2003-03-19 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 \f
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488 \f
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips16_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
571
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
585
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
614
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
618
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
622
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
626
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
647
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
674 \f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
712
713 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
716 \f
717 /* The format of the first PLT entry in a VxWorks executable. */
718 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725 };
726
727 /* The format of subsequent PLT entries. */
728 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737 };
738
739 /* The format of the first PLT entry in a VxWorks shared object. */
740 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747 };
748
749 /* The format of subsequent PLT entries. */
750 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753 };
754 \f
755 /* Look up an entry in a MIPS ELF linker hash table. */
756
757 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762 /* Traverse a MIPS ELF linker hash table. */
763
764 #define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
768 (info)))
769
770 /* Get the MIPS ELF linker hash table from a link_info structure. */
771
772 #define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
775 /* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778 #define TP_OFFSET 0x7000
779 #define DTP_OFFSET 0x8000
780
781 static bfd_vma
782 dtprel_base (struct bfd_link_info *info)
783 {
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788 }
789
790 static bfd_vma
791 tprel_base (struct bfd_link_info *info)
792 {
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797 }
798
799 /* Create an entry in a MIPS ELF linker hash table. */
800
801 static struct bfd_hash_entry *
802 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
804 {
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
819 if (ret != NULL)
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
827 ret->readonly_reloc = FALSE;
828 ret->no_fn_stub = FALSE;
829 ret->fn_stub = NULL;
830 ret->need_fn_stub = FALSE;
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
833 ret->forced_local = FALSE;
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
836 ret->tls_type = GOT_NORMAL;
837 }
838
839 return (struct bfd_hash_entry *) ret;
840 }
841
842 bfd_boolean
843 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
844 {
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
849
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857 }
858 \f
859 /* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
862 bfd_boolean
863 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
865 {
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
868 char *ext_hdr;
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
873 ext_hdr = bfd_malloc (swap->external_hdr_size);
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
878 swap->external_hdr_size))
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886 #define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
892 debug->ptr = bfd_malloc (amt); \
893 if (debug->ptr == NULL) \
894 goto error_return; \
895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
912 #undef READ
913
914 debug->fdr = NULL;
915
916 return TRUE;
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
943 return FALSE;
944 }
945 \f
946 /* Swap RPDR (runtime procedure table entry) for output. */
947
948 static void
949 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
950 {
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
962 }
963
964 /* Create a runtime procedure table from the .mdebug section. */
965
966 static bfd_boolean
967 mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
970 {
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
975 void *rtproc;
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
1002 epdr = bfd_malloc (size * count);
1003 if (epdr == NULL)
1004 goto error_return;
1005
1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
1010 rp = rpdr = bfd_malloc (size * count);
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
1015 sv = bfd_malloc (size * count);
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
1021 esym = bfd_malloc (size * count);
1022 if (esym == NULL)
1023 goto error_return;
1024
1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1026 goto error_return;
1027
1028 count = hdr->issMax;
1029 ss = bfd_malloc (count);
1030 if (ss == NULL)
1031 goto error_return;
1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
1056 rtproc = bfd_alloc (abfd, size);
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
1065 erp = rtproc;
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
1080 s->size = size;
1081 s->contents = rtproc;
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
1085 s->map_head.link_order = NULL;
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
1098 return TRUE;
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
1111 return FALSE;
1112 }
1113
1114 /* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
1117 static bfd_boolean
1118 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
1120 {
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
1130 h->fn_stub->size = 0;
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
1142 h->call_stub->size = 0;
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
1154 h->call_fp_stub->size = 0;
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
1160 return TRUE;
1161 }
1162 \f
1163 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248 void
1249 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251 {
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273 }
1274
1275 void
1276 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278 {
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307 }
1308
1309 bfd_reloc_status_type
1310 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
1313 {
1314 bfd_vma relocation;
1315 bfd_signed_vma val;
1316 bfd_reloc_status_type status;
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1327 return bfd_reloc_outofrange;
1328
1329 /* Set val to the offset into the section or symbol. */
1330 val = reloc_entry->addend;
1331
1332 _bfd_mips_elf_sign_extend (val, 16);
1333
1334 /* Adjust val for the final section location and GP value. If we
1335 are producing relocatable output, we don't want to do this for
1336 an external symbol. */
1337 if (! relocatable
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
1341 if (reloc_entry->howto->partial_inplace)
1342 {
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
1348 }
1349 else
1350 reloc_entry->addend = val;
1351
1352 if (relocatable)
1353 reloc_entry->address += input_section->output_offset;
1354
1355 return bfd_reloc_ok;
1356 }
1357
1358 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363 struct mips_hi16
1364 {
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369 };
1370
1371 /* FIXME: This should not be a static variable. */
1372
1373 static struct mips_hi16 *mips_hi16_list;
1374
1375 /* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384 bfd_reloc_status_type
1385 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389 {
1390 struct mips_hi16 *n;
1391
1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409 }
1410
1411 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415 bfd_reloc_status_type
1416 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419 {
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430 }
1431
1432 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436 bfd_reloc_status_type
1437 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440 {
1441 bfd_vma vallo;
1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1443
1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1445 return bfd_reloc_outofrange;
1446
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485 }
1486
1487 /* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491 bfd_reloc_status_type
1492 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496 {
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
1557
1558 return bfd_reloc_ok;
1559 }
1560 \f
1561 /* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564 static void
1565 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
1567 {
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570 }
1571
1572 static void
1573 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
1575 {
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578 }
1579
1580 static void
1581 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
1583 {
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590 }
1591
1592 static void
1593 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
1595 {
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605 }
1606 \f
1607 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611 void
1612 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
1614 {
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621 }
1622
1623 void
1624 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
1626 {
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633 }
1634
1635 /* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641 void
1642 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
1644 {
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652 }
1653
1654 void
1655 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
1657 {
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665 }
1666
1667 /* Swap in an options header. */
1668
1669 void
1670 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
1672 {
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677 }
1678
1679 /* Swap out an options header. */
1680
1681 void
1682 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
1684 {
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689 }
1690 \f
1691 /* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694 static int
1695 sort_dynamic_relocs (const void *arg1, const void *arg2)
1696 {
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
1699 int diff;
1700
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1703
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
1713 }
1714
1715 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717 static int
1718 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
1720 {
1721 #ifdef BFD64
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
1740 #else
1741 abort ();
1742 #endif
1743 }
1744
1745
1746 /* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
1760 static bfd_boolean
1761 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1762 {
1763 struct extsym_info *einfo = data;
1764 bfd_boolean strip;
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
1771 strip = FALSE;
1772 else if ((h->root.def_dynamic
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
1777 strip = TRUE;
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
1784 else
1785 strip = FALSE;
1786
1787 if (strip)
1788 return TRUE;
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
1894 else if (h->root.needs_plt)
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
1897 bfd_boolean no_fn_stub = h->no_fn_stub;
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
1929 einfo->failed = TRUE;
1930 return FALSE;
1931 }
1932
1933 return TRUE;
1934 }
1935
1936 /* A comparison routine used to sort .gptab entries. */
1937
1938 static int
1939 gptab_compare (const void *p1, const void *p2)
1940 {
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945 }
1946 \f
1947 /* Functions to manage the got entry hash table. */
1948
1949 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952 static INLINE hashval_t
1953 mips_elf_hash_bfd_vma (bfd_vma addr)
1954 {
1955 #ifdef BFD64
1956 return addr + (addr >> 32);
1957 #else
1958 return addr;
1959 #endif
1960 }
1961
1962 /* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
1966 static hashval_t
1967 mips_elf_got_entry_hash (const void *entry_)
1968 {
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
1971 return entry->symndx
1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
1977 }
1978
1979 static int
1980 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1981 {
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993 }
1994
1995 /* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000 static hashval_t
2001 mips_elf_multi_got_entry_hash (const void *entry_)
2002 {
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
2013 : entry->d.h->root.root.root.hash);
2014 }
2015
2016 static int
2017 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2018 {
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
2035 }
2036 \f
2037 /* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
2040
2041 static asection *
2042 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2043 {
2044 const char *dname;
2045 asection *sreloc;
2046 bfd *dynobj;
2047
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
2060 if (sreloc == NULL
2061 || ! bfd_set_section_alignment (dynobj, sreloc,
2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2063 return NULL;
2064 }
2065 return sreloc;
2066 }
2067
2068 /* Returns the GOT section for ABFD. */
2069
2070 static asection *
2071 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2072 {
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
2078 }
2079
2080 /* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084 static struct mips_got_info *
2085 mips_elf_got_info (bfd *abfd, asection **sgotp)
2086 {
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
2090 sgot = mips_elf_got_section (abfd, TRUE);
2091 BFD_ASSERT (sgot != NULL);
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
2099 return g;
2100 }
2101
2102 /* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106 static int
2107 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109 {
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142 }
2143
2144 /* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147 static int
2148 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149 {
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157 }
2158
2159 /* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162 static int
2163 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164 {
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175 }
2176
2177 /* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180 static int
2181 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182 {
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190 }
2191
2192 /* Output a simple dynamic relocation into SRELOC. */
2193
2194 static void
2195 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200 {
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221 }
2222
2223 /* Initialize a set of TLS GOT entries for one symbol. */
2224
2225 static void
2226 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231 {
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345 }
2346
2347 /* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352 static bfd_vma
2353 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356 {
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384 }
2385
2386 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390 static bfd_vma
2391 mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393 {
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414 }
2415
2416 /* Return the GOT offset for address VALUE, which was derived from
2417 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2418 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2419 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2420 offset can be found. */
2421
2422 static bfd_vma
2423 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2424 asection *input_section, bfd_vma value,
2425 unsigned long r_symndx,
2426 struct mips_elf_link_hash_entry *h, int r_type)
2427 {
2428 asection *sgot;
2429 struct mips_got_info *g;
2430 struct mips_got_entry *entry;
2431
2432 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2433
2434 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2435 input_section, value,
2436 r_symndx, h, r_type);
2437 if (!entry)
2438 return MINUS_ONE;
2439
2440 if (TLS_RELOC_P (r_type))
2441 {
2442 if (entry->symndx == -1 && g->next == NULL)
2443 /* A type (3) entry in the single-GOT case. We use the symbol's
2444 hash table entry to track the index. */
2445 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2446 r_type, info, h, value);
2447 else
2448 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2449 r_type, info, h, value);
2450 }
2451 else
2452 return entry->gotidx;
2453 }
2454
2455 /* Returns the GOT index for the global symbol indicated by H. */
2456
2457 static bfd_vma
2458 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2459 int r_type, struct bfd_link_info *info)
2460 {
2461 bfd_vma index;
2462 asection *sgot;
2463 struct mips_got_info *g, *gg;
2464 long global_got_dynindx = 0;
2465
2466 gg = g = mips_elf_got_info (abfd, &sgot);
2467 if (g->bfd2got && ibfd)
2468 {
2469 struct mips_got_entry e, *p;
2470
2471 BFD_ASSERT (h->dynindx >= 0);
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
2474 if (g->next != gg || TLS_RELOC_P (r_type))
2475 {
2476 e.abfd = ibfd;
2477 e.symndx = -1;
2478 e.d.h = (struct mips_elf_link_hash_entry *)h;
2479 e.tls_type = 0;
2480
2481 p = htab_find (g->got_entries, &e);
2482
2483 BFD_ASSERT (p->gotidx > 0);
2484
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 bfd_vma value = MINUS_ONE;
2488 if ((h->root.type == bfd_link_hash_defined
2489 || h->root.type == bfd_link_hash_defweak)
2490 && h->root.u.def.section->output_section)
2491 value = (h->root.u.def.value
2492 + h->root.u.def.section->output_offset
2493 + h->root.u.def.section->output_section->vma);
2494
2495 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2496 info, e.d.h, value);
2497 }
2498 else
2499 return p->gotidx;
2500 }
2501 }
2502
2503 if (gg->global_gotsym != NULL)
2504 global_got_dynindx = gg->global_gotsym->dynindx;
2505
2506 if (TLS_RELOC_P (r_type))
2507 {
2508 struct mips_elf_link_hash_entry *hm
2509 = (struct mips_elf_link_hash_entry *) h;
2510 bfd_vma value = MINUS_ONE;
2511
2512 if ((h->root.type == bfd_link_hash_defined
2513 || h->root.type == bfd_link_hash_defweak)
2514 && h->root.u.def.section->output_section)
2515 value = (h->root.u.def.value
2516 + h->root.u.def.section->output_offset
2517 + h->root.u.def.section->output_section->vma);
2518
2519 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2520 r_type, info, hm, value);
2521 }
2522 else
2523 {
2524 /* Once we determine the global GOT entry with the lowest dynamic
2525 symbol table index, we must put all dynamic symbols with greater
2526 indices into the GOT. That makes it easy to calculate the GOT
2527 offset. */
2528 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2529 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2530 * MIPS_ELF_GOT_SIZE (abfd));
2531 }
2532 BFD_ASSERT (index < sgot->size);
2533
2534 return index;
2535 }
2536
2537 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2538 calculated from a symbol belonging to INPUT_SECTION. These entries
2539 are supposed to be placed at small offsets in the GOT, i.e., within
2540 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2541 could be created. If OFFSETP is nonnull, use it to return the
2542 offset of the GOT entry from VALUE. */
2543
2544 static bfd_vma
2545 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2546 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2547 {
2548 asection *sgot;
2549 struct mips_got_info *g;
2550 bfd_vma page, index;
2551 struct mips_got_entry *entry;
2552
2553 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2554
2555 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2556 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2557 input_section, page, 0,
2558 NULL, R_MIPS_GOT_PAGE);
2559
2560 if (!entry)
2561 return MINUS_ONE;
2562
2563 index = entry->gotidx;
2564
2565 if (offsetp)
2566 *offsetp = value - entry->d.address;
2567
2568 return index;
2569 }
2570
2571 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2572 which was calculated from a symbol belonging to INPUT_SECTION.
2573 EXTERNAL is true if the relocation was against a global symbol
2574 that has been forced local. */
2575
2576 static bfd_vma
2577 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2578 asection *input_section, bfd_vma value,
2579 bfd_boolean external)
2580 {
2581 asection *sgot;
2582 struct mips_got_info *g;
2583 struct mips_got_entry *entry;
2584
2585 /* GOT16 relocations against local symbols are followed by a LO16
2586 relocation; those against global symbols are not. Thus if the
2587 symbol was originally local, the GOT16 relocation should load the
2588 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2589 if (! external)
2590 value = mips_elf_high (value) << 16;
2591
2592 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2593
2594 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2595 input_section, value, 0,
2596 NULL, R_MIPS_GOT16);
2597 if (entry)
2598 return entry->gotidx;
2599 else
2600 return MINUS_ONE;
2601 }
2602
2603 /* Returns the offset for the entry at the INDEXth position
2604 in the GOT. */
2605
2606 static bfd_vma
2607 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2608 bfd *input_bfd, bfd_vma index)
2609 {
2610 asection *sgot;
2611 bfd_vma gp;
2612 struct mips_got_info *g;
2613
2614 g = mips_elf_got_info (dynobj, &sgot);
2615 gp = _bfd_get_gp_value (output_bfd)
2616 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2617
2618 return sgot->output_section->vma + sgot->output_offset + index - gp;
2619 }
2620
2621 /* Create and return a local GOT entry for VALUE, which was calculated
2622 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2623 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2624 instead. */
2625
2626 static struct mips_got_entry *
2627 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2628 bfd *ibfd, struct mips_got_info *gg,
2629 asection *sgot, asection *input_section,
2630 bfd_vma value, unsigned long r_symndx,
2631 struct mips_elf_link_hash_entry *h,
2632 int r_type)
2633 {
2634 struct mips_got_entry entry, **loc;
2635 struct mips_got_info *g;
2636 struct mips_elf_link_hash_table *htab;
2637
2638 htab = mips_elf_hash_table (info);
2639
2640 entry.abfd = NULL;
2641 entry.symndx = -1;
2642 entry.d.address = value;
2643 entry.tls_type = 0;
2644
2645 g = mips_elf_got_for_ibfd (gg, ibfd);
2646 if (g == NULL)
2647 {
2648 g = mips_elf_got_for_ibfd (gg, abfd);
2649 BFD_ASSERT (g != NULL);
2650 }
2651
2652 /* We might have a symbol, H, if it has been forced local. Use the
2653 global entry then. It doesn't matter whether an entry is local
2654 or global for TLS, since the dynamic linker does not
2655 automatically relocate TLS GOT entries. */
2656 BFD_ASSERT (h == NULL || h->root.forced_local);
2657 if (TLS_RELOC_P (r_type))
2658 {
2659 struct mips_got_entry *p;
2660
2661 entry.abfd = ibfd;
2662 if (r_type == R_MIPS_TLS_LDM)
2663 {
2664 entry.tls_type = GOT_TLS_LDM;
2665 entry.symndx = 0;
2666 entry.d.addend = 0;
2667 }
2668 else if (h == NULL)
2669 {
2670 entry.symndx = r_symndx;
2671 entry.d.addend = 0;
2672 }
2673 else
2674 entry.d.h = h;
2675
2676 p = (struct mips_got_entry *)
2677 htab_find (g->got_entries, &entry);
2678
2679 BFD_ASSERT (p);
2680 return p;
2681 }
2682
2683 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2684 INSERT);
2685 if (*loc)
2686 return *loc;
2687
2688 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2689 entry.tls_type = 0;
2690
2691 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2692
2693 if (! *loc)
2694 return NULL;
2695
2696 memcpy (*loc, &entry, sizeof entry);
2697
2698 if (g->assigned_gotno >= g->local_gotno)
2699 {
2700 (*loc)->gotidx = -1;
2701 /* We didn't allocate enough space in the GOT. */
2702 (*_bfd_error_handler)
2703 (_("not enough GOT space for local GOT entries"));
2704 bfd_set_error (bfd_error_bad_value);
2705 return NULL;
2706 }
2707
2708 MIPS_ELF_PUT_WORD (abfd, value,
2709 (sgot->contents + entry.gotidx));
2710
2711 /* These GOT entries need a dynamic relocation on VxWorks. Because
2712 the offset between segments is not fixed, the relocation must be
2713 against a symbol in the same segment as the original symbol.
2714 The easiest way to do this is to take INPUT_SECTION's output
2715 section and emit a relocation against its section symbol. */
2716 if (htab->is_vxworks)
2717 {
2718 Elf_Internal_Rela outrel;
2719 asection *s, *output_section;
2720 bfd_byte *loc;
2721 bfd_vma got_address;
2722 int dynindx;
2723
2724 s = mips_elf_rel_dyn_section (info, FALSE);
2725 output_section = input_section->output_section;
2726 dynindx = elf_section_data (output_section)->dynindx;
2727 got_address = (sgot->output_section->vma
2728 + sgot->output_offset
2729 + entry.gotidx);
2730
2731 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2732 outrel.r_offset = got_address;
2733 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2734 outrel.r_addend = value - output_section->vma;
2735 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2736 }
2737
2738 return *loc;
2739 }
2740
2741 /* Sort the dynamic symbol table so that symbols that need GOT entries
2742 appear towards the end. This reduces the amount of GOT space
2743 required. MAX_LOCAL is used to set the number of local symbols
2744 known to be in the dynamic symbol table. During
2745 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2746 section symbols are added and the count is higher. */
2747
2748 static bfd_boolean
2749 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2750 {
2751 struct mips_elf_hash_sort_data hsd;
2752 struct mips_got_info *g;
2753 bfd *dynobj;
2754
2755 dynobj = elf_hash_table (info)->dynobj;
2756
2757 g = mips_elf_got_info (dynobj, NULL);
2758
2759 hsd.low = NULL;
2760 hsd.max_unref_got_dynindx =
2761 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2762 /* In the multi-got case, assigned_gotno of the master got_info
2763 indicate the number of entries that aren't referenced in the
2764 primary GOT, but that must have entries because there are
2765 dynamic relocations that reference it. Since they aren't
2766 referenced, we move them to the end of the GOT, so that they
2767 don't prevent other entries that are referenced from getting
2768 too large offsets. */
2769 - (g->next ? g->assigned_gotno : 0);
2770 hsd.max_non_got_dynindx = max_local;
2771 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2772 elf_hash_table (info)),
2773 mips_elf_sort_hash_table_f,
2774 &hsd);
2775
2776 /* There should have been enough room in the symbol table to
2777 accommodate both the GOT and non-GOT symbols. */
2778 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2779 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2780 <= elf_hash_table (info)->dynsymcount);
2781
2782 /* Now we know which dynamic symbol has the lowest dynamic symbol
2783 table index in the GOT. */
2784 g->global_gotsym = hsd.low;
2785
2786 return TRUE;
2787 }
2788
2789 /* If H needs a GOT entry, assign it the highest available dynamic
2790 index. Otherwise, assign it the lowest available dynamic
2791 index. */
2792
2793 static bfd_boolean
2794 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2795 {
2796 struct mips_elf_hash_sort_data *hsd = data;
2797
2798 if (h->root.root.type == bfd_link_hash_warning)
2799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2800
2801 /* Symbols without dynamic symbol table entries aren't interesting
2802 at all. */
2803 if (h->root.dynindx == -1)
2804 return TRUE;
2805
2806 /* Global symbols that need GOT entries that are not explicitly
2807 referenced are marked with got offset 2. Those that are
2808 referenced get a 1, and those that don't need GOT entries get
2809 -1. */
2810 if (h->root.got.offset == 2)
2811 {
2812 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2813
2814 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2815 hsd->low = (struct elf_link_hash_entry *) h;
2816 h->root.dynindx = hsd->max_unref_got_dynindx++;
2817 }
2818 else if (h->root.got.offset != 1)
2819 h->root.dynindx = hsd->max_non_got_dynindx++;
2820 else
2821 {
2822 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2823
2824 h->root.dynindx = --hsd->min_got_dynindx;
2825 hsd->low = (struct elf_link_hash_entry *) h;
2826 }
2827
2828 return TRUE;
2829 }
2830
2831 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2832 symbol table index lower than any we've seen to date, record it for
2833 posterity. */
2834
2835 static bfd_boolean
2836 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2837 bfd *abfd, struct bfd_link_info *info,
2838 struct mips_got_info *g,
2839 unsigned char tls_flag)
2840 {
2841 struct mips_got_entry entry, **loc;
2842
2843 /* A global symbol in the GOT must also be in the dynamic symbol
2844 table. */
2845 if (h->dynindx == -1)
2846 {
2847 switch (ELF_ST_VISIBILITY (h->other))
2848 {
2849 case STV_INTERNAL:
2850 case STV_HIDDEN:
2851 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2852 break;
2853 }
2854 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2855 return FALSE;
2856 }
2857
2858 /* Make sure we have a GOT to put this entry into. */
2859 BFD_ASSERT (g != NULL);
2860
2861 entry.abfd = abfd;
2862 entry.symndx = -1;
2863 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2864 entry.tls_type = 0;
2865
2866 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2867 INSERT);
2868
2869 /* If we've already marked this entry as needing GOT space, we don't
2870 need to do it again. */
2871 if (*loc)
2872 {
2873 (*loc)->tls_type |= tls_flag;
2874 return TRUE;
2875 }
2876
2877 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2878
2879 if (! *loc)
2880 return FALSE;
2881
2882 entry.gotidx = -1;
2883 entry.tls_type = tls_flag;
2884
2885 memcpy (*loc, &entry, sizeof entry);
2886
2887 if (h->got.offset != MINUS_ONE)
2888 return TRUE;
2889
2890 /* By setting this to a value other than -1, we are indicating that
2891 there needs to be a GOT entry for H. Avoid using zero, as the
2892 generic ELF copy_indirect_symbol tests for <= 0. */
2893 if (tls_flag == 0)
2894 h->got.offset = 1;
2895
2896 return TRUE;
2897 }
2898
2899 /* Reserve space in G for a GOT entry containing the value of symbol
2900 SYMNDX in input bfd ABDF, plus ADDEND. */
2901
2902 static bfd_boolean
2903 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2904 struct mips_got_info *g,
2905 unsigned char tls_flag)
2906 {
2907 struct mips_got_entry entry, **loc;
2908
2909 entry.abfd = abfd;
2910 entry.symndx = symndx;
2911 entry.d.addend = addend;
2912 entry.tls_type = tls_flag;
2913 loc = (struct mips_got_entry **)
2914 htab_find_slot (g->got_entries, &entry, INSERT);
2915
2916 if (*loc)
2917 {
2918 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2919 {
2920 g->tls_gotno += 2;
2921 (*loc)->tls_type |= tls_flag;
2922 }
2923 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2924 {
2925 g->tls_gotno += 1;
2926 (*loc)->tls_type |= tls_flag;
2927 }
2928 return TRUE;
2929 }
2930
2931 if (tls_flag != 0)
2932 {
2933 entry.gotidx = -1;
2934 entry.tls_type = tls_flag;
2935 if (tls_flag == GOT_TLS_IE)
2936 g->tls_gotno += 1;
2937 else if (tls_flag == GOT_TLS_GD)
2938 g->tls_gotno += 2;
2939 else if (g->tls_ldm_offset == MINUS_ONE)
2940 {
2941 g->tls_ldm_offset = MINUS_TWO;
2942 g->tls_gotno += 2;
2943 }
2944 }
2945 else
2946 {
2947 entry.gotidx = g->local_gotno++;
2948 entry.tls_type = 0;
2949 }
2950
2951 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2952
2953 if (! *loc)
2954 return FALSE;
2955
2956 memcpy (*loc, &entry, sizeof entry);
2957
2958 return TRUE;
2959 }
2960 \f
2961 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2962
2963 static hashval_t
2964 mips_elf_bfd2got_entry_hash (const void *entry_)
2965 {
2966 const struct mips_elf_bfd2got_hash *entry
2967 = (struct mips_elf_bfd2got_hash *)entry_;
2968
2969 return entry->bfd->id;
2970 }
2971
2972 /* Check whether two hash entries have the same bfd. */
2973
2974 static int
2975 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2976 {
2977 const struct mips_elf_bfd2got_hash *e1
2978 = (const struct mips_elf_bfd2got_hash *)entry1;
2979 const struct mips_elf_bfd2got_hash *e2
2980 = (const struct mips_elf_bfd2got_hash *)entry2;
2981
2982 return e1->bfd == e2->bfd;
2983 }
2984
2985 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2986 be the master GOT data. */
2987
2988 static struct mips_got_info *
2989 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2990 {
2991 struct mips_elf_bfd2got_hash e, *p;
2992
2993 if (! g->bfd2got)
2994 return g;
2995
2996 e.bfd = ibfd;
2997 p = htab_find (g->bfd2got, &e);
2998 return p ? p->g : NULL;
2999 }
3000
3001 /* Create one separate got for each bfd that has entries in the global
3002 got, such that we can tell how many local and global entries each
3003 bfd requires. */
3004
3005 static int
3006 mips_elf_make_got_per_bfd (void **entryp, void *p)
3007 {
3008 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3009 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3010 htab_t bfd2got = arg->bfd2got;
3011 struct mips_got_info *g;
3012 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3013 void **bfdgotp;
3014
3015 /* Find the got_info for this GOT entry's input bfd. Create one if
3016 none exists. */
3017 bfdgot_entry.bfd = entry->abfd;
3018 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3019 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3020
3021 if (bfdgot != NULL)
3022 g = bfdgot->g;
3023 else
3024 {
3025 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3026 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3027
3028 if (bfdgot == NULL)
3029 {
3030 arg->obfd = 0;
3031 return 0;
3032 }
3033
3034 *bfdgotp = bfdgot;
3035
3036 bfdgot->bfd = entry->abfd;
3037 bfdgot->g = g = (struct mips_got_info *)
3038 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3039 if (g == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->global_gotsym = NULL;
3046 g->global_gotno = 0;
3047 g->local_gotno = 0;
3048 g->assigned_gotno = -1;
3049 g->tls_gotno = 0;
3050 g->tls_assigned_gotno = 0;
3051 g->tls_ldm_offset = MINUS_ONE;
3052 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3053 mips_elf_multi_got_entry_eq, NULL);
3054 if (g->got_entries == NULL)
3055 {
3056 arg->obfd = 0;
3057 return 0;
3058 }
3059
3060 g->bfd2got = NULL;
3061 g->next = NULL;
3062 }
3063
3064 /* Insert the GOT entry in the bfd's got entry hash table. */
3065 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3066 if (*entryp != NULL)
3067 return 1;
3068
3069 *entryp = entry;
3070
3071 if (entry->tls_type)
3072 {
3073 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3074 g->tls_gotno += 2;
3075 if (entry->tls_type & GOT_TLS_IE)
3076 g->tls_gotno += 1;
3077 }
3078 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3079 ++g->local_gotno;
3080 else
3081 ++g->global_gotno;
3082
3083 return 1;
3084 }
3085
3086 /* Attempt to merge gots of different input bfds. Try to use as much
3087 as possible of the primary got, since it doesn't require explicit
3088 dynamic relocations, but don't use bfds that would reference global
3089 symbols out of the addressable range. Failing the primary got,
3090 attempt to merge with the current got, or finish the current got
3091 and then make make the new got current. */
3092
3093 static int
3094 mips_elf_merge_gots (void **bfd2got_, void *p)
3095 {
3096 struct mips_elf_bfd2got_hash *bfd2got
3097 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3098 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3099 unsigned int lcount = bfd2got->g->local_gotno;
3100 unsigned int gcount = bfd2got->g->global_gotno;
3101 unsigned int tcount = bfd2got->g->tls_gotno;
3102 unsigned int maxcnt = arg->max_count;
3103 bfd_boolean too_many_for_tls = FALSE;
3104
3105 /* We place TLS GOT entries after both locals and globals. The globals
3106 for the primary GOT may overflow the normal GOT size limit, so be
3107 sure not to merge a GOT which requires TLS with the primary GOT in that
3108 case. This doesn't affect non-primary GOTs. */
3109 if (tcount > 0)
3110 {
3111 unsigned int primary_total = lcount + tcount + arg->global_count;
3112 if (primary_total > maxcnt)
3113 too_many_for_tls = TRUE;
3114 }
3115
3116 /* If we don't have a primary GOT and this is not too big, use it as
3117 a starting point for the primary GOT. */
3118 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3119 && ! too_many_for_tls)
3120 {
3121 arg->primary = bfd2got->g;
3122 arg->primary_count = lcount + gcount;
3123 }
3124 /* If it looks like we can merge this bfd's entries with those of
3125 the primary, merge them. The heuristics is conservative, but we
3126 don't have to squeeze it too hard. */
3127 else if (arg->primary && ! too_many_for_tls
3128 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3129 {
3130 struct mips_got_info *g = bfd2got->g;
3131 int old_lcount = arg->primary->local_gotno;
3132 int old_gcount = arg->primary->global_gotno;
3133 int old_tcount = arg->primary->tls_gotno;
3134
3135 bfd2got->g = arg->primary;
3136
3137 htab_traverse (g->got_entries,
3138 mips_elf_make_got_per_bfd,
3139 arg);
3140 if (arg->obfd == NULL)
3141 return 0;
3142
3143 htab_delete (g->got_entries);
3144 /* We don't have to worry about releasing memory of the actual
3145 got entries, since they're all in the master got_entries hash
3146 table anyway. */
3147
3148 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3149 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3150 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3151
3152 arg->primary_count = arg->primary->local_gotno
3153 + arg->primary->global_gotno + arg->primary->tls_gotno;
3154 }
3155 /* If we can merge with the last-created got, do it. */
3156 else if (arg->current
3157 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3158 {
3159 struct mips_got_info *g = bfd2got->g;
3160 int old_lcount = arg->current->local_gotno;
3161 int old_gcount = arg->current->global_gotno;
3162 int old_tcount = arg->current->tls_gotno;
3163
3164 bfd2got->g = arg->current;
3165
3166 htab_traverse (g->got_entries,
3167 mips_elf_make_got_per_bfd,
3168 arg);
3169 if (arg->obfd == NULL)
3170 return 0;
3171
3172 htab_delete (g->got_entries);
3173
3174 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3175 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3176 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3177
3178 arg->current_count = arg->current->local_gotno
3179 + arg->current->global_gotno + arg->current->tls_gotno;
3180 }
3181 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3182 fits; if it turns out that it doesn't, we'll get relocation
3183 overflows anyway. */
3184 else
3185 {
3186 bfd2got->g->next = arg->current;
3187 arg->current = bfd2got->g;
3188
3189 arg->current_count = lcount + gcount + 2 * tcount;
3190 }
3191
3192 return 1;
3193 }
3194
3195 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3196 is null iff there is just a single GOT. */
3197
3198 static int
3199 mips_elf_initialize_tls_index (void **entryp, void *p)
3200 {
3201 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3202 struct mips_got_info *g = p;
3203 bfd_vma next_index;
3204
3205 /* We're only interested in TLS symbols. */
3206 if (entry->tls_type == 0)
3207 return 1;
3208
3209 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3210
3211 if (entry->symndx == -1 && g->next == NULL)
3212 {
3213 /* A type (3) got entry in the single-GOT case. We use the symbol's
3214 hash table entry to track its index. */
3215 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3216 return 1;
3217 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3218 entry->d.h->tls_got_offset = next_index;
3219 }
3220 else
3221 {
3222 if (entry->tls_type & GOT_TLS_LDM)
3223 {
3224 /* There are separate mips_got_entry objects for each input bfd
3225 that requires an LDM entry. Make sure that all LDM entries in
3226 a GOT resolve to the same index. */
3227 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3228 {
3229 entry->gotidx = g->tls_ldm_offset;
3230 return 1;
3231 }
3232 g->tls_ldm_offset = next_index;
3233 }
3234 entry->gotidx = next_index;
3235 }
3236
3237 /* Account for the entries we've just allocated. */
3238 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3239 g->tls_assigned_gotno += 2;
3240 if (entry->tls_type & GOT_TLS_IE)
3241 g->tls_assigned_gotno += 1;
3242
3243 return 1;
3244 }
3245
3246 /* If passed a NULL mips_got_info in the argument, set the marker used
3247 to tell whether a global symbol needs a got entry (in the primary
3248 got) to the given VALUE.
3249
3250 If passed a pointer G to a mips_got_info in the argument (it must
3251 not be the primary GOT), compute the offset from the beginning of
3252 the (primary) GOT section to the entry in G corresponding to the
3253 global symbol. G's assigned_gotno must contain the index of the
3254 first available global GOT entry in G. VALUE must contain the size
3255 of a GOT entry in bytes. For each global GOT entry that requires a
3256 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3257 marked as not eligible for lazy resolution through a function
3258 stub. */
3259 static int
3260 mips_elf_set_global_got_offset (void **entryp, void *p)
3261 {
3262 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3263 struct mips_elf_set_global_got_offset_arg *arg
3264 = (struct mips_elf_set_global_got_offset_arg *)p;
3265 struct mips_got_info *g = arg->g;
3266
3267 if (g && entry->tls_type != GOT_NORMAL)
3268 arg->needed_relocs +=
3269 mips_tls_got_relocs (arg->info, entry->tls_type,
3270 entry->symndx == -1 ? &entry->d.h->root : NULL);
3271
3272 if (entry->abfd != NULL && entry->symndx == -1
3273 && entry->d.h->root.dynindx != -1
3274 && entry->d.h->tls_type == GOT_NORMAL)
3275 {
3276 if (g)
3277 {
3278 BFD_ASSERT (g->global_gotsym == NULL);
3279
3280 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3281 if (arg->info->shared
3282 || (elf_hash_table (arg->info)->dynamic_sections_created
3283 && entry->d.h->root.def_dynamic
3284 && !entry->d.h->root.def_regular))
3285 ++arg->needed_relocs;
3286 }
3287 else
3288 entry->d.h->root.got.offset = arg->value;
3289 }
3290
3291 return 1;
3292 }
3293
3294 /* Mark any global symbols referenced in the GOT we are iterating over
3295 as inelligible for lazy resolution stubs. */
3296 static int
3297 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3298 {
3299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3300
3301 if (entry->abfd != NULL
3302 && entry->symndx == -1
3303 && entry->d.h->root.dynindx != -1)
3304 entry->d.h->no_fn_stub = TRUE;
3305
3306 return 1;
3307 }
3308
3309 /* Follow indirect and warning hash entries so that each got entry
3310 points to the final symbol definition. P must point to a pointer
3311 to the hash table we're traversing. Since this traversal may
3312 modify the hash table, we set this pointer to NULL to indicate
3313 we've made a potentially-destructive change to the hash table, so
3314 the traversal must be restarted. */
3315 static int
3316 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3317 {
3318 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3319 htab_t got_entries = *(htab_t *)p;
3320
3321 if (entry->abfd != NULL && entry->symndx == -1)
3322 {
3323 struct mips_elf_link_hash_entry *h = entry->d.h;
3324
3325 while (h->root.root.type == bfd_link_hash_indirect
3326 || h->root.root.type == bfd_link_hash_warning)
3327 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3328
3329 if (entry->d.h == h)
3330 return 1;
3331
3332 entry->d.h = h;
3333
3334 /* If we can't find this entry with the new bfd hash, re-insert
3335 it, and get the traversal restarted. */
3336 if (! htab_find (got_entries, entry))
3337 {
3338 htab_clear_slot (got_entries, entryp);
3339 entryp = htab_find_slot (got_entries, entry, INSERT);
3340 if (! *entryp)
3341 *entryp = entry;
3342 /* Abort the traversal, since the whole table may have
3343 moved, and leave it up to the parent to restart the
3344 process. */
3345 *(htab_t *)p = NULL;
3346 return 0;
3347 }
3348 /* We might want to decrement the global_gotno count, but it's
3349 either too early or too late for that at this point. */
3350 }
3351
3352 return 1;
3353 }
3354
3355 /* Turn indirect got entries in a got_entries table into their final
3356 locations. */
3357 static void
3358 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3359 {
3360 htab_t got_entries;
3361
3362 do
3363 {
3364 got_entries = g->got_entries;
3365
3366 htab_traverse (got_entries,
3367 mips_elf_resolve_final_got_entry,
3368 &got_entries);
3369 }
3370 while (got_entries == NULL);
3371 }
3372
3373 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3374 the primary GOT. */
3375 static bfd_vma
3376 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3377 {
3378 if (g->bfd2got == NULL)
3379 return 0;
3380
3381 g = mips_elf_got_for_ibfd (g, ibfd);
3382 if (! g)
3383 return 0;
3384
3385 BFD_ASSERT (g->next);
3386
3387 g = g->next;
3388
3389 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3390 * MIPS_ELF_GOT_SIZE (abfd);
3391 }
3392
3393 /* Turn a single GOT that is too big for 16-bit addressing into
3394 a sequence of GOTs, each one 16-bit addressable. */
3395
3396 static bfd_boolean
3397 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3398 struct mips_got_info *g, asection *got,
3399 bfd_size_type pages)
3400 {
3401 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3402 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3403 struct mips_got_info *gg;
3404 unsigned int assign;
3405
3406 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3407 mips_elf_bfd2got_entry_eq, NULL);
3408 if (g->bfd2got == NULL)
3409 return FALSE;
3410
3411 got_per_bfd_arg.bfd2got = g->bfd2got;
3412 got_per_bfd_arg.obfd = abfd;
3413 got_per_bfd_arg.info = info;
3414
3415 /* Count how many GOT entries each input bfd requires, creating a
3416 map from bfd to got info while at that. */
3417 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 got_per_bfd_arg.current = NULL;
3422 got_per_bfd_arg.primary = NULL;
3423 /* Taking out PAGES entries is a worst-case estimate. We could
3424 compute the maximum number of pages that each separate input bfd
3425 uses, but it's probably not worth it. */
3426 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3427 / MIPS_ELF_GOT_SIZE (abfd))
3428 - MIPS_RESERVED_GOTNO (info) - pages);
3429 /* The number of globals that will be included in the primary GOT.
3430 See the calls to mips_elf_set_global_got_offset below for more
3431 information. */
3432 got_per_bfd_arg.global_count = g->global_gotno;
3433
3434 /* Try to merge the GOTs of input bfds together, as long as they
3435 don't seem to exceed the maximum GOT size, choosing one of them
3436 to be the primary GOT. */
3437 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3438 if (got_per_bfd_arg.obfd == NULL)
3439 return FALSE;
3440
3441 /* If we do not find any suitable primary GOT, create an empty one. */
3442 if (got_per_bfd_arg.primary == NULL)
3443 {
3444 g->next = (struct mips_got_info *)
3445 bfd_alloc (abfd, sizeof (struct mips_got_info));
3446 if (g->next == NULL)
3447 return FALSE;
3448
3449 g->next->global_gotsym = NULL;
3450 g->next->global_gotno = 0;
3451 g->next->local_gotno = 0;
3452 g->next->tls_gotno = 0;
3453 g->next->assigned_gotno = 0;
3454 g->next->tls_assigned_gotno = 0;
3455 g->next->tls_ldm_offset = MINUS_ONE;
3456 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3457 mips_elf_multi_got_entry_eq,
3458 NULL);
3459 if (g->next->got_entries == NULL)
3460 return FALSE;
3461 g->next->bfd2got = NULL;
3462 }
3463 else
3464 g->next = got_per_bfd_arg.primary;
3465 g->next->next = got_per_bfd_arg.current;
3466
3467 /* GG is now the master GOT, and G is the primary GOT. */
3468 gg = g;
3469 g = g->next;
3470
3471 /* Map the output bfd to the primary got. That's what we're going
3472 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3473 didn't mark in check_relocs, and we want a quick way to find it.
3474 We can't just use gg->next because we're going to reverse the
3475 list. */
3476 {
3477 struct mips_elf_bfd2got_hash *bfdgot;
3478 void **bfdgotp;
3479
3480 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3481 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3482
3483 if (bfdgot == NULL)
3484 return FALSE;
3485
3486 bfdgot->bfd = abfd;
3487 bfdgot->g = g;
3488 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3489
3490 BFD_ASSERT (*bfdgotp == NULL);
3491 *bfdgotp = bfdgot;
3492 }
3493
3494 /* The IRIX dynamic linker requires every symbol that is referenced
3495 in a dynamic relocation to be present in the primary GOT, so
3496 arrange for them to appear after those that are actually
3497 referenced.
3498
3499 GNU/Linux could very well do without it, but it would slow down
3500 the dynamic linker, since it would have to resolve every dynamic
3501 symbol referenced in other GOTs more than once, without help from
3502 the cache. Also, knowing that every external symbol has a GOT
3503 helps speed up the resolution of local symbols too, so GNU/Linux
3504 follows IRIX's practice.
3505
3506 The number 2 is used by mips_elf_sort_hash_table_f to count
3507 global GOT symbols that are unreferenced in the primary GOT, with
3508 an initial dynamic index computed from gg->assigned_gotno, where
3509 the number of unreferenced global entries in the primary GOT is
3510 preserved. */
3511 if (1)
3512 {
3513 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3514 g->global_gotno = gg->global_gotno;
3515 set_got_offset_arg.value = 2;
3516 }
3517 else
3518 {
3519 /* This could be used for dynamic linkers that don't optimize
3520 symbol resolution while applying relocations so as to use
3521 primary GOT entries or assuming the symbol is locally-defined.
3522 With this code, we assign lower dynamic indices to global
3523 symbols that are not referenced in the primary GOT, so that
3524 their entries can be omitted. */
3525 gg->assigned_gotno = 0;
3526 set_got_offset_arg.value = -1;
3527 }
3528
3529 /* Reorder dynamic symbols as described above (which behavior
3530 depends on the setting of VALUE). */
3531 set_got_offset_arg.g = NULL;
3532 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3533 &set_got_offset_arg);
3534 set_got_offset_arg.value = 1;
3535 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3536 &set_got_offset_arg);
3537 if (! mips_elf_sort_hash_table (info, 1))
3538 return FALSE;
3539
3540 /* Now go through the GOTs assigning them offset ranges.
3541 [assigned_gotno, local_gotno[ will be set to the range of local
3542 entries in each GOT. We can then compute the end of a GOT by
3543 adding local_gotno to global_gotno. We reverse the list and make
3544 it circular since then we'll be able to quickly compute the
3545 beginning of a GOT, by computing the end of its predecessor. To
3546 avoid special cases for the primary GOT, while still preserving
3547 assertions that are valid for both single- and multi-got links,
3548 we arrange for the main got struct to have the right number of
3549 global entries, but set its local_gotno such that the initial
3550 offset of the primary GOT is zero. Remember that the primary GOT
3551 will become the last item in the circular linked list, so it
3552 points back to the master GOT. */
3553 gg->local_gotno = -g->global_gotno;
3554 gg->global_gotno = g->global_gotno;
3555 gg->tls_gotno = 0;
3556 assign = 0;
3557 gg->next = gg;
3558
3559 do
3560 {
3561 struct mips_got_info *gn;
3562
3563 assign += MIPS_RESERVED_GOTNO (info);
3564 g->assigned_gotno = assign;
3565 g->local_gotno += assign + pages;
3566 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3567
3568 /* Take g out of the direct list, and push it onto the reversed
3569 list that gg points to. g->next is guaranteed to be nonnull after
3570 this operation, as required by mips_elf_initialize_tls_index. */
3571 gn = g->next;
3572 g->next = gg->next;
3573 gg->next = g;
3574
3575 /* Set up any TLS entries. We always place the TLS entries after
3576 all non-TLS entries. */
3577 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3578 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3579
3580 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3581 g = gn;
3582
3583 /* Mark global symbols in every non-primary GOT as ineligible for
3584 stubs. */
3585 if (g)
3586 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3587 }
3588 while (g);
3589
3590 got->size = (gg->next->local_gotno
3591 + gg->next->global_gotno
3592 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3593
3594 return TRUE;
3595 }
3596
3597 \f
3598 /* Returns the first relocation of type r_type found, beginning with
3599 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3600
3601 static const Elf_Internal_Rela *
3602 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3603 const Elf_Internal_Rela *relocation,
3604 const Elf_Internal_Rela *relend)
3605 {
3606 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3607
3608 while (relocation < relend)
3609 {
3610 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3611 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3612 return relocation;
3613
3614 ++relocation;
3615 }
3616
3617 /* We didn't find it. */
3618 bfd_set_error (bfd_error_bad_value);
3619 return NULL;
3620 }
3621
3622 /* Return whether a relocation is against a local symbol. */
3623
3624 static bfd_boolean
3625 mips_elf_local_relocation_p (bfd *input_bfd,
3626 const Elf_Internal_Rela *relocation,
3627 asection **local_sections,
3628 bfd_boolean check_forced)
3629 {
3630 unsigned long r_symndx;
3631 Elf_Internal_Shdr *symtab_hdr;
3632 struct mips_elf_link_hash_entry *h;
3633 size_t extsymoff;
3634
3635 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3636 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3637 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3638
3639 if (r_symndx < extsymoff)
3640 return TRUE;
3641 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3642 return TRUE;
3643
3644 if (check_forced)
3645 {
3646 /* Look up the hash table to check whether the symbol
3647 was forced local. */
3648 h = (struct mips_elf_link_hash_entry *)
3649 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3650 /* Find the real hash-table entry for this symbol. */
3651 while (h->root.root.type == bfd_link_hash_indirect
3652 || h->root.root.type == bfd_link_hash_warning)
3653 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3654 if (h->root.forced_local)
3655 return TRUE;
3656 }
3657
3658 return FALSE;
3659 }
3660 \f
3661 /* Sign-extend VALUE, which has the indicated number of BITS. */
3662
3663 bfd_vma
3664 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3665 {
3666 if (value & ((bfd_vma) 1 << (bits - 1)))
3667 /* VALUE is negative. */
3668 value |= ((bfd_vma) - 1) << bits;
3669
3670 return value;
3671 }
3672
3673 /* Return non-zero if the indicated VALUE has overflowed the maximum
3674 range expressible by a signed number with the indicated number of
3675 BITS. */
3676
3677 static bfd_boolean
3678 mips_elf_overflow_p (bfd_vma value, int bits)
3679 {
3680 bfd_signed_vma svalue = (bfd_signed_vma) value;
3681
3682 if (svalue > (1 << (bits - 1)) - 1)
3683 /* The value is too big. */
3684 return TRUE;
3685 else if (svalue < -(1 << (bits - 1)))
3686 /* The value is too small. */
3687 return TRUE;
3688
3689 /* All is well. */
3690 return FALSE;
3691 }
3692
3693 /* Calculate the %high function. */
3694
3695 static bfd_vma
3696 mips_elf_high (bfd_vma value)
3697 {
3698 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3699 }
3700
3701 /* Calculate the %higher function. */
3702
3703 static bfd_vma
3704 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3705 {
3706 #ifdef BFD64
3707 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3708 #else
3709 abort ();
3710 return MINUS_ONE;
3711 #endif
3712 }
3713
3714 /* Calculate the %highest function. */
3715
3716 static bfd_vma
3717 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3718 {
3719 #ifdef BFD64
3720 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3721 #else
3722 abort ();
3723 return MINUS_ONE;
3724 #endif
3725 }
3726 \f
3727 /* Create the .compact_rel section. */
3728
3729 static bfd_boolean
3730 mips_elf_create_compact_rel_section
3731 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3732 {
3733 flagword flags;
3734 register asection *s;
3735
3736 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3737 {
3738 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3739 | SEC_READONLY);
3740
3741 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3742 if (s == NULL
3743 || ! bfd_set_section_alignment (abfd, s,
3744 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3745 return FALSE;
3746
3747 s->size = sizeof (Elf32_External_compact_rel);
3748 }
3749
3750 return TRUE;
3751 }
3752
3753 /* Create the .got section to hold the global offset table. */
3754
3755 static bfd_boolean
3756 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3757 bfd_boolean maybe_exclude)
3758 {
3759 flagword flags;
3760 register asection *s;
3761 struct elf_link_hash_entry *h;
3762 struct bfd_link_hash_entry *bh;
3763 struct mips_got_info *g;
3764 bfd_size_type amt;
3765 struct mips_elf_link_hash_table *htab;
3766
3767 htab = mips_elf_hash_table (info);
3768
3769 /* This function may be called more than once. */
3770 s = mips_elf_got_section (abfd, TRUE);
3771 if (s)
3772 {
3773 if (! maybe_exclude)
3774 s->flags &= ~SEC_EXCLUDE;
3775 return TRUE;
3776 }
3777
3778 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3779 | SEC_LINKER_CREATED);
3780
3781 if (maybe_exclude)
3782 flags |= SEC_EXCLUDE;
3783
3784 /* We have to use an alignment of 2**4 here because this is hardcoded
3785 in the function stub generation and in the linker script. */
3786 s = bfd_make_section_with_flags (abfd, ".got", flags);
3787 if (s == NULL
3788 || ! bfd_set_section_alignment (abfd, s, 4))
3789 return FALSE;
3790
3791 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3792 linker script because we don't want to define the symbol if we
3793 are not creating a global offset table. */
3794 bh = NULL;
3795 if (! (_bfd_generic_link_add_one_symbol
3796 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3797 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3798 return FALSE;
3799
3800 h = (struct elf_link_hash_entry *) bh;
3801 h->non_elf = 0;
3802 h->def_regular = 1;
3803 h->type = STT_OBJECT;
3804 elf_hash_table (info)->hgot = h;
3805
3806 if (info->shared
3807 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3808 return FALSE;
3809
3810 amt = sizeof (struct mips_got_info);
3811 g = bfd_alloc (abfd, amt);
3812 if (g == NULL)
3813 return FALSE;
3814 g->global_gotsym = NULL;
3815 g->global_gotno = 0;
3816 g->tls_gotno = 0;
3817 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3818 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3819 g->bfd2got = NULL;
3820 g->next = NULL;
3821 g->tls_ldm_offset = MINUS_ONE;
3822 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3823 mips_elf_got_entry_eq, NULL);
3824 if (g->got_entries == NULL)
3825 return FALSE;
3826 mips_elf_section_data (s)->u.got_info = g;
3827 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3828 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3829
3830 /* VxWorks also needs a .got.plt section. */
3831 if (htab->is_vxworks)
3832 {
3833 s = bfd_make_section_with_flags (abfd, ".got.plt",
3834 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3835 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3836 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3837 return FALSE;
3838
3839 htab->sgotplt = s;
3840 }
3841 return TRUE;
3842 }
3843 \f
3844 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3845 __GOTT_INDEX__ symbols. These symbols are only special for
3846 shared objects; they are not used in executables. */
3847
3848 static bfd_boolean
3849 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3850 {
3851 return (mips_elf_hash_table (info)->is_vxworks
3852 && info->shared
3853 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3854 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3855 }
3856 \f
3857 /* Calculate the value produced by the RELOCATION (which comes from
3858 the INPUT_BFD). The ADDEND is the addend to use for this
3859 RELOCATION; RELOCATION->R_ADDEND is ignored.
3860
3861 The result of the relocation calculation is stored in VALUEP.
3862 REQUIRE_JALXP indicates whether or not the opcode used with this
3863 relocation must be JALX.
3864
3865 This function returns bfd_reloc_continue if the caller need take no
3866 further action regarding this relocation, bfd_reloc_notsupported if
3867 something goes dramatically wrong, bfd_reloc_overflow if an
3868 overflow occurs, and bfd_reloc_ok to indicate success. */
3869
3870 static bfd_reloc_status_type
3871 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3872 asection *input_section,
3873 struct bfd_link_info *info,
3874 const Elf_Internal_Rela *relocation,
3875 bfd_vma addend, reloc_howto_type *howto,
3876 Elf_Internal_Sym *local_syms,
3877 asection **local_sections, bfd_vma *valuep,
3878 const char **namep, bfd_boolean *require_jalxp,
3879 bfd_boolean save_addend)
3880 {
3881 /* The eventual value we will return. */
3882 bfd_vma value;
3883 /* The address of the symbol against which the relocation is
3884 occurring. */
3885 bfd_vma symbol = 0;
3886 /* The final GP value to be used for the relocatable, executable, or
3887 shared object file being produced. */
3888 bfd_vma gp = MINUS_ONE;
3889 /* The place (section offset or address) of the storage unit being
3890 relocated. */
3891 bfd_vma p;
3892 /* The value of GP used to create the relocatable object. */
3893 bfd_vma gp0 = MINUS_ONE;
3894 /* The offset into the global offset table at which the address of
3895 the relocation entry symbol, adjusted by the addend, resides
3896 during execution. */
3897 bfd_vma g = MINUS_ONE;
3898 /* The section in which the symbol referenced by the relocation is
3899 located. */
3900 asection *sec = NULL;
3901 struct mips_elf_link_hash_entry *h = NULL;
3902 /* TRUE if the symbol referred to by this relocation is a local
3903 symbol. */
3904 bfd_boolean local_p, was_local_p;
3905 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3906 bfd_boolean gp_disp_p = FALSE;
3907 /* TRUE if the symbol referred to by this relocation is
3908 "__gnu_local_gp". */
3909 bfd_boolean gnu_local_gp_p = FALSE;
3910 Elf_Internal_Shdr *symtab_hdr;
3911 size_t extsymoff;
3912 unsigned long r_symndx;
3913 int r_type;
3914 /* TRUE if overflow occurred during the calculation of the
3915 relocation value. */
3916 bfd_boolean overflowed_p;
3917 /* TRUE if this relocation refers to a MIPS16 function. */
3918 bfd_boolean target_is_16_bit_code_p = FALSE;
3919 struct mips_elf_link_hash_table *htab;
3920 bfd *dynobj;
3921
3922 dynobj = elf_hash_table (info)->dynobj;
3923 htab = mips_elf_hash_table (info);
3924
3925 /* Parse the relocation. */
3926 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3927 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3928 p = (input_section->output_section->vma
3929 + input_section->output_offset
3930 + relocation->r_offset);
3931
3932 /* Assume that there will be no overflow. */
3933 overflowed_p = FALSE;
3934
3935 /* Figure out whether or not the symbol is local, and get the offset
3936 used in the array of hash table entries. */
3937 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3938 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3939 local_sections, FALSE);
3940 was_local_p = local_p;
3941 if (! elf_bad_symtab (input_bfd))
3942 extsymoff = symtab_hdr->sh_info;
3943 else
3944 {
3945 /* The symbol table does not follow the rule that local symbols
3946 must come before globals. */
3947 extsymoff = 0;
3948 }
3949
3950 /* Figure out the value of the symbol. */
3951 if (local_p)
3952 {
3953 Elf_Internal_Sym *sym;
3954
3955 sym = local_syms + r_symndx;
3956 sec = local_sections[r_symndx];
3957
3958 symbol = sec->output_section->vma + sec->output_offset;
3959 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3960 || (sec->flags & SEC_MERGE))
3961 symbol += sym->st_value;
3962 if ((sec->flags & SEC_MERGE)
3963 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3964 {
3965 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3966 addend -= symbol;
3967 addend += sec->output_section->vma + sec->output_offset;
3968 }
3969
3970 /* MIPS16 text labels should be treated as odd. */
3971 if (sym->st_other == STO_MIPS16)
3972 ++symbol;
3973
3974 /* Record the name of this symbol, for our caller. */
3975 *namep = bfd_elf_string_from_elf_section (input_bfd,
3976 symtab_hdr->sh_link,
3977 sym->st_name);
3978 if (*namep == '\0')
3979 *namep = bfd_section_name (input_bfd, sec);
3980
3981 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3982 }
3983 else
3984 {
3985 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3986
3987 /* For global symbols we look up the symbol in the hash-table. */
3988 h = ((struct mips_elf_link_hash_entry *)
3989 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3990 /* Find the real hash-table entry for this symbol. */
3991 while (h->root.root.type == bfd_link_hash_indirect
3992 || h->root.root.type == bfd_link_hash_warning)
3993 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3994
3995 /* Record the name of this symbol, for our caller. */
3996 *namep = h->root.root.root.string;
3997
3998 /* See if this is the special _gp_disp symbol. Note that such a
3999 symbol must always be a global symbol. */
4000 if (strcmp (*namep, "_gp_disp") == 0
4001 && ! NEWABI_P (input_bfd))
4002 {
4003 /* Relocations against _gp_disp are permitted only with
4004 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4005 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4006 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
4007 return bfd_reloc_notsupported;
4008
4009 gp_disp_p = TRUE;
4010 }
4011 /* See if this is the special _gp symbol. Note that such a
4012 symbol must always be a global symbol. */
4013 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4014 gnu_local_gp_p = TRUE;
4015
4016
4017 /* If this symbol is defined, calculate its address. Note that
4018 _gp_disp is a magic symbol, always implicitly defined by the
4019 linker, so it's inappropriate to check to see whether or not
4020 its defined. */
4021 else if ((h->root.root.type == bfd_link_hash_defined
4022 || h->root.root.type == bfd_link_hash_defweak)
4023 && h->root.root.u.def.section)
4024 {
4025 sec = h->root.root.u.def.section;
4026 if (sec->output_section)
4027 symbol = (h->root.root.u.def.value
4028 + sec->output_section->vma
4029 + sec->output_offset);
4030 else
4031 symbol = h->root.root.u.def.value;
4032 }
4033 else if (h->root.root.type == bfd_link_hash_undefweak)
4034 /* We allow relocations against undefined weak symbols, giving
4035 it the value zero, so that you can undefined weak functions
4036 and check to see if they exist by looking at their
4037 addresses. */
4038 symbol = 0;
4039 else if (info->unresolved_syms_in_objects == RM_IGNORE
4040 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4041 symbol = 0;
4042 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4043 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4044 {
4045 /* If this is a dynamic link, we should have created a
4046 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4047 in in _bfd_mips_elf_create_dynamic_sections.
4048 Otherwise, we should define the symbol with a value of 0.
4049 FIXME: It should probably get into the symbol table
4050 somehow as well. */
4051 BFD_ASSERT (! info->shared);
4052 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4053 symbol = 0;
4054 }
4055 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4056 {
4057 /* This is an optional symbol - an Irix specific extension to the
4058 ELF spec. Ignore it for now.
4059 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4060 than simply ignoring them, but we do not handle this for now.
4061 For information see the "64-bit ELF Object File Specification"
4062 which is available from here:
4063 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4064 symbol = 0;
4065 }
4066 else
4067 {
4068 if (! ((*info->callbacks->undefined_symbol)
4069 (info, h->root.root.root.string, input_bfd,
4070 input_section, relocation->r_offset,
4071 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4072 || ELF_ST_VISIBILITY (h->root.other))))
4073 return bfd_reloc_undefined;
4074 symbol = 0;
4075 }
4076
4077 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4078 }
4079
4080 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4081 need to redirect the call to the stub, unless we're already *in*
4082 a stub. */
4083 if (r_type != R_MIPS16_26 && !info->relocatable
4084 && ((h != NULL && h->fn_stub != NULL)
4085 || (local_p
4086 && elf_tdata (input_bfd)->local_stubs != NULL
4087 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4088 && !mips16_stub_section_p (input_bfd, input_section))
4089 {
4090 /* This is a 32- or 64-bit call to a 16-bit function. We should
4091 have already noticed that we were going to need the
4092 stub. */
4093 if (local_p)
4094 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4095 else
4096 {
4097 BFD_ASSERT (h->need_fn_stub);
4098 sec = h->fn_stub;
4099 }
4100
4101 symbol = sec->output_section->vma + sec->output_offset;
4102 /* The target is 16-bit, but the stub isn't. */
4103 target_is_16_bit_code_p = FALSE;
4104 }
4105 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4106 need to redirect the call to the stub. */
4107 else if (r_type == R_MIPS16_26 && !info->relocatable
4108 && h != NULL
4109 && ((h->call_stub != NULL || h->call_fp_stub != NULL)
4110 || (local_p
4111 && elf_tdata (input_bfd)->local_call_stubs != NULL
4112 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4113 && !target_is_16_bit_code_p)
4114 {
4115 if (local_p)
4116 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4117 else
4118 {
4119 /* If both call_stub and call_fp_stub are defined, we can figure
4120 out which one to use by checking which one appears in the input
4121 file. */
4122 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4123 {
4124 asection *o;
4125
4126 sec = NULL;
4127 for (o = input_bfd->sections; o != NULL; o = o->next)
4128 {
4129 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4130 {
4131 sec = h->call_fp_stub;
4132 break;
4133 }
4134 }
4135 if (sec == NULL)
4136 sec = h->call_stub;
4137 }
4138 else if (h->call_stub != NULL)
4139 sec = h->call_stub;
4140 else
4141 sec = h->call_fp_stub;
4142 }
4143
4144 BFD_ASSERT (sec->size > 0);
4145 symbol = sec->output_section->vma + sec->output_offset;
4146 }
4147
4148 /* Calls from 16-bit code to 32-bit code and vice versa require the
4149 special jalx instruction. */
4150 *require_jalxp = (!info->relocatable
4151 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4152 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4153
4154 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4155 local_sections, TRUE);
4156
4157 /* If we haven't already determined the GOT offset, or the GP value,
4158 and we're going to need it, get it now. */
4159 switch (r_type)
4160 {
4161 case R_MIPS_GOT_PAGE:
4162 case R_MIPS_GOT_OFST:
4163 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4164 bind locally. */
4165 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4166 if (local_p || r_type == R_MIPS_GOT_OFST)
4167 break;
4168 /* Fall through. */
4169
4170 case R_MIPS_CALL16:
4171 case R_MIPS_GOT16:
4172 case R_MIPS_GOT_DISP:
4173 case R_MIPS_GOT_HI16:
4174 case R_MIPS_CALL_HI16:
4175 case R_MIPS_GOT_LO16:
4176 case R_MIPS_CALL_LO16:
4177 case R_MIPS_TLS_GD:
4178 case R_MIPS_TLS_GOTTPREL:
4179 case R_MIPS_TLS_LDM:
4180 /* Find the index into the GOT where this value is located. */
4181 if (r_type == R_MIPS_TLS_LDM)
4182 {
4183 g = mips_elf_local_got_index (abfd, input_bfd, info,
4184 sec, 0, 0, NULL, r_type);
4185 if (g == MINUS_ONE)
4186 return bfd_reloc_outofrange;
4187 }
4188 else if (!local_p)
4189 {
4190 /* On VxWorks, CALL relocations should refer to the .got.plt
4191 entry, which is initialized to point at the PLT stub. */
4192 if (htab->is_vxworks
4193 && (r_type == R_MIPS_CALL_HI16
4194 || r_type == R_MIPS_CALL_LO16
4195 || r_type == R_MIPS_CALL16))
4196 {
4197 BFD_ASSERT (addend == 0);
4198 BFD_ASSERT (h->root.needs_plt);
4199 g = mips_elf_gotplt_index (info, &h->root);
4200 }
4201 else
4202 {
4203 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4204 GOT_PAGE relocation that decays to GOT_DISP because the
4205 symbol turns out to be global. The addend is then added
4206 as GOT_OFST. */
4207 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4208 g = mips_elf_global_got_index (dynobj, input_bfd,
4209 &h->root, r_type, info);
4210 if (h->tls_type == GOT_NORMAL
4211 && (! elf_hash_table(info)->dynamic_sections_created
4212 || (info->shared
4213 && (info->symbolic || h->root.forced_local)
4214 && h->root.def_regular)))
4215 {
4216 /* This is a static link or a -Bsymbolic link. The
4217 symbol is defined locally, or was forced to be local.
4218 We must initialize this entry in the GOT. */
4219 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4220 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4221 }
4222 }
4223 }
4224 else if (!htab->is_vxworks
4225 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4226 /* The calculation below does not involve "g". */
4227 break;
4228 else
4229 {
4230 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4231 symbol + addend, r_symndx, h, r_type);
4232 if (g == MINUS_ONE)
4233 return bfd_reloc_outofrange;
4234 }
4235
4236 /* Convert GOT indices to actual offsets. */
4237 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4238 break;
4239
4240 case R_MIPS_HI16:
4241 case R_MIPS_LO16:
4242 case R_MIPS_GPREL16:
4243 case R_MIPS_GPREL32:
4244 case R_MIPS_LITERAL:
4245 case R_MIPS16_HI16:
4246 case R_MIPS16_LO16:
4247 case R_MIPS16_GPREL:
4248 gp0 = _bfd_get_gp_value (input_bfd);
4249 gp = _bfd_get_gp_value (abfd);
4250 if (dynobj)
4251 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4252 input_bfd);
4253 break;
4254
4255 default:
4256 break;
4257 }
4258
4259 if (gnu_local_gp_p)
4260 symbol = gp;
4261
4262 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4263 symbols are resolved by the loader. Add them to .rela.dyn. */
4264 if (h != NULL && is_gott_symbol (info, &h->root))
4265 {
4266 Elf_Internal_Rela outrel;
4267 bfd_byte *loc;
4268 asection *s;
4269
4270 s = mips_elf_rel_dyn_section (info, FALSE);
4271 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4272
4273 outrel.r_offset = (input_section->output_section->vma
4274 + input_section->output_offset
4275 + relocation->r_offset);
4276 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4277 outrel.r_addend = addend;
4278 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4279 *valuep = 0;
4280 return bfd_reloc_ok;
4281 }
4282
4283 /* Figure out what kind of relocation is being performed. */
4284 switch (r_type)
4285 {
4286 case R_MIPS_NONE:
4287 return bfd_reloc_continue;
4288
4289 case R_MIPS_16:
4290 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4291 overflowed_p = mips_elf_overflow_p (value, 16);
4292 break;
4293
4294 case R_MIPS_32:
4295 case R_MIPS_REL32:
4296 case R_MIPS_64:
4297 if ((info->shared
4298 || (!htab->is_vxworks
4299 && htab->root.dynamic_sections_created
4300 && h != NULL
4301 && h->root.def_dynamic
4302 && !h->root.def_regular))
4303 && r_symndx != 0
4304 && (input_section->flags & SEC_ALLOC) != 0)
4305 {
4306 /* If we're creating a shared library, or this relocation is
4307 against a symbol in a shared library, then we can't know
4308 where the symbol will end up. So, we create a relocation
4309 record in the output, and leave the job up to the dynamic
4310 linker.
4311
4312 In VxWorks executables, references to external symbols
4313 are handled using copy relocs or PLT stubs, so there's
4314 no need to add a dynamic relocation here. */
4315 value = addend;
4316 if (!mips_elf_create_dynamic_relocation (abfd,
4317 info,
4318 relocation,
4319 h,
4320 sec,
4321 symbol,
4322 &value,
4323 input_section))
4324 return bfd_reloc_undefined;
4325 }
4326 else
4327 {
4328 if (r_type != R_MIPS_REL32)
4329 value = symbol + addend;
4330 else
4331 value = addend;
4332 }
4333 value &= howto->dst_mask;
4334 break;
4335
4336 case R_MIPS_PC32:
4337 value = symbol + addend - p;
4338 value &= howto->dst_mask;
4339 break;
4340
4341 case R_MIPS16_26:
4342 /* The calculation for R_MIPS16_26 is just the same as for an
4343 R_MIPS_26. It's only the storage of the relocated field into
4344 the output file that's different. That's handled in
4345 mips_elf_perform_relocation. So, we just fall through to the
4346 R_MIPS_26 case here. */
4347 case R_MIPS_26:
4348 if (local_p)
4349 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4350 else
4351 {
4352 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4353 if (h->root.root.type != bfd_link_hash_undefweak)
4354 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4355 }
4356 value &= howto->dst_mask;
4357 break;
4358
4359 case R_MIPS_TLS_DTPREL_HI16:
4360 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4361 & howto->dst_mask);
4362 break;
4363
4364 case R_MIPS_TLS_DTPREL_LO16:
4365 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4366 break;
4367
4368 case R_MIPS_TLS_TPREL_HI16:
4369 value = (mips_elf_high (addend + symbol - tprel_base (info))
4370 & howto->dst_mask);
4371 break;
4372
4373 case R_MIPS_TLS_TPREL_LO16:
4374 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4375 break;
4376
4377 case R_MIPS_HI16:
4378 case R_MIPS16_HI16:
4379 if (!gp_disp_p)
4380 {
4381 value = mips_elf_high (addend + symbol);
4382 value &= howto->dst_mask;
4383 }
4384 else
4385 {
4386 /* For MIPS16 ABI code we generate this sequence
4387 0: li $v0,%hi(_gp_disp)
4388 4: addiupc $v1,%lo(_gp_disp)
4389 8: sll $v0,16
4390 12: addu $v0,$v1
4391 14: move $gp,$v0
4392 So the offsets of hi and lo relocs are the same, but the
4393 $pc is four higher than $t9 would be, so reduce
4394 both reloc addends by 4. */
4395 if (r_type == R_MIPS16_HI16)
4396 value = mips_elf_high (addend + gp - p - 4);
4397 else
4398 value = mips_elf_high (addend + gp - p);
4399 overflowed_p = mips_elf_overflow_p (value, 16);
4400 }
4401 break;
4402
4403 case R_MIPS_LO16:
4404 case R_MIPS16_LO16:
4405 if (!gp_disp_p)
4406 value = (symbol + addend) & howto->dst_mask;
4407 else
4408 {
4409 /* See the comment for R_MIPS16_HI16 above for the reason
4410 for this conditional. */
4411 if (r_type == R_MIPS16_LO16)
4412 value = addend + gp - p;
4413 else
4414 value = addend + gp - p + 4;
4415 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4416 for overflow. But, on, say, IRIX5, relocations against
4417 _gp_disp are normally generated from the .cpload
4418 pseudo-op. It generates code that normally looks like
4419 this:
4420
4421 lui $gp,%hi(_gp_disp)
4422 addiu $gp,$gp,%lo(_gp_disp)
4423 addu $gp,$gp,$t9
4424
4425 Here $t9 holds the address of the function being called,
4426 as required by the MIPS ELF ABI. The R_MIPS_LO16
4427 relocation can easily overflow in this situation, but the
4428 R_MIPS_HI16 relocation will handle the overflow.
4429 Therefore, we consider this a bug in the MIPS ABI, and do
4430 not check for overflow here. */
4431 }
4432 break;
4433
4434 case R_MIPS_LITERAL:
4435 /* Because we don't merge literal sections, we can handle this
4436 just like R_MIPS_GPREL16. In the long run, we should merge
4437 shared literals, and then we will need to additional work
4438 here. */
4439
4440 /* Fall through. */
4441
4442 case R_MIPS16_GPREL:
4443 /* The R_MIPS16_GPREL performs the same calculation as
4444 R_MIPS_GPREL16, but stores the relocated bits in a different
4445 order. We don't need to do anything special here; the
4446 differences are handled in mips_elf_perform_relocation. */
4447 case R_MIPS_GPREL16:
4448 /* Only sign-extend the addend if it was extracted from the
4449 instruction. If the addend was separate, leave it alone,
4450 otherwise we may lose significant bits. */
4451 if (howto->partial_inplace)
4452 addend = _bfd_mips_elf_sign_extend (addend, 16);
4453 value = symbol + addend - gp;
4454 /* If the symbol was local, any earlier relocatable links will
4455 have adjusted its addend with the gp offset, so compensate
4456 for that now. Don't do it for symbols forced local in this
4457 link, though, since they won't have had the gp offset applied
4458 to them before. */
4459 if (was_local_p)
4460 value += gp0;
4461 overflowed_p = mips_elf_overflow_p (value, 16);
4462 break;
4463
4464 case R_MIPS_GOT16:
4465 case R_MIPS_CALL16:
4466 /* VxWorks does not have separate local and global semantics for
4467 R_MIPS_GOT16; every relocation evaluates to "G". */
4468 if (!htab->is_vxworks && local_p)
4469 {
4470 bfd_boolean forced;
4471
4472 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4473 local_sections, FALSE);
4474 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4475 symbol + addend, forced);
4476 if (value == MINUS_ONE)
4477 return bfd_reloc_outofrange;
4478 value
4479 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4480 overflowed_p = mips_elf_overflow_p (value, 16);
4481 break;
4482 }
4483
4484 /* Fall through. */
4485
4486 case R_MIPS_TLS_GD:
4487 case R_MIPS_TLS_GOTTPREL:
4488 case R_MIPS_TLS_LDM:
4489 case R_MIPS_GOT_DISP:
4490 got_disp:
4491 value = g;
4492 overflowed_p = mips_elf_overflow_p (value, 16);
4493 break;
4494
4495 case R_MIPS_GPREL32:
4496 value = (addend + symbol + gp0 - gp);
4497 if (!save_addend)
4498 value &= howto->dst_mask;
4499 break;
4500
4501 case R_MIPS_PC16:
4502 case R_MIPS_GNU_REL16_S2:
4503 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4504 overflowed_p = mips_elf_overflow_p (value, 18);
4505 value >>= howto->rightshift;
4506 value &= howto->dst_mask;
4507 break;
4508
4509 case R_MIPS_GOT_HI16:
4510 case R_MIPS_CALL_HI16:
4511 /* We're allowed to handle these two relocations identically.
4512 The dynamic linker is allowed to handle the CALL relocations
4513 differently by creating a lazy evaluation stub. */
4514 value = g;
4515 value = mips_elf_high (value);
4516 value &= howto->dst_mask;
4517 break;
4518
4519 case R_MIPS_GOT_LO16:
4520 case R_MIPS_CALL_LO16:
4521 value = g & howto->dst_mask;
4522 break;
4523
4524 case R_MIPS_GOT_PAGE:
4525 /* GOT_PAGE relocations that reference non-local symbols decay
4526 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4527 0. */
4528 if (! local_p)
4529 goto got_disp;
4530 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4531 symbol + addend, NULL);
4532 if (value == MINUS_ONE)
4533 return bfd_reloc_outofrange;
4534 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4535 overflowed_p = mips_elf_overflow_p (value, 16);
4536 break;
4537
4538 case R_MIPS_GOT_OFST:
4539 if (local_p)
4540 mips_elf_got_page (abfd, input_bfd, info, sec,
4541 symbol + addend, &value);
4542 else
4543 value = addend;
4544 overflowed_p = mips_elf_overflow_p (value, 16);
4545 break;
4546
4547 case R_MIPS_SUB:
4548 value = symbol - addend;
4549 value &= howto->dst_mask;
4550 break;
4551
4552 case R_MIPS_HIGHER:
4553 value = mips_elf_higher (addend + symbol);
4554 value &= howto->dst_mask;
4555 break;
4556
4557 case R_MIPS_HIGHEST:
4558 value = mips_elf_highest (addend + symbol);
4559 value &= howto->dst_mask;
4560 break;
4561
4562 case R_MIPS_SCN_DISP:
4563 value = symbol + addend - sec->output_offset;
4564 value &= howto->dst_mask;
4565 break;
4566
4567 case R_MIPS_JALR:
4568 /* This relocation is only a hint. In some cases, we optimize
4569 it into a bal instruction. But we don't try to optimize
4570 branches to the PLT; that will wind up wasting time. */
4571 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4572 return bfd_reloc_continue;
4573 value = symbol + addend;
4574 break;
4575
4576 case R_MIPS_PJUMP:
4577 case R_MIPS_GNU_VTINHERIT:
4578 case R_MIPS_GNU_VTENTRY:
4579 /* We don't do anything with these at present. */
4580 return bfd_reloc_continue;
4581
4582 default:
4583 /* An unrecognized relocation type. */
4584 return bfd_reloc_notsupported;
4585 }
4586
4587 /* Store the VALUE for our caller. */
4588 *valuep = value;
4589 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4590 }
4591
4592 /* Obtain the field relocated by RELOCATION. */
4593
4594 static bfd_vma
4595 mips_elf_obtain_contents (reloc_howto_type *howto,
4596 const Elf_Internal_Rela *relocation,
4597 bfd *input_bfd, bfd_byte *contents)
4598 {
4599 bfd_vma x;
4600 bfd_byte *location = contents + relocation->r_offset;
4601
4602 /* Obtain the bytes. */
4603 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4604
4605 return x;
4606 }
4607
4608 /* It has been determined that the result of the RELOCATION is the
4609 VALUE. Use HOWTO to place VALUE into the output file at the
4610 appropriate position. The SECTION is the section to which the
4611 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4612 for the relocation must be either JAL or JALX, and it is
4613 unconditionally converted to JALX.
4614
4615 Returns FALSE if anything goes wrong. */
4616
4617 static bfd_boolean
4618 mips_elf_perform_relocation (struct bfd_link_info *info,
4619 reloc_howto_type *howto,
4620 const Elf_Internal_Rela *relocation,
4621 bfd_vma value, bfd *input_bfd,
4622 asection *input_section, bfd_byte *contents,
4623 bfd_boolean require_jalx)
4624 {
4625 bfd_vma x;
4626 bfd_byte *location;
4627 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4628
4629 /* Figure out where the relocation is occurring. */
4630 location = contents + relocation->r_offset;
4631
4632 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4633
4634 /* Obtain the current value. */
4635 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4636
4637 /* Clear the field we are setting. */
4638 x &= ~howto->dst_mask;
4639
4640 /* Set the field. */
4641 x |= (value & howto->dst_mask);
4642
4643 /* If required, turn JAL into JALX. */
4644 if (require_jalx)
4645 {
4646 bfd_boolean ok;
4647 bfd_vma opcode = x >> 26;
4648 bfd_vma jalx_opcode;
4649
4650 /* Check to see if the opcode is already JAL or JALX. */
4651 if (r_type == R_MIPS16_26)
4652 {
4653 ok = ((opcode == 0x6) || (opcode == 0x7));
4654 jalx_opcode = 0x7;
4655 }
4656 else
4657 {
4658 ok = ((opcode == 0x3) || (opcode == 0x1d));
4659 jalx_opcode = 0x1d;
4660 }
4661
4662 /* If the opcode is not JAL or JALX, there's a problem. */
4663 if (!ok)
4664 {
4665 (*_bfd_error_handler)
4666 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4667 input_bfd,
4668 input_section,
4669 (unsigned long) relocation->r_offset);
4670 bfd_set_error (bfd_error_bad_value);
4671 return FALSE;
4672 }
4673
4674 /* Make this the JALX opcode. */
4675 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4676 }
4677
4678 /* On the RM9000, bal is faster than jal, because bal uses branch
4679 prediction hardware. If we are linking for the RM9000, and we
4680 see jal, and bal fits, use it instead. Note that this
4681 transformation should be safe for all architectures. */
4682 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4683 && !info->relocatable
4684 && !require_jalx
4685 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4686 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4687 {
4688 bfd_vma addr;
4689 bfd_vma dest;
4690 bfd_signed_vma off;
4691
4692 addr = (input_section->output_section->vma
4693 + input_section->output_offset
4694 + relocation->r_offset
4695 + 4);
4696 if (r_type == R_MIPS_26)
4697 dest = (value << 2) | ((addr >> 28) << 28);
4698 else
4699 dest = value;
4700 off = dest - addr;
4701 if (off <= 0x1ffff && off >= -0x20000)
4702 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4703 }
4704
4705 /* Put the value into the output. */
4706 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4707
4708 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4709 location);
4710
4711 return TRUE;
4712 }
4713
4714 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4715
4716 static bfd_boolean
4717 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4718 {
4719 const char *name = bfd_get_section_name (abfd, section);
4720
4721 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4722 }
4723 \f
4724 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4725
4726 static void
4727 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4728 unsigned int n)
4729 {
4730 asection *s;
4731 struct mips_elf_link_hash_table *htab;
4732
4733 htab = mips_elf_hash_table (info);
4734 s = mips_elf_rel_dyn_section (info, FALSE);
4735 BFD_ASSERT (s != NULL);
4736
4737 if (htab->is_vxworks)
4738 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4739 else
4740 {
4741 if (s->size == 0)
4742 {
4743 /* Make room for a null element. */
4744 s->size += MIPS_ELF_REL_SIZE (abfd);
4745 ++s->reloc_count;
4746 }
4747 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4748 }
4749 }
4750
4751 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4752 is the original relocation, which is now being transformed into a
4753 dynamic relocation. The ADDENDP is adjusted if necessary; the
4754 caller should store the result in place of the original addend. */
4755
4756 static bfd_boolean
4757 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4758 struct bfd_link_info *info,
4759 const Elf_Internal_Rela *rel,
4760 struct mips_elf_link_hash_entry *h,
4761 asection *sec, bfd_vma symbol,
4762 bfd_vma *addendp, asection *input_section)
4763 {
4764 Elf_Internal_Rela outrel[3];
4765 asection *sreloc;
4766 bfd *dynobj;
4767 int r_type;
4768 long indx;
4769 bfd_boolean defined_p;
4770 struct mips_elf_link_hash_table *htab;
4771
4772 htab = mips_elf_hash_table (info);
4773 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4774 dynobj = elf_hash_table (info)->dynobj;
4775 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4776 BFD_ASSERT (sreloc != NULL);
4777 BFD_ASSERT (sreloc->contents != NULL);
4778 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4779 < sreloc->size);
4780
4781 outrel[0].r_offset =
4782 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4783 outrel[1].r_offset =
4784 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4785 outrel[2].r_offset =
4786 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4787
4788 if (outrel[0].r_offset == MINUS_ONE)
4789 /* The relocation field has been deleted. */
4790 return TRUE;
4791
4792 if (outrel[0].r_offset == MINUS_TWO)
4793 {
4794 /* The relocation field has been converted into a relative value of
4795 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4796 the field to be fully relocated, so add in the symbol's value. */
4797 *addendp += symbol;
4798 return TRUE;
4799 }
4800
4801 /* We must now calculate the dynamic symbol table index to use
4802 in the relocation. */
4803 if (h != NULL
4804 && (!h->root.def_regular
4805 || (info->shared && !info->symbolic && !h->root.forced_local)))
4806 {
4807 indx = h->root.dynindx;
4808 if (SGI_COMPAT (output_bfd))
4809 defined_p = h->root.def_regular;
4810 else
4811 /* ??? glibc's ld.so just adds the final GOT entry to the
4812 relocation field. It therefore treats relocs against
4813 defined symbols in the same way as relocs against
4814 undefined symbols. */
4815 defined_p = FALSE;
4816 }
4817 else
4818 {
4819 if (sec != NULL && bfd_is_abs_section (sec))
4820 indx = 0;
4821 else if (sec == NULL || sec->owner == NULL)
4822 {
4823 bfd_set_error (bfd_error_bad_value);
4824 return FALSE;
4825 }
4826 else
4827 {
4828 indx = elf_section_data (sec->output_section)->dynindx;
4829 if (indx == 0)
4830 {
4831 asection *osec = htab->root.text_index_section;
4832 indx = elf_section_data (osec)->dynindx;
4833 }
4834 if (indx == 0)
4835 abort ();
4836 }
4837
4838 /* Instead of generating a relocation using the section
4839 symbol, we may as well make it a fully relative
4840 relocation. We want to avoid generating relocations to
4841 local symbols because we used to generate them
4842 incorrectly, without adding the original symbol value,
4843 which is mandated by the ABI for section symbols. In
4844 order to give dynamic loaders and applications time to
4845 phase out the incorrect use, we refrain from emitting
4846 section-relative relocations. It's not like they're
4847 useful, after all. This should be a bit more efficient
4848 as well. */
4849 /* ??? Although this behavior is compatible with glibc's ld.so,
4850 the ABI says that relocations against STN_UNDEF should have
4851 a symbol value of 0. Irix rld honors this, so relocations
4852 against STN_UNDEF have no effect. */
4853 if (!SGI_COMPAT (output_bfd))
4854 indx = 0;
4855 defined_p = TRUE;
4856 }
4857
4858 /* If the relocation was previously an absolute relocation and
4859 this symbol will not be referred to by the relocation, we must
4860 adjust it by the value we give it in the dynamic symbol table.
4861 Otherwise leave the job up to the dynamic linker. */
4862 if (defined_p && r_type != R_MIPS_REL32)
4863 *addendp += symbol;
4864
4865 if (htab->is_vxworks)
4866 /* VxWorks uses non-relative relocations for this. */
4867 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4868 else
4869 /* The relocation is always an REL32 relocation because we don't
4870 know where the shared library will wind up at load-time. */
4871 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4872 R_MIPS_REL32);
4873
4874 /* For strict adherence to the ABI specification, we should
4875 generate a R_MIPS_64 relocation record by itself before the
4876 _REL32/_64 record as well, such that the addend is read in as
4877 a 64-bit value (REL32 is a 32-bit relocation, after all).
4878 However, since none of the existing ELF64 MIPS dynamic
4879 loaders seems to care, we don't waste space with these
4880 artificial relocations. If this turns out to not be true,
4881 mips_elf_allocate_dynamic_relocation() should be tweaked so
4882 as to make room for a pair of dynamic relocations per
4883 invocation if ABI_64_P, and here we should generate an
4884 additional relocation record with R_MIPS_64 by itself for a
4885 NULL symbol before this relocation record. */
4886 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4887 ABI_64_P (output_bfd)
4888 ? R_MIPS_64
4889 : R_MIPS_NONE);
4890 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4891
4892 /* Adjust the output offset of the relocation to reference the
4893 correct location in the output file. */
4894 outrel[0].r_offset += (input_section->output_section->vma
4895 + input_section->output_offset);
4896 outrel[1].r_offset += (input_section->output_section->vma
4897 + input_section->output_offset);
4898 outrel[2].r_offset += (input_section->output_section->vma
4899 + input_section->output_offset);
4900
4901 /* Put the relocation back out. We have to use the special
4902 relocation outputter in the 64-bit case since the 64-bit
4903 relocation format is non-standard. */
4904 if (ABI_64_P (output_bfd))
4905 {
4906 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4907 (output_bfd, &outrel[0],
4908 (sreloc->contents
4909 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4910 }
4911 else if (htab->is_vxworks)
4912 {
4913 /* VxWorks uses RELA rather than REL dynamic relocations. */
4914 outrel[0].r_addend = *addendp;
4915 bfd_elf32_swap_reloca_out
4916 (output_bfd, &outrel[0],
4917 (sreloc->contents
4918 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4919 }
4920 else
4921 bfd_elf32_swap_reloc_out
4922 (output_bfd, &outrel[0],
4923 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4924
4925 /* We've now added another relocation. */
4926 ++sreloc->reloc_count;
4927
4928 /* Make sure the output section is writable. The dynamic linker
4929 will be writing to it. */
4930 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4931 |= SHF_WRITE;
4932
4933 /* On IRIX5, make an entry of compact relocation info. */
4934 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4935 {
4936 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4937 bfd_byte *cr;
4938
4939 if (scpt)
4940 {
4941 Elf32_crinfo cptrel;
4942
4943 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4944 cptrel.vaddr = (rel->r_offset
4945 + input_section->output_section->vma
4946 + input_section->output_offset);
4947 if (r_type == R_MIPS_REL32)
4948 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4949 else
4950 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4951 mips_elf_set_cr_dist2to (cptrel, 0);
4952 cptrel.konst = *addendp;
4953
4954 cr = (scpt->contents
4955 + sizeof (Elf32_External_compact_rel));
4956 mips_elf_set_cr_relvaddr (cptrel, 0);
4957 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4958 ((Elf32_External_crinfo *) cr
4959 + scpt->reloc_count));
4960 ++scpt->reloc_count;
4961 }
4962 }
4963
4964 /* If we've written this relocation for a readonly section,
4965 we need to set DF_TEXTREL again, so that we do not delete the
4966 DT_TEXTREL tag. */
4967 if (MIPS_ELF_READONLY_SECTION (input_section))
4968 info->flags |= DF_TEXTREL;
4969
4970 return TRUE;
4971 }
4972 \f
4973 /* Return the MACH for a MIPS e_flags value. */
4974
4975 unsigned long
4976 _bfd_elf_mips_mach (flagword flags)
4977 {
4978 switch (flags & EF_MIPS_MACH)
4979 {
4980 case E_MIPS_MACH_3900:
4981 return bfd_mach_mips3900;
4982
4983 case E_MIPS_MACH_4010:
4984 return bfd_mach_mips4010;
4985
4986 case E_MIPS_MACH_4100:
4987 return bfd_mach_mips4100;
4988
4989 case E_MIPS_MACH_4111:
4990 return bfd_mach_mips4111;
4991
4992 case E_MIPS_MACH_4120:
4993 return bfd_mach_mips4120;
4994
4995 case E_MIPS_MACH_4650:
4996 return bfd_mach_mips4650;
4997
4998 case E_MIPS_MACH_5400:
4999 return bfd_mach_mips5400;
5000
5001 case E_MIPS_MACH_5500:
5002 return bfd_mach_mips5500;
5003
5004 case E_MIPS_MACH_9000:
5005 return bfd_mach_mips9000;
5006
5007 case E_MIPS_MACH_SB1:
5008 return bfd_mach_mips_sb1;
5009
5010 default:
5011 switch (flags & EF_MIPS_ARCH)
5012 {
5013 default:
5014 case E_MIPS_ARCH_1:
5015 return bfd_mach_mips3000;
5016
5017 case E_MIPS_ARCH_2:
5018 return bfd_mach_mips6000;
5019
5020 case E_MIPS_ARCH_3:
5021 return bfd_mach_mips4000;
5022
5023 case E_MIPS_ARCH_4:
5024 return bfd_mach_mips8000;
5025
5026 case E_MIPS_ARCH_5:
5027 return bfd_mach_mips5;
5028
5029 case E_MIPS_ARCH_32:
5030 return bfd_mach_mipsisa32;
5031
5032 case E_MIPS_ARCH_64:
5033 return bfd_mach_mipsisa64;
5034
5035 case E_MIPS_ARCH_32R2:
5036 return bfd_mach_mipsisa32r2;
5037
5038 case E_MIPS_ARCH_64R2:
5039 return bfd_mach_mipsisa64r2;
5040 }
5041 }
5042
5043 return 0;
5044 }
5045
5046 /* Return printable name for ABI. */
5047
5048 static INLINE char *
5049 elf_mips_abi_name (bfd *abfd)
5050 {
5051 flagword flags;
5052
5053 flags = elf_elfheader (abfd)->e_flags;
5054 switch (flags & EF_MIPS_ABI)
5055 {
5056 case 0:
5057 if (ABI_N32_P (abfd))
5058 return "N32";
5059 else if (ABI_64_P (abfd))
5060 return "64";
5061 else
5062 return "none";
5063 case E_MIPS_ABI_O32:
5064 return "O32";
5065 case E_MIPS_ABI_O64:
5066 return "O64";
5067 case E_MIPS_ABI_EABI32:
5068 return "EABI32";
5069 case E_MIPS_ABI_EABI64:
5070 return "EABI64";
5071 default:
5072 return "unknown abi";
5073 }
5074 }
5075 \f
5076 /* MIPS ELF uses two common sections. One is the usual one, and the
5077 other is for small objects. All the small objects are kept
5078 together, and then referenced via the gp pointer, which yields
5079 faster assembler code. This is what we use for the small common
5080 section. This approach is copied from ecoff.c. */
5081 static asection mips_elf_scom_section;
5082 static asymbol mips_elf_scom_symbol;
5083 static asymbol *mips_elf_scom_symbol_ptr;
5084
5085 /* MIPS ELF also uses an acommon section, which represents an
5086 allocated common symbol which may be overridden by a
5087 definition in a shared library. */
5088 static asection mips_elf_acom_section;
5089 static asymbol mips_elf_acom_symbol;
5090 static asymbol *mips_elf_acom_symbol_ptr;
5091
5092 /* Handle the special MIPS section numbers that a symbol may use.
5093 This is used for both the 32-bit and the 64-bit ABI. */
5094
5095 void
5096 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5097 {
5098 elf_symbol_type *elfsym;
5099
5100 elfsym = (elf_symbol_type *) asym;
5101 switch (elfsym->internal_elf_sym.st_shndx)
5102 {
5103 case SHN_MIPS_ACOMMON:
5104 /* This section is used in a dynamically linked executable file.
5105 It is an allocated common section. The dynamic linker can
5106 either resolve these symbols to something in a shared
5107 library, or it can just leave them here. For our purposes,
5108 we can consider these symbols to be in a new section. */
5109 if (mips_elf_acom_section.name == NULL)
5110 {
5111 /* Initialize the acommon section. */
5112 mips_elf_acom_section.name = ".acommon";
5113 mips_elf_acom_section.flags = SEC_ALLOC;
5114 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5115 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5116 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5117 mips_elf_acom_symbol.name = ".acommon";
5118 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5119 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5120 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5121 }
5122 asym->section = &mips_elf_acom_section;
5123 break;
5124
5125 case SHN_COMMON:
5126 /* Common symbols less than the GP size are automatically
5127 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5128 if (asym->value > elf_gp_size (abfd)
5129 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5130 || IRIX_COMPAT (abfd) == ict_irix6)
5131 break;
5132 /* Fall through. */
5133 case SHN_MIPS_SCOMMON:
5134 if (mips_elf_scom_section.name == NULL)
5135 {
5136 /* Initialize the small common section. */
5137 mips_elf_scom_section.name = ".scommon";
5138 mips_elf_scom_section.flags = SEC_IS_COMMON;
5139 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5140 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5141 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5142 mips_elf_scom_symbol.name = ".scommon";
5143 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5144 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5145 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5146 }
5147 asym->section = &mips_elf_scom_section;
5148 asym->value = elfsym->internal_elf_sym.st_size;
5149 break;
5150
5151 case SHN_MIPS_SUNDEFINED:
5152 asym->section = bfd_und_section_ptr;
5153 break;
5154
5155 case SHN_MIPS_TEXT:
5156 {
5157 asection *section = bfd_get_section_by_name (abfd, ".text");
5158
5159 BFD_ASSERT (SGI_COMPAT (abfd));
5160 if (section != NULL)
5161 {
5162 asym->section = section;
5163 /* MIPS_TEXT is a bit special, the address is not an offset
5164 to the base of the .text section. So substract the section
5165 base address to make it an offset. */
5166 asym->value -= section->vma;
5167 }
5168 }
5169 break;
5170
5171 case SHN_MIPS_DATA:
5172 {
5173 asection *section = bfd_get_section_by_name (abfd, ".data");
5174
5175 BFD_ASSERT (SGI_COMPAT (abfd));
5176 if (section != NULL)
5177 {
5178 asym->section = section;
5179 /* MIPS_DATA is a bit special, the address is not an offset
5180 to the base of the .data section. So substract the section
5181 base address to make it an offset. */
5182 asym->value -= section->vma;
5183 }
5184 }
5185 break;
5186 }
5187 }
5188 \f
5189 /* Implement elf_backend_eh_frame_address_size. This differs from
5190 the default in the way it handles EABI64.
5191
5192 EABI64 was originally specified as an LP64 ABI, and that is what
5193 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5194 historically accepted the combination of -mabi=eabi and -mlong32,
5195 and this ILP32 variation has become semi-official over time.
5196 Both forms use elf32 and have pointer-sized FDE addresses.
5197
5198 If an EABI object was generated by GCC 4.0 or above, it will have
5199 an empty .gcc_compiled_longXX section, where XX is the size of longs
5200 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5201 have no special marking to distinguish them from LP64 objects.
5202
5203 We don't want users of the official LP64 ABI to be punished for the
5204 existence of the ILP32 variant, but at the same time, we don't want
5205 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5206 We therefore take the following approach:
5207
5208 - If ABFD contains a .gcc_compiled_longXX section, use it to
5209 determine the pointer size.
5210
5211 - Otherwise check the type of the first relocation. Assume that
5212 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5213
5214 - Otherwise punt.
5215
5216 The second check is enough to detect LP64 objects generated by pre-4.0
5217 compilers because, in the kind of output generated by those compilers,
5218 the first relocation will be associated with either a CIE personality
5219 routine or an FDE start address. Furthermore, the compilers never
5220 used a special (non-pointer) encoding for this ABI.
5221
5222 Checking the relocation type should also be safe because there is no
5223 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5224 did so. */
5225
5226 unsigned int
5227 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5228 {
5229 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5230 return 8;
5231 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5232 {
5233 bfd_boolean long32_p, long64_p;
5234
5235 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5236 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5237 if (long32_p && long64_p)
5238 return 0;
5239 if (long32_p)
5240 return 4;
5241 if (long64_p)
5242 return 8;
5243
5244 if (sec->reloc_count > 0
5245 && elf_section_data (sec)->relocs != NULL
5246 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5247 == R_MIPS_64))
5248 return 8;
5249
5250 return 0;
5251 }
5252 return 4;
5253 }
5254 \f
5255 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5256 relocations against two unnamed section symbols to resolve to the
5257 same address. For example, if we have code like:
5258
5259 lw $4,%got_disp(.data)($gp)
5260 lw $25,%got_disp(.text)($gp)
5261 jalr $25
5262
5263 then the linker will resolve both relocations to .data and the program
5264 will jump there rather than to .text.
5265
5266 We can work around this problem by giving names to local section symbols.
5267 This is also what the MIPSpro tools do. */
5268
5269 bfd_boolean
5270 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5271 {
5272 return SGI_COMPAT (abfd);
5273 }
5274 \f
5275 /* Work over a section just before writing it out. This routine is
5276 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5277 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5278 a better way. */
5279
5280 bfd_boolean
5281 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5282 {
5283 if (hdr->sh_type == SHT_MIPS_REGINFO
5284 && hdr->sh_size > 0)
5285 {
5286 bfd_byte buf[4];
5287
5288 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5289 BFD_ASSERT (hdr->contents == NULL);
5290
5291 if (bfd_seek (abfd,
5292 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5293 SEEK_SET) != 0)
5294 return FALSE;
5295 H_PUT_32 (abfd, elf_gp (abfd), buf);
5296 if (bfd_bwrite (buf, 4, abfd) != 4)
5297 return FALSE;
5298 }
5299
5300 if (hdr->sh_type == SHT_MIPS_OPTIONS
5301 && hdr->bfd_section != NULL
5302 && mips_elf_section_data (hdr->bfd_section) != NULL
5303 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5304 {
5305 bfd_byte *contents, *l, *lend;
5306
5307 /* We stored the section contents in the tdata field in the
5308 set_section_contents routine. We save the section contents
5309 so that we don't have to read them again.
5310 At this point we know that elf_gp is set, so we can look
5311 through the section contents to see if there is an
5312 ODK_REGINFO structure. */
5313
5314 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5315 l = contents;
5316 lend = contents + hdr->sh_size;
5317 while (l + sizeof (Elf_External_Options) <= lend)
5318 {
5319 Elf_Internal_Options intopt;
5320
5321 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5322 &intopt);
5323 if (intopt.size < sizeof (Elf_External_Options))
5324 {
5325 (*_bfd_error_handler)
5326 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5327 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5328 break;
5329 }
5330 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5331 {
5332 bfd_byte buf[8];
5333
5334 if (bfd_seek (abfd,
5335 (hdr->sh_offset
5336 + (l - contents)
5337 + sizeof (Elf_External_Options)
5338 + (sizeof (Elf64_External_RegInfo) - 8)),
5339 SEEK_SET) != 0)
5340 return FALSE;
5341 H_PUT_64 (abfd, elf_gp (abfd), buf);
5342 if (bfd_bwrite (buf, 8, abfd) != 8)
5343 return FALSE;
5344 }
5345 else if (intopt.kind == ODK_REGINFO)
5346 {
5347 bfd_byte buf[4];
5348
5349 if (bfd_seek (abfd,
5350 (hdr->sh_offset
5351 + (l - contents)
5352 + sizeof (Elf_External_Options)
5353 + (sizeof (Elf32_External_RegInfo) - 4)),
5354 SEEK_SET) != 0)
5355 return FALSE;
5356 H_PUT_32 (abfd, elf_gp (abfd), buf);
5357 if (bfd_bwrite (buf, 4, abfd) != 4)
5358 return FALSE;
5359 }
5360 l += intopt.size;
5361 }
5362 }
5363
5364 if (hdr->bfd_section != NULL)
5365 {
5366 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5367
5368 if (strcmp (name, ".sdata") == 0
5369 || strcmp (name, ".lit8") == 0
5370 || strcmp (name, ".lit4") == 0)
5371 {
5372 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5373 hdr->sh_type = SHT_PROGBITS;
5374 }
5375 else if (strcmp (name, ".sbss") == 0)
5376 {
5377 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5378 hdr->sh_type = SHT_NOBITS;
5379 }
5380 else if (strcmp (name, ".srdata") == 0)
5381 {
5382 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5383 hdr->sh_type = SHT_PROGBITS;
5384 }
5385 else if (strcmp (name, ".compact_rel") == 0)
5386 {
5387 hdr->sh_flags = 0;
5388 hdr->sh_type = SHT_PROGBITS;
5389 }
5390 else if (strcmp (name, ".rtproc") == 0)
5391 {
5392 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5393 {
5394 unsigned int adjust;
5395
5396 adjust = hdr->sh_size % hdr->sh_addralign;
5397 if (adjust != 0)
5398 hdr->sh_size += hdr->sh_addralign - adjust;
5399 }
5400 }
5401 }
5402
5403 return TRUE;
5404 }
5405
5406 /* Handle a MIPS specific section when reading an object file. This
5407 is called when elfcode.h finds a section with an unknown type.
5408 This routine supports both the 32-bit and 64-bit ELF ABI.
5409
5410 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5411 how to. */
5412
5413 bfd_boolean
5414 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5415 Elf_Internal_Shdr *hdr,
5416 const char *name,
5417 int shindex)
5418 {
5419 flagword flags = 0;
5420
5421 /* There ought to be a place to keep ELF backend specific flags, but
5422 at the moment there isn't one. We just keep track of the
5423 sections by their name, instead. Fortunately, the ABI gives
5424 suggested names for all the MIPS specific sections, so we will
5425 probably get away with this. */
5426 switch (hdr->sh_type)
5427 {
5428 case SHT_MIPS_LIBLIST:
5429 if (strcmp (name, ".liblist") != 0)
5430 return FALSE;
5431 break;
5432 case SHT_MIPS_MSYM:
5433 if (strcmp (name, ".msym") != 0)
5434 return FALSE;
5435 break;
5436 case SHT_MIPS_CONFLICT:
5437 if (strcmp (name, ".conflict") != 0)
5438 return FALSE;
5439 break;
5440 case SHT_MIPS_GPTAB:
5441 if (! CONST_STRNEQ (name, ".gptab."))
5442 return FALSE;
5443 break;
5444 case SHT_MIPS_UCODE:
5445 if (strcmp (name, ".ucode") != 0)
5446 return FALSE;
5447 break;
5448 case SHT_MIPS_DEBUG:
5449 if (strcmp (name, ".mdebug") != 0)
5450 return FALSE;
5451 flags = SEC_DEBUGGING;
5452 break;
5453 case SHT_MIPS_REGINFO:
5454 if (strcmp (name, ".reginfo") != 0
5455 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5456 return FALSE;
5457 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5458 break;
5459 case SHT_MIPS_IFACE:
5460 if (strcmp (name, ".MIPS.interfaces") != 0)
5461 return FALSE;
5462 break;
5463 case SHT_MIPS_CONTENT:
5464 if (! CONST_STRNEQ (name, ".MIPS.content"))
5465 return FALSE;
5466 break;
5467 case SHT_MIPS_OPTIONS:
5468 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5469 return FALSE;
5470 break;
5471 case SHT_MIPS_DWARF:
5472 if (! CONST_STRNEQ (name, ".debug_"))
5473 return FALSE;
5474 break;
5475 case SHT_MIPS_SYMBOL_LIB:
5476 if (strcmp (name, ".MIPS.symlib") != 0)
5477 return FALSE;
5478 break;
5479 case SHT_MIPS_EVENTS:
5480 if (! CONST_STRNEQ (name, ".MIPS.events")
5481 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5482 return FALSE;
5483 break;
5484 default:
5485 break;
5486 }
5487
5488 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5489 return FALSE;
5490
5491 if (flags)
5492 {
5493 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5494 (bfd_get_section_flags (abfd,
5495 hdr->bfd_section)
5496 | flags)))
5497 return FALSE;
5498 }
5499
5500 /* FIXME: We should record sh_info for a .gptab section. */
5501
5502 /* For a .reginfo section, set the gp value in the tdata information
5503 from the contents of this section. We need the gp value while
5504 processing relocs, so we just get it now. The .reginfo section
5505 is not used in the 64-bit MIPS ELF ABI. */
5506 if (hdr->sh_type == SHT_MIPS_REGINFO)
5507 {
5508 Elf32_External_RegInfo ext;
5509 Elf32_RegInfo s;
5510
5511 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5512 &ext, 0, sizeof ext))
5513 return FALSE;
5514 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5515 elf_gp (abfd) = s.ri_gp_value;
5516 }
5517
5518 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5519 set the gp value based on what we find. We may see both
5520 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5521 they should agree. */
5522 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5523 {
5524 bfd_byte *contents, *l, *lend;
5525
5526 contents = bfd_malloc (hdr->sh_size);
5527 if (contents == NULL)
5528 return FALSE;
5529 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5530 0, hdr->sh_size))
5531 {
5532 free (contents);
5533 return FALSE;
5534 }
5535 l = contents;
5536 lend = contents + hdr->sh_size;
5537 while (l + sizeof (Elf_External_Options) <= lend)
5538 {
5539 Elf_Internal_Options intopt;
5540
5541 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5542 &intopt);
5543 if (intopt.size < sizeof (Elf_External_Options))
5544 {
5545 (*_bfd_error_handler)
5546 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5547 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5548 break;
5549 }
5550 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5551 {
5552 Elf64_Internal_RegInfo intreg;
5553
5554 bfd_mips_elf64_swap_reginfo_in
5555 (abfd,
5556 ((Elf64_External_RegInfo *)
5557 (l + sizeof (Elf_External_Options))),
5558 &intreg);
5559 elf_gp (abfd) = intreg.ri_gp_value;
5560 }
5561 else if (intopt.kind == ODK_REGINFO)
5562 {
5563 Elf32_RegInfo intreg;
5564
5565 bfd_mips_elf32_swap_reginfo_in
5566 (abfd,
5567 ((Elf32_External_RegInfo *)
5568 (l + sizeof (Elf_External_Options))),
5569 &intreg);
5570 elf_gp (abfd) = intreg.ri_gp_value;
5571 }
5572 l += intopt.size;
5573 }
5574 free (contents);
5575 }
5576
5577 return TRUE;
5578 }
5579
5580 /* Set the correct type for a MIPS ELF section. We do this by the
5581 section name, which is a hack, but ought to work. This routine is
5582 used by both the 32-bit and the 64-bit ABI. */
5583
5584 bfd_boolean
5585 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5586 {
5587 register const char *name;
5588 unsigned int sh_type;
5589
5590 name = bfd_get_section_name (abfd, sec);
5591 sh_type = hdr->sh_type;
5592
5593 if (strcmp (name, ".liblist") == 0)
5594 {
5595 hdr->sh_type = SHT_MIPS_LIBLIST;
5596 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5597 /* The sh_link field is set in final_write_processing. */
5598 }
5599 else if (strcmp (name, ".conflict") == 0)
5600 hdr->sh_type = SHT_MIPS_CONFLICT;
5601 else if (CONST_STRNEQ (name, ".gptab."))
5602 {
5603 hdr->sh_type = SHT_MIPS_GPTAB;
5604 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5605 /* The sh_info field is set in final_write_processing. */
5606 }
5607 else if (strcmp (name, ".ucode") == 0)
5608 hdr->sh_type = SHT_MIPS_UCODE;
5609 else if (strcmp (name, ".mdebug") == 0)
5610 {
5611 hdr->sh_type = SHT_MIPS_DEBUG;
5612 /* In a shared object on IRIX 5.3, the .mdebug section has an
5613 entsize of 0. FIXME: Does this matter? */
5614 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5615 hdr->sh_entsize = 0;
5616 else
5617 hdr->sh_entsize = 1;
5618 }
5619 else if (strcmp (name, ".reginfo") == 0)
5620 {
5621 hdr->sh_type = SHT_MIPS_REGINFO;
5622 /* In a shared object on IRIX 5.3, the .reginfo section has an
5623 entsize of 0x18. FIXME: Does this matter? */
5624 if (SGI_COMPAT (abfd))
5625 {
5626 if ((abfd->flags & DYNAMIC) != 0)
5627 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5628 else
5629 hdr->sh_entsize = 1;
5630 }
5631 else
5632 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5633 }
5634 else if (SGI_COMPAT (abfd)
5635 && (strcmp (name, ".hash") == 0
5636 || strcmp (name, ".dynamic") == 0
5637 || strcmp (name, ".dynstr") == 0))
5638 {
5639 if (SGI_COMPAT (abfd))
5640 hdr->sh_entsize = 0;
5641 #if 0
5642 /* This isn't how the IRIX6 linker behaves. */
5643 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5644 #endif
5645 }
5646 else if (strcmp (name, ".got") == 0
5647 || strcmp (name, ".srdata") == 0
5648 || strcmp (name, ".sdata") == 0
5649 || strcmp (name, ".sbss") == 0
5650 || strcmp (name, ".lit4") == 0
5651 || strcmp (name, ".lit8") == 0)
5652 hdr->sh_flags |= SHF_MIPS_GPREL;
5653 else if (strcmp (name, ".MIPS.interfaces") == 0)
5654 {
5655 hdr->sh_type = SHT_MIPS_IFACE;
5656 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5657 }
5658 else if (CONST_STRNEQ (name, ".MIPS.content"))
5659 {
5660 hdr->sh_type = SHT_MIPS_CONTENT;
5661 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5662 /* The sh_info field is set in final_write_processing. */
5663 }
5664 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5665 {
5666 hdr->sh_type = SHT_MIPS_OPTIONS;
5667 hdr->sh_entsize = 1;
5668 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5669 }
5670 else if (CONST_STRNEQ (name, ".debug_"))
5671 hdr->sh_type = SHT_MIPS_DWARF;
5672 else if (strcmp (name, ".MIPS.symlib") == 0)
5673 {
5674 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5675 /* The sh_link and sh_info fields are set in
5676 final_write_processing. */
5677 }
5678 else if (CONST_STRNEQ (name, ".MIPS.events")
5679 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5680 {
5681 hdr->sh_type = SHT_MIPS_EVENTS;
5682 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5683 /* The sh_link field is set in final_write_processing. */
5684 }
5685 else if (strcmp (name, ".msym") == 0)
5686 {
5687 hdr->sh_type = SHT_MIPS_MSYM;
5688 hdr->sh_flags |= SHF_ALLOC;
5689 hdr->sh_entsize = 8;
5690 }
5691
5692 /* In the unlikely event a special section is empty it has to lose its
5693 special meaning. This may happen e.g. when using `strip' with the
5694 "--only-keep-debug" option. */
5695 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5696 hdr->sh_type = sh_type;
5697
5698 /* The generic elf_fake_sections will set up REL_HDR using the default
5699 kind of relocations. We used to set up a second header for the
5700 non-default kind of relocations here, but only NewABI would use
5701 these, and the IRIX ld doesn't like resulting empty RELA sections.
5702 Thus we create those header only on demand now. */
5703
5704 return TRUE;
5705 }
5706
5707 /* Given a BFD section, try to locate the corresponding ELF section
5708 index. This is used by both the 32-bit and the 64-bit ABI.
5709 Actually, it's not clear to me that the 64-bit ABI supports these,
5710 but for non-PIC objects we will certainly want support for at least
5711 the .scommon section. */
5712
5713 bfd_boolean
5714 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5715 asection *sec, int *retval)
5716 {
5717 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5718 {
5719 *retval = SHN_MIPS_SCOMMON;
5720 return TRUE;
5721 }
5722 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5723 {
5724 *retval = SHN_MIPS_ACOMMON;
5725 return TRUE;
5726 }
5727 return FALSE;
5728 }
5729 \f
5730 /* Hook called by the linker routine which adds symbols from an object
5731 file. We must handle the special MIPS section numbers here. */
5732
5733 bfd_boolean
5734 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5735 Elf_Internal_Sym *sym, const char **namep,
5736 flagword *flagsp ATTRIBUTE_UNUSED,
5737 asection **secp, bfd_vma *valp)
5738 {
5739 if (SGI_COMPAT (abfd)
5740 && (abfd->flags & DYNAMIC) != 0
5741 && strcmp (*namep, "_rld_new_interface") == 0)
5742 {
5743 /* Skip IRIX5 rld entry name. */
5744 *namep = NULL;
5745 return TRUE;
5746 }
5747
5748 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5749 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5750 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5751 a magic symbol resolved by the linker, we ignore this bogus definition
5752 of _gp_disp. New ABI objects do not suffer from this problem so this
5753 is not done for them. */
5754 if (!NEWABI_P(abfd)
5755 && (sym->st_shndx == SHN_ABS)
5756 && (strcmp (*namep, "_gp_disp") == 0))
5757 {
5758 *namep = NULL;
5759 return TRUE;
5760 }
5761
5762 switch (sym->st_shndx)
5763 {
5764 case SHN_COMMON:
5765 /* Common symbols less than the GP size are automatically
5766 treated as SHN_MIPS_SCOMMON symbols. */
5767 if (sym->st_size > elf_gp_size (abfd)
5768 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5769 || IRIX_COMPAT (abfd) == ict_irix6)
5770 break;
5771 /* Fall through. */
5772 case SHN_MIPS_SCOMMON:
5773 *secp = bfd_make_section_old_way (abfd, ".scommon");
5774 (*secp)->flags |= SEC_IS_COMMON;
5775 *valp = sym->st_size;
5776 break;
5777
5778 case SHN_MIPS_TEXT:
5779 /* This section is used in a shared object. */
5780 if (elf_tdata (abfd)->elf_text_section == NULL)
5781 {
5782 asymbol *elf_text_symbol;
5783 asection *elf_text_section;
5784 bfd_size_type amt = sizeof (asection);
5785
5786 elf_text_section = bfd_zalloc (abfd, amt);
5787 if (elf_text_section == NULL)
5788 return FALSE;
5789
5790 amt = sizeof (asymbol);
5791 elf_text_symbol = bfd_zalloc (abfd, amt);
5792 if (elf_text_symbol == NULL)
5793 return FALSE;
5794
5795 /* Initialize the section. */
5796
5797 elf_tdata (abfd)->elf_text_section = elf_text_section;
5798 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5799
5800 elf_text_section->symbol = elf_text_symbol;
5801 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5802
5803 elf_text_section->name = ".text";
5804 elf_text_section->flags = SEC_NO_FLAGS;
5805 elf_text_section->output_section = NULL;
5806 elf_text_section->owner = abfd;
5807 elf_text_symbol->name = ".text";
5808 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5809 elf_text_symbol->section = elf_text_section;
5810 }
5811 /* This code used to do *secp = bfd_und_section_ptr if
5812 info->shared. I don't know why, and that doesn't make sense,
5813 so I took it out. */
5814 *secp = elf_tdata (abfd)->elf_text_section;
5815 break;
5816
5817 case SHN_MIPS_ACOMMON:
5818 /* Fall through. XXX Can we treat this as allocated data? */
5819 case SHN_MIPS_DATA:
5820 /* This section is used in a shared object. */
5821 if (elf_tdata (abfd)->elf_data_section == NULL)
5822 {
5823 asymbol *elf_data_symbol;
5824 asection *elf_data_section;
5825 bfd_size_type amt = sizeof (asection);
5826
5827 elf_data_section = bfd_zalloc (abfd, amt);
5828 if (elf_data_section == NULL)
5829 return FALSE;
5830
5831 amt = sizeof (asymbol);
5832 elf_data_symbol = bfd_zalloc (abfd, amt);
5833 if (elf_data_symbol == NULL)
5834 return FALSE;
5835
5836 /* Initialize the section. */
5837
5838 elf_tdata (abfd)->elf_data_section = elf_data_section;
5839 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5840
5841 elf_data_section->symbol = elf_data_symbol;
5842 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5843
5844 elf_data_section->name = ".data";
5845 elf_data_section->flags = SEC_NO_FLAGS;
5846 elf_data_section->output_section = NULL;
5847 elf_data_section->owner = abfd;
5848 elf_data_symbol->name = ".data";
5849 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5850 elf_data_symbol->section = elf_data_section;
5851 }
5852 /* This code used to do *secp = bfd_und_section_ptr if
5853 info->shared. I don't know why, and that doesn't make sense,
5854 so I took it out. */
5855 *secp = elf_tdata (abfd)->elf_data_section;
5856 break;
5857
5858 case SHN_MIPS_SUNDEFINED:
5859 *secp = bfd_und_section_ptr;
5860 break;
5861 }
5862
5863 if (SGI_COMPAT (abfd)
5864 && ! info->shared
5865 && info->hash->creator == abfd->xvec
5866 && strcmp (*namep, "__rld_obj_head") == 0)
5867 {
5868 struct elf_link_hash_entry *h;
5869 struct bfd_link_hash_entry *bh;
5870
5871 /* Mark __rld_obj_head as dynamic. */
5872 bh = NULL;
5873 if (! (_bfd_generic_link_add_one_symbol
5874 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5875 get_elf_backend_data (abfd)->collect, &bh)))
5876 return FALSE;
5877
5878 h = (struct elf_link_hash_entry *) bh;
5879 h->non_elf = 0;
5880 h->def_regular = 1;
5881 h->type = STT_OBJECT;
5882
5883 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5884 return FALSE;
5885
5886 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5887 }
5888
5889 /* If this is a mips16 text symbol, add 1 to the value to make it
5890 odd. This will cause something like .word SYM to come up with
5891 the right value when it is loaded into the PC. */
5892 if (sym->st_other == STO_MIPS16)
5893 ++*valp;
5894
5895 return TRUE;
5896 }
5897
5898 /* This hook function is called before the linker writes out a global
5899 symbol. We mark symbols as small common if appropriate. This is
5900 also where we undo the increment of the value for a mips16 symbol. */
5901
5902 bfd_boolean
5903 _bfd_mips_elf_link_output_symbol_hook
5904 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5905 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5906 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5907 {
5908 /* If we see a common symbol, which implies a relocatable link, then
5909 if a symbol was small common in an input file, mark it as small
5910 common in the output file. */
5911 if (sym->st_shndx == SHN_COMMON
5912 && strcmp (input_sec->name, ".scommon") == 0)
5913 sym->st_shndx = SHN_MIPS_SCOMMON;
5914
5915 if (sym->st_other == STO_MIPS16)
5916 sym->st_value &= ~1;
5917
5918 return TRUE;
5919 }
5920 \f
5921 /* Functions for the dynamic linker. */
5922
5923 /* Create dynamic sections when linking against a dynamic object. */
5924
5925 bfd_boolean
5926 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5927 {
5928 struct elf_link_hash_entry *h;
5929 struct bfd_link_hash_entry *bh;
5930 flagword flags;
5931 register asection *s;
5932 const char * const *namep;
5933 struct mips_elf_link_hash_table *htab;
5934
5935 htab = mips_elf_hash_table (info);
5936 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5937 | SEC_LINKER_CREATED | SEC_READONLY);
5938
5939 /* The psABI requires a read-only .dynamic section, but the VxWorks
5940 EABI doesn't. */
5941 if (!htab->is_vxworks)
5942 {
5943 s = bfd_get_section_by_name (abfd, ".dynamic");
5944 if (s != NULL)
5945 {
5946 if (! bfd_set_section_flags (abfd, s, flags))
5947 return FALSE;
5948 }
5949 }
5950
5951 /* We need to create .got section. */
5952 if (! mips_elf_create_got_section (abfd, info, FALSE))
5953 return FALSE;
5954
5955 if (! mips_elf_rel_dyn_section (info, TRUE))
5956 return FALSE;
5957
5958 /* Create .stub section. */
5959 if (bfd_get_section_by_name (abfd,
5960 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5961 {
5962 s = bfd_make_section_with_flags (abfd,
5963 MIPS_ELF_STUB_SECTION_NAME (abfd),
5964 flags | SEC_CODE);
5965 if (s == NULL
5966 || ! bfd_set_section_alignment (abfd, s,
5967 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5968 return FALSE;
5969 }
5970
5971 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5972 && !info->shared
5973 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5974 {
5975 s = bfd_make_section_with_flags (abfd, ".rld_map",
5976 flags &~ (flagword) SEC_READONLY);
5977 if (s == NULL
5978 || ! bfd_set_section_alignment (abfd, s,
5979 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5980 return FALSE;
5981 }
5982
5983 /* On IRIX5, we adjust add some additional symbols and change the
5984 alignments of several sections. There is no ABI documentation
5985 indicating that this is necessary on IRIX6, nor any evidence that
5986 the linker takes such action. */
5987 if (IRIX_COMPAT (abfd) == ict_irix5)
5988 {
5989 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5990 {
5991 bh = NULL;
5992 if (! (_bfd_generic_link_add_one_symbol
5993 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5994 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5995 return FALSE;
5996
5997 h = (struct elf_link_hash_entry *) bh;
5998 h->non_elf = 0;
5999 h->def_regular = 1;
6000 h->type = STT_SECTION;
6001
6002 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6003 return FALSE;
6004 }
6005
6006 /* We need to create a .compact_rel section. */
6007 if (SGI_COMPAT (abfd))
6008 {
6009 if (!mips_elf_create_compact_rel_section (abfd, info))
6010 return FALSE;
6011 }
6012
6013 /* Change alignments of some sections. */
6014 s = bfd_get_section_by_name (abfd, ".hash");
6015 if (s != NULL)
6016 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6017 s = bfd_get_section_by_name (abfd, ".dynsym");
6018 if (s != NULL)
6019 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6020 s = bfd_get_section_by_name (abfd, ".dynstr");
6021 if (s != NULL)
6022 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6023 s = bfd_get_section_by_name (abfd, ".reginfo");
6024 if (s != NULL)
6025 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6026 s = bfd_get_section_by_name (abfd, ".dynamic");
6027 if (s != NULL)
6028 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6029 }
6030
6031 if (!info->shared)
6032 {
6033 const char *name;
6034
6035 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6036 bh = NULL;
6037 if (!(_bfd_generic_link_add_one_symbol
6038 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6039 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6040 return FALSE;
6041
6042 h = (struct elf_link_hash_entry *) bh;
6043 h->non_elf = 0;
6044 h->def_regular = 1;
6045 h->type = STT_SECTION;
6046
6047 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6048 return FALSE;
6049
6050 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6051 {
6052 /* __rld_map is a four byte word located in the .data section
6053 and is filled in by the rtld to contain a pointer to
6054 the _r_debug structure. Its symbol value will be set in
6055 _bfd_mips_elf_finish_dynamic_symbol. */
6056 s = bfd_get_section_by_name (abfd, ".rld_map");
6057 BFD_ASSERT (s != NULL);
6058
6059 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6060 bh = NULL;
6061 if (!(_bfd_generic_link_add_one_symbol
6062 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6063 get_elf_backend_data (abfd)->collect, &bh)))
6064 return FALSE;
6065
6066 h = (struct elf_link_hash_entry *) bh;
6067 h->non_elf = 0;
6068 h->def_regular = 1;
6069 h->type = STT_OBJECT;
6070
6071 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6072 return FALSE;
6073 }
6074 }
6075
6076 if (htab->is_vxworks)
6077 {
6078 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6079 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6080 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6081 return FALSE;
6082
6083 /* Cache the sections created above. */
6084 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6085 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6086 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6087 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6088 if (!htab->sdynbss
6089 || (!htab->srelbss && !info->shared)
6090 || !htab->srelplt
6091 || !htab->splt)
6092 abort ();
6093
6094 /* Do the usual VxWorks handling. */
6095 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6096 return FALSE;
6097
6098 /* Work out the PLT sizes. */
6099 if (info->shared)
6100 {
6101 htab->plt_header_size
6102 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6103 htab->plt_entry_size
6104 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6105 }
6106 else
6107 {
6108 htab->plt_header_size
6109 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6110 htab->plt_entry_size
6111 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6112 }
6113 }
6114
6115 return TRUE;
6116 }
6117 \f
6118 /* Look through the relocs for a section during the first phase, and
6119 allocate space in the global offset table. */
6120
6121 bfd_boolean
6122 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6123 asection *sec, const Elf_Internal_Rela *relocs)
6124 {
6125 const char *name;
6126 bfd *dynobj;
6127 Elf_Internal_Shdr *symtab_hdr;
6128 struct elf_link_hash_entry **sym_hashes;
6129 struct mips_got_info *g;
6130 size_t extsymoff;
6131 const Elf_Internal_Rela *rel;
6132 const Elf_Internal_Rela *rel_end;
6133 asection *sgot;
6134 asection *sreloc;
6135 const struct elf_backend_data *bed;
6136 struct mips_elf_link_hash_table *htab;
6137
6138 if (info->relocatable)
6139 return TRUE;
6140
6141 htab = mips_elf_hash_table (info);
6142 dynobj = elf_hash_table (info)->dynobj;
6143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6144 sym_hashes = elf_sym_hashes (abfd);
6145 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6146
6147 /* Check for the mips16 stub sections. */
6148
6149 name = bfd_get_section_name (abfd, sec);
6150 if (FN_STUB_P (name))
6151 {
6152 unsigned long r_symndx;
6153
6154 /* Look at the relocation information to figure out which symbol
6155 this is for. */
6156
6157 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6158
6159 if (r_symndx < extsymoff
6160 || sym_hashes[r_symndx - extsymoff] == NULL)
6161 {
6162 asection *o;
6163
6164 /* This stub is for a local symbol. This stub will only be
6165 needed if there is some relocation in this BFD, other
6166 than a 16 bit function call, which refers to this symbol. */
6167 for (o = abfd->sections; o != NULL; o = o->next)
6168 {
6169 Elf_Internal_Rela *sec_relocs;
6170 const Elf_Internal_Rela *r, *rend;
6171
6172 /* We can ignore stub sections when looking for relocs. */
6173 if ((o->flags & SEC_RELOC) == 0
6174 || o->reloc_count == 0
6175 || mips16_stub_section_p (abfd, o))
6176 continue;
6177
6178 sec_relocs
6179 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6180 info->keep_memory);
6181 if (sec_relocs == NULL)
6182 return FALSE;
6183
6184 rend = sec_relocs + o->reloc_count;
6185 for (r = sec_relocs; r < rend; r++)
6186 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6187 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6188 break;
6189
6190 if (elf_section_data (o)->relocs != sec_relocs)
6191 free (sec_relocs);
6192
6193 if (r < rend)
6194 break;
6195 }
6196
6197 if (o == NULL)
6198 {
6199 /* There is no non-call reloc for this stub, so we do
6200 not need it. Since this function is called before
6201 the linker maps input sections to output sections, we
6202 can easily discard it by setting the SEC_EXCLUDE
6203 flag. */
6204 sec->flags |= SEC_EXCLUDE;
6205 return TRUE;
6206 }
6207
6208 /* Record this stub in an array of local symbol stubs for
6209 this BFD. */
6210 if (elf_tdata (abfd)->local_stubs == NULL)
6211 {
6212 unsigned long symcount;
6213 asection **n;
6214 bfd_size_type amt;
6215
6216 if (elf_bad_symtab (abfd))
6217 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6218 else
6219 symcount = symtab_hdr->sh_info;
6220 amt = symcount * sizeof (asection *);
6221 n = bfd_zalloc (abfd, amt);
6222 if (n == NULL)
6223 return FALSE;
6224 elf_tdata (abfd)->local_stubs = n;
6225 }
6226
6227 sec->flags |= SEC_KEEP;
6228 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6229
6230 /* We don't need to set mips16_stubs_seen in this case.
6231 That flag is used to see whether we need to look through
6232 the global symbol table for stubs. We don't need to set
6233 it here, because we just have a local stub. */
6234 }
6235 else
6236 {
6237 struct mips_elf_link_hash_entry *h;
6238
6239 h = ((struct mips_elf_link_hash_entry *)
6240 sym_hashes[r_symndx - extsymoff]);
6241
6242 while (h->root.root.type == bfd_link_hash_indirect
6243 || h->root.root.type == bfd_link_hash_warning)
6244 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6245
6246 /* H is the symbol this stub is for. */
6247
6248 /* If we already have an appropriate stub for this function, we
6249 don't need another one, so we can discard this one. Since
6250 this function is called before the linker maps input sections
6251 to output sections, we can easily discard it by setting the
6252 SEC_EXCLUDE flag. */
6253 if (h->fn_stub != NULL)
6254 {
6255 sec->flags |= SEC_EXCLUDE;
6256 return TRUE;
6257 }
6258
6259 sec->flags |= SEC_KEEP;
6260 h->fn_stub = sec;
6261 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6262 }
6263 }
6264 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6265 {
6266 unsigned long r_symndx;
6267 struct mips_elf_link_hash_entry *h;
6268 asection **loc;
6269
6270 /* Look at the relocation information to figure out which symbol
6271 this is for. */
6272
6273 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6274
6275 if (r_symndx < extsymoff
6276 || sym_hashes[r_symndx - extsymoff] == NULL)
6277 {
6278 asection *o;
6279
6280 /* This stub is for a local symbol. This stub will only be
6281 needed if there is some relocation (R_MIPS16_26) in this BFD
6282 that refers to this symbol. */
6283 for (o = abfd->sections; o != NULL; o = o->next)
6284 {
6285 Elf_Internal_Rela *sec_relocs;
6286 const Elf_Internal_Rela *r, *rend;
6287
6288 /* We can ignore stub sections when looking for relocs. */
6289 if ((o->flags & SEC_RELOC) == 0
6290 || o->reloc_count == 0
6291 || mips16_stub_section_p (abfd, o))
6292 continue;
6293
6294 sec_relocs
6295 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6296 info->keep_memory);
6297 if (sec_relocs == NULL)
6298 return FALSE;
6299
6300 rend = sec_relocs + o->reloc_count;
6301 for (r = sec_relocs; r < rend; r++)
6302 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6303 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6304 break;
6305
6306 if (elf_section_data (o)->relocs != sec_relocs)
6307 free (sec_relocs);
6308
6309 if (r < rend)
6310 break;
6311 }
6312
6313 if (o == NULL)
6314 {
6315 /* There is no non-call reloc for this stub, so we do
6316 not need it. Since this function is called before
6317 the linker maps input sections to output sections, we
6318 can easily discard it by setting the SEC_EXCLUDE
6319 flag. */
6320 sec->flags |= SEC_EXCLUDE;
6321 return TRUE;
6322 }
6323
6324 /* Record this stub in an array of local symbol call_stubs for
6325 this BFD. */
6326 if (elf_tdata (abfd)->local_call_stubs == NULL)
6327 {
6328 unsigned long symcount;
6329 asection **n;
6330 bfd_size_type amt;
6331
6332 if (elf_bad_symtab (abfd))
6333 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6334 else
6335 symcount = symtab_hdr->sh_info;
6336 amt = symcount * sizeof (asection *);
6337 n = bfd_zalloc (abfd, amt);
6338 if (n == NULL)
6339 return FALSE;
6340 elf_tdata (abfd)->local_call_stubs = n;
6341 }
6342
6343 sec->flags |= SEC_KEEP;
6344 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6345
6346 /* We don't need to set mips16_stubs_seen in this case.
6347 That flag is used to see whether we need to look through
6348 the global symbol table for stubs. We don't need to set
6349 it here, because we just have a local stub. */
6350 }
6351 else
6352 {
6353 h = ((struct mips_elf_link_hash_entry *)
6354 sym_hashes[r_symndx - extsymoff]);
6355
6356 /* H is the symbol this stub is for. */
6357
6358 if (CALL_FP_STUB_P (name))
6359 loc = &h->call_fp_stub;
6360 else
6361 loc = &h->call_stub;
6362
6363 /* If we already have an appropriate stub for this function, we
6364 don't need another one, so we can discard this one. Since
6365 this function is called before the linker maps input sections
6366 to output sections, we can easily discard it by setting the
6367 SEC_EXCLUDE flag. */
6368 if (*loc != NULL)
6369 {
6370 sec->flags |= SEC_EXCLUDE;
6371 return TRUE;
6372 }
6373
6374 sec->flags |= SEC_KEEP;
6375 *loc = sec;
6376 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6377 }
6378 }
6379
6380 if (dynobj == NULL)
6381 {
6382 sgot = NULL;
6383 g = NULL;
6384 }
6385 else
6386 {
6387 sgot = mips_elf_got_section (dynobj, FALSE);
6388 if (sgot == NULL)
6389 g = NULL;
6390 else
6391 {
6392 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6393 g = mips_elf_section_data (sgot)->u.got_info;
6394 BFD_ASSERT (g != NULL);
6395 }
6396 }
6397
6398 sreloc = NULL;
6399 bed = get_elf_backend_data (abfd);
6400 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6401 for (rel = relocs; rel < rel_end; ++rel)
6402 {
6403 unsigned long r_symndx;
6404 unsigned int r_type;
6405 struct elf_link_hash_entry *h;
6406
6407 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6408 r_type = ELF_R_TYPE (abfd, rel->r_info);
6409
6410 if (r_symndx < extsymoff)
6411 h = NULL;
6412 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6413 {
6414 (*_bfd_error_handler)
6415 (_("%B: Malformed reloc detected for section %s"),
6416 abfd, name);
6417 bfd_set_error (bfd_error_bad_value);
6418 return FALSE;
6419 }
6420 else
6421 {
6422 h = sym_hashes[r_symndx - extsymoff];
6423
6424 /* This may be an indirect symbol created because of a version. */
6425 if (h != NULL)
6426 {
6427 while (h->root.type == bfd_link_hash_indirect)
6428 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6429 }
6430 }
6431
6432 /* Some relocs require a global offset table. */
6433 if (dynobj == NULL || sgot == NULL)
6434 {
6435 switch (r_type)
6436 {
6437 case R_MIPS_GOT16:
6438 case R_MIPS_CALL16:
6439 case R_MIPS_CALL_HI16:
6440 case R_MIPS_CALL_LO16:
6441 case R_MIPS_GOT_HI16:
6442 case R_MIPS_GOT_LO16:
6443 case R_MIPS_GOT_PAGE:
6444 case R_MIPS_GOT_OFST:
6445 case R_MIPS_GOT_DISP:
6446 case R_MIPS_TLS_GOTTPREL:
6447 case R_MIPS_TLS_GD:
6448 case R_MIPS_TLS_LDM:
6449 if (dynobj == NULL)
6450 elf_hash_table (info)->dynobj = dynobj = abfd;
6451 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6452 return FALSE;
6453 g = mips_elf_got_info (dynobj, &sgot);
6454 if (htab->is_vxworks && !info->shared)
6455 {
6456 (*_bfd_error_handler)
6457 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6458 abfd, (unsigned long) rel->r_offset);
6459 bfd_set_error (bfd_error_bad_value);
6460 return FALSE;
6461 }
6462 break;
6463
6464 case R_MIPS_32:
6465 case R_MIPS_REL32:
6466 case R_MIPS_64:
6467 /* In VxWorks executables, references to external symbols
6468 are handled using copy relocs or PLT stubs, so there's
6469 no need to add a dynamic relocation here. */
6470 if (dynobj == NULL
6471 && (info->shared || (h != NULL && !htab->is_vxworks))
6472 && (sec->flags & SEC_ALLOC) != 0)
6473 elf_hash_table (info)->dynobj = dynobj = abfd;
6474 break;
6475
6476 default:
6477 break;
6478 }
6479 }
6480
6481 if (h)
6482 {
6483 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6484
6485 /* Relocations against the special VxWorks __GOTT_BASE__ and
6486 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6487 room for them in .rela.dyn. */
6488 if (is_gott_symbol (info, h))
6489 {
6490 if (sreloc == NULL)
6491 {
6492 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6493 if (sreloc == NULL)
6494 return FALSE;
6495 }
6496 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6497 }
6498 }
6499 else if (r_type == R_MIPS_CALL_LO16
6500 || r_type == R_MIPS_GOT_LO16
6501 || r_type == R_MIPS_GOT_DISP
6502 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6503 {
6504 /* We may need a local GOT entry for this relocation. We
6505 don't count R_MIPS_GOT_PAGE because we can estimate the
6506 maximum number of pages needed by looking at the size of
6507 the segment. Similar comments apply to R_MIPS_GOT16 and
6508 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6509 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6510 R_MIPS_CALL_HI16 because these are always followed by an
6511 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6512 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6513 rel->r_addend, g, 0))
6514 return FALSE;
6515 }
6516
6517 switch (r_type)
6518 {
6519 case R_MIPS_CALL16:
6520 if (h == NULL)
6521 {
6522 (*_bfd_error_handler)
6523 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6524 abfd, (unsigned long) rel->r_offset);
6525 bfd_set_error (bfd_error_bad_value);
6526 return FALSE;
6527 }
6528 /* Fall through. */
6529
6530 case R_MIPS_CALL_HI16:
6531 case R_MIPS_CALL_LO16:
6532 if (h != NULL)
6533 {
6534 /* VxWorks call relocations point the function's .got.plt
6535 entry, which will be allocated by adjust_dynamic_symbol.
6536 Otherwise, this symbol requires a global GOT entry. */
6537 if (!htab->is_vxworks
6538 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6539 return FALSE;
6540
6541 /* We need a stub, not a plt entry for the undefined
6542 function. But we record it as if it needs plt. See
6543 _bfd_elf_adjust_dynamic_symbol. */
6544 h->needs_plt = 1;
6545 h->type = STT_FUNC;
6546 }
6547 break;
6548
6549 case R_MIPS_GOT_PAGE:
6550 /* If this is a global, overridable symbol, GOT_PAGE will
6551 decay to GOT_DISP, so we'll need a GOT entry for it. */
6552 if (h == NULL)
6553 break;
6554 else
6555 {
6556 struct mips_elf_link_hash_entry *hmips =
6557 (struct mips_elf_link_hash_entry *) h;
6558
6559 while (hmips->root.root.type == bfd_link_hash_indirect
6560 || hmips->root.root.type == bfd_link_hash_warning)
6561 hmips = (struct mips_elf_link_hash_entry *)
6562 hmips->root.root.u.i.link;
6563
6564 if (hmips->root.def_regular
6565 && ! (info->shared && ! info->symbolic
6566 && ! hmips->root.forced_local))
6567 break;
6568 }
6569 /* Fall through. */
6570
6571 case R_MIPS_GOT16:
6572 case R_MIPS_GOT_HI16:
6573 case R_MIPS_GOT_LO16:
6574 case R_MIPS_GOT_DISP:
6575 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6576 return FALSE;
6577 break;
6578
6579 case R_MIPS_TLS_GOTTPREL:
6580 if (info->shared)
6581 info->flags |= DF_STATIC_TLS;
6582 /* Fall through */
6583
6584 case R_MIPS_TLS_LDM:
6585 if (r_type == R_MIPS_TLS_LDM)
6586 {
6587 r_symndx = 0;
6588 h = NULL;
6589 }
6590 /* Fall through */
6591
6592 case R_MIPS_TLS_GD:
6593 /* This symbol requires a global offset table entry, or two
6594 for TLS GD relocations. */
6595 {
6596 unsigned char flag = (r_type == R_MIPS_TLS_GD
6597 ? GOT_TLS_GD
6598 : r_type == R_MIPS_TLS_LDM
6599 ? GOT_TLS_LDM
6600 : GOT_TLS_IE);
6601 if (h != NULL)
6602 {
6603 struct mips_elf_link_hash_entry *hmips =
6604 (struct mips_elf_link_hash_entry *) h;
6605 hmips->tls_type |= flag;
6606
6607 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6608 return FALSE;
6609 }
6610 else
6611 {
6612 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6613
6614 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6615 rel->r_addend, g, flag))
6616 return FALSE;
6617 }
6618 }
6619 break;
6620
6621 case R_MIPS_32:
6622 case R_MIPS_REL32:
6623 case R_MIPS_64:
6624 /* In VxWorks executables, references to external symbols
6625 are handled using copy relocs or PLT stubs, so there's
6626 no need to add a .rela.dyn entry for this relocation. */
6627 if ((info->shared || (h != NULL && !htab->is_vxworks))
6628 && (sec->flags & SEC_ALLOC) != 0)
6629 {
6630 if (sreloc == NULL)
6631 {
6632 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6633 if (sreloc == NULL)
6634 return FALSE;
6635 }
6636 if (info->shared)
6637 {
6638 /* When creating a shared object, we must copy these
6639 reloc types into the output file as R_MIPS_REL32
6640 relocs. Make room for this reloc in .rel(a).dyn. */
6641 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6642 if (MIPS_ELF_READONLY_SECTION (sec))
6643 /* We tell the dynamic linker that there are
6644 relocations against the text segment. */
6645 info->flags |= DF_TEXTREL;
6646 }
6647 else
6648 {
6649 struct mips_elf_link_hash_entry *hmips;
6650
6651 /* We only need to copy this reloc if the symbol is
6652 defined in a dynamic object. */
6653 hmips = (struct mips_elf_link_hash_entry *) h;
6654 ++hmips->possibly_dynamic_relocs;
6655 if (MIPS_ELF_READONLY_SECTION (sec))
6656 /* We need it to tell the dynamic linker if there
6657 are relocations against the text segment. */
6658 hmips->readonly_reloc = TRUE;
6659 }
6660
6661 /* Even though we don't directly need a GOT entry for
6662 this symbol, a symbol must have a dynamic symbol
6663 table index greater that DT_MIPS_GOTSYM if there are
6664 dynamic relocations against it. This does not apply
6665 to VxWorks, which does not have the usual coupling
6666 between global GOT entries and .dynsym entries. */
6667 if (h != NULL && !htab->is_vxworks)
6668 {
6669 if (dynobj == NULL)
6670 elf_hash_table (info)->dynobj = dynobj = abfd;
6671 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6672 return FALSE;
6673 g = mips_elf_got_info (dynobj, &sgot);
6674 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6675 return FALSE;
6676 }
6677 }
6678
6679 if (SGI_COMPAT (abfd))
6680 mips_elf_hash_table (info)->compact_rel_size +=
6681 sizeof (Elf32_External_crinfo);
6682 break;
6683
6684 case R_MIPS_PC16:
6685 if (h)
6686 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6687 break;
6688
6689 case R_MIPS_26:
6690 if (h)
6691 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6692 /* Fall through. */
6693
6694 case R_MIPS_GPREL16:
6695 case R_MIPS_LITERAL:
6696 case R_MIPS_GPREL32:
6697 if (SGI_COMPAT (abfd))
6698 mips_elf_hash_table (info)->compact_rel_size +=
6699 sizeof (Elf32_External_crinfo);
6700 break;
6701
6702 /* This relocation describes the C++ object vtable hierarchy.
6703 Reconstruct it for later use during GC. */
6704 case R_MIPS_GNU_VTINHERIT:
6705 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6706 return FALSE;
6707 break;
6708
6709 /* This relocation describes which C++ vtable entries are actually
6710 used. Record for later use during GC. */
6711 case R_MIPS_GNU_VTENTRY:
6712 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6713 return FALSE;
6714 break;
6715
6716 default:
6717 break;
6718 }
6719
6720 /* We must not create a stub for a symbol that has relocations
6721 related to taking the function's address. This doesn't apply to
6722 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6723 a normal .got entry. */
6724 if (!htab->is_vxworks && h != NULL)
6725 switch (r_type)
6726 {
6727 default:
6728 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6729 break;
6730 case R_MIPS_CALL16:
6731 case R_MIPS_CALL_HI16:
6732 case R_MIPS_CALL_LO16:
6733 case R_MIPS_JALR:
6734 break;
6735 }
6736
6737 /* If this reloc is not a 16 bit call, and it has a global
6738 symbol, then we will need the fn_stub if there is one.
6739 References from a stub section do not count. */
6740 if (h != NULL
6741 && r_type != R_MIPS16_26
6742 && !mips16_stub_section_p (abfd, sec))
6743 {
6744 struct mips_elf_link_hash_entry *mh;
6745
6746 mh = (struct mips_elf_link_hash_entry *) h;
6747 mh->need_fn_stub = TRUE;
6748 }
6749 }
6750
6751 return TRUE;
6752 }
6753 \f
6754 bfd_boolean
6755 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6756 struct bfd_link_info *link_info,
6757 bfd_boolean *again)
6758 {
6759 Elf_Internal_Rela *internal_relocs;
6760 Elf_Internal_Rela *irel, *irelend;
6761 Elf_Internal_Shdr *symtab_hdr;
6762 bfd_byte *contents = NULL;
6763 size_t extsymoff;
6764 bfd_boolean changed_contents = FALSE;
6765 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6766 Elf_Internal_Sym *isymbuf = NULL;
6767
6768 /* We are not currently changing any sizes, so only one pass. */
6769 *again = FALSE;
6770
6771 if (link_info->relocatable)
6772 return TRUE;
6773
6774 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6775 link_info->keep_memory);
6776 if (internal_relocs == NULL)
6777 return TRUE;
6778
6779 irelend = internal_relocs + sec->reloc_count
6780 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6781 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6782 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6783
6784 for (irel = internal_relocs; irel < irelend; irel++)
6785 {
6786 bfd_vma symval;
6787 bfd_signed_vma sym_offset;
6788 unsigned int r_type;
6789 unsigned long r_symndx;
6790 asection *sym_sec;
6791 unsigned long instruction;
6792
6793 /* Turn jalr into bgezal, and jr into beq, if they're marked
6794 with a JALR relocation, that indicate where they jump to.
6795 This saves some pipeline bubbles. */
6796 r_type = ELF_R_TYPE (abfd, irel->r_info);
6797 if (r_type != R_MIPS_JALR)
6798 continue;
6799
6800 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6801 /* Compute the address of the jump target. */
6802 if (r_symndx >= extsymoff)
6803 {
6804 struct mips_elf_link_hash_entry *h
6805 = ((struct mips_elf_link_hash_entry *)
6806 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6807
6808 while (h->root.root.type == bfd_link_hash_indirect
6809 || h->root.root.type == bfd_link_hash_warning)
6810 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6811
6812 /* If a symbol is undefined, or if it may be overridden,
6813 skip it. */
6814 if (! ((h->root.root.type == bfd_link_hash_defined
6815 || h->root.root.type == bfd_link_hash_defweak)
6816 && h->root.root.u.def.section)
6817 || (link_info->shared && ! link_info->symbolic
6818 && !h->root.forced_local))
6819 continue;
6820
6821 sym_sec = h->root.root.u.def.section;
6822 if (sym_sec->output_section)
6823 symval = (h->root.root.u.def.value
6824 + sym_sec->output_section->vma
6825 + sym_sec->output_offset);
6826 else
6827 symval = h->root.root.u.def.value;
6828 }
6829 else
6830 {
6831 Elf_Internal_Sym *isym;
6832
6833 /* Read this BFD's symbols if we haven't done so already. */
6834 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6835 {
6836 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6837 if (isymbuf == NULL)
6838 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6839 symtab_hdr->sh_info, 0,
6840 NULL, NULL, NULL);
6841 if (isymbuf == NULL)
6842 goto relax_return;
6843 }
6844
6845 isym = isymbuf + r_symndx;
6846 if (isym->st_shndx == SHN_UNDEF)
6847 continue;
6848 else if (isym->st_shndx == SHN_ABS)
6849 sym_sec = bfd_abs_section_ptr;
6850 else if (isym->st_shndx == SHN_COMMON)
6851 sym_sec = bfd_com_section_ptr;
6852 else
6853 sym_sec
6854 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6855 symval = isym->st_value
6856 + sym_sec->output_section->vma
6857 + sym_sec->output_offset;
6858 }
6859
6860 /* Compute branch offset, from delay slot of the jump to the
6861 branch target. */
6862 sym_offset = (symval + irel->r_addend)
6863 - (sec_start + irel->r_offset + 4);
6864
6865 /* Branch offset must be properly aligned. */
6866 if ((sym_offset & 3) != 0)
6867 continue;
6868
6869 sym_offset >>= 2;
6870
6871 /* Check that it's in range. */
6872 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6873 continue;
6874
6875 /* Get the section contents if we haven't done so already. */
6876 if (contents == NULL)
6877 {
6878 /* Get cached copy if it exists. */
6879 if (elf_section_data (sec)->this_hdr.contents != NULL)
6880 contents = elf_section_data (sec)->this_hdr.contents;
6881 else
6882 {
6883 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6884 goto relax_return;
6885 }
6886 }
6887
6888 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6889
6890 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6891 if ((instruction & 0xfc1fffff) == 0x0000f809)
6892 instruction = 0x04110000;
6893 /* If it was jr <reg>, turn it into b <target>. */
6894 else if ((instruction & 0xfc1fffff) == 0x00000008)
6895 instruction = 0x10000000;
6896 else
6897 continue;
6898
6899 instruction |= (sym_offset & 0xffff);
6900 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6901 changed_contents = TRUE;
6902 }
6903
6904 if (contents != NULL
6905 && elf_section_data (sec)->this_hdr.contents != contents)
6906 {
6907 if (!changed_contents && !link_info->keep_memory)
6908 free (contents);
6909 else
6910 {
6911 /* Cache the section contents for elf_link_input_bfd. */
6912 elf_section_data (sec)->this_hdr.contents = contents;
6913 }
6914 }
6915 return TRUE;
6916
6917 relax_return:
6918 if (contents != NULL
6919 && elf_section_data (sec)->this_hdr.contents != contents)
6920 free (contents);
6921 return FALSE;
6922 }
6923 \f
6924 /* Adjust a symbol defined by a dynamic object and referenced by a
6925 regular object. The current definition is in some section of the
6926 dynamic object, but we're not including those sections. We have to
6927 change the definition to something the rest of the link can
6928 understand. */
6929
6930 bfd_boolean
6931 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6932 struct elf_link_hash_entry *h)
6933 {
6934 bfd *dynobj;
6935 struct mips_elf_link_hash_entry *hmips;
6936 asection *s;
6937 struct mips_elf_link_hash_table *htab;
6938
6939 htab = mips_elf_hash_table (info);
6940 dynobj = elf_hash_table (info)->dynobj;
6941
6942 /* Make sure we know what is going on here. */
6943 BFD_ASSERT (dynobj != NULL
6944 && (h->needs_plt
6945 || h->u.weakdef != NULL
6946 || (h->def_dynamic
6947 && h->ref_regular
6948 && !h->def_regular)));
6949
6950 /* If this symbol is defined in a dynamic object, we need to copy
6951 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6952 file. */
6953 hmips = (struct mips_elf_link_hash_entry *) h;
6954 if (! info->relocatable
6955 && hmips->possibly_dynamic_relocs != 0
6956 && (h->root.type == bfd_link_hash_defweak
6957 || !h->def_regular))
6958 {
6959 mips_elf_allocate_dynamic_relocations
6960 (dynobj, info, hmips->possibly_dynamic_relocs);
6961 if (hmips->readonly_reloc)
6962 /* We tell the dynamic linker that there are relocations
6963 against the text segment. */
6964 info->flags |= DF_TEXTREL;
6965 }
6966
6967 /* For a function, create a stub, if allowed. */
6968 if (! hmips->no_fn_stub
6969 && h->needs_plt)
6970 {
6971 if (! elf_hash_table (info)->dynamic_sections_created)
6972 return TRUE;
6973
6974 /* If this symbol is not defined in a regular file, then set
6975 the symbol to the stub location. This is required to make
6976 function pointers compare as equal between the normal
6977 executable and the shared library. */
6978 if (!h->def_regular)
6979 {
6980 /* We need .stub section. */
6981 s = bfd_get_section_by_name (dynobj,
6982 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6983 BFD_ASSERT (s != NULL);
6984
6985 h->root.u.def.section = s;
6986 h->root.u.def.value = s->size;
6987
6988 /* XXX Write this stub address somewhere. */
6989 h->plt.offset = s->size;
6990
6991 /* Make room for this stub code. */
6992 s->size += htab->function_stub_size;
6993
6994 /* The last half word of the stub will be filled with the index
6995 of this symbol in .dynsym section. */
6996 return TRUE;
6997 }
6998 }
6999 else if ((h->type == STT_FUNC)
7000 && !h->needs_plt)
7001 {
7002 /* This will set the entry for this symbol in the GOT to 0, and
7003 the dynamic linker will take care of this. */
7004 h->root.u.def.value = 0;
7005 return TRUE;
7006 }
7007
7008 /* If this is a weak symbol, and there is a real definition, the
7009 processor independent code will have arranged for us to see the
7010 real definition first, and we can just use the same value. */
7011 if (h->u.weakdef != NULL)
7012 {
7013 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7014 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7015 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7016 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7017 return TRUE;
7018 }
7019
7020 /* This is a reference to a symbol defined by a dynamic object which
7021 is not a function. */
7022
7023 return TRUE;
7024 }
7025
7026 /* Likewise, for VxWorks. */
7027
7028 bfd_boolean
7029 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7030 struct elf_link_hash_entry *h)
7031 {
7032 bfd *dynobj;
7033 struct mips_elf_link_hash_entry *hmips;
7034 struct mips_elf_link_hash_table *htab;
7035 unsigned int power_of_two;
7036
7037 htab = mips_elf_hash_table (info);
7038 dynobj = elf_hash_table (info)->dynobj;
7039 hmips = (struct mips_elf_link_hash_entry *) h;
7040
7041 /* Make sure we know what is going on here. */
7042 BFD_ASSERT (dynobj != NULL
7043 && (h->needs_plt
7044 || h->needs_copy
7045 || h->u.weakdef != NULL
7046 || (h->def_dynamic
7047 && h->ref_regular
7048 && !h->def_regular)));
7049
7050 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7051 either (a) we want to branch to the symbol or (b) we're linking an
7052 executable that needs a canonical function address. In the latter
7053 case, the canonical address will be the address of the executable's
7054 load stub. */
7055 if ((hmips->is_branch_target
7056 || (!info->shared
7057 && h->type == STT_FUNC
7058 && hmips->is_relocation_target))
7059 && h->def_dynamic
7060 && h->ref_regular
7061 && !h->def_regular
7062 && !h->forced_local)
7063 h->needs_plt = 1;
7064
7065 /* Locally-binding symbols do not need a PLT stub; we can refer to
7066 the functions directly. */
7067 else if (h->needs_plt
7068 && (SYMBOL_CALLS_LOCAL (info, h)
7069 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7070 && h->root.type == bfd_link_hash_undefweak)))
7071 {
7072 h->needs_plt = 0;
7073 return TRUE;
7074 }
7075
7076 if (h->needs_plt)
7077 {
7078 /* If this is the first symbol to need a PLT entry, allocate room
7079 for the header, and for the header's .rela.plt.unloaded entries. */
7080 if (htab->splt->size == 0)
7081 {
7082 htab->splt->size += htab->plt_header_size;
7083 if (!info->shared)
7084 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7085 }
7086
7087 /* Assign the next .plt entry to this symbol. */
7088 h->plt.offset = htab->splt->size;
7089 htab->splt->size += htab->plt_entry_size;
7090
7091 /* If the output file has no definition of the symbol, set the
7092 symbol's value to the address of the stub. For executables,
7093 point at the PLT load stub rather than the lazy resolution stub;
7094 this stub will become the canonical function address. */
7095 if (!h->def_regular)
7096 {
7097 h->root.u.def.section = htab->splt;
7098 h->root.u.def.value = h->plt.offset;
7099 if (!info->shared)
7100 h->root.u.def.value += 8;
7101 }
7102
7103 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7104 htab->sgotplt->size += 4;
7105 htab->srelplt->size += sizeof (Elf32_External_Rela);
7106
7107 /* Make room for the .rela.plt.unloaded relocations. */
7108 if (!info->shared)
7109 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7110
7111 return TRUE;
7112 }
7113
7114 /* If a function symbol is defined by a dynamic object, and we do not
7115 need a PLT stub for it, the symbol's value should be zero. */
7116 if (h->type == STT_FUNC
7117 && h->def_dynamic
7118 && h->ref_regular
7119 && !h->def_regular)
7120 {
7121 h->root.u.def.value = 0;
7122 return TRUE;
7123 }
7124
7125 /* If this is a weak symbol, and there is a real definition, the
7126 processor independent code will have arranged for us to see the
7127 real definition first, and we can just use the same value. */
7128 if (h->u.weakdef != NULL)
7129 {
7130 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7131 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7132 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7133 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7134 return TRUE;
7135 }
7136
7137 /* This is a reference to a symbol defined by a dynamic object which
7138 is not a function. */
7139 if (info->shared)
7140 return TRUE;
7141
7142 /* We must allocate the symbol in our .dynbss section, which will
7143 become part of the .bss section of the executable. There will be
7144 an entry for this symbol in the .dynsym section. The dynamic
7145 object will contain position independent code, so all references
7146 from the dynamic object to this symbol will go through the global
7147 offset table. The dynamic linker will use the .dynsym entry to
7148 determine the address it must put in the global offset table, so
7149 both the dynamic object and the regular object will refer to the
7150 same memory location for the variable. */
7151
7152 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7153 {
7154 htab->srelbss->size += sizeof (Elf32_External_Rela);
7155 h->needs_copy = 1;
7156 }
7157
7158 /* We need to figure out the alignment required for this symbol. */
7159 power_of_two = bfd_log2 (h->size);
7160 if (power_of_two > 4)
7161 power_of_two = 4;
7162
7163 /* Apply the required alignment. */
7164 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7165 (bfd_size_type) 1 << power_of_two);
7166 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7167 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7168 return FALSE;
7169
7170 /* Define the symbol as being at this point in the section. */
7171 h->root.u.def.section = htab->sdynbss;
7172 h->root.u.def.value = htab->sdynbss->size;
7173
7174 /* Increment the section size to make room for the symbol. */
7175 htab->sdynbss->size += h->size;
7176
7177 return TRUE;
7178 }
7179 \f
7180 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7181 The number might be exact or a worst-case estimate, depending on how
7182 much information is available to elf_backend_omit_section_dynsym at
7183 the current linking stage. */
7184
7185 static bfd_size_type
7186 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7187 {
7188 bfd_size_type count;
7189
7190 count = 0;
7191 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7192 {
7193 asection *p;
7194 const struct elf_backend_data *bed;
7195
7196 bed = get_elf_backend_data (output_bfd);
7197 for (p = output_bfd->sections; p ; p = p->next)
7198 if ((p->flags & SEC_EXCLUDE) == 0
7199 && (p->flags & SEC_ALLOC) != 0
7200 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7201 ++count;
7202 }
7203 return count;
7204 }
7205
7206 /* This function is called after all the input files have been read,
7207 and the input sections have been assigned to output sections. We
7208 check for any mips16 stub sections that we can discard. */
7209
7210 bfd_boolean
7211 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7212 struct bfd_link_info *info)
7213 {
7214 asection *ri;
7215
7216 bfd *dynobj;
7217 asection *s;
7218 struct mips_got_info *g;
7219 int i;
7220 bfd_size_type loadable_size = 0;
7221 bfd_size_type local_gotno;
7222 bfd_size_type dynsymcount;
7223 bfd *sub;
7224 struct mips_elf_count_tls_arg count_tls_arg;
7225 struct mips_elf_link_hash_table *htab;
7226
7227 htab = mips_elf_hash_table (info);
7228
7229 /* The .reginfo section has a fixed size. */
7230 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7231 if (ri != NULL)
7232 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7233
7234 if (! (info->relocatable
7235 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7236 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7237 mips_elf_check_mips16_stubs, NULL);
7238
7239 dynobj = elf_hash_table (info)->dynobj;
7240 if (dynobj == NULL)
7241 /* Relocatable links don't have it. */
7242 return TRUE;
7243
7244 g = mips_elf_got_info (dynobj, &s);
7245 if (s == NULL)
7246 return TRUE;
7247
7248 /* Calculate the total loadable size of the output. That
7249 will give us the maximum number of GOT_PAGE entries
7250 required. */
7251 for (sub = info->input_bfds; sub; sub = sub->link_next)
7252 {
7253 asection *subsection;
7254
7255 for (subsection = sub->sections;
7256 subsection;
7257 subsection = subsection->next)
7258 {
7259 if ((subsection->flags & SEC_ALLOC) == 0)
7260 continue;
7261 loadable_size += ((subsection->size + 0xf)
7262 &~ (bfd_size_type) 0xf);
7263 }
7264 }
7265
7266 /* There has to be a global GOT entry for every symbol with
7267 a dynamic symbol table index of DT_MIPS_GOTSYM or
7268 higher. Therefore, it make sense to put those symbols
7269 that need GOT entries at the end of the symbol table. We
7270 do that here. */
7271 if (! mips_elf_sort_hash_table (info, 1))
7272 return FALSE;
7273
7274 if (g->global_gotsym != NULL)
7275 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7276 else
7277 /* If there are no global symbols, or none requiring
7278 relocations, then GLOBAL_GOTSYM will be NULL. */
7279 i = 0;
7280
7281 /* Get a worst-case estimate of the number of dynamic symbols needed.
7282 At this point, dynsymcount does not account for section symbols
7283 and count_section_dynsyms may overestimate the number that will
7284 be needed. */
7285 dynsymcount = (elf_hash_table (info)->dynsymcount
7286 + count_section_dynsyms (output_bfd, info));
7287
7288 /* Determine the size of one stub entry. */
7289 htab->function_stub_size = (dynsymcount > 0x10000
7290 ? MIPS_FUNCTION_STUB_BIG_SIZE
7291 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7292
7293 /* In the worst case, we'll get one stub per dynamic symbol, plus
7294 one to account for the dummy entry at the end required by IRIX
7295 rld. */
7296 loadable_size += htab->function_stub_size * (i + 1);
7297
7298 if (htab->is_vxworks)
7299 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7300 relocations against local symbols evaluate to "G", and the EABI does
7301 not include R_MIPS_GOT_PAGE. */
7302 local_gotno = 0;
7303 else
7304 /* Assume there are two loadable segments consisting of contiguous
7305 sections. Is 5 enough? */
7306 local_gotno = (loadable_size >> 16) + 5;
7307
7308 g->local_gotno += local_gotno;
7309 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7310
7311 g->global_gotno = i;
7312 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7313
7314 /* We need to calculate tls_gotno for global symbols at this point
7315 instead of building it up earlier, to avoid doublecounting
7316 entries for one global symbol from multiple input files. */
7317 count_tls_arg.info = info;
7318 count_tls_arg.needed = 0;
7319 elf_link_hash_traverse (elf_hash_table (info),
7320 mips_elf_count_global_tls_entries,
7321 &count_tls_arg);
7322 g->tls_gotno += count_tls_arg.needed;
7323 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7324
7325 mips_elf_resolve_final_got_entries (g);
7326
7327 /* VxWorks does not support multiple GOTs. It initializes $gp to
7328 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7329 dynamic loader. */
7330 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7331 {
7332 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7333 return FALSE;
7334 }
7335 else
7336 {
7337 /* Set up TLS entries for the first GOT. */
7338 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7339 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7340 }
7341
7342 return TRUE;
7343 }
7344
7345 /* Set the sizes of the dynamic sections. */
7346
7347 bfd_boolean
7348 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7349 struct bfd_link_info *info)
7350 {
7351 bfd *dynobj;
7352 asection *s, *sreldyn;
7353 bfd_boolean reltext;
7354 struct mips_elf_link_hash_table *htab;
7355
7356 htab = mips_elf_hash_table (info);
7357 dynobj = elf_hash_table (info)->dynobj;
7358 BFD_ASSERT (dynobj != NULL);
7359
7360 if (elf_hash_table (info)->dynamic_sections_created)
7361 {
7362 /* Set the contents of the .interp section to the interpreter. */
7363 if (info->executable)
7364 {
7365 s = bfd_get_section_by_name (dynobj, ".interp");
7366 BFD_ASSERT (s != NULL);
7367 s->size
7368 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7369 s->contents
7370 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7371 }
7372 }
7373
7374 /* The check_relocs and adjust_dynamic_symbol entry points have
7375 determined the sizes of the various dynamic sections. Allocate
7376 memory for them. */
7377 reltext = FALSE;
7378 sreldyn = NULL;
7379 for (s = dynobj->sections; s != NULL; s = s->next)
7380 {
7381 const char *name;
7382
7383 /* It's OK to base decisions on the section name, because none
7384 of the dynobj section names depend upon the input files. */
7385 name = bfd_get_section_name (dynobj, s);
7386
7387 if ((s->flags & SEC_LINKER_CREATED) == 0)
7388 continue;
7389
7390 if (CONST_STRNEQ (name, ".rel"))
7391 {
7392 if (s->size != 0)
7393 {
7394 const char *outname;
7395 asection *target;
7396
7397 /* If this relocation section applies to a read only
7398 section, then we probably need a DT_TEXTREL entry.
7399 If the relocation section is .rel(a).dyn, we always
7400 assert a DT_TEXTREL entry rather than testing whether
7401 there exists a relocation to a read only section or
7402 not. */
7403 outname = bfd_get_section_name (output_bfd,
7404 s->output_section);
7405 target = bfd_get_section_by_name (output_bfd, outname + 4);
7406 if ((target != NULL
7407 && (target->flags & SEC_READONLY) != 0
7408 && (target->flags & SEC_ALLOC) != 0)
7409 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7410 reltext = TRUE;
7411
7412 /* We use the reloc_count field as a counter if we need
7413 to copy relocs into the output file. */
7414 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7415 s->reloc_count = 0;
7416
7417 /* If combreloc is enabled, elf_link_sort_relocs() will
7418 sort relocations, but in a different way than we do,
7419 and before we're done creating relocations. Also, it
7420 will move them around between input sections'
7421 relocation's contents, so our sorting would be
7422 broken, so don't let it run. */
7423 info->combreloc = 0;
7424 }
7425 }
7426 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7427 {
7428 /* Executables do not need a GOT. */
7429 if (info->shared)
7430 {
7431 /* Allocate relocations for all but the reserved entries. */
7432 struct mips_got_info *g;
7433 unsigned int count;
7434
7435 g = mips_elf_got_info (dynobj, NULL);
7436 count = (g->global_gotno
7437 + g->local_gotno
7438 - MIPS_RESERVED_GOTNO (info));
7439 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7440 }
7441 }
7442 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7443 {
7444 /* _bfd_mips_elf_always_size_sections() has already done
7445 most of the work, but some symbols may have been mapped
7446 to versions that we must now resolve in the got_entries
7447 hash tables. */
7448 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7449 struct mips_got_info *g = gg;
7450 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7451 unsigned int needed_relocs = 0;
7452
7453 if (gg->next)
7454 {
7455 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7456 set_got_offset_arg.info = info;
7457
7458 /* NOTE 2005-02-03: How can this call, or the next, ever
7459 find any indirect entries to resolve? They were all
7460 resolved in mips_elf_multi_got. */
7461 mips_elf_resolve_final_got_entries (gg);
7462 for (g = gg->next; g && g->next != gg; g = g->next)
7463 {
7464 unsigned int save_assign;
7465
7466 mips_elf_resolve_final_got_entries (g);
7467
7468 /* Assign offsets to global GOT entries. */
7469 save_assign = g->assigned_gotno;
7470 g->assigned_gotno = g->local_gotno;
7471 set_got_offset_arg.g = g;
7472 set_got_offset_arg.needed_relocs = 0;
7473 htab_traverse (g->got_entries,
7474 mips_elf_set_global_got_offset,
7475 &set_got_offset_arg);
7476 needed_relocs += set_got_offset_arg.needed_relocs;
7477 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7478 <= g->global_gotno);
7479
7480 g->assigned_gotno = save_assign;
7481 if (info->shared)
7482 {
7483 needed_relocs += g->local_gotno - g->assigned_gotno;
7484 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7485 + g->next->global_gotno
7486 + g->next->tls_gotno
7487 + MIPS_RESERVED_GOTNO (info));
7488 }
7489 }
7490 }
7491 else
7492 {
7493 struct mips_elf_count_tls_arg arg;
7494 arg.info = info;
7495 arg.needed = 0;
7496
7497 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7498 &arg);
7499 elf_link_hash_traverse (elf_hash_table (info),
7500 mips_elf_count_global_tls_relocs,
7501 &arg);
7502
7503 needed_relocs += arg.needed;
7504 }
7505
7506 if (needed_relocs)
7507 mips_elf_allocate_dynamic_relocations (dynobj, info,
7508 needed_relocs);
7509 }
7510 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7511 {
7512 /* IRIX rld assumes that the function stub isn't at the end
7513 of .text section. So put a dummy. XXX */
7514 s->size += htab->function_stub_size;
7515 }
7516 else if (! info->shared
7517 && ! mips_elf_hash_table (info)->use_rld_obj_head
7518 && CONST_STRNEQ (name, ".rld_map"))
7519 {
7520 /* We add a room for __rld_map. It will be filled in by the
7521 rtld to contain a pointer to the _r_debug structure. */
7522 s->size += 4;
7523 }
7524 else if (SGI_COMPAT (output_bfd)
7525 && CONST_STRNEQ (name, ".compact_rel"))
7526 s->size += mips_elf_hash_table (info)->compact_rel_size;
7527 else if (! CONST_STRNEQ (name, ".init")
7528 && s != htab->sgotplt
7529 && s != htab->splt)
7530 {
7531 /* It's not one of our sections, so don't allocate space. */
7532 continue;
7533 }
7534
7535 if (s->size == 0)
7536 {
7537 s->flags |= SEC_EXCLUDE;
7538 continue;
7539 }
7540
7541 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7542 continue;
7543
7544 /* Allocate memory for this section last, since we may increase its
7545 size above. */
7546 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7547 {
7548 sreldyn = s;
7549 continue;
7550 }
7551
7552 /* Allocate memory for the section contents. */
7553 s->contents = bfd_zalloc (dynobj, s->size);
7554 if (s->contents == NULL)
7555 {
7556 bfd_set_error (bfd_error_no_memory);
7557 return FALSE;
7558 }
7559 }
7560
7561 /* Allocate memory for the .rel(a).dyn section. */
7562 if (sreldyn != NULL)
7563 {
7564 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7565 if (sreldyn->contents == NULL)
7566 {
7567 bfd_set_error (bfd_error_no_memory);
7568 return FALSE;
7569 }
7570 }
7571
7572 if (elf_hash_table (info)->dynamic_sections_created)
7573 {
7574 /* Add some entries to the .dynamic section. We fill in the
7575 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7576 must add the entries now so that we get the correct size for
7577 the .dynamic section. The DT_DEBUG entry is filled in by the
7578 dynamic linker and used by the debugger. */
7579 if (info->executable)
7580 {
7581 /* SGI object has the equivalence of DT_DEBUG in the
7582 DT_MIPS_RLD_MAP entry. */
7583 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7584 return FALSE;
7585 if (!SGI_COMPAT (output_bfd))
7586 {
7587 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7588 return FALSE;
7589 }
7590 }
7591
7592 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7593 info->flags |= DF_TEXTREL;
7594
7595 if ((info->flags & DF_TEXTREL) != 0)
7596 {
7597 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7598 return FALSE;
7599
7600 /* Clear the DF_TEXTREL flag. It will be set again if we
7601 write out an actual text relocation; we may not, because
7602 at this point we do not know whether e.g. any .eh_frame
7603 absolute relocations have been converted to PC-relative. */
7604 info->flags &= ~DF_TEXTREL;
7605 }
7606
7607 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7608 return FALSE;
7609
7610 if (htab->is_vxworks)
7611 {
7612 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7613 use any of the DT_MIPS_* tags. */
7614 if (mips_elf_rel_dyn_section (info, FALSE))
7615 {
7616 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7617 return FALSE;
7618
7619 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7620 return FALSE;
7621
7622 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7623 return FALSE;
7624 }
7625 if (htab->splt->size > 0)
7626 {
7627 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7628 return FALSE;
7629
7630 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7631 return FALSE;
7632
7633 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7634 return FALSE;
7635 }
7636 }
7637 else
7638 {
7639 if (mips_elf_rel_dyn_section (info, FALSE))
7640 {
7641 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7642 return FALSE;
7643
7644 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7645 return FALSE;
7646
7647 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7648 return FALSE;
7649 }
7650
7651 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7652 return FALSE;
7653
7654 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7655 return FALSE;
7656
7657 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7658 return FALSE;
7659
7660 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7661 return FALSE;
7662
7663 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7664 return FALSE;
7665
7666 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7667 return FALSE;
7668
7669 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7670 return FALSE;
7671
7672 if (IRIX_COMPAT (dynobj) == ict_irix5
7673 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7674 return FALSE;
7675
7676 if (IRIX_COMPAT (dynobj) == ict_irix6
7677 && (bfd_get_section_by_name
7678 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7679 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7680 return FALSE;
7681 }
7682 }
7683
7684 return TRUE;
7685 }
7686 \f
7687 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7688 Adjust its R_ADDEND field so that it is correct for the output file.
7689 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7690 and sections respectively; both use symbol indexes. */
7691
7692 static void
7693 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7694 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7695 asection **local_sections, Elf_Internal_Rela *rel)
7696 {
7697 unsigned int r_type, r_symndx;
7698 Elf_Internal_Sym *sym;
7699 asection *sec;
7700
7701 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7702 {
7703 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7704 if (r_type == R_MIPS16_GPREL
7705 || r_type == R_MIPS_GPREL16
7706 || r_type == R_MIPS_GPREL32
7707 || r_type == R_MIPS_LITERAL)
7708 {
7709 rel->r_addend += _bfd_get_gp_value (input_bfd);
7710 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7711 }
7712
7713 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7714 sym = local_syms + r_symndx;
7715
7716 /* Adjust REL's addend to account for section merging. */
7717 if (!info->relocatable)
7718 {
7719 sec = local_sections[r_symndx];
7720 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7721 }
7722
7723 /* This would normally be done by the rela_normal code in elflink.c. */
7724 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7725 rel->r_addend += local_sections[r_symndx]->output_offset;
7726 }
7727 }
7728
7729 /* Relocate a MIPS ELF section. */
7730
7731 bfd_boolean
7732 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7733 bfd *input_bfd, asection *input_section,
7734 bfd_byte *contents, Elf_Internal_Rela *relocs,
7735 Elf_Internal_Sym *local_syms,
7736 asection **local_sections)
7737 {
7738 Elf_Internal_Rela *rel;
7739 const Elf_Internal_Rela *relend;
7740 bfd_vma addend = 0;
7741 bfd_boolean use_saved_addend_p = FALSE;
7742 const struct elf_backend_data *bed;
7743
7744 bed = get_elf_backend_data (output_bfd);
7745 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7746 for (rel = relocs; rel < relend; ++rel)
7747 {
7748 const char *name;
7749 bfd_vma value = 0;
7750 reloc_howto_type *howto;
7751 bfd_boolean require_jalx;
7752 /* TRUE if the relocation is a RELA relocation, rather than a
7753 REL relocation. */
7754 bfd_boolean rela_relocation_p = TRUE;
7755 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7756 const char *msg;
7757 unsigned long r_symndx;
7758 asection *sec;
7759 Elf_Internal_Shdr *symtab_hdr;
7760 struct elf_link_hash_entry *h;
7761
7762 /* Find the relocation howto for this relocation. */
7763 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7764 NEWABI_P (input_bfd)
7765 && (MIPS_RELOC_RELA_P
7766 (input_bfd, input_section,
7767 rel - relocs)));
7768
7769 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7770 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7771 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7772 {
7773 sec = local_sections[r_symndx];
7774 h = NULL;
7775 }
7776 else
7777 {
7778 unsigned long extsymoff;
7779
7780 extsymoff = 0;
7781 if (!elf_bad_symtab (input_bfd))
7782 extsymoff = symtab_hdr->sh_info;
7783 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7784 while (h->root.type == bfd_link_hash_indirect
7785 || h->root.type == bfd_link_hash_warning)
7786 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7787
7788 sec = NULL;
7789 if (h->root.type == bfd_link_hash_defined
7790 || h->root.type == bfd_link_hash_defweak)
7791 sec = h->root.u.def.section;
7792 }
7793
7794 if (sec != NULL && elf_discarded_section (sec))
7795 {
7796 /* For relocs against symbols from removed linkonce sections,
7797 or sections discarded by a linker script, we just want the
7798 section contents zeroed. Avoid any special processing. */
7799 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7800 rel->r_info = 0;
7801 rel->r_addend = 0;
7802 continue;
7803 }
7804
7805 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7806 {
7807 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7808 64-bit code, but make sure all their addresses are in the
7809 lowermost or uppermost 32-bit section of the 64-bit address
7810 space. Thus, when they use an R_MIPS_64 they mean what is
7811 usually meant by R_MIPS_32, with the exception that the
7812 stored value is sign-extended to 64 bits. */
7813 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7814
7815 /* On big-endian systems, we need to lie about the position
7816 of the reloc. */
7817 if (bfd_big_endian (input_bfd))
7818 rel->r_offset += 4;
7819 }
7820
7821 if (!use_saved_addend_p)
7822 {
7823 Elf_Internal_Shdr *rel_hdr;
7824
7825 /* If these relocations were originally of the REL variety,
7826 we must pull the addend out of the field that will be
7827 relocated. Otherwise, we simply use the contents of the
7828 RELA relocation. To determine which flavor or relocation
7829 this is, we depend on the fact that the INPUT_SECTION's
7830 REL_HDR is read before its REL_HDR2. */
7831 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7832 if ((size_t) (rel - relocs)
7833 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7834 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7835 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7836 {
7837 bfd_byte *location = contents + rel->r_offset;
7838
7839 /* Note that this is a REL relocation. */
7840 rela_relocation_p = FALSE;
7841
7842 /* Get the addend, which is stored in the input file. */
7843 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7844 location);
7845 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7846 contents);
7847 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7848 location);
7849
7850 addend &= howto->src_mask;
7851
7852 /* For some kinds of relocations, the ADDEND is a
7853 combination of the addend stored in two different
7854 relocations. */
7855 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7856 || (r_type == R_MIPS_GOT16
7857 && mips_elf_local_relocation_p (input_bfd, rel,
7858 local_sections, FALSE)))
7859 {
7860 bfd_vma l;
7861 const Elf_Internal_Rela *lo16_relocation;
7862 reloc_howto_type *lo16_howto;
7863 bfd_byte *lo16_location;
7864 int lo16_type;
7865
7866 if (r_type == R_MIPS16_HI16)
7867 lo16_type = R_MIPS16_LO16;
7868 else
7869 lo16_type = R_MIPS_LO16;
7870
7871 /* The combined value is the sum of the HI16 addend,
7872 left-shifted by sixteen bits, and the LO16
7873 addend, sign extended. (Usually, the code does
7874 a `lui' of the HI16 value, and then an `addiu' of
7875 the LO16 value.)
7876
7877 Scan ahead to find a matching LO16 relocation.
7878
7879 According to the MIPS ELF ABI, the R_MIPS_LO16
7880 relocation must be immediately following.
7881 However, for the IRIX6 ABI, the next relocation
7882 may be a composed relocation consisting of
7883 several relocations for the same address. In
7884 that case, the R_MIPS_LO16 relocation may occur
7885 as one of these. We permit a similar extension
7886 in general, as that is useful for GCC. */
7887 lo16_relocation = mips_elf_next_relocation (input_bfd,
7888 lo16_type,
7889 rel, relend);
7890 if (lo16_relocation == NULL)
7891 {
7892 const char *name;
7893
7894 if (h)
7895 name = h->root.root.string;
7896 else
7897 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7898 local_syms + r_symndx,
7899 sec);
7900 (*_bfd_error_handler)
7901 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7902 input_bfd, input_section, name, howto->name,
7903 rel->r_offset);
7904 return FALSE;
7905 }
7906
7907 lo16_location = contents + lo16_relocation->r_offset;
7908
7909 /* Obtain the addend kept there. */
7910 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7911 lo16_type, FALSE);
7912 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7913 lo16_location);
7914 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7915 input_bfd, contents);
7916 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7917 lo16_location);
7918 l &= lo16_howto->src_mask;
7919 l <<= lo16_howto->rightshift;
7920 l = _bfd_mips_elf_sign_extend (l, 16);
7921
7922 addend <<= 16;
7923
7924 /* Compute the combined addend. */
7925 addend += l;
7926 }
7927 else
7928 addend <<= howto->rightshift;
7929 }
7930 else
7931 addend = rel->r_addend;
7932 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7933 local_syms, local_sections, rel);
7934 }
7935
7936 if (info->relocatable)
7937 {
7938 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7939 && bfd_big_endian (input_bfd))
7940 rel->r_offset -= 4;
7941
7942 if (!rela_relocation_p && rel->r_addend)
7943 {
7944 addend += rel->r_addend;
7945 if (r_type == R_MIPS_HI16
7946 || r_type == R_MIPS_GOT16)
7947 addend = mips_elf_high (addend);
7948 else if (r_type == R_MIPS_HIGHER)
7949 addend = mips_elf_higher (addend);
7950 else if (r_type == R_MIPS_HIGHEST)
7951 addend = mips_elf_highest (addend);
7952 else
7953 addend >>= howto->rightshift;
7954
7955 /* We use the source mask, rather than the destination
7956 mask because the place to which we are writing will be
7957 source of the addend in the final link. */
7958 addend &= howto->src_mask;
7959
7960 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7961 /* See the comment above about using R_MIPS_64 in the 32-bit
7962 ABI. Here, we need to update the addend. It would be
7963 possible to get away with just using the R_MIPS_32 reloc
7964 but for endianness. */
7965 {
7966 bfd_vma sign_bits;
7967 bfd_vma low_bits;
7968 bfd_vma high_bits;
7969
7970 if (addend & ((bfd_vma) 1 << 31))
7971 #ifdef BFD64
7972 sign_bits = ((bfd_vma) 1 << 32) - 1;
7973 #else
7974 sign_bits = -1;
7975 #endif
7976 else
7977 sign_bits = 0;
7978
7979 /* If we don't know that we have a 64-bit type,
7980 do two separate stores. */
7981 if (bfd_big_endian (input_bfd))
7982 {
7983 /* Store the sign-bits (which are most significant)
7984 first. */
7985 low_bits = sign_bits;
7986 high_bits = addend;
7987 }
7988 else
7989 {
7990 low_bits = addend;
7991 high_bits = sign_bits;
7992 }
7993 bfd_put_32 (input_bfd, low_bits,
7994 contents + rel->r_offset);
7995 bfd_put_32 (input_bfd, high_bits,
7996 contents + rel->r_offset + 4);
7997 continue;
7998 }
7999
8000 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8001 input_bfd, input_section,
8002 contents, FALSE))
8003 return FALSE;
8004 }
8005
8006 /* Go on to the next relocation. */
8007 continue;
8008 }
8009
8010 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8011 relocations for the same offset. In that case we are
8012 supposed to treat the output of each relocation as the addend
8013 for the next. */
8014 if (rel + 1 < relend
8015 && rel->r_offset == rel[1].r_offset
8016 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8017 use_saved_addend_p = TRUE;
8018 else
8019 use_saved_addend_p = FALSE;
8020
8021 /* Figure out what value we are supposed to relocate. */
8022 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8023 input_section, info, rel,
8024 addend, howto, local_syms,
8025 local_sections, &value,
8026 &name, &require_jalx,
8027 use_saved_addend_p))
8028 {
8029 case bfd_reloc_continue:
8030 /* There's nothing to do. */
8031 continue;
8032
8033 case bfd_reloc_undefined:
8034 /* mips_elf_calculate_relocation already called the
8035 undefined_symbol callback. There's no real point in
8036 trying to perform the relocation at this point, so we
8037 just skip ahead to the next relocation. */
8038 continue;
8039
8040 case bfd_reloc_notsupported:
8041 msg = _("internal error: unsupported relocation error");
8042 info->callbacks->warning
8043 (info, msg, name, input_bfd, input_section, rel->r_offset);
8044 return FALSE;
8045
8046 case bfd_reloc_overflow:
8047 if (use_saved_addend_p)
8048 /* Ignore overflow until we reach the last relocation for
8049 a given location. */
8050 ;
8051 else
8052 {
8053 BFD_ASSERT (name != NULL);
8054 if (! ((*info->callbacks->reloc_overflow)
8055 (info, NULL, name, howto->name, (bfd_vma) 0,
8056 input_bfd, input_section, rel->r_offset)))
8057 return FALSE;
8058 }
8059 break;
8060
8061 case bfd_reloc_ok:
8062 break;
8063
8064 default:
8065 abort ();
8066 break;
8067 }
8068
8069 /* If we've got another relocation for the address, keep going
8070 until we reach the last one. */
8071 if (use_saved_addend_p)
8072 {
8073 addend = value;
8074 continue;
8075 }
8076
8077 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8078 /* See the comment above about using R_MIPS_64 in the 32-bit
8079 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8080 that calculated the right value. Now, however, we
8081 sign-extend the 32-bit result to 64-bits, and store it as a
8082 64-bit value. We are especially generous here in that we
8083 go to extreme lengths to support this usage on systems with
8084 only a 32-bit VMA. */
8085 {
8086 bfd_vma sign_bits;
8087 bfd_vma low_bits;
8088 bfd_vma high_bits;
8089
8090 if (value & ((bfd_vma) 1 << 31))
8091 #ifdef BFD64
8092 sign_bits = ((bfd_vma) 1 << 32) - 1;
8093 #else
8094 sign_bits = -1;
8095 #endif
8096 else
8097 sign_bits = 0;
8098
8099 /* If we don't know that we have a 64-bit type,
8100 do two separate stores. */
8101 if (bfd_big_endian (input_bfd))
8102 {
8103 /* Undo what we did above. */
8104 rel->r_offset -= 4;
8105 /* Store the sign-bits (which are most significant)
8106 first. */
8107 low_bits = sign_bits;
8108 high_bits = value;
8109 }
8110 else
8111 {
8112 low_bits = value;
8113 high_bits = sign_bits;
8114 }
8115 bfd_put_32 (input_bfd, low_bits,
8116 contents + rel->r_offset);
8117 bfd_put_32 (input_bfd, high_bits,
8118 contents + rel->r_offset + 4);
8119 continue;
8120 }
8121
8122 /* Actually perform the relocation. */
8123 if (! mips_elf_perform_relocation (info, howto, rel, value,
8124 input_bfd, input_section,
8125 contents, require_jalx))
8126 return FALSE;
8127 }
8128
8129 return TRUE;
8130 }
8131 \f
8132 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8133 adjust it appropriately now. */
8134
8135 static void
8136 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8137 const char *name, Elf_Internal_Sym *sym)
8138 {
8139 /* The linker script takes care of providing names and values for
8140 these, but we must place them into the right sections. */
8141 static const char* const text_section_symbols[] = {
8142 "_ftext",
8143 "_etext",
8144 "__dso_displacement",
8145 "__elf_header",
8146 "__program_header_table",
8147 NULL
8148 };
8149
8150 static const char* const data_section_symbols[] = {
8151 "_fdata",
8152 "_edata",
8153 "_end",
8154 "_fbss",
8155 NULL
8156 };
8157
8158 const char* const *p;
8159 int i;
8160
8161 for (i = 0; i < 2; ++i)
8162 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8163 *p;
8164 ++p)
8165 if (strcmp (*p, name) == 0)
8166 {
8167 /* All of these symbols are given type STT_SECTION by the
8168 IRIX6 linker. */
8169 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8170 sym->st_other = STO_PROTECTED;
8171
8172 /* The IRIX linker puts these symbols in special sections. */
8173 if (i == 0)
8174 sym->st_shndx = SHN_MIPS_TEXT;
8175 else
8176 sym->st_shndx = SHN_MIPS_DATA;
8177
8178 break;
8179 }
8180 }
8181
8182 /* Finish up dynamic symbol handling. We set the contents of various
8183 dynamic sections here. */
8184
8185 bfd_boolean
8186 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8187 struct bfd_link_info *info,
8188 struct elf_link_hash_entry *h,
8189 Elf_Internal_Sym *sym)
8190 {
8191 bfd *dynobj;
8192 asection *sgot;
8193 struct mips_got_info *g, *gg;
8194 const char *name;
8195 int idx;
8196 struct mips_elf_link_hash_table *htab;
8197
8198 htab = mips_elf_hash_table (info);
8199 dynobj = elf_hash_table (info)->dynobj;
8200
8201 if (h->plt.offset != MINUS_ONE)
8202 {
8203 asection *s;
8204 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8205
8206 /* This symbol has a stub. Set it up. */
8207
8208 BFD_ASSERT (h->dynindx != -1);
8209
8210 s = bfd_get_section_by_name (dynobj,
8211 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8212 BFD_ASSERT (s != NULL);
8213
8214 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8215 || (h->dynindx <= 0xffff));
8216
8217 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8218 sign extension at runtime in the stub, resulting in a negative
8219 index value. */
8220 if (h->dynindx & ~0x7fffffff)
8221 return FALSE;
8222
8223 /* Fill the stub. */
8224 idx = 0;
8225 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8226 idx += 4;
8227 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8228 idx += 4;
8229 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8230 {
8231 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8232 stub + idx);
8233 idx += 4;
8234 }
8235 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8236 idx += 4;
8237
8238 /* If a large stub is not required and sign extension is not a
8239 problem, then use legacy code in the stub. */
8240 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8241 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8242 else if (h->dynindx & ~0x7fff)
8243 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8244 else
8245 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8246 stub + idx);
8247
8248 BFD_ASSERT (h->plt.offset <= s->size);
8249 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8250
8251 /* Mark the symbol as undefined. plt.offset != -1 occurs
8252 only for the referenced symbol. */
8253 sym->st_shndx = SHN_UNDEF;
8254
8255 /* The run-time linker uses the st_value field of the symbol
8256 to reset the global offset table entry for this external
8257 to its stub address when unlinking a shared object. */
8258 sym->st_value = (s->output_section->vma + s->output_offset
8259 + h->plt.offset);
8260 }
8261
8262 BFD_ASSERT (h->dynindx != -1
8263 || h->forced_local);
8264
8265 sgot = mips_elf_got_section (dynobj, FALSE);
8266 BFD_ASSERT (sgot != NULL);
8267 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8268 g = mips_elf_section_data (sgot)->u.got_info;
8269 BFD_ASSERT (g != NULL);
8270
8271 /* Run through the global symbol table, creating GOT entries for all
8272 the symbols that need them. */
8273 if (g->global_gotsym != NULL
8274 && h->dynindx >= g->global_gotsym->dynindx)
8275 {
8276 bfd_vma offset;
8277 bfd_vma value;
8278
8279 value = sym->st_value;
8280 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8281 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8282 }
8283
8284 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8285 {
8286 struct mips_got_entry e, *p;
8287 bfd_vma entry;
8288 bfd_vma offset;
8289
8290 gg = g;
8291
8292 e.abfd = output_bfd;
8293 e.symndx = -1;
8294 e.d.h = (struct mips_elf_link_hash_entry *)h;
8295 e.tls_type = 0;
8296
8297 for (g = g->next; g->next != gg; g = g->next)
8298 {
8299 if (g->got_entries
8300 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8301 &e)))
8302 {
8303 offset = p->gotidx;
8304 if (info->shared
8305 || (elf_hash_table (info)->dynamic_sections_created
8306 && p->d.h != NULL
8307 && p->d.h->root.def_dynamic
8308 && !p->d.h->root.def_regular))
8309 {
8310 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8311 the various compatibility problems, it's easier to mock
8312 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8313 mips_elf_create_dynamic_relocation to calculate the
8314 appropriate addend. */
8315 Elf_Internal_Rela rel[3];
8316
8317 memset (rel, 0, sizeof (rel));
8318 if (ABI_64_P (output_bfd))
8319 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8320 else
8321 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8322 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8323
8324 entry = 0;
8325 if (! (mips_elf_create_dynamic_relocation
8326 (output_bfd, info, rel,
8327 e.d.h, NULL, sym->st_value, &entry, sgot)))
8328 return FALSE;
8329 }
8330 else
8331 entry = sym->st_value;
8332 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8333 }
8334 }
8335 }
8336
8337 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8338 name = h->root.root.string;
8339 if (strcmp (name, "_DYNAMIC") == 0
8340 || h == elf_hash_table (info)->hgot)
8341 sym->st_shndx = SHN_ABS;
8342 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8343 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8344 {
8345 sym->st_shndx = SHN_ABS;
8346 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8347 sym->st_value = 1;
8348 }
8349 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8350 {
8351 sym->st_shndx = SHN_ABS;
8352 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8353 sym->st_value = elf_gp (output_bfd);
8354 }
8355 else if (SGI_COMPAT (output_bfd))
8356 {
8357 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8358 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8359 {
8360 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8361 sym->st_other = STO_PROTECTED;
8362 sym->st_value = 0;
8363 sym->st_shndx = SHN_MIPS_DATA;
8364 }
8365 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8366 {
8367 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8368 sym->st_other = STO_PROTECTED;
8369 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8370 sym->st_shndx = SHN_ABS;
8371 }
8372 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8373 {
8374 if (h->type == STT_FUNC)
8375 sym->st_shndx = SHN_MIPS_TEXT;
8376 else if (h->type == STT_OBJECT)
8377 sym->st_shndx = SHN_MIPS_DATA;
8378 }
8379 }
8380
8381 /* Handle the IRIX6-specific symbols. */
8382 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8383 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8384
8385 if (! info->shared)
8386 {
8387 if (! mips_elf_hash_table (info)->use_rld_obj_head
8388 && (strcmp (name, "__rld_map") == 0
8389 || strcmp (name, "__RLD_MAP") == 0))
8390 {
8391 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8392 BFD_ASSERT (s != NULL);
8393 sym->st_value = s->output_section->vma + s->output_offset;
8394 bfd_put_32 (output_bfd, 0, s->contents);
8395 if (mips_elf_hash_table (info)->rld_value == 0)
8396 mips_elf_hash_table (info)->rld_value = sym->st_value;
8397 }
8398 else if (mips_elf_hash_table (info)->use_rld_obj_head
8399 && strcmp (name, "__rld_obj_head") == 0)
8400 {
8401 /* IRIX6 does not use a .rld_map section. */
8402 if (IRIX_COMPAT (output_bfd) == ict_irix5
8403 || IRIX_COMPAT (output_bfd) == ict_none)
8404 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8405 != NULL);
8406 mips_elf_hash_table (info)->rld_value = sym->st_value;
8407 }
8408 }
8409
8410 /* If this is a mips16 symbol, force the value to be even. */
8411 if (sym->st_other == STO_MIPS16)
8412 sym->st_value &= ~1;
8413
8414 return TRUE;
8415 }
8416
8417 /* Likewise, for VxWorks. */
8418
8419 bfd_boolean
8420 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8421 struct bfd_link_info *info,
8422 struct elf_link_hash_entry *h,
8423 Elf_Internal_Sym *sym)
8424 {
8425 bfd *dynobj;
8426 asection *sgot;
8427 struct mips_got_info *g;
8428 struct mips_elf_link_hash_table *htab;
8429
8430 htab = mips_elf_hash_table (info);
8431 dynobj = elf_hash_table (info)->dynobj;
8432
8433 if (h->plt.offset != (bfd_vma) -1)
8434 {
8435 bfd_byte *loc;
8436 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8437 Elf_Internal_Rela rel;
8438 static const bfd_vma *plt_entry;
8439
8440 BFD_ASSERT (h->dynindx != -1);
8441 BFD_ASSERT (htab->splt != NULL);
8442 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8443
8444 /* Calculate the address of the .plt entry. */
8445 plt_address = (htab->splt->output_section->vma
8446 + htab->splt->output_offset
8447 + h->plt.offset);
8448
8449 /* Calculate the index of the entry. */
8450 plt_index = ((h->plt.offset - htab->plt_header_size)
8451 / htab->plt_entry_size);
8452
8453 /* Calculate the address of the .got.plt entry. */
8454 got_address = (htab->sgotplt->output_section->vma
8455 + htab->sgotplt->output_offset
8456 + plt_index * 4);
8457
8458 /* Calculate the offset of the .got.plt entry from
8459 _GLOBAL_OFFSET_TABLE_. */
8460 got_offset = mips_elf_gotplt_index (info, h);
8461
8462 /* Calculate the offset for the branch at the start of the PLT
8463 entry. The branch jumps to the beginning of .plt. */
8464 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8465
8466 /* Fill in the initial value of the .got.plt entry. */
8467 bfd_put_32 (output_bfd, plt_address,
8468 htab->sgotplt->contents + plt_index * 4);
8469
8470 /* Find out where the .plt entry should go. */
8471 loc = htab->splt->contents + h->plt.offset;
8472
8473 if (info->shared)
8474 {
8475 plt_entry = mips_vxworks_shared_plt_entry;
8476 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8477 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8478 }
8479 else
8480 {
8481 bfd_vma got_address_high, got_address_low;
8482
8483 plt_entry = mips_vxworks_exec_plt_entry;
8484 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8485 got_address_low = got_address & 0xffff;
8486
8487 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8488 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8489 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8490 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8491 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8492 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8493 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8494 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8495
8496 loc = (htab->srelplt2->contents
8497 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8498
8499 /* Emit a relocation for the .got.plt entry. */
8500 rel.r_offset = got_address;
8501 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8502 rel.r_addend = h->plt.offset;
8503 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8504
8505 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8506 loc += sizeof (Elf32_External_Rela);
8507 rel.r_offset = plt_address + 8;
8508 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8509 rel.r_addend = got_offset;
8510 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8511
8512 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8513 loc += sizeof (Elf32_External_Rela);
8514 rel.r_offset += 4;
8515 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8516 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8517 }
8518
8519 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8520 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8521 rel.r_offset = got_address;
8522 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8523 rel.r_addend = 0;
8524 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8525
8526 if (!h->def_regular)
8527 sym->st_shndx = SHN_UNDEF;
8528 }
8529
8530 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8531
8532 sgot = mips_elf_got_section (dynobj, FALSE);
8533 BFD_ASSERT (sgot != NULL);
8534 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8535 g = mips_elf_section_data (sgot)->u.got_info;
8536 BFD_ASSERT (g != NULL);
8537
8538 /* See if this symbol has an entry in the GOT. */
8539 if (g->global_gotsym != NULL
8540 && h->dynindx >= g->global_gotsym->dynindx)
8541 {
8542 bfd_vma offset;
8543 Elf_Internal_Rela outrel;
8544 bfd_byte *loc;
8545 asection *s;
8546
8547 /* Install the symbol value in the GOT. */
8548 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8549 R_MIPS_GOT16, info);
8550 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8551
8552 /* Add a dynamic relocation for it. */
8553 s = mips_elf_rel_dyn_section (info, FALSE);
8554 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8555 outrel.r_offset = (sgot->output_section->vma
8556 + sgot->output_offset
8557 + offset);
8558 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8559 outrel.r_addend = 0;
8560 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8561 }
8562
8563 /* Emit a copy reloc, if needed. */
8564 if (h->needs_copy)
8565 {
8566 Elf_Internal_Rela rel;
8567
8568 BFD_ASSERT (h->dynindx != -1);
8569
8570 rel.r_offset = (h->root.u.def.section->output_section->vma
8571 + h->root.u.def.section->output_offset
8572 + h->root.u.def.value);
8573 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8574 rel.r_addend = 0;
8575 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8576 htab->srelbss->contents
8577 + (htab->srelbss->reloc_count
8578 * sizeof (Elf32_External_Rela)));
8579 ++htab->srelbss->reloc_count;
8580 }
8581
8582 /* If this is a mips16 symbol, force the value to be even. */
8583 if (sym->st_other == STO_MIPS16)
8584 sym->st_value &= ~1;
8585
8586 return TRUE;
8587 }
8588
8589 /* Install the PLT header for a VxWorks executable and finalize the
8590 contents of .rela.plt.unloaded. */
8591
8592 static void
8593 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8594 {
8595 Elf_Internal_Rela rela;
8596 bfd_byte *loc;
8597 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8598 static const bfd_vma *plt_entry;
8599 struct mips_elf_link_hash_table *htab;
8600
8601 htab = mips_elf_hash_table (info);
8602 plt_entry = mips_vxworks_exec_plt0_entry;
8603
8604 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8605 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8606 + htab->root.hgot->root.u.def.section->output_offset
8607 + htab->root.hgot->root.u.def.value);
8608
8609 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8610 got_value_low = got_value & 0xffff;
8611
8612 /* Calculate the address of the PLT header. */
8613 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8614
8615 /* Install the PLT header. */
8616 loc = htab->splt->contents;
8617 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8618 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8619 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8620 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8621 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8622 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8623
8624 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8625 loc = htab->srelplt2->contents;
8626 rela.r_offset = plt_address;
8627 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8628 rela.r_addend = 0;
8629 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8630 loc += sizeof (Elf32_External_Rela);
8631
8632 /* Output the relocation for the following addiu of
8633 %lo(_GLOBAL_OFFSET_TABLE_). */
8634 rela.r_offset += 4;
8635 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8636 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8637 loc += sizeof (Elf32_External_Rela);
8638
8639 /* Fix up the remaining relocations. They may have the wrong
8640 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8641 in which symbols were output. */
8642 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8643 {
8644 Elf_Internal_Rela rel;
8645
8646 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8647 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8648 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8649 loc += sizeof (Elf32_External_Rela);
8650
8651 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8652 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8653 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8654 loc += sizeof (Elf32_External_Rela);
8655
8656 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8657 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8658 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8659 loc += sizeof (Elf32_External_Rela);
8660 }
8661 }
8662
8663 /* Install the PLT header for a VxWorks shared library. */
8664
8665 static void
8666 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8667 {
8668 unsigned int i;
8669 struct mips_elf_link_hash_table *htab;
8670
8671 htab = mips_elf_hash_table (info);
8672
8673 /* We just need to copy the entry byte-by-byte. */
8674 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8675 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8676 htab->splt->contents + i * 4);
8677 }
8678
8679 /* Finish up the dynamic sections. */
8680
8681 bfd_boolean
8682 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8683 struct bfd_link_info *info)
8684 {
8685 bfd *dynobj;
8686 asection *sdyn;
8687 asection *sgot;
8688 struct mips_got_info *gg, *g;
8689 struct mips_elf_link_hash_table *htab;
8690
8691 htab = mips_elf_hash_table (info);
8692 dynobj = elf_hash_table (info)->dynobj;
8693
8694 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8695
8696 sgot = mips_elf_got_section (dynobj, FALSE);
8697 if (sgot == NULL)
8698 gg = g = NULL;
8699 else
8700 {
8701 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8702 gg = mips_elf_section_data (sgot)->u.got_info;
8703 BFD_ASSERT (gg != NULL);
8704 g = mips_elf_got_for_ibfd (gg, output_bfd);
8705 BFD_ASSERT (g != NULL);
8706 }
8707
8708 if (elf_hash_table (info)->dynamic_sections_created)
8709 {
8710 bfd_byte *b;
8711 int dyn_to_skip = 0, dyn_skipped = 0;
8712
8713 BFD_ASSERT (sdyn != NULL);
8714 BFD_ASSERT (g != NULL);
8715
8716 for (b = sdyn->contents;
8717 b < sdyn->contents + sdyn->size;
8718 b += MIPS_ELF_DYN_SIZE (dynobj))
8719 {
8720 Elf_Internal_Dyn dyn;
8721 const char *name;
8722 size_t elemsize;
8723 asection *s;
8724 bfd_boolean swap_out_p;
8725
8726 /* Read in the current dynamic entry. */
8727 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8728
8729 /* Assume that we're going to modify it and write it out. */
8730 swap_out_p = TRUE;
8731
8732 switch (dyn.d_tag)
8733 {
8734 case DT_RELENT:
8735 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8736 break;
8737
8738 case DT_RELAENT:
8739 BFD_ASSERT (htab->is_vxworks);
8740 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8741 break;
8742
8743 case DT_STRSZ:
8744 /* Rewrite DT_STRSZ. */
8745 dyn.d_un.d_val =
8746 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8747 break;
8748
8749 case DT_PLTGOT:
8750 name = ".got";
8751 if (htab->is_vxworks)
8752 {
8753 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8754 of the ".got" section in DYNOBJ. */
8755 s = bfd_get_section_by_name (dynobj, name);
8756 BFD_ASSERT (s != NULL);
8757 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8758 }
8759 else
8760 {
8761 s = bfd_get_section_by_name (output_bfd, name);
8762 BFD_ASSERT (s != NULL);
8763 dyn.d_un.d_ptr = s->vma;
8764 }
8765 break;
8766
8767 case DT_MIPS_RLD_VERSION:
8768 dyn.d_un.d_val = 1; /* XXX */
8769 break;
8770
8771 case DT_MIPS_FLAGS:
8772 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8773 break;
8774
8775 case DT_MIPS_TIME_STAMP:
8776 {
8777 time_t t;
8778 time (&t);
8779 dyn.d_un.d_val = t;
8780 }
8781 break;
8782
8783 case DT_MIPS_ICHECKSUM:
8784 /* XXX FIXME: */
8785 swap_out_p = FALSE;
8786 break;
8787
8788 case DT_MIPS_IVERSION:
8789 /* XXX FIXME: */
8790 swap_out_p = FALSE;
8791 break;
8792
8793 case DT_MIPS_BASE_ADDRESS:
8794 s = output_bfd->sections;
8795 BFD_ASSERT (s != NULL);
8796 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8797 break;
8798
8799 case DT_MIPS_LOCAL_GOTNO:
8800 dyn.d_un.d_val = g->local_gotno;
8801 break;
8802
8803 case DT_MIPS_UNREFEXTNO:
8804 /* The index into the dynamic symbol table which is the
8805 entry of the first external symbol that is not
8806 referenced within the same object. */
8807 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8808 break;
8809
8810 case DT_MIPS_GOTSYM:
8811 if (gg->global_gotsym)
8812 {
8813 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8814 break;
8815 }
8816 /* In case if we don't have global got symbols we default
8817 to setting DT_MIPS_GOTSYM to the same value as
8818 DT_MIPS_SYMTABNO, so we just fall through. */
8819
8820 case DT_MIPS_SYMTABNO:
8821 name = ".dynsym";
8822 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8823 s = bfd_get_section_by_name (output_bfd, name);
8824 BFD_ASSERT (s != NULL);
8825
8826 dyn.d_un.d_val = s->size / elemsize;
8827 break;
8828
8829 case DT_MIPS_HIPAGENO:
8830 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8831 break;
8832
8833 case DT_MIPS_RLD_MAP:
8834 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8835 break;
8836
8837 case DT_MIPS_OPTIONS:
8838 s = (bfd_get_section_by_name
8839 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8840 dyn.d_un.d_ptr = s->vma;
8841 break;
8842
8843 case DT_RELASZ:
8844 BFD_ASSERT (htab->is_vxworks);
8845 /* The count does not include the JUMP_SLOT relocations. */
8846 if (htab->srelplt)
8847 dyn.d_un.d_val -= htab->srelplt->size;
8848 break;
8849
8850 case DT_PLTREL:
8851 BFD_ASSERT (htab->is_vxworks);
8852 dyn.d_un.d_val = DT_RELA;
8853 break;
8854
8855 case DT_PLTRELSZ:
8856 BFD_ASSERT (htab->is_vxworks);
8857 dyn.d_un.d_val = htab->srelplt->size;
8858 break;
8859
8860 case DT_JMPREL:
8861 BFD_ASSERT (htab->is_vxworks);
8862 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8863 + htab->srelplt->output_offset);
8864 break;
8865
8866 case DT_TEXTREL:
8867 /* If we didn't need any text relocations after all, delete
8868 the dynamic tag. */
8869 if (!(info->flags & DF_TEXTREL))
8870 {
8871 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8872 swap_out_p = FALSE;
8873 }
8874 break;
8875
8876 case DT_FLAGS:
8877 /* If we didn't need any text relocations after all, clear
8878 DF_TEXTREL from DT_FLAGS. */
8879 if (!(info->flags & DF_TEXTREL))
8880 dyn.d_un.d_val &= ~DF_TEXTREL;
8881 else
8882 swap_out_p = FALSE;
8883 break;
8884
8885 default:
8886 swap_out_p = FALSE;
8887 break;
8888 }
8889
8890 if (swap_out_p || dyn_skipped)
8891 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8892 (dynobj, &dyn, b - dyn_skipped);
8893
8894 if (dyn_to_skip)
8895 {
8896 dyn_skipped += dyn_to_skip;
8897 dyn_to_skip = 0;
8898 }
8899 }
8900
8901 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8902 if (dyn_skipped > 0)
8903 memset (b - dyn_skipped, 0, dyn_skipped);
8904 }
8905
8906 if (sgot != NULL && sgot->size > 0)
8907 {
8908 if (htab->is_vxworks)
8909 {
8910 /* The first entry of the global offset table points to the
8911 ".dynamic" section. The second is initialized by the
8912 loader and contains the shared library identifier.
8913 The third is also initialized by the loader and points
8914 to the lazy resolution stub. */
8915 MIPS_ELF_PUT_WORD (output_bfd,
8916 sdyn->output_offset + sdyn->output_section->vma,
8917 sgot->contents);
8918 MIPS_ELF_PUT_WORD (output_bfd, 0,
8919 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8920 MIPS_ELF_PUT_WORD (output_bfd, 0,
8921 sgot->contents
8922 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8923 }
8924 else
8925 {
8926 /* The first entry of the global offset table will be filled at
8927 runtime. The second entry will be used by some runtime loaders.
8928 This isn't the case of IRIX rld. */
8929 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8930 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8931 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8932 }
8933
8934 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8935 = MIPS_ELF_GOT_SIZE (output_bfd);
8936 }
8937
8938 /* Generate dynamic relocations for the non-primary gots. */
8939 if (gg != NULL && gg->next)
8940 {
8941 Elf_Internal_Rela rel[3];
8942 bfd_vma addend = 0;
8943
8944 memset (rel, 0, sizeof (rel));
8945 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8946
8947 for (g = gg->next; g->next != gg; g = g->next)
8948 {
8949 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8950 + g->next->tls_gotno;
8951
8952 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8953 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8954 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8955 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8956
8957 if (! info->shared)
8958 continue;
8959
8960 while (index < g->assigned_gotno)
8961 {
8962 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8963 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8964 if (!(mips_elf_create_dynamic_relocation
8965 (output_bfd, info, rel, NULL,
8966 bfd_abs_section_ptr,
8967 0, &addend, sgot)))
8968 return FALSE;
8969 BFD_ASSERT (addend == 0);
8970 }
8971 }
8972 }
8973
8974 /* The generation of dynamic relocations for the non-primary gots
8975 adds more dynamic relocations. We cannot count them until
8976 here. */
8977
8978 if (elf_hash_table (info)->dynamic_sections_created)
8979 {
8980 bfd_byte *b;
8981 bfd_boolean swap_out_p;
8982
8983 BFD_ASSERT (sdyn != NULL);
8984
8985 for (b = sdyn->contents;
8986 b < sdyn->contents + sdyn->size;
8987 b += MIPS_ELF_DYN_SIZE (dynobj))
8988 {
8989 Elf_Internal_Dyn dyn;
8990 asection *s;
8991
8992 /* Read in the current dynamic entry. */
8993 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8994
8995 /* Assume that we're going to modify it and write it out. */
8996 swap_out_p = TRUE;
8997
8998 switch (dyn.d_tag)
8999 {
9000 case DT_RELSZ:
9001 /* Reduce DT_RELSZ to account for any relocations we
9002 decided not to make. This is for the n64 irix rld,
9003 which doesn't seem to apply any relocations if there
9004 are trailing null entries. */
9005 s = mips_elf_rel_dyn_section (info, FALSE);
9006 dyn.d_un.d_val = (s->reloc_count
9007 * (ABI_64_P (output_bfd)
9008 ? sizeof (Elf64_Mips_External_Rel)
9009 : sizeof (Elf32_External_Rel)));
9010 /* Adjust the section size too. Tools like the prelinker
9011 can reasonably expect the values to the same. */
9012 elf_section_data (s->output_section)->this_hdr.sh_size
9013 = dyn.d_un.d_val;
9014 break;
9015
9016 default:
9017 swap_out_p = FALSE;
9018 break;
9019 }
9020
9021 if (swap_out_p)
9022 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9023 (dynobj, &dyn, b);
9024 }
9025 }
9026
9027 {
9028 asection *s;
9029 Elf32_compact_rel cpt;
9030
9031 if (SGI_COMPAT (output_bfd))
9032 {
9033 /* Write .compact_rel section out. */
9034 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9035 if (s != NULL)
9036 {
9037 cpt.id1 = 1;
9038 cpt.num = s->reloc_count;
9039 cpt.id2 = 2;
9040 cpt.offset = (s->output_section->filepos
9041 + sizeof (Elf32_External_compact_rel));
9042 cpt.reserved0 = 0;
9043 cpt.reserved1 = 0;
9044 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9045 ((Elf32_External_compact_rel *)
9046 s->contents));
9047
9048 /* Clean up a dummy stub function entry in .text. */
9049 s = bfd_get_section_by_name (dynobj,
9050 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9051 if (s != NULL)
9052 {
9053 file_ptr dummy_offset;
9054
9055 BFD_ASSERT (s->size >= htab->function_stub_size);
9056 dummy_offset = s->size - htab->function_stub_size;
9057 memset (s->contents + dummy_offset, 0,
9058 htab->function_stub_size);
9059 }
9060 }
9061 }
9062
9063 /* The psABI says that the dynamic relocations must be sorted in
9064 increasing order of r_symndx. The VxWorks EABI doesn't require
9065 this, and because the code below handles REL rather than RELA
9066 relocations, using it for VxWorks would be outright harmful. */
9067 if (!htab->is_vxworks)
9068 {
9069 s = mips_elf_rel_dyn_section (info, FALSE);
9070 if (s != NULL
9071 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9072 {
9073 reldyn_sorting_bfd = output_bfd;
9074
9075 if (ABI_64_P (output_bfd))
9076 qsort ((Elf64_External_Rel *) s->contents + 1,
9077 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9078 sort_dynamic_relocs_64);
9079 else
9080 qsort ((Elf32_External_Rel *) s->contents + 1,
9081 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9082 sort_dynamic_relocs);
9083 }
9084 }
9085 }
9086
9087 if (htab->is_vxworks && htab->splt->size > 0)
9088 {
9089 if (info->shared)
9090 mips_vxworks_finish_shared_plt (output_bfd, info);
9091 else
9092 mips_vxworks_finish_exec_plt (output_bfd, info);
9093 }
9094 return TRUE;
9095 }
9096
9097
9098 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9099
9100 static void
9101 mips_set_isa_flags (bfd *abfd)
9102 {
9103 flagword val;
9104
9105 switch (bfd_get_mach (abfd))
9106 {
9107 default:
9108 case bfd_mach_mips3000:
9109 val = E_MIPS_ARCH_1;
9110 break;
9111
9112 case bfd_mach_mips3900:
9113 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9114 break;
9115
9116 case bfd_mach_mips6000:
9117 val = E_MIPS_ARCH_2;
9118 break;
9119
9120 case bfd_mach_mips4000:
9121 case bfd_mach_mips4300:
9122 case bfd_mach_mips4400:
9123 case bfd_mach_mips4600:
9124 val = E_MIPS_ARCH_3;
9125 break;
9126
9127 case bfd_mach_mips4010:
9128 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9129 break;
9130
9131 case bfd_mach_mips4100:
9132 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9133 break;
9134
9135 case bfd_mach_mips4111:
9136 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9137 break;
9138
9139 case bfd_mach_mips4120:
9140 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9141 break;
9142
9143 case bfd_mach_mips4650:
9144 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9145 break;
9146
9147 case bfd_mach_mips5400:
9148 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9149 break;
9150
9151 case bfd_mach_mips5500:
9152 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9153 break;
9154
9155 case bfd_mach_mips9000:
9156 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9157 break;
9158
9159 case bfd_mach_mips5000:
9160 case bfd_mach_mips7000:
9161 case bfd_mach_mips8000:
9162 case bfd_mach_mips10000:
9163 case bfd_mach_mips12000:
9164 val = E_MIPS_ARCH_4;
9165 break;
9166
9167 case bfd_mach_mips5:
9168 val = E_MIPS_ARCH_5;
9169 break;
9170
9171 case bfd_mach_mips_sb1:
9172 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9173 break;
9174
9175 case bfd_mach_mipsisa32:
9176 val = E_MIPS_ARCH_32;
9177 break;
9178
9179 case bfd_mach_mipsisa64:
9180 val = E_MIPS_ARCH_64;
9181 break;
9182
9183 case bfd_mach_mipsisa32r2:
9184 val = E_MIPS_ARCH_32R2;
9185 break;
9186
9187 case bfd_mach_mipsisa64r2:
9188 val = E_MIPS_ARCH_64R2;
9189 break;
9190 }
9191 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9192 elf_elfheader (abfd)->e_flags |= val;
9193
9194 }
9195
9196
9197 /* The final processing done just before writing out a MIPS ELF object
9198 file. This gets the MIPS architecture right based on the machine
9199 number. This is used by both the 32-bit and the 64-bit ABI. */
9200
9201 void
9202 _bfd_mips_elf_final_write_processing (bfd *abfd,
9203 bfd_boolean linker ATTRIBUTE_UNUSED)
9204 {
9205 unsigned int i;
9206 Elf_Internal_Shdr **hdrpp;
9207 const char *name;
9208 asection *sec;
9209
9210 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9211 is nonzero. This is for compatibility with old objects, which used
9212 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9213 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9214 mips_set_isa_flags (abfd);
9215
9216 /* Set the sh_info field for .gptab sections and other appropriate
9217 info for each special section. */
9218 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9219 i < elf_numsections (abfd);
9220 i++, hdrpp++)
9221 {
9222 switch ((*hdrpp)->sh_type)
9223 {
9224 case SHT_MIPS_MSYM:
9225 case SHT_MIPS_LIBLIST:
9226 sec = bfd_get_section_by_name (abfd, ".dynstr");
9227 if (sec != NULL)
9228 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9229 break;
9230
9231 case SHT_MIPS_GPTAB:
9232 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9233 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9234 BFD_ASSERT (name != NULL
9235 && CONST_STRNEQ (name, ".gptab."));
9236 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9237 BFD_ASSERT (sec != NULL);
9238 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9239 break;
9240
9241 case SHT_MIPS_CONTENT:
9242 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9243 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9244 BFD_ASSERT (name != NULL
9245 && CONST_STRNEQ (name, ".MIPS.content"));
9246 sec = bfd_get_section_by_name (abfd,
9247 name + sizeof ".MIPS.content" - 1);
9248 BFD_ASSERT (sec != NULL);
9249 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9250 break;
9251
9252 case SHT_MIPS_SYMBOL_LIB:
9253 sec = bfd_get_section_by_name (abfd, ".dynsym");
9254 if (sec != NULL)
9255 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9256 sec = bfd_get_section_by_name (abfd, ".liblist");
9257 if (sec != NULL)
9258 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9259 break;
9260
9261 case SHT_MIPS_EVENTS:
9262 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9263 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9264 BFD_ASSERT (name != NULL);
9265 if (CONST_STRNEQ (name, ".MIPS.events"))
9266 sec = bfd_get_section_by_name (abfd,
9267 name + sizeof ".MIPS.events" - 1);
9268 else
9269 {
9270 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9271 sec = bfd_get_section_by_name (abfd,
9272 (name
9273 + sizeof ".MIPS.post_rel" - 1));
9274 }
9275 BFD_ASSERT (sec != NULL);
9276 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9277 break;
9278
9279 }
9280 }
9281 }
9282 \f
9283 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9284 segments. */
9285
9286 int
9287 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9288 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9289 {
9290 asection *s;
9291 int ret = 0;
9292
9293 /* See if we need a PT_MIPS_REGINFO segment. */
9294 s = bfd_get_section_by_name (abfd, ".reginfo");
9295 if (s && (s->flags & SEC_LOAD))
9296 ++ret;
9297
9298 /* See if we need a PT_MIPS_OPTIONS segment. */
9299 if (IRIX_COMPAT (abfd) == ict_irix6
9300 && bfd_get_section_by_name (abfd,
9301 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9302 ++ret;
9303
9304 /* See if we need a PT_MIPS_RTPROC segment. */
9305 if (IRIX_COMPAT (abfd) == ict_irix5
9306 && bfd_get_section_by_name (abfd, ".dynamic")
9307 && bfd_get_section_by_name (abfd, ".mdebug"))
9308 ++ret;
9309
9310 /* Allocate a PT_NULL header in dynamic objects. See
9311 _bfd_mips_elf_modify_segment_map for details. */
9312 if (!SGI_COMPAT (abfd)
9313 && bfd_get_section_by_name (abfd, ".dynamic"))
9314 ++ret;
9315
9316 return ret;
9317 }
9318
9319 /* Modify the segment map for an IRIX5 executable. */
9320
9321 bfd_boolean
9322 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9323 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9324 {
9325 asection *s;
9326 struct elf_segment_map *m, **pm;
9327 bfd_size_type amt;
9328
9329 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9330 segment. */
9331 s = bfd_get_section_by_name (abfd, ".reginfo");
9332 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9333 {
9334 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9335 if (m->p_type == PT_MIPS_REGINFO)
9336 break;
9337 if (m == NULL)
9338 {
9339 amt = sizeof *m;
9340 m = bfd_zalloc (abfd, amt);
9341 if (m == NULL)
9342 return FALSE;
9343
9344 m->p_type = PT_MIPS_REGINFO;
9345 m->count = 1;
9346 m->sections[0] = s;
9347
9348 /* We want to put it after the PHDR and INTERP segments. */
9349 pm = &elf_tdata (abfd)->segment_map;
9350 while (*pm != NULL
9351 && ((*pm)->p_type == PT_PHDR
9352 || (*pm)->p_type == PT_INTERP))
9353 pm = &(*pm)->next;
9354
9355 m->next = *pm;
9356 *pm = m;
9357 }
9358 }
9359
9360 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9361 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9362 PT_MIPS_OPTIONS segment immediately following the program header
9363 table. */
9364 if (NEWABI_P (abfd)
9365 /* On non-IRIX6 new abi, we'll have already created a segment
9366 for this section, so don't create another. I'm not sure this
9367 is not also the case for IRIX 6, but I can't test it right
9368 now. */
9369 && IRIX_COMPAT (abfd) == ict_irix6)
9370 {
9371 for (s = abfd->sections; s; s = s->next)
9372 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9373 break;
9374
9375 if (s)
9376 {
9377 struct elf_segment_map *options_segment;
9378
9379 pm = &elf_tdata (abfd)->segment_map;
9380 while (*pm != NULL
9381 && ((*pm)->p_type == PT_PHDR
9382 || (*pm)->p_type == PT_INTERP))
9383 pm = &(*pm)->next;
9384
9385 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9386 {
9387 amt = sizeof (struct elf_segment_map);
9388 options_segment = bfd_zalloc (abfd, amt);
9389 options_segment->next = *pm;
9390 options_segment->p_type = PT_MIPS_OPTIONS;
9391 options_segment->p_flags = PF_R;
9392 options_segment->p_flags_valid = TRUE;
9393 options_segment->count = 1;
9394 options_segment->sections[0] = s;
9395 *pm = options_segment;
9396 }
9397 }
9398 }
9399 else
9400 {
9401 if (IRIX_COMPAT (abfd) == ict_irix5)
9402 {
9403 /* If there are .dynamic and .mdebug sections, we make a room
9404 for the RTPROC header. FIXME: Rewrite without section names. */
9405 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9406 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9407 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9408 {
9409 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9410 if (m->p_type == PT_MIPS_RTPROC)
9411 break;
9412 if (m == NULL)
9413 {
9414 amt = sizeof *m;
9415 m = bfd_zalloc (abfd, amt);
9416 if (m == NULL)
9417 return FALSE;
9418
9419 m->p_type = PT_MIPS_RTPROC;
9420
9421 s = bfd_get_section_by_name (abfd, ".rtproc");
9422 if (s == NULL)
9423 {
9424 m->count = 0;
9425 m->p_flags = 0;
9426 m->p_flags_valid = 1;
9427 }
9428 else
9429 {
9430 m->count = 1;
9431 m->sections[0] = s;
9432 }
9433
9434 /* We want to put it after the DYNAMIC segment. */
9435 pm = &elf_tdata (abfd)->segment_map;
9436 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9437 pm = &(*pm)->next;
9438 if (*pm != NULL)
9439 pm = &(*pm)->next;
9440
9441 m->next = *pm;
9442 *pm = m;
9443 }
9444 }
9445 }
9446 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9447 .dynstr, .dynsym, and .hash sections, and everything in
9448 between. */
9449 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9450 pm = &(*pm)->next)
9451 if ((*pm)->p_type == PT_DYNAMIC)
9452 break;
9453 m = *pm;
9454 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9455 {
9456 /* For a normal mips executable the permissions for the PT_DYNAMIC
9457 segment are read, write and execute. We do that here since
9458 the code in elf.c sets only the read permission. This matters
9459 sometimes for the dynamic linker. */
9460 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9461 {
9462 m->p_flags = PF_R | PF_W | PF_X;
9463 m->p_flags_valid = 1;
9464 }
9465 }
9466 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9467 glibc's dynamic linker has traditionally derived the number of
9468 tags from the p_filesz field, and sometimes allocates stack
9469 arrays of that size. An overly-big PT_DYNAMIC segment can
9470 be actively harmful in such cases. Making PT_DYNAMIC contain
9471 other sections can also make life hard for the prelinker,
9472 which might move one of the other sections to a different
9473 PT_LOAD segment. */
9474 if (SGI_COMPAT (abfd)
9475 && m != NULL
9476 && m->count == 1
9477 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9478 {
9479 static const char *sec_names[] =
9480 {
9481 ".dynamic", ".dynstr", ".dynsym", ".hash"
9482 };
9483 bfd_vma low, high;
9484 unsigned int i, c;
9485 struct elf_segment_map *n;
9486
9487 low = ~(bfd_vma) 0;
9488 high = 0;
9489 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9490 {
9491 s = bfd_get_section_by_name (abfd, sec_names[i]);
9492 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9493 {
9494 bfd_size_type sz;
9495
9496 if (low > s->vma)
9497 low = s->vma;
9498 sz = s->size;
9499 if (high < s->vma + sz)
9500 high = s->vma + sz;
9501 }
9502 }
9503
9504 c = 0;
9505 for (s = abfd->sections; s != NULL; s = s->next)
9506 if ((s->flags & SEC_LOAD) != 0
9507 && s->vma >= low
9508 && s->vma + s->size <= high)
9509 ++c;
9510
9511 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9512 n = bfd_zalloc (abfd, amt);
9513 if (n == NULL)
9514 return FALSE;
9515 *n = *m;
9516 n->count = c;
9517
9518 i = 0;
9519 for (s = abfd->sections; s != NULL; s = s->next)
9520 {
9521 if ((s->flags & SEC_LOAD) != 0
9522 && s->vma >= low
9523 && s->vma + s->size <= high)
9524 {
9525 n->sections[i] = s;
9526 ++i;
9527 }
9528 }
9529
9530 *pm = n;
9531 }
9532 }
9533
9534 /* Allocate a spare program header in dynamic objects so that tools
9535 like the prelinker can add an extra PT_LOAD entry.
9536
9537 If the prelinker needs to make room for a new PT_LOAD entry, its
9538 standard procedure is to move the first (read-only) sections into
9539 the new (writable) segment. However, the MIPS ABI requires
9540 .dynamic to be in a read-only segment, and the section will often
9541 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9542
9543 Although the prelinker could in principle move .dynamic to a
9544 writable segment, it seems better to allocate a spare program
9545 header instead, and avoid the need to move any sections.
9546 There is a long tradition of allocating spare dynamic tags,
9547 so allocating a spare program header seems like a natural
9548 extension. */
9549 if (!SGI_COMPAT (abfd)
9550 && bfd_get_section_by_name (abfd, ".dynamic"))
9551 {
9552 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9553 if ((*pm)->p_type == PT_NULL)
9554 break;
9555 if (*pm == NULL)
9556 {
9557 m = bfd_zalloc (abfd, sizeof (*m));
9558 if (m == NULL)
9559 return FALSE;
9560
9561 m->p_type = PT_NULL;
9562 *pm = m;
9563 }
9564 }
9565
9566 return TRUE;
9567 }
9568 \f
9569 /* Return the section that should be marked against GC for a given
9570 relocation. */
9571
9572 asection *
9573 _bfd_mips_elf_gc_mark_hook (asection *sec,
9574 struct bfd_link_info *info,
9575 Elf_Internal_Rela *rel,
9576 struct elf_link_hash_entry *h,
9577 Elf_Internal_Sym *sym)
9578 {
9579 /* ??? Do mips16 stub sections need to be handled special? */
9580
9581 if (h != NULL)
9582 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9583 {
9584 case R_MIPS_GNU_VTINHERIT:
9585 case R_MIPS_GNU_VTENTRY:
9586 return NULL;
9587 }
9588
9589 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9590 }
9591
9592 /* Update the got entry reference counts for the section being removed. */
9593
9594 bfd_boolean
9595 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9596 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9597 asection *sec ATTRIBUTE_UNUSED,
9598 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9599 {
9600 #if 0
9601 Elf_Internal_Shdr *symtab_hdr;
9602 struct elf_link_hash_entry **sym_hashes;
9603 bfd_signed_vma *local_got_refcounts;
9604 const Elf_Internal_Rela *rel, *relend;
9605 unsigned long r_symndx;
9606 struct elf_link_hash_entry *h;
9607
9608 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9609 sym_hashes = elf_sym_hashes (abfd);
9610 local_got_refcounts = elf_local_got_refcounts (abfd);
9611
9612 relend = relocs + sec->reloc_count;
9613 for (rel = relocs; rel < relend; rel++)
9614 switch (ELF_R_TYPE (abfd, rel->r_info))
9615 {
9616 case R_MIPS_GOT16:
9617 case R_MIPS_CALL16:
9618 case R_MIPS_CALL_HI16:
9619 case R_MIPS_CALL_LO16:
9620 case R_MIPS_GOT_HI16:
9621 case R_MIPS_GOT_LO16:
9622 case R_MIPS_GOT_DISP:
9623 case R_MIPS_GOT_PAGE:
9624 case R_MIPS_GOT_OFST:
9625 /* ??? It would seem that the existing MIPS code does no sort
9626 of reference counting or whatnot on its GOT and PLT entries,
9627 so it is not possible to garbage collect them at this time. */
9628 break;
9629
9630 default:
9631 break;
9632 }
9633 #endif
9634
9635 return TRUE;
9636 }
9637 \f
9638 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9639 hiding the old indirect symbol. Process additional relocation
9640 information. Also called for weakdefs, in which case we just let
9641 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9642
9643 void
9644 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9645 struct elf_link_hash_entry *dir,
9646 struct elf_link_hash_entry *ind)
9647 {
9648 struct mips_elf_link_hash_entry *dirmips, *indmips;
9649
9650 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9651
9652 if (ind->root.type != bfd_link_hash_indirect)
9653 return;
9654
9655 dirmips = (struct mips_elf_link_hash_entry *) dir;
9656 indmips = (struct mips_elf_link_hash_entry *) ind;
9657 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9658 if (indmips->readonly_reloc)
9659 dirmips->readonly_reloc = TRUE;
9660 if (indmips->no_fn_stub)
9661 dirmips->no_fn_stub = TRUE;
9662
9663 if (dirmips->tls_type == 0)
9664 dirmips->tls_type = indmips->tls_type;
9665 }
9666
9667 void
9668 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9669 struct elf_link_hash_entry *entry,
9670 bfd_boolean force_local)
9671 {
9672 bfd *dynobj;
9673 asection *got;
9674 struct mips_got_info *g;
9675 struct mips_elf_link_hash_entry *h;
9676
9677 h = (struct mips_elf_link_hash_entry *) entry;
9678 if (h->forced_local)
9679 return;
9680 h->forced_local = force_local;
9681
9682 dynobj = elf_hash_table (info)->dynobj;
9683 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9684 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9685 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9686 {
9687 if (g->next)
9688 {
9689 struct mips_got_entry e;
9690 struct mips_got_info *gg = g;
9691
9692 /* Since we're turning what used to be a global symbol into a
9693 local one, bump up the number of local entries of each GOT
9694 that had an entry for it. This will automatically decrease
9695 the number of global entries, since global_gotno is actually
9696 the upper limit of global entries. */
9697 e.abfd = dynobj;
9698 e.symndx = -1;
9699 e.d.h = h;
9700 e.tls_type = 0;
9701
9702 for (g = g->next; g != gg; g = g->next)
9703 if (htab_find (g->got_entries, &e))
9704 {
9705 BFD_ASSERT (g->global_gotno > 0);
9706 g->local_gotno++;
9707 g->global_gotno--;
9708 }
9709
9710 /* If this was a global symbol forced into the primary GOT, we
9711 no longer need an entry for it. We can't release the entry
9712 at this point, but we must at least stop counting it as one
9713 of the symbols that required a forced got entry. */
9714 if (h->root.got.offset == 2)
9715 {
9716 BFD_ASSERT (gg->assigned_gotno > 0);
9717 gg->assigned_gotno--;
9718 }
9719 }
9720 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9721 /* If we haven't got through GOT allocation yet, just bump up the
9722 number of local entries, as this symbol won't be counted as
9723 global. */
9724 g->local_gotno++;
9725 else if (h->root.got.offset == 1)
9726 {
9727 /* If we're past non-multi-GOT allocation and this symbol had
9728 been marked for a global got entry, give it a local entry
9729 instead. */
9730 BFD_ASSERT (g->global_gotno > 0);
9731 g->local_gotno++;
9732 g->global_gotno--;
9733 }
9734 }
9735
9736 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9737 }
9738 \f
9739 #define PDR_SIZE 32
9740
9741 bfd_boolean
9742 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9743 struct bfd_link_info *info)
9744 {
9745 asection *o;
9746 bfd_boolean ret = FALSE;
9747 unsigned char *tdata;
9748 size_t i, skip;
9749
9750 o = bfd_get_section_by_name (abfd, ".pdr");
9751 if (! o)
9752 return FALSE;
9753 if (o->size == 0)
9754 return FALSE;
9755 if (o->size % PDR_SIZE != 0)
9756 return FALSE;
9757 if (o->output_section != NULL
9758 && bfd_is_abs_section (o->output_section))
9759 return FALSE;
9760
9761 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9762 if (! tdata)
9763 return FALSE;
9764
9765 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9766 info->keep_memory);
9767 if (!cookie->rels)
9768 {
9769 free (tdata);
9770 return FALSE;
9771 }
9772
9773 cookie->rel = cookie->rels;
9774 cookie->relend = cookie->rels + o->reloc_count;
9775
9776 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9777 {
9778 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9779 {
9780 tdata[i] = 1;
9781 skip ++;
9782 }
9783 }
9784
9785 if (skip != 0)
9786 {
9787 mips_elf_section_data (o)->u.tdata = tdata;
9788 o->size -= skip * PDR_SIZE;
9789 ret = TRUE;
9790 }
9791 else
9792 free (tdata);
9793
9794 if (! info->keep_memory)
9795 free (cookie->rels);
9796
9797 return ret;
9798 }
9799
9800 bfd_boolean
9801 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9802 {
9803 if (strcmp (sec->name, ".pdr") == 0)
9804 return TRUE;
9805 return FALSE;
9806 }
9807
9808 bfd_boolean
9809 _bfd_mips_elf_write_section (bfd *output_bfd,
9810 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9811 asection *sec, bfd_byte *contents)
9812 {
9813 bfd_byte *to, *from, *end;
9814 int i;
9815
9816 if (strcmp (sec->name, ".pdr") != 0)
9817 return FALSE;
9818
9819 if (mips_elf_section_data (sec)->u.tdata == NULL)
9820 return FALSE;
9821
9822 to = contents;
9823 end = contents + sec->size;
9824 for (from = contents, i = 0;
9825 from < end;
9826 from += PDR_SIZE, i++)
9827 {
9828 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9829 continue;
9830 if (to != from)
9831 memcpy (to, from, PDR_SIZE);
9832 to += PDR_SIZE;
9833 }
9834 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9835 sec->output_offset, sec->size);
9836 return TRUE;
9837 }
9838 \f
9839 /* MIPS ELF uses a special find_nearest_line routine in order the
9840 handle the ECOFF debugging information. */
9841
9842 struct mips_elf_find_line
9843 {
9844 struct ecoff_debug_info d;
9845 struct ecoff_find_line i;
9846 };
9847
9848 bfd_boolean
9849 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9850 asymbol **symbols, bfd_vma offset,
9851 const char **filename_ptr,
9852 const char **functionname_ptr,
9853 unsigned int *line_ptr)
9854 {
9855 asection *msec;
9856
9857 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9858 filename_ptr, functionname_ptr,
9859 line_ptr))
9860 return TRUE;
9861
9862 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9863 filename_ptr, functionname_ptr,
9864 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9865 &elf_tdata (abfd)->dwarf2_find_line_info))
9866 return TRUE;
9867
9868 msec = bfd_get_section_by_name (abfd, ".mdebug");
9869 if (msec != NULL)
9870 {
9871 flagword origflags;
9872 struct mips_elf_find_line *fi;
9873 const struct ecoff_debug_swap * const swap =
9874 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9875
9876 /* If we are called during a link, mips_elf_final_link may have
9877 cleared the SEC_HAS_CONTENTS field. We force it back on here
9878 if appropriate (which it normally will be). */
9879 origflags = msec->flags;
9880 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9881 msec->flags |= SEC_HAS_CONTENTS;
9882
9883 fi = elf_tdata (abfd)->find_line_info;
9884 if (fi == NULL)
9885 {
9886 bfd_size_type external_fdr_size;
9887 char *fraw_src;
9888 char *fraw_end;
9889 struct fdr *fdr_ptr;
9890 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9891
9892 fi = bfd_zalloc (abfd, amt);
9893 if (fi == NULL)
9894 {
9895 msec->flags = origflags;
9896 return FALSE;
9897 }
9898
9899 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9900 {
9901 msec->flags = origflags;
9902 return FALSE;
9903 }
9904
9905 /* Swap in the FDR information. */
9906 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9907 fi->d.fdr = bfd_alloc (abfd, amt);
9908 if (fi->d.fdr == NULL)
9909 {
9910 msec->flags = origflags;
9911 return FALSE;
9912 }
9913 external_fdr_size = swap->external_fdr_size;
9914 fdr_ptr = fi->d.fdr;
9915 fraw_src = (char *) fi->d.external_fdr;
9916 fraw_end = (fraw_src
9917 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9918 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9919 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9920
9921 elf_tdata (abfd)->find_line_info = fi;
9922
9923 /* Note that we don't bother to ever free this information.
9924 find_nearest_line is either called all the time, as in
9925 objdump -l, so the information should be saved, or it is
9926 rarely called, as in ld error messages, so the memory
9927 wasted is unimportant. Still, it would probably be a
9928 good idea for free_cached_info to throw it away. */
9929 }
9930
9931 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9932 &fi->i, filename_ptr, functionname_ptr,
9933 line_ptr))
9934 {
9935 msec->flags = origflags;
9936 return TRUE;
9937 }
9938
9939 msec->flags = origflags;
9940 }
9941
9942 /* Fall back on the generic ELF find_nearest_line routine. */
9943
9944 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9945 filename_ptr, functionname_ptr,
9946 line_ptr);
9947 }
9948
9949 bfd_boolean
9950 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9951 const char **filename_ptr,
9952 const char **functionname_ptr,
9953 unsigned int *line_ptr)
9954 {
9955 bfd_boolean found;
9956 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9957 functionname_ptr, line_ptr,
9958 & elf_tdata (abfd)->dwarf2_find_line_info);
9959 return found;
9960 }
9961
9962 \f
9963 /* When are writing out the .options or .MIPS.options section,
9964 remember the bytes we are writing out, so that we can install the
9965 GP value in the section_processing routine. */
9966
9967 bfd_boolean
9968 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9969 const void *location,
9970 file_ptr offset, bfd_size_type count)
9971 {
9972 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9973 {
9974 bfd_byte *c;
9975
9976 if (elf_section_data (section) == NULL)
9977 {
9978 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9979 section->used_by_bfd = bfd_zalloc (abfd, amt);
9980 if (elf_section_data (section) == NULL)
9981 return FALSE;
9982 }
9983 c = mips_elf_section_data (section)->u.tdata;
9984 if (c == NULL)
9985 {
9986 c = bfd_zalloc (abfd, section->size);
9987 if (c == NULL)
9988 return FALSE;
9989 mips_elf_section_data (section)->u.tdata = c;
9990 }
9991
9992 memcpy (c + offset, location, count);
9993 }
9994
9995 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9996 count);
9997 }
9998
9999 /* This is almost identical to bfd_generic_get_... except that some
10000 MIPS relocations need to be handled specially. Sigh. */
10001
10002 bfd_byte *
10003 _bfd_elf_mips_get_relocated_section_contents
10004 (bfd *abfd,
10005 struct bfd_link_info *link_info,
10006 struct bfd_link_order *link_order,
10007 bfd_byte *data,
10008 bfd_boolean relocatable,
10009 asymbol **symbols)
10010 {
10011 /* Get enough memory to hold the stuff */
10012 bfd *input_bfd = link_order->u.indirect.section->owner;
10013 asection *input_section = link_order->u.indirect.section;
10014 bfd_size_type sz;
10015
10016 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10017 arelent **reloc_vector = NULL;
10018 long reloc_count;
10019
10020 if (reloc_size < 0)
10021 goto error_return;
10022
10023 reloc_vector = bfd_malloc (reloc_size);
10024 if (reloc_vector == NULL && reloc_size != 0)
10025 goto error_return;
10026
10027 /* read in the section */
10028 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10029 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10030 goto error_return;
10031
10032 reloc_count = bfd_canonicalize_reloc (input_bfd,
10033 input_section,
10034 reloc_vector,
10035 symbols);
10036 if (reloc_count < 0)
10037 goto error_return;
10038
10039 if (reloc_count > 0)
10040 {
10041 arelent **parent;
10042 /* for mips */
10043 int gp_found;
10044 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10045
10046 {
10047 struct bfd_hash_entry *h;
10048 struct bfd_link_hash_entry *lh;
10049 /* Skip all this stuff if we aren't mixing formats. */
10050 if (abfd && input_bfd
10051 && abfd->xvec == input_bfd->xvec)
10052 lh = 0;
10053 else
10054 {
10055 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10056 lh = (struct bfd_link_hash_entry *) h;
10057 }
10058 lookup:
10059 if (lh)
10060 {
10061 switch (lh->type)
10062 {
10063 case bfd_link_hash_undefined:
10064 case bfd_link_hash_undefweak:
10065 case bfd_link_hash_common:
10066 gp_found = 0;
10067 break;
10068 case bfd_link_hash_defined:
10069 case bfd_link_hash_defweak:
10070 gp_found = 1;
10071 gp = lh->u.def.value;
10072 break;
10073 case bfd_link_hash_indirect:
10074 case bfd_link_hash_warning:
10075 lh = lh->u.i.link;
10076 /* @@FIXME ignoring warning for now */
10077 goto lookup;
10078 case bfd_link_hash_new:
10079 default:
10080 abort ();
10081 }
10082 }
10083 else
10084 gp_found = 0;
10085 }
10086 /* end mips */
10087 for (parent = reloc_vector; *parent != NULL; parent++)
10088 {
10089 char *error_message = NULL;
10090 bfd_reloc_status_type r;
10091
10092 /* Specific to MIPS: Deal with relocation types that require
10093 knowing the gp of the output bfd. */
10094 asymbol *sym = *(*parent)->sym_ptr_ptr;
10095
10096 /* If we've managed to find the gp and have a special
10097 function for the relocation then go ahead, else default
10098 to the generic handling. */
10099 if (gp_found
10100 && (*parent)->howto->special_function
10101 == _bfd_mips_elf32_gprel16_reloc)
10102 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10103 input_section, relocatable,
10104 data, gp);
10105 else
10106 r = bfd_perform_relocation (input_bfd, *parent, data,
10107 input_section,
10108 relocatable ? abfd : NULL,
10109 &error_message);
10110
10111 if (relocatable)
10112 {
10113 asection *os = input_section->output_section;
10114
10115 /* A partial link, so keep the relocs */
10116 os->orelocation[os->reloc_count] = *parent;
10117 os->reloc_count++;
10118 }
10119
10120 if (r != bfd_reloc_ok)
10121 {
10122 switch (r)
10123 {
10124 case bfd_reloc_undefined:
10125 if (!((*link_info->callbacks->undefined_symbol)
10126 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10127 input_bfd, input_section, (*parent)->address, TRUE)))
10128 goto error_return;
10129 break;
10130 case bfd_reloc_dangerous:
10131 BFD_ASSERT (error_message != NULL);
10132 if (!((*link_info->callbacks->reloc_dangerous)
10133 (link_info, error_message, input_bfd, input_section,
10134 (*parent)->address)))
10135 goto error_return;
10136 break;
10137 case bfd_reloc_overflow:
10138 if (!((*link_info->callbacks->reloc_overflow)
10139 (link_info, NULL,
10140 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10141 (*parent)->howto->name, (*parent)->addend,
10142 input_bfd, input_section, (*parent)->address)))
10143 goto error_return;
10144 break;
10145 case bfd_reloc_outofrange:
10146 default:
10147 abort ();
10148 break;
10149 }
10150
10151 }
10152 }
10153 }
10154 if (reloc_vector != NULL)
10155 free (reloc_vector);
10156 return data;
10157
10158 error_return:
10159 if (reloc_vector != NULL)
10160 free (reloc_vector);
10161 return NULL;
10162 }
10163 \f
10164 /* Create a MIPS ELF linker hash table. */
10165
10166 struct bfd_link_hash_table *
10167 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10168 {
10169 struct mips_elf_link_hash_table *ret;
10170 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10171
10172 ret = bfd_malloc (amt);
10173 if (ret == NULL)
10174 return NULL;
10175
10176 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10177 mips_elf_link_hash_newfunc,
10178 sizeof (struct mips_elf_link_hash_entry)))
10179 {
10180 free (ret);
10181 return NULL;
10182 }
10183
10184 #if 0
10185 /* We no longer use this. */
10186 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10187 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10188 #endif
10189 ret->procedure_count = 0;
10190 ret->compact_rel_size = 0;
10191 ret->use_rld_obj_head = FALSE;
10192 ret->rld_value = 0;
10193 ret->mips16_stubs_seen = FALSE;
10194 ret->is_vxworks = FALSE;
10195 ret->srelbss = NULL;
10196 ret->sdynbss = NULL;
10197 ret->srelplt = NULL;
10198 ret->srelplt2 = NULL;
10199 ret->sgotplt = NULL;
10200 ret->splt = NULL;
10201 ret->plt_header_size = 0;
10202 ret->plt_entry_size = 0;
10203 ret->function_stub_size = 0;
10204
10205 return &ret->root.root;
10206 }
10207
10208 /* Likewise, but indicate that the target is VxWorks. */
10209
10210 struct bfd_link_hash_table *
10211 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10212 {
10213 struct bfd_link_hash_table *ret;
10214
10215 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10216 if (ret)
10217 {
10218 struct mips_elf_link_hash_table *htab;
10219
10220 htab = (struct mips_elf_link_hash_table *) ret;
10221 htab->is_vxworks = 1;
10222 }
10223 return ret;
10224 }
10225 \f
10226 /* We need to use a special link routine to handle the .reginfo and
10227 the .mdebug sections. We need to merge all instances of these
10228 sections together, not write them all out sequentially. */
10229
10230 bfd_boolean
10231 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10232 {
10233 asection *o;
10234 struct bfd_link_order *p;
10235 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10236 asection *rtproc_sec;
10237 Elf32_RegInfo reginfo;
10238 struct ecoff_debug_info debug;
10239 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10240 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10241 HDRR *symhdr = &debug.symbolic_header;
10242 void *mdebug_handle = NULL;
10243 asection *s;
10244 EXTR esym;
10245 unsigned int i;
10246 bfd_size_type amt;
10247 struct mips_elf_link_hash_table *htab;
10248
10249 static const char * const secname[] =
10250 {
10251 ".text", ".init", ".fini", ".data",
10252 ".rodata", ".sdata", ".sbss", ".bss"
10253 };
10254 static const int sc[] =
10255 {
10256 scText, scInit, scFini, scData,
10257 scRData, scSData, scSBss, scBss
10258 };
10259
10260 /* We'd carefully arranged the dynamic symbol indices, and then the
10261 generic size_dynamic_sections renumbered them out from under us.
10262 Rather than trying somehow to prevent the renumbering, just do
10263 the sort again. */
10264 htab = mips_elf_hash_table (info);
10265 if (elf_hash_table (info)->dynamic_sections_created)
10266 {
10267 bfd *dynobj;
10268 asection *got;
10269 struct mips_got_info *g;
10270 bfd_size_type dynsecsymcount;
10271
10272 /* When we resort, we must tell mips_elf_sort_hash_table what
10273 the lowest index it may use is. That's the number of section
10274 symbols we're going to add. The generic ELF linker only
10275 adds these symbols when building a shared object. Note that
10276 we count the sections after (possibly) removing the .options
10277 section above. */
10278
10279 dynsecsymcount = count_section_dynsyms (abfd, info);
10280 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10281 return FALSE;
10282
10283 /* Make sure we didn't grow the global .got region. */
10284 dynobj = elf_hash_table (info)->dynobj;
10285 got = mips_elf_got_section (dynobj, FALSE);
10286 g = mips_elf_section_data (got)->u.got_info;
10287
10288 if (g->global_gotsym != NULL)
10289 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10290 - g->global_gotsym->dynindx)
10291 <= g->global_gotno);
10292 }
10293
10294 /* Get a value for the GP register. */
10295 if (elf_gp (abfd) == 0)
10296 {
10297 struct bfd_link_hash_entry *h;
10298
10299 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10300 if (h != NULL && h->type == bfd_link_hash_defined)
10301 elf_gp (abfd) = (h->u.def.value
10302 + h->u.def.section->output_section->vma
10303 + h->u.def.section->output_offset);
10304 else if (htab->is_vxworks
10305 && (h = bfd_link_hash_lookup (info->hash,
10306 "_GLOBAL_OFFSET_TABLE_",
10307 FALSE, FALSE, TRUE))
10308 && h->type == bfd_link_hash_defined)
10309 elf_gp (abfd) = (h->u.def.section->output_section->vma
10310 + h->u.def.section->output_offset
10311 + h->u.def.value);
10312 else if (info->relocatable)
10313 {
10314 bfd_vma lo = MINUS_ONE;
10315
10316 /* Find the GP-relative section with the lowest offset. */
10317 for (o = abfd->sections; o != NULL; o = o->next)
10318 if (o->vma < lo
10319 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10320 lo = o->vma;
10321
10322 /* And calculate GP relative to that. */
10323 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10324 }
10325 else
10326 {
10327 /* If the relocate_section function needs to do a reloc
10328 involving the GP value, it should make a reloc_dangerous
10329 callback to warn that GP is not defined. */
10330 }
10331 }
10332
10333 /* Go through the sections and collect the .reginfo and .mdebug
10334 information. */
10335 reginfo_sec = NULL;
10336 mdebug_sec = NULL;
10337 gptab_data_sec = NULL;
10338 gptab_bss_sec = NULL;
10339 for (o = abfd->sections; o != NULL; o = o->next)
10340 {
10341 if (strcmp (o->name, ".reginfo") == 0)
10342 {
10343 memset (&reginfo, 0, sizeof reginfo);
10344
10345 /* We have found the .reginfo section in the output file.
10346 Look through all the link_orders comprising it and merge
10347 the information together. */
10348 for (p = o->map_head.link_order; p != NULL; p = p->next)
10349 {
10350 asection *input_section;
10351 bfd *input_bfd;
10352 Elf32_External_RegInfo ext;
10353 Elf32_RegInfo sub;
10354
10355 if (p->type != bfd_indirect_link_order)
10356 {
10357 if (p->type == bfd_data_link_order)
10358 continue;
10359 abort ();
10360 }
10361
10362 input_section = p->u.indirect.section;
10363 input_bfd = input_section->owner;
10364
10365 if (! bfd_get_section_contents (input_bfd, input_section,
10366 &ext, 0, sizeof ext))
10367 return FALSE;
10368
10369 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10370
10371 reginfo.ri_gprmask |= sub.ri_gprmask;
10372 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10373 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10374 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10375 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10376
10377 /* ri_gp_value is set by the function
10378 mips_elf32_section_processing when the section is
10379 finally written out. */
10380
10381 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10382 elf_link_input_bfd ignores this section. */
10383 input_section->flags &= ~SEC_HAS_CONTENTS;
10384 }
10385
10386 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10387 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10388
10389 /* Skip this section later on (I don't think this currently
10390 matters, but someday it might). */
10391 o->map_head.link_order = NULL;
10392
10393 reginfo_sec = o;
10394 }
10395
10396 if (strcmp (o->name, ".mdebug") == 0)
10397 {
10398 struct extsym_info einfo;
10399 bfd_vma last;
10400
10401 /* We have found the .mdebug section in the output file.
10402 Look through all the link_orders comprising it and merge
10403 the information together. */
10404 symhdr->magic = swap->sym_magic;
10405 /* FIXME: What should the version stamp be? */
10406 symhdr->vstamp = 0;
10407 symhdr->ilineMax = 0;
10408 symhdr->cbLine = 0;
10409 symhdr->idnMax = 0;
10410 symhdr->ipdMax = 0;
10411 symhdr->isymMax = 0;
10412 symhdr->ioptMax = 0;
10413 symhdr->iauxMax = 0;
10414 symhdr->issMax = 0;
10415 symhdr->issExtMax = 0;
10416 symhdr->ifdMax = 0;
10417 symhdr->crfd = 0;
10418 symhdr->iextMax = 0;
10419
10420 /* We accumulate the debugging information itself in the
10421 debug_info structure. */
10422 debug.line = NULL;
10423 debug.external_dnr = NULL;
10424 debug.external_pdr = NULL;
10425 debug.external_sym = NULL;
10426 debug.external_opt = NULL;
10427 debug.external_aux = NULL;
10428 debug.ss = NULL;
10429 debug.ssext = debug.ssext_end = NULL;
10430 debug.external_fdr = NULL;
10431 debug.external_rfd = NULL;
10432 debug.external_ext = debug.external_ext_end = NULL;
10433
10434 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10435 if (mdebug_handle == NULL)
10436 return FALSE;
10437
10438 esym.jmptbl = 0;
10439 esym.cobol_main = 0;
10440 esym.weakext = 0;
10441 esym.reserved = 0;
10442 esym.ifd = ifdNil;
10443 esym.asym.iss = issNil;
10444 esym.asym.st = stLocal;
10445 esym.asym.reserved = 0;
10446 esym.asym.index = indexNil;
10447 last = 0;
10448 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10449 {
10450 esym.asym.sc = sc[i];
10451 s = bfd_get_section_by_name (abfd, secname[i]);
10452 if (s != NULL)
10453 {
10454 esym.asym.value = s->vma;
10455 last = s->vma + s->size;
10456 }
10457 else
10458 esym.asym.value = last;
10459 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10460 secname[i], &esym))
10461 return FALSE;
10462 }
10463
10464 for (p = o->map_head.link_order; p != NULL; p = p->next)
10465 {
10466 asection *input_section;
10467 bfd *input_bfd;
10468 const struct ecoff_debug_swap *input_swap;
10469 struct ecoff_debug_info input_debug;
10470 char *eraw_src;
10471 char *eraw_end;
10472
10473 if (p->type != bfd_indirect_link_order)
10474 {
10475 if (p->type == bfd_data_link_order)
10476 continue;
10477 abort ();
10478 }
10479
10480 input_section = p->u.indirect.section;
10481 input_bfd = input_section->owner;
10482
10483 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10484 || (get_elf_backend_data (input_bfd)
10485 ->elf_backend_ecoff_debug_swap) == NULL)
10486 {
10487 /* I don't know what a non MIPS ELF bfd would be
10488 doing with a .mdebug section, but I don't really
10489 want to deal with it. */
10490 continue;
10491 }
10492
10493 input_swap = (get_elf_backend_data (input_bfd)
10494 ->elf_backend_ecoff_debug_swap);
10495
10496 BFD_ASSERT (p->size == input_section->size);
10497
10498 /* The ECOFF linking code expects that we have already
10499 read in the debugging information and set up an
10500 ecoff_debug_info structure, so we do that now. */
10501 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10502 &input_debug))
10503 return FALSE;
10504
10505 if (! (bfd_ecoff_debug_accumulate
10506 (mdebug_handle, abfd, &debug, swap, input_bfd,
10507 &input_debug, input_swap, info)))
10508 return FALSE;
10509
10510 /* Loop through the external symbols. For each one with
10511 interesting information, try to find the symbol in
10512 the linker global hash table and save the information
10513 for the output external symbols. */
10514 eraw_src = input_debug.external_ext;
10515 eraw_end = (eraw_src
10516 + (input_debug.symbolic_header.iextMax
10517 * input_swap->external_ext_size));
10518 for (;
10519 eraw_src < eraw_end;
10520 eraw_src += input_swap->external_ext_size)
10521 {
10522 EXTR ext;
10523 const char *name;
10524 struct mips_elf_link_hash_entry *h;
10525
10526 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10527 if (ext.asym.sc == scNil
10528 || ext.asym.sc == scUndefined
10529 || ext.asym.sc == scSUndefined)
10530 continue;
10531
10532 name = input_debug.ssext + ext.asym.iss;
10533 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10534 name, FALSE, FALSE, TRUE);
10535 if (h == NULL || h->esym.ifd != -2)
10536 continue;
10537
10538 if (ext.ifd != -1)
10539 {
10540 BFD_ASSERT (ext.ifd
10541 < input_debug.symbolic_header.ifdMax);
10542 ext.ifd = input_debug.ifdmap[ext.ifd];
10543 }
10544
10545 h->esym = ext;
10546 }
10547
10548 /* Free up the information we just read. */
10549 free (input_debug.line);
10550 free (input_debug.external_dnr);
10551 free (input_debug.external_pdr);
10552 free (input_debug.external_sym);
10553 free (input_debug.external_opt);
10554 free (input_debug.external_aux);
10555 free (input_debug.ss);
10556 free (input_debug.ssext);
10557 free (input_debug.external_fdr);
10558 free (input_debug.external_rfd);
10559 free (input_debug.external_ext);
10560
10561 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10562 elf_link_input_bfd ignores this section. */
10563 input_section->flags &= ~SEC_HAS_CONTENTS;
10564 }
10565
10566 if (SGI_COMPAT (abfd) && info->shared)
10567 {
10568 /* Create .rtproc section. */
10569 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10570 if (rtproc_sec == NULL)
10571 {
10572 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10573 | SEC_LINKER_CREATED | SEC_READONLY);
10574
10575 rtproc_sec = bfd_make_section_with_flags (abfd,
10576 ".rtproc",
10577 flags);
10578 if (rtproc_sec == NULL
10579 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10580 return FALSE;
10581 }
10582
10583 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10584 info, rtproc_sec,
10585 &debug))
10586 return FALSE;
10587 }
10588
10589 /* Build the external symbol information. */
10590 einfo.abfd = abfd;
10591 einfo.info = info;
10592 einfo.debug = &debug;
10593 einfo.swap = swap;
10594 einfo.failed = FALSE;
10595 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10596 mips_elf_output_extsym, &einfo);
10597 if (einfo.failed)
10598 return FALSE;
10599
10600 /* Set the size of the .mdebug section. */
10601 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10602
10603 /* Skip this section later on (I don't think this currently
10604 matters, but someday it might). */
10605 o->map_head.link_order = NULL;
10606
10607 mdebug_sec = o;
10608 }
10609
10610 if (CONST_STRNEQ (o->name, ".gptab."))
10611 {
10612 const char *subname;
10613 unsigned int c;
10614 Elf32_gptab *tab;
10615 Elf32_External_gptab *ext_tab;
10616 unsigned int j;
10617
10618 /* The .gptab.sdata and .gptab.sbss sections hold
10619 information describing how the small data area would
10620 change depending upon the -G switch. These sections
10621 not used in executables files. */
10622 if (! info->relocatable)
10623 {
10624 for (p = o->map_head.link_order; p != NULL; p = p->next)
10625 {
10626 asection *input_section;
10627
10628 if (p->type != bfd_indirect_link_order)
10629 {
10630 if (p->type == bfd_data_link_order)
10631 continue;
10632 abort ();
10633 }
10634
10635 input_section = p->u.indirect.section;
10636
10637 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10638 elf_link_input_bfd ignores this section. */
10639 input_section->flags &= ~SEC_HAS_CONTENTS;
10640 }
10641
10642 /* Skip this section later on (I don't think this
10643 currently matters, but someday it might). */
10644 o->map_head.link_order = NULL;
10645
10646 /* Really remove the section. */
10647 bfd_section_list_remove (abfd, o);
10648 --abfd->section_count;
10649
10650 continue;
10651 }
10652
10653 /* There is one gptab for initialized data, and one for
10654 uninitialized data. */
10655 if (strcmp (o->name, ".gptab.sdata") == 0)
10656 gptab_data_sec = o;
10657 else if (strcmp (o->name, ".gptab.sbss") == 0)
10658 gptab_bss_sec = o;
10659 else
10660 {
10661 (*_bfd_error_handler)
10662 (_("%s: illegal section name `%s'"),
10663 bfd_get_filename (abfd), o->name);
10664 bfd_set_error (bfd_error_nonrepresentable_section);
10665 return FALSE;
10666 }
10667
10668 /* The linker script always combines .gptab.data and
10669 .gptab.sdata into .gptab.sdata, and likewise for
10670 .gptab.bss and .gptab.sbss. It is possible that there is
10671 no .sdata or .sbss section in the output file, in which
10672 case we must change the name of the output section. */
10673 subname = o->name + sizeof ".gptab" - 1;
10674 if (bfd_get_section_by_name (abfd, subname) == NULL)
10675 {
10676 if (o == gptab_data_sec)
10677 o->name = ".gptab.data";
10678 else
10679 o->name = ".gptab.bss";
10680 subname = o->name + sizeof ".gptab" - 1;
10681 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10682 }
10683
10684 /* Set up the first entry. */
10685 c = 1;
10686 amt = c * sizeof (Elf32_gptab);
10687 tab = bfd_malloc (amt);
10688 if (tab == NULL)
10689 return FALSE;
10690 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10691 tab[0].gt_header.gt_unused = 0;
10692
10693 /* Combine the input sections. */
10694 for (p = o->map_head.link_order; p != NULL; p = p->next)
10695 {
10696 asection *input_section;
10697 bfd *input_bfd;
10698 bfd_size_type size;
10699 unsigned long last;
10700 bfd_size_type gpentry;
10701
10702 if (p->type != bfd_indirect_link_order)
10703 {
10704 if (p->type == bfd_data_link_order)
10705 continue;
10706 abort ();
10707 }
10708
10709 input_section = p->u.indirect.section;
10710 input_bfd = input_section->owner;
10711
10712 /* Combine the gptab entries for this input section one
10713 by one. We know that the input gptab entries are
10714 sorted by ascending -G value. */
10715 size = input_section->size;
10716 last = 0;
10717 for (gpentry = sizeof (Elf32_External_gptab);
10718 gpentry < size;
10719 gpentry += sizeof (Elf32_External_gptab))
10720 {
10721 Elf32_External_gptab ext_gptab;
10722 Elf32_gptab int_gptab;
10723 unsigned long val;
10724 unsigned long add;
10725 bfd_boolean exact;
10726 unsigned int look;
10727
10728 if (! (bfd_get_section_contents
10729 (input_bfd, input_section, &ext_gptab, gpentry,
10730 sizeof (Elf32_External_gptab))))
10731 {
10732 free (tab);
10733 return FALSE;
10734 }
10735
10736 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10737 &int_gptab);
10738 val = int_gptab.gt_entry.gt_g_value;
10739 add = int_gptab.gt_entry.gt_bytes - last;
10740
10741 exact = FALSE;
10742 for (look = 1; look < c; look++)
10743 {
10744 if (tab[look].gt_entry.gt_g_value >= val)
10745 tab[look].gt_entry.gt_bytes += add;
10746
10747 if (tab[look].gt_entry.gt_g_value == val)
10748 exact = TRUE;
10749 }
10750
10751 if (! exact)
10752 {
10753 Elf32_gptab *new_tab;
10754 unsigned int max;
10755
10756 /* We need a new table entry. */
10757 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10758 new_tab = bfd_realloc (tab, amt);
10759 if (new_tab == NULL)
10760 {
10761 free (tab);
10762 return FALSE;
10763 }
10764 tab = new_tab;
10765 tab[c].gt_entry.gt_g_value = val;
10766 tab[c].gt_entry.gt_bytes = add;
10767
10768 /* Merge in the size for the next smallest -G
10769 value, since that will be implied by this new
10770 value. */
10771 max = 0;
10772 for (look = 1; look < c; look++)
10773 {
10774 if (tab[look].gt_entry.gt_g_value < val
10775 && (max == 0
10776 || (tab[look].gt_entry.gt_g_value
10777 > tab[max].gt_entry.gt_g_value)))
10778 max = look;
10779 }
10780 if (max != 0)
10781 tab[c].gt_entry.gt_bytes +=
10782 tab[max].gt_entry.gt_bytes;
10783
10784 ++c;
10785 }
10786
10787 last = int_gptab.gt_entry.gt_bytes;
10788 }
10789
10790 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10791 elf_link_input_bfd ignores this section. */
10792 input_section->flags &= ~SEC_HAS_CONTENTS;
10793 }
10794
10795 /* The table must be sorted by -G value. */
10796 if (c > 2)
10797 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10798
10799 /* Swap out the table. */
10800 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10801 ext_tab = bfd_alloc (abfd, amt);
10802 if (ext_tab == NULL)
10803 {
10804 free (tab);
10805 return FALSE;
10806 }
10807
10808 for (j = 0; j < c; j++)
10809 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10810 free (tab);
10811
10812 o->size = c * sizeof (Elf32_External_gptab);
10813 o->contents = (bfd_byte *) ext_tab;
10814
10815 /* Skip this section later on (I don't think this currently
10816 matters, but someday it might). */
10817 o->map_head.link_order = NULL;
10818 }
10819 }
10820
10821 /* Invoke the regular ELF backend linker to do all the work. */
10822 if (!bfd_elf_final_link (abfd, info))
10823 return FALSE;
10824
10825 /* Now write out the computed sections. */
10826
10827 if (reginfo_sec != NULL)
10828 {
10829 Elf32_External_RegInfo ext;
10830
10831 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10832 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10833 return FALSE;
10834 }
10835
10836 if (mdebug_sec != NULL)
10837 {
10838 BFD_ASSERT (abfd->output_has_begun);
10839 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10840 swap, info,
10841 mdebug_sec->filepos))
10842 return FALSE;
10843
10844 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10845 }
10846
10847 if (gptab_data_sec != NULL)
10848 {
10849 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10850 gptab_data_sec->contents,
10851 0, gptab_data_sec->size))
10852 return FALSE;
10853 }
10854
10855 if (gptab_bss_sec != NULL)
10856 {
10857 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10858 gptab_bss_sec->contents,
10859 0, gptab_bss_sec->size))
10860 return FALSE;
10861 }
10862
10863 if (SGI_COMPAT (abfd))
10864 {
10865 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10866 if (rtproc_sec != NULL)
10867 {
10868 if (! bfd_set_section_contents (abfd, rtproc_sec,
10869 rtproc_sec->contents,
10870 0, rtproc_sec->size))
10871 return FALSE;
10872 }
10873 }
10874
10875 return TRUE;
10876 }
10877 \f
10878 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10879
10880 struct mips_mach_extension {
10881 unsigned long extension, base;
10882 };
10883
10884
10885 /* An array describing how BFD machines relate to one another. The entries
10886 are ordered topologically with MIPS I extensions listed last. */
10887
10888 static const struct mips_mach_extension mips_mach_extensions[] = {
10889 /* MIPS64 extensions. */
10890 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10891 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10892
10893 /* MIPS V extensions. */
10894 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10895
10896 /* R10000 extensions. */
10897 { bfd_mach_mips12000, bfd_mach_mips10000 },
10898
10899 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10900 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10901 better to allow vr5400 and vr5500 code to be merged anyway, since
10902 many libraries will just use the core ISA. Perhaps we could add
10903 some sort of ASE flag if this ever proves a problem. */
10904 { bfd_mach_mips5500, bfd_mach_mips5400 },
10905 { bfd_mach_mips5400, bfd_mach_mips5000 },
10906
10907 /* MIPS IV extensions. */
10908 { bfd_mach_mips5, bfd_mach_mips8000 },
10909 { bfd_mach_mips10000, bfd_mach_mips8000 },
10910 { bfd_mach_mips5000, bfd_mach_mips8000 },
10911 { bfd_mach_mips7000, bfd_mach_mips8000 },
10912 { bfd_mach_mips9000, bfd_mach_mips8000 },
10913
10914 /* VR4100 extensions. */
10915 { bfd_mach_mips4120, bfd_mach_mips4100 },
10916 { bfd_mach_mips4111, bfd_mach_mips4100 },
10917
10918 /* MIPS III extensions. */
10919 { bfd_mach_mips8000, bfd_mach_mips4000 },
10920 { bfd_mach_mips4650, bfd_mach_mips4000 },
10921 { bfd_mach_mips4600, bfd_mach_mips4000 },
10922 { bfd_mach_mips4400, bfd_mach_mips4000 },
10923 { bfd_mach_mips4300, bfd_mach_mips4000 },
10924 { bfd_mach_mips4100, bfd_mach_mips4000 },
10925 { bfd_mach_mips4010, bfd_mach_mips4000 },
10926
10927 /* MIPS32 extensions. */
10928 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10929
10930 /* MIPS II extensions. */
10931 { bfd_mach_mips4000, bfd_mach_mips6000 },
10932 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10933
10934 /* MIPS I extensions. */
10935 { bfd_mach_mips6000, bfd_mach_mips3000 },
10936 { bfd_mach_mips3900, bfd_mach_mips3000 }
10937 };
10938
10939
10940 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10941
10942 static bfd_boolean
10943 mips_mach_extends_p (unsigned long base, unsigned long extension)
10944 {
10945 size_t i;
10946
10947 if (extension == base)
10948 return TRUE;
10949
10950 if (base == bfd_mach_mipsisa32
10951 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10952 return TRUE;
10953
10954 if (base == bfd_mach_mipsisa32r2
10955 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10956 return TRUE;
10957
10958 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10959 if (extension == mips_mach_extensions[i].extension)
10960 {
10961 extension = mips_mach_extensions[i].base;
10962 if (extension == base)
10963 return TRUE;
10964 }
10965
10966 return FALSE;
10967 }
10968
10969
10970 /* Return true if the given ELF header flags describe a 32-bit binary. */
10971
10972 static bfd_boolean
10973 mips_32bit_flags_p (flagword flags)
10974 {
10975 return ((flags & EF_MIPS_32BITMODE) != 0
10976 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10977 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10978 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10979 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10980 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10981 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10982 }
10983
10984
10985 /* Merge backend specific data from an object file to the output
10986 object file when linking. */
10987
10988 bfd_boolean
10989 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10990 {
10991 flagword old_flags;
10992 flagword new_flags;
10993 bfd_boolean ok;
10994 bfd_boolean null_input_bfd = TRUE;
10995 asection *sec;
10996
10997 /* Check if we have the same endianess */
10998 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10999 {
11000 (*_bfd_error_handler)
11001 (_("%B: endianness incompatible with that of the selected emulation"),
11002 ibfd);
11003 return FALSE;
11004 }
11005
11006 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11007 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11008 return TRUE;
11009
11010 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11011 {
11012 (*_bfd_error_handler)
11013 (_("%B: ABI is incompatible with that of the selected emulation"),
11014 ibfd);
11015 return FALSE;
11016 }
11017
11018 new_flags = elf_elfheader (ibfd)->e_flags;
11019 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11020 old_flags = elf_elfheader (obfd)->e_flags;
11021
11022 if (! elf_flags_init (obfd))
11023 {
11024 elf_flags_init (obfd) = TRUE;
11025 elf_elfheader (obfd)->e_flags = new_flags;
11026 elf_elfheader (obfd)->e_ident[EI_CLASS]
11027 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11028
11029 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11030 && (bfd_get_arch_info (obfd)->the_default
11031 || mips_mach_extends_p (bfd_get_mach (obfd),
11032 bfd_get_mach (ibfd))))
11033 {
11034 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11035 bfd_get_mach (ibfd)))
11036 return FALSE;
11037 }
11038
11039 return TRUE;
11040 }
11041
11042 /* Check flag compatibility. */
11043
11044 new_flags &= ~EF_MIPS_NOREORDER;
11045 old_flags &= ~EF_MIPS_NOREORDER;
11046
11047 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11048 doesn't seem to matter. */
11049 new_flags &= ~EF_MIPS_XGOT;
11050 old_flags &= ~EF_MIPS_XGOT;
11051
11052 /* MIPSpro generates ucode info in n64 objects. Again, we should
11053 just be able to ignore this. */
11054 new_flags &= ~EF_MIPS_UCODE;
11055 old_flags &= ~EF_MIPS_UCODE;
11056
11057 /* Don't care about the PIC flags from dynamic objects; they are
11058 PIC by design. */
11059 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11060 && (ibfd->flags & DYNAMIC) != 0)
11061 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11062
11063 if (new_flags == old_flags)
11064 return TRUE;
11065
11066 /* Check to see if the input BFD actually contains any sections.
11067 If not, its flags may not have been initialised either, but it cannot
11068 actually cause any incompatibility. */
11069 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11070 {
11071 /* Ignore synthetic sections and empty .text, .data and .bss sections
11072 which are automatically generated by gas. */
11073 if (strcmp (sec->name, ".reginfo")
11074 && strcmp (sec->name, ".mdebug")
11075 && (sec->size != 0
11076 || (strcmp (sec->name, ".text")
11077 && strcmp (sec->name, ".data")
11078 && strcmp (sec->name, ".bss"))))
11079 {
11080 null_input_bfd = FALSE;
11081 break;
11082 }
11083 }
11084 if (null_input_bfd)
11085 return TRUE;
11086
11087 ok = TRUE;
11088
11089 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11090 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11091 {
11092 (*_bfd_error_handler)
11093 (_("%B: warning: linking PIC files with non-PIC files"),
11094 ibfd);
11095 ok = TRUE;
11096 }
11097
11098 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11099 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11100 if (! (new_flags & EF_MIPS_PIC))
11101 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11102
11103 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11104 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11105
11106 /* Compare the ISAs. */
11107 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11108 {
11109 (*_bfd_error_handler)
11110 (_("%B: linking 32-bit code with 64-bit code"),
11111 ibfd);
11112 ok = FALSE;
11113 }
11114 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11115 {
11116 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11117 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11118 {
11119 /* Copy the architecture info from IBFD to OBFD. Also copy
11120 the 32-bit flag (if set) so that we continue to recognise
11121 OBFD as a 32-bit binary. */
11122 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11123 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11124 elf_elfheader (obfd)->e_flags
11125 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11126
11127 /* Copy across the ABI flags if OBFD doesn't use them
11128 and if that was what caused us to treat IBFD as 32-bit. */
11129 if ((old_flags & EF_MIPS_ABI) == 0
11130 && mips_32bit_flags_p (new_flags)
11131 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11132 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11133 }
11134 else
11135 {
11136 /* The ISAs aren't compatible. */
11137 (*_bfd_error_handler)
11138 (_("%B: linking %s module with previous %s modules"),
11139 ibfd,
11140 bfd_printable_name (ibfd),
11141 bfd_printable_name (obfd));
11142 ok = FALSE;
11143 }
11144 }
11145
11146 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11147 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11148
11149 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11150 does set EI_CLASS differently from any 32-bit ABI. */
11151 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11152 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11153 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11154 {
11155 /* Only error if both are set (to different values). */
11156 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11157 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11158 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11159 {
11160 (*_bfd_error_handler)
11161 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11162 ibfd,
11163 elf_mips_abi_name (ibfd),
11164 elf_mips_abi_name (obfd));
11165 ok = FALSE;
11166 }
11167 new_flags &= ~EF_MIPS_ABI;
11168 old_flags &= ~EF_MIPS_ABI;
11169 }
11170
11171 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11172 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11173 {
11174 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11175
11176 new_flags &= ~ EF_MIPS_ARCH_ASE;
11177 old_flags &= ~ EF_MIPS_ARCH_ASE;
11178 }
11179
11180 /* Warn about any other mismatches */
11181 if (new_flags != old_flags)
11182 {
11183 (*_bfd_error_handler)
11184 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11185 ibfd, (unsigned long) new_flags,
11186 (unsigned long) old_flags);
11187 ok = FALSE;
11188 }
11189
11190 if (! ok)
11191 {
11192 bfd_set_error (bfd_error_bad_value);
11193 return FALSE;
11194 }
11195
11196 return TRUE;
11197 }
11198
11199 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11200
11201 bfd_boolean
11202 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11203 {
11204 BFD_ASSERT (!elf_flags_init (abfd)
11205 || elf_elfheader (abfd)->e_flags == flags);
11206
11207 elf_elfheader (abfd)->e_flags = flags;
11208 elf_flags_init (abfd) = TRUE;
11209 return TRUE;
11210 }
11211
11212 bfd_boolean
11213 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11214 {
11215 FILE *file = ptr;
11216
11217 BFD_ASSERT (abfd != NULL && ptr != NULL);
11218
11219 /* Print normal ELF private data. */
11220 _bfd_elf_print_private_bfd_data (abfd, ptr);
11221
11222 /* xgettext:c-format */
11223 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11224
11225 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11226 fprintf (file, _(" [abi=O32]"));
11227 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11228 fprintf (file, _(" [abi=O64]"));
11229 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11230 fprintf (file, _(" [abi=EABI32]"));
11231 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11232 fprintf (file, _(" [abi=EABI64]"));
11233 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11234 fprintf (file, _(" [abi unknown]"));
11235 else if (ABI_N32_P (abfd))
11236 fprintf (file, _(" [abi=N32]"));
11237 else if (ABI_64_P (abfd))
11238 fprintf (file, _(" [abi=64]"));
11239 else
11240 fprintf (file, _(" [no abi set]"));
11241
11242 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11243 fprintf (file, " [mips1]");
11244 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11245 fprintf (file, " [mips2]");
11246 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11247 fprintf (file, " [mips3]");
11248 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11249 fprintf (file, " [mips4]");
11250 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11251 fprintf (file, " [mips5]");
11252 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11253 fprintf (file, " [mips32]");
11254 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11255 fprintf (file, " [mips64]");
11256 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11257 fprintf (file, " [mips32r2]");
11258 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11259 fprintf (file, " [mips64r2]");
11260 else
11261 fprintf (file, _(" [unknown ISA]"));
11262
11263 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11264 fprintf (file, " [mdmx]");
11265
11266 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11267 fprintf (file, " [mips16]");
11268
11269 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11270 fprintf (file, " [32bitmode]");
11271 else
11272 fprintf (file, _(" [not 32bitmode]"));
11273
11274 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11275 fprintf (file, " [noreorder]");
11276
11277 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11278 fprintf (file, " [PIC]");
11279
11280 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11281 fprintf (file, " [CPIC]");
11282
11283 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11284 fprintf (file, " [XGOT]");
11285
11286 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11287 fprintf (file, " [UCODE]");
11288
11289 fputc ('\n', file);
11290
11291 return TRUE;
11292 }
11293
11294 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11295 {
11296 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11297 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11298 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11299 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11300 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11301 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11302 { NULL, 0, 0, 0, 0 }
11303 };
11304
11305 /* Merge non visibility st_other attributes. Ensure that the
11306 STO_OPTIONAL flag is copied into h->other, even if this is not a
11307 definiton of the symbol. */
11308 void
11309 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11310 const Elf_Internal_Sym *isym,
11311 bfd_boolean definition,
11312 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11313 {
11314 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11315 {
11316 unsigned char other;
11317
11318 other = (definition ? isym->st_other : h->other);
11319 other &= ~ELF_ST_VISIBILITY (-1);
11320 h->other = other | ELF_ST_VISIBILITY (h->other);
11321 }
11322
11323 if (!definition
11324 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11325 h->other |= STO_OPTIONAL;
11326 }
11327
11328 /* Decide whether an undefined symbol is special and can be ignored.
11329 This is the case for OPTIONAL symbols on IRIX. */
11330 bfd_boolean
11331 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11332 {
11333 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11334 }
11335
11336 bfd_boolean
11337 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11338 {
11339 return (sym->st_shndx == SHN_COMMON
11340 || sym->st_shndx == SHN_MIPS_ACOMMON
11341 || sym->st_shndx == SHN_MIPS_SCOMMON);
11342 }
This page took 0.251796 seconds and 5 git commands to generate.