* Reverted 2003-03-02's patch.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary
167 GOTs). */
168 long max_unref_got_dynindx;
169 /* The greatest dynamic symbol table index not corresponding to a
170 symbol without a GOT entry. */
171 long max_non_got_dynindx;
172 };
173
174 /* The MIPS ELF linker needs additional information for each symbol in
175 the global hash table. */
176
177 struct mips_elf_link_hash_entry
178 {
179 struct elf_link_hash_entry root;
180
181 /* External symbol information. */
182 EXTR esym;
183
184 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
185 this symbol. */
186 unsigned int possibly_dynamic_relocs;
187
188 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
189 a readonly section. */
190 bfd_boolean readonly_reloc;
191
192 /* The index of the first dynamic relocation (in the .rel.dyn
193 section) against this symbol. */
194 unsigned int min_dyn_reloc_index;
195
196 /* We must not create a stub for a symbol that has relocations
197 related to taking the function's address, i.e. any but
198 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
199 p. 4-20. */
200 bfd_boolean no_fn_stub;
201
202 /* If there is a stub that 32 bit functions should use to call this
203 16 bit function, this points to the section containing the stub. */
204 asection *fn_stub;
205
206 /* Whether we need the fn_stub; this is set if this symbol appears
207 in any relocs other than a 16 bit call. */
208 bfd_boolean need_fn_stub;
209
210 /* If there is a stub that 16 bit functions should use to call this
211 32 bit function, this points to the section containing the stub. */
212 asection *call_stub;
213
214 /* This is like the call_stub field, but it is used if the function
215 being called returns a floating point value. */
216 asection *call_fp_stub;
217
218 /* Are we forced local? .*/
219 bfd_boolean forced_local;
220 };
221
222 /* MIPS ELF linker hash table. */
223
224 struct mips_elf_link_hash_table
225 {
226 struct elf_link_hash_table root;
227 #if 0
228 /* We no longer use this. */
229 /* String section indices for the dynamic section symbols. */
230 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
231 #endif
232 /* The number of .rtproc entries. */
233 bfd_size_type procedure_count;
234 /* The size of the .compact_rel section (if SGI_COMPAT). */
235 bfd_size_type compact_rel_size;
236 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
237 entry is set to the address of __rld_obj_head as in IRIX5. */
238 bfd_boolean use_rld_obj_head;
239 /* This is the value of the __rld_map or __rld_obj_head symbol. */
240 bfd_vma rld_value;
241 /* This is set if we see any mips16 stub sections. */
242 bfd_boolean mips16_stubs_seen;
243 };
244
245 /* Structure used to pass information to mips_elf_output_extsym. */
246
247 struct extsym_info
248 {
249 bfd *abfd;
250 struct bfd_link_info *info;
251 struct ecoff_debug_info *debug;
252 const struct ecoff_debug_swap *swap;
253 bfd_boolean failed;
254 };
255
256 /* The names of the runtime procedure table symbols used on IRIX5. */
257
258 static const char * const mips_elf_dynsym_rtproc_names[] =
259 {
260 "_procedure_table",
261 "_procedure_string_table",
262 "_procedure_table_size",
263 NULL
264 };
265
266 /* These structures are used to generate the .compact_rel section on
267 IRIX5. */
268
269 typedef struct
270 {
271 unsigned long id1; /* Always one? */
272 unsigned long num; /* Number of compact relocation entries. */
273 unsigned long id2; /* Always two? */
274 unsigned long offset; /* The file offset of the first relocation. */
275 unsigned long reserved0; /* Zero? */
276 unsigned long reserved1; /* Zero? */
277 } Elf32_compact_rel;
278
279 typedef struct
280 {
281 bfd_byte id1[4];
282 bfd_byte num[4];
283 bfd_byte id2[4];
284 bfd_byte offset[4];
285 bfd_byte reserved0[4];
286 bfd_byte reserved1[4];
287 } Elf32_External_compact_rel;
288
289 typedef struct
290 {
291 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
292 unsigned int rtype : 4; /* Relocation types. See below. */
293 unsigned int dist2to : 8;
294 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
295 unsigned long konst; /* KONST field. See below. */
296 unsigned long vaddr; /* VADDR to be relocated. */
297 } Elf32_crinfo;
298
299 typedef struct
300 {
301 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
302 unsigned int rtype : 4; /* Relocation types. See below. */
303 unsigned int dist2to : 8;
304 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
305 unsigned long konst; /* KONST field. See below. */
306 } Elf32_crinfo2;
307
308 typedef struct
309 {
310 bfd_byte info[4];
311 bfd_byte konst[4];
312 bfd_byte vaddr[4];
313 } Elf32_External_crinfo;
314
315 typedef struct
316 {
317 bfd_byte info[4];
318 bfd_byte konst[4];
319 } Elf32_External_crinfo2;
320
321 /* These are the constants used to swap the bitfields in a crinfo. */
322
323 #define CRINFO_CTYPE (0x1)
324 #define CRINFO_CTYPE_SH (31)
325 #define CRINFO_RTYPE (0xf)
326 #define CRINFO_RTYPE_SH (27)
327 #define CRINFO_DIST2TO (0xff)
328 #define CRINFO_DIST2TO_SH (19)
329 #define CRINFO_RELVADDR (0x7ffff)
330 #define CRINFO_RELVADDR_SH (0)
331
332 /* A compact relocation info has long (3 words) or short (2 words)
333 formats. A short format doesn't have VADDR field and relvaddr
334 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
335 #define CRF_MIPS_LONG 1
336 #define CRF_MIPS_SHORT 0
337
338 /* There are 4 types of compact relocation at least. The value KONST
339 has different meaning for each type:
340
341 (type) (konst)
342 CT_MIPS_REL32 Address in data
343 CT_MIPS_WORD Address in word (XXX)
344 CT_MIPS_GPHI_LO GP - vaddr
345 CT_MIPS_JMPAD Address to jump
346 */
347
348 #define CRT_MIPS_REL32 0xa
349 #define CRT_MIPS_WORD 0xb
350 #define CRT_MIPS_GPHI_LO 0xc
351 #define CRT_MIPS_JMPAD 0xd
352
353 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
354 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
355 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
356 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
357 \f
358 /* The structure of the runtime procedure descriptor created by the
359 loader for use by the static exception system. */
360
361 typedef struct runtime_pdr {
362 bfd_vma adr; /* Memory address of start of procedure. */
363 long regmask; /* Save register mask. */
364 long regoffset; /* Save register offset. */
365 long fregmask; /* Save floating point register mask. */
366 long fregoffset; /* Save floating point register offset. */
367 long frameoffset; /* Frame size. */
368 short framereg; /* Frame pointer register. */
369 short pcreg; /* Offset or reg of return pc. */
370 long irpss; /* Index into the runtime string table. */
371 long reserved;
372 struct exception_info *exception_info;/* Pointer to exception array. */
373 } RPDR, *pRPDR;
374 #define cbRPDR sizeof (RPDR)
375 #define rpdNil ((pRPDR) 0)
376 \f
377 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
378 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
379 static void ecoff_swap_rpdr_out
380 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
381 static bfd_boolean mips_elf_create_procedure_table
382 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
383 struct ecoff_debug_info *));
384 static bfd_boolean mips_elf_check_mips16_stubs
385 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
386 static void bfd_mips_elf32_swap_gptab_in
387 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
388 static void bfd_mips_elf32_swap_gptab_out
389 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
390 static void bfd_elf32_swap_compact_rel_out
391 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
392 static void bfd_elf32_swap_crinfo_out
393 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
394 #if 0
395 static void bfd_mips_elf_swap_msym_in
396 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
397 #endif
398 static void bfd_mips_elf_swap_msym_out
399 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
400 static int sort_dynamic_relocs
401 PARAMS ((const void *, const void *));
402 static int sort_dynamic_relocs_64
403 PARAMS ((const void *, const void *));
404 static bfd_boolean mips_elf_output_extsym
405 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
406 static int gptab_compare PARAMS ((const void *, const void *));
407 static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
408 static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
409 static struct mips_got_info *mips_elf_got_info
410 PARAMS ((bfd *, asection **));
411 static bfd_vma mips_elf_local_got_index
412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
413 static bfd_vma mips_elf_global_got_index
414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
415 static bfd_vma mips_elf_got_page
416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
417 static bfd_vma mips_elf_got16_entry
418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
419 static bfd_vma mips_elf_got_offset_from_index
420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
421 static struct mips_got_entry *mips_elf_create_local_got_entry
422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
423 static bfd_boolean mips_elf_sort_hash_table
424 PARAMS ((struct bfd_link_info *, unsigned long));
425 static bfd_boolean mips_elf_sort_hash_table_f
426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
427 static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
429 static bfd_boolean mips_elf_record_global_got_symbol
430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
431 struct mips_got_info *));
432 static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
435 static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
437 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
438 static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
439 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
440 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
441 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
442 static bfd_boolean mips_elf_create_compact_rel_section
443 PARAMS ((bfd *, struct bfd_link_info *));
444 static bfd_boolean mips_elf_create_got_section
445 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
446 static asection *mips_elf_create_msym_section
447 PARAMS ((bfd *));
448 static bfd_reloc_status_type mips_elf_calculate_relocation
449 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
450 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
451 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
452 bfd_boolean *, bfd_boolean));
453 static bfd_vma mips_elf_obtain_contents
454 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
455 static bfd_boolean mips_elf_perform_relocation
456 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
457 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
458 bfd_boolean));
459 static bfd_boolean mips_elf_stub_section_p
460 PARAMS ((bfd *, asection *));
461 static void mips_elf_allocate_dynamic_relocations
462 PARAMS ((bfd *, unsigned int));
463 static bfd_boolean mips_elf_create_dynamic_relocation
464 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
465 struct mips_elf_link_hash_entry *, asection *,
466 bfd_vma, bfd_vma *, asection *));
467 static void mips_set_isa_flags PARAMS ((bfd *));
468 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
469 static void mips_elf_irix6_finish_dynamic_symbol
470 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
471 static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
472 static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
473 static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
474 static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
475 static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
476
477 static bfd_boolean mips_elf_multi_got
478 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
479 asection *, bfd_size_type));
480 static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
481 static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
482 static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
483 static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
484 static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
485 static int mips_elf_merge_gots PARAMS ((void **, void *));
486 static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
487 static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
488 static void mips_elf_resolve_final_got_entries
489 PARAMS ((struct mips_got_info *));
490 static bfd_vma mips_elf_adjust_gp
491 PARAMS ((bfd *, struct mips_got_info *, bfd *));
492 static struct mips_got_info *mips_elf_got_for_ibfd
493 PARAMS ((struct mips_got_info *, bfd *));
494
495 /* This will be used when we sort the dynamic relocation records. */
496 static bfd *reldyn_sorting_bfd;
497
498 /* Nonzero if ABFD is using the N32 ABI. */
499
500 #define ABI_N32_P(abfd) \
501 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
502
503 /* Nonzero if ABFD is using the N64 ABI. */
504 #define ABI_64_P(abfd) \
505 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
506
507 /* Nonzero if ABFD is using NewABI conventions. */
508 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
509
510 /* The IRIX compatibility level we are striving for. */
511 #define IRIX_COMPAT(abfd) \
512 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
513
514 /* Whether we are trying to be compatible with IRIX at all. */
515 #define SGI_COMPAT(abfd) \
516 (IRIX_COMPAT (abfd) != ict_none)
517
518 /* The name of the options section. */
519 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
520 (ABI_64_P (abfd) ? ".MIPS.options" : ".options")
521
522 /* The name of the stub section. */
523 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
524 (ABI_64_P (abfd) ? ".MIPS.stubs" : ".stub")
525
526 /* The size of an external REL relocation. */
527 #define MIPS_ELF_REL_SIZE(abfd) \
528 (get_elf_backend_data (abfd)->s->sizeof_rel)
529
530 /* The size of an external dynamic table entry. */
531 #define MIPS_ELF_DYN_SIZE(abfd) \
532 (get_elf_backend_data (abfd)->s->sizeof_dyn)
533
534 /* The size of a GOT entry. */
535 #define MIPS_ELF_GOT_SIZE(abfd) \
536 (get_elf_backend_data (abfd)->s->arch_size / 8)
537
538 /* The size of a symbol-table entry. */
539 #define MIPS_ELF_SYM_SIZE(abfd) \
540 (get_elf_backend_data (abfd)->s->sizeof_sym)
541
542 /* The default alignment for sections, as a power of two. */
543 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
544 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
545
546 /* Get word-sized data. */
547 #define MIPS_ELF_GET_WORD(abfd, ptr) \
548 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
549
550 /* Put out word-sized data. */
551 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
552 (ABI_64_P (abfd) \
553 ? bfd_put_64 (abfd, val, ptr) \
554 : bfd_put_32 (abfd, val, ptr))
555
556 /* Add a dynamic symbol table-entry. */
557 #ifdef BFD64
558 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
559 (ABI_64_P (elf_hash_table (info)->dynobj) \
560 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
561 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
562 #else
563 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
564 (ABI_64_P (elf_hash_table (info)->dynobj) \
565 ? (abort (), FALSE) \
566 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
567 #endif
568
569 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
570 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
571
572 /* Determine whether the internal relocation of index REL_IDX is REL
573 (zero) or RELA (non-zero). The assumption is that, if there are
574 two relocation sections for this section, one of them is REL and
575 the other is RELA. If the index of the relocation we're testing is
576 in range for the first relocation section, check that the external
577 relocation size is that for RELA. It is also assumed that, if
578 rel_idx is not in range for the first section, and this first
579 section contains REL relocs, then the relocation is in the second
580 section, that is RELA. */
581 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
582 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
583 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
584 > (bfd_vma)(rel_idx)) \
585 == (elf_section_data (sec)->rel_hdr.sh_entsize \
586 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
587 : sizeof (Elf32_External_Rela))))
588
589 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
590 from smaller values. Start with zero, widen, *then* decrement. */
591 #define MINUS_ONE (((bfd_vma)0) - 1)
592
593 /* The number of local .got entries we reserve. */
594 #define MIPS_RESERVED_GOTNO (2)
595
596 /* The offset of $gp from the beginning of the .got section. */
597 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
598
599 /* The maximum size of the GOT for it to be addressable using 16-bit
600 offsets from $gp. */
601 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
602
603 /* Instructions which appear in a stub. For some reason the stub is
604 slightly different on an SGI system. */
605 #define STUB_LW(abfd) \
606 ((ABI_64_P (abfd) \
607 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
608 : 0x8f998010)) /* lw t9,0x8010(gp) */
609 #define STUB_MOVE(abfd) \
610 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
611 #define STUB_JALR 0x0320f809 /* jal t9 */
612 #define STUB_LI16(abfd) \
613 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
614 #define MIPS_FUNCTION_STUB_SIZE (16)
615
616 /* The name of the dynamic interpreter. This is put in the .interp
617 section. */
618
619 #define ELF_DYNAMIC_INTERPRETER(abfd) \
620 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
621 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
622 : "/usr/lib/libc.so.1")
623
624 #ifdef BFD64
625 #define MNAME(bfd,pre,pos) \
626 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
627 #define ELF_R_SYM(bfd, i) \
628 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
629 #define ELF_R_TYPE(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
631 #define ELF_R_INFO(bfd, s, t) \
632 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
633 #else
634 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
635 #define ELF_R_SYM(bfd, i) \
636 (ELF32_R_SYM (i))
637 #define ELF_R_TYPE(bfd, i) \
638 (ELF32_R_TYPE (i))
639 #define ELF_R_INFO(bfd, s, t) \
640 (ELF32_R_INFO (s, t))
641 #endif
642 \f
643 /* The mips16 compiler uses a couple of special sections to handle
644 floating point arguments.
645
646 Section names that look like .mips16.fn.FNNAME contain stubs that
647 copy floating point arguments from the fp regs to the gp regs and
648 then jump to FNNAME. If any 32 bit function calls FNNAME, the
649 call should be redirected to the stub instead. If no 32 bit
650 function calls FNNAME, the stub should be discarded. We need to
651 consider any reference to the function, not just a call, because
652 if the address of the function is taken we will need the stub,
653 since the address might be passed to a 32 bit function.
654
655 Section names that look like .mips16.call.FNNAME contain stubs
656 that copy floating point arguments from the gp regs to the fp
657 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
658 then any 16 bit function that calls FNNAME should be redirected
659 to the stub instead. If FNNAME is not a 32 bit function, the
660 stub should be discarded.
661
662 .mips16.call.fp.FNNAME sections are similar, but contain stubs
663 which call FNNAME and then copy the return value from the fp regs
664 to the gp regs. These stubs store the return value in $18 while
665 calling FNNAME; any function which might call one of these stubs
666 must arrange to save $18 around the call. (This case is not
667 needed for 32 bit functions that call 16 bit functions, because
668 16 bit functions always return floating point values in both
669 $f0/$f1 and $2/$3.)
670
671 Note that in all cases FNNAME might be defined statically.
672 Therefore, FNNAME is not used literally. Instead, the relocation
673 information will indicate which symbol the section is for.
674
675 We record any stubs that we find in the symbol table. */
676
677 #define FN_STUB ".mips16.fn."
678 #define CALL_STUB ".mips16.call."
679 #define CALL_FP_STUB ".mips16.call.fp."
680 \f
681 /* Look up an entry in a MIPS ELF linker hash table. */
682
683 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
684 ((struct mips_elf_link_hash_entry *) \
685 elf_link_hash_lookup (&(table)->root, (string), (create), \
686 (copy), (follow)))
687
688 /* Traverse a MIPS ELF linker hash table. */
689
690 #define mips_elf_link_hash_traverse(table, func, info) \
691 (elf_link_hash_traverse \
692 (&(table)->root, \
693 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
694 (info)))
695
696 /* Get the MIPS ELF linker hash table from a link_info structure. */
697
698 #define mips_elf_hash_table(p) \
699 ((struct mips_elf_link_hash_table *) ((p)->hash))
700
701 /* Create an entry in a MIPS ELF linker hash table. */
702
703 static struct bfd_hash_entry *
704 mips_elf_link_hash_newfunc (entry, table, string)
705 struct bfd_hash_entry *entry;
706 struct bfd_hash_table *table;
707 const char *string;
708 {
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == (struct mips_elf_link_hash_entry *) NULL)
715 ret = ((struct mips_elf_link_hash_entry *)
716 bfd_hash_allocate (table,
717 sizeof (struct mips_elf_link_hash_entry)));
718 if (ret == (struct mips_elf_link_hash_entry *) NULL)
719 return (struct bfd_hash_entry *) ret;
720
721 /* Call the allocation method of the superclass. */
722 ret = ((struct mips_elf_link_hash_entry *)
723 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
724 table, string));
725 if (ret != (struct mips_elf_link_hash_entry *) NULL)
726 {
727 /* Set local fields. */
728 memset (&ret->esym, 0, sizeof (EXTR));
729 /* We use -2 as a marker to indicate that the information has
730 not been set. -1 means there is no associated ifd. */
731 ret->esym.ifd = -2;
732 ret->possibly_dynamic_relocs = 0;
733 ret->readonly_reloc = FALSE;
734 ret->min_dyn_reloc_index = 0;
735 ret->no_fn_stub = FALSE;
736 ret->fn_stub = NULL;
737 ret->need_fn_stub = FALSE;
738 ret->call_stub = NULL;
739 ret->call_fp_stub = NULL;
740 ret->forced_local = FALSE;
741 }
742
743 return (struct bfd_hash_entry *) ret;
744 }
745
746 bfd_boolean
747 _bfd_mips_elf_new_section_hook (abfd, sec)
748 bfd *abfd;
749 asection *sec;
750 {
751 struct _mips_elf_section_data *sdata;
752 bfd_size_type amt = sizeof (*sdata);
753
754 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
755 if (sdata == NULL)
756 return FALSE;
757 sec->used_by_bfd = (PTR) sdata;
758
759 return _bfd_elf_new_section_hook (abfd, sec);
760 }
761 \f
762 /* Read ECOFF debugging information from a .mdebug section into a
763 ecoff_debug_info structure. */
764
765 bfd_boolean
766 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
767 bfd *abfd;
768 asection *section;
769 struct ecoff_debug_info *debug;
770 {
771 HDRR *symhdr;
772 const struct ecoff_debug_swap *swap;
773 char *ext_hdr = NULL;
774
775 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
776 memset (debug, 0, sizeof (*debug));
777
778 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
779 if (ext_hdr == NULL && swap->external_hdr_size != 0)
780 goto error_return;
781
782 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
783 swap->external_hdr_size))
784 goto error_return;
785
786 symhdr = &debug->symbolic_header;
787 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
788
789 /* The symbolic header contains absolute file offsets and sizes to
790 read. */
791 #define READ(ptr, offset, count, size, type) \
792 if (symhdr->count == 0) \
793 debug->ptr = NULL; \
794 else \
795 { \
796 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
797 debug->ptr = (type) bfd_malloc (amt); \
798 if (debug->ptr == NULL) \
799 goto error_return; \
800 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
801 || bfd_bread (debug->ptr, amt, abfd) != amt) \
802 goto error_return; \
803 }
804
805 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
806 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
807 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
808 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
809 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
810 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
811 union aux_ext *);
812 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
813 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
814 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
815 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
816 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
817 #undef READ
818
819 debug->fdr = NULL;
820 debug->adjust = NULL;
821
822 return TRUE;
823
824 error_return:
825 if (ext_hdr != NULL)
826 free (ext_hdr);
827 if (debug->line != NULL)
828 free (debug->line);
829 if (debug->external_dnr != NULL)
830 free (debug->external_dnr);
831 if (debug->external_pdr != NULL)
832 free (debug->external_pdr);
833 if (debug->external_sym != NULL)
834 free (debug->external_sym);
835 if (debug->external_opt != NULL)
836 free (debug->external_opt);
837 if (debug->external_aux != NULL)
838 free (debug->external_aux);
839 if (debug->ss != NULL)
840 free (debug->ss);
841 if (debug->ssext != NULL)
842 free (debug->ssext);
843 if (debug->external_fdr != NULL)
844 free (debug->external_fdr);
845 if (debug->external_rfd != NULL)
846 free (debug->external_rfd);
847 if (debug->external_ext != NULL)
848 free (debug->external_ext);
849 return FALSE;
850 }
851 \f
852 /* Swap RPDR (runtime procedure table entry) for output. */
853
854 static void
855 ecoff_swap_rpdr_out (abfd, in, ex)
856 bfd *abfd;
857 const RPDR *in;
858 struct rpdr_ext *ex;
859 {
860 H_PUT_S32 (abfd, in->adr, ex->p_adr);
861 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
862 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
863 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
864 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
865 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
866
867 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
868 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
869
870 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
871 #if 0 /* FIXME */
872 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
873 #endif
874 }
875
876 /* Create a runtime procedure table from the .mdebug section. */
877
878 static bfd_boolean
879 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
880 PTR handle;
881 bfd *abfd;
882 struct bfd_link_info *info;
883 asection *s;
884 struct ecoff_debug_info *debug;
885 {
886 const struct ecoff_debug_swap *swap;
887 HDRR *hdr = &debug->symbolic_header;
888 RPDR *rpdr, *rp;
889 struct rpdr_ext *erp;
890 PTR rtproc;
891 struct pdr_ext *epdr;
892 struct sym_ext *esym;
893 char *ss, **sv;
894 char *str;
895 bfd_size_type size;
896 bfd_size_type count;
897 unsigned long sindex;
898 unsigned long i;
899 PDR pdr;
900 SYMR sym;
901 const char *no_name_func = _("static procedure (no name)");
902
903 epdr = NULL;
904 rpdr = NULL;
905 esym = NULL;
906 ss = NULL;
907 sv = NULL;
908
909 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
910
911 sindex = strlen (no_name_func) + 1;
912 count = hdr->ipdMax;
913 if (count > 0)
914 {
915 size = swap->external_pdr_size;
916
917 epdr = (struct pdr_ext *) bfd_malloc (size * count);
918 if (epdr == NULL)
919 goto error_return;
920
921 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
922 goto error_return;
923
924 size = sizeof (RPDR);
925 rp = rpdr = (RPDR *) bfd_malloc (size * count);
926 if (rpdr == NULL)
927 goto error_return;
928
929 size = sizeof (char *);
930 sv = (char **) bfd_malloc (size * count);
931 if (sv == NULL)
932 goto error_return;
933
934 count = hdr->isymMax;
935 size = swap->external_sym_size;
936 esym = (struct sym_ext *) bfd_malloc (size * count);
937 if (esym == NULL)
938 goto error_return;
939
940 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
941 goto error_return;
942
943 count = hdr->issMax;
944 ss = (char *) bfd_malloc (count);
945 if (ss == NULL)
946 goto error_return;
947 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
948 goto error_return;
949
950 count = hdr->ipdMax;
951 for (i = 0; i < (unsigned long) count; i++, rp++)
952 {
953 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
954 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
955 rp->adr = sym.value;
956 rp->regmask = pdr.regmask;
957 rp->regoffset = pdr.regoffset;
958 rp->fregmask = pdr.fregmask;
959 rp->fregoffset = pdr.fregoffset;
960 rp->frameoffset = pdr.frameoffset;
961 rp->framereg = pdr.framereg;
962 rp->pcreg = pdr.pcreg;
963 rp->irpss = sindex;
964 sv[i] = ss + sym.iss;
965 sindex += strlen (sv[i]) + 1;
966 }
967 }
968
969 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
970 size = BFD_ALIGN (size, 16);
971 rtproc = (PTR) bfd_alloc (abfd, size);
972 if (rtproc == NULL)
973 {
974 mips_elf_hash_table (info)->procedure_count = 0;
975 goto error_return;
976 }
977
978 mips_elf_hash_table (info)->procedure_count = count + 2;
979
980 erp = (struct rpdr_ext *) rtproc;
981 memset (erp, 0, sizeof (struct rpdr_ext));
982 erp++;
983 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
984 strcpy (str, no_name_func);
985 str += strlen (no_name_func) + 1;
986 for (i = 0; i < count; i++)
987 {
988 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
989 strcpy (str, sv[i]);
990 str += strlen (sv[i]) + 1;
991 }
992 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
993
994 /* Set the size and contents of .rtproc section. */
995 s->_raw_size = size;
996 s->contents = (bfd_byte *) rtproc;
997
998 /* Skip this section later on (I don't think this currently
999 matters, but someday it might). */
1000 s->link_order_head = (struct bfd_link_order *) NULL;
1001
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012
1013 return TRUE;
1014
1015 error_return:
1016 if (epdr != NULL)
1017 free (epdr);
1018 if (rpdr != NULL)
1019 free (rpdr);
1020 if (esym != NULL)
1021 free (esym);
1022 if (ss != NULL)
1023 free (ss);
1024 if (sv != NULL)
1025 free (sv);
1026 return FALSE;
1027 }
1028
1029 /* Check the mips16 stubs for a particular symbol, and see if we can
1030 discard them. */
1031
1032 static bfd_boolean
1033 mips_elf_check_mips16_stubs (h, data)
1034 struct mips_elf_link_hash_entry *h;
1035 PTR data ATTRIBUTE_UNUSED;
1036 {
1037 if (h->root.root.type == bfd_link_hash_warning)
1038 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1039
1040 if (h->fn_stub != NULL
1041 && ! h->need_fn_stub)
1042 {
1043 /* We don't need the fn_stub; the only references to this symbol
1044 are 16 bit calls. Clobber the size to 0 to prevent it from
1045 being included in the link. */
1046 h->fn_stub->_raw_size = 0;
1047 h->fn_stub->_cooked_size = 0;
1048 h->fn_stub->flags &= ~SEC_RELOC;
1049 h->fn_stub->reloc_count = 0;
1050 h->fn_stub->flags |= SEC_EXCLUDE;
1051 }
1052
1053 if (h->call_stub != NULL
1054 && h->root.other == STO_MIPS16)
1055 {
1056 /* We don't need the call_stub; this is a 16 bit function, so
1057 calls from other 16 bit functions are OK. Clobber the size
1058 to 0 to prevent it from being included in the link. */
1059 h->call_stub->_raw_size = 0;
1060 h->call_stub->_cooked_size = 0;
1061 h->call_stub->flags &= ~SEC_RELOC;
1062 h->call_stub->reloc_count = 0;
1063 h->call_stub->flags |= SEC_EXCLUDE;
1064 }
1065
1066 if (h->call_fp_stub != NULL
1067 && h->root.other == STO_MIPS16)
1068 {
1069 /* We don't need the call_stub; this is a 16 bit function, so
1070 calls from other 16 bit functions are OK. Clobber the size
1071 to 0 to prevent it from being included in the link. */
1072 h->call_fp_stub->_raw_size = 0;
1073 h->call_fp_stub->_cooked_size = 0;
1074 h->call_fp_stub->flags &= ~SEC_RELOC;
1075 h->call_fp_stub->reloc_count = 0;
1076 h->call_fp_stub->flags |= SEC_EXCLUDE;
1077 }
1078
1079 return TRUE;
1080 }
1081 \f
1082 bfd_reloc_status_type
1083 _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1084 relocateable, data, gp)
1085 bfd *abfd;
1086 asymbol *symbol;
1087 arelent *reloc_entry;
1088 asection *input_section;
1089 bfd_boolean relocateable;
1090 PTR data;
1091 bfd_vma gp;
1092 {
1093 bfd_vma relocation;
1094 unsigned long insn;
1095 unsigned long val;
1096
1097 if (bfd_is_com_section (symbol->section))
1098 relocation = 0;
1099 else
1100 relocation = symbol->value;
1101
1102 relocation += symbol->section->output_section->vma;
1103 relocation += symbol->section->output_offset;
1104
1105 if (reloc_entry->address > input_section->_cooked_size)
1106 return bfd_reloc_outofrange;
1107
1108 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1109
1110 /* Set val to the offset into the section or symbol. */
1111 if (reloc_entry->howto->src_mask == 0)
1112 {
1113 /* This case occurs with the 64-bit MIPS ELF ABI. */
1114 val = reloc_entry->addend;
1115 }
1116 else
1117 {
1118 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1119 if (val & 0x8000)
1120 val -= 0x10000;
1121 }
1122
1123 /* Adjust val for the final section location and GP value. If we
1124 are producing relocateable output, we don't want to do this for
1125 an external symbol. */
1126 if (! relocateable
1127 || (symbol->flags & BSF_SECTION_SYM) != 0)
1128 val += relocation - gp;
1129
1130 insn = (insn & ~0xffff) | (val & 0xffff);
1131 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1132
1133 if (relocateable)
1134 reloc_entry->address += input_section->output_offset;
1135
1136 else if ((long) val >= 0x8000 || (long) val < -0x8000)
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140 }
1141 \f
1142 /* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145 static void
1146 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150 {
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153 }
1154
1155 static void
1156 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160 {
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163 }
1164
1165 static void
1166 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170 {
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177 }
1178
1179 static void
1180 bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184 {
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194 }
1195
1196 #if 0
1197 /* Swap in an MSYM entry. */
1198
1199 static void
1200 bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204 {
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207 }
1208 #endif
1209 /* Swap out an MSYM entry. */
1210
1211 static void
1212 bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216 {
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219 }
1220 \f
1221 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225 void
1226 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230 {
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237 }
1238
1239 void
1240 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244 {
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251 }
1252
1253 /* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259 void
1260 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264 {
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272 }
1273
1274 void
1275 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279 {
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287 }
1288
1289 /* Swap in an options header. */
1290
1291 void
1292 bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296 {
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301 }
1302
1303 /* Swap out an options header. */
1304
1305 void
1306 bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310 {
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315 }
1316 \f
1317 /* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320 static int
1321 sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324 {
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
1327
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1330
1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1332 }
1333
1334 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336 static int
1337 sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340 {
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351 }
1352
1353
1354 /* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
1368 static bfd_boolean
1369 mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372 {
1373 struct extsym_info *einfo = (struct extsym_info *) data;
1374 bfd_boolean strip;
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
1381 strip = FALSE;
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1386 strip = TRUE;
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
1393 else
1394 strip = FALSE;
1395
1396 if (strip)
1397 return TRUE;
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
1506 bfd_boolean no_fn_stub = h->no_fn_stub;
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531 #if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533 #endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
1541 einfo->failed = TRUE;
1542 return FALSE;
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* A comparison routine used to sort .gptab entries. */
1549
1550 static int
1551 gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554 {
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559 }
1560 \f
1561 /* Functions to manage the got entry hash table. */
1562
1563 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566 static INLINE hashval_t
1567 mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569 {
1570 #ifdef BFD64
1571 return addr + (addr >> 32);
1572 #else
1573 return addr;
1574 #endif
1575 }
1576
1577 /* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
1581 static hashval_t
1582 mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584 {
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
1587 return entry->symndx
1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1589 : entry->abfd->id
1590 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1591 : entry->d.h->root.root.root.hash));
1592 }
1593
1594 static int
1595 mips_elf_got_entry_eq (entry1, entry2)
1596 const PTR entry1;
1597 const PTR entry2;
1598 {
1599 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1600 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1601
1602 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1603 && (! e1->abfd ? e1->d.address == e2->d.address
1604 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1605 : e1->d.h == e2->d.h);
1606 }
1607
1608 /* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1611 accordingly. */
1612
1613 static hashval_t
1614 mips_elf_multi_got_entry_hash (entry_)
1615 const PTR entry_;
1616 {
1617 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1618
1619 return entry->symndx
1620 + (! entry->abfd
1621 ? mips_elf_hash_bfd_vma (entry->d.address)
1622 : entry->symndx >= 0
1623 ? (entry->abfd->id
1624 + mips_elf_hash_bfd_vma (entry->d.addend))
1625 : entry->d.h->root.root.root.hash);
1626 }
1627
1628 static int
1629 mips_elf_multi_got_entry_eq (entry1, entry2)
1630 const PTR entry1;
1631 const PTR entry2;
1632 {
1633 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1634 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1635
1636 return e1->symndx == e2->symndx
1637 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1638 : e1->abfd == NULL || e2->abfd == NULL
1639 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1640 : e1->d.h == e2->d.h);
1641 }
1642 \f
1643 /* Returns the dynamic relocation section for DYNOBJ. */
1644
1645 static asection *
1646 mips_elf_rel_dyn_section (dynobj, create_p)
1647 bfd *dynobj;
1648 bfd_boolean create_p;
1649 {
1650 static const char dname[] = ".rel.dyn";
1651 asection *sreloc;
1652
1653 sreloc = bfd_get_section_by_name (dynobj, dname);
1654 if (sreloc == NULL && create_p)
1655 {
1656 sreloc = bfd_make_section (dynobj, dname);
1657 if (sreloc == NULL
1658 || ! bfd_set_section_flags (dynobj, sreloc,
1659 (SEC_ALLOC
1660 | SEC_LOAD
1661 | SEC_HAS_CONTENTS
1662 | SEC_IN_MEMORY
1663 | SEC_LINKER_CREATED
1664 | SEC_READONLY))
1665 || ! bfd_set_section_alignment (dynobj, sreloc,
1666 4))
1667 return NULL;
1668 }
1669 return sreloc;
1670 }
1671
1672 /* Returns the GOT section for ABFD. */
1673
1674 static asection *
1675 mips_elf_got_section (abfd, maybe_excluded)
1676 bfd *abfd;
1677 bfd_boolean maybe_excluded;
1678 {
1679 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1680 if (sgot == NULL
1681 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1682 return NULL;
1683 return sgot;
1684 }
1685
1686 /* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1688 section. */
1689
1690 static struct mips_got_info *
1691 mips_elf_got_info (abfd, sgotp)
1692 bfd *abfd;
1693 asection **sgotp;
1694 {
1695 asection *sgot;
1696 struct mips_got_info *g;
1697
1698 sgot = mips_elf_got_section (abfd, TRUE);
1699 BFD_ASSERT (sgot != NULL);
1700 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1701 g = mips_elf_section_data (sgot)->u.got_info;
1702 BFD_ASSERT (g != NULL);
1703
1704 if (sgotp)
1705 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1706
1707 return g;
1708 }
1709
1710 /* Returns the GOT offset at which the indicated address can be found.
1711 If there is not yet a GOT entry for this value, create one. Returns
1712 -1 if no satisfactory GOT offset can be found. */
1713
1714 static bfd_vma
1715 mips_elf_local_got_index (abfd, ibfd, info, value)
1716 bfd *abfd, *ibfd;
1717 struct bfd_link_info *info;
1718 bfd_vma value;
1719 {
1720 asection *sgot;
1721 struct mips_got_info *g;
1722 struct mips_got_entry *entry;
1723
1724 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1725
1726 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1727 if (entry)
1728 return entry->gotidx;
1729 else
1730 return MINUS_ONE;
1731 }
1732
1733 /* Returns the GOT index for the global symbol indicated by H. */
1734
1735 static bfd_vma
1736 mips_elf_global_got_index (abfd, ibfd, h)
1737 bfd *abfd, *ibfd;
1738 struct elf_link_hash_entry *h;
1739 {
1740 bfd_vma index;
1741 asection *sgot;
1742 struct mips_got_info *g, *gg;
1743 long global_got_dynindx = 0;
1744
1745 gg = g = mips_elf_got_info (abfd, &sgot);
1746 if (g->bfd2got && ibfd)
1747 {
1748 struct mips_got_entry e, *p;
1749
1750 BFD_ASSERT (h->dynindx >= 0);
1751
1752 g = mips_elf_got_for_ibfd (g, ibfd);
1753 if (g->next != gg)
1754 {
1755 e.abfd = ibfd;
1756 e.symndx = -1;
1757 e.d.h = (struct mips_elf_link_hash_entry *)h;
1758
1759 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1760
1761 BFD_ASSERT (p->gotidx > 0);
1762 return p->gotidx;
1763 }
1764 }
1765
1766 if (gg->global_gotsym != NULL)
1767 global_got_dynindx = gg->global_gotsym->dynindx;
1768
1769 /* Once we determine the global GOT entry with the lowest dynamic
1770 symbol table index, we must put all dynamic symbols with greater
1771 indices into the GOT. That makes it easy to calculate the GOT
1772 offset. */
1773 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1774 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1775 * MIPS_ELF_GOT_SIZE (abfd));
1776 BFD_ASSERT (index < sgot->_raw_size);
1777
1778 return index;
1779 }
1780
1781 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1782 are supposed to be placed at small offsets in the GOT, i.e.,
1783 within 32KB of GP. Return the index into the GOT for this page,
1784 and store the offset from this entry to the desired address in
1785 OFFSETP, if it is non-NULL. */
1786
1787 static bfd_vma
1788 mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1789 bfd *abfd, *ibfd;
1790 struct bfd_link_info *info;
1791 bfd_vma value;
1792 bfd_vma *offsetp;
1793 {
1794 asection *sgot;
1795 struct mips_got_info *g;
1796 bfd_vma index;
1797 struct mips_got_entry *entry;
1798
1799 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1800
1801 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1802 (value + 0x8000)
1803 & (~(bfd_vma)0xffff));
1804
1805 if (!entry)
1806 return MINUS_ONE;
1807
1808 index = entry->gotidx;
1809
1810 if (offsetp)
1811 *offsetp = value - entry->d.address;
1812
1813 return index;
1814 }
1815
1816 /* Find a GOT entry whose higher-order 16 bits are the same as those
1817 for value. Return the index into the GOT for this entry. */
1818
1819 static bfd_vma
1820 mips_elf_got16_entry (abfd, ibfd, info, value, external)
1821 bfd *abfd, *ibfd;
1822 struct bfd_link_info *info;
1823 bfd_vma value;
1824 bfd_boolean external;
1825 {
1826 asection *sgot;
1827 struct mips_got_info *g;
1828 struct mips_got_entry *entry;
1829
1830 if (! external)
1831 {
1832 /* Although the ABI says that it is "the high-order 16 bits" that we
1833 want, it is really the %high value. The complete value is
1834 calculated with a `addiu' of a LO16 relocation, just as with a
1835 HI16/LO16 pair. */
1836 value = mips_elf_high (value) << 16;
1837 }
1838
1839 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1840
1841 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1842 if (entry)
1843 return entry->gotidx;
1844 else
1845 return MINUS_ONE;
1846 }
1847
1848 /* Returns the offset for the entry at the INDEXth position
1849 in the GOT. */
1850
1851 static bfd_vma
1852 mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
1853 bfd *dynobj;
1854 bfd *output_bfd;
1855 bfd *input_bfd;
1856 bfd_vma index;
1857 {
1858 asection *sgot;
1859 bfd_vma gp;
1860 struct mips_got_info *g;
1861
1862 g = mips_elf_got_info (dynobj, &sgot);
1863 gp = _bfd_get_gp_value (output_bfd)
1864 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1865
1866 return sgot->output_section->vma + sgot->output_offset + index - gp;
1867 }
1868
1869 /* Create a local GOT entry for VALUE. Return the index of the entry,
1870 or -1 if it could not be created. */
1871
1872 static struct mips_got_entry *
1873 mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1874 bfd *abfd, *ibfd;
1875 struct mips_got_info *gg;
1876 asection *sgot;
1877 bfd_vma value;
1878 {
1879 struct mips_got_entry entry, **loc;
1880 struct mips_got_info *g;
1881
1882 entry.abfd = NULL;
1883 entry.symndx = -1;
1884 entry.d.address = value;
1885
1886 g = mips_elf_got_for_ibfd (gg, ibfd);
1887 if (g == NULL)
1888 {
1889 g = mips_elf_got_for_ibfd (gg, abfd);
1890 BFD_ASSERT (g != NULL);
1891 }
1892
1893 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1894 INSERT);
1895 if (*loc)
1896 return *loc;
1897
1898 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1899
1900 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1901
1902 if (! *loc)
1903 return NULL;
1904
1905 memcpy (*loc, &entry, sizeof entry);
1906
1907 if (g->assigned_gotno >= g->local_gotno)
1908 {
1909 (*loc)->gotidx = -1;
1910 /* We didn't allocate enough space in the GOT. */
1911 (*_bfd_error_handler)
1912 (_("not enough GOT space for local GOT entries"));
1913 bfd_set_error (bfd_error_bad_value);
1914 return NULL;
1915 }
1916
1917 MIPS_ELF_PUT_WORD (abfd, value,
1918 (sgot->contents + entry.gotidx));
1919
1920 return *loc;
1921 }
1922
1923 /* Sort the dynamic symbol table so that symbols that need GOT entries
1924 appear towards the end. This reduces the amount of GOT space
1925 required. MAX_LOCAL is used to set the number of local symbols
1926 known to be in the dynamic symbol table. During
1927 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1928 section symbols are added and the count is higher. */
1929
1930 static bfd_boolean
1931 mips_elf_sort_hash_table (info, max_local)
1932 struct bfd_link_info *info;
1933 unsigned long max_local;
1934 {
1935 struct mips_elf_hash_sort_data hsd;
1936 struct mips_got_info *g;
1937 bfd *dynobj;
1938
1939 dynobj = elf_hash_table (info)->dynobj;
1940
1941 g = mips_elf_got_info (dynobj, NULL);
1942
1943 hsd.low = NULL;
1944 hsd.max_unref_got_dynindx =
1945 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1946 /* In the multi-got case, assigned_gotno of the master got_info
1947 indicate the number of entries that aren't referenced in the
1948 primary GOT, but that must have entries because there are
1949 dynamic relocations that reference it. Since they aren't
1950 referenced, we move them to the end of the GOT, so that they
1951 don't prevent other entries that are referenced from getting
1952 too large offsets. */
1953 - (g->next ? g->assigned_gotno : 0);
1954 hsd.max_non_got_dynindx = max_local;
1955 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1956 elf_hash_table (info)),
1957 mips_elf_sort_hash_table_f,
1958 &hsd);
1959
1960 /* There should have been enough room in the symbol table to
1961 accommodate both the GOT and non-GOT symbols. */
1962 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
1963 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1964 <= elf_hash_table (info)->dynsymcount);
1965
1966 /* Now we know which dynamic symbol has the lowest dynamic symbol
1967 table index in the GOT. */
1968 g->global_gotsym = hsd.low;
1969
1970 return TRUE;
1971 }
1972
1973 /* If H needs a GOT entry, assign it the highest available dynamic
1974 index. Otherwise, assign it the lowest available dynamic
1975 index. */
1976
1977 static bfd_boolean
1978 mips_elf_sort_hash_table_f (h, data)
1979 struct mips_elf_link_hash_entry *h;
1980 PTR data;
1981 {
1982 struct mips_elf_hash_sort_data *hsd
1983 = (struct mips_elf_hash_sort_data *) data;
1984
1985 if (h->root.root.type == bfd_link_hash_warning)
1986 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1987
1988 /* Symbols without dynamic symbol table entries aren't interesting
1989 at all. */
1990 if (h->root.dynindx == -1)
1991 return TRUE;
1992
1993 /* Global symbols that need GOT entries that are not explicitly
1994 referenced are marked with got offset 2. Those that are
1995 referenced get a 1, and those that don't need GOT entries get
1996 -1. */
1997 if (h->root.got.offset == 2)
1998 {
1999 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2000 hsd->low = (struct elf_link_hash_entry *) h;
2001 h->root.dynindx = hsd->max_unref_got_dynindx++;
2002 }
2003 else if (h->root.got.offset != 1)
2004 h->root.dynindx = hsd->max_non_got_dynindx++;
2005 else
2006 {
2007 h->root.dynindx = --hsd->min_got_dynindx;
2008 hsd->low = (struct elf_link_hash_entry *) h;
2009 }
2010
2011 return TRUE;
2012 }
2013
2014 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2015 symbol table index lower than any we've seen to date, record it for
2016 posterity. */
2017
2018 static bfd_boolean
2019 mips_elf_record_global_got_symbol (h, abfd, info, g)
2020 struct elf_link_hash_entry *h;
2021 bfd *abfd;
2022 struct bfd_link_info *info;
2023 struct mips_got_info *g;
2024 {
2025 struct mips_got_entry entry, **loc;
2026
2027 /* A global symbol in the GOT must also be in the dynamic symbol
2028 table. */
2029 if (h->dynindx == -1)
2030 {
2031 switch (ELF_ST_VISIBILITY (h->other))
2032 {
2033 case STV_INTERNAL:
2034 case STV_HIDDEN:
2035 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2036 break;
2037 }
2038 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
2039 return FALSE;
2040 }
2041
2042 entry.abfd = abfd;
2043 entry.symndx = -1;
2044 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2045
2046 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2047 INSERT);
2048
2049 /* If we've already marked this entry as needing GOT space, we don't
2050 need to do it again. */
2051 if (*loc)
2052 return TRUE;
2053
2054 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2055
2056 if (! *loc)
2057 return FALSE;
2058
2059 entry.gotidx = -1;
2060 memcpy (*loc, &entry, sizeof entry);
2061
2062 if (h->got.offset != MINUS_ONE)
2063 return TRUE;
2064
2065 /* By setting this to a value other than -1, we are indicating that
2066 there needs to be a GOT entry for H. Avoid using zero, as the
2067 generic ELF copy_indirect_symbol tests for <= 0. */
2068 h->got.offset = 1;
2069
2070 return TRUE;
2071 }
2072
2073 /* Reserve space in G for a GOT entry containing the value of symbol
2074 SYMNDX in input bfd ABDF, plus ADDEND. */
2075
2076 static bfd_boolean
2077 mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2078 bfd *abfd;
2079 long symndx;
2080 bfd_vma addend;
2081 struct mips_got_info *g;
2082 {
2083 struct mips_got_entry entry, **loc;
2084
2085 entry.abfd = abfd;
2086 entry.symndx = symndx;
2087 entry.d.addend = addend;
2088 loc = (struct mips_got_entry **)
2089 htab_find_slot (g->got_entries, &entry, INSERT);
2090
2091 if (*loc)
2092 return TRUE;
2093
2094 entry.gotidx = g->local_gotno++;
2095
2096 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2097
2098 if (! *loc)
2099 return FALSE;
2100
2101 memcpy (*loc, &entry, sizeof entry);
2102
2103 return TRUE;
2104 }
2105 \f
2106 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2107
2108 static hashval_t
2109 mips_elf_bfd2got_entry_hash (entry_)
2110 const PTR entry_;
2111 {
2112 const struct mips_elf_bfd2got_hash *entry
2113 = (struct mips_elf_bfd2got_hash *)entry_;
2114
2115 return entry->bfd->id;
2116 }
2117
2118 /* Check whether two hash entries have the same bfd. */
2119
2120 static int
2121 mips_elf_bfd2got_entry_eq (entry1, entry2)
2122 const PTR entry1;
2123 const PTR entry2;
2124 {
2125 const struct mips_elf_bfd2got_hash *e1
2126 = (const struct mips_elf_bfd2got_hash *)entry1;
2127 const struct mips_elf_bfd2got_hash *e2
2128 = (const struct mips_elf_bfd2got_hash *)entry2;
2129
2130 return e1->bfd == e2->bfd;
2131 }
2132
2133 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2134 be the master GOT data. */
2135
2136 static struct mips_got_info *
2137 mips_elf_got_for_ibfd (g, ibfd)
2138 struct mips_got_info *g;
2139 bfd *ibfd;
2140 {
2141 struct mips_elf_bfd2got_hash e, *p;
2142
2143 if (! g->bfd2got)
2144 return g;
2145
2146 e.bfd = ibfd;
2147 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2148 return p ? p->g : NULL;
2149 }
2150
2151 /* Create one separate got for each bfd that has entries in the global
2152 got, such that we can tell how many local and global entries each
2153 bfd requires. */
2154
2155 static int
2156 mips_elf_make_got_per_bfd (entryp, p)
2157 void **entryp;
2158 void *p;
2159 {
2160 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2161 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2162 htab_t bfd2got = arg->bfd2got;
2163 struct mips_got_info *g;
2164 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2165 void **bfdgotp;
2166
2167 /* Find the got_info for this GOT entry's input bfd. Create one if
2168 none exists. */
2169 bfdgot_entry.bfd = entry->abfd;
2170 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2171 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2172
2173 if (bfdgot != NULL)
2174 g = bfdgot->g;
2175 else
2176 {
2177 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2178 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2179
2180 if (bfdgot == NULL)
2181 {
2182 arg->obfd = 0;
2183 return 0;
2184 }
2185
2186 *bfdgotp = bfdgot;
2187
2188 bfdgot->bfd = entry->abfd;
2189 bfdgot->g = g = (struct mips_got_info *)
2190 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2191 if (g == NULL)
2192 {
2193 arg->obfd = 0;
2194 return 0;
2195 }
2196
2197 g->global_gotsym = NULL;
2198 g->global_gotno = 0;
2199 g->local_gotno = 0;
2200 g->assigned_gotno = -1;
2201 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2202 mips_elf_multi_got_entry_eq,
2203 (htab_del) NULL);
2204 if (g->got_entries == NULL)
2205 {
2206 arg->obfd = 0;
2207 return 0;
2208 }
2209
2210 g->bfd2got = NULL;
2211 g->next = NULL;
2212 }
2213
2214 /* Insert the GOT entry in the bfd's got entry hash table. */
2215 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2216 if (*entryp != NULL)
2217 return 1;
2218
2219 *entryp = entry;
2220
2221 if (entry->symndx >= 0 || entry->d.h->forced_local)
2222 ++g->local_gotno;
2223 else
2224 ++g->global_gotno;
2225
2226 return 1;
2227 }
2228
2229 /* Attempt to merge gots of different input bfds. Try to use as much
2230 as possible of the primary got, since it doesn't require explicit
2231 dynamic relocations, but don't use bfds that would reference global
2232 symbols out of the addressable range. Failing the primary got,
2233 attempt to merge with the current got, or finish the current got
2234 and then make make the new got current. */
2235
2236 static int
2237 mips_elf_merge_gots (bfd2got_, p)
2238 void **bfd2got_;
2239 void *p;
2240 {
2241 struct mips_elf_bfd2got_hash *bfd2got
2242 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2243 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2244 unsigned int lcount = bfd2got->g->local_gotno;
2245 unsigned int gcount = bfd2got->g->global_gotno;
2246 unsigned int maxcnt = arg->max_count;
2247
2248 /* If we don't have a primary GOT and this is not too big, use it as
2249 a starting point for the primary GOT. */
2250 if (! arg->primary && lcount + gcount <= maxcnt)
2251 {
2252 arg->primary = bfd2got->g;
2253 arg->primary_count = lcount + gcount;
2254 }
2255 /* If it looks like we can merge this bfd's entries with those of
2256 the primary, merge them. The heuristics is conservative, but we
2257 don't have to squeeze it too hard. */
2258 else if (arg->primary
2259 && (arg->primary_count + lcount + gcount) <= maxcnt)
2260 {
2261 struct mips_got_info *g = bfd2got->g;
2262 int old_lcount = arg->primary->local_gotno;
2263 int old_gcount = arg->primary->global_gotno;
2264
2265 bfd2got->g = arg->primary;
2266
2267 htab_traverse (g->got_entries,
2268 mips_elf_make_got_per_bfd,
2269 arg);
2270 if (arg->obfd == NULL)
2271 return 0;
2272
2273 htab_delete (g->got_entries);
2274 /* We don't have to worry about releasing memory of the actual
2275 got entries, since they're all in the master got_entries hash
2276 table anyway. */
2277
2278 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2279 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2280
2281 arg->primary_count = arg->primary->local_gotno
2282 + arg->primary->global_gotno;
2283 }
2284 /* If we can merge with the last-created got, do it. */
2285 else if (arg->current
2286 && arg->current_count + lcount + gcount <= maxcnt)
2287 {
2288 struct mips_got_info *g = bfd2got->g;
2289 int old_lcount = arg->current->local_gotno;
2290 int old_gcount = arg->current->global_gotno;
2291
2292 bfd2got->g = arg->current;
2293
2294 htab_traverse (g->got_entries,
2295 mips_elf_make_got_per_bfd,
2296 arg);
2297 if (arg->obfd == NULL)
2298 return 0;
2299
2300 htab_delete (g->got_entries);
2301
2302 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2303 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2304
2305 arg->current_count = arg->current->local_gotno
2306 + arg->current->global_gotno;
2307 }
2308 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2309 fits; if it turns out that it doesn't, we'll get relocation
2310 overflows anyway. */
2311 else
2312 {
2313 bfd2got->g->next = arg->current;
2314 arg->current = bfd2got->g;
2315
2316 arg->current_count = lcount + gcount;
2317 }
2318
2319 return 1;
2320 }
2321
2322 /* If passed a NULL mips_got_info in the argument, set the marker used
2323 to tell whether a global symbol needs a got entry (in the primary
2324 got) to the given VALUE.
2325
2326 If passed a pointer G to a mips_got_info in the argument (it must
2327 not be the primary GOT), compute the offset from the beginning of
2328 the (primary) GOT section to the entry in G corresponding to the
2329 global symbol. G's assigned_gotno must contain the index of the
2330 first available global GOT entry in G. VALUE must contain the size
2331 of a GOT entry in bytes. For each global GOT entry that requires a
2332 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2333 marked as not elligible for lazy resolution through a function
2334 stub. */
2335 static int
2336 mips_elf_set_global_got_offset (entryp, p)
2337 void **entryp;
2338 void *p;
2339 {
2340 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2341 struct mips_elf_set_global_got_offset_arg *arg
2342 = (struct mips_elf_set_global_got_offset_arg *)p;
2343 struct mips_got_info *g = arg->g;
2344
2345 if (entry->abfd != NULL && entry->symndx == -1
2346 && entry->d.h->root.dynindx != -1)
2347 {
2348 if (g)
2349 {
2350 BFD_ASSERT (g->global_gotsym == NULL);
2351
2352 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2353 /* We can't do lazy update of GOT entries for
2354 non-primary GOTs since the PLT entries don't use the
2355 right offsets, so punt at it for now. */
2356 entry->d.h->no_fn_stub = TRUE;
2357 if (arg->info->shared
2358 || (elf_hash_table (arg->info)->dynamic_sections_created
2359 && ((entry->d.h->root.elf_link_hash_flags
2360 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2361 && ((entry->d.h->root.elf_link_hash_flags
2362 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2363 ++arg->needed_relocs;
2364 }
2365 else
2366 entry->d.h->root.got.offset = arg->value;
2367 }
2368
2369 return 1;
2370 }
2371
2372 /* Follow indirect and warning hash entries so that each got entry
2373 points to the final symbol definition. P must point to a pointer
2374 to the hash table we're traversing. Since this traversal may
2375 modify the hash table, we set this pointer to NULL to indicate
2376 we've made a potentially-destructive change to the hash table, so
2377 the traversal must be restarted. */
2378 static int
2379 mips_elf_resolve_final_got_entry (entryp, p)
2380 void **entryp;
2381 void *p;
2382 {
2383 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2384 htab_t got_entries = *(htab_t *)p;
2385
2386 if (entry->abfd != NULL && entry->symndx == -1)
2387 {
2388 struct mips_elf_link_hash_entry *h = entry->d.h;
2389
2390 while (h->root.root.type == bfd_link_hash_indirect
2391 || h->root.root.type == bfd_link_hash_warning)
2392 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2393
2394 if (entry->d.h == h)
2395 return 1;
2396
2397 entry->d.h = h;
2398
2399 /* If we can't find this entry with the new bfd hash, re-insert
2400 it, and get the traversal restarted. */
2401 if (! htab_find (got_entries, entry))
2402 {
2403 htab_clear_slot (got_entries, entryp);
2404 entryp = htab_find_slot (got_entries, entry, INSERT);
2405 if (! *entryp)
2406 *entryp = entry;
2407 /* Abort the traversal, since the whole table may have
2408 moved, and leave it up to the parent to restart the
2409 process. */
2410 *(htab_t *)p = NULL;
2411 return 0;
2412 }
2413 /* We might want to decrement the global_gotno count, but it's
2414 either too early or too late for that at this point. */
2415 }
2416
2417 return 1;
2418 }
2419
2420 /* Turn indirect got entries in a got_entries table into their final
2421 locations. */
2422 static void
2423 mips_elf_resolve_final_got_entries (g)
2424 struct mips_got_info *g;
2425 {
2426 htab_t got_entries;
2427
2428 do
2429 {
2430 got_entries = g->got_entries;
2431
2432 htab_traverse (got_entries,
2433 mips_elf_resolve_final_got_entry,
2434 &got_entries);
2435 }
2436 while (got_entries == NULL);
2437 }
2438
2439 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2440 the primary GOT. */
2441 static bfd_vma
2442 mips_elf_adjust_gp (abfd, g, ibfd)
2443 bfd *abfd;
2444 struct mips_got_info *g;
2445 bfd *ibfd;
2446 {
2447 if (g->bfd2got == NULL)
2448 return 0;
2449
2450 g = mips_elf_got_for_ibfd (g, ibfd);
2451 if (! g)
2452 return 0;
2453
2454 BFD_ASSERT (g->next);
2455
2456 g = g->next;
2457
2458 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2459 }
2460
2461 /* Turn a single GOT that is too big for 16-bit addressing into
2462 a sequence of GOTs, each one 16-bit addressable. */
2463
2464 static bfd_boolean
2465 mips_elf_multi_got (abfd, info, g, got, pages)
2466 bfd *abfd;
2467 struct bfd_link_info *info;
2468 struct mips_got_info *g;
2469 asection *got;
2470 bfd_size_type pages;
2471 {
2472 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2473 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2474 struct mips_got_info *gg;
2475 unsigned int assign;
2476
2477 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2478 mips_elf_bfd2got_entry_eq,
2479 (htab_del) NULL);
2480 if (g->bfd2got == NULL)
2481 return FALSE;
2482
2483 got_per_bfd_arg.bfd2got = g->bfd2got;
2484 got_per_bfd_arg.obfd = abfd;
2485 got_per_bfd_arg.info = info;
2486
2487 /* Count how many GOT entries each input bfd requires, creating a
2488 map from bfd to got info while at that. */
2489 mips_elf_resolve_final_got_entries (g);
2490 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2491 if (got_per_bfd_arg.obfd == NULL)
2492 return FALSE;
2493
2494 got_per_bfd_arg.current = NULL;
2495 got_per_bfd_arg.primary = NULL;
2496 /* Taking out PAGES entries is a worst-case estimate. We could
2497 compute the maximum number of pages that each separate input bfd
2498 uses, but it's probably not worth it. */
2499 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2500 / MIPS_ELF_GOT_SIZE (abfd))
2501 - MIPS_RESERVED_GOTNO - pages);
2502
2503 /* Try to merge the GOTs of input bfds together, as long as they
2504 don't seem to exceed the maximum GOT size, choosing one of them
2505 to be the primary GOT. */
2506 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2507 if (got_per_bfd_arg.obfd == NULL)
2508 return FALSE;
2509
2510 /* If we find any suitable primary GOT, create an empty one. */
2511 if (got_per_bfd_arg.primary == NULL)
2512 {
2513 g->next = (struct mips_got_info *)
2514 bfd_alloc (abfd, sizeof (struct mips_got_info));
2515 if (g->next == NULL)
2516 return FALSE;
2517
2518 g->next->global_gotsym = NULL;
2519 g->next->global_gotno = 0;
2520 g->next->local_gotno = 0;
2521 g->next->assigned_gotno = 0;
2522 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2523 mips_elf_multi_got_entry_eq,
2524 (htab_del) NULL);
2525 if (g->next->got_entries == NULL)
2526 return FALSE;
2527 g->next->bfd2got = NULL;
2528 }
2529 else
2530 g->next = got_per_bfd_arg.primary;
2531 g->next->next = got_per_bfd_arg.current;
2532
2533 /* GG is now the master GOT, and G is the primary GOT. */
2534 gg = g;
2535 g = g->next;
2536
2537 /* Map the output bfd to the primary got. That's what we're going
2538 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2539 didn't mark in check_relocs, and we want a quick way to find it.
2540 We can't just use gg->next because we're going to reverse the
2541 list. */
2542 {
2543 struct mips_elf_bfd2got_hash *bfdgot;
2544 void **bfdgotp;
2545
2546 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2547 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2548
2549 if (bfdgot == NULL)
2550 return FALSE;
2551
2552 bfdgot->bfd = abfd;
2553 bfdgot->g = g;
2554 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2555
2556 BFD_ASSERT (*bfdgotp == NULL);
2557 *bfdgotp = bfdgot;
2558 }
2559
2560 /* The IRIX dynamic linker requires every symbol that is referenced
2561 in a dynamic relocation to be present in the primary GOT, so
2562 arrange for them to appear after those that are actually
2563 referenced.
2564
2565 GNU/Linux could very well do without it, but it would slow down
2566 the dynamic linker, since it would have to resolve every dynamic
2567 symbol referenced in other GOTs more than once, without help from
2568 the cache. Also, knowing that every external symbol has a GOT
2569 helps speed up the resolution of local symbols too, so GNU/Linux
2570 follows IRIX's practice.
2571
2572 The number 2 is used by mips_elf_sort_hash_table_f to count
2573 global GOT symbols that are unreferenced in the primary GOT, with
2574 an initial dynamic index computed from gg->assigned_gotno, where
2575 the number of unreferenced global entries in the primary GOT is
2576 preserved. */
2577 if (1)
2578 {
2579 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2580 g->global_gotno = gg->global_gotno;
2581 set_got_offset_arg.value = 2;
2582 }
2583 else
2584 {
2585 /* This could be used for dynamic linkers that don't optimize
2586 symbol resolution while applying relocations so as to use
2587 primary GOT entries or assuming the symbol is locally-defined.
2588 With this code, we assign lower dynamic indices to global
2589 symbols that are not referenced in the primary GOT, so that
2590 their entries can be omitted. */
2591 gg->assigned_gotno = 0;
2592 set_got_offset_arg.value = -1;
2593 }
2594
2595 /* Reorder dynamic symbols as described above (which behavior
2596 depends on the setting of VALUE). */
2597 set_got_offset_arg.g = NULL;
2598 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2599 &set_got_offset_arg);
2600 set_got_offset_arg.value = 1;
2601 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2602 &set_got_offset_arg);
2603 if (! mips_elf_sort_hash_table (info, 1))
2604 return FALSE;
2605
2606 /* Now go through the GOTs assigning them offset ranges.
2607 [assigned_gotno, local_gotno[ will be set to the range of local
2608 entries in each GOT. We can then compute the end of a GOT by
2609 adding local_gotno to global_gotno. We reverse the list and make
2610 it circular since then we'll be able to quickly compute the
2611 beginning of a GOT, by computing the end of its predecessor. To
2612 avoid special cases for the primary GOT, while still preserving
2613 assertions that are valid for both single- and multi-got links,
2614 we arrange for the main got struct to have the right number of
2615 global entries, but set its local_gotno such that the initial
2616 offset of the primary GOT is zero. Remember that the primary GOT
2617 will become the last item in the circular linked list, so it
2618 points back to the master GOT. */
2619 gg->local_gotno = -g->global_gotno;
2620 gg->global_gotno = g->global_gotno;
2621 assign = 0;
2622 gg->next = gg;
2623
2624 do
2625 {
2626 struct mips_got_info *gn;
2627
2628 assign += MIPS_RESERVED_GOTNO;
2629 g->assigned_gotno = assign;
2630 g->local_gotno += assign + pages;
2631 assign = g->local_gotno + g->global_gotno;
2632
2633 /* Take g out of the direct list, and push it onto the reversed
2634 list that gg points to. */
2635 gn = g->next;
2636 g->next = gg->next;
2637 gg->next = g;
2638 g = gn;
2639 }
2640 while (g);
2641
2642 got->_raw_size = (gg->next->local_gotno
2643 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2644
2645 return TRUE;
2646 }
2647
2648 \f
2649 /* Returns the first relocation of type r_type found, beginning with
2650 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2651
2652 static const Elf_Internal_Rela *
2653 mips_elf_next_relocation (abfd, r_type, relocation, relend)
2654 bfd *abfd ATTRIBUTE_UNUSED;
2655 unsigned int r_type;
2656 const Elf_Internal_Rela *relocation;
2657 const Elf_Internal_Rela *relend;
2658 {
2659 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2660 immediately following. However, for the IRIX6 ABI, the next
2661 relocation may be a composed relocation consisting of several
2662 relocations for the same address. In that case, the R_MIPS_LO16
2663 relocation may occur as one of these. We permit a similar
2664 extension in general, as that is useful for GCC. */
2665 while (relocation < relend)
2666 {
2667 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2668 return relocation;
2669
2670 ++relocation;
2671 }
2672
2673 /* We didn't find it. */
2674 bfd_set_error (bfd_error_bad_value);
2675 return NULL;
2676 }
2677
2678 /* Return whether a relocation is against a local symbol. */
2679
2680 static bfd_boolean
2681 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2682 check_forced)
2683 bfd *input_bfd;
2684 const Elf_Internal_Rela *relocation;
2685 asection **local_sections;
2686 bfd_boolean check_forced;
2687 {
2688 unsigned long r_symndx;
2689 Elf_Internal_Shdr *symtab_hdr;
2690 struct mips_elf_link_hash_entry *h;
2691 size_t extsymoff;
2692
2693 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2694 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2695 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2696
2697 if (r_symndx < extsymoff)
2698 return TRUE;
2699 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2700 return TRUE;
2701
2702 if (check_forced)
2703 {
2704 /* Look up the hash table to check whether the symbol
2705 was forced local. */
2706 h = (struct mips_elf_link_hash_entry *)
2707 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2708 /* Find the real hash-table entry for this symbol. */
2709 while (h->root.root.type == bfd_link_hash_indirect
2710 || h->root.root.type == bfd_link_hash_warning)
2711 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2712 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2713 return TRUE;
2714 }
2715
2716 return FALSE;
2717 }
2718 \f
2719 /* Sign-extend VALUE, which has the indicated number of BITS. */
2720
2721 static bfd_vma
2722 mips_elf_sign_extend (value, bits)
2723 bfd_vma value;
2724 int bits;
2725 {
2726 if (value & ((bfd_vma) 1 << (bits - 1)))
2727 /* VALUE is negative. */
2728 value |= ((bfd_vma) - 1) << bits;
2729
2730 return value;
2731 }
2732
2733 /* Return non-zero if the indicated VALUE has overflowed the maximum
2734 range expressable by a signed number with the indicated number of
2735 BITS. */
2736
2737 static bfd_boolean
2738 mips_elf_overflow_p (value, bits)
2739 bfd_vma value;
2740 int bits;
2741 {
2742 bfd_signed_vma svalue = (bfd_signed_vma) value;
2743
2744 if (svalue > (1 << (bits - 1)) - 1)
2745 /* The value is too big. */
2746 return TRUE;
2747 else if (svalue < -(1 << (bits - 1)))
2748 /* The value is too small. */
2749 return TRUE;
2750
2751 /* All is well. */
2752 return FALSE;
2753 }
2754
2755 /* Calculate the %high function. */
2756
2757 static bfd_vma
2758 mips_elf_high (value)
2759 bfd_vma value;
2760 {
2761 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2762 }
2763
2764 /* Calculate the %higher function. */
2765
2766 static bfd_vma
2767 mips_elf_higher (value)
2768 bfd_vma value ATTRIBUTE_UNUSED;
2769 {
2770 #ifdef BFD64
2771 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2772 #else
2773 abort ();
2774 return (bfd_vma) -1;
2775 #endif
2776 }
2777
2778 /* Calculate the %highest function. */
2779
2780 static bfd_vma
2781 mips_elf_highest (value)
2782 bfd_vma value ATTRIBUTE_UNUSED;
2783 {
2784 #ifdef BFD64
2785 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2786 #else
2787 abort ();
2788 return (bfd_vma) -1;
2789 #endif
2790 }
2791 \f
2792 /* Create the .compact_rel section. */
2793
2794 static bfd_boolean
2795 mips_elf_create_compact_rel_section (abfd, info)
2796 bfd *abfd;
2797 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2798 {
2799 flagword flags;
2800 register asection *s;
2801
2802 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2803 {
2804 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2805 | SEC_READONLY);
2806
2807 s = bfd_make_section (abfd, ".compact_rel");
2808 if (s == NULL
2809 || ! bfd_set_section_flags (abfd, s, flags)
2810 || ! bfd_set_section_alignment (abfd, s,
2811 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2812 return FALSE;
2813
2814 s->_raw_size = sizeof (Elf32_External_compact_rel);
2815 }
2816
2817 return TRUE;
2818 }
2819
2820 /* Create the .got section to hold the global offset table. */
2821
2822 static bfd_boolean
2823 mips_elf_create_got_section (abfd, info, maybe_exclude)
2824 bfd *abfd;
2825 struct bfd_link_info *info;
2826 bfd_boolean maybe_exclude;
2827 {
2828 flagword flags;
2829 register asection *s;
2830 struct elf_link_hash_entry *h;
2831 struct bfd_link_hash_entry *bh;
2832 struct mips_got_info *g;
2833 bfd_size_type amt;
2834
2835 /* This function may be called more than once. */
2836 s = mips_elf_got_section (abfd, TRUE);
2837 if (s)
2838 {
2839 if (! maybe_exclude)
2840 s->flags &= ~SEC_EXCLUDE;
2841 return TRUE;
2842 }
2843
2844 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2845 | SEC_LINKER_CREATED);
2846
2847 if (maybe_exclude)
2848 flags |= SEC_EXCLUDE;
2849
2850 s = bfd_make_section (abfd, ".got");
2851 if (s == NULL
2852 || ! bfd_set_section_flags (abfd, s, flags)
2853 || ! bfd_set_section_alignment (abfd, s, 4))
2854 return FALSE;
2855
2856 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2857 linker script because we don't want to define the symbol if we
2858 are not creating a global offset table. */
2859 bh = NULL;
2860 if (! (_bfd_generic_link_add_one_symbol
2861 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2862 (bfd_vma) 0, (const char *) NULL, FALSE,
2863 get_elf_backend_data (abfd)->collect, &bh)))
2864 return FALSE;
2865
2866 h = (struct elf_link_hash_entry *) bh;
2867 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2868 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2869 h->type = STT_OBJECT;
2870
2871 if (info->shared
2872 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
2873 return FALSE;
2874
2875 amt = sizeof (struct mips_got_info);
2876 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2877 if (g == NULL)
2878 return FALSE;
2879 g->global_gotsym = NULL;
2880 g->local_gotno = MIPS_RESERVED_GOTNO;
2881 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2882 g->bfd2got = NULL;
2883 g->next = NULL;
2884 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2885 mips_elf_got_entry_eq,
2886 (htab_del) NULL);
2887 if (g->got_entries == NULL)
2888 return FALSE;
2889 mips_elf_section_data (s)->u.got_info = g;
2890 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2891 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2892
2893 return TRUE;
2894 }
2895
2896 /* Returns the .msym section for ABFD, creating it if it does not
2897 already exist. Returns NULL to indicate error. */
2898
2899 static asection *
2900 mips_elf_create_msym_section (abfd)
2901 bfd *abfd;
2902 {
2903 asection *s;
2904
2905 s = bfd_get_section_by_name (abfd, ".msym");
2906 if (!s)
2907 {
2908 s = bfd_make_section (abfd, ".msym");
2909 if (!s
2910 || !bfd_set_section_flags (abfd, s,
2911 SEC_ALLOC
2912 | SEC_LOAD
2913 | SEC_HAS_CONTENTS
2914 | SEC_LINKER_CREATED
2915 | SEC_READONLY)
2916 || !bfd_set_section_alignment (abfd, s,
2917 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2918 return NULL;
2919 }
2920
2921 return s;
2922 }
2923 \f
2924 /* Calculate the value produced by the RELOCATION (which comes from
2925 the INPUT_BFD). The ADDEND is the addend to use for this
2926 RELOCATION; RELOCATION->R_ADDEND is ignored.
2927
2928 The result of the relocation calculation is stored in VALUEP.
2929 REQUIRE_JALXP indicates whether or not the opcode used with this
2930 relocation must be JALX.
2931
2932 This function returns bfd_reloc_continue if the caller need take no
2933 further action regarding this relocation, bfd_reloc_notsupported if
2934 something goes dramatically wrong, bfd_reloc_overflow if an
2935 overflow occurs, and bfd_reloc_ok to indicate success. */
2936
2937 static bfd_reloc_status_type
2938 mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2939 relocation, addend, howto, local_syms,
2940 local_sections, valuep, namep,
2941 require_jalxp, save_addend)
2942 bfd *abfd;
2943 bfd *input_bfd;
2944 asection *input_section;
2945 struct bfd_link_info *info;
2946 const Elf_Internal_Rela *relocation;
2947 bfd_vma addend;
2948 reloc_howto_type *howto;
2949 Elf_Internal_Sym *local_syms;
2950 asection **local_sections;
2951 bfd_vma *valuep;
2952 const char **namep;
2953 bfd_boolean *require_jalxp;
2954 bfd_boolean save_addend;
2955 {
2956 /* The eventual value we will return. */
2957 bfd_vma value;
2958 /* The address of the symbol against which the relocation is
2959 occurring. */
2960 bfd_vma symbol = 0;
2961 /* The final GP value to be used for the relocatable, executable, or
2962 shared object file being produced. */
2963 bfd_vma gp = MINUS_ONE;
2964 /* The place (section offset or address) of the storage unit being
2965 relocated. */
2966 bfd_vma p;
2967 /* The value of GP used to create the relocatable object. */
2968 bfd_vma gp0 = MINUS_ONE;
2969 /* The offset into the global offset table at which the address of
2970 the relocation entry symbol, adjusted by the addend, resides
2971 during execution. */
2972 bfd_vma g = MINUS_ONE;
2973 /* The section in which the symbol referenced by the relocation is
2974 located. */
2975 asection *sec = NULL;
2976 struct mips_elf_link_hash_entry *h = NULL;
2977 /* TRUE if the symbol referred to by this relocation is a local
2978 symbol. */
2979 bfd_boolean local_p, was_local_p;
2980 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2981 bfd_boolean gp_disp_p = FALSE;
2982 Elf_Internal_Shdr *symtab_hdr;
2983 size_t extsymoff;
2984 unsigned long r_symndx;
2985 int r_type;
2986 /* TRUE if overflow occurred during the calculation of the
2987 relocation value. */
2988 bfd_boolean overflowed_p;
2989 /* TRUE if this relocation refers to a MIPS16 function. */
2990 bfd_boolean target_is_16_bit_code_p = FALSE;
2991
2992 /* Parse the relocation. */
2993 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2994 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
2995 p = (input_section->output_section->vma
2996 + input_section->output_offset
2997 + relocation->r_offset);
2998
2999 /* Assume that there will be no overflow. */
3000 overflowed_p = FALSE;
3001
3002 /* Figure out whether or not the symbol is local, and get the offset
3003 used in the array of hash table entries. */
3004 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3005 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3006 local_sections, FALSE);
3007 was_local_p = local_p;
3008 if (! elf_bad_symtab (input_bfd))
3009 extsymoff = symtab_hdr->sh_info;
3010 else
3011 {
3012 /* The symbol table does not follow the rule that local symbols
3013 must come before globals. */
3014 extsymoff = 0;
3015 }
3016
3017 /* Figure out the value of the symbol. */
3018 if (local_p)
3019 {
3020 Elf_Internal_Sym *sym;
3021
3022 sym = local_syms + r_symndx;
3023 sec = local_sections[r_symndx];
3024
3025 symbol = sec->output_section->vma + sec->output_offset;
3026 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3027 || (sec->flags & SEC_MERGE))
3028 symbol += sym->st_value;
3029 if ((sec->flags & SEC_MERGE)
3030 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3031 {
3032 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3033 addend -= symbol;
3034 addend += sec->output_section->vma + sec->output_offset;
3035 }
3036
3037 /* MIPS16 text labels should be treated as odd. */
3038 if (sym->st_other == STO_MIPS16)
3039 ++symbol;
3040
3041 /* Record the name of this symbol, for our caller. */
3042 *namep = bfd_elf_string_from_elf_section (input_bfd,
3043 symtab_hdr->sh_link,
3044 sym->st_name);
3045 if (*namep == '\0')
3046 *namep = bfd_section_name (input_bfd, sec);
3047
3048 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3049 }
3050 else
3051 {
3052 /* For global symbols we look up the symbol in the hash-table. */
3053 h = ((struct mips_elf_link_hash_entry *)
3054 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3055 /* Find the real hash-table entry for this symbol. */
3056 while (h->root.root.type == bfd_link_hash_indirect
3057 || h->root.root.type == bfd_link_hash_warning)
3058 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3059
3060 /* Record the name of this symbol, for our caller. */
3061 *namep = h->root.root.root.string;
3062
3063 /* See if this is the special _gp_disp symbol. Note that such a
3064 symbol must always be a global symbol. */
3065 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3066 && ! NEWABI_P (input_bfd))
3067 {
3068 /* Relocations against _gp_disp are permitted only with
3069 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3070 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3071 return bfd_reloc_notsupported;
3072
3073 gp_disp_p = TRUE;
3074 }
3075 /* If this symbol is defined, calculate its address. Note that
3076 _gp_disp is a magic symbol, always implicitly defined by the
3077 linker, so it's inappropriate to check to see whether or not
3078 its defined. */
3079 else if ((h->root.root.type == bfd_link_hash_defined
3080 || h->root.root.type == bfd_link_hash_defweak)
3081 && h->root.root.u.def.section)
3082 {
3083 sec = h->root.root.u.def.section;
3084 if (sec->output_section)
3085 symbol = (h->root.root.u.def.value
3086 + sec->output_section->vma
3087 + sec->output_offset);
3088 else
3089 symbol = h->root.root.u.def.value;
3090 }
3091 else if (h->root.root.type == bfd_link_hash_undefweak)
3092 /* We allow relocations against undefined weak symbols, giving
3093 it the value zero, so that you can undefined weak functions
3094 and check to see if they exist by looking at their
3095 addresses. */
3096 symbol = 0;
3097 else if (info->shared
3098 && !info->no_undefined
3099 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3100 symbol = 0;
3101 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3102 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3103 {
3104 /* If this is a dynamic link, we should have created a
3105 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3106 in in _bfd_mips_elf_create_dynamic_sections.
3107 Otherwise, we should define the symbol with a value of 0.
3108 FIXME: It should probably get into the symbol table
3109 somehow as well. */
3110 BFD_ASSERT (! info->shared);
3111 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3112 symbol = 0;
3113 }
3114 else
3115 {
3116 if (! ((*info->callbacks->undefined_symbol)
3117 (info, h->root.root.root.string, input_bfd,
3118 input_section, relocation->r_offset,
3119 (!info->shared || info->no_undefined
3120 || ELF_ST_VISIBILITY (h->root.other)))))
3121 return bfd_reloc_undefined;
3122 symbol = 0;
3123 }
3124
3125 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3126 }
3127
3128 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3129 need to redirect the call to the stub, unless we're already *in*
3130 a stub. */
3131 if (r_type != R_MIPS16_26 && !info->relocateable
3132 && ((h != NULL && h->fn_stub != NULL)
3133 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3134 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3135 && !mips_elf_stub_section_p (input_bfd, input_section))
3136 {
3137 /* This is a 32- or 64-bit call to a 16-bit function. We should
3138 have already noticed that we were going to need the
3139 stub. */
3140 if (local_p)
3141 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3142 else
3143 {
3144 BFD_ASSERT (h->need_fn_stub);
3145 sec = h->fn_stub;
3146 }
3147
3148 symbol = sec->output_section->vma + sec->output_offset;
3149 }
3150 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3151 need to redirect the call to the stub. */
3152 else if (r_type == R_MIPS16_26 && !info->relocateable
3153 && h != NULL
3154 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3155 && !target_is_16_bit_code_p)
3156 {
3157 /* If both call_stub and call_fp_stub are defined, we can figure
3158 out which one to use by seeing which one appears in the input
3159 file. */
3160 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3161 {
3162 asection *o;
3163
3164 sec = NULL;
3165 for (o = input_bfd->sections; o != NULL; o = o->next)
3166 {
3167 if (strncmp (bfd_get_section_name (input_bfd, o),
3168 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3169 {
3170 sec = h->call_fp_stub;
3171 break;
3172 }
3173 }
3174 if (sec == NULL)
3175 sec = h->call_stub;
3176 }
3177 else if (h->call_stub != NULL)
3178 sec = h->call_stub;
3179 else
3180 sec = h->call_fp_stub;
3181
3182 BFD_ASSERT (sec->_raw_size > 0);
3183 symbol = sec->output_section->vma + sec->output_offset;
3184 }
3185
3186 /* Calls from 16-bit code to 32-bit code and vice versa require the
3187 special jalx instruction. */
3188 *require_jalxp = (!info->relocateable
3189 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3190 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3191
3192 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3193 local_sections, TRUE);
3194
3195 /* If we haven't already determined the GOT offset, or the GP value,
3196 and we're going to need it, get it now. */
3197 switch (r_type)
3198 {
3199 case R_MIPS_CALL16:
3200 case R_MIPS_GOT16:
3201 case R_MIPS_GOT_DISP:
3202 case R_MIPS_GOT_HI16:
3203 case R_MIPS_CALL_HI16:
3204 case R_MIPS_GOT_LO16:
3205 case R_MIPS_CALL_LO16:
3206 /* Find the index into the GOT where this value is located. */
3207 if (!local_p)
3208 {
3209 BFD_ASSERT (addend == 0);
3210 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3211 input_bfd,
3212 (struct elf_link_hash_entry *) h);
3213 if (! elf_hash_table(info)->dynamic_sections_created
3214 || (info->shared
3215 && (info->symbolic || h->root.dynindx == -1)
3216 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3217 {
3218 /* This is a static link or a -Bsymbolic link. The
3219 symbol is defined locally, or was forced to be local.
3220 We must initialize this entry in the GOT. */
3221 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3222 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3223 MIPS_ELF_PUT_WORD (tmpbfd, symbol + addend, sgot->contents + g);
3224 }
3225 }
3226 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3227 /* There's no need to create a local GOT entry here; the
3228 calculation for a local GOT16 entry does not involve G. */
3229 break;
3230 else
3231 {
3232 g = mips_elf_local_got_index (abfd, input_bfd,
3233 info, symbol + addend);
3234 if (g == MINUS_ONE)
3235 return bfd_reloc_outofrange;
3236 }
3237
3238 /* Convert GOT indices to actual offsets. */
3239 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3240 abfd, input_bfd, g);
3241 break;
3242
3243 case R_MIPS_HI16:
3244 case R_MIPS_LO16:
3245 case R_MIPS16_GPREL:
3246 case R_MIPS_GPREL16:
3247 case R_MIPS_GPREL32:
3248 case R_MIPS_LITERAL:
3249 gp0 = _bfd_get_gp_value (input_bfd);
3250 gp = _bfd_get_gp_value (abfd);
3251 if (elf_hash_table (info)->dynobj)
3252 gp += mips_elf_adjust_gp (abfd,
3253 mips_elf_got_info
3254 (elf_hash_table (info)->dynobj, NULL),
3255 input_bfd);
3256 break;
3257
3258 default:
3259 break;
3260 }
3261
3262 /* Figure out what kind of relocation is being performed. */
3263 switch (r_type)
3264 {
3265 case R_MIPS_NONE:
3266 return bfd_reloc_continue;
3267
3268 case R_MIPS_16:
3269 value = symbol + mips_elf_sign_extend (addend, 16);
3270 overflowed_p = mips_elf_overflow_p (value, 16);
3271 break;
3272
3273 case R_MIPS_32:
3274 case R_MIPS_REL32:
3275 case R_MIPS_64:
3276 if ((info->shared
3277 || (elf_hash_table (info)->dynamic_sections_created
3278 && h != NULL
3279 && ((h->root.elf_link_hash_flags
3280 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3281 && ((h->root.elf_link_hash_flags
3282 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3283 && r_symndx != 0
3284 && (input_section->flags & SEC_ALLOC) != 0)
3285 {
3286 /* If we're creating a shared library, or this relocation is
3287 against a symbol in a shared library, then we can't know
3288 where the symbol will end up. So, we create a relocation
3289 record in the output, and leave the job up to the dynamic
3290 linker. */
3291 value = addend;
3292 if (!mips_elf_create_dynamic_relocation (abfd,
3293 info,
3294 relocation,
3295 h,
3296 sec,
3297 symbol,
3298 &value,
3299 input_section))
3300 return bfd_reloc_undefined;
3301 }
3302 else
3303 {
3304 if (r_type != R_MIPS_REL32)
3305 value = symbol + addend;
3306 else
3307 value = addend;
3308 }
3309 value &= howto->dst_mask;
3310 break;
3311
3312 case R_MIPS_PC32:
3313 case R_MIPS_PC64:
3314 case R_MIPS_GNU_REL_LO16:
3315 value = symbol + addend - p;
3316 value &= howto->dst_mask;
3317 break;
3318
3319 case R_MIPS_GNU_REL16_S2:
3320 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
3321 overflowed_p = mips_elf_overflow_p (value, 18);
3322 value = (value >> 2) & howto->dst_mask;
3323 break;
3324
3325 case R_MIPS_GNU_REL_HI16:
3326 /* Instead of subtracting 'p' here, we should be subtracting the
3327 equivalent value for the LO part of the reloc, since the value
3328 here is relative to that address. Because that's not easy to do,
3329 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3330 the comment there for more information. */
3331 value = mips_elf_high (addend + symbol - p);
3332 value &= howto->dst_mask;
3333 break;
3334
3335 case R_MIPS16_26:
3336 /* The calculation for R_MIPS16_26 is just the same as for an
3337 R_MIPS_26. It's only the storage of the relocated field into
3338 the output file that's different. That's handled in
3339 mips_elf_perform_relocation. So, we just fall through to the
3340 R_MIPS_26 case here. */
3341 case R_MIPS_26:
3342 if (local_p)
3343 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3344 else
3345 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3346 value &= howto->dst_mask;
3347 break;
3348
3349 case R_MIPS_HI16:
3350 if (!gp_disp_p)
3351 {
3352 value = mips_elf_high (addend + symbol);
3353 value &= howto->dst_mask;
3354 }
3355 else
3356 {
3357 value = mips_elf_high (addend + gp - p);
3358 overflowed_p = mips_elf_overflow_p (value, 16);
3359 }
3360 break;
3361
3362 case R_MIPS_LO16:
3363 if (!gp_disp_p)
3364 value = (symbol + addend) & howto->dst_mask;
3365 else
3366 {
3367 value = addend + gp - p + 4;
3368 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3369 for overflow. But, on, say, IRIX5, relocations against
3370 _gp_disp are normally generated from the .cpload
3371 pseudo-op. It generates code that normally looks like
3372 this:
3373
3374 lui $gp,%hi(_gp_disp)
3375 addiu $gp,$gp,%lo(_gp_disp)
3376 addu $gp,$gp,$t9
3377
3378 Here $t9 holds the address of the function being called,
3379 as required by the MIPS ELF ABI. The R_MIPS_LO16
3380 relocation can easily overflow in this situation, but the
3381 R_MIPS_HI16 relocation will handle the overflow.
3382 Therefore, we consider this a bug in the MIPS ABI, and do
3383 not check for overflow here. */
3384 }
3385 break;
3386
3387 case R_MIPS_LITERAL:
3388 /* Because we don't merge literal sections, we can handle this
3389 just like R_MIPS_GPREL16. In the long run, we should merge
3390 shared literals, and then we will need to additional work
3391 here. */
3392
3393 /* Fall through. */
3394
3395 case R_MIPS16_GPREL:
3396 /* The R_MIPS16_GPREL performs the same calculation as
3397 R_MIPS_GPREL16, but stores the relocated bits in a different
3398 order. We don't need to do anything special here; the
3399 differences are handled in mips_elf_perform_relocation. */
3400 case R_MIPS_GPREL16:
3401 /* Only sign-extend the addend if it was extracted from the
3402 instruction. If the addend was separate, leave it alone,
3403 otherwise we may lose significant bits. */
3404 if (howto->partial_inplace)
3405 addend = mips_elf_sign_extend (addend, 16);
3406 value = symbol + addend - gp;
3407 /* If the symbol was local, any earlier relocatable links will
3408 have adjusted its addend with the gp offset, so compensate
3409 for that now. Don't do it for symbols forced local in this
3410 link, though, since they won't have had the gp offset applied
3411 to them before. */
3412 if (was_local_p)
3413 value += gp0;
3414 overflowed_p = mips_elf_overflow_p (value, 16);
3415 break;
3416
3417 case R_MIPS_GOT16:
3418 case R_MIPS_CALL16:
3419 if (local_p)
3420 {
3421 bfd_boolean forced;
3422
3423 /* The special case is when the symbol is forced to be local. We
3424 need the full address in the GOT since no R_MIPS_LO16 relocation
3425 follows. */
3426 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3427 local_sections, FALSE);
3428 value = mips_elf_got16_entry (abfd, input_bfd, info,
3429 symbol + addend, forced);
3430 if (value == MINUS_ONE)
3431 return bfd_reloc_outofrange;
3432 value
3433 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3434 abfd, input_bfd, value);
3435 overflowed_p = mips_elf_overflow_p (value, 16);
3436 break;
3437 }
3438
3439 /* Fall through. */
3440
3441 case R_MIPS_GOT_DISP:
3442 value = g;
3443 overflowed_p = mips_elf_overflow_p (value, 16);
3444 break;
3445
3446 case R_MIPS_GPREL32:
3447 value = (addend + symbol + gp0 - gp);
3448 if (!save_addend)
3449 value &= howto->dst_mask;
3450 break;
3451
3452 case R_MIPS_PC16:
3453 value = mips_elf_sign_extend (addend, 16) + symbol - p;
3454 overflowed_p = mips_elf_overflow_p (value, 16);
3455 break;
3456
3457 case R_MIPS_GOT_HI16:
3458 case R_MIPS_CALL_HI16:
3459 /* We're allowed to handle these two relocations identically.
3460 The dynamic linker is allowed to handle the CALL relocations
3461 differently by creating a lazy evaluation stub. */
3462 value = g;
3463 value = mips_elf_high (value);
3464 value &= howto->dst_mask;
3465 break;
3466
3467 case R_MIPS_GOT_LO16:
3468 case R_MIPS_CALL_LO16:
3469 value = g & howto->dst_mask;
3470 break;
3471
3472 case R_MIPS_GOT_PAGE:
3473 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3474 if (value == MINUS_ONE)
3475 return bfd_reloc_outofrange;
3476 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3477 abfd, input_bfd, value);
3478 overflowed_p = mips_elf_overflow_p (value, 16);
3479 break;
3480
3481 case R_MIPS_GOT_OFST:
3482 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3483 overflowed_p = mips_elf_overflow_p (value, 16);
3484 break;
3485
3486 case R_MIPS_SUB:
3487 value = symbol - addend;
3488 value &= howto->dst_mask;
3489 break;
3490
3491 case R_MIPS_HIGHER:
3492 value = mips_elf_higher (addend + symbol);
3493 value &= howto->dst_mask;
3494 break;
3495
3496 case R_MIPS_HIGHEST:
3497 value = mips_elf_highest (addend + symbol);
3498 value &= howto->dst_mask;
3499 break;
3500
3501 case R_MIPS_SCN_DISP:
3502 value = symbol + addend - sec->output_offset;
3503 value &= howto->dst_mask;
3504 break;
3505
3506 case R_MIPS_PJUMP:
3507 case R_MIPS_JALR:
3508 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3509 hint; we could improve performance by honoring that hint. */
3510 return bfd_reloc_continue;
3511
3512 case R_MIPS_GNU_VTINHERIT:
3513 case R_MIPS_GNU_VTENTRY:
3514 /* We don't do anything with these at present. */
3515 return bfd_reloc_continue;
3516
3517 default:
3518 /* An unrecognized relocation type. */
3519 return bfd_reloc_notsupported;
3520 }
3521
3522 /* Store the VALUE for our caller. */
3523 *valuep = value;
3524 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3525 }
3526
3527 /* Obtain the field relocated by RELOCATION. */
3528
3529 static bfd_vma
3530 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3531 reloc_howto_type *howto;
3532 const Elf_Internal_Rela *relocation;
3533 bfd *input_bfd;
3534 bfd_byte *contents;
3535 {
3536 bfd_vma x;
3537 bfd_byte *location = contents + relocation->r_offset;
3538
3539 /* Obtain the bytes. */
3540 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3541
3542 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3543 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3544 && bfd_little_endian (input_bfd))
3545 /* The two 16-bit words will be reversed on a little-endian system.
3546 See mips_elf_perform_relocation for more details. */
3547 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3548
3549 return x;
3550 }
3551
3552 /* It has been determined that the result of the RELOCATION is the
3553 VALUE. Use HOWTO to place VALUE into the output file at the
3554 appropriate position. The SECTION is the section to which the
3555 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3556 for the relocation must be either JAL or JALX, and it is
3557 unconditionally converted to JALX.
3558
3559 Returns FALSE if anything goes wrong. */
3560
3561 static bfd_boolean
3562 mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3563 input_section, contents, require_jalx)
3564 struct bfd_link_info *info;
3565 reloc_howto_type *howto;
3566 const Elf_Internal_Rela *relocation;
3567 bfd_vma value;
3568 bfd *input_bfd;
3569 asection *input_section;
3570 bfd_byte *contents;
3571 bfd_boolean require_jalx;
3572 {
3573 bfd_vma x;
3574 bfd_byte *location;
3575 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3576
3577 /* Figure out where the relocation is occurring. */
3578 location = contents + relocation->r_offset;
3579
3580 /* Obtain the current value. */
3581 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3582
3583 /* Clear the field we are setting. */
3584 x &= ~howto->dst_mask;
3585
3586 /* If this is the R_MIPS16_26 relocation, we must store the
3587 value in a funny way. */
3588 if (r_type == R_MIPS16_26)
3589 {
3590 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3591 Most mips16 instructions are 16 bits, but these instructions
3592 are 32 bits.
3593
3594 The format of these instructions is:
3595
3596 +--------------+--------------------------------+
3597 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3598 +--------------+--------------------------------+
3599 ! Immediate 15:0 !
3600 +-----------------------------------------------+
3601
3602 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3603 Note that the immediate value in the first word is swapped.
3604
3605 When producing a relocateable object file, R_MIPS16_26 is
3606 handled mostly like R_MIPS_26. In particular, the addend is
3607 stored as a straight 26-bit value in a 32-bit instruction.
3608 (gas makes life simpler for itself by never adjusting a
3609 R_MIPS16_26 reloc to be against a section, so the addend is
3610 always zero). However, the 32 bit instruction is stored as 2
3611 16-bit values, rather than a single 32-bit value. In a
3612 big-endian file, the result is the same; in a little-endian
3613 file, the two 16-bit halves of the 32 bit value are swapped.
3614 This is so that a disassembler can recognize the jal
3615 instruction.
3616
3617 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3618 instruction stored as two 16-bit values. The addend A is the
3619 contents of the targ26 field. The calculation is the same as
3620 R_MIPS_26. When storing the calculated value, reorder the
3621 immediate value as shown above, and don't forget to store the
3622 value as two 16-bit values.
3623
3624 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3625 defined as
3626
3627 big-endian:
3628 +--------+----------------------+
3629 | | |
3630 | | targ26-16 |
3631 |31 26|25 0|
3632 +--------+----------------------+
3633
3634 little-endian:
3635 +----------+------+-------------+
3636 | | | |
3637 | sub1 | | sub2 |
3638 |0 9|10 15|16 31|
3639 +----------+--------------------+
3640 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3641 ((sub1 << 16) | sub2)).
3642
3643 When producing a relocateable object file, the calculation is
3644 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3645 When producing a fully linked file, the calculation is
3646 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3647 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3648
3649 if (!info->relocateable)
3650 /* Shuffle the bits according to the formula above. */
3651 value = (((value & 0x1f0000) << 5)
3652 | ((value & 0x3e00000) >> 5)
3653 | (value & 0xffff));
3654 }
3655 else if (r_type == R_MIPS16_GPREL)
3656 {
3657 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3658 mode. A typical instruction will have a format like this:
3659
3660 +--------------+--------------------------------+
3661 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3662 +--------------+--------------------------------+
3663 ! Major ! rx ! ry ! Imm 4:0 !
3664 +--------------+--------------------------------+
3665
3666 EXTEND is the five bit value 11110. Major is the instruction
3667 opcode.
3668
3669 This is handled exactly like R_MIPS_GPREL16, except that the
3670 addend is retrieved and stored as shown in this diagram; that
3671 is, the Imm fields above replace the V-rel16 field.
3672
3673 All we need to do here is shuffle the bits appropriately. As
3674 above, the two 16-bit halves must be swapped on a
3675 little-endian system. */
3676 value = (((value & 0x7e0) << 16)
3677 | ((value & 0xf800) << 5)
3678 | (value & 0x1f));
3679 }
3680
3681 /* Set the field. */
3682 x |= (value & howto->dst_mask);
3683
3684 /* If required, turn JAL into JALX. */
3685 if (require_jalx)
3686 {
3687 bfd_boolean ok;
3688 bfd_vma opcode = x >> 26;
3689 bfd_vma jalx_opcode;
3690
3691 /* Check to see if the opcode is already JAL or JALX. */
3692 if (r_type == R_MIPS16_26)
3693 {
3694 ok = ((opcode == 0x6) || (opcode == 0x7));
3695 jalx_opcode = 0x7;
3696 }
3697 else
3698 {
3699 ok = ((opcode == 0x3) || (opcode == 0x1d));
3700 jalx_opcode = 0x1d;
3701 }
3702
3703 /* If the opcode is not JAL or JALX, there's a problem. */
3704 if (!ok)
3705 {
3706 (*_bfd_error_handler)
3707 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3708 bfd_archive_filename (input_bfd),
3709 input_section->name,
3710 (unsigned long) relocation->r_offset);
3711 bfd_set_error (bfd_error_bad_value);
3712 return FALSE;
3713 }
3714
3715 /* Make this the JALX opcode. */
3716 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3717 }
3718
3719 /* Swap the high- and low-order 16 bits on little-endian systems
3720 when doing a MIPS16 relocation. */
3721 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3722 && bfd_little_endian (input_bfd))
3723 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3724
3725 /* Put the value into the output. */
3726 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3727 return TRUE;
3728 }
3729
3730 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3731
3732 static bfd_boolean
3733 mips_elf_stub_section_p (abfd, section)
3734 bfd *abfd ATTRIBUTE_UNUSED;
3735 asection *section;
3736 {
3737 const char *name = bfd_get_section_name (abfd, section);
3738
3739 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3740 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3741 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3742 }
3743 \f
3744 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3745
3746 static void
3747 mips_elf_allocate_dynamic_relocations (abfd, n)
3748 bfd *abfd;
3749 unsigned int n;
3750 {
3751 asection *s;
3752
3753 s = mips_elf_rel_dyn_section (abfd, FALSE);
3754 BFD_ASSERT (s != NULL);
3755
3756 if (s->_raw_size == 0)
3757 {
3758 /* Make room for a null element. */
3759 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3760 ++s->reloc_count;
3761 }
3762 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3763 }
3764
3765 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3766 is the original relocation, which is now being transformed into a
3767 dynamic relocation. The ADDENDP is adjusted if necessary; the
3768 caller should store the result in place of the original addend. */
3769
3770 static bfd_boolean
3771 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3772 symbol, addendp, input_section)
3773 bfd *output_bfd;
3774 struct bfd_link_info *info;
3775 const Elf_Internal_Rela *rel;
3776 struct mips_elf_link_hash_entry *h;
3777 asection *sec;
3778 bfd_vma symbol;
3779 bfd_vma *addendp;
3780 asection *input_section;
3781 {
3782 Elf_Internal_Rela outrel[3];
3783 bfd_boolean skip;
3784 asection *sreloc;
3785 bfd *dynobj;
3786 int r_type;
3787
3788 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3789 dynobj = elf_hash_table (info)->dynobj;
3790 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3791 BFD_ASSERT (sreloc != NULL);
3792 BFD_ASSERT (sreloc->contents != NULL);
3793 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3794 < sreloc->_raw_size);
3795
3796 skip = FALSE;
3797 outrel[0].r_offset =
3798 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3799 outrel[1].r_offset =
3800 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3801 outrel[2].r_offset =
3802 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3803
3804 #if 0
3805 /* We begin by assuming that the offset for the dynamic relocation
3806 is the same as for the original relocation. We'll adjust this
3807 later to reflect the correct output offsets. */
3808 if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS)
3809 {
3810 outrel[1].r_offset = rel[1].r_offset;
3811 outrel[2].r_offset = rel[2].r_offset;
3812 }
3813 else
3814 {
3815 /* Except that in a stab section things are more complex.
3816 Because we compress stab information, the offset given in the
3817 relocation may not be the one we want; we must let the stabs
3818 machinery tell us the offset. */
3819 outrel[1].r_offset = outrel[0].r_offset;
3820 outrel[2].r_offset = outrel[0].r_offset;
3821 /* If we didn't need the relocation at all, this value will be
3822 -1. */
3823 if (outrel[0].r_offset == (bfd_vma) -1)
3824 skip = TRUE;
3825 }
3826 #endif
3827
3828 if (outrel[0].r_offset == (bfd_vma) -1
3829 || outrel[0].r_offset == (bfd_vma) -2)
3830 skip = TRUE;
3831
3832 /* If we've decided to skip this relocation, just output an empty
3833 record. Note that R_MIPS_NONE == 0, so that this call to memset
3834 is a way of setting R_TYPE to R_MIPS_NONE. */
3835 if (skip)
3836 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3837 else
3838 {
3839 long indx;
3840
3841 /* We must now calculate the dynamic symbol table index to use
3842 in the relocation. */
3843 if (h != NULL
3844 && (! info->symbolic || (h->root.elf_link_hash_flags
3845 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3846 {
3847 indx = h->root.dynindx;
3848 /* h->root.dynindx may be -1 if this symbol was marked to
3849 become local. */
3850 if (indx == -1)
3851 indx = 0;
3852 }
3853 else
3854 {
3855 if (sec != NULL && bfd_is_abs_section (sec))
3856 indx = 0;
3857 else if (sec == NULL || sec->owner == NULL)
3858 {
3859 bfd_set_error (bfd_error_bad_value);
3860 return FALSE;
3861 }
3862 else
3863 {
3864 indx = elf_section_data (sec->output_section)->dynindx;
3865 if (indx == 0)
3866 abort ();
3867 }
3868
3869 /* Instead of generating a relocation using the section
3870 symbol, we may as well make it a fully relative
3871 relocation. We want to avoid generating relocations to
3872 local symbols because we used to generate them
3873 incorrectly, without adding the original symbol value,
3874 which is mandated by the ABI for section symbols. In
3875 order to give dynamic loaders and applications time to
3876 phase out the incorrect use, we refrain from emitting
3877 section-relative relocations. It's not like they're
3878 useful, after all. This should be a bit more efficient
3879 as well. */
3880 indx = 0;
3881 }
3882
3883 /* If the relocation was previously an absolute relocation and
3884 this symbol will not be referred to by the relocation, we must
3885 adjust it by the value we give it in the dynamic symbol table.
3886 Otherwise leave the job up to the dynamic linker. */
3887 if (!indx && r_type != R_MIPS_REL32)
3888 *addendp += symbol;
3889
3890 /* The relocation is always an REL32 relocation because we don't
3891 know where the shared library will wind up at load-time. */
3892 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3893 R_MIPS_REL32);
3894 /* For strict adherence to the ABI specification, we should
3895 generate a R_MIPS_64 relocation record by itself before the
3896 _REL32/_64 record as well, such that the addend is read in as
3897 a 64-bit value (REL32 is a 32-bit relocation, after all).
3898 However, since none of the existing ELF64 MIPS dynamic
3899 loaders seems to care, we don't waste space with these
3900 artificial relocations. If this turns out to not be true,
3901 mips_elf_allocate_dynamic_relocation() should be tweaked so
3902 as to make room for a pair of dynamic relocations per
3903 invocation if ABI_64_P, and here we should generate an
3904 additional relocation record with R_MIPS_64 by itself for a
3905 NULL symbol before this relocation record. */
3906 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3907 ABI_64_P (output_bfd)
3908 ? R_MIPS_64
3909 : R_MIPS_NONE);
3910 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3911 R_MIPS_NONE);
3912
3913 /* Adjust the output offset of the relocation to reference the
3914 correct location in the output file. */
3915 outrel[0].r_offset += (input_section->output_section->vma
3916 + input_section->output_offset);
3917 outrel[1].r_offset += (input_section->output_section->vma
3918 + input_section->output_offset);
3919 outrel[2].r_offset += (input_section->output_section->vma
3920 + input_section->output_offset);
3921 }
3922
3923 /* Put the relocation back out. We have to use the special
3924 relocation outputter in the 64-bit case since the 64-bit
3925 relocation format is non-standard. */
3926 if (ABI_64_P (output_bfd))
3927 {
3928 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3929 (output_bfd, &outrel[0],
3930 (sreloc->contents
3931 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3932 }
3933 else
3934 bfd_elf32_swap_reloc_out
3935 (output_bfd, &outrel[0],
3936 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3937
3938 /* Record the index of the first relocation referencing H. This
3939 information is later emitted in the .msym section. */
3940 if (h != NULL
3941 && (h->min_dyn_reloc_index == 0
3942 || sreloc->reloc_count < h->min_dyn_reloc_index))
3943 h->min_dyn_reloc_index = sreloc->reloc_count;
3944
3945 /* We've now added another relocation. */
3946 ++sreloc->reloc_count;
3947
3948 /* Make sure the output section is writable. The dynamic linker
3949 will be writing to it. */
3950 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3951 |= SHF_WRITE;
3952
3953 /* On IRIX5, make an entry of compact relocation info. */
3954 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3955 {
3956 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3957 bfd_byte *cr;
3958
3959 if (scpt)
3960 {
3961 Elf32_crinfo cptrel;
3962
3963 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3964 cptrel.vaddr = (rel->r_offset
3965 + input_section->output_section->vma
3966 + input_section->output_offset);
3967 if (r_type == R_MIPS_REL32)
3968 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3969 else
3970 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3971 mips_elf_set_cr_dist2to (cptrel, 0);
3972 cptrel.konst = *addendp;
3973
3974 cr = (scpt->contents
3975 + sizeof (Elf32_External_compact_rel));
3976 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3977 ((Elf32_External_crinfo *) cr
3978 + scpt->reloc_count));
3979 ++scpt->reloc_count;
3980 }
3981 }
3982
3983 return TRUE;
3984 }
3985 \f
3986 /* Return the MACH for a MIPS e_flags value. */
3987
3988 unsigned long
3989 _bfd_elf_mips_mach (flags)
3990 flagword flags;
3991 {
3992 switch (flags & EF_MIPS_MACH)
3993 {
3994 case E_MIPS_MACH_3900:
3995 return bfd_mach_mips3900;
3996
3997 case E_MIPS_MACH_4010:
3998 return bfd_mach_mips4010;
3999
4000 case E_MIPS_MACH_4100:
4001 return bfd_mach_mips4100;
4002
4003 case E_MIPS_MACH_4111:
4004 return bfd_mach_mips4111;
4005
4006 case E_MIPS_MACH_4120:
4007 return bfd_mach_mips4120;
4008
4009 case E_MIPS_MACH_4650:
4010 return bfd_mach_mips4650;
4011
4012 case E_MIPS_MACH_5400:
4013 return bfd_mach_mips5400;
4014
4015 case E_MIPS_MACH_5500:
4016 return bfd_mach_mips5500;
4017
4018 case E_MIPS_MACH_SB1:
4019 return bfd_mach_mips_sb1;
4020
4021 default:
4022 switch (flags & EF_MIPS_ARCH)
4023 {
4024 default:
4025 case E_MIPS_ARCH_1:
4026 return bfd_mach_mips3000;
4027 break;
4028
4029 case E_MIPS_ARCH_2:
4030 return bfd_mach_mips6000;
4031 break;
4032
4033 case E_MIPS_ARCH_3:
4034 return bfd_mach_mips4000;
4035 break;
4036
4037 case E_MIPS_ARCH_4:
4038 return bfd_mach_mips8000;
4039 break;
4040
4041 case E_MIPS_ARCH_5:
4042 return bfd_mach_mips5;
4043 break;
4044
4045 case E_MIPS_ARCH_32:
4046 return bfd_mach_mipsisa32;
4047 break;
4048
4049 case E_MIPS_ARCH_64:
4050 return bfd_mach_mipsisa64;
4051 break;
4052
4053 case E_MIPS_ARCH_32R2:
4054 return bfd_mach_mipsisa32r2;
4055 break;
4056 }
4057 }
4058
4059 return 0;
4060 }
4061
4062 /* Return printable name for ABI. */
4063
4064 static INLINE char *
4065 elf_mips_abi_name (abfd)
4066 bfd *abfd;
4067 {
4068 flagword flags;
4069
4070 flags = elf_elfheader (abfd)->e_flags;
4071 switch (flags & EF_MIPS_ABI)
4072 {
4073 case 0:
4074 if (ABI_N32_P (abfd))
4075 return "N32";
4076 else if (ABI_64_P (abfd))
4077 return "64";
4078 else
4079 return "none";
4080 case E_MIPS_ABI_O32:
4081 return "O32";
4082 case E_MIPS_ABI_O64:
4083 return "O64";
4084 case E_MIPS_ABI_EABI32:
4085 return "EABI32";
4086 case E_MIPS_ABI_EABI64:
4087 return "EABI64";
4088 default:
4089 return "unknown abi";
4090 }
4091 }
4092 \f
4093 /* MIPS ELF uses two common sections. One is the usual one, and the
4094 other is for small objects. All the small objects are kept
4095 together, and then referenced via the gp pointer, which yields
4096 faster assembler code. This is what we use for the small common
4097 section. This approach is copied from ecoff.c. */
4098 static asection mips_elf_scom_section;
4099 static asymbol mips_elf_scom_symbol;
4100 static asymbol *mips_elf_scom_symbol_ptr;
4101
4102 /* MIPS ELF also uses an acommon section, which represents an
4103 allocated common symbol which may be overridden by a
4104 definition in a shared library. */
4105 static asection mips_elf_acom_section;
4106 static asymbol mips_elf_acom_symbol;
4107 static asymbol *mips_elf_acom_symbol_ptr;
4108
4109 /* Handle the special MIPS section numbers that a symbol may use.
4110 This is used for both the 32-bit and the 64-bit ABI. */
4111
4112 void
4113 _bfd_mips_elf_symbol_processing (abfd, asym)
4114 bfd *abfd;
4115 asymbol *asym;
4116 {
4117 elf_symbol_type *elfsym;
4118
4119 elfsym = (elf_symbol_type *) asym;
4120 switch (elfsym->internal_elf_sym.st_shndx)
4121 {
4122 case SHN_MIPS_ACOMMON:
4123 /* This section is used in a dynamically linked executable file.
4124 It is an allocated common section. The dynamic linker can
4125 either resolve these symbols to something in a shared
4126 library, or it can just leave them here. For our purposes,
4127 we can consider these symbols to be in a new section. */
4128 if (mips_elf_acom_section.name == NULL)
4129 {
4130 /* Initialize the acommon section. */
4131 mips_elf_acom_section.name = ".acommon";
4132 mips_elf_acom_section.flags = SEC_ALLOC;
4133 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4134 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4135 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4136 mips_elf_acom_symbol.name = ".acommon";
4137 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4138 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4139 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4140 }
4141 asym->section = &mips_elf_acom_section;
4142 break;
4143
4144 case SHN_COMMON:
4145 /* Common symbols less than the GP size are automatically
4146 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4147 if (asym->value > elf_gp_size (abfd)
4148 || IRIX_COMPAT (abfd) == ict_irix6)
4149 break;
4150 /* Fall through. */
4151 case SHN_MIPS_SCOMMON:
4152 if (mips_elf_scom_section.name == NULL)
4153 {
4154 /* Initialize the small common section. */
4155 mips_elf_scom_section.name = ".scommon";
4156 mips_elf_scom_section.flags = SEC_IS_COMMON;
4157 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4158 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4159 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4160 mips_elf_scom_symbol.name = ".scommon";
4161 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4162 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4163 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4164 }
4165 asym->section = &mips_elf_scom_section;
4166 asym->value = elfsym->internal_elf_sym.st_size;
4167 break;
4168
4169 case SHN_MIPS_SUNDEFINED:
4170 asym->section = bfd_und_section_ptr;
4171 break;
4172
4173 #if 0 /* for SGI_COMPAT */
4174 case SHN_MIPS_TEXT:
4175 asym->section = mips_elf_text_section_ptr;
4176 break;
4177
4178 case SHN_MIPS_DATA:
4179 asym->section = mips_elf_data_section_ptr;
4180 break;
4181 #endif
4182 }
4183 }
4184 \f
4185 /* Work over a section just before writing it out. This routine is
4186 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4187 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4188 a better way. */
4189
4190 bfd_boolean
4191 _bfd_mips_elf_section_processing (abfd, hdr)
4192 bfd *abfd;
4193 Elf_Internal_Shdr *hdr;
4194 {
4195 if (hdr->sh_type == SHT_MIPS_REGINFO
4196 && hdr->sh_size > 0)
4197 {
4198 bfd_byte buf[4];
4199
4200 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4201 BFD_ASSERT (hdr->contents == NULL);
4202
4203 if (bfd_seek (abfd,
4204 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4205 SEEK_SET) != 0)
4206 return FALSE;
4207 H_PUT_32 (abfd, elf_gp (abfd), buf);
4208 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4209 return FALSE;
4210 }
4211
4212 if (hdr->sh_type == SHT_MIPS_OPTIONS
4213 && hdr->bfd_section != NULL
4214 && mips_elf_section_data (hdr->bfd_section) != NULL
4215 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4216 {
4217 bfd_byte *contents, *l, *lend;
4218
4219 /* We stored the section contents in the tdata field in the
4220 set_section_contents routine. We save the section contents
4221 so that we don't have to read them again.
4222 At this point we know that elf_gp is set, so we can look
4223 through the section contents to see if there is an
4224 ODK_REGINFO structure. */
4225
4226 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4227 l = contents;
4228 lend = contents + hdr->sh_size;
4229 while (l + sizeof (Elf_External_Options) <= lend)
4230 {
4231 Elf_Internal_Options intopt;
4232
4233 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4234 &intopt);
4235 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4236 {
4237 bfd_byte buf[8];
4238
4239 if (bfd_seek (abfd,
4240 (hdr->sh_offset
4241 + (l - contents)
4242 + sizeof (Elf_External_Options)
4243 + (sizeof (Elf64_External_RegInfo) - 8)),
4244 SEEK_SET) != 0)
4245 return FALSE;
4246 H_PUT_64 (abfd, elf_gp (abfd), buf);
4247 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
4248 return FALSE;
4249 }
4250 else if (intopt.kind == ODK_REGINFO)
4251 {
4252 bfd_byte buf[4];
4253
4254 if (bfd_seek (abfd,
4255 (hdr->sh_offset
4256 + (l - contents)
4257 + sizeof (Elf_External_Options)
4258 + (sizeof (Elf32_External_RegInfo) - 4)),
4259 SEEK_SET) != 0)
4260 return FALSE;
4261 H_PUT_32 (abfd, elf_gp (abfd), buf);
4262 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4263 return FALSE;
4264 }
4265 l += intopt.size;
4266 }
4267 }
4268
4269 if (hdr->bfd_section != NULL)
4270 {
4271 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4272
4273 if (strcmp (name, ".sdata") == 0
4274 || strcmp (name, ".lit8") == 0
4275 || strcmp (name, ".lit4") == 0)
4276 {
4277 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4278 hdr->sh_type = SHT_PROGBITS;
4279 }
4280 else if (strcmp (name, ".sbss") == 0)
4281 {
4282 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4283 hdr->sh_type = SHT_NOBITS;
4284 }
4285 else if (strcmp (name, ".srdata") == 0)
4286 {
4287 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4288 hdr->sh_type = SHT_PROGBITS;
4289 }
4290 else if (strcmp (name, ".compact_rel") == 0)
4291 {
4292 hdr->sh_flags = 0;
4293 hdr->sh_type = SHT_PROGBITS;
4294 }
4295 else if (strcmp (name, ".rtproc") == 0)
4296 {
4297 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4298 {
4299 unsigned int adjust;
4300
4301 adjust = hdr->sh_size % hdr->sh_addralign;
4302 if (adjust != 0)
4303 hdr->sh_size += hdr->sh_addralign - adjust;
4304 }
4305 }
4306 }
4307
4308 return TRUE;
4309 }
4310
4311 /* Handle a MIPS specific section when reading an object file. This
4312 is called when elfcode.h finds a section with an unknown type.
4313 This routine supports both the 32-bit and 64-bit ELF ABI.
4314
4315 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4316 how to. */
4317
4318 bfd_boolean
4319 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4320 bfd *abfd;
4321 Elf_Internal_Shdr *hdr;
4322 const char *name;
4323 {
4324 flagword flags = 0;
4325
4326 /* There ought to be a place to keep ELF backend specific flags, but
4327 at the moment there isn't one. We just keep track of the
4328 sections by their name, instead. Fortunately, the ABI gives
4329 suggested names for all the MIPS specific sections, so we will
4330 probably get away with this. */
4331 switch (hdr->sh_type)
4332 {
4333 case SHT_MIPS_LIBLIST:
4334 if (strcmp (name, ".liblist") != 0)
4335 return FALSE;
4336 break;
4337 case SHT_MIPS_MSYM:
4338 if (strcmp (name, ".msym") != 0)
4339 return FALSE;
4340 break;
4341 case SHT_MIPS_CONFLICT:
4342 if (strcmp (name, ".conflict") != 0)
4343 return FALSE;
4344 break;
4345 case SHT_MIPS_GPTAB:
4346 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4347 return FALSE;
4348 break;
4349 case SHT_MIPS_UCODE:
4350 if (strcmp (name, ".ucode") != 0)
4351 return FALSE;
4352 break;
4353 case SHT_MIPS_DEBUG:
4354 if (strcmp (name, ".mdebug") != 0)
4355 return FALSE;
4356 flags = SEC_DEBUGGING;
4357 break;
4358 case SHT_MIPS_REGINFO:
4359 if (strcmp (name, ".reginfo") != 0
4360 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4361 return FALSE;
4362 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4363 break;
4364 case SHT_MIPS_IFACE:
4365 if (strcmp (name, ".MIPS.interfaces") != 0)
4366 return FALSE;
4367 break;
4368 case SHT_MIPS_CONTENT:
4369 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4370 return FALSE;
4371 break;
4372 case SHT_MIPS_OPTIONS:
4373 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4374 return FALSE;
4375 break;
4376 case SHT_MIPS_DWARF:
4377 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4378 return FALSE;
4379 break;
4380 case SHT_MIPS_SYMBOL_LIB:
4381 if (strcmp (name, ".MIPS.symlib") != 0)
4382 return FALSE;
4383 break;
4384 case SHT_MIPS_EVENTS:
4385 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4386 && strncmp (name, ".MIPS.post_rel",
4387 sizeof ".MIPS.post_rel" - 1) != 0)
4388 return FALSE;
4389 break;
4390 default:
4391 return FALSE;
4392 }
4393
4394 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4395 return FALSE;
4396
4397 if (flags)
4398 {
4399 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4400 (bfd_get_section_flags (abfd,
4401 hdr->bfd_section)
4402 | flags)))
4403 return FALSE;
4404 }
4405
4406 /* FIXME: We should record sh_info for a .gptab section. */
4407
4408 /* For a .reginfo section, set the gp value in the tdata information
4409 from the contents of this section. We need the gp value while
4410 processing relocs, so we just get it now. The .reginfo section
4411 is not used in the 64-bit MIPS ELF ABI. */
4412 if (hdr->sh_type == SHT_MIPS_REGINFO)
4413 {
4414 Elf32_External_RegInfo ext;
4415 Elf32_RegInfo s;
4416
4417 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4418 (file_ptr) 0,
4419 (bfd_size_type) sizeof ext))
4420 return FALSE;
4421 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4422 elf_gp (abfd) = s.ri_gp_value;
4423 }
4424
4425 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4426 set the gp value based on what we find. We may see both
4427 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4428 they should agree. */
4429 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4430 {
4431 bfd_byte *contents, *l, *lend;
4432
4433 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4434 if (contents == NULL)
4435 return FALSE;
4436 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4437 (file_ptr) 0, hdr->sh_size))
4438 {
4439 free (contents);
4440 return FALSE;
4441 }
4442 l = contents;
4443 lend = contents + hdr->sh_size;
4444 while (l + sizeof (Elf_External_Options) <= lend)
4445 {
4446 Elf_Internal_Options intopt;
4447
4448 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4449 &intopt);
4450 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4451 {
4452 Elf64_Internal_RegInfo intreg;
4453
4454 bfd_mips_elf64_swap_reginfo_in
4455 (abfd,
4456 ((Elf64_External_RegInfo *)
4457 (l + sizeof (Elf_External_Options))),
4458 &intreg);
4459 elf_gp (abfd) = intreg.ri_gp_value;
4460 }
4461 else if (intopt.kind == ODK_REGINFO)
4462 {
4463 Elf32_RegInfo intreg;
4464
4465 bfd_mips_elf32_swap_reginfo_in
4466 (abfd,
4467 ((Elf32_External_RegInfo *)
4468 (l + sizeof (Elf_External_Options))),
4469 &intreg);
4470 elf_gp (abfd) = intreg.ri_gp_value;
4471 }
4472 l += intopt.size;
4473 }
4474 free (contents);
4475 }
4476
4477 return TRUE;
4478 }
4479
4480 /* Set the correct type for a MIPS ELF section. We do this by the
4481 section name, which is a hack, but ought to work. This routine is
4482 used by both the 32-bit and the 64-bit ABI. */
4483
4484 bfd_boolean
4485 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
4486 bfd *abfd;
4487 Elf_Internal_Shdr *hdr;
4488 asection *sec;
4489 {
4490 register const char *name;
4491
4492 name = bfd_get_section_name (abfd, sec);
4493
4494 if (strcmp (name, ".liblist") == 0)
4495 {
4496 hdr->sh_type = SHT_MIPS_LIBLIST;
4497 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4498 /* The sh_link field is set in final_write_processing. */
4499 }
4500 else if (strcmp (name, ".conflict") == 0)
4501 hdr->sh_type = SHT_MIPS_CONFLICT;
4502 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4503 {
4504 hdr->sh_type = SHT_MIPS_GPTAB;
4505 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4506 /* The sh_info field is set in final_write_processing. */
4507 }
4508 else if (strcmp (name, ".ucode") == 0)
4509 hdr->sh_type = SHT_MIPS_UCODE;
4510 else if (strcmp (name, ".mdebug") == 0)
4511 {
4512 hdr->sh_type = SHT_MIPS_DEBUG;
4513 /* In a shared object on IRIX 5.3, the .mdebug section has an
4514 entsize of 0. FIXME: Does this matter? */
4515 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4516 hdr->sh_entsize = 0;
4517 else
4518 hdr->sh_entsize = 1;
4519 }
4520 else if (strcmp (name, ".reginfo") == 0)
4521 {
4522 hdr->sh_type = SHT_MIPS_REGINFO;
4523 /* In a shared object on IRIX 5.3, the .reginfo section has an
4524 entsize of 0x18. FIXME: Does this matter? */
4525 if (SGI_COMPAT (abfd))
4526 {
4527 if ((abfd->flags & DYNAMIC) != 0)
4528 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4529 else
4530 hdr->sh_entsize = 1;
4531 }
4532 else
4533 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4534 }
4535 else if (SGI_COMPAT (abfd)
4536 && (strcmp (name, ".hash") == 0
4537 || strcmp (name, ".dynamic") == 0
4538 || strcmp (name, ".dynstr") == 0))
4539 {
4540 if (SGI_COMPAT (abfd))
4541 hdr->sh_entsize = 0;
4542 #if 0
4543 /* This isn't how the IRIX6 linker behaves. */
4544 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4545 #endif
4546 }
4547 else if (strcmp (name, ".got") == 0
4548 || strcmp (name, ".srdata") == 0
4549 || strcmp (name, ".sdata") == 0
4550 || strcmp (name, ".sbss") == 0
4551 || strcmp (name, ".lit4") == 0
4552 || strcmp (name, ".lit8") == 0)
4553 hdr->sh_flags |= SHF_MIPS_GPREL;
4554 else if (strcmp (name, ".MIPS.interfaces") == 0)
4555 {
4556 hdr->sh_type = SHT_MIPS_IFACE;
4557 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4558 }
4559 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4560 {
4561 hdr->sh_type = SHT_MIPS_CONTENT;
4562 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4563 /* The sh_info field is set in final_write_processing. */
4564 }
4565 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4566 {
4567 hdr->sh_type = SHT_MIPS_OPTIONS;
4568 hdr->sh_entsize = 1;
4569 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4570 }
4571 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4572 hdr->sh_type = SHT_MIPS_DWARF;
4573 else if (strcmp (name, ".MIPS.symlib") == 0)
4574 {
4575 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4576 /* The sh_link and sh_info fields are set in
4577 final_write_processing. */
4578 }
4579 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4580 || strncmp (name, ".MIPS.post_rel",
4581 sizeof ".MIPS.post_rel" - 1) == 0)
4582 {
4583 hdr->sh_type = SHT_MIPS_EVENTS;
4584 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4585 /* The sh_link field is set in final_write_processing. */
4586 }
4587 else if (strcmp (name, ".msym") == 0)
4588 {
4589 hdr->sh_type = SHT_MIPS_MSYM;
4590 hdr->sh_flags |= SHF_ALLOC;
4591 hdr->sh_entsize = 8;
4592 }
4593
4594 /* The generic elf_fake_sections will set up REL_HDR using the
4595 default kind of relocations. But, we may actually need both
4596 kinds of relocations, so we set up the second header here.
4597
4598 This is not necessary for the O32 ABI since that only uses Elf32_Rel
4599 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
4600 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
4601 of the resulting empty .rela.<section> sections starts with
4602 sh_offset == object size, and ld doesn't allow that. While the check
4603 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
4604 avoided by not emitting those useless sections in the first place. */
4605 if (! SGI_COMPAT (abfd) && ! NEWABI_P(abfd)
4606 && (sec->flags & SEC_RELOC) != 0)
4607 {
4608 struct bfd_elf_section_data *esd;
4609 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
4610
4611 esd = elf_section_data (sec);
4612 BFD_ASSERT (esd->rel_hdr2 == NULL);
4613 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
4614 if (!esd->rel_hdr2)
4615 return FALSE;
4616 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec, !sec->use_rela_p);
4617 }
4618
4619 return TRUE;
4620 }
4621
4622 /* Given a BFD section, try to locate the corresponding ELF section
4623 index. This is used by both the 32-bit and the 64-bit ABI.
4624 Actually, it's not clear to me that the 64-bit ABI supports these,
4625 but for non-PIC objects we will certainly want support for at least
4626 the .scommon section. */
4627
4628 bfd_boolean
4629 _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4630 bfd *abfd ATTRIBUTE_UNUSED;
4631 asection *sec;
4632 int *retval;
4633 {
4634 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4635 {
4636 *retval = SHN_MIPS_SCOMMON;
4637 return TRUE;
4638 }
4639 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4640 {
4641 *retval = SHN_MIPS_ACOMMON;
4642 return TRUE;
4643 }
4644 return FALSE;
4645 }
4646 \f
4647 /* Hook called by the linker routine which adds symbols from an object
4648 file. We must handle the special MIPS section numbers here. */
4649
4650 bfd_boolean
4651 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4652 bfd *abfd;
4653 struct bfd_link_info *info;
4654 const Elf_Internal_Sym *sym;
4655 const char **namep;
4656 flagword *flagsp ATTRIBUTE_UNUSED;
4657 asection **secp;
4658 bfd_vma *valp;
4659 {
4660 if (SGI_COMPAT (abfd)
4661 && (abfd->flags & DYNAMIC) != 0
4662 && strcmp (*namep, "_rld_new_interface") == 0)
4663 {
4664 /* Skip IRIX5 rld entry name. */
4665 *namep = NULL;
4666 return TRUE;
4667 }
4668
4669 switch (sym->st_shndx)
4670 {
4671 case SHN_COMMON:
4672 /* Common symbols less than the GP size are automatically
4673 treated as SHN_MIPS_SCOMMON symbols. */
4674 if (sym->st_size > elf_gp_size (abfd)
4675 || IRIX_COMPAT (abfd) == ict_irix6)
4676 break;
4677 /* Fall through. */
4678 case SHN_MIPS_SCOMMON:
4679 *secp = bfd_make_section_old_way (abfd, ".scommon");
4680 (*secp)->flags |= SEC_IS_COMMON;
4681 *valp = sym->st_size;
4682 break;
4683
4684 case SHN_MIPS_TEXT:
4685 /* This section is used in a shared object. */
4686 if (elf_tdata (abfd)->elf_text_section == NULL)
4687 {
4688 asymbol *elf_text_symbol;
4689 asection *elf_text_section;
4690 bfd_size_type amt = sizeof (asection);
4691
4692 elf_text_section = bfd_zalloc (abfd, amt);
4693 if (elf_text_section == NULL)
4694 return FALSE;
4695
4696 amt = sizeof (asymbol);
4697 elf_text_symbol = bfd_zalloc (abfd, amt);
4698 if (elf_text_symbol == NULL)
4699 return FALSE;
4700
4701 /* Initialize the section. */
4702
4703 elf_tdata (abfd)->elf_text_section = elf_text_section;
4704 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4705
4706 elf_text_section->symbol = elf_text_symbol;
4707 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4708
4709 elf_text_section->name = ".text";
4710 elf_text_section->flags = SEC_NO_FLAGS;
4711 elf_text_section->output_section = NULL;
4712 elf_text_section->owner = abfd;
4713 elf_text_symbol->name = ".text";
4714 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4715 elf_text_symbol->section = elf_text_section;
4716 }
4717 /* This code used to do *secp = bfd_und_section_ptr if
4718 info->shared. I don't know why, and that doesn't make sense,
4719 so I took it out. */
4720 *secp = elf_tdata (abfd)->elf_text_section;
4721 break;
4722
4723 case SHN_MIPS_ACOMMON:
4724 /* Fall through. XXX Can we treat this as allocated data? */
4725 case SHN_MIPS_DATA:
4726 /* This section is used in a shared object. */
4727 if (elf_tdata (abfd)->elf_data_section == NULL)
4728 {
4729 asymbol *elf_data_symbol;
4730 asection *elf_data_section;
4731 bfd_size_type amt = sizeof (asection);
4732
4733 elf_data_section = bfd_zalloc (abfd, amt);
4734 if (elf_data_section == NULL)
4735 return FALSE;
4736
4737 amt = sizeof (asymbol);
4738 elf_data_symbol = bfd_zalloc (abfd, amt);
4739 if (elf_data_symbol == NULL)
4740 return FALSE;
4741
4742 /* Initialize the section. */
4743
4744 elf_tdata (abfd)->elf_data_section = elf_data_section;
4745 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4746
4747 elf_data_section->symbol = elf_data_symbol;
4748 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4749
4750 elf_data_section->name = ".data";
4751 elf_data_section->flags = SEC_NO_FLAGS;
4752 elf_data_section->output_section = NULL;
4753 elf_data_section->owner = abfd;
4754 elf_data_symbol->name = ".data";
4755 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4756 elf_data_symbol->section = elf_data_section;
4757 }
4758 /* This code used to do *secp = bfd_und_section_ptr if
4759 info->shared. I don't know why, and that doesn't make sense,
4760 so I took it out. */
4761 *secp = elf_tdata (abfd)->elf_data_section;
4762 break;
4763
4764 case SHN_MIPS_SUNDEFINED:
4765 *secp = bfd_und_section_ptr;
4766 break;
4767 }
4768
4769 if (SGI_COMPAT (abfd)
4770 && ! info->shared
4771 && info->hash->creator == abfd->xvec
4772 && strcmp (*namep, "__rld_obj_head") == 0)
4773 {
4774 struct elf_link_hash_entry *h;
4775 struct bfd_link_hash_entry *bh;
4776
4777 /* Mark __rld_obj_head as dynamic. */
4778 bh = NULL;
4779 if (! (_bfd_generic_link_add_one_symbol
4780 (info, abfd, *namep, BSF_GLOBAL, *secp,
4781 (bfd_vma) *valp, (const char *) NULL, FALSE,
4782 get_elf_backend_data (abfd)->collect, &bh)))
4783 return FALSE;
4784
4785 h = (struct elf_link_hash_entry *) bh;
4786 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4787 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4788 h->type = STT_OBJECT;
4789
4790 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4791 return FALSE;
4792
4793 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4794 }
4795
4796 /* If this is a mips16 text symbol, add 1 to the value to make it
4797 odd. This will cause something like .word SYM to come up with
4798 the right value when it is loaded into the PC. */
4799 if (sym->st_other == STO_MIPS16)
4800 ++*valp;
4801
4802 return TRUE;
4803 }
4804
4805 /* This hook function is called before the linker writes out a global
4806 symbol. We mark symbols as small common if appropriate. This is
4807 also where we undo the increment of the value for a mips16 symbol. */
4808
4809 bfd_boolean
4810 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4811 bfd *abfd ATTRIBUTE_UNUSED;
4812 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4813 const char *name ATTRIBUTE_UNUSED;
4814 Elf_Internal_Sym *sym;
4815 asection *input_sec;
4816 {
4817 /* If we see a common symbol, which implies a relocatable link, then
4818 if a symbol was small common in an input file, mark it as small
4819 common in the output file. */
4820 if (sym->st_shndx == SHN_COMMON
4821 && strcmp (input_sec->name, ".scommon") == 0)
4822 sym->st_shndx = SHN_MIPS_SCOMMON;
4823
4824 if (sym->st_other == STO_MIPS16
4825 && (sym->st_value & 1) != 0)
4826 --sym->st_value;
4827
4828 return TRUE;
4829 }
4830 \f
4831 /* Functions for the dynamic linker. */
4832
4833 /* Create dynamic sections when linking against a dynamic object. */
4834
4835 bfd_boolean
4836 _bfd_mips_elf_create_dynamic_sections (abfd, info)
4837 bfd *abfd;
4838 struct bfd_link_info *info;
4839 {
4840 struct elf_link_hash_entry *h;
4841 struct bfd_link_hash_entry *bh;
4842 flagword flags;
4843 register asection *s;
4844 const char * const *namep;
4845
4846 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4847 | SEC_LINKER_CREATED | SEC_READONLY);
4848
4849 /* Mips ABI requests the .dynamic section to be read only. */
4850 s = bfd_get_section_by_name (abfd, ".dynamic");
4851 if (s != NULL)
4852 {
4853 if (! bfd_set_section_flags (abfd, s, flags))
4854 return FALSE;
4855 }
4856
4857 /* We need to create .got section. */
4858 if (! mips_elf_create_got_section (abfd, info, FALSE))
4859 return FALSE;
4860
4861 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4862 return FALSE;
4863
4864 /* Create the .msym section on IRIX6. It is used by the dynamic
4865 linker to speed up dynamic relocations, and to avoid computing
4866 the ELF hash for symbols. */
4867 if (IRIX_COMPAT (abfd) == ict_irix6
4868 && !mips_elf_create_msym_section (abfd))
4869 return FALSE;
4870
4871 /* Create .stub section. */
4872 if (bfd_get_section_by_name (abfd,
4873 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4874 {
4875 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4876 if (s == NULL
4877 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4878 || ! bfd_set_section_alignment (abfd, s,
4879 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4880 return FALSE;
4881 }
4882
4883 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4884 && !info->shared
4885 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4886 {
4887 s = bfd_make_section (abfd, ".rld_map");
4888 if (s == NULL
4889 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4890 || ! bfd_set_section_alignment (abfd, s,
4891 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4892 return FALSE;
4893 }
4894
4895 /* On IRIX5, we adjust add some additional symbols and change the
4896 alignments of several sections. There is no ABI documentation
4897 indicating that this is necessary on IRIX6, nor any evidence that
4898 the linker takes such action. */
4899 if (IRIX_COMPAT (abfd) == ict_irix5)
4900 {
4901 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4902 {
4903 bh = NULL;
4904 if (! (_bfd_generic_link_add_one_symbol
4905 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
4906 (bfd_vma) 0, (const char *) NULL, FALSE,
4907 get_elf_backend_data (abfd)->collect, &bh)))
4908 return FALSE;
4909
4910 h = (struct elf_link_hash_entry *) bh;
4911 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4912 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4913 h->type = STT_SECTION;
4914
4915 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4916 return FALSE;
4917 }
4918
4919 /* We need to create a .compact_rel section. */
4920 if (SGI_COMPAT (abfd))
4921 {
4922 if (!mips_elf_create_compact_rel_section (abfd, info))
4923 return FALSE;
4924 }
4925
4926 /* Change alignments of some sections. */
4927 s = bfd_get_section_by_name (abfd, ".hash");
4928 if (s != NULL)
4929 bfd_set_section_alignment (abfd, s, 4);
4930 s = bfd_get_section_by_name (abfd, ".dynsym");
4931 if (s != NULL)
4932 bfd_set_section_alignment (abfd, s, 4);
4933 s = bfd_get_section_by_name (abfd, ".dynstr");
4934 if (s != NULL)
4935 bfd_set_section_alignment (abfd, s, 4);
4936 s = bfd_get_section_by_name (abfd, ".reginfo");
4937 if (s != NULL)
4938 bfd_set_section_alignment (abfd, s, 4);
4939 s = bfd_get_section_by_name (abfd, ".dynamic");
4940 if (s != NULL)
4941 bfd_set_section_alignment (abfd, s, 4);
4942 }
4943
4944 if (!info->shared)
4945 {
4946 const char *name;
4947
4948 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4949 bh = NULL;
4950 if (!(_bfd_generic_link_add_one_symbol
4951 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
4952 (bfd_vma) 0, (const char *) NULL, FALSE,
4953 get_elf_backend_data (abfd)->collect, &bh)))
4954 return FALSE;
4955
4956 h = (struct elf_link_hash_entry *) bh;
4957 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4958 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4959 h->type = STT_SECTION;
4960
4961 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4962 return FALSE;
4963
4964 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4965 {
4966 /* __rld_map is a four byte word located in the .data section
4967 and is filled in by the rtld to contain a pointer to
4968 the _r_debug structure. Its symbol value will be set in
4969 _bfd_mips_elf_finish_dynamic_symbol. */
4970 s = bfd_get_section_by_name (abfd, ".rld_map");
4971 BFD_ASSERT (s != NULL);
4972
4973 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4974 bh = NULL;
4975 if (!(_bfd_generic_link_add_one_symbol
4976 (info, abfd, name, BSF_GLOBAL, s,
4977 (bfd_vma) 0, (const char *) NULL, FALSE,
4978 get_elf_backend_data (abfd)->collect, &bh)))
4979 return FALSE;
4980
4981 h = (struct elf_link_hash_entry *) bh;
4982 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4983 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4984 h->type = STT_OBJECT;
4985
4986 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4987 return FALSE;
4988 }
4989 }
4990
4991 return TRUE;
4992 }
4993 \f
4994 /* Look through the relocs for a section during the first phase, and
4995 allocate space in the global offset table. */
4996
4997 bfd_boolean
4998 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
4999 bfd *abfd;
5000 struct bfd_link_info *info;
5001 asection *sec;
5002 const Elf_Internal_Rela *relocs;
5003 {
5004 const char *name;
5005 bfd *dynobj;
5006 Elf_Internal_Shdr *symtab_hdr;
5007 struct elf_link_hash_entry **sym_hashes;
5008 struct mips_got_info *g;
5009 size_t extsymoff;
5010 const Elf_Internal_Rela *rel;
5011 const Elf_Internal_Rela *rel_end;
5012 asection *sgot;
5013 asection *sreloc;
5014 struct elf_backend_data *bed;
5015
5016 if (info->relocateable)
5017 return TRUE;
5018
5019 dynobj = elf_hash_table (info)->dynobj;
5020 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5021 sym_hashes = elf_sym_hashes (abfd);
5022 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5023
5024 /* Check for the mips16 stub sections. */
5025
5026 name = bfd_get_section_name (abfd, sec);
5027 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5028 {
5029 unsigned long r_symndx;
5030
5031 /* Look at the relocation information to figure out which symbol
5032 this is for. */
5033
5034 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5035
5036 if (r_symndx < extsymoff
5037 || sym_hashes[r_symndx - extsymoff] == NULL)
5038 {
5039 asection *o;
5040
5041 /* This stub is for a local symbol. This stub will only be
5042 needed if there is some relocation in this BFD, other
5043 than a 16 bit function call, which refers to this symbol. */
5044 for (o = abfd->sections; o != NULL; o = o->next)
5045 {
5046 Elf_Internal_Rela *sec_relocs;
5047 const Elf_Internal_Rela *r, *rend;
5048
5049 /* We can ignore stub sections when looking for relocs. */
5050 if ((o->flags & SEC_RELOC) == 0
5051 || o->reloc_count == 0
5052 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5053 sizeof FN_STUB - 1) == 0
5054 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5055 sizeof CALL_STUB - 1) == 0
5056 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5057 sizeof CALL_FP_STUB - 1) == 0)
5058 continue;
5059
5060 sec_relocs = (MNAME(abfd,_bfd_elf,link_read_relocs)
5061 (abfd, o, (PTR) NULL,
5062 (Elf_Internal_Rela *) NULL,
5063 info->keep_memory));
5064 if (sec_relocs == NULL)
5065 return FALSE;
5066
5067 rend = sec_relocs + o->reloc_count;
5068 for (r = sec_relocs; r < rend; r++)
5069 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5070 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5071 break;
5072
5073 if (elf_section_data (o)->relocs != sec_relocs)
5074 free (sec_relocs);
5075
5076 if (r < rend)
5077 break;
5078 }
5079
5080 if (o == NULL)
5081 {
5082 /* There is no non-call reloc for this stub, so we do
5083 not need it. Since this function is called before
5084 the linker maps input sections to output sections, we
5085 can easily discard it by setting the SEC_EXCLUDE
5086 flag. */
5087 sec->flags |= SEC_EXCLUDE;
5088 return TRUE;
5089 }
5090
5091 /* Record this stub in an array of local symbol stubs for
5092 this BFD. */
5093 if (elf_tdata (abfd)->local_stubs == NULL)
5094 {
5095 unsigned long symcount;
5096 asection **n;
5097 bfd_size_type amt;
5098
5099 if (elf_bad_symtab (abfd))
5100 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5101 else
5102 symcount = symtab_hdr->sh_info;
5103 amt = symcount * sizeof (asection *);
5104 n = (asection **) bfd_zalloc (abfd, amt);
5105 if (n == NULL)
5106 return FALSE;
5107 elf_tdata (abfd)->local_stubs = n;
5108 }
5109
5110 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5111
5112 /* We don't need to set mips16_stubs_seen in this case.
5113 That flag is used to see whether we need to look through
5114 the global symbol table for stubs. We don't need to set
5115 it here, because we just have a local stub. */
5116 }
5117 else
5118 {
5119 struct mips_elf_link_hash_entry *h;
5120
5121 h = ((struct mips_elf_link_hash_entry *)
5122 sym_hashes[r_symndx - extsymoff]);
5123
5124 /* H is the symbol this stub is for. */
5125
5126 h->fn_stub = sec;
5127 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5128 }
5129 }
5130 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5131 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5132 {
5133 unsigned long r_symndx;
5134 struct mips_elf_link_hash_entry *h;
5135 asection **loc;
5136
5137 /* Look at the relocation information to figure out which symbol
5138 this is for. */
5139
5140 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5141
5142 if (r_symndx < extsymoff
5143 || sym_hashes[r_symndx - extsymoff] == NULL)
5144 {
5145 /* This stub was actually built for a static symbol defined
5146 in the same file. We assume that all static symbols in
5147 mips16 code are themselves mips16, so we can simply
5148 discard this stub. Since this function is called before
5149 the linker maps input sections to output sections, we can
5150 easily discard it by setting the SEC_EXCLUDE flag. */
5151 sec->flags |= SEC_EXCLUDE;
5152 return TRUE;
5153 }
5154
5155 h = ((struct mips_elf_link_hash_entry *)
5156 sym_hashes[r_symndx - extsymoff]);
5157
5158 /* H is the symbol this stub is for. */
5159
5160 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5161 loc = &h->call_fp_stub;
5162 else
5163 loc = &h->call_stub;
5164
5165 /* If we already have an appropriate stub for this function, we
5166 don't need another one, so we can discard this one. Since
5167 this function is called before the linker maps input sections
5168 to output sections, we can easily discard it by setting the
5169 SEC_EXCLUDE flag. We can also discard this section if we
5170 happen to already know that this is a mips16 function; it is
5171 not necessary to check this here, as it is checked later, but
5172 it is slightly faster to check now. */
5173 if (*loc != NULL || h->root.other == STO_MIPS16)
5174 {
5175 sec->flags |= SEC_EXCLUDE;
5176 return TRUE;
5177 }
5178
5179 *loc = sec;
5180 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5181 }
5182
5183 if (dynobj == NULL)
5184 {
5185 sgot = NULL;
5186 g = NULL;
5187 }
5188 else
5189 {
5190 sgot = mips_elf_got_section (dynobj, FALSE);
5191 if (sgot == NULL)
5192 g = NULL;
5193 else
5194 {
5195 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5196 g = mips_elf_section_data (sgot)->u.got_info;
5197 BFD_ASSERT (g != NULL);
5198 }
5199 }
5200
5201 sreloc = NULL;
5202 bed = get_elf_backend_data (abfd);
5203 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5204 for (rel = relocs; rel < rel_end; ++rel)
5205 {
5206 unsigned long r_symndx;
5207 unsigned int r_type;
5208 struct elf_link_hash_entry *h;
5209
5210 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5211 r_type = ELF_R_TYPE (abfd, rel->r_info);
5212
5213 if (r_symndx < extsymoff)
5214 h = NULL;
5215 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5216 {
5217 (*_bfd_error_handler)
5218 (_("%s: Malformed reloc detected for section %s"),
5219 bfd_archive_filename (abfd), name);
5220 bfd_set_error (bfd_error_bad_value);
5221 return FALSE;
5222 }
5223 else
5224 {
5225 h = sym_hashes[r_symndx - extsymoff];
5226
5227 /* This may be an indirect symbol created because of a version. */
5228 if (h != NULL)
5229 {
5230 while (h->root.type == bfd_link_hash_indirect)
5231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5232 }
5233 }
5234
5235 /* Some relocs require a global offset table. */
5236 if (dynobj == NULL || sgot == NULL)
5237 {
5238 switch (r_type)
5239 {
5240 case R_MIPS_GOT16:
5241 case R_MIPS_CALL16:
5242 case R_MIPS_CALL_HI16:
5243 case R_MIPS_CALL_LO16:
5244 case R_MIPS_GOT_HI16:
5245 case R_MIPS_GOT_LO16:
5246 case R_MIPS_GOT_PAGE:
5247 case R_MIPS_GOT_OFST:
5248 case R_MIPS_GOT_DISP:
5249 if (dynobj == NULL)
5250 elf_hash_table (info)->dynobj = dynobj = abfd;
5251 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5252 return FALSE;
5253 g = mips_elf_got_info (dynobj, &sgot);
5254 break;
5255
5256 case R_MIPS_32:
5257 case R_MIPS_REL32:
5258 case R_MIPS_64:
5259 if (dynobj == NULL
5260 && (info->shared || h != NULL)
5261 && (sec->flags & SEC_ALLOC) != 0)
5262 elf_hash_table (info)->dynobj = dynobj = abfd;
5263 break;
5264
5265 default:
5266 break;
5267 }
5268 }
5269
5270 if (!h && (r_type == R_MIPS_CALL_LO16
5271 || r_type == R_MIPS_GOT_LO16
5272 || r_type == R_MIPS_GOT_DISP))
5273 {
5274 /* We may need a local GOT entry for this relocation. We
5275 don't count R_MIPS_GOT_PAGE because we can estimate the
5276 maximum number of pages needed by looking at the size of
5277 the segment. Similar comments apply to R_MIPS_GOT16 and
5278 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5279 R_MIPS_CALL_HI16 because these are always followed by an
5280 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5281 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5282 rel->r_addend, g))
5283 return FALSE;
5284 }
5285
5286 switch (r_type)
5287 {
5288 case R_MIPS_CALL16:
5289 if (h == NULL)
5290 {
5291 (*_bfd_error_handler)
5292 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5293 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5294 bfd_set_error (bfd_error_bad_value);
5295 return FALSE;
5296 }
5297 /* Fall through. */
5298
5299 case R_MIPS_CALL_HI16:
5300 case R_MIPS_CALL_LO16:
5301 if (h != NULL)
5302 {
5303 /* This symbol requires a global offset table entry. */
5304 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5305 return FALSE;
5306
5307 /* We need a stub, not a plt entry for the undefined
5308 function. But we record it as if it needs plt. See
5309 elf_adjust_dynamic_symbol in elflink.h. */
5310 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5311 h->type = STT_FUNC;
5312 }
5313 break;
5314
5315 case R_MIPS_GOT16:
5316 case R_MIPS_GOT_HI16:
5317 case R_MIPS_GOT_LO16:
5318 case R_MIPS_GOT_DISP:
5319 /* This symbol requires a global offset table entry. */
5320 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5321 return FALSE;
5322 break;
5323
5324 case R_MIPS_32:
5325 case R_MIPS_REL32:
5326 case R_MIPS_64:
5327 if ((info->shared || h != NULL)
5328 && (sec->flags & SEC_ALLOC) != 0)
5329 {
5330 if (sreloc == NULL)
5331 {
5332 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5333 if (sreloc == NULL)
5334 return FALSE;
5335 }
5336 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5337 if (info->shared)
5338 {
5339 /* When creating a shared object, we must copy these
5340 reloc types into the output file as R_MIPS_REL32
5341 relocs. We make room for this reloc in the
5342 .rel.dyn reloc section. */
5343 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5344 if ((sec->flags & MIPS_READONLY_SECTION)
5345 == MIPS_READONLY_SECTION)
5346 /* We tell the dynamic linker that there are
5347 relocations against the text segment. */
5348 info->flags |= DF_TEXTREL;
5349 }
5350 else
5351 {
5352 struct mips_elf_link_hash_entry *hmips;
5353
5354 /* We only need to copy this reloc if the symbol is
5355 defined in a dynamic object. */
5356 hmips = (struct mips_elf_link_hash_entry *) h;
5357 ++hmips->possibly_dynamic_relocs;
5358 if ((sec->flags & MIPS_READONLY_SECTION)
5359 == MIPS_READONLY_SECTION)
5360 /* We need it to tell the dynamic linker if there
5361 are relocations against the text segment. */
5362 hmips->readonly_reloc = TRUE;
5363 }
5364
5365 /* Even though we don't directly need a GOT entry for
5366 this symbol, a symbol must have a dynamic symbol
5367 table index greater that DT_MIPS_GOTSYM if there are
5368 dynamic relocations against it. */
5369 if (h != NULL)
5370 {
5371 if (dynobj == NULL)
5372 elf_hash_table (info)->dynobj = dynobj = abfd;
5373 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5374 return FALSE;
5375 g = mips_elf_got_info (dynobj, &sgot);
5376 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5377 return FALSE;
5378 }
5379 }
5380
5381 if (SGI_COMPAT (abfd))
5382 mips_elf_hash_table (info)->compact_rel_size +=
5383 sizeof (Elf32_External_crinfo);
5384 break;
5385
5386 case R_MIPS_26:
5387 case R_MIPS_GPREL16:
5388 case R_MIPS_LITERAL:
5389 case R_MIPS_GPREL32:
5390 if (SGI_COMPAT (abfd))
5391 mips_elf_hash_table (info)->compact_rel_size +=
5392 sizeof (Elf32_External_crinfo);
5393 break;
5394
5395 /* This relocation describes the C++ object vtable hierarchy.
5396 Reconstruct it for later use during GC. */
5397 case R_MIPS_GNU_VTINHERIT:
5398 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5399 return FALSE;
5400 break;
5401
5402 /* This relocation describes which C++ vtable entries are actually
5403 used. Record for later use during GC. */
5404 case R_MIPS_GNU_VTENTRY:
5405 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5406 return FALSE;
5407 break;
5408
5409 default:
5410 break;
5411 }
5412
5413 /* We must not create a stub for a symbol that has relocations
5414 related to taking the function's address. */
5415 switch (r_type)
5416 {
5417 default:
5418 if (h != NULL)
5419 {
5420 struct mips_elf_link_hash_entry *mh;
5421
5422 mh = (struct mips_elf_link_hash_entry *) h;
5423 mh->no_fn_stub = TRUE;
5424 }
5425 break;
5426 case R_MIPS_CALL16:
5427 case R_MIPS_CALL_HI16:
5428 case R_MIPS_CALL_LO16:
5429 break;
5430 }
5431
5432 /* If this reloc is not a 16 bit call, and it has a global
5433 symbol, then we will need the fn_stub if there is one.
5434 References from a stub section do not count. */
5435 if (h != NULL
5436 && r_type != R_MIPS16_26
5437 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5438 sizeof FN_STUB - 1) != 0
5439 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5440 sizeof CALL_STUB - 1) != 0
5441 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5442 sizeof CALL_FP_STUB - 1) != 0)
5443 {
5444 struct mips_elf_link_hash_entry *mh;
5445
5446 mh = (struct mips_elf_link_hash_entry *) h;
5447 mh->need_fn_stub = TRUE;
5448 }
5449 }
5450
5451 return TRUE;
5452 }
5453 \f
5454 /* Adjust a symbol defined by a dynamic object and referenced by a
5455 regular object. The current definition is in some section of the
5456 dynamic object, but we're not including those sections. We have to
5457 change the definition to something the rest of the link can
5458 understand. */
5459
5460 bfd_boolean
5461 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
5462 struct bfd_link_info *info;
5463 struct elf_link_hash_entry *h;
5464 {
5465 bfd *dynobj;
5466 struct mips_elf_link_hash_entry *hmips;
5467 asection *s;
5468
5469 dynobj = elf_hash_table (info)->dynobj;
5470
5471 /* Make sure we know what is going on here. */
5472 BFD_ASSERT (dynobj != NULL
5473 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5474 || h->weakdef != NULL
5475 || ((h->elf_link_hash_flags
5476 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5477 && (h->elf_link_hash_flags
5478 & ELF_LINK_HASH_REF_REGULAR) != 0
5479 && (h->elf_link_hash_flags
5480 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5481
5482 /* If this symbol is defined in a dynamic object, we need to copy
5483 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5484 file. */
5485 hmips = (struct mips_elf_link_hash_entry *) h;
5486 if (! info->relocateable
5487 && hmips->possibly_dynamic_relocs != 0
5488 && (h->root.type == bfd_link_hash_defweak
5489 || (h->elf_link_hash_flags
5490 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5491 {
5492 mips_elf_allocate_dynamic_relocations (dynobj,
5493 hmips->possibly_dynamic_relocs);
5494 if (hmips->readonly_reloc)
5495 /* We tell the dynamic linker that there are relocations
5496 against the text segment. */
5497 info->flags |= DF_TEXTREL;
5498 }
5499
5500 /* For a function, create a stub, if allowed. */
5501 if (! hmips->no_fn_stub
5502 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5503 {
5504 if (! elf_hash_table (info)->dynamic_sections_created)
5505 return TRUE;
5506
5507 /* If this symbol is not defined in a regular file, then set
5508 the symbol to the stub location. This is required to make
5509 function pointers compare as equal between the normal
5510 executable and the shared library. */
5511 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5512 {
5513 /* We need .stub section. */
5514 s = bfd_get_section_by_name (dynobj,
5515 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5516 BFD_ASSERT (s != NULL);
5517
5518 h->root.u.def.section = s;
5519 h->root.u.def.value = s->_raw_size;
5520
5521 /* XXX Write this stub address somewhere. */
5522 h->plt.offset = s->_raw_size;
5523
5524 /* Make room for this stub code. */
5525 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5526
5527 /* The last half word of the stub will be filled with the index
5528 of this symbol in .dynsym section. */
5529 return TRUE;
5530 }
5531 }
5532 else if ((h->type == STT_FUNC)
5533 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5534 {
5535 /* This will set the entry for this symbol in the GOT to 0, and
5536 the dynamic linker will take care of this. */
5537 h->root.u.def.value = 0;
5538 return TRUE;
5539 }
5540
5541 /* If this is a weak symbol, and there is a real definition, the
5542 processor independent code will have arranged for us to see the
5543 real definition first, and we can just use the same value. */
5544 if (h->weakdef != NULL)
5545 {
5546 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5547 || h->weakdef->root.type == bfd_link_hash_defweak);
5548 h->root.u.def.section = h->weakdef->root.u.def.section;
5549 h->root.u.def.value = h->weakdef->root.u.def.value;
5550 return TRUE;
5551 }
5552
5553 /* This is a reference to a symbol defined by a dynamic object which
5554 is not a function. */
5555
5556 return TRUE;
5557 }
5558 \f
5559 /* This function is called after all the input files have been read,
5560 and the input sections have been assigned to output sections. We
5561 check for any mips16 stub sections that we can discard. */
5562
5563 bfd_boolean
5564 _bfd_mips_elf_always_size_sections (output_bfd, info)
5565 bfd *output_bfd;
5566 struct bfd_link_info *info;
5567 {
5568 asection *ri;
5569
5570 bfd *dynobj;
5571 asection *s;
5572 struct mips_got_info *g;
5573 int i;
5574 bfd_size_type loadable_size = 0;
5575 bfd_size_type local_gotno;
5576 bfd *sub;
5577
5578 /* The .reginfo section has a fixed size. */
5579 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5580 if (ri != NULL)
5581 bfd_set_section_size (output_bfd, ri,
5582 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5583
5584 if (! (info->relocateable
5585 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5586 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5587 mips_elf_check_mips16_stubs,
5588 (PTR) NULL);
5589
5590 dynobj = elf_hash_table (info)->dynobj;
5591 if (dynobj == NULL)
5592 /* Relocatable links don't have it. */
5593 return TRUE;
5594
5595 g = mips_elf_got_info (dynobj, &s);
5596 if (s == NULL)
5597 return TRUE;
5598
5599 /* Calculate the total loadable size of the output. That
5600 will give us the maximum number of GOT_PAGE entries
5601 required. */
5602 for (sub = info->input_bfds; sub; sub = sub->link_next)
5603 {
5604 asection *subsection;
5605
5606 for (subsection = sub->sections;
5607 subsection;
5608 subsection = subsection->next)
5609 {
5610 if ((subsection->flags & SEC_ALLOC) == 0)
5611 continue;
5612 loadable_size += ((subsection->_raw_size + 0xf)
5613 &~ (bfd_size_type) 0xf);
5614 }
5615 }
5616
5617 /* There has to be a global GOT entry for every symbol with
5618 a dynamic symbol table index of DT_MIPS_GOTSYM or
5619 higher. Therefore, it make sense to put those symbols
5620 that need GOT entries at the end of the symbol table. We
5621 do that here. */
5622 if (! mips_elf_sort_hash_table (info, 1))
5623 return FALSE;
5624
5625 if (g->global_gotsym != NULL)
5626 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5627 else
5628 /* If there are no global symbols, or none requiring
5629 relocations, then GLOBAL_GOTSYM will be NULL. */
5630 i = 0;
5631
5632 /* In the worst case, we'll get one stub per dynamic symbol, plus
5633 one to account for the dummy entry at the end required by IRIX
5634 rld. */
5635 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5636
5637 /* Assume there are two loadable segments consisting of
5638 contiguous sections. Is 5 enough? */
5639 local_gotno = (loadable_size >> 16) + 5;
5640
5641 g->local_gotno += local_gotno;
5642 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5643
5644 g->global_gotno = i;
5645 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5646
5647 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5648 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5649 return FALSE;
5650
5651 return TRUE;
5652 }
5653
5654 /* Set the sizes of the dynamic sections. */
5655
5656 bfd_boolean
5657 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5658 bfd *output_bfd;
5659 struct bfd_link_info *info;
5660 {
5661 bfd *dynobj;
5662 asection *s;
5663 bfd_boolean reltext;
5664
5665 dynobj = elf_hash_table (info)->dynobj;
5666 BFD_ASSERT (dynobj != NULL);
5667
5668 if (elf_hash_table (info)->dynamic_sections_created)
5669 {
5670 /* Set the contents of the .interp section to the interpreter. */
5671 if (! info->shared)
5672 {
5673 s = bfd_get_section_by_name (dynobj, ".interp");
5674 BFD_ASSERT (s != NULL);
5675 s->_raw_size
5676 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5677 s->contents
5678 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5679 }
5680 }
5681
5682 /* The check_relocs and adjust_dynamic_symbol entry points have
5683 determined the sizes of the various dynamic sections. Allocate
5684 memory for them. */
5685 reltext = FALSE;
5686 for (s = dynobj->sections; s != NULL; s = s->next)
5687 {
5688 const char *name;
5689 bfd_boolean strip;
5690
5691 /* It's OK to base decisions on the section name, because none
5692 of the dynobj section names depend upon the input files. */
5693 name = bfd_get_section_name (dynobj, s);
5694
5695 if ((s->flags & SEC_LINKER_CREATED) == 0)
5696 continue;
5697
5698 strip = FALSE;
5699
5700 if (strncmp (name, ".rel", 4) == 0)
5701 {
5702 if (s->_raw_size == 0)
5703 {
5704 /* We only strip the section if the output section name
5705 has the same name. Otherwise, there might be several
5706 input sections for this output section. FIXME: This
5707 code is probably not needed these days anyhow, since
5708 the linker now does not create empty output sections. */
5709 if (s->output_section != NULL
5710 && strcmp (name,
5711 bfd_get_section_name (s->output_section->owner,
5712 s->output_section)) == 0)
5713 strip = TRUE;
5714 }
5715 else
5716 {
5717 const char *outname;
5718 asection *target;
5719
5720 /* If this relocation section applies to a read only
5721 section, then we probably need a DT_TEXTREL entry.
5722 If the relocation section is .rel.dyn, we always
5723 assert a DT_TEXTREL entry rather than testing whether
5724 there exists a relocation to a read only section or
5725 not. */
5726 outname = bfd_get_section_name (output_bfd,
5727 s->output_section);
5728 target = bfd_get_section_by_name (output_bfd, outname + 4);
5729 if ((target != NULL
5730 && (target->flags & SEC_READONLY) != 0
5731 && (target->flags & SEC_ALLOC) != 0)
5732 || strcmp (outname, ".rel.dyn") == 0)
5733 reltext = TRUE;
5734
5735 /* We use the reloc_count field as a counter if we need
5736 to copy relocs into the output file. */
5737 if (strcmp (name, ".rel.dyn") != 0)
5738 s->reloc_count = 0;
5739
5740 /* If combreloc is enabled, elf_link_sort_relocs() will
5741 sort relocations, but in a different way than we do,
5742 and before we're done creating relocations. Also, it
5743 will move them around between input sections'
5744 relocation's contents, so our sorting would be
5745 broken, so don't let it run. */
5746 info->combreloc = 0;
5747 }
5748 }
5749 else if (strncmp (name, ".got", 4) == 0)
5750 {
5751 /* _bfd_mips_elf_always_size_sections() has already done
5752 most of the work, but some symbols may have been mapped
5753 to versions that we must now resolve in the got_entries
5754 hash tables. */
5755 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5756 struct mips_got_info *g = gg;
5757 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5758 unsigned int needed_relocs = 0;
5759
5760 if (gg->next)
5761 {
5762 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5763 set_got_offset_arg.info = info;
5764
5765 mips_elf_resolve_final_got_entries (gg);
5766 for (g = gg->next; g && g->next != gg; g = g->next)
5767 {
5768 unsigned int save_assign;
5769
5770 mips_elf_resolve_final_got_entries (g);
5771
5772 /* Assign offsets to global GOT entries. */
5773 save_assign = g->assigned_gotno;
5774 g->assigned_gotno = g->local_gotno;
5775 set_got_offset_arg.g = g;
5776 set_got_offset_arg.needed_relocs = 0;
5777 htab_traverse (g->got_entries,
5778 mips_elf_set_global_got_offset,
5779 &set_got_offset_arg);
5780 needed_relocs += set_got_offset_arg.needed_relocs;
5781 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5782 <= g->global_gotno);
5783
5784 g->assigned_gotno = save_assign;
5785 if (info->shared)
5786 {
5787 needed_relocs += g->local_gotno - g->assigned_gotno;
5788 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5789 + g->next->global_gotno
5790 + MIPS_RESERVED_GOTNO);
5791 }
5792 }
5793
5794 if (needed_relocs)
5795 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5796 }
5797 }
5798 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5799 {
5800 /* IRIX rld assumes that the function stub isn't at the end
5801 of .text section. So put a dummy. XXX */
5802 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5803 }
5804 else if (! info->shared
5805 && ! mips_elf_hash_table (info)->use_rld_obj_head
5806 && strncmp (name, ".rld_map", 8) == 0)
5807 {
5808 /* We add a room for __rld_map. It will be filled in by the
5809 rtld to contain a pointer to the _r_debug structure. */
5810 s->_raw_size += 4;
5811 }
5812 else if (SGI_COMPAT (output_bfd)
5813 && strncmp (name, ".compact_rel", 12) == 0)
5814 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
5815 else if (strcmp (name, ".msym") == 0)
5816 s->_raw_size = (sizeof (Elf32_External_Msym)
5817 * (elf_hash_table (info)->dynsymcount
5818 + bfd_count_sections (output_bfd)));
5819 else if (strncmp (name, ".init", 5) != 0)
5820 {
5821 /* It's not one of our sections, so don't allocate space. */
5822 continue;
5823 }
5824
5825 if (strip)
5826 {
5827 _bfd_strip_section_from_output (info, s);
5828 continue;
5829 }
5830
5831 /* Allocate memory for the section contents. */
5832 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
5833 if (s->contents == NULL && s->_raw_size != 0)
5834 {
5835 bfd_set_error (bfd_error_no_memory);
5836 return FALSE;
5837 }
5838 }
5839
5840 if (elf_hash_table (info)->dynamic_sections_created)
5841 {
5842 /* Add some entries to the .dynamic section. We fill in the
5843 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
5844 must add the entries now so that we get the correct size for
5845 the .dynamic section. The DT_DEBUG entry is filled in by the
5846 dynamic linker and used by the debugger. */
5847 if (! info->shared)
5848 {
5849 /* SGI object has the equivalence of DT_DEBUG in the
5850 DT_MIPS_RLD_MAP entry. */
5851 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
5852 return FALSE;
5853 if (!SGI_COMPAT (output_bfd))
5854 {
5855 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
5856 return FALSE;
5857 }
5858 }
5859 else
5860 {
5861 /* Shared libraries on traditional mips have DT_DEBUG. */
5862 if (!SGI_COMPAT (output_bfd))
5863 {
5864 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
5865 return FALSE;
5866 }
5867 }
5868
5869 if (reltext && SGI_COMPAT (output_bfd))
5870 info->flags |= DF_TEXTREL;
5871
5872 if ((info->flags & DF_TEXTREL) != 0)
5873 {
5874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
5875 return FALSE;
5876 }
5877
5878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
5879 return FALSE;
5880
5881 if (mips_elf_rel_dyn_section (dynobj, FALSE))
5882 {
5883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
5884 return FALSE;
5885
5886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
5887 return FALSE;
5888
5889 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
5890 return FALSE;
5891 }
5892
5893 if (SGI_COMPAT (output_bfd))
5894 {
5895 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
5896 return FALSE;
5897 }
5898
5899 if (SGI_COMPAT (output_bfd))
5900 {
5901 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
5902 return FALSE;
5903 }
5904
5905 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
5906 {
5907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
5908 return FALSE;
5909
5910 s = bfd_get_section_by_name (dynobj, ".liblist");
5911 BFD_ASSERT (s != NULL);
5912
5913 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
5914 return FALSE;
5915 }
5916
5917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
5918 return FALSE;
5919
5920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
5921 return FALSE;
5922
5923 #if 0
5924 /* Time stamps in executable files are a bad idea. */
5925 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
5926 return FALSE;
5927 #endif
5928
5929 #if 0 /* FIXME */
5930 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
5931 return FALSE;
5932 #endif
5933
5934 #if 0 /* FIXME */
5935 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
5936 return FALSE;
5937 #endif
5938
5939 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
5940 return FALSE;
5941
5942 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
5943 return FALSE;
5944
5945 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
5946 return FALSE;
5947
5948 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
5949 return FALSE;
5950
5951 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
5952 return FALSE;
5953
5954 if (IRIX_COMPAT (dynobj) == ict_irix5
5955 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
5956 return FALSE;
5957
5958 if (IRIX_COMPAT (dynobj) == ict_irix6
5959 && (bfd_get_section_by_name
5960 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
5961 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
5962 return FALSE;
5963
5964 if (bfd_get_section_by_name (dynobj, ".msym")
5965 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
5966 return FALSE;
5967 }
5968
5969 return TRUE;
5970 }
5971 \f
5972 /* Relocate a MIPS ELF section. */
5973
5974 bfd_boolean
5975 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
5976 contents, relocs, local_syms, local_sections)
5977 bfd *output_bfd;
5978 struct bfd_link_info *info;
5979 bfd *input_bfd;
5980 asection *input_section;
5981 bfd_byte *contents;
5982 Elf_Internal_Rela *relocs;
5983 Elf_Internal_Sym *local_syms;
5984 asection **local_sections;
5985 {
5986 Elf_Internal_Rela *rel;
5987 const Elf_Internal_Rela *relend;
5988 bfd_vma addend = 0;
5989 bfd_boolean use_saved_addend_p = FALSE;
5990 struct elf_backend_data *bed;
5991
5992 bed = get_elf_backend_data (output_bfd);
5993 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
5994 for (rel = relocs; rel < relend; ++rel)
5995 {
5996 const char *name;
5997 bfd_vma value;
5998 reloc_howto_type *howto;
5999 bfd_boolean require_jalx;
6000 /* TRUE if the relocation is a RELA relocation, rather than a
6001 REL relocation. */
6002 bfd_boolean rela_relocation_p = TRUE;
6003 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6004 const char * msg = (const char *) NULL;
6005
6006 /* Find the relocation howto for this relocation. */
6007 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6008 {
6009 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6010 64-bit code, but make sure all their addresses are in the
6011 lowermost or uppermost 32-bit section of the 64-bit address
6012 space. Thus, when they use an R_MIPS_64 they mean what is
6013 usually meant by R_MIPS_32, with the exception that the
6014 stored value is sign-extended to 64 bits. */
6015 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6016
6017 /* On big-endian systems, we need to lie about the position
6018 of the reloc. */
6019 if (bfd_big_endian (input_bfd))
6020 rel->r_offset += 4;
6021 }
6022 else
6023 /* NewABI defaults to RELA relocations. */
6024 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6025 NEWABI_P (input_bfd)
6026 && (MIPS_RELOC_RELA_P
6027 (input_bfd, input_section,
6028 rel - relocs)));
6029
6030 if (!use_saved_addend_p)
6031 {
6032 Elf_Internal_Shdr *rel_hdr;
6033
6034 /* If these relocations were originally of the REL variety,
6035 we must pull the addend out of the field that will be
6036 relocated. Otherwise, we simply use the contents of the
6037 RELA relocation. To determine which flavor or relocation
6038 this is, we depend on the fact that the INPUT_SECTION's
6039 REL_HDR is read before its REL_HDR2. */
6040 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6041 if ((size_t) (rel - relocs)
6042 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6043 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6044 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6045 {
6046 /* Note that this is a REL relocation. */
6047 rela_relocation_p = FALSE;
6048
6049 /* Get the addend, which is stored in the input file. */
6050 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6051 contents);
6052 addend &= howto->src_mask;
6053 addend <<= howto->rightshift;
6054
6055 /* For some kinds of relocations, the ADDEND is a
6056 combination of the addend stored in two different
6057 relocations. */
6058 if (r_type == R_MIPS_HI16
6059 || r_type == R_MIPS_GNU_REL_HI16
6060 || (r_type == R_MIPS_GOT16
6061 && mips_elf_local_relocation_p (input_bfd, rel,
6062 local_sections, FALSE)))
6063 {
6064 bfd_vma l;
6065 const Elf_Internal_Rela *lo16_relocation;
6066 reloc_howto_type *lo16_howto;
6067 unsigned int lo;
6068
6069 /* The combined value is the sum of the HI16 addend,
6070 left-shifted by sixteen bits, and the LO16
6071 addend, sign extended. (Usually, the code does
6072 a `lui' of the HI16 value, and then an `addiu' of
6073 the LO16 value.)
6074
6075 Scan ahead to find a matching LO16 relocation. */
6076 if (r_type == R_MIPS_GNU_REL_HI16)
6077 lo = R_MIPS_GNU_REL_LO16;
6078 else
6079 lo = R_MIPS_LO16;
6080 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6081 rel, relend);
6082 if (lo16_relocation == NULL)
6083 return FALSE;
6084
6085 /* Obtain the addend kept there. */
6086 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
6087 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6088 input_bfd, contents);
6089 l &= lo16_howto->src_mask;
6090 l <<= lo16_howto->rightshift;
6091 l = mips_elf_sign_extend (l, 16);
6092
6093 addend <<= 16;
6094
6095 /* Compute the combined addend. */
6096 addend += l;
6097
6098 /* If PC-relative, subtract the difference between the
6099 address of the LO part of the reloc and the address of
6100 the HI part. The relocation is relative to the LO
6101 part, but mips_elf_calculate_relocation() doesn't
6102 know its address or the difference from the HI part, so
6103 we subtract that difference here. See also the
6104 comment in mips_elf_calculate_relocation(). */
6105 if (r_type == R_MIPS_GNU_REL_HI16)
6106 addend -= (lo16_relocation->r_offset - rel->r_offset);
6107 }
6108 else if (r_type == R_MIPS16_GPREL)
6109 {
6110 /* The addend is scrambled in the object file. See
6111 mips_elf_perform_relocation for details on the
6112 format. */
6113 addend = (((addend & 0x1f0000) >> 5)
6114 | ((addend & 0x7e00000) >> 16)
6115 | (addend & 0x1f));
6116 }
6117 }
6118 else
6119 addend = rel->r_addend;
6120 }
6121
6122 if (info->relocateable)
6123 {
6124 Elf_Internal_Sym *sym;
6125 unsigned long r_symndx;
6126
6127 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6128 && bfd_big_endian (input_bfd))
6129 rel->r_offset -= 4;
6130
6131 /* Since we're just relocating, all we need to do is copy
6132 the relocations back out to the object file, unless
6133 they're against a section symbol, in which case we need
6134 to adjust by the section offset, or unless they're GP
6135 relative in which case we need to adjust by the amount
6136 that we're adjusting GP in this relocateable object. */
6137
6138 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6139 FALSE))
6140 /* There's nothing to do for non-local relocations. */
6141 continue;
6142
6143 if (r_type == R_MIPS16_GPREL
6144 || r_type == R_MIPS_GPREL16
6145 || r_type == R_MIPS_GPREL32
6146 || r_type == R_MIPS_LITERAL)
6147 addend -= (_bfd_get_gp_value (output_bfd)
6148 - _bfd_get_gp_value (input_bfd));
6149
6150 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6151 sym = local_syms + r_symndx;
6152 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6153 /* Adjust the addend appropriately. */
6154 addend += local_sections[r_symndx]->output_offset;
6155
6156 if (howto->partial_inplace)
6157 {
6158 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6159 then we only want to write out the high-order 16 bits.
6160 The subsequent R_MIPS_LO16 will handle the low-order bits.
6161 */
6162 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6163 || r_type == R_MIPS_GNU_REL_HI16)
6164 addend = mips_elf_high (addend);
6165 else if (r_type == R_MIPS_HIGHER)
6166 addend = mips_elf_higher (addend);
6167 else if (r_type == R_MIPS_HIGHEST)
6168 addend = mips_elf_highest (addend);
6169 }
6170
6171 if (rela_relocation_p)
6172 /* If this is a RELA relocation, just update the addend.
6173 We have to cast away constness for REL. */
6174 rel->r_addend = addend;
6175 else
6176 {
6177 /* Otherwise, we have to write the value back out. Note
6178 that we use the source mask, rather than the
6179 destination mask because the place to which we are
6180 writing will be source of the addend in the final
6181 link. */
6182 addend >>= howto->rightshift;
6183 addend &= howto->src_mask;
6184
6185 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6186 /* See the comment above about using R_MIPS_64 in the 32-bit
6187 ABI. Here, we need to update the addend. It would be
6188 possible to get away with just using the R_MIPS_32 reloc
6189 but for endianness. */
6190 {
6191 bfd_vma sign_bits;
6192 bfd_vma low_bits;
6193 bfd_vma high_bits;
6194
6195 if (addend & ((bfd_vma) 1 << 31))
6196 #ifdef BFD64
6197 sign_bits = ((bfd_vma) 1 << 32) - 1;
6198 #else
6199 sign_bits = -1;
6200 #endif
6201 else
6202 sign_bits = 0;
6203
6204 /* If we don't know that we have a 64-bit type,
6205 do two separate stores. */
6206 if (bfd_big_endian (input_bfd))
6207 {
6208 /* Store the sign-bits (which are most significant)
6209 first. */
6210 low_bits = sign_bits;
6211 high_bits = addend;
6212 }
6213 else
6214 {
6215 low_bits = addend;
6216 high_bits = sign_bits;
6217 }
6218 bfd_put_32 (input_bfd, low_bits,
6219 contents + rel->r_offset);
6220 bfd_put_32 (input_bfd, high_bits,
6221 contents + rel->r_offset + 4);
6222 continue;
6223 }
6224
6225 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6226 input_bfd, input_section,
6227 contents, FALSE))
6228 return FALSE;
6229 }
6230
6231 /* Go on to the next relocation. */
6232 continue;
6233 }
6234
6235 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6236 relocations for the same offset. In that case we are
6237 supposed to treat the output of each relocation as the addend
6238 for the next. */
6239 if (rel + 1 < relend
6240 && rel->r_offset == rel[1].r_offset
6241 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6242 use_saved_addend_p = TRUE;
6243 else
6244 use_saved_addend_p = FALSE;
6245
6246 addend >>= howto->rightshift;
6247
6248 /* Figure out what value we are supposed to relocate. */
6249 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6250 input_section, info, rel,
6251 addend, howto, local_syms,
6252 local_sections, &value,
6253 &name, &require_jalx,
6254 use_saved_addend_p))
6255 {
6256 case bfd_reloc_continue:
6257 /* There's nothing to do. */
6258 continue;
6259
6260 case bfd_reloc_undefined:
6261 /* mips_elf_calculate_relocation already called the
6262 undefined_symbol callback. There's no real point in
6263 trying to perform the relocation at this point, so we
6264 just skip ahead to the next relocation. */
6265 continue;
6266
6267 case bfd_reloc_notsupported:
6268 msg = _("internal error: unsupported relocation error");
6269 info->callbacks->warning
6270 (info, msg, name, input_bfd, input_section, rel->r_offset);
6271 return FALSE;
6272
6273 case bfd_reloc_overflow:
6274 if (use_saved_addend_p)
6275 /* Ignore overflow until we reach the last relocation for
6276 a given location. */
6277 ;
6278 else
6279 {
6280 BFD_ASSERT (name != NULL);
6281 if (! ((*info->callbacks->reloc_overflow)
6282 (info, name, howto->name, (bfd_vma) 0,
6283 input_bfd, input_section, rel->r_offset)))
6284 return FALSE;
6285 }
6286 break;
6287
6288 case bfd_reloc_ok:
6289 break;
6290
6291 default:
6292 abort ();
6293 break;
6294 }
6295
6296 /* If we've got another relocation for the address, keep going
6297 until we reach the last one. */
6298 if (use_saved_addend_p)
6299 {
6300 addend = value;
6301 continue;
6302 }
6303
6304 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6305 /* See the comment above about using R_MIPS_64 in the 32-bit
6306 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6307 that calculated the right value. Now, however, we
6308 sign-extend the 32-bit result to 64-bits, and store it as a
6309 64-bit value. We are especially generous here in that we
6310 go to extreme lengths to support this usage on systems with
6311 only a 32-bit VMA. */
6312 {
6313 bfd_vma sign_bits;
6314 bfd_vma low_bits;
6315 bfd_vma high_bits;
6316
6317 if (value & ((bfd_vma) 1 << 31))
6318 #ifdef BFD64
6319 sign_bits = ((bfd_vma) 1 << 32) - 1;
6320 #else
6321 sign_bits = -1;
6322 #endif
6323 else
6324 sign_bits = 0;
6325
6326 /* If we don't know that we have a 64-bit type,
6327 do two separate stores. */
6328 if (bfd_big_endian (input_bfd))
6329 {
6330 /* Undo what we did above. */
6331 rel->r_offset -= 4;
6332 /* Store the sign-bits (which are most significant)
6333 first. */
6334 low_bits = sign_bits;
6335 high_bits = value;
6336 }
6337 else
6338 {
6339 low_bits = value;
6340 high_bits = sign_bits;
6341 }
6342 bfd_put_32 (input_bfd, low_bits,
6343 contents + rel->r_offset);
6344 bfd_put_32 (input_bfd, high_bits,
6345 contents + rel->r_offset + 4);
6346 continue;
6347 }
6348
6349 /* Actually perform the relocation. */
6350 if (! mips_elf_perform_relocation (info, howto, rel, value,
6351 input_bfd, input_section,
6352 contents, require_jalx))
6353 return FALSE;
6354 }
6355
6356 return TRUE;
6357 }
6358 \f
6359 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6360 adjust it appropriately now. */
6361
6362 static void
6363 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6364 bfd *abfd ATTRIBUTE_UNUSED;
6365 const char *name;
6366 Elf_Internal_Sym *sym;
6367 {
6368 /* The linker script takes care of providing names and values for
6369 these, but we must place them into the right sections. */
6370 static const char* const text_section_symbols[] = {
6371 "_ftext",
6372 "_etext",
6373 "__dso_displacement",
6374 "__elf_header",
6375 "__program_header_table",
6376 NULL
6377 };
6378
6379 static const char* const data_section_symbols[] = {
6380 "_fdata",
6381 "_edata",
6382 "_end",
6383 "_fbss",
6384 NULL
6385 };
6386
6387 const char* const *p;
6388 int i;
6389
6390 for (i = 0; i < 2; ++i)
6391 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6392 *p;
6393 ++p)
6394 if (strcmp (*p, name) == 0)
6395 {
6396 /* All of these symbols are given type STT_SECTION by the
6397 IRIX6 linker. */
6398 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6399
6400 /* The IRIX linker puts these symbols in special sections. */
6401 if (i == 0)
6402 sym->st_shndx = SHN_MIPS_TEXT;
6403 else
6404 sym->st_shndx = SHN_MIPS_DATA;
6405
6406 break;
6407 }
6408 }
6409
6410 /* Finish up dynamic symbol handling. We set the contents of various
6411 dynamic sections here. */
6412
6413 bfd_boolean
6414 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6415 bfd *output_bfd;
6416 struct bfd_link_info *info;
6417 struct elf_link_hash_entry *h;
6418 Elf_Internal_Sym *sym;
6419 {
6420 bfd *dynobj;
6421 bfd_vma gval;
6422 asection *sgot;
6423 asection *smsym;
6424 struct mips_got_info *g, *gg;
6425 const char *name;
6426 struct mips_elf_link_hash_entry *mh;
6427
6428 dynobj = elf_hash_table (info)->dynobj;
6429 gval = sym->st_value;
6430 mh = (struct mips_elf_link_hash_entry *) h;
6431
6432 if (h->plt.offset != (bfd_vma) -1)
6433 {
6434 asection *s;
6435 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6436
6437 /* This symbol has a stub. Set it up. */
6438
6439 BFD_ASSERT (h->dynindx != -1);
6440
6441 s = bfd_get_section_by_name (dynobj,
6442 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6443 BFD_ASSERT (s != NULL);
6444
6445 /* FIXME: Can h->dynindex be more than 64K? */
6446 if (h->dynindx & 0xffff0000)
6447 return FALSE;
6448
6449 /* Fill the stub. */
6450 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6451 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6452 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6453 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6454
6455 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6456 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6457
6458 /* Mark the symbol as undefined. plt.offset != -1 occurs
6459 only for the referenced symbol. */
6460 sym->st_shndx = SHN_UNDEF;
6461
6462 /* The run-time linker uses the st_value field of the symbol
6463 to reset the global offset table entry for this external
6464 to its stub address when unlinking a shared object. */
6465 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6466 sym->st_value = gval;
6467 }
6468
6469 BFD_ASSERT (h->dynindx != -1
6470 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6471
6472 sgot = mips_elf_got_section (dynobj, FALSE);
6473 BFD_ASSERT (sgot != NULL);
6474 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6475 g = mips_elf_section_data (sgot)->u.got_info;
6476 BFD_ASSERT (g != NULL);
6477
6478 /* Run through the global symbol table, creating GOT entries for all
6479 the symbols that need them. */
6480 if (g->global_gotsym != NULL
6481 && h->dynindx >= g->global_gotsym->dynindx)
6482 {
6483 bfd_vma offset;
6484 bfd_vma value;
6485
6486 if (sym->st_value)
6487 value = sym->st_value;
6488 else
6489 {
6490 /* For an entity defined in a shared object, this will be
6491 NULL. (For functions in shared objects for
6492 which we have created stubs, ST_VALUE will be non-NULL.
6493 That's because such the functions are now no longer defined
6494 in a shared object.) */
6495
6496 if ((info->shared && h->root.type == bfd_link_hash_undefined)
6497 || h->root.type == bfd_link_hash_undefweak)
6498 value = 0;
6499 else
6500 value = h->root.u.def.value;
6501 }
6502 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6503 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6504 }
6505
6506 if (g->next && h->dynindx != -1)
6507 {
6508 struct mips_got_entry e, *p;
6509 bfd_vma offset;
6510 bfd_vma value;
6511 Elf_Internal_Rela rel[3];
6512 bfd_vma addend = 0;
6513
6514 gg = g;
6515
6516 e.abfd = output_bfd;
6517 e.symndx = -1;
6518 e.d.h = (struct mips_elf_link_hash_entry *)h;
6519
6520 if (info->shared
6521 || h->root.type == bfd_link_hash_undefined
6522 || h->root.type == bfd_link_hash_undefweak)
6523 value = 0;
6524 else if (sym->st_value)
6525 value = sym->st_value;
6526 else
6527 value = h->root.u.def.value;
6528
6529 memset (rel, 0, sizeof (rel));
6530 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6531
6532 for (g = g->next; g->next != gg; g = g->next)
6533 {
6534 if (g->got_entries
6535 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6536 &e)))
6537 {
6538 offset = p->gotidx;
6539 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6540
6541 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6542
6543 if ((info->shared
6544 || (elf_hash_table (info)->dynamic_sections_created
6545 && p->d.h != NULL
6546 && ((p->d.h->root.elf_link_hash_flags
6547 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6548 && ((p->d.h->root.elf_link_hash_flags
6549 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6550 && ! (mips_elf_create_dynamic_relocation
6551 (output_bfd, info, rel,
6552 e.d.h, NULL, value, &addend, sgot)))
6553 return FALSE;
6554 BFD_ASSERT (addend == 0);
6555 }
6556 }
6557 }
6558
6559 /* Create a .msym entry, if appropriate. */
6560 smsym = bfd_get_section_by_name (dynobj, ".msym");
6561 if (smsym)
6562 {
6563 Elf32_Internal_Msym msym;
6564
6565 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6566 /* It is undocumented what the `1' indicates, but IRIX6 uses
6567 this value. */
6568 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6569 bfd_mips_elf_swap_msym_out
6570 (dynobj, &msym,
6571 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6572 }
6573
6574 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6575 name = h->root.root.string;
6576 if (strcmp (name, "_DYNAMIC") == 0
6577 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6578 sym->st_shndx = SHN_ABS;
6579 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6580 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6581 {
6582 sym->st_shndx = SHN_ABS;
6583 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6584 sym->st_value = 1;
6585 }
6586 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6587 {
6588 sym->st_shndx = SHN_ABS;
6589 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6590 sym->st_value = elf_gp (output_bfd);
6591 }
6592 else if (SGI_COMPAT (output_bfd))
6593 {
6594 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6595 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6596 {
6597 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6598 sym->st_other = STO_PROTECTED;
6599 sym->st_value = 0;
6600 sym->st_shndx = SHN_MIPS_DATA;
6601 }
6602 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6603 {
6604 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6605 sym->st_other = STO_PROTECTED;
6606 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6607 sym->st_shndx = SHN_ABS;
6608 }
6609 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6610 {
6611 if (h->type == STT_FUNC)
6612 sym->st_shndx = SHN_MIPS_TEXT;
6613 else if (h->type == STT_OBJECT)
6614 sym->st_shndx = SHN_MIPS_DATA;
6615 }
6616 }
6617
6618 /* Handle the IRIX6-specific symbols. */
6619 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6620 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6621
6622 if (! info->shared)
6623 {
6624 if (! mips_elf_hash_table (info)->use_rld_obj_head
6625 && (strcmp (name, "__rld_map") == 0
6626 || strcmp (name, "__RLD_MAP") == 0))
6627 {
6628 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6629 BFD_ASSERT (s != NULL);
6630 sym->st_value = s->output_section->vma + s->output_offset;
6631 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6632 if (mips_elf_hash_table (info)->rld_value == 0)
6633 mips_elf_hash_table (info)->rld_value = sym->st_value;
6634 }
6635 else if (mips_elf_hash_table (info)->use_rld_obj_head
6636 && strcmp (name, "__rld_obj_head") == 0)
6637 {
6638 /* IRIX6 does not use a .rld_map section. */
6639 if (IRIX_COMPAT (output_bfd) == ict_irix5
6640 || IRIX_COMPAT (output_bfd) == ict_none)
6641 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6642 != NULL);
6643 mips_elf_hash_table (info)->rld_value = sym->st_value;
6644 }
6645 }
6646
6647 /* If this is a mips16 symbol, force the value to be even. */
6648 if (sym->st_other == STO_MIPS16
6649 && (sym->st_value & 1) != 0)
6650 --sym->st_value;
6651
6652 return TRUE;
6653 }
6654
6655 /* Finish up the dynamic sections. */
6656
6657 bfd_boolean
6658 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6659 bfd *output_bfd;
6660 struct bfd_link_info *info;
6661 {
6662 bfd *dynobj;
6663 asection *sdyn;
6664 asection *sgot;
6665 struct mips_got_info *gg, *g;
6666
6667 dynobj = elf_hash_table (info)->dynobj;
6668
6669 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6670
6671 sgot = mips_elf_got_section (dynobj, FALSE);
6672 if (sgot == NULL)
6673 gg = g = NULL;
6674 else
6675 {
6676 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6677 gg = mips_elf_section_data (sgot)->u.got_info;
6678 BFD_ASSERT (gg != NULL);
6679 g = mips_elf_got_for_ibfd (gg, output_bfd);
6680 BFD_ASSERT (g != NULL);
6681 }
6682
6683 if (elf_hash_table (info)->dynamic_sections_created)
6684 {
6685 bfd_byte *b;
6686
6687 BFD_ASSERT (sdyn != NULL);
6688 BFD_ASSERT (g != NULL);
6689
6690 for (b = sdyn->contents;
6691 b < sdyn->contents + sdyn->_raw_size;
6692 b += MIPS_ELF_DYN_SIZE (dynobj))
6693 {
6694 Elf_Internal_Dyn dyn;
6695 const char *name;
6696 size_t elemsize;
6697 asection *s;
6698 bfd_boolean swap_out_p;
6699
6700 /* Read in the current dynamic entry. */
6701 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6702
6703 /* Assume that we're going to modify it and write it out. */
6704 swap_out_p = TRUE;
6705
6706 switch (dyn.d_tag)
6707 {
6708 case DT_RELENT:
6709 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6710 BFD_ASSERT (s != NULL);
6711 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6712 break;
6713
6714 case DT_STRSZ:
6715 /* Rewrite DT_STRSZ. */
6716 dyn.d_un.d_val =
6717 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6718 break;
6719
6720 case DT_PLTGOT:
6721 name = ".got";
6722 goto get_vma;
6723 case DT_MIPS_CONFLICT:
6724 name = ".conflict";
6725 goto get_vma;
6726 case DT_MIPS_LIBLIST:
6727 name = ".liblist";
6728 get_vma:
6729 s = bfd_get_section_by_name (output_bfd, name);
6730 BFD_ASSERT (s != NULL);
6731 dyn.d_un.d_ptr = s->vma;
6732 break;
6733
6734 case DT_MIPS_RLD_VERSION:
6735 dyn.d_un.d_val = 1; /* XXX */
6736 break;
6737
6738 case DT_MIPS_FLAGS:
6739 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6740 break;
6741
6742 case DT_MIPS_CONFLICTNO:
6743 name = ".conflict";
6744 elemsize = sizeof (Elf32_Conflict);
6745 goto set_elemno;
6746
6747 case DT_MIPS_LIBLISTNO:
6748 name = ".liblist";
6749 elemsize = sizeof (Elf32_Lib);
6750 set_elemno:
6751 s = bfd_get_section_by_name (output_bfd, name);
6752 if (s != NULL)
6753 {
6754 if (s->_cooked_size != 0)
6755 dyn.d_un.d_val = s->_cooked_size / elemsize;
6756 else
6757 dyn.d_un.d_val = s->_raw_size / elemsize;
6758 }
6759 else
6760 dyn.d_un.d_val = 0;
6761 break;
6762
6763 case DT_MIPS_TIME_STAMP:
6764 time ((time_t *) &dyn.d_un.d_val);
6765 break;
6766
6767 case DT_MIPS_ICHECKSUM:
6768 /* XXX FIXME: */
6769 swap_out_p = FALSE;
6770 break;
6771
6772 case DT_MIPS_IVERSION:
6773 /* XXX FIXME: */
6774 swap_out_p = FALSE;
6775 break;
6776
6777 case DT_MIPS_BASE_ADDRESS:
6778 s = output_bfd->sections;
6779 BFD_ASSERT (s != NULL);
6780 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6781 break;
6782
6783 case DT_MIPS_LOCAL_GOTNO:
6784 dyn.d_un.d_val = g->local_gotno;
6785 break;
6786
6787 case DT_MIPS_UNREFEXTNO:
6788 /* The index into the dynamic symbol table which is the
6789 entry of the first external symbol that is not
6790 referenced within the same object. */
6791 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6792 break;
6793
6794 case DT_MIPS_GOTSYM:
6795 if (gg->global_gotsym)
6796 {
6797 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6798 break;
6799 }
6800 /* In case if we don't have global got symbols we default
6801 to setting DT_MIPS_GOTSYM to the same value as
6802 DT_MIPS_SYMTABNO, so we just fall through. */
6803
6804 case DT_MIPS_SYMTABNO:
6805 name = ".dynsym";
6806 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6807 s = bfd_get_section_by_name (output_bfd, name);
6808 BFD_ASSERT (s != NULL);
6809
6810 if (s->_cooked_size != 0)
6811 dyn.d_un.d_val = s->_cooked_size / elemsize;
6812 else
6813 dyn.d_un.d_val = s->_raw_size / elemsize;
6814 break;
6815
6816 case DT_MIPS_HIPAGENO:
6817 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6818 break;
6819
6820 case DT_MIPS_RLD_MAP:
6821 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6822 break;
6823
6824 case DT_MIPS_OPTIONS:
6825 s = (bfd_get_section_by_name
6826 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6827 dyn.d_un.d_ptr = s->vma;
6828 break;
6829
6830 case DT_MIPS_MSYM:
6831 s = (bfd_get_section_by_name (output_bfd, ".msym"));
6832 dyn.d_un.d_ptr = s->vma;
6833 break;
6834
6835 default:
6836 swap_out_p = FALSE;
6837 break;
6838 }
6839
6840 if (swap_out_p)
6841 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6842 (dynobj, &dyn, b);
6843 }
6844 }
6845
6846 /* The first entry of the global offset table will be filled at
6847 runtime. The second entry will be used by some runtime loaders.
6848 This isn't the case of IRIX rld. */
6849 if (sgot != NULL && sgot->_raw_size > 0)
6850 {
6851 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
6852 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
6853 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6854 }
6855
6856 if (sgot != NULL)
6857 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6858 = MIPS_ELF_GOT_SIZE (output_bfd);
6859
6860 /* Generate dynamic relocations for the non-primary gots. */
6861 if (gg != NULL && gg->next)
6862 {
6863 Elf_Internal_Rela rel[3];
6864 bfd_vma addend = 0;
6865
6866 memset (rel, 0, sizeof (rel));
6867 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6868
6869 for (g = gg->next; g->next != gg; g = g->next)
6870 {
6871 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6872
6873 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
6874 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6875 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
6876 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6877
6878 if (! info->shared)
6879 continue;
6880
6881 while (index < g->assigned_gotno)
6882 {
6883 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6884 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6885 if (!(mips_elf_create_dynamic_relocation
6886 (output_bfd, info, rel, NULL,
6887 bfd_abs_section_ptr,
6888 0, &addend, sgot)))
6889 return FALSE;
6890 BFD_ASSERT (addend == 0);
6891 }
6892 }
6893 }
6894
6895 {
6896 asection *smsym;
6897 asection *s;
6898 Elf32_compact_rel cpt;
6899
6900 /* ??? The section symbols for the output sections were set up in
6901 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
6902 symbols. Should we do so? */
6903
6904 smsym = bfd_get_section_by_name (dynobj, ".msym");
6905 if (smsym != NULL)
6906 {
6907 Elf32_Internal_Msym msym;
6908
6909 msym.ms_hash_value = 0;
6910 msym.ms_info = ELF32_MS_INFO (0, 1);
6911
6912 for (s = output_bfd->sections; s != NULL; s = s->next)
6913 {
6914 long dynindx = elf_section_data (s)->dynindx;
6915
6916 bfd_mips_elf_swap_msym_out
6917 (output_bfd, &msym,
6918 (((Elf32_External_Msym *) smsym->contents)
6919 + dynindx));
6920 }
6921 }
6922
6923 if (SGI_COMPAT (output_bfd))
6924 {
6925 /* Write .compact_rel section out. */
6926 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6927 if (s != NULL)
6928 {
6929 cpt.id1 = 1;
6930 cpt.num = s->reloc_count;
6931 cpt.id2 = 2;
6932 cpt.offset = (s->output_section->filepos
6933 + sizeof (Elf32_External_compact_rel));
6934 cpt.reserved0 = 0;
6935 cpt.reserved1 = 0;
6936 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6937 ((Elf32_External_compact_rel *)
6938 s->contents));
6939
6940 /* Clean up a dummy stub function entry in .text. */
6941 s = bfd_get_section_by_name (dynobj,
6942 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6943 if (s != NULL)
6944 {
6945 file_ptr dummy_offset;
6946
6947 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
6948 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
6949 memset (s->contents + dummy_offset, 0,
6950 MIPS_FUNCTION_STUB_SIZE);
6951 }
6952 }
6953 }
6954
6955 /* We need to sort the entries of the dynamic relocation section. */
6956
6957 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6958
6959 if (s != NULL
6960 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
6961 {
6962 reldyn_sorting_bfd = output_bfd;
6963
6964 if (ABI_64_P (output_bfd))
6965 qsort ((Elf64_External_Rel *) s->contents + 1,
6966 (size_t) s->reloc_count - 1,
6967 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
6968 else
6969 qsort ((Elf32_External_Rel *) s->contents + 1,
6970 (size_t) s->reloc_count - 1,
6971 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
6972 }
6973 }
6974
6975 return TRUE;
6976 }
6977
6978
6979 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
6980
6981 static void
6982 mips_set_isa_flags (abfd)
6983 bfd *abfd;
6984 {
6985 flagword val;
6986
6987 switch (bfd_get_mach (abfd))
6988 {
6989 default:
6990 case bfd_mach_mips3000:
6991 val = E_MIPS_ARCH_1;
6992 break;
6993
6994 case bfd_mach_mips3900:
6995 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
6996 break;
6997
6998 case bfd_mach_mips6000:
6999 val = E_MIPS_ARCH_2;
7000 break;
7001
7002 case bfd_mach_mips4000:
7003 case bfd_mach_mips4300:
7004 case bfd_mach_mips4400:
7005 case bfd_mach_mips4600:
7006 val = E_MIPS_ARCH_3;
7007 break;
7008
7009 case bfd_mach_mips4010:
7010 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7011 break;
7012
7013 case bfd_mach_mips4100:
7014 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7015 break;
7016
7017 case bfd_mach_mips4111:
7018 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7019 break;
7020
7021 case bfd_mach_mips4120:
7022 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7023 break;
7024
7025 case bfd_mach_mips4650:
7026 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7027 break;
7028
7029 case bfd_mach_mips5400:
7030 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7031 break;
7032
7033 case bfd_mach_mips5500:
7034 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7035 break;
7036
7037 case bfd_mach_mips5000:
7038 case bfd_mach_mips8000:
7039 case bfd_mach_mips10000:
7040 case bfd_mach_mips12000:
7041 val = E_MIPS_ARCH_4;
7042 break;
7043
7044 case bfd_mach_mips5:
7045 val = E_MIPS_ARCH_5;
7046 break;
7047
7048 case bfd_mach_mips_sb1:
7049 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7050 break;
7051
7052 case bfd_mach_mipsisa32:
7053 val = E_MIPS_ARCH_32;
7054 break;
7055
7056 case bfd_mach_mipsisa64:
7057 val = E_MIPS_ARCH_64;
7058 break;
7059
7060 case bfd_mach_mipsisa32r2:
7061 val = E_MIPS_ARCH_32R2;
7062 break;
7063 }
7064 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7065 elf_elfheader (abfd)->e_flags |= val;
7066
7067 }
7068
7069
7070 /* The final processing done just before writing out a MIPS ELF object
7071 file. This gets the MIPS architecture right based on the machine
7072 number. This is used by both the 32-bit and the 64-bit ABI. */
7073
7074 void
7075 _bfd_mips_elf_final_write_processing (abfd, linker)
7076 bfd *abfd;
7077 bfd_boolean linker ATTRIBUTE_UNUSED;
7078 {
7079 unsigned int i;
7080 Elf_Internal_Shdr **hdrpp;
7081 const char *name;
7082 asection *sec;
7083
7084 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7085 is nonzero. This is for compatibility with old objects, which used
7086 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7087 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7088 mips_set_isa_flags (abfd);
7089
7090 /* Set the sh_info field for .gptab sections and other appropriate
7091 info for each special section. */
7092 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7093 i < elf_numsections (abfd);
7094 i++, hdrpp++)
7095 {
7096 switch ((*hdrpp)->sh_type)
7097 {
7098 case SHT_MIPS_MSYM:
7099 case SHT_MIPS_LIBLIST:
7100 sec = bfd_get_section_by_name (abfd, ".dynstr");
7101 if (sec != NULL)
7102 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7103 break;
7104
7105 case SHT_MIPS_GPTAB:
7106 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7107 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7108 BFD_ASSERT (name != NULL
7109 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7110 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7111 BFD_ASSERT (sec != NULL);
7112 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7113 break;
7114
7115 case SHT_MIPS_CONTENT:
7116 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7117 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7118 BFD_ASSERT (name != NULL
7119 && strncmp (name, ".MIPS.content",
7120 sizeof ".MIPS.content" - 1) == 0);
7121 sec = bfd_get_section_by_name (abfd,
7122 name + sizeof ".MIPS.content" - 1);
7123 BFD_ASSERT (sec != NULL);
7124 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7125 break;
7126
7127 case SHT_MIPS_SYMBOL_LIB:
7128 sec = bfd_get_section_by_name (abfd, ".dynsym");
7129 if (sec != NULL)
7130 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7131 sec = bfd_get_section_by_name (abfd, ".liblist");
7132 if (sec != NULL)
7133 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7134 break;
7135
7136 case SHT_MIPS_EVENTS:
7137 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7138 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7139 BFD_ASSERT (name != NULL);
7140 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7141 sec = bfd_get_section_by_name (abfd,
7142 name + sizeof ".MIPS.events" - 1);
7143 else
7144 {
7145 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7146 sizeof ".MIPS.post_rel" - 1) == 0);
7147 sec = bfd_get_section_by_name (abfd,
7148 (name
7149 + sizeof ".MIPS.post_rel" - 1));
7150 }
7151 BFD_ASSERT (sec != NULL);
7152 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7153 break;
7154
7155 }
7156 }
7157 }
7158 \f
7159 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7160 segments. */
7161
7162 int
7163 _bfd_mips_elf_additional_program_headers (abfd)
7164 bfd *abfd;
7165 {
7166 asection *s;
7167 int ret = 0;
7168
7169 /* See if we need a PT_MIPS_REGINFO segment. */
7170 s = bfd_get_section_by_name (abfd, ".reginfo");
7171 if (s && (s->flags & SEC_LOAD))
7172 ++ret;
7173
7174 /* See if we need a PT_MIPS_OPTIONS segment. */
7175 if (IRIX_COMPAT (abfd) == ict_irix6
7176 && bfd_get_section_by_name (abfd,
7177 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7178 ++ret;
7179
7180 /* See if we need a PT_MIPS_RTPROC segment. */
7181 if (IRIX_COMPAT (abfd) == ict_irix5
7182 && bfd_get_section_by_name (abfd, ".dynamic")
7183 && bfd_get_section_by_name (abfd, ".mdebug"))
7184 ++ret;
7185
7186 return ret;
7187 }
7188
7189 /* Modify the segment map for an IRIX5 executable. */
7190
7191 bfd_boolean
7192 _bfd_mips_elf_modify_segment_map (abfd)
7193 bfd *abfd;
7194 {
7195 asection *s;
7196 struct elf_segment_map *m, **pm;
7197 bfd_size_type amt;
7198
7199 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7200 segment. */
7201 s = bfd_get_section_by_name (abfd, ".reginfo");
7202 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7203 {
7204 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7205 if (m->p_type == PT_MIPS_REGINFO)
7206 break;
7207 if (m == NULL)
7208 {
7209 amt = sizeof *m;
7210 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7211 if (m == NULL)
7212 return FALSE;
7213
7214 m->p_type = PT_MIPS_REGINFO;
7215 m->count = 1;
7216 m->sections[0] = s;
7217
7218 /* We want to put it after the PHDR and INTERP segments. */
7219 pm = &elf_tdata (abfd)->segment_map;
7220 while (*pm != NULL
7221 && ((*pm)->p_type == PT_PHDR
7222 || (*pm)->p_type == PT_INTERP))
7223 pm = &(*pm)->next;
7224
7225 m->next = *pm;
7226 *pm = m;
7227 }
7228 }
7229
7230 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7231 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7232 PT_OPTIONS segment immediately following the program header
7233 table. */
7234 if (NEWABI_P (abfd)
7235 /* On non-IRIX6 new abi, we'll have already created a segment
7236 for this section, so don't create another. I'm not sure this
7237 is not also the case for IRIX 6, but I can't test it right
7238 now. */
7239 && IRIX_COMPAT (abfd) == ict_irix6)
7240 {
7241 for (s = abfd->sections; s; s = s->next)
7242 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7243 break;
7244
7245 if (s)
7246 {
7247 struct elf_segment_map *options_segment;
7248
7249 /* Usually, there's a program header table. But, sometimes
7250 there's not (like when running the `ld' testsuite). So,
7251 if there's no program header table, we just put the
7252 options segment at the end. */
7253 for (pm = &elf_tdata (abfd)->segment_map;
7254 *pm != NULL;
7255 pm = &(*pm)->next)
7256 if ((*pm)->p_type == PT_PHDR)
7257 break;
7258
7259 amt = sizeof (struct elf_segment_map);
7260 options_segment = bfd_zalloc (abfd, amt);
7261 options_segment->next = *pm;
7262 options_segment->p_type = PT_MIPS_OPTIONS;
7263 options_segment->p_flags = PF_R;
7264 options_segment->p_flags_valid = TRUE;
7265 options_segment->count = 1;
7266 options_segment->sections[0] = s;
7267 *pm = options_segment;
7268 }
7269 }
7270 else
7271 {
7272 if (IRIX_COMPAT (abfd) == ict_irix5)
7273 {
7274 /* If there are .dynamic and .mdebug sections, we make a room
7275 for the RTPROC header. FIXME: Rewrite without section names. */
7276 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7277 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7278 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7279 {
7280 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7281 if (m->p_type == PT_MIPS_RTPROC)
7282 break;
7283 if (m == NULL)
7284 {
7285 amt = sizeof *m;
7286 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7287 if (m == NULL)
7288 return FALSE;
7289
7290 m->p_type = PT_MIPS_RTPROC;
7291
7292 s = bfd_get_section_by_name (abfd, ".rtproc");
7293 if (s == NULL)
7294 {
7295 m->count = 0;
7296 m->p_flags = 0;
7297 m->p_flags_valid = 1;
7298 }
7299 else
7300 {
7301 m->count = 1;
7302 m->sections[0] = s;
7303 }
7304
7305 /* We want to put it after the DYNAMIC segment. */
7306 pm = &elf_tdata (abfd)->segment_map;
7307 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7308 pm = &(*pm)->next;
7309 if (*pm != NULL)
7310 pm = &(*pm)->next;
7311
7312 m->next = *pm;
7313 *pm = m;
7314 }
7315 }
7316 }
7317 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7318 .dynstr, .dynsym, and .hash sections, and everything in
7319 between. */
7320 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7321 pm = &(*pm)->next)
7322 if ((*pm)->p_type == PT_DYNAMIC)
7323 break;
7324 m = *pm;
7325 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7326 {
7327 /* For a normal mips executable the permissions for the PT_DYNAMIC
7328 segment are read, write and execute. We do that here since
7329 the code in elf.c sets only the read permission. This matters
7330 sometimes for the dynamic linker. */
7331 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7332 {
7333 m->p_flags = PF_R | PF_W | PF_X;
7334 m->p_flags_valid = 1;
7335 }
7336 }
7337 if (m != NULL
7338 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7339 {
7340 static const char *sec_names[] =
7341 {
7342 ".dynamic", ".dynstr", ".dynsym", ".hash"
7343 };
7344 bfd_vma low, high;
7345 unsigned int i, c;
7346 struct elf_segment_map *n;
7347
7348 low = 0xffffffff;
7349 high = 0;
7350 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7351 {
7352 s = bfd_get_section_by_name (abfd, sec_names[i]);
7353 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7354 {
7355 bfd_size_type sz;
7356
7357 if (low > s->vma)
7358 low = s->vma;
7359 sz = s->_cooked_size;
7360 if (sz == 0)
7361 sz = s->_raw_size;
7362 if (high < s->vma + sz)
7363 high = s->vma + sz;
7364 }
7365 }
7366
7367 c = 0;
7368 for (s = abfd->sections; s != NULL; s = s->next)
7369 if ((s->flags & SEC_LOAD) != 0
7370 && s->vma >= low
7371 && ((s->vma
7372 + (s->_cooked_size !=
7373 0 ? s->_cooked_size : s->_raw_size)) <= high))
7374 ++c;
7375
7376 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7377 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7378 if (n == NULL)
7379 return FALSE;
7380 *n = *m;
7381 n->count = c;
7382
7383 i = 0;
7384 for (s = abfd->sections; s != NULL; s = s->next)
7385 {
7386 if ((s->flags & SEC_LOAD) != 0
7387 && s->vma >= low
7388 && ((s->vma
7389 + (s->_cooked_size != 0 ?
7390 s->_cooked_size : s->_raw_size)) <= high))
7391 {
7392 n->sections[i] = s;
7393 ++i;
7394 }
7395 }
7396
7397 *pm = n;
7398 }
7399 }
7400
7401 return TRUE;
7402 }
7403 \f
7404 /* Return the section that should be marked against GC for a given
7405 relocation. */
7406
7407 asection *
7408 _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7409 asection *sec;
7410 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7411 Elf_Internal_Rela *rel;
7412 struct elf_link_hash_entry *h;
7413 Elf_Internal_Sym *sym;
7414 {
7415 /* ??? Do mips16 stub sections need to be handled special? */
7416
7417 if (h != NULL)
7418 {
7419 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7420 {
7421 case R_MIPS_GNU_VTINHERIT:
7422 case R_MIPS_GNU_VTENTRY:
7423 break;
7424
7425 default:
7426 switch (h->root.type)
7427 {
7428 case bfd_link_hash_defined:
7429 case bfd_link_hash_defweak:
7430 return h->root.u.def.section;
7431
7432 case bfd_link_hash_common:
7433 return h->root.u.c.p->section;
7434
7435 default:
7436 break;
7437 }
7438 }
7439 }
7440 else
7441 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7442
7443 return NULL;
7444 }
7445
7446 /* Update the got entry reference counts for the section being removed. */
7447
7448 bfd_boolean
7449 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7450 bfd *abfd ATTRIBUTE_UNUSED;
7451 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7452 asection *sec ATTRIBUTE_UNUSED;
7453 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7454 {
7455 #if 0
7456 Elf_Internal_Shdr *symtab_hdr;
7457 struct elf_link_hash_entry **sym_hashes;
7458 bfd_signed_vma *local_got_refcounts;
7459 const Elf_Internal_Rela *rel, *relend;
7460 unsigned long r_symndx;
7461 struct elf_link_hash_entry *h;
7462
7463 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7464 sym_hashes = elf_sym_hashes (abfd);
7465 local_got_refcounts = elf_local_got_refcounts (abfd);
7466
7467 relend = relocs + sec->reloc_count;
7468 for (rel = relocs; rel < relend; rel++)
7469 switch (ELF_R_TYPE (abfd, rel->r_info))
7470 {
7471 case R_MIPS_GOT16:
7472 case R_MIPS_CALL16:
7473 case R_MIPS_CALL_HI16:
7474 case R_MIPS_CALL_LO16:
7475 case R_MIPS_GOT_HI16:
7476 case R_MIPS_GOT_LO16:
7477 case R_MIPS_GOT_DISP:
7478 case R_MIPS_GOT_PAGE:
7479 case R_MIPS_GOT_OFST:
7480 /* ??? It would seem that the existing MIPS code does no sort
7481 of reference counting or whatnot on its GOT and PLT entries,
7482 so it is not possible to garbage collect them at this time. */
7483 break;
7484
7485 default:
7486 break;
7487 }
7488 #endif
7489
7490 return TRUE;
7491 }
7492 \f
7493 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7494 hiding the old indirect symbol. Process additional relocation
7495 information. Also called for weakdefs, in which case we just let
7496 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7497
7498 void
7499 _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7500 struct elf_backend_data *bed;
7501 struct elf_link_hash_entry *dir, *ind;
7502 {
7503 struct mips_elf_link_hash_entry *dirmips, *indmips;
7504
7505 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7506
7507 if (ind->root.type != bfd_link_hash_indirect)
7508 return;
7509
7510 dirmips = (struct mips_elf_link_hash_entry *) dir;
7511 indmips = (struct mips_elf_link_hash_entry *) ind;
7512 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7513 if (indmips->readonly_reloc)
7514 dirmips->readonly_reloc = TRUE;
7515 if (dirmips->min_dyn_reloc_index == 0
7516 || (indmips->min_dyn_reloc_index != 0
7517 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7518 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7519 if (indmips->no_fn_stub)
7520 dirmips->no_fn_stub = TRUE;
7521 }
7522
7523 void
7524 _bfd_mips_elf_hide_symbol (info, entry, force_local)
7525 struct bfd_link_info *info;
7526 struct elf_link_hash_entry *entry;
7527 bfd_boolean force_local;
7528 {
7529 bfd *dynobj;
7530 asection *got;
7531 struct mips_got_info *g;
7532 struct mips_elf_link_hash_entry *h;
7533
7534 h = (struct mips_elf_link_hash_entry *) entry;
7535 if (h->forced_local)
7536 return;
7537 h->forced_local = TRUE;
7538
7539 dynobj = elf_hash_table (info)->dynobj;
7540 got = mips_elf_got_section (dynobj, FALSE);
7541 g = mips_elf_section_data (got)->u.got_info;
7542
7543 if (g->next)
7544 {
7545 struct mips_got_entry e;
7546 struct mips_got_info *gg = g;
7547
7548 /* Since we're turning what used to be a global symbol into a
7549 local one, bump up the number of local entries of each GOT
7550 that had an entry for it. This will automatically decrease
7551 the number of global entries, since global_gotno is actually
7552 the upper limit of global entries. */
7553 e.abfd = dynobj;
7554 e.symndx = -1;
7555 e.d.h = h;
7556
7557 for (g = g->next; g != gg; g = g->next)
7558 if (htab_find (g->got_entries, &e))
7559 {
7560 BFD_ASSERT (g->global_gotno > 0);
7561 g->local_gotno++;
7562 g->global_gotno--;
7563 }
7564
7565 /* If this was a global symbol forced into the primary GOT, we
7566 no longer need an entry for it. We can't release the entry
7567 at this point, but we must at least stop counting it as one
7568 of the symbols that required a forced got entry. */
7569 if (h->root.got.offset == 2)
7570 {
7571 BFD_ASSERT (gg->assigned_gotno > 0);
7572 gg->assigned_gotno--;
7573 }
7574 }
7575 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7576 /* If we haven't got through GOT allocation yet, just bump up the
7577 number of local entries, as this symbol won't be counted as
7578 global. */
7579 g->local_gotno++;
7580 else if (h->root.got.offset == 1)
7581 {
7582 /* If we're past non-multi-GOT allocation and this symbol had
7583 been marked for a global got entry, give it a local entry
7584 instead. */
7585 BFD_ASSERT (g->global_gotno > 0);
7586 g->local_gotno++;
7587 g->global_gotno--;
7588 }
7589
7590 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7591 }
7592 \f
7593 #define PDR_SIZE 32
7594
7595 bfd_boolean
7596 _bfd_mips_elf_discard_info (abfd, cookie, info)
7597 bfd *abfd;
7598 struct elf_reloc_cookie *cookie;
7599 struct bfd_link_info *info;
7600 {
7601 asection *o;
7602 bfd_boolean ret = FALSE;
7603 unsigned char *tdata;
7604 size_t i, skip;
7605
7606 o = bfd_get_section_by_name (abfd, ".pdr");
7607 if (! o)
7608 return FALSE;
7609 if (o->_raw_size == 0)
7610 return FALSE;
7611 if (o->_raw_size % PDR_SIZE != 0)
7612 return FALSE;
7613 if (o->output_section != NULL
7614 && bfd_is_abs_section (o->output_section))
7615 return FALSE;
7616
7617 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7618 if (! tdata)
7619 return FALSE;
7620
7621 cookie->rels = (MNAME(abfd,_bfd_elf,link_read_relocs)
7622 (abfd, o, (PTR) NULL,
7623 (Elf_Internal_Rela *) NULL,
7624 info->keep_memory));
7625 if (!cookie->rels)
7626 {
7627 free (tdata);
7628 return FALSE;
7629 }
7630
7631 cookie->rel = cookie->rels;
7632 cookie->relend = cookie->rels + o->reloc_count;
7633
7634 for (i = 0, skip = 0; i < o->_raw_size; i ++)
7635 {
7636 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
7637 {
7638 tdata[i] = 1;
7639 skip ++;
7640 }
7641 }
7642
7643 if (skip != 0)
7644 {
7645 mips_elf_section_data (o)->u.tdata = tdata;
7646 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7647 ret = TRUE;
7648 }
7649 else
7650 free (tdata);
7651
7652 if (! info->keep_memory)
7653 free (cookie->rels);
7654
7655 return ret;
7656 }
7657
7658 bfd_boolean
7659 _bfd_mips_elf_ignore_discarded_relocs (sec)
7660 asection *sec;
7661 {
7662 if (strcmp (sec->name, ".pdr") == 0)
7663 return TRUE;
7664 return FALSE;
7665 }
7666
7667 bfd_boolean
7668 _bfd_mips_elf_write_section (output_bfd, sec, contents)
7669 bfd *output_bfd;
7670 asection *sec;
7671 bfd_byte *contents;
7672 {
7673 bfd_byte *to, *from, *end;
7674 int i;
7675
7676 if (strcmp (sec->name, ".pdr") != 0)
7677 return FALSE;
7678
7679 if (mips_elf_section_data (sec)->u.tdata == NULL)
7680 return FALSE;
7681
7682 to = contents;
7683 end = contents + sec->_raw_size;
7684 for (from = contents, i = 0;
7685 from < end;
7686 from += PDR_SIZE, i++)
7687 {
7688 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7689 continue;
7690 if (to != from)
7691 memcpy (to, from, PDR_SIZE);
7692 to += PDR_SIZE;
7693 }
7694 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7695 (file_ptr) sec->output_offset,
7696 sec->_cooked_size);
7697 return TRUE;
7698 }
7699 \f
7700 /* MIPS ELF uses a special find_nearest_line routine in order the
7701 handle the ECOFF debugging information. */
7702
7703 struct mips_elf_find_line
7704 {
7705 struct ecoff_debug_info d;
7706 struct ecoff_find_line i;
7707 };
7708
7709 bfd_boolean
7710 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7711 functionname_ptr, line_ptr)
7712 bfd *abfd;
7713 asection *section;
7714 asymbol **symbols;
7715 bfd_vma offset;
7716 const char **filename_ptr;
7717 const char **functionname_ptr;
7718 unsigned int *line_ptr;
7719 {
7720 asection *msec;
7721
7722 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7723 filename_ptr, functionname_ptr,
7724 line_ptr))
7725 return TRUE;
7726
7727 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7728 filename_ptr, functionname_ptr,
7729 line_ptr,
7730 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7731 &elf_tdata (abfd)->dwarf2_find_line_info))
7732 return TRUE;
7733
7734 msec = bfd_get_section_by_name (abfd, ".mdebug");
7735 if (msec != NULL)
7736 {
7737 flagword origflags;
7738 struct mips_elf_find_line *fi;
7739 const struct ecoff_debug_swap * const swap =
7740 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7741
7742 /* If we are called during a link, mips_elf_final_link may have
7743 cleared the SEC_HAS_CONTENTS field. We force it back on here
7744 if appropriate (which it normally will be). */
7745 origflags = msec->flags;
7746 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7747 msec->flags |= SEC_HAS_CONTENTS;
7748
7749 fi = elf_tdata (abfd)->find_line_info;
7750 if (fi == NULL)
7751 {
7752 bfd_size_type external_fdr_size;
7753 char *fraw_src;
7754 char *fraw_end;
7755 struct fdr *fdr_ptr;
7756 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7757
7758 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
7759 if (fi == NULL)
7760 {
7761 msec->flags = origflags;
7762 return FALSE;
7763 }
7764
7765 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7766 {
7767 msec->flags = origflags;
7768 return FALSE;
7769 }
7770
7771 /* Swap in the FDR information. */
7772 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7773 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
7774 if (fi->d.fdr == NULL)
7775 {
7776 msec->flags = origflags;
7777 return FALSE;
7778 }
7779 external_fdr_size = swap->external_fdr_size;
7780 fdr_ptr = fi->d.fdr;
7781 fraw_src = (char *) fi->d.external_fdr;
7782 fraw_end = (fraw_src
7783 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7784 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7785 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
7786
7787 elf_tdata (abfd)->find_line_info = fi;
7788
7789 /* Note that we don't bother to ever free this information.
7790 find_nearest_line is either called all the time, as in
7791 objdump -l, so the information should be saved, or it is
7792 rarely called, as in ld error messages, so the memory
7793 wasted is unimportant. Still, it would probably be a
7794 good idea for free_cached_info to throw it away. */
7795 }
7796
7797 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7798 &fi->i, filename_ptr, functionname_ptr,
7799 line_ptr))
7800 {
7801 msec->flags = origflags;
7802 return TRUE;
7803 }
7804
7805 msec->flags = origflags;
7806 }
7807
7808 /* Fall back on the generic ELF find_nearest_line routine. */
7809
7810 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7811 filename_ptr, functionname_ptr,
7812 line_ptr);
7813 }
7814 \f
7815 /* When are writing out the .options or .MIPS.options section,
7816 remember the bytes we are writing out, so that we can install the
7817 GP value in the section_processing routine. */
7818
7819 bfd_boolean
7820 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
7821 bfd *abfd;
7822 sec_ptr section;
7823 PTR location;
7824 file_ptr offset;
7825 bfd_size_type count;
7826 {
7827 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7828 {
7829 bfd_byte *c;
7830
7831 if (elf_section_data (section) == NULL)
7832 {
7833 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7834 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
7835 if (elf_section_data (section) == NULL)
7836 return FALSE;
7837 }
7838 c = mips_elf_section_data (section)->u.tdata;
7839 if (c == NULL)
7840 {
7841 bfd_size_type size;
7842
7843 if (section->_cooked_size != 0)
7844 size = section->_cooked_size;
7845 else
7846 size = section->_raw_size;
7847 c = (bfd_byte *) bfd_zalloc (abfd, size);
7848 if (c == NULL)
7849 return FALSE;
7850 mips_elf_section_data (section)->u.tdata = c;
7851 }
7852
7853 memcpy (c + offset, location, (size_t) count);
7854 }
7855
7856 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7857 count);
7858 }
7859
7860 /* This is almost identical to bfd_generic_get_... except that some
7861 MIPS relocations need to be handled specially. Sigh. */
7862
7863 bfd_byte *
7864 _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
7865 data, relocateable, symbols)
7866 bfd *abfd;
7867 struct bfd_link_info *link_info;
7868 struct bfd_link_order *link_order;
7869 bfd_byte *data;
7870 bfd_boolean relocateable;
7871 asymbol **symbols;
7872 {
7873 /* Get enough memory to hold the stuff */
7874 bfd *input_bfd = link_order->u.indirect.section->owner;
7875 asection *input_section = link_order->u.indirect.section;
7876
7877 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7878 arelent **reloc_vector = NULL;
7879 long reloc_count;
7880
7881 if (reloc_size < 0)
7882 goto error_return;
7883
7884 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
7885 if (reloc_vector == NULL && reloc_size != 0)
7886 goto error_return;
7887
7888 /* read in the section */
7889 if (!bfd_get_section_contents (input_bfd,
7890 input_section,
7891 (PTR) data,
7892 (file_ptr) 0,
7893 input_section->_raw_size))
7894 goto error_return;
7895
7896 /* We're not relaxing the section, so just copy the size info */
7897 input_section->_cooked_size = input_section->_raw_size;
7898 input_section->reloc_done = TRUE;
7899
7900 reloc_count = bfd_canonicalize_reloc (input_bfd,
7901 input_section,
7902 reloc_vector,
7903 symbols);
7904 if (reloc_count < 0)
7905 goto error_return;
7906
7907 if (reloc_count > 0)
7908 {
7909 arelent **parent;
7910 /* for mips */
7911 int gp_found;
7912 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7913
7914 {
7915 struct bfd_hash_entry *h;
7916 struct bfd_link_hash_entry *lh;
7917 /* Skip all this stuff if we aren't mixing formats. */
7918 if (abfd && input_bfd
7919 && abfd->xvec == input_bfd->xvec)
7920 lh = 0;
7921 else
7922 {
7923 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
7924 lh = (struct bfd_link_hash_entry *) h;
7925 }
7926 lookup:
7927 if (lh)
7928 {
7929 switch (lh->type)
7930 {
7931 case bfd_link_hash_undefined:
7932 case bfd_link_hash_undefweak:
7933 case bfd_link_hash_common:
7934 gp_found = 0;
7935 break;
7936 case bfd_link_hash_defined:
7937 case bfd_link_hash_defweak:
7938 gp_found = 1;
7939 gp = lh->u.def.value;
7940 break;
7941 case bfd_link_hash_indirect:
7942 case bfd_link_hash_warning:
7943 lh = lh->u.i.link;
7944 /* @@FIXME ignoring warning for now */
7945 goto lookup;
7946 case bfd_link_hash_new:
7947 default:
7948 abort ();
7949 }
7950 }
7951 else
7952 gp_found = 0;
7953 }
7954 /* end mips */
7955 for (parent = reloc_vector; *parent != (arelent *) NULL;
7956 parent++)
7957 {
7958 char *error_message = (char *) NULL;
7959 bfd_reloc_status_type r;
7960
7961 /* Specific to MIPS: Deal with relocation types that require
7962 knowing the gp of the output bfd. */
7963 asymbol *sym = *(*parent)->sym_ptr_ptr;
7964 if (bfd_is_abs_section (sym->section) && abfd)
7965 {
7966 /* The special_function wouldn't get called anyway. */
7967 }
7968 else if (!gp_found)
7969 {
7970 /* The gp isn't there; let the special function code
7971 fall over on its own. */
7972 }
7973 else if ((*parent)->howto->special_function
7974 == _bfd_mips_elf32_gprel16_reloc)
7975 {
7976 /* bypass special_function call */
7977 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
7978 input_section, relocateable,
7979 (PTR) data, gp);
7980 goto skip_bfd_perform_relocation;
7981 }
7982 /* end mips specific stuff */
7983
7984 r = bfd_perform_relocation (input_bfd,
7985 *parent,
7986 (PTR) data,
7987 input_section,
7988 relocateable ? abfd : (bfd *) NULL,
7989 &error_message);
7990 skip_bfd_perform_relocation:
7991
7992 if (relocateable)
7993 {
7994 asection *os = input_section->output_section;
7995
7996 /* A partial link, so keep the relocs */
7997 os->orelocation[os->reloc_count] = *parent;
7998 os->reloc_count++;
7999 }
8000
8001 if (r != bfd_reloc_ok)
8002 {
8003 switch (r)
8004 {
8005 case bfd_reloc_undefined:
8006 if (!((*link_info->callbacks->undefined_symbol)
8007 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8008 input_bfd, input_section, (*parent)->address,
8009 TRUE)))
8010 goto error_return;
8011 break;
8012 case bfd_reloc_dangerous:
8013 BFD_ASSERT (error_message != (char *) NULL);
8014 if (!((*link_info->callbacks->reloc_dangerous)
8015 (link_info, error_message, input_bfd, input_section,
8016 (*parent)->address)))
8017 goto error_return;
8018 break;
8019 case bfd_reloc_overflow:
8020 if (!((*link_info->callbacks->reloc_overflow)
8021 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8022 (*parent)->howto->name, (*parent)->addend,
8023 input_bfd, input_section, (*parent)->address)))
8024 goto error_return;
8025 break;
8026 case bfd_reloc_outofrange:
8027 default:
8028 abort ();
8029 break;
8030 }
8031
8032 }
8033 }
8034 }
8035 if (reloc_vector != NULL)
8036 free (reloc_vector);
8037 return data;
8038
8039 error_return:
8040 if (reloc_vector != NULL)
8041 free (reloc_vector);
8042 return NULL;
8043 }
8044 \f
8045 /* Create a MIPS ELF linker hash table. */
8046
8047 struct bfd_link_hash_table *
8048 _bfd_mips_elf_link_hash_table_create (abfd)
8049 bfd *abfd;
8050 {
8051 struct mips_elf_link_hash_table *ret;
8052 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8053
8054 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
8055 if (ret == (struct mips_elf_link_hash_table *) NULL)
8056 return NULL;
8057
8058 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8059 mips_elf_link_hash_newfunc))
8060 {
8061 free (ret);
8062 return NULL;
8063 }
8064
8065 #if 0
8066 /* We no longer use this. */
8067 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8068 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8069 #endif
8070 ret->procedure_count = 0;
8071 ret->compact_rel_size = 0;
8072 ret->use_rld_obj_head = FALSE;
8073 ret->rld_value = 0;
8074 ret->mips16_stubs_seen = FALSE;
8075
8076 return &ret->root.root;
8077 }
8078 \f
8079 /* We need to use a special link routine to handle the .reginfo and
8080 the .mdebug sections. We need to merge all instances of these
8081 sections together, not write them all out sequentially. */
8082
8083 bfd_boolean
8084 _bfd_mips_elf_final_link (abfd, info)
8085 bfd *abfd;
8086 struct bfd_link_info *info;
8087 {
8088 asection **secpp;
8089 asection *o;
8090 struct bfd_link_order *p;
8091 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8092 asection *rtproc_sec;
8093 Elf32_RegInfo reginfo;
8094 struct ecoff_debug_info debug;
8095 const struct ecoff_debug_swap *swap
8096 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8097 HDRR *symhdr = &debug.symbolic_header;
8098 PTR mdebug_handle = NULL;
8099 asection *s;
8100 EXTR esym;
8101 unsigned int i;
8102 bfd_size_type amt;
8103
8104 static const char * const secname[] =
8105 {
8106 ".text", ".init", ".fini", ".data",
8107 ".rodata", ".sdata", ".sbss", ".bss"
8108 };
8109 static const int sc[] =
8110 {
8111 scText, scInit, scFini, scData,
8112 scRData, scSData, scSBss, scBss
8113 };
8114
8115 /* If all the things we linked together were PIC, but we're
8116 producing an executable (rather than a shared object), then the
8117 resulting file is CPIC (i.e., it calls PIC code.) */
8118 if (!info->shared
8119 && !info->relocateable
8120 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
8121 {
8122 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
8123 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
8124 }
8125
8126 /* We'd carefully arranged the dynamic symbol indices, and then the
8127 generic size_dynamic_sections renumbered them out from under us.
8128 Rather than trying somehow to prevent the renumbering, just do
8129 the sort again. */
8130 if (elf_hash_table (info)->dynamic_sections_created)
8131 {
8132 bfd *dynobj;
8133 asection *got;
8134 struct mips_got_info *g;
8135
8136 /* When we resort, we must tell mips_elf_sort_hash_table what
8137 the lowest index it may use is. That's the number of section
8138 symbols we're going to add. The generic ELF linker only
8139 adds these symbols when building a shared object. Note that
8140 we count the sections after (possibly) removing the .options
8141 section above. */
8142 if (! mips_elf_sort_hash_table (info, (info->shared
8143 ? bfd_count_sections (abfd) + 1
8144 : 1)))
8145 return FALSE;
8146
8147 /* Make sure we didn't grow the global .got region. */
8148 dynobj = elf_hash_table (info)->dynobj;
8149 got = mips_elf_got_section (dynobj, FALSE);
8150 g = mips_elf_section_data (got)->u.got_info;
8151
8152 if (g->global_gotsym != NULL)
8153 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8154 - g->global_gotsym->dynindx)
8155 <= g->global_gotno);
8156 }
8157
8158 #if 0
8159 /* We want to set the GP value for ld -r. */
8160 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8161 include it, even though we don't process it quite right. (Some
8162 entries are supposed to be merged.) Empirically, we seem to be
8163 better off including it then not. */
8164 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8165 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8166 {
8167 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8168 {
8169 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8170 if (p->type == bfd_indirect_link_order)
8171 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8172 (*secpp)->link_order_head = NULL;
8173 bfd_section_list_remove (abfd, secpp);
8174 --abfd->section_count;
8175
8176 break;
8177 }
8178 }
8179
8180 /* We include .MIPS.options, even though we don't process it quite right.
8181 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8182 to be better off including it than not. */
8183 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8184 {
8185 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8186 {
8187 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8188 if (p->type == bfd_indirect_link_order)
8189 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8190 (*secpp)->link_order_head = NULL;
8191 bfd_section_list_remove (abfd, secpp);
8192 --abfd->section_count;
8193
8194 break;
8195 }
8196 }
8197 #endif
8198
8199 /* Get a value for the GP register. */
8200 if (elf_gp (abfd) == 0)
8201 {
8202 struct bfd_link_hash_entry *h;
8203
8204 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8205 if (h != (struct bfd_link_hash_entry *) NULL
8206 && h->type == bfd_link_hash_defined)
8207 elf_gp (abfd) = (h->u.def.value
8208 + h->u.def.section->output_section->vma
8209 + h->u.def.section->output_offset);
8210 else if (info->relocateable)
8211 {
8212 bfd_vma lo = MINUS_ONE;
8213
8214 /* Find the GP-relative section with the lowest offset. */
8215 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8216 if (o->vma < lo
8217 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8218 lo = o->vma;
8219
8220 /* And calculate GP relative to that. */
8221 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8222 }
8223 else
8224 {
8225 /* If the relocate_section function needs to do a reloc
8226 involving the GP value, it should make a reloc_dangerous
8227 callback to warn that GP is not defined. */
8228 }
8229 }
8230
8231 /* Go through the sections and collect the .reginfo and .mdebug
8232 information. */
8233 reginfo_sec = NULL;
8234 mdebug_sec = NULL;
8235 gptab_data_sec = NULL;
8236 gptab_bss_sec = NULL;
8237 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8238 {
8239 if (strcmp (o->name, ".reginfo") == 0)
8240 {
8241 memset (&reginfo, 0, sizeof reginfo);
8242
8243 /* We have found the .reginfo section in the output file.
8244 Look through all the link_orders comprising it and merge
8245 the information together. */
8246 for (p = o->link_order_head;
8247 p != (struct bfd_link_order *) NULL;
8248 p = p->next)
8249 {
8250 asection *input_section;
8251 bfd *input_bfd;
8252 Elf32_External_RegInfo ext;
8253 Elf32_RegInfo sub;
8254
8255 if (p->type != bfd_indirect_link_order)
8256 {
8257 if (p->type == bfd_data_link_order)
8258 continue;
8259 abort ();
8260 }
8261
8262 input_section = p->u.indirect.section;
8263 input_bfd = input_section->owner;
8264
8265 /* The linker emulation code has probably clobbered the
8266 size to be zero bytes. */
8267 if (input_section->_raw_size == 0)
8268 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8269
8270 if (! bfd_get_section_contents (input_bfd, input_section,
8271 (PTR) &ext,
8272 (file_ptr) 0,
8273 (bfd_size_type) sizeof ext))
8274 return FALSE;
8275
8276 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8277
8278 reginfo.ri_gprmask |= sub.ri_gprmask;
8279 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8280 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8281 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8282 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8283
8284 /* ri_gp_value is set by the function
8285 mips_elf32_section_processing when the section is
8286 finally written out. */
8287
8288 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8289 elf_link_input_bfd ignores this section. */
8290 input_section->flags &= ~SEC_HAS_CONTENTS;
8291 }
8292
8293 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8294 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8295
8296 /* Skip this section later on (I don't think this currently
8297 matters, but someday it might). */
8298 o->link_order_head = (struct bfd_link_order *) NULL;
8299
8300 reginfo_sec = o;
8301 }
8302
8303 if (strcmp (o->name, ".mdebug") == 0)
8304 {
8305 struct extsym_info einfo;
8306 bfd_vma last;
8307
8308 /* We have found the .mdebug section in the output file.
8309 Look through all the link_orders comprising it and merge
8310 the information together. */
8311 symhdr->magic = swap->sym_magic;
8312 /* FIXME: What should the version stamp be? */
8313 symhdr->vstamp = 0;
8314 symhdr->ilineMax = 0;
8315 symhdr->cbLine = 0;
8316 symhdr->idnMax = 0;
8317 symhdr->ipdMax = 0;
8318 symhdr->isymMax = 0;
8319 symhdr->ioptMax = 0;
8320 symhdr->iauxMax = 0;
8321 symhdr->issMax = 0;
8322 symhdr->issExtMax = 0;
8323 symhdr->ifdMax = 0;
8324 symhdr->crfd = 0;
8325 symhdr->iextMax = 0;
8326
8327 /* We accumulate the debugging information itself in the
8328 debug_info structure. */
8329 debug.line = NULL;
8330 debug.external_dnr = NULL;
8331 debug.external_pdr = NULL;
8332 debug.external_sym = NULL;
8333 debug.external_opt = NULL;
8334 debug.external_aux = NULL;
8335 debug.ss = NULL;
8336 debug.ssext = debug.ssext_end = NULL;
8337 debug.external_fdr = NULL;
8338 debug.external_rfd = NULL;
8339 debug.external_ext = debug.external_ext_end = NULL;
8340
8341 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8342 if (mdebug_handle == (PTR) NULL)
8343 return FALSE;
8344
8345 esym.jmptbl = 0;
8346 esym.cobol_main = 0;
8347 esym.weakext = 0;
8348 esym.reserved = 0;
8349 esym.ifd = ifdNil;
8350 esym.asym.iss = issNil;
8351 esym.asym.st = stLocal;
8352 esym.asym.reserved = 0;
8353 esym.asym.index = indexNil;
8354 last = 0;
8355 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8356 {
8357 esym.asym.sc = sc[i];
8358 s = bfd_get_section_by_name (abfd, secname[i]);
8359 if (s != NULL)
8360 {
8361 esym.asym.value = s->vma;
8362 last = s->vma + s->_raw_size;
8363 }
8364 else
8365 esym.asym.value = last;
8366 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8367 secname[i], &esym))
8368 return FALSE;
8369 }
8370
8371 for (p = o->link_order_head;
8372 p != (struct bfd_link_order *) NULL;
8373 p = p->next)
8374 {
8375 asection *input_section;
8376 bfd *input_bfd;
8377 const struct ecoff_debug_swap *input_swap;
8378 struct ecoff_debug_info input_debug;
8379 char *eraw_src;
8380 char *eraw_end;
8381
8382 if (p->type != bfd_indirect_link_order)
8383 {
8384 if (p->type == bfd_data_link_order)
8385 continue;
8386 abort ();
8387 }
8388
8389 input_section = p->u.indirect.section;
8390 input_bfd = input_section->owner;
8391
8392 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8393 || (get_elf_backend_data (input_bfd)
8394 ->elf_backend_ecoff_debug_swap) == NULL)
8395 {
8396 /* I don't know what a non MIPS ELF bfd would be
8397 doing with a .mdebug section, but I don't really
8398 want to deal with it. */
8399 continue;
8400 }
8401
8402 input_swap = (get_elf_backend_data (input_bfd)
8403 ->elf_backend_ecoff_debug_swap);
8404
8405 BFD_ASSERT (p->size == input_section->_raw_size);
8406
8407 /* The ECOFF linking code expects that we have already
8408 read in the debugging information and set up an
8409 ecoff_debug_info structure, so we do that now. */
8410 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8411 &input_debug))
8412 return FALSE;
8413
8414 if (! (bfd_ecoff_debug_accumulate
8415 (mdebug_handle, abfd, &debug, swap, input_bfd,
8416 &input_debug, input_swap, info)))
8417 return FALSE;
8418
8419 /* Loop through the external symbols. For each one with
8420 interesting information, try to find the symbol in
8421 the linker global hash table and save the information
8422 for the output external symbols. */
8423 eraw_src = input_debug.external_ext;
8424 eraw_end = (eraw_src
8425 + (input_debug.symbolic_header.iextMax
8426 * input_swap->external_ext_size));
8427 for (;
8428 eraw_src < eraw_end;
8429 eraw_src += input_swap->external_ext_size)
8430 {
8431 EXTR ext;
8432 const char *name;
8433 struct mips_elf_link_hash_entry *h;
8434
8435 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8436 if (ext.asym.sc == scNil
8437 || ext.asym.sc == scUndefined
8438 || ext.asym.sc == scSUndefined)
8439 continue;
8440
8441 name = input_debug.ssext + ext.asym.iss;
8442 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8443 name, FALSE, FALSE, TRUE);
8444 if (h == NULL || h->esym.ifd != -2)
8445 continue;
8446
8447 if (ext.ifd != -1)
8448 {
8449 BFD_ASSERT (ext.ifd
8450 < input_debug.symbolic_header.ifdMax);
8451 ext.ifd = input_debug.ifdmap[ext.ifd];
8452 }
8453
8454 h->esym = ext;
8455 }
8456
8457 /* Free up the information we just read. */
8458 free (input_debug.line);
8459 free (input_debug.external_dnr);
8460 free (input_debug.external_pdr);
8461 free (input_debug.external_sym);
8462 free (input_debug.external_opt);
8463 free (input_debug.external_aux);
8464 free (input_debug.ss);
8465 free (input_debug.ssext);
8466 free (input_debug.external_fdr);
8467 free (input_debug.external_rfd);
8468 free (input_debug.external_ext);
8469
8470 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8471 elf_link_input_bfd ignores this section. */
8472 input_section->flags &= ~SEC_HAS_CONTENTS;
8473 }
8474
8475 if (SGI_COMPAT (abfd) && info->shared)
8476 {
8477 /* Create .rtproc section. */
8478 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8479 if (rtproc_sec == NULL)
8480 {
8481 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8482 | SEC_LINKER_CREATED | SEC_READONLY);
8483
8484 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8485 if (rtproc_sec == NULL
8486 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8487 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8488 return FALSE;
8489 }
8490
8491 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8492 info, rtproc_sec,
8493 &debug))
8494 return FALSE;
8495 }
8496
8497 /* Build the external symbol information. */
8498 einfo.abfd = abfd;
8499 einfo.info = info;
8500 einfo.debug = &debug;
8501 einfo.swap = swap;
8502 einfo.failed = FALSE;
8503 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8504 mips_elf_output_extsym,
8505 (PTR) &einfo);
8506 if (einfo.failed)
8507 return FALSE;
8508
8509 /* Set the size of the .mdebug section. */
8510 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8511
8512 /* Skip this section later on (I don't think this currently
8513 matters, but someday it might). */
8514 o->link_order_head = (struct bfd_link_order *) NULL;
8515
8516 mdebug_sec = o;
8517 }
8518
8519 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8520 {
8521 const char *subname;
8522 unsigned int c;
8523 Elf32_gptab *tab;
8524 Elf32_External_gptab *ext_tab;
8525 unsigned int j;
8526
8527 /* The .gptab.sdata and .gptab.sbss sections hold
8528 information describing how the small data area would
8529 change depending upon the -G switch. These sections
8530 not used in executables files. */
8531 if (! info->relocateable)
8532 {
8533 for (p = o->link_order_head;
8534 p != (struct bfd_link_order *) NULL;
8535 p = p->next)
8536 {
8537 asection *input_section;
8538
8539 if (p->type != bfd_indirect_link_order)
8540 {
8541 if (p->type == bfd_data_link_order)
8542 continue;
8543 abort ();
8544 }
8545
8546 input_section = p->u.indirect.section;
8547
8548 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8549 elf_link_input_bfd ignores this section. */
8550 input_section->flags &= ~SEC_HAS_CONTENTS;
8551 }
8552
8553 /* Skip this section later on (I don't think this
8554 currently matters, but someday it might). */
8555 o->link_order_head = (struct bfd_link_order *) NULL;
8556
8557 /* Really remove the section. */
8558 for (secpp = &abfd->sections;
8559 *secpp != o;
8560 secpp = &(*secpp)->next)
8561 ;
8562 bfd_section_list_remove (abfd, secpp);
8563 --abfd->section_count;
8564
8565 continue;
8566 }
8567
8568 /* There is one gptab for initialized data, and one for
8569 uninitialized data. */
8570 if (strcmp (o->name, ".gptab.sdata") == 0)
8571 gptab_data_sec = o;
8572 else if (strcmp (o->name, ".gptab.sbss") == 0)
8573 gptab_bss_sec = o;
8574 else
8575 {
8576 (*_bfd_error_handler)
8577 (_("%s: illegal section name `%s'"),
8578 bfd_get_filename (abfd), o->name);
8579 bfd_set_error (bfd_error_nonrepresentable_section);
8580 return FALSE;
8581 }
8582
8583 /* The linker script always combines .gptab.data and
8584 .gptab.sdata into .gptab.sdata, and likewise for
8585 .gptab.bss and .gptab.sbss. It is possible that there is
8586 no .sdata or .sbss section in the output file, in which
8587 case we must change the name of the output section. */
8588 subname = o->name + sizeof ".gptab" - 1;
8589 if (bfd_get_section_by_name (abfd, subname) == NULL)
8590 {
8591 if (o == gptab_data_sec)
8592 o->name = ".gptab.data";
8593 else
8594 o->name = ".gptab.bss";
8595 subname = o->name + sizeof ".gptab" - 1;
8596 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8597 }
8598
8599 /* Set up the first entry. */
8600 c = 1;
8601 amt = c * sizeof (Elf32_gptab);
8602 tab = (Elf32_gptab *) bfd_malloc (amt);
8603 if (tab == NULL)
8604 return FALSE;
8605 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8606 tab[0].gt_header.gt_unused = 0;
8607
8608 /* Combine the input sections. */
8609 for (p = o->link_order_head;
8610 p != (struct bfd_link_order *) NULL;
8611 p = p->next)
8612 {
8613 asection *input_section;
8614 bfd *input_bfd;
8615 bfd_size_type size;
8616 unsigned long last;
8617 bfd_size_type gpentry;
8618
8619 if (p->type != bfd_indirect_link_order)
8620 {
8621 if (p->type == bfd_data_link_order)
8622 continue;
8623 abort ();
8624 }
8625
8626 input_section = p->u.indirect.section;
8627 input_bfd = input_section->owner;
8628
8629 /* Combine the gptab entries for this input section one
8630 by one. We know that the input gptab entries are
8631 sorted by ascending -G value. */
8632 size = bfd_section_size (input_bfd, input_section);
8633 last = 0;
8634 for (gpentry = sizeof (Elf32_External_gptab);
8635 gpentry < size;
8636 gpentry += sizeof (Elf32_External_gptab))
8637 {
8638 Elf32_External_gptab ext_gptab;
8639 Elf32_gptab int_gptab;
8640 unsigned long val;
8641 unsigned long add;
8642 bfd_boolean exact;
8643 unsigned int look;
8644
8645 if (! (bfd_get_section_contents
8646 (input_bfd, input_section, (PTR) &ext_gptab,
8647 (file_ptr) gpentry,
8648 (bfd_size_type) sizeof (Elf32_External_gptab))))
8649 {
8650 free (tab);
8651 return FALSE;
8652 }
8653
8654 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8655 &int_gptab);
8656 val = int_gptab.gt_entry.gt_g_value;
8657 add = int_gptab.gt_entry.gt_bytes - last;
8658
8659 exact = FALSE;
8660 for (look = 1; look < c; look++)
8661 {
8662 if (tab[look].gt_entry.gt_g_value >= val)
8663 tab[look].gt_entry.gt_bytes += add;
8664
8665 if (tab[look].gt_entry.gt_g_value == val)
8666 exact = TRUE;
8667 }
8668
8669 if (! exact)
8670 {
8671 Elf32_gptab *new_tab;
8672 unsigned int max;
8673
8674 /* We need a new table entry. */
8675 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8676 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8677 if (new_tab == NULL)
8678 {
8679 free (tab);
8680 return FALSE;
8681 }
8682 tab = new_tab;
8683 tab[c].gt_entry.gt_g_value = val;
8684 tab[c].gt_entry.gt_bytes = add;
8685
8686 /* Merge in the size for the next smallest -G
8687 value, since that will be implied by this new
8688 value. */
8689 max = 0;
8690 for (look = 1; look < c; look++)
8691 {
8692 if (tab[look].gt_entry.gt_g_value < val
8693 && (max == 0
8694 || (tab[look].gt_entry.gt_g_value
8695 > tab[max].gt_entry.gt_g_value)))
8696 max = look;
8697 }
8698 if (max != 0)
8699 tab[c].gt_entry.gt_bytes +=
8700 tab[max].gt_entry.gt_bytes;
8701
8702 ++c;
8703 }
8704
8705 last = int_gptab.gt_entry.gt_bytes;
8706 }
8707
8708 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8709 elf_link_input_bfd ignores this section. */
8710 input_section->flags &= ~SEC_HAS_CONTENTS;
8711 }
8712
8713 /* The table must be sorted by -G value. */
8714 if (c > 2)
8715 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8716
8717 /* Swap out the table. */
8718 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8719 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8720 if (ext_tab == NULL)
8721 {
8722 free (tab);
8723 return FALSE;
8724 }
8725
8726 for (j = 0; j < c; j++)
8727 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8728 free (tab);
8729
8730 o->_raw_size = c * sizeof (Elf32_External_gptab);
8731 o->contents = (bfd_byte *) ext_tab;
8732
8733 /* Skip this section later on (I don't think this currently
8734 matters, but someday it might). */
8735 o->link_order_head = (struct bfd_link_order *) NULL;
8736 }
8737 }
8738
8739 /* Invoke the regular ELF backend linker to do all the work. */
8740 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
8741 return FALSE;
8742
8743 /* Now write out the computed sections. */
8744
8745 if (reginfo_sec != (asection *) NULL)
8746 {
8747 Elf32_External_RegInfo ext;
8748
8749 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8750 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
8751 (file_ptr) 0,
8752 (bfd_size_type) sizeof ext))
8753 return FALSE;
8754 }
8755
8756 if (mdebug_sec != (asection *) NULL)
8757 {
8758 BFD_ASSERT (abfd->output_has_begun);
8759 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8760 swap, info,
8761 mdebug_sec->filepos))
8762 return FALSE;
8763
8764 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8765 }
8766
8767 if (gptab_data_sec != (asection *) NULL)
8768 {
8769 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8770 gptab_data_sec->contents,
8771 (file_ptr) 0,
8772 gptab_data_sec->_raw_size))
8773 return FALSE;
8774 }
8775
8776 if (gptab_bss_sec != (asection *) NULL)
8777 {
8778 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8779 gptab_bss_sec->contents,
8780 (file_ptr) 0,
8781 gptab_bss_sec->_raw_size))
8782 return FALSE;
8783 }
8784
8785 if (SGI_COMPAT (abfd))
8786 {
8787 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8788 if (rtproc_sec != NULL)
8789 {
8790 if (! bfd_set_section_contents (abfd, rtproc_sec,
8791 rtproc_sec->contents,
8792 (file_ptr) 0,
8793 rtproc_sec->_raw_size))
8794 return FALSE;
8795 }
8796 }
8797
8798 return TRUE;
8799 }
8800 \f
8801 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8802
8803 struct mips_mach_extension {
8804 unsigned long extension, base;
8805 };
8806
8807
8808 /* An array describing how BFD machines relate to one another. The entries
8809 are ordered topologically with MIPS I extensions listed last. */
8810
8811 static const struct mips_mach_extension mips_mach_extensions[] = {
8812 /* MIPS64 extensions. */
8813 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8814
8815 /* MIPS V extensions. */
8816 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8817
8818 /* R10000 extensions. */
8819 { bfd_mach_mips12000, bfd_mach_mips10000 },
8820
8821 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8822 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8823 better to allow vr5400 and vr5500 code to be merged anyway, since
8824 many libraries will just use the core ISA. Perhaps we could add
8825 some sort of ASE flag if this ever proves a problem. */
8826 { bfd_mach_mips5500, bfd_mach_mips5400 },
8827 { bfd_mach_mips5400, bfd_mach_mips5000 },
8828
8829 /* MIPS IV extensions. */
8830 { bfd_mach_mips5, bfd_mach_mips8000 },
8831 { bfd_mach_mips10000, bfd_mach_mips8000 },
8832 { bfd_mach_mips5000, bfd_mach_mips8000 },
8833
8834 /* VR4100 extensions. */
8835 { bfd_mach_mips4120, bfd_mach_mips4100 },
8836 { bfd_mach_mips4111, bfd_mach_mips4100 },
8837
8838 /* MIPS III extensions. */
8839 { bfd_mach_mips8000, bfd_mach_mips4000 },
8840 { bfd_mach_mips4650, bfd_mach_mips4000 },
8841 { bfd_mach_mips4600, bfd_mach_mips4000 },
8842 { bfd_mach_mips4400, bfd_mach_mips4000 },
8843 { bfd_mach_mips4300, bfd_mach_mips4000 },
8844 { bfd_mach_mips4100, bfd_mach_mips4000 },
8845 { bfd_mach_mips4010, bfd_mach_mips4000 },
8846
8847 /* MIPS32 extensions. */
8848 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8849
8850 /* MIPS II extensions. */
8851 { bfd_mach_mips4000, bfd_mach_mips6000 },
8852 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8853
8854 /* MIPS I extensions. */
8855 { bfd_mach_mips6000, bfd_mach_mips3000 },
8856 { bfd_mach_mips3900, bfd_mach_mips3000 }
8857 };
8858
8859
8860 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8861
8862 static bfd_boolean
8863 mips_mach_extends_p (base, extension)
8864 unsigned long base, extension;
8865 {
8866 size_t i;
8867
8868 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8869 if (extension == mips_mach_extensions[i].extension)
8870 extension = mips_mach_extensions[i].base;
8871
8872 return extension == base;
8873 }
8874
8875
8876 /* Return true if the given ELF header flags describe a 32-bit binary. */
8877
8878 static bfd_boolean
8879 mips_32bit_flags_p (flags)
8880 flagword flags;
8881 {
8882 return ((flags & EF_MIPS_32BITMODE) != 0
8883 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8884 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8885 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8886 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8887 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8888 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8889 }
8890
8891
8892 /* Merge backend specific data from an object file to the output
8893 object file when linking. */
8894
8895 bfd_boolean
8896 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
8897 bfd *ibfd;
8898 bfd *obfd;
8899 {
8900 flagword old_flags;
8901 flagword new_flags;
8902 bfd_boolean ok;
8903 bfd_boolean null_input_bfd = TRUE;
8904 asection *sec;
8905
8906 /* Check if we have the same endianess */
8907 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8908 return FALSE;
8909
8910 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8911 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8912 return TRUE;
8913
8914 new_flags = elf_elfheader (ibfd)->e_flags;
8915 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8916 old_flags = elf_elfheader (obfd)->e_flags;
8917
8918 if (! elf_flags_init (obfd))
8919 {
8920 elf_flags_init (obfd) = TRUE;
8921 elf_elfheader (obfd)->e_flags = new_flags;
8922 elf_elfheader (obfd)->e_ident[EI_CLASS]
8923 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8924
8925 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8926 && bfd_get_arch_info (obfd)->the_default)
8927 {
8928 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8929 bfd_get_mach (ibfd)))
8930 return FALSE;
8931 }
8932
8933 return TRUE;
8934 }
8935
8936 /* Check flag compatibility. */
8937
8938 new_flags &= ~EF_MIPS_NOREORDER;
8939 old_flags &= ~EF_MIPS_NOREORDER;
8940
8941 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8942 doesn't seem to matter. */
8943 new_flags &= ~EF_MIPS_XGOT;
8944 old_flags &= ~EF_MIPS_XGOT;
8945
8946 if (new_flags == old_flags)
8947 return TRUE;
8948
8949 /* Check to see if the input BFD actually contains any sections.
8950 If not, its flags may not have been initialised either, but it cannot
8951 actually cause any incompatibility. */
8952 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8953 {
8954 /* Ignore synthetic sections and empty .text, .data and .bss sections
8955 which are automatically generated by gas. */
8956 if (strcmp (sec->name, ".reginfo")
8957 && strcmp (sec->name, ".mdebug")
8958 && ((!strcmp (sec->name, ".text")
8959 || !strcmp (sec->name, ".data")
8960 || !strcmp (sec->name, ".bss"))
8961 && sec->_raw_size != 0))
8962 {
8963 null_input_bfd = FALSE;
8964 break;
8965 }
8966 }
8967 if (null_input_bfd)
8968 return TRUE;
8969
8970 ok = TRUE;
8971
8972 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
8973 {
8974 new_flags &= ~EF_MIPS_PIC;
8975 old_flags &= ~EF_MIPS_PIC;
8976 (*_bfd_error_handler)
8977 (_("%s: linking PIC files with non-PIC files"),
8978 bfd_archive_filename (ibfd));
8979 ok = FALSE;
8980 }
8981
8982 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
8983 {
8984 new_flags &= ~EF_MIPS_CPIC;
8985 old_flags &= ~EF_MIPS_CPIC;
8986 (*_bfd_error_handler)
8987 (_("%s: linking abicalls files with non-abicalls files"),
8988 bfd_archive_filename (ibfd));
8989 ok = FALSE;
8990 }
8991
8992 /* Compare the ISAs. */
8993 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
8994 {
8995 (*_bfd_error_handler)
8996 (_("%s: linking 32-bit code with 64-bit code"),
8997 bfd_archive_filename (ibfd));
8998 ok = FALSE;
8999 }
9000 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9001 {
9002 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9003 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9004 {
9005 /* Copy the architecture info from IBFD to OBFD. Also copy
9006 the 32-bit flag (if set) so that we continue to recognise
9007 OBFD as a 32-bit binary. */
9008 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9009 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9010 elf_elfheader (obfd)->e_flags
9011 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9012
9013 /* Copy across the ABI flags if OBFD doesn't use them
9014 and if that was what caused us to treat IBFD as 32-bit. */
9015 if ((old_flags & EF_MIPS_ABI) == 0
9016 && mips_32bit_flags_p (new_flags)
9017 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9018 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9019 }
9020 else
9021 {
9022 /* The ISAs aren't compatible. */
9023 (*_bfd_error_handler)
9024 (_("%s: linking %s module with previous %s modules"),
9025 bfd_archive_filename (ibfd),
9026 bfd_printable_name (ibfd),
9027 bfd_printable_name (obfd));
9028 ok = FALSE;
9029 }
9030 }
9031
9032 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9033 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9034
9035 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9036 does set EI_CLASS differently from any 32-bit ABI. */
9037 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9038 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9039 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9040 {
9041 /* Only error if both are set (to different values). */
9042 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9043 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9044 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9045 {
9046 (*_bfd_error_handler)
9047 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9048 bfd_archive_filename (ibfd),
9049 elf_mips_abi_name (ibfd),
9050 elf_mips_abi_name (obfd));
9051 ok = FALSE;
9052 }
9053 new_flags &= ~EF_MIPS_ABI;
9054 old_flags &= ~EF_MIPS_ABI;
9055 }
9056
9057 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9058 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9059 {
9060 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9061
9062 new_flags &= ~ EF_MIPS_ARCH_ASE;
9063 old_flags &= ~ EF_MIPS_ARCH_ASE;
9064 }
9065
9066 /* Warn about any other mismatches */
9067 if (new_flags != old_flags)
9068 {
9069 (*_bfd_error_handler)
9070 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9071 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9072 (unsigned long) old_flags);
9073 ok = FALSE;
9074 }
9075
9076 if (! ok)
9077 {
9078 bfd_set_error (bfd_error_bad_value);
9079 return FALSE;
9080 }
9081
9082 return TRUE;
9083 }
9084
9085 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9086
9087 bfd_boolean
9088 _bfd_mips_elf_set_private_flags (abfd, flags)
9089 bfd *abfd;
9090 flagword flags;
9091 {
9092 BFD_ASSERT (!elf_flags_init (abfd)
9093 || elf_elfheader (abfd)->e_flags == flags);
9094
9095 elf_elfheader (abfd)->e_flags = flags;
9096 elf_flags_init (abfd) = TRUE;
9097 return TRUE;
9098 }
9099
9100 bfd_boolean
9101 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9102 bfd *abfd;
9103 PTR ptr;
9104 {
9105 FILE *file = (FILE *) ptr;
9106
9107 BFD_ASSERT (abfd != NULL && ptr != NULL);
9108
9109 /* Print normal ELF private data. */
9110 _bfd_elf_print_private_bfd_data (abfd, ptr);
9111
9112 /* xgettext:c-format */
9113 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9114
9115 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9116 fprintf (file, _(" [abi=O32]"));
9117 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9118 fprintf (file, _(" [abi=O64]"));
9119 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9120 fprintf (file, _(" [abi=EABI32]"));
9121 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9122 fprintf (file, _(" [abi=EABI64]"));
9123 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9124 fprintf (file, _(" [abi unknown]"));
9125 else if (ABI_N32_P (abfd))
9126 fprintf (file, _(" [abi=N32]"));
9127 else if (ABI_64_P (abfd))
9128 fprintf (file, _(" [abi=64]"));
9129 else
9130 fprintf (file, _(" [no abi set]"));
9131
9132 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9133 fprintf (file, _(" [mips1]"));
9134 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9135 fprintf (file, _(" [mips2]"));
9136 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9137 fprintf (file, _(" [mips3]"));
9138 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9139 fprintf (file, _(" [mips4]"));
9140 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9141 fprintf (file, _(" [mips5]"));
9142 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9143 fprintf (file, _(" [mips32]"));
9144 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9145 fprintf (file, _(" [mips64]"));
9146 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9147 fprintf (file, _(" [mips32r2]"));
9148 else
9149 fprintf (file, _(" [unknown ISA]"));
9150
9151 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9152 fprintf (file, _(" [mdmx]"));
9153
9154 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9155 fprintf (file, _(" [mips16]"));
9156
9157 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9158 fprintf (file, _(" [32bitmode]"));
9159 else
9160 fprintf (file, _(" [not 32bitmode]"));
9161
9162 fputc ('\n', file);
9163
9164 return TRUE;
9165 }
This page took 0.228887 seconds and 5 git commands to generate.