bfd:
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "sysdep.h"
31 #include "bfd.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 \f
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488 \f
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips16_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
571
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
585
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
614
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
618
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
622
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
626
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
647
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
674 \f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
712
713 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
716 \f
717 /* The format of the first PLT entry in a VxWorks executable. */
718 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725 };
726
727 /* The format of subsequent PLT entries. */
728 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737 };
738
739 /* The format of the first PLT entry in a VxWorks shared object. */
740 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747 };
748
749 /* The format of subsequent PLT entries. */
750 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753 };
754 \f
755 /* Look up an entry in a MIPS ELF linker hash table. */
756
757 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762 /* Traverse a MIPS ELF linker hash table. */
763
764 #define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
768 (info)))
769
770 /* Get the MIPS ELF linker hash table from a link_info structure. */
771
772 #define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
775 /* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778 #define TP_OFFSET 0x7000
779 #define DTP_OFFSET 0x8000
780
781 static bfd_vma
782 dtprel_base (struct bfd_link_info *info)
783 {
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788 }
789
790 static bfd_vma
791 tprel_base (struct bfd_link_info *info)
792 {
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797 }
798
799 /* Create an entry in a MIPS ELF linker hash table. */
800
801 static struct bfd_hash_entry *
802 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
804 {
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
819 if (ret != NULL)
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
827 ret->readonly_reloc = FALSE;
828 ret->no_fn_stub = FALSE;
829 ret->fn_stub = NULL;
830 ret->need_fn_stub = FALSE;
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
833 ret->forced_local = FALSE;
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
836 ret->tls_type = GOT_NORMAL;
837 }
838
839 return (struct bfd_hash_entry *) ret;
840 }
841
842 bfd_boolean
843 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
844 {
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
849
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857 }
858 \f
859 /* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
862 bfd_boolean
863 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
865 {
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
868 char *ext_hdr;
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
873 ext_hdr = bfd_malloc (swap->external_hdr_size);
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
878 swap->external_hdr_size))
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886 #define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
892 debug->ptr = bfd_malloc (amt); \
893 if (debug->ptr == NULL) \
894 goto error_return; \
895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
912 #undef READ
913
914 debug->fdr = NULL;
915
916 return TRUE;
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
943 return FALSE;
944 }
945 \f
946 /* Swap RPDR (runtime procedure table entry) for output. */
947
948 static void
949 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
950 {
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
962 }
963
964 /* Create a runtime procedure table from the .mdebug section. */
965
966 static bfd_boolean
967 mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
970 {
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
975 void *rtproc;
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
1002 epdr = bfd_malloc (size * count);
1003 if (epdr == NULL)
1004 goto error_return;
1005
1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
1010 rp = rpdr = bfd_malloc (size * count);
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
1015 sv = bfd_malloc (size * count);
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
1021 esym = bfd_malloc (size * count);
1022 if (esym == NULL)
1023 goto error_return;
1024
1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1026 goto error_return;
1027
1028 count = hdr->issMax;
1029 ss = bfd_malloc (count);
1030 if (ss == NULL)
1031 goto error_return;
1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
1056 rtproc = bfd_alloc (abfd, size);
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
1065 erp = rtproc;
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
1080 s->size = size;
1081 s->contents = rtproc;
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
1085 s->map_head.link_order = NULL;
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
1098 return TRUE;
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
1111 return FALSE;
1112 }
1113
1114 /* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
1117 static bfd_boolean
1118 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
1120 {
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
1130 h->fn_stub->size = 0;
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
1142 h->call_stub->size = 0;
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
1154 h->call_fp_stub->size = 0;
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
1160 return TRUE;
1161 }
1162 \f
1163 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248 void
1249 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251 {
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273 }
1274
1275 void
1276 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278 {
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307 }
1308
1309 bfd_reloc_status_type
1310 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
1313 {
1314 bfd_vma relocation;
1315 bfd_signed_vma val;
1316 bfd_reloc_status_type status;
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1327 return bfd_reloc_outofrange;
1328
1329 /* Set val to the offset into the section or symbol. */
1330 val = reloc_entry->addend;
1331
1332 _bfd_mips_elf_sign_extend (val, 16);
1333
1334 /* Adjust val for the final section location and GP value. If we
1335 are producing relocatable output, we don't want to do this for
1336 an external symbol. */
1337 if (! relocatable
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
1341 if (reloc_entry->howto->partial_inplace)
1342 {
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
1348 }
1349 else
1350 reloc_entry->addend = val;
1351
1352 if (relocatable)
1353 reloc_entry->address += input_section->output_offset;
1354
1355 return bfd_reloc_ok;
1356 }
1357
1358 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363 struct mips_hi16
1364 {
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369 };
1370
1371 /* FIXME: This should not be a static variable. */
1372
1373 static struct mips_hi16 *mips_hi16_list;
1374
1375 /* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384 bfd_reloc_status_type
1385 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389 {
1390 struct mips_hi16 *n;
1391
1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409 }
1410
1411 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415 bfd_reloc_status_type
1416 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419 {
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430 }
1431
1432 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436 bfd_reloc_status_type
1437 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440 {
1441 bfd_vma vallo;
1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1443
1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1445 return bfd_reloc_outofrange;
1446
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485 }
1486
1487 /* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491 bfd_reloc_status_type
1492 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496 {
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
1557
1558 return bfd_reloc_ok;
1559 }
1560 \f
1561 /* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564 static void
1565 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
1567 {
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570 }
1571
1572 static void
1573 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
1575 {
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578 }
1579
1580 static void
1581 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
1583 {
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590 }
1591
1592 static void
1593 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
1595 {
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605 }
1606 \f
1607 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611 void
1612 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
1614 {
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621 }
1622
1623 void
1624 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
1626 {
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633 }
1634
1635 /* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641 void
1642 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
1644 {
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652 }
1653
1654 void
1655 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
1657 {
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665 }
1666
1667 /* Swap in an options header. */
1668
1669 void
1670 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
1672 {
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677 }
1678
1679 /* Swap out an options header. */
1680
1681 void
1682 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
1684 {
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689 }
1690 \f
1691 /* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694 static int
1695 sort_dynamic_relocs (const void *arg1, const void *arg2)
1696 {
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
1699 int diff;
1700
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1703
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
1713 }
1714
1715 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717 static int
1718 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
1720 {
1721 #ifdef BFD64
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
1740 #else
1741 abort ();
1742 #endif
1743 }
1744
1745
1746 /* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
1760 static bfd_boolean
1761 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1762 {
1763 struct extsym_info *einfo = data;
1764 bfd_boolean strip;
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
1771 strip = FALSE;
1772 else if ((h->root.def_dynamic
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
1777 strip = TRUE;
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
1784 else
1785 strip = FALSE;
1786
1787 if (strip)
1788 return TRUE;
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
1894 else if (h->root.needs_plt)
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
1897 bfd_boolean no_fn_stub = h->no_fn_stub;
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
1929 einfo->failed = TRUE;
1930 return FALSE;
1931 }
1932
1933 return TRUE;
1934 }
1935
1936 /* A comparison routine used to sort .gptab entries. */
1937
1938 static int
1939 gptab_compare (const void *p1, const void *p2)
1940 {
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945 }
1946 \f
1947 /* Functions to manage the got entry hash table. */
1948
1949 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952 static INLINE hashval_t
1953 mips_elf_hash_bfd_vma (bfd_vma addr)
1954 {
1955 #ifdef BFD64
1956 return addr + (addr >> 32);
1957 #else
1958 return addr;
1959 #endif
1960 }
1961
1962 /* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
1966 static hashval_t
1967 mips_elf_got_entry_hash (const void *entry_)
1968 {
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
1971 return entry->symndx
1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
1977 }
1978
1979 static int
1980 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1981 {
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993 }
1994
1995 /* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000 static hashval_t
2001 mips_elf_multi_got_entry_hash (const void *entry_)
2002 {
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
2013 : entry->d.h->root.root.root.hash);
2014 }
2015
2016 static int
2017 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2018 {
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
2035 }
2036 \f
2037 /* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
2040
2041 static asection *
2042 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2043 {
2044 const char *dname;
2045 asection *sreloc;
2046 bfd *dynobj;
2047
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
2060 if (sreloc == NULL
2061 || ! bfd_set_section_alignment (dynobj, sreloc,
2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2063 return NULL;
2064 }
2065 return sreloc;
2066 }
2067
2068 /* Returns the GOT section for ABFD. */
2069
2070 static asection *
2071 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2072 {
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
2078 }
2079
2080 /* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084 static struct mips_got_info *
2085 mips_elf_got_info (bfd *abfd, asection **sgotp)
2086 {
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
2090 sgot = mips_elf_got_section (abfd, TRUE);
2091 BFD_ASSERT (sgot != NULL);
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
2099 return g;
2100 }
2101
2102 /* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106 static int
2107 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109 {
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142 }
2143
2144 /* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147 static int
2148 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149 {
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157 }
2158
2159 /* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162 static int
2163 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164 {
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175 }
2176
2177 /* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180 static int
2181 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182 {
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190 }
2191
2192 /* Output a simple dynamic relocation into SRELOC. */
2193
2194 static void
2195 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200 {
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221 }
2222
2223 /* Initialize a set of TLS GOT entries for one symbol. */
2224
2225 static void
2226 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231 {
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345 }
2346
2347 /* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352 static bfd_vma
2353 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356 {
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384 }
2385
2386 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390 static bfd_vma
2391 mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393 {
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414 }
2415
2416 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2417 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2418 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2419 offset can be found. */
2420
2421 static bfd_vma
2422 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2423 bfd_vma value, unsigned long r_symndx,
2424 struct mips_elf_link_hash_entry *h, int r_type)
2425 {
2426 asection *sgot;
2427 struct mips_got_info *g;
2428 struct mips_got_entry *entry;
2429
2430 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2431
2432 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2433 value, r_symndx, h, r_type);
2434 if (!entry)
2435 return MINUS_ONE;
2436
2437 if (TLS_RELOC_P (r_type))
2438 {
2439 if (entry->symndx == -1 && g->next == NULL)
2440 /* A type (3) entry in the single-GOT case. We use the symbol's
2441 hash table entry to track the index. */
2442 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2443 r_type, info, h, value);
2444 else
2445 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2446 r_type, info, h, value);
2447 }
2448 else
2449 return entry->gotidx;
2450 }
2451
2452 /* Returns the GOT index for the global symbol indicated by H. */
2453
2454 static bfd_vma
2455 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2456 int r_type, struct bfd_link_info *info)
2457 {
2458 bfd_vma index;
2459 asection *sgot;
2460 struct mips_got_info *g, *gg;
2461 long global_got_dynindx = 0;
2462
2463 gg = g = mips_elf_got_info (abfd, &sgot);
2464 if (g->bfd2got && ibfd)
2465 {
2466 struct mips_got_entry e, *p;
2467
2468 BFD_ASSERT (h->dynindx >= 0);
2469
2470 g = mips_elf_got_for_ibfd (g, ibfd);
2471 if (g->next != gg || TLS_RELOC_P (r_type))
2472 {
2473 e.abfd = ibfd;
2474 e.symndx = -1;
2475 e.d.h = (struct mips_elf_link_hash_entry *)h;
2476 e.tls_type = 0;
2477
2478 p = htab_find (g->got_entries, &e);
2479
2480 BFD_ASSERT (p->gotidx > 0);
2481
2482 if (TLS_RELOC_P (r_type))
2483 {
2484 bfd_vma value = MINUS_ONE;
2485 if ((h->root.type == bfd_link_hash_defined
2486 || h->root.type == bfd_link_hash_defweak)
2487 && h->root.u.def.section->output_section)
2488 value = (h->root.u.def.value
2489 + h->root.u.def.section->output_offset
2490 + h->root.u.def.section->output_section->vma);
2491
2492 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2493 info, e.d.h, value);
2494 }
2495 else
2496 return p->gotidx;
2497 }
2498 }
2499
2500 if (gg->global_gotsym != NULL)
2501 global_got_dynindx = gg->global_gotsym->dynindx;
2502
2503 if (TLS_RELOC_P (r_type))
2504 {
2505 struct mips_elf_link_hash_entry *hm
2506 = (struct mips_elf_link_hash_entry *) h;
2507 bfd_vma value = MINUS_ONE;
2508
2509 if ((h->root.type == bfd_link_hash_defined
2510 || h->root.type == bfd_link_hash_defweak)
2511 && h->root.u.def.section->output_section)
2512 value = (h->root.u.def.value
2513 + h->root.u.def.section->output_offset
2514 + h->root.u.def.section->output_section->vma);
2515
2516 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2517 r_type, info, hm, value);
2518 }
2519 else
2520 {
2521 /* Once we determine the global GOT entry with the lowest dynamic
2522 symbol table index, we must put all dynamic symbols with greater
2523 indices into the GOT. That makes it easy to calculate the GOT
2524 offset. */
2525 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2526 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2527 * MIPS_ELF_GOT_SIZE (abfd));
2528 }
2529 BFD_ASSERT (index < sgot->size);
2530
2531 return index;
2532 }
2533
2534 /* Find a GOT page entry that points to within 32KB of VALUE. These
2535 entries are supposed to be placed at small offsets in the GOT, i.e.,
2536 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2537 entry could be created. If OFFSETP is nonnull, use it to return the
2538 offset of the GOT entry from VALUE. */
2539
2540 static bfd_vma
2541 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2542 bfd_vma value, bfd_vma *offsetp)
2543 {
2544 asection *sgot;
2545 struct mips_got_info *g;
2546 bfd_vma page, index;
2547 struct mips_got_entry *entry;
2548
2549 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2550
2551 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2552 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2553 page, 0, NULL, R_MIPS_GOT_PAGE);
2554
2555 if (!entry)
2556 return MINUS_ONE;
2557
2558 index = entry->gotidx;
2559
2560 if (offsetp)
2561 *offsetp = value - entry->d.address;
2562
2563 return index;
2564 }
2565
2566 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2567 EXTERNAL is true if the relocation was against a global symbol
2568 that has been forced local. */
2569
2570 static bfd_vma
2571 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2572 bfd_vma value, bfd_boolean external)
2573 {
2574 asection *sgot;
2575 struct mips_got_info *g;
2576 struct mips_got_entry *entry;
2577
2578 /* GOT16 relocations against local symbols are followed by a LO16
2579 relocation; those against global symbols are not. Thus if the
2580 symbol was originally local, the GOT16 relocation should load the
2581 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2582 if (! external)
2583 value = mips_elf_high (value) << 16;
2584
2585 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2586
2587 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2588 value, 0, NULL, R_MIPS_GOT16);
2589 if (entry)
2590 return entry->gotidx;
2591 else
2592 return MINUS_ONE;
2593 }
2594
2595 /* Returns the offset for the entry at the INDEXth position
2596 in the GOT. */
2597
2598 static bfd_vma
2599 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2600 bfd *input_bfd, bfd_vma index)
2601 {
2602 asection *sgot;
2603 bfd_vma gp;
2604 struct mips_got_info *g;
2605
2606 g = mips_elf_got_info (dynobj, &sgot);
2607 gp = _bfd_get_gp_value (output_bfd)
2608 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2609
2610 return sgot->output_section->vma + sgot->output_offset + index - gp;
2611 }
2612
2613 /* Create and return a local GOT entry for VALUE, which was calculated
2614 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2615 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2616 instead. */
2617
2618 static struct mips_got_entry *
2619 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2620 bfd *ibfd, struct mips_got_info *gg,
2621 asection *sgot, bfd_vma value,
2622 unsigned long r_symndx,
2623 struct mips_elf_link_hash_entry *h,
2624 int r_type)
2625 {
2626 struct mips_got_entry entry, **loc;
2627 struct mips_got_info *g;
2628 struct mips_elf_link_hash_table *htab;
2629
2630 htab = mips_elf_hash_table (info);
2631
2632 entry.abfd = NULL;
2633 entry.symndx = -1;
2634 entry.d.address = value;
2635 entry.tls_type = 0;
2636
2637 g = mips_elf_got_for_ibfd (gg, ibfd);
2638 if (g == NULL)
2639 {
2640 g = mips_elf_got_for_ibfd (gg, abfd);
2641 BFD_ASSERT (g != NULL);
2642 }
2643
2644 /* We might have a symbol, H, if it has been forced local. Use the
2645 global entry then. It doesn't matter whether an entry is local
2646 or global for TLS, since the dynamic linker does not
2647 automatically relocate TLS GOT entries. */
2648 BFD_ASSERT (h == NULL || h->root.forced_local);
2649 if (TLS_RELOC_P (r_type))
2650 {
2651 struct mips_got_entry *p;
2652
2653 entry.abfd = ibfd;
2654 if (r_type == R_MIPS_TLS_LDM)
2655 {
2656 entry.tls_type = GOT_TLS_LDM;
2657 entry.symndx = 0;
2658 entry.d.addend = 0;
2659 }
2660 else if (h == NULL)
2661 {
2662 entry.symndx = r_symndx;
2663 entry.d.addend = 0;
2664 }
2665 else
2666 entry.d.h = h;
2667
2668 p = (struct mips_got_entry *)
2669 htab_find (g->got_entries, &entry);
2670
2671 BFD_ASSERT (p);
2672 return p;
2673 }
2674
2675 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2676 INSERT);
2677 if (*loc)
2678 return *loc;
2679
2680 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2681 entry.tls_type = 0;
2682
2683 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2684
2685 if (! *loc)
2686 return NULL;
2687
2688 memcpy (*loc, &entry, sizeof entry);
2689
2690 if (g->assigned_gotno >= g->local_gotno)
2691 {
2692 (*loc)->gotidx = -1;
2693 /* We didn't allocate enough space in the GOT. */
2694 (*_bfd_error_handler)
2695 (_("not enough GOT space for local GOT entries"));
2696 bfd_set_error (bfd_error_bad_value);
2697 return NULL;
2698 }
2699
2700 MIPS_ELF_PUT_WORD (abfd, value,
2701 (sgot->contents + entry.gotidx));
2702
2703 /* These GOT entries need a dynamic relocation on VxWorks. */
2704 if (htab->is_vxworks)
2705 {
2706 Elf_Internal_Rela outrel;
2707 asection *s;
2708 bfd_byte *loc;
2709 bfd_vma got_address;
2710
2711 s = mips_elf_rel_dyn_section (info, FALSE);
2712 got_address = (sgot->output_section->vma
2713 + sgot->output_offset
2714 + entry.gotidx);
2715
2716 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2717 outrel.r_offset = got_address;
2718 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2719 outrel.r_addend = value;
2720 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2721 }
2722
2723 return *loc;
2724 }
2725
2726 /* Sort the dynamic symbol table so that symbols that need GOT entries
2727 appear towards the end. This reduces the amount of GOT space
2728 required. MAX_LOCAL is used to set the number of local symbols
2729 known to be in the dynamic symbol table. During
2730 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2731 section symbols are added and the count is higher. */
2732
2733 static bfd_boolean
2734 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2735 {
2736 struct mips_elf_hash_sort_data hsd;
2737 struct mips_got_info *g;
2738 bfd *dynobj;
2739
2740 dynobj = elf_hash_table (info)->dynobj;
2741
2742 g = mips_elf_got_info (dynobj, NULL);
2743
2744 hsd.low = NULL;
2745 hsd.max_unref_got_dynindx =
2746 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2747 /* In the multi-got case, assigned_gotno of the master got_info
2748 indicate the number of entries that aren't referenced in the
2749 primary GOT, but that must have entries because there are
2750 dynamic relocations that reference it. Since they aren't
2751 referenced, we move them to the end of the GOT, so that they
2752 don't prevent other entries that are referenced from getting
2753 too large offsets. */
2754 - (g->next ? g->assigned_gotno : 0);
2755 hsd.max_non_got_dynindx = max_local;
2756 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2757 elf_hash_table (info)),
2758 mips_elf_sort_hash_table_f,
2759 &hsd);
2760
2761 /* There should have been enough room in the symbol table to
2762 accommodate both the GOT and non-GOT symbols. */
2763 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2764 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2765 <= elf_hash_table (info)->dynsymcount);
2766
2767 /* Now we know which dynamic symbol has the lowest dynamic symbol
2768 table index in the GOT. */
2769 g->global_gotsym = hsd.low;
2770
2771 return TRUE;
2772 }
2773
2774 /* If H needs a GOT entry, assign it the highest available dynamic
2775 index. Otherwise, assign it the lowest available dynamic
2776 index. */
2777
2778 static bfd_boolean
2779 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2780 {
2781 struct mips_elf_hash_sort_data *hsd = data;
2782
2783 if (h->root.root.type == bfd_link_hash_warning)
2784 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2785
2786 /* Symbols without dynamic symbol table entries aren't interesting
2787 at all. */
2788 if (h->root.dynindx == -1)
2789 return TRUE;
2790
2791 /* Global symbols that need GOT entries that are not explicitly
2792 referenced are marked with got offset 2. Those that are
2793 referenced get a 1, and those that don't need GOT entries get
2794 -1. */
2795 if (h->root.got.offset == 2)
2796 {
2797 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2798
2799 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2800 hsd->low = (struct elf_link_hash_entry *) h;
2801 h->root.dynindx = hsd->max_unref_got_dynindx++;
2802 }
2803 else if (h->root.got.offset != 1)
2804 h->root.dynindx = hsd->max_non_got_dynindx++;
2805 else
2806 {
2807 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2808
2809 h->root.dynindx = --hsd->min_got_dynindx;
2810 hsd->low = (struct elf_link_hash_entry *) h;
2811 }
2812
2813 return TRUE;
2814 }
2815
2816 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2817 symbol table index lower than any we've seen to date, record it for
2818 posterity. */
2819
2820 static bfd_boolean
2821 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2822 bfd *abfd, struct bfd_link_info *info,
2823 struct mips_got_info *g,
2824 unsigned char tls_flag)
2825 {
2826 struct mips_got_entry entry, **loc;
2827
2828 /* A global symbol in the GOT must also be in the dynamic symbol
2829 table. */
2830 if (h->dynindx == -1)
2831 {
2832 switch (ELF_ST_VISIBILITY (h->other))
2833 {
2834 case STV_INTERNAL:
2835 case STV_HIDDEN:
2836 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2837 break;
2838 }
2839 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2840 return FALSE;
2841 }
2842
2843 /* Make sure we have a GOT to put this entry into. */
2844 BFD_ASSERT (g != NULL);
2845
2846 entry.abfd = abfd;
2847 entry.symndx = -1;
2848 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2849 entry.tls_type = 0;
2850
2851 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2852 INSERT);
2853
2854 /* If we've already marked this entry as needing GOT space, we don't
2855 need to do it again. */
2856 if (*loc)
2857 {
2858 (*loc)->tls_type |= tls_flag;
2859 return TRUE;
2860 }
2861
2862 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2863
2864 if (! *loc)
2865 return FALSE;
2866
2867 entry.gotidx = -1;
2868 entry.tls_type = tls_flag;
2869
2870 memcpy (*loc, &entry, sizeof entry);
2871
2872 if (h->got.offset != MINUS_ONE)
2873 return TRUE;
2874
2875 /* By setting this to a value other than -1, we are indicating that
2876 there needs to be a GOT entry for H. Avoid using zero, as the
2877 generic ELF copy_indirect_symbol tests for <= 0. */
2878 if (tls_flag == 0)
2879 h->got.offset = 1;
2880
2881 return TRUE;
2882 }
2883
2884 /* Reserve space in G for a GOT entry containing the value of symbol
2885 SYMNDX in input bfd ABDF, plus ADDEND. */
2886
2887 static bfd_boolean
2888 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2889 struct mips_got_info *g,
2890 unsigned char tls_flag)
2891 {
2892 struct mips_got_entry entry, **loc;
2893
2894 entry.abfd = abfd;
2895 entry.symndx = symndx;
2896 entry.d.addend = addend;
2897 entry.tls_type = tls_flag;
2898 loc = (struct mips_got_entry **)
2899 htab_find_slot (g->got_entries, &entry, INSERT);
2900
2901 if (*loc)
2902 {
2903 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2904 {
2905 g->tls_gotno += 2;
2906 (*loc)->tls_type |= tls_flag;
2907 }
2908 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2909 {
2910 g->tls_gotno += 1;
2911 (*loc)->tls_type |= tls_flag;
2912 }
2913 return TRUE;
2914 }
2915
2916 if (tls_flag != 0)
2917 {
2918 entry.gotidx = -1;
2919 entry.tls_type = tls_flag;
2920 if (tls_flag == GOT_TLS_IE)
2921 g->tls_gotno += 1;
2922 else if (tls_flag == GOT_TLS_GD)
2923 g->tls_gotno += 2;
2924 else if (g->tls_ldm_offset == MINUS_ONE)
2925 {
2926 g->tls_ldm_offset = MINUS_TWO;
2927 g->tls_gotno += 2;
2928 }
2929 }
2930 else
2931 {
2932 entry.gotidx = g->local_gotno++;
2933 entry.tls_type = 0;
2934 }
2935
2936 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2937
2938 if (! *loc)
2939 return FALSE;
2940
2941 memcpy (*loc, &entry, sizeof entry);
2942
2943 return TRUE;
2944 }
2945 \f
2946 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2947
2948 static hashval_t
2949 mips_elf_bfd2got_entry_hash (const void *entry_)
2950 {
2951 const struct mips_elf_bfd2got_hash *entry
2952 = (struct mips_elf_bfd2got_hash *)entry_;
2953
2954 return entry->bfd->id;
2955 }
2956
2957 /* Check whether two hash entries have the same bfd. */
2958
2959 static int
2960 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2961 {
2962 const struct mips_elf_bfd2got_hash *e1
2963 = (const struct mips_elf_bfd2got_hash *)entry1;
2964 const struct mips_elf_bfd2got_hash *e2
2965 = (const struct mips_elf_bfd2got_hash *)entry2;
2966
2967 return e1->bfd == e2->bfd;
2968 }
2969
2970 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2971 be the master GOT data. */
2972
2973 static struct mips_got_info *
2974 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2975 {
2976 struct mips_elf_bfd2got_hash e, *p;
2977
2978 if (! g->bfd2got)
2979 return g;
2980
2981 e.bfd = ibfd;
2982 p = htab_find (g->bfd2got, &e);
2983 return p ? p->g : NULL;
2984 }
2985
2986 /* Create one separate got for each bfd that has entries in the global
2987 got, such that we can tell how many local and global entries each
2988 bfd requires. */
2989
2990 static int
2991 mips_elf_make_got_per_bfd (void **entryp, void *p)
2992 {
2993 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2994 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2995 htab_t bfd2got = arg->bfd2got;
2996 struct mips_got_info *g;
2997 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2998 void **bfdgotp;
2999
3000 /* Find the got_info for this GOT entry's input bfd. Create one if
3001 none exists. */
3002 bfdgot_entry.bfd = entry->abfd;
3003 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3004 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3005
3006 if (bfdgot != NULL)
3007 g = bfdgot->g;
3008 else
3009 {
3010 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3011 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3012
3013 if (bfdgot == NULL)
3014 {
3015 arg->obfd = 0;
3016 return 0;
3017 }
3018
3019 *bfdgotp = bfdgot;
3020
3021 bfdgot->bfd = entry->abfd;
3022 bfdgot->g = g = (struct mips_got_info *)
3023 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3024 if (g == NULL)
3025 {
3026 arg->obfd = 0;
3027 return 0;
3028 }
3029
3030 g->global_gotsym = NULL;
3031 g->global_gotno = 0;
3032 g->local_gotno = 0;
3033 g->assigned_gotno = -1;
3034 g->tls_gotno = 0;
3035 g->tls_assigned_gotno = 0;
3036 g->tls_ldm_offset = MINUS_ONE;
3037 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3038 mips_elf_multi_got_entry_eq, NULL);
3039 if (g->got_entries == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->bfd2got = NULL;
3046 g->next = NULL;
3047 }
3048
3049 /* Insert the GOT entry in the bfd's got entry hash table. */
3050 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3051 if (*entryp != NULL)
3052 return 1;
3053
3054 *entryp = entry;
3055
3056 if (entry->tls_type)
3057 {
3058 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3059 g->tls_gotno += 2;
3060 if (entry->tls_type & GOT_TLS_IE)
3061 g->tls_gotno += 1;
3062 }
3063 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3064 ++g->local_gotno;
3065 else
3066 ++g->global_gotno;
3067
3068 return 1;
3069 }
3070
3071 /* Attempt to merge gots of different input bfds. Try to use as much
3072 as possible of the primary got, since it doesn't require explicit
3073 dynamic relocations, but don't use bfds that would reference global
3074 symbols out of the addressable range. Failing the primary got,
3075 attempt to merge with the current got, or finish the current got
3076 and then make make the new got current. */
3077
3078 static int
3079 mips_elf_merge_gots (void **bfd2got_, void *p)
3080 {
3081 struct mips_elf_bfd2got_hash *bfd2got
3082 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3083 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3084 unsigned int lcount = bfd2got->g->local_gotno;
3085 unsigned int gcount = bfd2got->g->global_gotno;
3086 unsigned int tcount = bfd2got->g->tls_gotno;
3087 unsigned int maxcnt = arg->max_count;
3088 bfd_boolean too_many_for_tls = FALSE;
3089
3090 /* We place TLS GOT entries after both locals and globals. The globals
3091 for the primary GOT may overflow the normal GOT size limit, so be
3092 sure not to merge a GOT which requires TLS with the primary GOT in that
3093 case. This doesn't affect non-primary GOTs. */
3094 if (tcount > 0)
3095 {
3096 unsigned int primary_total = lcount + tcount + arg->global_count;
3097 if (primary_total > maxcnt)
3098 too_many_for_tls = TRUE;
3099 }
3100
3101 /* If we don't have a primary GOT and this is not too big, use it as
3102 a starting point for the primary GOT. */
3103 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3104 && ! too_many_for_tls)
3105 {
3106 arg->primary = bfd2got->g;
3107 arg->primary_count = lcount + gcount;
3108 }
3109 /* If it looks like we can merge this bfd's entries with those of
3110 the primary, merge them. The heuristics is conservative, but we
3111 don't have to squeeze it too hard. */
3112 else if (arg->primary && ! too_many_for_tls
3113 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3114 {
3115 struct mips_got_info *g = bfd2got->g;
3116 int old_lcount = arg->primary->local_gotno;
3117 int old_gcount = arg->primary->global_gotno;
3118 int old_tcount = arg->primary->tls_gotno;
3119
3120 bfd2got->g = arg->primary;
3121
3122 htab_traverse (g->got_entries,
3123 mips_elf_make_got_per_bfd,
3124 arg);
3125 if (arg->obfd == NULL)
3126 return 0;
3127
3128 htab_delete (g->got_entries);
3129 /* We don't have to worry about releasing memory of the actual
3130 got entries, since they're all in the master got_entries hash
3131 table anyway. */
3132
3133 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3134 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3135 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3136
3137 arg->primary_count = arg->primary->local_gotno
3138 + arg->primary->global_gotno + arg->primary->tls_gotno;
3139 }
3140 /* If we can merge with the last-created got, do it. */
3141 else if (arg->current
3142 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3143 {
3144 struct mips_got_info *g = bfd2got->g;
3145 int old_lcount = arg->current->local_gotno;
3146 int old_gcount = arg->current->global_gotno;
3147 int old_tcount = arg->current->tls_gotno;
3148
3149 bfd2got->g = arg->current;
3150
3151 htab_traverse (g->got_entries,
3152 mips_elf_make_got_per_bfd,
3153 arg);
3154 if (arg->obfd == NULL)
3155 return 0;
3156
3157 htab_delete (g->got_entries);
3158
3159 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3160 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3161 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3162
3163 arg->current_count = arg->current->local_gotno
3164 + arg->current->global_gotno + arg->current->tls_gotno;
3165 }
3166 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3167 fits; if it turns out that it doesn't, we'll get relocation
3168 overflows anyway. */
3169 else
3170 {
3171 bfd2got->g->next = arg->current;
3172 arg->current = bfd2got->g;
3173
3174 arg->current_count = lcount + gcount + 2 * tcount;
3175 }
3176
3177 return 1;
3178 }
3179
3180 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3181 is null iff there is just a single GOT. */
3182
3183 static int
3184 mips_elf_initialize_tls_index (void **entryp, void *p)
3185 {
3186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3187 struct mips_got_info *g = p;
3188 bfd_vma next_index;
3189 unsigned char tls_type;
3190
3191 /* We're only interested in TLS symbols. */
3192 if (entry->tls_type == 0)
3193 return 1;
3194
3195 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3196
3197 if (entry->symndx == -1 && g->next == NULL)
3198 {
3199 /* A type (3) got entry in the single-GOT case. We use the symbol's
3200 hash table entry to track its index. */
3201 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3202 return 1;
3203 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3204 entry->d.h->tls_got_offset = next_index;
3205 tls_type = entry->d.h->tls_type;
3206 }
3207 else
3208 {
3209 if (entry->tls_type & GOT_TLS_LDM)
3210 {
3211 /* There are separate mips_got_entry objects for each input bfd
3212 that requires an LDM entry. Make sure that all LDM entries in
3213 a GOT resolve to the same index. */
3214 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3215 {
3216 entry->gotidx = g->tls_ldm_offset;
3217 return 1;
3218 }
3219 g->tls_ldm_offset = next_index;
3220 }
3221 entry->gotidx = next_index;
3222 tls_type = entry->tls_type;
3223 }
3224
3225 /* Account for the entries we've just allocated. */
3226 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3227 g->tls_assigned_gotno += 2;
3228 if (tls_type & GOT_TLS_IE)
3229 g->tls_assigned_gotno += 1;
3230
3231 return 1;
3232 }
3233
3234 /* If passed a NULL mips_got_info in the argument, set the marker used
3235 to tell whether a global symbol needs a got entry (in the primary
3236 got) to the given VALUE.
3237
3238 If passed a pointer G to a mips_got_info in the argument (it must
3239 not be the primary GOT), compute the offset from the beginning of
3240 the (primary) GOT section to the entry in G corresponding to the
3241 global symbol. G's assigned_gotno must contain the index of the
3242 first available global GOT entry in G. VALUE must contain the size
3243 of a GOT entry in bytes. For each global GOT entry that requires a
3244 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3245 marked as not eligible for lazy resolution through a function
3246 stub. */
3247 static int
3248 mips_elf_set_global_got_offset (void **entryp, void *p)
3249 {
3250 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3251 struct mips_elf_set_global_got_offset_arg *arg
3252 = (struct mips_elf_set_global_got_offset_arg *)p;
3253 struct mips_got_info *g = arg->g;
3254
3255 if (g && entry->tls_type != GOT_NORMAL)
3256 arg->needed_relocs +=
3257 mips_tls_got_relocs (arg->info, entry->tls_type,
3258 entry->symndx == -1 ? &entry->d.h->root : NULL);
3259
3260 if (entry->abfd != NULL && entry->symndx == -1
3261 && entry->d.h->root.dynindx != -1
3262 && entry->d.h->tls_type == GOT_NORMAL)
3263 {
3264 if (g)
3265 {
3266 BFD_ASSERT (g->global_gotsym == NULL);
3267
3268 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3269 if (arg->info->shared
3270 || (elf_hash_table (arg->info)->dynamic_sections_created
3271 && entry->d.h->root.def_dynamic
3272 && !entry->d.h->root.def_regular))
3273 ++arg->needed_relocs;
3274 }
3275 else
3276 entry->d.h->root.got.offset = arg->value;
3277 }
3278
3279 return 1;
3280 }
3281
3282 /* Mark any global symbols referenced in the GOT we are iterating over
3283 as inelligible for lazy resolution stubs. */
3284 static int
3285 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3286 {
3287 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3288
3289 if (entry->abfd != NULL
3290 && entry->symndx == -1
3291 && entry->d.h->root.dynindx != -1)
3292 entry->d.h->no_fn_stub = TRUE;
3293
3294 return 1;
3295 }
3296
3297 /* Follow indirect and warning hash entries so that each got entry
3298 points to the final symbol definition. P must point to a pointer
3299 to the hash table we're traversing. Since this traversal may
3300 modify the hash table, we set this pointer to NULL to indicate
3301 we've made a potentially-destructive change to the hash table, so
3302 the traversal must be restarted. */
3303 static int
3304 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3305 {
3306 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3307 htab_t got_entries = *(htab_t *)p;
3308
3309 if (entry->abfd != NULL && entry->symndx == -1)
3310 {
3311 struct mips_elf_link_hash_entry *h = entry->d.h;
3312
3313 while (h->root.root.type == bfd_link_hash_indirect
3314 || h->root.root.type == bfd_link_hash_warning)
3315 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3316
3317 if (entry->d.h == h)
3318 return 1;
3319
3320 entry->d.h = h;
3321
3322 /* If we can't find this entry with the new bfd hash, re-insert
3323 it, and get the traversal restarted. */
3324 if (! htab_find (got_entries, entry))
3325 {
3326 htab_clear_slot (got_entries, entryp);
3327 entryp = htab_find_slot (got_entries, entry, INSERT);
3328 if (! *entryp)
3329 *entryp = entry;
3330 /* Abort the traversal, since the whole table may have
3331 moved, and leave it up to the parent to restart the
3332 process. */
3333 *(htab_t *)p = NULL;
3334 return 0;
3335 }
3336 /* We might want to decrement the global_gotno count, but it's
3337 either too early or too late for that at this point. */
3338 }
3339
3340 return 1;
3341 }
3342
3343 /* Turn indirect got entries in a got_entries table into their final
3344 locations. */
3345 static void
3346 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3347 {
3348 htab_t got_entries;
3349
3350 do
3351 {
3352 got_entries = g->got_entries;
3353
3354 htab_traverse (got_entries,
3355 mips_elf_resolve_final_got_entry,
3356 &got_entries);
3357 }
3358 while (got_entries == NULL);
3359 }
3360
3361 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3362 the primary GOT. */
3363 static bfd_vma
3364 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3365 {
3366 if (g->bfd2got == NULL)
3367 return 0;
3368
3369 g = mips_elf_got_for_ibfd (g, ibfd);
3370 if (! g)
3371 return 0;
3372
3373 BFD_ASSERT (g->next);
3374
3375 g = g->next;
3376
3377 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3378 * MIPS_ELF_GOT_SIZE (abfd);
3379 }
3380
3381 /* Turn a single GOT that is too big for 16-bit addressing into
3382 a sequence of GOTs, each one 16-bit addressable. */
3383
3384 static bfd_boolean
3385 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3386 struct mips_got_info *g, asection *got,
3387 bfd_size_type pages)
3388 {
3389 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3390 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3391 struct mips_got_info *gg;
3392 unsigned int assign;
3393
3394 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3395 mips_elf_bfd2got_entry_eq, NULL);
3396 if (g->bfd2got == NULL)
3397 return FALSE;
3398
3399 got_per_bfd_arg.bfd2got = g->bfd2got;
3400 got_per_bfd_arg.obfd = abfd;
3401 got_per_bfd_arg.info = info;
3402
3403 /* Count how many GOT entries each input bfd requires, creating a
3404 map from bfd to got info while at that. */
3405 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3406 if (got_per_bfd_arg.obfd == NULL)
3407 return FALSE;
3408
3409 got_per_bfd_arg.current = NULL;
3410 got_per_bfd_arg.primary = NULL;
3411 /* Taking out PAGES entries is a worst-case estimate. We could
3412 compute the maximum number of pages that each separate input bfd
3413 uses, but it's probably not worth it. */
3414 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3415 / MIPS_ELF_GOT_SIZE (abfd))
3416 - MIPS_RESERVED_GOTNO (info) - pages);
3417 /* The number of globals that will be included in the primary GOT.
3418 See the calls to mips_elf_set_global_got_offset below for more
3419 information. */
3420 got_per_bfd_arg.global_count = g->global_gotno;
3421
3422 /* Try to merge the GOTs of input bfds together, as long as they
3423 don't seem to exceed the maximum GOT size, choosing one of them
3424 to be the primary GOT. */
3425 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3426 if (got_per_bfd_arg.obfd == NULL)
3427 return FALSE;
3428
3429 /* If we do not find any suitable primary GOT, create an empty one. */
3430 if (got_per_bfd_arg.primary == NULL)
3431 {
3432 g->next = (struct mips_got_info *)
3433 bfd_alloc (abfd, sizeof (struct mips_got_info));
3434 if (g->next == NULL)
3435 return FALSE;
3436
3437 g->next->global_gotsym = NULL;
3438 g->next->global_gotno = 0;
3439 g->next->local_gotno = 0;
3440 g->next->tls_gotno = 0;
3441 g->next->assigned_gotno = 0;
3442 g->next->tls_assigned_gotno = 0;
3443 g->next->tls_ldm_offset = MINUS_ONE;
3444 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3445 mips_elf_multi_got_entry_eq,
3446 NULL);
3447 if (g->next->got_entries == NULL)
3448 return FALSE;
3449 g->next->bfd2got = NULL;
3450 }
3451 else
3452 g->next = got_per_bfd_arg.primary;
3453 g->next->next = got_per_bfd_arg.current;
3454
3455 /* GG is now the master GOT, and G is the primary GOT. */
3456 gg = g;
3457 g = g->next;
3458
3459 /* Map the output bfd to the primary got. That's what we're going
3460 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3461 didn't mark in check_relocs, and we want a quick way to find it.
3462 We can't just use gg->next because we're going to reverse the
3463 list. */
3464 {
3465 struct mips_elf_bfd2got_hash *bfdgot;
3466 void **bfdgotp;
3467
3468 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3469 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3470
3471 if (bfdgot == NULL)
3472 return FALSE;
3473
3474 bfdgot->bfd = abfd;
3475 bfdgot->g = g;
3476 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3477
3478 BFD_ASSERT (*bfdgotp == NULL);
3479 *bfdgotp = bfdgot;
3480 }
3481
3482 /* The IRIX dynamic linker requires every symbol that is referenced
3483 in a dynamic relocation to be present in the primary GOT, so
3484 arrange for them to appear after those that are actually
3485 referenced.
3486
3487 GNU/Linux could very well do without it, but it would slow down
3488 the dynamic linker, since it would have to resolve every dynamic
3489 symbol referenced in other GOTs more than once, without help from
3490 the cache. Also, knowing that every external symbol has a GOT
3491 helps speed up the resolution of local symbols too, so GNU/Linux
3492 follows IRIX's practice.
3493
3494 The number 2 is used by mips_elf_sort_hash_table_f to count
3495 global GOT symbols that are unreferenced in the primary GOT, with
3496 an initial dynamic index computed from gg->assigned_gotno, where
3497 the number of unreferenced global entries in the primary GOT is
3498 preserved. */
3499 if (1)
3500 {
3501 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3502 g->global_gotno = gg->global_gotno;
3503 set_got_offset_arg.value = 2;
3504 }
3505 else
3506 {
3507 /* This could be used for dynamic linkers that don't optimize
3508 symbol resolution while applying relocations so as to use
3509 primary GOT entries or assuming the symbol is locally-defined.
3510 With this code, we assign lower dynamic indices to global
3511 symbols that are not referenced in the primary GOT, so that
3512 their entries can be omitted. */
3513 gg->assigned_gotno = 0;
3514 set_got_offset_arg.value = -1;
3515 }
3516
3517 /* Reorder dynamic symbols as described above (which behavior
3518 depends on the setting of VALUE). */
3519 set_got_offset_arg.g = NULL;
3520 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3521 &set_got_offset_arg);
3522 set_got_offset_arg.value = 1;
3523 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3524 &set_got_offset_arg);
3525 if (! mips_elf_sort_hash_table (info, 1))
3526 return FALSE;
3527
3528 /* Now go through the GOTs assigning them offset ranges.
3529 [assigned_gotno, local_gotno[ will be set to the range of local
3530 entries in each GOT. We can then compute the end of a GOT by
3531 adding local_gotno to global_gotno. We reverse the list and make
3532 it circular since then we'll be able to quickly compute the
3533 beginning of a GOT, by computing the end of its predecessor. To
3534 avoid special cases for the primary GOT, while still preserving
3535 assertions that are valid for both single- and multi-got links,
3536 we arrange for the main got struct to have the right number of
3537 global entries, but set its local_gotno such that the initial
3538 offset of the primary GOT is zero. Remember that the primary GOT
3539 will become the last item in the circular linked list, so it
3540 points back to the master GOT. */
3541 gg->local_gotno = -g->global_gotno;
3542 gg->global_gotno = g->global_gotno;
3543 gg->tls_gotno = 0;
3544 assign = 0;
3545 gg->next = gg;
3546
3547 do
3548 {
3549 struct mips_got_info *gn;
3550
3551 assign += MIPS_RESERVED_GOTNO (info);
3552 g->assigned_gotno = assign;
3553 g->local_gotno += assign + pages;
3554 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3555
3556 /* Take g out of the direct list, and push it onto the reversed
3557 list that gg points to. g->next is guaranteed to be nonnull after
3558 this operation, as required by mips_elf_initialize_tls_index. */
3559 gn = g->next;
3560 g->next = gg->next;
3561 gg->next = g;
3562
3563 /* Set up any TLS entries. We always place the TLS entries after
3564 all non-TLS entries. */
3565 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3566 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3567
3568 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3569 g = gn;
3570
3571 /* Mark global symbols in every non-primary GOT as ineligible for
3572 stubs. */
3573 if (g)
3574 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3575 }
3576 while (g);
3577
3578 got->size = (gg->next->local_gotno
3579 + gg->next->global_gotno
3580 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3581
3582 return TRUE;
3583 }
3584
3585 \f
3586 /* Returns the first relocation of type r_type found, beginning with
3587 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3588
3589 static const Elf_Internal_Rela *
3590 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3591 const Elf_Internal_Rela *relocation,
3592 const Elf_Internal_Rela *relend)
3593 {
3594 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3595
3596 while (relocation < relend)
3597 {
3598 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3599 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3600 return relocation;
3601
3602 ++relocation;
3603 }
3604
3605 /* We didn't find it. */
3606 return NULL;
3607 }
3608
3609 /* Return whether a relocation is against a local symbol. */
3610
3611 static bfd_boolean
3612 mips_elf_local_relocation_p (bfd *input_bfd,
3613 const Elf_Internal_Rela *relocation,
3614 asection **local_sections,
3615 bfd_boolean check_forced)
3616 {
3617 unsigned long r_symndx;
3618 Elf_Internal_Shdr *symtab_hdr;
3619 struct mips_elf_link_hash_entry *h;
3620 size_t extsymoff;
3621
3622 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3623 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3624 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3625
3626 if (r_symndx < extsymoff)
3627 return TRUE;
3628 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3629 return TRUE;
3630
3631 if (check_forced)
3632 {
3633 /* Look up the hash table to check whether the symbol
3634 was forced local. */
3635 h = (struct mips_elf_link_hash_entry *)
3636 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3637 /* Find the real hash-table entry for this symbol. */
3638 while (h->root.root.type == bfd_link_hash_indirect
3639 || h->root.root.type == bfd_link_hash_warning)
3640 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3641 if (h->root.forced_local)
3642 return TRUE;
3643 }
3644
3645 return FALSE;
3646 }
3647 \f
3648 /* Sign-extend VALUE, which has the indicated number of BITS. */
3649
3650 bfd_vma
3651 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3652 {
3653 if (value & ((bfd_vma) 1 << (bits - 1)))
3654 /* VALUE is negative. */
3655 value |= ((bfd_vma) - 1) << bits;
3656
3657 return value;
3658 }
3659
3660 /* Return non-zero if the indicated VALUE has overflowed the maximum
3661 range expressible by a signed number with the indicated number of
3662 BITS. */
3663
3664 static bfd_boolean
3665 mips_elf_overflow_p (bfd_vma value, int bits)
3666 {
3667 bfd_signed_vma svalue = (bfd_signed_vma) value;
3668
3669 if (svalue > (1 << (bits - 1)) - 1)
3670 /* The value is too big. */
3671 return TRUE;
3672 else if (svalue < -(1 << (bits - 1)))
3673 /* The value is too small. */
3674 return TRUE;
3675
3676 /* All is well. */
3677 return FALSE;
3678 }
3679
3680 /* Calculate the %high function. */
3681
3682 static bfd_vma
3683 mips_elf_high (bfd_vma value)
3684 {
3685 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3686 }
3687
3688 /* Calculate the %higher function. */
3689
3690 static bfd_vma
3691 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3692 {
3693 #ifdef BFD64
3694 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3695 #else
3696 abort ();
3697 return MINUS_ONE;
3698 #endif
3699 }
3700
3701 /* Calculate the %highest function. */
3702
3703 static bfd_vma
3704 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3705 {
3706 #ifdef BFD64
3707 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3708 #else
3709 abort ();
3710 return MINUS_ONE;
3711 #endif
3712 }
3713 \f
3714 /* Create the .compact_rel section. */
3715
3716 static bfd_boolean
3717 mips_elf_create_compact_rel_section
3718 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3719 {
3720 flagword flags;
3721 register asection *s;
3722
3723 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3724 {
3725 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3726 | SEC_READONLY);
3727
3728 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3729 if (s == NULL
3730 || ! bfd_set_section_alignment (abfd, s,
3731 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3732 return FALSE;
3733
3734 s->size = sizeof (Elf32_External_compact_rel);
3735 }
3736
3737 return TRUE;
3738 }
3739
3740 /* Create the .got section to hold the global offset table. */
3741
3742 static bfd_boolean
3743 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3744 bfd_boolean maybe_exclude)
3745 {
3746 flagword flags;
3747 register asection *s;
3748 struct elf_link_hash_entry *h;
3749 struct bfd_link_hash_entry *bh;
3750 struct mips_got_info *g;
3751 bfd_size_type amt;
3752 struct mips_elf_link_hash_table *htab;
3753
3754 htab = mips_elf_hash_table (info);
3755
3756 /* This function may be called more than once. */
3757 s = mips_elf_got_section (abfd, TRUE);
3758 if (s)
3759 {
3760 if (! maybe_exclude)
3761 s->flags &= ~SEC_EXCLUDE;
3762 return TRUE;
3763 }
3764
3765 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3766 | SEC_LINKER_CREATED);
3767
3768 if (maybe_exclude)
3769 flags |= SEC_EXCLUDE;
3770
3771 /* We have to use an alignment of 2**4 here because this is hardcoded
3772 in the function stub generation and in the linker script. */
3773 s = bfd_make_section_with_flags (abfd, ".got", flags);
3774 if (s == NULL
3775 || ! bfd_set_section_alignment (abfd, s, 4))
3776 return FALSE;
3777
3778 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3779 linker script because we don't want to define the symbol if we
3780 are not creating a global offset table. */
3781 bh = NULL;
3782 if (! (_bfd_generic_link_add_one_symbol
3783 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3784 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3785 return FALSE;
3786
3787 h = (struct elf_link_hash_entry *) bh;
3788 h->non_elf = 0;
3789 h->def_regular = 1;
3790 h->type = STT_OBJECT;
3791 elf_hash_table (info)->hgot = h;
3792
3793 if (info->shared
3794 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3795 return FALSE;
3796
3797 amt = sizeof (struct mips_got_info);
3798 g = bfd_alloc (abfd, amt);
3799 if (g == NULL)
3800 return FALSE;
3801 g->global_gotsym = NULL;
3802 g->global_gotno = 0;
3803 g->tls_gotno = 0;
3804 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3805 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3806 g->bfd2got = NULL;
3807 g->next = NULL;
3808 g->tls_ldm_offset = MINUS_ONE;
3809 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3810 mips_elf_got_entry_eq, NULL);
3811 if (g->got_entries == NULL)
3812 return FALSE;
3813 mips_elf_section_data (s)->u.got_info = g;
3814 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3815 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3816
3817 /* VxWorks also needs a .got.plt section. */
3818 if (htab->is_vxworks)
3819 {
3820 s = bfd_make_section_with_flags (abfd, ".got.plt",
3821 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3822 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3823 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3824 return FALSE;
3825
3826 htab->sgotplt = s;
3827 }
3828 return TRUE;
3829 }
3830 \f
3831 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3832 __GOTT_INDEX__ symbols. These symbols are only special for
3833 shared objects; they are not used in executables. */
3834
3835 static bfd_boolean
3836 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3837 {
3838 return (mips_elf_hash_table (info)->is_vxworks
3839 && info->shared
3840 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3841 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3842 }
3843 \f
3844 /* Calculate the value produced by the RELOCATION (which comes from
3845 the INPUT_BFD). The ADDEND is the addend to use for this
3846 RELOCATION; RELOCATION->R_ADDEND is ignored.
3847
3848 The result of the relocation calculation is stored in VALUEP.
3849 REQUIRE_JALXP indicates whether or not the opcode used with this
3850 relocation must be JALX.
3851
3852 This function returns bfd_reloc_continue if the caller need take no
3853 further action regarding this relocation, bfd_reloc_notsupported if
3854 something goes dramatically wrong, bfd_reloc_overflow if an
3855 overflow occurs, and bfd_reloc_ok to indicate success. */
3856
3857 static bfd_reloc_status_type
3858 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3859 asection *input_section,
3860 struct bfd_link_info *info,
3861 const Elf_Internal_Rela *relocation,
3862 bfd_vma addend, reloc_howto_type *howto,
3863 Elf_Internal_Sym *local_syms,
3864 asection **local_sections, bfd_vma *valuep,
3865 const char **namep, bfd_boolean *require_jalxp,
3866 bfd_boolean save_addend)
3867 {
3868 /* The eventual value we will return. */
3869 bfd_vma value;
3870 /* The address of the symbol against which the relocation is
3871 occurring. */
3872 bfd_vma symbol = 0;
3873 /* The final GP value to be used for the relocatable, executable, or
3874 shared object file being produced. */
3875 bfd_vma gp = MINUS_ONE;
3876 /* The place (section offset or address) of the storage unit being
3877 relocated. */
3878 bfd_vma p;
3879 /* The value of GP used to create the relocatable object. */
3880 bfd_vma gp0 = MINUS_ONE;
3881 /* The offset into the global offset table at which the address of
3882 the relocation entry symbol, adjusted by the addend, resides
3883 during execution. */
3884 bfd_vma g = MINUS_ONE;
3885 /* The section in which the symbol referenced by the relocation is
3886 located. */
3887 asection *sec = NULL;
3888 struct mips_elf_link_hash_entry *h = NULL;
3889 /* TRUE if the symbol referred to by this relocation is a local
3890 symbol. */
3891 bfd_boolean local_p, was_local_p;
3892 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3893 bfd_boolean gp_disp_p = FALSE;
3894 /* TRUE if the symbol referred to by this relocation is
3895 "__gnu_local_gp". */
3896 bfd_boolean gnu_local_gp_p = FALSE;
3897 Elf_Internal_Shdr *symtab_hdr;
3898 size_t extsymoff;
3899 unsigned long r_symndx;
3900 int r_type;
3901 /* TRUE if overflow occurred during the calculation of the
3902 relocation value. */
3903 bfd_boolean overflowed_p;
3904 /* TRUE if this relocation refers to a MIPS16 function. */
3905 bfd_boolean target_is_16_bit_code_p = FALSE;
3906 struct mips_elf_link_hash_table *htab;
3907 bfd *dynobj;
3908
3909 dynobj = elf_hash_table (info)->dynobj;
3910 htab = mips_elf_hash_table (info);
3911
3912 /* Parse the relocation. */
3913 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3914 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3915 p = (input_section->output_section->vma
3916 + input_section->output_offset
3917 + relocation->r_offset);
3918
3919 /* Assume that there will be no overflow. */
3920 overflowed_p = FALSE;
3921
3922 /* Figure out whether or not the symbol is local, and get the offset
3923 used in the array of hash table entries. */
3924 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3925 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3926 local_sections, FALSE);
3927 was_local_p = local_p;
3928 if (! elf_bad_symtab (input_bfd))
3929 extsymoff = symtab_hdr->sh_info;
3930 else
3931 {
3932 /* The symbol table does not follow the rule that local symbols
3933 must come before globals. */
3934 extsymoff = 0;
3935 }
3936
3937 /* Figure out the value of the symbol. */
3938 if (local_p)
3939 {
3940 Elf_Internal_Sym *sym;
3941
3942 sym = local_syms + r_symndx;
3943 sec = local_sections[r_symndx];
3944
3945 symbol = sec->output_section->vma + sec->output_offset;
3946 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3947 || (sec->flags & SEC_MERGE))
3948 symbol += sym->st_value;
3949 if ((sec->flags & SEC_MERGE)
3950 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3951 {
3952 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3953 addend -= symbol;
3954 addend += sec->output_section->vma + sec->output_offset;
3955 }
3956
3957 /* MIPS16 text labels should be treated as odd. */
3958 if (sym->st_other == STO_MIPS16)
3959 ++symbol;
3960
3961 /* Record the name of this symbol, for our caller. */
3962 *namep = bfd_elf_string_from_elf_section (input_bfd,
3963 symtab_hdr->sh_link,
3964 sym->st_name);
3965 if (*namep == '\0')
3966 *namep = bfd_section_name (input_bfd, sec);
3967
3968 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3969 }
3970 else
3971 {
3972 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3973
3974 /* For global symbols we look up the symbol in the hash-table. */
3975 h = ((struct mips_elf_link_hash_entry *)
3976 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3977 /* Find the real hash-table entry for this symbol. */
3978 while (h->root.root.type == bfd_link_hash_indirect
3979 || h->root.root.type == bfd_link_hash_warning)
3980 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3981
3982 /* Record the name of this symbol, for our caller. */
3983 *namep = h->root.root.root.string;
3984
3985 /* See if this is the special _gp_disp symbol. Note that such a
3986 symbol must always be a global symbol. */
3987 if (strcmp (*namep, "_gp_disp") == 0
3988 && ! NEWABI_P (input_bfd))
3989 {
3990 /* Relocations against _gp_disp are permitted only with
3991 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3992 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3993 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3994 return bfd_reloc_notsupported;
3995
3996 gp_disp_p = TRUE;
3997 }
3998 /* See if this is the special _gp symbol. Note that such a
3999 symbol must always be a global symbol. */
4000 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4001 gnu_local_gp_p = TRUE;
4002
4003
4004 /* If this symbol is defined, calculate its address. Note that
4005 _gp_disp is a magic symbol, always implicitly defined by the
4006 linker, so it's inappropriate to check to see whether or not
4007 its defined. */
4008 else if ((h->root.root.type == bfd_link_hash_defined
4009 || h->root.root.type == bfd_link_hash_defweak)
4010 && h->root.root.u.def.section)
4011 {
4012 sec = h->root.root.u.def.section;
4013 if (sec->output_section)
4014 symbol = (h->root.root.u.def.value
4015 + sec->output_section->vma
4016 + sec->output_offset);
4017 else
4018 symbol = h->root.root.u.def.value;
4019 }
4020 else if (h->root.root.type == bfd_link_hash_undefweak)
4021 /* We allow relocations against undefined weak symbols, giving
4022 it the value zero, so that you can undefined weak functions
4023 and check to see if they exist by looking at their
4024 addresses. */
4025 symbol = 0;
4026 else if (info->unresolved_syms_in_objects == RM_IGNORE
4027 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4028 symbol = 0;
4029 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4030 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4031 {
4032 /* If this is a dynamic link, we should have created a
4033 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4034 in in _bfd_mips_elf_create_dynamic_sections.
4035 Otherwise, we should define the symbol with a value of 0.
4036 FIXME: It should probably get into the symbol table
4037 somehow as well. */
4038 BFD_ASSERT (! info->shared);
4039 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4040 symbol = 0;
4041 }
4042 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4043 {
4044 /* This is an optional symbol - an Irix specific extension to the
4045 ELF spec. Ignore it for now.
4046 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4047 than simply ignoring them, but we do not handle this for now.
4048 For information see the "64-bit ELF Object File Specification"
4049 which is available from here:
4050 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4051 symbol = 0;
4052 }
4053 else
4054 {
4055 if (! ((*info->callbacks->undefined_symbol)
4056 (info, h->root.root.root.string, input_bfd,
4057 input_section, relocation->r_offset,
4058 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4059 || ELF_ST_VISIBILITY (h->root.other))))
4060 return bfd_reloc_undefined;
4061 symbol = 0;
4062 }
4063
4064 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4065 }
4066
4067 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4068 need to redirect the call to the stub, unless we're already *in*
4069 a stub. */
4070 if (r_type != R_MIPS16_26 && !info->relocatable
4071 && ((h != NULL && h->fn_stub != NULL)
4072 || (local_p
4073 && elf_tdata (input_bfd)->local_stubs != NULL
4074 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4075 && !mips16_stub_section_p (input_bfd, input_section))
4076 {
4077 /* This is a 32- or 64-bit call to a 16-bit function. We should
4078 have already noticed that we were going to need the
4079 stub. */
4080 if (local_p)
4081 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4082 else
4083 {
4084 BFD_ASSERT (h->need_fn_stub);
4085 sec = h->fn_stub;
4086 }
4087
4088 symbol = sec->output_section->vma + sec->output_offset;
4089 /* The target is 16-bit, but the stub isn't. */
4090 target_is_16_bit_code_p = FALSE;
4091 }
4092 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4093 need to redirect the call to the stub. */
4094 else if (r_type == R_MIPS16_26 && !info->relocatable
4095 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
4096 || (local_p
4097 && elf_tdata (input_bfd)->local_call_stubs != NULL
4098 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4099 && !target_is_16_bit_code_p)
4100 {
4101 if (local_p)
4102 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4103 else
4104 {
4105 /* If both call_stub and call_fp_stub are defined, we can figure
4106 out which one to use by checking which one appears in the input
4107 file. */
4108 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4109 {
4110 asection *o;
4111
4112 sec = NULL;
4113 for (o = input_bfd->sections; o != NULL; o = o->next)
4114 {
4115 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4116 {
4117 sec = h->call_fp_stub;
4118 break;
4119 }
4120 }
4121 if (sec == NULL)
4122 sec = h->call_stub;
4123 }
4124 else if (h->call_stub != NULL)
4125 sec = h->call_stub;
4126 else
4127 sec = h->call_fp_stub;
4128 }
4129
4130 BFD_ASSERT (sec->size > 0);
4131 symbol = sec->output_section->vma + sec->output_offset;
4132 }
4133
4134 /* Calls from 16-bit code to 32-bit code and vice versa require the
4135 special jalx instruction. */
4136 *require_jalxp = (!info->relocatable
4137 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4138 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4139
4140 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4141 local_sections, TRUE);
4142
4143 /* If we haven't already determined the GOT offset, or the GP value,
4144 and we're going to need it, get it now. */
4145 switch (r_type)
4146 {
4147 case R_MIPS_GOT_PAGE:
4148 case R_MIPS_GOT_OFST:
4149 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4150 bind locally. */
4151 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4152 if (local_p || r_type == R_MIPS_GOT_OFST)
4153 break;
4154 /* Fall through. */
4155
4156 case R_MIPS_CALL16:
4157 case R_MIPS_GOT16:
4158 case R_MIPS_GOT_DISP:
4159 case R_MIPS_GOT_HI16:
4160 case R_MIPS_CALL_HI16:
4161 case R_MIPS_GOT_LO16:
4162 case R_MIPS_CALL_LO16:
4163 case R_MIPS_TLS_GD:
4164 case R_MIPS_TLS_GOTTPREL:
4165 case R_MIPS_TLS_LDM:
4166 /* Find the index into the GOT where this value is located. */
4167 if (r_type == R_MIPS_TLS_LDM)
4168 {
4169 g = mips_elf_local_got_index (abfd, input_bfd, info,
4170 0, 0, NULL, r_type);
4171 if (g == MINUS_ONE)
4172 return bfd_reloc_outofrange;
4173 }
4174 else if (!local_p)
4175 {
4176 /* On VxWorks, CALL relocations should refer to the .got.plt
4177 entry, which is initialized to point at the PLT stub. */
4178 if (htab->is_vxworks
4179 && (r_type == R_MIPS_CALL_HI16
4180 || r_type == R_MIPS_CALL_LO16
4181 || r_type == R_MIPS_CALL16))
4182 {
4183 BFD_ASSERT (addend == 0);
4184 BFD_ASSERT (h->root.needs_plt);
4185 g = mips_elf_gotplt_index (info, &h->root);
4186 }
4187 else
4188 {
4189 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4190 GOT_PAGE relocation that decays to GOT_DISP because the
4191 symbol turns out to be global. The addend is then added
4192 as GOT_OFST. */
4193 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4194 g = mips_elf_global_got_index (dynobj, input_bfd,
4195 &h->root, r_type, info);
4196 if (h->tls_type == GOT_NORMAL
4197 && (! elf_hash_table(info)->dynamic_sections_created
4198 || (info->shared
4199 && (info->symbolic || h->root.forced_local)
4200 && h->root.def_regular)))
4201 {
4202 /* This is a static link or a -Bsymbolic link. The
4203 symbol is defined locally, or was forced to be local.
4204 We must initialize this entry in the GOT. */
4205 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4206 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4207 }
4208 }
4209 }
4210 else if (!htab->is_vxworks
4211 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4212 /* The calculation below does not involve "g". */
4213 break;
4214 else
4215 {
4216 g = mips_elf_local_got_index (abfd, input_bfd, info,
4217 symbol + addend, r_symndx, h, r_type);
4218 if (g == MINUS_ONE)
4219 return bfd_reloc_outofrange;
4220 }
4221
4222 /* Convert GOT indices to actual offsets. */
4223 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4224 break;
4225
4226 case R_MIPS_HI16:
4227 case R_MIPS_LO16:
4228 case R_MIPS_GPREL16:
4229 case R_MIPS_GPREL32:
4230 case R_MIPS_LITERAL:
4231 case R_MIPS16_HI16:
4232 case R_MIPS16_LO16:
4233 case R_MIPS16_GPREL:
4234 gp0 = _bfd_get_gp_value (input_bfd);
4235 gp = _bfd_get_gp_value (abfd);
4236 if (dynobj)
4237 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4238 input_bfd);
4239 break;
4240
4241 default:
4242 break;
4243 }
4244
4245 if (gnu_local_gp_p)
4246 symbol = gp;
4247
4248 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4249 symbols are resolved by the loader. Add them to .rela.dyn. */
4250 if (h != NULL && is_gott_symbol (info, &h->root))
4251 {
4252 Elf_Internal_Rela outrel;
4253 bfd_byte *loc;
4254 asection *s;
4255
4256 s = mips_elf_rel_dyn_section (info, FALSE);
4257 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4258
4259 outrel.r_offset = (input_section->output_section->vma
4260 + input_section->output_offset
4261 + relocation->r_offset);
4262 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4263 outrel.r_addend = addend;
4264 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4265
4266 /* If we've written this relocation for a readonly section,
4267 we need to set DF_TEXTREL again, so that we do not delete the
4268 DT_TEXTREL tag. */
4269 if (MIPS_ELF_READONLY_SECTION (input_section))
4270 info->flags |= DF_TEXTREL;
4271
4272 *valuep = 0;
4273 return bfd_reloc_ok;
4274 }
4275
4276 /* Figure out what kind of relocation is being performed. */
4277 switch (r_type)
4278 {
4279 case R_MIPS_NONE:
4280 return bfd_reloc_continue;
4281
4282 case R_MIPS_16:
4283 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4284 overflowed_p = mips_elf_overflow_p (value, 16);
4285 break;
4286
4287 case R_MIPS_32:
4288 case R_MIPS_REL32:
4289 case R_MIPS_64:
4290 if ((info->shared
4291 || (!htab->is_vxworks
4292 && htab->root.dynamic_sections_created
4293 && h != NULL
4294 && h->root.def_dynamic
4295 && !h->root.def_regular))
4296 && r_symndx != 0
4297 && (input_section->flags & SEC_ALLOC) != 0)
4298 {
4299 /* If we're creating a shared library, or this relocation is
4300 against a symbol in a shared library, then we can't know
4301 where the symbol will end up. So, we create a relocation
4302 record in the output, and leave the job up to the dynamic
4303 linker.
4304
4305 In VxWorks executables, references to external symbols
4306 are handled using copy relocs or PLT stubs, so there's
4307 no need to add a dynamic relocation here. */
4308 value = addend;
4309 if (!mips_elf_create_dynamic_relocation (abfd,
4310 info,
4311 relocation,
4312 h,
4313 sec,
4314 symbol,
4315 &value,
4316 input_section))
4317 return bfd_reloc_undefined;
4318 }
4319 else
4320 {
4321 if (r_type != R_MIPS_REL32)
4322 value = symbol + addend;
4323 else
4324 value = addend;
4325 }
4326 value &= howto->dst_mask;
4327 break;
4328
4329 case R_MIPS_PC32:
4330 value = symbol + addend - p;
4331 value &= howto->dst_mask;
4332 break;
4333
4334 case R_MIPS16_26:
4335 /* The calculation for R_MIPS16_26 is just the same as for an
4336 R_MIPS_26. It's only the storage of the relocated field into
4337 the output file that's different. That's handled in
4338 mips_elf_perform_relocation. So, we just fall through to the
4339 R_MIPS_26 case here. */
4340 case R_MIPS_26:
4341 if (local_p)
4342 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4343 else
4344 {
4345 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4346 if (h->root.root.type != bfd_link_hash_undefweak)
4347 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4348 }
4349 value &= howto->dst_mask;
4350 break;
4351
4352 case R_MIPS_TLS_DTPREL_HI16:
4353 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4354 & howto->dst_mask);
4355 break;
4356
4357 case R_MIPS_TLS_DTPREL_LO16:
4358 case R_MIPS_TLS_DTPREL32:
4359 case R_MIPS_TLS_DTPREL64:
4360 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4361 break;
4362
4363 case R_MIPS_TLS_TPREL_HI16:
4364 value = (mips_elf_high (addend + symbol - tprel_base (info))
4365 & howto->dst_mask);
4366 break;
4367
4368 case R_MIPS_TLS_TPREL_LO16:
4369 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4370 break;
4371
4372 case R_MIPS_HI16:
4373 case R_MIPS16_HI16:
4374 if (!gp_disp_p)
4375 {
4376 value = mips_elf_high (addend + symbol);
4377 value &= howto->dst_mask;
4378 }
4379 else
4380 {
4381 /* For MIPS16 ABI code we generate this sequence
4382 0: li $v0,%hi(_gp_disp)
4383 4: addiupc $v1,%lo(_gp_disp)
4384 8: sll $v0,16
4385 12: addu $v0,$v1
4386 14: move $gp,$v0
4387 So the offsets of hi and lo relocs are the same, but the
4388 $pc is four higher than $t9 would be, so reduce
4389 both reloc addends by 4. */
4390 if (r_type == R_MIPS16_HI16)
4391 value = mips_elf_high (addend + gp - p - 4);
4392 else
4393 value = mips_elf_high (addend + gp - p);
4394 overflowed_p = mips_elf_overflow_p (value, 16);
4395 }
4396 break;
4397
4398 case R_MIPS_LO16:
4399 case R_MIPS16_LO16:
4400 if (!gp_disp_p)
4401 value = (symbol + addend) & howto->dst_mask;
4402 else
4403 {
4404 /* See the comment for R_MIPS16_HI16 above for the reason
4405 for this conditional. */
4406 if (r_type == R_MIPS16_LO16)
4407 value = addend + gp - p;
4408 else
4409 value = addend + gp - p + 4;
4410 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4411 for overflow. But, on, say, IRIX5, relocations against
4412 _gp_disp are normally generated from the .cpload
4413 pseudo-op. It generates code that normally looks like
4414 this:
4415
4416 lui $gp,%hi(_gp_disp)
4417 addiu $gp,$gp,%lo(_gp_disp)
4418 addu $gp,$gp,$t9
4419
4420 Here $t9 holds the address of the function being called,
4421 as required by the MIPS ELF ABI. The R_MIPS_LO16
4422 relocation can easily overflow in this situation, but the
4423 R_MIPS_HI16 relocation will handle the overflow.
4424 Therefore, we consider this a bug in the MIPS ABI, and do
4425 not check for overflow here. */
4426 }
4427 break;
4428
4429 case R_MIPS_LITERAL:
4430 /* Because we don't merge literal sections, we can handle this
4431 just like R_MIPS_GPREL16. In the long run, we should merge
4432 shared literals, and then we will need to additional work
4433 here. */
4434
4435 /* Fall through. */
4436
4437 case R_MIPS16_GPREL:
4438 /* The R_MIPS16_GPREL performs the same calculation as
4439 R_MIPS_GPREL16, but stores the relocated bits in a different
4440 order. We don't need to do anything special here; the
4441 differences are handled in mips_elf_perform_relocation. */
4442 case R_MIPS_GPREL16:
4443 /* Only sign-extend the addend if it was extracted from the
4444 instruction. If the addend was separate, leave it alone,
4445 otherwise we may lose significant bits. */
4446 if (howto->partial_inplace)
4447 addend = _bfd_mips_elf_sign_extend (addend, 16);
4448 value = symbol + addend - gp;
4449 /* If the symbol was local, any earlier relocatable links will
4450 have adjusted its addend with the gp offset, so compensate
4451 for that now. Don't do it for symbols forced local in this
4452 link, though, since they won't have had the gp offset applied
4453 to them before. */
4454 if (was_local_p)
4455 value += gp0;
4456 overflowed_p = mips_elf_overflow_p (value, 16);
4457 break;
4458
4459 case R_MIPS_GOT16:
4460 case R_MIPS_CALL16:
4461 /* VxWorks does not have separate local and global semantics for
4462 R_MIPS_GOT16; every relocation evaluates to "G". */
4463 if (!htab->is_vxworks && local_p)
4464 {
4465 bfd_boolean forced;
4466
4467 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4468 local_sections, FALSE);
4469 value = mips_elf_got16_entry (abfd, input_bfd, info,
4470 symbol + addend, forced);
4471 if (value == MINUS_ONE)
4472 return bfd_reloc_outofrange;
4473 value
4474 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4475 overflowed_p = mips_elf_overflow_p (value, 16);
4476 break;
4477 }
4478
4479 /* Fall through. */
4480
4481 case R_MIPS_TLS_GD:
4482 case R_MIPS_TLS_GOTTPREL:
4483 case R_MIPS_TLS_LDM:
4484 case R_MIPS_GOT_DISP:
4485 got_disp:
4486 value = g;
4487 overflowed_p = mips_elf_overflow_p (value, 16);
4488 break;
4489
4490 case R_MIPS_GPREL32:
4491 value = (addend + symbol + gp0 - gp);
4492 if (!save_addend)
4493 value &= howto->dst_mask;
4494 break;
4495
4496 case R_MIPS_PC16:
4497 case R_MIPS_GNU_REL16_S2:
4498 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4499 overflowed_p = mips_elf_overflow_p (value, 18);
4500 value >>= howto->rightshift;
4501 value &= howto->dst_mask;
4502 break;
4503
4504 case R_MIPS_GOT_HI16:
4505 case R_MIPS_CALL_HI16:
4506 /* We're allowed to handle these two relocations identically.
4507 The dynamic linker is allowed to handle the CALL relocations
4508 differently by creating a lazy evaluation stub. */
4509 value = g;
4510 value = mips_elf_high (value);
4511 value &= howto->dst_mask;
4512 break;
4513
4514 case R_MIPS_GOT_LO16:
4515 case R_MIPS_CALL_LO16:
4516 value = g & howto->dst_mask;
4517 break;
4518
4519 case R_MIPS_GOT_PAGE:
4520 /* GOT_PAGE relocations that reference non-local symbols decay
4521 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4522 0. */
4523 if (! local_p)
4524 goto got_disp;
4525 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4526 if (value == MINUS_ONE)
4527 return bfd_reloc_outofrange;
4528 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4529 overflowed_p = mips_elf_overflow_p (value, 16);
4530 break;
4531
4532 case R_MIPS_GOT_OFST:
4533 if (local_p)
4534 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4535 else
4536 value = addend;
4537 overflowed_p = mips_elf_overflow_p (value, 16);
4538 break;
4539
4540 case R_MIPS_SUB:
4541 value = symbol - addend;
4542 value &= howto->dst_mask;
4543 break;
4544
4545 case R_MIPS_HIGHER:
4546 value = mips_elf_higher (addend + symbol);
4547 value &= howto->dst_mask;
4548 break;
4549
4550 case R_MIPS_HIGHEST:
4551 value = mips_elf_highest (addend + symbol);
4552 value &= howto->dst_mask;
4553 break;
4554
4555 case R_MIPS_SCN_DISP:
4556 value = symbol + addend - sec->output_offset;
4557 value &= howto->dst_mask;
4558 break;
4559
4560 case R_MIPS_JALR:
4561 /* This relocation is only a hint. In some cases, we optimize
4562 it into a bal instruction. But we don't try to optimize
4563 branches to the PLT; that will wind up wasting time. */
4564 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4565 return bfd_reloc_continue;
4566 value = symbol + addend;
4567 break;
4568
4569 case R_MIPS_PJUMP:
4570 case R_MIPS_GNU_VTINHERIT:
4571 case R_MIPS_GNU_VTENTRY:
4572 /* We don't do anything with these at present. */
4573 return bfd_reloc_continue;
4574
4575 default:
4576 /* An unrecognized relocation type. */
4577 return bfd_reloc_notsupported;
4578 }
4579
4580 /* Store the VALUE for our caller. */
4581 *valuep = value;
4582 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4583 }
4584
4585 /* Obtain the field relocated by RELOCATION. */
4586
4587 static bfd_vma
4588 mips_elf_obtain_contents (reloc_howto_type *howto,
4589 const Elf_Internal_Rela *relocation,
4590 bfd *input_bfd, bfd_byte *contents)
4591 {
4592 bfd_vma x;
4593 bfd_byte *location = contents + relocation->r_offset;
4594
4595 /* Obtain the bytes. */
4596 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4597
4598 return x;
4599 }
4600
4601 /* It has been determined that the result of the RELOCATION is the
4602 VALUE. Use HOWTO to place VALUE into the output file at the
4603 appropriate position. The SECTION is the section to which the
4604 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4605 for the relocation must be either JAL or JALX, and it is
4606 unconditionally converted to JALX.
4607
4608 Returns FALSE if anything goes wrong. */
4609
4610 static bfd_boolean
4611 mips_elf_perform_relocation (struct bfd_link_info *info,
4612 reloc_howto_type *howto,
4613 const Elf_Internal_Rela *relocation,
4614 bfd_vma value, bfd *input_bfd,
4615 asection *input_section, bfd_byte *contents,
4616 bfd_boolean require_jalx)
4617 {
4618 bfd_vma x;
4619 bfd_byte *location;
4620 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4621
4622 /* Figure out where the relocation is occurring. */
4623 location = contents + relocation->r_offset;
4624
4625 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4626
4627 /* Obtain the current value. */
4628 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4629
4630 /* Clear the field we are setting. */
4631 x &= ~howto->dst_mask;
4632
4633 /* Set the field. */
4634 x |= (value & howto->dst_mask);
4635
4636 /* If required, turn JAL into JALX. */
4637 if (require_jalx)
4638 {
4639 bfd_boolean ok;
4640 bfd_vma opcode = x >> 26;
4641 bfd_vma jalx_opcode;
4642
4643 /* Check to see if the opcode is already JAL or JALX. */
4644 if (r_type == R_MIPS16_26)
4645 {
4646 ok = ((opcode == 0x6) || (opcode == 0x7));
4647 jalx_opcode = 0x7;
4648 }
4649 else
4650 {
4651 ok = ((opcode == 0x3) || (opcode == 0x1d));
4652 jalx_opcode = 0x1d;
4653 }
4654
4655 /* If the opcode is not JAL or JALX, there's a problem. */
4656 if (!ok)
4657 {
4658 (*_bfd_error_handler)
4659 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4660 input_bfd,
4661 input_section,
4662 (unsigned long) relocation->r_offset);
4663 bfd_set_error (bfd_error_bad_value);
4664 return FALSE;
4665 }
4666
4667 /* Make this the JALX opcode. */
4668 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4669 }
4670
4671 /* On the RM9000, bal is faster than jal, because bal uses branch
4672 prediction hardware. If we are linking for the RM9000, and we
4673 see jal, and bal fits, use it instead. Note that this
4674 transformation should be safe for all architectures. */
4675 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4676 && !info->relocatable
4677 && !require_jalx
4678 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4679 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4680 {
4681 bfd_vma addr;
4682 bfd_vma dest;
4683 bfd_signed_vma off;
4684
4685 addr = (input_section->output_section->vma
4686 + input_section->output_offset
4687 + relocation->r_offset
4688 + 4);
4689 if (r_type == R_MIPS_26)
4690 dest = (value << 2) | ((addr >> 28) << 28);
4691 else
4692 dest = value;
4693 off = dest - addr;
4694 if (off <= 0x1ffff && off >= -0x20000)
4695 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4696 }
4697
4698 /* Put the value into the output. */
4699 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4700
4701 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4702 location);
4703
4704 return TRUE;
4705 }
4706
4707 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4708
4709 static bfd_boolean
4710 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4711 {
4712 const char *name = bfd_get_section_name (abfd, section);
4713
4714 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4715 }
4716 \f
4717 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4718
4719 static void
4720 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4721 unsigned int n)
4722 {
4723 asection *s;
4724 struct mips_elf_link_hash_table *htab;
4725
4726 htab = mips_elf_hash_table (info);
4727 s = mips_elf_rel_dyn_section (info, FALSE);
4728 BFD_ASSERT (s != NULL);
4729
4730 if (htab->is_vxworks)
4731 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4732 else
4733 {
4734 if (s->size == 0)
4735 {
4736 /* Make room for a null element. */
4737 s->size += MIPS_ELF_REL_SIZE (abfd);
4738 ++s->reloc_count;
4739 }
4740 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4741 }
4742 }
4743
4744 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4745 is the original relocation, which is now being transformed into a
4746 dynamic relocation. The ADDENDP is adjusted if necessary; the
4747 caller should store the result in place of the original addend. */
4748
4749 static bfd_boolean
4750 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4751 struct bfd_link_info *info,
4752 const Elf_Internal_Rela *rel,
4753 struct mips_elf_link_hash_entry *h,
4754 asection *sec, bfd_vma symbol,
4755 bfd_vma *addendp, asection *input_section)
4756 {
4757 Elf_Internal_Rela outrel[3];
4758 asection *sreloc;
4759 bfd *dynobj;
4760 int r_type;
4761 long indx;
4762 bfd_boolean defined_p;
4763 struct mips_elf_link_hash_table *htab;
4764
4765 htab = mips_elf_hash_table (info);
4766 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4767 dynobj = elf_hash_table (info)->dynobj;
4768 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4769 BFD_ASSERT (sreloc != NULL);
4770 BFD_ASSERT (sreloc->contents != NULL);
4771 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4772 < sreloc->size);
4773
4774 outrel[0].r_offset =
4775 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4776 if (ABI_64_P (output_bfd))
4777 {
4778 outrel[1].r_offset =
4779 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4780 outrel[2].r_offset =
4781 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4782 }
4783
4784 if (outrel[0].r_offset == MINUS_ONE)
4785 /* The relocation field has been deleted. */
4786 return TRUE;
4787
4788 if (outrel[0].r_offset == MINUS_TWO)
4789 {
4790 /* The relocation field has been converted into a relative value of
4791 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4792 the field to be fully relocated, so add in the symbol's value. */
4793 *addendp += symbol;
4794 return TRUE;
4795 }
4796
4797 /* We must now calculate the dynamic symbol table index to use
4798 in the relocation. */
4799 if (h != NULL
4800 && (!h->root.def_regular
4801 || (info->shared && !info->symbolic && !h->root.forced_local)))
4802 {
4803 indx = h->root.dynindx;
4804 if (SGI_COMPAT (output_bfd))
4805 defined_p = h->root.def_regular;
4806 else
4807 /* ??? glibc's ld.so just adds the final GOT entry to the
4808 relocation field. It therefore treats relocs against
4809 defined symbols in the same way as relocs against
4810 undefined symbols. */
4811 defined_p = FALSE;
4812 }
4813 else
4814 {
4815 if (sec != NULL && bfd_is_abs_section (sec))
4816 indx = 0;
4817 else if (sec == NULL || sec->owner == NULL)
4818 {
4819 bfd_set_error (bfd_error_bad_value);
4820 return FALSE;
4821 }
4822 else
4823 {
4824 indx = elf_section_data (sec->output_section)->dynindx;
4825 if (indx == 0)
4826 {
4827 asection *osec = htab->root.text_index_section;
4828 indx = elf_section_data (osec)->dynindx;
4829 }
4830 if (indx == 0)
4831 abort ();
4832 }
4833
4834 /* Instead of generating a relocation using the section
4835 symbol, we may as well make it a fully relative
4836 relocation. We want to avoid generating relocations to
4837 local symbols because we used to generate them
4838 incorrectly, without adding the original symbol value,
4839 which is mandated by the ABI for section symbols. In
4840 order to give dynamic loaders and applications time to
4841 phase out the incorrect use, we refrain from emitting
4842 section-relative relocations. It's not like they're
4843 useful, after all. This should be a bit more efficient
4844 as well. */
4845 /* ??? Although this behavior is compatible with glibc's ld.so,
4846 the ABI says that relocations against STN_UNDEF should have
4847 a symbol value of 0. Irix rld honors this, so relocations
4848 against STN_UNDEF have no effect. */
4849 if (!SGI_COMPAT (output_bfd))
4850 indx = 0;
4851 defined_p = TRUE;
4852 }
4853
4854 /* If the relocation was previously an absolute relocation and
4855 this symbol will not be referred to by the relocation, we must
4856 adjust it by the value we give it in the dynamic symbol table.
4857 Otherwise leave the job up to the dynamic linker. */
4858 if (defined_p && r_type != R_MIPS_REL32)
4859 *addendp += symbol;
4860
4861 if (htab->is_vxworks)
4862 /* VxWorks uses non-relative relocations for this. */
4863 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4864 else
4865 /* The relocation is always an REL32 relocation because we don't
4866 know where the shared library will wind up at load-time. */
4867 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4868 R_MIPS_REL32);
4869
4870 /* For strict adherence to the ABI specification, we should
4871 generate a R_MIPS_64 relocation record by itself before the
4872 _REL32/_64 record as well, such that the addend is read in as
4873 a 64-bit value (REL32 is a 32-bit relocation, after all).
4874 However, since none of the existing ELF64 MIPS dynamic
4875 loaders seems to care, we don't waste space with these
4876 artificial relocations. If this turns out to not be true,
4877 mips_elf_allocate_dynamic_relocation() should be tweaked so
4878 as to make room for a pair of dynamic relocations per
4879 invocation if ABI_64_P, and here we should generate an
4880 additional relocation record with R_MIPS_64 by itself for a
4881 NULL symbol before this relocation record. */
4882 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4883 ABI_64_P (output_bfd)
4884 ? R_MIPS_64
4885 : R_MIPS_NONE);
4886 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4887
4888 /* Adjust the output offset of the relocation to reference the
4889 correct location in the output file. */
4890 outrel[0].r_offset += (input_section->output_section->vma
4891 + input_section->output_offset);
4892 outrel[1].r_offset += (input_section->output_section->vma
4893 + input_section->output_offset);
4894 outrel[2].r_offset += (input_section->output_section->vma
4895 + input_section->output_offset);
4896
4897 /* Put the relocation back out. We have to use the special
4898 relocation outputter in the 64-bit case since the 64-bit
4899 relocation format is non-standard. */
4900 if (ABI_64_P (output_bfd))
4901 {
4902 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4903 (output_bfd, &outrel[0],
4904 (sreloc->contents
4905 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4906 }
4907 else if (htab->is_vxworks)
4908 {
4909 /* VxWorks uses RELA rather than REL dynamic relocations. */
4910 outrel[0].r_addend = *addendp;
4911 bfd_elf32_swap_reloca_out
4912 (output_bfd, &outrel[0],
4913 (sreloc->contents
4914 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4915 }
4916 else
4917 bfd_elf32_swap_reloc_out
4918 (output_bfd, &outrel[0],
4919 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4920
4921 /* We've now added another relocation. */
4922 ++sreloc->reloc_count;
4923
4924 /* Make sure the output section is writable. The dynamic linker
4925 will be writing to it. */
4926 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4927 |= SHF_WRITE;
4928
4929 /* On IRIX5, make an entry of compact relocation info. */
4930 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4931 {
4932 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4933 bfd_byte *cr;
4934
4935 if (scpt)
4936 {
4937 Elf32_crinfo cptrel;
4938
4939 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4940 cptrel.vaddr = (rel->r_offset
4941 + input_section->output_section->vma
4942 + input_section->output_offset);
4943 if (r_type == R_MIPS_REL32)
4944 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4945 else
4946 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4947 mips_elf_set_cr_dist2to (cptrel, 0);
4948 cptrel.konst = *addendp;
4949
4950 cr = (scpt->contents
4951 + sizeof (Elf32_External_compact_rel));
4952 mips_elf_set_cr_relvaddr (cptrel, 0);
4953 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4954 ((Elf32_External_crinfo *) cr
4955 + scpt->reloc_count));
4956 ++scpt->reloc_count;
4957 }
4958 }
4959
4960 /* If we've written this relocation for a readonly section,
4961 we need to set DF_TEXTREL again, so that we do not delete the
4962 DT_TEXTREL tag. */
4963 if (MIPS_ELF_READONLY_SECTION (input_section))
4964 info->flags |= DF_TEXTREL;
4965
4966 return TRUE;
4967 }
4968 \f
4969 /* Return the MACH for a MIPS e_flags value. */
4970
4971 unsigned long
4972 _bfd_elf_mips_mach (flagword flags)
4973 {
4974 switch (flags & EF_MIPS_MACH)
4975 {
4976 case E_MIPS_MACH_3900:
4977 return bfd_mach_mips3900;
4978
4979 case E_MIPS_MACH_4010:
4980 return bfd_mach_mips4010;
4981
4982 case E_MIPS_MACH_4100:
4983 return bfd_mach_mips4100;
4984
4985 case E_MIPS_MACH_4111:
4986 return bfd_mach_mips4111;
4987
4988 case E_MIPS_MACH_4120:
4989 return bfd_mach_mips4120;
4990
4991 case E_MIPS_MACH_4650:
4992 return bfd_mach_mips4650;
4993
4994 case E_MIPS_MACH_5400:
4995 return bfd_mach_mips5400;
4996
4997 case E_MIPS_MACH_5500:
4998 return bfd_mach_mips5500;
4999
5000 case E_MIPS_MACH_9000:
5001 return bfd_mach_mips9000;
5002
5003 case E_MIPS_MACH_SB1:
5004 return bfd_mach_mips_sb1;
5005
5006 default:
5007 switch (flags & EF_MIPS_ARCH)
5008 {
5009 default:
5010 case E_MIPS_ARCH_1:
5011 return bfd_mach_mips3000;
5012
5013 case E_MIPS_ARCH_2:
5014 return bfd_mach_mips6000;
5015
5016 case E_MIPS_ARCH_3:
5017 return bfd_mach_mips4000;
5018
5019 case E_MIPS_ARCH_4:
5020 return bfd_mach_mips8000;
5021
5022 case E_MIPS_ARCH_5:
5023 return bfd_mach_mips5;
5024
5025 case E_MIPS_ARCH_32:
5026 return bfd_mach_mipsisa32;
5027
5028 case E_MIPS_ARCH_64:
5029 return bfd_mach_mipsisa64;
5030
5031 case E_MIPS_ARCH_32R2:
5032 return bfd_mach_mipsisa32r2;
5033
5034 case E_MIPS_ARCH_64R2:
5035 return bfd_mach_mipsisa64r2;
5036 }
5037 }
5038
5039 return 0;
5040 }
5041
5042 /* Return printable name for ABI. */
5043
5044 static INLINE char *
5045 elf_mips_abi_name (bfd *abfd)
5046 {
5047 flagword flags;
5048
5049 flags = elf_elfheader (abfd)->e_flags;
5050 switch (flags & EF_MIPS_ABI)
5051 {
5052 case 0:
5053 if (ABI_N32_P (abfd))
5054 return "N32";
5055 else if (ABI_64_P (abfd))
5056 return "64";
5057 else
5058 return "none";
5059 case E_MIPS_ABI_O32:
5060 return "O32";
5061 case E_MIPS_ABI_O64:
5062 return "O64";
5063 case E_MIPS_ABI_EABI32:
5064 return "EABI32";
5065 case E_MIPS_ABI_EABI64:
5066 return "EABI64";
5067 default:
5068 return "unknown abi";
5069 }
5070 }
5071 \f
5072 /* MIPS ELF uses two common sections. One is the usual one, and the
5073 other is for small objects. All the small objects are kept
5074 together, and then referenced via the gp pointer, which yields
5075 faster assembler code. This is what we use for the small common
5076 section. This approach is copied from ecoff.c. */
5077 static asection mips_elf_scom_section;
5078 static asymbol mips_elf_scom_symbol;
5079 static asymbol *mips_elf_scom_symbol_ptr;
5080
5081 /* MIPS ELF also uses an acommon section, which represents an
5082 allocated common symbol which may be overridden by a
5083 definition in a shared library. */
5084 static asection mips_elf_acom_section;
5085 static asymbol mips_elf_acom_symbol;
5086 static asymbol *mips_elf_acom_symbol_ptr;
5087
5088 /* Handle the special MIPS section numbers that a symbol may use.
5089 This is used for both the 32-bit and the 64-bit ABI. */
5090
5091 void
5092 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5093 {
5094 elf_symbol_type *elfsym;
5095
5096 elfsym = (elf_symbol_type *) asym;
5097 switch (elfsym->internal_elf_sym.st_shndx)
5098 {
5099 case SHN_MIPS_ACOMMON:
5100 /* This section is used in a dynamically linked executable file.
5101 It is an allocated common section. The dynamic linker can
5102 either resolve these symbols to something in a shared
5103 library, or it can just leave them here. For our purposes,
5104 we can consider these symbols to be in a new section. */
5105 if (mips_elf_acom_section.name == NULL)
5106 {
5107 /* Initialize the acommon section. */
5108 mips_elf_acom_section.name = ".acommon";
5109 mips_elf_acom_section.flags = SEC_ALLOC;
5110 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5111 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5112 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5113 mips_elf_acom_symbol.name = ".acommon";
5114 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5115 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5116 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5117 }
5118 asym->section = &mips_elf_acom_section;
5119 break;
5120
5121 case SHN_COMMON:
5122 /* Common symbols less than the GP size are automatically
5123 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5124 if (asym->value > elf_gp_size (abfd)
5125 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5126 || IRIX_COMPAT (abfd) == ict_irix6)
5127 break;
5128 /* Fall through. */
5129 case SHN_MIPS_SCOMMON:
5130 if (mips_elf_scom_section.name == NULL)
5131 {
5132 /* Initialize the small common section. */
5133 mips_elf_scom_section.name = ".scommon";
5134 mips_elf_scom_section.flags = SEC_IS_COMMON;
5135 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5136 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5137 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5138 mips_elf_scom_symbol.name = ".scommon";
5139 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5140 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5141 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5142 }
5143 asym->section = &mips_elf_scom_section;
5144 asym->value = elfsym->internal_elf_sym.st_size;
5145 break;
5146
5147 case SHN_MIPS_SUNDEFINED:
5148 asym->section = bfd_und_section_ptr;
5149 break;
5150
5151 case SHN_MIPS_TEXT:
5152 {
5153 asection *section = bfd_get_section_by_name (abfd, ".text");
5154
5155 BFD_ASSERT (SGI_COMPAT (abfd));
5156 if (section != NULL)
5157 {
5158 asym->section = section;
5159 /* MIPS_TEXT is a bit special, the address is not an offset
5160 to the base of the .text section. So substract the section
5161 base address to make it an offset. */
5162 asym->value -= section->vma;
5163 }
5164 }
5165 break;
5166
5167 case SHN_MIPS_DATA:
5168 {
5169 asection *section = bfd_get_section_by_name (abfd, ".data");
5170
5171 BFD_ASSERT (SGI_COMPAT (abfd));
5172 if (section != NULL)
5173 {
5174 asym->section = section;
5175 /* MIPS_DATA is a bit special, the address is not an offset
5176 to the base of the .data section. So substract the section
5177 base address to make it an offset. */
5178 asym->value -= section->vma;
5179 }
5180 }
5181 break;
5182 }
5183 }
5184 \f
5185 /* Implement elf_backend_eh_frame_address_size. This differs from
5186 the default in the way it handles EABI64.
5187
5188 EABI64 was originally specified as an LP64 ABI, and that is what
5189 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5190 historically accepted the combination of -mabi=eabi and -mlong32,
5191 and this ILP32 variation has become semi-official over time.
5192 Both forms use elf32 and have pointer-sized FDE addresses.
5193
5194 If an EABI object was generated by GCC 4.0 or above, it will have
5195 an empty .gcc_compiled_longXX section, where XX is the size of longs
5196 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5197 have no special marking to distinguish them from LP64 objects.
5198
5199 We don't want users of the official LP64 ABI to be punished for the
5200 existence of the ILP32 variant, but at the same time, we don't want
5201 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5202 We therefore take the following approach:
5203
5204 - If ABFD contains a .gcc_compiled_longXX section, use it to
5205 determine the pointer size.
5206
5207 - Otherwise check the type of the first relocation. Assume that
5208 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5209
5210 - Otherwise punt.
5211
5212 The second check is enough to detect LP64 objects generated by pre-4.0
5213 compilers because, in the kind of output generated by those compilers,
5214 the first relocation will be associated with either a CIE personality
5215 routine or an FDE start address. Furthermore, the compilers never
5216 used a special (non-pointer) encoding for this ABI.
5217
5218 Checking the relocation type should also be safe because there is no
5219 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5220 did so. */
5221
5222 unsigned int
5223 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5224 {
5225 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5226 return 8;
5227 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5228 {
5229 bfd_boolean long32_p, long64_p;
5230
5231 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5232 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5233 if (long32_p && long64_p)
5234 return 0;
5235 if (long32_p)
5236 return 4;
5237 if (long64_p)
5238 return 8;
5239
5240 if (sec->reloc_count > 0
5241 && elf_section_data (sec)->relocs != NULL
5242 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5243 == R_MIPS_64))
5244 return 8;
5245
5246 return 0;
5247 }
5248 return 4;
5249 }
5250 \f
5251 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5252 relocations against two unnamed section symbols to resolve to the
5253 same address. For example, if we have code like:
5254
5255 lw $4,%got_disp(.data)($gp)
5256 lw $25,%got_disp(.text)($gp)
5257 jalr $25
5258
5259 then the linker will resolve both relocations to .data and the program
5260 will jump there rather than to .text.
5261
5262 We can work around this problem by giving names to local section symbols.
5263 This is also what the MIPSpro tools do. */
5264
5265 bfd_boolean
5266 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5267 {
5268 return SGI_COMPAT (abfd);
5269 }
5270 \f
5271 /* Work over a section just before writing it out. This routine is
5272 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5273 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5274 a better way. */
5275
5276 bfd_boolean
5277 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5278 {
5279 if (hdr->sh_type == SHT_MIPS_REGINFO
5280 && hdr->sh_size > 0)
5281 {
5282 bfd_byte buf[4];
5283
5284 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5285 BFD_ASSERT (hdr->contents == NULL);
5286
5287 if (bfd_seek (abfd,
5288 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5289 SEEK_SET) != 0)
5290 return FALSE;
5291 H_PUT_32 (abfd, elf_gp (abfd), buf);
5292 if (bfd_bwrite (buf, 4, abfd) != 4)
5293 return FALSE;
5294 }
5295
5296 if (hdr->sh_type == SHT_MIPS_OPTIONS
5297 && hdr->bfd_section != NULL
5298 && mips_elf_section_data (hdr->bfd_section) != NULL
5299 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5300 {
5301 bfd_byte *contents, *l, *lend;
5302
5303 /* We stored the section contents in the tdata field in the
5304 set_section_contents routine. We save the section contents
5305 so that we don't have to read them again.
5306 At this point we know that elf_gp is set, so we can look
5307 through the section contents to see if there is an
5308 ODK_REGINFO structure. */
5309
5310 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5311 l = contents;
5312 lend = contents + hdr->sh_size;
5313 while (l + sizeof (Elf_External_Options) <= lend)
5314 {
5315 Elf_Internal_Options intopt;
5316
5317 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5318 &intopt);
5319 if (intopt.size < sizeof (Elf_External_Options))
5320 {
5321 (*_bfd_error_handler)
5322 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5323 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5324 break;
5325 }
5326 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5327 {
5328 bfd_byte buf[8];
5329
5330 if (bfd_seek (abfd,
5331 (hdr->sh_offset
5332 + (l - contents)
5333 + sizeof (Elf_External_Options)
5334 + (sizeof (Elf64_External_RegInfo) - 8)),
5335 SEEK_SET) != 0)
5336 return FALSE;
5337 H_PUT_64 (abfd, elf_gp (abfd), buf);
5338 if (bfd_bwrite (buf, 8, abfd) != 8)
5339 return FALSE;
5340 }
5341 else if (intopt.kind == ODK_REGINFO)
5342 {
5343 bfd_byte buf[4];
5344
5345 if (bfd_seek (abfd,
5346 (hdr->sh_offset
5347 + (l - contents)
5348 + sizeof (Elf_External_Options)
5349 + (sizeof (Elf32_External_RegInfo) - 4)),
5350 SEEK_SET) != 0)
5351 return FALSE;
5352 H_PUT_32 (abfd, elf_gp (abfd), buf);
5353 if (bfd_bwrite (buf, 4, abfd) != 4)
5354 return FALSE;
5355 }
5356 l += intopt.size;
5357 }
5358 }
5359
5360 if (hdr->bfd_section != NULL)
5361 {
5362 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5363
5364 if (strcmp (name, ".sdata") == 0
5365 || strcmp (name, ".lit8") == 0
5366 || strcmp (name, ".lit4") == 0)
5367 {
5368 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5369 hdr->sh_type = SHT_PROGBITS;
5370 }
5371 else if (strcmp (name, ".sbss") == 0)
5372 {
5373 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5374 hdr->sh_type = SHT_NOBITS;
5375 }
5376 else if (strcmp (name, ".srdata") == 0)
5377 {
5378 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5379 hdr->sh_type = SHT_PROGBITS;
5380 }
5381 else if (strcmp (name, ".compact_rel") == 0)
5382 {
5383 hdr->sh_flags = 0;
5384 hdr->sh_type = SHT_PROGBITS;
5385 }
5386 else if (strcmp (name, ".rtproc") == 0)
5387 {
5388 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5389 {
5390 unsigned int adjust;
5391
5392 adjust = hdr->sh_size % hdr->sh_addralign;
5393 if (adjust != 0)
5394 hdr->sh_size += hdr->sh_addralign - adjust;
5395 }
5396 }
5397 }
5398
5399 return TRUE;
5400 }
5401
5402 /* Handle a MIPS specific section when reading an object file. This
5403 is called when elfcode.h finds a section with an unknown type.
5404 This routine supports both the 32-bit and 64-bit ELF ABI.
5405
5406 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5407 how to. */
5408
5409 bfd_boolean
5410 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5411 Elf_Internal_Shdr *hdr,
5412 const char *name,
5413 int shindex)
5414 {
5415 flagword flags = 0;
5416
5417 /* There ought to be a place to keep ELF backend specific flags, but
5418 at the moment there isn't one. We just keep track of the
5419 sections by their name, instead. Fortunately, the ABI gives
5420 suggested names for all the MIPS specific sections, so we will
5421 probably get away with this. */
5422 switch (hdr->sh_type)
5423 {
5424 case SHT_MIPS_LIBLIST:
5425 if (strcmp (name, ".liblist") != 0)
5426 return FALSE;
5427 break;
5428 case SHT_MIPS_MSYM:
5429 if (strcmp (name, ".msym") != 0)
5430 return FALSE;
5431 break;
5432 case SHT_MIPS_CONFLICT:
5433 if (strcmp (name, ".conflict") != 0)
5434 return FALSE;
5435 break;
5436 case SHT_MIPS_GPTAB:
5437 if (! CONST_STRNEQ (name, ".gptab."))
5438 return FALSE;
5439 break;
5440 case SHT_MIPS_UCODE:
5441 if (strcmp (name, ".ucode") != 0)
5442 return FALSE;
5443 break;
5444 case SHT_MIPS_DEBUG:
5445 if (strcmp (name, ".mdebug") != 0)
5446 return FALSE;
5447 flags = SEC_DEBUGGING;
5448 break;
5449 case SHT_MIPS_REGINFO:
5450 if (strcmp (name, ".reginfo") != 0
5451 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5452 return FALSE;
5453 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5454 break;
5455 case SHT_MIPS_IFACE:
5456 if (strcmp (name, ".MIPS.interfaces") != 0)
5457 return FALSE;
5458 break;
5459 case SHT_MIPS_CONTENT:
5460 if (! CONST_STRNEQ (name, ".MIPS.content"))
5461 return FALSE;
5462 break;
5463 case SHT_MIPS_OPTIONS:
5464 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5465 return FALSE;
5466 break;
5467 case SHT_MIPS_DWARF:
5468 if (! CONST_STRNEQ (name, ".debug_"))
5469 return FALSE;
5470 break;
5471 case SHT_MIPS_SYMBOL_LIB:
5472 if (strcmp (name, ".MIPS.symlib") != 0)
5473 return FALSE;
5474 break;
5475 case SHT_MIPS_EVENTS:
5476 if (! CONST_STRNEQ (name, ".MIPS.events")
5477 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5478 return FALSE;
5479 break;
5480 default:
5481 break;
5482 }
5483
5484 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5485 return FALSE;
5486
5487 if (flags)
5488 {
5489 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5490 (bfd_get_section_flags (abfd,
5491 hdr->bfd_section)
5492 | flags)))
5493 return FALSE;
5494 }
5495
5496 /* FIXME: We should record sh_info for a .gptab section. */
5497
5498 /* For a .reginfo section, set the gp value in the tdata information
5499 from the contents of this section. We need the gp value while
5500 processing relocs, so we just get it now. The .reginfo section
5501 is not used in the 64-bit MIPS ELF ABI. */
5502 if (hdr->sh_type == SHT_MIPS_REGINFO)
5503 {
5504 Elf32_External_RegInfo ext;
5505 Elf32_RegInfo s;
5506
5507 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5508 &ext, 0, sizeof ext))
5509 return FALSE;
5510 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5511 elf_gp (abfd) = s.ri_gp_value;
5512 }
5513
5514 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5515 set the gp value based on what we find. We may see both
5516 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5517 they should agree. */
5518 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5519 {
5520 bfd_byte *contents, *l, *lend;
5521
5522 contents = bfd_malloc (hdr->sh_size);
5523 if (contents == NULL)
5524 return FALSE;
5525 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5526 0, hdr->sh_size))
5527 {
5528 free (contents);
5529 return FALSE;
5530 }
5531 l = contents;
5532 lend = contents + hdr->sh_size;
5533 while (l + sizeof (Elf_External_Options) <= lend)
5534 {
5535 Elf_Internal_Options intopt;
5536
5537 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5538 &intopt);
5539 if (intopt.size < sizeof (Elf_External_Options))
5540 {
5541 (*_bfd_error_handler)
5542 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5543 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5544 break;
5545 }
5546 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5547 {
5548 Elf64_Internal_RegInfo intreg;
5549
5550 bfd_mips_elf64_swap_reginfo_in
5551 (abfd,
5552 ((Elf64_External_RegInfo *)
5553 (l + sizeof (Elf_External_Options))),
5554 &intreg);
5555 elf_gp (abfd) = intreg.ri_gp_value;
5556 }
5557 else if (intopt.kind == ODK_REGINFO)
5558 {
5559 Elf32_RegInfo intreg;
5560
5561 bfd_mips_elf32_swap_reginfo_in
5562 (abfd,
5563 ((Elf32_External_RegInfo *)
5564 (l + sizeof (Elf_External_Options))),
5565 &intreg);
5566 elf_gp (abfd) = intreg.ri_gp_value;
5567 }
5568 l += intopt.size;
5569 }
5570 free (contents);
5571 }
5572
5573 return TRUE;
5574 }
5575
5576 /* Set the correct type for a MIPS ELF section. We do this by the
5577 section name, which is a hack, but ought to work. This routine is
5578 used by both the 32-bit and the 64-bit ABI. */
5579
5580 bfd_boolean
5581 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5582 {
5583 const char *name = bfd_get_section_name (abfd, sec);
5584
5585 if (strcmp (name, ".liblist") == 0)
5586 {
5587 hdr->sh_type = SHT_MIPS_LIBLIST;
5588 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5589 /* The sh_link field is set in final_write_processing. */
5590 }
5591 else if (strcmp (name, ".conflict") == 0)
5592 hdr->sh_type = SHT_MIPS_CONFLICT;
5593 else if (CONST_STRNEQ (name, ".gptab."))
5594 {
5595 hdr->sh_type = SHT_MIPS_GPTAB;
5596 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5597 /* The sh_info field is set in final_write_processing. */
5598 }
5599 else if (strcmp (name, ".ucode") == 0)
5600 hdr->sh_type = SHT_MIPS_UCODE;
5601 else if (strcmp (name, ".mdebug") == 0)
5602 {
5603 hdr->sh_type = SHT_MIPS_DEBUG;
5604 /* In a shared object on IRIX 5.3, the .mdebug section has an
5605 entsize of 0. FIXME: Does this matter? */
5606 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5607 hdr->sh_entsize = 0;
5608 else
5609 hdr->sh_entsize = 1;
5610 }
5611 else if (strcmp (name, ".reginfo") == 0)
5612 {
5613 hdr->sh_type = SHT_MIPS_REGINFO;
5614 /* In a shared object on IRIX 5.3, the .reginfo section has an
5615 entsize of 0x18. FIXME: Does this matter? */
5616 if (SGI_COMPAT (abfd))
5617 {
5618 if ((abfd->flags & DYNAMIC) != 0)
5619 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5620 else
5621 hdr->sh_entsize = 1;
5622 }
5623 else
5624 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5625 }
5626 else if (SGI_COMPAT (abfd)
5627 && (strcmp (name, ".hash") == 0
5628 || strcmp (name, ".dynamic") == 0
5629 || strcmp (name, ".dynstr") == 0))
5630 {
5631 if (SGI_COMPAT (abfd))
5632 hdr->sh_entsize = 0;
5633 #if 0
5634 /* This isn't how the IRIX6 linker behaves. */
5635 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5636 #endif
5637 }
5638 else if (strcmp (name, ".got") == 0
5639 || strcmp (name, ".srdata") == 0
5640 || strcmp (name, ".sdata") == 0
5641 || strcmp (name, ".sbss") == 0
5642 || strcmp (name, ".lit4") == 0
5643 || strcmp (name, ".lit8") == 0)
5644 hdr->sh_flags |= SHF_MIPS_GPREL;
5645 else if (strcmp (name, ".MIPS.interfaces") == 0)
5646 {
5647 hdr->sh_type = SHT_MIPS_IFACE;
5648 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5649 }
5650 else if (CONST_STRNEQ (name, ".MIPS.content"))
5651 {
5652 hdr->sh_type = SHT_MIPS_CONTENT;
5653 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5654 /* The sh_info field is set in final_write_processing. */
5655 }
5656 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5657 {
5658 hdr->sh_type = SHT_MIPS_OPTIONS;
5659 hdr->sh_entsize = 1;
5660 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5661 }
5662 else if (CONST_STRNEQ (name, ".debug_"))
5663 hdr->sh_type = SHT_MIPS_DWARF;
5664 else if (strcmp (name, ".MIPS.symlib") == 0)
5665 {
5666 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5667 /* The sh_link and sh_info fields are set in
5668 final_write_processing. */
5669 }
5670 else if (CONST_STRNEQ (name, ".MIPS.events")
5671 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5672 {
5673 hdr->sh_type = SHT_MIPS_EVENTS;
5674 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5675 /* The sh_link field is set in final_write_processing. */
5676 }
5677 else if (strcmp (name, ".msym") == 0)
5678 {
5679 hdr->sh_type = SHT_MIPS_MSYM;
5680 hdr->sh_flags |= SHF_ALLOC;
5681 hdr->sh_entsize = 8;
5682 }
5683
5684 /* The generic elf_fake_sections will set up REL_HDR using the default
5685 kind of relocations. We used to set up a second header for the
5686 non-default kind of relocations here, but only NewABI would use
5687 these, and the IRIX ld doesn't like resulting empty RELA sections.
5688 Thus we create those header only on demand now. */
5689
5690 return TRUE;
5691 }
5692
5693 /* Given a BFD section, try to locate the corresponding ELF section
5694 index. This is used by both the 32-bit and the 64-bit ABI.
5695 Actually, it's not clear to me that the 64-bit ABI supports these,
5696 but for non-PIC objects we will certainly want support for at least
5697 the .scommon section. */
5698
5699 bfd_boolean
5700 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5701 asection *sec, int *retval)
5702 {
5703 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5704 {
5705 *retval = SHN_MIPS_SCOMMON;
5706 return TRUE;
5707 }
5708 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5709 {
5710 *retval = SHN_MIPS_ACOMMON;
5711 return TRUE;
5712 }
5713 return FALSE;
5714 }
5715 \f
5716 /* Hook called by the linker routine which adds symbols from an object
5717 file. We must handle the special MIPS section numbers here. */
5718
5719 bfd_boolean
5720 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5721 Elf_Internal_Sym *sym, const char **namep,
5722 flagword *flagsp ATTRIBUTE_UNUSED,
5723 asection **secp, bfd_vma *valp)
5724 {
5725 if (SGI_COMPAT (abfd)
5726 && (abfd->flags & DYNAMIC) != 0
5727 && strcmp (*namep, "_rld_new_interface") == 0)
5728 {
5729 /* Skip IRIX5 rld entry name. */
5730 *namep = NULL;
5731 return TRUE;
5732 }
5733
5734 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5735 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5736 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5737 a magic symbol resolved by the linker, we ignore this bogus definition
5738 of _gp_disp. New ABI objects do not suffer from this problem so this
5739 is not done for them. */
5740 if (!NEWABI_P(abfd)
5741 && (sym->st_shndx == SHN_ABS)
5742 && (strcmp (*namep, "_gp_disp") == 0))
5743 {
5744 *namep = NULL;
5745 return TRUE;
5746 }
5747
5748 switch (sym->st_shndx)
5749 {
5750 case SHN_COMMON:
5751 /* Common symbols less than the GP size are automatically
5752 treated as SHN_MIPS_SCOMMON symbols. */
5753 if (sym->st_size > elf_gp_size (abfd)
5754 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5755 || IRIX_COMPAT (abfd) == ict_irix6)
5756 break;
5757 /* Fall through. */
5758 case SHN_MIPS_SCOMMON:
5759 *secp = bfd_make_section_old_way (abfd, ".scommon");
5760 (*secp)->flags |= SEC_IS_COMMON;
5761 *valp = sym->st_size;
5762 break;
5763
5764 case SHN_MIPS_TEXT:
5765 /* This section is used in a shared object. */
5766 if (elf_tdata (abfd)->elf_text_section == NULL)
5767 {
5768 asymbol *elf_text_symbol;
5769 asection *elf_text_section;
5770 bfd_size_type amt = sizeof (asection);
5771
5772 elf_text_section = bfd_zalloc (abfd, amt);
5773 if (elf_text_section == NULL)
5774 return FALSE;
5775
5776 amt = sizeof (asymbol);
5777 elf_text_symbol = bfd_zalloc (abfd, amt);
5778 if (elf_text_symbol == NULL)
5779 return FALSE;
5780
5781 /* Initialize the section. */
5782
5783 elf_tdata (abfd)->elf_text_section = elf_text_section;
5784 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5785
5786 elf_text_section->symbol = elf_text_symbol;
5787 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5788
5789 elf_text_section->name = ".text";
5790 elf_text_section->flags = SEC_NO_FLAGS;
5791 elf_text_section->output_section = NULL;
5792 elf_text_section->owner = abfd;
5793 elf_text_symbol->name = ".text";
5794 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5795 elf_text_symbol->section = elf_text_section;
5796 }
5797 /* This code used to do *secp = bfd_und_section_ptr if
5798 info->shared. I don't know why, and that doesn't make sense,
5799 so I took it out. */
5800 *secp = elf_tdata (abfd)->elf_text_section;
5801 break;
5802
5803 case SHN_MIPS_ACOMMON:
5804 /* Fall through. XXX Can we treat this as allocated data? */
5805 case SHN_MIPS_DATA:
5806 /* This section is used in a shared object. */
5807 if (elf_tdata (abfd)->elf_data_section == NULL)
5808 {
5809 asymbol *elf_data_symbol;
5810 asection *elf_data_section;
5811 bfd_size_type amt = sizeof (asection);
5812
5813 elf_data_section = bfd_zalloc (abfd, amt);
5814 if (elf_data_section == NULL)
5815 return FALSE;
5816
5817 amt = sizeof (asymbol);
5818 elf_data_symbol = bfd_zalloc (abfd, amt);
5819 if (elf_data_symbol == NULL)
5820 return FALSE;
5821
5822 /* Initialize the section. */
5823
5824 elf_tdata (abfd)->elf_data_section = elf_data_section;
5825 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5826
5827 elf_data_section->symbol = elf_data_symbol;
5828 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5829
5830 elf_data_section->name = ".data";
5831 elf_data_section->flags = SEC_NO_FLAGS;
5832 elf_data_section->output_section = NULL;
5833 elf_data_section->owner = abfd;
5834 elf_data_symbol->name = ".data";
5835 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5836 elf_data_symbol->section = elf_data_section;
5837 }
5838 /* This code used to do *secp = bfd_und_section_ptr if
5839 info->shared. I don't know why, and that doesn't make sense,
5840 so I took it out. */
5841 *secp = elf_tdata (abfd)->elf_data_section;
5842 break;
5843
5844 case SHN_MIPS_SUNDEFINED:
5845 *secp = bfd_und_section_ptr;
5846 break;
5847 }
5848
5849 if (SGI_COMPAT (abfd)
5850 && ! info->shared
5851 && info->hash->creator == abfd->xvec
5852 && strcmp (*namep, "__rld_obj_head") == 0)
5853 {
5854 struct elf_link_hash_entry *h;
5855 struct bfd_link_hash_entry *bh;
5856
5857 /* Mark __rld_obj_head as dynamic. */
5858 bh = NULL;
5859 if (! (_bfd_generic_link_add_one_symbol
5860 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5861 get_elf_backend_data (abfd)->collect, &bh)))
5862 return FALSE;
5863
5864 h = (struct elf_link_hash_entry *) bh;
5865 h->non_elf = 0;
5866 h->def_regular = 1;
5867 h->type = STT_OBJECT;
5868
5869 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5870 return FALSE;
5871
5872 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5873 }
5874
5875 /* If this is a mips16 text symbol, add 1 to the value to make it
5876 odd. This will cause something like .word SYM to come up with
5877 the right value when it is loaded into the PC. */
5878 if (sym->st_other == STO_MIPS16)
5879 ++*valp;
5880
5881 return TRUE;
5882 }
5883
5884 /* This hook function is called before the linker writes out a global
5885 symbol. We mark symbols as small common if appropriate. This is
5886 also where we undo the increment of the value for a mips16 symbol. */
5887
5888 bfd_boolean
5889 _bfd_mips_elf_link_output_symbol_hook
5890 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5891 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5892 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5893 {
5894 /* If we see a common symbol, which implies a relocatable link, then
5895 if a symbol was small common in an input file, mark it as small
5896 common in the output file. */
5897 if (sym->st_shndx == SHN_COMMON
5898 && strcmp (input_sec->name, ".scommon") == 0)
5899 sym->st_shndx = SHN_MIPS_SCOMMON;
5900
5901 if (sym->st_other == STO_MIPS16)
5902 sym->st_value &= ~1;
5903
5904 return TRUE;
5905 }
5906 \f
5907 /* Functions for the dynamic linker. */
5908
5909 /* Create dynamic sections when linking against a dynamic object. */
5910
5911 bfd_boolean
5912 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5913 {
5914 struct elf_link_hash_entry *h;
5915 struct bfd_link_hash_entry *bh;
5916 flagword flags;
5917 register asection *s;
5918 const char * const *namep;
5919 struct mips_elf_link_hash_table *htab;
5920
5921 htab = mips_elf_hash_table (info);
5922 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5923 | SEC_LINKER_CREATED | SEC_READONLY);
5924
5925 /* The psABI requires a read-only .dynamic section, but the VxWorks
5926 EABI doesn't. */
5927 if (!htab->is_vxworks)
5928 {
5929 s = bfd_get_section_by_name (abfd, ".dynamic");
5930 if (s != NULL)
5931 {
5932 if (! bfd_set_section_flags (abfd, s, flags))
5933 return FALSE;
5934 }
5935 }
5936
5937 /* We need to create .got section. */
5938 if (! mips_elf_create_got_section (abfd, info, FALSE))
5939 return FALSE;
5940
5941 if (! mips_elf_rel_dyn_section (info, TRUE))
5942 return FALSE;
5943
5944 /* Create .stub section. */
5945 if (bfd_get_section_by_name (abfd,
5946 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5947 {
5948 s = bfd_make_section_with_flags (abfd,
5949 MIPS_ELF_STUB_SECTION_NAME (abfd),
5950 flags | SEC_CODE);
5951 if (s == NULL
5952 || ! bfd_set_section_alignment (abfd, s,
5953 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5954 return FALSE;
5955 }
5956
5957 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5958 && !info->shared
5959 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5960 {
5961 s = bfd_make_section_with_flags (abfd, ".rld_map",
5962 flags &~ (flagword) SEC_READONLY);
5963 if (s == NULL
5964 || ! bfd_set_section_alignment (abfd, s,
5965 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5966 return FALSE;
5967 }
5968
5969 /* On IRIX5, we adjust add some additional symbols and change the
5970 alignments of several sections. There is no ABI documentation
5971 indicating that this is necessary on IRIX6, nor any evidence that
5972 the linker takes such action. */
5973 if (IRIX_COMPAT (abfd) == ict_irix5)
5974 {
5975 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5976 {
5977 bh = NULL;
5978 if (! (_bfd_generic_link_add_one_symbol
5979 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5980 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5981 return FALSE;
5982
5983 h = (struct elf_link_hash_entry *) bh;
5984 h->non_elf = 0;
5985 h->def_regular = 1;
5986 h->type = STT_SECTION;
5987
5988 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5989 return FALSE;
5990 }
5991
5992 /* We need to create a .compact_rel section. */
5993 if (SGI_COMPAT (abfd))
5994 {
5995 if (!mips_elf_create_compact_rel_section (abfd, info))
5996 return FALSE;
5997 }
5998
5999 /* Change alignments of some sections. */
6000 s = bfd_get_section_by_name (abfd, ".hash");
6001 if (s != NULL)
6002 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6003 s = bfd_get_section_by_name (abfd, ".dynsym");
6004 if (s != NULL)
6005 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6006 s = bfd_get_section_by_name (abfd, ".dynstr");
6007 if (s != NULL)
6008 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6009 s = bfd_get_section_by_name (abfd, ".reginfo");
6010 if (s != NULL)
6011 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6012 s = bfd_get_section_by_name (abfd, ".dynamic");
6013 if (s != NULL)
6014 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6015 }
6016
6017 if (!info->shared)
6018 {
6019 const char *name;
6020
6021 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6022 bh = NULL;
6023 if (!(_bfd_generic_link_add_one_symbol
6024 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6025 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6026 return FALSE;
6027
6028 h = (struct elf_link_hash_entry *) bh;
6029 h->non_elf = 0;
6030 h->def_regular = 1;
6031 h->type = STT_SECTION;
6032
6033 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6034 return FALSE;
6035
6036 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6037 {
6038 /* __rld_map is a four byte word located in the .data section
6039 and is filled in by the rtld to contain a pointer to
6040 the _r_debug structure. Its symbol value will be set in
6041 _bfd_mips_elf_finish_dynamic_symbol. */
6042 s = bfd_get_section_by_name (abfd, ".rld_map");
6043 BFD_ASSERT (s != NULL);
6044
6045 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6046 bh = NULL;
6047 if (!(_bfd_generic_link_add_one_symbol
6048 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6049 get_elf_backend_data (abfd)->collect, &bh)))
6050 return FALSE;
6051
6052 h = (struct elf_link_hash_entry *) bh;
6053 h->non_elf = 0;
6054 h->def_regular = 1;
6055 h->type = STT_OBJECT;
6056
6057 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6058 return FALSE;
6059 }
6060 }
6061
6062 if (htab->is_vxworks)
6063 {
6064 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6065 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6066 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6067 return FALSE;
6068
6069 /* Cache the sections created above. */
6070 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6071 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6072 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6073 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6074 if (!htab->sdynbss
6075 || (!htab->srelbss && !info->shared)
6076 || !htab->srelplt
6077 || !htab->splt)
6078 abort ();
6079
6080 /* Do the usual VxWorks handling. */
6081 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6082 return FALSE;
6083
6084 /* Work out the PLT sizes. */
6085 if (info->shared)
6086 {
6087 htab->plt_header_size
6088 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6089 htab->plt_entry_size
6090 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6091 }
6092 else
6093 {
6094 htab->plt_header_size
6095 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6096 htab->plt_entry_size
6097 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6098 }
6099 }
6100
6101 return TRUE;
6102 }
6103 \f
6104 /* Look through the relocs for a section during the first phase, and
6105 allocate space in the global offset table. */
6106
6107 bfd_boolean
6108 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6109 asection *sec, const Elf_Internal_Rela *relocs)
6110 {
6111 const char *name;
6112 bfd *dynobj;
6113 Elf_Internal_Shdr *symtab_hdr;
6114 struct elf_link_hash_entry **sym_hashes;
6115 struct mips_got_info *g;
6116 size_t extsymoff;
6117 const Elf_Internal_Rela *rel;
6118 const Elf_Internal_Rela *rel_end;
6119 asection *sgot;
6120 asection *sreloc;
6121 const struct elf_backend_data *bed;
6122 struct mips_elf_link_hash_table *htab;
6123
6124 if (info->relocatable)
6125 return TRUE;
6126
6127 htab = mips_elf_hash_table (info);
6128 dynobj = elf_hash_table (info)->dynobj;
6129 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6130 sym_hashes = elf_sym_hashes (abfd);
6131 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6132
6133 /* Check for the mips16 stub sections. */
6134
6135 name = bfd_get_section_name (abfd, sec);
6136 if (FN_STUB_P (name))
6137 {
6138 unsigned long r_symndx;
6139
6140 /* Look at the relocation information to figure out which symbol
6141 this is for. */
6142
6143 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6144
6145 if (r_symndx < extsymoff
6146 || sym_hashes[r_symndx - extsymoff] == NULL)
6147 {
6148 asection *o;
6149
6150 /* This stub is for a local symbol. This stub will only be
6151 needed if there is some relocation in this BFD, other
6152 than a 16 bit function call, which refers to this symbol. */
6153 for (o = abfd->sections; o != NULL; o = o->next)
6154 {
6155 Elf_Internal_Rela *sec_relocs;
6156 const Elf_Internal_Rela *r, *rend;
6157
6158 /* We can ignore stub sections when looking for relocs. */
6159 if ((o->flags & SEC_RELOC) == 0
6160 || o->reloc_count == 0
6161 || mips16_stub_section_p (abfd, o))
6162 continue;
6163
6164 sec_relocs
6165 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6166 info->keep_memory);
6167 if (sec_relocs == NULL)
6168 return FALSE;
6169
6170 rend = sec_relocs + o->reloc_count;
6171 for (r = sec_relocs; r < rend; r++)
6172 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6173 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6174 break;
6175
6176 if (elf_section_data (o)->relocs != sec_relocs)
6177 free (sec_relocs);
6178
6179 if (r < rend)
6180 break;
6181 }
6182
6183 if (o == NULL)
6184 {
6185 /* There is no non-call reloc for this stub, so we do
6186 not need it. Since this function is called before
6187 the linker maps input sections to output sections, we
6188 can easily discard it by setting the SEC_EXCLUDE
6189 flag. */
6190 sec->flags |= SEC_EXCLUDE;
6191 return TRUE;
6192 }
6193
6194 /* Record this stub in an array of local symbol stubs for
6195 this BFD. */
6196 if (elf_tdata (abfd)->local_stubs == NULL)
6197 {
6198 unsigned long symcount;
6199 asection **n;
6200 bfd_size_type amt;
6201
6202 if (elf_bad_symtab (abfd))
6203 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6204 else
6205 symcount = symtab_hdr->sh_info;
6206 amt = symcount * sizeof (asection *);
6207 n = bfd_zalloc (abfd, amt);
6208 if (n == NULL)
6209 return FALSE;
6210 elf_tdata (abfd)->local_stubs = n;
6211 }
6212
6213 sec->flags |= SEC_KEEP;
6214 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6215
6216 /* We don't need to set mips16_stubs_seen in this case.
6217 That flag is used to see whether we need to look through
6218 the global symbol table for stubs. We don't need to set
6219 it here, because we just have a local stub. */
6220 }
6221 else
6222 {
6223 struct mips_elf_link_hash_entry *h;
6224
6225 h = ((struct mips_elf_link_hash_entry *)
6226 sym_hashes[r_symndx - extsymoff]);
6227
6228 while (h->root.root.type == bfd_link_hash_indirect
6229 || h->root.root.type == bfd_link_hash_warning)
6230 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6231
6232 /* H is the symbol this stub is for. */
6233
6234 /* If we already have an appropriate stub for this function, we
6235 don't need another one, so we can discard this one. Since
6236 this function is called before the linker maps input sections
6237 to output sections, we can easily discard it by setting the
6238 SEC_EXCLUDE flag. */
6239 if (h->fn_stub != NULL)
6240 {
6241 sec->flags |= SEC_EXCLUDE;
6242 return TRUE;
6243 }
6244
6245 sec->flags |= SEC_KEEP;
6246 h->fn_stub = sec;
6247 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6248 }
6249 }
6250 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6251 {
6252 unsigned long r_symndx;
6253 struct mips_elf_link_hash_entry *h;
6254 asection **loc;
6255
6256 /* Look at the relocation information to figure out which symbol
6257 this is for. */
6258
6259 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6260
6261 if (r_symndx < extsymoff
6262 || sym_hashes[r_symndx - extsymoff] == NULL)
6263 {
6264 asection *o;
6265
6266 /* This stub is for a local symbol. This stub will only be
6267 needed if there is some relocation (R_MIPS16_26) in this BFD
6268 that refers to this symbol. */
6269 for (o = abfd->sections; o != NULL; o = o->next)
6270 {
6271 Elf_Internal_Rela *sec_relocs;
6272 const Elf_Internal_Rela *r, *rend;
6273
6274 /* We can ignore stub sections when looking for relocs. */
6275 if ((o->flags & SEC_RELOC) == 0
6276 || o->reloc_count == 0
6277 || mips16_stub_section_p (abfd, o))
6278 continue;
6279
6280 sec_relocs
6281 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6282 info->keep_memory);
6283 if (sec_relocs == NULL)
6284 return FALSE;
6285
6286 rend = sec_relocs + o->reloc_count;
6287 for (r = sec_relocs; r < rend; r++)
6288 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6289 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6290 break;
6291
6292 if (elf_section_data (o)->relocs != sec_relocs)
6293 free (sec_relocs);
6294
6295 if (r < rend)
6296 break;
6297 }
6298
6299 if (o == NULL)
6300 {
6301 /* There is no non-call reloc for this stub, so we do
6302 not need it. Since this function is called before
6303 the linker maps input sections to output sections, we
6304 can easily discard it by setting the SEC_EXCLUDE
6305 flag. */
6306 sec->flags |= SEC_EXCLUDE;
6307 return TRUE;
6308 }
6309
6310 /* Record this stub in an array of local symbol call_stubs for
6311 this BFD. */
6312 if (elf_tdata (abfd)->local_call_stubs == NULL)
6313 {
6314 unsigned long symcount;
6315 asection **n;
6316 bfd_size_type amt;
6317
6318 if (elf_bad_symtab (abfd))
6319 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6320 else
6321 symcount = symtab_hdr->sh_info;
6322 amt = symcount * sizeof (asection *);
6323 n = bfd_zalloc (abfd, amt);
6324 if (n == NULL)
6325 return FALSE;
6326 elf_tdata (abfd)->local_call_stubs = n;
6327 }
6328
6329 sec->flags |= SEC_KEEP;
6330 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6331
6332 /* We don't need to set mips16_stubs_seen in this case.
6333 That flag is used to see whether we need to look through
6334 the global symbol table for stubs. We don't need to set
6335 it here, because we just have a local stub. */
6336 }
6337 else
6338 {
6339 h = ((struct mips_elf_link_hash_entry *)
6340 sym_hashes[r_symndx - extsymoff]);
6341
6342 /* H is the symbol this stub is for. */
6343
6344 if (CALL_FP_STUB_P (name))
6345 loc = &h->call_fp_stub;
6346 else
6347 loc = &h->call_stub;
6348
6349 /* If we already have an appropriate stub for this function, we
6350 don't need another one, so we can discard this one. Since
6351 this function is called before the linker maps input sections
6352 to output sections, we can easily discard it by setting the
6353 SEC_EXCLUDE flag. */
6354 if (*loc != NULL)
6355 {
6356 sec->flags |= SEC_EXCLUDE;
6357 return TRUE;
6358 }
6359
6360 sec->flags |= SEC_KEEP;
6361 *loc = sec;
6362 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6363 }
6364 }
6365
6366 if (dynobj == NULL)
6367 {
6368 sgot = NULL;
6369 g = NULL;
6370 }
6371 else
6372 {
6373 sgot = mips_elf_got_section (dynobj, FALSE);
6374 if (sgot == NULL)
6375 g = NULL;
6376 else
6377 {
6378 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6379 g = mips_elf_section_data (sgot)->u.got_info;
6380 BFD_ASSERT (g != NULL);
6381 }
6382 }
6383
6384 sreloc = NULL;
6385 bed = get_elf_backend_data (abfd);
6386 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6387 for (rel = relocs; rel < rel_end; ++rel)
6388 {
6389 unsigned long r_symndx;
6390 unsigned int r_type;
6391 struct elf_link_hash_entry *h;
6392
6393 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6394 r_type = ELF_R_TYPE (abfd, rel->r_info);
6395
6396 if (r_symndx < extsymoff)
6397 h = NULL;
6398 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6399 {
6400 (*_bfd_error_handler)
6401 (_("%B: Malformed reloc detected for section %s"),
6402 abfd, name);
6403 bfd_set_error (bfd_error_bad_value);
6404 return FALSE;
6405 }
6406 else
6407 {
6408 h = sym_hashes[r_symndx - extsymoff];
6409
6410 /* This may be an indirect symbol created because of a version. */
6411 if (h != NULL)
6412 {
6413 while (h->root.type == bfd_link_hash_indirect)
6414 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6415 }
6416 }
6417
6418 /* Some relocs require a global offset table. */
6419 if (dynobj == NULL || sgot == NULL)
6420 {
6421 switch (r_type)
6422 {
6423 case R_MIPS_GOT16:
6424 case R_MIPS_CALL16:
6425 case R_MIPS_CALL_HI16:
6426 case R_MIPS_CALL_LO16:
6427 case R_MIPS_GOT_HI16:
6428 case R_MIPS_GOT_LO16:
6429 case R_MIPS_GOT_PAGE:
6430 case R_MIPS_GOT_OFST:
6431 case R_MIPS_GOT_DISP:
6432 case R_MIPS_TLS_GOTTPREL:
6433 case R_MIPS_TLS_GD:
6434 case R_MIPS_TLS_LDM:
6435 if (dynobj == NULL)
6436 elf_hash_table (info)->dynobj = dynobj = abfd;
6437 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6438 return FALSE;
6439 g = mips_elf_got_info (dynobj, &sgot);
6440 if (htab->is_vxworks && !info->shared)
6441 {
6442 (*_bfd_error_handler)
6443 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6444 abfd, (unsigned long) rel->r_offset);
6445 bfd_set_error (bfd_error_bad_value);
6446 return FALSE;
6447 }
6448 break;
6449
6450 case R_MIPS_32:
6451 case R_MIPS_REL32:
6452 case R_MIPS_64:
6453 /* In VxWorks executables, references to external symbols
6454 are handled using copy relocs or PLT stubs, so there's
6455 no need to add a dynamic relocation here. */
6456 if (dynobj == NULL
6457 && (info->shared || (h != NULL && !htab->is_vxworks))
6458 && (sec->flags & SEC_ALLOC) != 0)
6459 elf_hash_table (info)->dynobj = dynobj = abfd;
6460 break;
6461
6462 default:
6463 break;
6464 }
6465 }
6466
6467 if (h)
6468 {
6469 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6470
6471 /* Relocations against the special VxWorks __GOTT_BASE__ and
6472 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6473 room for them in .rela.dyn. */
6474 if (is_gott_symbol (info, h))
6475 {
6476 if (sreloc == NULL)
6477 {
6478 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6479 if (sreloc == NULL)
6480 return FALSE;
6481 }
6482 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6483 if (MIPS_ELF_READONLY_SECTION (sec))
6484 /* We tell the dynamic linker that there are
6485 relocations against the text segment. */
6486 info->flags |= DF_TEXTREL;
6487 }
6488 }
6489 else if (r_type == R_MIPS_CALL_LO16
6490 || r_type == R_MIPS_GOT_LO16
6491 || r_type == R_MIPS_GOT_DISP
6492 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6493 {
6494 /* We may need a local GOT entry for this relocation. We
6495 don't count R_MIPS_GOT_PAGE because we can estimate the
6496 maximum number of pages needed by looking at the size of
6497 the segment. Similar comments apply to R_MIPS_GOT16 and
6498 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6499 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6500 R_MIPS_CALL_HI16 because these are always followed by an
6501 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6502 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6503 rel->r_addend, g, 0))
6504 return FALSE;
6505 }
6506
6507 switch (r_type)
6508 {
6509 case R_MIPS_CALL16:
6510 if (h == NULL)
6511 {
6512 (*_bfd_error_handler)
6513 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6514 abfd, (unsigned long) rel->r_offset);
6515 bfd_set_error (bfd_error_bad_value);
6516 return FALSE;
6517 }
6518 /* Fall through. */
6519
6520 case R_MIPS_CALL_HI16:
6521 case R_MIPS_CALL_LO16:
6522 if (h != NULL)
6523 {
6524 /* VxWorks call relocations point the function's .got.plt
6525 entry, which will be allocated by adjust_dynamic_symbol.
6526 Otherwise, this symbol requires a global GOT entry. */
6527 if (!htab->is_vxworks
6528 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6529 return FALSE;
6530
6531 /* We need a stub, not a plt entry for the undefined
6532 function. But we record it as if it needs plt. See
6533 _bfd_elf_adjust_dynamic_symbol. */
6534 h->needs_plt = 1;
6535 h->type = STT_FUNC;
6536 }
6537 break;
6538
6539 case R_MIPS_GOT_PAGE:
6540 /* If this is a global, overridable symbol, GOT_PAGE will
6541 decay to GOT_DISP, so we'll need a GOT entry for it. */
6542 if (h == NULL)
6543 break;
6544 else
6545 {
6546 struct mips_elf_link_hash_entry *hmips =
6547 (struct mips_elf_link_hash_entry *) h;
6548
6549 while (hmips->root.root.type == bfd_link_hash_indirect
6550 || hmips->root.root.type == bfd_link_hash_warning)
6551 hmips = (struct mips_elf_link_hash_entry *)
6552 hmips->root.root.u.i.link;
6553
6554 if (hmips->root.def_regular
6555 && ! (info->shared && ! info->symbolic
6556 && ! hmips->root.forced_local))
6557 break;
6558 }
6559 /* Fall through. */
6560
6561 case R_MIPS_GOT16:
6562 case R_MIPS_GOT_HI16:
6563 case R_MIPS_GOT_LO16:
6564 case R_MIPS_GOT_DISP:
6565 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6566 return FALSE;
6567 break;
6568
6569 case R_MIPS_TLS_GOTTPREL:
6570 if (info->shared)
6571 info->flags |= DF_STATIC_TLS;
6572 /* Fall through */
6573
6574 case R_MIPS_TLS_LDM:
6575 if (r_type == R_MIPS_TLS_LDM)
6576 {
6577 r_symndx = 0;
6578 h = NULL;
6579 }
6580 /* Fall through */
6581
6582 case R_MIPS_TLS_GD:
6583 /* This symbol requires a global offset table entry, or two
6584 for TLS GD relocations. */
6585 {
6586 unsigned char flag = (r_type == R_MIPS_TLS_GD
6587 ? GOT_TLS_GD
6588 : r_type == R_MIPS_TLS_LDM
6589 ? GOT_TLS_LDM
6590 : GOT_TLS_IE);
6591 if (h != NULL)
6592 {
6593 struct mips_elf_link_hash_entry *hmips =
6594 (struct mips_elf_link_hash_entry *) h;
6595 hmips->tls_type |= flag;
6596
6597 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6598 return FALSE;
6599 }
6600 else
6601 {
6602 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6603
6604 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6605 rel->r_addend, g, flag))
6606 return FALSE;
6607 }
6608 }
6609 break;
6610
6611 case R_MIPS_32:
6612 case R_MIPS_REL32:
6613 case R_MIPS_64:
6614 /* In VxWorks executables, references to external symbols
6615 are handled using copy relocs or PLT stubs, so there's
6616 no need to add a .rela.dyn entry for this relocation. */
6617 if ((info->shared || (h != NULL && !htab->is_vxworks))
6618 && (sec->flags & SEC_ALLOC) != 0)
6619 {
6620 if (sreloc == NULL)
6621 {
6622 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6623 if (sreloc == NULL)
6624 return FALSE;
6625 }
6626 if (info->shared)
6627 {
6628 /* When creating a shared object, we must copy these
6629 reloc types into the output file as R_MIPS_REL32
6630 relocs. Make room for this reloc in .rel(a).dyn. */
6631 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6632 if (MIPS_ELF_READONLY_SECTION (sec))
6633 /* We tell the dynamic linker that there are
6634 relocations against the text segment. */
6635 info->flags |= DF_TEXTREL;
6636 }
6637 else
6638 {
6639 struct mips_elf_link_hash_entry *hmips;
6640
6641 /* We only need to copy this reloc if the symbol is
6642 defined in a dynamic object. */
6643 hmips = (struct mips_elf_link_hash_entry *) h;
6644 ++hmips->possibly_dynamic_relocs;
6645 if (MIPS_ELF_READONLY_SECTION (sec))
6646 /* We need it to tell the dynamic linker if there
6647 are relocations against the text segment. */
6648 hmips->readonly_reloc = TRUE;
6649 }
6650
6651 /* Even though we don't directly need a GOT entry for
6652 this symbol, a symbol must have a dynamic symbol
6653 table index greater that DT_MIPS_GOTSYM if there are
6654 dynamic relocations against it. This does not apply
6655 to VxWorks, which does not have the usual coupling
6656 between global GOT entries and .dynsym entries. */
6657 if (h != NULL && !htab->is_vxworks)
6658 {
6659 if (dynobj == NULL)
6660 elf_hash_table (info)->dynobj = dynobj = abfd;
6661 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6662 return FALSE;
6663 g = mips_elf_got_info (dynobj, &sgot);
6664 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6665 return FALSE;
6666 }
6667 }
6668
6669 if (SGI_COMPAT (abfd))
6670 mips_elf_hash_table (info)->compact_rel_size +=
6671 sizeof (Elf32_External_crinfo);
6672 break;
6673
6674 case R_MIPS_PC16:
6675 if (h)
6676 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6677 break;
6678
6679 case R_MIPS_26:
6680 if (h)
6681 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6682 /* Fall through. */
6683
6684 case R_MIPS_GPREL16:
6685 case R_MIPS_LITERAL:
6686 case R_MIPS_GPREL32:
6687 if (SGI_COMPAT (abfd))
6688 mips_elf_hash_table (info)->compact_rel_size +=
6689 sizeof (Elf32_External_crinfo);
6690 break;
6691
6692 /* This relocation describes the C++ object vtable hierarchy.
6693 Reconstruct it for later use during GC. */
6694 case R_MIPS_GNU_VTINHERIT:
6695 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6696 return FALSE;
6697 break;
6698
6699 /* This relocation describes which C++ vtable entries are actually
6700 used. Record for later use during GC. */
6701 case R_MIPS_GNU_VTENTRY:
6702 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6703 return FALSE;
6704 break;
6705
6706 default:
6707 break;
6708 }
6709
6710 /* We must not create a stub for a symbol that has relocations
6711 related to taking the function's address. This doesn't apply to
6712 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6713 a normal .got entry. */
6714 if (!htab->is_vxworks && h != NULL)
6715 switch (r_type)
6716 {
6717 default:
6718 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6719 break;
6720 case R_MIPS_CALL16:
6721 case R_MIPS_CALL_HI16:
6722 case R_MIPS_CALL_LO16:
6723 case R_MIPS_JALR:
6724 break;
6725 }
6726
6727 /* If this reloc is not a 16 bit call, and it has a global
6728 symbol, then we will need the fn_stub if there is one.
6729 References from a stub section do not count. */
6730 if (h != NULL
6731 && r_type != R_MIPS16_26
6732 && !mips16_stub_section_p (abfd, sec))
6733 {
6734 struct mips_elf_link_hash_entry *mh;
6735
6736 mh = (struct mips_elf_link_hash_entry *) h;
6737 mh->need_fn_stub = TRUE;
6738 }
6739 }
6740
6741 return TRUE;
6742 }
6743 \f
6744 bfd_boolean
6745 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6746 struct bfd_link_info *link_info,
6747 bfd_boolean *again)
6748 {
6749 Elf_Internal_Rela *internal_relocs;
6750 Elf_Internal_Rela *irel, *irelend;
6751 Elf_Internal_Shdr *symtab_hdr;
6752 bfd_byte *contents = NULL;
6753 size_t extsymoff;
6754 bfd_boolean changed_contents = FALSE;
6755 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6756 Elf_Internal_Sym *isymbuf = NULL;
6757
6758 /* We are not currently changing any sizes, so only one pass. */
6759 *again = FALSE;
6760
6761 if (link_info->relocatable)
6762 return TRUE;
6763
6764 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6765 link_info->keep_memory);
6766 if (internal_relocs == NULL)
6767 return TRUE;
6768
6769 irelend = internal_relocs + sec->reloc_count
6770 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6771 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6772 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6773
6774 for (irel = internal_relocs; irel < irelend; irel++)
6775 {
6776 bfd_vma symval;
6777 bfd_signed_vma sym_offset;
6778 unsigned int r_type;
6779 unsigned long r_symndx;
6780 asection *sym_sec;
6781 unsigned long instruction;
6782
6783 /* Turn jalr into bgezal, and jr into beq, if they're marked
6784 with a JALR relocation, that indicate where they jump to.
6785 This saves some pipeline bubbles. */
6786 r_type = ELF_R_TYPE (abfd, irel->r_info);
6787 if (r_type != R_MIPS_JALR)
6788 continue;
6789
6790 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6791 /* Compute the address of the jump target. */
6792 if (r_symndx >= extsymoff)
6793 {
6794 struct mips_elf_link_hash_entry *h
6795 = ((struct mips_elf_link_hash_entry *)
6796 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6797
6798 while (h->root.root.type == bfd_link_hash_indirect
6799 || h->root.root.type == bfd_link_hash_warning)
6800 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6801
6802 /* If a symbol is undefined, or if it may be overridden,
6803 skip it. */
6804 if (! ((h->root.root.type == bfd_link_hash_defined
6805 || h->root.root.type == bfd_link_hash_defweak)
6806 && h->root.root.u.def.section)
6807 || (link_info->shared && ! link_info->symbolic
6808 && !h->root.forced_local))
6809 continue;
6810
6811 sym_sec = h->root.root.u.def.section;
6812 if (sym_sec->output_section)
6813 symval = (h->root.root.u.def.value
6814 + sym_sec->output_section->vma
6815 + sym_sec->output_offset);
6816 else
6817 symval = h->root.root.u.def.value;
6818 }
6819 else
6820 {
6821 Elf_Internal_Sym *isym;
6822
6823 /* Read this BFD's symbols if we haven't done so already. */
6824 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6825 {
6826 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6827 if (isymbuf == NULL)
6828 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6829 symtab_hdr->sh_info, 0,
6830 NULL, NULL, NULL);
6831 if (isymbuf == NULL)
6832 goto relax_return;
6833 }
6834
6835 isym = isymbuf + r_symndx;
6836 if (isym->st_shndx == SHN_UNDEF)
6837 continue;
6838 else if (isym->st_shndx == SHN_ABS)
6839 sym_sec = bfd_abs_section_ptr;
6840 else if (isym->st_shndx == SHN_COMMON)
6841 sym_sec = bfd_com_section_ptr;
6842 else
6843 sym_sec
6844 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6845 symval = isym->st_value
6846 + sym_sec->output_section->vma
6847 + sym_sec->output_offset;
6848 }
6849
6850 /* Compute branch offset, from delay slot of the jump to the
6851 branch target. */
6852 sym_offset = (symval + irel->r_addend)
6853 - (sec_start + irel->r_offset + 4);
6854
6855 /* Branch offset must be properly aligned. */
6856 if ((sym_offset & 3) != 0)
6857 continue;
6858
6859 sym_offset >>= 2;
6860
6861 /* Check that it's in range. */
6862 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6863 continue;
6864
6865 /* Get the section contents if we haven't done so already. */
6866 if (contents == NULL)
6867 {
6868 /* Get cached copy if it exists. */
6869 if (elf_section_data (sec)->this_hdr.contents != NULL)
6870 contents = elf_section_data (sec)->this_hdr.contents;
6871 else
6872 {
6873 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6874 goto relax_return;
6875 }
6876 }
6877
6878 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6879
6880 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6881 if ((instruction & 0xfc1fffff) == 0x0000f809)
6882 instruction = 0x04110000;
6883 /* If it was jr <reg>, turn it into b <target>. */
6884 else if ((instruction & 0xfc1fffff) == 0x00000008)
6885 instruction = 0x10000000;
6886 else
6887 continue;
6888
6889 instruction |= (sym_offset & 0xffff);
6890 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6891 changed_contents = TRUE;
6892 }
6893
6894 if (contents != NULL
6895 && elf_section_data (sec)->this_hdr.contents != contents)
6896 {
6897 if (!changed_contents && !link_info->keep_memory)
6898 free (contents);
6899 else
6900 {
6901 /* Cache the section contents for elf_link_input_bfd. */
6902 elf_section_data (sec)->this_hdr.contents = contents;
6903 }
6904 }
6905 return TRUE;
6906
6907 relax_return:
6908 if (contents != NULL
6909 && elf_section_data (sec)->this_hdr.contents != contents)
6910 free (contents);
6911 return FALSE;
6912 }
6913 \f
6914 /* Adjust a symbol defined by a dynamic object and referenced by a
6915 regular object. The current definition is in some section of the
6916 dynamic object, but we're not including those sections. We have to
6917 change the definition to something the rest of the link can
6918 understand. */
6919
6920 bfd_boolean
6921 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6922 struct elf_link_hash_entry *h)
6923 {
6924 bfd *dynobj;
6925 struct mips_elf_link_hash_entry *hmips;
6926 asection *s;
6927 struct mips_elf_link_hash_table *htab;
6928
6929 htab = mips_elf_hash_table (info);
6930 dynobj = elf_hash_table (info)->dynobj;
6931
6932 /* Make sure we know what is going on here. */
6933 BFD_ASSERT (dynobj != NULL
6934 && (h->needs_plt
6935 || h->u.weakdef != NULL
6936 || (h->def_dynamic
6937 && h->ref_regular
6938 && !h->def_regular)));
6939
6940 /* If this symbol is defined in a dynamic object, we need to copy
6941 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6942 file. */
6943 hmips = (struct mips_elf_link_hash_entry *) h;
6944 if (! info->relocatable
6945 && hmips->possibly_dynamic_relocs != 0
6946 && (h->root.type == bfd_link_hash_defweak
6947 || !h->def_regular))
6948 {
6949 mips_elf_allocate_dynamic_relocations
6950 (dynobj, info, hmips->possibly_dynamic_relocs);
6951 if (hmips->readonly_reloc)
6952 /* We tell the dynamic linker that there are relocations
6953 against the text segment. */
6954 info->flags |= DF_TEXTREL;
6955 }
6956
6957 /* For a function, create a stub, if allowed. */
6958 if (! hmips->no_fn_stub
6959 && h->needs_plt)
6960 {
6961 if (! elf_hash_table (info)->dynamic_sections_created)
6962 return TRUE;
6963
6964 /* If this symbol is not defined in a regular file, then set
6965 the symbol to the stub location. This is required to make
6966 function pointers compare as equal between the normal
6967 executable and the shared library. */
6968 if (!h->def_regular)
6969 {
6970 /* We need .stub section. */
6971 s = bfd_get_section_by_name (dynobj,
6972 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6973 BFD_ASSERT (s != NULL);
6974
6975 h->root.u.def.section = s;
6976 h->root.u.def.value = s->size;
6977
6978 /* XXX Write this stub address somewhere. */
6979 h->plt.offset = s->size;
6980
6981 /* Make room for this stub code. */
6982 s->size += htab->function_stub_size;
6983
6984 /* The last half word of the stub will be filled with the index
6985 of this symbol in .dynsym section. */
6986 return TRUE;
6987 }
6988 }
6989 else if ((h->type == STT_FUNC)
6990 && !h->needs_plt)
6991 {
6992 /* This will set the entry for this symbol in the GOT to 0, and
6993 the dynamic linker will take care of this. */
6994 h->root.u.def.value = 0;
6995 return TRUE;
6996 }
6997
6998 /* If this is a weak symbol, and there is a real definition, the
6999 processor independent code will have arranged for us to see the
7000 real definition first, and we can just use the same value. */
7001 if (h->u.weakdef != NULL)
7002 {
7003 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7004 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7005 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7006 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7007 return TRUE;
7008 }
7009
7010 /* This is a reference to a symbol defined by a dynamic object which
7011 is not a function. */
7012
7013 return TRUE;
7014 }
7015
7016 /* Likewise, for VxWorks. */
7017
7018 bfd_boolean
7019 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7020 struct elf_link_hash_entry *h)
7021 {
7022 bfd *dynobj;
7023 struct mips_elf_link_hash_entry *hmips;
7024 struct mips_elf_link_hash_table *htab;
7025
7026 htab = mips_elf_hash_table (info);
7027 dynobj = elf_hash_table (info)->dynobj;
7028 hmips = (struct mips_elf_link_hash_entry *) h;
7029
7030 /* Make sure we know what is going on here. */
7031 BFD_ASSERT (dynobj != NULL
7032 && (h->needs_plt
7033 || h->needs_copy
7034 || h->u.weakdef != NULL
7035 || (h->def_dynamic
7036 && h->ref_regular
7037 && !h->def_regular)));
7038
7039 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7040 either (a) we want to branch to the symbol or (b) we're linking an
7041 executable that needs a canonical function address. In the latter
7042 case, the canonical address will be the address of the executable's
7043 load stub. */
7044 if ((hmips->is_branch_target
7045 || (!info->shared
7046 && h->type == STT_FUNC
7047 && hmips->is_relocation_target))
7048 && h->def_dynamic
7049 && h->ref_regular
7050 && !h->def_regular
7051 && !h->forced_local)
7052 h->needs_plt = 1;
7053
7054 /* Locally-binding symbols do not need a PLT stub; we can refer to
7055 the functions directly. */
7056 else if (h->needs_plt
7057 && (SYMBOL_CALLS_LOCAL (info, h)
7058 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7059 && h->root.type == bfd_link_hash_undefweak)))
7060 {
7061 h->needs_plt = 0;
7062 return TRUE;
7063 }
7064
7065 if (h->needs_plt)
7066 {
7067 /* If this is the first symbol to need a PLT entry, allocate room
7068 for the header, and for the header's .rela.plt.unloaded entries. */
7069 if (htab->splt->size == 0)
7070 {
7071 htab->splt->size += htab->plt_header_size;
7072 if (!info->shared)
7073 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7074 }
7075
7076 /* Assign the next .plt entry to this symbol. */
7077 h->plt.offset = htab->splt->size;
7078 htab->splt->size += htab->plt_entry_size;
7079
7080 /* If the output file has no definition of the symbol, set the
7081 symbol's value to the address of the stub. For executables,
7082 point at the PLT load stub rather than the lazy resolution stub;
7083 this stub will become the canonical function address. */
7084 if (!h->def_regular)
7085 {
7086 h->root.u.def.section = htab->splt;
7087 h->root.u.def.value = h->plt.offset;
7088 if (!info->shared)
7089 h->root.u.def.value += 8;
7090 }
7091
7092 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7093 htab->sgotplt->size += 4;
7094 htab->srelplt->size += sizeof (Elf32_External_Rela);
7095
7096 /* Make room for the .rela.plt.unloaded relocations. */
7097 if (!info->shared)
7098 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7099
7100 return TRUE;
7101 }
7102
7103 /* If a function symbol is defined by a dynamic object, and we do not
7104 need a PLT stub for it, the symbol's value should be zero. */
7105 if (h->type == STT_FUNC
7106 && h->def_dynamic
7107 && h->ref_regular
7108 && !h->def_regular)
7109 {
7110 h->root.u.def.value = 0;
7111 return TRUE;
7112 }
7113
7114 /* If this is a weak symbol, and there is a real definition, the
7115 processor independent code will have arranged for us to see the
7116 real definition first, and we can just use the same value. */
7117 if (h->u.weakdef != NULL)
7118 {
7119 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7120 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7121 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7122 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7123 return TRUE;
7124 }
7125
7126 /* This is a reference to a symbol defined by a dynamic object which
7127 is not a function. */
7128 if (info->shared)
7129 return TRUE;
7130
7131 /* We must allocate the symbol in our .dynbss section, which will
7132 become part of the .bss section of the executable. There will be
7133 an entry for this symbol in the .dynsym section. The dynamic
7134 object will contain position independent code, so all references
7135 from the dynamic object to this symbol will go through the global
7136 offset table. The dynamic linker will use the .dynsym entry to
7137 determine the address it must put in the global offset table, so
7138 both the dynamic object and the regular object will refer to the
7139 same memory location for the variable. */
7140
7141 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7142 {
7143 htab->srelbss->size += sizeof (Elf32_External_Rela);
7144 h->needs_copy = 1;
7145 }
7146
7147 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7148 }
7149 \f
7150 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7151 The number might be exact or a worst-case estimate, depending on how
7152 much information is available to elf_backend_omit_section_dynsym at
7153 the current linking stage. */
7154
7155 static bfd_size_type
7156 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7157 {
7158 bfd_size_type count;
7159
7160 count = 0;
7161 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7162 {
7163 asection *p;
7164 const struct elf_backend_data *bed;
7165
7166 bed = get_elf_backend_data (output_bfd);
7167 for (p = output_bfd->sections; p ; p = p->next)
7168 if ((p->flags & SEC_EXCLUDE) == 0
7169 && (p->flags & SEC_ALLOC) != 0
7170 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7171 ++count;
7172 }
7173 return count;
7174 }
7175
7176 /* This function is called after all the input files have been read,
7177 and the input sections have been assigned to output sections. We
7178 check for any mips16 stub sections that we can discard. */
7179
7180 bfd_boolean
7181 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7182 struct bfd_link_info *info)
7183 {
7184 asection *ri;
7185
7186 bfd *dynobj;
7187 asection *s;
7188 struct mips_got_info *g;
7189 int i;
7190 bfd_size_type loadable_size = 0;
7191 bfd_size_type local_gotno;
7192 bfd_size_type dynsymcount;
7193 bfd *sub;
7194 struct mips_elf_count_tls_arg count_tls_arg;
7195 struct mips_elf_link_hash_table *htab;
7196
7197 htab = mips_elf_hash_table (info);
7198
7199 /* The .reginfo section has a fixed size. */
7200 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7201 if (ri != NULL)
7202 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7203
7204 if (! (info->relocatable
7205 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7206 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7207 mips_elf_check_mips16_stubs, NULL);
7208
7209 dynobj = elf_hash_table (info)->dynobj;
7210 if (dynobj == NULL)
7211 /* Relocatable links don't have it. */
7212 return TRUE;
7213
7214 g = mips_elf_got_info (dynobj, &s);
7215 if (s == NULL)
7216 return TRUE;
7217
7218 /* Calculate the total loadable size of the output. That
7219 will give us the maximum number of GOT_PAGE entries
7220 required. */
7221 for (sub = info->input_bfds; sub; sub = sub->link_next)
7222 {
7223 asection *subsection;
7224
7225 for (subsection = sub->sections;
7226 subsection;
7227 subsection = subsection->next)
7228 {
7229 if ((subsection->flags & SEC_ALLOC) == 0)
7230 continue;
7231 loadable_size += ((subsection->size + 0xf)
7232 &~ (bfd_size_type) 0xf);
7233 }
7234 }
7235
7236 /* There has to be a global GOT entry for every symbol with
7237 a dynamic symbol table index of DT_MIPS_GOTSYM or
7238 higher. Therefore, it make sense to put those symbols
7239 that need GOT entries at the end of the symbol table. We
7240 do that here. */
7241 if (! mips_elf_sort_hash_table (info, 1))
7242 return FALSE;
7243
7244 if (g->global_gotsym != NULL)
7245 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7246 else
7247 /* If there are no global symbols, or none requiring
7248 relocations, then GLOBAL_GOTSYM will be NULL. */
7249 i = 0;
7250
7251 /* Get a worst-case estimate of the number of dynamic symbols needed.
7252 At this point, dynsymcount does not account for section symbols
7253 and count_section_dynsyms may overestimate the number that will
7254 be needed. */
7255 dynsymcount = (elf_hash_table (info)->dynsymcount
7256 + count_section_dynsyms (output_bfd, info));
7257
7258 /* Determine the size of one stub entry. */
7259 htab->function_stub_size = (dynsymcount > 0x10000
7260 ? MIPS_FUNCTION_STUB_BIG_SIZE
7261 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7262
7263 /* In the worst case, we'll get one stub per dynamic symbol, plus
7264 one to account for the dummy entry at the end required by IRIX
7265 rld. */
7266 loadable_size += htab->function_stub_size * (i + 1);
7267
7268 if (htab->is_vxworks)
7269 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7270 relocations against local symbols evaluate to "G", and the EABI does
7271 not include R_MIPS_GOT_PAGE. */
7272 local_gotno = 0;
7273 else
7274 /* Assume there are two loadable segments consisting of contiguous
7275 sections. Is 5 enough? */
7276 local_gotno = (loadable_size >> 16) + 5;
7277
7278 g->local_gotno += local_gotno;
7279 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7280
7281 g->global_gotno = i;
7282 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7283
7284 /* We need to calculate tls_gotno for global symbols at this point
7285 instead of building it up earlier, to avoid doublecounting
7286 entries for one global symbol from multiple input files. */
7287 count_tls_arg.info = info;
7288 count_tls_arg.needed = 0;
7289 elf_link_hash_traverse (elf_hash_table (info),
7290 mips_elf_count_global_tls_entries,
7291 &count_tls_arg);
7292 g->tls_gotno += count_tls_arg.needed;
7293 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7294
7295 mips_elf_resolve_final_got_entries (g);
7296
7297 /* VxWorks does not support multiple GOTs. It initializes $gp to
7298 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7299 dynamic loader. */
7300 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7301 {
7302 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7303 return FALSE;
7304 }
7305 else
7306 {
7307 /* Set up TLS entries for the first GOT. */
7308 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7309 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7310 }
7311
7312 return TRUE;
7313 }
7314
7315 /* Set the sizes of the dynamic sections. */
7316
7317 bfd_boolean
7318 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7319 struct bfd_link_info *info)
7320 {
7321 bfd *dynobj;
7322 asection *s, *sreldyn;
7323 bfd_boolean reltext;
7324 struct mips_elf_link_hash_table *htab;
7325
7326 htab = mips_elf_hash_table (info);
7327 dynobj = elf_hash_table (info)->dynobj;
7328 BFD_ASSERT (dynobj != NULL);
7329
7330 if (elf_hash_table (info)->dynamic_sections_created)
7331 {
7332 /* Set the contents of the .interp section to the interpreter. */
7333 if (info->executable)
7334 {
7335 s = bfd_get_section_by_name (dynobj, ".interp");
7336 BFD_ASSERT (s != NULL);
7337 s->size
7338 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7339 s->contents
7340 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7341 }
7342 }
7343
7344 /* The check_relocs and adjust_dynamic_symbol entry points have
7345 determined the sizes of the various dynamic sections. Allocate
7346 memory for them. */
7347 reltext = FALSE;
7348 sreldyn = NULL;
7349 for (s = dynobj->sections; s != NULL; s = s->next)
7350 {
7351 const char *name;
7352
7353 /* It's OK to base decisions on the section name, because none
7354 of the dynobj section names depend upon the input files. */
7355 name = bfd_get_section_name (dynobj, s);
7356
7357 if ((s->flags & SEC_LINKER_CREATED) == 0)
7358 continue;
7359
7360 if (CONST_STRNEQ (name, ".rel"))
7361 {
7362 if (s->size != 0)
7363 {
7364 const char *outname;
7365 asection *target;
7366
7367 /* If this relocation section applies to a read only
7368 section, then we probably need a DT_TEXTREL entry.
7369 If the relocation section is .rel(a).dyn, we always
7370 assert a DT_TEXTREL entry rather than testing whether
7371 there exists a relocation to a read only section or
7372 not. */
7373 outname = bfd_get_section_name (output_bfd,
7374 s->output_section);
7375 target = bfd_get_section_by_name (output_bfd, outname + 4);
7376 if ((target != NULL
7377 && (target->flags & SEC_READONLY) != 0
7378 && (target->flags & SEC_ALLOC) != 0)
7379 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7380 reltext = TRUE;
7381
7382 /* We use the reloc_count field as a counter if we need
7383 to copy relocs into the output file. */
7384 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7385 s->reloc_count = 0;
7386
7387 /* If combreloc is enabled, elf_link_sort_relocs() will
7388 sort relocations, but in a different way than we do,
7389 and before we're done creating relocations. Also, it
7390 will move them around between input sections'
7391 relocation's contents, so our sorting would be
7392 broken, so don't let it run. */
7393 info->combreloc = 0;
7394 }
7395 }
7396 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7397 {
7398 /* Executables do not need a GOT. */
7399 if (info->shared)
7400 {
7401 /* Allocate relocations for all but the reserved entries. */
7402 struct mips_got_info *g;
7403 unsigned int count;
7404
7405 g = mips_elf_got_info (dynobj, NULL);
7406 count = (g->global_gotno
7407 + g->local_gotno
7408 - MIPS_RESERVED_GOTNO (info));
7409 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7410 }
7411 }
7412 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7413 {
7414 /* _bfd_mips_elf_always_size_sections() has already done
7415 most of the work, but some symbols may have been mapped
7416 to versions that we must now resolve in the got_entries
7417 hash tables. */
7418 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7419 struct mips_got_info *g = gg;
7420 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7421 unsigned int needed_relocs = 0;
7422
7423 if (gg->next)
7424 {
7425 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7426 set_got_offset_arg.info = info;
7427
7428 /* NOTE 2005-02-03: How can this call, or the next, ever
7429 find any indirect entries to resolve? They were all
7430 resolved in mips_elf_multi_got. */
7431 mips_elf_resolve_final_got_entries (gg);
7432 for (g = gg->next; g && g->next != gg; g = g->next)
7433 {
7434 unsigned int save_assign;
7435
7436 mips_elf_resolve_final_got_entries (g);
7437
7438 /* Assign offsets to global GOT entries. */
7439 save_assign = g->assigned_gotno;
7440 g->assigned_gotno = g->local_gotno;
7441 set_got_offset_arg.g = g;
7442 set_got_offset_arg.needed_relocs = 0;
7443 htab_traverse (g->got_entries,
7444 mips_elf_set_global_got_offset,
7445 &set_got_offset_arg);
7446 needed_relocs += set_got_offset_arg.needed_relocs;
7447 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7448 <= g->global_gotno);
7449
7450 g->assigned_gotno = save_assign;
7451 if (info->shared)
7452 {
7453 needed_relocs += g->local_gotno - g->assigned_gotno;
7454 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7455 + g->next->global_gotno
7456 + g->next->tls_gotno
7457 + MIPS_RESERVED_GOTNO (info));
7458 }
7459 }
7460 }
7461 else
7462 {
7463 struct mips_elf_count_tls_arg arg;
7464 arg.info = info;
7465 arg.needed = 0;
7466
7467 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7468 &arg);
7469 elf_link_hash_traverse (elf_hash_table (info),
7470 mips_elf_count_global_tls_relocs,
7471 &arg);
7472
7473 needed_relocs += arg.needed;
7474 }
7475
7476 if (needed_relocs)
7477 mips_elf_allocate_dynamic_relocations (dynobj, info,
7478 needed_relocs);
7479 }
7480 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7481 {
7482 /* IRIX rld assumes that the function stub isn't at the end
7483 of .text section. So put a dummy. XXX */
7484 s->size += htab->function_stub_size;
7485 }
7486 else if (! info->shared
7487 && ! mips_elf_hash_table (info)->use_rld_obj_head
7488 && CONST_STRNEQ (name, ".rld_map"))
7489 {
7490 /* We add a room for __rld_map. It will be filled in by the
7491 rtld to contain a pointer to the _r_debug structure. */
7492 s->size += 4;
7493 }
7494 else if (SGI_COMPAT (output_bfd)
7495 && CONST_STRNEQ (name, ".compact_rel"))
7496 s->size += mips_elf_hash_table (info)->compact_rel_size;
7497 else if (! CONST_STRNEQ (name, ".init")
7498 && s != htab->sgotplt
7499 && s != htab->splt)
7500 {
7501 /* It's not one of our sections, so don't allocate space. */
7502 continue;
7503 }
7504
7505 if (s->size == 0)
7506 {
7507 s->flags |= SEC_EXCLUDE;
7508 continue;
7509 }
7510
7511 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7512 continue;
7513
7514 /* Allocate memory for this section last, since we may increase its
7515 size above. */
7516 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7517 {
7518 sreldyn = s;
7519 continue;
7520 }
7521
7522 /* Allocate memory for the section contents. */
7523 s->contents = bfd_zalloc (dynobj, s->size);
7524 if (s->contents == NULL)
7525 {
7526 bfd_set_error (bfd_error_no_memory);
7527 return FALSE;
7528 }
7529 }
7530
7531 /* Allocate memory for the .rel(a).dyn section. */
7532 if (sreldyn != NULL)
7533 {
7534 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7535 if (sreldyn->contents == NULL)
7536 {
7537 bfd_set_error (bfd_error_no_memory);
7538 return FALSE;
7539 }
7540 }
7541
7542 if (elf_hash_table (info)->dynamic_sections_created)
7543 {
7544 /* Add some entries to the .dynamic section. We fill in the
7545 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7546 must add the entries now so that we get the correct size for
7547 the .dynamic section. */
7548
7549 /* SGI object has the equivalence of DT_DEBUG in the
7550 DT_MIPS_RLD_MAP entry. This must come first because glibc
7551 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7552 looks at the first one it sees. */
7553 if (!info->shared
7554 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7555 return FALSE;
7556
7557 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7558 used by the debugger. */
7559 if (info->executable
7560 && !SGI_COMPAT (output_bfd)
7561 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7562 return FALSE;
7563
7564 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7565 info->flags |= DF_TEXTREL;
7566
7567 if ((info->flags & DF_TEXTREL) != 0)
7568 {
7569 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7570 return FALSE;
7571
7572 /* Clear the DF_TEXTREL flag. It will be set again if we
7573 write out an actual text relocation; we may not, because
7574 at this point we do not know whether e.g. any .eh_frame
7575 absolute relocations have been converted to PC-relative. */
7576 info->flags &= ~DF_TEXTREL;
7577 }
7578
7579 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7580 return FALSE;
7581
7582 if (htab->is_vxworks)
7583 {
7584 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7585 use any of the DT_MIPS_* tags. */
7586 if (mips_elf_rel_dyn_section (info, FALSE))
7587 {
7588 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7589 return FALSE;
7590
7591 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7592 return FALSE;
7593
7594 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7595 return FALSE;
7596 }
7597 if (htab->splt->size > 0)
7598 {
7599 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7600 return FALSE;
7601
7602 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7603 return FALSE;
7604
7605 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7606 return FALSE;
7607 }
7608 }
7609 else
7610 {
7611 if (mips_elf_rel_dyn_section (info, FALSE))
7612 {
7613 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7614 return FALSE;
7615
7616 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7617 return FALSE;
7618
7619 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7620 return FALSE;
7621 }
7622
7623 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7624 return FALSE;
7625
7626 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7627 return FALSE;
7628
7629 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7630 return FALSE;
7631
7632 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7633 return FALSE;
7634
7635 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7636 return FALSE;
7637
7638 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7639 return FALSE;
7640
7641 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7642 return FALSE;
7643
7644 if (IRIX_COMPAT (dynobj) == ict_irix5
7645 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7646 return FALSE;
7647
7648 if (IRIX_COMPAT (dynobj) == ict_irix6
7649 && (bfd_get_section_by_name
7650 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7651 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7652 return FALSE;
7653 }
7654 }
7655
7656 return TRUE;
7657 }
7658 \f
7659 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7660 Adjust its R_ADDEND field so that it is correct for the output file.
7661 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7662 and sections respectively; both use symbol indexes. */
7663
7664 static void
7665 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7666 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7667 asection **local_sections, Elf_Internal_Rela *rel)
7668 {
7669 unsigned int r_type, r_symndx;
7670 Elf_Internal_Sym *sym;
7671 asection *sec;
7672
7673 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7674 {
7675 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7676 if (r_type == R_MIPS16_GPREL
7677 || r_type == R_MIPS_GPREL16
7678 || r_type == R_MIPS_GPREL32
7679 || r_type == R_MIPS_LITERAL)
7680 {
7681 rel->r_addend += _bfd_get_gp_value (input_bfd);
7682 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7683 }
7684
7685 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7686 sym = local_syms + r_symndx;
7687
7688 /* Adjust REL's addend to account for section merging. */
7689 if (!info->relocatable)
7690 {
7691 sec = local_sections[r_symndx];
7692 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7693 }
7694
7695 /* This would normally be done by the rela_normal code in elflink.c. */
7696 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7697 rel->r_addend += local_sections[r_symndx]->output_offset;
7698 }
7699 }
7700
7701 /* Relocate a MIPS ELF section. */
7702
7703 bfd_boolean
7704 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7705 bfd *input_bfd, asection *input_section,
7706 bfd_byte *contents, Elf_Internal_Rela *relocs,
7707 Elf_Internal_Sym *local_syms,
7708 asection **local_sections)
7709 {
7710 Elf_Internal_Rela *rel;
7711 const Elf_Internal_Rela *relend;
7712 bfd_vma addend = 0;
7713 bfd_boolean use_saved_addend_p = FALSE;
7714 const struct elf_backend_data *bed;
7715
7716 bed = get_elf_backend_data (output_bfd);
7717 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7718 for (rel = relocs; rel < relend; ++rel)
7719 {
7720 const char *name;
7721 bfd_vma value = 0;
7722 reloc_howto_type *howto;
7723 bfd_boolean require_jalx;
7724 /* TRUE if the relocation is a RELA relocation, rather than a
7725 REL relocation. */
7726 bfd_boolean rela_relocation_p = TRUE;
7727 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7728 const char *msg;
7729 unsigned long r_symndx;
7730 asection *sec;
7731 Elf_Internal_Shdr *symtab_hdr;
7732 struct elf_link_hash_entry *h;
7733
7734 /* Find the relocation howto for this relocation. */
7735 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7736 NEWABI_P (input_bfd)
7737 && (MIPS_RELOC_RELA_P
7738 (input_bfd, input_section,
7739 rel - relocs)));
7740
7741 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7742 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7743 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7744 {
7745 sec = local_sections[r_symndx];
7746 h = NULL;
7747 }
7748 else
7749 {
7750 unsigned long extsymoff;
7751
7752 extsymoff = 0;
7753 if (!elf_bad_symtab (input_bfd))
7754 extsymoff = symtab_hdr->sh_info;
7755 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7756 while (h->root.type == bfd_link_hash_indirect
7757 || h->root.type == bfd_link_hash_warning)
7758 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7759
7760 sec = NULL;
7761 if (h->root.type == bfd_link_hash_defined
7762 || h->root.type == bfd_link_hash_defweak)
7763 sec = h->root.u.def.section;
7764 }
7765
7766 if (sec != NULL && elf_discarded_section (sec))
7767 {
7768 /* For relocs against symbols from removed linkonce sections,
7769 or sections discarded by a linker script, we just want the
7770 section contents zeroed. Avoid any special processing. */
7771 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7772 rel->r_info = 0;
7773 rel->r_addend = 0;
7774 continue;
7775 }
7776
7777 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7778 {
7779 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7780 64-bit code, but make sure all their addresses are in the
7781 lowermost or uppermost 32-bit section of the 64-bit address
7782 space. Thus, when they use an R_MIPS_64 they mean what is
7783 usually meant by R_MIPS_32, with the exception that the
7784 stored value is sign-extended to 64 bits. */
7785 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7786
7787 /* On big-endian systems, we need to lie about the position
7788 of the reloc. */
7789 if (bfd_big_endian (input_bfd))
7790 rel->r_offset += 4;
7791 }
7792
7793 if (!use_saved_addend_p)
7794 {
7795 Elf_Internal_Shdr *rel_hdr;
7796
7797 /* If these relocations were originally of the REL variety,
7798 we must pull the addend out of the field that will be
7799 relocated. Otherwise, we simply use the contents of the
7800 RELA relocation. To determine which flavor or relocation
7801 this is, we depend on the fact that the INPUT_SECTION's
7802 REL_HDR is read before its REL_HDR2. */
7803 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7804 if ((size_t) (rel - relocs)
7805 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7806 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7807 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7808 {
7809 bfd_byte *location = contents + rel->r_offset;
7810
7811 /* Note that this is a REL relocation. */
7812 rela_relocation_p = FALSE;
7813
7814 /* Get the addend, which is stored in the input file. */
7815 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7816 location);
7817 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7818 contents);
7819 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7820 location);
7821
7822 addend &= howto->src_mask;
7823
7824 /* For some kinds of relocations, the ADDEND is a
7825 combination of the addend stored in two different
7826 relocations. */
7827 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7828 || (r_type == R_MIPS_GOT16
7829 && mips_elf_local_relocation_p (input_bfd, rel,
7830 local_sections, FALSE)))
7831 {
7832 const Elf_Internal_Rela *lo16_relocation;
7833 reloc_howto_type *lo16_howto;
7834 int lo16_type;
7835
7836 if (r_type == R_MIPS16_HI16)
7837 lo16_type = R_MIPS16_LO16;
7838 else
7839 lo16_type = R_MIPS_LO16;
7840
7841 /* The combined value is the sum of the HI16 addend,
7842 left-shifted by sixteen bits, and the LO16
7843 addend, sign extended. (Usually, the code does
7844 a `lui' of the HI16 value, and then an `addiu' of
7845 the LO16 value.)
7846
7847 Scan ahead to find a matching LO16 relocation.
7848
7849 According to the MIPS ELF ABI, the R_MIPS_LO16
7850 relocation must be immediately following.
7851 However, for the IRIX6 ABI, the next relocation
7852 may be a composed relocation consisting of
7853 several relocations for the same address. In
7854 that case, the R_MIPS_LO16 relocation may occur
7855 as one of these. We permit a similar extension
7856 in general, as that is useful for GCC.
7857
7858 In some cases GCC dead code elimination removes
7859 the LO16 but keeps the corresponding HI16. This
7860 is strictly speaking a violation of the ABI but
7861 not immediately harmful. */
7862 lo16_relocation = mips_elf_next_relocation (input_bfd,
7863 lo16_type,
7864 rel, relend);
7865 if (lo16_relocation == NULL)
7866 {
7867 const char *name;
7868
7869 if (h)
7870 name = h->root.root.string;
7871 else
7872 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7873 local_syms + r_symndx,
7874 sec);
7875 (*_bfd_error_handler)
7876 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7877 input_bfd, input_section, name, howto->name,
7878 rel->r_offset);
7879 }
7880 else
7881 {
7882 bfd_byte *lo16_location;
7883 bfd_vma l;
7884
7885 lo16_location = contents + lo16_relocation->r_offset;
7886
7887 /* Obtain the addend kept there. */
7888 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7889 lo16_type, FALSE);
7890 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7891 FALSE, lo16_location);
7892 l = mips_elf_obtain_contents (lo16_howto,
7893 lo16_relocation,
7894 input_bfd, contents);
7895 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7896 FALSE, lo16_location);
7897 l &= lo16_howto->src_mask;
7898 l <<= lo16_howto->rightshift;
7899 l = _bfd_mips_elf_sign_extend (l, 16);
7900
7901 addend <<= 16;
7902
7903 /* Compute the combined addend. */
7904 addend += l;
7905 }
7906 }
7907 else
7908 addend <<= howto->rightshift;
7909 }
7910 else
7911 addend = rel->r_addend;
7912 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7913 local_syms, local_sections, rel);
7914 }
7915
7916 if (info->relocatable)
7917 {
7918 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7919 && bfd_big_endian (input_bfd))
7920 rel->r_offset -= 4;
7921
7922 if (!rela_relocation_p && rel->r_addend)
7923 {
7924 addend += rel->r_addend;
7925 if (r_type == R_MIPS_HI16
7926 || r_type == R_MIPS_GOT16)
7927 addend = mips_elf_high (addend);
7928 else if (r_type == R_MIPS_HIGHER)
7929 addend = mips_elf_higher (addend);
7930 else if (r_type == R_MIPS_HIGHEST)
7931 addend = mips_elf_highest (addend);
7932 else
7933 addend >>= howto->rightshift;
7934
7935 /* We use the source mask, rather than the destination
7936 mask because the place to which we are writing will be
7937 source of the addend in the final link. */
7938 addend &= howto->src_mask;
7939
7940 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7941 /* See the comment above about using R_MIPS_64 in the 32-bit
7942 ABI. Here, we need to update the addend. It would be
7943 possible to get away with just using the R_MIPS_32 reloc
7944 but for endianness. */
7945 {
7946 bfd_vma sign_bits;
7947 bfd_vma low_bits;
7948 bfd_vma high_bits;
7949
7950 if (addend & ((bfd_vma) 1 << 31))
7951 #ifdef BFD64
7952 sign_bits = ((bfd_vma) 1 << 32) - 1;
7953 #else
7954 sign_bits = -1;
7955 #endif
7956 else
7957 sign_bits = 0;
7958
7959 /* If we don't know that we have a 64-bit type,
7960 do two separate stores. */
7961 if (bfd_big_endian (input_bfd))
7962 {
7963 /* Store the sign-bits (which are most significant)
7964 first. */
7965 low_bits = sign_bits;
7966 high_bits = addend;
7967 }
7968 else
7969 {
7970 low_bits = addend;
7971 high_bits = sign_bits;
7972 }
7973 bfd_put_32 (input_bfd, low_bits,
7974 contents + rel->r_offset);
7975 bfd_put_32 (input_bfd, high_bits,
7976 contents + rel->r_offset + 4);
7977 continue;
7978 }
7979
7980 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7981 input_bfd, input_section,
7982 contents, FALSE))
7983 return FALSE;
7984 }
7985
7986 /* Go on to the next relocation. */
7987 continue;
7988 }
7989
7990 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7991 relocations for the same offset. In that case we are
7992 supposed to treat the output of each relocation as the addend
7993 for the next. */
7994 if (rel + 1 < relend
7995 && rel->r_offset == rel[1].r_offset
7996 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7997 use_saved_addend_p = TRUE;
7998 else
7999 use_saved_addend_p = FALSE;
8000
8001 /* Figure out what value we are supposed to relocate. */
8002 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8003 input_section, info, rel,
8004 addend, howto, local_syms,
8005 local_sections, &value,
8006 &name, &require_jalx,
8007 use_saved_addend_p))
8008 {
8009 case bfd_reloc_continue:
8010 /* There's nothing to do. */
8011 continue;
8012
8013 case bfd_reloc_undefined:
8014 /* mips_elf_calculate_relocation already called the
8015 undefined_symbol callback. There's no real point in
8016 trying to perform the relocation at this point, so we
8017 just skip ahead to the next relocation. */
8018 continue;
8019
8020 case bfd_reloc_notsupported:
8021 msg = _("internal error: unsupported relocation error");
8022 info->callbacks->warning
8023 (info, msg, name, input_bfd, input_section, rel->r_offset);
8024 return FALSE;
8025
8026 case bfd_reloc_overflow:
8027 if (use_saved_addend_p)
8028 /* Ignore overflow until we reach the last relocation for
8029 a given location. */
8030 ;
8031 else
8032 {
8033 BFD_ASSERT (name != NULL);
8034 if (! ((*info->callbacks->reloc_overflow)
8035 (info, NULL, name, howto->name, (bfd_vma) 0,
8036 input_bfd, input_section, rel->r_offset)))
8037 return FALSE;
8038 }
8039 break;
8040
8041 case bfd_reloc_ok:
8042 break;
8043
8044 default:
8045 abort ();
8046 break;
8047 }
8048
8049 /* If we've got another relocation for the address, keep going
8050 until we reach the last one. */
8051 if (use_saved_addend_p)
8052 {
8053 addend = value;
8054 continue;
8055 }
8056
8057 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8058 /* See the comment above about using R_MIPS_64 in the 32-bit
8059 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8060 that calculated the right value. Now, however, we
8061 sign-extend the 32-bit result to 64-bits, and store it as a
8062 64-bit value. We are especially generous here in that we
8063 go to extreme lengths to support this usage on systems with
8064 only a 32-bit VMA. */
8065 {
8066 bfd_vma sign_bits;
8067 bfd_vma low_bits;
8068 bfd_vma high_bits;
8069
8070 if (value & ((bfd_vma) 1 << 31))
8071 #ifdef BFD64
8072 sign_bits = ((bfd_vma) 1 << 32) - 1;
8073 #else
8074 sign_bits = -1;
8075 #endif
8076 else
8077 sign_bits = 0;
8078
8079 /* If we don't know that we have a 64-bit type,
8080 do two separate stores. */
8081 if (bfd_big_endian (input_bfd))
8082 {
8083 /* Undo what we did above. */
8084 rel->r_offset -= 4;
8085 /* Store the sign-bits (which are most significant)
8086 first. */
8087 low_bits = sign_bits;
8088 high_bits = value;
8089 }
8090 else
8091 {
8092 low_bits = value;
8093 high_bits = sign_bits;
8094 }
8095 bfd_put_32 (input_bfd, low_bits,
8096 contents + rel->r_offset);
8097 bfd_put_32 (input_bfd, high_bits,
8098 contents + rel->r_offset + 4);
8099 continue;
8100 }
8101
8102 /* Actually perform the relocation. */
8103 if (! mips_elf_perform_relocation (info, howto, rel, value,
8104 input_bfd, input_section,
8105 contents, require_jalx))
8106 return FALSE;
8107 }
8108
8109 return TRUE;
8110 }
8111 \f
8112 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8113 adjust it appropriately now. */
8114
8115 static void
8116 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8117 const char *name, Elf_Internal_Sym *sym)
8118 {
8119 /* The linker script takes care of providing names and values for
8120 these, but we must place them into the right sections. */
8121 static const char* const text_section_symbols[] = {
8122 "_ftext",
8123 "_etext",
8124 "__dso_displacement",
8125 "__elf_header",
8126 "__program_header_table",
8127 NULL
8128 };
8129
8130 static const char* const data_section_symbols[] = {
8131 "_fdata",
8132 "_edata",
8133 "_end",
8134 "_fbss",
8135 NULL
8136 };
8137
8138 const char* const *p;
8139 int i;
8140
8141 for (i = 0; i < 2; ++i)
8142 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8143 *p;
8144 ++p)
8145 if (strcmp (*p, name) == 0)
8146 {
8147 /* All of these symbols are given type STT_SECTION by the
8148 IRIX6 linker. */
8149 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8150 sym->st_other = STO_PROTECTED;
8151
8152 /* The IRIX linker puts these symbols in special sections. */
8153 if (i == 0)
8154 sym->st_shndx = SHN_MIPS_TEXT;
8155 else
8156 sym->st_shndx = SHN_MIPS_DATA;
8157
8158 break;
8159 }
8160 }
8161
8162 /* Finish up dynamic symbol handling. We set the contents of various
8163 dynamic sections here. */
8164
8165 bfd_boolean
8166 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8167 struct bfd_link_info *info,
8168 struct elf_link_hash_entry *h,
8169 Elf_Internal_Sym *sym)
8170 {
8171 bfd *dynobj;
8172 asection *sgot;
8173 struct mips_got_info *g, *gg;
8174 const char *name;
8175 int idx;
8176 struct mips_elf_link_hash_table *htab;
8177
8178 htab = mips_elf_hash_table (info);
8179 dynobj = elf_hash_table (info)->dynobj;
8180
8181 if (h->plt.offset != MINUS_ONE)
8182 {
8183 asection *s;
8184 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8185
8186 /* This symbol has a stub. Set it up. */
8187
8188 BFD_ASSERT (h->dynindx != -1);
8189
8190 s = bfd_get_section_by_name (dynobj,
8191 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8192 BFD_ASSERT (s != NULL);
8193
8194 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8195 || (h->dynindx <= 0xffff));
8196
8197 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8198 sign extension at runtime in the stub, resulting in a negative
8199 index value. */
8200 if (h->dynindx & ~0x7fffffff)
8201 return FALSE;
8202
8203 /* Fill the stub. */
8204 idx = 0;
8205 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8206 idx += 4;
8207 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8208 idx += 4;
8209 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8210 {
8211 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8212 stub + idx);
8213 idx += 4;
8214 }
8215 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8216 idx += 4;
8217
8218 /* If a large stub is not required and sign extension is not a
8219 problem, then use legacy code in the stub. */
8220 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8221 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8222 else if (h->dynindx & ~0x7fff)
8223 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8224 else
8225 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8226 stub + idx);
8227
8228 BFD_ASSERT (h->plt.offset <= s->size);
8229 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8230
8231 /* Mark the symbol as undefined. plt.offset != -1 occurs
8232 only for the referenced symbol. */
8233 sym->st_shndx = SHN_UNDEF;
8234
8235 /* The run-time linker uses the st_value field of the symbol
8236 to reset the global offset table entry for this external
8237 to its stub address when unlinking a shared object. */
8238 sym->st_value = (s->output_section->vma + s->output_offset
8239 + h->plt.offset);
8240 }
8241
8242 BFD_ASSERT (h->dynindx != -1
8243 || h->forced_local);
8244
8245 sgot = mips_elf_got_section (dynobj, FALSE);
8246 BFD_ASSERT (sgot != NULL);
8247 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8248 g = mips_elf_section_data (sgot)->u.got_info;
8249 BFD_ASSERT (g != NULL);
8250
8251 /* Run through the global symbol table, creating GOT entries for all
8252 the symbols that need them. */
8253 if (g->global_gotsym != NULL
8254 && h->dynindx >= g->global_gotsym->dynindx)
8255 {
8256 bfd_vma offset;
8257 bfd_vma value;
8258
8259 value = sym->st_value;
8260 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8261 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8262 }
8263
8264 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8265 {
8266 struct mips_got_entry e, *p;
8267 bfd_vma entry;
8268 bfd_vma offset;
8269
8270 gg = g;
8271
8272 e.abfd = output_bfd;
8273 e.symndx = -1;
8274 e.d.h = (struct mips_elf_link_hash_entry *)h;
8275 e.tls_type = 0;
8276
8277 for (g = g->next; g->next != gg; g = g->next)
8278 {
8279 if (g->got_entries
8280 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8281 &e)))
8282 {
8283 offset = p->gotidx;
8284 if (info->shared
8285 || (elf_hash_table (info)->dynamic_sections_created
8286 && p->d.h != NULL
8287 && p->d.h->root.def_dynamic
8288 && !p->d.h->root.def_regular))
8289 {
8290 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8291 the various compatibility problems, it's easier to mock
8292 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8293 mips_elf_create_dynamic_relocation to calculate the
8294 appropriate addend. */
8295 Elf_Internal_Rela rel[3];
8296
8297 memset (rel, 0, sizeof (rel));
8298 if (ABI_64_P (output_bfd))
8299 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8300 else
8301 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8302 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8303
8304 entry = 0;
8305 if (! (mips_elf_create_dynamic_relocation
8306 (output_bfd, info, rel,
8307 e.d.h, NULL, sym->st_value, &entry, sgot)))
8308 return FALSE;
8309 }
8310 else
8311 entry = sym->st_value;
8312 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8313 }
8314 }
8315 }
8316
8317 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8318 name = h->root.root.string;
8319 if (strcmp (name, "_DYNAMIC") == 0
8320 || h == elf_hash_table (info)->hgot)
8321 sym->st_shndx = SHN_ABS;
8322 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8323 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8324 {
8325 sym->st_shndx = SHN_ABS;
8326 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8327 sym->st_value = 1;
8328 }
8329 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8330 {
8331 sym->st_shndx = SHN_ABS;
8332 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8333 sym->st_value = elf_gp (output_bfd);
8334 }
8335 else if (SGI_COMPAT (output_bfd))
8336 {
8337 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8338 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8339 {
8340 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8341 sym->st_other = STO_PROTECTED;
8342 sym->st_value = 0;
8343 sym->st_shndx = SHN_MIPS_DATA;
8344 }
8345 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8346 {
8347 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8348 sym->st_other = STO_PROTECTED;
8349 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8350 sym->st_shndx = SHN_ABS;
8351 }
8352 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8353 {
8354 if (h->type == STT_FUNC)
8355 sym->st_shndx = SHN_MIPS_TEXT;
8356 else if (h->type == STT_OBJECT)
8357 sym->st_shndx = SHN_MIPS_DATA;
8358 }
8359 }
8360
8361 /* Handle the IRIX6-specific symbols. */
8362 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8363 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8364
8365 if (! info->shared)
8366 {
8367 if (! mips_elf_hash_table (info)->use_rld_obj_head
8368 && (strcmp (name, "__rld_map") == 0
8369 || strcmp (name, "__RLD_MAP") == 0))
8370 {
8371 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8372 BFD_ASSERT (s != NULL);
8373 sym->st_value = s->output_section->vma + s->output_offset;
8374 bfd_put_32 (output_bfd, 0, s->contents);
8375 if (mips_elf_hash_table (info)->rld_value == 0)
8376 mips_elf_hash_table (info)->rld_value = sym->st_value;
8377 }
8378 else if (mips_elf_hash_table (info)->use_rld_obj_head
8379 && strcmp (name, "__rld_obj_head") == 0)
8380 {
8381 /* IRIX6 does not use a .rld_map section. */
8382 if (IRIX_COMPAT (output_bfd) == ict_irix5
8383 || IRIX_COMPAT (output_bfd) == ict_none)
8384 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8385 != NULL);
8386 mips_elf_hash_table (info)->rld_value = sym->st_value;
8387 }
8388 }
8389
8390 /* If this is a mips16 symbol, force the value to be even. */
8391 if (sym->st_other == STO_MIPS16)
8392 sym->st_value &= ~1;
8393
8394 return TRUE;
8395 }
8396
8397 /* Likewise, for VxWorks. */
8398
8399 bfd_boolean
8400 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8401 struct bfd_link_info *info,
8402 struct elf_link_hash_entry *h,
8403 Elf_Internal_Sym *sym)
8404 {
8405 bfd *dynobj;
8406 asection *sgot;
8407 struct mips_got_info *g;
8408 struct mips_elf_link_hash_table *htab;
8409
8410 htab = mips_elf_hash_table (info);
8411 dynobj = elf_hash_table (info)->dynobj;
8412
8413 if (h->plt.offset != (bfd_vma) -1)
8414 {
8415 bfd_byte *loc;
8416 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8417 Elf_Internal_Rela rel;
8418 static const bfd_vma *plt_entry;
8419
8420 BFD_ASSERT (h->dynindx != -1);
8421 BFD_ASSERT (htab->splt != NULL);
8422 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8423
8424 /* Calculate the address of the .plt entry. */
8425 plt_address = (htab->splt->output_section->vma
8426 + htab->splt->output_offset
8427 + h->plt.offset);
8428
8429 /* Calculate the index of the entry. */
8430 plt_index = ((h->plt.offset - htab->plt_header_size)
8431 / htab->plt_entry_size);
8432
8433 /* Calculate the address of the .got.plt entry. */
8434 got_address = (htab->sgotplt->output_section->vma
8435 + htab->sgotplt->output_offset
8436 + plt_index * 4);
8437
8438 /* Calculate the offset of the .got.plt entry from
8439 _GLOBAL_OFFSET_TABLE_. */
8440 got_offset = mips_elf_gotplt_index (info, h);
8441
8442 /* Calculate the offset for the branch at the start of the PLT
8443 entry. The branch jumps to the beginning of .plt. */
8444 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8445
8446 /* Fill in the initial value of the .got.plt entry. */
8447 bfd_put_32 (output_bfd, plt_address,
8448 htab->sgotplt->contents + plt_index * 4);
8449
8450 /* Find out where the .plt entry should go. */
8451 loc = htab->splt->contents + h->plt.offset;
8452
8453 if (info->shared)
8454 {
8455 plt_entry = mips_vxworks_shared_plt_entry;
8456 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8457 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8458 }
8459 else
8460 {
8461 bfd_vma got_address_high, got_address_low;
8462
8463 plt_entry = mips_vxworks_exec_plt_entry;
8464 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8465 got_address_low = got_address & 0xffff;
8466
8467 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8468 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8469 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8470 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8471 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8472 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8473 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8474 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8475
8476 loc = (htab->srelplt2->contents
8477 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8478
8479 /* Emit a relocation for the .got.plt entry. */
8480 rel.r_offset = got_address;
8481 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8482 rel.r_addend = h->plt.offset;
8483 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8484
8485 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8486 loc += sizeof (Elf32_External_Rela);
8487 rel.r_offset = plt_address + 8;
8488 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8489 rel.r_addend = got_offset;
8490 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8491
8492 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8493 loc += sizeof (Elf32_External_Rela);
8494 rel.r_offset += 4;
8495 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8496 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8497 }
8498
8499 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8500 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8501 rel.r_offset = got_address;
8502 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8503 rel.r_addend = 0;
8504 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8505
8506 if (!h->def_regular)
8507 sym->st_shndx = SHN_UNDEF;
8508 }
8509
8510 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8511
8512 sgot = mips_elf_got_section (dynobj, FALSE);
8513 BFD_ASSERT (sgot != NULL);
8514 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8515 g = mips_elf_section_data (sgot)->u.got_info;
8516 BFD_ASSERT (g != NULL);
8517
8518 /* See if this symbol has an entry in the GOT. */
8519 if (g->global_gotsym != NULL
8520 && h->dynindx >= g->global_gotsym->dynindx)
8521 {
8522 bfd_vma offset;
8523 Elf_Internal_Rela outrel;
8524 bfd_byte *loc;
8525 asection *s;
8526
8527 /* Install the symbol value in the GOT. */
8528 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8529 R_MIPS_GOT16, info);
8530 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8531
8532 /* Add a dynamic relocation for it. */
8533 s = mips_elf_rel_dyn_section (info, FALSE);
8534 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8535 outrel.r_offset = (sgot->output_section->vma
8536 + sgot->output_offset
8537 + offset);
8538 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8539 outrel.r_addend = 0;
8540 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8541 }
8542
8543 /* Emit a copy reloc, if needed. */
8544 if (h->needs_copy)
8545 {
8546 Elf_Internal_Rela rel;
8547
8548 BFD_ASSERT (h->dynindx != -1);
8549
8550 rel.r_offset = (h->root.u.def.section->output_section->vma
8551 + h->root.u.def.section->output_offset
8552 + h->root.u.def.value);
8553 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8554 rel.r_addend = 0;
8555 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8556 htab->srelbss->contents
8557 + (htab->srelbss->reloc_count
8558 * sizeof (Elf32_External_Rela)));
8559 ++htab->srelbss->reloc_count;
8560 }
8561
8562 /* If this is a mips16 symbol, force the value to be even. */
8563 if (sym->st_other == STO_MIPS16)
8564 sym->st_value &= ~1;
8565
8566 return TRUE;
8567 }
8568
8569 /* Install the PLT header for a VxWorks executable and finalize the
8570 contents of .rela.plt.unloaded. */
8571
8572 static void
8573 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8574 {
8575 Elf_Internal_Rela rela;
8576 bfd_byte *loc;
8577 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8578 static const bfd_vma *plt_entry;
8579 struct mips_elf_link_hash_table *htab;
8580
8581 htab = mips_elf_hash_table (info);
8582 plt_entry = mips_vxworks_exec_plt0_entry;
8583
8584 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8585 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8586 + htab->root.hgot->root.u.def.section->output_offset
8587 + htab->root.hgot->root.u.def.value);
8588
8589 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8590 got_value_low = got_value & 0xffff;
8591
8592 /* Calculate the address of the PLT header. */
8593 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8594
8595 /* Install the PLT header. */
8596 loc = htab->splt->contents;
8597 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8598 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8599 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8600 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8601 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8602 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8603
8604 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8605 loc = htab->srelplt2->contents;
8606 rela.r_offset = plt_address;
8607 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8608 rela.r_addend = 0;
8609 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8610 loc += sizeof (Elf32_External_Rela);
8611
8612 /* Output the relocation for the following addiu of
8613 %lo(_GLOBAL_OFFSET_TABLE_). */
8614 rela.r_offset += 4;
8615 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8616 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8617 loc += sizeof (Elf32_External_Rela);
8618
8619 /* Fix up the remaining relocations. They may have the wrong
8620 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8621 in which symbols were output. */
8622 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8623 {
8624 Elf_Internal_Rela rel;
8625
8626 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8627 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8628 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8629 loc += sizeof (Elf32_External_Rela);
8630
8631 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8632 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8633 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8634 loc += sizeof (Elf32_External_Rela);
8635
8636 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8637 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8638 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8639 loc += sizeof (Elf32_External_Rela);
8640 }
8641 }
8642
8643 /* Install the PLT header for a VxWorks shared library. */
8644
8645 static void
8646 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8647 {
8648 unsigned int i;
8649 struct mips_elf_link_hash_table *htab;
8650
8651 htab = mips_elf_hash_table (info);
8652
8653 /* We just need to copy the entry byte-by-byte. */
8654 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8655 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8656 htab->splt->contents + i * 4);
8657 }
8658
8659 /* Finish up the dynamic sections. */
8660
8661 bfd_boolean
8662 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8663 struct bfd_link_info *info)
8664 {
8665 bfd *dynobj;
8666 asection *sdyn;
8667 asection *sgot;
8668 struct mips_got_info *gg, *g;
8669 struct mips_elf_link_hash_table *htab;
8670
8671 htab = mips_elf_hash_table (info);
8672 dynobj = elf_hash_table (info)->dynobj;
8673
8674 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8675
8676 sgot = mips_elf_got_section (dynobj, FALSE);
8677 if (sgot == NULL)
8678 gg = g = NULL;
8679 else
8680 {
8681 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8682 gg = mips_elf_section_data (sgot)->u.got_info;
8683 BFD_ASSERT (gg != NULL);
8684 g = mips_elf_got_for_ibfd (gg, output_bfd);
8685 BFD_ASSERT (g != NULL);
8686 }
8687
8688 if (elf_hash_table (info)->dynamic_sections_created)
8689 {
8690 bfd_byte *b;
8691 int dyn_to_skip = 0, dyn_skipped = 0;
8692
8693 BFD_ASSERT (sdyn != NULL);
8694 BFD_ASSERT (g != NULL);
8695
8696 for (b = sdyn->contents;
8697 b < sdyn->contents + sdyn->size;
8698 b += MIPS_ELF_DYN_SIZE (dynobj))
8699 {
8700 Elf_Internal_Dyn dyn;
8701 const char *name;
8702 size_t elemsize;
8703 asection *s;
8704 bfd_boolean swap_out_p;
8705
8706 /* Read in the current dynamic entry. */
8707 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8708
8709 /* Assume that we're going to modify it and write it out. */
8710 swap_out_p = TRUE;
8711
8712 switch (dyn.d_tag)
8713 {
8714 case DT_RELENT:
8715 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8716 break;
8717
8718 case DT_RELAENT:
8719 BFD_ASSERT (htab->is_vxworks);
8720 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8721 break;
8722
8723 case DT_STRSZ:
8724 /* Rewrite DT_STRSZ. */
8725 dyn.d_un.d_val =
8726 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8727 break;
8728
8729 case DT_PLTGOT:
8730 name = ".got";
8731 if (htab->is_vxworks)
8732 {
8733 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8734 of the ".got" section in DYNOBJ. */
8735 s = bfd_get_section_by_name (dynobj, name);
8736 BFD_ASSERT (s != NULL);
8737 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8738 }
8739 else
8740 {
8741 s = bfd_get_section_by_name (output_bfd, name);
8742 BFD_ASSERT (s != NULL);
8743 dyn.d_un.d_ptr = s->vma;
8744 }
8745 break;
8746
8747 case DT_MIPS_RLD_VERSION:
8748 dyn.d_un.d_val = 1; /* XXX */
8749 break;
8750
8751 case DT_MIPS_FLAGS:
8752 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8753 break;
8754
8755 case DT_MIPS_TIME_STAMP:
8756 {
8757 time_t t;
8758 time (&t);
8759 dyn.d_un.d_val = t;
8760 }
8761 break;
8762
8763 case DT_MIPS_ICHECKSUM:
8764 /* XXX FIXME: */
8765 swap_out_p = FALSE;
8766 break;
8767
8768 case DT_MIPS_IVERSION:
8769 /* XXX FIXME: */
8770 swap_out_p = FALSE;
8771 break;
8772
8773 case DT_MIPS_BASE_ADDRESS:
8774 s = output_bfd->sections;
8775 BFD_ASSERT (s != NULL);
8776 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8777 break;
8778
8779 case DT_MIPS_LOCAL_GOTNO:
8780 dyn.d_un.d_val = g->local_gotno;
8781 break;
8782
8783 case DT_MIPS_UNREFEXTNO:
8784 /* The index into the dynamic symbol table which is the
8785 entry of the first external symbol that is not
8786 referenced within the same object. */
8787 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8788 break;
8789
8790 case DT_MIPS_GOTSYM:
8791 if (gg->global_gotsym)
8792 {
8793 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8794 break;
8795 }
8796 /* In case if we don't have global got symbols we default
8797 to setting DT_MIPS_GOTSYM to the same value as
8798 DT_MIPS_SYMTABNO, so we just fall through. */
8799
8800 case DT_MIPS_SYMTABNO:
8801 name = ".dynsym";
8802 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8803 s = bfd_get_section_by_name (output_bfd, name);
8804 BFD_ASSERT (s != NULL);
8805
8806 dyn.d_un.d_val = s->size / elemsize;
8807 break;
8808
8809 case DT_MIPS_HIPAGENO:
8810 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8811 break;
8812
8813 case DT_MIPS_RLD_MAP:
8814 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8815 break;
8816
8817 case DT_MIPS_OPTIONS:
8818 s = (bfd_get_section_by_name
8819 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8820 dyn.d_un.d_ptr = s->vma;
8821 break;
8822
8823 case DT_RELASZ:
8824 BFD_ASSERT (htab->is_vxworks);
8825 /* The count does not include the JUMP_SLOT relocations. */
8826 if (htab->srelplt)
8827 dyn.d_un.d_val -= htab->srelplt->size;
8828 break;
8829
8830 case DT_PLTREL:
8831 BFD_ASSERT (htab->is_vxworks);
8832 dyn.d_un.d_val = DT_RELA;
8833 break;
8834
8835 case DT_PLTRELSZ:
8836 BFD_ASSERT (htab->is_vxworks);
8837 dyn.d_un.d_val = htab->srelplt->size;
8838 break;
8839
8840 case DT_JMPREL:
8841 BFD_ASSERT (htab->is_vxworks);
8842 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8843 + htab->srelplt->output_offset);
8844 break;
8845
8846 case DT_TEXTREL:
8847 /* If we didn't need any text relocations after all, delete
8848 the dynamic tag. */
8849 if (!(info->flags & DF_TEXTREL))
8850 {
8851 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8852 swap_out_p = FALSE;
8853 }
8854 break;
8855
8856 case DT_FLAGS:
8857 /* If we didn't need any text relocations after all, clear
8858 DF_TEXTREL from DT_FLAGS. */
8859 if (!(info->flags & DF_TEXTREL))
8860 dyn.d_un.d_val &= ~DF_TEXTREL;
8861 else
8862 swap_out_p = FALSE;
8863 break;
8864
8865 default:
8866 swap_out_p = FALSE;
8867 break;
8868 }
8869
8870 if (swap_out_p || dyn_skipped)
8871 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8872 (dynobj, &dyn, b - dyn_skipped);
8873
8874 if (dyn_to_skip)
8875 {
8876 dyn_skipped += dyn_to_skip;
8877 dyn_to_skip = 0;
8878 }
8879 }
8880
8881 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8882 if (dyn_skipped > 0)
8883 memset (b - dyn_skipped, 0, dyn_skipped);
8884 }
8885
8886 if (sgot != NULL && sgot->size > 0)
8887 {
8888 if (htab->is_vxworks)
8889 {
8890 /* The first entry of the global offset table points to the
8891 ".dynamic" section. The second is initialized by the
8892 loader and contains the shared library identifier.
8893 The third is also initialized by the loader and points
8894 to the lazy resolution stub. */
8895 MIPS_ELF_PUT_WORD (output_bfd,
8896 sdyn->output_offset + sdyn->output_section->vma,
8897 sgot->contents);
8898 MIPS_ELF_PUT_WORD (output_bfd, 0,
8899 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8900 MIPS_ELF_PUT_WORD (output_bfd, 0,
8901 sgot->contents
8902 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8903 }
8904 else
8905 {
8906 /* The first entry of the global offset table will be filled at
8907 runtime. The second entry will be used by some runtime loaders.
8908 This isn't the case of IRIX rld. */
8909 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8910 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8911 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8912 }
8913
8914 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8915 = MIPS_ELF_GOT_SIZE (output_bfd);
8916 }
8917
8918 /* Generate dynamic relocations for the non-primary gots. */
8919 if (gg != NULL && gg->next)
8920 {
8921 Elf_Internal_Rela rel[3];
8922 bfd_vma addend = 0;
8923
8924 memset (rel, 0, sizeof (rel));
8925 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8926
8927 for (g = gg->next; g->next != gg; g = g->next)
8928 {
8929 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8930 + g->next->tls_gotno;
8931
8932 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8933 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8934 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8935 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8936
8937 if (! info->shared)
8938 continue;
8939
8940 while (index < g->assigned_gotno)
8941 {
8942 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8943 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8944 if (!(mips_elf_create_dynamic_relocation
8945 (output_bfd, info, rel, NULL,
8946 bfd_abs_section_ptr,
8947 0, &addend, sgot)))
8948 return FALSE;
8949 BFD_ASSERT (addend == 0);
8950 }
8951 }
8952 }
8953
8954 /* The generation of dynamic relocations for the non-primary gots
8955 adds more dynamic relocations. We cannot count them until
8956 here. */
8957
8958 if (elf_hash_table (info)->dynamic_sections_created)
8959 {
8960 bfd_byte *b;
8961 bfd_boolean swap_out_p;
8962
8963 BFD_ASSERT (sdyn != NULL);
8964
8965 for (b = sdyn->contents;
8966 b < sdyn->contents + sdyn->size;
8967 b += MIPS_ELF_DYN_SIZE (dynobj))
8968 {
8969 Elf_Internal_Dyn dyn;
8970 asection *s;
8971
8972 /* Read in the current dynamic entry. */
8973 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8974
8975 /* Assume that we're going to modify it and write it out. */
8976 swap_out_p = TRUE;
8977
8978 switch (dyn.d_tag)
8979 {
8980 case DT_RELSZ:
8981 /* Reduce DT_RELSZ to account for any relocations we
8982 decided not to make. This is for the n64 irix rld,
8983 which doesn't seem to apply any relocations if there
8984 are trailing null entries. */
8985 s = mips_elf_rel_dyn_section (info, FALSE);
8986 dyn.d_un.d_val = (s->reloc_count
8987 * (ABI_64_P (output_bfd)
8988 ? sizeof (Elf64_Mips_External_Rel)
8989 : sizeof (Elf32_External_Rel)));
8990 /* Adjust the section size too. Tools like the prelinker
8991 can reasonably expect the values to the same. */
8992 elf_section_data (s->output_section)->this_hdr.sh_size
8993 = dyn.d_un.d_val;
8994 break;
8995
8996 default:
8997 swap_out_p = FALSE;
8998 break;
8999 }
9000
9001 if (swap_out_p)
9002 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9003 (dynobj, &dyn, b);
9004 }
9005 }
9006
9007 {
9008 asection *s;
9009 Elf32_compact_rel cpt;
9010
9011 if (SGI_COMPAT (output_bfd))
9012 {
9013 /* Write .compact_rel section out. */
9014 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9015 if (s != NULL)
9016 {
9017 cpt.id1 = 1;
9018 cpt.num = s->reloc_count;
9019 cpt.id2 = 2;
9020 cpt.offset = (s->output_section->filepos
9021 + sizeof (Elf32_External_compact_rel));
9022 cpt.reserved0 = 0;
9023 cpt.reserved1 = 0;
9024 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9025 ((Elf32_External_compact_rel *)
9026 s->contents));
9027
9028 /* Clean up a dummy stub function entry in .text. */
9029 s = bfd_get_section_by_name (dynobj,
9030 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9031 if (s != NULL)
9032 {
9033 file_ptr dummy_offset;
9034
9035 BFD_ASSERT (s->size >= htab->function_stub_size);
9036 dummy_offset = s->size - htab->function_stub_size;
9037 memset (s->contents + dummy_offset, 0,
9038 htab->function_stub_size);
9039 }
9040 }
9041 }
9042
9043 /* The psABI says that the dynamic relocations must be sorted in
9044 increasing order of r_symndx. The VxWorks EABI doesn't require
9045 this, and because the code below handles REL rather than RELA
9046 relocations, using it for VxWorks would be outright harmful. */
9047 if (!htab->is_vxworks)
9048 {
9049 s = mips_elf_rel_dyn_section (info, FALSE);
9050 if (s != NULL
9051 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9052 {
9053 reldyn_sorting_bfd = output_bfd;
9054
9055 if (ABI_64_P (output_bfd))
9056 qsort ((Elf64_External_Rel *) s->contents + 1,
9057 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9058 sort_dynamic_relocs_64);
9059 else
9060 qsort ((Elf32_External_Rel *) s->contents + 1,
9061 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9062 sort_dynamic_relocs);
9063 }
9064 }
9065 }
9066
9067 if (htab->is_vxworks && htab->splt->size > 0)
9068 {
9069 if (info->shared)
9070 mips_vxworks_finish_shared_plt (output_bfd, info);
9071 else
9072 mips_vxworks_finish_exec_plt (output_bfd, info);
9073 }
9074 return TRUE;
9075 }
9076
9077
9078 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9079
9080 static void
9081 mips_set_isa_flags (bfd *abfd)
9082 {
9083 flagword val;
9084
9085 switch (bfd_get_mach (abfd))
9086 {
9087 default:
9088 case bfd_mach_mips3000:
9089 val = E_MIPS_ARCH_1;
9090 break;
9091
9092 case bfd_mach_mips3900:
9093 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9094 break;
9095
9096 case bfd_mach_mips6000:
9097 val = E_MIPS_ARCH_2;
9098 break;
9099
9100 case bfd_mach_mips4000:
9101 case bfd_mach_mips4300:
9102 case bfd_mach_mips4400:
9103 case bfd_mach_mips4600:
9104 val = E_MIPS_ARCH_3;
9105 break;
9106
9107 case bfd_mach_mips4010:
9108 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9109 break;
9110
9111 case bfd_mach_mips4100:
9112 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9113 break;
9114
9115 case bfd_mach_mips4111:
9116 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9117 break;
9118
9119 case bfd_mach_mips4120:
9120 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9121 break;
9122
9123 case bfd_mach_mips4650:
9124 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9125 break;
9126
9127 case bfd_mach_mips5400:
9128 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9129 break;
9130
9131 case bfd_mach_mips5500:
9132 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9133 break;
9134
9135 case bfd_mach_mips9000:
9136 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9137 break;
9138
9139 case bfd_mach_mips5000:
9140 case bfd_mach_mips7000:
9141 case bfd_mach_mips8000:
9142 case bfd_mach_mips10000:
9143 case bfd_mach_mips12000:
9144 val = E_MIPS_ARCH_4;
9145 break;
9146
9147 case bfd_mach_mips5:
9148 val = E_MIPS_ARCH_5;
9149 break;
9150
9151 case bfd_mach_mips_sb1:
9152 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9153 break;
9154
9155 case bfd_mach_mipsisa32:
9156 val = E_MIPS_ARCH_32;
9157 break;
9158
9159 case bfd_mach_mipsisa64:
9160 val = E_MIPS_ARCH_64;
9161 break;
9162
9163 case bfd_mach_mipsisa32r2:
9164 val = E_MIPS_ARCH_32R2;
9165 break;
9166
9167 case bfd_mach_mipsisa64r2:
9168 val = E_MIPS_ARCH_64R2;
9169 break;
9170 }
9171 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9172 elf_elfheader (abfd)->e_flags |= val;
9173
9174 }
9175
9176
9177 /* The final processing done just before writing out a MIPS ELF object
9178 file. This gets the MIPS architecture right based on the machine
9179 number. This is used by both the 32-bit and the 64-bit ABI. */
9180
9181 void
9182 _bfd_mips_elf_final_write_processing (bfd *abfd,
9183 bfd_boolean linker ATTRIBUTE_UNUSED)
9184 {
9185 unsigned int i;
9186 Elf_Internal_Shdr **hdrpp;
9187 const char *name;
9188 asection *sec;
9189
9190 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9191 is nonzero. This is for compatibility with old objects, which used
9192 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9193 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9194 mips_set_isa_flags (abfd);
9195
9196 /* Set the sh_info field for .gptab sections and other appropriate
9197 info for each special section. */
9198 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9199 i < elf_numsections (abfd);
9200 i++, hdrpp++)
9201 {
9202 switch ((*hdrpp)->sh_type)
9203 {
9204 case SHT_MIPS_MSYM:
9205 case SHT_MIPS_LIBLIST:
9206 sec = bfd_get_section_by_name (abfd, ".dynstr");
9207 if (sec != NULL)
9208 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9209 break;
9210
9211 case SHT_MIPS_GPTAB:
9212 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9213 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9214 BFD_ASSERT (name != NULL
9215 && CONST_STRNEQ (name, ".gptab."));
9216 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9217 BFD_ASSERT (sec != NULL);
9218 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9219 break;
9220
9221 case SHT_MIPS_CONTENT:
9222 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9223 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9224 BFD_ASSERT (name != NULL
9225 && CONST_STRNEQ (name, ".MIPS.content"));
9226 sec = bfd_get_section_by_name (abfd,
9227 name + sizeof ".MIPS.content" - 1);
9228 BFD_ASSERT (sec != NULL);
9229 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9230 break;
9231
9232 case SHT_MIPS_SYMBOL_LIB:
9233 sec = bfd_get_section_by_name (abfd, ".dynsym");
9234 if (sec != NULL)
9235 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9236 sec = bfd_get_section_by_name (abfd, ".liblist");
9237 if (sec != NULL)
9238 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9239 break;
9240
9241 case SHT_MIPS_EVENTS:
9242 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9243 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9244 BFD_ASSERT (name != NULL);
9245 if (CONST_STRNEQ (name, ".MIPS.events"))
9246 sec = bfd_get_section_by_name (abfd,
9247 name + sizeof ".MIPS.events" - 1);
9248 else
9249 {
9250 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9251 sec = bfd_get_section_by_name (abfd,
9252 (name
9253 + sizeof ".MIPS.post_rel" - 1));
9254 }
9255 BFD_ASSERT (sec != NULL);
9256 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9257 break;
9258
9259 }
9260 }
9261 }
9262 \f
9263 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9264 segments. */
9265
9266 int
9267 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9268 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9269 {
9270 asection *s;
9271 int ret = 0;
9272
9273 /* See if we need a PT_MIPS_REGINFO segment. */
9274 s = bfd_get_section_by_name (abfd, ".reginfo");
9275 if (s && (s->flags & SEC_LOAD))
9276 ++ret;
9277
9278 /* See if we need a PT_MIPS_OPTIONS segment. */
9279 if (IRIX_COMPAT (abfd) == ict_irix6
9280 && bfd_get_section_by_name (abfd,
9281 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9282 ++ret;
9283
9284 /* See if we need a PT_MIPS_RTPROC segment. */
9285 if (IRIX_COMPAT (abfd) == ict_irix5
9286 && bfd_get_section_by_name (abfd, ".dynamic")
9287 && bfd_get_section_by_name (abfd, ".mdebug"))
9288 ++ret;
9289
9290 /* Allocate a PT_NULL header in dynamic objects. See
9291 _bfd_mips_elf_modify_segment_map for details. */
9292 if (!SGI_COMPAT (abfd)
9293 && bfd_get_section_by_name (abfd, ".dynamic"))
9294 ++ret;
9295
9296 return ret;
9297 }
9298
9299 /* Modify the segment map for an IRIX5 executable. */
9300
9301 bfd_boolean
9302 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9303 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9304 {
9305 asection *s;
9306 struct elf_segment_map *m, **pm;
9307 bfd_size_type amt;
9308
9309 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9310 segment. */
9311 s = bfd_get_section_by_name (abfd, ".reginfo");
9312 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9313 {
9314 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9315 if (m->p_type == PT_MIPS_REGINFO)
9316 break;
9317 if (m == NULL)
9318 {
9319 amt = sizeof *m;
9320 m = bfd_zalloc (abfd, amt);
9321 if (m == NULL)
9322 return FALSE;
9323
9324 m->p_type = PT_MIPS_REGINFO;
9325 m->count = 1;
9326 m->sections[0] = s;
9327
9328 /* We want to put it after the PHDR and INTERP segments. */
9329 pm = &elf_tdata (abfd)->segment_map;
9330 while (*pm != NULL
9331 && ((*pm)->p_type == PT_PHDR
9332 || (*pm)->p_type == PT_INTERP))
9333 pm = &(*pm)->next;
9334
9335 m->next = *pm;
9336 *pm = m;
9337 }
9338 }
9339
9340 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9341 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9342 PT_MIPS_OPTIONS segment immediately following the program header
9343 table. */
9344 if (NEWABI_P (abfd)
9345 /* On non-IRIX6 new abi, we'll have already created a segment
9346 for this section, so don't create another. I'm not sure this
9347 is not also the case for IRIX 6, but I can't test it right
9348 now. */
9349 && IRIX_COMPAT (abfd) == ict_irix6)
9350 {
9351 for (s = abfd->sections; s; s = s->next)
9352 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9353 break;
9354
9355 if (s)
9356 {
9357 struct elf_segment_map *options_segment;
9358
9359 pm = &elf_tdata (abfd)->segment_map;
9360 while (*pm != NULL
9361 && ((*pm)->p_type == PT_PHDR
9362 || (*pm)->p_type == PT_INTERP))
9363 pm = &(*pm)->next;
9364
9365 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9366 {
9367 amt = sizeof (struct elf_segment_map);
9368 options_segment = bfd_zalloc (abfd, amt);
9369 options_segment->next = *pm;
9370 options_segment->p_type = PT_MIPS_OPTIONS;
9371 options_segment->p_flags = PF_R;
9372 options_segment->p_flags_valid = TRUE;
9373 options_segment->count = 1;
9374 options_segment->sections[0] = s;
9375 *pm = options_segment;
9376 }
9377 }
9378 }
9379 else
9380 {
9381 if (IRIX_COMPAT (abfd) == ict_irix5)
9382 {
9383 /* If there are .dynamic and .mdebug sections, we make a room
9384 for the RTPROC header. FIXME: Rewrite without section names. */
9385 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9386 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9387 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9388 {
9389 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9390 if (m->p_type == PT_MIPS_RTPROC)
9391 break;
9392 if (m == NULL)
9393 {
9394 amt = sizeof *m;
9395 m = bfd_zalloc (abfd, amt);
9396 if (m == NULL)
9397 return FALSE;
9398
9399 m->p_type = PT_MIPS_RTPROC;
9400
9401 s = bfd_get_section_by_name (abfd, ".rtproc");
9402 if (s == NULL)
9403 {
9404 m->count = 0;
9405 m->p_flags = 0;
9406 m->p_flags_valid = 1;
9407 }
9408 else
9409 {
9410 m->count = 1;
9411 m->sections[0] = s;
9412 }
9413
9414 /* We want to put it after the DYNAMIC segment. */
9415 pm = &elf_tdata (abfd)->segment_map;
9416 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9417 pm = &(*pm)->next;
9418 if (*pm != NULL)
9419 pm = &(*pm)->next;
9420
9421 m->next = *pm;
9422 *pm = m;
9423 }
9424 }
9425 }
9426 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9427 .dynstr, .dynsym, and .hash sections, and everything in
9428 between. */
9429 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9430 pm = &(*pm)->next)
9431 if ((*pm)->p_type == PT_DYNAMIC)
9432 break;
9433 m = *pm;
9434 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9435 {
9436 /* For a normal mips executable the permissions for the PT_DYNAMIC
9437 segment are read, write and execute. We do that here since
9438 the code in elf.c sets only the read permission. This matters
9439 sometimes for the dynamic linker. */
9440 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9441 {
9442 m->p_flags = PF_R | PF_W | PF_X;
9443 m->p_flags_valid = 1;
9444 }
9445 }
9446 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9447 glibc's dynamic linker has traditionally derived the number of
9448 tags from the p_filesz field, and sometimes allocates stack
9449 arrays of that size. An overly-big PT_DYNAMIC segment can
9450 be actively harmful in such cases. Making PT_DYNAMIC contain
9451 other sections can also make life hard for the prelinker,
9452 which might move one of the other sections to a different
9453 PT_LOAD segment. */
9454 if (SGI_COMPAT (abfd)
9455 && m != NULL
9456 && m->count == 1
9457 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9458 {
9459 static const char *sec_names[] =
9460 {
9461 ".dynamic", ".dynstr", ".dynsym", ".hash"
9462 };
9463 bfd_vma low, high;
9464 unsigned int i, c;
9465 struct elf_segment_map *n;
9466
9467 low = ~(bfd_vma) 0;
9468 high = 0;
9469 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9470 {
9471 s = bfd_get_section_by_name (abfd, sec_names[i]);
9472 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9473 {
9474 bfd_size_type sz;
9475
9476 if (low > s->vma)
9477 low = s->vma;
9478 sz = s->size;
9479 if (high < s->vma + sz)
9480 high = s->vma + sz;
9481 }
9482 }
9483
9484 c = 0;
9485 for (s = abfd->sections; s != NULL; s = s->next)
9486 if ((s->flags & SEC_LOAD) != 0
9487 && s->vma >= low
9488 && s->vma + s->size <= high)
9489 ++c;
9490
9491 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9492 n = bfd_zalloc (abfd, amt);
9493 if (n == NULL)
9494 return FALSE;
9495 *n = *m;
9496 n->count = c;
9497
9498 i = 0;
9499 for (s = abfd->sections; s != NULL; s = s->next)
9500 {
9501 if ((s->flags & SEC_LOAD) != 0
9502 && s->vma >= low
9503 && s->vma + s->size <= high)
9504 {
9505 n->sections[i] = s;
9506 ++i;
9507 }
9508 }
9509
9510 *pm = n;
9511 }
9512 }
9513
9514 /* Allocate a spare program header in dynamic objects so that tools
9515 like the prelinker can add an extra PT_LOAD entry.
9516
9517 If the prelinker needs to make room for a new PT_LOAD entry, its
9518 standard procedure is to move the first (read-only) sections into
9519 the new (writable) segment. However, the MIPS ABI requires
9520 .dynamic to be in a read-only segment, and the section will often
9521 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9522
9523 Although the prelinker could in principle move .dynamic to a
9524 writable segment, it seems better to allocate a spare program
9525 header instead, and avoid the need to move any sections.
9526 There is a long tradition of allocating spare dynamic tags,
9527 so allocating a spare program header seems like a natural
9528 extension. */
9529 if (!SGI_COMPAT (abfd)
9530 && bfd_get_section_by_name (abfd, ".dynamic"))
9531 {
9532 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9533 if ((*pm)->p_type == PT_NULL)
9534 break;
9535 if (*pm == NULL)
9536 {
9537 m = bfd_zalloc (abfd, sizeof (*m));
9538 if (m == NULL)
9539 return FALSE;
9540
9541 m->p_type = PT_NULL;
9542 *pm = m;
9543 }
9544 }
9545
9546 return TRUE;
9547 }
9548 \f
9549 /* Return the section that should be marked against GC for a given
9550 relocation. */
9551
9552 asection *
9553 _bfd_mips_elf_gc_mark_hook (asection *sec,
9554 struct bfd_link_info *info,
9555 Elf_Internal_Rela *rel,
9556 struct elf_link_hash_entry *h,
9557 Elf_Internal_Sym *sym)
9558 {
9559 /* ??? Do mips16 stub sections need to be handled special? */
9560
9561 if (h != NULL)
9562 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9563 {
9564 case R_MIPS_GNU_VTINHERIT:
9565 case R_MIPS_GNU_VTENTRY:
9566 return NULL;
9567 }
9568
9569 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9570 }
9571
9572 /* Update the got entry reference counts for the section being removed. */
9573
9574 bfd_boolean
9575 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9576 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9577 asection *sec ATTRIBUTE_UNUSED,
9578 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9579 {
9580 #if 0
9581 Elf_Internal_Shdr *symtab_hdr;
9582 struct elf_link_hash_entry **sym_hashes;
9583 bfd_signed_vma *local_got_refcounts;
9584 const Elf_Internal_Rela *rel, *relend;
9585 unsigned long r_symndx;
9586 struct elf_link_hash_entry *h;
9587
9588 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9589 sym_hashes = elf_sym_hashes (abfd);
9590 local_got_refcounts = elf_local_got_refcounts (abfd);
9591
9592 relend = relocs + sec->reloc_count;
9593 for (rel = relocs; rel < relend; rel++)
9594 switch (ELF_R_TYPE (abfd, rel->r_info))
9595 {
9596 case R_MIPS_GOT16:
9597 case R_MIPS_CALL16:
9598 case R_MIPS_CALL_HI16:
9599 case R_MIPS_CALL_LO16:
9600 case R_MIPS_GOT_HI16:
9601 case R_MIPS_GOT_LO16:
9602 case R_MIPS_GOT_DISP:
9603 case R_MIPS_GOT_PAGE:
9604 case R_MIPS_GOT_OFST:
9605 /* ??? It would seem that the existing MIPS code does no sort
9606 of reference counting or whatnot on its GOT and PLT entries,
9607 so it is not possible to garbage collect them at this time. */
9608 break;
9609
9610 default:
9611 break;
9612 }
9613 #endif
9614
9615 return TRUE;
9616 }
9617 \f
9618 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9619 hiding the old indirect symbol. Process additional relocation
9620 information. Also called for weakdefs, in which case we just let
9621 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9622
9623 void
9624 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9625 struct elf_link_hash_entry *dir,
9626 struct elf_link_hash_entry *ind)
9627 {
9628 struct mips_elf_link_hash_entry *dirmips, *indmips;
9629
9630 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9631
9632 if (ind->root.type != bfd_link_hash_indirect)
9633 return;
9634
9635 dirmips = (struct mips_elf_link_hash_entry *) dir;
9636 indmips = (struct mips_elf_link_hash_entry *) ind;
9637 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9638 if (indmips->readonly_reloc)
9639 dirmips->readonly_reloc = TRUE;
9640 if (indmips->no_fn_stub)
9641 dirmips->no_fn_stub = TRUE;
9642
9643 if (dirmips->tls_type == 0)
9644 dirmips->tls_type = indmips->tls_type;
9645 }
9646
9647 void
9648 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9649 struct elf_link_hash_entry *entry,
9650 bfd_boolean force_local)
9651 {
9652 bfd *dynobj;
9653 asection *got;
9654 struct mips_got_info *g;
9655 struct mips_elf_link_hash_entry *h;
9656
9657 h = (struct mips_elf_link_hash_entry *) entry;
9658 if (h->forced_local)
9659 return;
9660 h->forced_local = force_local;
9661
9662 dynobj = elf_hash_table (info)->dynobj;
9663 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9664 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9665 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9666 {
9667 if (g->next)
9668 {
9669 struct mips_got_entry e;
9670 struct mips_got_info *gg = g;
9671
9672 /* Since we're turning what used to be a global symbol into a
9673 local one, bump up the number of local entries of each GOT
9674 that had an entry for it. This will automatically decrease
9675 the number of global entries, since global_gotno is actually
9676 the upper limit of global entries. */
9677 e.abfd = dynobj;
9678 e.symndx = -1;
9679 e.d.h = h;
9680 e.tls_type = 0;
9681
9682 for (g = g->next; g != gg; g = g->next)
9683 if (htab_find (g->got_entries, &e))
9684 {
9685 BFD_ASSERT (g->global_gotno > 0);
9686 g->local_gotno++;
9687 g->global_gotno--;
9688 }
9689
9690 /* If this was a global symbol forced into the primary GOT, we
9691 no longer need an entry for it. We can't release the entry
9692 at this point, but we must at least stop counting it as one
9693 of the symbols that required a forced got entry. */
9694 if (h->root.got.offset == 2)
9695 {
9696 BFD_ASSERT (gg->assigned_gotno > 0);
9697 gg->assigned_gotno--;
9698 }
9699 }
9700 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9701 /* If we haven't got through GOT allocation yet, just bump up the
9702 number of local entries, as this symbol won't be counted as
9703 global. */
9704 g->local_gotno++;
9705 else if (h->root.got.offset == 1)
9706 {
9707 /* If we're past non-multi-GOT allocation and this symbol had
9708 been marked for a global got entry, give it a local entry
9709 instead. */
9710 BFD_ASSERT (g->global_gotno > 0);
9711 g->local_gotno++;
9712 g->global_gotno--;
9713 }
9714 }
9715
9716 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9717 }
9718 \f
9719 #define PDR_SIZE 32
9720
9721 bfd_boolean
9722 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9723 struct bfd_link_info *info)
9724 {
9725 asection *o;
9726 bfd_boolean ret = FALSE;
9727 unsigned char *tdata;
9728 size_t i, skip;
9729
9730 o = bfd_get_section_by_name (abfd, ".pdr");
9731 if (! o)
9732 return FALSE;
9733 if (o->size == 0)
9734 return FALSE;
9735 if (o->size % PDR_SIZE != 0)
9736 return FALSE;
9737 if (o->output_section != NULL
9738 && bfd_is_abs_section (o->output_section))
9739 return FALSE;
9740
9741 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9742 if (! tdata)
9743 return FALSE;
9744
9745 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9746 info->keep_memory);
9747 if (!cookie->rels)
9748 {
9749 free (tdata);
9750 return FALSE;
9751 }
9752
9753 cookie->rel = cookie->rels;
9754 cookie->relend = cookie->rels + o->reloc_count;
9755
9756 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9757 {
9758 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9759 {
9760 tdata[i] = 1;
9761 skip ++;
9762 }
9763 }
9764
9765 if (skip != 0)
9766 {
9767 mips_elf_section_data (o)->u.tdata = tdata;
9768 o->size -= skip * PDR_SIZE;
9769 ret = TRUE;
9770 }
9771 else
9772 free (tdata);
9773
9774 if (! info->keep_memory)
9775 free (cookie->rels);
9776
9777 return ret;
9778 }
9779
9780 bfd_boolean
9781 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9782 {
9783 if (strcmp (sec->name, ".pdr") == 0)
9784 return TRUE;
9785 return FALSE;
9786 }
9787
9788 bfd_boolean
9789 _bfd_mips_elf_write_section (bfd *output_bfd,
9790 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9791 asection *sec, bfd_byte *contents)
9792 {
9793 bfd_byte *to, *from, *end;
9794 int i;
9795
9796 if (strcmp (sec->name, ".pdr") != 0)
9797 return FALSE;
9798
9799 if (mips_elf_section_data (sec)->u.tdata == NULL)
9800 return FALSE;
9801
9802 to = contents;
9803 end = contents + sec->size;
9804 for (from = contents, i = 0;
9805 from < end;
9806 from += PDR_SIZE, i++)
9807 {
9808 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9809 continue;
9810 if (to != from)
9811 memcpy (to, from, PDR_SIZE);
9812 to += PDR_SIZE;
9813 }
9814 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9815 sec->output_offset, sec->size);
9816 return TRUE;
9817 }
9818 \f
9819 /* MIPS ELF uses a special find_nearest_line routine in order the
9820 handle the ECOFF debugging information. */
9821
9822 struct mips_elf_find_line
9823 {
9824 struct ecoff_debug_info d;
9825 struct ecoff_find_line i;
9826 };
9827
9828 bfd_boolean
9829 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9830 asymbol **symbols, bfd_vma offset,
9831 const char **filename_ptr,
9832 const char **functionname_ptr,
9833 unsigned int *line_ptr)
9834 {
9835 asection *msec;
9836
9837 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9838 filename_ptr, functionname_ptr,
9839 line_ptr))
9840 return TRUE;
9841
9842 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9843 filename_ptr, functionname_ptr,
9844 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9845 &elf_tdata (abfd)->dwarf2_find_line_info))
9846 return TRUE;
9847
9848 msec = bfd_get_section_by_name (abfd, ".mdebug");
9849 if (msec != NULL)
9850 {
9851 flagword origflags;
9852 struct mips_elf_find_line *fi;
9853 const struct ecoff_debug_swap * const swap =
9854 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9855
9856 /* If we are called during a link, mips_elf_final_link may have
9857 cleared the SEC_HAS_CONTENTS field. We force it back on here
9858 if appropriate (which it normally will be). */
9859 origflags = msec->flags;
9860 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9861 msec->flags |= SEC_HAS_CONTENTS;
9862
9863 fi = elf_tdata (abfd)->find_line_info;
9864 if (fi == NULL)
9865 {
9866 bfd_size_type external_fdr_size;
9867 char *fraw_src;
9868 char *fraw_end;
9869 struct fdr *fdr_ptr;
9870 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9871
9872 fi = bfd_zalloc (abfd, amt);
9873 if (fi == NULL)
9874 {
9875 msec->flags = origflags;
9876 return FALSE;
9877 }
9878
9879 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9880 {
9881 msec->flags = origflags;
9882 return FALSE;
9883 }
9884
9885 /* Swap in the FDR information. */
9886 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9887 fi->d.fdr = bfd_alloc (abfd, amt);
9888 if (fi->d.fdr == NULL)
9889 {
9890 msec->flags = origflags;
9891 return FALSE;
9892 }
9893 external_fdr_size = swap->external_fdr_size;
9894 fdr_ptr = fi->d.fdr;
9895 fraw_src = (char *) fi->d.external_fdr;
9896 fraw_end = (fraw_src
9897 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9898 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9899 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9900
9901 elf_tdata (abfd)->find_line_info = fi;
9902
9903 /* Note that we don't bother to ever free this information.
9904 find_nearest_line is either called all the time, as in
9905 objdump -l, so the information should be saved, or it is
9906 rarely called, as in ld error messages, so the memory
9907 wasted is unimportant. Still, it would probably be a
9908 good idea for free_cached_info to throw it away. */
9909 }
9910
9911 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9912 &fi->i, filename_ptr, functionname_ptr,
9913 line_ptr))
9914 {
9915 msec->flags = origflags;
9916 return TRUE;
9917 }
9918
9919 msec->flags = origflags;
9920 }
9921
9922 /* Fall back on the generic ELF find_nearest_line routine. */
9923
9924 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9925 filename_ptr, functionname_ptr,
9926 line_ptr);
9927 }
9928
9929 bfd_boolean
9930 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9931 const char **filename_ptr,
9932 const char **functionname_ptr,
9933 unsigned int *line_ptr)
9934 {
9935 bfd_boolean found;
9936 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9937 functionname_ptr, line_ptr,
9938 & elf_tdata (abfd)->dwarf2_find_line_info);
9939 return found;
9940 }
9941
9942 \f
9943 /* When are writing out the .options or .MIPS.options section,
9944 remember the bytes we are writing out, so that we can install the
9945 GP value in the section_processing routine. */
9946
9947 bfd_boolean
9948 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9949 const void *location,
9950 file_ptr offset, bfd_size_type count)
9951 {
9952 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9953 {
9954 bfd_byte *c;
9955
9956 if (elf_section_data (section) == NULL)
9957 {
9958 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9959 section->used_by_bfd = bfd_zalloc (abfd, amt);
9960 if (elf_section_data (section) == NULL)
9961 return FALSE;
9962 }
9963 c = mips_elf_section_data (section)->u.tdata;
9964 if (c == NULL)
9965 {
9966 c = bfd_zalloc (abfd, section->size);
9967 if (c == NULL)
9968 return FALSE;
9969 mips_elf_section_data (section)->u.tdata = c;
9970 }
9971
9972 memcpy (c + offset, location, count);
9973 }
9974
9975 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9976 count);
9977 }
9978
9979 /* This is almost identical to bfd_generic_get_... except that some
9980 MIPS relocations need to be handled specially. Sigh. */
9981
9982 bfd_byte *
9983 _bfd_elf_mips_get_relocated_section_contents
9984 (bfd *abfd,
9985 struct bfd_link_info *link_info,
9986 struct bfd_link_order *link_order,
9987 bfd_byte *data,
9988 bfd_boolean relocatable,
9989 asymbol **symbols)
9990 {
9991 /* Get enough memory to hold the stuff */
9992 bfd *input_bfd = link_order->u.indirect.section->owner;
9993 asection *input_section = link_order->u.indirect.section;
9994 bfd_size_type sz;
9995
9996 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9997 arelent **reloc_vector = NULL;
9998 long reloc_count;
9999
10000 if (reloc_size < 0)
10001 goto error_return;
10002
10003 reloc_vector = bfd_malloc (reloc_size);
10004 if (reloc_vector == NULL && reloc_size != 0)
10005 goto error_return;
10006
10007 /* read in the section */
10008 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10009 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10010 goto error_return;
10011
10012 reloc_count = bfd_canonicalize_reloc (input_bfd,
10013 input_section,
10014 reloc_vector,
10015 symbols);
10016 if (reloc_count < 0)
10017 goto error_return;
10018
10019 if (reloc_count > 0)
10020 {
10021 arelent **parent;
10022 /* for mips */
10023 int gp_found;
10024 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10025
10026 {
10027 struct bfd_hash_entry *h;
10028 struct bfd_link_hash_entry *lh;
10029 /* Skip all this stuff if we aren't mixing formats. */
10030 if (abfd && input_bfd
10031 && abfd->xvec == input_bfd->xvec)
10032 lh = 0;
10033 else
10034 {
10035 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10036 lh = (struct bfd_link_hash_entry *) h;
10037 }
10038 lookup:
10039 if (lh)
10040 {
10041 switch (lh->type)
10042 {
10043 case bfd_link_hash_undefined:
10044 case bfd_link_hash_undefweak:
10045 case bfd_link_hash_common:
10046 gp_found = 0;
10047 break;
10048 case bfd_link_hash_defined:
10049 case bfd_link_hash_defweak:
10050 gp_found = 1;
10051 gp = lh->u.def.value;
10052 break;
10053 case bfd_link_hash_indirect:
10054 case bfd_link_hash_warning:
10055 lh = lh->u.i.link;
10056 /* @@FIXME ignoring warning for now */
10057 goto lookup;
10058 case bfd_link_hash_new:
10059 default:
10060 abort ();
10061 }
10062 }
10063 else
10064 gp_found = 0;
10065 }
10066 /* end mips */
10067 for (parent = reloc_vector; *parent != NULL; parent++)
10068 {
10069 char *error_message = NULL;
10070 bfd_reloc_status_type r;
10071
10072 /* Specific to MIPS: Deal with relocation types that require
10073 knowing the gp of the output bfd. */
10074 asymbol *sym = *(*parent)->sym_ptr_ptr;
10075
10076 /* If we've managed to find the gp and have a special
10077 function for the relocation then go ahead, else default
10078 to the generic handling. */
10079 if (gp_found
10080 && (*parent)->howto->special_function
10081 == _bfd_mips_elf32_gprel16_reloc)
10082 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10083 input_section, relocatable,
10084 data, gp);
10085 else
10086 r = bfd_perform_relocation (input_bfd, *parent, data,
10087 input_section,
10088 relocatable ? abfd : NULL,
10089 &error_message);
10090
10091 if (relocatable)
10092 {
10093 asection *os = input_section->output_section;
10094
10095 /* A partial link, so keep the relocs */
10096 os->orelocation[os->reloc_count] = *parent;
10097 os->reloc_count++;
10098 }
10099
10100 if (r != bfd_reloc_ok)
10101 {
10102 switch (r)
10103 {
10104 case bfd_reloc_undefined:
10105 if (!((*link_info->callbacks->undefined_symbol)
10106 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10107 input_bfd, input_section, (*parent)->address, TRUE)))
10108 goto error_return;
10109 break;
10110 case bfd_reloc_dangerous:
10111 BFD_ASSERT (error_message != NULL);
10112 if (!((*link_info->callbacks->reloc_dangerous)
10113 (link_info, error_message, input_bfd, input_section,
10114 (*parent)->address)))
10115 goto error_return;
10116 break;
10117 case bfd_reloc_overflow:
10118 if (!((*link_info->callbacks->reloc_overflow)
10119 (link_info, NULL,
10120 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10121 (*parent)->howto->name, (*parent)->addend,
10122 input_bfd, input_section, (*parent)->address)))
10123 goto error_return;
10124 break;
10125 case bfd_reloc_outofrange:
10126 default:
10127 abort ();
10128 break;
10129 }
10130
10131 }
10132 }
10133 }
10134 if (reloc_vector != NULL)
10135 free (reloc_vector);
10136 return data;
10137
10138 error_return:
10139 if (reloc_vector != NULL)
10140 free (reloc_vector);
10141 return NULL;
10142 }
10143 \f
10144 /* Create a MIPS ELF linker hash table. */
10145
10146 struct bfd_link_hash_table *
10147 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10148 {
10149 struct mips_elf_link_hash_table *ret;
10150 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10151
10152 ret = bfd_malloc (amt);
10153 if (ret == NULL)
10154 return NULL;
10155
10156 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10157 mips_elf_link_hash_newfunc,
10158 sizeof (struct mips_elf_link_hash_entry)))
10159 {
10160 free (ret);
10161 return NULL;
10162 }
10163
10164 #if 0
10165 /* We no longer use this. */
10166 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10167 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10168 #endif
10169 ret->procedure_count = 0;
10170 ret->compact_rel_size = 0;
10171 ret->use_rld_obj_head = FALSE;
10172 ret->rld_value = 0;
10173 ret->mips16_stubs_seen = FALSE;
10174 ret->is_vxworks = FALSE;
10175 ret->srelbss = NULL;
10176 ret->sdynbss = NULL;
10177 ret->srelplt = NULL;
10178 ret->srelplt2 = NULL;
10179 ret->sgotplt = NULL;
10180 ret->splt = NULL;
10181 ret->plt_header_size = 0;
10182 ret->plt_entry_size = 0;
10183 ret->function_stub_size = 0;
10184
10185 return &ret->root.root;
10186 }
10187
10188 /* Likewise, but indicate that the target is VxWorks. */
10189
10190 struct bfd_link_hash_table *
10191 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10192 {
10193 struct bfd_link_hash_table *ret;
10194
10195 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10196 if (ret)
10197 {
10198 struct mips_elf_link_hash_table *htab;
10199
10200 htab = (struct mips_elf_link_hash_table *) ret;
10201 htab->is_vxworks = 1;
10202 }
10203 return ret;
10204 }
10205 \f
10206 /* We need to use a special link routine to handle the .reginfo and
10207 the .mdebug sections. We need to merge all instances of these
10208 sections together, not write them all out sequentially. */
10209
10210 bfd_boolean
10211 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10212 {
10213 asection *o;
10214 struct bfd_link_order *p;
10215 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10216 asection *rtproc_sec;
10217 Elf32_RegInfo reginfo;
10218 struct ecoff_debug_info debug;
10219 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10220 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10221 HDRR *symhdr = &debug.symbolic_header;
10222 void *mdebug_handle = NULL;
10223 asection *s;
10224 EXTR esym;
10225 unsigned int i;
10226 bfd_size_type amt;
10227 struct mips_elf_link_hash_table *htab;
10228
10229 static const char * const secname[] =
10230 {
10231 ".text", ".init", ".fini", ".data",
10232 ".rodata", ".sdata", ".sbss", ".bss"
10233 };
10234 static const int sc[] =
10235 {
10236 scText, scInit, scFini, scData,
10237 scRData, scSData, scSBss, scBss
10238 };
10239
10240 /* We'd carefully arranged the dynamic symbol indices, and then the
10241 generic size_dynamic_sections renumbered them out from under us.
10242 Rather than trying somehow to prevent the renumbering, just do
10243 the sort again. */
10244 htab = mips_elf_hash_table (info);
10245 if (elf_hash_table (info)->dynamic_sections_created)
10246 {
10247 bfd *dynobj;
10248 asection *got;
10249 struct mips_got_info *g;
10250 bfd_size_type dynsecsymcount;
10251
10252 /* When we resort, we must tell mips_elf_sort_hash_table what
10253 the lowest index it may use is. That's the number of section
10254 symbols we're going to add. The generic ELF linker only
10255 adds these symbols when building a shared object. Note that
10256 we count the sections after (possibly) removing the .options
10257 section above. */
10258
10259 dynsecsymcount = count_section_dynsyms (abfd, info);
10260 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10261 return FALSE;
10262
10263 /* Make sure we didn't grow the global .got region. */
10264 dynobj = elf_hash_table (info)->dynobj;
10265 got = mips_elf_got_section (dynobj, FALSE);
10266 g = mips_elf_section_data (got)->u.got_info;
10267
10268 if (g->global_gotsym != NULL)
10269 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10270 - g->global_gotsym->dynindx)
10271 <= g->global_gotno);
10272 }
10273
10274 /* Get a value for the GP register. */
10275 if (elf_gp (abfd) == 0)
10276 {
10277 struct bfd_link_hash_entry *h;
10278
10279 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10280 if (h != NULL && h->type == bfd_link_hash_defined)
10281 elf_gp (abfd) = (h->u.def.value
10282 + h->u.def.section->output_section->vma
10283 + h->u.def.section->output_offset);
10284 else if (htab->is_vxworks
10285 && (h = bfd_link_hash_lookup (info->hash,
10286 "_GLOBAL_OFFSET_TABLE_",
10287 FALSE, FALSE, TRUE))
10288 && h->type == bfd_link_hash_defined)
10289 elf_gp (abfd) = (h->u.def.section->output_section->vma
10290 + h->u.def.section->output_offset
10291 + h->u.def.value);
10292 else if (info->relocatable)
10293 {
10294 bfd_vma lo = MINUS_ONE;
10295
10296 /* Find the GP-relative section with the lowest offset. */
10297 for (o = abfd->sections; o != NULL; o = o->next)
10298 if (o->vma < lo
10299 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10300 lo = o->vma;
10301
10302 /* And calculate GP relative to that. */
10303 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10304 }
10305 else
10306 {
10307 /* If the relocate_section function needs to do a reloc
10308 involving the GP value, it should make a reloc_dangerous
10309 callback to warn that GP is not defined. */
10310 }
10311 }
10312
10313 /* Go through the sections and collect the .reginfo and .mdebug
10314 information. */
10315 reginfo_sec = NULL;
10316 mdebug_sec = NULL;
10317 gptab_data_sec = NULL;
10318 gptab_bss_sec = NULL;
10319 for (o = abfd->sections; o != NULL; o = o->next)
10320 {
10321 if (strcmp (o->name, ".reginfo") == 0)
10322 {
10323 memset (&reginfo, 0, sizeof reginfo);
10324
10325 /* We have found the .reginfo section in the output file.
10326 Look through all the link_orders comprising it and merge
10327 the information together. */
10328 for (p = o->map_head.link_order; p != NULL; p = p->next)
10329 {
10330 asection *input_section;
10331 bfd *input_bfd;
10332 Elf32_External_RegInfo ext;
10333 Elf32_RegInfo sub;
10334
10335 if (p->type != bfd_indirect_link_order)
10336 {
10337 if (p->type == bfd_data_link_order)
10338 continue;
10339 abort ();
10340 }
10341
10342 input_section = p->u.indirect.section;
10343 input_bfd = input_section->owner;
10344
10345 if (! bfd_get_section_contents (input_bfd, input_section,
10346 &ext, 0, sizeof ext))
10347 return FALSE;
10348
10349 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10350
10351 reginfo.ri_gprmask |= sub.ri_gprmask;
10352 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10353 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10354 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10355 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10356
10357 /* ri_gp_value is set by the function
10358 mips_elf32_section_processing when the section is
10359 finally written out. */
10360
10361 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10362 elf_link_input_bfd ignores this section. */
10363 input_section->flags &= ~SEC_HAS_CONTENTS;
10364 }
10365
10366 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10367 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10368
10369 /* Skip this section later on (I don't think this currently
10370 matters, but someday it might). */
10371 o->map_head.link_order = NULL;
10372
10373 reginfo_sec = o;
10374 }
10375
10376 if (strcmp (o->name, ".mdebug") == 0)
10377 {
10378 struct extsym_info einfo;
10379 bfd_vma last;
10380
10381 /* We have found the .mdebug section in the output file.
10382 Look through all the link_orders comprising it and merge
10383 the information together. */
10384 symhdr->magic = swap->sym_magic;
10385 /* FIXME: What should the version stamp be? */
10386 symhdr->vstamp = 0;
10387 symhdr->ilineMax = 0;
10388 symhdr->cbLine = 0;
10389 symhdr->idnMax = 0;
10390 symhdr->ipdMax = 0;
10391 symhdr->isymMax = 0;
10392 symhdr->ioptMax = 0;
10393 symhdr->iauxMax = 0;
10394 symhdr->issMax = 0;
10395 symhdr->issExtMax = 0;
10396 symhdr->ifdMax = 0;
10397 symhdr->crfd = 0;
10398 symhdr->iextMax = 0;
10399
10400 /* We accumulate the debugging information itself in the
10401 debug_info structure. */
10402 debug.line = NULL;
10403 debug.external_dnr = NULL;
10404 debug.external_pdr = NULL;
10405 debug.external_sym = NULL;
10406 debug.external_opt = NULL;
10407 debug.external_aux = NULL;
10408 debug.ss = NULL;
10409 debug.ssext = debug.ssext_end = NULL;
10410 debug.external_fdr = NULL;
10411 debug.external_rfd = NULL;
10412 debug.external_ext = debug.external_ext_end = NULL;
10413
10414 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10415 if (mdebug_handle == NULL)
10416 return FALSE;
10417
10418 esym.jmptbl = 0;
10419 esym.cobol_main = 0;
10420 esym.weakext = 0;
10421 esym.reserved = 0;
10422 esym.ifd = ifdNil;
10423 esym.asym.iss = issNil;
10424 esym.asym.st = stLocal;
10425 esym.asym.reserved = 0;
10426 esym.asym.index = indexNil;
10427 last = 0;
10428 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10429 {
10430 esym.asym.sc = sc[i];
10431 s = bfd_get_section_by_name (abfd, secname[i]);
10432 if (s != NULL)
10433 {
10434 esym.asym.value = s->vma;
10435 last = s->vma + s->size;
10436 }
10437 else
10438 esym.asym.value = last;
10439 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10440 secname[i], &esym))
10441 return FALSE;
10442 }
10443
10444 for (p = o->map_head.link_order; p != NULL; p = p->next)
10445 {
10446 asection *input_section;
10447 bfd *input_bfd;
10448 const struct ecoff_debug_swap *input_swap;
10449 struct ecoff_debug_info input_debug;
10450 char *eraw_src;
10451 char *eraw_end;
10452
10453 if (p->type != bfd_indirect_link_order)
10454 {
10455 if (p->type == bfd_data_link_order)
10456 continue;
10457 abort ();
10458 }
10459
10460 input_section = p->u.indirect.section;
10461 input_bfd = input_section->owner;
10462
10463 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10464 || (get_elf_backend_data (input_bfd)
10465 ->elf_backend_ecoff_debug_swap) == NULL)
10466 {
10467 /* I don't know what a non MIPS ELF bfd would be
10468 doing with a .mdebug section, but I don't really
10469 want to deal with it. */
10470 continue;
10471 }
10472
10473 input_swap = (get_elf_backend_data (input_bfd)
10474 ->elf_backend_ecoff_debug_swap);
10475
10476 BFD_ASSERT (p->size == input_section->size);
10477
10478 /* The ECOFF linking code expects that we have already
10479 read in the debugging information and set up an
10480 ecoff_debug_info structure, so we do that now. */
10481 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10482 &input_debug))
10483 return FALSE;
10484
10485 if (! (bfd_ecoff_debug_accumulate
10486 (mdebug_handle, abfd, &debug, swap, input_bfd,
10487 &input_debug, input_swap, info)))
10488 return FALSE;
10489
10490 /* Loop through the external symbols. For each one with
10491 interesting information, try to find the symbol in
10492 the linker global hash table and save the information
10493 for the output external symbols. */
10494 eraw_src = input_debug.external_ext;
10495 eraw_end = (eraw_src
10496 + (input_debug.symbolic_header.iextMax
10497 * input_swap->external_ext_size));
10498 for (;
10499 eraw_src < eraw_end;
10500 eraw_src += input_swap->external_ext_size)
10501 {
10502 EXTR ext;
10503 const char *name;
10504 struct mips_elf_link_hash_entry *h;
10505
10506 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10507 if (ext.asym.sc == scNil
10508 || ext.asym.sc == scUndefined
10509 || ext.asym.sc == scSUndefined)
10510 continue;
10511
10512 name = input_debug.ssext + ext.asym.iss;
10513 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10514 name, FALSE, FALSE, TRUE);
10515 if (h == NULL || h->esym.ifd != -2)
10516 continue;
10517
10518 if (ext.ifd != -1)
10519 {
10520 BFD_ASSERT (ext.ifd
10521 < input_debug.symbolic_header.ifdMax);
10522 ext.ifd = input_debug.ifdmap[ext.ifd];
10523 }
10524
10525 h->esym = ext;
10526 }
10527
10528 /* Free up the information we just read. */
10529 free (input_debug.line);
10530 free (input_debug.external_dnr);
10531 free (input_debug.external_pdr);
10532 free (input_debug.external_sym);
10533 free (input_debug.external_opt);
10534 free (input_debug.external_aux);
10535 free (input_debug.ss);
10536 free (input_debug.ssext);
10537 free (input_debug.external_fdr);
10538 free (input_debug.external_rfd);
10539 free (input_debug.external_ext);
10540
10541 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10542 elf_link_input_bfd ignores this section. */
10543 input_section->flags &= ~SEC_HAS_CONTENTS;
10544 }
10545
10546 if (SGI_COMPAT (abfd) && info->shared)
10547 {
10548 /* Create .rtproc section. */
10549 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10550 if (rtproc_sec == NULL)
10551 {
10552 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10553 | SEC_LINKER_CREATED | SEC_READONLY);
10554
10555 rtproc_sec = bfd_make_section_with_flags (abfd,
10556 ".rtproc",
10557 flags);
10558 if (rtproc_sec == NULL
10559 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10560 return FALSE;
10561 }
10562
10563 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10564 info, rtproc_sec,
10565 &debug))
10566 return FALSE;
10567 }
10568
10569 /* Build the external symbol information. */
10570 einfo.abfd = abfd;
10571 einfo.info = info;
10572 einfo.debug = &debug;
10573 einfo.swap = swap;
10574 einfo.failed = FALSE;
10575 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10576 mips_elf_output_extsym, &einfo);
10577 if (einfo.failed)
10578 return FALSE;
10579
10580 /* Set the size of the .mdebug section. */
10581 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10582
10583 /* Skip this section later on (I don't think this currently
10584 matters, but someday it might). */
10585 o->map_head.link_order = NULL;
10586
10587 mdebug_sec = o;
10588 }
10589
10590 if (CONST_STRNEQ (o->name, ".gptab."))
10591 {
10592 const char *subname;
10593 unsigned int c;
10594 Elf32_gptab *tab;
10595 Elf32_External_gptab *ext_tab;
10596 unsigned int j;
10597
10598 /* The .gptab.sdata and .gptab.sbss sections hold
10599 information describing how the small data area would
10600 change depending upon the -G switch. These sections
10601 not used in executables files. */
10602 if (! info->relocatable)
10603 {
10604 for (p = o->map_head.link_order; p != NULL; p = p->next)
10605 {
10606 asection *input_section;
10607
10608 if (p->type != bfd_indirect_link_order)
10609 {
10610 if (p->type == bfd_data_link_order)
10611 continue;
10612 abort ();
10613 }
10614
10615 input_section = p->u.indirect.section;
10616
10617 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10618 elf_link_input_bfd ignores this section. */
10619 input_section->flags &= ~SEC_HAS_CONTENTS;
10620 }
10621
10622 /* Skip this section later on (I don't think this
10623 currently matters, but someday it might). */
10624 o->map_head.link_order = NULL;
10625
10626 /* Really remove the section. */
10627 bfd_section_list_remove (abfd, o);
10628 --abfd->section_count;
10629
10630 continue;
10631 }
10632
10633 /* There is one gptab for initialized data, and one for
10634 uninitialized data. */
10635 if (strcmp (o->name, ".gptab.sdata") == 0)
10636 gptab_data_sec = o;
10637 else if (strcmp (o->name, ".gptab.sbss") == 0)
10638 gptab_bss_sec = o;
10639 else
10640 {
10641 (*_bfd_error_handler)
10642 (_("%s: illegal section name `%s'"),
10643 bfd_get_filename (abfd), o->name);
10644 bfd_set_error (bfd_error_nonrepresentable_section);
10645 return FALSE;
10646 }
10647
10648 /* The linker script always combines .gptab.data and
10649 .gptab.sdata into .gptab.sdata, and likewise for
10650 .gptab.bss and .gptab.sbss. It is possible that there is
10651 no .sdata or .sbss section in the output file, in which
10652 case we must change the name of the output section. */
10653 subname = o->name + sizeof ".gptab" - 1;
10654 if (bfd_get_section_by_name (abfd, subname) == NULL)
10655 {
10656 if (o == gptab_data_sec)
10657 o->name = ".gptab.data";
10658 else
10659 o->name = ".gptab.bss";
10660 subname = o->name + sizeof ".gptab" - 1;
10661 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10662 }
10663
10664 /* Set up the first entry. */
10665 c = 1;
10666 amt = c * sizeof (Elf32_gptab);
10667 tab = bfd_malloc (amt);
10668 if (tab == NULL)
10669 return FALSE;
10670 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10671 tab[0].gt_header.gt_unused = 0;
10672
10673 /* Combine the input sections. */
10674 for (p = o->map_head.link_order; p != NULL; p = p->next)
10675 {
10676 asection *input_section;
10677 bfd *input_bfd;
10678 bfd_size_type size;
10679 unsigned long last;
10680 bfd_size_type gpentry;
10681
10682 if (p->type != bfd_indirect_link_order)
10683 {
10684 if (p->type == bfd_data_link_order)
10685 continue;
10686 abort ();
10687 }
10688
10689 input_section = p->u.indirect.section;
10690 input_bfd = input_section->owner;
10691
10692 /* Combine the gptab entries for this input section one
10693 by one. We know that the input gptab entries are
10694 sorted by ascending -G value. */
10695 size = input_section->size;
10696 last = 0;
10697 for (gpentry = sizeof (Elf32_External_gptab);
10698 gpentry < size;
10699 gpentry += sizeof (Elf32_External_gptab))
10700 {
10701 Elf32_External_gptab ext_gptab;
10702 Elf32_gptab int_gptab;
10703 unsigned long val;
10704 unsigned long add;
10705 bfd_boolean exact;
10706 unsigned int look;
10707
10708 if (! (bfd_get_section_contents
10709 (input_bfd, input_section, &ext_gptab, gpentry,
10710 sizeof (Elf32_External_gptab))))
10711 {
10712 free (tab);
10713 return FALSE;
10714 }
10715
10716 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10717 &int_gptab);
10718 val = int_gptab.gt_entry.gt_g_value;
10719 add = int_gptab.gt_entry.gt_bytes - last;
10720
10721 exact = FALSE;
10722 for (look = 1; look < c; look++)
10723 {
10724 if (tab[look].gt_entry.gt_g_value >= val)
10725 tab[look].gt_entry.gt_bytes += add;
10726
10727 if (tab[look].gt_entry.gt_g_value == val)
10728 exact = TRUE;
10729 }
10730
10731 if (! exact)
10732 {
10733 Elf32_gptab *new_tab;
10734 unsigned int max;
10735
10736 /* We need a new table entry. */
10737 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10738 new_tab = bfd_realloc (tab, amt);
10739 if (new_tab == NULL)
10740 {
10741 free (tab);
10742 return FALSE;
10743 }
10744 tab = new_tab;
10745 tab[c].gt_entry.gt_g_value = val;
10746 tab[c].gt_entry.gt_bytes = add;
10747
10748 /* Merge in the size for the next smallest -G
10749 value, since that will be implied by this new
10750 value. */
10751 max = 0;
10752 for (look = 1; look < c; look++)
10753 {
10754 if (tab[look].gt_entry.gt_g_value < val
10755 && (max == 0
10756 || (tab[look].gt_entry.gt_g_value
10757 > tab[max].gt_entry.gt_g_value)))
10758 max = look;
10759 }
10760 if (max != 0)
10761 tab[c].gt_entry.gt_bytes +=
10762 tab[max].gt_entry.gt_bytes;
10763
10764 ++c;
10765 }
10766
10767 last = int_gptab.gt_entry.gt_bytes;
10768 }
10769
10770 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10771 elf_link_input_bfd ignores this section. */
10772 input_section->flags &= ~SEC_HAS_CONTENTS;
10773 }
10774
10775 /* The table must be sorted by -G value. */
10776 if (c > 2)
10777 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10778
10779 /* Swap out the table. */
10780 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10781 ext_tab = bfd_alloc (abfd, amt);
10782 if (ext_tab == NULL)
10783 {
10784 free (tab);
10785 return FALSE;
10786 }
10787
10788 for (j = 0; j < c; j++)
10789 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10790 free (tab);
10791
10792 o->size = c * sizeof (Elf32_External_gptab);
10793 o->contents = (bfd_byte *) ext_tab;
10794
10795 /* Skip this section later on (I don't think this currently
10796 matters, but someday it might). */
10797 o->map_head.link_order = NULL;
10798 }
10799 }
10800
10801 /* Invoke the regular ELF backend linker to do all the work. */
10802 if (!bfd_elf_final_link (abfd, info))
10803 return FALSE;
10804
10805 /* Now write out the computed sections. */
10806
10807 if (reginfo_sec != NULL)
10808 {
10809 Elf32_External_RegInfo ext;
10810
10811 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10812 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10813 return FALSE;
10814 }
10815
10816 if (mdebug_sec != NULL)
10817 {
10818 BFD_ASSERT (abfd->output_has_begun);
10819 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10820 swap, info,
10821 mdebug_sec->filepos))
10822 return FALSE;
10823
10824 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10825 }
10826
10827 if (gptab_data_sec != NULL)
10828 {
10829 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10830 gptab_data_sec->contents,
10831 0, gptab_data_sec->size))
10832 return FALSE;
10833 }
10834
10835 if (gptab_bss_sec != NULL)
10836 {
10837 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10838 gptab_bss_sec->contents,
10839 0, gptab_bss_sec->size))
10840 return FALSE;
10841 }
10842
10843 if (SGI_COMPAT (abfd))
10844 {
10845 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10846 if (rtproc_sec != NULL)
10847 {
10848 if (! bfd_set_section_contents (abfd, rtproc_sec,
10849 rtproc_sec->contents,
10850 0, rtproc_sec->size))
10851 return FALSE;
10852 }
10853 }
10854
10855 return TRUE;
10856 }
10857 \f
10858 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10859
10860 struct mips_mach_extension {
10861 unsigned long extension, base;
10862 };
10863
10864
10865 /* An array describing how BFD machines relate to one another. The entries
10866 are ordered topologically with MIPS I extensions listed last. */
10867
10868 static const struct mips_mach_extension mips_mach_extensions[] = {
10869 /* MIPS64 extensions. */
10870 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10871 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10872
10873 /* MIPS V extensions. */
10874 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10875
10876 /* R10000 extensions. */
10877 { bfd_mach_mips12000, bfd_mach_mips10000 },
10878
10879 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10880 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10881 better to allow vr5400 and vr5500 code to be merged anyway, since
10882 many libraries will just use the core ISA. Perhaps we could add
10883 some sort of ASE flag if this ever proves a problem. */
10884 { bfd_mach_mips5500, bfd_mach_mips5400 },
10885 { bfd_mach_mips5400, bfd_mach_mips5000 },
10886
10887 /* MIPS IV extensions. */
10888 { bfd_mach_mips5, bfd_mach_mips8000 },
10889 { bfd_mach_mips10000, bfd_mach_mips8000 },
10890 { bfd_mach_mips5000, bfd_mach_mips8000 },
10891 { bfd_mach_mips7000, bfd_mach_mips8000 },
10892 { bfd_mach_mips9000, bfd_mach_mips8000 },
10893
10894 /* VR4100 extensions. */
10895 { bfd_mach_mips4120, bfd_mach_mips4100 },
10896 { bfd_mach_mips4111, bfd_mach_mips4100 },
10897
10898 /* MIPS III extensions. */
10899 { bfd_mach_mips8000, bfd_mach_mips4000 },
10900 { bfd_mach_mips4650, bfd_mach_mips4000 },
10901 { bfd_mach_mips4600, bfd_mach_mips4000 },
10902 { bfd_mach_mips4400, bfd_mach_mips4000 },
10903 { bfd_mach_mips4300, bfd_mach_mips4000 },
10904 { bfd_mach_mips4100, bfd_mach_mips4000 },
10905 { bfd_mach_mips4010, bfd_mach_mips4000 },
10906
10907 /* MIPS32 extensions. */
10908 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10909
10910 /* MIPS II extensions. */
10911 { bfd_mach_mips4000, bfd_mach_mips6000 },
10912 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10913
10914 /* MIPS I extensions. */
10915 { bfd_mach_mips6000, bfd_mach_mips3000 },
10916 { bfd_mach_mips3900, bfd_mach_mips3000 }
10917 };
10918
10919
10920 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10921
10922 static bfd_boolean
10923 mips_mach_extends_p (unsigned long base, unsigned long extension)
10924 {
10925 size_t i;
10926
10927 if (extension == base)
10928 return TRUE;
10929
10930 if (base == bfd_mach_mipsisa32
10931 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10932 return TRUE;
10933
10934 if (base == bfd_mach_mipsisa32r2
10935 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10936 return TRUE;
10937
10938 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10939 if (extension == mips_mach_extensions[i].extension)
10940 {
10941 extension = mips_mach_extensions[i].base;
10942 if (extension == base)
10943 return TRUE;
10944 }
10945
10946 return FALSE;
10947 }
10948
10949
10950 /* Return true if the given ELF header flags describe a 32-bit binary. */
10951
10952 static bfd_boolean
10953 mips_32bit_flags_p (flagword flags)
10954 {
10955 return ((flags & EF_MIPS_32BITMODE) != 0
10956 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10957 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10958 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10959 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10960 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10961 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10962 }
10963
10964
10965 /* Merge object attributes from IBFD into OBFD. Raise an error if
10966 there are conflicting attributes. */
10967 static bfd_boolean
10968 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
10969 {
10970 obj_attribute *in_attr;
10971 obj_attribute *out_attr;
10972
10973 if (!elf_known_obj_attributes_proc (obfd)[0].i)
10974 {
10975 /* This is the first object. Copy the attributes. */
10976 _bfd_elf_copy_obj_attributes (ibfd, obfd);
10977
10978 /* Use the Tag_null value to indicate the attributes have been
10979 initialized. */
10980 elf_known_obj_attributes_proc (obfd)[0].i = 1;
10981
10982 return TRUE;
10983 }
10984
10985 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
10986 non-conflicting ones. */
10987 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
10988 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
10989 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
10990 {
10991 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
10992 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
10993 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
10994 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
10995 ;
10996 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
10997 _bfd_error_handler
10998 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
10999 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11000 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11001 _bfd_error_handler
11002 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11003 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11004 else
11005 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11006 {
11007 case 1:
11008 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11009 {
11010 case 2:
11011 _bfd_error_handler
11012 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11013 obfd, ibfd);
11014
11015 case 3:
11016 _bfd_error_handler
11017 (_("Warning: %B uses hard float, %B uses soft float"),
11018 obfd, ibfd);
11019 break;
11020
11021 default:
11022 abort ();
11023 }
11024 break;
11025
11026 case 2:
11027 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11028 {
11029 case 1:
11030 _bfd_error_handler
11031 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11032 ibfd, obfd);
11033
11034 case 3:
11035 _bfd_error_handler
11036 (_("Warning: %B uses hard float, %B uses soft float"),
11037 obfd, ibfd);
11038 break;
11039
11040 default:
11041 abort ();
11042 }
11043 break;
11044
11045 case 3:
11046 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11047 {
11048 case 1:
11049 case 2:
11050 _bfd_error_handler
11051 (_("Warning: %B uses hard float, %B uses soft float"),
11052 ibfd, obfd);
11053 break;
11054
11055 default:
11056 abort ();
11057 }
11058 break;
11059
11060 default:
11061 abort ();
11062 }
11063 }
11064
11065 /* Merge Tag_compatibility attributes and any common GNU ones. */
11066 _bfd_elf_merge_object_attributes (ibfd, obfd);
11067
11068 return TRUE;
11069 }
11070
11071 /* Merge backend specific data from an object file to the output
11072 object file when linking. */
11073
11074 bfd_boolean
11075 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11076 {
11077 flagword old_flags;
11078 flagword new_flags;
11079 bfd_boolean ok;
11080 bfd_boolean null_input_bfd = TRUE;
11081 asection *sec;
11082
11083 /* Check if we have the same endianess */
11084 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11085 {
11086 (*_bfd_error_handler)
11087 (_("%B: endianness incompatible with that of the selected emulation"),
11088 ibfd);
11089 return FALSE;
11090 }
11091
11092 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11093 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11094 return TRUE;
11095
11096 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11097 {
11098 (*_bfd_error_handler)
11099 (_("%B: ABI is incompatible with that of the selected emulation"),
11100 ibfd);
11101 return FALSE;
11102 }
11103
11104 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11105 return FALSE;
11106
11107 new_flags = elf_elfheader (ibfd)->e_flags;
11108 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11109 old_flags = elf_elfheader (obfd)->e_flags;
11110
11111 if (! elf_flags_init (obfd))
11112 {
11113 elf_flags_init (obfd) = TRUE;
11114 elf_elfheader (obfd)->e_flags = new_flags;
11115 elf_elfheader (obfd)->e_ident[EI_CLASS]
11116 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11117
11118 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11119 && (bfd_get_arch_info (obfd)->the_default
11120 || mips_mach_extends_p (bfd_get_mach (obfd),
11121 bfd_get_mach (ibfd))))
11122 {
11123 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11124 bfd_get_mach (ibfd)))
11125 return FALSE;
11126 }
11127
11128 return TRUE;
11129 }
11130
11131 /* Check flag compatibility. */
11132
11133 new_flags &= ~EF_MIPS_NOREORDER;
11134 old_flags &= ~EF_MIPS_NOREORDER;
11135
11136 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11137 doesn't seem to matter. */
11138 new_flags &= ~EF_MIPS_XGOT;
11139 old_flags &= ~EF_MIPS_XGOT;
11140
11141 /* MIPSpro generates ucode info in n64 objects. Again, we should
11142 just be able to ignore this. */
11143 new_flags &= ~EF_MIPS_UCODE;
11144 old_flags &= ~EF_MIPS_UCODE;
11145
11146 /* Don't care about the PIC flags from dynamic objects; they are
11147 PIC by design. */
11148 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11149 && (ibfd->flags & DYNAMIC) != 0)
11150 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11151
11152 if (new_flags == old_flags)
11153 return TRUE;
11154
11155 /* Check to see if the input BFD actually contains any sections.
11156 If not, its flags may not have been initialised either, but it cannot
11157 actually cause any incompatibility. */
11158 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11159 {
11160 /* Ignore synthetic sections and empty .text, .data and .bss sections
11161 which are automatically generated by gas. */
11162 if (strcmp (sec->name, ".reginfo")
11163 && strcmp (sec->name, ".mdebug")
11164 && (sec->size != 0
11165 || (strcmp (sec->name, ".text")
11166 && strcmp (sec->name, ".data")
11167 && strcmp (sec->name, ".bss"))))
11168 {
11169 null_input_bfd = FALSE;
11170 break;
11171 }
11172 }
11173 if (null_input_bfd)
11174 return TRUE;
11175
11176 ok = TRUE;
11177
11178 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11179 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11180 {
11181 (*_bfd_error_handler)
11182 (_("%B: warning: linking PIC files with non-PIC files"),
11183 ibfd);
11184 ok = TRUE;
11185 }
11186
11187 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11188 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11189 if (! (new_flags & EF_MIPS_PIC))
11190 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11191
11192 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11193 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11194
11195 /* Compare the ISAs. */
11196 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11197 {
11198 (*_bfd_error_handler)
11199 (_("%B: linking 32-bit code with 64-bit code"),
11200 ibfd);
11201 ok = FALSE;
11202 }
11203 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11204 {
11205 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11206 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11207 {
11208 /* Copy the architecture info from IBFD to OBFD. Also copy
11209 the 32-bit flag (if set) so that we continue to recognise
11210 OBFD as a 32-bit binary. */
11211 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11212 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11213 elf_elfheader (obfd)->e_flags
11214 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11215
11216 /* Copy across the ABI flags if OBFD doesn't use them
11217 and if that was what caused us to treat IBFD as 32-bit. */
11218 if ((old_flags & EF_MIPS_ABI) == 0
11219 && mips_32bit_flags_p (new_flags)
11220 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11221 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11222 }
11223 else
11224 {
11225 /* The ISAs aren't compatible. */
11226 (*_bfd_error_handler)
11227 (_("%B: linking %s module with previous %s modules"),
11228 ibfd,
11229 bfd_printable_name (ibfd),
11230 bfd_printable_name (obfd));
11231 ok = FALSE;
11232 }
11233 }
11234
11235 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11236 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11237
11238 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11239 does set EI_CLASS differently from any 32-bit ABI. */
11240 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11241 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11242 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11243 {
11244 /* Only error if both are set (to different values). */
11245 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11246 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11247 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11248 {
11249 (*_bfd_error_handler)
11250 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11251 ibfd,
11252 elf_mips_abi_name (ibfd),
11253 elf_mips_abi_name (obfd));
11254 ok = FALSE;
11255 }
11256 new_flags &= ~EF_MIPS_ABI;
11257 old_flags &= ~EF_MIPS_ABI;
11258 }
11259
11260 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11261 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11262 {
11263 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11264
11265 new_flags &= ~ EF_MIPS_ARCH_ASE;
11266 old_flags &= ~ EF_MIPS_ARCH_ASE;
11267 }
11268
11269 /* Warn about any other mismatches */
11270 if (new_flags != old_flags)
11271 {
11272 (*_bfd_error_handler)
11273 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11274 ibfd, (unsigned long) new_flags,
11275 (unsigned long) old_flags);
11276 ok = FALSE;
11277 }
11278
11279 if (! ok)
11280 {
11281 bfd_set_error (bfd_error_bad_value);
11282 return FALSE;
11283 }
11284
11285 return TRUE;
11286 }
11287
11288 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11289
11290 bfd_boolean
11291 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11292 {
11293 BFD_ASSERT (!elf_flags_init (abfd)
11294 || elf_elfheader (abfd)->e_flags == flags);
11295
11296 elf_elfheader (abfd)->e_flags = flags;
11297 elf_flags_init (abfd) = TRUE;
11298 return TRUE;
11299 }
11300
11301 bfd_boolean
11302 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11303 {
11304 FILE *file = ptr;
11305
11306 BFD_ASSERT (abfd != NULL && ptr != NULL);
11307
11308 /* Print normal ELF private data. */
11309 _bfd_elf_print_private_bfd_data (abfd, ptr);
11310
11311 /* xgettext:c-format */
11312 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11313
11314 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11315 fprintf (file, _(" [abi=O32]"));
11316 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11317 fprintf (file, _(" [abi=O64]"));
11318 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11319 fprintf (file, _(" [abi=EABI32]"));
11320 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11321 fprintf (file, _(" [abi=EABI64]"));
11322 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11323 fprintf (file, _(" [abi unknown]"));
11324 else if (ABI_N32_P (abfd))
11325 fprintf (file, _(" [abi=N32]"));
11326 else if (ABI_64_P (abfd))
11327 fprintf (file, _(" [abi=64]"));
11328 else
11329 fprintf (file, _(" [no abi set]"));
11330
11331 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11332 fprintf (file, " [mips1]");
11333 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11334 fprintf (file, " [mips2]");
11335 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11336 fprintf (file, " [mips3]");
11337 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11338 fprintf (file, " [mips4]");
11339 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11340 fprintf (file, " [mips5]");
11341 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11342 fprintf (file, " [mips32]");
11343 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11344 fprintf (file, " [mips64]");
11345 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11346 fprintf (file, " [mips32r2]");
11347 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11348 fprintf (file, " [mips64r2]");
11349 else
11350 fprintf (file, _(" [unknown ISA]"));
11351
11352 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11353 fprintf (file, " [mdmx]");
11354
11355 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11356 fprintf (file, " [mips16]");
11357
11358 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11359 fprintf (file, " [32bitmode]");
11360 else
11361 fprintf (file, _(" [not 32bitmode]"));
11362
11363 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11364 fprintf (file, " [noreorder]");
11365
11366 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11367 fprintf (file, " [PIC]");
11368
11369 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11370 fprintf (file, " [CPIC]");
11371
11372 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11373 fprintf (file, " [XGOT]");
11374
11375 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11376 fprintf (file, " [UCODE]");
11377
11378 fputc ('\n', file);
11379
11380 return TRUE;
11381 }
11382
11383 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11384 {
11385 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11386 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11387 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11388 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11389 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11390 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11391 { NULL, 0, 0, 0, 0 }
11392 };
11393
11394 /* Merge non visibility st_other attributes. Ensure that the
11395 STO_OPTIONAL flag is copied into h->other, even if this is not a
11396 definiton of the symbol. */
11397 void
11398 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11399 const Elf_Internal_Sym *isym,
11400 bfd_boolean definition,
11401 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11402 {
11403 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11404 {
11405 unsigned char other;
11406
11407 other = (definition ? isym->st_other : h->other);
11408 other &= ~ELF_ST_VISIBILITY (-1);
11409 h->other = other | ELF_ST_VISIBILITY (h->other);
11410 }
11411
11412 if (!definition
11413 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11414 h->other |= STO_OPTIONAL;
11415 }
11416
11417 /* Decide whether an undefined symbol is special and can be ignored.
11418 This is the case for OPTIONAL symbols on IRIX. */
11419 bfd_boolean
11420 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11421 {
11422 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11423 }
11424
11425 bfd_boolean
11426 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11427 {
11428 return (sym->st_shndx == SHN_COMMON
11429 || sym->st_shndx == SHN_MIPS_ACOMMON
11430 || sym->st_shndx == SHN_MIPS_SCOMMON);
11431 }
This page took 0.253431 seconds and 5 git commands to generate.