;
7896
7897 reloc_count = bfd_canonicalize_reloc (input_bfd,
7898 input_section,
7899 reloc_vector,
7900 symbols);
7901 if (reloc_count < 0)
7902 goto error_return;
7903
7904 if (reloc_count > 0)
7905 {
7906 arelent **parent;
7907 /* for mips */
7908 int gp_found;
7909 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7910
7911 {
7912 struct bfd_hash_entry *h;
7913 struct bfd_link_hash_entry *lh;
7914 /* Skip all this stuff if we aren't mixing formats. */
7915 if (abfd && input_bfd
7916 && abfd->xvec == input_bfd->xvec)
7917 lh = 0;
7918 else
7919 {
7920 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
7921 lh = (struct bfd_link_hash_entry *) h;
7922 }
7923 lookup:
7924 if (lh)
7925 {
7926 switch (lh->type)
7927 {
7928 case bfd_link_hash_undefined:
7929 case bfd_link_hash_undefweak:
7930 case bfd_link_hash_common:
7931 gp_found = 0;
7932 break;
7933 case bfd_link_hash_defined:
7934 case bfd_link_hash_defweak:
7935 gp_found = 1;
7936 gp = lh->u.def.value;
7937 break;
7938 case bfd_link_hash_indirect:
7939 case bfd_link_hash_warning:
7940 lh = lh->u.i.link;
7941 /* @@FIXME ignoring warning for now */
7942 goto lookup;
7943 case bfd_link_hash_new:
7944 default:
7945 abort ();
7946 }
7947 }
7948 else
7949 gp_found = 0;
7950 }
7951 /* end mips */
7952 for (parent = reloc_vector; *parent != NULL; parent++)
7953 {
7954 char *error_message = NULL;
7955 bfd_reloc_status_type r;
7956
7957 /* Specific to MIPS: Deal with relocation types that require
7958 knowing the gp of the output bfd. */
7959 asymbol *sym = *(*parent)->sym_ptr_ptr;
7960 if (bfd_is_abs_section (sym->section) && abfd)
7961 {
7962 /* The special_function wouldn't get called anyway. */
7963 }
7964 else if (!gp_found)
7965 {
7966 /* The gp isn't there; let the special function code
7967 fall over on its own. */
7968 }
7969 else if ((*parent)->howto->special_function
7970 == _bfd_mips_elf32_gprel16_reloc)
7971 {
7972 /* bypass special_function call */
7973 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
7974 input_section, relocatable,
7975 data, gp);
7976 goto skip_bfd_perform_relocation;
7977 }
7978 /* end mips specific stuff */
7979
7980 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
7981 relocatable ? abfd : NULL,
7982 &error_message);
7983 skip_bfd_perform_relocation:
7984
7985 if (relocatable)
7986 {
7987 asection *os = input_section->output_section;
7988
7989 /* A partial link, so keep the relocs */
7990 os->orelocation[os->reloc_count] = *parent;
7991 os->reloc_count++;
7992 }
7993
7994 if (r != bfd_reloc_ok)
7995 {
7996 switch (r)
7997 {
7998 case bfd_reloc_undefined:
7999 if (!((*link_info->callbacks->undefined_symbol)
8000 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8001 input_bfd, input_section, (*parent)->address,
8002 TRUE)))
8003 goto error_return;
8004 break;
8005 case bfd_reloc_dangerous:
8006 BFD_ASSERT (error_message != NULL);
8007 if (!((*link_info->callbacks->reloc_dangerous)
8008 (link_info, error_message, input_bfd, input_section,
8009 (*parent)->address)))
8010 goto error_return;
8011 break;
8012 case bfd_reloc_overflow:
8013 if (!((*link_info->callbacks->reloc_overflow)
8014 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8015 (*parent)->howto->name, (*parent)->addend,
8016 input_bfd, input_section, (*parent)->address)))
8017 goto error_return;
8018 break;
8019 case bfd_reloc_outofrange:
8020 default:
8021 abort ();
8022 break;
8023 }
8024
8025 }
8026 }
8027 }
8028 if (reloc_vector != NULL)
8029 free (reloc_vector);
8030 return data;
8031
8032 error_return:
8033 if (reloc_vector != NULL)
8034 free (reloc_vector);
8035 return NULL;
8036 }
8037 \f
8038 /* Create a MIPS ELF linker hash table. */
8039
8040 struct bfd_link_hash_table *
8041 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8042 {
8043 struct mips_elf_link_hash_table *ret;
8044 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8045
8046 ret = bfd_malloc (amt);
8047 if (ret == NULL)
8048 return NULL;
8049
8050 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8051 mips_elf_link_hash_newfunc))
8052 {
8053 free (ret);
8054 return NULL;
8055 }
8056
8057 #if 0
8058 /* We no longer use this. */
8059 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8060 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8061 #endif
8062 ret->procedure_count = 0;
8063 ret->compact_rel_size = 0;
8064 ret->use_rld_obj_head = FALSE;
8065 ret->rld_value = 0;
8066 ret->mips16_stubs_seen = FALSE;
8067
8068 return &ret->root.root;
8069 }
8070 \f
8071 /* We need to use a special link routine to handle the .reginfo and
8072 the .mdebug sections. We need to merge all instances of these
8073 sections together, not write them all out sequentially. */
8074
8075 bfd_boolean
8076 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8077 {
8078 asection **secpp;
8079 asection *o;
8080 struct bfd_link_order *p;
8081 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8082 asection *rtproc_sec;
8083 Elf32_RegInfo reginfo;
8084 struct ecoff_debug_info debug;
8085 const struct ecoff_debug_swap *swap
8086 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8087 HDRR *symhdr = &debug.symbolic_header;
8088 void *mdebug_handle = NULL;
8089 asection *s;
8090 EXTR esym;
8091 unsigned int i;
8092 bfd_size_type amt;
8093
8094 static const char * const secname[] =
8095 {
8096 ".text", ".init", ".fini", ".data",
8097 ".rodata", ".sdata", ".sbss", ".bss"
8098 };
8099 static const int sc[] =
8100 {
8101 scText, scInit, scFini, scData,
8102 scRData, scSData, scSBss, scBss
8103 };
8104
8105 /* We'd carefully arranged the dynamic symbol indices, and then the
8106 generic size_dynamic_sections renumbered them out from under us.
8107 Rather than trying somehow to prevent the renumbering, just do
8108 the sort again. */
8109 if (elf_hash_table (info)->dynamic_sections_created)
8110 {
8111 bfd *dynobj;
8112 asection *got;
8113 struct mips_got_info *g;
8114
8115 /* When we resort, we must tell mips_elf_sort_hash_table what
8116 the lowest index it may use is. That's the number of section
8117 symbols we're going to add. The generic ELF linker only
8118 adds these symbols when building a shared object. Note that
8119 we count the sections after (possibly) removing the .options
8120 section above. */
8121 if (! mips_elf_sort_hash_table (info, (info->shared
8122 ? bfd_count_sections (abfd) + 1
8123 : 1)))
8124 return FALSE;
8125
8126 /* Make sure we didn't grow the global .got region. */
8127 dynobj = elf_hash_table (info)->dynobj;
8128 got = mips_elf_got_section (dynobj, FALSE);
8129 g = mips_elf_section_data (got)->u.got_info;
8130
8131 if (g->global_gotsym != NULL)
8132 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8133 - g->global_gotsym->dynindx)
8134 <= g->global_gotno);
8135 }
8136
8137 #if 0
8138 /* We want to set the GP value for ld -r. */
8139 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8140 include it, even though we don't process it quite right. (Some
8141 entries are supposed to be merged.) Empirically, we seem to be
8142 better off including it then not. */
8143 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8144 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8145 {
8146 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8147 {
8148 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8149 if (p->type == bfd_indirect_link_order)
8150 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8151 (*secpp)->link_order_head = NULL;
8152 bfd_section_list_remove (abfd, secpp);
8153 --abfd->section_count;
8154
8155 break;
8156 }
8157 }
8158
8159 /* We include .MIPS.options, even though we don't process it quite right.
8160 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8161 to be better off including it than not. */
8162 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8163 {
8164 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8165 {
8166 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8167 if (p->type == bfd_indirect_link_order)
8168 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8169 (*secpp)->link_order_head = NULL;
8170 bfd_section_list_remove (abfd, secpp);
8171 --abfd->section_count;
8172
8173 break;
8174 }
8175 }
8176 #endif
8177
8178 /* Get a value for the GP register. */
8179 if (elf_gp (abfd) == 0)
8180 {
8181 struct bfd_link_hash_entry *h;
8182
8183 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8184 if (h != NULL && h->type == bfd_link_hash_defined)
8185 elf_gp (abfd) = (h->u.def.value
8186 + h->u.def.section->output_section->vma
8187 + h->u.def.section->output_offset);
8188 else if (info->relocatable)
8189 {
8190 bfd_vma lo = MINUS_ONE;
8191
8192 /* Find the GP-relative section with the lowest offset. */
8193 for (o = abfd->sections; o != NULL; o = o->next)
8194 if (o->vma < lo
8195 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8196 lo = o->vma;
8197
8198 /* And calculate GP relative to that. */
8199 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8200 }
8201 else
8202 {
8203 /* If the relocate_section function needs to do a reloc
8204 involving the GP value, it should make a reloc_dangerous
8205 callback to warn that GP is not defined. */
8206 }
8207 }
8208
8209 /* Go through the sections and collect the .reginfo and .mdebug
8210 information. */
8211 reginfo_sec = NULL;
8212 mdebug_sec = NULL;
8213 gptab_data_sec = NULL;
8214 gptab_bss_sec = NULL;
8215 for (o = abfd->sections; o != NULL; o = o->next)
8216 {
8217 if (strcmp (o->name, ".reginfo") == 0)
8218 {
8219 memset (&reginfo, 0, sizeof reginfo);
8220
8221 /* We have found the .reginfo section in the output file.
8222 Look through all the link_orders comprising it and merge
8223 the information together. */
8224 for (p = o->link_order_head; p != NULL; p = p->next)
8225 {
8226 asection *input_section;
8227 bfd *input_bfd;
8228 Elf32_External_RegInfo ext;
8229 Elf32_RegInfo sub;
8230
8231 if (p->type != bfd_indirect_link_order)
8232 {
8233 if (p->type == bfd_data_link_order)
8234 continue;
8235 abort ();
8236 }
8237
8238 input_section = p->u.indirect.section;
8239 input_bfd = input_section->owner;
8240
8241 if (! bfd_get_section_contents (input_bfd, input_section,
8242 &ext, 0, sizeof ext))
8243 return FALSE;
8244
8245 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8246
8247 reginfo.ri_gprmask |= sub.ri_gprmask;
8248 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8249 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8250 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8251 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8252
8253 /* ri_gp_value is set by the function
8254 mips_elf32_section_processing when the section is
8255 finally written out. */
8256
8257 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8258 elf_link_input_bfd ignores this section. */
8259 input_section->flags &= ~SEC_HAS_CONTENTS;
8260 }
8261
8262 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8263 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
8264
8265 /* Skip this section later on (I don't think this currently
8266 matters, but someday it might). */
8267 o->link_order_head = NULL;
8268
8269 reginfo_sec = o;
8270 }
8271
8272 if (strcmp (o->name, ".mdebug") == 0)
8273 {
8274 struct extsym_info einfo;
8275 bfd_vma last;
8276
8277 /* We have found the .mdebug section in the output file.
8278 Look through all the link_orders comprising it and merge
8279 the information together. */
8280 symhdr->magic = swap->sym_magic;
8281 /* FIXME: What should the version stamp be? */
8282 symhdr->vstamp = 0;
8283 symhdr->ilineMax = 0;
8284 symhdr->cbLine = 0;
8285 symhdr->idnMax = 0;
8286 symhdr->ipdMax = 0;
8287 symhdr->isymMax = 0;
8288 symhdr->ioptMax = 0;
8289 symhdr->iauxMax = 0;
8290 symhdr->issMax = 0;
8291 symhdr->issExtMax = 0;
8292 symhdr->ifdMax = 0;
8293 symhdr->crfd = 0;
8294 symhdr->iextMax = 0;
8295
8296 /* We accumulate the debugging information itself in the
8297 debug_info structure. */
8298 debug.line = NULL;
8299 debug.external_dnr = NULL;
8300 debug.external_pdr = NULL;
8301 debug.external_sym = NULL;
8302 debug.external_opt = NULL;
8303 debug.external_aux = NULL;
8304 debug.ss = NULL;
8305 debug.ssext = debug.ssext_end = NULL;
8306 debug.external_fdr = NULL;
8307 debug.external_rfd = NULL;
8308 debug.external_ext = debug.external_ext_end = NULL;
8309
8310 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8311 if (mdebug_handle == NULL)
8312 return FALSE;
8313
8314 esym.jmptbl = 0;
8315 esym.cobol_main = 0;
8316 esym.weakext = 0;
8317 esym.reserved = 0;
8318 esym.ifd = ifdNil;
8319 esym.asym.iss = issNil;
8320 esym.asym.st = stLocal;
8321 esym.asym.reserved = 0;
8322 esym.asym.index = indexNil;
8323 last = 0;
8324 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8325 {
8326 esym.asym.sc = sc[i];
8327 s = bfd_get_section_by_name (abfd, secname[i]);
8328 if (s != NULL)
8329 {
8330 esym.asym.value = s->vma;
8331 last = s->vma + s->size;
8332 }
8333 else
8334 esym.asym.value = last;
8335 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8336 secname[i], &esym))
8337 return FALSE;
8338 }
8339
8340 for (p = o->link_order_head; p != NULL; p = p->next)
8341 {
8342 asection *input_section;
8343 bfd *input_bfd;
8344 const struct ecoff_debug_swap *input_swap;
8345 struct ecoff_debug_info input_debug;
8346 char *eraw_src;
8347 char *eraw_end;
8348
8349 if (p->type != bfd_indirect_link_order)
8350 {
8351 if (p->type == bfd_data_link_order)
8352 continue;
8353 abort ();
8354 }
8355
8356 input_section = p->u.indirect.section;
8357 input_bfd = input_section->owner;
8358
8359 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8360 || (get_elf_backend_data (input_bfd)
8361 ->elf_backend_ecoff_debug_swap) == NULL)
8362 {
8363 /* I don't know what a non MIPS ELF bfd would be
8364 doing with a .mdebug section, but I don't really
8365 want to deal with it. */
8366 continue;
8367 }
8368
8369 input_swap = (get_elf_backend_data (input_bfd)
8370 ->elf_backend_ecoff_debug_swap);
8371
8372 BFD_ASSERT (p->size == input_section->size);
8373
8374 /* The ECOFF linking code expects that we have already
8375 read in the debugging information and set up an
8376 ecoff_debug_info structure, so we do that now. */
8377 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8378 &input_debug))
8379 return FALSE;
8380
8381 if (! (bfd_ecoff_debug_accumulate
8382 (mdebug_handle, abfd, &debug, swap, input_bfd,
8383 &input_debug, input_swap, info)))
8384 return FALSE;
8385
8386 /* Loop through the external symbols. For each one with
8387 interesting information, try to find the symbol in
8388 the linker global hash table and save the information
8389 for the output external symbols. */
8390 eraw_src = input_debug.external_ext;
8391 eraw_end = (eraw_src
8392 + (input_debug.symbolic_header.iextMax
8393 * input_swap->external_ext_size));
8394 for (;
8395 eraw_src < eraw_end;
8396 eraw_src += input_swap->external_ext_size)
8397 {
8398 EXTR ext;
8399 const char *name;
8400 struct mips_elf_link_hash_entry *h;
8401
8402 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
8403 if (ext.asym.sc == scNil
8404 || ext.asym.sc == scUndefined
8405 || ext.asym.sc == scSUndefined)
8406 continue;
8407
8408 name = input_debug.ssext + ext.asym.iss;
8409 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8410 name, FALSE, FALSE, TRUE);
8411 if (h == NULL || h->esym.ifd != -2)
8412 continue;
8413
8414 if (ext.ifd != -1)
8415 {
8416 BFD_ASSERT (ext.ifd
8417 < input_debug.symbolic_header.ifdMax);
8418 ext.ifd = input_debug.ifdmap[ext.ifd];
8419 }
8420
8421 h->esym = ext;
8422 }
8423
8424 /* Free up the information we just read. */
8425 free (input_debug.line);
8426 free (input_debug.external_dnr);
8427 free (input_debug.external_pdr);
8428 free (input_debug.external_sym);
8429 free (input_debug.external_opt);
8430 free (input_debug.external_aux);
8431 free (input_debug.ss);
8432 free (input_debug.ssext);
8433 free (input_debug.external_fdr);
8434 free (input_debug.external_rfd);
8435 free (input_debug.external_ext);
8436
8437 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8438 elf_link_input_bfd ignores this section. */
8439 input_section->flags &= ~SEC_HAS_CONTENTS;
8440 }
8441
8442 if (SGI_COMPAT (abfd) && info->shared)
8443 {
8444 /* Create .rtproc section. */
8445 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8446 if (rtproc_sec == NULL)
8447 {
8448 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8449 | SEC_LINKER_CREATED | SEC_READONLY);
8450
8451 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8452 if (rtproc_sec == NULL
8453 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8454 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8455 return FALSE;
8456 }
8457
8458 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8459 info, rtproc_sec,
8460 &debug))
8461 return FALSE;
8462 }
8463
8464 /* Build the external symbol information. */
8465 einfo.abfd = abfd;
8466 einfo.info = info;
8467 einfo.debug = &debug;
8468 einfo.swap = swap;
8469 einfo.failed = FALSE;
8470 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8471 mips_elf_output_extsym, &einfo);
8472 if (einfo.failed)
8473 return FALSE;
8474
8475 /* Set the size of the .mdebug section. */
8476 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
8477
8478 /* Skip this section later on (I don't think this currently
8479 matters, but someday it might). */
8480 o->link_order_head = NULL;
8481
8482 mdebug_sec = o;
8483 }
8484
8485 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8486 {
8487 const char *subname;
8488 unsigned int c;
8489 Elf32_gptab *tab;
8490 Elf32_External_gptab *ext_tab;
8491 unsigned int j;
8492
8493 /* The .gptab.sdata and .gptab.sbss sections hold
8494 information describing how the small data area would
8495 change depending upon the -G switch. These sections
8496 not used in executables files. */
8497 if (! info->relocatable)
8498 {
8499 for (p = o->link_order_head; p != NULL; p = p->next)
8500 {
8501 asection *input_section;
8502
8503 if (p->type != bfd_indirect_link_order)
8504 {
8505 if (p->type == bfd_data_link_order)
8506 continue;
8507 abort ();
8508 }
8509
8510 input_section = p->u.indirect.section;
8511
8512 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8513 elf_link_input_bfd ignores this section. */
8514 input_section->flags &= ~SEC_HAS_CONTENTS;
8515 }
8516
8517 /* Skip this section later on (I don't think this
8518 currently matters, but someday it might). */
8519 o->link_order_head = NULL;
8520
8521 /* Really remove the section. */
8522 for (secpp = &abfd->sections;
8523 *secpp != o;
8524 secpp = &(*secpp)->next)
8525 ;
8526 bfd_section_list_remove (abfd, secpp);
8527 --abfd->section_count;
8528
8529 continue;
8530 }
8531
8532 /* There is one gptab for initialized data, and one for
8533 uninitialized data. */
8534 if (strcmp (o->name, ".gptab.sdata") == 0)
8535 gptab_data_sec = o;
8536 else if (strcmp (o->name, ".gptab.sbss") == 0)
8537 gptab_bss_sec = o;
8538 else
8539 {
8540 (*_bfd_error_handler)
8541 (_("%s: illegal section name `%s'"),
8542 bfd_get_filename (abfd), o->name);
8543 bfd_set_error (bfd_error_nonrepresentable_section);
8544 return FALSE;
8545 }
8546
8547 /* The linker script always combines .gptab.data and
8548 .gptab.sdata into .gptab.sdata, and likewise for
8549 .gptab.bss and .gptab.sbss. It is possible that there is
8550 no .sdata or .sbss section in the output file, in which
8551 case we must change the name of the output section. */
8552 subname = o->name + sizeof ".gptab" - 1;
8553 if (bfd_get_section_by_name (abfd, subname) == NULL)
8554 {
8555 if (o == gptab_data_sec)
8556 o->name = ".gptab.data";
8557 else
8558 o->name = ".gptab.bss";
8559 subname = o->name + sizeof ".gptab" - 1;
8560 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8561 }
8562
8563 /* Set up the first entry. */
8564 c = 1;
8565 amt = c * sizeof (Elf32_gptab);
8566 tab = bfd_malloc (amt);
8567 if (tab == NULL)
8568 return FALSE;
8569 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8570 tab[0].gt_header.gt_unused = 0;
8571
8572 /* Combine the input sections. */
8573 for (p = o->link_order_head; p != NULL; p = p->next)
8574 {
8575 asection *input_section;
8576 bfd *input_bfd;
8577 bfd_size_type size;
8578 unsigned long last;
8579 bfd_size_type gpentry;
8580
8581 if (p->type != bfd_indirect_link_order)
8582 {
8583 if (p->type == bfd_data_link_order)
8584 continue;
8585 abort ();
8586 }
8587
8588 input_section = p->u.indirect.section;
8589 input_bfd = input_section->owner;
8590
8591 /* Combine the gptab entries for this input section one
8592 by one. We know that the input gptab entries are
8593 sorted by ascending -G value. */
8594 size = input_section->size;
8595 last = 0;
8596 for (gpentry = sizeof (Elf32_External_gptab);
8597 gpentry < size;
8598 gpentry += sizeof (Elf32_External_gptab))
8599 {
8600 Elf32_External_gptab ext_gptab;
8601 Elf32_gptab int_gptab;
8602 unsigned long val;
8603 unsigned long add;
8604 bfd_boolean exact;
8605 unsigned int look;
8606
8607 if (! (bfd_get_section_contents
8608 (input_bfd, input_section, &ext_gptab, gpentry,
8609 sizeof (Elf32_External_gptab))))
8610 {
8611 free (tab);
8612 return FALSE;
8613 }
8614
8615 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8616 &int_gptab);
8617 val = int_gptab.gt_entry.gt_g_value;
8618 add = int_gptab.gt_entry.gt_bytes - last;
8619
8620 exact = FALSE;
8621 for (look = 1; look < c; look++)
8622 {
8623 if (tab[look].gt_entry.gt_g_value >= val)
8624 tab[look].gt_entry.gt_bytes += add;
8625
8626 if (tab[look].gt_entry.gt_g_value == val)
8627 exact = TRUE;
8628 }
8629
8630 if (! exact)
8631 {
8632 Elf32_gptab *new_tab;
8633 unsigned int max;
8634
8635 /* We need a new table entry. */
8636 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8637 new_tab = bfd_realloc (tab, amt);
8638 if (new_tab == NULL)
8639 {
8640 free (tab);
8641 return FALSE;
8642 }
8643 tab = new_tab;
8644 tab[c].gt_entry.gt_g_value = val;
8645 tab[c].gt_entry.gt_bytes = add;
8646
8647 /* Merge in the size for the next smallest -G
8648 value, since that will be implied by this new
8649 value. */
8650 max = 0;
8651 for (look = 1; look < c; look++)
8652 {
8653 if (tab[look].gt_entry.gt_g_value < val
8654 && (max == 0
8655 || (tab[look].gt_entry.gt_g_value
8656 > tab[max].gt_entry.gt_g_value)))
8657 max = look;
8658 }
8659 if (max != 0)
8660 tab[c].gt_entry.gt_bytes +=
8661 tab[max].gt_entry.gt_bytes;
8662
8663 ++c;
8664 }
8665
8666 last = int_gptab.gt_entry.gt_bytes;
8667 }
8668
8669 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8670 elf_link_input_bfd ignores this section. */
8671 input_section->flags &= ~SEC_HAS_CONTENTS;
8672 }
8673
8674 /* The table must be sorted by -G value. */
8675 if (c > 2)
8676 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8677
8678 /* Swap out the table. */
8679 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8680 ext_tab = bfd_alloc (abfd, amt);
8681 if (ext_tab == NULL)
8682 {
8683 free (tab);
8684 return FALSE;
8685 }
8686
8687 for (j = 0; j < c; j++)
8688 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8689 free (tab);
8690
8691 o->size = c * sizeof (Elf32_External_gptab);
8692 o->contents = (bfd_byte *) ext_tab;
8693
8694 /* Skip this section later on (I don't think this currently
8695 matters, but someday it might). */
8696 o->link_order_head = NULL;
8697 }
8698 }
8699
8700 /* Invoke the regular ELF backend linker to do all the work. */
8701 if (!bfd_elf_final_link (abfd, info))
8702 return FALSE;
8703
8704 /* Now write out the computed sections. */
8705
8706 if (reginfo_sec != NULL)
8707 {
8708 Elf32_External_RegInfo ext;
8709
8710 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8711 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
8712 return FALSE;
8713 }
8714
8715 if (mdebug_sec != NULL)
8716 {
8717 BFD_ASSERT (abfd->output_has_begun);
8718 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8719 swap, info,
8720 mdebug_sec->filepos))
8721 return FALSE;
8722
8723 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8724 }
8725
8726 if (gptab_data_sec != NULL)
8727 {
8728 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8729 gptab_data_sec->contents,
8730 0, gptab_data_sec->size))
8731 return FALSE;
8732 }
8733
8734 if (gptab_bss_sec != NULL)
8735 {
8736 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8737 gptab_bss_sec->contents,
8738 0, gptab_bss_sec->size))
8739 return FALSE;
8740 }
8741
8742 if (SGI_COMPAT (abfd))
8743 {
8744 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8745 if (rtproc_sec != NULL)
8746 {
8747 if (! bfd_set_section_contents (abfd, rtproc_sec,
8748 rtproc_sec->contents,
8749 0, rtproc_sec->size))
8750 return FALSE;
8751 }
8752 }
8753
8754 return TRUE;
8755 }
8756 \f
8757 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8758
8759 struct mips_mach_extension {
8760 unsigned long extension, base;
8761 };
8762
8763
8764 /* An array describing how BFD machines relate to one another. The entries
8765 are ordered topologically with MIPS I extensions listed last. */
8766
8767 static const struct mips_mach_extension mips_mach_extensions[] = {
8768 /* MIPS64 extensions. */
8769 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
8770 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8771
8772 /* MIPS V extensions. */
8773 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8774
8775 /* R10000 extensions. */
8776 { bfd_mach_mips12000, bfd_mach_mips10000 },
8777
8778 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8779 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8780 better to allow vr5400 and vr5500 code to be merged anyway, since
8781 many libraries will just use the core ISA. Perhaps we could add
8782 some sort of ASE flag if this ever proves a problem. */
8783 { bfd_mach_mips5500, bfd_mach_mips5400 },
8784 { bfd_mach_mips5400, bfd_mach_mips5000 },
8785
8786 /* MIPS IV extensions. */
8787 { bfd_mach_mips5, bfd_mach_mips8000 },
8788 { bfd_mach_mips10000, bfd_mach_mips8000 },
8789 { bfd_mach_mips5000, bfd_mach_mips8000 },
8790 { bfd_mach_mips7000, bfd_mach_mips8000 },
8791
8792 /* VR4100 extensions. */
8793 { bfd_mach_mips4120, bfd_mach_mips4100 },
8794 { bfd_mach_mips4111, bfd_mach_mips4100 },
8795
8796 /* MIPS III extensions. */
8797 { bfd_mach_mips8000, bfd_mach_mips4000 },
8798 { bfd_mach_mips4650, bfd_mach_mips4000 },
8799 { bfd_mach_mips4600, bfd_mach_mips4000 },
8800 { bfd_mach_mips4400, bfd_mach_mips4000 },
8801 { bfd_mach_mips4300, bfd_mach_mips4000 },
8802 { bfd_mach_mips4100, bfd_mach_mips4000 },
8803 { bfd_mach_mips4010, bfd_mach_mips4000 },
8804
8805 /* MIPS32 extensions. */
8806 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8807
8808 /* MIPS II extensions. */
8809 { bfd_mach_mips4000, bfd_mach_mips6000 },
8810 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8811
8812 /* MIPS I extensions. */
8813 { bfd_mach_mips6000, bfd_mach_mips3000 },
8814 { bfd_mach_mips3900, bfd_mach_mips3000 }
8815 };
8816
8817
8818 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8819
8820 static bfd_boolean
8821 mips_mach_extends_p (unsigned long base, unsigned long extension)
8822 {
8823 size_t i;
8824
8825 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8826 if (extension == mips_mach_extensions[i].extension)
8827 extension = mips_mach_extensions[i].base;
8828
8829 return extension == base;
8830 }
8831
8832
8833 /* Return true if the given ELF header flags describe a 32-bit binary. */
8834
8835 static bfd_boolean
8836 mips_32bit_flags_p (flagword flags)
8837 {
8838 return ((flags & EF_MIPS_32BITMODE) != 0
8839 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8840 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8841 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8842 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8843 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8844 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8845 }
8846
8847
8848 /* Merge backend specific data from an object file to the output
8849 object file when linking. */
8850
8851 bfd_boolean
8852 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
8853 {
8854 flagword old_flags;
8855 flagword new_flags;
8856 bfd_boolean ok;
8857 bfd_boolean null_input_bfd = TRUE;
8858 asection *sec;
8859
8860 /* Check if we have the same endianess */
8861 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8862 {
8863 (*_bfd_error_handler)
8864 (_("%s: endianness incompatible with that of the selected emulation"),
8865 bfd_archive_filename (ibfd));
8866 return FALSE;
8867 }
8868
8869 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8870 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8871 return TRUE;
8872
8873 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8874 {
8875 (*_bfd_error_handler)
8876 (_("%s: ABI is incompatible with that of the selected emulation"),
8877 bfd_archive_filename (ibfd));
8878 return FALSE;
8879 }
8880
8881 new_flags = elf_elfheader (ibfd)->e_flags;
8882 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8883 old_flags = elf_elfheader (obfd)->e_flags;
8884
8885 if (! elf_flags_init (obfd))
8886 {
8887 elf_flags_init (obfd) = TRUE;
8888 elf_elfheader (obfd)->e_flags = new_flags;
8889 elf_elfheader (obfd)->e_ident[EI_CLASS]
8890 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8891
8892 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8893 && bfd_get_arch_info (obfd)->the_default)
8894 {
8895 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8896 bfd_get_mach (ibfd)))
8897 return FALSE;
8898 }
8899
8900 return TRUE;
8901 }
8902
8903 /* Check flag compatibility. */
8904
8905 new_flags &= ~EF_MIPS_NOREORDER;
8906 old_flags &= ~EF_MIPS_NOREORDER;
8907
8908 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8909 doesn't seem to matter. */
8910 new_flags &= ~EF_MIPS_XGOT;
8911 old_flags &= ~EF_MIPS_XGOT;
8912
8913 /* MIPSpro generates ucode info in n64 objects. Again, we should
8914 just be able to ignore this. */
8915 new_flags &= ~EF_MIPS_UCODE;
8916 old_flags &= ~EF_MIPS_UCODE;
8917
8918 if (new_flags == old_flags)
8919 return TRUE;
8920
8921 /* Check to see if the input BFD actually contains any sections.
8922 If not, its flags may not have been initialised either, but it cannot
8923 actually cause any incompatibility. */
8924 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8925 {
8926 /* Ignore synthetic sections and empty .text, .data and .bss sections
8927 which are automatically generated by gas. */
8928 if (strcmp (sec->name, ".reginfo")
8929 && strcmp (sec->name, ".mdebug")
8930 && (sec->size != 0
8931 || (strcmp (sec->name, ".text")
8932 && strcmp (sec->name, ".data")
8933 && strcmp (sec->name, ".bss"))))
8934 {
8935 null_input_bfd = FALSE;
8936 break;
8937 }
8938 }
8939 if (null_input_bfd)
8940 return TRUE;
8941
8942 ok = TRUE;
8943
8944 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8945 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
8946 {
8947 (*_bfd_error_handler)
8948 (_("%s: warning: linking PIC files with non-PIC files"),
8949 bfd_archive_filename (ibfd));
8950 ok = TRUE;
8951 }
8952
8953 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
8954 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
8955 if (! (new_flags & EF_MIPS_PIC))
8956 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
8957
8958 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8959 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8960
8961 /* Compare the ISAs. */
8962 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
8963 {
8964 (*_bfd_error_handler)
8965 (_("%s: linking 32-bit code with 64-bit code"),
8966 bfd_archive_filename (ibfd));
8967 ok = FALSE;
8968 }
8969 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8970 {
8971 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8972 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
8973 {
8974 /* Copy the architecture info from IBFD to OBFD. Also copy
8975 the 32-bit flag (if set) so that we continue to recognise
8976 OBFD as a 32-bit binary. */
8977 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
8978 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8979 elf_elfheader (obfd)->e_flags
8980 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
8981
8982 /* Copy across the ABI flags if OBFD doesn't use them
8983 and if that was what caused us to treat IBFD as 32-bit. */
8984 if ((old_flags & EF_MIPS_ABI) == 0
8985 && mips_32bit_flags_p (new_flags)
8986 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
8987 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
8988 }
8989 else
8990 {
8991 /* The ISAs aren't compatible. */
8992 (*_bfd_error_handler)
8993 (_("%s: linking %s module with previous %s modules"),
8994 bfd_archive_filename (ibfd),
8995 bfd_printable_name (ibfd),
8996 bfd_printable_name (obfd));
8997 ok = FALSE;
8998 }
8999 }
9000
9001 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9002 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9003
9004 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9005 does set EI_CLASS differently from any 32-bit ABI. */
9006 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9007 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9008 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9009 {
9010 /* Only error if both are set (to different values). */
9011 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9012 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9013 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9014 {
9015 (*_bfd_error_handler)
9016 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9017 bfd_archive_filename (ibfd),
9018 elf_mips_abi_name (ibfd),
9019 elf_mips_abi_name (obfd));
9020 ok = FALSE;
9021 }
9022 new_flags &= ~EF_MIPS_ABI;
9023 old_flags &= ~EF_MIPS_ABI;
9024 }
9025
9026 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9027 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9028 {
9029 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9030
9031 new_flags &= ~ EF_MIPS_ARCH_ASE;
9032 old_flags &= ~ EF_MIPS_ARCH_ASE;
9033 }
9034
9035 /* Warn about any other mismatches */
9036 if (new_flags != old_flags)
9037 {
9038 (*_bfd_error_handler)
9039 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9040 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9041 (unsigned long) old_flags);
9042 ok = FALSE;
9043 }
9044
9045 if (! ok)
9046 {
9047 bfd_set_error (bfd_error_bad_value);
9048 return FALSE;
9049 }
9050
9051 return TRUE;
9052 }
9053
9054 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9055
9056 bfd_boolean
9057 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9058 {
9059 BFD_ASSERT (!elf_flags_init (abfd)
9060 || elf_elfheader (abfd)->e_flags == flags);
9061
9062 elf_elfheader (abfd)->e_flags = flags;
9063 elf_flags_init (abfd) = TRUE;
9064 return TRUE;
9065 }
9066
9067 bfd_boolean
9068 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9069 {
9070 FILE *file = ptr;
9071
9072 BFD_ASSERT (abfd != NULL && ptr != NULL);
9073
9074 /* Print normal ELF private data. */
9075 _bfd_elf_print_private_bfd_data (abfd, ptr);
9076
9077 /* xgettext:c-format */
9078 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9079
9080 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9081 fprintf (file, _(" [abi=O32]"));
9082 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9083 fprintf (file, _(" [abi=O64]"));
9084 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9085 fprintf (file, _(" [abi=EABI32]"));
9086 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9087 fprintf (file, _(" [abi=EABI64]"));
9088 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9089 fprintf (file, _(" [abi unknown]"));
9090 else if (ABI_N32_P (abfd))
9091 fprintf (file, _(" [abi=N32]"));
9092 else if (ABI_64_P (abfd))
9093 fprintf (file, _(" [abi=64]"));
9094 else
9095 fprintf (file, _(" [no abi set]"));
9096
9097 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9098 fprintf (file, _(" [mips1]"));
9099 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9100 fprintf (file, _(" [mips2]"));
9101 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9102 fprintf (file, _(" [mips3]"));
9103 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9104 fprintf (file, _(" [mips4]"));
9105 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9106 fprintf (file, _(" [mips5]"));
9107 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9108 fprintf (file, _(" [mips32]"));
9109 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9110 fprintf (file, _(" [mips64]"));
9111 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9112 fprintf (file, _(" [mips32r2]"));
9113 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9114 fprintf (file, _(" [mips64r2]"));
9115 else
9116 fprintf (file, _(" [unknown ISA]"));
9117
9118 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9119 fprintf (file, _(" [mdmx]"));
9120
9121 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9122 fprintf (file, _(" [mips16]"));
9123
9124 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9125 fprintf (file, _(" [32bitmode]"));
9126 else
9127 fprintf (file, _(" [not 32bitmode]"));
9128
9129 fputc ('\n', file);
9130
9131 return TRUE;
9132 }
9133
9134 struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9135 {
9136 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9137 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9138 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9139 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9140 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9141 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9142 { NULL, 0, 0, 0, 0 }
9143 };
This page took 0.23733 seconds and 5 git commands to generate.