MIPS/BFD: Correctly report unsupported `.reginfo' section size
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262 indx = h->dynindx;
3263
3264 if ((bfd_link_pic (info) || indx != 0)
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
3271 return 0;
3272
3273 switch (tls_type)
3274 {
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
3277
3278 case GOT_TLS_IE:
3279 return 1;
3280
3281 case GOT_TLS_LDM:
3282 return bfd_link_pic (info) ? 1 : 0;
3283
3284 default:
3285 return 0;
3286 }
3287 }
3288
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
3291
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
3296 {
3297 if (entry->tls_type)
3298 {
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
3308 }
3309
3310 /* Output a simple dynamic relocation into SRELOC. */
3311
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
3315 unsigned long reloc_index,
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319 {
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
3338 + reloc_index * sizeof (Elf32_External_Rel)));
3339 }
3340
3341 /* Initialize a set of TLS GOT entries for one symbol. */
3342
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348 {
3349 struct mips_elf_link_hash_table *htab;
3350 int indx;
3351 asection *sreloc, *sgot;
3352 bfd_vma got_offset, got_offset2;
3353 bfd_boolean need_relocs = FALSE;
3354
3355 htab = mips_elf_hash_table (info);
3356 if (htab == NULL)
3357 return;
3358
3359 sgot = htab->root.sgot;
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 indx = h->root.dynindx;
3371 }
3372
3373 if (entry->tls_initialized)
3374 return;
3375
3376 if ((bfd_link_pic (info) || indx != 0)
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390 got_offset = entry->gotidx;
3391
3392 switch (entry->tls_type)
3393 {
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset);
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
3407 (abfd, sreloc, sreloc->reloc_count++, indx,
3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 sgot->contents + got_offset2);
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
3417 sgot->contents + got_offset);
3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 sgot->contents + got_offset2);
3420 }
3421 break;
3422
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 sgot->contents + got_offset);
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
3432 sgot->contents + got_offset);
3433
3434 mips_elf_output_dynamic_relocation
3435 (abfd, sreloc, sreloc->reloc_count++, indx,
3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 sgot->output_offset + sgot->output_section->vma + got_offset);
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 sgot->contents + got_offset);
3442 break;
3443
3444 case GOT_TLS_LDM:
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
3451 if (!bfd_link_pic (info))
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
3456 (abfd, sreloc, sreloc->reloc_count++, indx,
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 break;
3460
3461 default:
3462 abort ();
3463 }
3464
3465 entry->tls_initialized = TRUE;
3466 }
3467
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475 {
3476 bfd_vma got_address, got_value;
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
3480 BFD_ASSERT (htab != NULL);
3481
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3484
3485 /* Calculate the address of the associated .got.plt entry. */
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497 }
3498
3499 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
3503
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 bfd_vma value, unsigned long r_symndx,
3507 struct mips_elf_link_hash_entry *h, int r_type)
3508 {
3509 struct mips_elf_link_hash_table *htab;
3510 struct mips_got_entry *entry;
3511
3512 htab = mips_elf_hash_table (info);
3513 BFD_ASSERT (htab != NULL);
3514
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
3517 if (!entry)
3518 return MINUS_ONE;
3519
3520 if (entry->tls_type)
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
3523 }
3524
3525 /* Return the GOT index of global symbol H in the primary GOT. */
3526
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
3551 BFD_ASSERT (got_index < htab->root.sgot->size);
3552
3553 return got_index;
3554 }
3555
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
3567
3568 htab = mips_elf_hash_table (info);
3569 BFD_ASSERT (htab != NULL);
3570
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
3573
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
3577
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
3583
3584 gotidx = entry->gotidx;
3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3586
3587 if (lookup.tls_type)
3588 {
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599 }
3600 return gotidx;
3601 }
3602
3603 /* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
3607 offset of the GOT entry from VALUE. */
3608
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 bfd_vma value, bfd_vma *offsetp)
3612 {
3613 bfd_vma page, got_index;
3614 struct mips_got_entry *entry;
3615
3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
3619
3620 if (!entry)
3621 return MINUS_ONE;
3622
3623 got_index = entry->gotidx;
3624
3625 if (offsetp)
3626 *offsetp = value - entry->d.address;
3627
3628 return got_index;
3629 }
3630
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
3634
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 bfd_vma value, bfd_boolean external)
3638 {
3639 struct mips_got_entry *entry;
3640
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3645 if (! external)
3646 value = mips_elf_high (value) << 16;
3647
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
3657 }
3658
3659 /* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 bfd *input_bfd, bfd_vma got_index)
3665 {
3666 struct mips_elf_link_hash_table *htab;
3667 asection *sgot;
3668 bfd_vma gp;
3669
3670 htab = mips_elf_hash_table (info);
3671 BFD_ASSERT (htab != NULL);
3672
3673 sgot = htab->root.sgot;
3674 gp = _bfd_get_gp_value (output_bfd)
3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3676
3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3678 }
3679
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
3684
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 bfd *ibfd, bfd_vma value,
3688 unsigned long r_symndx,
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
3691 {
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
3694 struct mips_got_info *g;
3695 struct mips_elf_link_hash_table *htab;
3696 bfd_vma gotidx;
3697
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3700
3701 g = mips_elf_bfd_got (ibfd, FALSE);
3702 if (g == NULL)
3703 {
3704 g = mips_elf_bfd_got (abfd, FALSE);
3705 BFD_ASSERT (g != NULL);
3706 }
3707
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3711
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
3716 if (tls_ldm_reloc_p (r_type))
3717 {
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
3720 }
3721 else if (h == NULL)
3722 {
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
3725 }
3726 else
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
3731
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
3734
3735 gotidx = entry->gotidx;
3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3737
3738 return entry;
3739 }
3740
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
3746 return NULL;
3747
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
3751
3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
3753 {
3754 /* We didn't allocate enough space in the GOT. */
3755 _bfd_error_handler
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
3758 return NULL;
3759 }
3760
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
3773 *entry = lookup;
3774 *loc = entry;
3775
3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3777
3778 /* These GOT entries need a dynamic relocation on VxWorks. */
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
3782 asection *s;
3783 bfd_byte *rloc;
3784 bfd_vma got_address;
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
3789 + entry->gotidx);
3790
3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792 outrel.r_offset = got_address;
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3796 }
3797
3798 return entry;
3799 }
3800
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808 {
3809 bfd_size_type count;
3810
3811 count = 0;
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826 }
3827
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829 appear towards the end. */
3830
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3833 {
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
3837
3838 htab = mips_elf_hash_table (info);
3839 BFD_ASSERT (htab != NULL);
3840
3841 if (htab->root.dynsymcount == 0)
3842 return TRUE;
3843
3844 g = htab->got_info;
3845 if (g == NULL)
3846 return TRUE;
3847
3848 hsd.low = NULL;
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3857
3858 /* There should have been enough room in the symbol table to
3859 accommodate both the GOT and non-GOT symbols. */
3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
3867 htab->global_gotsym = hsd.low;
3868
3869 return TRUE;
3870 }
3871
3872 /* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
3876 static bfd_boolean
3877 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3878 {
3879 struct mips_elf_hash_sort_data *hsd = data;
3880
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
3884 return TRUE;
3885
3886 switch (h->global_got_area)
3887 {
3888 case GGA_NONE:
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
3893 break;
3894
3895 case GGA_NORMAL:
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 break;
3899
3900 case GGA_RELOC_ONLY:
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
3905 }
3906
3907 return TRUE;
3908 }
3909
3910 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914 static bfd_boolean
3915 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917 {
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
3938 lookup->tls_initialized = FALSE;
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956 }
3957
3958 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
3960 using the GOT entry for calls. */
3961
3962 static bfd_boolean
3963 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
3965 bfd_boolean for_call, int r_type)
3966 {
3967 struct mips_elf_link_hash_table *htab;
3968 struct mips_elf_link_hash_entry *hmips;
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
3971
3972 htab = mips_elf_hash_table (info);
3973 BFD_ASSERT (htab != NULL);
3974
3975 hmips = (struct mips_elf_link_hash_entry *) h;
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
3978
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3988 break;
3989 }
3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3991 return FALSE;
3992 }
3993
3994 tls_type = mips_elf_reloc_tls_type (r_type);
3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3996 hmips->global_got_area = GGA_NORMAL;
3997
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
4003 }
4004
4005 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4007
4008 static bfd_boolean
4009 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4010 struct bfd_link_info *info, int r_type)
4011 {
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
4014 struct mips_got_entry entry;
4015
4016 htab = mips_elf_hash_table (info);
4017 BFD_ASSERT (htab != NULL);
4018
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4026 return mips_elf_record_got_entry (info, abfd, &entry);
4027 }
4028
4029 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
4032
4033 static bfd_boolean
4034 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
4037 {
4038 struct mips_elf_link_hash_table *htab;
4039 struct mips_got_info *g1, *g2;
4040 struct mips_got_page_ref lookup, *entry;
4041 void **loc, **bfd_loc;
4042
4043 htab = mips_elf_hash_table (info);
4044 BFD_ASSERT (htab != NULL);
4045
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
4048
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4061 if (loc == NULL)
4062 return FALSE;
4063
4064 entry = (struct mips_got_page_ref *) *loc;
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
4071 *entry = lookup;
4072 *loc = entry;
4073 }
4074
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
4087 return TRUE;
4088 }
4089
4090 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092 static void
4093 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095 {
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4100 BFD_ASSERT (htab != NULL);
4101
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117 }
4118 \f
4119 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
4123
4124 static int
4125 mips_elf_check_recreate_got (void **entryp, void *data)
4126 {
4127 struct mips_got_entry *entry;
4128 struct mips_elf_traverse_got_arg *arg;
4129
4130 entry = (struct mips_got_entry *) *entryp;
4131 arg = (struct mips_elf_traverse_got_arg *) data;
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
4140 arg->value = TRUE;
4141 return 0;
4142 }
4143 }
4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
4145 return 1;
4146 }
4147
4148 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
4152
4153 static int
4154 mips_elf_recreate_got (void **entryp, void *data)
4155 {
4156 struct mips_got_entry new_entry, *entry;
4157 struct mips_elf_traverse_got_arg *arg;
4158 void **slot;
4159
4160 entry = (struct mips_got_entry *) *entryp;
4161 arg = (struct mips_elf_traverse_got_arg *) data;
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
4169 new_entry = *entry;
4170 entry = &new_entry;
4171 h = entry->d.h;
4172 do
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
4179 entry->d.h = h;
4180 }
4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4182 if (slot == NULL)
4183 {
4184 arg->g = NULL;
4185 return 0;
4186 }
4187 if (*slot == NULL)
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
4194 arg->g = NULL;
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
4201 }
4202 return 1;
4203 }
4204
4205 /* Return the maximum number of GOT page entries required for RANGE. */
4206
4207 static bfd_vma
4208 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209 {
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211 }
4212
4213 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215 static bfd_boolean
4216 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4217 asection *sec, bfd_signed_vma addend)
4218 {
4219 struct mips_got_info *g = arg->g;
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297 }
4298
4299 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304 static bfd_boolean
4305 mips_elf_resolve_got_page_ref (void **refp, void *data)
4306 {
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382 }
4383
4384 /* If any entries in G->got_entries are for indirect or warning symbols,
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
4388
4389 static bfd_boolean
4390 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
4392 {
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
4397
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
4403 {
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
4409 return FALSE;
4410
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
4416 }
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
4427 return TRUE;
4428 }
4429
4430 /* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433 static bfd_boolean
4434 mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436 {
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
4454 if (bfd_link_executable (info) && h->has_static_relocs)
4455 return TRUE;
4456
4457 return FALSE;
4458 }
4459
4460 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
4465
4466 static int
4467 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4468 {
4469 struct bfd_link_info *info;
4470 struct mips_elf_link_hash_table *htab;
4471 struct mips_got_info *g;
4472
4473 info = (struct bfd_link_info *) data;
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
4476 if (h->global_got_area != GGA_NONE)
4477 {
4478 /* Make a final decision about whether the symbol belongs in the
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
4492 else if (h->global_got_area == GGA_RELOC_ONLY)
4493 {
4494 g->reloc_only_gotno++;
4495 g->global_gotno++;
4496 }
4497 }
4498 return 1;
4499 }
4500 \f
4501 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4503
4504 static int
4505 mips_elf_add_got_entry (void **entryp, void *data)
4506 {
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
4510
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
4515 {
4516 arg->g = NULL;
4517 return 0;
4518 }
4519 if (!*slot)
4520 {
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
4523 }
4524 return 1;
4525 }
4526
4527 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4529
4530 static int
4531 mips_elf_add_got_page_entry (void **entryp, void *data)
4532 {
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
4536
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
4541 {
4542 arg->g = NULL;
4543 return 0;
4544 }
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
4550 return 1;
4551 }
4552
4553 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
4558
4559 static int
4560 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563 {
4564 struct mips_elf_traverse_got_arg tga;
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
4572 /* And conservatively estimate how many local and TLS entries
4573 would be needed. */
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
4579 conservatively as well. */
4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
4589 /* Transfer the bfd's got information from FROM to TO. */
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
4594 return 0;
4595
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
4598 return 0;
4599
4600 mips_elf_replace_bfd_got (abfd, to);
4601 return 1;
4602 }
4603
4604 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
4611 static bfd_boolean
4612 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
4614 {
4615 unsigned int estimate;
4616 int result;
4617
4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4619 return FALSE;
4620
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4632
4633 if (estimate <= arg->max_count)
4634 {
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
4639 arg->primary = g;
4640 return TRUE;
4641 }
4642
4643 /* Try merging with the primary GOT. */
4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* If we can merge with the last-created got, do it. */
4650 if (arg->current)
4651 {
4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4653 if (result >= 0)
4654 return result;
4655 }
4656
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
4660 g->next = arg->current;
4661 arg->current = g;
4662
4663 return TRUE;
4664 }
4665
4666 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670 static bfd_boolean
4671 mips_elf_set_gotidx (void **entryp, long gotidx)
4672 {
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690 }
4691
4692 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
4695
4696 static int
4697 mips_elf_initialize_tls_index (void **entryp, void *data)
4698 {
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
4701
4702 /* We're only interested in TLS symbols. */
4703 entry = (struct mips_got_entry *) *entryp;
4704 if (entry->tls_type == GOT_TLS_NONE)
4705 return 1;
4706
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4709 {
4710 arg->g = NULL;
4711 return 0;
4712 }
4713
4714 /* Account for the entries we've just allocated. */
4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4716 return 1;
4717 }
4718
4719 /* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
4722
4723 static int
4724 mips_elf_set_global_got_area (void **entryp, void *data)
4725 {
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
4728
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736 }
4737
4738 /* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
4741 the size of one GOT entry. Set DATA->g to null on failure. */
4742
4743 static int
4744 mips_elf_set_global_gotidx (void **entryp, void *data)
4745 {
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
4748
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
4754 {
4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
4760 arg->g->assigned_low_gotno += 1;
4761
4762 if (bfd_link_pic (arg->info)
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
4767 }
4768
4769 return 1;
4770 }
4771
4772 /* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
4776 static int
4777 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4778 {
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
4782
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4786 BFD_ASSERT (htab != NULL);
4787
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
4790 && entry->d.h->needs_lazy_stub)
4791 {
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801 static bfd_vma
4802 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4803 {
4804 if (!g->next)
4805 return 0;
4806
4807 g = mips_elf_bfd_got (ibfd, FALSE);
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
4814
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
4817 }
4818
4819 /* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822 static bfd_boolean
4823 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4824 asection *got, bfd_size_type pages)
4825 {
4826 struct mips_elf_link_hash_table *htab;
4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4828 struct mips_elf_traverse_got_arg tga;
4829 struct mips_got_info *g, *gg;
4830 unsigned int assign, needed_relocs;
4831 bfd *dynobj, *ibfd;
4832
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
4835 BFD_ASSERT (htab != NULL);
4836
4837 g = htab->got_info;
4838
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4844 / MIPS_ELF_GOT_SIZE (abfd))
4845 - htab->reserved_gotno);
4846 got_per_bfd_arg.max_pages = pages;
4847 /* The number of globals that will be included in the primary GOT.
4848 See the calls to mips_elf_set_global_got_area below for more
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
4861
4862 /* If we do not find any suitable primary GOT, create an empty one. */
4863 if (got_per_bfd_arg.primary == NULL)
4864 g->next = mips_elf_create_got_info (abfd);
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
4878 mips_elf_replace_bfd_got (abfd, g);
4879
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4884 g->global_gotno = gg->global_gotno;
4885
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4891
4892 /* Now go through the GOTs assigning them offset ranges.
4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
4907 gg->tls_gotno = 0;
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
4915 assign += htab->reserved_gotno;
4916 g->assigned_low_gotno = assign;
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4919 g->assigned_high_gotno = g->local_gotno - 1;
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
4938
4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4940 g = gn;
4941
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
4944 if (g)
4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4946 }
4947 while (g);
4948
4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4950
4951 needed_relocs = 0;
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4964 if (!tga.g)
4965 return FALSE;
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
4968
4969 if (bfd_link_pic (info))
4970 {
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
4975 + htab->reserved_gotno);
4976 }
4977 needed_relocs += g->relocs;
4978 }
4979 needed_relocs += g->relocs;
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
4984
4985 return TRUE;
4986 }
4987
4988 \f
4989 /* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992 static const Elf_Internal_Rela *
4993 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
4996 {
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
4999 while (relocation < relend)
5000 {
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
5009 return NULL;
5010 }
5011
5012 /* Return whether an input relocation is against a local symbol. */
5013
5014 static bfd_boolean
5015 mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
5017 asection **local_sections)
5018 {
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
5028 return TRUE;
5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5030 return TRUE;
5031
5032 return FALSE;
5033 }
5034 \f
5035 /* Sign-extend VALUE, which has the indicated number of BITS. */
5036
5037 bfd_vma
5038 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5039 {
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045 }
5046
5047 /* Return non-zero if the indicated VALUE has overflowed the maximum
5048 range expressible by a signed number with the indicated number of
5049 BITS. */
5050
5051 static bfd_boolean
5052 mips_elf_overflow_p (bfd_vma value, int bits)
5053 {
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
5058 return TRUE;
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
5061 return TRUE;
5062
5063 /* All is well. */
5064 return FALSE;
5065 }
5066
5067 /* Calculate the %high function. */
5068
5069 static bfd_vma
5070 mips_elf_high (bfd_vma value)
5071 {
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073 }
5074
5075 /* Calculate the %higher function. */
5076
5077 static bfd_vma
5078 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5079 {
5080 #ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 #else
5083 abort ();
5084 return MINUS_ONE;
5085 #endif
5086 }
5087
5088 /* Calculate the %highest function. */
5089
5090 static bfd_vma
5091 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5092 {
5093 #ifdef BFD64
5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 #else
5096 abort ();
5097 return MINUS_ONE;
5098 #endif
5099 }
5100 \f
5101 /* Create the .compact_rel section. */
5102
5103 static bfd_boolean
5104 mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5106 {
5107 flagword flags;
5108 register asection *s;
5109
5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5116 if (s == NULL
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5119 return FALSE;
5120
5121 s->size = sizeof (Elf32_External_compact_rel);
5122 }
5123
5124 return TRUE;
5125 }
5126
5127 /* Create the .got section to hold the global offset table. */
5128
5129 static bfd_boolean
5130 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5131 {
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
5135 struct bfd_link_hash_entry *bh;
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
5139 BFD_ASSERT (htab != NULL);
5140
5141 /* This function may be called more than once. */
5142 if (htab->root.sgot)
5143 return TRUE;
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5151 if (s == NULL
5152 || ! bfd_set_section_alignment (abfd, s, 4))
5153 return FALSE;
5154 htab->root.sgot = s;
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
5159 bh = NULL;
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5163 return FALSE;
5164
5165 h = (struct elf_link_hash_entry *) bh;
5166 h->non_elf = 0;
5167 h->def_regular = 1;
5168 h->type = STT_OBJECT;
5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5170 elf_hash_table (info)->hgot = h;
5171
5172 if (bfd_link_pic (info)
5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5174 return FALSE;
5175
5176 htab->got_info = mips_elf_create_got_info (abfd);
5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
5180 /* We also need a .got.plt section when generating PLTs. */
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
5186 if (s == NULL)
5187 return FALSE;
5188 htab->root.sgotplt = s;
5189
5190 return TRUE;
5191 }
5192 \f
5193 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197 static bfd_boolean
5198 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199 {
5200 return (mips_elf_hash_table (info)->is_vxworks
5201 && bfd_link_pic (info)
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204 }
5205
5206 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211 static bfd_boolean
5212 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
5214 {
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
5234 return TRUE;
5235
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
5239 default:
5240 return FALSE;
5241 }
5242 }
5243 \f
5244 /* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257 static bfd_reloc_status_type
5258 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
5267 bfd_boolean save_addend)
5268 {
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
5276 bfd_vma gp;
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
5281 bfd_vma gp0;
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
5290 /* TRUE if the symbol referred to by this relocation is a local
5291 symbol. */
5292 bfd_boolean local_p, was_local_p;
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
5305 /* TRUE if overflow occurred during the calculation of the
5306 relocation value. */
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
5310 bfd_boolean target_is_micromips_code_p = FALSE;
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
5313 bfd_boolean resolved_to_zero;
5314
5315 dynobj = elf_hash_table (info)->dynobj;
5316 htab = mips_elf_hash_table (info);
5317 BFD_ASSERT (htab != NULL);
5318
5319 /* Parse the relocation. */
5320 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5321 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5322 p = (input_section->output_section->vma
5323 + input_section->output_offset
5324 + relocation->r_offset);
5325
5326 /* Assume that there will be no overflow. */
5327 overflowed_p = FALSE;
5328
5329 /* Figure out whether or not the symbol is local, and get the offset
5330 used in the array of hash table entries. */
5331 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5332 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5333 local_sections);
5334 was_local_p = local_p;
5335 if (! elf_bad_symtab (input_bfd))
5336 extsymoff = symtab_hdr->sh_info;
5337 else
5338 {
5339 /* The symbol table does not follow the rule that local symbols
5340 must come before globals. */
5341 extsymoff = 0;
5342 }
5343
5344 /* Figure out the value of the symbol. */
5345 if (local_p)
5346 {
5347 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5348 Elf_Internal_Sym *sym;
5349
5350 sym = local_syms + r_symndx;
5351 sec = local_sections[r_symndx];
5352
5353 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5354
5355 symbol = sec->output_section->vma + sec->output_offset;
5356 if (!section_p || (sec->flags & SEC_MERGE))
5357 symbol += sym->st_value;
5358 if ((sec->flags & SEC_MERGE) && section_p)
5359 {
5360 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5361 addend -= symbol;
5362 addend += sec->output_section->vma + sec->output_offset;
5363 }
5364
5365 /* MIPS16/microMIPS text labels should be treated as odd. */
5366 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5367 ++symbol;
5368
5369 /* Record the name of this symbol, for our caller. */
5370 *namep = bfd_elf_string_from_elf_section (input_bfd,
5371 symtab_hdr->sh_link,
5372 sym->st_name);
5373 if (*namep == NULL || **namep == '\0')
5374 *namep = bfd_section_name (input_bfd, sec);
5375
5376 /* For relocations against a section symbol and ones against no
5377 symbol (absolute relocations) infer the ISA mode from the addend. */
5378 if (section_p || r_symndx == STN_UNDEF)
5379 {
5380 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5381 target_is_micromips_code_p = (addend & 1) && micromips_p;
5382 }
5383 /* For relocations against an absolute symbol infer the ISA mode
5384 from the value of the symbol plus addend. */
5385 else if (bfd_is_abs_section (sec))
5386 {
5387 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5388 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5389 }
5390 /* Otherwise just use the regular symbol annotation available. */
5391 else
5392 {
5393 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5394 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5395 }
5396 }
5397 else
5398 {
5399 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5400
5401 /* For global symbols we look up the symbol in the hash-table. */
5402 h = ((struct mips_elf_link_hash_entry *)
5403 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5404 /* Find the real hash-table entry for this symbol. */
5405 while (h->root.root.type == bfd_link_hash_indirect
5406 || h->root.root.type == bfd_link_hash_warning)
5407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5408
5409 /* Record the name of this symbol, for our caller. */
5410 *namep = h->root.root.root.string;
5411
5412 /* See if this is the special _gp_disp symbol. Note that such a
5413 symbol must always be a global symbol. */
5414 if (strcmp (*namep, "_gp_disp") == 0
5415 && ! NEWABI_P (input_bfd))
5416 {
5417 /* Relocations against _gp_disp are permitted only with
5418 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5419 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5420 return bfd_reloc_notsupported;
5421
5422 gp_disp_p = TRUE;
5423 }
5424 /* See if this is the special _gp symbol. Note that such a
5425 symbol must always be a global symbol. */
5426 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5427 gnu_local_gp_p = TRUE;
5428
5429
5430 /* If this symbol is defined, calculate its address. Note that
5431 _gp_disp is a magic symbol, always implicitly defined by the
5432 linker, so it's inappropriate to check to see whether or not
5433 its defined. */
5434 else if ((h->root.root.type == bfd_link_hash_defined
5435 || h->root.root.type == bfd_link_hash_defweak)
5436 && h->root.root.u.def.section)
5437 {
5438 sec = h->root.root.u.def.section;
5439 if (sec->output_section)
5440 symbol = (h->root.root.u.def.value
5441 + sec->output_section->vma
5442 + sec->output_offset);
5443 else
5444 symbol = h->root.root.u.def.value;
5445 }
5446 else if (h->root.root.type == bfd_link_hash_undefweak)
5447 /* We allow relocations against undefined weak symbols, giving
5448 it the value zero, so that you can undefined weak functions
5449 and check to see if they exist by looking at their
5450 addresses. */
5451 symbol = 0;
5452 else if (info->unresolved_syms_in_objects == RM_IGNORE
5453 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5454 symbol = 0;
5455 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5456 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5457 {
5458 /* If this is a dynamic link, we should have created a
5459 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5460 in _bfd_mips_elf_create_dynamic_sections.
5461 Otherwise, we should define the symbol with a value of 0.
5462 FIXME: It should probably get into the symbol table
5463 somehow as well. */
5464 BFD_ASSERT (! bfd_link_pic (info));
5465 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5466 symbol = 0;
5467 }
5468 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5469 {
5470 /* This is an optional symbol - an Irix specific extension to the
5471 ELF spec. Ignore it for now.
5472 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5473 than simply ignoring them, but we do not handle this for now.
5474 For information see the "64-bit ELF Object File Specification"
5475 which is available from here:
5476 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5477 symbol = 0;
5478 }
5479 else
5480 {
5481 (*info->callbacks->undefined_symbol)
5482 (info, h->root.root.root.string, input_bfd,
5483 input_section, relocation->r_offset,
5484 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5485 || ELF_ST_VISIBILITY (h->root.other));
5486 return bfd_reloc_undefined;
5487 }
5488
5489 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5491 }
5492
5493 /* If this is a reference to a 16-bit function with a stub, we need
5494 to redirect the relocation to the stub unless:
5495
5496 (a) the relocation is for a MIPS16 JAL;
5497
5498 (b) the relocation is for a MIPS16 PIC call, and there are no
5499 non-MIPS16 uses of the GOT slot; or
5500
5501 (c) the section allows direct references to MIPS16 functions. */
5502 if (r_type != R_MIPS16_26
5503 && !bfd_link_relocatable (info)
5504 && ((h != NULL
5505 && h->fn_stub != NULL
5506 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5507 || (local_p
5508 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5509 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5510 && !section_allows_mips16_refs_p (input_section))
5511 {
5512 /* This is a 32- or 64-bit call to a 16-bit function. We should
5513 have already noticed that we were going to need the
5514 stub. */
5515 if (local_p)
5516 {
5517 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5518 value = 0;
5519 }
5520 else
5521 {
5522 BFD_ASSERT (h->need_fn_stub);
5523 if (h->la25_stub)
5524 {
5525 /* If a LA25 header for the stub itself exists, point to the
5526 prepended LUI/ADDIU sequence. */
5527 sec = h->la25_stub->stub_section;
5528 value = h->la25_stub->offset;
5529 }
5530 else
5531 {
5532 sec = h->fn_stub;
5533 value = 0;
5534 }
5535 }
5536
5537 symbol = sec->output_section->vma + sec->output_offset + value;
5538 /* The target is 16-bit, but the stub isn't. */
5539 target_is_16_bit_code_p = FALSE;
5540 }
5541 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5542 to a standard MIPS function, we need to redirect the call to the stub.
5543 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5544 indirect calls should use an indirect stub instead. */
5545 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5546 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5547 || (local_p
5548 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5549 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5550 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5551 {
5552 if (local_p)
5553 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5554 else
5555 {
5556 /* If both call_stub and call_fp_stub are defined, we can figure
5557 out which one to use by checking which one appears in the input
5558 file. */
5559 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5560 {
5561 asection *o;
5562
5563 sec = NULL;
5564 for (o = input_bfd->sections; o != NULL; o = o->next)
5565 {
5566 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5567 {
5568 sec = h->call_fp_stub;
5569 break;
5570 }
5571 }
5572 if (sec == NULL)
5573 sec = h->call_stub;
5574 }
5575 else if (h->call_stub != NULL)
5576 sec = h->call_stub;
5577 else
5578 sec = h->call_fp_stub;
5579 }
5580
5581 BFD_ASSERT (sec->size > 0);
5582 symbol = sec->output_section->vma + sec->output_offset;
5583 }
5584 /* If this is a direct call to a PIC function, redirect to the
5585 non-PIC stub. */
5586 else if (h != NULL && h->la25_stub
5587 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5588 target_is_16_bit_code_p))
5589 {
5590 symbol = (h->la25_stub->stub_section->output_section->vma
5591 + h->la25_stub->stub_section->output_offset
5592 + h->la25_stub->offset);
5593 if (ELF_ST_IS_MICROMIPS (h->root.other))
5594 symbol |= 1;
5595 }
5596 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5597 entry is used if a standard PLT entry has also been made. In this
5598 case the symbol will have been set by mips_elf_set_plt_sym_value
5599 to point to the standard PLT entry, so redirect to the compressed
5600 one. */
5601 else if ((mips16_branch_reloc_p (r_type)
5602 || micromips_branch_reloc_p (r_type))
5603 && !bfd_link_relocatable (info)
5604 && h != NULL
5605 && h->use_plt_entry
5606 && h->root.plt.plist->comp_offset != MINUS_ONE
5607 && h->root.plt.plist->mips_offset != MINUS_ONE)
5608 {
5609 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5610
5611 sec = htab->root.splt;
5612 symbol = (sec->output_section->vma
5613 + sec->output_offset
5614 + htab->plt_header_size
5615 + htab->plt_mips_offset
5616 + h->root.plt.plist->comp_offset
5617 + 1);
5618
5619 target_is_16_bit_code_p = !micromips_p;
5620 target_is_micromips_code_p = micromips_p;
5621 }
5622
5623 /* Make sure MIPS16 and microMIPS are not used together. */
5624 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5625 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5626 {
5627 _bfd_error_handler
5628 (_("MIPS16 and microMIPS functions cannot call each other"));
5629 return bfd_reloc_notsupported;
5630 }
5631
5632 /* Calls from 16-bit code to 32-bit code and vice versa require the
5633 mode change. However, we can ignore calls to undefined weak symbols,
5634 which should never be executed at runtime. This exception is important
5635 because the assembly writer may have "known" that any definition of the
5636 symbol would be 16-bit code, and that direct jumps were therefore
5637 acceptable. */
5638 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5639 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5640 && ((mips16_branch_reloc_p (r_type)
5641 && !target_is_16_bit_code_p)
5642 || (micromips_branch_reloc_p (r_type)
5643 && !target_is_micromips_code_p)
5644 || ((branch_reloc_p (r_type)
5645 || r_type == R_MIPS_JALR)
5646 && (target_is_16_bit_code_p
5647 || target_is_micromips_code_p))));
5648
5649 local_p = (h == NULL || mips_use_local_got_p (info, h));
5650
5651 gp0 = _bfd_get_gp_value (input_bfd);
5652 gp = _bfd_get_gp_value (abfd);
5653 if (htab->got_info)
5654 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5655
5656 if (gnu_local_gp_p)
5657 symbol = gp;
5658
5659 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5660 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5661 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5662 if (got_page_reloc_p (r_type) && !local_p)
5663 {
5664 r_type = (micromips_reloc_p (r_type)
5665 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5666 addend = 0;
5667 }
5668
5669 resolved_to_zero = (h != NULL
5670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5671 &h->root));
5672
5673 /* If we haven't already determined the GOT offset, and we're going
5674 to need it, get it now. */
5675 switch (r_type)
5676 {
5677 case R_MIPS16_CALL16:
5678 case R_MIPS16_GOT16:
5679 case R_MIPS_CALL16:
5680 case R_MIPS_GOT16:
5681 case R_MIPS_GOT_DISP:
5682 case R_MIPS_GOT_HI16:
5683 case R_MIPS_CALL_HI16:
5684 case R_MIPS_GOT_LO16:
5685 case R_MIPS_CALL_LO16:
5686 case R_MICROMIPS_CALL16:
5687 case R_MICROMIPS_GOT16:
5688 case R_MICROMIPS_GOT_DISP:
5689 case R_MICROMIPS_GOT_HI16:
5690 case R_MICROMIPS_CALL_HI16:
5691 case R_MICROMIPS_GOT_LO16:
5692 case R_MICROMIPS_CALL_LO16:
5693 case R_MIPS_TLS_GD:
5694 case R_MIPS_TLS_GOTTPREL:
5695 case R_MIPS_TLS_LDM:
5696 case R_MIPS16_TLS_GD:
5697 case R_MIPS16_TLS_GOTTPREL:
5698 case R_MIPS16_TLS_LDM:
5699 case R_MICROMIPS_TLS_GD:
5700 case R_MICROMIPS_TLS_GOTTPREL:
5701 case R_MICROMIPS_TLS_LDM:
5702 /* Find the index into the GOT where this value is located. */
5703 if (tls_ldm_reloc_p (r_type))
5704 {
5705 g = mips_elf_local_got_index (abfd, input_bfd, info,
5706 0, 0, NULL, r_type);
5707 if (g == MINUS_ONE)
5708 return bfd_reloc_outofrange;
5709 }
5710 else if (!local_p)
5711 {
5712 /* On VxWorks, CALL relocations should refer to the .got.plt
5713 entry, which is initialized to point at the PLT stub. */
5714 if (htab->is_vxworks
5715 && (call_hi16_reloc_p (r_type)
5716 || call_lo16_reloc_p (r_type)
5717 || call16_reloc_p (r_type)))
5718 {
5719 BFD_ASSERT (addend == 0);
5720 BFD_ASSERT (h->root.needs_plt);
5721 g = mips_elf_gotplt_index (info, &h->root);
5722 }
5723 else
5724 {
5725 BFD_ASSERT (addend == 0);
5726 g = mips_elf_global_got_index (abfd, info, input_bfd,
5727 &h->root, r_type);
5728 if (!TLS_RELOC_P (r_type)
5729 && !elf_hash_table (info)->dynamic_sections_created)
5730 /* This is a static link. We must initialize the GOT entry. */
5731 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5732 }
5733 }
5734 else if (!htab->is_vxworks
5735 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5736 /* The calculation below does not involve "g". */
5737 break;
5738 else
5739 {
5740 g = mips_elf_local_got_index (abfd, input_bfd, info,
5741 symbol + addend, r_symndx, h, r_type);
5742 if (g == MINUS_ONE)
5743 return bfd_reloc_outofrange;
5744 }
5745
5746 /* Convert GOT indices to actual offsets. */
5747 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5748 break;
5749 }
5750
5751 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5752 symbols are resolved by the loader. Add them to .rela.dyn. */
5753 if (h != NULL && is_gott_symbol (info, &h->root))
5754 {
5755 Elf_Internal_Rela outrel;
5756 bfd_byte *loc;
5757 asection *s;
5758
5759 s = mips_elf_rel_dyn_section (info, FALSE);
5760 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5761
5762 outrel.r_offset = (input_section->output_section->vma
5763 + input_section->output_offset
5764 + relocation->r_offset);
5765 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5766 outrel.r_addend = addend;
5767 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5768
5769 /* If we've written this relocation for a readonly section,
5770 we need to set DF_TEXTREL again, so that we do not delete the
5771 DT_TEXTREL tag. */
5772 if (MIPS_ELF_READONLY_SECTION (input_section))
5773 info->flags |= DF_TEXTREL;
5774
5775 *valuep = 0;
5776 return bfd_reloc_ok;
5777 }
5778
5779 /* Figure out what kind of relocation is being performed. */
5780 switch (r_type)
5781 {
5782 case R_MIPS_NONE:
5783 return bfd_reloc_continue;
5784
5785 case R_MIPS_16:
5786 if (howto->partial_inplace)
5787 addend = _bfd_mips_elf_sign_extend (addend, 16);
5788 value = symbol + addend;
5789 overflowed_p = mips_elf_overflow_p (value, 16);
5790 break;
5791
5792 case R_MIPS_32:
5793 case R_MIPS_REL32:
5794 case R_MIPS_64:
5795 if ((bfd_link_pic (info)
5796 || (htab->root.dynamic_sections_created
5797 && h != NULL
5798 && h->root.def_dynamic
5799 && !h->root.def_regular
5800 && !h->has_static_relocs))
5801 && r_symndx != STN_UNDEF
5802 && (h == NULL
5803 || h->root.root.type != bfd_link_hash_undefweak
5804 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5805 && !resolved_to_zero))
5806 && (input_section->flags & SEC_ALLOC) != 0)
5807 {
5808 /* If we're creating a shared library, then we can't know
5809 where the symbol will end up. So, we create a relocation
5810 record in the output, and leave the job up to the dynamic
5811 linker. We must do the same for executable references to
5812 shared library symbols, unless we've decided to use copy
5813 relocs or PLTs instead. */
5814 value = addend;
5815 if (!mips_elf_create_dynamic_relocation (abfd,
5816 info,
5817 relocation,
5818 h,
5819 sec,
5820 symbol,
5821 &value,
5822 input_section))
5823 return bfd_reloc_undefined;
5824 }
5825 else
5826 {
5827 if (r_type != R_MIPS_REL32)
5828 value = symbol + addend;
5829 else
5830 value = addend;
5831 }
5832 value &= howto->dst_mask;
5833 break;
5834
5835 case R_MIPS_PC32:
5836 value = symbol + addend - p;
5837 value &= howto->dst_mask;
5838 break;
5839
5840 case R_MIPS16_26:
5841 /* The calculation for R_MIPS16_26 is just the same as for an
5842 R_MIPS_26. It's only the storage of the relocated field into
5843 the output file that's different. That's handled in
5844 mips_elf_perform_relocation. So, we just fall through to the
5845 R_MIPS_26 case here. */
5846 case R_MIPS_26:
5847 case R_MICROMIPS_26_S1:
5848 {
5849 unsigned int shift;
5850
5851 /* Shift is 2, unusually, for microMIPS JALX. */
5852 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5853
5854 if (howto->partial_inplace && !section_p)
5855 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5856 else
5857 value = addend;
5858 value += symbol;
5859
5860 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5861 be the correct ISA mode selector except for weak undefined
5862 symbols. */
5863 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5864 && (*cross_mode_jump_p
5865 ? (value & 3) != (r_type == R_MIPS_26)
5866 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5867 return bfd_reloc_outofrange;
5868
5869 value >>= shift;
5870 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5871 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5872 value &= howto->dst_mask;
5873 }
5874 break;
5875
5876 case R_MIPS_TLS_DTPREL_HI16:
5877 case R_MIPS16_TLS_DTPREL_HI16:
5878 case R_MICROMIPS_TLS_DTPREL_HI16:
5879 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5880 & howto->dst_mask);
5881 break;
5882
5883 case R_MIPS_TLS_DTPREL_LO16:
5884 case R_MIPS_TLS_DTPREL32:
5885 case R_MIPS_TLS_DTPREL64:
5886 case R_MIPS16_TLS_DTPREL_LO16:
5887 case R_MICROMIPS_TLS_DTPREL_LO16:
5888 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5889 break;
5890
5891 case R_MIPS_TLS_TPREL_HI16:
5892 case R_MIPS16_TLS_TPREL_HI16:
5893 case R_MICROMIPS_TLS_TPREL_HI16:
5894 value = (mips_elf_high (addend + symbol - tprel_base (info))
5895 & howto->dst_mask);
5896 break;
5897
5898 case R_MIPS_TLS_TPREL_LO16:
5899 case R_MIPS_TLS_TPREL32:
5900 case R_MIPS_TLS_TPREL64:
5901 case R_MIPS16_TLS_TPREL_LO16:
5902 case R_MICROMIPS_TLS_TPREL_LO16:
5903 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5904 break;
5905
5906 case R_MIPS_HI16:
5907 case R_MIPS16_HI16:
5908 case R_MICROMIPS_HI16:
5909 if (!gp_disp_p)
5910 {
5911 value = mips_elf_high (addend + symbol);
5912 value &= howto->dst_mask;
5913 }
5914 else
5915 {
5916 /* For MIPS16 ABI code we generate this sequence
5917 0: li $v0,%hi(_gp_disp)
5918 4: addiupc $v1,%lo(_gp_disp)
5919 8: sll $v0,16
5920 12: addu $v0,$v1
5921 14: move $gp,$v0
5922 So the offsets of hi and lo relocs are the same, but the
5923 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5924 ADDIUPC clears the low two bits of the instruction address,
5925 so the base is ($t9 + 4) & ~3. */
5926 if (r_type == R_MIPS16_HI16)
5927 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5928 /* The microMIPS .cpload sequence uses the same assembly
5929 instructions as the traditional psABI version, but the
5930 incoming $t9 has the low bit set. */
5931 else if (r_type == R_MICROMIPS_HI16)
5932 value = mips_elf_high (addend + gp - p - 1);
5933 else
5934 value = mips_elf_high (addend + gp - p);
5935 }
5936 break;
5937
5938 case R_MIPS_LO16:
5939 case R_MIPS16_LO16:
5940 case R_MICROMIPS_LO16:
5941 case R_MICROMIPS_HI0_LO16:
5942 if (!gp_disp_p)
5943 value = (symbol + addend) & howto->dst_mask;
5944 else
5945 {
5946 /* See the comment for R_MIPS16_HI16 above for the reason
5947 for this conditional. */
5948 if (r_type == R_MIPS16_LO16)
5949 value = addend + gp - (p & ~(bfd_vma) 0x3);
5950 else if (r_type == R_MICROMIPS_LO16
5951 || r_type == R_MICROMIPS_HI0_LO16)
5952 value = addend + gp - p + 3;
5953 else
5954 value = addend + gp - p + 4;
5955 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5956 for overflow. But, on, say, IRIX5, relocations against
5957 _gp_disp are normally generated from the .cpload
5958 pseudo-op. It generates code that normally looks like
5959 this:
5960
5961 lui $gp,%hi(_gp_disp)
5962 addiu $gp,$gp,%lo(_gp_disp)
5963 addu $gp,$gp,$t9
5964
5965 Here $t9 holds the address of the function being called,
5966 as required by the MIPS ELF ABI. The R_MIPS_LO16
5967 relocation can easily overflow in this situation, but the
5968 R_MIPS_HI16 relocation will handle the overflow.
5969 Therefore, we consider this a bug in the MIPS ABI, and do
5970 not check for overflow here. */
5971 }
5972 break;
5973
5974 case R_MIPS_LITERAL:
5975 case R_MICROMIPS_LITERAL:
5976 /* Because we don't merge literal sections, we can handle this
5977 just like R_MIPS_GPREL16. In the long run, we should merge
5978 shared literals, and then we will need to additional work
5979 here. */
5980
5981 /* Fall through. */
5982
5983 case R_MIPS16_GPREL:
5984 /* The R_MIPS16_GPREL performs the same calculation as
5985 R_MIPS_GPREL16, but stores the relocated bits in a different
5986 order. We don't need to do anything special here; the
5987 differences are handled in mips_elf_perform_relocation. */
5988 case R_MIPS_GPREL16:
5989 case R_MICROMIPS_GPREL7_S2:
5990 case R_MICROMIPS_GPREL16:
5991 /* Only sign-extend the addend if it was extracted from the
5992 instruction. If the addend was separate, leave it alone,
5993 otherwise we may lose significant bits. */
5994 if (howto->partial_inplace)
5995 addend = _bfd_mips_elf_sign_extend (addend, 16);
5996 value = symbol + addend - gp;
5997 /* If the symbol was local, any earlier relocatable links will
5998 have adjusted its addend with the gp offset, so compensate
5999 for that now. Don't do it for symbols forced local in this
6000 link, though, since they won't have had the gp offset applied
6001 to them before. */
6002 if (was_local_p)
6003 value += gp0;
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 16);
6006 break;
6007
6008 case R_MIPS16_GOT16:
6009 case R_MIPS16_CALL16:
6010 case R_MIPS_GOT16:
6011 case R_MIPS_CALL16:
6012 case R_MICROMIPS_GOT16:
6013 case R_MICROMIPS_CALL16:
6014 /* VxWorks does not have separate local and global semantics for
6015 R_MIPS*_GOT16; every relocation evaluates to "G". */
6016 if (!htab->is_vxworks && local_p)
6017 {
6018 value = mips_elf_got16_entry (abfd, input_bfd, info,
6019 symbol + addend, !was_local_p);
6020 if (value == MINUS_ONE)
6021 return bfd_reloc_outofrange;
6022 value
6023 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6024 overflowed_p = mips_elf_overflow_p (value, 16);
6025 break;
6026 }
6027
6028 /* Fall through. */
6029
6030 case R_MIPS_TLS_GD:
6031 case R_MIPS_TLS_GOTTPREL:
6032 case R_MIPS_TLS_LDM:
6033 case R_MIPS_GOT_DISP:
6034 case R_MIPS16_TLS_GD:
6035 case R_MIPS16_TLS_GOTTPREL:
6036 case R_MIPS16_TLS_LDM:
6037 case R_MICROMIPS_TLS_GD:
6038 case R_MICROMIPS_TLS_GOTTPREL:
6039 case R_MICROMIPS_TLS_LDM:
6040 case R_MICROMIPS_GOT_DISP:
6041 value = g;
6042 overflowed_p = mips_elf_overflow_p (value, 16);
6043 break;
6044
6045 case R_MIPS_GPREL32:
6046 value = (addend + symbol + gp0 - gp);
6047 if (!save_addend)
6048 value &= howto->dst_mask;
6049 break;
6050
6051 case R_MIPS_PC16:
6052 case R_MIPS_GNU_REL16_S2:
6053 if (howto->partial_inplace)
6054 addend = _bfd_mips_elf_sign_extend (addend, 18);
6055
6056 /* No need to exclude weak undefined symbols here as they resolve
6057 to 0 and never set `*cross_mode_jump_p', so this alignment check
6058 will never trigger for them. */
6059 if (*cross_mode_jump_p
6060 ? ((symbol + addend) & 3) != 1
6061 : ((symbol + addend) & 3) != 0)
6062 return bfd_reloc_outofrange;
6063
6064 value = symbol + addend - p;
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 18);
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
6069 break;
6070
6071 case R_MIPS16_PC16_S1:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 17);
6074
6075 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6076 && (*cross_mode_jump_p
6077 ? ((symbol + addend) & 3) != 0
6078 : ((symbol + addend) & 1) == 0))
6079 return bfd_reloc_outofrange;
6080
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
6088 case R_MIPS_PC21_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 23);
6091
6092 if ((symbol + addend) & 3)
6093 return bfd_reloc_outofrange;
6094
6095 value = symbol + addend - p;
6096 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6097 overflowed_p = mips_elf_overflow_p (value, 23);
6098 value >>= howto->rightshift;
6099 value &= howto->dst_mask;
6100 break;
6101
6102 case R_MIPS_PC26_S2:
6103 if (howto->partial_inplace)
6104 addend = _bfd_mips_elf_sign_extend (addend, 28);
6105
6106 if ((symbol + addend) & 3)
6107 return bfd_reloc_outofrange;
6108
6109 value = symbol + addend - p;
6110 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6111 overflowed_p = mips_elf_overflow_p (value, 28);
6112 value >>= howto->rightshift;
6113 value &= howto->dst_mask;
6114 break;
6115
6116 case R_MIPS_PC18_S3:
6117 if (howto->partial_inplace)
6118 addend = _bfd_mips_elf_sign_extend (addend, 21);
6119
6120 if ((symbol + addend) & 7)
6121 return bfd_reloc_outofrange;
6122
6123 value = symbol + addend - ((p | 7) ^ 7);
6124 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6125 overflowed_p = mips_elf_overflow_p (value, 21);
6126 value >>= howto->rightshift;
6127 value &= howto->dst_mask;
6128 break;
6129
6130 case R_MIPS_PC19_S2:
6131 if (howto->partial_inplace)
6132 addend = _bfd_mips_elf_sign_extend (addend, 21);
6133
6134 if ((symbol + addend) & 3)
6135 return bfd_reloc_outofrange;
6136
6137 value = symbol + addend - p;
6138 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6139 overflowed_p = mips_elf_overflow_p (value, 21);
6140 value >>= howto->rightshift;
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_PCHI16:
6145 value = mips_elf_high (symbol + addend - p);
6146 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6147 overflowed_p = mips_elf_overflow_p (value, 16);
6148 value &= howto->dst_mask;
6149 break;
6150
6151 case R_MIPS_PCLO16:
6152 if (howto->partial_inplace)
6153 addend = _bfd_mips_elf_sign_extend (addend, 16);
6154 value = symbol + addend - p;
6155 value &= howto->dst_mask;
6156 break;
6157
6158 case R_MICROMIPS_PC7_S1:
6159 if (howto->partial_inplace)
6160 addend = _bfd_mips_elf_sign_extend (addend, 8);
6161
6162 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 && (*cross_mode_jump_p
6164 ? ((symbol + addend + 2) & 3) != 0
6165 : ((symbol + addend + 2) & 1) == 0))
6166 return bfd_reloc_outofrange;
6167
6168 value = symbol + addend - p;
6169 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6170 overflowed_p = mips_elf_overflow_p (value, 8);
6171 value >>= howto->rightshift;
6172 value &= howto->dst_mask;
6173 break;
6174
6175 case R_MICROMIPS_PC10_S1:
6176 if (howto->partial_inplace)
6177 addend = _bfd_mips_elf_sign_extend (addend, 11);
6178
6179 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 && (*cross_mode_jump_p
6181 ? ((symbol + addend + 2) & 3) != 0
6182 : ((symbol + addend + 2) & 1) == 0))
6183 return bfd_reloc_outofrange;
6184
6185 value = symbol + addend - p;
6186 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6187 overflowed_p = mips_elf_overflow_p (value, 11);
6188 value >>= howto->rightshift;
6189 value &= howto->dst_mask;
6190 break;
6191
6192 case R_MICROMIPS_PC16_S1:
6193 if (howto->partial_inplace)
6194 addend = _bfd_mips_elf_sign_extend (addend, 17);
6195
6196 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 && (*cross_mode_jump_p
6198 ? ((symbol + addend) & 3) != 0
6199 : ((symbol + addend) & 1) == 0))
6200 return bfd_reloc_outofrange;
6201
6202 value = symbol + addend - p;
6203 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 overflowed_p = mips_elf_overflow_p (value, 17);
6205 value >>= howto->rightshift;
6206 value &= howto->dst_mask;
6207 break;
6208
6209 case R_MICROMIPS_PC23_S2:
6210 if (howto->partial_inplace)
6211 addend = _bfd_mips_elf_sign_extend (addend, 25);
6212 value = symbol + addend - ((p | 3) ^ 3);
6213 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6214 overflowed_p = mips_elf_overflow_p (value, 25);
6215 value >>= howto->rightshift;
6216 value &= howto->dst_mask;
6217 break;
6218
6219 case R_MIPS_GOT_HI16:
6220 case R_MIPS_CALL_HI16:
6221 case R_MICROMIPS_GOT_HI16:
6222 case R_MICROMIPS_CALL_HI16:
6223 /* We're allowed to handle these two relocations identically.
6224 The dynamic linker is allowed to handle the CALL relocations
6225 differently by creating a lazy evaluation stub. */
6226 value = g;
6227 value = mips_elf_high (value);
6228 value &= howto->dst_mask;
6229 break;
6230
6231 case R_MIPS_GOT_LO16:
6232 case R_MIPS_CALL_LO16:
6233 case R_MICROMIPS_GOT_LO16:
6234 case R_MICROMIPS_CALL_LO16:
6235 value = g & howto->dst_mask;
6236 break;
6237
6238 case R_MIPS_GOT_PAGE:
6239 case R_MICROMIPS_GOT_PAGE:
6240 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6241 if (value == MINUS_ONE)
6242 return bfd_reloc_outofrange;
6243 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6244 overflowed_p = mips_elf_overflow_p (value, 16);
6245 break;
6246
6247 case R_MIPS_GOT_OFST:
6248 case R_MICROMIPS_GOT_OFST:
6249 if (local_p)
6250 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6251 else
6252 value = addend;
6253 overflowed_p = mips_elf_overflow_p (value, 16);
6254 break;
6255
6256 case R_MIPS_SUB:
6257 case R_MICROMIPS_SUB:
6258 value = symbol - addend;
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHER:
6263 case R_MICROMIPS_HIGHER:
6264 value = mips_elf_higher (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_HIGHEST:
6269 case R_MICROMIPS_HIGHEST:
6270 value = mips_elf_highest (addend + symbol);
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_SCN_DISP:
6275 case R_MICROMIPS_SCN_DISP:
6276 value = symbol + addend - sec->output_offset;
6277 value &= howto->dst_mask;
6278 break;
6279
6280 case R_MIPS_JALR:
6281 case R_MICROMIPS_JALR:
6282 /* This relocation is only a hint. In some cases, we optimize
6283 it into a bal instruction. But we don't try to optimize
6284 when the symbol does not resolve locally. */
6285 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6286 return bfd_reloc_continue;
6287 /* We can't optimize cross-mode jumps either. */
6288 if (*cross_mode_jump_p)
6289 return bfd_reloc_continue;
6290 value = symbol + addend;
6291 /* Neither we can non-instruction-aligned targets. */
6292 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6293 return bfd_reloc_continue;
6294 break;
6295
6296 case R_MIPS_PJUMP:
6297 case R_MIPS_GNU_VTINHERIT:
6298 case R_MIPS_GNU_VTENTRY:
6299 /* We don't do anything with these at present. */
6300 return bfd_reloc_continue;
6301
6302 default:
6303 /* An unrecognized relocation type. */
6304 return bfd_reloc_notsupported;
6305 }
6306
6307 /* Store the VALUE for our caller. */
6308 *valuep = value;
6309 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6310 }
6311
6312 /* Obtain the field relocated by RELOCATION. */
6313
6314 static bfd_vma
6315 mips_elf_obtain_contents (reloc_howto_type *howto,
6316 const Elf_Internal_Rela *relocation,
6317 bfd *input_bfd, bfd_byte *contents)
6318 {
6319 bfd_vma x = 0;
6320 bfd_byte *location = contents + relocation->r_offset;
6321 unsigned int size = bfd_get_reloc_size (howto);
6322
6323 /* Obtain the bytes. */
6324 if (size != 0)
6325 x = bfd_get (8 * size, input_bfd, location);
6326
6327 return x;
6328 }
6329
6330 /* It has been determined that the result of the RELOCATION is the
6331 VALUE. Use HOWTO to place VALUE into the output file at the
6332 appropriate position. The SECTION is the section to which the
6333 relocation applies.
6334 CROSS_MODE_JUMP_P is true if the relocation field
6335 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6336
6337 Returns FALSE if anything goes wrong. */
6338
6339 static bfd_boolean
6340 mips_elf_perform_relocation (struct bfd_link_info *info,
6341 reloc_howto_type *howto,
6342 const Elf_Internal_Rela *relocation,
6343 bfd_vma value, bfd *input_bfd,
6344 asection *input_section, bfd_byte *contents,
6345 bfd_boolean cross_mode_jump_p)
6346 {
6347 bfd_vma x;
6348 bfd_byte *location;
6349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6350 unsigned int size;
6351
6352 /* Figure out where the relocation is occurring. */
6353 location = contents + relocation->r_offset;
6354
6355 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6356
6357 /* Obtain the current value. */
6358 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6359
6360 /* Clear the field we are setting. */
6361 x &= ~howto->dst_mask;
6362
6363 /* Set the field. */
6364 x |= (value & howto->dst_mask);
6365
6366 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6367 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6368 {
6369 bfd_vma opcode = x >> 26;
6370
6371 if (r_type == R_MIPS16_26 ? opcode == 0x7
6372 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6373 : opcode == 0x1d)
6374 {
6375 info->callbacks->einfo
6376 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6377 input_bfd, input_section, relocation->r_offset);
6378 return TRUE;
6379 }
6380 }
6381 if (cross_mode_jump_p && jal_reloc_p (r_type))
6382 {
6383 bfd_boolean ok;
6384 bfd_vma opcode = x >> 26;
6385 bfd_vma jalx_opcode;
6386
6387 /* Check to see if the opcode is already JAL or JALX. */
6388 if (r_type == R_MIPS16_26)
6389 {
6390 ok = ((opcode == 0x6) || (opcode == 0x7));
6391 jalx_opcode = 0x7;
6392 }
6393 else if (r_type == R_MICROMIPS_26_S1)
6394 {
6395 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6396 jalx_opcode = 0x3c;
6397 }
6398 else
6399 {
6400 ok = ((opcode == 0x3) || (opcode == 0x1d));
6401 jalx_opcode = 0x1d;
6402 }
6403
6404 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6405 convert J or JALS to JALX. */
6406 if (!ok)
6407 {
6408 info->callbacks->einfo
6409 (_("%X%H: Unsupported jump between ISA modes; "
6410 "consider recompiling with interlinking enabled\n"),
6411 input_bfd, input_section, relocation->r_offset);
6412 return TRUE;
6413 }
6414
6415 /* Make this the JALX opcode. */
6416 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6417 }
6418 else if (cross_mode_jump_p && b_reloc_p (r_type))
6419 {
6420 bfd_boolean ok = FALSE;
6421 bfd_vma opcode = x >> 16;
6422 bfd_vma jalx_opcode = 0;
6423 bfd_vma sign_bit = 0;
6424 bfd_vma addr;
6425 bfd_vma dest;
6426
6427 if (r_type == R_MICROMIPS_PC16_S1)
6428 {
6429 ok = opcode == 0x4060;
6430 jalx_opcode = 0x3c;
6431 sign_bit = 0x10000;
6432 value <<= 1;
6433 }
6434 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6435 {
6436 ok = opcode == 0x411;
6437 jalx_opcode = 0x1d;
6438 sign_bit = 0x20000;
6439 value <<= 2;
6440 }
6441
6442 if (ok && !bfd_link_pic (info))
6443 {
6444 addr = (input_section->output_section->vma
6445 + input_section->output_offset
6446 + relocation->r_offset
6447 + 4);
6448 dest = (addr
6449 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6450
6451 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6452 {
6453 info->callbacks->einfo
6454 (_("%X%H: Cannot convert branch between ISA modes "
6455 "to JALX: relocation out of range\n"),
6456 input_bfd, input_section, relocation->r_offset);
6457 return TRUE;
6458 }
6459
6460 /* Make this the JALX opcode. */
6461 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6462 }
6463 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6464 {
6465 info->callbacks->einfo
6466 (_("%X%H: Unsupported branch between ISA modes\n"),
6467 input_bfd, input_section, relocation->r_offset);
6468 return TRUE;
6469 }
6470 }
6471
6472 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6473 range. */
6474 if (!bfd_link_relocatable (info)
6475 && !cross_mode_jump_p
6476 && ((JAL_TO_BAL_P (input_bfd)
6477 && r_type == R_MIPS_26
6478 && (x >> 26) == 0x3) /* jal addr */
6479 || (JALR_TO_BAL_P (input_bfd)
6480 && r_type == R_MIPS_JALR
6481 && x == 0x0320f809) /* jalr t9 */
6482 || (JR_TO_B_P (input_bfd)
6483 && r_type == R_MIPS_JALR
6484 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6485 {
6486 bfd_vma addr;
6487 bfd_vma dest;
6488 bfd_signed_vma off;
6489
6490 addr = (input_section->output_section->vma
6491 + input_section->output_offset
6492 + relocation->r_offset
6493 + 4);
6494 if (r_type == R_MIPS_26)
6495 dest = (value << 2) | ((addr >> 28) << 28);
6496 else
6497 dest = value;
6498 off = dest - addr;
6499 if (off <= 0x1ffff && off >= -0x20000)
6500 {
6501 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6502 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6503 else
6504 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6505 }
6506 }
6507
6508 /* Put the value into the output. */
6509 size = bfd_get_reloc_size (howto);
6510 if (size != 0)
6511 bfd_put (8 * size, input_bfd, x, location);
6512
6513 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6514 location);
6515
6516 return TRUE;
6517 }
6518 \f
6519 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6520 is the original relocation, which is now being transformed into a
6521 dynamic relocation. The ADDENDP is adjusted if necessary; the
6522 caller should store the result in place of the original addend. */
6523
6524 static bfd_boolean
6525 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6526 struct bfd_link_info *info,
6527 const Elf_Internal_Rela *rel,
6528 struct mips_elf_link_hash_entry *h,
6529 asection *sec, bfd_vma symbol,
6530 bfd_vma *addendp, asection *input_section)
6531 {
6532 Elf_Internal_Rela outrel[3];
6533 asection *sreloc;
6534 bfd *dynobj;
6535 int r_type;
6536 long indx;
6537 bfd_boolean defined_p;
6538 struct mips_elf_link_hash_table *htab;
6539
6540 htab = mips_elf_hash_table (info);
6541 BFD_ASSERT (htab != NULL);
6542
6543 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6544 dynobj = elf_hash_table (info)->dynobj;
6545 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6546 BFD_ASSERT (sreloc != NULL);
6547 BFD_ASSERT (sreloc->contents != NULL);
6548 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6549 < sreloc->size);
6550
6551 outrel[0].r_offset =
6552 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6553 if (ABI_64_P (output_bfd))
6554 {
6555 outrel[1].r_offset =
6556 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6557 outrel[2].r_offset =
6558 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6559 }
6560
6561 if (outrel[0].r_offset == MINUS_ONE)
6562 /* The relocation field has been deleted. */
6563 return TRUE;
6564
6565 if (outrel[0].r_offset == MINUS_TWO)
6566 {
6567 /* The relocation field has been converted into a relative value of
6568 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6569 the field to be fully relocated, so add in the symbol's value. */
6570 *addendp += symbol;
6571 return TRUE;
6572 }
6573
6574 /* We must now calculate the dynamic symbol table index to use
6575 in the relocation. */
6576 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6577 {
6578 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6579 indx = h->root.dynindx;
6580 if (SGI_COMPAT (output_bfd))
6581 defined_p = h->root.def_regular;
6582 else
6583 /* ??? glibc's ld.so just adds the final GOT entry to the
6584 relocation field. It therefore treats relocs against
6585 defined symbols in the same way as relocs against
6586 undefined symbols. */
6587 defined_p = FALSE;
6588 }
6589 else
6590 {
6591 if (sec != NULL && bfd_is_abs_section (sec))
6592 indx = 0;
6593 else if (sec == NULL || sec->owner == NULL)
6594 {
6595 bfd_set_error (bfd_error_bad_value);
6596 return FALSE;
6597 }
6598 else
6599 {
6600 indx = elf_section_data (sec->output_section)->dynindx;
6601 if (indx == 0)
6602 {
6603 asection *osec = htab->root.text_index_section;
6604 indx = elf_section_data (osec)->dynindx;
6605 }
6606 if (indx == 0)
6607 abort ();
6608 }
6609
6610 /* Instead of generating a relocation using the section
6611 symbol, we may as well make it a fully relative
6612 relocation. We want to avoid generating relocations to
6613 local symbols because we used to generate them
6614 incorrectly, without adding the original symbol value,
6615 which is mandated by the ABI for section symbols. In
6616 order to give dynamic loaders and applications time to
6617 phase out the incorrect use, we refrain from emitting
6618 section-relative relocations. It's not like they're
6619 useful, after all. This should be a bit more efficient
6620 as well. */
6621 /* ??? Although this behavior is compatible with glibc's ld.so,
6622 the ABI says that relocations against STN_UNDEF should have
6623 a symbol value of 0. Irix rld honors this, so relocations
6624 against STN_UNDEF have no effect. */
6625 if (!SGI_COMPAT (output_bfd))
6626 indx = 0;
6627 defined_p = TRUE;
6628 }
6629
6630 /* If the relocation was previously an absolute relocation and
6631 this symbol will not be referred to by the relocation, we must
6632 adjust it by the value we give it in the dynamic symbol table.
6633 Otherwise leave the job up to the dynamic linker. */
6634 if (defined_p && r_type != R_MIPS_REL32)
6635 *addendp += symbol;
6636
6637 if (htab->is_vxworks)
6638 /* VxWorks uses non-relative relocations for this. */
6639 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6640 else
6641 /* The relocation is always an REL32 relocation because we don't
6642 know where the shared library will wind up at load-time. */
6643 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6644 R_MIPS_REL32);
6645
6646 /* For strict adherence to the ABI specification, we should
6647 generate a R_MIPS_64 relocation record by itself before the
6648 _REL32/_64 record as well, such that the addend is read in as
6649 a 64-bit value (REL32 is a 32-bit relocation, after all).
6650 However, since none of the existing ELF64 MIPS dynamic
6651 loaders seems to care, we don't waste space with these
6652 artificial relocations. If this turns out to not be true,
6653 mips_elf_allocate_dynamic_relocation() should be tweaked so
6654 as to make room for a pair of dynamic relocations per
6655 invocation if ABI_64_P, and here we should generate an
6656 additional relocation record with R_MIPS_64 by itself for a
6657 NULL symbol before this relocation record. */
6658 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6659 ABI_64_P (output_bfd)
6660 ? R_MIPS_64
6661 : R_MIPS_NONE);
6662 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6663
6664 /* Adjust the output offset of the relocation to reference the
6665 correct location in the output file. */
6666 outrel[0].r_offset += (input_section->output_section->vma
6667 + input_section->output_offset);
6668 outrel[1].r_offset += (input_section->output_section->vma
6669 + input_section->output_offset);
6670 outrel[2].r_offset += (input_section->output_section->vma
6671 + input_section->output_offset);
6672
6673 /* Put the relocation back out. We have to use the special
6674 relocation outputter in the 64-bit case since the 64-bit
6675 relocation format is non-standard. */
6676 if (ABI_64_P (output_bfd))
6677 {
6678 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6679 (output_bfd, &outrel[0],
6680 (sreloc->contents
6681 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6682 }
6683 else if (htab->is_vxworks)
6684 {
6685 /* VxWorks uses RELA rather than REL dynamic relocations. */
6686 outrel[0].r_addend = *addendp;
6687 bfd_elf32_swap_reloca_out
6688 (output_bfd, &outrel[0],
6689 (sreloc->contents
6690 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6691 }
6692 else
6693 bfd_elf32_swap_reloc_out
6694 (output_bfd, &outrel[0],
6695 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6696
6697 /* We've now added another relocation. */
6698 ++sreloc->reloc_count;
6699
6700 /* Make sure the output section is writable. The dynamic linker
6701 will be writing to it. */
6702 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6703 |= SHF_WRITE;
6704
6705 /* On IRIX5, make an entry of compact relocation info. */
6706 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6707 {
6708 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6709 bfd_byte *cr;
6710
6711 if (scpt)
6712 {
6713 Elf32_crinfo cptrel;
6714
6715 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6716 cptrel.vaddr = (rel->r_offset
6717 + input_section->output_section->vma
6718 + input_section->output_offset);
6719 if (r_type == R_MIPS_REL32)
6720 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6721 else
6722 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6723 mips_elf_set_cr_dist2to (cptrel, 0);
6724 cptrel.konst = *addendp;
6725
6726 cr = (scpt->contents
6727 + sizeof (Elf32_External_compact_rel));
6728 mips_elf_set_cr_relvaddr (cptrel, 0);
6729 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6730 ((Elf32_External_crinfo *) cr
6731 + scpt->reloc_count));
6732 ++scpt->reloc_count;
6733 }
6734 }
6735
6736 /* If we've written this relocation for a readonly section,
6737 we need to set DF_TEXTREL again, so that we do not delete the
6738 DT_TEXTREL tag. */
6739 if (MIPS_ELF_READONLY_SECTION (input_section))
6740 info->flags |= DF_TEXTREL;
6741
6742 return TRUE;
6743 }
6744 \f
6745 /* Return the MACH for a MIPS e_flags value. */
6746
6747 unsigned long
6748 _bfd_elf_mips_mach (flagword flags)
6749 {
6750 switch (flags & EF_MIPS_MACH)
6751 {
6752 case E_MIPS_MACH_3900:
6753 return bfd_mach_mips3900;
6754
6755 case E_MIPS_MACH_4010:
6756 return bfd_mach_mips4010;
6757
6758 case E_MIPS_MACH_4100:
6759 return bfd_mach_mips4100;
6760
6761 case E_MIPS_MACH_4111:
6762 return bfd_mach_mips4111;
6763
6764 case E_MIPS_MACH_4120:
6765 return bfd_mach_mips4120;
6766
6767 case E_MIPS_MACH_4650:
6768 return bfd_mach_mips4650;
6769
6770 case E_MIPS_MACH_5400:
6771 return bfd_mach_mips5400;
6772
6773 case E_MIPS_MACH_5500:
6774 return bfd_mach_mips5500;
6775
6776 case E_MIPS_MACH_5900:
6777 return bfd_mach_mips5900;
6778
6779 case E_MIPS_MACH_9000:
6780 return bfd_mach_mips9000;
6781
6782 case E_MIPS_MACH_SB1:
6783 return bfd_mach_mips_sb1;
6784
6785 case E_MIPS_MACH_LS2E:
6786 return bfd_mach_mips_loongson_2e;
6787
6788 case E_MIPS_MACH_LS2F:
6789 return bfd_mach_mips_loongson_2f;
6790
6791 case E_MIPS_MACH_LS3A:
6792 return bfd_mach_mips_loongson_3a;
6793
6794 case E_MIPS_MACH_OCTEON3:
6795 return bfd_mach_mips_octeon3;
6796
6797 case E_MIPS_MACH_OCTEON2:
6798 return bfd_mach_mips_octeon2;
6799
6800 case E_MIPS_MACH_OCTEON:
6801 return bfd_mach_mips_octeon;
6802
6803 case E_MIPS_MACH_XLR:
6804 return bfd_mach_mips_xlr;
6805
6806 case E_MIPS_MACH_IAMR2:
6807 return bfd_mach_mips_interaptiv_mr2;
6808
6809 default:
6810 switch (flags & EF_MIPS_ARCH)
6811 {
6812 default:
6813 case E_MIPS_ARCH_1:
6814 return bfd_mach_mips3000;
6815
6816 case E_MIPS_ARCH_2:
6817 return bfd_mach_mips6000;
6818
6819 case E_MIPS_ARCH_3:
6820 return bfd_mach_mips4000;
6821
6822 case E_MIPS_ARCH_4:
6823 return bfd_mach_mips8000;
6824
6825 case E_MIPS_ARCH_5:
6826 return bfd_mach_mips5;
6827
6828 case E_MIPS_ARCH_32:
6829 return bfd_mach_mipsisa32;
6830
6831 case E_MIPS_ARCH_64:
6832 return bfd_mach_mipsisa64;
6833
6834 case E_MIPS_ARCH_32R2:
6835 return bfd_mach_mipsisa32r2;
6836
6837 case E_MIPS_ARCH_64R2:
6838 return bfd_mach_mipsisa64r2;
6839
6840 case E_MIPS_ARCH_32R6:
6841 return bfd_mach_mipsisa32r6;
6842
6843 case E_MIPS_ARCH_64R6:
6844 return bfd_mach_mipsisa64r6;
6845 }
6846 }
6847
6848 return 0;
6849 }
6850
6851 /* Return printable name for ABI. */
6852
6853 static INLINE char *
6854 elf_mips_abi_name (bfd *abfd)
6855 {
6856 flagword flags;
6857
6858 flags = elf_elfheader (abfd)->e_flags;
6859 switch (flags & EF_MIPS_ABI)
6860 {
6861 case 0:
6862 if (ABI_N32_P (abfd))
6863 return "N32";
6864 else if (ABI_64_P (abfd))
6865 return "64";
6866 else
6867 return "none";
6868 case E_MIPS_ABI_O32:
6869 return "O32";
6870 case E_MIPS_ABI_O64:
6871 return "O64";
6872 case E_MIPS_ABI_EABI32:
6873 return "EABI32";
6874 case E_MIPS_ABI_EABI64:
6875 return "EABI64";
6876 default:
6877 return "unknown abi";
6878 }
6879 }
6880 \f
6881 /* MIPS ELF uses two common sections. One is the usual one, and the
6882 other is for small objects. All the small objects are kept
6883 together, and then referenced via the gp pointer, which yields
6884 faster assembler code. This is what we use for the small common
6885 section. This approach is copied from ecoff.c. */
6886 static asection mips_elf_scom_section;
6887 static asymbol mips_elf_scom_symbol;
6888 static asymbol *mips_elf_scom_symbol_ptr;
6889
6890 /* MIPS ELF also uses an acommon section, which represents an
6891 allocated common symbol which may be overridden by a
6892 definition in a shared library. */
6893 static asection mips_elf_acom_section;
6894 static asymbol mips_elf_acom_symbol;
6895 static asymbol *mips_elf_acom_symbol_ptr;
6896
6897 /* This is used for both the 32-bit and the 64-bit ABI. */
6898
6899 void
6900 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6901 {
6902 elf_symbol_type *elfsym;
6903
6904 /* Handle the special MIPS section numbers that a symbol may use. */
6905 elfsym = (elf_symbol_type *) asym;
6906 switch (elfsym->internal_elf_sym.st_shndx)
6907 {
6908 case SHN_MIPS_ACOMMON:
6909 /* This section is used in a dynamically linked executable file.
6910 It is an allocated common section. The dynamic linker can
6911 either resolve these symbols to something in a shared
6912 library, or it can just leave them here. For our purposes,
6913 we can consider these symbols to be in a new section. */
6914 if (mips_elf_acom_section.name == NULL)
6915 {
6916 /* Initialize the acommon section. */
6917 mips_elf_acom_section.name = ".acommon";
6918 mips_elf_acom_section.flags = SEC_ALLOC;
6919 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6920 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6921 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6922 mips_elf_acom_symbol.name = ".acommon";
6923 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6924 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6925 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6926 }
6927 asym->section = &mips_elf_acom_section;
6928 break;
6929
6930 case SHN_COMMON:
6931 /* Common symbols less than the GP size are automatically
6932 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6933 if (asym->value > elf_gp_size (abfd)
6934 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6935 || IRIX_COMPAT (abfd) == ict_irix6)
6936 break;
6937 /* Fall through. */
6938 case SHN_MIPS_SCOMMON:
6939 if (mips_elf_scom_section.name == NULL)
6940 {
6941 /* Initialize the small common section. */
6942 mips_elf_scom_section.name = ".scommon";
6943 mips_elf_scom_section.flags = SEC_IS_COMMON;
6944 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6945 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6946 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6947 mips_elf_scom_symbol.name = ".scommon";
6948 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6949 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6950 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6951 }
6952 asym->section = &mips_elf_scom_section;
6953 asym->value = elfsym->internal_elf_sym.st_size;
6954 break;
6955
6956 case SHN_MIPS_SUNDEFINED:
6957 asym->section = bfd_und_section_ptr;
6958 break;
6959
6960 case SHN_MIPS_TEXT:
6961 {
6962 asection *section = bfd_get_section_by_name (abfd, ".text");
6963
6964 if (section != NULL)
6965 {
6966 asym->section = section;
6967 /* MIPS_TEXT is a bit special, the address is not an offset
6968 to the base of the .text section. So subtract the section
6969 base address to make it an offset. */
6970 asym->value -= section->vma;
6971 }
6972 }
6973 break;
6974
6975 case SHN_MIPS_DATA:
6976 {
6977 asection *section = bfd_get_section_by_name (abfd, ".data");
6978
6979 if (section != NULL)
6980 {
6981 asym->section = section;
6982 /* MIPS_DATA is a bit special, the address is not an offset
6983 to the base of the .data section. So subtract the section
6984 base address to make it an offset. */
6985 asym->value -= section->vma;
6986 }
6987 }
6988 break;
6989 }
6990
6991 /* If this is an odd-valued function symbol, assume it's a MIPS16
6992 or microMIPS one. */
6993 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6994 && (asym->value & 1) != 0)
6995 {
6996 asym->value--;
6997 if (MICROMIPS_P (abfd))
6998 elfsym->internal_elf_sym.st_other
6999 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7000 else
7001 elfsym->internal_elf_sym.st_other
7002 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7003 }
7004 }
7005 \f
7006 /* Implement elf_backend_eh_frame_address_size. This differs from
7007 the default in the way it handles EABI64.
7008
7009 EABI64 was originally specified as an LP64 ABI, and that is what
7010 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7011 historically accepted the combination of -mabi=eabi and -mlong32,
7012 and this ILP32 variation has become semi-official over time.
7013 Both forms use elf32 and have pointer-sized FDE addresses.
7014
7015 If an EABI object was generated by GCC 4.0 or above, it will have
7016 an empty .gcc_compiled_longXX section, where XX is the size of longs
7017 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7018 have no special marking to distinguish them from LP64 objects.
7019
7020 We don't want users of the official LP64 ABI to be punished for the
7021 existence of the ILP32 variant, but at the same time, we don't want
7022 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7023 We therefore take the following approach:
7024
7025 - If ABFD contains a .gcc_compiled_longXX section, use it to
7026 determine the pointer size.
7027
7028 - Otherwise check the type of the first relocation. Assume that
7029 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7030
7031 - Otherwise punt.
7032
7033 The second check is enough to detect LP64 objects generated by pre-4.0
7034 compilers because, in the kind of output generated by those compilers,
7035 the first relocation will be associated with either a CIE personality
7036 routine or an FDE start address. Furthermore, the compilers never
7037 used a special (non-pointer) encoding for this ABI.
7038
7039 Checking the relocation type should also be safe because there is no
7040 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7041 did so. */
7042
7043 unsigned int
7044 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7045 {
7046 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7047 return 8;
7048 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7049 {
7050 bfd_boolean long32_p, long64_p;
7051
7052 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7053 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7054 if (long32_p && long64_p)
7055 return 0;
7056 if (long32_p)
7057 return 4;
7058 if (long64_p)
7059 return 8;
7060
7061 if (sec->reloc_count > 0
7062 && elf_section_data (sec)->relocs != NULL
7063 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7064 == R_MIPS_64))
7065 return 8;
7066
7067 return 0;
7068 }
7069 return 4;
7070 }
7071 \f
7072 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7073 relocations against two unnamed section symbols to resolve to the
7074 same address. For example, if we have code like:
7075
7076 lw $4,%got_disp(.data)($gp)
7077 lw $25,%got_disp(.text)($gp)
7078 jalr $25
7079
7080 then the linker will resolve both relocations to .data and the program
7081 will jump there rather than to .text.
7082
7083 We can work around this problem by giving names to local section symbols.
7084 This is also what the MIPSpro tools do. */
7085
7086 bfd_boolean
7087 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7088 {
7089 return SGI_COMPAT (abfd);
7090 }
7091 \f
7092 /* Work over a section just before writing it out. This routine is
7093 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7094 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7095 a better way. */
7096
7097 bfd_boolean
7098 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7099 {
7100 if (hdr->sh_type == SHT_MIPS_REGINFO
7101 && hdr->sh_size > 0)
7102 {
7103 bfd_byte buf[4];
7104
7105 BFD_ASSERT (hdr->contents == NULL);
7106
7107 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7108 {
7109 _bfd_error_handler
7110 (_("%B: Incorrect `.reginfo' section size; expected %Lu, got %Lu"),
7111 abfd, (bfd_size_type) sizeof (Elf32_External_RegInfo),
7112 hdr->sh_size);
7113 bfd_set_error (bfd_error_bad_value);
7114 return FALSE;
7115 }
7116
7117 if (bfd_seek (abfd,
7118 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7119 SEEK_SET) != 0)
7120 return FALSE;
7121 H_PUT_32 (abfd, elf_gp (abfd), buf);
7122 if (bfd_bwrite (buf, 4, abfd) != 4)
7123 return FALSE;
7124 }
7125
7126 if (hdr->sh_type == SHT_MIPS_OPTIONS
7127 && hdr->bfd_section != NULL
7128 && mips_elf_section_data (hdr->bfd_section) != NULL
7129 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7130 {
7131 bfd_byte *contents, *l, *lend;
7132
7133 /* We stored the section contents in the tdata field in the
7134 set_section_contents routine. We save the section contents
7135 so that we don't have to read them again.
7136 At this point we know that elf_gp is set, so we can look
7137 through the section contents to see if there is an
7138 ODK_REGINFO structure. */
7139
7140 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7141 l = contents;
7142 lend = contents + hdr->sh_size;
7143 while (l + sizeof (Elf_External_Options) <= lend)
7144 {
7145 Elf_Internal_Options intopt;
7146
7147 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7148 &intopt);
7149 if (intopt.size < sizeof (Elf_External_Options))
7150 {
7151 _bfd_error_handler
7152 /* xgettext:c-format */
7153 (_("%B: Warning: bad `%s' option size %u smaller than"
7154 " its header"),
7155 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7156 break;
7157 }
7158 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7159 {
7160 bfd_byte buf[8];
7161
7162 if (bfd_seek (abfd,
7163 (hdr->sh_offset
7164 + (l - contents)
7165 + sizeof (Elf_External_Options)
7166 + (sizeof (Elf64_External_RegInfo) - 8)),
7167 SEEK_SET) != 0)
7168 return FALSE;
7169 H_PUT_64 (abfd, elf_gp (abfd), buf);
7170 if (bfd_bwrite (buf, 8, abfd) != 8)
7171 return FALSE;
7172 }
7173 else if (intopt.kind == ODK_REGINFO)
7174 {
7175 bfd_byte buf[4];
7176
7177 if (bfd_seek (abfd,
7178 (hdr->sh_offset
7179 + (l - contents)
7180 + sizeof (Elf_External_Options)
7181 + (sizeof (Elf32_External_RegInfo) - 4)),
7182 SEEK_SET) != 0)
7183 return FALSE;
7184 H_PUT_32 (abfd, elf_gp (abfd), buf);
7185 if (bfd_bwrite (buf, 4, abfd) != 4)
7186 return FALSE;
7187 }
7188 l += intopt.size;
7189 }
7190 }
7191
7192 if (hdr->bfd_section != NULL)
7193 {
7194 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7195
7196 /* .sbss is not handled specially here because the GNU/Linux
7197 prelinker can convert .sbss from NOBITS to PROGBITS and
7198 changing it back to NOBITS breaks the binary. The entry in
7199 _bfd_mips_elf_special_sections will ensure the correct flags
7200 are set on .sbss if BFD creates it without reading it from an
7201 input file, and without special handling here the flags set
7202 on it in an input file will be followed. */
7203 if (strcmp (name, ".sdata") == 0
7204 || strcmp (name, ".lit8") == 0
7205 || strcmp (name, ".lit4") == 0)
7206 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7207 else if (strcmp (name, ".srdata") == 0)
7208 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7209 else if (strcmp (name, ".compact_rel") == 0)
7210 hdr->sh_flags = 0;
7211 else if (strcmp (name, ".rtproc") == 0)
7212 {
7213 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7214 {
7215 unsigned int adjust;
7216
7217 adjust = hdr->sh_size % hdr->sh_addralign;
7218 if (adjust != 0)
7219 hdr->sh_size += hdr->sh_addralign - adjust;
7220 }
7221 }
7222 }
7223
7224 return TRUE;
7225 }
7226
7227 /* Handle a MIPS specific section when reading an object file. This
7228 is called when elfcode.h finds a section with an unknown type.
7229 This routine supports both the 32-bit and 64-bit ELF ABI.
7230
7231 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7232 how to. */
7233
7234 bfd_boolean
7235 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7236 Elf_Internal_Shdr *hdr,
7237 const char *name,
7238 int shindex)
7239 {
7240 flagword flags = 0;
7241
7242 /* There ought to be a place to keep ELF backend specific flags, but
7243 at the moment there isn't one. We just keep track of the
7244 sections by their name, instead. Fortunately, the ABI gives
7245 suggested names for all the MIPS specific sections, so we will
7246 probably get away with this. */
7247 switch (hdr->sh_type)
7248 {
7249 case SHT_MIPS_LIBLIST:
7250 if (strcmp (name, ".liblist") != 0)
7251 return FALSE;
7252 break;
7253 case SHT_MIPS_MSYM:
7254 if (strcmp (name, ".msym") != 0)
7255 return FALSE;
7256 break;
7257 case SHT_MIPS_CONFLICT:
7258 if (strcmp (name, ".conflict") != 0)
7259 return FALSE;
7260 break;
7261 case SHT_MIPS_GPTAB:
7262 if (! CONST_STRNEQ (name, ".gptab."))
7263 return FALSE;
7264 break;
7265 case SHT_MIPS_UCODE:
7266 if (strcmp (name, ".ucode") != 0)
7267 return FALSE;
7268 break;
7269 case SHT_MIPS_DEBUG:
7270 if (strcmp (name, ".mdebug") != 0)
7271 return FALSE;
7272 flags = SEC_DEBUGGING;
7273 break;
7274 case SHT_MIPS_REGINFO:
7275 if (strcmp (name, ".reginfo") != 0
7276 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7277 return FALSE;
7278 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7279 break;
7280 case SHT_MIPS_IFACE:
7281 if (strcmp (name, ".MIPS.interfaces") != 0)
7282 return FALSE;
7283 break;
7284 case SHT_MIPS_CONTENT:
7285 if (! CONST_STRNEQ (name, ".MIPS.content"))
7286 return FALSE;
7287 break;
7288 case SHT_MIPS_OPTIONS:
7289 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7290 return FALSE;
7291 break;
7292 case SHT_MIPS_ABIFLAGS:
7293 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7294 return FALSE;
7295 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7296 break;
7297 case SHT_MIPS_DWARF:
7298 if (! CONST_STRNEQ (name, ".debug_")
7299 && ! CONST_STRNEQ (name, ".zdebug_"))
7300 return FALSE;
7301 break;
7302 case SHT_MIPS_SYMBOL_LIB:
7303 if (strcmp (name, ".MIPS.symlib") != 0)
7304 return FALSE;
7305 break;
7306 case SHT_MIPS_EVENTS:
7307 if (! CONST_STRNEQ (name, ".MIPS.events")
7308 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7309 return FALSE;
7310 break;
7311 default:
7312 break;
7313 }
7314
7315 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7316 return FALSE;
7317
7318 if (flags)
7319 {
7320 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7321 (bfd_get_section_flags (abfd,
7322 hdr->bfd_section)
7323 | flags)))
7324 return FALSE;
7325 }
7326
7327 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7328 {
7329 Elf_External_ABIFlags_v0 ext;
7330
7331 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7332 &ext, 0, sizeof ext))
7333 return FALSE;
7334 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7335 &mips_elf_tdata (abfd)->abiflags);
7336 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7337 return FALSE;
7338 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7339 }
7340
7341 /* FIXME: We should record sh_info for a .gptab section. */
7342
7343 /* For a .reginfo section, set the gp value in the tdata information
7344 from the contents of this section. We need the gp value while
7345 processing relocs, so we just get it now. The .reginfo section
7346 is not used in the 64-bit MIPS ELF ABI. */
7347 if (hdr->sh_type == SHT_MIPS_REGINFO)
7348 {
7349 Elf32_External_RegInfo ext;
7350 Elf32_RegInfo s;
7351
7352 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7353 &ext, 0, sizeof ext))
7354 return FALSE;
7355 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7356 elf_gp (abfd) = s.ri_gp_value;
7357 }
7358
7359 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7360 set the gp value based on what we find. We may see both
7361 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7362 they should agree. */
7363 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7364 {
7365 bfd_byte *contents, *l, *lend;
7366
7367 contents = bfd_malloc (hdr->sh_size);
7368 if (contents == NULL)
7369 return FALSE;
7370 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7371 0, hdr->sh_size))
7372 {
7373 free (contents);
7374 return FALSE;
7375 }
7376 l = contents;
7377 lend = contents + hdr->sh_size;
7378 while (l + sizeof (Elf_External_Options) <= lend)
7379 {
7380 Elf_Internal_Options intopt;
7381
7382 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7383 &intopt);
7384 if (intopt.size < sizeof (Elf_External_Options))
7385 {
7386 _bfd_error_handler
7387 /* xgettext:c-format */
7388 (_("%B: Warning: bad `%s' option size %u smaller than"
7389 " its header"),
7390 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7391 break;
7392 }
7393 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7394 {
7395 Elf64_Internal_RegInfo intreg;
7396
7397 bfd_mips_elf64_swap_reginfo_in
7398 (abfd,
7399 ((Elf64_External_RegInfo *)
7400 (l + sizeof (Elf_External_Options))),
7401 &intreg);
7402 elf_gp (abfd) = intreg.ri_gp_value;
7403 }
7404 else if (intopt.kind == ODK_REGINFO)
7405 {
7406 Elf32_RegInfo intreg;
7407
7408 bfd_mips_elf32_swap_reginfo_in
7409 (abfd,
7410 ((Elf32_External_RegInfo *)
7411 (l + sizeof (Elf_External_Options))),
7412 &intreg);
7413 elf_gp (abfd) = intreg.ri_gp_value;
7414 }
7415 l += intopt.size;
7416 }
7417 free (contents);
7418 }
7419
7420 return TRUE;
7421 }
7422
7423 /* Set the correct type for a MIPS ELF section. We do this by the
7424 section name, which is a hack, but ought to work. This routine is
7425 used by both the 32-bit and the 64-bit ABI. */
7426
7427 bfd_boolean
7428 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7429 {
7430 const char *name = bfd_get_section_name (abfd, sec);
7431
7432 if (strcmp (name, ".liblist") == 0)
7433 {
7434 hdr->sh_type = SHT_MIPS_LIBLIST;
7435 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7436 /* The sh_link field is set in final_write_processing. */
7437 }
7438 else if (strcmp (name, ".conflict") == 0)
7439 hdr->sh_type = SHT_MIPS_CONFLICT;
7440 else if (CONST_STRNEQ (name, ".gptab."))
7441 {
7442 hdr->sh_type = SHT_MIPS_GPTAB;
7443 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7444 /* The sh_info field is set in final_write_processing. */
7445 }
7446 else if (strcmp (name, ".ucode") == 0)
7447 hdr->sh_type = SHT_MIPS_UCODE;
7448 else if (strcmp (name, ".mdebug") == 0)
7449 {
7450 hdr->sh_type = SHT_MIPS_DEBUG;
7451 /* In a shared object on IRIX 5.3, the .mdebug section has an
7452 entsize of 0. FIXME: Does this matter? */
7453 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7454 hdr->sh_entsize = 0;
7455 else
7456 hdr->sh_entsize = 1;
7457 }
7458 else if (strcmp (name, ".reginfo") == 0)
7459 {
7460 hdr->sh_type = SHT_MIPS_REGINFO;
7461 /* In a shared object on IRIX 5.3, the .reginfo section has an
7462 entsize of 0x18. FIXME: Does this matter? */
7463 if (SGI_COMPAT (abfd))
7464 {
7465 if ((abfd->flags & DYNAMIC) != 0)
7466 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7467 else
7468 hdr->sh_entsize = 1;
7469 }
7470 else
7471 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7472 }
7473 else if (SGI_COMPAT (abfd)
7474 && (strcmp (name, ".hash") == 0
7475 || strcmp (name, ".dynamic") == 0
7476 || strcmp (name, ".dynstr") == 0))
7477 {
7478 if (SGI_COMPAT (abfd))
7479 hdr->sh_entsize = 0;
7480 #if 0
7481 /* This isn't how the IRIX6 linker behaves. */
7482 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7483 #endif
7484 }
7485 else if (strcmp (name, ".got") == 0
7486 || strcmp (name, ".srdata") == 0
7487 || strcmp (name, ".sdata") == 0
7488 || strcmp (name, ".sbss") == 0
7489 || strcmp (name, ".lit4") == 0
7490 || strcmp (name, ".lit8") == 0)
7491 hdr->sh_flags |= SHF_MIPS_GPREL;
7492 else if (strcmp (name, ".MIPS.interfaces") == 0)
7493 {
7494 hdr->sh_type = SHT_MIPS_IFACE;
7495 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7496 }
7497 else if (CONST_STRNEQ (name, ".MIPS.content"))
7498 {
7499 hdr->sh_type = SHT_MIPS_CONTENT;
7500 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7501 /* The sh_info field is set in final_write_processing. */
7502 }
7503 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7504 {
7505 hdr->sh_type = SHT_MIPS_OPTIONS;
7506 hdr->sh_entsize = 1;
7507 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7508 }
7509 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7510 {
7511 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7512 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7513 }
7514 else if (CONST_STRNEQ (name, ".debug_")
7515 || CONST_STRNEQ (name, ".zdebug_"))
7516 {
7517 hdr->sh_type = SHT_MIPS_DWARF;
7518
7519 /* Irix facilities such as libexc expect a single .debug_frame
7520 per executable, the system ones have NOSTRIP set and the linker
7521 doesn't merge sections with different flags so ... */
7522 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7523 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7524 }
7525 else if (strcmp (name, ".MIPS.symlib") == 0)
7526 {
7527 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7528 /* The sh_link and sh_info fields are set in
7529 final_write_processing. */
7530 }
7531 else if (CONST_STRNEQ (name, ".MIPS.events")
7532 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7533 {
7534 hdr->sh_type = SHT_MIPS_EVENTS;
7535 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7536 /* The sh_link field is set in final_write_processing. */
7537 }
7538 else if (strcmp (name, ".msym") == 0)
7539 {
7540 hdr->sh_type = SHT_MIPS_MSYM;
7541 hdr->sh_flags |= SHF_ALLOC;
7542 hdr->sh_entsize = 8;
7543 }
7544
7545 /* The generic elf_fake_sections will set up REL_HDR using the default
7546 kind of relocations. We used to set up a second header for the
7547 non-default kind of relocations here, but only NewABI would use
7548 these, and the IRIX ld doesn't like resulting empty RELA sections.
7549 Thus we create those header only on demand now. */
7550
7551 return TRUE;
7552 }
7553
7554 /* Given a BFD section, try to locate the corresponding ELF section
7555 index. This is used by both the 32-bit and the 64-bit ABI.
7556 Actually, it's not clear to me that the 64-bit ABI supports these,
7557 but for non-PIC objects we will certainly want support for at least
7558 the .scommon section. */
7559
7560 bfd_boolean
7561 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7562 asection *sec, int *retval)
7563 {
7564 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7565 {
7566 *retval = SHN_MIPS_SCOMMON;
7567 return TRUE;
7568 }
7569 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7570 {
7571 *retval = SHN_MIPS_ACOMMON;
7572 return TRUE;
7573 }
7574 return FALSE;
7575 }
7576 \f
7577 /* Hook called by the linker routine which adds symbols from an object
7578 file. We must handle the special MIPS section numbers here. */
7579
7580 bfd_boolean
7581 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7582 Elf_Internal_Sym *sym, const char **namep,
7583 flagword *flagsp ATTRIBUTE_UNUSED,
7584 asection **secp, bfd_vma *valp)
7585 {
7586 if (SGI_COMPAT (abfd)
7587 && (abfd->flags & DYNAMIC) != 0
7588 && strcmp (*namep, "_rld_new_interface") == 0)
7589 {
7590 /* Skip IRIX5 rld entry name. */
7591 *namep = NULL;
7592 return TRUE;
7593 }
7594
7595 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7596 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7597 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7598 a magic symbol resolved by the linker, we ignore this bogus definition
7599 of _gp_disp. New ABI objects do not suffer from this problem so this
7600 is not done for them. */
7601 if (!NEWABI_P(abfd)
7602 && (sym->st_shndx == SHN_ABS)
7603 && (strcmp (*namep, "_gp_disp") == 0))
7604 {
7605 *namep = NULL;
7606 return TRUE;
7607 }
7608
7609 switch (sym->st_shndx)
7610 {
7611 case SHN_COMMON:
7612 /* Common symbols less than the GP size are automatically
7613 treated as SHN_MIPS_SCOMMON symbols. */
7614 if (sym->st_size > elf_gp_size (abfd)
7615 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7616 || IRIX_COMPAT (abfd) == ict_irix6)
7617 break;
7618 /* Fall through. */
7619 case SHN_MIPS_SCOMMON:
7620 *secp = bfd_make_section_old_way (abfd, ".scommon");
7621 (*secp)->flags |= SEC_IS_COMMON;
7622 *valp = sym->st_size;
7623 break;
7624
7625 case SHN_MIPS_TEXT:
7626 /* This section is used in a shared object. */
7627 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7628 {
7629 asymbol *elf_text_symbol;
7630 asection *elf_text_section;
7631 bfd_size_type amt = sizeof (asection);
7632
7633 elf_text_section = bfd_zalloc (abfd, amt);
7634 if (elf_text_section == NULL)
7635 return FALSE;
7636
7637 amt = sizeof (asymbol);
7638 elf_text_symbol = bfd_zalloc (abfd, amt);
7639 if (elf_text_symbol == NULL)
7640 return FALSE;
7641
7642 /* Initialize the section. */
7643
7644 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7645 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7646
7647 elf_text_section->symbol = elf_text_symbol;
7648 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7649
7650 elf_text_section->name = ".text";
7651 elf_text_section->flags = SEC_NO_FLAGS;
7652 elf_text_section->output_section = NULL;
7653 elf_text_section->owner = abfd;
7654 elf_text_symbol->name = ".text";
7655 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7656 elf_text_symbol->section = elf_text_section;
7657 }
7658 /* This code used to do *secp = bfd_und_section_ptr if
7659 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7660 so I took it out. */
7661 *secp = mips_elf_tdata (abfd)->elf_text_section;
7662 break;
7663
7664 case SHN_MIPS_ACOMMON:
7665 /* Fall through. XXX Can we treat this as allocated data? */
7666 case SHN_MIPS_DATA:
7667 /* This section is used in a shared object. */
7668 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7669 {
7670 asymbol *elf_data_symbol;
7671 asection *elf_data_section;
7672 bfd_size_type amt = sizeof (asection);
7673
7674 elf_data_section = bfd_zalloc (abfd, amt);
7675 if (elf_data_section == NULL)
7676 return FALSE;
7677
7678 amt = sizeof (asymbol);
7679 elf_data_symbol = bfd_zalloc (abfd, amt);
7680 if (elf_data_symbol == NULL)
7681 return FALSE;
7682
7683 /* Initialize the section. */
7684
7685 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7686 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7687
7688 elf_data_section->symbol = elf_data_symbol;
7689 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7690
7691 elf_data_section->name = ".data";
7692 elf_data_section->flags = SEC_NO_FLAGS;
7693 elf_data_section->output_section = NULL;
7694 elf_data_section->owner = abfd;
7695 elf_data_symbol->name = ".data";
7696 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7697 elf_data_symbol->section = elf_data_section;
7698 }
7699 /* This code used to do *secp = bfd_und_section_ptr if
7700 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7701 so I took it out. */
7702 *secp = mips_elf_tdata (abfd)->elf_data_section;
7703 break;
7704
7705 case SHN_MIPS_SUNDEFINED:
7706 *secp = bfd_und_section_ptr;
7707 break;
7708 }
7709
7710 if (SGI_COMPAT (abfd)
7711 && ! bfd_link_pic (info)
7712 && info->output_bfd->xvec == abfd->xvec
7713 && strcmp (*namep, "__rld_obj_head") == 0)
7714 {
7715 struct elf_link_hash_entry *h;
7716 struct bfd_link_hash_entry *bh;
7717
7718 /* Mark __rld_obj_head as dynamic. */
7719 bh = NULL;
7720 if (! (_bfd_generic_link_add_one_symbol
7721 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7722 get_elf_backend_data (abfd)->collect, &bh)))
7723 return FALSE;
7724
7725 h = (struct elf_link_hash_entry *) bh;
7726 h->non_elf = 0;
7727 h->def_regular = 1;
7728 h->type = STT_OBJECT;
7729
7730 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7731 return FALSE;
7732
7733 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7734 mips_elf_hash_table (info)->rld_symbol = h;
7735 }
7736
7737 /* If this is a mips16 text symbol, add 1 to the value to make it
7738 odd. This will cause something like .word SYM to come up with
7739 the right value when it is loaded into the PC. */
7740 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7741 ++*valp;
7742
7743 return TRUE;
7744 }
7745
7746 /* This hook function is called before the linker writes out a global
7747 symbol. We mark symbols as small common if appropriate. This is
7748 also where we undo the increment of the value for a mips16 symbol. */
7749
7750 int
7751 _bfd_mips_elf_link_output_symbol_hook
7752 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7753 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7754 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7755 {
7756 /* If we see a common symbol, which implies a relocatable link, then
7757 if a symbol was small common in an input file, mark it as small
7758 common in the output file. */
7759 if (sym->st_shndx == SHN_COMMON
7760 && strcmp (input_sec->name, ".scommon") == 0)
7761 sym->st_shndx = SHN_MIPS_SCOMMON;
7762
7763 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7764 sym->st_value &= ~1;
7765
7766 return 1;
7767 }
7768 \f
7769 /* Functions for the dynamic linker. */
7770
7771 /* Create dynamic sections when linking against a dynamic object. */
7772
7773 bfd_boolean
7774 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7775 {
7776 struct elf_link_hash_entry *h;
7777 struct bfd_link_hash_entry *bh;
7778 flagword flags;
7779 register asection *s;
7780 const char * const *namep;
7781 struct mips_elf_link_hash_table *htab;
7782
7783 htab = mips_elf_hash_table (info);
7784 BFD_ASSERT (htab != NULL);
7785
7786 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7787 | SEC_LINKER_CREATED | SEC_READONLY);
7788
7789 /* The psABI requires a read-only .dynamic section, but the VxWorks
7790 EABI doesn't. */
7791 if (!htab->is_vxworks)
7792 {
7793 s = bfd_get_linker_section (abfd, ".dynamic");
7794 if (s != NULL)
7795 {
7796 if (! bfd_set_section_flags (abfd, s, flags))
7797 return FALSE;
7798 }
7799 }
7800
7801 /* We need to create .got section. */
7802 if (!mips_elf_create_got_section (abfd, info))
7803 return FALSE;
7804
7805 if (! mips_elf_rel_dyn_section (info, TRUE))
7806 return FALSE;
7807
7808 /* Create .stub section. */
7809 s = bfd_make_section_anyway_with_flags (abfd,
7810 MIPS_ELF_STUB_SECTION_NAME (abfd),
7811 flags | SEC_CODE);
7812 if (s == NULL
7813 || ! bfd_set_section_alignment (abfd, s,
7814 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7815 return FALSE;
7816 htab->sstubs = s;
7817
7818 if (!mips_elf_hash_table (info)->use_rld_obj_head
7819 && bfd_link_executable (info)
7820 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7821 {
7822 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7823 flags &~ (flagword) SEC_READONLY);
7824 if (s == NULL
7825 || ! bfd_set_section_alignment (abfd, s,
7826 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7827 return FALSE;
7828 }
7829
7830 /* On IRIX5, we adjust add some additional symbols and change the
7831 alignments of several sections. There is no ABI documentation
7832 indicating that this is necessary on IRIX6, nor any evidence that
7833 the linker takes such action. */
7834 if (IRIX_COMPAT (abfd) == ict_irix5)
7835 {
7836 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7837 {
7838 bh = NULL;
7839 if (! (_bfd_generic_link_add_one_symbol
7840 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7841 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7842 return FALSE;
7843
7844 h = (struct elf_link_hash_entry *) bh;
7845 h->non_elf = 0;
7846 h->def_regular = 1;
7847 h->type = STT_SECTION;
7848
7849 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7850 return FALSE;
7851 }
7852
7853 /* We need to create a .compact_rel section. */
7854 if (SGI_COMPAT (abfd))
7855 {
7856 if (!mips_elf_create_compact_rel_section (abfd, info))
7857 return FALSE;
7858 }
7859
7860 /* Change alignments of some sections. */
7861 s = bfd_get_linker_section (abfd, ".hash");
7862 if (s != NULL)
7863 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7864
7865 s = bfd_get_linker_section (abfd, ".dynsym");
7866 if (s != NULL)
7867 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7868
7869 s = bfd_get_linker_section (abfd, ".dynstr");
7870 if (s != NULL)
7871 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7872
7873 /* ??? */
7874 s = bfd_get_section_by_name (abfd, ".reginfo");
7875 if (s != NULL)
7876 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7877
7878 s = bfd_get_linker_section (abfd, ".dynamic");
7879 if (s != NULL)
7880 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7881 }
7882
7883 if (bfd_link_executable (info))
7884 {
7885 const char *name;
7886
7887 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7888 bh = NULL;
7889 if (!(_bfd_generic_link_add_one_symbol
7890 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7891 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7892 return FALSE;
7893
7894 h = (struct elf_link_hash_entry *) bh;
7895 h->non_elf = 0;
7896 h->def_regular = 1;
7897 h->type = STT_SECTION;
7898
7899 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7900 return FALSE;
7901
7902 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7903 {
7904 /* __rld_map is a four byte word located in the .data section
7905 and is filled in by the rtld to contain a pointer to
7906 the _r_debug structure. Its symbol value will be set in
7907 _bfd_mips_elf_finish_dynamic_symbol. */
7908 s = bfd_get_linker_section (abfd, ".rld_map");
7909 BFD_ASSERT (s != NULL);
7910
7911 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7912 bh = NULL;
7913 if (!(_bfd_generic_link_add_one_symbol
7914 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7915 get_elf_backend_data (abfd)->collect, &bh)))
7916 return FALSE;
7917
7918 h = (struct elf_link_hash_entry *) bh;
7919 h->non_elf = 0;
7920 h->def_regular = 1;
7921 h->type = STT_OBJECT;
7922
7923 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7924 return FALSE;
7925 mips_elf_hash_table (info)->rld_symbol = h;
7926 }
7927 }
7928
7929 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7930 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7931 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7932 return FALSE;
7933
7934 /* Do the usual VxWorks handling. */
7935 if (htab->is_vxworks
7936 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7937 return FALSE;
7938
7939 return TRUE;
7940 }
7941 \f
7942 /* Return true if relocation REL against section SEC is a REL rather than
7943 RELA relocation. RELOCS is the first relocation in the section and
7944 ABFD is the bfd that contains SEC. */
7945
7946 static bfd_boolean
7947 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7948 const Elf_Internal_Rela *relocs,
7949 const Elf_Internal_Rela *rel)
7950 {
7951 Elf_Internal_Shdr *rel_hdr;
7952 const struct elf_backend_data *bed;
7953
7954 /* To determine which flavor of relocation this is, we depend on the
7955 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7956 rel_hdr = elf_section_data (sec)->rel.hdr;
7957 if (rel_hdr == NULL)
7958 return FALSE;
7959 bed = get_elf_backend_data (abfd);
7960 return ((size_t) (rel - relocs)
7961 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7962 }
7963
7964 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7965 HOWTO is the relocation's howto and CONTENTS points to the contents
7966 of the section that REL is against. */
7967
7968 static bfd_vma
7969 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7970 reloc_howto_type *howto, bfd_byte *contents)
7971 {
7972 bfd_byte *location;
7973 unsigned int r_type;
7974 bfd_vma addend;
7975 bfd_vma bytes;
7976
7977 r_type = ELF_R_TYPE (abfd, rel->r_info);
7978 location = contents + rel->r_offset;
7979
7980 /* Get the addend, which is stored in the input file. */
7981 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7982 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7983 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7984
7985 addend = bytes & howto->src_mask;
7986
7987 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7988 accordingly. */
7989 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7990 addend <<= 1;
7991
7992 return addend;
7993 }
7994
7995 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7996 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7997 and update *ADDEND with the final addend. Return true on success
7998 or false if the LO16 could not be found. RELEND is the exclusive
7999 upper bound on the relocations for REL's section. */
8000
8001 static bfd_boolean
8002 mips_elf_add_lo16_rel_addend (bfd *abfd,
8003 const Elf_Internal_Rela *rel,
8004 const Elf_Internal_Rela *relend,
8005 bfd_byte *contents, bfd_vma *addend)
8006 {
8007 unsigned int r_type, lo16_type;
8008 const Elf_Internal_Rela *lo16_relocation;
8009 reloc_howto_type *lo16_howto;
8010 bfd_vma l;
8011
8012 r_type = ELF_R_TYPE (abfd, rel->r_info);
8013 if (mips16_reloc_p (r_type))
8014 lo16_type = R_MIPS16_LO16;
8015 else if (micromips_reloc_p (r_type))
8016 lo16_type = R_MICROMIPS_LO16;
8017 else if (r_type == R_MIPS_PCHI16)
8018 lo16_type = R_MIPS_PCLO16;
8019 else
8020 lo16_type = R_MIPS_LO16;
8021
8022 /* The combined value is the sum of the HI16 addend, left-shifted by
8023 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8024 code does a `lui' of the HI16 value, and then an `addiu' of the
8025 LO16 value.)
8026
8027 Scan ahead to find a matching LO16 relocation.
8028
8029 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8030 be immediately following. However, for the IRIX6 ABI, the next
8031 relocation may be a composed relocation consisting of several
8032 relocations for the same address. In that case, the R_MIPS_LO16
8033 relocation may occur as one of these. We permit a similar
8034 extension in general, as that is useful for GCC.
8035
8036 In some cases GCC dead code elimination removes the LO16 but keeps
8037 the corresponding HI16. This is strictly speaking a violation of
8038 the ABI but not immediately harmful. */
8039 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8040 if (lo16_relocation == NULL)
8041 return FALSE;
8042
8043 /* Obtain the addend kept there. */
8044 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8045 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8046
8047 l <<= lo16_howto->rightshift;
8048 l = _bfd_mips_elf_sign_extend (l, 16);
8049
8050 *addend <<= 16;
8051 *addend += l;
8052 return TRUE;
8053 }
8054
8055 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8056 store the contents in *CONTENTS on success. Assume that *CONTENTS
8057 already holds the contents if it is nonull on entry. */
8058
8059 static bfd_boolean
8060 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8061 {
8062 if (*contents)
8063 return TRUE;
8064
8065 /* Get cached copy if it exists. */
8066 if (elf_section_data (sec)->this_hdr.contents != NULL)
8067 {
8068 *contents = elf_section_data (sec)->this_hdr.contents;
8069 return TRUE;
8070 }
8071
8072 return bfd_malloc_and_get_section (abfd, sec, contents);
8073 }
8074
8075 /* Make a new PLT record to keep internal data. */
8076
8077 static struct plt_entry *
8078 mips_elf_make_plt_record (bfd *abfd)
8079 {
8080 struct plt_entry *entry;
8081
8082 entry = bfd_zalloc (abfd, sizeof (*entry));
8083 if (entry == NULL)
8084 return NULL;
8085
8086 entry->stub_offset = MINUS_ONE;
8087 entry->mips_offset = MINUS_ONE;
8088 entry->comp_offset = MINUS_ONE;
8089 entry->gotplt_index = MINUS_ONE;
8090 return entry;
8091 }
8092
8093 /* Look through the relocs for a section during the first phase, and
8094 allocate space in the global offset table and record the need for
8095 standard MIPS and compressed procedure linkage table entries. */
8096
8097 bfd_boolean
8098 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8099 asection *sec, const Elf_Internal_Rela *relocs)
8100 {
8101 const char *name;
8102 bfd *dynobj;
8103 Elf_Internal_Shdr *symtab_hdr;
8104 struct elf_link_hash_entry **sym_hashes;
8105 size_t extsymoff;
8106 const Elf_Internal_Rela *rel;
8107 const Elf_Internal_Rela *rel_end;
8108 asection *sreloc;
8109 const struct elf_backend_data *bed;
8110 struct mips_elf_link_hash_table *htab;
8111 bfd_byte *contents;
8112 bfd_vma addend;
8113 reloc_howto_type *howto;
8114
8115 if (bfd_link_relocatable (info))
8116 return TRUE;
8117
8118 htab = mips_elf_hash_table (info);
8119 BFD_ASSERT (htab != NULL);
8120
8121 dynobj = elf_hash_table (info)->dynobj;
8122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8123 sym_hashes = elf_sym_hashes (abfd);
8124 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8125
8126 bed = get_elf_backend_data (abfd);
8127 rel_end = relocs + sec->reloc_count;
8128
8129 /* Check for the mips16 stub sections. */
8130
8131 name = bfd_get_section_name (abfd, sec);
8132 if (FN_STUB_P (name))
8133 {
8134 unsigned long r_symndx;
8135
8136 /* Look at the relocation information to figure out which symbol
8137 this is for. */
8138
8139 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8140 if (r_symndx == 0)
8141 {
8142 _bfd_error_handler
8143 /* xgettext:c-format */
8144 (_("%B: Warning: cannot determine the target function for"
8145 " stub section `%s'"),
8146 abfd, name);
8147 bfd_set_error (bfd_error_bad_value);
8148 return FALSE;
8149 }
8150
8151 if (r_symndx < extsymoff
8152 || sym_hashes[r_symndx - extsymoff] == NULL)
8153 {
8154 asection *o;
8155
8156 /* This stub is for a local symbol. This stub will only be
8157 needed if there is some relocation in this BFD, other
8158 than a 16 bit function call, which refers to this symbol. */
8159 for (o = abfd->sections; o != NULL; o = o->next)
8160 {
8161 Elf_Internal_Rela *sec_relocs;
8162 const Elf_Internal_Rela *r, *rend;
8163
8164 /* We can ignore stub sections when looking for relocs. */
8165 if ((o->flags & SEC_RELOC) == 0
8166 || o->reloc_count == 0
8167 || section_allows_mips16_refs_p (o))
8168 continue;
8169
8170 sec_relocs
8171 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8172 info->keep_memory);
8173 if (sec_relocs == NULL)
8174 return FALSE;
8175
8176 rend = sec_relocs + o->reloc_count;
8177 for (r = sec_relocs; r < rend; r++)
8178 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8179 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8180 break;
8181
8182 if (elf_section_data (o)->relocs != sec_relocs)
8183 free (sec_relocs);
8184
8185 if (r < rend)
8186 break;
8187 }
8188
8189 if (o == NULL)
8190 {
8191 /* There is no non-call reloc for this stub, so we do
8192 not need it. Since this function is called before
8193 the linker maps input sections to output sections, we
8194 can easily discard it by setting the SEC_EXCLUDE
8195 flag. */
8196 sec->flags |= SEC_EXCLUDE;
8197 return TRUE;
8198 }
8199
8200 /* Record this stub in an array of local symbol stubs for
8201 this BFD. */
8202 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8203 {
8204 unsigned long symcount;
8205 asection **n;
8206 bfd_size_type amt;
8207
8208 if (elf_bad_symtab (abfd))
8209 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8210 else
8211 symcount = symtab_hdr->sh_info;
8212 amt = symcount * sizeof (asection *);
8213 n = bfd_zalloc (abfd, amt);
8214 if (n == NULL)
8215 return FALSE;
8216 mips_elf_tdata (abfd)->local_stubs = n;
8217 }
8218
8219 sec->flags |= SEC_KEEP;
8220 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8221
8222 /* We don't need to set mips16_stubs_seen in this case.
8223 That flag is used to see whether we need to look through
8224 the global symbol table for stubs. We don't need to set
8225 it here, because we just have a local stub. */
8226 }
8227 else
8228 {
8229 struct mips_elf_link_hash_entry *h;
8230
8231 h = ((struct mips_elf_link_hash_entry *)
8232 sym_hashes[r_symndx - extsymoff]);
8233
8234 while (h->root.root.type == bfd_link_hash_indirect
8235 || h->root.root.type == bfd_link_hash_warning)
8236 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8237
8238 /* H is the symbol this stub is for. */
8239
8240 /* If we already have an appropriate stub for this function, we
8241 don't need another one, so we can discard this one. Since
8242 this function is called before the linker maps input sections
8243 to output sections, we can easily discard it by setting the
8244 SEC_EXCLUDE flag. */
8245 if (h->fn_stub != NULL)
8246 {
8247 sec->flags |= SEC_EXCLUDE;
8248 return TRUE;
8249 }
8250
8251 sec->flags |= SEC_KEEP;
8252 h->fn_stub = sec;
8253 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8254 }
8255 }
8256 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8257 {
8258 unsigned long r_symndx;
8259 struct mips_elf_link_hash_entry *h;
8260 asection **loc;
8261
8262 /* Look at the relocation information to figure out which symbol
8263 this is for. */
8264
8265 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8266 if (r_symndx == 0)
8267 {
8268 _bfd_error_handler
8269 /* xgettext:c-format */
8270 (_("%B: Warning: cannot determine the target function for"
8271 " stub section `%s'"),
8272 abfd, name);
8273 bfd_set_error (bfd_error_bad_value);
8274 return FALSE;
8275 }
8276
8277 if (r_symndx < extsymoff
8278 || sym_hashes[r_symndx - extsymoff] == NULL)
8279 {
8280 asection *o;
8281
8282 /* This stub is for a local symbol. This stub will only be
8283 needed if there is some relocation (R_MIPS16_26) in this BFD
8284 that refers to this symbol. */
8285 for (o = abfd->sections; o != NULL; o = o->next)
8286 {
8287 Elf_Internal_Rela *sec_relocs;
8288 const Elf_Internal_Rela *r, *rend;
8289
8290 /* We can ignore stub sections when looking for relocs. */
8291 if ((o->flags & SEC_RELOC) == 0
8292 || o->reloc_count == 0
8293 || section_allows_mips16_refs_p (o))
8294 continue;
8295
8296 sec_relocs
8297 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8298 info->keep_memory);
8299 if (sec_relocs == NULL)
8300 return FALSE;
8301
8302 rend = sec_relocs + o->reloc_count;
8303 for (r = sec_relocs; r < rend; r++)
8304 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8305 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8306 break;
8307
8308 if (elf_section_data (o)->relocs != sec_relocs)
8309 free (sec_relocs);
8310
8311 if (r < rend)
8312 break;
8313 }
8314
8315 if (o == NULL)
8316 {
8317 /* There is no non-call reloc for this stub, so we do
8318 not need it. Since this function is called before
8319 the linker maps input sections to output sections, we
8320 can easily discard it by setting the SEC_EXCLUDE
8321 flag. */
8322 sec->flags |= SEC_EXCLUDE;
8323 return TRUE;
8324 }
8325
8326 /* Record this stub in an array of local symbol call_stubs for
8327 this BFD. */
8328 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8329 {
8330 unsigned long symcount;
8331 asection **n;
8332 bfd_size_type amt;
8333
8334 if (elf_bad_symtab (abfd))
8335 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8336 else
8337 symcount = symtab_hdr->sh_info;
8338 amt = symcount * sizeof (asection *);
8339 n = bfd_zalloc (abfd, amt);
8340 if (n == NULL)
8341 return FALSE;
8342 mips_elf_tdata (abfd)->local_call_stubs = n;
8343 }
8344
8345 sec->flags |= SEC_KEEP;
8346 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8347
8348 /* We don't need to set mips16_stubs_seen in this case.
8349 That flag is used to see whether we need to look through
8350 the global symbol table for stubs. We don't need to set
8351 it here, because we just have a local stub. */
8352 }
8353 else
8354 {
8355 h = ((struct mips_elf_link_hash_entry *)
8356 sym_hashes[r_symndx - extsymoff]);
8357
8358 /* H is the symbol this stub is for. */
8359
8360 if (CALL_FP_STUB_P (name))
8361 loc = &h->call_fp_stub;
8362 else
8363 loc = &h->call_stub;
8364
8365 /* If we already have an appropriate stub for this function, we
8366 don't need another one, so we can discard this one. Since
8367 this function is called before the linker maps input sections
8368 to output sections, we can easily discard it by setting the
8369 SEC_EXCLUDE flag. */
8370 if (*loc != NULL)
8371 {
8372 sec->flags |= SEC_EXCLUDE;
8373 return TRUE;
8374 }
8375
8376 sec->flags |= SEC_KEEP;
8377 *loc = sec;
8378 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8379 }
8380 }
8381
8382 sreloc = NULL;
8383 contents = NULL;
8384 for (rel = relocs; rel < rel_end; ++rel)
8385 {
8386 unsigned long r_symndx;
8387 unsigned int r_type;
8388 struct elf_link_hash_entry *h;
8389 bfd_boolean can_make_dynamic_p;
8390 bfd_boolean call_reloc_p;
8391 bfd_boolean constrain_symbol_p;
8392
8393 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8394 r_type = ELF_R_TYPE (abfd, rel->r_info);
8395
8396 if (r_symndx < extsymoff)
8397 h = NULL;
8398 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8399 {
8400 _bfd_error_handler
8401 /* xgettext:c-format */
8402 (_("%B: Malformed reloc detected for section %s"),
8403 abfd, name);
8404 bfd_set_error (bfd_error_bad_value);
8405 return FALSE;
8406 }
8407 else
8408 {
8409 h = sym_hashes[r_symndx - extsymoff];
8410 if (h != NULL)
8411 {
8412 while (h->root.type == bfd_link_hash_indirect
8413 || h->root.type == bfd_link_hash_warning)
8414 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8415 }
8416 }
8417
8418 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8419 relocation into a dynamic one. */
8420 can_make_dynamic_p = FALSE;
8421
8422 /* Set CALL_RELOC_P to true if the relocation is for a call,
8423 and if pointer equality therefore doesn't matter. */
8424 call_reloc_p = FALSE;
8425
8426 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8427 into account when deciding how to define the symbol.
8428 Relocations in nonallocatable sections such as .pdr and
8429 .debug* should have no effect. */
8430 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8431
8432 switch (r_type)
8433 {
8434 case R_MIPS_CALL16:
8435 case R_MIPS_CALL_HI16:
8436 case R_MIPS_CALL_LO16:
8437 case R_MIPS16_CALL16:
8438 case R_MICROMIPS_CALL16:
8439 case R_MICROMIPS_CALL_HI16:
8440 case R_MICROMIPS_CALL_LO16:
8441 call_reloc_p = TRUE;
8442 /* Fall through. */
8443
8444 case R_MIPS_GOT16:
8445 case R_MIPS_GOT_HI16:
8446 case R_MIPS_GOT_LO16:
8447 case R_MIPS_GOT_PAGE:
8448 case R_MIPS_GOT_OFST:
8449 case R_MIPS_GOT_DISP:
8450 case R_MIPS_TLS_GOTTPREL:
8451 case R_MIPS_TLS_GD:
8452 case R_MIPS_TLS_LDM:
8453 case R_MIPS16_GOT16:
8454 case R_MIPS16_TLS_GOTTPREL:
8455 case R_MIPS16_TLS_GD:
8456 case R_MIPS16_TLS_LDM:
8457 case R_MICROMIPS_GOT16:
8458 case R_MICROMIPS_GOT_HI16:
8459 case R_MICROMIPS_GOT_LO16:
8460 case R_MICROMIPS_GOT_PAGE:
8461 case R_MICROMIPS_GOT_OFST:
8462 case R_MICROMIPS_GOT_DISP:
8463 case R_MICROMIPS_TLS_GOTTPREL:
8464 case R_MICROMIPS_TLS_GD:
8465 case R_MICROMIPS_TLS_LDM:
8466 if (dynobj == NULL)
8467 elf_hash_table (info)->dynobj = dynobj = abfd;
8468 if (!mips_elf_create_got_section (dynobj, info))
8469 return FALSE;
8470 if (htab->is_vxworks && !bfd_link_pic (info))
8471 {
8472 _bfd_error_handler
8473 /* xgettext:c-format */
8474 (_("%B: GOT reloc at %#Lx not expected in executables"),
8475 abfd, rel->r_offset);
8476 bfd_set_error (bfd_error_bad_value);
8477 return FALSE;
8478 }
8479 can_make_dynamic_p = TRUE;
8480 break;
8481
8482 case R_MIPS_NONE:
8483 case R_MIPS_JALR:
8484 case R_MICROMIPS_JALR:
8485 /* These relocations have empty fields and are purely there to
8486 provide link information. The symbol value doesn't matter. */
8487 constrain_symbol_p = FALSE;
8488 break;
8489
8490 case R_MIPS_GPREL16:
8491 case R_MIPS_GPREL32:
8492 case R_MIPS16_GPREL:
8493 case R_MICROMIPS_GPREL16:
8494 /* GP-relative relocations always resolve to a definition in a
8495 regular input file, ignoring the one-definition rule. This is
8496 important for the GP setup sequence in NewABI code, which
8497 always resolves to a local function even if other relocations
8498 against the symbol wouldn't. */
8499 constrain_symbol_p = FALSE;
8500 break;
8501
8502 case R_MIPS_32:
8503 case R_MIPS_REL32:
8504 case R_MIPS_64:
8505 /* In VxWorks executables, references to external symbols
8506 must be handled using copy relocs or PLT entries; it is not
8507 possible to convert this relocation into a dynamic one.
8508
8509 For executables that use PLTs and copy-relocs, we have a
8510 choice between converting the relocation into a dynamic
8511 one or using copy relocations or PLT entries. It is
8512 usually better to do the former, unless the relocation is
8513 against a read-only section. */
8514 if ((bfd_link_pic (info)
8515 || (h != NULL
8516 && !htab->is_vxworks
8517 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8518 && !(!info->nocopyreloc
8519 && !PIC_OBJECT_P (abfd)
8520 && MIPS_ELF_READONLY_SECTION (sec))))
8521 && (sec->flags & SEC_ALLOC) != 0)
8522 {
8523 can_make_dynamic_p = TRUE;
8524 if (dynobj == NULL)
8525 elf_hash_table (info)->dynobj = dynobj = abfd;
8526 }
8527 break;
8528
8529 case R_MIPS_26:
8530 case R_MIPS_PC16:
8531 case R_MIPS_PC21_S2:
8532 case R_MIPS_PC26_S2:
8533 case R_MIPS16_26:
8534 case R_MIPS16_PC16_S1:
8535 case R_MICROMIPS_26_S1:
8536 case R_MICROMIPS_PC7_S1:
8537 case R_MICROMIPS_PC10_S1:
8538 case R_MICROMIPS_PC16_S1:
8539 case R_MICROMIPS_PC23_S2:
8540 call_reloc_p = TRUE;
8541 break;
8542 }
8543
8544 if (h)
8545 {
8546 if (constrain_symbol_p)
8547 {
8548 if (!can_make_dynamic_p)
8549 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8550
8551 if (!call_reloc_p)
8552 h->pointer_equality_needed = 1;
8553
8554 /* We must not create a stub for a symbol that has
8555 relocations related to taking the function's address.
8556 This doesn't apply to VxWorks, where CALL relocs refer
8557 to a .got.plt entry instead of a normal .got entry. */
8558 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8559 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8560 }
8561
8562 /* Relocations against the special VxWorks __GOTT_BASE__ and
8563 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8564 room for them in .rela.dyn. */
8565 if (is_gott_symbol (info, h))
8566 {
8567 if (sreloc == NULL)
8568 {
8569 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8570 if (sreloc == NULL)
8571 return FALSE;
8572 }
8573 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8574 if (MIPS_ELF_READONLY_SECTION (sec))
8575 /* We tell the dynamic linker that there are
8576 relocations against the text segment. */
8577 info->flags |= DF_TEXTREL;
8578 }
8579 }
8580 else if (call_lo16_reloc_p (r_type)
8581 || got_lo16_reloc_p (r_type)
8582 || got_disp_reloc_p (r_type)
8583 || (got16_reloc_p (r_type) && htab->is_vxworks))
8584 {
8585 /* We may need a local GOT entry for this relocation. We
8586 don't count R_MIPS_GOT_PAGE because we can estimate the
8587 maximum number of pages needed by looking at the size of
8588 the segment. Similar comments apply to R_MIPS*_GOT16 and
8589 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8590 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8591 R_MIPS_CALL_HI16 because these are always followed by an
8592 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8593 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8594 rel->r_addend, info, r_type))
8595 return FALSE;
8596 }
8597
8598 if (h != NULL
8599 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8600 ELF_ST_IS_MIPS16 (h->other)))
8601 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8602
8603 switch (r_type)
8604 {
8605 case R_MIPS_CALL16:
8606 case R_MIPS16_CALL16:
8607 case R_MICROMIPS_CALL16:
8608 if (h == NULL)
8609 {
8610 _bfd_error_handler
8611 /* xgettext:c-format */
8612 (_("%B: CALL16 reloc at %#Lx not against global symbol"),
8613 abfd, rel->r_offset);
8614 bfd_set_error (bfd_error_bad_value);
8615 return FALSE;
8616 }
8617 /* Fall through. */
8618
8619 case R_MIPS_CALL_HI16:
8620 case R_MIPS_CALL_LO16:
8621 case R_MICROMIPS_CALL_HI16:
8622 case R_MICROMIPS_CALL_LO16:
8623 if (h != NULL)
8624 {
8625 /* Make sure there is room in the regular GOT to hold the
8626 function's address. We may eliminate it in favour of
8627 a .got.plt entry later; see mips_elf_count_got_symbols. */
8628 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8629 r_type))
8630 return FALSE;
8631
8632 /* We need a stub, not a plt entry for the undefined
8633 function. But we record it as if it needs plt. See
8634 _bfd_elf_adjust_dynamic_symbol. */
8635 h->needs_plt = 1;
8636 h->type = STT_FUNC;
8637 }
8638 break;
8639
8640 case R_MIPS_GOT_PAGE:
8641 case R_MICROMIPS_GOT_PAGE:
8642 case R_MIPS16_GOT16:
8643 case R_MIPS_GOT16:
8644 case R_MIPS_GOT_HI16:
8645 case R_MIPS_GOT_LO16:
8646 case R_MICROMIPS_GOT16:
8647 case R_MICROMIPS_GOT_HI16:
8648 case R_MICROMIPS_GOT_LO16:
8649 if (!h || got_page_reloc_p (r_type))
8650 {
8651 /* This relocation needs (or may need, if h != NULL) a
8652 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8653 know for sure until we know whether the symbol is
8654 preemptible. */
8655 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8656 {
8657 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8658 return FALSE;
8659 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8660 addend = mips_elf_read_rel_addend (abfd, rel,
8661 howto, contents);
8662 if (got16_reloc_p (r_type))
8663 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8664 contents, &addend);
8665 else
8666 addend <<= howto->rightshift;
8667 }
8668 else
8669 addend = rel->r_addend;
8670 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8671 h, addend))
8672 return FALSE;
8673
8674 if (h)
8675 {
8676 struct mips_elf_link_hash_entry *hmips =
8677 (struct mips_elf_link_hash_entry *) h;
8678
8679 /* This symbol is definitely not overridable. */
8680 if (hmips->root.def_regular
8681 && ! (bfd_link_pic (info) && ! info->symbolic
8682 && ! hmips->root.forced_local))
8683 h = NULL;
8684 }
8685 }
8686 /* If this is a global, overridable symbol, GOT_PAGE will
8687 decay to GOT_DISP, so we'll need a GOT entry for it. */
8688 /* Fall through. */
8689
8690 case R_MIPS_GOT_DISP:
8691 case R_MICROMIPS_GOT_DISP:
8692 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8693 FALSE, r_type))
8694 return FALSE;
8695 break;
8696
8697 case R_MIPS_TLS_GOTTPREL:
8698 case R_MIPS16_TLS_GOTTPREL:
8699 case R_MICROMIPS_TLS_GOTTPREL:
8700 if (bfd_link_pic (info))
8701 info->flags |= DF_STATIC_TLS;
8702 /* Fall through */
8703
8704 case R_MIPS_TLS_LDM:
8705 case R_MIPS16_TLS_LDM:
8706 case R_MICROMIPS_TLS_LDM:
8707 if (tls_ldm_reloc_p (r_type))
8708 {
8709 r_symndx = STN_UNDEF;
8710 h = NULL;
8711 }
8712 /* Fall through */
8713
8714 case R_MIPS_TLS_GD:
8715 case R_MIPS16_TLS_GD:
8716 case R_MICROMIPS_TLS_GD:
8717 /* This symbol requires a global offset table entry, or two
8718 for TLS GD relocations. */
8719 if (h != NULL)
8720 {
8721 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8722 FALSE, r_type))
8723 return FALSE;
8724 }
8725 else
8726 {
8727 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8728 rel->r_addend,
8729 info, r_type))
8730 return FALSE;
8731 }
8732 break;
8733
8734 case R_MIPS_32:
8735 case R_MIPS_REL32:
8736 case R_MIPS_64:
8737 /* In VxWorks executables, references to external symbols
8738 are handled using copy relocs or PLT stubs, so there's
8739 no need to add a .rela.dyn entry for this relocation. */
8740 if (can_make_dynamic_p)
8741 {
8742 if (sreloc == NULL)
8743 {
8744 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8745 if (sreloc == NULL)
8746 return FALSE;
8747 }
8748 if (bfd_link_pic (info) && h == NULL)
8749 {
8750 /* When creating a shared object, we must copy these
8751 reloc types into the output file as R_MIPS_REL32
8752 relocs. Make room for this reloc in .rel(a).dyn. */
8753 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8754 if (MIPS_ELF_READONLY_SECTION (sec))
8755 /* We tell the dynamic linker that there are
8756 relocations against the text segment. */
8757 info->flags |= DF_TEXTREL;
8758 }
8759 else
8760 {
8761 struct mips_elf_link_hash_entry *hmips;
8762
8763 /* For a shared object, we must copy this relocation
8764 unless the symbol turns out to be undefined and
8765 weak with non-default visibility, in which case
8766 it will be left as zero.
8767
8768 We could elide R_MIPS_REL32 for locally binding symbols
8769 in shared libraries, but do not yet do so.
8770
8771 For an executable, we only need to copy this
8772 reloc if the symbol is defined in a dynamic
8773 object. */
8774 hmips = (struct mips_elf_link_hash_entry *) h;
8775 ++hmips->possibly_dynamic_relocs;
8776 if (MIPS_ELF_READONLY_SECTION (sec))
8777 /* We need it to tell the dynamic linker if there
8778 are relocations against the text segment. */
8779 hmips->readonly_reloc = TRUE;
8780 }
8781 }
8782
8783 if (SGI_COMPAT (abfd))
8784 mips_elf_hash_table (info)->compact_rel_size +=
8785 sizeof (Elf32_External_crinfo);
8786 break;
8787
8788 case R_MIPS_26:
8789 case R_MIPS_GPREL16:
8790 case R_MIPS_LITERAL:
8791 case R_MIPS_GPREL32:
8792 case R_MICROMIPS_26_S1:
8793 case R_MICROMIPS_GPREL16:
8794 case R_MICROMIPS_LITERAL:
8795 case R_MICROMIPS_GPREL7_S2:
8796 if (SGI_COMPAT (abfd))
8797 mips_elf_hash_table (info)->compact_rel_size +=
8798 sizeof (Elf32_External_crinfo);
8799 break;
8800
8801 /* This relocation describes the C++ object vtable hierarchy.
8802 Reconstruct it for later use during GC. */
8803 case R_MIPS_GNU_VTINHERIT:
8804 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8805 return FALSE;
8806 break;
8807
8808 /* This relocation describes which C++ vtable entries are actually
8809 used. Record for later use during GC. */
8810 case R_MIPS_GNU_VTENTRY:
8811 BFD_ASSERT (h != NULL);
8812 if (h != NULL
8813 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8814 return FALSE;
8815 break;
8816
8817 default:
8818 break;
8819 }
8820
8821 /* Record the need for a PLT entry. At this point we don't know
8822 yet if we are going to create a PLT in the first place, but
8823 we only record whether the relocation requires a standard MIPS
8824 or a compressed code entry anyway. If we don't make a PLT after
8825 all, then we'll just ignore these arrangements. Likewise if
8826 a PLT entry is not created because the symbol is satisfied
8827 locally. */
8828 if (h != NULL
8829 && (branch_reloc_p (r_type)
8830 || mips16_branch_reloc_p (r_type)
8831 || micromips_branch_reloc_p (r_type))
8832 && !SYMBOL_CALLS_LOCAL (info, h))
8833 {
8834 if (h->plt.plist == NULL)
8835 h->plt.plist = mips_elf_make_plt_record (abfd);
8836 if (h->plt.plist == NULL)
8837 return FALSE;
8838
8839 if (branch_reloc_p (r_type))
8840 h->plt.plist->need_mips = TRUE;
8841 else
8842 h->plt.plist->need_comp = TRUE;
8843 }
8844
8845 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8846 if there is one. We only need to handle global symbols here;
8847 we decide whether to keep or delete stubs for local symbols
8848 when processing the stub's relocations. */
8849 if (h != NULL
8850 && !mips16_call_reloc_p (r_type)
8851 && !section_allows_mips16_refs_p (sec))
8852 {
8853 struct mips_elf_link_hash_entry *mh;
8854
8855 mh = (struct mips_elf_link_hash_entry *) h;
8856 mh->need_fn_stub = TRUE;
8857 }
8858
8859 /* Refuse some position-dependent relocations when creating a
8860 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8861 not PIC, but we can create dynamic relocations and the result
8862 will be fine. Also do not refuse R_MIPS_LO16, which can be
8863 combined with R_MIPS_GOT16. */
8864 if (bfd_link_pic (info))
8865 {
8866 switch (r_type)
8867 {
8868 case R_MIPS16_HI16:
8869 case R_MIPS_HI16:
8870 case R_MIPS_HIGHER:
8871 case R_MIPS_HIGHEST:
8872 case R_MICROMIPS_HI16:
8873 case R_MICROMIPS_HIGHER:
8874 case R_MICROMIPS_HIGHEST:
8875 /* Don't refuse a high part relocation if it's against
8876 no symbol (e.g. part of a compound relocation). */
8877 if (r_symndx == STN_UNDEF)
8878 break;
8879
8880 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8881 and has a special meaning. */
8882 if (!NEWABI_P (abfd) && h != NULL
8883 && strcmp (h->root.root.string, "_gp_disp") == 0)
8884 break;
8885
8886 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8887 if (is_gott_symbol (info, h))
8888 break;
8889
8890 /* FALLTHROUGH */
8891
8892 case R_MIPS16_26:
8893 case R_MIPS_26:
8894 case R_MICROMIPS_26_S1:
8895 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8896 _bfd_error_handler
8897 /* xgettext:c-format */
8898 (_("%B: relocation %s against `%s' can not be used"
8899 " when making a shared object; recompile with -fPIC"),
8900 abfd, howto->name,
8901 (h) ? h->root.root.string : "a local symbol");
8902 bfd_set_error (bfd_error_bad_value);
8903 return FALSE;
8904 default:
8905 break;
8906 }
8907 }
8908 }
8909
8910 return TRUE;
8911 }
8912 \f
8913 /* Allocate space for global sym dynamic relocs. */
8914
8915 static bfd_boolean
8916 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8917 {
8918 struct bfd_link_info *info = inf;
8919 bfd *dynobj;
8920 struct mips_elf_link_hash_entry *hmips;
8921 struct mips_elf_link_hash_table *htab;
8922
8923 htab = mips_elf_hash_table (info);
8924 BFD_ASSERT (htab != NULL);
8925
8926 dynobj = elf_hash_table (info)->dynobj;
8927 hmips = (struct mips_elf_link_hash_entry *) h;
8928
8929 /* VxWorks executables are handled elsewhere; we only need to
8930 allocate relocations in shared objects. */
8931 if (htab->is_vxworks && !bfd_link_pic (info))
8932 return TRUE;
8933
8934 /* Ignore indirect symbols. All relocations against such symbols
8935 will be redirected to the target symbol. */
8936 if (h->root.type == bfd_link_hash_indirect)
8937 return TRUE;
8938
8939 /* If this symbol is defined in a dynamic object, or we are creating
8940 a shared library, we will need to copy any R_MIPS_32 or
8941 R_MIPS_REL32 relocs against it into the output file. */
8942 if (! bfd_link_relocatable (info)
8943 && hmips->possibly_dynamic_relocs != 0
8944 && (h->root.type == bfd_link_hash_defweak
8945 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8946 || bfd_link_pic (info)))
8947 {
8948 bfd_boolean do_copy = TRUE;
8949
8950 if (h->root.type == bfd_link_hash_undefweak)
8951 {
8952 /* Do not copy relocations for undefined weak symbols with
8953 non-default visibility. */
8954 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8955 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8956 do_copy = FALSE;
8957
8958 /* Make sure undefined weak symbols are output as a dynamic
8959 symbol in PIEs. */
8960 else if (h->dynindx == -1 && !h->forced_local)
8961 {
8962 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8963 return FALSE;
8964 }
8965 }
8966
8967 if (do_copy)
8968 {
8969 /* Even though we don't directly need a GOT entry for this symbol,
8970 the SVR4 psABI requires it to have a dynamic symbol table
8971 index greater that DT_MIPS_GOTSYM if there are dynamic
8972 relocations against it.
8973
8974 VxWorks does not enforce the same mapping between the GOT
8975 and the symbol table, so the same requirement does not
8976 apply there. */
8977 if (!htab->is_vxworks)
8978 {
8979 if (hmips->global_got_area > GGA_RELOC_ONLY)
8980 hmips->global_got_area = GGA_RELOC_ONLY;
8981 hmips->got_only_for_calls = FALSE;
8982 }
8983
8984 mips_elf_allocate_dynamic_relocations
8985 (dynobj, info, hmips->possibly_dynamic_relocs);
8986 if (hmips->readonly_reloc)
8987 /* We tell the dynamic linker that there are relocations
8988 against the text segment. */
8989 info->flags |= DF_TEXTREL;
8990 }
8991 }
8992
8993 return TRUE;
8994 }
8995
8996 /* Adjust a symbol defined by a dynamic object and referenced by a
8997 regular object. The current definition is in some section of the
8998 dynamic object, but we're not including those sections. We have to
8999 change the definition to something the rest of the link can
9000 understand. */
9001
9002 bfd_boolean
9003 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9004 struct elf_link_hash_entry *h)
9005 {
9006 bfd *dynobj;
9007 struct mips_elf_link_hash_entry *hmips;
9008 struct mips_elf_link_hash_table *htab;
9009 asection *s, *srel;
9010
9011 htab = mips_elf_hash_table (info);
9012 BFD_ASSERT (htab != NULL);
9013
9014 dynobj = elf_hash_table (info)->dynobj;
9015 hmips = (struct mips_elf_link_hash_entry *) h;
9016
9017 /* Make sure we know what is going on here. */
9018 BFD_ASSERT (dynobj != NULL
9019 && (h->needs_plt
9020 || h->is_weakalias
9021 || (h->def_dynamic
9022 && h->ref_regular
9023 && !h->def_regular)));
9024
9025 hmips = (struct mips_elf_link_hash_entry *) h;
9026
9027 /* If there are call relocations against an externally-defined symbol,
9028 see whether we can create a MIPS lazy-binding stub for it. We can
9029 only do this if all references to the function are through call
9030 relocations, and in that case, the traditional lazy-binding stubs
9031 are much more efficient than PLT entries.
9032
9033 Traditional stubs are only available on SVR4 psABI-based systems;
9034 VxWorks always uses PLTs instead. */
9035 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9036 {
9037 if (! elf_hash_table (info)->dynamic_sections_created)
9038 return TRUE;
9039
9040 /* If this symbol is not defined in a regular file, then set
9041 the symbol to the stub location. This is required to make
9042 function pointers compare as equal between the normal
9043 executable and the shared library. */
9044 if (!h->def_regular)
9045 {
9046 hmips->needs_lazy_stub = TRUE;
9047 htab->lazy_stub_count++;
9048 return TRUE;
9049 }
9050 }
9051 /* As above, VxWorks requires PLT entries for externally-defined
9052 functions that are only accessed through call relocations.
9053
9054 Both VxWorks and non-VxWorks targets also need PLT entries if there
9055 are static-only relocations against an externally-defined function.
9056 This can technically occur for shared libraries if there are
9057 branches to the symbol, although it is unlikely that this will be
9058 used in practice due to the short ranges involved. It can occur
9059 for any relative or absolute relocation in executables; in that
9060 case, the PLT entry becomes the function's canonical address. */
9061 else if (((h->needs_plt && !hmips->no_fn_stub)
9062 || (h->type == STT_FUNC && hmips->has_static_relocs))
9063 && htab->use_plts_and_copy_relocs
9064 && !SYMBOL_CALLS_LOCAL (info, h)
9065 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9066 && h->root.type == bfd_link_hash_undefweak))
9067 {
9068 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9069 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9070
9071 /* If this is the first symbol to need a PLT entry, then make some
9072 basic setup. Also work out PLT entry sizes. We'll need them
9073 for PLT offset calculations. */
9074 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9075 {
9076 BFD_ASSERT (htab->root.sgotplt->size == 0);
9077 BFD_ASSERT (htab->plt_got_index == 0);
9078
9079 /* If we're using the PLT additions to the psABI, each PLT
9080 entry is 16 bytes and the PLT0 entry is 32 bytes.
9081 Encourage better cache usage by aligning. We do this
9082 lazily to avoid pessimizing traditional objects. */
9083 if (!htab->is_vxworks
9084 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9085 return FALSE;
9086
9087 /* Make sure that .got.plt is word-aligned. We do this lazily
9088 for the same reason as above. */
9089 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9090 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9091 return FALSE;
9092
9093 /* On non-VxWorks targets, the first two entries in .got.plt
9094 are reserved. */
9095 if (!htab->is_vxworks)
9096 htab->plt_got_index
9097 += (get_elf_backend_data (dynobj)->got_header_size
9098 / MIPS_ELF_GOT_SIZE (dynobj));
9099
9100 /* On VxWorks, also allocate room for the header's
9101 .rela.plt.unloaded entries. */
9102 if (htab->is_vxworks && !bfd_link_pic (info))
9103 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9104
9105 /* Now work out the sizes of individual PLT entries. */
9106 if (htab->is_vxworks && bfd_link_pic (info))
9107 htab->plt_mips_entry_size
9108 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9109 else if (htab->is_vxworks)
9110 htab->plt_mips_entry_size
9111 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9112 else if (newabi_p)
9113 htab->plt_mips_entry_size
9114 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9115 else if (!micromips_p)
9116 {
9117 htab->plt_mips_entry_size
9118 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9119 htab->plt_comp_entry_size
9120 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9121 }
9122 else if (htab->insn32)
9123 {
9124 htab->plt_mips_entry_size
9125 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9126 htab->plt_comp_entry_size
9127 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9128 }
9129 else
9130 {
9131 htab->plt_mips_entry_size
9132 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9133 htab->plt_comp_entry_size
9134 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9135 }
9136 }
9137
9138 if (h->plt.plist == NULL)
9139 h->plt.plist = mips_elf_make_plt_record (dynobj);
9140 if (h->plt.plist == NULL)
9141 return FALSE;
9142
9143 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9144 n32 or n64, so always use a standard entry there.
9145
9146 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9147 all MIPS16 calls will go via that stub, and there is no benefit
9148 to having a MIPS16 entry. And in the case of call_stub a
9149 standard entry actually has to be used as the stub ends with a J
9150 instruction. */
9151 if (newabi_p
9152 || htab->is_vxworks
9153 || hmips->call_stub
9154 || hmips->call_fp_stub)
9155 {
9156 h->plt.plist->need_mips = TRUE;
9157 h->plt.plist->need_comp = FALSE;
9158 }
9159
9160 /* Otherwise, if there are no direct calls to the function, we
9161 have a free choice of whether to use standard or compressed
9162 entries. Prefer microMIPS entries if the object is known to
9163 contain microMIPS code, so that it becomes possible to create
9164 pure microMIPS binaries. Prefer standard entries otherwise,
9165 because MIPS16 ones are no smaller and are usually slower. */
9166 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9167 {
9168 if (micromips_p)
9169 h->plt.plist->need_comp = TRUE;
9170 else
9171 h->plt.plist->need_mips = TRUE;
9172 }
9173
9174 if (h->plt.plist->need_mips)
9175 {
9176 h->plt.plist->mips_offset = htab->plt_mips_offset;
9177 htab->plt_mips_offset += htab->plt_mips_entry_size;
9178 }
9179 if (h->plt.plist->need_comp)
9180 {
9181 h->plt.plist->comp_offset = htab->plt_comp_offset;
9182 htab->plt_comp_offset += htab->plt_comp_entry_size;
9183 }
9184
9185 /* Reserve the corresponding .got.plt entry now too. */
9186 h->plt.plist->gotplt_index = htab->plt_got_index++;
9187
9188 /* If the output file has no definition of the symbol, set the
9189 symbol's value to the address of the stub. */
9190 if (!bfd_link_pic (info) && !h->def_regular)
9191 hmips->use_plt_entry = TRUE;
9192
9193 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9194 htab->root.srelplt->size += (htab->is_vxworks
9195 ? MIPS_ELF_RELA_SIZE (dynobj)
9196 : MIPS_ELF_REL_SIZE (dynobj));
9197
9198 /* Make room for the .rela.plt.unloaded relocations. */
9199 if (htab->is_vxworks && !bfd_link_pic (info))
9200 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9201
9202 /* All relocations against this symbol that could have been made
9203 dynamic will now refer to the PLT entry instead. */
9204 hmips->possibly_dynamic_relocs = 0;
9205
9206 return TRUE;
9207 }
9208
9209 /* If this is a weak symbol, and there is a real definition, the
9210 processor independent code will have arranged for us to see the
9211 real definition first, and we can just use the same value. */
9212 if (h->is_weakalias)
9213 {
9214 struct elf_link_hash_entry *def = weakdef (h);
9215 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9216 h->root.u.def.section = def->root.u.def.section;
9217 h->root.u.def.value = def->root.u.def.value;
9218 return TRUE;
9219 }
9220
9221 /* Otherwise, there is nothing further to do for symbols defined
9222 in regular objects. */
9223 if (h->def_regular)
9224 return TRUE;
9225
9226 /* There's also nothing more to do if we'll convert all relocations
9227 against this symbol into dynamic relocations. */
9228 if (!hmips->has_static_relocs)
9229 return TRUE;
9230
9231 /* We're now relying on copy relocations. Complain if we have
9232 some that we can't convert. */
9233 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9234 {
9235 _bfd_error_handler (_("non-dynamic relocations refer to "
9236 "dynamic symbol %s"),
9237 h->root.root.string);
9238 bfd_set_error (bfd_error_bad_value);
9239 return FALSE;
9240 }
9241
9242 /* We must allocate the symbol in our .dynbss section, which will
9243 become part of the .bss section of the executable. There will be
9244 an entry for this symbol in the .dynsym section. The dynamic
9245 object will contain position independent code, so all references
9246 from the dynamic object to this symbol will go through the global
9247 offset table. The dynamic linker will use the .dynsym entry to
9248 determine the address it must put in the global offset table, so
9249 both the dynamic object and the regular object will refer to the
9250 same memory location for the variable. */
9251
9252 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9253 {
9254 s = htab->root.sdynrelro;
9255 srel = htab->root.sreldynrelro;
9256 }
9257 else
9258 {
9259 s = htab->root.sdynbss;
9260 srel = htab->root.srelbss;
9261 }
9262 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9263 {
9264 if (htab->is_vxworks)
9265 srel->size += sizeof (Elf32_External_Rela);
9266 else
9267 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9268 h->needs_copy = 1;
9269 }
9270
9271 /* All relocations against this symbol that could have been made
9272 dynamic will now refer to the local copy instead. */
9273 hmips->possibly_dynamic_relocs = 0;
9274
9275 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9276 }
9277 \f
9278 /* This function is called after all the input files have been read,
9279 and the input sections have been assigned to output sections. We
9280 check for any mips16 stub sections that we can discard. */
9281
9282 bfd_boolean
9283 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9284 struct bfd_link_info *info)
9285 {
9286 asection *sect;
9287 struct mips_elf_link_hash_table *htab;
9288 struct mips_htab_traverse_info hti;
9289
9290 htab = mips_elf_hash_table (info);
9291 BFD_ASSERT (htab != NULL);
9292
9293 /* The .reginfo section has a fixed size. */
9294 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9295 if (sect != NULL)
9296 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9297
9298 /* The .MIPS.abiflags section has a fixed size. */
9299 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9300 if (sect != NULL)
9301 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9302
9303 hti.info = info;
9304 hti.output_bfd = output_bfd;
9305 hti.error = FALSE;
9306 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9307 mips_elf_check_symbols, &hti);
9308 if (hti.error)
9309 return FALSE;
9310
9311 return TRUE;
9312 }
9313
9314 /* If the link uses a GOT, lay it out and work out its size. */
9315
9316 static bfd_boolean
9317 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9318 {
9319 bfd *dynobj;
9320 asection *s;
9321 struct mips_got_info *g;
9322 bfd_size_type loadable_size = 0;
9323 bfd_size_type page_gotno;
9324 bfd *ibfd;
9325 struct mips_elf_traverse_got_arg tga;
9326 struct mips_elf_link_hash_table *htab;
9327
9328 htab = mips_elf_hash_table (info);
9329 BFD_ASSERT (htab != NULL);
9330
9331 s = htab->root.sgot;
9332 if (s == NULL)
9333 return TRUE;
9334
9335 dynobj = elf_hash_table (info)->dynobj;
9336 g = htab->got_info;
9337
9338 /* Allocate room for the reserved entries. VxWorks always reserves
9339 3 entries; other objects only reserve 2 entries. */
9340 BFD_ASSERT (g->assigned_low_gotno == 0);
9341 if (htab->is_vxworks)
9342 htab->reserved_gotno = 3;
9343 else
9344 htab->reserved_gotno = 2;
9345 g->local_gotno += htab->reserved_gotno;
9346 g->assigned_low_gotno = htab->reserved_gotno;
9347
9348 /* Decide which symbols need to go in the global part of the GOT and
9349 count the number of reloc-only GOT symbols. */
9350 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9351
9352 if (!mips_elf_resolve_final_got_entries (info, g))
9353 return FALSE;
9354
9355 /* Calculate the total loadable size of the output. That
9356 will give us the maximum number of GOT_PAGE entries
9357 required. */
9358 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9359 {
9360 asection *subsection;
9361
9362 for (subsection = ibfd->sections;
9363 subsection;
9364 subsection = subsection->next)
9365 {
9366 if ((subsection->flags & SEC_ALLOC) == 0)
9367 continue;
9368 loadable_size += ((subsection->size + 0xf)
9369 &~ (bfd_size_type) 0xf);
9370 }
9371 }
9372
9373 if (htab->is_vxworks)
9374 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9375 relocations against local symbols evaluate to "G", and the EABI does
9376 not include R_MIPS_GOT_PAGE. */
9377 page_gotno = 0;
9378 else
9379 /* Assume there are two loadable segments consisting of contiguous
9380 sections. Is 5 enough? */
9381 page_gotno = (loadable_size >> 16) + 5;
9382
9383 /* Choose the smaller of the two page estimates; both are intended to be
9384 conservative. */
9385 if (page_gotno > g->page_gotno)
9386 page_gotno = g->page_gotno;
9387
9388 g->local_gotno += page_gotno;
9389 g->assigned_high_gotno = g->local_gotno - 1;
9390
9391 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9392 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9393 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9394
9395 /* VxWorks does not support multiple GOTs. It initializes $gp to
9396 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9397 dynamic loader. */
9398 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9399 {
9400 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9401 return FALSE;
9402 }
9403 else
9404 {
9405 /* Record that all bfds use G. This also has the effect of freeing
9406 the per-bfd GOTs, which we no longer need. */
9407 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9408 if (mips_elf_bfd_got (ibfd, FALSE))
9409 mips_elf_replace_bfd_got (ibfd, g);
9410 mips_elf_replace_bfd_got (output_bfd, g);
9411
9412 /* Set up TLS entries. */
9413 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9414 tga.info = info;
9415 tga.g = g;
9416 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9417 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9418 if (!tga.g)
9419 return FALSE;
9420 BFD_ASSERT (g->tls_assigned_gotno
9421 == g->global_gotno + g->local_gotno + g->tls_gotno);
9422
9423 /* Each VxWorks GOT entry needs an explicit relocation. */
9424 if (htab->is_vxworks && bfd_link_pic (info))
9425 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9426
9427 /* Allocate room for the TLS relocations. */
9428 if (g->relocs)
9429 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9430 }
9431
9432 return TRUE;
9433 }
9434
9435 /* Estimate the size of the .MIPS.stubs section. */
9436
9437 static void
9438 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9439 {
9440 struct mips_elf_link_hash_table *htab;
9441 bfd_size_type dynsymcount;
9442
9443 htab = mips_elf_hash_table (info);
9444 BFD_ASSERT (htab != NULL);
9445
9446 if (htab->lazy_stub_count == 0)
9447 return;
9448
9449 /* IRIX rld assumes that a function stub isn't at the end of the .text
9450 section, so add a dummy entry to the end. */
9451 htab->lazy_stub_count++;
9452
9453 /* Get a worst-case estimate of the number of dynamic symbols needed.
9454 At this point, dynsymcount does not account for section symbols
9455 and count_section_dynsyms may overestimate the number that will
9456 be needed. */
9457 dynsymcount = (elf_hash_table (info)->dynsymcount
9458 + count_section_dynsyms (output_bfd, info));
9459
9460 /* Determine the size of one stub entry. There's no disadvantage
9461 from using microMIPS code here, so for the sake of pure-microMIPS
9462 binaries we prefer it whenever there's any microMIPS code in
9463 output produced at all. This has a benefit of stubs being
9464 shorter by 4 bytes each too, unless in the insn32 mode. */
9465 if (!MICROMIPS_P (output_bfd))
9466 htab->function_stub_size = (dynsymcount > 0x10000
9467 ? MIPS_FUNCTION_STUB_BIG_SIZE
9468 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9469 else if (htab->insn32)
9470 htab->function_stub_size = (dynsymcount > 0x10000
9471 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9472 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9473 else
9474 htab->function_stub_size = (dynsymcount > 0x10000
9475 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9476 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9477
9478 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9479 }
9480
9481 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9482 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9483 stub, allocate an entry in the stubs section. */
9484
9485 static bfd_boolean
9486 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9487 {
9488 struct mips_htab_traverse_info *hti = data;
9489 struct mips_elf_link_hash_table *htab;
9490 struct bfd_link_info *info;
9491 bfd *output_bfd;
9492
9493 info = hti->info;
9494 output_bfd = hti->output_bfd;
9495 htab = mips_elf_hash_table (info);
9496 BFD_ASSERT (htab != NULL);
9497
9498 if (h->needs_lazy_stub)
9499 {
9500 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9501 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9502 bfd_vma isa_bit = micromips_p;
9503
9504 BFD_ASSERT (htab->root.dynobj != NULL);
9505 if (h->root.plt.plist == NULL)
9506 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9507 if (h->root.plt.plist == NULL)
9508 {
9509 hti->error = TRUE;
9510 return FALSE;
9511 }
9512 h->root.root.u.def.section = htab->sstubs;
9513 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9514 h->root.plt.plist->stub_offset = htab->sstubs->size;
9515 h->root.other = other;
9516 htab->sstubs->size += htab->function_stub_size;
9517 }
9518 return TRUE;
9519 }
9520
9521 /* Allocate offsets in the stubs section to each symbol that needs one.
9522 Set the final size of the .MIPS.stub section. */
9523
9524 static bfd_boolean
9525 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9526 {
9527 bfd *output_bfd = info->output_bfd;
9528 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9529 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9530 bfd_vma isa_bit = micromips_p;
9531 struct mips_elf_link_hash_table *htab;
9532 struct mips_htab_traverse_info hti;
9533 struct elf_link_hash_entry *h;
9534 bfd *dynobj;
9535
9536 htab = mips_elf_hash_table (info);
9537 BFD_ASSERT (htab != NULL);
9538
9539 if (htab->lazy_stub_count == 0)
9540 return TRUE;
9541
9542 htab->sstubs->size = 0;
9543 hti.info = info;
9544 hti.output_bfd = output_bfd;
9545 hti.error = FALSE;
9546 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9547 if (hti.error)
9548 return FALSE;
9549 htab->sstubs->size += htab->function_stub_size;
9550 BFD_ASSERT (htab->sstubs->size
9551 == htab->lazy_stub_count * htab->function_stub_size);
9552
9553 dynobj = elf_hash_table (info)->dynobj;
9554 BFD_ASSERT (dynobj != NULL);
9555 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9556 if (h == NULL)
9557 return FALSE;
9558 h->root.u.def.value = isa_bit;
9559 h->other = other;
9560 h->type = STT_FUNC;
9561
9562 return TRUE;
9563 }
9564
9565 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9566 bfd_link_info. If H uses the address of a PLT entry as the value
9567 of the symbol, then set the entry in the symbol table now. Prefer
9568 a standard MIPS PLT entry. */
9569
9570 static bfd_boolean
9571 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9572 {
9573 struct bfd_link_info *info = data;
9574 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9575 struct mips_elf_link_hash_table *htab;
9576 unsigned int other;
9577 bfd_vma isa_bit;
9578 bfd_vma val;
9579
9580 htab = mips_elf_hash_table (info);
9581 BFD_ASSERT (htab != NULL);
9582
9583 if (h->use_plt_entry)
9584 {
9585 BFD_ASSERT (h->root.plt.plist != NULL);
9586 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9587 || h->root.plt.plist->comp_offset != MINUS_ONE);
9588
9589 val = htab->plt_header_size;
9590 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9591 {
9592 isa_bit = 0;
9593 val += h->root.plt.plist->mips_offset;
9594 other = 0;
9595 }
9596 else
9597 {
9598 isa_bit = 1;
9599 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9600 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9601 }
9602 val += isa_bit;
9603 /* For VxWorks, point at the PLT load stub rather than the lazy
9604 resolution stub; this stub will become the canonical function
9605 address. */
9606 if (htab->is_vxworks)
9607 val += 8;
9608
9609 h->root.root.u.def.section = htab->root.splt;
9610 h->root.root.u.def.value = val;
9611 h->root.other = other;
9612 }
9613
9614 return TRUE;
9615 }
9616
9617 /* Set the sizes of the dynamic sections. */
9618
9619 bfd_boolean
9620 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9621 struct bfd_link_info *info)
9622 {
9623 bfd *dynobj;
9624 asection *s, *sreldyn;
9625 bfd_boolean reltext;
9626 struct mips_elf_link_hash_table *htab;
9627
9628 htab = mips_elf_hash_table (info);
9629 BFD_ASSERT (htab != NULL);
9630 dynobj = elf_hash_table (info)->dynobj;
9631 BFD_ASSERT (dynobj != NULL);
9632
9633 if (elf_hash_table (info)->dynamic_sections_created)
9634 {
9635 /* Set the contents of the .interp section to the interpreter. */
9636 if (bfd_link_executable (info) && !info->nointerp)
9637 {
9638 s = bfd_get_linker_section (dynobj, ".interp");
9639 BFD_ASSERT (s != NULL);
9640 s->size
9641 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9642 s->contents
9643 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9644 }
9645
9646 /* Figure out the size of the PLT header if we know that we
9647 are using it. For the sake of cache alignment always use
9648 a standard header whenever any standard entries are present
9649 even if microMIPS entries are present as well. This also
9650 lets the microMIPS header rely on the value of $v0 only set
9651 by microMIPS entries, for a small size reduction.
9652
9653 Set symbol table entry values for symbols that use the
9654 address of their PLT entry now that we can calculate it.
9655
9656 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9657 haven't already in _bfd_elf_create_dynamic_sections. */
9658 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9659 {
9660 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9661 && !htab->plt_mips_offset);
9662 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9663 bfd_vma isa_bit = micromips_p;
9664 struct elf_link_hash_entry *h;
9665 bfd_vma size;
9666
9667 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9668 BFD_ASSERT (htab->root.sgotplt->size == 0);
9669 BFD_ASSERT (htab->root.splt->size == 0);
9670
9671 if (htab->is_vxworks && bfd_link_pic (info))
9672 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9673 else if (htab->is_vxworks)
9674 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9675 else if (ABI_64_P (output_bfd))
9676 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9677 else if (ABI_N32_P (output_bfd))
9678 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9679 else if (!micromips_p)
9680 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9681 else if (htab->insn32)
9682 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9683 else
9684 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9685
9686 htab->plt_header_is_comp = micromips_p;
9687 htab->plt_header_size = size;
9688 htab->root.splt->size = (size
9689 + htab->plt_mips_offset
9690 + htab->plt_comp_offset);
9691 htab->root.sgotplt->size = (htab->plt_got_index
9692 * MIPS_ELF_GOT_SIZE (dynobj));
9693
9694 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9695
9696 if (htab->root.hplt == NULL)
9697 {
9698 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9699 "_PROCEDURE_LINKAGE_TABLE_");
9700 htab->root.hplt = h;
9701 if (h == NULL)
9702 return FALSE;
9703 }
9704
9705 h = htab->root.hplt;
9706 h->root.u.def.value = isa_bit;
9707 h->other = other;
9708 h->type = STT_FUNC;
9709 }
9710 }
9711
9712 /* Allocate space for global sym dynamic relocs. */
9713 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9714
9715 mips_elf_estimate_stub_size (output_bfd, info);
9716
9717 if (!mips_elf_lay_out_got (output_bfd, info))
9718 return FALSE;
9719
9720 mips_elf_lay_out_lazy_stubs (info);
9721
9722 /* The check_relocs and adjust_dynamic_symbol entry points have
9723 determined the sizes of the various dynamic sections. Allocate
9724 memory for them. */
9725 reltext = FALSE;
9726 for (s = dynobj->sections; s != NULL; s = s->next)
9727 {
9728 const char *name;
9729
9730 /* It's OK to base decisions on the section name, because none
9731 of the dynobj section names depend upon the input files. */
9732 name = bfd_get_section_name (dynobj, s);
9733
9734 if ((s->flags & SEC_LINKER_CREATED) == 0)
9735 continue;
9736
9737 if (CONST_STRNEQ (name, ".rel"))
9738 {
9739 if (s->size != 0)
9740 {
9741 const char *outname;
9742 asection *target;
9743
9744 /* If this relocation section applies to a read only
9745 section, then we probably need a DT_TEXTREL entry.
9746 If the relocation section is .rel(a).dyn, we always
9747 assert a DT_TEXTREL entry rather than testing whether
9748 there exists a relocation to a read only section or
9749 not. */
9750 outname = bfd_get_section_name (output_bfd,
9751 s->output_section);
9752 target = bfd_get_section_by_name (output_bfd, outname + 4);
9753 if ((target != NULL
9754 && (target->flags & SEC_READONLY) != 0
9755 && (target->flags & SEC_ALLOC) != 0)
9756 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9757 reltext = TRUE;
9758
9759 /* We use the reloc_count field as a counter if we need
9760 to copy relocs into the output file. */
9761 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9762 s->reloc_count = 0;
9763
9764 /* If combreloc is enabled, elf_link_sort_relocs() will
9765 sort relocations, but in a different way than we do,
9766 and before we're done creating relocations. Also, it
9767 will move them around between input sections'
9768 relocation's contents, so our sorting would be
9769 broken, so don't let it run. */
9770 info->combreloc = 0;
9771 }
9772 }
9773 else if (bfd_link_executable (info)
9774 && ! mips_elf_hash_table (info)->use_rld_obj_head
9775 && CONST_STRNEQ (name, ".rld_map"))
9776 {
9777 /* We add a room for __rld_map. It will be filled in by the
9778 rtld to contain a pointer to the _r_debug structure. */
9779 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9780 }
9781 else if (SGI_COMPAT (output_bfd)
9782 && CONST_STRNEQ (name, ".compact_rel"))
9783 s->size += mips_elf_hash_table (info)->compact_rel_size;
9784 else if (s == htab->root.splt)
9785 {
9786 /* If the last PLT entry has a branch delay slot, allocate
9787 room for an extra nop to fill the delay slot. This is
9788 for CPUs without load interlocking. */
9789 if (! LOAD_INTERLOCKS_P (output_bfd)
9790 && ! htab->is_vxworks && s->size > 0)
9791 s->size += 4;
9792 }
9793 else if (! CONST_STRNEQ (name, ".init")
9794 && s != htab->root.sgot
9795 && s != htab->root.sgotplt
9796 && s != htab->sstubs
9797 && s != htab->root.sdynbss
9798 && s != htab->root.sdynrelro)
9799 {
9800 /* It's not one of our sections, so don't allocate space. */
9801 continue;
9802 }
9803
9804 if (s->size == 0)
9805 {
9806 s->flags |= SEC_EXCLUDE;
9807 continue;
9808 }
9809
9810 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9811 continue;
9812
9813 /* Allocate memory for the section contents. */
9814 s->contents = bfd_zalloc (dynobj, s->size);
9815 if (s->contents == NULL)
9816 {
9817 bfd_set_error (bfd_error_no_memory);
9818 return FALSE;
9819 }
9820 }
9821
9822 if (elf_hash_table (info)->dynamic_sections_created)
9823 {
9824 /* Add some entries to the .dynamic section. We fill in the
9825 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9826 must add the entries now so that we get the correct size for
9827 the .dynamic section. */
9828
9829 /* SGI object has the equivalence of DT_DEBUG in the
9830 DT_MIPS_RLD_MAP entry. This must come first because glibc
9831 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9832 may only look at the first one they see. */
9833 if (!bfd_link_pic (info)
9834 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9835 return FALSE;
9836
9837 if (bfd_link_executable (info)
9838 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9839 return FALSE;
9840
9841 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9842 used by the debugger. */
9843 if (bfd_link_executable (info)
9844 && !SGI_COMPAT (output_bfd)
9845 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9846 return FALSE;
9847
9848 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9849 info->flags |= DF_TEXTREL;
9850
9851 if ((info->flags & DF_TEXTREL) != 0)
9852 {
9853 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9854 return FALSE;
9855
9856 /* Clear the DF_TEXTREL flag. It will be set again if we
9857 write out an actual text relocation; we may not, because
9858 at this point we do not know whether e.g. any .eh_frame
9859 absolute relocations have been converted to PC-relative. */
9860 info->flags &= ~DF_TEXTREL;
9861 }
9862
9863 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9864 return FALSE;
9865
9866 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9867 if (htab->is_vxworks)
9868 {
9869 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9870 use any of the DT_MIPS_* tags. */
9871 if (sreldyn && sreldyn->size > 0)
9872 {
9873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9874 return FALSE;
9875
9876 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9877 return FALSE;
9878
9879 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9880 return FALSE;
9881 }
9882 }
9883 else
9884 {
9885 if (sreldyn && sreldyn->size > 0)
9886 {
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9888 return FALSE;
9889
9890 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9891 return FALSE;
9892
9893 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9894 return FALSE;
9895 }
9896
9897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9898 return FALSE;
9899
9900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9901 return FALSE;
9902
9903 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9904 return FALSE;
9905
9906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9907 return FALSE;
9908
9909 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9910 return FALSE;
9911
9912 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9913 return FALSE;
9914
9915 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9916 return FALSE;
9917
9918 if (IRIX_COMPAT (dynobj) == ict_irix5
9919 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9920 return FALSE;
9921
9922 if (IRIX_COMPAT (dynobj) == ict_irix6
9923 && (bfd_get_section_by_name
9924 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9925 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9926 return FALSE;
9927 }
9928 if (htab->root.splt->size > 0)
9929 {
9930 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9931 return FALSE;
9932
9933 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9934 return FALSE;
9935
9936 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9937 return FALSE;
9938
9939 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9940 return FALSE;
9941 }
9942 if (htab->is_vxworks
9943 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9944 return FALSE;
9945 }
9946
9947 return TRUE;
9948 }
9949 \f
9950 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9951 Adjust its R_ADDEND field so that it is correct for the output file.
9952 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9953 and sections respectively; both use symbol indexes. */
9954
9955 static void
9956 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9957 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9958 asection **local_sections, Elf_Internal_Rela *rel)
9959 {
9960 unsigned int r_type, r_symndx;
9961 Elf_Internal_Sym *sym;
9962 asection *sec;
9963
9964 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9965 {
9966 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9967 if (gprel16_reloc_p (r_type)
9968 || r_type == R_MIPS_GPREL32
9969 || literal_reloc_p (r_type))
9970 {
9971 rel->r_addend += _bfd_get_gp_value (input_bfd);
9972 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9973 }
9974
9975 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9976 sym = local_syms + r_symndx;
9977
9978 /* Adjust REL's addend to account for section merging. */
9979 if (!bfd_link_relocatable (info))
9980 {
9981 sec = local_sections[r_symndx];
9982 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9983 }
9984
9985 /* This would normally be done by the rela_normal code in elflink.c. */
9986 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9987 rel->r_addend += local_sections[r_symndx]->output_offset;
9988 }
9989 }
9990
9991 /* Handle relocations against symbols from removed linkonce sections,
9992 or sections discarded by a linker script. We use this wrapper around
9993 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9994 on 64-bit ELF targets. In this case for any relocation handled, which
9995 always be the first in a triplet, the remaining two have to be processed
9996 together with the first, even if they are R_MIPS_NONE. It is the symbol
9997 index referred by the first reloc that applies to all the three and the
9998 remaining two never refer to an object symbol. And it is the final
9999 relocation (the last non-null one) that determines the output field of
10000 the whole relocation so retrieve the corresponding howto structure for
10001 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10002
10003 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10004 and therefore requires to be pasted in a loop. It also defines a block
10005 and does not protect any of its arguments, hence the extra brackets. */
10006
10007 static void
10008 mips_reloc_against_discarded_section (bfd *output_bfd,
10009 struct bfd_link_info *info,
10010 bfd *input_bfd, asection *input_section,
10011 Elf_Internal_Rela **rel,
10012 const Elf_Internal_Rela **relend,
10013 bfd_boolean rel_reloc,
10014 reloc_howto_type *howto,
10015 bfd_byte *contents)
10016 {
10017 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10018 int count = bed->s->int_rels_per_ext_rel;
10019 unsigned int r_type;
10020 int i;
10021
10022 for (i = count - 1; i > 0; i--)
10023 {
10024 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10025 if (r_type != R_MIPS_NONE)
10026 {
10027 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10028 break;
10029 }
10030 }
10031 do
10032 {
10033 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10034 (*rel), count, (*relend),
10035 howto, i, contents);
10036 }
10037 while (0);
10038 }
10039
10040 /* Relocate a MIPS ELF section. */
10041
10042 bfd_boolean
10043 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10044 bfd *input_bfd, asection *input_section,
10045 bfd_byte *contents, Elf_Internal_Rela *relocs,
10046 Elf_Internal_Sym *local_syms,
10047 asection **local_sections)
10048 {
10049 Elf_Internal_Rela *rel;
10050 const Elf_Internal_Rela *relend;
10051 bfd_vma addend = 0;
10052 bfd_boolean use_saved_addend_p = FALSE;
10053
10054 relend = relocs + input_section->reloc_count;
10055 for (rel = relocs; rel < relend; ++rel)
10056 {
10057 const char *name;
10058 bfd_vma value = 0;
10059 reloc_howto_type *howto;
10060 bfd_boolean cross_mode_jump_p = FALSE;
10061 /* TRUE if the relocation is a RELA relocation, rather than a
10062 REL relocation. */
10063 bfd_boolean rela_relocation_p = TRUE;
10064 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10065 const char *msg;
10066 unsigned long r_symndx;
10067 asection *sec;
10068 Elf_Internal_Shdr *symtab_hdr;
10069 struct elf_link_hash_entry *h;
10070 bfd_boolean rel_reloc;
10071
10072 rel_reloc = (NEWABI_P (input_bfd)
10073 && mips_elf_rel_relocation_p (input_bfd, input_section,
10074 relocs, rel));
10075 /* Find the relocation howto for this relocation. */
10076 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10077
10078 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10079 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10080 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10081 {
10082 sec = local_sections[r_symndx];
10083 h = NULL;
10084 }
10085 else
10086 {
10087 unsigned long extsymoff;
10088
10089 extsymoff = 0;
10090 if (!elf_bad_symtab (input_bfd))
10091 extsymoff = symtab_hdr->sh_info;
10092 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10093 while (h->root.type == bfd_link_hash_indirect
10094 || h->root.type == bfd_link_hash_warning)
10095 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10096
10097 sec = NULL;
10098 if (h->root.type == bfd_link_hash_defined
10099 || h->root.type == bfd_link_hash_defweak)
10100 sec = h->root.u.def.section;
10101 }
10102
10103 if (sec != NULL && discarded_section (sec))
10104 {
10105 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10106 input_section, &rel, &relend,
10107 rel_reloc, howto, contents);
10108 continue;
10109 }
10110
10111 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10112 {
10113 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10114 64-bit code, but make sure all their addresses are in the
10115 lowermost or uppermost 32-bit section of the 64-bit address
10116 space. Thus, when they use an R_MIPS_64 they mean what is
10117 usually meant by R_MIPS_32, with the exception that the
10118 stored value is sign-extended to 64 bits. */
10119 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10120
10121 /* On big-endian systems, we need to lie about the position
10122 of the reloc. */
10123 if (bfd_big_endian (input_bfd))
10124 rel->r_offset += 4;
10125 }
10126
10127 if (!use_saved_addend_p)
10128 {
10129 /* If these relocations were originally of the REL variety,
10130 we must pull the addend out of the field that will be
10131 relocated. Otherwise, we simply use the contents of the
10132 RELA relocation. */
10133 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10134 relocs, rel))
10135 {
10136 rela_relocation_p = FALSE;
10137 addend = mips_elf_read_rel_addend (input_bfd, rel,
10138 howto, contents);
10139 if (hi16_reloc_p (r_type)
10140 || (got16_reloc_p (r_type)
10141 && mips_elf_local_relocation_p (input_bfd, rel,
10142 local_sections)))
10143 {
10144 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10145 contents, &addend))
10146 {
10147 if (h)
10148 name = h->root.root.string;
10149 else
10150 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10151 local_syms + r_symndx,
10152 sec);
10153 _bfd_error_handler
10154 /* xgettext:c-format */
10155 (_("%B: Can't find matching LO16 reloc against `%s'"
10156 " for %s at %#Lx in section `%A'"),
10157 input_bfd, name,
10158 howto->name, rel->r_offset, input_section);
10159 }
10160 }
10161 else
10162 addend <<= howto->rightshift;
10163 }
10164 else
10165 addend = rel->r_addend;
10166 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10167 local_syms, local_sections, rel);
10168 }
10169
10170 if (bfd_link_relocatable (info))
10171 {
10172 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10173 && bfd_big_endian (input_bfd))
10174 rel->r_offset -= 4;
10175
10176 if (!rela_relocation_p && rel->r_addend)
10177 {
10178 addend += rel->r_addend;
10179 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10180 addend = mips_elf_high (addend);
10181 else if (r_type == R_MIPS_HIGHER)
10182 addend = mips_elf_higher (addend);
10183 else if (r_type == R_MIPS_HIGHEST)
10184 addend = mips_elf_highest (addend);
10185 else
10186 addend >>= howto->rightshift;
10187
10188 /* We use the source mask, rather than the destination
10189 mask because the place to which we are writing will be
10190 source of the addend in the final link. */
10191 addend &= howto->src_mask;
10192
10193 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10194 /* See the comment above about using R_MIPS_64 in the 32-bit
10195 ABI. Here, we need to update the addend. It would be
10196 possible to get away with just using the R_MIPS_32 reloc
10197 but for endianness. */
10198 {
10199 bfd_vma sign_bits;
10200 bfd_vma low_bits;
10201 bfd_vma high_bits;
10202
10203 if (addend & ((bfd_vma) 1 << 31))
10204 #ifdef BFD64
10205 sign_bits = ((bfd_vma) 1 << 32) - 1;
10206 #else
10207 sign_bits = -1;
10208 #endif
10209 else
10210 sign_bits = 0;
10211
10212 /* If we don't know that we have a 64-bit type,
10213 do two separate stores. */
10214 if (bfd_big_endian (input_bfd))
10215 {
10216 /* Store the sign-bits (which are most significant)
10217 first. */
10218 low_bits = sign_bits;
10219 high_bits = addend;
10220 }
10221 else
10222 {
10223 low_bits = addend;
10224 high_bits = sign_bits;
10225 }
10226 bfd_put_32 (input_bfd, low_bits,
10227 contents + rel->r_offset);
10228 bfd_put_32 (input_bfd, high_bits,
10229 contents + rel->r_offset + 4);
10230 continue;
10231 }
10232
10233 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10234 input_bfd, input_section,
10235 contents, FALSE))
10236 return FALSE;
10237 }
10238
10239 /* Go on to the next relocation. */
10240 continue;
10241 }
10242
10243 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10244 relocations for the same offset. In that case we are
10245 supposed to treat the output of each relocation as the addend
10246 for the next. */
10247 if (rel + 1 < relend
10248 && rel->r_offset == rel[1].r_offset
10249 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10250 use_saved_addend_p = TRUE;
10251 else
10252 use_saved_addend_p = FALSE;
10253
10254 /* Figure out what value we are supposed to relocate. */
10255 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10256 input_section, info, rel,
10257 addend, howto, local_syms,
10258 local_sections, &value,
10259 &name, &cross_mode_jump_p,
10260 use_saved_addend_p))
10261 {
10262 case bfd_reloc_continue:
10263 /* There's nothing to do. */
10264 continue;
10265
10266 case bfd_reloc_undefined:
10267 /* mips_elf_calculate_relocation already called the
10268 undefined_symbol callback. There's no real point in
10269 trying to perform the relocation at this point, so we
10270 just skip ahead to the next relocation. */
10271 continue;
10272
10273 case bfd_reloc_notsupported:
10274 msg = _("internal error: unsupported relocation error");
10275 info->callbacks->warning
10276 (info, msg, name, input_bfd, input_section, rel->r_offset);
10277 return FALSE;
10278
10279 case bfd_reloc_overflow:
10280 if (use_saved_addend_p)
10281 /* Ignore overflow until we reach the last relocation for
10282 a given location. */
10283 ;
10284 else
10285 {
10286 struct mips_elf_link_hash_table *htab;
10287
10288 htab = mips_elf_hash_table (info);
10289 BFD_ASSERT (htab != NULL);
10290 BFD_ASSERT (name != NULL);
10291 if (!htab->small_data_overflow_reported
10292 && (gprel16_reloc_p (howto->type)
10293 || literal_reloc_p (howto->type)))
10294 {
10295 msg = _("small-data section exceeds 64KB;"
10296 " lower small-data size limit (see option -G)");
10297
10298 htab->small_data_overflow_reported = TRUE;
10299 (*info->callbacks->einfo) ("%P: %s\n", msg);
10300 }
10301 (*info->callbacks->reloc_overflow)
10302 (info, NULL, name, howto->name, (bfd_vma) 0,
10303 input_bfd, input_section, rel->r_offset);
10304 }
10305 break;
10306
10307 case bfd_reloc_ok:
10308 break;
10309
10310 case bfd_reloc_outofrange:
10311 msg = NULL;
10312 if (jal_reloc_p (howto->type))
10313 msg = (cross_mode_jump_p
10314 ? _("Cannot convert a jump to JALX "
10315 "for a non-word-aligned address")
10316 : (howto->type == R_MIPS16_26
10317 ? _("Jump to a non-word-aligned address")
10318 : _("Jump to a non-instruction-aligned address")));
10319 else if (b_reloc_p (howto->type))
10320 msg = (cross_mode_jump_p
10321 ? _("Cannot convert a branch to JALX "
10322 "for a non-word-aligned address")
10323 : _("Branch to a non-instruction-aligned address"));
10324 else if (aligned_pcrel_reloc_p (howto->type))
10325 msg = _("PC-relative load from unaligned address");
10326 if (msg)
10327 {
10328 info->callbacks->einfo
10329 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10330 break;
10331 }
10332 /* Fall through. */
10333
10334 default:
10335 abort ();
10336 break;
10337 }
10338
10339 /* If we've got another relocation for the address, keep going
10340 until we reach the last one. */
10341 if (use_saved_addend_p)
10342 {
10343 addend = value;
10344 continue;
10345 }
10346
10347 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10348 /* See the comment above about using R_MIPS_64 in the 32-bit
10349 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10350 that calculated the right value. Now, however, we
10351 sign-extend the 32-bit result to 64-bits, and store it as a
10352 64-bit value. We are especially generous here in that we
10353 go to extreme lengths to support this usage on systems with
10354 only a 32-bit VMA. */
10355 {
10356 bfd_vma sign_bits;
10357 bfd_vma low_bits;
10358 bfd_vma high_bits;
10359
10360 if (value & ((bfd_vma) 1 << 31))
10361 #ifdef BFD64
10362 sign_bits = ((bfd_vma) 1 << 32) - 1;
10363 #else
10364 sign_bits = -1;
10365 #endif
10366 else
10367 sign_bits = 0;
10368
10369 /* If we don't know that we have a 64-bit type,
10370 do two separate stores. */
10371 if (bfd_big_endian (input_bfd))
10372 {
10373 /* Undo what we did above. */
10374 rel->r_offset -= 4;
10375 /* Store the sign-bits (which are most significant)
10376 first. */
10377 low_bits = sign_bits;
10378 high_bits = value;
10379 }
10380 else
10381 {
10382 low_bits = value;
10383 high_bits = sign_bits;
10384 }
10385 bfd_put_32 (input_bfd, low_bits,
10386 contents + rel->r_offset);
10387 bfd_put_32 (input_bfd, high_bits,
10388 contents + rel->r_offset + 4);
10389 continue;
10390 }
10391
10392 /* Actually perform the relocation. */
10393 if (! mips_elf_perform_relocation (info, howto, rel, value,
10394 input_bfd, input_section,
10395 contents, cross_mode_jump_p))
10396 return FALSE;
10397 }
10398
10399 return TRUE;
10400 }
10401 \f
10402 /* A function that iterates over each entry in la25_stubs and fills
10403 in the code for each one. DATA points to a mips_htab_traverse_info. */
10404
10405 static int
10406 mips_elf_create_la25_stub (void **slot, void *data)
10407 {
10408 struct mips_htab_traverse_info *hti;
10409 struct mips_elf_link_hash_table *htab;
10410 struct mips_elf_la25_stub *stub;
10411 asection *s;
10412 bfd_byte *loc;
10413 bfd_vma offset, target, target_high, target_low;
10414
10415 stub = (struct mips_elf_la25_stub *) *slot;
10416 hti = (struct mips_htab_traverse_info *) data;
10417 htab = mips_elf_hash_table (hti->info);
10418 BFD_ASSERT (htab != NULL);
10419
10420 /* Create the section contents, if we haven't already. */
10421 s = stub->stub_section;
10422 loc = s->contents;
10423 if (loc == NULL)
10424 {
10425 loc = bfd_malloc (s->size);
10426 if (loc == NULL)
10427 {
10428 hti->error = TRUE;
10429 return FALSE;
10430 }
10431 s->contents = loc;
10432 }
10433
10434 /* Work out where in the section this stub should go. */
10435 offset = stub->offset;
10436
10437 /* Work out the target address. */
10438 target = mips_elf_get_la25_target (stub, &s);
10439 target += s->output_section->vma + s->output_offset;
10440
10441 target_high = ((target + 0x8000) >> 16) & 0xffff;
10442 target_low = (target & 0xffff);
10443
10444 if (stub->stub_section != htab->strampoline)
10445 {
10446 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10447 of the section and write the two instructions at the end. */
10448 memset (loc, 0, offset);
10449 loc += offset;
10450 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10451 {
10452 bfd_put_micromips_32 (hti->output_bfd,
10453 LA25_LUI_MICROMIPS (target_high),
10454 loc);
10455 bfd_put_micromips_32 (hti->output_bfd,
10456 LA25_ADDIU_MICROMIPS (target_low),
10457 loc + 4);
10458 }
10459 else
10460 {
10461 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10462 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10463 }
10464 }
10465 else
10466 {
10467 /* This is trampoline. */
10468 loc += offset;
10469 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10470 {
10471 bfd_put_micromips_32 (hti->output_bfd,
10472 LA25_LUI_MICROMIPS (target_high), loc);
10473 bfd_put_micromips_32 (hti->output_bfd,
10474 LA25_J_MICROMIPS (target), loc + 4);
10475 bfd_put_micromips_32 (hti->output_bfd,
10476 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10477 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10478 }
10479 else
10480 {
10481 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10482 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10483 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10484 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10485 }
10486 }
10487 return TRUE;
10488 }
10489
10490 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10491 adjust it appropriately now. */
10492
10493 static void
10494 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10495 const char *name, Elf_Internal_Sym *sym)
10496 {
10497 /* The linker script takes care of providing names and values for
10498 these, but we must place them into the right sections. */
10499 static const char* const text_section_symbols[] = {
10500 "_ftext",
10501 "_etext",
10502 "__dso_displacement",
10503 "__elf_header",
10504 "__program_header_table",
10505 NULL
10506 };
10507
10508 static const char* const data_section_symbols[] = {
10509 "_fdata",
10510 "_edata",
10511 "_end",
10512 "_fbss",
10513 NULL
10514 };
10515
10516 const char* const *p;
10517 int i;
10518
10519 for (i = 0; i < 2; ++i)
10520 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10521 *p;
10522 ++p)
10523 if (strcmp (*p, name) == 0)
10524 {
10525 /* All of these symbols are given type STT_SECTION by the
10526 IRIX6 linker. */
10527 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10528 sym->st_other = STO_PROTECTED;
10529
10530 /* The IRIX linker puts these symbols in special sections. */
10531 if (i == 0)
10532 sym->st_shndx = SHN_MIPS_TEXT;
10533 else
10534 sym->st_shndx = SHN_MIPS_DATA;
10535
10536 break;
10537 }
10538 }
10539
10540 /* Finish up dynamic symbol handling. We set the contents of various
10541 dynamic sections here. */
10542
10543 bfd_boolean
10544 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10545 struct bfd_link_info *info,
10546 struct elf_link_hash_entry *h,
10547 Elf_Internal_Sym *sym)
10548 {
10549 bfd *dynobj;
10550 asection *sgot;
10551 struct mips_got_info *g, *gg;
10552 const char *name;
10553 int idx;
10554 struct mips_elf_link_hash_table *htab;
10555 struct mips_elf_link_hash_entry *hmips;
10556
10557 htab = mips_elf_hash_table (info);
10558 BFD_ASSERT (htab != NULL);
10559 dynobj = elf_hash_table (info)->dynobj;
10560 hmips = (struct mips_elf_link_hash_entry *) h;
10561
10562 BFD_ASSERT (!htab->is_vxworks);
10563
10564 if (h->plt.plist != NULL
10565 && (h->plt.plist->mips_offset != MINUS_ONE
10566 || h->plt.plist->comp_offset != MINUS_ONE))
10567 {
10568 /* We've decided to create a PLT entry for this symbol. */
10569 bfd_byte *loc;
10570 bfd_vma header_address, got_address;
10571 bfd_vma got_address_high, got_address_low, load;
10572 bfd_vma got_index;
10573 bfd_vma isa_bit;
10574
10575 got_index = h->plt.plist->gotplt_index;
10576
10577 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10578 BFD_ASSERT (h->dynindx != -1);
10579 BFD_ASSERT (htab->root.splt != NULL);
10580 BFD_ASSERT (got_index != MINUS_ONE);
10581 BFD_ASSERT (!h->def_regular);
10582
10583 /* Calculate the address of the PLT header. */
10584 isa_bit = htab->plt_header_is_comp;
10585 header_address = (htab->root.splt->output_section->vma
10586 + htab->root.splt->output_offset + isa_bit);
10587
10588 /* Calculate the address of the .got.plt entry. */
10589 got_address = (htab->root.sgotplt->output_section->vma
10590 + htab->root.sgotplt->output_offset
10591 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10592
10593 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10594 got_address_low = got_address & 0xffff;
10595
10596 /* Initially point the .got.plt entry at the PLT header. */
10597 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10598 if (ABI_64_P (output_bfd))
10599 bfd_put_64 (output_bfd, header_address, loc);
10600 else
10601 bfd_put_32 (output_bfd, header_address, loc);
10602
10603 /* Now handle the PLT itself. First the standard entry (the order
10604 does not matter, we just have to pick one). */
10605 if (h->plt.plist->mips_offset != MINUS_ONE)
10606 {
10607 const bfd_vma *plt_entry;
10608 bfd_vma plt_offset;
10609
10610 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10611
10612 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10613
10614 /* Find out where the .plt entry should go. */
10615 loc = htab->root.splt->contents + plt_offset;
10616
10617 /* Pick the load opcode. */
10618 load = MIPS_ELF_LOAD_WORD (output_bfd);
10619
10620 /* Fill in the PLT entry itself. */
10621
10622 if (MIPSR6_P (output_bfd))
10623 plt_entry = mipsr6_exec_plt_entry;
10624 else
10625 plt_entry = mips_exec_plt_entry;
10626 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10627 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10628 loc + 4);
10629
10630 if (! LOAD_INTERLOCKS_P (output_bfd))
10631 {
10632 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10633 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10634 }
10635 else
10636 {
10637 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10638 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10639 loc + 12);
10640 }
10641 }
10642
10643 /* Now the compressed entry. They come after any standard ones. */
10644 if (h->plt.plist->comp_offset != MINUS_ONE)
10645 {
10646 bfd_vma plt_offset;
10647
10648 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10649 + h->plt.plist->comp_offset);
10650
10651 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10652
10653 /* Find out where the .plt entry should go. */
10654 loc = htab->root.splt->contents + plt_offset;
10655
10656 /* Fill in the PLT entry itself. */
10657 if (!MICROMIPS_P (output_bfd))
10658 {
10659 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10660
10661 bfd_put_16 (output_bfd, plt_entry[0], loc);
10662 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10663 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10664 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10665 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10666 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10667 bfd_put_32 (output_bfd, got_address, loc + 12);
10668 }
10669 else if (htab->insn32)
10670 {
10671 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10672
10673 bfd_put_16 (output_bfd, plt_entry[0], loc);
10674 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10675 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10676 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10677 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10678 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10679 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10680 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10681 }
10682 else
10683 {
10684 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10685 bfd_signed_vma gotpc_offset;
10686 bfd_vma loc_address;
10687
10688 BFD_ASSERT (got_address % 4 == 0);
10689
10690 loc_address = (htab->root.splt->output_section->vma
10691 + htab->root.splt->output_offset + plt_offset);
10692 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10693
10694 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10695 if (gotpc_offset + 0x1000000 >= 0x2000000)
10696 {
10697 _bfd_error_handler
10698 /* xgettext:c-format */
10699 (_("%B: `%A' offset of %Ld from `%A' "
10700 "beyond the range of ADDIUPC"),
10701 output_bfd,
10702 htab->root.sgotplt->output_section,
10703 gotpc_offset,
10704 htab->root.splt->output_section);
10705 bfd_set_error (bfd_error_no_error);
10706 return FALSE;
10707 }
10708 bfd_put_16 (output_bfd,
10709 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10710 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10711 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10712 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10713 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10714 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10715 }
10716 }
10717
10718 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10719 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10720 got_index - 2, h->dynindx,
10721 R_MIPS_JUMP_SLOT, got_address);
10722
10723 /* We distinguish between PLT entries and lazy-binding stubs by
10724 giving the former an st_other value of STO_MIPS_PLT. Set the
10725 flag and leave the value if there are any relocations in the
10726 binary where pointer equality matters. */
10727 sym->st_shndx = SHN_UNDEF;
10728 if (h->pointer_equality_needed)
10729 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10730 else
10731 {
10732 sym->st_value = 0;
10733 sym->st_other = 0;
10734 }
10735 }
10736
10737 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10738 {
10739 /* We've decided to create a lazy-binding stub. */
10740 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10741 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10742 bfd_vma stub_size = htab->function_stub_size;
10743 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10744 bfd_vma isa_bit = micromips_p;
10745 bfd_vma stub_big_size;
10746
10747 if (!micromips_p)
10748 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10749 else if (htab->insn32)
10750 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10751 else
10752 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10753
10754 /* This symbol has a stub. Set it up. */
10755
10756 BFD_ASSERT (h->dynindx != -1);
10757
10758 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10759
10760 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10761 sign extension at runtime in the stub, resulting in a negative
10762 index value. */
10763 if (h->dynindx & ~0x7fffffff)
10764 return FALSE;
10765
10766 /* Fill the stub. */
10767 if (micromips_p)
10768 {
10769 idx = 0;
10770 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10771 stub + idx);
10772 idx += 4;
10773 if (htab->insn32)
10774 {
10775 bfd_put_micromips_32 (output_bfd,
10776 STUB_MOVE32_MICROMIPS, stub + idx);
10777 idx += 4;
10778 }
10779 else
10780 {
10781 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10782 idx += 2;
10783 }
10784 if (stub_size == stub_big_size)
10785 {
10786 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10787
10788 bfd_put_micromips_32 (output_bfd,
10789 STUB_LUI_MICROMIPS (dynindx_hi),
10790 stub + idx);
10791 idx += 4;
10792 }
10793 if (htab->insn32)
10794 {
10795 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10796 stub + idx);
10797 idx += 4;
10798 }
10799 else
10800 {
10801 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10802 idx += 2;
10803 }
10804
10805 /* If a large stub is not required and sign extension is not a
10806 problem, then use legacy code in the stub. */
10807 if (stub_size == stub_big_size)
10808 bfd_put_micromips_32 (output_bfd,
10809 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10810 stub + idx);
10811 else if (h->dynindx & ~0x7fff)
10812 bfd_put_micromips_32 (output_bfd,
10813 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10814 stub + idx);
10815 else
10816 bfd_put_micromips_32 (output_bfd,
10817 STUB_LI16S_MICROMIPS (output_bfd,
10818 h->dynindx),
10819 stub + idx);
10820 }
10821 else
10822 {
10823 idx = 0;
10824 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10825 idx += 4;
10826 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10827 idx += 4;
10828 if (stub_size == stub_big_size)
10829 {
10830 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10831 stub + idx);
10832 idx += 4;
10833 }
10834 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10835 idx += 4;
10836
10837 /* If a large stub is not required and sign extension is not a
10838 problem, then use legacy code in the stub. */
10839 if (stub_size == stub_big_size)
10840 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10841 stub + idx);
10842 else if (h->dynindx & ~0x7fff)
10843 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10844 stub + idx);
10845 else
10846 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10847 stub + idx);
10848 }
10849
10850 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10851 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10852 stub, stub_size);
10853
10854 /* Mark the symbol as undefined. stub_offset != -1 occurs
10855 only for the referenced symbol. */
10856 sym->st_shndx = SHN_UNDEF;
10857
10858 /* The run-time linker uses the st_value field of the symbol
10859 to reset the global offset table entry for this external
10860 to its stub address when unlinking a shared object. */
10861 sym->st_value = (htab->sstubs->output_section->vma
10862 + htab->sstubs->output_offset
10863 + h->plt.plist->stub_offset
10864 + isa_bit);
10865 sym->st_other = other;
10866 }
10867
10868 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10869 refer to the stub, since only the stub uses the standard calling
10870 conventions. */
10871 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10872 {
10873 BFD_ASSERT (hmips->need_fn_stub);
10874 sym->st_value = (hmips->fn_stub->output_section->vma
10875 + hmips->fn_stub->output_offset);
10876 sym->st_size = hmips->fn_stub->size;
10877 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10878 }
10879
10880 BFD_ASSERT (h->dynindx != -1
10881 || h->forced_local);
10882
10883 sgot = htab->root.sgot;
10884 g = htab->got_info;
10885 BFD_ASSERT (g != NULL);
10886
10887 /* Run through the global symbol table, creating GOT entries for all
10888 the symbols that need them. */
10889 if (hmips->global_got_area != GGA_NONE)
10890 {
10891 bfd_vma offset;
10892 bfd_vma value;
10893
10894 value = sym->st_value;
10895 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10896 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10897 }
10898
10899 if (hmips->global_got_area != GGA_NONE && g->next)
10900 {
10901 struct mips_got_entry e, *p;
10902 bfd_vma entry;
10903 bfd_vma offset;
10904
10905 gg = g;
10906
10907 e.abfd = output_bfd;
10908 e.symndx = -1;
10909 e.d.h = hmips;
10910 e.tls_type = GOT_TLS_NONE;
10911
10912 for (g = g->next; g->next != gg; g = g->next)
10913 {
10914 if (g->got_entries
10915 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10916 &e)))
10917 {
10918 offset = p->gotidx;
10919 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10920 if (bfd_link_pic (info)
10921 || (elf_hash_table (info)->dynamic_sections_created
10922 && p->d.h != NULL
10923 && p->d.h->root.def_dynamic
10924 && !p->d.h->root.def_regular))
10925 {
10926 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10927 the various compatibility problems, it's easier to mock
10928 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10929 mips_elf_create_dynamic_relocation to calculate the
10930 appropriate addend. */
10931 Elf_Internal_Rela rel[3];
10932
10933 memset (rel, 0, sizeof (rel));
10934 if (ABI_64_P (output_bfd))
10935 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10936 else
10937 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10938 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10939
10940 entry = 0;
10941 if (! (mips_elf_create_dynamic_relocation
10942 (output_bfd, info, rel,
10943 e.d.h, NULL, sym->st_value, &entry, sgot)))
10944 return FALSE;
10945 }
10946 else
10947 entry = sym->st_value;
10948 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10949 }
10950 }
10951 }
10952
10953 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10954 name = h->root.root.string;
10955 if (h == elf_hash_table (info)->hdynamic
10956 || h == elf_hash_table (info)->hgot)
10957 sym->st_shndx = SHN_ABS;
10958 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10959 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10960 {
10961 sym->st_shndx = SHN_ABS;
10962 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10963 sym->st_value = 1;
10964 }
10965 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10966 {
10967 sym->st_shndx = SHN_ABS;
10968 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10969 sym->st_value = elf_gp (output_bfd);
10970 }
10971 else if (SGI_COMPAT (output_bfd))
10972 {
10973 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10974 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10975 {
10976 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10977 sym->st_other = STO_PROTECTED;
10978 sym->st_value = 0;
10979 sym->st_shndx = SHN_MIPS_DATA;
10980 }
10981 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10982 {
10983 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10984 sym->st_other = STO_PROTECTED;
10985 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10986 sym->st_shndx = SHN_ABS;
10987 }
10988 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10989 {
10990 if (h->type == STT_FUNC)
10991 sym->st_shndx = SHN_MIPS_TEXT;
10992 else if (h->type == STT_OBJECT)
10993 sym->st_shndx = SHN_MIPS_DATA;
10994 }
10995 }
10996
10997 /* Emit a copy reloc, if needed. */
10998 if (h->needs_copy)
10999 {
11000 asection *s;
11001 bfd_vma symval;
11002
11003 BFD_ASSERT (h->dynindx != -1);
11004 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11005
11006 s = mips_elf_rel_dyn_section (info, FALSE);
11007 symval = (h->root.u.def.section->output_section->vma
11008 + h->root.u.def.section->output_offset
11009 + h->root.u.def.value);
11010 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11011 h->dynindx, R_MIPS_COPY, symval);
11012 }
11013
11014 /* Handle the IRIX6-specific symbols. */
11015 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11016 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11017
11018 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11019 to treat compressed symbols like any other. */
11020 if (ELF_ST_IS_MIPS16 (sym->st_other))
11021 {
11022 BFD_ASSERT (sym->st_value & 1);
11023 sym->st_other -= STO_MIPS16;
11024 }
11025 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11026 {
11027 BFD_ASSERT (sym->st_value & 1);
11028 sym->st_other -= STO_MICROMIPS;
11029 }
11030
11031 return TRUE;
11032 }
11033
11034 /* Likewise, for VxWorks. */
11035
11036 bfd_boolean
11037 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11038 struct bfd_link_info *info,
11039 struct elf_link_hash_entry *h,
11040 Elf_Internal_Sym *sym)
11041 {
11042 bfd *dynobj;
11043 asection *sgot;
11044 struct mips_got_info *g;
11045 struct mips_elf_link_hash_table *htab;
11046 struct mips_elf_link_hash_entry *hmips;
11047
11048 htab = mips_elf_hash_table (info);
11049 BFD_ASSERT (htab != NULL);
11050 dynobj = elf_hash_table (info)->dynobj;
11051 hmips = (struct mips_elf_link_hash_entry *) h;
11052
11053 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11054 {
11055 bfd_byte *loc;
11056 bfd_vma plt_address, got_address, got_offset, branch_offset;
11057 Elf_Internal_Rela rel;
11058 static const bfd_vma *plt_entry;
11059 bfd_vma gotplt_index;
11060 bfd_vma plt_offset;
11061
11062 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11063 gotplt_index = h->plt.plist->gotplt_index;
11064
11065 BFD_ASSERT (h->dynindx != -1);
11066 BFD_ASSERT (htab->root.splt != NULL);
11067 BFD_ASSERT (gotplt_index != MINUS_ONE);
11068 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11069
11070 /* Calculate the address of the .plt entry. */
11071 plt_address = (htab->root.splt->output_section->vma
11072 + htab->root.splt->output_offset
11073 + plt_offset);
11074
11075 /* Calculate the address of the .got.plt entry. */
11076 got_address = (htab->root.sgotplt->output_section->vma
11077 + htab->root.sgotplt->output_offset
11078 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11079
11080 /* Calculate the offset of the .got.plt entry from
11081 _GLOBAL_OFFSET_TABLE_. */
11082 got_offset = mips_elf_gotplt_index (info, h);
11083
11084 /* Calculate the offset for the branch at the start of the PLT
11085 entry. The branch jumps to the beginning of .plt. */
11086 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11087
11088 /* Fill in the initial value of the .got.plt entry. */
11089 bfd_put_32 (output_bfd, plt_address,
11090 (htab->root.sgotplt->contents
11091 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11092
11093 /* Find out where the .plt entry should go. */
11094 loc = htab->root.splt->contents + plt_offset;
11095
11096 if (bfd_link_pic (info))
11097 {
11098 plt_entry = mips_vxworks_shared_plt_entry;
11099 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11100 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11101 }
11102 else
11103 {
11104 bfd_vma got_address_high, got_address_low;
11105
11106 plt_entry = mips_vxworks_exec_plt_entry;
11107 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11108 got_address_low = got_address & 0xffff;
11109
11110 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11111 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11112 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11113 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11114 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11115 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11116 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11117 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11118
11119 loc = (htab->srelplt2->contents
11120 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11121
11122 /* Emit a relocation for the .got.plt entry. */
11123 rel.r_offset = got_address;
11124 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11125 rel.r_addend = plt_offset;
11126 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11127
11128 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11129 loc += sizeof (Elf32_External_Rela);
11130 rel.r_offset = plt_address + 8;
11131 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11132 rel.r_addend = got_offset;
11133 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11134
11135 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11136 loc += sizeof (Elf32_External_Rela);
11137 rel.r_offset += 4;
11138 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11139 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11140 }
11141
11142 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11143 loc = (htab->root.srelplt->contents
11144 + gotplt_index * sizeof (Elf32_External_Rela));
11145 rel.r_offset = got_address;
11146 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11147 rel.r_addend = 0;
11148 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11149
11150 if (!h->def_regular)
11151 sym->st_shndx = SHN_UNDEF;
11152 }
11153
11154 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11155
11156 sgot = htab->root.sgot;
11157 g = htab->got_info;
11158 BFD_ASSERT (g != NULL);
11159
11160 /* See if this symbol has an entry in the GOT. */
11161 if (hmips->global_got_area != GGA_NONE)
11162 {
11163 bfd_vma offset;
11164 Elf_Internal_Rela outrel;
11165 bfd_byte *loc;
11166 asection *s;
11167
11168 /* Install the symbol value in the GOT. */
11169 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11170 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11171
11172 /* Add a dynamic relocation for it. */
11173 s = mips_elf_rel_dyn_section (info, FALSE);
11174 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11175 outrel.r_offset = (sgot->output_section->vma
11176 + sgot->output_offset
11177 + offset);
11178 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11179 outrel.r_addend = 0;
11180 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11181 }
11182
11183 /* Emit a copy reloc, if needed. */
11184 if (h->needs_copy)
11185 {
11186 Elf_Internal_Rela rel;
11187 asection *srel;
11188 bfd_byte *loc;
11189
11190 BFD_ASSERT (h->dynindx != -1);
11191
11192 rel.r_offset = (h->root.u.def.section->output_section->vma
11193 + h->root.u.def.section->output_offset
11194 + h->root.u.def.value);
11195 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11196 rel.r_addend = 0;
11197 if (h->root.u.def.section == htab->root.sdynrelro)
11198 srel = htab->root.sreldynrelro;
11199 else
11200 srel = htab->root.srelbss;
11201 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11202 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11203 ++srel->reloc_count;
11204 }
11205
11206 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11207 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11208 sym->st_value &= ~1;
11209
11210 return TRUE;
11211 }
11212
11213 /* Write out a plt0 entry to the beginning of .plt. */
11214
11215 static bfd_boolean
11216 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11217 {
11218 bfd_byte *loc;
11219 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11220 static const bfd_vma *plt_entry;
11221 struct mips_elf_link_hash_table *htab;
11222
11223 htab = mips_elf_hash_table (info);
11224 BFD_ASSERT (htab != NULL);
11225
11226 if (ABI_64_P (output_bfd))
11227 plt_entry = mips_n64_exec_plt0_entry;
11228 else if (ABI_N32_P (output_bfd))
11229 plt_entry = mips_n32_exec_plt0_entry;
11230 else if (!htab->plt_header_is_comp)
11231 plt_entry = mips_o32_exec_plt0_entry;
11232 else if (htab->insn32)
11233 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11234 else
11235 plt_entry = micromips_o32_exec_plt0_entry;
11236
11237 /* Calculate the value of .got.plt. */
11238 gotplt_value = (htab->root.sgotplt->output_section->vma
11239 + htab->root.sgotplt->output_offset);
11240 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11241 gotplt_value_low = gotplt_value & 0xffff;
11242
11243 /* The PLT sequence is not safe for N64 if .got.plt's address can
11244 not be loaded in two instructions. */
11245 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11246 || ~(gotplt_value | 0x7fffffff) == 0);
11247
11248 /* Install the PLT header. */
11249 loc = htab->root.splt->contents;
11250 if (plt_entry == micromips_o32_exec_plt0_entry)
11251 {
11252 bfd_vma gotpc_offset;
11253 bfd_vma loc_address;
11254 size_t i;
11255
11256 BFD_ASSERT (gotplt_value % 4 == 0);
11257
11258 loc_address = (htab->root.splt->output_section->vma
11259 + htab->root.splt->output_offset);
11260 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11261
11262 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11263 if (gotpc_offset + 0x1000000 >= 0x2000000)
11264 {
11265 _bfd_error_handler
11266 /* xgettext:c-format */
11267 (_("%B: `%A' offset of %Ld from `%A' beyond the range of ADDIUPC"),
11268 output_bfd,
11269 htab->root.sgotplt->output_section,
11270 gotpc_offset,
11271 htab->root.splt->output_section);
11272 bfd_set_error (bfd_error_no_error);
11273 return FALSE;
11274 }
11275 bfd_put_16 (output_bfd,
11276 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11277 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11278 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11279 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11280 }
11281 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11282 {
11283 size_t i;
11284
11285 bfd_put_16 (output_bfd, plt_entry[0], loc);
11286 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11287 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11288 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11289 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11290 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11291 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11292 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11293 }
11294 else
11295 {
11296 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11297 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11298 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11299 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11300 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11301 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11302 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11303 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11304 }
11305
11306 return TRUE;
11307 }
11308
11309 /* Install the PLT header for a VxWorks executable and finalize the
11310 contents of .rela.plt.unloaded. */
11311
11312 static void
11313 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11314 {
11315 Elf_Internal_Rela rela;
11316 bfd_byte *loc;
11317 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11318 static const bfd_vma *plt_entry;
11319 struct mips_elf_link_hash_table *htab;
11320
11321 htab = mips_elf_hash_table (info);
11322 BFD_ASSERT (htab != NULL);
11323
11324 plt_entry = mips_vxworks_exec_plt0_entry;
11325
11326 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11327 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11328 + htab->root.hgot->root.u.def.section->output_offset
11329 + htab->root.hgot->root.u.def.value);
11330
11331 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11332 got_value_low = got_value & 0xffff;
11333
11334 /* Calculate the address of the PLT header. */
11335 plt_address = (htab->root.splt->output_section->vma
11336 + htab->root.splt->output_offset);
11337
11338 /* Install the PLT header. */
11339 loc = htab->root.splt->contents;
11340 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11341 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11342 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11343 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11344 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11345 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11346
11347 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11348 loc = htab->srelplt2->contents;
11349 rela.r_offset = plt_address;
11350 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11351 rela.r_addend = 0;
11352 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11353 loc += sizeof (Elf32_External_Rela);
11354
11355 /* Output the relocation for the following addiu of
11356 %lo(_GLOBAL_OFFSET_TABLE_). */
11357 rela.r_offset += 4;
11358 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11359 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11360 loc += sizeof (Elf32_External_Rela);
11361
11362 /* Fix up the remaining relocations. They may have the wrong
11363 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11364 in which symbols were output. */
11365 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11366 {
11367 Elf_Internal_Rela rel;
11368
11369 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11370 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11371 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11372 loc += sizeof (Elf32_External_Rela);
11373
11374 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11375 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11376 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11377 loc += sizeof (Elf32_External_Rela);
11378
11379 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11380 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11381 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11382 loc += sizeof (Elf32_External_Rela);
11383 }
11384 }
11385
11386 /* Install the PLT header for a VxWorks shared library. */
11387
11388 static void
11389 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11390 {
11391 unsigned int i;
11392 struct mips_elf_link_hash_table *htab;
11393
11394 htab = mips_elf_hash_table (info);
11395 BFD_ASSERT (htab != NULL);
11396
11397 /* We just need to copy the entry byte-by-byte. */
11398 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11399 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11400 htab->root.splt->contents + i * 4);
11401 }
11402
11403 /* Finish up the dynamic sections. */
11404
11405 bfd_boolean
11406 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11407 struct bfd_link_info *info)
11408 {
11409 bfd *dynobj;
11410 asection *sdyn;
11411 asection *sgot;
11412 struct mips_got_info *gg, *g;
11413 struct mips_elf_link_hash_table *htab;
11414
11415 htab = mips_elf_hash_table (info);
11416 BFD_ASSERT (htab != NULL);
11417
11418 dynobj = elf_hash_table (info)->dynobj;
11419
11420 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11421
11422 sgot = htab->root.sgot;
11423 gg = htab->got_info;
11424
11425 if (elf_hash_table (info)->dynamic_sections_created)
11426 {
11427 bfd_byte *b;
11428 int dyn_to_skip = 0, dyn_skipped = 0;
11429
11430 BFD_ASSERT (sdyn != NULL);
11431 BFD_ASSERT (gg != NULL);
11432
11433 g = mips_elf_bfd_got (output_bfd, FALSE);
11434 BFD_ASSERT (g != NULL);
11435
11436 for (b = sdyn->contents;
11437 b < sdyn->contents + sdyn->size;
11438 b += MIPS_ELF_DYN_SIZE (dynobj))
11439 {
11440 Elf_Internal_Dyn dyn;
11441 const char *name;
11442 size_t elemsize;
11443 asection *s;
11444 bfd_boolean swap_out_p;
11445
11446 /* Read in the current dynamic entry. */
11447 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11448
11449 /* Assume that we're going to modify it and write it out. */
11450 swap_out_p = TRUE;
11451
11452 switch (dyn.d_tag)
11453 {
11454 case DT_RELENT:
11455 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11456 break;
11457
11458 case DT_RELAENT:
11459 BFD_ASSERT (htab->is_vxworks);
11460 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11461 break;
11462
11463 case DT_STRSZ:
11464 /* Rewrite DT_STRSZ. */
11465 dyn.d_un.d_val =
11466 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11467 break;
11468
11469 case DT_PLTGOT:
11470 s = htab->root.sgot;
11471 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11472 break;
11473
11474 case DT_MIPS_PLTGOT:
11475 s = htab->root.sgotplt;
11476 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11477 break;
11478
11479 case DT_MIPS_RLD_VERSION:
11480 dyn.d_un.d_val = 1; /* XXX */
11481 break;
11482
11483 case DT_MIPS_FLAGS:
11484 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11485 break;
11486
11487 case DT_MIPS_TIME_STAMP:
11488 {
11489 time_t t;
11490 time (&t);
11491 dyn.d_un.d_val = t;
11492 }
11493 break;
11494
11495 case DT_MIPS_ICHECKSUM:
11496 /* XXX FIXME: */
11497 swap_out_p = FALSE;
11498 break;
11499
11500 case DT_MIPS_IVERSION:
11501 /* XXX FIXME: */
11502 swap_out_p = FALSE;
11503 break;
11504
11505 case DT_MIPS_BASE_ADDRESS:
11506 s = output_bfd->sections;
11507 BFD_ASSERT (s != NULL);
11508 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11509 break;
11510
11511 case DT_MIPS_LOCAL_GOTNO:
11512 dyn.d_un.d_val = g->local_gotno;
11513 break;
11514
11515 case DT_MIPS_UNREFEXTNO:
11516 /* The index into the dynamic symbol table which is the
11517 entry of the first external symbol that is not
11518 referenced within the same object. */
11519 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11520 break;
11521
11522 case DT_MIPS_GOTSYM:
11523 if (htab->global_gotsym)
11524 {
11525 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11526 break;
11527 }
11528 /* In case if we don't have global got symbols we default
11529 to setting DT_MIPS_GOTSYM to the same value as
11530 DT_MIPS_SYMTABNO. */
11531 /* Fall through. */
11532
11533 case DT_MIPS_SYMTABNO:
11534 name = ".dynsym";
11535 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11536 s = bfd_get_linker_section (dynobj, name);
11537
11538 if (s != NULL)
11539 dyn.d_un.d_val = s->size / elemsize;
11540 else
11541 dyn.d_un.d_val = 0;
11542 break;
11543
11544 case DT_MIPS_HIPAGENO:
11545 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11546 break;
11547
11548 case DT_MIPS_RLD_MAP:
11549 {
11550 struct elf_link_hash_entry *h;
11551 h = mips_elf_hash_table (info)->rld_symbol;
11552 if (!h)
11553 {
11554 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11555 swap_out_p = FALSE;
11556 break;
11557 }
11558 s = h->root.u.def.section;
11559
11560 /* The MIPS_RLD_MAP tag stores the absolute address of the
11561 debug pointer. */
11562 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11563 + h->root.u.def.value);
11564 }
11565 break;
11566
11567 case DT_MIPS_RLD_MAP_REL:
11568 {
11569 struct elf_link_hash_entry *h;
11570 bfd_vma dt_addr, rld_addr;
11571 h = mips_elf_hash_table (info)->rld_symbol;
11572 if (!h)
11573 {
11574 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11575 swap_out_p = FALSE;
11576 break;
11577 }
11578 s = h->root.u.def.section;
11579
11580 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11581 pointer, relative to the address of the tag. */
11582 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11583 + (b - sdyn->contents));
11584 rld_addr = (s->output_section->vma + s->output_offset
11585 + h->root.u.def.value);
11586 dyn.d_un.d_ptr = rld_addr - dt_addr;
11587 }
11588 break;
11589
11590 case DT_MIPS_OPTIONS:
11591 s = (bfd_get_section_by_name
11592 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11593 dyn.d_un.d_ptr = s->vma;
11594 break;
11595
11596 case DT_PLTREL:
11597 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11598 if (htab->is_vxworks)
11599 dyn.d_un.d_val = DT_RELA;
11600 else
11601 dyn.d_un.d_val = DT_REL;
11602 break;
11603
11604 case DT_PLTRELSZ:
11605 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11606 dyn.d_un.d_val = htab->root.srelplt->size;
11607 break;
11608
11609 case DT_JMPREL:
11610 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11611 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11612 + htab->root.srelplt->output_offset);
11613 break;
11614
11615 case DT_TEXTREL:
11616 /* If we didn't need any text relocations after all, delete
11617 the dynamic tag. */
11618 if (!(info->flags & DF_TEXTREL))
11619 {
11620 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11621 swap_out_p = FALSE;
11622 }
11623 break;
11624
11625 case DT_FLAGS:
11626 /* If we didn't need any text relocations after all, clear
11627 DF_TEXTREL from DT_FLAGS. */
11628 if (!(info->flags & DF_TEXTREL))
11629 dyn.d_un.d_val &= ~DF_TEXTREL;
11630 else
11631 swap_out_p = FALSE;
11632 break;
11633
11634 default:
11635 swap_out_p = FALSE;
11636 if (htab->is_vxworks
11637 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11638 swap_out_p = TRUE;
11639 break;
11640 }
11641
11642 if (swap_out_p || dyn_skipped)
11643 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11644 (dynobj, &dyn, b - dyn_skipped);
11645
11646 if (dyn_to_skip)
11647 {
11648 dyn_skipped += dyn_to_skip;
11649 dyn_to_skip = 0;
11650 }
11651 }
11652
11653 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11654 if (dyn_skipped > 0)
11655 memset (b - dyn_skipped, 0, dyn_skipped);
11656 }
11657
11658 if (sgot != NULL && sgot->size > 0
11659 && !bfd_is_abs_section (sgot->output_section))
11660 {
11661 if (htab->is_vxworks)
11662 {
11663 /* The first entry of the global offset table points to the
11664 ".dynamic" section. The second is initialized by the
11665 loader and contains the shared library identifier.
11666 The third is also initialized by the loader and points
11667 to the lazy resolution stub. */
11668 MIPS_ELF_PUT_WORD (output_bfd,
11669 sdyn->output_offset + sdyn->output_section->vma,
11670 sgot->contents);
11671 MIPS_ELF_PUT_WORD (output_bfd, 0,
11672 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11673 MIPS_ELF_PUT_WORD (output_bfd, 0,
11674 sgot->contents
11675 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11676 }
11677 else
11678 {
11679 /* The first entry of the global offset table will be filled at
11680 runtime. The second entry will be used by some runtime loaders.
11681 This isn't the case of IRIX rld. */
11682 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11683 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11684 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11685 }
11686
11687 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11688 = MIPS_ELF_GOT_SIZE (output_bfd);
11689 }
11690
11691 /* Generate dynamic relocations for the non-primary gots. */
11692 if (gg != NULL && gg->next)
11693 {
11694 Elf_Internal_Rela rel[3];
11695 bfd_vma addend = 0;
11696
11697 memset (rel, 0, sizeof (rel));
11698 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11699
11700 for (g = gg->next; g->next != gg; g = g->next)
11701 {
11702 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11703 + g->next->tls_gotno;
11704
11705 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11706 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11707 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11708 sgot->contents
11709 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11710
11711 if (! bfd_link_pic (info))
11712 continue;
11713
11714 for (; got_index < g->local_gotno; got_index++)
11715 {
11716 if (got_index >= g->assigned_low_gotno
11717 && got_index <= g->assigned_high_gotno)
11718 continue;
11719
11720 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11721 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11722 if (!(mips_elf_create_dynamic_relocation
11723 (output_bfd, info, rel, NULL,
11724 bfd_abs_section_ptr,
11725 0, &addend, sgot)))
11726 return FALSE;
11727 BFD_ASSERT (addend == 0);
11728 }
11729 }
11730 }
11731
11732 /* The generation of dynamic relocations for the non-primary gots
11733 adds more dynamic relocations. We cannot count them until
11734 here. */
11735
11736 if (elf_hash_table (info)->dynamic_sections_created)
11737 {
11738 bfd_byte *b;
11739 bfd_boolean swap_out_p;
11740
11741 BFD_ASSERT (sdyn != NULL);
11742
11743 for (b = sdyn->contents;
11744 b < sdyn->contents + sdyn->size;
11745 b += MIPS_ELF_DYN_SIZE (dynobj))
11746 {
11747 Elf_Internal_Dyn dyn;
11748 asection *s;
11749
11750 /* Read in the current dynamic entry. */
11751 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11752
11753 /* Assume that we're going to modify it and write it out. */
11754 swap_out_p = TRUE;
11755
11756 switch (dyn.d_tag)
11757 {
11758 case DT_RELSZ:
11759 /* Reduce DT_RELSZ to account for any relocations we
11760 decided not to make. This is for the n64 irix rld,
11761 which doesn't seem to apply any relocations if there
11762 are trailing null entries. */
11763 s = mips_elf_rel_dyn_section (info, FALSE);
11764 dyn.d_un.d_val = (s->reloc_count
11765 * (ABI_64_P (output_bfd)
11766 ? sizeof (Elf64_Mips_External_Rel)
11767 : sizeof (Elf32_External_Rel)));
11768 /* Adjust the section size too. Tools like the prelinker
11769 can reasonably expect the values to the same. */
11770 elf_section_data (s->output_section)->this_hdr.sh_size
11771 = dyn.d_un.d_val;
11772 break;
11773
11774 default:
11775 swap_out_p = FALSE;
11776 break;
11777 }
11778
11779 if (swap_out_p)
11780 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11781 (dynobj, &dyn, b);
11782 }
11783 }
11784
11785 {
11786 asection *s;
11787 Elf32_compact_rel cpt;
11788
11789 if (SGI_COMPAT (output_bfd))
11790 {
11791 /* Write .compact_rel section out. */
11792 s = bfd_get_linker_section (dynobj, ".compact_rel");
11793 if (s != NULL)
11794 {
11795 cpt.id1 = 1;
11796 cpt.num = s->reloc_count;
11797 cpt.id2 = 2;
11798 cpt.offset = (s->output_section->filepos
11799 + sizeof (Elf32_External_compact_rel));
11800 cpt.reserved0 = 0;
11801 cpt.reserved1 = 0;
11802 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11803 ((Elf32_External_compact_rel *)
11804 s->contents));
11805
11806 /* Clean up a dummy stub function entry in .text. */
11807 if (htab->sstubs != NULL)
11808 {
11809 file_ptr dummy_offset;
11810
11811 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11812 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11813 memset (htab->sstubs->contents + dummy_offset, 0,
11814 htab->function_stub_size);
11815 }
11816 }
11817 }
11818
11819 /* The psABI says that the dynamic relocations must be sorted in
11820 increasing order of r_symndx. The VxWorks EABI doesn't require
11821 this, and because the code below handles REL rather than RELA
11822 relocations, using it for VxWorks would be outright harmful. */
11823 if (!htab->is_vxworks)
11824 {
11825 s = mips_elf_rel_dyn_section (info, FALSE);
11826 if (s != NULL
11827 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11828 {
11829 reldyn_sorting_bfd = output_bfd;
11830
11831 if (ABI_64_P (output_bfd))
11832 qsort ((Elf64_External_Rel *) s->contents + 1,
11833 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11834 sort_dynamic_relocs_64);
11835 else
11836 qsort ((Elf32_External_Rel *) s->contents + 1,
11837 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11838 sort_dynamic_relocs);
11839 }
11840 }
11841 }
11842
11843 if (htab->root.splt && htab->root.splt->size > 0)
11844 {
11845 if (htab->is_vxworks)
11846 {
11847 if (bfd_link_pic (info))
11848 mips_vxworks_finish_shared_plt (output_bfd, info);
11849 else
11850 mips_vxworks_finish_exec_plt (output_bfd, info);
11851 }
11852 else
11853 {
11854 BFD_ASSERT (!bfd_link_pic (info));
11855 if (!mips_finish_exec_plt (output_bfd, info))
11856 return FALSE;
11857 }
11858 }
11859 return TRUE;
11860 }
11861
11862
11863 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11864
11865 static void
11866 mips_set_isa_flags (bfd *abfd)
11867 {
11868 flagword val;
11869
11870 switch (bfd_get_mach (abfd))
11871 {
11872 default:
11873 case bfd_mach_mips3000:
11874 val = E_MIPS_ARCH_1;
11875 break;
11876
11877 case bfd_mach_mips3900:
11878 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11879 break;
11880
11881 case bfd_mach_mips6000:
11882 val = E_MIPS_ARCH_2;
11883 break;
11884
11885 case bfd_mach_mips4010:
11886 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11887 break;
11888
11889 case bfd_mach_mips4000:
11890 case bfd_mach_mips4300:
11891 case bfd_mach_mips4400:
11892 case bfd_mach_mips4600:
11893 val = E_MIPS_ARCH_3;
11894 break;
11895
11896 case bfd_mach_mips4100:
11897 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11898 break;
11899
11900 case bfd_mach_mips4111:
11901 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11902 break;
11903
11904 case bfd_mach_mips4120:
11905 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11906 break;
11907
11908 case bfd_mach_mips4650:
11909 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11910 break;
11911
11912 case bfd_mach_mips5400:
11913 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11914 break;
11915
11916 case bfd_mach_mips5500:
11917 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11918 break;
11919
11920 case bfd_mach_mips5900:
11921 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11922 break;
11923
11924 case bfd_mach_mips9000:
11925 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11926 break;
11927
11928 case bfd_mach_mips5000:
11929 case bfd_mach_mips7000:
11930 case bfd_mach_mips8000:
11931 case bfd_mach_mips10000:
11932 case bfd_mach_mips12000:
11933 case bfd_mach_mips14000:
11934 case bfd_mach_mips16000:
11935 val = E_MIPS_ARCH_4;
11936 break;
11937
11938 case bfd_mach_mips5:
11939 val = E_MIPS_ARCH_5;
11940 break;
11941
11942 case bfd_mach_mips_loongson_2e:
11943 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11944 break;
11945
11946 case bfd_mach_mips_loongson_2f:
11947 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11948 break;
11949
11950 case bfd_mach_mips_sb1:
11951 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11952 break;
11953
11954 case bfd_mach_mips_loongson_3a:
11955 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11956 break;
11957
11958 case bfd_mach_mips_octeon:
11959 case bfd_mach_mips_octeonp:
11960 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11961 break;
11962
11963 case bfd_mach_mips_octeon3:
11964 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11965 break;
11966
11967 case bfd_mach_mips_xlr:
11968 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11969 break;
11970
11971 case bfd_mach_mips_octeon2:
11972 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11973 break;
11974
11975 case bfd_mach_mipsisa32:
11976 val = E_MIPS_ARCH_32;
11977 break;
11978
11979 case bfd_mach_mipsisa64:
11980 val = E_MIPS_ARCH_64;
11981 break;
11982
11983 case bfd_mach_mipsisa32r2:
11984 case bfd_mach_mipsisa32r3:
11985 case bfd_mach_mipsisa32r5:
11986 val = E_MIPS_ARCH_32R2;
11987 break;
11988
11989 case bfd_mach_mips_interaptiv_mr2:
11990 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11991 break;
11992
11993 case bfd_mach_mipsisa64r2:
11994 case bfd_mach_mipsisa64r3:
11995 case bfd_mach_mipsisa64r5:
11996 val = E_MIPS_ARCH_64R2;
11997 break;
11998
11999 case bfd_mach_mipsisa32r6:
12000 val = E_MIPS_ARCH_32R6;
12001 break;
12002
12003 case bfd_mach_mipsisa64r6:
12004 val = E_MIPS_ARCH_64R6;
12005 break;
12006 }
12007 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12008 elf_elfheader (abfd)->e_flags |= val;
12009
12010 }
12011
12012
12013 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12014 Don't do so for code sections. We want to keep ordering of HI16/LO16
12015 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12016 relocs to be sorted. */
12017
12018 bfd_boolean
12019 _bfd_mips_elf_sort_relocs_p (asection *sec)
12020 {
12021 return (sec->flags & SEC_CODE) == 0;
12022 }
12023
12024
12025 /* The final processing done just before writing out a MIPS ELF object
12026 file. This gets the MIPS architecture right based on the machine
12027 number. This is used by both the 32-bit and the 64-bit ABI. */
12028
12029 void
12030 _bfd_mips_elf_final_write_processing (bfd *abfd,
12031 bfd_boolean linker ATTRIBUTE_UNUSED)
12032 {
12033 unsigned int i;
12034 Elf_Internal_Shdr **hdrpp;
12035 const char *name;
12036 asection *sec;
12037
12038 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12039 is nonzero. This is for compatibility with old objects, which used
12040 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12041 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12042 mips_set_isa_flags (abfd);
12043
12044 /* Set the sh_info field for .gptab sections and other appropriate
12045 info for each special section. */
12046 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12047 i < elf_numsections (abfd);
12048 i++, hdrpp++)
12049 {
12050 switch ((*hdrpp)->sh_type)
12051 {
12052 case SHT_MIPS_MSYM:
12053 case SHT_MIPS_LIBLIST:
12054 sec = bfd_get_section_by_name (abfd, ".dynstr");
12055 if (sec != NULL)
12056 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12057 break;
12058
12059 case SHT_MIPS_GPTAB:
12060 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12061 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12062 BFD_ASSERT (name != NULL
12063 && CONST_STRNEQ (name, ".gptab."));
12064 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12065 BFD_ASSERT (sec != NULL);
12066 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12067 break;
12068
12069 case SHT_MIPS_CONTENT:
12070 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12071 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12072 BFD_ASSERT (name != NULL
12073 && CONST_STRNEQ (name, ".MIPS.content"));
12074 sec = bfd_get_section_by_name (abfd,
12075 name + sizeof ".MIPS.content" - 1);
12076 BFD_ASSERT (sec != NULL);
12077 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12078 break;
12079
12080 case SHT_MIPS_SYMBOL_LIB:
12081 sec = bfd_get_section_by_name (abfd, ".dynsym");
12082 if (sec != NULL)
12083 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12084 sec = bfd_get_section_by_name (abfd, ".liblist");
12085 if (sec != NULL)
12086 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12087 break;
12088
12089 case SHT_MIPS_EVENTS:
12090 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12091 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12092 BFD_ASSERT (name != NULL);
12093 if (CONST_STRNEQ (name, ".MIPS.events"))
12094 sec = bfd_get_section_by_name (abfd,
12095 name + sizeof ".MIPS.events" - 1);
12096 else
12097 {
12098 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12099 sec = bfd_get_section_by_name (abfd,
12100 (name
12101 + sizeof ".MIPS.post_rel" - 1));
12102 }
12103 BFD_ASSERT (sec != NULL);
12104 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12105 break;
12106
12107 }
12108 }
12109 }
12110 \f
12111 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12112 segments. */
12113
12114 int
12115 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12116 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12117 {
12118 asection *s;
12119 int ret = 0;
12120
12121 /* See if we need a PT_MIPS_REGINFO segment. */
12122 s = bfd_get_section_by_name (abfd, ".reginfo");
12123 if (s && (s->flags & SEC_LOAD))
12124 ++ret;
12125
12126 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12127 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12128 ++ret;
12129
12130 /* See if we need a PT_MIPS_OPTIONS segment. */
12131 if (IRIX_COMPAT (abfd) == ict_irix6
12132 && bfd_get_section_by_name (abfd,
12133 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12134 ++ret;
12135
12136 /* See if we need a PT_MIPS_RTPROC segment. */
12137 if (IRIX_COMPAT (abfd) == ict_irix5
12138 && bfd_get_section_by_name (abfd, ".dynamic")
12139 && bfd_get_section_by_name (abfd, ".mdebug"))
12140 ++ret;
12141
12142 /* Allocate a PT_NULL header in dynamic objects. See
12143 _bfd_mips_elf_modify_segment_map for details. */
12144 if (!SGI_COMPAT (abfd)
12145 && bfd_get_section_by_name (abfd, ".dynamic"))
12146 ++ret;
12147
12148 return ret;
12149 }
12150
12151 /* Modify the segment map for an IRIX5 executable. */
12152
12153 bfd_boolean
12154 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12155 struct bfd_link_info *info)
12156 {
12157 asection *s;
12158 struct elf_segment_map *m, **pm;
12159 bfd_size_type amt;
12160
12161 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12162 segment. */
12163 s = bfd_get_section_by_name (abfd, ".reginfo");
12164 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12165 {
12166 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12167 if (m->p_type == PT_MIPS_REGINFO)
12168 break;
12169 if (m == NULL)
12170 {
12171 amt = sizeof *m;
12172 m = bfd_zalloc (abfd, amt);
12173 if (m == NULL)
12174 return FALSE;
12175
12176 m->p_type = PT_MIPS_REGINFO;
12177 m->count = 1;
12178 m->sections[0] = s;
12179
12180 /* We want to put it after the PHDR and INTERP segments. */
12181 pm = &elf_seg_map (abfd);
12182 while (*pm != NULL
12183 && ((*pm)->p_type == PT_PHDR
12184 || (*pm)->p_type == PT_INTERP))
12185 pm = &(*pm)->next;
12186
12187 m->next = *pm;
12188 *pm = m;
12189 }
12190 }
12191
12192 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12193 segment. */
12194 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12195 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12196 {
12197 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12198 if (m->p_type == PT_MIPS_ABIFLAGS)
12199 break;
12200 if (m == NULL)
12201 {
12202 amt = sizeof *m;
12203 m = bfd_zalloc (abfd, amt);
12204 if (m == NULL)
12205 return FALSE;
12206
12207 m->p_type = PT_MIPS_ABIFLAGS;
12208 m->count = 1;
12209 m->sections[0] = s;
12210
12211 /* We want to put it after the PHDR and INTERP segments. */
12212 pm = &elf_seg_map (abfd);
12213 while (*pm != NULL
12214 && ((*pm)->p_type == PT_PHDR
12215 || (*pm)->p_type == PT_INTERP))
12216 pm = &(*pm)->next;
12217
12218 m->next = *pm;
12219 *pm = m;
12220 }
12221 }
12222
12223 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12224 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12225 PT_MIPS_OPTIONS segment immediately following the program header
12226 table. */
12227 if (NEWABI_P (abfd)
12228 /* On non-IRIX6 new abi, we'll have already created a segment
12229 for this section, so don't create another. I'm not sure this
12230 is not also the case for IRIX 6, but I can't test it right
12231 now. */
12232 && IRIX_COMPAT (abfd) == ict_irix6)
12233 {
12234 for (s = abfd->sections; s; s = s->next)
12235 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12236 break;
12237
12238 if (s)
12239 {
12240 struct elf_segment_map *options_segment;
12241
12242 pm = &elf_seg_map (abfd);
12243 while (*pm != NULL
12244 && ((*pm)->p_type == PT_PHDR
12245 || (*pm)->p_type == PT_INTERP))
12246 pm = &(*pm)->next;
12247
12248 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12249 {
12250 amt = sizeof (struct elf_segment_map);
12251 options_segment = bfd_zalloc (abfd, amt);
12252 options_segment->next = *pm;
12253 options_segment->p_type = PT_MIPS_OPTIONS;
12254 options_segment->p_flags = PF_R;
12255 options_segment->p_flags_valid = TRUE;
12256 options_segment->count = 1;
12257 options_segment->sections[0] = s;
12258 *pm = options_segment;
12259 }
12260 }
12261 }
12262 else
12263 {
12264 if (IRIX_COMPAT (abfd) == ict_irix5)
12265 {
12266 /* If there are .dynamic and .mdebug sections, we make a room
12267 for the RTPROC header. FIXME: Rewrite without section names. */
12268 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12269 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12270 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12271 {
12272 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12273 if (m->p_type == PT_MIPS_RTPROC)
12274 break;
12275 if (m == NULL)
12276 {
12277 amt = sizeof *m;
12278 m = bfd_zalloc (abfd, amt);
12279 if (m == NULL)
12280 return FALSE;
12281
12282 m->p_type = PT_MIPS_RTPROC;
12283
12284 s = bfd_get_section_by_name (abfd, ".rtproc");
12285 if (s == NULL)
12286 {
12287 m->count = 0;
12288 m->p_flags = 0;
12289 m->p_flags_valid = 1;
12290 }
12291 else
12292 {
12293 m->count = 1;
12294 m->sections[0] = s;
12295 }
12296
12297 /* We want to put it after the DYNAMIC segment. */
12298 pm = &elf_seg_map (abfd);
12299 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12300 pm = &(*pm)->next;
12301 if (*pm != NULL)
12302 pm = &(*pm)->next;
12303
12304 m->next = *pm;
12305 *pm = m;
12306 }
12307 }
12308 }
12309 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12310 .dynstr, .dynsym, and .hash sections, and everything in
12311 between. */
12312 for (pm = &elf_seg_map (abfd); *pm != NULL;
12313 pm = &(*pm)->next)
12314 if ((*pm)->p_type == PT_DYNAMIC)
12315 break;
12316 m = *pm;
12317 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12318 glibc's dynamic linker has traditionally derived the number of
12319 tags from the p_filesz field, and sometimes allocates stack
12320 arrays of that size. An overly-big PT_DYNAMIC segment can
12321 be actively harmful in such cases. Making PT_DYNAMIC contain
12322 other sections can also make life hard for the prelinker,
12323 which might move one of the other sections to a different
12324 PT_LOAD segment. */
12325 if (SGI_COMPAT (abfd)
12326 && m != NULL
12327 && m->count == 1
12328 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12329 {
12330 static const char *sec_names[] =
12331 {
12332 ".dynamic", ".dynstr", ".dynsym", ".hash"
12333 };
12334 bfd_vma low, high;
12335 unsigned int i, c;
12336 struct elf_segment_map *n;
12337
12338 low = ~(bfd_vma) 0;
12339 high = 0;
12340 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12341 {
12342 s = bfd_get_section_by_name (abfd, sec_names[i]);
12343 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12344 {
12345 bfd_size_type sz;
12346
12347 if (low > s->vma)
12348 low = s->vma;
12349 sz = s->size;
12350 if (high < s->vma + sz)
12351 high = s->vma + sz;
12352 }
12353 }
12354
12355 c = 0;
12356 for (s = abfd->sections; s != NULL; s = s->next)
12357 if ((s->flags & SEC_LOAD) != 0
12358 && s->vma >= low
12359 && s->vma + s->size <= high)
12360 ++c;
12361
12362 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12363 n = bfd_zalloc (abfd, amt);
12364 if (n == NULL)
12365 return FALSE;
12366 *n = *m;
12367 n->count = c;
12368
12369 i = 0;
12370 for (s = abfd->sections; s != NULL; s = s->next)
12371 {
12372 if ((s->flags & SEC_LOAD) != 0
12373 && s->vma >= low
12374 && s->vma + s->size <= high)
12375 {
12376 n->sections[i] = s;
12377 ++i;
12378 }
12379 }
12380
12381 *pm = n;
12382 }
12383 }
12384
12385 /* Allocate a spare program header in dynamic objects so that tools
12386 like the prelinker can add an extra PT_LOAD entry.
12387
12388 If the prelinker needs to make room for a new PT_LOAD entry, its
12389 standard procedure is to move the first (read-only) sections into
12390 the new (writable) segment. However, the MIPS ABI requires
12391 .dynamic to be in a read-only segment, and the section will often
12392 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12393
12394 Although the prelinker could in principle move .dynamic to a
12395 writable segment, it seems better to allocate a spare program
12396 header instead, and avoid the need to move any sections.
12397 There is a long tradition of allocating spare dynamic tags,
12398 so allocating a spare program header seems like a natural
12399 extension.
12400
12401 If INFO is NULL, we may be copying an already prelinked binary
12402 with objcopy or strip, so do not add this header. */
12403 if (info != NULL
12404 && !SGI_COMPAT (abfd)
12405 && bfd_get_section_by_name (abfd, ".dynamic"))
12406 {
12407 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12408 if ((*pm)->p_type == PT_NULL)
12409 break;
12410 if (*pm == NULL)
12411 {
12412 m = bfd_zalloc (abfd, sizeof (*m));
12413 if (m == NULL)
12414 return FALSE;
12415
12416 m->p_type = PT_NULL;
12417 *pm = m;
12418 }
12419 }
12420
12421 return TRUE;
12422 }
12423 \f
12424 /* Return the section that should be marked against GC for a given
12425 relocation. */
12426
12427 asection *
12428 _bfd_mips_elf_gc_mark_hook (asection *sec,
12429 struct bfd_link_info *info,
12430 Elf_Internal_Rela *rel,
12431 struct elf_link_hash_entry *h,
12432 Elf_Internal_Sym *sym)
12433 {
12434 /* ??? Do mips16 stub sections need to be handled special? */
12435
12436 if (h != NULL)
12437 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12438 {
12439 case R_MIPS_GNU_VTINHERIT:
12440 case R_MIPS_GNU_VTENTRY:
12441 return NULL;
12442 }
12443
12444 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12445 }
12446
12447 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12448
12449 bfd_boolean
12450 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12451 elf_gc_mark_hook_fn gc_mark_hook)
12452 {
12453 bfd *sub;
12454
12455 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12456
12457 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12458 {
12459 asection *o;
12460
12461 if (! is_mips_elf (sub))
12462 continue;
12463
12464 for (o = sub->sections; o != NULL; o = o->next)
12465 if (!o->gc_mark
12466 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12467 (bfd_get_section_name (sub, o)))
12468 {
12469 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12470 return FALSE;
12471 }
12472 }
12473
12474 return TRUE;
12475 }
12476 \f
12477 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12478 hiding the old indirect symbol. Process additional relocation
12479 information. Also called for weakdefs, in which case we just let
12480 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12481
12482 void
12483 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12484 struct elf_link_hash_entry *dir,
12485 struct elf_link_hash_entry *ind)
12486 {
12487 struct mips_elf_link_hash_entry *dirmips, *indmips;
12488
12489 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12490
12491 dirmips = (struct mips_elf_link_hash_entry *) dir;
12492 indmips = (struct mips_elf_link_hash_entry *) ind;
12493 /* Any absolute non-dynamic relocations against an indirect or weak
12494 definition will be against the target symbol. */
12495 if (indmips->has_static_relocs)
12496 dirmips->has_static_relocs = TRUE;
12497
12498 if (ind->root.type != bfd_link_hash_indirect)
12499 return;
12500
12501 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12502 if (indmips->readonly_reloc)
12503 dirmips->readonly_reloc = TRUE;
12504 if (indmips->no_fn_stub)
12505 dirmips->no_fn_stub = TRUE;
12506 if (indmips->fn_stub)
12507 {
12508 dirmips->fn_stub = indmips->fn_stub;
12509 indmips->fn_stub = NULL;
12510 }
12511 if (indmips->need_fn_stub)
12512 {
12513 dirmips->need_fn_stub = TRUE;
12514 indmips->need_fn_stub = FALSE;
12515 }
12516 if (indmips->call_stub)
12517 {
12518 dirmips->call_stub = indmips->call_stub;
12519 indmips->call_stub = NULL;
12520 }
12521 if (indmips->call_fp_stub)
12522 {
12523 dirmips->call_fp_stub = indmips->call_fp_stub;
12524 indmips->call_fp_stub = NULL;
12525 }
12526 if (indmips->global_got_area < dirmips->global_got_area)
12527 dirmips->global_got_area = indmips->global_got_area;
12528 if (indmips->global_got_area < GGA_NONE)
12529 indmips->global_got_area = GGA_NONE;
12530 if (indmips->has_nonpic_branches)
12531 dirmips->has_nonpic_branches = TRUE;
12532 }
12533 \f
12534 #define PDR_SIZE 32
12535
12536 bfd_boolean
12537 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12538 struct bfd_link_info *info)
12539 {
12540 asection *o;
12541 bfd_boolean ret = FALSE;
12542 unsigned char *tdata;
12543 size_t i, skip;
12544
12545 o = bfd_get_section_by_name (abfd, ".pdr");
12546 if (! o)
12547 return FALSE;
12548 if (o->size == 0)
12549 return FALSE;
12550 if (o->size % PDR_SIZE != 0)
12551 return FALSE;
12552 if (o->output_section != NULL
12553 && bfd_is_abs_section (o->output_section))
12554 return FALSE;
12555
12556 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12557 if (! tdata)
12558 return FALSE;
12559
12560 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12561 info->keep_memory);
12562 if (!cookie->rels)
12563 {
12564 free (tdata);
12565 return FALSE;
12566 }
12567
12568 cookie->rel = cookie->rels;
12569 cookie->relend = cookie->rels + o->reloc_count;
12570
12571 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12572 {
12573 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12574 {
12575 tdata[i] = 1;
12576 skip ++;
12577 }
12578 }
12579
12580 if (skip != 0)
12581 {
12582 mips_elf_section_data (o)->u.tdata = tdata;
12583 if (o->rawsize == 0)
12584 o->rawsize = o->size;
12585 o->size -= skip * PDR_SIZE;
12586 ret = TRUE;
12587 }
12588 else
12589 free (tdata);
12590
12591 if (! info->keep_memory)
12592 free (cookie->rels);
12593
12594 return ret;
12595 }
12596
12597 bfd_boolean
12598 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12599 {
12600 if (strcmp (sec->name, ".pdr") == 0)
12601 return TRUE;
12602 return FALSE;
12603 }
12604
12605 bfd_boolean
12606 _bfd_mips_elf_write_section (bfd *output_bfd,
12607 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12608 asection *sec, bfd_byte *contents)
12609 {
12610 bfd_byte *to, *from, *end;
12611 int i;
12612
12613 if (strcmp (sec->name, ".pdr") != 0)
12614 return FALSE;
12615
12616 if (mips_elf_section_data (sec)->u.tdata == NULL)
12617 return FALSE;
12618
12619 to = contents;
12620 end = contents + sec->size;
12621 for (from = contents, i = 0;
12622 from < end;
12623 from += PDR_SIZE, i++)
12624 {
12625 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12626 continue;
12627 if (to != from)
12628 memcpy (to, from, PDR_SIZE);
12629 to += PDR_SIZE;
12630 }
12631 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12632 sec->output_offset, sec->size);
12633 return TRUE;
12634 }
12635 \f
12636 /* microMIPS code retains local labels for linker relaxation. Omit them
12637 from output by default for clarity. */
12638
12639 bfd_boolean
12640 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12641 {
12642 return _bfd_elf_is_local_label_name (abfd, sym->name);
12643 }
12644
12645 /* MIPS ELF uses a special find_nearest_line routine in order the
12646 handle the ECOFF debugging information. */
12647
12648 struct mips_elf_find_line
12649 {
12650 struct ecoff_debug_info d;
12651 struct ecoff_find_line i;
12652 };
12653
12654 bfd_boolean
12655 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12656 asection *section, bfd_vma offset,
12657 const char **filename_ptr,
12658 const char **functionname_ptr,
12659 unsigned int *line_ptr,
12660 unsigned int *discriminator_ptr)
12661 {
12662 asection *msec;
12663
12664 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12665 filename_ptr, functionname_ptr,
12666 line_ptr, discriminator_ptr,
12667 dwarf_debug_sections,
12668 ABI_64_P (abfd) ? 8 : 0,
12669 &elf_tdata (abfd)->dwarf2_find_line_info))
12670 return TRUE;
12671
12672 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12673 filename_ptr, functionname_ptr,
12674 line_ptr))
12675 return TRUE;
12676
12677 msec = bfd_get_section_by_name (abfd, ".mdebug");
12678 if (msec != NULL)
12679 {
12680 flagword origflags;
12681 struct mips_elf_find_line *fi;
12682 const struct ecoff_debug_swap * const swap =
12683 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12684
12685 /* If we are called during a link, mips_elf_final_link may have
12686 cleared the SEC_HAS_CONTENTS field. We force it back on here
12687 if appropriate (which it normally will be). */
12688 origflags = msec->flags;
12689 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12690 msec->flags |= SEC_HAS_CONTENTS;
12691
12692 fi = mips_elf_tdata (abfd)->find_line_info;
12693 if (fi == NULL)
12694 {
12695 bfd_size_type external_fdr_size;
12696 char *fraw_src;
12697 char *fraw_end;
12698 struct fdr *fdr_ptr;
12699 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12700
12701 fi = bfd_zalloc (abfd, amt);
12702 if (fi == NULL)
12703 {
12704 msec->flags = origflags;
12705 return FALSE;
12706 }
12707
12708 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12709 {
12710 msec->flags = origflags;
12711 return FALSE;
12712 }
12713
12714 /* Swap in the FDR information. */
12715 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12716 fi->d.fdr = bfd_alloc (abfd, amt);
12717 if (fi->d.fdr == NULL)
12718 {
12719 msec->flags = origflags;
12720 return FALSE;
12721 }
12722 external_fdr_size = swap->external_fdr_size;
12723 fdr_ptr = fi->d.fdr;
12724 fraw_src = (char *) fi->d.external_fdr;
12725 fraw_end = (fraw_src
12726 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12727 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12728 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12729
12730 mips_elf_tdata (abfd)->find_line_info = fi;
12731
12732 /* Note that we don't bother to ever free this information.
12733 find_nearest_line is either called all the time, as in
12734 objdump -l, so the information should be saved, or it is
12735 rarely called, as in ld error messages, so the memory
12736 wasted is unimportant. Still, it would probably be a
12737 good idea for free_cached_info to throw it away. */
12738 }
12739
12740 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12741 &fi->i, filename_ptr, functionname_ptr,
12742 line_ptr))
12743 {
12744 msec->flags = origflags;
12745 return TRUE;
12746 }
12747
12748 msec->flags = origflags;
12749 }
12750
12751 /* Fall back on the generic ELF find_nearest_line routine. */
12752
12753 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12754 filename_ptr, functionname_ptr,
12755 line_ptr, discriminator_ptr);
12756 }
12757
12758 bfd_boolean
12759 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12760 const char **filename_ptr,
12761 const char **functionname_ptr,
12762 unsigned int *line_ptr)
12763 {
12764 bfd_boolean found;
12765 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12766 functionname_ptr, line_ptr,
12767 & elf_tdata (abfd)->dwarf2_find_line_info);
12768 return found;
12769 }
12770
12771 \f
12772 /* When are writing out the .options or .MIPS.options section,
12773 remember the bytes we are writing out, so that we can install the
12774 GP value in the section_processing routine. */
12775
12776 bfd_boolean
12777 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12778 const void *location,
12779 file_ptr offset, bfd_size_type count)
12780 {
12781 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12782 {
12783 bfd_byte *c;
12784
12785 if (elf_section_data (section) == NULL)
12786 {
12787 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12788 section->used_by_bfd = bfd_zalloc (abfd, amt);
12789 if (elf_section_data (section) == NULL)
12790 return FALSE;
12791 }
12792 c = mips_elf_section_data (section)->u.tdata;
12793 if (c == NULL)
12794 {
12795 c = bfd_zalloc (abfd, section->size);
12796 if (c == NULL)
12797 return FALSE;
12798 mips_elf_section_data (section)->u.tdata = c;
12799 }
12800
12801 memcpy (c + offset, location, count);
12802 }
12803
12804 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12805 count);
12806 }
12807
12808 /* This is almost identical to bfd_generic_get_... except that some
12809 MIPS relocations need to be handled specially. Sigh. */
12810
12811 bfd_byte *
12812 _bfd_elf_mips_get_relocated_section_contents
12813 (bfd *abfd,
12814 struct bfd_link_info *link_info,
12815 struct bfd_link_order *link_order,
12816 bfd_byte *data,
12817 bfd_boolean relocatable,
12818 asymbol **symbols)
12819 {
12820 /* Get enough memory to hold the stuff */
12821 bfd *input_bfd = link_order->u.indirect.section->owner;
12822 asection *input_section = link_order->u.indirect.section;
12823 bfd_size_type sz;
12824
12825 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12826 arelent **reloc_vector = NULL;
12827 long reloc_count;
12828
12829 if (reloc_size < 0)
12830 goto error_return;
12831
12832 reloc_vector = bfd_malloc (reloc_size);
12833 if (reloc_vector == NULL && reloc_size != 0)
12834 goto error_return;
12835
12836 /* read in the section */
12837 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12838 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12839 goto error_return;
12840
12841 reloc_count = bfd_canonicalize_reloc (input_bfd,
12842 input_section,
12843 reloc_vector,
12844 symbols);
12845 if (reloc_count < 0)
12846 goto error_return;
12847
12848 if (reloc_count > 0)
12849 {
12850 arelent **parent;
12851 /* for mips */
12852 int gp_found;
12853 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12854
12855 {
12856 struct bfd_hash_entry *h;
12857 struct bfd_link_hash_entry *lh;
12858 /* Skip all this stuff if we aren't mixing formats. */
12859 if (abfd && input_bfd
12860 && abfd->xvec == input_bfd->xvec)
12861 lh = 0;
12862 else
12863 {
12864 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12865 lh = (struct bfd_link_hash_entry *) h;
12866 }
12867 lookup:
12868 if (lh)
12869 {
12870 switch (lh->type)
12871 {
12872 case bfd_link_hash_undefined:
12873 case bfd_link_hash_undefweak:
12874 case bfd_link_hash_common:
12875 gp_found = 0;
12876 break;
12877 case bfd_link_hash_defined:
12878 case bfd_link_hash_defweak:
12879 gp_found = 1;
12880 gp = lh->u.def.value;
12881 break;
12882 case bfd_link_hash_indirect:
12883 case bfd_link_hash_warning:
12884 lh = lh->u.i.link;
12885 /* @@FIXME ignoring warning for now */
12886 goto lookup;
12887 case bfd_link_hash_new:
12888 default:
12889 abort ();
12890 }
12891 }
12892 else
12893 gp_found = 0;
12894 }
12895 /* end mips */
12896 for (parent = reloc_vector; *parent != NULL; parent++)
12897 {
12898 char *error_message = NULL;
12899 bfd_reloc_status_type r;
12900
12901 /* Specific to MIPS: Deal with relocation types that require
12902 knowing the gp of the output bfd. */
12903 asymbol *sym = *(*parent)->sym_ptr_ptr;
12904
12905 /* If we've managed to find the gp and have a special
12906 function for the relocation then go ahead, else default
12907 to the generic handling. */
12908 if (gp_found
12909 && (*parent)->howto->special_function
12910 == _bfd_mips_elf32_gprel16_reloc)
12911 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12912 input_section, relocatable,
12913 data, gp);
12914 else
12915 r = bfd_perform_relocation (input_bfd, *parent, data,
12916 input_section,
12917 relocatable ? abfd : NULL,
12918 &error_message);
12919
12920 if (relocatable)
12921 {
12922 asection *os = input_section->output_section;
12923
12924 /* A partial link, so keep the relocs */
12925 os->orelocation[os->reloc_count] = *parent;
12926 os->reloc_count++;
12927 }
12928
12929 if (r != bfd_reloc_ok)
12930 {
12931 switch (r)
12932 {
12933 case bfd_reloc_undefined:
12934 (*link_info->callbacks->undefined_symbol)
12935 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12936 input_bfd, input_section, (*parent)->address, TRUE);
12937 break;
12938 case bfd_reloc_dangerous:
12939 BFD_ASSERT (error_message != NULL);
12940 (*link_info->callbacks->reloc_dangerous)
12941 (link_info, error_message,
12942 input_bfd, input_section, (*parent)->address);
12943 break;
12944 case bfd_reloc_overflow:
12945 (*link_info->callbacks->reloc_overflow)
12946 (link_info, NULL,
12947 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12948 (*parent)->howto->name, (*parent)->addend,
12949 input_bfd, input_section, (*parent)->address);
12950 break;
12951 case bfd_reloc_outofrange:
12952 default:
12953 abort ();
12954 break;
12955 }
12956
12957 }
12958 }
12959 }
12960 if (reloc_vector != NULL)
12961 free (reloc_vector);
12962 return data;
12963
12964 error_return:
12965 if (reloc_vector != NULL)
12966 free (reloc_vector);
12967 return NULL;
12968 }
12969 \f
12970 static bfd_boolean
12971 mips_elf_relax_delete_bytes (bfd *abfd,
12972 asection *sec, bfd_vma addr, int count)
12973 {
12974 Elf_Internal_Shdr *symtab_hdr;
12975 unsigned int sec_shndx;
12976 bfd_byte *contents;
12977 Elf_Internal_Rela *irel, *irelend;
12978 Elf_Internal_Sym *isym;
12979 Elf_Internal_Sym *isymend;
12980 struct elf_link_hash_entry **sym_hashes;
12981 struct elf_link_hash_entry **end_hashes;
12982 struct elf_link_hash_entry **start_hashes;
12983 unsigned int symcount;
12984
12985 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12986 contents = elf_section_data (sec)->this_hdr.contents;
12987
12988 irel = elf_section_data (sec)->relocs;
12989 irelend = irel + sec->reloc_count;
12990
12991 /* Actually delete the bytes. */
12992 memmove (contents + addr, contents + addr + count,
12993 (size_t) (sec->size - addr - count));
12994 sec->size -= count;
12995
12996 /* Adjust all the relocs. */
12997 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12998 {
12999 /* Get the new reloc address. */
13000 if (irel->r_offset > addr)
13001 irel->r_offset -= count;
13002 }
13003
13004 BFD_ASSERT (addr % 2 == 0);
13005 BFD_ASSERT (count % 2 == 0);
13006
13007 /* Adjust the local symbols defined in this section. */
13008 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13009 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13010 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13011 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13012 isym->st_value -= count;
13013
13014 /* Now adjust the global symbols defined in this section. */
13015 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13016 - symtab_hdr->sh_info);
13017 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13018 end_hashes = sym_hashes + symcount;
13019
13020 for (; sym_hashes < end_hashes; sym_hashes++)
13021 {
13022 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13023
13024 if ((sym_hash->root.type == bfd_link_hash_defined
13025 || sym_hash->root.type == bfd_link_hash_defweak)
13026 && sym_hash->root.u.def.section == sec)
13027 {
13028 bfd_vma value = sym_hash->root.u.def.value;
13029
13030 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13031 value &= MINUS_TWO;
13032 if (value > addr)
13033 sym_hash->root.u.def.value -= count;
13034 }
13035 }
13036
13037 return TRUE;
13038 }
13039
13040
13041 /* Opcodes needed for microMIPS relaxation as found in
13042 opcodes/micromips-opc.c. */
13043
13044 struct opcode_descriptor {
13045 unsigned long match;
13046 unsigned long mask;
13047 };
13048
13049 /* The $ra register aka $31. */
13050
13051 #define RA 31
13052
13053 /* 32-bit instruction format register fields. */
13054
13055 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13056 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13057
13058 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13059
13060 #define OP16_VALID_REG(r) \
13061 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13062
13063
13064 /* 32-bit and 16-bit branches. */
13065
13066 static const struct opcode_descriptor b_insns_32[] = {
13067 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13068 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13069 { 0, 0 } /* End marker for find_match(). */
13070 };
13071
13072 static const struct opcode_descriptor bc_insn_32 =
13073 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13074
13075 static const struct opcode_descriptor bz_insn_32 =
13076 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13077
13078 static const struct opcode_descriptor bzal_insn_32 =
13079 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13080
13081 static const struct opcode_descriptor beq_insn_32 =
13082 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13083
13084 static const struct opcode_descriptor b_insn_16 =
13085 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13086
13087 static const struct opcode_descriptor bz_insn_16 =
13088 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13089
13090
13091 /* 32-bit and 16-bit branch EQ and NE zero. */
13092
13093 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13094 eq and second the ne. This convention is used when replacing a
13095 32-bit BEQ/BNE with the 16-bit version. */
13096
13097 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13098
13099 static const struct opcode_descriptor bz_rs_insns_32[] = {
13100 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13101 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13102 { 0, 0 } /* End marker for find_match(). */
13103 };
13104
13105 static const struct opcode_descriptor bz_rt_insns_32[] = {
13106 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13107 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13108 { 0, 0 } /* End marker for find_match(). */
13109 };
13110
13111 static const struct opcode_descriptor bzc_insns_32[] = {
13112 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13113 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13114 { 0, 0 } /* End marker for find_match(). */
13115 };
13116
13117 static const struct opcode_descriptor bz_insns_16[] = {
13118 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13119 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13120 { 0, 0 } /* End marker for find_match(). */
13121 };
13122
13123 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13124
13125 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13126 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13127
13128
13129 /* 32-bit instructions with a delay slot. */
13130
13131 static const struct opcode_descriptor jal_insn_32_bd16 =
13132 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13133
13134 static const struct opcode_descriptor jal_insn_32_bd32 =
13135 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13136
13137 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13138 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13139
13140 static const struct opcode_descriptor j_insn_32 =
13141 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13142
13143 static const struct opcode_descriptor jalr_insn_32 =
13144 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13145
13146 /* This table can be compacted, because no opcode replacement is made. */
13147
13148 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13149 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13150
13151 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13152 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13153
13154 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13155 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13156 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13157 { 0, 0 } /* End marker for find_match(). */
13158 };
13159
13160 /* This table can be compacted, because no opcode replacement is made. */
13161
13162 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13163 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13164
13165 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13166 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13167 { 0, 0 } /* End marker for find_match(). */
13168 };
13169
13170
13171 /* 16-bit instructions with a delay slot. */
13172
13173 static const struct opcode_descriptor jalr_insn_16_bd16 =
13174 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13175
13176 static const struct opcode_descriptor jalr_insn_16_bd32 =
13177 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13178
13179 static const struct opcode_descriptor jr_insn_16 =
13180 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13181
13182 #define JR16_REG(opcode) ((opcode) & 0x1f)
13183
13184 /* This table can be compacted, because no opcode replacement is made. */
13185
13186 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13187 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13188
13189 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13190 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13191 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13192 { 0, 0 } /* End marker for find_match(). */
13193 };
13194
13195
13196 /* LUI instruction. */
13197
13198 static const struct opcode_descriptor lui_insn =
13199 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13200
13201
13202 /* ADDIU instruction. */
13203
13204 static const struct opcode_descriptor addiu_insn =
13205 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13206
13207 static const struct opcode_descriptor addiupc_insn =
13208 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13209
13210 #define ADDIUPC_REG_FIELD(r) \
13211 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13212
13213
13214 /* Relaxable instructions in a JAL delay slot: MOVE. */
13215
13216 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13217 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13218 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13219 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13220
13221 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13222 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13223
13224 static const struct opcode_descriptor move_insns_32[] = {
13225 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13226 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13227 { 0, 0 } /* End marker for find_match(). */
13228 };
13229
13230 static const struct opcode_descriptor move_insn_16 =
13231 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13232
13233
13234 /* NOP instructions. */
13235
13236 static const struct opcode_descriptor nop_insn_32 =
13237 { /* "nop", "", */ 0x00000000, 0xffffffff };
13238
13239 static const struct opcode_descriptor nop_insn_16 =
13240 { /* "nop", "", */ 0x0c00, 0xffff };
13241
13242
13243 /* Instruction match support. */
13244
13245 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13246
13247 static int
13248 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13249 {
13250 unsigned long indx;
13251
13252 for (indx = 0; insn[indx].mask != 0; indx++)
13253 if (MATCH (opcode, insn[indx]))
13254 return indx;
13255
13256 return -1;
13257 }
13258
13259
13260 /* Branch and delay slot decoding support. */
13261
13262 /* If PTR points to what *might* be a 16-bit branch or jump, then
13263 return the minimum length of its delay slot, otherwise return 0.
13264 Non-zero results are not definitive as we might be checking against
13265 the second half of another instruction. */
13266
13267 static int
13268 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13269 {
13270 unsigned long opcode;
13271 int bdsize;
13272
13273 opcode = bfd_get_16 (abfd, ptr);
13274 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13275 /* 16-bit branch/jump with a 32-bit delay slot. */
13276 bdsize = 4;
13277 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13278 || find_match (opcode, ds_insns_16_bd16) >= 0)
13279 /* 16-bit branch/jump with a 16-bit delay slot. */
13280 bdsize = 2;
13281 else
13282 /* No delay slot. */
13283 bdsize = 0;
13284
13285 return bdsize;
13286 }
13287
13288 /* If PTR points to what *might* be a 32-bit branch or jump, then
13289 return the minimum length of its delay slot, otherwise return 0.
13290 Non-zero results are not definitive as we might be checking against
13291 the second half of another instruction. */
13292
13293 static int
13294 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13295 {
13296 unsigned long opcode;
13297 int bdsize;
13298
13299 opcode = bfd_get_micromips_32 (abfd, ptr);
13300 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13301 /* 32-bit branch/jump with a 32-bit delay slot. */
13302 bdsize = 4;
13303 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13304 /* 32-bit branch/jump with a 16-bit delay slot. */
13305 bdsize = 2;
13306 else
13307 /* No delay slot. */
13308 bdsize = 0;
13309
13310 return bdsize;
13311 }
13312
13313 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13314 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13315
13316 static bfd_boolean
13317 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13318 {
13319 unsigned long opcode;
13320
13321 opcode = bfd_get_16 (abfd, ptr);
13322 if (MATCH (opcode, b_insn_16)
13323 /* B16 */
13324 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13325 /* JR16 */
13326 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13327 /* BEQZ16, BNEZ16 */
13328 || (MATCH (opcode, jalr_insn_16_bd32)
13329 /* JALR16 */
13330 && reg != JR16_REG (opcode) && reg != RA))
13331 return TRUE;
13332
13333 return FALSE;
13334 }
13335
13336 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13337 then return TRUE, otherwise FALSE. */
13338
13339 static bfd_boolean
13340 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13341 {
13342 unsigned long opcode;
13343
13344 opcode = bfd_get_micromips_32 (abfd, ptr);
13345 if (MATCH (opcode, j_insn_32)
13346 /* J */
13347 || MATCH (opcode, bc_insn_32)
13348 /* BC1F, BC1T, BC2F, BC2T */
13349 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13350 /* JAL, JALX */
13351 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13352 /* BGEZ, BGTZ, BLEZ, BLTZ */
13353 || (MATCH (opcode, bzal_insn_32)
13354 /* BGEZAL, BLTZAL */
13355 && reg != OP32_SREG (opcode) && reg != RA)
13356 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13357 /* JALR, JALR.HB, BEQ, BNE */
13358 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13359 return TRUE;
13360
13361 return FALSE;
13362 }
13363
13364 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13365 IRELEND) at OFFSET indicate that there must be a compact branch there,
13366 then return TRUE, otherwise FALSE. */
13367
13368 static bfd_boolean
13369 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13370 const Elf_Internal_Rela *internal_relocs,
13371 const Elf_Internal_Rela *irelend)
13372 {
13373 const Elf_Internal_Rela *irel;
13374 unsigned long opcode;
13375
13376 opcode = bfd_get_micromips_32 (abfd, ptr);
13377 if (find_match (opcode, bzc_insns_32) < 0)
13378 return FALSE;
13379
13380 for (irel = internal_relocs; irel < irelend; irel++)
13381 if (irel->r_offset == offset
13382 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13383 return TRUE;
13384
13385 return FALSE;
13386 }
13387
13388 /* Bitsize checking. */
13389 #define IS_BITSIZE(val, N) \
13390 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13391 - (1ULL << ((N) - 1))) == (val))
13392
13393 \f
13394 bfd_boolean
13395 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13396 struct bfd_link_info *link_info,
13397 bfd_boolean *again)
13398 {
13399 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13400 Elf_Internal_Shdr *symtab_hdr;
13401 Elf_Internal_Rela *internal_relocs;
13402 Elf_Internal_Rela *irel, *irelend;
13403 bfd_byte *contents = NULL;
13404 Elf_Internal_Sym *isymbuf = NULL;
13405
13406 /* Assume nothing changes. */
13407 *again = FALSE;
13408
13409 /* We don't have to do anything for a relocatable link, if
13410 this section does not have relocs, or if this is not a
13411 code section. */
13412
13413 if (bfd_link_relocatable (link_info)
13414 || (sec->flags & SEC_RELOC) == 0
13415 || sec->reloc_count == 0
13416 || (sec->flags & SEC_CODE) == 0)
13417 return TRUE;
13418
13419 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13420
13421 /* Get a copy of the native relocations. */
13422 internal_relocs = (_bfd_elf_link_read_relocs
13423 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13424 link_info->keep_memory));
13425 if (internal_relocs == NULL)
13426 goto error_return;
13427
13428 /* Walk through them looking for relaxing opportunities. */
13429 irelend = internal_relocs + sec->reloc_count;
13430 for (irel = internal_relocs; irel < irelend; irel++)
13431 {
13432 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13433 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13434 bfd_boolean target_is_micromips_code_p;
13435 unsigned long opcode;
13436 bfd_vma symval;
13437 bfd_vma pcrval;
13438 bfd_byte *ptr;
13439 int fndopc;
13440
13441 /* The number of bytes to delete for relaxation and from where
13442 to delete these bytes starting at irel->r_offset. */
13443 int delcnt = 0;
13444 int deloff = 0;
13445
13446 /* If this isn't something that can be relaxed, then ignore
13447 this reloc. */
13448 if (r_type != R_MICROMIPS_HI16
13449 && r_type != R_MICROMIPS_PC16_S1
13450 && r_type != R_MICROMIPS_26_S1)
13451 continue;
13452
13453 /* Get the section contents if we haven't done so already. */
13454 if (contents == NULL)
13455 {
13456 /* Get cached copy if it exists. */
13457 if (elf_section_data (sec)->this_hdr.contents != NULL)
13458 contents = elf_section_data (sec)->this_hdr.contents;
13459 /* Go get them off disk. */
13460 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13461 goto error_return;
13462 }
13463 ptr = contents + irel->r_offset;
13464
13465 /* Read this BFD's local symbols if we haven't done so already. */
13466 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13467 {
13468 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13469 if (isymbuf == NULL)
13470 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13471 symtab_hdr->sh_info, 0,
13472 NULL, NULL, NULL);
13473 if (isymbuf == NULL)
13474 goto error_return;
13475 }
13476
13477 /* Get the value of the symbol referred to by the reloc. */
13478 if (r_symndx < symtab_hdr->sh_info)
13479 {
13480 /* A local symbol. */
13481 Elf_Internal_Sym *isym;
13482 asection *sym_sec;
13483
13484 isym = isymbuf + r_symndx;
13485 if (isym->st_shndx == SHN_UNDEF)
13486 sym_sec = bfd_und_section_ptr;
13487 else if (isym->st_shndx == SHN_ABS)
13488 sym_sec = bfd_abs_section_ptr;
13489 else if (isym->st_shndx == SHN_COMMON)
13490 sym_sec = bfd_com_section_ptr;
13491 else
13492 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13493 symval = (isym->st_value
13494 + sym_sec->output_section->vma
13495 + sym_sec->output_offset);
13496 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13497 }
13498 else
13499 {
13500 unsigned long indx;
13501 struct elf_link_hash_entry *h;
13502
13503 /* An external symbol. */
13504 indx = r_symndx - symtab_hdr->sh_info;
13505 h = elf_sym_hashes (abfd)[indx];
13506 BFD_ASSERT (h != NULL);
13507
13508 if (h->root.type != bfd_link_hash_defined
13509 && h->root.type != bfd_link_hash_defweak)
13510 /* This appears to be a reference to an undefined
13511 symbol. Just ignore it -- it will be caught by the
13512 regular reloc processing. */
13513 continue;
13514
13515 symval = (h->root.u.def.value
13516 + h->root.u.def.section->output_section->vma
13517 + h->root.u.def.section->output_offset);
13518 target_is_micromips_code_p = (!h->needs_plt
13519 && ELF_ST_IS_MICROMIPS (h->other));
13520 }
13521
13522
13523 /* For simplicity of coding, we are going to modify the
13524 section contents, the section relocs, and the BFD symbol
13525 table. We must tell the rest of the code not to free up this
13526 information. It would be possible to instead create a table
13527 of changes which have to be made, as is done in coff-mips.c;
13528 that would be more work, but would require less memory when
13529 the linker is run. */
13530
13531 /* Only 32-bit instructions relaxed. */
13532 if (irel->r_offset + 4 > sec->size)
13533 continue;
13534
13535 opcode = bfd_get_micromips_32 (abfd, ptr);
13536
13537 /* This is the pc-relative distance from the instruction the
13538 relocation is applied to, to the symbol referred. */
13539 pcrval = (symval
13540 - (sec->output_section->vma + sec->output_offset)
13541 - irel->r_offset);
13542
13543 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13544 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13545 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13546
13547 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13548
13549 where pcrval has first to be adjusted to apply against the LO16
13550 location (we make the adjustment later on, when we have figured
13551 out the offset). */
13552 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13553 {
13554 bfd_boolean bzc = FALSE;
13555 unsigned long nextopc;
13556 unsigned long reg;
13557 bfd_vma offset;
13558
13559 /* Give up if the previous reloc was a HI16 against this symbol
13560 too. */
13561 if (irel > internal_relocs
13562 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13563 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13564 continue;
13565
13566 /* Or if the next reloc is not a LO16 against this symbol. */
13567 if (irel + 1 >= irelend
13568 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13569 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13570 continue;
13571
13572 /* Or if the second next reloc is a LO16 against this symbol too. */
13573 if (irel + 2 >= irelend
13574 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13575 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13576 continue;
13577
13578 /* See if the LUI instruction *might* be in a branch delay slot.
13579 We check whether what looks like a 16-bit branch or jump is
13580 actually an immediate argument to a compact branch, and let
13581 it through if so. */
13582 if (irel->r_offset >= 2
13583 && check_br16_dslot (abfd, ptr - 2)
13584 && !(irel->r_offset >= 4
13585 && (bzc = check_relocated_bzc (abfd,
13586 ptr - 4, irel->r_offset - 4,
13587 internal_relocs, irelend))))
13588 continue;
13589 if (irel->r_offset >= 4
13590 && !bzc
13591 && check_br32_dslot (abfd, ptr - 4))
13592 continue;
13593
13594 reg = OP32_SREG (opcode);
13595
13596 /* We only relax adjacent instructions or ones separated with
13597 a branch or jump that has a delay slot. The branch or jump
13598 must not fiddle with the register used to hold the address.
13599 Subtract 4 for the LUI itself. */
13600 offset = irel[1].r_offset - irel[0].r_offset;
13601 switch (offset - 4)
13602 {
13603 case 0:
13604 break;
13605 case 2:
13606 if (check_br16 (abfd, ptr + 4, reg))
13607 break;
13608 continue;
13609 case 4:
13610 if (check_br32 (abfd, ptr + 4, reg))
13611 break;
13612 continue;
13613 default:
13614 continue;
13615 }
13616
13617 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13618
13619 /* Give up unless the same register is used with both
13620 relocations. */
13621 if (OP32_SREG (nextopc) != reg)
13622 continue;
13623
13624 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13625 and rounding up to take masking of the two LSBs into account. */
13626 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13627
13628 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13629 if (IS_BITSIZE (symval, 16))
13630 {
13631 /* Fix the relocation's type. */
13632 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13633
13634 /* Instructions using R_MICROMIPS_LO16 have the base or
13635 source register in bits 20:16. This register becomes $0
13636 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13637 nextopc &= ~0x001f0000;
13638 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13639 contents + irel[1].r_offset);
13640 }
13641
13642 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13643 We add 4 to take LUI deletion into account while checking
13644 the PC-relative distance. */
13645 else if (symval % 4 == 0
13646 && IS_BITSIZE (pcrval + 4, 25)
13647 && MATCH (nextopc, addiu_insn)
13648 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13649 && OP16_VALID_REG (OP32_TREG (nextopc)))
13650 {
13651 /* Fix the relocation's type. */
13652 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13653
13654 /* Replace ADDIU with the ADDIUPC version. */
13655 nextopc = (addiupc_insn.match
13656 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13657
13658 bfd_put_micromips_32 (abfd, nextopc,
13659 contents + irel[1].r_offset);
13660 }
13661
13662 /* Can't do anything, give up, sigh... */
13663 else
13664 continue;
13665
13666 /* Fix the relocation's type. */
13667 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13668
13669 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13670 delcnt = 4;
13671 deloff = 0;
13672 }
13673
13674 /* Compact branch relaxation -- due to the multitude of macros
13675 employed by the compiler/assembler, compact branches are not
13676 always generated. Obviously, this can/will be fixed elsewhere,
13677 but there is no drawback in double checking it here. */
13678 else if (r_type == R_MICROMIPS_PC16_S1
13679 && irel->r_offset + 5 < sec->size
13680 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13681 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13682 && ((!insn32
13683 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13684 nop_insn_16) ? 2 : 0))
13685 || (irel->r_offset + 7 < sec->size
13686 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13687 ptr + 4),
13688 nop_insn_32) ? 4 : 0))))
13689 {
13690 unsigned long reg;
13691
13692 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13693
13694 /* Replace BEQZ/BNEZ with the compact version. */
13695 opcode = (bzc_insns_32[fndopc].match
13696 | BZC32_REG_FIELD (reg)
13697 | (opcode & 0xffff)); /* Addend value. */
13698
13699 bfd_put_micromips_32 (abfd, opcode, ptr);
13700
13701 /* Delete the delay slot NOP: two or four bytes from
13702 irel->offset + 4; delcnt has already been set above. */
13703 deloff = 4;
13704 }
13705
13706 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13707 to check the distance from the next instruction, so subtract 2. */
13708 else if (!insn32
13709 && r_type == R_MICROMIPS_PC16_S1
13710 && IS_BITSIZE (pcrval - 2, 11)
13711 && find_match (opcode, b_insns_32) >= 0)
13712 {
13713 /* Fix the relocation's type. */
13714 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13715
13716 /* Replace the 32-bit opcode with a 16-bit opcode. */
13717 bfd_put_16 (abfd,
13718 (b_insn_16.match
13719 | (opcode & 0x3ff)), /* Addend value. */
13720 ptr);
13721
13722 /* Delete 2 bytes from irel->r_offset + 2. */
13723 delcnt = 2;
13724 deloff = 2;
13725 }
13726
13727 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13728 to check the distance from the next instruction, so subtract 2. */
13729 else if (!insn32
13730 && r_type == R_MICROMIPS_PC16_S1
13731 && IS_BITSIZE (pcrval - 2, 8)
13732 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13733 && OP16_VALID_REG (OP32_SREG (opcode)))
13734 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13735 && OP16_VALID_REG (OP32_TREG (opcode)))))
13736 {
13737 unsigned long reg;
13738
13739 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13740
13741 /* Fix the relocation's type. */
13742 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13743
13744 /* Replace the 32-bit opcode with a 16-bit opcode. */
13745 bfd_put_16 (abfd,
13746 (bz_insns_16[fndopc].match
13747 | BZ16_REG_FIELD (reg)
13748 | (opcode & 0x7f)), /* Addend value. */
13749 ptr);
13750
13751 /* Delete 2 bytes from irel->r_offset + 2. */
13752 delcnt = 2;
13753 deloff = 2;
13754 }
13755
13756 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13757 else if (!insn32
13758 && r_type == R_MICROMIPS_26_S1
13759 && target_is_micromips_code_p
13760 && irel->r_offset + 7 < sec->size
13761 && MATCH (opcode, jal_insn_32_bd32))
13762 {
13763 unsigned long n32opc;
13764 bfd_boolean relaxed = FALSE;
13765
13766 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13767
13768 if (MATCH (n32opc, nop_insn_32))
13769 {
13770 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13771 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13772
13773 relaxed = TRUE;
13774 }
13775 else if (find_match (n32opc, move_insns_32) >= 0)
13776 {
13777 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13778 bfd_put_16 (abfd,
13779 (move_insn_16.match
13780 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13781 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13782 ptr + 4);
13783
13784 relaxed = TRUE;
13785 }
13786 /* Other 32-bit instructions relaxable to 16-bit
13787 instructions will be handled here later. */
13788
13789 if (relaxed)
13790 {
13791 /* JAL with 32-bit delay slot that is changed to a JALS
13792 with 16-bit delay slot. */
13793 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13794
13795 /* Delete 2 bytes from irel->r_offset + 6. */
13796 delcnt = 2;
13797 deloff = 6;
13798 }
13799 }
13800
13801 if (delcnt != 0)
13802 {
13803 /* Note that we've changed the relocs, section contents, etc. */
13804 elf_section_data (sec)->relocs = internal_relocs;
13805 elf_section_data (sec)->this_hdr.contents = contents;
13806 symtab_hdr->contents = (unsigned char *) isymbuf;
13807
13808 /* Delete bytes depending on the delcnt and deloff. */
13809 if (!mips_elf_relax_delete_bytes (abfd, sec,
13810 irel->r_offset + deloff, delcnt))
13811 goto error_return;
13812
13813 /* That will change things, so we should relax again.
13814 Note that this is not required, and it may be slow. */
13815 *again = TRUE;
13816 }
13817 }
13818
13819 if (isymbuf != NULL
13820 && symtab_hdr->contents != (unsigned char *) isymbuf)
13821 {
13822 if (! link_info->keep_memory)
13823 free (isymbuf);
13824 else
13825 {
13826 /* Cache the symbols for elf_link_input_bfd. */
13827 symtab_hdr->contents = (unsigned char *) isymbuf;
13828 }
13829 }
13830
13831 if (contents != NULL
13832 && elf_section_data (sec)->this_hdr.contents != contents)
13833 {
13834 if (! link_info->keep_memory)
13835 free (contents);
13836 else
13837 {
13838 /* Cache the section contents for elf_link_input_bfd. */
13839 elf_section_data (sec)->this_hdr.contents = contents;
13840 }
13841 }
13842
13843 if (internal_relocs != NULL
13844 && elf_section_data (sec)->relocs != internal_relocs)
13845 free (internal_relocs);
13846
13847 return TRUE;
13848
13849 error_return:
13850 if (isymbuf != NULL
13851 && symtab_hdr->contents != (unsigned char *) isymbuf)
13852 free (isymbuf);
13853 if (contents != NULL
13854 && elf_section_data (sec)->this_hdr.contents != contents)
13855 free (contents);
13856 if (internal_relocs != NULL
13857 && elf_section_data (sec)->relocs != internal_relocs)
13858 free (internal_relocs);
13859
13860 return FALSE;
13861 }
13862 \f
13863 /* Create a MIPS ELF linker hash table. */
13864
13865 struct bfd_link_hash_table *
13866 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13867 {
13868 struct mips_elf_link_hash_table *ret;
13869 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13870
13871 ret = bfd_zmalloc (amt);
13872 if (ret == NULL)
13873 return NULL;
13874
13875 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13876 mips_elf_link_hash_newfunc,
13877 sizeof (struct mips_elf_link_hash_entry),
13878 MIPS_ELF_DATA))
13879 {
13880 free (ret);
13881 return NULL;
13882 }
13883 ret->root.init_plt_refcount.plist = NULL;
13884 ret->root.init_plt_offset.plist = NULL;
13885
13886 return &ret->root.root;
13887 }
13888
13889 /* Likewise, but indicate that the target is VxWorks. */
13890
13891 struct bfd_link_hash_table *
13892 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13893 {
13894 struct bfd_link_hash_table *ret;
13895
13896 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13897 if (ret)
13898 {
13899 struct mips_elf_link_hash_table *htab;
13900
13901 htab = (struct mips_elf_link_hash_table *) ret;
13902 htab->use_plts_and_copy_relocs = TRUE;
13903 htab->is_vxworks = TRUE;
13904 }
13905 return ret;
13906 }
13907
13908 /* A function that the linker calls if we are allowed to use PLTs
13909 and copy relocs. */
13910
13911 void
13912 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13913 {
13914 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13915 }
13916
13917 /* A function that the linker calls to select between all or only
13918 32-bit microMIPS instructions, and between making or ignoring
13919 branch relocation checks for invalid transitions between ISA modes. */
13920
13921 void
13922 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13923 bfd_boolean ignore_branch_isa)
13924 {
13925 mips_elf_hash_table (info)->insn32 = insn32;
13926 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13927 }
13928 \f
13929 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13930
13931 struct mips_mach_extension
13932 {
13933 unsigned long extension, base;
13934 };
13935
13936
13937 /* An array describing how BFD machines relate to one another. The entries
13938 are ordered topologically with MIPS I extensions listed last. */
13939
13940 static const struct mips_mach_extension mips_mach_extensions[] =
13941 {
13942 /* MIPS64r2 extensions. */
13943 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13944 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13945 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13946 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13947 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13948
13949 /* MIPS64 extensions. */
13950 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13951 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13952 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13953
13954 /* MIPS V extensions. */
13955 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13956
13957 /* R10000 extensions. */
13958 { bfd_mach_mips12000, bfd_mach_mips10000 },
13959 { bfd_mach_mips14000, bfd_mach_mips10000 },
13960 { bfd_mach_mips16000, bfd_mach_mips10000 },
13961
13962 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13963 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13964 better to allow vr5400 and vr5500 code to be merged anyway, since
13965 many libraries will just use the core ISA. Perhaps we could add
13966 some sort of ASE flag if this ever proves a problem. */
13967 { bfd_mach_mips5500, bfd_mach_mips5400 },
13968 { bfd_mach_mips5400, bfd_mach_mips5000 },
13969
13970 /* MIPS IV extensions. */
13971 { bfd_mach_mips5, bfd_mach_mips8000 },
13972 { bfd_mach_mips10000, bfd_mach_mips8000 },
13973 { bfd_mach_mips5000, bfd_mach_mips8000 },
13974 { bfd_mach_mips7000, bfd_mach_mips8000 },
13975 { bfd_mach_mips9000, bfd_mach_mips8000 },
13976
13977 /* VR4100 extensions. */
13978 { bfd_mach_mips4120, bfd_mach_mips4100 },
13979 { bfd_mach_mips4111, bfd_mach_mips4100 },
13980
13981 /* MIPS III extensions. */
13982 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13983 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13984 { bfd_mach_mips8000, bfd_mach_mips4000 },
13985 { bfd_mach_mips4650, bfd_mach_mips4000 },
13986 { bfd_mach_mips4600, bfd_mach_mips4000 },
13987 { bfd_mach_mips4400, bfd_mach_mips4000 },
13988 { bfd_mach_mips4300, bfd_mach_mips4000 },
13989 { bfd_mach_mips4100, bfd_mach_mips4000 },
13990 { bfd_mach_mips5900, bfd_mach_mips4000 },
13991
13992 /* MIPS32r3 extensions. */
13993 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
13994
13995 /* MIPS32r2 extensions. */
13996 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
13997
13998 /* MIPS32 extensions. */
13999 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14000
14001 /* MIPS II extensions. */
14002 { bfd_mach_mips4000, bfd_mach_mips6000 },
14003 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14004 { bfd_mach_mips4010, bfd_mach_mips6000 },
14005
14006 /* MIPS I extensions. */
14007 { bfd_mach_mips6000, bfd_mach_mips3000 },
14008 { bfd_mach_mips3900, bfd_mach_mips3000 }
14009 };
14010
14011 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14012
14013 static bfd_boolean
14014 mips_mach_extends_p (unsigned long base, unsigned long extension)
14015 {
14016 size_t i;
14017
14018 if (extension == base)
14019 return TRUE;
14020
14021 if (base == bfd_mach_mipsisa32
14022 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14023 return TRUE;
14024
14025 if (base == bfd_mach_mipsisa32r2
14026 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14027 return TRUE;
14028
14029 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14030 if (extension == mips_mach_extensions[i].extension)
14031 {
14032 extension = mips_mach_extensions[i].base;
14033 if (extension == base)
14034 return TRUE;
14035 }
14036
14037 return FALSE;
14038 }
14039
14040 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14041
14042 static unsigned long
14043 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14044 {
14045 switch (isa_ext)
14046 {
14047 case AFL_EXT_3900: return bfd_mach_mips3900;
14048 case AFL_EXT_4010: return bfd_mach_mips4010;
14049 case AFL_EXT_4100: return bfd_mach_mips4100;
14050 case AFL_EXT_4111: return bfd_mach_mips4111;
14051 case AFL_EXT_4120: return bfd_mach_mips4120;
14052 case AFL_EXT_4650: return bfd_mach_mips4650;
14053 case AFL_EXT_5400: return bfd_mach_mips5400;
14054 case AFL_EXT_5500: return bfd_mach_mips5500;
14055 case AFL_EXT_5900: return bfd_mach_mips5900;
14056 case AFL_EXT_10000: return bfd_mach_mips10000;
14057 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14058 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14059 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14060 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14061 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14062 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14063 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14064 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14065 default: return bfd_mach_mips3000;
14066 }
14067 }
14068
14069 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14070
14071 unsigned int
14072 bfd_mips_isa_ext (bfd *abfd)
14073 {
14074 switch (bfd_get_mach (abfd))
14075 {
14076 case bfd_mach_mips3900: return AFL_EXT_3900;
14077 case bfd_mach_mips4010: return AFL_EXT_4010;
14078 case bfd_mach_mips4100: return AFL_EXT_4100;
14079 case bfd_mach_mips4111: return AFL_EXT_4111;
14080 case bfd_mach_mips4120: return AFL_EXT_4120;
14081 case bfd_mach_mips4650: return AFL_EXT_4650;
14082 case bfd_mach_mips5400: return AFL_EXT_5400;
14083 case bfd_mach_mips5500: return AFL_EXT_5500;
14084 case bfd_mach_mips5900: return AFL_EXT_5900;
14085 case bfd_mach_mips10000: return AFL_EXT_10000;
14086 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14087 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14088 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14089 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14090 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14091 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14092 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14093 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14094 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14095 case bfd_mach_mips_interaptiv_mr2:
14096 return AFL_EXT_INTERAPTIV_MR2;
14097 default: return 0;
14098 }
14099 }
14100
14101 /* Encode ISA level and revision as a single value. */
14102 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14103
14104 /* Decode a single value into level and revision. */
14105 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14106 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14107
14108 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14109
14110 static void
14111 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14112 {
14113 int new_isa = 0;
14114 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14115 {
14116 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14117 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14118 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14119 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14120 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14121 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14122 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14123 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14124 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14125 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14126 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14127 default:
14128 _bfd_error_handler
14129 /* xgettext:c-format */
14130 (_("%B: Unknown architecture %s"),
14131 abfd, bfd_printable_name (abfd));
14132 }
14133
14134 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14135 {
14136 abiflags->isa_level = ISA_LEVEL (new_isa);
14137 abiflags->isa_rev = ISA_REV (new_isa);
14138 }
14139
14140 /* Update the isa_ext if ABFD describes a further extension. */
14141 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14142 bfd_get_mach (abfd)))
14143 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14144 }
14145
14146 /* Return true if the given ELF header flags describe a 32-bit binary. */
14147
14148 static bfd_boolean
14149 mips_32bit_flags_p (flagword flags)
14150 {
14151 return ((flags & EF_MIPS_32BITMODE) != 0
14152 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14153 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14154 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14155 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14156 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14157 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14158 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14159 }
14160
14161 /* Infer the content of the ABI flags based on the elf header. */
14162
14163 static void
14164 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14165 {
14166 obj_attribute *in_attr;
14167
14168 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14169 update_mips_abiflags_isa (abfd, abiflags);
14170
14171 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14172 abiflags->gpr_size = AFL_REG_32;
14173 else
14174 abiflags->gpr_size = AFL_REG_64;
14175
14176 abiflags->cpr1_size = AFL_REG_NONE;
14177
14178 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14179 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14180
14181 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14182 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14183 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14184 && abiflags->gpr_size == AFL_REG_32))
14185 abiflags->cpr1_size = AFL_REG_32;
14186 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14187 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14188 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14189 abiflags->cpr1_size = AFL_REG_64;
14190
14191 abiflags->cpr2_size = AFL_REG_NONE;
14192
14193 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14194 abiflags->ases |= AFL_ASE_MDMX;
14195 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14196 abiflags->ases |= AFL_ASE_MIPS16;
14197 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14198 abiflags->ases |= AFL_ASE_MICROMIPS;
14199
14200 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14201 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14202 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14203 && abiflags->isa_level >= 32
14204 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14205 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14206 }
14207
14208 /* We need to use a special link routine to handle the .reginfo and
14209 the .mdebug sections. We need to merge all instances of these
14210 sections together, not write them all out sequentially. */
14211
14212 bfd_boolean
14213 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14214 {
14215 asection *o;
14216 struct bfd_link_order *p;
14217 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14218 asection *rtproc_sec, *abiflags_sec;
14219 Elf32_RegInfo reginfo;
14220 struct ecoff_debug_info debug;
14221 struct mips_htab_traverse_info hti;
14222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14223 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14224 HDRR *symhdr = &debug.symbolic_header;
14225 void *mdebug_handle = NULL;
14226 asection *s;
14227 EXTR esym;
14228 unsigned int i;
14229 bfd_size_type amt;
14230 struct mips_elf_link_hash_table *htab;
14231
14232 static const char * const secname[] =
14233 {
14234 ".text", ".init", ".fini", ".data",
14235 ".rodata", ".sdata", ".sbss", ".bss"
14236 };
14237 static const int sc[] =
14238 {
14239 scText, scInit, scFini, scData,
14240 scRData, scSData, scSBss, scBss
14241 };
14242
14243 htab = mips_elf_hash_table (info);
14244 BFD_ASSERT (htab != NULL);
14245
14246 /* Sort the dynamic symbols so that those with GOT entries come after
14247 those without. */
14248 if (!mips_elf_sort_hash_table (abfd, info))
14249 return FALSE;
14250
14251 /* Create any scheduled LA25 stubs. */
14252 hti.info = info;
14253 hti.output_bfd = abfd;
14254 hti.error = FALSE;
14255 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14256 if (hti.error)
14257 return FALSE;
14258
14259 /* Get a value for the GP register. */
14260 if (elf_gp (abfd) == 0)
14261 {
14262 struct bfd_link_hash_entry *h;
14263
14264 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14265 if (h != NULL && h->type == bfd_link_hash_defined)
14266 elf_gp (abfd) = (h->u.def.value
14267 + h->u.def.section->output_section->vma
14268 + h->u.def.section->output_offset);
14269 else if (htab->is_vxworks
14270 && (h = bfd_link_hash_lookup (info->hash,
14271 "_GLOBAL_OFFSET_TABLE_",
14272 FALSE, FALSE, TRUE))
14273 && h->type == bfd_link_hash_defined)
14274 elf_gp (abfd) = (h->u.def.section->output_section->vma
14275 + h->u.def.section->output_offset
14276 + h->u.def.value);
14277 else if (bfd_link_relocatable (info))
14278 {
14279 bfd_vma lo = MINUS_ONE;
14280
14281 /* Find the GP-relative section with the lowest offset. */
14282 for (o = abfd->sections; o != NULL; o = o->next)
14283 if (o->vma < lo
14284 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14285 lo = o->vma;
14286
14287 /* And calculate GP relative to that. */
14288 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14289 }
14290 else
14291 {
14292 /* If the relocate_section function needs to do a reloc
14293 involving the GP value, it should make a reloc_dangerous
14294 callback to warn that GP is not defined. */
14295 }
14296 }
14297
14298 /* Go through the sections and collect the .reginfo and .mdebug
14299 information. */
14300 abiflags_sec = NULL;
14301 reginfo_sec = NULL;
14302 mdebug_sec = NULL;
14303 gptab_data_sec = NULL;
14304 gptab_bss_sec = NULL;
14305 for (o = abfd->sections; o != NULL; o = o->next)
14306 {
14307 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14308 {
14309 /* We have found the .MIPS.abiflags section in the output file.
14310 Look through all the link_orders comprising it and remove them.
14311 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14312 for (p = o->map_head.link_order; p != NULL; p = p->next)
14313 {
14314 asection *input_section;
14315
14316 if (p->type != bfd_indirect_link_order)
14317 {
14318 if (p->type == bfd_data_link_order)
14319 continue;
14320 abort ();
14321 }
14322
14323 input_section = p->u.indirect.section;
14324
14325 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14326 elf_link_input_bfd ignores this section. */
14327 input_section->flags &= ~SEC_HAS_CONTENTS;
14328 }
14329
14330 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14331 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14332
14333 /* Skip this section later on (I don't think this currently
14334 matters, but someday it might). */
14335 o->map_head.link_order = NULL;
14336
14337 abiflags_sec = o;
14338 }
14339
14340 if (strcmp (o->name, ".reginfo") == 0)
14341 {
14342 memset (&reginfo, 0, sizeof reginfo);
14343
14344 /* We have found the .reginfo section in the output file.
14345 Look through all the link_orders comprising it and merge
14346 the information together. */
14347 for (p = o->map_head.link_order; p != NULL; p = p->next)
14348 {
14349 asection *input_section;
14350 bfd *input_bfd;
14351 Elf32_External_RegInfo ext;
14352 Elf32_RegInfo sub;
14353
14354 if (p->type != bfd_indirect_link_order)
14355 {
14356 if (p->type == bfd_data_link_order)
14357 continue;
14358 abort ();
14359 }
14360
14361 input_section = p->u.indirect.section;
14362 input_bfd = input_section->owner;
14363
14364 if (! bfd_get_section_contents (input_bfd, input_section,
14365 &ext, 0, sizeof ext))
14366 return FALSE;
14367
14368 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14369
14370 reginfo.ri_gprmask |= sub.ri_gprmask;
14371 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14372 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14373 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14374 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14375
14376 /* ri_gp_value is set by the function
14377 `_bfd_mips_elf_section_processing' when the section is
14378 finally written out. */
14379
14380 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14381 elf_link_input_bfd ignores this section. */
14382 input_section->flags &= ~SEC_HAS_CONTENTS;
14383 }
14384
14385 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14386 if (o->size != sizeof (Elf32_External_RegInfo))
14387 {
14388 _bfd_error_handler
14389 (_("%B: .reginfo section size should be %d bytes, "
14390 "actual size is %d"),
14391 abfd, sizeof (Elf32_External_RegInfo), o->size);
14392
14393 return FALSE;
14394 }
14395
14396 /* Skip this section later on (I don't think this currently
14397 matters, but someday it might). */
14398 o->map_head.link_order = NULL;
14399
14400 reginfo_sec = o;
14401 }
14402
14403 if (strcmp (o->name, ".mdebug") == 0)
14404 {
14405 struct extsym_info einfo;
14406 bfd_vma last;
14407
14408 /* We have found the .mdebug section in the output file.
14409 Look through all the link_orders comprising it and merge
14410 the information together. */
14411 symhdr->magic = swap->sym_magic;
14412 /* FIXME: What should the version stamp be? */
14413 symhdr->vstamp = 0;
14414 symhdr->ilineMax = 0;
14415 symhdr->cbLine = 0;
14416 symhdr->idnMax = 0;
14417 symhdr->ipdMax = 0;
14418 symhdr->isymMax = 0;
14419 symhdr->ioptMax = 0;
14420 symhdr->iauxMax = 0;
14421 symhdr->issMax = 0;
14422 symhdr->issExtMax = 0;
14423 symhdr->ifdMax = 0;
14424 symhdr->crfd = 0;
14425 symhdr->iextMax = 0;
14426
14427 /* We accumulate the debugging information itself in the
14428 debug_info structure. */
14429 debug.line = NULL;
14430 debug.external_dnr = NULL;
14431 debug.external_pdr = NULL;
14432 debug.external_sym = NULL;
14433 debug.external_opt = NULL;
14434 debug.external_aux = NULL;
14435 debug.ss = NULL;
14436 debug.ssext = debug.ssext_end = NULL;
14437 debug.external_fdr = NULL;
14438 debug.external_rfd = NULL;
14439 debug.external_ext = debug.external_ext_end = NULL;
14440
14441 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14442 if (mdebug_handle == NULL)
14443 return FALSE;
14444
14445 esym.jmptbl = 0;
14446 esym.cobol_main = 0;
14447 esym.weakext = 0;
14448 esym.reserved = 0;
14449 esym.ifd = ifdNil;
14450 esym.asym.iss = issNil;
14451 esym.asym.st = stLocal;
14452 esym.asym.reserved = 0;
14453 esym.asym.index = indexNil;
14454 last = 0;
14455 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14456 {
14457 esym.asym.sc = sc[i];
14458 s = bfd_get_section_by_name (abfd, secname[i]);
14459 if (s != NULL)
14460 {
14461 esym.asym.value = s->vma;
14462 last = s->vma + s->size;
14463 }
14464 else
14465 esym.asym.value = last;
14466 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14467 secname[i], &esym))
14468 return FALSE;
14469 }
14470
14471 for (p = o->map_head.link_order; p != NULL; p = p->next)
14472 {
14473 asection *input_section;
14474 bfd *input_bfd;
14475 const struct ecoff_debug_swap *input_swap;
14476 struct ecoff_debug_info input_debug;
14477 char *eraw_src;
14478 char *eraw_end;
14479
14480 if (p->type != bfd_indirect_link_order)
14481 {
14482 if (p->type == bfd_data_link_order)
14483 continue;
14484 abort ();
14485 }
14486
14487 input_section = p->u.indirect.section;
14488 input_bfd = input_section->owner;
14489
14490 if (!is_mips_elf (input_bfd))
14491 {
14492 /* I don't know what a non MIPS ELF bfd would be
14493 doing with a .mdebug section, but I don't really
14494 want to deal with it. */
14495 continue;
14496 }
14497
14498 input_swap = (get_elf_backend_data (input_bfd)
14499 ->elf_backend_ecoff_debug_swap);
14500
14501 BFD_ASSERT (p->size == input_section->size);
14502
14503 /* The ECOFF linking code expects that we have already
14504 read in the debugging information and set up an
14505 ecoff_debug_info structure, so we do that now. */
14506 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14507 &input_debug))
14508 return FALSE;
14509
14510 if (! (bfd_ecoff_debug_accumulate
14511 (mdebug_handle, abfd, &debug, swap, input_bfd,
14512 &input_debug, input_swap, info)))
14513 return FALSE;
14514
14515 /* Loop through the external symbols. For each one with
14516 interesting information, try to find the symbol in
14517 the linker global hash table and save the information
14518 for the output external symbols. */
14519 eraw_src = input_debug.external_ext;
14520 eraw_end = (eraw_src
14521 + (input_debug.symbolic_header.iextMax
14522 * input_swap->external_ext_size));
14523 for (;
14524 eraw_src < eraw_end;
14525 eraw_src += input_swap->external_ext_size)
14526 {
14527 EXTR ext;
14528 const char *name;
14529 struct mips_elf_link_hash_entry *h;
14530
14531 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14532 if (ext.asym.sc == scNil
14533 || ext.asym.sc == scUndefined
14534 || ext.asym.sc == scSUndefined)
14535 continue;
14536
14537 name = input_debug.ssext + ext.asym.iss;
14538 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14539 name, FALSE, FALSE, TRUE);
14540 if (h == NULL || h->esym.ifd != -2)
14541 continue;
14542
14543 if (ext.ifd != -1)
14544 {
14545 BFD_ASSERT (ext.ifd
14546 < input_debug.symbolic_header.ifdMax);
14547 ext.ifd = input_debug.ifdmap[ext.ifd];
14548 }
14549
14550 h->esym = ext;
14551 }
14552
14553 /* Free up the information we just read. */
14554 free (input_debug.line);
14555 free (input_debug.external_dnr);
14556 free (input_debug.external_pdr);
14557 free (input_debug.external_sym);
14558 free (input_debug.external_opt);
14559 free (input_debug.external_aux);
14560 free (input_debug.ss);
14561 free (input_debug.ssext);
14562 free (input_debug.external_fdr);
14563 free (input_debug.external_rfd);
14564 free (input_debug.external_ext);
14565
14566 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14567 elf_link_input_bfd ignores this section. */
14568 input_section->flags &= ~SEC_HAS_CONTENTS;
14569 }
14570
14571 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14572 {
14573 /* Create .rtproc section. */
14574 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14575 if (rtproc_sec == NULL)
14576 {
14577 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14578 | SEC_LINKER_CREATED | SEC_READONLY);
14579
14580 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14581 ".rtproc",
14582 flags);
14583 if (rtproc_sec == NULL
14584 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14585 return FALSE;
14586 }
14587
14588 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14589 info, rtproc_sec,
14590 &debug))
14591 return FALSE;
14592 }
14593
14594 /* Build the external symbol information. */
14595 einfo.abfd = abfd;
14596 einfo.info = info;
14597 einfo.debug = &debug;
14598 einfo.swap = swap;
14599 einfo.failed = FALSE;
14600 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14601 mips_elf_output_extsym, &einfo);
14602 if (einfo.failed)
14603 return FALSE;
14604
14605 /* Set the size of the .mdebug section. */
14606 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14607
14608 /* Skip this section later on (I don't think this currently
14609 matters, but someday it might). */
14610 o->map_head.link_order = NULL;
14611
14612 mdebug_sec = o;
14613 }
14614
14615 if (CONST_STRNEQ (o->name, ".gptab."))
14616 {
14617 const char *subname;
14618 unsigned int c;
14619 Elf32_gptab *tab;
14620 Elf32_External_gptab *ext_tab;
14621 unsigned int j;
14622
14623 /* The .gptab.sdata and .gptab.sbss sections hold
14624 information describing how the small data area would
14625 change depending upon the -G switch. These sections
14626 not used in executables files. */
14627 if (! bfd_link_relocatable (info))
14628 {
14629 for (p = o->map_head.link_order; p != NULL; p = p->next)
14630 {
14631 asection *input_section;
14632
14633 if (p->type != bfd_indirect_link_order)
14634 {
14635 if (p->type == bfd_data_link_order)
14636 continue;
14637 abort ();
14638 }
14639
14640 input_section = p->u.indirect.section;
14641
14642 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14643 elf_link_input_bfd ignores this section. */
14644 input_section->flags &= ~SEC_HAS_CONTENTS;
14645 }
14646
14647 /* Skip this section later on (I don't think this
14648 currently matters, but someday it might). */
14649 o->map_head.link_order = NULL;
14650
14651 /* Really remove the section. */
14652 bfd_section_list_remove (abfd, o);
14653 --abfd->section_count;
14654
14655 continue;
14656 }
14657
14658 /* There is one gptab for initialized data, and one for
14659 uninitialized data. */
14660 if (strcmp (o->name, ".gptab.sdata") == 0)
14661 gptab_data_sec = o;
14662 else if (strcmp (o->name, ".gptab.sbss") == 0)
14663 gptab_bss_sec = o;
14664 else
14665 {
14666 _bfd_error_handler
14667 /* xgettext:c-format */
14668 (_("%B: illegal section name `%A'"), abfd, o);
14669 bfd_set_error (bfd_error_nonrepresentable_section);
14670 return FALSE;
14671 }
14672
14673 /* The linker script always combines .gptab.data and
14674 .gptab.sdata into .gptab.sdata, and likewise for
14675 .gptab.bss and .gptab.sbss. It is possible that there is
14676 no .sdata or .sbss section in the output file, in which
14677 case we must change the name of the output section. */
14678 subname = o->name + sizeof ".gptab" - 1;
14679 if (bfd_get_section_by_name (abfd, subname) == NULL)
14680 {
14681 if (o == gptab_data_sec)
14682 o->name = ".gptab.data";
14683 else
14684 o->name = ".gptab.bss";
14685 subname = o->name + sizeof ".gptab" - 1;
14686 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14687 }
14688
14689 /* Set up the first entry. */
14690 c = 1;
14691 amt = c * sizeof (Elf32_gptab);
14692 tab = bfd_malloc (amt);
14693 if (tab == NULL)
14694 return FALSE;
14695 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14696 tab[0].gt_header.gt_unused = 0;
14697
14698 /* Combine the input sections. */
14699 for (p = o->map_head.link_order; p != NULL; p = p->next)
14700 {
14701 asection *input_section;
14702 bfd *input_bfd;
14703 bfd_size_type size;
14704 unsigned long last;
14705 bfd_size_type gpentry;
14706
14707 if (p->type != bfd_indirect_link_order)
14708 {
14709 if (p->type == bfd_data_link_order)
14710 continue;
14711 abort ();
14712 }
14713
14714 input_section = p->u.indirect.section;
14715 input_bfd = input_section->owner;
14716
14717 /* Combine the gptab entries for this input section one
14718 by one. We know that the input gptab entries are
14719 sorted by ascending -G value. */
14720 size = input_section->size;
14721 last = 0;
14722 for (gpentry = sizeof (Elf32_External_gptab);
14723 gpentry < size;
14724 gpentry += sizeof (Elf32_External_gptab))
14725 {
14726 Elf32_External_gptab ext_gptab;
14727 Elf32_gptab int_gptab;
14728 unsigned long val;
14729 unsigned long add;
14730 bfd_boolean exact;
14731 unsigned int look;
14732
14733 if (! (bfd_get_section_contents
14734 (input_bfd, input_section, &ext_gptab, gpentry,
14735 sizeof (Elf32_External_gptab))))
14736 {
14737 free (tab);
14738 return FALSE;
14739 }
14740
14741 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14742 &int_gptab);
14743 val = int_gptab.gt_entry.gt_g_value;
14744 add = int_gptab.gt_entry.gt_bytes - last;
14745
14746 exact = FALSE;
14747 for (look = 1; look < c; look++)
14748 {
14749 if (tab[look].gt_entry.gt_g_value >= val)
14750 tab[look].gt_entry.gt_bytes += add;
14751
14752 if (tab[look].gt_entry.gt_g_value == val)
14753 exact = TRUE;
14754 }
14755
14756 if (! exact)
14757 {
14758 Elf32_gptab *new_tab;
14759 unsigned int max;
14760
14761 /* We need a new table entry. */
14762 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14763 new_tab = bfd_realloc (tab, amt);
14764 if (new_tab == NULL)
14765 {
14766 free (tab);
14767 return FALSE;
14768 }
14769 tab = new_tab;
14770 tab[c].gt_entry.gt_g_value = val;
14771 tab[c].gt_entry.gt_bytes = add;
14772
14773 /* Merge in the size for the next smallest -G
14774 value, since that will be implied by this new
14775 value. */
14776 max = 0;
14777 for (look = 1; look < c; look++)
14778 {
14779 if (tab[look].gt_entry.gt_g_value < val
14780 && (max == 0
14781 || (tab[look].gt_entry.gt_g_value
14782 > tab[max].gt_entry.gt_g_value)))
14783 max = look;
14784 }
14785 if (max != 0)
14786 tab[c].gt_entry.gt_bytes +=
14787 tab[max].gt_entry.gt_bytes;
14788
14789 ++c;
14790 }
14791
14792 last = int_gptab.gt_entry.gt_bytes;
14793 }
14794
14795 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14796 elf_link_input_bfd ignores this section. */
14797 input_section->flags &= ~SEC_HAS_CONTENTS;
14798 }
14799
14800 /* The table must be sorted by -G value. */
14801 if (c > 2)
14802 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14803
14804 /* Swap out the table. */
14805 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14806 ext_tab = bfd_alloc (abfd, amt);
14807 if (ext_tab == NULL)
14808 {
14809 free (tab);
14810 return FALSE;
14811 }
14812
14813 for (j = 0; j < c; j++)
14814 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14815 free (tab);
14816
14817 o->size = c * sizeof (Elf32_External_gptab);
14818 o->contents = (bfd_byte *) ext_tab;
14819
14820 /* Skip this section later on (I don't think this currently
14821 matters, but someday it might). */
14822 o->map_head.link_order = NULL;
14823 }
14824 }
14825
14826 /* Invoke the regular ELF backend linker to do all the work. */
14827 if (!bfd_elf_final_link (abfd, info))
14828 return FALSE;
14829
14830 /* Now write out the computed sections. */
14831
14832 if (abiflags_sec != NULL)
14833 {
14834 Elf_External_ABIFlags_v0 ext;
14835 Elf_Internal_ABIFlags_v0 *abiflags;
14836
14837 abiflags = &mips_elf_tdata (abfd)->abiflags;
14838
14839 /* Set up the abiflags if no valid input sections were found. */
14840 if (!mips_elf_tdata (abfd)->abiflags_valid)
14841 {
14842 infer_mips_abiflags (abfd, abiflags);
14843 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14844 }
14845 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14846 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14847 return FALSE;
14848 }
14849
14850 if (reginfo_sec != NULL)
14851 {
14852 Elf32_External_RegInfo ext;
14853
14854 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14855 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14856 return FALSE;
14857 }
14858
14859 if (mdebug_sec != NULL)
14860 {
14861 BFD_ASSERT (abfd->output_has_begun);
14862 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14863 swap, info,
14864 mdebug_sec->filepos))
14865 return FALSE;
14866
14867 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14868 }
14869
14870 if (gptab_data_sec != NULL)
14871 {
14872 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14873 gptab_data_sec->contents,
14874 0, gptab_data_sec->size))
14875 return FALSE;
14876 }
14877
14878 if (gptab_bss_sec != NULL)
14879 {
14880 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14881 gptab_bss_sec->contents,
14882 0, gptab_bss_sec->size))
14883 return FALSE;
14884 }
14885
14886 if (SGI_COMPAT (abfd))
14887 {
14888 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14889 if (rtproc_sec != NULL)
14890 {
14891 if (! bfd_set_section_contents (abfd, rtproc_sec,
14892 rtproc_sec->contents,
14893 0, rtproc_sec->size))
14894 return FALSE;
14895 }
14896 }
14897
14898 return TRUE;
14899 }
14900 \f
14901 /* Merge object file header flags from IBFD into OBFD. Raise an error
14902 if there are conflicting settings. */
14903
14904 static bfd_boolean
14905 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14906 {
14907 bfd *obfd = info->output_bfd;
14908 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14909 flagword old_flags;
14910 flagword new_flags;
14911 bfd_boolean ok;
14912
14913 new_flags = elf_elfheader (ibfd)->e_flags;
14914 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14915 old_flags = elf_elfheader (obfd)->e_flags;
14916
14917 /* Check flag compatibility. */
14918
14919 new_flags &= ~EF_MIPS_NOREORDER;
14920 old_flags &= ~EF_MIPS_NOREORDER;
14921
14922 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14923 doesn't seem to matter. */
14924 new_flags &= ~EF_MIPS_XGOT;
14925 old_flags &= ~EF_MIPS_XGOT;
14926
14927 /* MIPSpro generates ucode info in n64 objects. Again, we should
14928 just be able to ignore this. */
14929 new_flags &= ~EF_MIPS_UCODE;
14930 old_flags &= ~EF_MIPS_UCODE;
14931
14932 /* DSOs should only be linked with CPIC code. */
14933 if ((ibfd->flags & DYNAMIC) != 0)
14934 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14935
14936 if (new_flags == old_flags)
14937 return TRUE;
14938
14939 ok = TRUE;
14940
14941 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14942 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14943 {
14944 _bfd_error_handler
14945 (_("%B: warning: linking abicalls files with non-abicalls files"),
14946 ibfd);
14947 ok = TRUE;
14948 }
14949
14950 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14951 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14952 if (! (new_flags & EF_MIPS_PIC))
14953 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14954
14955 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14956 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14957
14958 /* Compare the ISAs. */
14959 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14960 {
14961 _bfd_error_handler
14962 (_("%B: linking 32-bit code with 64-bit code"),
14963 ibfd);
14964 ok = FALSE;
14965 }
14966 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14967 {
14968 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14969 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14970 {
14971 /* Copy the architecture info from IBFD to OBFD. Also copy
14972 the 32-bit flag (if set) so that we continue to recognise
14973 OBFD as a 32-bit binary. */
14974 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14975 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14976 elf_elfheader (obfd)->e_flags
14977 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14978
14979 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14980 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14981
14982 /* Copy across the ABI flags if OBFD doesn't use them
14983 and if that was what caused us to treat IBFD as 32-bit. */
14984 if ((old_flags & EF_MIPS_ABI) == 0
14985 && mips_32bit_flags_p (new_flags)
14986 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14987 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14988 }
14989 else
14990 {
14991 /* The ISAs aren't compatible. */
14992 _bfd_error_handler
14993 /* xgettext:c-format */
14994 (_("%B: linking %s module with previous %s modules"),
14995 ibfd,
14996 bfd_printable_name (ibfd),
14997 bfd_printable_name (obfd));
14998 ok = FALSE;
14999 }
15000 }
15001
15002 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15003 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15004
15005 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15006 does set EI_CLASS differently from any 32-bit ABI. */
15007 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15008 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15009 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15010 {
15011 /* Only error if both are set (to different values). */
15012 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15013 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15014 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15015 {
15016 _bfd_error_handler
15017 /* xgettext:c-format */
15018 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15019 ibfd,
15020 elf_mips_abi_name (ibfd),
15021 elf_mips_abi_name (obfd));
15022 ok = FALSE;
15023 }
15024 new_flags &= ~EF_MIPS_ABI;
15025 old_flags &= ~EF_MIPS_ABI;
15026 }
15027
15028 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15029 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15030 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15031 {
15032 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15033 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15034 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15035 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15036 int micro_mis = old_m16 && new_micro;
15037 int m16_mis = old_micro && new_m16;
15038
15039 if (m16_mis || micro_mis)
15040 {
15041 _bfd_error_handler
15042 /* xgettext:c-format */
15043 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15044 ibfd,
15045 m16_mis ? "MIPS16" : "microMIPS",
15046 m16_mis ? "microMIPS" : "MIPS16");
15047 ok = FALSE;
15048 }
15049
15050 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15051
15052 new_flags &= ~ EF_MIPS_ARCH_ASE;
15053 old_flags &= ~ EF_MIPS_ARCH_ASE;
15054 }
15055
15056 /* Compare NaN encodings. */
15057 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15058 {
15059 /* xgettext:c-format */
15060 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15061 ibfd,
15062 (new_flags & EF_MIPS_NAN2008
15063 ? "-mnan=2008" : "-mnan=legacy"),
15064 (old_flags & EF_MIPS_NAN2008
15065 ? "-mnan=2008" : "-mnan=legacy"));
15066 ok = FALSE;
15067 new_flags &= ~EF_MIPS_NAN2008;
15068 old_flags &= ~EF_MIPS_NAN2008;
15069 }
15070
15071 /* Compare FP64 state. */
15072 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15073 {
15074 /* xgettext:c-format */
15075 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15076 ibfd,
15077 (new_flags & EF_MIPS_FP64
15078 ? "-mfp64" : "-mfp32"),
15079 (old_flags & EF_MIPS_FP64
15080 ? "-mfp64" : "-mfp32"));
15081 ok = FALSE;
15082 new_flags &= ~EF_MIPS_FP64;
15083 old_flags &= ~EF_MIPS_FP64;
15084 }
15085
15086 /* Warn about any other mismatches */
15087 if (new_flags != old_flags)
15088 {
15089 /* xgettext:c-format */
15090 _bfd_error_handler
15091 (_("%B: uses different e_flags (%#x) fields than previous modules "
15092 "(%#x)"),
15093 ibfd, new_flags, old_flags);
15094 ok = FALSE;
15095 }
15096
15097 return ok;
15098 }
15099
15100 /* Merge object attributes from IBFD into OBFD. Raise an error if
15101 there are conflicting attributes. */
15102 static bfd_boolean
15103 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15104 {
15105 bfd *obfd = info->output_bfd;
15106 obj_attribute *in_attr;
15107 obj_attribute *out_attr;
15108 bfd *abi_fp_bfd;
15109 bfd *abi_msa_bfd;
15110
15111 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15112 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15113 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15114 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15115
15116 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15117 if (!abi_msa_bfd
15118 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15119 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15120
15121 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15122 {
15123 /* This is the first object. Copy the attributes. */
15124 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15125
15126 /* Use the Tag_null value to indicate the attributes have been
15127 initialized. */
15128 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15129
15130 return TRUE;
15131 }
15132
15133 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15134 non-conflicting ones. */
15135 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15136 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15137 {
15138 int out_fp, in_fp;
15139
15140 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15141 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15142 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15143 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15144 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15145 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15146 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15147 || in_fp == Val_GNU_MIPS_ABI_FP_64
15148 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15149 {
15150 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15151 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15152 }
15153 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15154 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15155 || out_fp == Val_GNU_MIPS_ABI_FP_64
15156 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15157 /* Keep the current setting. */;
15158 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15159 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15160 {
15161 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15162 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15163 }
15164 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15165 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15166 /* Keep the current setting. */;
15167 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15168 {
15169 const char *out_string, *in_string;
15170
15171 out_string = _bfd_mips_fp_abi_string (out_fp);
15172 in_string = _bfd_mips_fp_abi_string (in_fp);
15173 /* First warn about cases involving unrecognised ABIs. */
15174 if (!out_string && !in_string)
15175 /* xgettext:c-format */
15176 _bfd_error_handler
15177 (_("Warning: %B uses unknown floating point ABI %d "
15178 "(set by %B), %B uses unknown floating point ABI %d"),
15179 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15180 else if (!out_string)
15181 _bfd_error_handler
15182 /* xgettext:c-format */
15183 (_("Warning: %B uses unknown floating point ABI %d "
15184 "(set by %B), %B uses %s"),
15185 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15186 else if (!in_string)
15187 _bfd_error_handler
15188 /* xgettext:c-format */
15189 (_("Warning: %B uses %s (set by %B), "
15190 "%B uses unknown floating point ABI %d"),
15191 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15192 else
15193 {
15194 /* If one of the bfds is soft-float, the other must be
15195 hard-float. The exact choice of hard-float ABI isn't
15196 really relevant to the error message. */
15197 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15198 out_string = "-mhard-float";
15199 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15200 in_string = "-mhard-float";
15201 _bfd_error_handler
15202 /* xgettext:c-format */
15203 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15204 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15205 }
15206 }
15207 }
15208
15209 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15210 non-conflicting ones. */
15211 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15212 {
15213 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15214 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15215 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15216 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15217 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15218 {
15219 case Val_GNU_MIPS_ABI_MSA_128:
15220 _bfd_error_handler
15221 /* xgettext:c-format */
15222 (_("Warning: %B uses %s (set by %B), "
15223 "%B uses unknown MSA ABI %d"),
15224 obfd, "-mmsa", abi_msa_bfd,
15225 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15226 break;
15227
15228 default:
15229 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15230 {
15231 case Val_GNU_MIPS_ABI_MSA_128:
15232 _bfd_error_handler
15233 /* xgettext:c-format */
15234 (_("Warning: %B uses unknown MSA ABI %d "
15235 "(set by %B), %B uses %s"),
15236 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15237 abi_msa_bfd, ibfd, "-mmsa");
15238 break;
15239
15240 default:
15241 _bfd_error_handler
15242 /* xgettext:c-format */
15243 (_("Warning: %B uses unknown MSA ABI %d "
15244 "(set by %B), %B uses unknown MSA ABI %d"),
15245 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15246 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15247 break;
15248 }
15249 }
15250 }
15251
15252 /* Merge Tag_compatibility attributes and any common GNU ones. */
15253 return _bfd_elf_merge_object_attributes (ibfd, info);
15254 }
15255
15256 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15257 there are conflicting settings. */
15258
15259 static bfd_boolean
15260 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15261 {
15262 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15263 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15264 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15265
15266 /* Update the output abiflags fp_abi using the computed fp_abi. */
15267 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15268
15269 #define max(a, b) ((a) > (b) ? (a) : (b))
15270 /* Merge abiflags. */
15271 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15272 in_tdata->abiflags.isa_level);
15273 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15274 in_tdata->abiflags.isa_rev);
15275 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15276 in_tdata->abiflags.gpr_size);
15277 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15278 in_tdata->abiflags.cpr1_size);
15279 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15280 in_tdata->abiflags.cpr2_size);
15281 #undef max
15282 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15283 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15284
15285 return TRUE;
15286 }
15287
15288 /* Merge backend specific data from an object file to the output
15289 object file when linking. */
15290
15291 bfd_boolean
15292 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15293 {
15294 bfd *obfd = info->output_bfd;
15295 struct mips_elf_obj_tdata *out_tdata;
15296 struct mips_elf_obj_tdata *in_tdata;
15297 bfd_boolean null_input_bfd = TRUE;
15298 asection *sec;
15299 bfd_boolean ok;
15300
15301 /* Check if we have the same endianness. */
15302 if (! _bfd_generic_verify_endian_match (ibfd, info))
15303 {
15304 _bfd_error_handler
15305 (_("%B: endianness incompatible with that of the selected emulation"),
15306 ibfd);
15307 return FALSE;
15308 }
15309
15310 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15311 return TRUE;
15312
15313 in_tdata = mips_elf_tdata (ibfd);
15314 out_tdata = mips_elf_tdata (obfd);
15315
15316 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15317 {
15318 _bfd_error_handler
15319 (_("%B: ABI is incompatible with that of the selected emulation"),
15320 ibfd);
15321 return FALSE;
15322 }
15323
15324 /* Check to see if the input BFD actually contains any sections. If not,
15325 then it has no attributes, and its flags may not have been initialized
15326 either, but it cannot actually cause any incompatibility. */
15327 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15328 {
15329 /* Ignore synthetic sections and empty .text, .data and .bss sections
15330 which are automatically generated by gas. Also ignore fake
15331 (s)common sections, since merely defining a common symbol does
15332 not affect compatibility. */
15333 if ((sec->flags & SEC_IS_COMMON) == 0
15334 && strcmp (sec->name, ".reginfo")
15335 && strcmp (sec->name, ".mdebug")
15336 && (sec->size != 0
15337 || (strcmp (sec->name, ".text")
15338 && strcmp (sec->name, ".data")
15339 && strcmp (sec->name, ".bss"))))
15340 {
15341 null_input_bfd = FALSE;
15342 break;
15343 }
15344 }
15345 if (null_input_bfd)
15346 return TRUE;
15347
15348 /* Populate abiflags using existing information. */
15349 if (in_tdata->abiflags_valid)
15350 {
15351 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15352 Elf_Internal_ABIFlags_v0 in_abiflags;
15353 Elf_Internal_ABIFlags_v0 abiflags;
15354
15355 /* Set up the FP ABI attribute from the abiflags if it is not already
15356 set. */
15357 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15358 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15359
15360 infer_mips_abiflags (ibfd, &abiflags);
15361 in_abiflags = in_tdata->abiflags;
15362
15363 /* It is not possible to infer the correct ISA revision
15364 for R3 or R5 so drop down to R2 for the checks. */
15365 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15366 in_abiflags.isa_rev = 2;
15367
15368 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15369 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15370 _bfd_error_handler
15371 (_("%B: warning: Inconsistent ISA between e_flags and "
15372 ".MIPS.abiflags"), ibfd);
15373 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15374 && in_abiflags.fp_abi != abiflags.fp_abi)
15375 _bfd_error_handler
15376 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15377 ".MIPS.abiflags"), ibfd);
15378 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15379 _bfd_error_handler
15380 (_("%B: warning: Inconsistent ASEs between e_flags and "
15381 ".MIPS.abiflags"), ibfd);
15382 /* The isa_ext is allowed to be an extension of what can be inferred
15383 from e_flags. */
15384 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15385 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15386 _bfd_error_handler
15387 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15388 ".MIPS.abiflags"), ibfd);
15389 if (in_abiflags.flags2 != 0)
15390 _bfd_error_handler
15391 (_("%B: warning: Unexpected flag in the flags2 field of "
15392 ".MIPS.abiflags (0x%lx)"), ibfd,
15393 in_abiflags.flags2);
15394 }
15395 else
15396 {
15397 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15398 in_tdata->abiflags_valid = TRUE;
15399 }
15400
15401 if (!out_tdata->abiflags_valid)
15402 {
15403 /* Copy input abiflags if output abiflags are not already valid. */
15404 out_tdata->abiflags = in_tdata->abiflags;
15405 out_tdata->abiflags_valid = TRUE;
15406 }
15407
15408 if (! elf_flags_init (obfd))
15409 {
15410 elf_flags_init (obfd) = TRUE;
15411 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15412 elf_elfheader (obfd)->e_ident[EI_CLASS]
15413 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15414
15415 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15416 && (bfd_get_arch_info (obfd)->the_default
15417 || mips_mach_extends_p (bfd_get_mach (obfd),
15418 bfd_get_mach (ibfd))))
15419 {
15420 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15421 bfd_get_mach (ibfd)))
15422 return FALSE;
15423
15424 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15425 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15426 }
15427
15428 ok = TRUE;
15429 }
15430 else
15431 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15432
15433 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15434
15435 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15436
15437 if (!ok)
15438 {
15439 bfd_set_error (bfd_error_bad_value);
15440 return FALSE;
15441 }
15442
15443 return TRUE;
15444 }
15445
15446 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15447
15448 bfd_boolean
15449 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15450 {
15451 BFD_ASSERT (!elf_flags_init (abfd)
15452 || elf_elfheader (abfd)->e_flags == flags);
15453
15454 elf_elfheader (abfd)->e_flags = flags;
15455 elf_flags_init (abfd) = TRUE;
15456 return TRUE;
15457 }
15458
15459 char *
15460 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15461 {
15462 switch (dtag)
15463 {
15464 default: return "";
15465 case DT_MIPS_RLD_VERSION:
15466 return "MIPS_RLD_VERSION";
15467 case DT_MIPS_TIME_STAMP:
15468 return "MIPS_TIME_STAMP";
15469 case DT_MIPS_ICHECKSUM:
15470 return "MIPS_ICHECKSUM";
15471 case DT_MIPS_IVERSION:
15472 return "MIPS_IVERSION";
15473 case DT_MIPS_FLAGS:
15474 return "MIPS_FLAGS";
15475 case DT_MIPS_BASE_ADDRESS:
15476 return "MIPS_BASE_ADDRESS";
15477 case DT_MIPS_MSYM:
15478 return "MIPS_MSYM";
15479 case DT_MIPS_CONFLICT:
15480 return "MIPS_CONFLICT";
15481 case DT_MIPS_LIBLIST:
15482 return "MIPS_LIBLIST";
15483 case DT_MIPS_LOCAL_GOTNO:
15484 return "MIPS_LOCAL_GOTNO";
15485 case DT_MIPS_CONFLICTNO:
15486 return "MIPS_CONFLICTNO";
15487 case DT_MIPS_LIBLISTNO:
15488 return "MIPS_LIBLISTNO";
15489 case DT_MIPS_SYMTABNO:
15490 return "MIPS_SYMTABNO";
15491 case DT_MIPS_UNREFEXTNO:
15492 return "MIPS_UNREFEXTNO";
15493 case DT_MIPS_GOTSYM:
15494 return "MIPS_GOTSYM";
15495 case DT_MIPS_HIPAGENO:
15496 return "MIPS_HIPAGENO";
15497 case DT_MIPS_RLD_MAP:
15498 return "MIPS_RLD_MAP";
15499 case DT_MIPS_RLD_MAP_REL:
15500 return "MIPS_RLD_MAP_REL";
15501 case DT_MIPS_DELTA_CLASS:
15502 return "MIPS_DELTA_CLASS";
15503 case DT_MIPS_DELTA_CLASS_NO:
15504 return "MIPS_DELTA_CLASS_NO";
15505 case DT_MIPS_DELTA_INSTANCE:
15506 return "MIPS_DELTA_INSTANCE";
15507 case DT_MIPS_DELTA_INSTANCE_NO:
15508 return "MIPS_DELTA_INSTANCE_NO";
15509 case DT_MIPS_DELTA_RELOC:
15510 return "MIPS_DELTA_RELOC";
15511 case DT_MIPS_DELTA_RELOC_NO:
15512 return "MIPS_DELTA_RELOC_NO";
15513 case DT_MIPS_DELTA_SYM:
15514 return "MIPS_DELTA_SYM";
15515 case DT_MIPS_DELTA_SYM_NO:
15516 return "MIPS_DELTA_SYM_NO";
15517 case DT_MIPS_DELTA_CLASSSYM:
15518 return "MIPS_DELTA_CLASSSYM";
15519 case DT_MIPS_DELTA_CLASSSYM_NO:
15520 return "MIPS_DELTA_CLASSSYM_NO";
15521 case DT_MIPS_CXX_FLAGS:
15522 return "MIPS_CXX_FLAGS";
15523 case DT_MIPS_PIXIE_INIT:
15524 return "MIPS_PIXIE_INIT";
15525 case DT_MIPS_SYMBOL_LIB:
15526 return "MIPS_SYMBOL_LIB";
15527 case DT_MIPS_LOCALPAGE_GOTIDX:
15528 return "MIPS_LOCALPAGE_GOTIDX";
15529 case DT_MIPS_LOCAL_GOTIDX:
15530 return "MIPS_LOCAL_GOTIDX";
15531 case DT_MIPS_HIDDEN_GOTIDX:
15532 return "MIPS_HIDDEN_GOTIDX";
15533 case DT_MIPS_PROTECTED_GOTIDX:
15534 return "MIPS_PROTECTED_GOT_IDX";
15535 case DT_MIPS_OPTIONS:
15536 return "MIPS_OPTIONS";
15537 case DT_MIPS_INTERFACE:
15538 return "MIPS_INTERFACE";
15539 case DT_MIPS_DYNSTR_ALIGN:
15540 return "DT_MIPS_DYNSTR_ALIGN";
15541 case DT_MIPS_INTERFACE_SIZE:
15542 return "DT_MIPS_INTERFACE_SIZE";
15543 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15544 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15545 case DT_MIPS_PERF_SUFFIX:
15546 return "DT_MIPS_PERF_SUFFIX";
15547 case DT_MIPS_COMPACT_SIZE:
15548 return "DT_MIPS_COMPACT_SIZE";
15549 case DT_MIPS_GP_VALUE:
15550 return "DT_MIPS_GP_VALUE";
15551 case DT_MIPS_AUX_DYNAMIC:
15552 return "DT_MIPS_AUX_DYNAMIC";
15553 case DT_MIPS_PLTGOT:
15554 return "DT_MIPS_PLTGOT";
15555 case DT_MIPS_RWPLT:
15556 return "DT_MIPS_RWPLT";
15557 }
15558 }
15559
15560 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15561 not known. */
15562
15563 const char *
15564 _bfd_mips_fp_abi_string (int fp)
15565 {
15566 switch (fp)
15567 {
15568 /* These strings aren't translated because they're simply
15569 option lists. */
15570 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15571 return "-mdouble-float";
15572
15573 case Val_GNU_MIPS_ABI_FP_SINGLE:
15574 return "-msingle-float";
15575
15576 case Val_GNU_MIPS_ABI_FP_SOFT:
15577 return "-msoft-float";
15578
15579 case Val_GNU_MIPS_ABI_FP_OLD_64:
15580 return _("-mips32r2 -mfp64 (12 callee-saved)");
15581
15582 case Val_GNU_MIPS_ABI_FP_XX:
15583 return "-mfpxx";
15584
15585 case Val_GNU_MIPS_ABI_FP_64:
15586 return "-mgp32 -mfp64";
15587
15588 case Val_GNU_MIPS_ABI_FP_64A:
15589 return "-mgp32 -mfp64 -mno-odd-spreg";
15590
15591 default:
15592 return 0;
15593 }
15594 }
15595
15596 static void
15597 print_mips_ases (FILE *file, unsigned int mask)
15598 {
15599 if (mask & AFL_ASE_DSP)
15600 fputs ("\n\tDSP ASE", file);
15601 if (mask & AFL_ASE_DSPR2)
15602 fputs ("\n\tDSP R2 ASE", file);
15603 if (mask & AFL_ASE_DSPR3)
15604 fputs ("\n\tDSP R3 ASE", file);
15605 if (mask & AFL_ASE_EVA)
15606 fputs ("\n\tEnhanced VA Scheme", file);
15607 if (mask & AFL_ASE_MCU)
15608 fputs ("\n\tMCU (MicroController) ASE", file);
15609 if (mask & AFL_ASE_MDMX)
15610 fputs ("\n\tMDMX ASE", file);
15611 if (mask & AFL_ASE_MIPS3D)
15612 fputs ("\n\tMIPS-3D ASE", file);
15613 if (mask & AFL_ASE_MT)
15614 fputs ("\n\tMT ASE", file);
15615 if (mask & AFL_ASE_SMARTMIPS)
15616 fputs ("\n\tSmartMIPS ASE", file);
15617 if (mask & AFL_ASE_VIRT)
15618 fputs ("\n\tVZ ASE", file);
15619 if (mask & AFL_ASE_MSA)
15620 fputs ("\n\tMSA ASE", file);
15621 if (mask & AFL_ASE_MIPS16)
15622 fputs ("\n\tMIPS16 ASE", file);
15623 if (mask & AFL_ASE_MICROMIPS)
15624 fputs ("\n\tMICROMIPS ASE", file);
15625 if (mask & AFL_ASE_XPA)
15626 fputs ("\n\tXPA ASE", file);
15627 if (mask & AFL_ASE_MIPS16E2)
15628 fputs ("\n\tMIPS16e2 ASE", file);
15629 if (mask == 0)
15630 fprintf (file, "\n\t%s", _("None"));
15631 else if ((mask & ~AFL_ASE_MASK) != 0)
15632 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15633 }
15634
15635 static void
15636 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15637 {
15638 switch (isa_ext)
15639 {
15640 case 0:
15641 fputs (_("None"), file);
15642 break;
15643 case AFL_EXT_XLR:
15644 fputs ("RMI XLR", file);
15645 break;
15646 case AFL_EXT_OCTEON3:
15647 fputs ("Cavium Networks Octeon3", file);
15648 break;
15649 case AFL_EXT_OCTEON2:
15650 fputs ("Cavium Networks Octeon2", file);
15651 break;
15652 case AFL_EXT_OCTEONP:
15653 fputs ("Cavium Networks OcteonP", file);
15654 break;
15655 case AFL_EXT_LOONGSON_3A:
15656 fputs ("Loongson 3A", file);
15657 break;
15658 case AFL_EXT_OCTEON:
15659 fputs ("Cavium Networks Octeon", file);
15660 break;
15661 case AFL_EXT_5900:
15662 fputs ("Toshiba R5900", file);
15663 break;
15664 case AFL_EXT_4650:
15665 fputs ("MIPS R4650", file);
15666 break;
15667 case AFL_EXT_4010:
15668 fputs ("LSI R4010", file);
15669 break;
15670 case AFL_EXT_4100:
15671 fputs ("NEC VR4100", file);
15672 break;
15673 case AFL_EXT_3900:
15674 fputs ("Toshiba R3900", file);
15675 break;
15676 case AFL_EXT_10000:
15677 fputs ("MIPS R10000", file);
15678 break;
15679 case AFL_EXT_SB1:
15680 fputs ("Broadcom SB-1", file);
15681 break;
15682 case AFL_EXT_4111:
15683 fputs ("NEC VR4111/VR4181", file);
15684 break;
15685 case AFL_EXT_4120:
15686 fputs ("NEC VR4120", file);
15687 break;
15688 case AFL_EXT_5400:
15689 fputs ("NEC VR5400", file);
15690 break;
15691 case AFL_EXT_5500:
15692 fputs ("NEC VR5500", file);
15693 break;
15694 case AFL_EXT_LOONGSON_2E:
15695 fputs ("ST Microelectronics Loongson 2E", file);
15696 break;
15697 case AFL_EXT_LOONGSON_2F:
15698 fputs ("ST Microelectronics Loongson 2F", file);
15699 break;
15700 case AFL_EXT_INTERAPTIV_MR2:
15701 fputs ("Imagination interAptiv MR2", file);
15702 break;
15703 default:
15704 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15705 break;
15706 }
15707 }
15708
15709 static void
15710 print_mips_fp_abi_value (FILE *file, int val)
15711 {
15712 switch (val)
15713 {
15714 case Val_GNU_MIPS_ABI_FP_ANY:
15715 fprintf (file, _("Hard or soft float\n"));
15716 break;
15717 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15718 fprintf (file, _("Hard float (double precision)\n"));
15719 break;
15720 case Val_GNU_MIPS_ABI_FP_SINGLE:
15721 fprintf (file, _("Hard float (single precision)\n"));
15722 break;
15723 case Val_GNU_MIPS_ABI_FP_SOFT:
15724 fprintf (file, _("Soft float\n"));
15725 break;
15726 case Val_GNU_MIPS_ABI_FP_OLD_64:
15727 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15728 break;
15729 case Val_GNU_MIPS_ABI_FP_XX:
15730 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15731 break;
15732 case Val_GNU_MIPS_ABI_FP_64:
15733 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15734 break;
15735 case Val_GNU_MIPS_ABI_FP_64A:
15736 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15737 break;
15738 default:
15739 fprintf (file, "??? (%d)\n", val);
15740 break;
15741 }
15742 }
15743
15744 static int
15745 get_mips_reg_size (int reg_size)
15746 {
15747 return (reg_size == AFL_REG_NONE) ? 0
15748 : (reg_size == AFL_REG_32) ? 32
15749 : (reg_size == AFL_REG_64) ? 64
15750 : (reg_size == AFL_REG_128) ? 128
15751 : -1;
15752 }
15753
15754 bfd_boolean
15755 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15756 {
15757 FILE *file = ptr;
15758
15759 BFD_ASSERT (abfd != NULL && ptr != NULL);
15760
15761 /* Print normal ELF private data. */
15762 _bfd_elf_print_private_bfd_data (abfd, ptr);
15763
15764 /* xgettext:c-format */
15765 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15766
15767 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15768 fprintf (file, _(" [abi=O32]"));
15769 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15770 fprintf (file, _(" [abi=O64]"));
15771 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15772 fprintf (file, _(" [abi=EABI32]"));
15773 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15774 fprintf (file, _(" [abi=EABI64]"));
15775 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15776 fprintf (file, _(" [abi unknown]"));
15777 else if (ABI_N32_P (abfd))
15778 fprintf (file, _(" [abi=N32]"));
15779 else if (ABI_64_P (abfd))
15780 fprintf (file, _(" [abi=64]"));
15781 else
15782 fprintf (file, _(" [no abi set]"));
15783
15784 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15785 fprintf (file, " [mips1]");
15786 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15787 fprintf (file, " [mips2]");
15788 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15789 fprintf (file, " [mips3]");
15790 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15791 fprintf (file, " [mips4]");
15792 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15793 fprintf (file, " [mips5]");
15794 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15795 fprintf (file, " [mips32]");
15796 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15797 fprintf (file, " [mips64]");
15798 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15799 fprintf (file, " [mips32r2]");
15800 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15801 fprintf (file, " [mips64r2]");
15802 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15803 fprintf (file, " [mips32r6]");
15804 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15805 fprintf (file, " [mips64r6]");
15806 else
15807 fprintf (file, _(" [unknown ISA]"));
15808
15809 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15810 fprintf (file, " [mdmx]");
15811
15812 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15813 fprintf (file, " [mips16]");
15814
15815 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15816 fprintf (file, " [micromips]");
15817
15818 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15819 fprintf (file, " [nan2008]");
15820
15821 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15822 fprintf (file, " [old fp64]");
15823
15824 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15825 fprintf (file, " [32bitmode]");
15826 else
15827 fprintf (file, _(" [not 32bitmode]"));
15828
15829 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15830 fprintf (file, " [noreorder]");
15831
15832 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15833 fprintf (file, " [PIC]");
15834
15835 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15836 fprintf (file, " [CPIC]");
15837
15838 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15839 fprintf (file, " [XGOT]");
15840
15841 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15842 fprintf (file, " [UCODE]");
15843
15844 fputc ('\n', file);
15845
15846 if (mips_elf_tdata (abfd)->abiflags_valid)
15847 {
15848 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15849 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15850 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15851 if (abiflags->isa_rev > 1)
15852 fprintf (file, "r%d", abiflags->isa_rev);
15853 fprintf (file, "\nGPR size: %d",
15854 get_mips_reg_size (abiflags->gpr_size));
15855 fprintf (file, "\nCPR1 size: %d",
15856 get_mips_reg_size (abiflags->cpr1_size));
15857 fprintf (file, "\nCPR2 size: %d",
15858 get_mips_reg_size (abiflags->cpr2_size));
15859 fputs ("\nFP ABI: ", file);
15860 print_mips_fp_abi_value (file, abiflags->fp_abi);
15861 fputs ("ISA Extension: ", file);
15862 print_mips_isa_ext (file, abiflags->isa_ext);
15863 fputs ("\nASEs:", file);
15864 print_mips_ases (file, abiflags->ases);
15865 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15866 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15867 fputc ('\n', file);
15868 }
15869
15870 return TRUE;
15871 }
15872
15873 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15874 {
15875 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15876 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15877 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15878 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15879 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15880 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15881 { NULL, 0, 0, 0, 0 }
15882 };
15883
15884 /* Merge non visibility st_other attributes. Ensure that the
15885 STO_OPTIONAL flag is copied into h->other, even if this is not a
15886 definiton of the symbol. */
15887 void
15888 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15889 const Elf_Internal_Sym *isym,
15890 bfd_boolean definition,
15891 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15892 {
15893 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15894 {
15895 unsigned char other;
15896
15897 other = (definition ? isym->st_other : h->other);
15898 other &= ~ELF_ST_VISIBILITY (-1);
15899 h->other = other | ELF_ST_VISIBILITY (h->other);
15900 }
15901
15902 if (!definition
15903 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15904 h->other |= STO_OPTIONAL;
15905 }
15906
15907 /* Decide whether an undefined symbol is special and can be ignored.
15908 This is the case for OPTIONAL symbols on IRIX. */
15909 bfd_boolean
15910 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15911 {
15912 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15913 }
15914
15915 bfd_boolean
15916 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15917 {
15918 return (sym->st_shndx == SHN_COMMON
15919 || sym->st_shndx == SHN_MIPS_ACOMMON
15920 || sym->st_shndx == SHN_MIPS_SCOMMON);
15921 }
15922
15923 /* Return address for Ith PLT stub in section PLT, for relocation REL
15924 or (bfd_vma) -1 if it should not be included. */
15925
15926 bfd_vma
15927 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15928 const arelent *rel ATTRIBUTE_UNUSED)
15929 {
15930 return (plt->vma
15931 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15932 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15933 }
15934
15935 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15936 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15937 and .got.plt and also the slots may be of a different size each we walk
15938 the PLT manually fetching instructions and matching them against known
15939 patterns. To make things easier standard MIPS slots, if any, always come
15940 first. As we don't create proper ELF symbols we use the UDATA.I member
15941 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15942 with the ST_OTHER member of the ELF symbol. */
15943
15944 long
15945 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15946 long symcount ATTRIBUTE_UNUSED,
15947 asymbol **syms ATTRIBUTE_UNUSED,
15948 long dynsymcount, asymbol **dynsyms,
15949 asymbol **ret)
15950 {
15951 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15952 static const char microsuffix[] = "@micromipsplt";
15953 static const char m16suffix[] = "@mips16plt";
15954 static const char mipssuffix[] = "@plt";
15955
15956 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15957 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15958 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15959 Elf_Internal_Shdr *hdr;
15960 bfd_byte *plt_data;
15961 bfd_vma plt_offset;
15962 unsigned int other;
15963 bfd_vma entry_size;
15964 bfd_vma plt0_size;
15965 asection *relplt;
15966 bfd_vma opcode;
15967 asection *plt;
15968 asymbol *send;
15969 size_t size;
15970 char *names;
15971 long counti;
15972 arelent *p;
15973 asymbol *s;
15974 char *nend;
15975 long count;
15976 long pi;
15977 long i;
15978 long n;
15979
15980 *ret = NULL;
15981
15982 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15983 return 0;
15984
15985 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15986 if (relplt == NULL)
15987 return 0;
15988
15989 hdr = &elf_section_data (relplt)->this_hdr;
15990 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15991 return 0;
15992
15993 plt = bfd_get_section_by_name (abfd, ".plt");
15994 if (plt == NULL)
15995 return 0;
15996
15997 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15998 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15999 return -1;
16000 p = relplt->relocation;
16001
16002 /* Calculating the exact amount of space required for symbols would
16003 require two passes over the PLT, so just pessimise assuming two
16004 PLT slots per relocation. */
16005 count = relplt->size / hdr->sh_entsize;
16006 counti = count * bed->s->int_rels_per_ext_rel;
16007 size = 2 * count * sizeof (asymbol);
16008 size += count * (sizeof (mipssuffix) +
16009 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16010 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16011 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16012
16013 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16014 size += sizeof (asymbol) + sizeof (pltname);
16015
16016 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16017 return -1;
16018
16019 if (plt->size < 16)
16020 return -1;
16021
16022 s = *ret = bfd_malloc (size);
16023 if (s == NULL)
16024 return -1;
16025 send = s + 2 * count + 1;
16026
16027 names = (char *) send;
16028 nend = (char *) s + size;
16029 n = 0;
16030
16031 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16032 if (opcode == 0x3302fffe)
16033 {
16034 if (!micromips_p)
16035 return -1;
16036 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16037 other = STO_MICROMIPS;
16038 }
16039 else if (opcode == 0x0398c1d0)
16040 {
16041 if (!micromips_p)
16042 return -1;
16043 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16044 other = STO_MICROMIPS;
16045 }
16046 else
16047 {
16048 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16049 other = 0;
16050 }
16051
16052 s->the_bfd = abfd;
16053 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16054 s->section = plt;
16055 s->value = 0;
16056 s->name = names;
16057 s->udata.i = other;
16058 memcpy (names, pltname, sizeof (pltname));
16059 names += sizeof (pltname);
16060 ++s, ++n;
16061
16062 pi = 0;
16063 for (plt_offset = plt0_size;
16064 plt_offset + 8 <= plt->size && s < send;
16065 plt_offset += entry_size)
16066 {
16067 bfd_vma gotplt_addr;
16068 const char *suffix;
16069 bfd_vma gotplt_hi;
16070 bfd_vma gotplt_lo;
16071 size_t suffixlen;
16072
16073 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16074
16075 /* Check if the second word matches the expected MIPS16 instruction. */
16076 if (opcode == 0x651aeb00)
16077 {
16078 if (micromips_p)
16079 return -1;
16080 /* Truncated table??? */
16081 if (plt_offset + 16 > plt->size)
16082 break;
16083 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16084 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16085 suffixlen = sizeof (m16suffix);
16086 suffix = m16suffix;
16087 other = STO_MIPS16;
16088 }
16089 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16090 else if (opcode == 0xff220000)
16091 {
16092 if (!micromips_p)
16093 return -1;
16094 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16095 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16096 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16097 gotplt_lo <<= 2;
16098 gotplt_addr = gotplt_hi + gotplt_lo;
16099 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16100 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16101 suffixlen = sizeof (microsuffix);
16102 suffix = microsuffix;
16103 other = STO_MICROMIPS;
16104 }
16105 /* Likewise the expected microMIPS instruction (insn32 mode). */
16106 else if ((opcode & 0xffff0000) == 0xff2f0000)
16107 {
16108 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16109 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16110 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16111 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16112 gotplt_addr = gotplt_hi + gotplt_lo;
16113 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16114 suffixlen = sizeof (microsuffix);
16115 suffix = microsuffix;
16116 other = STO_MICROMIPS;
16117 }
16118 /* Otherwise assume standard MIPS code. */
16119 else
16120 {
16121 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16122 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16123 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16124 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16125 gotplt_addr = gotplt_hi + gotplt_lo;
16126 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16127 suffixlen = sizeof (mipssuffix);
16128 suffix = mipssuffix;
16129 other = 0;
16130 }
16131 /* Truncated table??? */
16132 if (plt_offset + entry_size > plt->size)
16133 break;
16134
16135 for (i = 0;
16136 i < count && p[pi].address != gotplt_addr;
16137 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16138
16139 if (i < count)
16140 {
16141 size_t namelen;
16142 size_t len;
16143
16144 *s = **p[pi].sym_ptr_ptr;
16145 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16146 we are defining a symbol, ensure one of them is set. */
16147 if ((s->flags & BSF_LOCAL) == 0)
16148 s->flags |= BSF_GLOBAL;
16149 s->flags |= BSF_SYNTHETIC;
16150 s->section = plt;
16151 s->value = plt_offset;
16152 s->name = names;
16153 s->udata.i = other;
16154
16155 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16156 namelen = len + suffixlen;
16157 if (names + namelen > nend)
16158 break;
16159
16160 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16161 names += len;
16162 memcpy (names, suffix, suffixlen);
16163 names += suffixlen;
16164
16165 ++s, ++n;
16166 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16167 }
16168 }
16169
16170 free (plt_data);
16171
16172 return n;
16173 }
16174
16175 /* Return the ABI flags associated with ABFD if available. */
16176
16177 Elf_Internal_ABIFlags_v0 *
16178 bfd_mips_elf_get_abiflags (bfd *abfd)
16179 {
16180 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16181
16182 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16183 }
16184
16185 void
16186 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16187 {
16188 struct mips_elf_link_hash_table *htab;
16189 Elf_Internal_Ehdr *i_ehdrp;
16190
16191 i_ehdrp = elf_elfheader (abfd);
16192 if (link_info)
16193 {
16194 htab = mips_elf_hash_table (link_info);
16195 BFD_ASSERT (htab != NULL);
16196
16197 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16198 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16199 }
16200
16201 _bfd_elf_post_process_headers (abfd, link_info);
16202
16203 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16204 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16205 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16206 }
16207
16208 int
16209 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16210 {
16211 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16212 }
16213
16214 /* Return the opcode for can't unwind. */
16215
16216 int
16217 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16218 {
16219 return COMPACT_EH_CANT_UNWIND_OPCODE;
16220 }
This page took 0.424027 seconds and 5 git commands to generate.