bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "sysdep.h"
31 #include "bfd.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 \f
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488 \f
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips16_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
571
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
585
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
614
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
618
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
622
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
626
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
647
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
674 \f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
712
713 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
716 \f
717 /* The format of the first PLT entry in a VxWorks executable. */
718 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725 };
726
727 /* The format of subsequent PLT entries. */
728 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737 };
738
739 /* The format of the first PLT entry in a VxWorks shared object. */
740 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747 };
748
749 /* The format of subsequent PLT entries. */
750 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753 };
754 \f
755 /* Look up an entry in a MIPS ELF linker hash table. */
756
757 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762 /* Traverse a MIPS ELF linker hash table. */
763
764 #define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
768 (info)))
769
770 /* Get the MIPS ELF linker hash table from a link_info structure. */
771
772 #define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
775 /* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778 #define TP_OFFSET 0x7000
779 #define DTP_OFFSET 0x8000
780
781 static bfd_vma
782 dtprel_base (struct bfd_link_info *info)
783 {
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788 }
789
790 static bfd_vma
791 tprel_base (struct bfd_link_info *info)
792 {
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797 }
798
799 /* Create an entry in a MIPS ELF linker hash table. */
800
801 static struct bfd_hash_entry *
802 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
804 {
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
819 if (ret != NULL)
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
827 ret->readonly_reloc = FALSE;
828 ret->no_fn_stub = FALSE;
829 ret->fn_stub = NULL;
830 ret->need_fn_stub = FALSE;
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
833 ret->forced_local = FALSE;
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
836 ret->tls_type = GOT_NORMAL;
837 }
838
839 return (struct bfd_hash_entry *) ret;
840 }
841
842 bfd_boolean
843 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
844 {
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
849
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857 }
858 \f
859 /* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
862 bfd_boolean
863 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
865 {
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
868 char *ext_hdr;
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
873 ext_hdr = bfd_malloc (swap->external_hdr_size);
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
878 swap->external_hdr_size))
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886 #define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
892 debug->ptr = bfd_malloc (amt); \
893 if (debug->ptr == NULL) \
894 goto error_return; \
895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
912 #undef READ
913
914 debug->fdr = NULL;
915
916 return TRUE;
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
943 return FALSE;
944 }
945 \f
946 /* Swap RPDR (runtime procedure table entry) for output. */
947
948 static void
949 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
950 {
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
962 }
963
964 /* Create a runtime procedure table from the .mdebug section. */
965
966 static bfd_boolean
967 mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
970 {
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
975 void *rtproc;
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
1002 epdr = bfd_malloc (size * count);
1003 if (epdr == NULL)
1004 goto error_return;
1005
1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
1010 rp = rpdr = bfd_malloc (size * count);
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
1015 sv = bfd_malloc (size * count);
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
1021 esym = bfd_malloc (size * count);
1022 if (esym == NULL)
1023 goto error_return;
1024
1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1026 goto error_return;
1027
1028 count = hdr->issMax;
1029 ss = bfd_malloc (count);
1030 if (ss == NULL)
1031 goto error_return;
1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
1056 rtproc = bfd_alloc (abfd, size);
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
1065 erp = rtproc;
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
1080 s->size = size;
1081 s->contents = rtproc;
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
1085 s->map_head.link_order = NULL;
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
1098 return TRUE;
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
1111 return FALSE;
1112 }
1113
1114 /* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
1117 static bfd_boolean
1118 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
1120 {
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
1130 h->fn_stub->size = 0;
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
1142 h->call_stub->size = 0;
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
1154 h->call_fp_stub->size = 0;
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
1160 return TRUE;
1161 }
1162 \f
1163 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248 void
1249 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251 {
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273 }
1274
1275 void
1276 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278 {
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307 }
1308
1309 bfd_reloc_status_type
1310 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
1313 {
1314 bfd_vma relocation;
1315 bfd_signed_vma val;
1316 bfd_reloc_status_type status;
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1327 return bfd_reloc_outofrange;
1328
1329 /* Set val to the offset into the section or symbol. */
1330 val = reloc_entry->addend;
1331
1332 _bfd_mips_elf_sign_extend (val, 16);
1333
1334 /* Adjust val for the final section location and GP value. If we
1335 are producing relocatable output, we don't want to do this for
1336 an external symbol. */
1337 if (! relocatable
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
1341 if (reloc_entry->howto->partial_inplace)
1342 {
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
1348 }
1349 else
1350 reloc_entry->addend = val;
1351
1352 if (relocatable)
1353 reloc_entry->address += input_section->output_offset;
1354
1355 return bfd_reloc_ok;
1356 }
1357
1358 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363 struct mips_hi16
1364 {
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369 };
1370
1371 /* FIXME: This should not be a static variable. */
1372
1373 static struct mips_hi16 *mips_hi16_list;
1374
1375 /* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384 bfd_reloc_status_type
1385 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389 {
1390 struct mips_hi16 *n;
1391
1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409 }
1410
1411 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415 bfd_reloc_status_type
1416 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419 {
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430 }
1431
1432 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436 bfd_reloc_status_type
1437 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440 {
1441 bfd_vma vallo;
1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1443
1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1445 return bfd_reloc_outofrange;
1446
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485 }
1486
1487 /* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491 bfd_reloc_status_type
1492 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496 {
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
1557
1558 return bfd_reloc_ok;
1559 }
1560 \f
1561 /* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564 static void
1565 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
1567 {
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570 }
1571
1572 static void
1573 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
1575 {
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578 }
1579
1580 static void
1581 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
1583 {
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590 }
1591
1592 static void
1593 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
1595 {
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605 }
1606 \f
1607 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611 void
1612 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
1614 {
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621 }
1622
1623 void
1624 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
1626 {
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633 }
1634
1635 /* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641 void
1642 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
1644 {
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652 }
1653
1654 void
1655 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
1657 {
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665 }
1666
1667 /* Swap in an options header. */
1668
1669 void
1670 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
1672 {
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677 }
1678
1679 /* Swap out an options header. */
1680
1681 void
1682 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
1684 {
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689 }
1690 \f
1691 /* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694 static int
1695 sort_dynamic_relocs (const void *arg1, const void *arg2)
1696 {
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
1699 int diff;
1700
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1703
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
1713 }
1714
1715 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717 static int
1718 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
1720 {
1721 #ifdef BFD64
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
1740 #else
1741 abort ();
1742 #endif
1743 }
1744
1745
1746 /* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
1760 static bfd_boolean
1761 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1762 {
1763 struct extsym_info *einfo = data;
1764 bfd_boolean strip;
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
1771 strip = FALSE;
1772 else if ((h->root.def_dynamic
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
1777 strip = TRUE;
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
1784 else
1785 strip = FALSE;
1786
1787 if (strip)
1788 return TRUE;
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
1894 else if (h->root.needs_plt)
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
1897 bfd_boolean no_fn_stub = h->no_fn_stub;
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
1929 einfo->failed = TRUE;
1930 return FALSE;
1931 }
1932
1933 return TRUE;
1934 }
1935
1936 /* A comparison routine used to sort .gptab entries. */
1937
1938 static int
1939 gptab_compare (const void *p1, const void *p2)
1940 {
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945 }
1946 \f
1947 /* Functions to manage the got entry hash table. */
1948
1949 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952 static INLINE hashval_t
1953 mips_elf_hash_bfd_vma (bfd_vma addr)
1954 {
1955 #ifdef BFD64
1956 return addr + (addr >> 32);
1957 #else
1958 return addr;
1959 #endif
1960 }
1961
1962 /* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
1966 static hashval_t
1967 mips_elf_got_entry_hash (const void *entry_)
1968 {
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
1971 return entry->symndx
1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
1977 }
1978
1979 static int
1980 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1981 {
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993 }
1994
1995 /* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000 static hashval_t
2001 mips_elf_multi_got_entry_hash (const void *entry_)
2002 {
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
2013 : entry->d.h->root.root.root.hash);
2014 }
2015
2016 static int
2017 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2018 {
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
2035 }
2036 \f
2037 /* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
2040
2041 static asection *
2042 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2043 {
2044 const char *dname;
2045 asection *sreloc;
2046 bfd *dynobj;
2047
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
2060 if (sreloc == NULL
2061 || ! bfd_set_section_alignment (dynobj, sreloc,
2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2063 return NULL;
2064 }
2065 return sreloc;
2066 }
2067
2068 /* Returns the GOT section for ABFD. */
2069
2070 static asection *
2071 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2072 {
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
2078 }
2079
2080 /* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084 static struct mips_got_info *
2085 mips_elf_got_info (bfd *abfd, asection **sgotp)
2086 {
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
2090 sgot = mips_elf_got_section (abfd, TRUE);
2091 BFD_ASSERT (sgot != NULL);
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
2099 return g;
2100 }
2101
2102 /* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106 static int
2107 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109 {
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142 }
2143
2144 /* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147 static int
2148 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149 {
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157 }
2158
2159 /* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162 static int
2163 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164 {
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175 }
2176
2177 /* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180 static int
2181 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182 {
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190 }
2191
2192 /* Output a simple dynamic relocation into SRELOC. */
2193
2194 static void
2195 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200 {
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221 }
2222
2223 /* Initialize a set of TLS GOT entries for one symbol. */
2224
2225 static void
2226 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231 {
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345 }
2346
2347 /* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352 static bfd_vma
2353 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356 {
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384 }
2385
2386 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390 static bfd_vma
2391 mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393 {
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414 }
2415
2416 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2417 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2418 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2419 offset can be found. */
2420
2421 static bfd_vma
2422 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2423 bfd_vma value, unsigned long r_symndx,
2424 struct mips_elf_link_hash_entry *h, int r_type)
2425 {
2426 asection *sgot;
2427 struct mips_got_info *g;
2428 struct mips_got_entry *entry;
2429
2430 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2431
2432 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2433 value, r_symndx, h, r_type);
2434 if (!entry)
2435 return MINUS_ONE;
2436
2437 if (TLS_RELOC_P (r_type))
2438 {
2439 if (entry->symndx == -1 && g->next == NULL)
2440 /* A type (3) entry in the single-GOT case. We use the symbol's
2441 hash table entry to track the index. */
2442 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2443 r_type, info, h, value);
2444 else
2445 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2446 r_type, info, h, value);
2447 }
2448 else
2449 return entry->gotidx;
2450 }
2451
2452 /* Returns the GOT index for the global symbol indicated by H. */
2453
2454 static bfd_vma
2455 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2456 int r_type, struct bfd_link_info *info)
2457 {
2458 bfd_vma index;
2459 asection *sgot;
2460 struct mips_got_info *g, *gg;
2461 long global_got_dynindx = 0;
2462
2463 gg = g = mips_elf_got_info (abfd, &sgot);
2464 if (g->bfd2got && ibfd)
2465 {
2466 struct mips_got_entry e, *p;
2467
2468 BFD_ASSERT (h->dynindx >= 0);
2469
2470 g = mips_elf_got_for_ibfd (g, ibfd);
2471 if (g->next != gg || TLS_RELOC_P (r_type))
2472 {
2473 e.abfd = ibfd;
2474 e.symndx = -1;
2475 e.d.h = (struct mips_elf_link_hash_entry *)h;
2476 e.tls_type = 0;
2477
2478 p = htab_find (g->got_entries, &e);
2479
2480 BFD_ASSERT (p->gotidx > 0);
2481
2482 if (TLS_RELOC_P (r_type))
2483 {
2484 bfd_vma value = MINUS_ONE;
2485 if ((h->root.type == bfd_link_hash_defined
2486 || h->root.type == bfd_link_hash_defweak)
2487 && h->root.u.def.section->output_section)
2488 value = (h->root.u.def.value
2489 + h->root.u.def.section->output_offset
2490 + h->root.u.def.section->output_section->vma);
2491
2492 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2493 info, e.d.h, value);
2494 }
2495 else
2496 return p->gotidx;
2497 }
2498 }
2499
2500 if (gg->global_gotsym != NULL)
2501 global_got_dynindx = gg->global_gotsym->dynindx;
2502
2503 if (TLS_RELOC_P (r_type))
2504 {
2505 struct mips_elf_link_hash_entry *hm
2506 = (struct mips_elf_link_hash_entry *) h;
2507 bfd_vma value = MINUS_ONE;
2508
2509 if ((h->root.type == bfd_link_hash_defined
2510 || h->root.type == bfd_link_hash_defweak)
2511 && h->root.u.def.section->output_section)
2512 value = (h->root.u.def.value
2513 + h->root.u.def.section->output_offset
2514 + h->root.u.def.section->output_section->vma);
2515
2516 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2517 r_type, info, hm, value);
2518 }
2519 else
2520 {
2521 /* Once we determine the global GOT entry with the lowest dynamic
2522 symbol table index, we must put all dynamic symbols with greater
2523 indices into the GOT. That makes it easy to calculate the GOT
2524 offset. */
2525 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2526 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2527 * MIPS_ELF_GOT_SIZE (abfd));
2528 }
2529 BFD_ASSERT (index < sgot->size);
2530
2531 return index;
2532 }
2533
2534 /* Find a GOT page entry that points to within 32KB of VALUE. These
2535 entries are supposed to be placed at small offsets in the GOT, i.e.,
2536 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2537 entry could be created. If OFFSETP is nonnull, use it to return the
2538 offset of the GOT entry from VALUE. */
2539
2540 static bfd_vma
2541 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2542 bfd_vma value, bfd_vma *offsetp)
2543 {
2544 asection *sgot;
2545 struct mips_got_info *g;
2546 bfd_vma page, index;
2547 struct mips_got_entry *entry;
2548
2549 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2550
2551 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2552 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2553 page, 0, NULL, R_MIPS_GOT_PAGE);
2554
2555 if (!entry)
2556 return MINUS_ONE;
2557
2558 index = entry->gotidx;
2559
2560 if (offsetp)
2561 *offsetp = value - entry->d.address;
2562
2563 return index;
2564 }
2565
2566 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2567 EXTERNAL is true if the relocation was against a global symbol
2568 that has been forced local. */
2569
2570 static bfd_vma
2571 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2572 bfd_vma value, bfd_boolean external)
2573 {
2574 asection *sgot;
2575 struct mips_got_info *g;
2576 struct mips_got_entry *entry;
2577
2578 /* GOT16 relocations against local symbols are followed by a LO16
2579 relocation; those against global symbols are not. Thus if the
2580 symbol was originally local, the GOT16 relocation should load the
2581 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2582 if (! external)
2583 value = mips_elf_high (value) << 16;
2584
2585 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2586
2587 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2588 value, 0, NULL, R_MIPS_GOT16);
2589 if (entry)
2590 return entry->gotidx;
2591 else
2592 return MINUS_ONE;
2593 }
2594
2595 /* Returns the offset for the entry at the INDEXth position
2596 in the GOT. */
2597
2598 static bfd_vma
2599 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2600 bfd *input_bfd, bfd_vma index)
2601 {
2602 asection *sgot;
2603 bfd_vma gp;
2604 struct mips_got_info *g;
2605
2606 g = mips_elf_got_info (dynobj, &sgot);
2607 gp = _bfd_get_gp_value (output_bfd)
2608 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2609
2610 return sgot->output_section->vma + sgot->output_offset + index - gp;
2611 }
2612
2613 /* Create and return a local GOT entry for VALUE, which was calculated
2614 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2615 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2616 instead. */
2617
2618 static struct mips_got_entry *
2619 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2620 bfd *ibfd, struct mips_got_info *gg,
2621 asection *sgot, bfd_vma value,
2622 unsigned long r_symndx,
2623 struct mips_elf_link_hash_entry *h,
2624 int r_type)
2625 {
2626 struct mips_got_entry entry, **loc;
2627 struct mips_got_info *g;
2628 struct mips_elf_link_hash_table *htab;
2629
2630 htab = mips_elf_hash_table (info);
2631
2632 entry.abfd = NULL;
2633 entry.symndx = -1;
2634 entry.d.address = value;
2635 entry.tls_type = 0;
2636
2637 g = mips_elf_got_for_ibfd (gg, ibfd);
2638 if (g == NULL)
2639 {
2640 g = mips_elf_got_for_ibfd (gg, abfd);
2641 BFD_ASSERT (g != NULL);
2642 }
2643
2644 /* We might have a symbol, H, if it has been forced local. Use the
2645 global entry then. It doesn't matter whether an entry is local
2646 or global for TLS, since the dynamic linker does not
2647 automatically relocate TLS GOT entries. */
2648 BFD_ASSERT (h == NULL || h->root.forced_local);
2649 if (TLS_RELOC_P (r_type))
2650 {
2651 struct mips_got_entry *p;
2652
2653 entry.abfd = ibfd;
2654 if (r_type == R_MIPS_TLS_LDM)
2655 {
2656 entry.tls_type = GOT_TLS_LDM;
2657 entry.symndx = 0;
2658 entry.d.addend = 0;
2659 }
2660 else if (h == NULL)
2661 {
2662 entry.symndx = r_symndx;
2663 entry.d.addend = 0;
2664 }
2665 else
2666 entry.d.h = h;
2667
2668 p = (struct mips_got_entry *)
2669 htab_find (g->got_entries, &entry);
2670
2671 BFD_ASSERT (p);
2672 return p;
2673 }
2674
2675 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2676 INSERT);
2677 if (*loc)
2678 return *loc;
2679
2680 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2681 entry.tls_type = 0;
2682
2683 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2684
2685 if (! *loc)
2686 return NULL;
2687
2688 memcpy (*loc, &entry, sizeof entry);
2689
2690 if (g->assigned_gotno >= g->local_gotno)
2691 {
2692 (*loc)->gotidx = -1;
2693 /* We didn't allocate enough space in the GOT. */
2694 (*_bfd_error_handler)
2695 (_("not enough GOT space for local GOT entries"));
2696 bfd_set_error (bfd_error_bad_value);
2697 return NULL;
2698 }
2699
2700 MIPS_ELF_PUT_WORD (abfd, value,
2701 (sgot->contents + entry.gotidx));
2702
2703 /* These GOT entries need a dynamic relocation on VxWorks. */
2704 if (htab->is_vxworks)
2705 {
2706 Elf_Internal_Rela outrel;
2707 asection *s;
2708 bfd_byte *loc;
2709 bfd_vma got_address;
2710
2711 s = mips_elf_rel_dyn_section (info, FALSE);
2712 got_address = (sgot->output_section->vma
2713 + sgot->output_offset
2714 + entry.gotidx);
2715
2716 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2717 outrel.r_offset = got_address;
2718 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2719 outrel.r_addend = value;
2720 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2721 }
2722
2723 return *loc;
2724 }
2725
2726 /* Sort the dynamic symbol table so that symbols that need GOT entries
2727 appear towards the end. This reduces the amount of GOT space
2728 required. MAX_LOCAL is used to set the number of local symbols
2729 known to be in the dynamic symbol table. During
2730 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2731 section symbols are added and the count is higher. */
2732
2733 static bfd_boolean
2734 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2735 {
2736 struct mips_elf_hash_sort_data hsd;
2737 struct mips_got_info *g;
2738 bfd *dynobj;
2739
2740 dynobj = elf_hash_table (info)->dynobj;
2741
2742 g = mips_elf_got_info (dynobj, NULL);
2743
2744 hsd.low = NULL;
2745 hsd.max_unref_got_dynindx =
2746 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2747 /* In the multi-got case, assigned_gotno of the master got_info
2748 indicate the number of entries that aren't referenced in the
2749 primary GOT, but that must have entries because there are
2750 dynamic relocations that reference it. Since they aren't
2751 referenced, we move them to the end of the GOT, so that they
2752 don't prevent other entries that are referenced from getting
2753 too large offsets. */
2754 - (g->next ? g->assigned_gotno : 0);
2755 hsd.max_non_got_dynindx = max_local;
2756 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2757 elf_hash_table (info)),
2758 mips_elf_sort_hash_table_f,
2759 &hsd);
2760
2761 /* There should have been enough room in the symbol table to
2762 accommodate both the GOT and non-GOT symbols. */
2763 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2764 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2765 <= elf_hash_table (info)->dynsymcount);
2766
2767 /* Now we know which dynamic symbol has the lowest dynamic symbol
2768 table index in the GOT. */
2769 g->global_gotsym = hsd.low;
2770
2771 return TRUE;
2772 }
2773
2774 /* If H needs a GOT entry, assign it the highest available dynamic
2775 index. Otherwise, assign it the lowest available dynamic
2776 index. */
2777
2778 static bfd_boolean
2779 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2780 {
2781 struct mips_elf_hash_sort_data *hsd = data;
2782
2783 if (h->root.root.type == bfd_link_hash_warning)
2784 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2785
2786 /* Symbols without dynamic symbol table entries aren't interesting
2787 at all. */
2788 if (h->root.dynindx == -1)
2789 return TRUE;
2790
2791 /* Global symbols that need GOT entries that are not explicitly
2792 referenced are marked with got offset 2. Those that are
2793 referenced get a 1, and those that don't need GOT entries get
2794 -1. */
2795 if (h->root.got.offset == 2)
2796 {
2797 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2798
2799 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2800 hsd->low = (struct elf_link_hash_entry *) h;
2801 h->root.dynindx = hsd->max_unref_got_dynindx++;
2802 }
2803 else if (h->root.got.offset != 1)
2804 h->root.dynindx = hsd->max_non_got_dynindx++;
2805 else
2806 {
2807 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2808
2809 h->root.dynindx = --hsd->min_got_dynindx;
2810 hsd->low = (struct elf_link_hash_entry *) h;
2811 }
2812
2813 return TRUE;
2814 }
2815
2816 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2817 symbol table index lower than any we've seen to date, record it for
2818 posterity. */
2819
2820 static bfd_boolean
2821 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2822 bfd *abfd, struct bfd_link_info *info,
2823 struct mips_got_info *g,
2824 unsigned char tls_flag)
2825 {
2826 struct mips_got_entry entry, **loc;
2827
2828 /* A global symbol in the GOT must also be in the dynamic symbol
2829 table. */
2830 if (h->dynindx == -1)
2831 {
2832 switch (ELF_ST_VISIBILITY (h->other))
2833 {
2834 case STV_INTERNAL:
2835 case STV_HIDDEN:
2836 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2837 break;
2838 }
2839 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2840 return FALSE;
2841 }
2842
2843 /* Make sure we have a GOT to put this entry into. */
2844 BFD_ASSERT (g != NULL);
2845
2846 entry.abfd = abfd;
2847 entry.symndx = -1;
2848 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2849 entry.tls_type = 0;
2850
2851 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2852 INSERT);
2853
2854 /* If we've already marked this entry as needing GOT space, we don't
2855 need to do it again. */
2856 if (*loc)
2857 {
2858 (*loc)->tls_type |= tls_flag;
2859 return TRUE;
2860 }
2861
2862 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2863
2864 if (! *loc)
2865 return FALSE;
2866
2867 entry.gotidx = -1;
2868 entry.tls_type = tls_flag;
2869
2870 memcpy (*loc, &entry, sizeof entry);
2871
2872 if (h->got.offset != MINUS_ONE)
2873 return TRUE;
2874
2875 /* By setting this to a value other than -1, we are indicating that
2876 there needs to be a GOT entry for H. Avoid using zero, as the
2877 generic ELF copy_indirect_symbol tests for <= 0. */
2878 if (tls_flag == 0)
2879 h->got.offset = 1;
2880
2881 return TRUE;
2882 }
2883
2884 /* Reserve space in G for a GOT entry containing the value of symbol
2885 SYMNDX in input bfd ABDF, plus ADDEND. */
2886
2887 static bfd_boolean
2888 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2889 struct mips_got_info *g,
2890 unsigned char tls_flag)
2891 {
2892 struct mips_got_entry entry, **loc;
2893
2894 entry.abfd = abfd;
2895 entry.symndx = symndx;
2896 entry.d.addend = addend;
2897 entry.tls_type = tls_flag;
2898 loc = (struct mips_got_entry **)
2899 htab_find_slot (g->got_entries, &entry, INSERT);
2900
2901 if (*loc)
2902 {
2903 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2904 {
2905 g->tls_gotno += 2;
2906 (*loc)->tls_type |= tls_flag;
2907 }
2908 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2909 {
2910 g->tls_gotno += 1;
2911 (*loc)->tls_type |= tls_flag;
2912 }
2913 return TRUE;
2914 }
2915
2916 if (tls_flag != 0)
2917 {
2918 entry.gotidx = -1;
2919 entry.tls_type = tls_flag;
2920 if (tls_flag == GOT_TLS_IE)
2921 g->tls_gotno += 1;
2922 else if (tls_flag == GOT_TLS_GD)
2923 g->tls_gotno += 2;
2924 else if (g->tls_ldm_offset == MINUS_ONE)
2925 {
2926 g->tls_ldm_offset = MINUS_TWO;
2927 g->tls_gotno += 2;
2928 }
2929 }
2930 else
2931 {
2932 entry.gotidx = g->local_gotno++;
2933 entry.tls_type = 0;
2934 }
2935
2936 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2937
2938 if (! *loc)
2939 return FALSE;
2940
2941 memcpy (*loc, &entry, sizeof entry);
2942
2943 return TRUE;
2944 }
2945 \f
2946 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2947
2948 static hashval_t
2949 mips_elf_bfd2got_entry_hash (const void *entry_)
2950 {
2951 const struct mips_elf_bfd2got_hash *entry
2952 = (struct mips_elf_bfd2got_hash *)entry_;
2953
2954 return entry->bfd->id;
2955 }
2956
2957 /* Check whether two hash entries have the same bfd. */
2958
2959 static int
2960 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2961 {
2962 const struct mips_elf_bfd2got_hash *e1
2963 = (const struct mips_elf_bfd2got_hash *)entry1;
2964 const struct mips_elf_bfd2got_hash *e2
2965 = (const struct mips_elf_bfd2got_hash *)entry2;
2966
2967 return e1->bfd == e2->bfd;
2968 }
2969
2970 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2971 be the master GOT data. */
2972
2973 static struct mips_got_info *
2974 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2975 {
2976 struct mips_elf_bfd2got_hash e, *p;
2977
2978 if (! g->bfd2got)
2979 return g;
2980
2981 e.bfd = ibfd;
2982 p = htab_find (g->bfd2got, &e);
2983 return p ? p->g : NULL;
2984 }
2985
2986 /* Create one separate got for each bfd that has entries in the global
2987 got, such that we can tell how many local and global entries each
2988 bfd requires. */
2989
2990 static int
2991 mips_elf_make_got_per_bfd (void **entryp, void *p)
2992 {
2993 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2994 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2995 htab_t bfd2got = arg->bfd2got;
2996 struct mips_got_info *g;
2997 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2998 void **bfdgotp;
2999
3000 /* Find the got_info for this GOT entry's input bfd. Create one if
3001 none exists. */
3002 bfdgot_entry.bfd = entry->abfd;
3003 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3004 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3005
3006 if (bfdgot != NULL)
3007 g = bfdgot->g;
3008 else
3009 {
3010 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3011 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3012
3013 if (bfdgot == NULL)
3014 {
3015 arg->obfd = 0;
3016 return 0;
3017 }
3018
3019 *bfdgotp = bfdgot;
3020
3021 bfdgot->bfd = entry->abfd;
3022 bfdgot->g = g = (struct mips_got_info *)
3023 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3024 if (g == NULL)
3025 {
3026 arg->obfd = 0;
3027 return 0;
3028 }
3029
3030 g->global_gotsym = NULL;
3031 g->global_gotno = 0;
3032 g->local_gotno = 0;
3033 g->assigned_gotno = -1;
3034 g->tls_gotno = 0;
3035 g->tls_assigned_gotno = 0;
3036 g->tls_ldm_offset = MINUS_ONE;
3037 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3038 mips_elf_multi_got_entry_eq, NULL);
3039 if (g->got_entries == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->bfd2got = NULL;
3046 g->next = NULL;
3047 }
3048
3049 /* Insert the GOT entry in the bfd's got entry hash table. */
3050 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3051 if (*entryp != NULL)
3052 return 1;
3053
3054 *entryp = entry;
3055
3056 if (entry->tls_type)
3057 {
3058 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3059 g->tls_gotno += 2;
3060 if (entry->tls_type & GOT_TLS_IE)
3061 g->tls_gotno += 1;
3062 }
3063 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3064 ++g->local_gotno;
3065 else
3066 ++g->global_gotno;
3067
3068 return 1;
3069 }
3070
3071 /* Attempt to merge gots of different input bfds. Try to use as much
3072 as possible of the primary got, since it doesn't require explicit
3073 dynamic relocations, but don't use bfds that would reference global
3074 symbols out of the addressable range. Failing the primary got,
3075 attempt to merge with the current got, or finish the current got
3076 and then make make the new got current. */
3077
3078 static int
3079 mips_elf_merge_gots (void **bfd2got_, void *p)
3080 {
3081 struct mips_elf_bfd2got_hash *bfd2got
3082 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3083 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3084 unsigned int lcount = bfd2got->g->local_gotno;
3085 unsigned int gcount = bfd2got->g->global_gotno;
3086 unsigned int tcount = bfd2got->g->tls_gotno;
3087 unsigned int maxcnt = arg->max_count;
3088 bfd_boolean too_many_for_tls = FALSE;
3089
3090 /* We place TLS GOT entries after both locals and globals. The globals
3091 for the primary GOT may overflow the normal GOT size limit, so be
3092 sure not to merge a GOT which requires TLS with the primary GOT in that
3093 case. This doesn't affect non-primary GOTs. */
3094 if (tcount > 0)
3095 {
3096 unsigned int primary_total = lcount + tcount + arg->global_count;
3097 if (primary_total > maxcnt)
3098 too_many_for_tls = TRUE;
3099 }
3100
3101 /* If we don't have a primary GOT and this is not too big, use it as
3102 a starting point for the primary GOT. */
3103 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3104 && ! too_many_for_tls)
3105 {
3106 arg->primary = bfd2got->g;
3107 arg->primary_count = lcount + gcount;
3108 }
3109 /* If it looks like we can merge this bfd's entries with those of
3110 the primary, merge them. The heuristics is conservative, but we
3111 don't have to squeeze it too hard. */
3112 else if (arg->primary && ! too_many_for_tls
3113 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3114 {
3115 struct mips_got_info *g = bfd2got->g;
3116 int old_lcount = arg->primary->local_gotno;
3117 int old_gcount = arg->primary->global_gotno;
3118 int old_tcount = arg->primary->tls_gotno;
3119
3120 bfd2got->g = arg->primary;
3121
3122 htab_traverse (g->got_entries,
3123 mips_elf_make_got_per_bfd,
3124 arg);
3125 if (arg->obfd == NULL)
3126 return 0;
3127
3128 htab_delete (g->got_entries);
3129 /* We don't have to worry about releasing memory of the actual
3130 got entries, since they're all in the master got_entries hash
3131 table anyway. */
3132
3133 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3134 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3135 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3136
3137 arg->primary_count = arg->primary->local_gotno
3138 + arg->primary->global_gotno + arg->primary->tls_gotno;
3139 }
3140 /* If we can merge with the last-created got, do it. */
3141 else if (arg->current
3142 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3143 {
3144 struct mips_got_info *g = bfd2got->g;
3145 int old_lcount = arg->current->local_gotno;
3146 int old_gcount = arg->current->global_gotno;
3147 int old_tcount = arg->current->tls_gotno;
3148
3149 bfd2got->g = arg->current;
3150
3151 htab_traverse (g->got_entries,
3152 mips_elf_make_got_per_bfd,
3153 arg);
3154 if (arg->obfd == NULL)
3155 return 0;
3156
3157 htab_delete (g->got_entries);
3158
3159 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3160 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3161 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3162
3163 arg->current_count = arg->current->local_gotno
3164 + arg->current->global_gotno + arg->current->tls_gotno;
3165 }
3166 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3167 fits; if it turns out that it doesn't, we'll get relocation
3168 overflows anyway. */
3169 else
3170 {
3171 bfd2got->g->next = arg->current;
3172 arg->current = bfd2got->g;
3173
3174 arg->current_count = lcount + gcount + 2 * tcount;
3175 }
3176
3177 return 1;
3178 }
3179
3180 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3181 is null iff there is just a single GOT. */
3182
3183 static int
3184 mips_elf_initialize_tls_index (void **entryp, void *p)
3185 {
3186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3187 struct mips_got_info *g = p;
3188 bfd_vma next_index;
3189 unsigned char tls_type;
3190
3191 /* We're only interested in TLS symbols. */
3192 if (entry->tls_type == 0)
3193 return 1;
3194
3195 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3196
3197 if (entry->symndx == -1 && g->next == NULL)
3198 {
3199 /* A type (3) got entry in the single-GOT case. We use the symbol's
3200 hash table entry to track its index. */
3201 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3202 return 1;
3203 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3204 entry->d.h->tls_got_offset = next_index;
3205 tls_type = entry->d.h->tls_type;
3206 }
3207 else
3208 {
3209 if (entry->tls_type & GOT_TLS_LDM)
3210 {
3211 /* There are separate mips_got_entry objects for each input bfd
3212 that requires an LDM entry. Make sure that all LDM entries in
3213 a GOT resolve to the same index. */
3214 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3215 {
3216 entry->gotidx = g->tls_ldm_offset;
3217 return 1;
3218 }
3219 g->tls_ldm_offset = next_index;
3220 }
3221 entry->gotidx = next_index;
3222 tls_type = entry->tls_type;
3223 }
3224
3225 /* Account for the entries we've just allocated. */
3226 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3227 g->tls_assigned_gotno += 2;
3228 if (tls_type & GOT_TLS_IE)
3229 g->tls_assigned_gotno += 1;
3230
3231 return 1;
3232 }
3233
3234 /* If passed a NULL mips_got_info in the argument, set the marker used
3235 to tell whether a global symbol needs a got entry (in the primary
3236 got) to the given VALUE.
3237
3238 If passed a pointer G to a mips_got_info in the argument (it must
3239 not be the primary GOT), compute the offset from the beginning of
3240 the (primary) GOT section to the entry in G corresponding to the
3241 global symbol. G's assigned_gotno must contain the index of the
3242 first available global GOT entry in G. VALUE must contain the size
3243 of a GOT entry in bytes. For each global GOT entry that requires a
3244 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3245 marked as not eligible for lazy resolution through a function
3246 stub. */
3247 static int
3248 mips_elf_set_global_got_offset (void **entryp, void *p)
3249 {
3250 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3251 struct mips_elf_set_global_got_offset_arg *arg
3252 = (struct mips_elf_set_global_got_offset_arg *)p;
3253 struct mips_got_info *g = arg->g;
3254
3255 if (g && entry->tls_type != GOT_NORMAL)
3256 arg->needed_relocs +=
3257 mips_tls_got_relocs (arg->info, entry->tls_type,
3258 entry->symndx == -1 ? &entry->d.h->root : NULL);
3259
3260 if (entry->abfd != NULL && entry->symndx == -1
3261 && entry->d.h->root.dynindx != -1
3262 && entry->d.h->tls_type == GOT_NORMAL)
3263 {
3264 if (g)
3265 {
3266 BFD_ASSERT (g->global_gotsym == NULL);
3267
3268 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3269 if (arg->info->shared
3270 || (elf_hash_table (arg->info)->dynamic_sections_created
3271 && entry->d.h->root.def_dynamic
3272 && !entry->d.h->root.def_regular))
3273 ++arg->needed_relocs;
3274 }
3275 else
3276 entry->d.h->root.got.offset = arg->value;
3277 }
3278
3279 return 1;
3280 }
3281
3282 /* Mark any global symbols referenced in the GOT we are iterating over
3283 as inelligible for lazy resolution stubs. */
3284 static int
3285 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3286 {
3287 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3288
3289 if (entry->abfd != NULL
3290 && entry->symndx == -1
3291 && entry->d.h->root.dynindx != -1)
3292 entry->d.h->no_fn_stub = TRUE;
3293
3294 return 1;
3295 }
3296
3297 /* Follow indirect and warning hash entries so that each got entry
3298 points to the final symbol definition. P must point to a pointer
3299 to the hash table we're traversing. Since this traversal may
3300 modify the hash table, we set this pointer to NULL to indicate
3301 we've made a potentially-destructive change to the hash table, so
3302 the traversal must be restarted. */
3303 static int
3304 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3305 {
3306 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3307 htab_t got_entries = *(htab_t *)p;
3308
3309 if (entry->abfd != NULL && entry->symndx == -1)
3310 {
3311 struct mips_elf_link_hash_entry *h = entry->d.h;
3312
3313 while (h->root.root.type == bfd_link_hash_indirect
3314 || h->root.root.type == bfd_link_hash_warning)
3315 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3316
3317 if (entry->d.h == h)
3318 return 1;
3319
3320 entry->d.h = h;
3321
3322 /* If we can't find this entry with the new bfd hash, re-insert
3323 it, and get the traversal restarted. */
3324 if (! htab_find (got_entries, entry))
3325 {
3326 htab_clear_slot (got_entries, entryp);
3327 entryp = htab_find_slot (got_entries, entry, INSERT);
3328 if (! *entryp)
3329 *entryp = entry;
3330 /* Abort the traversal, since the whole table may have
3331 moved, and leave it up to the parent to restart the
3332 process. */
3333 *(htab_t *)p = NULL;
3334 return 0;
3335 }
3336 /* We might want to decrement the global_gotno count, but it's
3337 either too early or too late for that at this point. */
3338 }
3339
3340 return 1;
3341 }
3342
3343 /* Turn indirect got entries in a got_entries table into their final
3344 locations. */
3345 static void
3346 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3347 {
3348 htab_t got_entries;
3349
3350 do
3351 {
3352 got_entries = g->got_entries;
3353
3354 htab_traverse (got_entries,
3355 mips_elf_resolve_final_got_entry,
3356 &got_entries);
3357 }
3358 while (got_entries == NULL);
3359 }
3360
3361 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3362 the primary GOT. */
3363 static bfd_vma
3364 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3365 {
3366 if (g->bfd2got == NULL)
3367 return 0;
3368
3369 g = mips_elf_got_for_ibfd (g, ibfd);
3370 if (! g)
3371 return 0;
3372
3373 BFD_ASSERT (g->next);
3374
3375 g = g->next;
3376
3377 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3378 * MIPS_ELF_GOT_SIZE (abfd);
3379 }
3380
3381 /* Turn a single GOT that is too big for 16-bit addressing into
3382 a sequence of GOTs, each one 16-bit addressable. */
3383
3384 static bfd_boolean
3385 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3386 struct mips_got_info *g, asection *got,
3387 bfd_size_type pages)
3388 {
3389 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3390 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3391 struct mips_got_info *gg;
3392 unsigned int assign;
3393
3394 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3395 mips_elf_bfd2got_entry_eq, NULL);
3396 if (g->bfd2got == NULL)
3397 return FALSE;
3398
3399 got_per_bfd_arg.bfd2got = g->bfd2got;
3400 got_per_bfd_arg.obfd = abfd;
3401 got_per_bfd_arg.info = info;
3402
3403 /* Count how many GOT entries each input bfd requires, creating a
3404 map from bfd to got info while at that. */
3405 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3406 if (got_per_bfd_arg.obfd == NULL)
3407 return FALSE;
3408
3409 got_per_bfd_arg.current = NULL;
3410 got_per_bfd_arg.primary = NULL;
3411 /* Taking out PAGES entries is a worst-case estimate. We could
3412 compute the maximum number of pages that each separate input bfd
3413 uses, but it's probably not worth it. */
3414 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3415 / MIPS_ELF_GOT_SIZE (abfd))
3416 - MIPS_RESERVED_GOTNO (info) - pages);
3417 /* The number of globals that will be included in the primary GOT.
3418 See the calls to mips_elf_set_global_got_offset below for more
3419 information. */
3420 got_per_bfd_arg.global_count = g->global_gotno;
3421
3422 /* Try to merge the GOTs of input bfds together, as long as they
3423 don't seem to exceed the maximum GOT size, choosing one of them
3424 to be the primary GOT. */
3425 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3426 if (got_per_bfd_arg.obfd == NULL)
3427 return FALSE;
3428
3429 /* If we do not find any suitable primary GOT, create an empty one. */
3430 if (got_per_bfd_arg.primary == NULL)
3431 {
3432 g->next = (struct mips_got_info *)
3433 bfd_alloc (abfd, sizeof (struct mips_got_info));
3434 if (g->next == NULL)
3435 return FALSE;
3436
3437 g->next->global_gotsym = NULL;
3438 g->next->global_gotno = 0;
3439 g->next->local_gotno = 0;
3440 g->next->tls_gotno = 0;
3441 g->next->assigned_gotno = 0;
3442 g->next->tls_assigned_gotno = 0;
3443 g->next->tls_ldm_offset = MINUS_ONE;
3444 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3445 mips_elf_multi_got_entry_eq,
3446 NULL);
3447 if (g->next->got_entries == NULL)
3448 return FALSE;
3449 g->next->bfd2got = NULL;
3450 }
3451 else
3452 g->next = got_per_bfd_arg.primary;
3453 g->next->next = got_per_bfd_arg.current;
3454
3455 /* GG is now the master GOT, and G is the primary GOT. */
3456 gg = g;
3457 g = g->next;
3458
3459 /* Map the output bfd to the primary got. That's what we're going
3460 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3461 didn't mark in check_relocs, and we want a quick way to find it.
3462 We can't just use gg->next because we're going to reverse the
3463 list. */
3464 {
3465 struct mips_elf_bfd2got_hash *bfdgot;
3466 void **bfdgotp;
3467
3468 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3469 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3470
3471 if (bfdgot == NULL)
3472 return FALSE;
3473
3474 bfdgot->bfd = abfd;
3475 bfdgot->g = g;
3476 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3477
3478 BFD_ASSERT (*bfdgotp == NULL);
3479 *bfdgotp = bfdgot;
3480 }
3481
3482 /* The IRIX dynamic linker requires every symbol that is referenced
3483 in a dynamic relocation to be present in the primary GOT, so
3484 arrange for them to appear after those that are actually
3485 referenced.
3486
3487 GNU/Linux could very well do without it, but it would slow down
3488 the dynamic linker, since it would have to resolve every dynamic
3489 symbol referenced in other GOTs more than once, without help from
3490 the cache. Also, knowing that every external symbol has a GOT
3491 helps speed up the resolution of local symbols too, so GNU/Linux
3492 follows IRIX's practice.
3493
3494 The number 2 is used by mips_elf_sort_hash_table_f to count
3495 global GOT symbols that are unreferenced in the primary GOT, with
3496 an initial dynamic index computed from gg->assigned_gotno, where
3497 the number of unreferenced global entries in the primary GOT is
3498 preserved. */
3499 if (1)
3500 {
3501 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3502 g->global_gotno = gg->global_gotno;
3503 set_got_offset_arg.value = 2;
3504 }
3505 else
3506 {
3507 /* This could be used for dynamic linkers that don't optimize
3508 symbol resolution while applying relocations so as to use
3509 primary GOT entries or assuming the symbol is locally-defined.
3510 With this code, we assign lower dynamic indices to global
3511 symbols that are not referenced in the primary GOT, so that
3512 their entries can be omitted. */
3513 gg->assigned_gotno = 0;
3514 set_got_offset_arg.value = -1;
3515 }
3516
3517 /* Reorder dynamic symbols as described above (which behavior
3518 depends on the setting of VALUE). */
3519 set_got_offset_arg.g = NULL;
3520 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3521 &set_got_offset_arg);
3522 set_got_offset_arg.value = 1;
3523 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3524 &set_got_offset_arg);
3525 if (! mips_elf_sort_hash_table (info, 1))
3526 return FALSE;
3527
3528 /* Now go through the GOTs assigning them offset ranges.
3529 [assigned_gotno, local_gotno[ will be set to the range of local
3530 entries in each GOT. We can then compute the end of a GOT by
3531 adding local_gotno to global_gotno. We reverse the list and make
3532 it circular since then we'll be able to quickly compute the
3533 beginning of a GOT, by computing the end of its predecessor. To
3534 avoid special cases for the primary GOT, while still preserving
3535 assertions that are valid for both single- and multi-got links,
3536 we arrange for the main got struct to have the right number of
3537 global entries, but set its local_gotno such that the initial
3538 offset of the primary GOT is zero. Remember that the primary GOT
3539 will become the last item in the circular linked list, so it
3540 points back to the master GOT. */
3541 gg->local_gotno = -g->global_gotno;
3542 gg->global_gotno = g->global_gotno;
3543 gg->tls_gotno = 0;
3544 assign = 0;
3545 gg->next = gg;
3546
3547 do
3548 {
3549 struct mips_got_info *gn;
3550
3551 assign += MIPS_RESERVED_GOTNO (info);
3552 g->assigned_gotno = assign;
3553 g->local_gotno += assign + pages;
3554 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3555
3556 /* Take g out of the direct list, and push it onto the reversed
3557 list that gg points to. g->next is guaranteed to be nonnull after
3558 this operation, as required by mips_elf_initialize_tls_index. */
3559 gn = g->next;
3560 g->next = gg->next;
3561 gg->next = g;
3562
3563 /* Set up any TLS entries. We always place the TLS entries after
3564 all non-TLS entries. */
3565 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3566 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3567
3568 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3569 g = gn;
3570
3571 /* Mark global symbols in every non-primary GOT as ineligible for
3572 stubs. */
3573 if (g)
3574 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3575 }
3576 while (g);
3577
3578 got->size = (gg->next->local_gotno
3579 + gg->next->global_gotno
3580 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3581
3582 return TRUE;
3583 }
3584
3585 \f
3586 /* Returns the first relocation of type r_type found, beginning with
3587 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3588
3589 static const Elf_Internal_Rela *
3590 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3591 const Elf_Internal_Rela *relocation,
3592 const Elf_Internal_Rela *relend)
3593 {
3594 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3595
3596 while (relocation < relend)
3597 {
3598 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3599 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3600 return relocation;
3601
3602 ++relocation;
3603 }
3604
3605 /* We didn't find it. */
3606 return NULL;
3607 }
3608
3609 /* Return whether a relocation is against a local symbol. */
3610
3611 static bfd_boolean
3612 mips_elf_local_relocation_p (bfd *input_bfd,
3613 const Elf_Internal_Rela *relocation,
3614 asection **local_sections,
3615 bfd_boolean check_forced)
3616 {
3617 unsigned long r_symndx;
3618 Elf_Internal_Shdr *symtab_hdr;
3619 struct mips_elf_link_hash_entry *h;
3620 size_t extsymoff;
3621
3622 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3623 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3624 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3625
3626 if (r_symndx < extsymoff)
3627 return TRUE;
3628 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3629 return TRUE;
3630
3631 if (check_forced)
3632 {
3633 /* Look up the hash table to check whether the symbol
3634 was forced local. */
3635 h = (struct mips_elf_link_hash_entry *)
3636 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3637 /* Find the real hash-table entry for this symbol. */
3638 while (h->root.root.type == bfd_link_hash_indirect
3639 || h->root.root.type == bfd_link_hash_warning)
3640 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3641 if (h->root.forced_local)
3642 return TRUE;
3643 }
3644
3645 return FALSE;
3646 }
3647 \f
3648 /* Sign-extend VALUE, which has the indicated number of BITS. */
3649
3650 bfd_vma
3651 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3652 {
3653 if (value & ((bfd_vma) 1 << (bits - 1)))
3654 /* VALUE is negative. */
3655 value |= ((bfd_vma) - 1) << bits;
3656
3657 return value;
3658 }
3659
3660 /* Return non-zero if the indicated VALUE has overflowed the maximum
3661 range expressible by a signed number with the indicated number of
3662 BITS. */
3663
3664 static bfd_boolean
3665 mips_elf_overflow_p (bfd_vma value, int bits)
3666 {
3667 bfd_signed_vma svalue = (bfd_signed_vma) value;
3668
3669 if (svalue > (1 << (bits - 1)) - 1)
3670 /* The value is too big. */
3671 return TRUE;
3672 else if (svalue < -(1 << (bits - 1)))
3673 /* The value is too small. */
3674 return TRUE;
3675
3676 /* All is well. */
3677 return FALSE;
3678 }
3679
3680 /* Calculate the %high function. */
3681
3682 static bfd_vma
3683 mips_elf_high (bfd_vma value)
3684 {
3685 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3686 }
3687
3688 /* Calculate the %higher function. */
3689
3690 static bfd_vma
3691 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3692 {
3693 #ifdef BFD64
3694 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3695 #else
3696 abort ();
3697 return MINUS_ONE;
3698 #endif
3699 }
3700
3701 /* Calculate the %highest function. */
3702
3703 static bfd_vma
3704 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3705 {
3706 #ifdef BFD64
3707 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3708 #else
3709 abort ();
3710 return MINUS_ONE;
3711 #endif
3712 }
3713 \f
3714 /* Create the .compact_rel section. */
3715
3716 static bfd_boolean
3717 mips_elf_create_compact_rel_section
3718 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3719 {
3720 flagword flags;
3721 register asection *s;
3722
3723 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3724 {
3725 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3726 | SEC_READONLY);
3727
3728 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3729 if (s == NULL
3730 || ! bfd_set_section_alignment (abfd, s,
3731 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3732 return FALSE;
3733
3734 s->size = sizeof (Elf32_External_compact_rel);
3735 }
3736
3737 return TRUE;
3738 }
3739
3740 /* Create the .got section to hold the global offset table. */
3741
3742 static bfd_boolean
3743 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3744 bfd_boolean maybe_exclude)
3745 {
3746 flagword flags;
3747 register asection *s;
3748 struct elf_link_hash_entry *h;
3749 struct bfd_link_hash_entry *bh;
3750 struct mips_got_info *g;
3751 bfd_size_type amt;
3752 struct mips_elf_link_hash_table *htab;
3753
3754 htab = mips_elf_hash_table (info);
3755
3756 /* This function may be called more than once. */
3757 s = mips_elf_got_section (abfd, TRUE);
3758 if (s)
3759 {
3760 if (! maybe_exclude)
3761 s->flags &= ~SEC_EXCLUDE;
3762 return TRUE;
3763 }
3764
3765 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3766 | SEC_LINKER_CREATED);
3767
3768 if (maybe_exclude)
3769 flags |= SEC_EXCLUDE;
3770
3771 /* We have to use an alignment of 2**4 here because this is hardcoded
3772 in the function stub generation and in the linker script. */
3773 s = bfd_make_section_with_flags (abfd, ".got", flags);
3774 if (s == NULL
3775 || ! bfd_set_section_alignment (abfd, s, 4))
3776 return FALSE;
3777
3778 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3779 linker script because we don't want to define the symbol if we
3780 are not creating a global offset table. */
3781 bh = NULL;
3782 if (! (_bfd_generic_link_add_one_symbol
3783 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3784 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3785 return FALSE;
3786
3787 h = (struct elf_link_hash_entry *) bh;
3788 h->non_elf = 0;
3789 h->def_regular = 1;
3790 h->type = STT_OBJECT;
3791 elf_hash_table (info)->hgot = h;
3792
3793 if (info->shared
3794 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3795 return FALSE;
3796
3797 amt = sizeof (struct mips_got_info);
3798 g = bfd_alloc (abfd, amt);
3799 if (g == NULL)
3800 return FALSE;
3801 g->global_gotsym = NULL;
3802 g->global_gotno = 0;
3803 g->tls_gotno = 0;
3804 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3805 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3806 g->bfd2got = NULL;
3807 g->next = NULL;
3808 g->tls_ldm_offset = MINUS_ONE;
3809 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3810 mips_elf_got_entry_eq, NULL);
3811 if (g->got_entries == NULL)
3812 return FALSE;
3813 mips_elf_section_data (s)->u.got_info = g;
3814 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3815 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3816
3817 /* VxWorks also needs a .got.plt section. */
3818 if (htab->is_vxworks)
3819 {
3820 s = bfd_make_section_with_flags (abfd, ".got.plt",
3821 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3822 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3823 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3824 return FALSE;
3825
3826 htab->sgotplt = s;
3827 }
3828 return TRUE;
3829 }
3830 \f
3831 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3832 __GOTT_INDEX__ symbols. These symbols are only special for
3833 shared objects; they are not used in executables. */
3834
3835 static bfd_boolean
3836 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3837 {
3838 return (mips_elf_hash_table (info)->is_vxworks
3839 && info->shared
3840 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3841 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3842 }
3843 \f
3844 /* Calculate the value produced by the RELOCATION (which comes from
3845 the INPUT_BFD). The ADDEND is the addend to use for this
3846 RELOCATION; RELOCATION->R_ADDEND is ignored.
3847
3848 The result of the relocation calculation is stored in VALUEP.
3849 REQUIRE_JALXP indicates whether or not the opcode used with this
3850 relocation must be JALX.
3851
3852 This function returns bfd_reloc_continue if the caller need take no
3853 further action regarding this relocation, bfd_reloc_notsupported if
3854 something goes dramatically wrong, bfd_reloc_overflow if an
3855 overflow occurs, and bfd_reloc_ok to indicate success. */
3856
3857 static bfd_reloc_status_type
3858 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3859 asection *input_section,
3860 struct bfd_link_info *info,
3861 const Elf_Internal_Rela *relocation,
3862 bfd_vma addend, reloc_howto_type *howto,
3863 Elf_Internal_Sym *local_syms,
3864 asection **local_sections, bfd_vma *valuep,
3865 const char **namep, bfd_boolean *require_jalxp,
3866 bfd_boolean save_addend)
3867 {
3868 /* The eventual value we will return. */
3869 bfd_vma value;
3870 /* The address of the symbol against which the relocation is
3871 occurring. */
3872 bfd_vma symbol = 0;
3873 /* The final GP value to be used for the relocatable, executable, or
3874 shared object file being produced. */
3875 bfd_vma gp = MINUS_ONE;
3876 /* The place (section offset or address) of the storage unit being
3877 relocated. */
3878 bfd_vma p;
3879 /* The value of GP used to create the relocatable object. */
3880 bfd_vma gp0 = MINUS_ONE;
3881 /* The offset into the global offset table at which the address of
3882 the relocation entry symbol, adjusted by the addend, resides
3883 during execution. */
3884 bfd_vma g = MINUS_ONE;
3885 /* The section in which the symbol referenced by the relocation is
3886 located. */
3887 asection *sec = NULL;
3888 struct mips_elf_link_hash_entry *h = NULL;
3889 /* TRUE if the symbol referred to by this relocation is a local
3890 symbol. */
3891 bfd_boolean local_p, was_local_p;
3892 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3893 bfd_boolean gp_disp_p = FALSE;
3894 /* TRUE if the symbol referred to by this relocation is
3895 "__gnu_local_gp". */
3896 bfd_boolean gnu_local_gp_p = FALSE;
3897 Elf_Internal_Shdr *symtab_hdr;
3898 size_t extsymoff;
3899 unsigned long r_symndx;
3900 int r_type;
3901 /* TRUE if overflow occurred during the calculation of the
3902 relocation value. */
3903 bfd_boolean overflowed_p;
3904 /* TRUE if this relocation refers to a MIPS16 function. */
3905 bfd_boolean target_is_16_bit_code_p = FALSE;
3906 struct mips_elf_link_hash_table *htab;
3907 bfd *dynobj;
3908
3909 dynobj = elf_hash_table (info)->dynobj;
3910 htab = mips_elf_hash_table (info);
3911
3912 /* Parse the relocation. */
3913 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3914 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3915 p = (input_section->output_section->vma
3916 + input_section->output_offset
3917 + relocation->r_offset);
3918
3919 /* Assume that there will be no overflow. */
3920 overflowed_p = FALSE;
3921
3922 /* Figure out whether or not the symbol is local, and get the offset
3923 used in the array of hash table entries. */
3924 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3925 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3926 local_sections, FALSE);
3927 was_local_p = local_p;
3928 if (! elf_bad_symtab (input_bfd))
3929 extsymoff = symtab_hdr->sh_info;
3930 else
3931 {
3932 /* The symbol table does not follow the rule that local symbols
3933 must come before globals. */
3934 extsymoff = 0;
3935 }
3936
3937 /* Figure out the value of the symbol. */
3938 if (local_p)
3939 {
3940 Elf_Internal_Sym *sym;
3941
3942 sym = local_syms + r_symndx;
3943 sec = local_sections[r_symndx];
3944
3945 symbol = sec->output_section->vma + sec->output_offset;
3946 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3947 || (sec->flags & SEC_MERGE))
3948 symbol += sym->st_value;
3949 if ((sec->flags & SEC_MERGE)
3950 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3951 {
3952 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3953 addend -= symbol;
3954 addend += sec->output_section->vma + sec->output_offset;
3955 }
3956
3957 /* MIPS16 text labels should be treated as odd. */
3958 if (sym->st_other == STO_MIPS16)
3959 ++symbol;
3960
3961 /* Record the name of this symbol, for our caller. */
3962 *namep = bfd_elf_string_from_elf_section (input_bfd,
3963 symtab_hdr->sh_link,
3964 sym->st_name);
3965 if (*namep == '\0')
3966 *namep = bfd_section_name (input_bfd, sec);
3967
3968 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3969 }
3970 else
3971 {
3972 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3973
3974 /* For global symbols we look up the symbol in the hash-table. */
3975 h = ((struct mips_elf_link_hash_entry *)
3976 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3977 /* Find the real hash-table entry for this symbol. */
3978 while (h->root.root.type == bfd_link_hash_indirect
3979 || h->root.root.type == bfd_link_hash_warning)
3980 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3981
3982 /* Record the name of this symbol, for our caller. */
3983 *namep = h->root.root.root.string;
3984
3985 /* See if this is the special _gp_disp symbol. Note that such a
3986 symbol must always be a global symbol. */
3987 if (strcmp (*namep, "_gp_disp") == 0
3988 && ! NEWABI_P (input_bfd))
3989 {
3990 /* Relocations against _gp_disp are permitted only with
3991 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3992 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3993 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3994 return bfd_reloc_notsupported;
3995
3996 gp_disp_p = TRUE;
3997 }
3998 /* See if this is the special _gp symbol. Note that such a
3999 symbol must always be a global symbol. */
4000 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4001 gnu_local_gp_p = TRUE;
4002
4003
4004 /* If this symbol is defined, calculate its address. Note that
4005 _gp_disp is a magic symbol, always implicitly defined by the
4006 linker, so it's inappropriate to check to see whether or not
4007 its defined. */
4008 else if ((h->root.root.type == bfd_link_hash_defined
4009 || h->root.root.type == bfd_link_hash_defweak)
4010 && h->root.root.u.def.section)
4011 {
4012 sec = h->root.root.u.def.section;
4013 if (sec->output_section)
4014 symbol = (h->root.root.u.def.value
4015 + sec->output_section->vma
4016 + sec->output_offset);
4017 else
4018 symbol = h->root.root.u.def.value;
4019 }
4020 else if (h->root.root.type == bfd_link_hash_undefweak)
4021 /* We allow relocations against undefined weak symbols, giving
4022 it the value zero, so that you can undefined weak functions
4023 and check to see if they exist by looking at their
4024 addresses. */
4025 symbol = 0;
4026 else if (info->unresolved_syms_in_objects == RM_IGNORE
4027 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4028 symbol = 0;
4029 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4030 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4031 {
4032 /* If this is a dynamic link, we should have created a
4033 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4034 in in _bfd_mips_elf_create_dynamic_sections.
4035 Otherwise, we should define the symbol with a value of 0.
4036 FIXME: It should probably get into the symbol table
4037 somehow as well. */
4038 BFD_ASSERT (! info->shared);
4039 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4040 symbol = 0;
4041 }
4042 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4043 {
4044 /* This is an optional symbol - an Irix specific extension to the
4045 ELF spec. Ignore it for now.
4046 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4047 than simply ignoring them, but we do not handle this for now.
4048 For information see the "64-bit ELF Object File Specification"
4049 which is available from here:
4050 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4051 symbol = 0;
4052 }
4053 else
4054 {
4055 if (! ((*info->callbacks->undefined_symbol)
4056 (info, h->root.root.root.string, input_bfd,
4057 input_section, relocation->r_offset,
4058 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4059 || ELF_ST_VISIBILITY (h->root.other))))
4060 return bfd_reloc_undefined;
4061 symbol = 0;
4062 }
4063
4064 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4065 }
4066
4067 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4068 need to redirect the call to the stub, unless we're already *in*
4069 a stub. */
4070 if (r_type != R_MIPS16_26 && !info->relocatable
4071 && ((h != NULL && h->fn_stub != NULL)
4072 || (local_p
4073 && elf_tdata (input_bfd)->local_stubs != NULL
4074 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4075 && !mips16_stub_section_p (input_bfd, input_section))
4076 {
4077 /* This is a 32- or 64-bit call to a 16-bit function. We should
4078 have already noticed that we were going to need the
4079 stub. */
4080 if (local_p)
4081 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4082 else
4083 {
4084 BFD_ASSERT (h->need_fn_stub);
4085 sec = h->fn_stub;
4086 }
4087
4088 symbol = sec->output_section->vma + sec->output_offset;
4089 /* The target is 16-bit, but the stub isn't. */
4090 target_is_16_bit_code_p = FALSE;
4091 }
4092 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4093 need to redirect the call to the stub. */
4094 else if (r_type == R_MIPS16_26 && !info->relocatable
4095 && h != NULL
4096 && ((h->call_stub != NULL || h->call_fp_stub != NULL)
4097 || (local_p
4098 && elf_tdata (input_bfd)->local_call_stubs != NULL
4099 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4100 && !target_is_16_bit_code_p)
4101 {
4102 if (local_p)
4103 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4104 else
4105 {
4106 /* If both call_stub and call_fp_stub are defined, we can figure
4107 out which one to use by checking which one appears in the input
4108 file. */
4109 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4110 {
4111 asection *o;
4112
4113 sec = NULL;
4114 for (o = input_bfd->sections; o != NULL; o = o->next)
4115 {
4116 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4117 {
4118 sec = h->call_fp_stub;
4119 break;
4120 }
4121 }
4122 if (sec == NULL)
4123 sec = h->call_stub;
4124 }
4125 else if (h->call_stub != NULL)
4126 sec = h->call_stub;
4127 else
4128 sec = h->call_fp_stub;
4129 }
4130
4131 BFD_ASSERT (sec->size > 0);
4132 symbol = sec->output_section->vma + sec->output_offset;
4133 }
4134
4135 /* Calls from 16-bit code to 32-bit code and vice versa require the
4136 special jalx instruction. */
4137 *require_jalxp = (!info->relocatable
4138 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4139 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4140
4141 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4142 local_sections, TRUE);
4143
4144 /* If we haven't already determined the GOT offset, or the GP value,
4145 and we're going to need it, get it now. */
4146 switch (r_type)
4147 {
4148 case R_MIPS_GOT_PAGE:
4149 case R_MIPS_GOT_OFST:
4150 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4151 bind locally. */
4152 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4153 if (local_p || r_type == R_MIPS_GOT_OFST)
4154 break;
4155 /* Fall through. */
4156
4157 case R_MIPS_CALL16:
4158 case R_MIPS_GOT16:
4159 case R_MIPS_GOT_DISP:
4160 case R_MIPS_GOT_HI16:
4161 case R_MIPS_CALL_HI16:
4162 case R_MIPS_GOT_LO16:
4163 case R_MIPS_CALL_LO16:
4164 case R_MIPS_TLS_GD:
4165 case R_MIPS_TLS_GOTTPREL:
4166 case R_MIPS_TLS_LDM:
4167 /* Find the index into the GOT where this value is located. */
4168 if (r_type == R_MIPS_TLS_LDM)
4169 {
4170 g = mips_elf_local_got_index (abfd, input_bfd, info,
4171 0, 0, NULL, r_type);
4172 if (g == MINUS_ONE)
4173 return bfd_reloc_outofrange;
4174 }
4175 else if (!local_p)
4176 {
4177 /* On VxWorks, CALL relocations should refer to the .got.plt
4178 entry, which is initialized to point at the PLT stub. */
4179 if (htab->is_vxworks
4180 && (r_type == R_MIPS_CALL_HI16
4181 || r_type == R_MIPS_CALL_LO16
4182 || r_type == R_MIPS_CALL16))
4183 {
4184 BFD_ASSERT (addend == 0);
4185 BFD_ASSERT (h->root.needs_plt);
4186 g = mips_elf_gotplt_index (info, &h->root);
4187 }
4188 else
4189 {
4190 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4191 GOT_PAGE relocation that decays to GOT_DISP because the
4192 symbol turns out to be global. The addend is then added
4193 as GOT_OFST. */
4194 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4195 g = mips_elf_global_got_index (dynobj, input_bfd,
4196 &h->root, r_type, info);
4197 if (h->tls_type == GOT_NORMAL
4198 && (! elf_hash_table(info)->dynamic_sections_created
4199 || (info->shared
4200 && (info->symbolic || h->root.forced_local)
4201 && h->root.def_regular)))
4202 {
4203 /* This is a static link or a -Bsymbolic link. The
4204 symbol is defined locally, or was forced to be local.
4205 We must initialize this entry in the GOT. */
4206 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4207 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4208 }
4209 }
4210 }
4211 else if (!htab->is_vxworks
4212 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4213 /* The calculation below does not involve "g". */
4214 break;
4215 else
4216 {
4217 g = mips_elf_local_got_index (abfd, input_bfd, info,
4218 symbol + addend, r_symndx, h, r_type);
4219 if (g == MINUS_ONE)
4220 return bfd_reloc_outofrange;
4221 }
4222
4223 /* Convert GOT indices to actual offsets. */
4224 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4225 break;
4226
4227 case R_MIPS_HI16:
4228 case R_MIPS_LO16:
4229 case R_MIPS_GPREL16:
4230 case R_MIPS_GPREL32:
4231 case R_MIPS_LITERAL:
4232 case R_MIPS16_HI16:
4233 case R_MIPS16_LO16:
4234 case R_MIPS16_GPREL:
4235 gp0 = _bfd_get_gp_value (input_bfd);
4236 gp = _bfd_get_gp_value (abfd);
4237 if (dynobj)
4238 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4239 input_bfd);
4240 break;
4241
4242 default:
4243 break;
4244 }
4245
4246 if (gnu_local_gp_p)
4247 symbol = gp;
4248
4249 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4250 symbols are resolved by the loader. Add them to .rela.dyn. */
4251 if (h != NULL && is_gott_symbol (info, &h->root))
4252 {
4253 Elf_Internal_Rela outrel;
4254 bfd_byte *loc;
4255 asection *s;
4256
4257 s = mips_elf_rel_dyn_section (info, FALSE);
4258 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4259
4260 outrel.r_offset = (input_section->output_section->vma
4261 + input_section->output_offset
4262 + relocation->r_offset);
4263 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4264 outrel.r_addend = addend;
4265 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4266
4267 /* If we've written this relocation for a readonly section,
4268 we need to set DF_TEXTREL again, so that we do not delete the
4269 DT_TEXTREL tag. */
4270 if (MIPS_ELF_READONLY_SECTION (input_section))
4271 info->flags |= DF_TEXTREL;
4272
4273 *valuep = 0;
4274 return bfd_reloc_ok;
4275 }
4276
4277 /* Figure out what kind of relocation is being performed. */
4278 switch (r_type)
4279 {
4280 case R_MIPS_NONE:
4281 return bfd_reloc_continue;
4282
4283 case R_MIPS_16:
4284 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4285 overflowed_p = mips_elf_overflow_p (value, 16);
4286 break;
4287
4288 case R_MIPS_32:
4289 case R_MIPS_REL32:
4290 case R_MIPS_64:
4291 if ((info->shared
4292 || (!htab->is_vxworks
4293 && htab->root.dynamic_sections_created
4294 && h != NULL
4295 && h->root.def_dynamic
4296 && !h->root.def_regular))
4297 && r_symndx != 0
4298 && (input_section->flags & SEC_ALLOC) != 0)
4299 {
4300 /* If we're creating a shared library, or this relocation is
4301 against a symbol in a shared library, then we can't know
4302 where the symbol will end up. So, we create a relocation
4303 record in the output, and leave the job up to the dynamic
4304 linker.
4305
4306 In VxWorks executables, references to external symbols
4307 are handled using copy relocs or PLT stubs, so there's
4308 no need to add a dynamic relocation here. */
4309 value = addend;
4310 if (!mips_elf_create_dynamic_relocation (abfd,
4311 info,
4312 relocation,
4313 h,
4314 sec,
4315 symbol,
4316 &value,
4317 input_section))
4318 return bfd_reloc_undefined;
4319 }
4320 else
4321 {
4322 if (r_type != R_MIPS_REL32)
4323 value = symbol + addend;
4324 else
4325 value = addend;
4326 }
4327 value &= howto->dst_mask;
4328 break;
4329
4330 case R_MIPS_PC32:
4331 value = symbol + addend - p;
4332 value &= howto->dst_mask;
4333 break;
4334
4335 case R_MIPS16_26:
4336 /* The calculation for R_MIPS16_26 is just the same as for an
4337 R_MIPS_26. It's only the storage of the relocated field into
4338 the output file that's different. That's handled in
4339 mips_elf_perform_relocation. So, we just fall through to the
4340 R_MIPS_26 case here. */
4341 case R_MIPS_26:
4342 if (local_p)
4343 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4344 else
4345 {
4346 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4347 if (h->root.root.type != bfd_link_hash_undefweak)
4348 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4349 }
4350 value &= howto->dst_mask;
4351 break;
4352
4353 case R_MIPS_TLS_DTPREL_HI16:
4354 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4355 & howto->dst_mask);
4356 break;
4357
4358 case R_MIPS_TLS_DTPREL_LO16:
4359 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4360 break;
4361
4362 case R_MIPS_TLS_TPREL_HI16:
4363 value = (mips_elf_high (addend + symbol - tprel_base (info))
4364 & howto->dst_mask);
4365 break;
4366
4367 case R_MIPS_TLS_TPREL_LO16:
4368 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4369 break;
4370
4371 case R_MIPS_HI16:
4372 case R_MIPS16_HI16:
4373 if (!gp_disp_p)
4374 {
4375 value = mips_elf_high (addend + symbol);
4376 value &= howto->dst_mask;
4377 }
4378 else
4379 {
4380 /* For MIPS16 ABI code we generate this sequence
4381 0: li $v0,%hi(_gp_disp)
4382 4: addiupc $v1,%lo(_gp_disp)
4383 8: sll $v0,16
4384 12: addu $v0,$v1
4385 14: move $gp,$v0
4386 So the offsets of hi and lo relocs are the same, but the
4387 $pc is four higher than $t9 would be, so reduce
4388 both reloc addends by 4. */
4389 if (r_type == R_MIPS16_HI16)
4390 value = mips_elf_high (addend + gp - p - 4);
4391 else
4392 value = mips_elf_high (addend + gp - p);
4393 overflowed_p = mips_elf_overflow_p (value, 16);
4394 }
4395 break;
4396
4397 case R_MIPS_LO16:
4398 case R_MIPS16_LO16:
4399 if (!gp_disp_p)
4400 value = (symbol + addend) & howto->dst_mask;
4401 else
4402 {
4403 /* See the comment for R_MIPS16_HI16 above for the reason
4404 for this conditional. */
4405 if (r_type == R_MIPS16_LO16)
4406 value = addend + gp - p;
4407 else
4408 value = addend + gp - p + 4;
4409 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4410 for overflow. But, on, say, IRIX5, relocations against
4411 _gp_disp are normally generated from the .cpload
4412 pseudo-op. It generates code that normally looks like
4413 this:
4414
4415 lui $gp,%hi(_gp_disp)
4416 addiu $gp,$gp,%lo(_gp_disp)
4417 addu $gp,$gp,$t9
4418
4419 Here $t9 holds the address of the function being called,
4420 as required by the MIPS ELF ABI. The R_MIPS_LO16
4421 relocation can easily overflow in this situation, but the
4422 R_MIPS_HI16 relocation will handle the overflow.
4423 Therefore, we consider this a bug in the MIPS ABI, and do
4424 not check for overflow here. */
4425 }
4426 break;
4427
4428 case R_MIPS_LITERAL:
4429 /* Because we don't merge literal sections, we can handle this
4430 just like R_MIPS_GPREL16. In the long run, we should merge
4431 shared literals, and then we will need to additional work
4432 here. */
4433
4434 /* Fall through. */
4435
4436 case R_MIPS16_GPREL:
4437 /* The R_MIPS16_GPREL performs the same calculation as
4438 R_MIPS_GPREL16, but stores the relocated bits in a different
4439 order. We don't need to do anything special here; the
4440 differences are handled in mips_elf_perform_relocation. */
4441 case R_MIPS_GPREL16:
4442 /* Only sign-extend the addend if it was extracted from the
4443 instruction. If the addend was separate, leave it alone,
4444 otherwise we may lose significant bits. */
4445 if (howto->partial_inplace)
4446 addend = _bfd_mips_elf_sign_extend (addend, 16);
4447 value = symbol + addend - gp;
4448 /* If the symbol was local, any earlier relocatable links will
4449 have adjusted its addend with the gp offset, so compensate
4450 for that now. Don't do it for symbols forced local in this
4451 link, though, since they won't have had the gp offset applied
4452 to them before. */
4453 if (was_local_p)
4454 value += gp0;
4455 overflowed_p = mips_elf_overflow_p (value, 16);
4456 break;
4457
4458 case R_MIPS_GOT16:
4459 case R_MIPS_CALL16:
4460 /* VxWorks does not have separate local and global semantics for
4461 R_MIPS_GOT16; every relocation evaluates to "G". */
4462 if (!htab->is_vxworks && local_p)
4463 {
4464 bfd_boolean forced;
4465
4466 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4467 local_sections, FALSE);
4468 value = mips_elf_got16_entry (abfd, input_bfd, info,
4469 symbol + addend, forced);
4470 if (value == MINUS_ONE)
4471 return bfd_reloc_outofrange;
4472 value
4473 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4474 overflowed_p = mips_elf_overflow_p (value, 16);
4475 break;
4476 }
4477
4478 /* Fall through. */
4479
4480 case R_MIPS_TLS_GD:
4481 case R_MIPS_TLS_GOTTPREL:
4482 case R_MIPS_TLS_LDM:
4483 case R_MIPS_GOT_DISP:
4484 got_disp:
4485 value = g;
4486 overflowed_p = mips_elf_overflow_p (value, 16);
4487 break;
4488
4489 case R_MIPS_GPREL32:
4490 value = (addend + symbol + gp0 - gp);
4491 if (!save_addend)
4492 value &= howto->dst_mask;
4493 break;
4494
4495 case R_MIPS_PC16:
4496 case R_MIPS_GNU_REL16_S2:
4497 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4498 overflowed_p = mips_elf_overflow_p (value, 18);
4499 value >>= howto->rightshift;
4500 value &= howto->dst_mask;
4501 break;
4502
4503 case R_MIPS_GOT_HI16:
4504 case R_MIPS_CALL_HI16:
4505 /* We're allowed to handle these two relocations identically.
4506 The dynamic linker is allowed to handle the CALL relocations
4507 differently by creating a lazy evaluation stub. */
4508 value = g;
4509 value = mips_elf_high (value);
4510 value &= howto->dst_mask;
4511 break;
4512
4513 case R_MIPS_GOT_LO16:
4514 case R_MIPS_CALL_LO16:
4515 value = g & howto->dst_mask;
4516 break;
4517
4518 case R_MIPS_GOT_PAGE:
4519 /* GOT_PAGE relocations that reference non-local symbols decay
4520 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4521 0. */
4522 if (! local_p)
4523 goto got_disp;
4524 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4525 if (value == MINUS_ONE)
4526 return bfd_reloc_outofrange;
4527 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4528 overflowed_p = mips_elf_overflow_p (value, 16);
4529 break;
4530
4531 case R_MIPS_GOT_OFST:
4532 if (local_p)
4533 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4534 else
4535 value = addend;
4536 overflowed_p = mips_elf_overflow_p (value, 16);
4537 break;
4538
4539 case R_MIPS_SUB:
4540 value = symbol - addend;
4541 value &= howto->dst_mask;
4542 break;
4543
4544 case R_MIPS_HIGHER:
4545 value = mips_elf_higher (addend + symbol);
4546 value &= howto->dst_mask;
4547 break;
4548
4549 case R_MIPS_HIGHEST:
4550 value = mips_elf_highest (addend + symbol);
4551 value &= howto->dst_mask;
4552 break;
4553
4554 case R_MIPS_SCN_DISP:
4555 value = symbol + addend - sec->output_offset;
4556 value &= howto->dst_mask;
4557 break;
4558
4559 case R_MIPS_JALR:
4560 /* This relocation is only a hint. In some cases, we optimize
4561 it into a bal instruction. But we don't try to optimize
4562 branches to the PLT; that will wind up wasting time. */
4563 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4564 return bfd_reloc_continue;
4565 value = symbol + addend;
4566 break;
4567
4568 case R_MIPS_PJUMP:
4569 case R_MIPS_GNU_VTINHERIT:
4570 case R_MIPS_GNU_VTENTRY:
4571 /* We don't do anything with these at present. */
4572 return bfd_reloc_continue;
4573
4574 default:
4575 /* An unrecognized relocation type. */
4576 return bfd_reloc_notsupported;
4577 }
4578
4579 /* Store the VALUE for our caller. */
4580 *valuep = value;
4581 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4582 }
4583
4584 /* Obtain the field relocated by RELOCATION. */
4585
4586 static bfd_vma
4587 mips_elf_obtain_contents (reloc_howto_type *howto,
4588 const Elf_Internal_Rela *relocation,
4589 bfd *input_bfd, bfd_byte *contents)
4590 {
4591 bfd_vma x;
4592 bfd_byte *location = contents + relocation->r_offset;
4593
4594 /* Obtain the bytes. */
4595 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4596
4597 return x;
4598 }
4599
4600 /* It has been determined that the result of the RELOCATION is the
4601 VALUE. Use HOWTO to place VALUE into the output file at the
4602 appropriate position. The SECTION is the section to which the
4603 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4604 for the relocation must be either JAL or JALX, and it is
4605 unconditionally converted to JALX.
4606
4607 Returns FALSE if anything goes wrong. */
4608
4609 static bfd_boolean
4610 mips_elf_perform_relocation (struct bfd_link_info *info,
4611 reloc_howto_type *howto,
4612 const Elf_Internal_Rela *relocation,
4613 bfd_vma value, bfd *input_bfd,
4614 asection *input_section, bfd_byte *contents,
4615 bfd_boolean require_jalx)
4616 {
4617 bfd_vma x;
4618 bfd_byte *location;
4619 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4620
4621 /* Figure out where the relocation is occurring. */
4622 location = contents + relocation->r_offset;
4623
4624 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4625
4626 /* Obtain the current value. */
4627 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4628
4629 /* Clear the field we are setting. */
4630 x &= ~howto->dst_mask;
4631
4632 /* Set the field. */
4633 x |= (value & howto->dst_mask);
4634
4635 /* If required, turn JAL into JALX. */
4636 if (require_jalx)
4637 {
4638 bfd_boolean ok;
4639 bfd_vma opcode = x >> 26;
4640 bfd_vma jalx_opcode;
4641
4642 /* Check to see if the opcode is already JAL or JALX. */
4643 if (r_type == R_MIPS16_26)
4644 {
4645 ok = ((opcode == 0x6) || (opcode == 0x7));
4646 jalx_opcode = 0x7;
4647 }
4648 else
4649 {
4650 ok = ((opcode == 0x3) || (opcode == 0x1d));
4651 jalx_opcode = 0x1d;
4652 }
4653
4654 /* If the opcode is not JAL or JALX, there's a problem. */
4655 if (!ok)
4656 {
4657 (*_bfd_error_handler)
4658 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4659 input_bfd,
4660 input_section,
4661 (unsigned long) relocation->r_offset);
4662 bfd_set_error (bfd_error_bad_value);
4663 return FALSE;
4664 }
4665
4666 /* Make this the JALX opcode. */
4667 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4668 }
4669
4670 /* On the RM9000, bal is faster than jal, because bal uses branch
4671 prediction hardware. If we are linking for the RM9000, and we
4672 see jal, and bal fits, use it instead. Note that this
4673 transformation should be safe for all architectures. */
4674 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4675 && !info->relocatable
4676 && !require_jalx
4677 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4678 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4679 {
4680 bfd_vma addr;
4681 bfd_vma dest;
4682 bfd_signed_vma off;
4683
4684 addr = (input_section->output_section->vma
4685 + input_section->output_offset
4686 + relocation->r_offset
4687 + 4);
4688 if (r_type == R_MIPS_26)
4689 dest = (value << 2) | ((addr >> 28) << 28);
4690 else
4691 dest = value;
4692 off = dest - addr;
4693 if (off <= 0x1ffff && off >= -0x20000)
4694 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4695 }
4696
4697 /* Put the value into the output. */
4698 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4699
4700 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4701 location);
4702
4703 return TRUE;
4704 }
4705
4706 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4707
4708 static bfd_boolean
4709 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4710 {
4711 const char *name = bfd_get_section_name (abfd, section);
4712
4713 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4714 }
4715 \f
4716 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4717
4718 static void
4719 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4720 unsigned int n)
4721 {
4722 asection *s;
4723 struct mips_elf_link_hash_table *htab;
4724
4725 htab = mips_elf_hash_table (info);
4726 s = mips_elf_rel_dyn_section (info, FALSE);
4727 BFD_ASSERT (s != NULL);
4728
4729 if (htab->is_vxworks)
4730 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4731 else
4732 {
4733 if (s->size == 0)
4734 {
4735 /* Make room for a null element. */
4736 s->size += MIPS_ELF_REL_SIZE (abfd);
4737 ++s->reloc_count;
4738 }
4739 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4740 }
4741 }
4742
4743 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4744 is the original relocation, which is now being transformed into a
4745 dynamic relocation. The ADDENDP is adjusted if necessary; the
4746 caller should store the result in place of the original addend. */
4747
4748 static bfd_boolean
4749 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4750 struct bfd_link_info *info,
4751 const Elf_Internal_Rela *rel,
4752 struct mips_elf_link_hash_entry *h,
4753 asection *sec, bfd_vma symbol,
4754 bfd_vma *addendp, asection *input_section)
4755 {
4756 Elf_Internal_Rela outrel[3];
4757 asection *sreloc;
4758 bfd *dynobj;
4759 int r_type;
4760 long indx;
4761 bfd_boolean defined_p;
4762 struct mips_elf_link_hash_table *htab;
4763
4764 htab = mips_elf_hash_table (info);
4765 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4766 dynobj = elf_hash_table (info)->dynobj;
4767 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4768 BFD_ASSERT (sreloc != NULL);
4769 BFD_ASSERT (sreloc->contents != NULL);
4770 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4771 < sreloc->size);
4772
4773 outrel[0].r_offset =
4774 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4775 if (ABI_64_P (output_bfd))
4776 {
4777 outrel[1].r_offset =
4778 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4779 outrel[2].r_offset =
4780 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4781 }
4782
4783 if (outrel[0].r_offset == MINUS_ONE)
4784 /* The relocation field has been deleted. */
4785 return TRUE;
4786
4787 if (outrel[0].r_offset == MINUS_TWO)
4788 {
4789 /* The relocation field has been converted into a relative value of
4790 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4791 the field to be fully relocated, so add in the symbol's value. */
4792 *addendp += symbol;
4793 return TRUE;
4794 }
4795
4796 /* We must now calculate the dynamic symbol table index to use
4797 in the relocation. */
4798 if (h != NULL
4799 && (!h->root.def_regular
4800 || (info->shared && !info->symbolic && !h->root.forced_local)))
4801 {
4802 indx = h->root.dynindx;
4803 if (SGI_COMPAT (output_bfd))
4804 defined_p = h->root.def_regular;
4805 else
4806 /* ??? glibc's ld.so just adds the final GOT entry to the
4807 relocation field. It therefore treats relocs against
4808 defined symbols in the same way as relocs against
4809 undefined symbols. */
4810 defined_p = FALSE;
4811 }
4812 else
4813 {
4814 if (sec != NULL && bfd_is_abs_section (sec))
4815 indx = 0;
4816 else if (sec == NULL || sec->owner == NULL)
4817 {
4818 bfd_set_error (bfd_error_bad_value);
4819 return FALSE;
4820 }
4821 else
4822 {
4823 indx = elf_section_data (sec->output_section)->dynindx;
4824 if (indx == 0)
4825 {
4826 asection *osec = htab->root.text_index_section;
4827 indx = elf_section_data (osec)->dynindx;
4828 }
4829 if (indx == 0)
4830 abort ();
4831 }
4832
4833 /* Instead of generating a relocation using the section
4834 symbol, we may as well make it a fully relative
4835 relocation. We want to avoid generating relocations to
4836 local symbols because we used to generate them
4837 incorrectly, without adding the original symbol value,
4838 which is mandated by the ABI for section symbols. In
4839 order to give dynamic loaders and applications time to
4840 phase out the incorrect use, we refrain from emitting
4841 section-relative relocations. It's not like they're
4842 useful, after all. This should be a bit more efficient
4843 as well. */
4844 /* ??? Although this behavior is compatible with glibc's ld.so,
4845 the ABI says that relocations against STN_UNDEF should have
4846 a symbol value of 0. Irix rld honors this, so relocations
4847 against STN_UNDEF have no effect. */
4848 if (!SGI_COMPAT (output_bfd))
4849 indx = 0;
4850 defined_p = TRUE;
4851 }
4852
4853 /* If the relocation was previously an absolute relocation and
4854 this symbol will not be referred to by the relocation, we must
4855 adjust it by the value we give it in the dynamic symbol table.
4856 Otherwise leave the job up to the dynamic linker. */
4857 if (defined_p && r_type != R_MIPS_REL32)
4858 *addendp += symbol;
4859
4860 if (htab->is_vxworks)
4861 /* VxWorks uses non-relative relocations for this. */
4862 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4863 else
4864 /* The relocation is always an REL32 relocation because we don't
4865 know where the shared library will wind up at load-time. */
4866 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4867 R_MIPS_REL32);
4868
4869 /* For strict adherence to the ABI specification, we should
4870 generate a R_MIPS_64 relocation record by itself before the
4871 _REL32/_64 record as well, such that the addend is read in as
4872 a 64-bit value (REL32 is a 32-bit relocation, after all).
4873 However, since none of the existing ELF64 MIPS dynamic
4874 loaders seems to care, we don't waste space with these
4875 artificial relocations. If this turns out to not be true,
4876 mips_elf_allocate_dynamic_relocation() should be tweaked so
4877 as to make room for a pair of dynamic relocations per
4878 invocation if ABI_64_P, and here we should generate an
4879 additional relocation record with R_MIPS_64 by itself for a
4880 NULL symbol before this relocation record. */
4881 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4882 ABI_64_P (output_bfd)
4883 ? R_MIPS_64
4884 : R_MIPS_NONE);
4885 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4886
4887 /* Adjust the output offset of the relocation to reference the
4888 correct location in the output file. */
4889 outrel[0].r_offset += (input_section->output_section->vma
4890 + input_section->output_offset);
4891 outrel[1].r_offset += (input_section->output_section->vma
4892 + input_section->output_offset);
4893 outrel[2].r_offset += (input_section->output_section->vma
4894 + input_section->output_offset);
4895
4896 /* Put the relocation back out. We have to use the special
4897 relocation outputter in the 64-bit case since the 64-bit
4898 relocation format is non-standard. */
4899 if (ABI_64_P (output_bfd))
4900 {
4901 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4902 (output_bfd, &outrel[0],
4903 (sreloc->contents
4904 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4905 }
4906 else if (htab->is_vxworks)
4907 {
4908 /* VxWorks uses RELA rather than REL dynamic relocations. */
4909 outrel[0].r_addend = *addendp;
4910 bfd_elf32_swap_reloca_out
4911 (output_bfd, &outrel[0],
4912 (sreloc->contents
4913 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4914 }
4915 else
4916 bfd_elf32_swap_reloc_out
4917 (output_bfd, &outrel[0],
4918 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4919
4920 /* We've now added another relocation. */
4921 ++sreloc->reloc_count;
4922
4923 /* Make sure the output section is writable. The dynamic linker
4924 will be writing to it. */
4925 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4926 |= SHF_WRITE;
4927
4928 /* On IRIX5, make an entry of compact relocation info. */
4929 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4930 {
4931 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4932 bfd_byte *cr;
4933
4934 if (scpt)
4935 {
4936 Elf32_crinfo cptrel;
4937
4938 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4939 cptrel.vaddr = (rel->r_offset
4940 + input_section->output_section->vma
4941 + input_section->output_offset);
4942 if (r_type == R_MIPS_REL32)
4943 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4944 else
4945 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4946 mips_elf_set_cr_dist2to (cptrel, 0);
4947 cptrel.konst = *addendp;
4948
4949 cr = (scpt->contents
4950 + sizeof (Elf32_External_compact_rel));
4951 mips_elf_set_cr_relvaddr (cptrel, 0);
4952 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4953 ((Elf32_External_crinfo *) cr
4954 + scpt->reloc_count));
4955 ++scpt->reloc_count;
4956 }
4957 }
4958
4959 /* If we've written this relocation for a readonly section,
4960 we need to set DF_TEXTREL again, so that we do not delete the
4961 DT_TEXTREL tag. */
4962 if (MIPS_ELF_READONLY_SECTION (input_section))
4963 info->flags |= DF_TEXTREL;
4964
4965 return TRUE;
4966 }
4967 \f
4968 /* Return the MACH for a MIPS e_flags value. */
4969
4970 unsigned long
4971 _bfd_elf_mips_mach (flagword flags)
4972 {
4973 switch (flags & EF_MIPS_MACH)
4974 {
4975 case E_MIPS_MACH_3900:
4976 return bfd_mach_mips3900;
4977
4978 case E_MIPS_MACH_4010:
4979 return bfd_mach_mips4010;
4980
4981 case E_MIPS_MACH_4100:
4982 return bfd_mach_mips4100;
4983
4984 case E_MIPS_MACH_4111:
4985 return bfd_mach_mips4111;
4986
4987 case E_MIPS_MACH_4120:
4988 return bfd_mach_mips4120;
4989
4990 case E_MIPS_MACH_4650:
4991 return bfd_mach_mips4650;
4992
4993 case E_MIPS_MACH_5400:
4994 return bfd_mach_mips5400;
4995
4996 case E_MIPS_MACH_5500:
4997 return bfd_mach_mips5500;
4998
4999 case E_MIPS_MACH_9000:
5000 return bfd_mach_mips9000;
5001
5002 case E_MIPS_MACH_SB1:
5003 return bfd_mach_mips_sb1;
5004
5005 default:
5006 switch (flags & EF_MIPS_ARCH)
5007 {
5008 default:
5009 case E_MIPS_ARCH_1:
5010 return bfd_mach_mips3000;
5011
5012 case E_MIPS_ARCH_2:
5013 return bfd_mach_mips6000;
5014
5015 case E_MIPS_ARCH_3:
5016 return bfd_mach_mips4000;
5017
5018 case E_MIPS_ARCH_4:
5019 return bfd_mach_mips8000;
5020
5021 case E_MIPS_ARCH_5:
5022 return bfd_mach_mips5;
5023
5024 case E_MIPS_ARCH_32:
5025 return bfd_mach_mipsisa32;
5026
5027 case E_MIPS_ARCH_64:
5028 return bfd_mach_mipsisa64;
5029
5030 case E_MIPS_ARCH_32R2:
5031 return bfd_mach_mipsisa32r2;
5032
5033 case E_MIPS_ARCH_64R2:
5034 return bfd_mach_mipsisa64r2;
5035 }
5036 }
5037
5038 return 0;
5039 }
5040
5041 /* Return printable name for ABI. */
5042
5043 static INLINE char *
5044 elf_mips_abi_name (bfd *abfd)
5045 {
5046 flagword flags;
5047
5048 flags = elf_elfheader (abfd)->e_flags;
5049 switch (flags & EF_MIPS_ABI)
5050 {
5051 case 0:
5052 if (ABI_N32_P (abfd))
5053 return "N32";
5054 else if (ABI_64_P (abfd))
5055 return "64";
5056 else
5057 return "none";
5058 case E_MIPS_ABI_O32:
5059 return "O32";
5060 case E_MIPS_ABI_O64:
5061 return "O64";
5062 case E_MIPS_ABI_EABI32:
5063 return "EABI32";
5064 case E_MIPS_ABI_EABI64:
5065 return "EABI64";
5066 default:
5067 return "unknown abi";
5068 }
5069 }
5070 \f
5071 /* MIPS ELF uses two common sections. One is the usual one, and the
5072 other is for small objects. All the small objects are kept
5073 together, and then referenced via the gp pointer, which yields
5074 faster assembler code. This is what we use for the small common
5075 section. This approach is copied from ecoff.c. */
5076 static asection mips_elf_scom_section;
5077 static asymbol mips_elf_scom_symbol;
5078 static asymbol *mips_elf_scom_symbol_ptr;
5079
5080 /* MIPS ELF also uses an acommon section, which represents an
5081 allocated common symbol which may be overridden by a
5082 definition in a shared library. */
5083 static asection mips_elf_acom_section;
5084 static asymbol mips_elf_acom_symbol;
5085 static asymbol *mips_elf_acom_symbol_ptr;
5086
5087 /* Handle the special MIPS section numbers that a symbol may use.
5088 This is used for both the 32-bit and the 64-bit ABI. */
5089
5090 void
5091 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5092 {
5093 elf_symbol_type *elfsym;
5094
5095 elfsym = (elf_symbol_type *) asym;
5096 switch (elfsym->internal_elf_sym.st_shndx)
5097 {
5098 case SHN_MIPS_ACOMMON:
5099 /* This section is used in a dynamically linked executable file.
5100 It is an allocated common section. The dynamic linker can
5101 either resolve these symbols to something in a shared
5102 library, or it can just leave them here. For our purposes,
5103 we can consider these symbols to be in a new section. */
5104 if (mips_elf_acom_section.name == NULL)
5105 {
5106 /* Initialize the acommon section. */
5107 mips_elf_acom_section.name = ".acommon";
5108 mips_elf_acom_section.flags = SEC_ALLOC;
5109 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5110 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5111 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5112 mips_elf_acom_symbol.name = ".acommon";
5113 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5114 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5115 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5116 }
5117 asym->section = &mips_elf_acom_section;
5118 break;
5119
5120 case SHN_COMMON:
5121 /* Common symbols less than the GP size are automatically
5122 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5123 if (asym->value > elf_gp_size (abfd)
5124 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5125 || IRIX_COMPAT (abfd) == ict_irix6)
5126 break;
5127 /* Fall through. */
5128 case SHN_MIPS_SCOMMON:
5129 if (mips_elf_scom_section.name == NULL)
5130 {
5131 /* Initialize the small common section. */
5132 mips_elf_scom_section.name = ".scommon";
5133 mips_elf_scom_section.flags = SEC_IS_COMMON;
5134 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5135 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5136 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5137 mips_elf_scom_symbol.name = ".scommon";
5138 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5139 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5140 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5141 }
5142 asym->section = &mips_elf_scom_section;
5143 asym->value = elfsym->internal_elf_sym.st_size;
5144 break;
5145
5146 case SHN_MIPS_SUNDEFINED:
5147 asym->section = bfd_und_section_ptr;
5148 break;
5149
5150 case SHN_MIPS_TEXT:
5151 {
5152 asection *section = bfd_get_section_by_name (abfd, ".text");
5153
5154 BFD_ASSERT (SGI_COMPAT (abfd));
5155 if (section != NULL)
5156 {
5157 asym->section = section;
5158 /* MIPS_TEXT is a bit special, the address is not an offset
5159 to the base of the .text section. So substract the section
5160 base address to make it an offset. */
5161 asym->value -= section->vma;
5162 }
5163 }
5164 break;
5165
5166 case SHN_MIPS_DATA:
5167 {
5168 asection *section = bfd_get_section_by_name (abfd, ".data");
5169
5170 BFD_ASSERT (SGI_COMPAT (abfd));
5171 if (section != NULL)
5172 {
5173 asym->section = section;
5174 /* MIPS_DATA is a bit special, the address is not an offset
5175 to the base of the .data section. So substract the section
5176 base address to make it an offset. */
5177 asym->value -= section->vma;
5178 }
5179 }
5180 break;
5181 }
5182 }
5183 \f
5184 /* Implement elf_backend_eh_frame_address_size. This differs from
5185 the default in the way it handles EABI64.
5186
5187 EABI64 was originally specified as an LP64 ABI, and that is what
5188 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5189 historically accepted the combination of -mabi=eabi and -mlong32,
5190 and this ILP32 variation has become semi-official over time.
5191 Both forms use elf32 and have pointer-sized FDE addresses.
5192
5193 If an EABI object was generated by GCC 4.0 or above, it will have
5194 an empty .gcc_compiled_longXX section, where XX is the size of longs
5195 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5196 have no special marking to distinguish them from LP64 objects.
5197
5198 We don't want users of the official LP64 ABI to be punished for the
5199 existence of the ILP32 variant, but at the same time, we don't want
5200 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5201 We therefore take the following approach:
5202
5203 - If ABFD contains a .gcc_compiled_longXX section, use it to
5204 determine the pointer size.
5205
5206 - Otherwise check the type of the first relocation. Assume that
5207 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5208
5209 - Otherwise punt.
5210
5211 The second check is enough to detect LP64 objects generated by pre-4.0
5212 compilers because, in the kind of output generated by those compilers,
5213 the first relocation will be associated with either a CIE personality
5214 routine or an FDE start address. Furthermore, the compilers never
5215 used a special (non-pointer) encoding for this ABI.
5216
5217 Checking the relocation type should also be safe because there is no
5218 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5219 did so. */
5220
5221 unsigned int
5222 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5223 {
5224 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5225 return 8;
5226 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5227 {
5228 bfd_boolean long32_p, long64_p;
5229
5230 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5231 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5232 if (long32_p && long64_p)
5233 return 0;
5234 if (long32_p)
5235 return 4;
5236 if (long64_p)
5237 return 8;
5238
5239 if (sec->reloc_count > 0
5240 && elf_section_data (sec)->relocs != NULL
5241 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5242 == R_MIPS_64))
5243 return 8;
5244
5245 return 0;
5246 }
5247 return 4;
5248 }
5249 \f
5250 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5251 relocations against two unnamed section symbols to resolve to the
5252 same address. For example, if we have code like:
5253
5254 lw $4,%got_disp(.data)($gp)
5255 lw $25,%got_disp(.text)($gp)
5256 jalr $25
5257
5258 then the linker will resolve both relocations to .data and the program
5259 will jump there rather than to .text.
5260
5261 We can work around this problem by giving names to local section symbols.
5262 This is also what the MIPSpro tools do. */
5263
5264 bfd_boolean
5265 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5266 {
5267 return SGI_COMPAT (abfd);
5268 }
5269 \f
5270 /* Work over a section just before writing it out. This routine is
5271 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5272 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5273 a better way. */
5274
5275 bfd_boolean
5276 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5277 {
5278 if (hdr->sh_type == SHT_MIPS_REGINFO
5279 && hdr->sh_size > 0)
5280 {
5281 bfd_byte buf[4];
5282
5283 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5284 BFD_ASSERT (hdr->contents == NULL);
5285
5286 if (bfd_seek (abfd,
5287 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5288 SEEK_SET) != 0)
5289 return FALSE;
5290 H_PUT_32 (abfd, elf_gp (abfd), buf);
5291 if (bfd_bwrite (buf, 4, abfd) != 4)
5292 return FALSE;
5293 }
5294
5295 if (hdr->sh_type == SHT_MIPS_OPTIONS
5296 && hdr->bfd_section != NULL
5297 && mips_elf_section_data (hdr->bfd_section) != NULL
5298 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5299 {
5300 bfd_byte *contents, *l, *lend;
5301
5302 /* We stored the section contents in the tdata field in the
5303 set_section_contents routine. We save the section contents
5304 so that we don't have to read them again.
5305 At this point we know that elf_gp is set, so we can look
5306 through the section contents to see if there is an
5307 ODK_REGINFO structure. */
5308
5309 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5310 l = contents;
5311 lend = contents + hdr->sh_size;
5312 while (l + sizeof (Elf_External_Options) <= lend)
5313 {
5314 Elf_Internal_Options intopt;
5315
5316 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5317 &intopt);
5318 if (intopt.size < sizeof (Elf_External_Options))
5319 {
5320 (*_bfd_error_handler)
5321 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5322 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5323 break;
5324 }
5325 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5326 {
5327 bfd_byte buf[8];
5328
5329 if (bfd_seek (abfd,
5330 (hdr->sh_offset
5331 + (l - contents)
5332 + sizeof (Elf_External_Options)
5333 + (sizeof (Elf64_External_RegInfo) - 8)),
5334 SEEK_SET) != 0)
5335 return FALSE;
5336 H_PUT_64 (abfd, elf_gp (abfd), buf);
5337 if (bfd_bwrite (buf, 8, abfd) != 8)
5338 return FALSE;
5339 }
5340 else if (intopt.kind == ODK_REGINFO)
5341 {
5342 bfd_byte buf[4];
5343
5344 if (bfd_seek (abfd,
5345 (hdr->sh_offset
5346 + (l - contents)
5347 + sizeof (Elf_External_Options)
5348 + (sizeof (Elf32_External_RegInfo) - 4)),
5349 SEEK_SET) != 0)
5350 return FALSE;
5351 H_PUT_32 (abfd, elf_gp (abfd), buf);
5352 if (bfd_bwrite (buf, 4, abfd) != 4)
5353 return FALSE;
5354 }
5355 l += intopt.size;
5356 }
5357 }
5358
5359 if (hdr->bfd_section != NULL)
5360 {
5361 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5362
5363 if (strcmp (name, ".sdata") == 0
5364 || strcmp (name, ".lit8") == 0
5365 || strcmp (name, ".lit4") == 0)
5366 {
5367 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5368 hdr->sh_type = SHT_PROGBITS;
5369 }
5370 else if (strcmp (name, ".sbss") == 0)
5371 {
5372 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5373 hdr->sh_type = SHT_NOBITS;
5374 }
5375 else if (strcmp (name, ".srdata") == 0)
5376 {
5377 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5378 hdr->sh_type = SHT_PROGBITS;
5379 }
5380 else if (strcmp (name, ".compact_rel") == 0)
5381 {
5382 hdr->sh_flags = 0;
5383 hdr->sh_type = SHT_PROGBITS;
5384 }
5385 else if (strcmp (name, ".rtproc") == 0)
5386 {
5387 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5388 {
5389 unsigned int adjust;
5390
5391 adjust = hdr->sh_size % hdr->sh_addralign;
5392 if (adjust != 0)
5393 hdr->sh_size += hdr->sh_addralign - adjust;
5394 }
5395 }
5396 }
5397
5398 return TRUE;
5399 }
5400
5401 /* Handle a MIPS specific section when reading an object file. This
5402 is called when elfcode.h finds a section with an unknown type.
5403 This routine supports both the 32-bit and 64-bit ELF ABI.
5404
5405 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5406 how to. */
5407
5408 bfd_boolean
5409 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5410 Elf_Internal_Shdr *hdr,
5411 const char *name,
5412 int shindex)
5413 {
5414 flagword flags = 0;
5415
5416 /* There ought to be a place to keep ELF backend specific flags, but
5417 at the moment there isn't one. We just keep track of the
5418 sections by their name, instead. Fortunately, the ABI gives
5419 suggested names for all the MIPS specific sections, so we will
5420 probably get away with this. */
5421 switch (hdr->sh_type)
5422 {
5423 case SHT_MIPS_LIBLIST:
5424 if (strcmp (name, ".liblist") != 0)
5425 return FALSE;
5426 break;
5427 case SHT_MIPS_MSYM:
5428 if (strcmp (name, ".msym") != 0)
5429 return FALSE;
5430 break;
5431 case SHT_MIPS_CONFLICT:
5432 if (strcmp (name, ".conflict") != 0)
5433 return FALSE;
5434 break;
5435 case SHT_MIPS_GPTAB:
5436 if (! CONST_STRNEQ (name, ".gptab."))
5437 return FALSE;
5438 break;
5439 case SHT_MIPS_UCODE:
5440 if (strcmp (name, ".ucode") != 0)
5441 return FALSE;
5442 break;
5443 case SHT_MIPS_DEBUG:
5444 if (strcmp (name, ".mdebug") != 0)
5445 return FALSE;
5446 flags = SEC_DEBUGGING;
5447 break;
5448 case SHT_MIPS_REGINFO:
5449 if (strcmp (name, ".reginfo") != 0
5450 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5451 return FALSE;
5452 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5453 break;
5454 case SHT_MIPS_IFACE:
5455 if (strcmp (name, ".MIPS.interfaces") != 0)
5456 return FALSE;
5457 break;
5458 case SHT_MIPS_CONTENT:
5459 if (! CONST_STRNEQ (name, ".MIPS.content"))
5460 return FALSE;
5461 break;
5462 case SHT_MIPS_OPTIONS:
5463 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5464 return FALSE;
5465 break;
5466 case SHT_MIPS_DWARF:
5467 if (! CONST_STRNEQ (name, ".debug_"))
5468 return FALSE;
5469 break;
5470 case SHT_MIPS_SYMBOL_LIB:
5471 if (strcmp (name, ".MIPS.symlib") != 0)
5472 return FALSE;
5473 break;
5474 case SHT_MIPS_EVENTS:
5475 if (! CONST_STRNEQ (name, ".MIPS.events")
5476 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5477 return FALSE;
5478 break;
5479 default:
5480 break;
5481 }
5482
5483 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5484 return FALSE;
5485
5486 if (flags)
5487 {
5488 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5489 (bfd_get_section_flags (abfd,
5490 hdr->bfd_section)
5491 | flags)))
5492 return FALSE;
5493 }
5494
5495 /* FIXME: We should record sh_info for a .gptab section. */
5496
5497 /* For a .reginfo section, set the gp value in the tdata information
5498 from the contents of this section. We need the gp value while
5499 processing relocs, so we just get it now. The .reginfo section
5500 is not used in the 64-bit MIPS ELF ABI. */
5501 if (hdr->sh_type == SHT_MIPS_REGINFO)
5502 {
5503 Elf32_External_RegInfo ext;
5504 Elf32_RegInfo s;
5505
5506 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5507 &ext, 0, sizeof ext))
5508 return FALSE;
5509 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5510 elf_gp (abfd) = s.ri_gp_value;
5511 }
5512
5513 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5514 set the gp value based on what we find. We may see both
5515 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5516 they should agree. */
5517 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5518 {
5519 bfd_byte *contents, *l, *lend;
5520
5521 contents = bfd_malloc (hdr->sh_size);
5522 if (contents == NULL)
5523 return FALSE;
5524 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5525 0, hdr->sh_size))
5526 {
5527 free (contents);
5528 return FALSE;
5529 }
5530 l = contents;
5531 lend = contents + hdr->sh_size;
5532 while (l + sizeof (Elf_External_Options) <= lend)
5533 {
5534 Elf_Internal_Options intopt;
5535
5536 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5537 &intopt);
5538 if (intopt.size < sizeof (Elf_External_Options))
5539 {
5540 (*_bfd_error_handler)
5541 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5542 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5543 break;
5544 }
5545 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5546 {
5547 Elf64_Internal_RegInfo intreg;
5548
5549 bfd_mips_elf64_swap_reginfo_in
5550 (abfd,
5551 ((Elf64_External_RegInfo *)
5552 (l + sizeof (Elf_External_Options))),
5553 &intreg);
5554 elf_gp (abfd) = intreg.ri_gp_value;
5555 }
5556 else if (intopt.kind == ODK_REGINFO)
5557 {
5558 Elf32_RegInfo intreg;
5559
5560 bfd_mips_elf32_swap_reginfo_in
5561 (abfd,
5562 ((Elf32_External_RegInfo *)
5563 (l + sizeof (Elf_External_Options))),
5564 &intreg);
5565 elf_gp (abfd) = intreg.ri_gp_value;
5566 }
5567 l += intopt.size;
5568 }
5569 free (contents);
5570 }
5571
5572 return TRUE;
5573 }
5574
5575 /* Set the correct type for a MIPS ELF section. We do this by the
5576 section name, which is a hack, but ought to work. This routine is
5577 used by both the 32-bit and the 64-bit ABI. */
5578
5579 bfd_boolean
5580 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5581 {
5582 const char *name = bfd_get_section_name (abfd, sec);
5583
5584 if (strcmp (name, ".liblist") == 0)
5585 {
5586 hdr->sh_type = SHT_MIPS_LIBLIST;
5587 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5588 /* The sh_link field is set in final_write_processing. */
5589 }
5590 else if (strcmp (name, ".conflict") == 0)
5591 hdr->sh_type = SHT_MIPS_CONFLICT;
5592 else if (CONST_STRNEQ (name, ".gptab."))
5593 {
5594 hdr->sh_type = SHT_MIPS_GPTAB;
5595 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5596 /* The sh_info field is set in final_write_processing. */
5597 }
5598 else if (strcmp (name, ".ucode") == 0)
5599 hdr->sh_type = SHT_MIPS_UCODE;
5600 else if (strcmp (name, ".mdebug") == 0)
5601 {
5602 hdr->sh_type = SHT_MIPS_DEBUG;
5603 /* In a shared object on IRIX 5.3, the .mdebug section has an
5604 entsize of 0. FIXME: Does this matter? */
5605 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5606 hdr->sh_entsize = 0;
5607 else
5608 hdr->sh_entsize = 1;
5609 }
5610 else if (strcmp (name, ".reginfo") == 0)
5611 {
5612 hdr->sh_type = SHT_MIPS_REGINFO;
5613 /* In a shared object on IRIX 5.3, the .reginfo section has an
5614 entsize of 0x18. FIXME: Does this matter? */
5615 if (SGI_COMPAT (abfd))
5616 {
5617 if ((abfd->flags & DYNAMIC) != 0)
5618 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5619 else
5620 hdr->sh_entsize = 1;
5621 }
5622 else
5623 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5624 }
5625 else if (SGI_COMPAT (abfd)
5626 && (strcmp (name, ".hash") == 0
5627 || strcmp (name, ".dynamic") == 0
5628 || strcmp (name, ".dynstr") == 0))
5629 {
5630 if (SGI_COMPAT (abfd))
5631 hdr->sh_entsize = 0;
5632 #if 0
5633 /* This isn't how the IRIX6 linker behaves. */
5634 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5635 #endif
5636 }
5637 else if (strcmp (name, ".got") == 0
5638 || strcmp (name, ".srdata") == 0
5639 || strcmp (name, ".sdata") == 0
5640 || strcmp (name, ".sbss") == 0
5641 || strcmp (name, ".lit4") == 0
5642 || strcmp (name, ".lit8") == 0)
5643 hdr->sh_flags |= SHF_MIPS_GPREL;
5644 else if (strcmp (name, ".MIPS.interfaces") == 0)
5645 {
5646 hdr->sh_type = SHT_MIPS_IFACE;
5647 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5648 }
5649 else if (CONST_STRNEQ (name, ".MIPS.content"))
5650 {
5651 hdr->sh_type = SHT_MIPS_CONTENT;
5652 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5653 /* The sh_info field is set in final_write_processing. */
5654 }
5655 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5656 {
5657 hdr->sh_type = SHT_MIPS_OPTIONS;
5658 hdr->sh_entsize = 1;
5659 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5660 }
5661 else if (CONST_STRNEQ (name, ".debug_"))
5662 hdr->sh_type = SHT_MIPS_DWARF;
5663 else if (strcmp (name, ".MIPS.symlib") == 0)
5664 {
5665 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5666 /* The sh_link and sh_info fields are set in
5667 final_write_processing. */
5668 }
5669 else if (CONST_STRNEQ (name, ".MIPS.events")
5670 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5671 {
5672 hdr->sh_type = SHT_MIPS_EVENTS;
5673 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5674 /* The sh_link field is set in final_write_processing. */
5675 }
5676 else if (strcmp (name, ".msym") == 0)
5677 {
5678 hdr->sh_type = SHT_MIPS_MSYM;
5679 hdr->sh_flags |= SHF_ALLOC;
5680 hdr->sh_entsize = 8;
5681 }
5682
5683 /* The generic elf_fake_sections will set up REL_HDR using the default
5684 kind of relocations. We used to set up a second header for the
5685 non-default kind of relocations here, but only NewABI would use
5686 these, and the IRIX ld doesn't like resulting empty RELA sections.
5687 Thus we create those header only on demand now. */
5688
5689 return TRUE;
5690 }
5691
5692 /* Given a BFD section, try to locate the corresponding ELF section
5693 index. This is used by both the 32-bit and the 64-bit ABI.
5694 Actually, it's not clear to me that the 64-bit ABI supports these,
5695 but for non-PIC objects we will certainly want support for at least
5696 the .scommon section. */
5697
5698 bfd_boolean
5699 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5700 asection *sec, int *retval)
5701 {
5702 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5703 {
5704 *retval = SHN_MIPS_SCOMMON;
5705 return TRUE;
5706 }
5707 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5708 {
5709 *retval = SHN_MIPS_ACOMMON;
5710 return TRUE;
5711 }
5712 return FALSE;
5713 }
5714 \f
5715 /* Hook called by the linker routine which adds symbols from an object
5716 file. We must handle the special MIPS section numbers here. */
5717
5718 bfd_boolean
5719 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5720 Elf_Internal_Sym *sym, const char **namep,
5721 flagword *flagsp ATTRIBUTE_UNUSED,
5722 asection **secp, bfd_vma *valp)
5723 {
5724 if (SGI_COMPAT (abfd)
5725 && (abfd->flags & DYNAMIC) != 0
5726 && strcmp (*namep, "_rld_new_interface") == 0)
5727 {
5728 /* Skip IRIX5 rld entry name. */
5729 *namep = NULL;
5730 return TRUE;
5731 }
5732
5733 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5734 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5735 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5736 a magic symbol resolved by the linker, we ignore this bogus definition
5737 of _gp_disp. New ABI objects do not suffer from this problem so this
5738 is not done for them. */
5739 if (!NEWABI_P(abfd)
5740 && (sym->st_shndx == SHN_ABS)
5741 && (strcmp (*namep, "_gp_disp") == 0))
5742 {
5743 *namep = NULL;
5744 return TRUE;
5745 }
5746
5747 switch (sym->st_shndx)
5748 {
5749 case SHN_COMMON:
5750 /* Common symbols less than the GP size are automatically
5751 treated as SHN_MIPS_SCOMMON symbols. */
5752 if (sym->st_size > elf_gp_size (abfd)
5753 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5754 || IRIX_COMPAT (abfd) == ict_irix6)
5755 break;
5756 /* Fall through. */
5757 case SHN_MIPS_SCOMMON:
5758 *secp = bfd_make_section_old_way (abfd, ".scommon");
5759 (*secp)->flags |= SEC_IS_COMMON;
5760 *valp = sym->st_size;
5761 break;
5762
5763 case SHN_MIPS_TEXT:
5764 /* This section is used in a shared object. */
5765 if (elf_tdata (abfd)->elf_text_section == NULL)
5766 {
5767 asymbol *elf_text_symbol;
5768 asection *elf_text_section;
5769 bfd_size_type amt = sizeof (asection);
5770
5771 elf_text_section = bfd_zalloc (abfd, amt);
5772 if (elf_text_section == NULL)
5773 return FALSE;
5774
5775 amt = sizeof (asymbol);
5776 elf_text_symbol = bfd_zalloc (abfd, amt);
5777 if (elf_text_symbol == NULL)
5778 return FALSE;
5779
5780 /* Initialize the section. */
5781
5782 elf_tdata (abfd)->elf_text_section = elf_text_section;
5783 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5784
5785 elf_text_section->symbol = elf_text_symbol;
5786 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5787
5788 elf_text_section->name = ".text";
5789 elf_text_section->flags = SEC_NO_FLAGS;
5790 elf_text_section->output_section = NULL;
5791 elf_text_section->owner = abfd;
5792 elf_text_symbol->name = ".text";
5793 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5794 elf_text_symbol->section = elf_text_section;
5795 }
5796 /* This code used to do *secp = bfd_und_section_ptr if
5797 info->shared. I don't know why, and that doesn't make sense,
5798 so I took it out. */
5799 *secp = elf_tdata (abfd)->elf_text_section;
5800 break;
5801
5802 case SHN_MIPS_ACOMMON:
5803 /* Fall through. XXX Can we treat this as allocated data? */
5804 case SHN_MIPS_DATA:
5805 /* This section is used in a shared object. */
5806 if (elf_tdata (abfd)->elf_data_section == NULL)
5807 {
5808 asymbol *elf_data_symbol;
5809 asection *elf_data_section;
5810 bfd_size_type amt = sizeof (asection);
5811
5812 elf_data_section = bfd_zalloc (abfd, amt);
5813 if (elf_data_section == NULL)
5814 return FALSE;
5815
5816 amt = sizeof (asymbol);
5817 elf_data_symbol = bfd_zalloc (abfd, amt);
5818 if (elf_data_symbol == NULL)
5819 return FALSE;
5820
5821 /* Initialize the section. */
5822
5823 elf_tdata (abfd)->elf_data_section = elf_data_section;
5824 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5825
5826 elf_data_section->symbol = elf_data_symbol;
5827 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5828
5829 elf_data_section->name = ".data";
5830 elf_data_section->flags = SEC_NO_FLAGS;
5831 elf_data_section->output_section = NULL;
5832 elf_data_section->owner = abfd;
5833 elf_data_symbol->name = ".data";
5834 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5835 elf_data_symbol->section = elf_data_section;
5836 }
5837 /* This code used to do *secp = bfd_und_section_ptr if
5838 info->shared. I don't know why, and that doesn't make sense,
5839 so I took it out. */
5840 *secp = elf_tdata (abfd)->elf_data_section;
5841 break;
5842
5843 case SHN_MIPS_SUNDEFINED:
5844 *secp = bfd_und_section_ptr;
5845 break;
5846 }
5847
5848 if (SGI_COMPAT (abfd)
5849 && ! info->shared
5850 && info->hash->creator == abfd->xvec
5851 && strcmp (*namep, "__rld_obj_head") == 0)
5852 {
5853 struct elf_link_hash_entry *h;
5854 struct bfd_link_hash_entry *bh;
5855
5856 /* Mark __rld_obj_head as dynamic. */
5857 bh = NULL;
5858 if (! (_bfd_generic_link_add_one_symbol
5859 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5860 get_elf_backend_data (abfd)->collect, &bh)))
5861 return FALSE;
5862
5863 h = (struct elf_link_hash_entry *) bh;
5864 h->non_elf = 0;
5865 h->def_regular = 1;
5866 h->type = STT_OBJECT;
5867
5868 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5869 return FALSE;
5870
5871 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5872 }
5873
5874 /* If this is a mips16 text symbol, add 1 to the value to make it
5875 odd. This will cause something like .word SYM to come up with
5876 the right value when it is loaded into the PC. */
5877 if (sym->st_other == STO_MIPS16)
5878 ++*valp;
5879
5880 return TRUE;
5881 }
5882
5883 /* This hook function is called before the linker writes out a global
5884 symbol. We mark symbols as small common if appropriate. This is
5885 also where we undo the increment of the value for a mips16 symbol. */
5886
5887 bfd_boolean
5888 _bfd_mips_elf_link_output_symbol_hook
5889 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5890 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5891 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5892 {
5893 /* If we see a common symbol, which implies a relocatable link, then
5894 if a symbol was small common in an input file, mark it as small
5895 common in the output file. */
5896 if (sym->st_shndx == SHN_COMMON
5897 && strcmp (input_sec->name, ".scommon") == 0)
5898 sym->st_shndx = SHN_MIPS_SCOMMON;
5899
5900 if (sym->st_other == STO_MIPS16)
5901 sym->st_value &= ~1;
5902
5903 return TRUE;
5904 }
5905 \f
5906 /* Functions for the dynamic linker. */
5907
5908 /* Create dynamic sections when linking against a dynamic object. */
5909
5910 bfd_boolean
5911 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5912 {
5913 struct elf_link_hash_entry *h;
5914 struct bfd_link_hash_entry *bh;
5915 flagword flags;
5916 register asection *s;
5917 const char * const *namep;
5918 struct mips_elf_link_hash_table *htab;
5919
5920 htab = mips_elf_hash_table (info);
5921 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5922 | SEC_LINKER_CREATED | SEC_READONLY);
5923
5924 /* The psABI requires a read-only .dynamic section, but the VxWorks
5925 EABI doesn't. */
5926 if (!htab->is_vxworks)
5927 {
5928 s = bfd_get_section_by_name (abfd, ".dynamic");
5929 if (s != NULL)
5930 {
5931 if (! bfd_set_section_flags (abfd, s, flags))
5932 return FALSE;
5933 }
5934 }
5935
5936 /* We need to create .got section. */
5937 if (! mips_elf_create_got_section (abfd, info, FALSE))
5938 return FALSE;
5939
5940 if (! mips_elf_rel_dyn_section (info, TRUE))
5941 return FALSE;
5942
5943 /* Create .stub section. */
5944 if (bfd_get_section_by_name (abfd,
5945 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5946 {
5947 s = bfd_make_section_with_flags (abfd,
5948 MIPS_ELF_STUB_SECTION_NAME (abfd),
5949 flags | SEC_CODE);
5950 if (s == NULL
5951 || ! bfd_set_section_alignment (abfd, s,
5952 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5953 return FALSE;
5954 }
5955
5956 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5957 && !info->shared
5958 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5959 {
5960 s = bfd_make_section_with_flags (abfd, ".rld_map",
5961 flags &~ (flagword) SEC_READONLY);
5962 if (s == NULL
5963 || ! bfd_set_section_alignment (abfd, s,
5964 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5965 return FALSE;
5966 }
5967
5968 /* On IRIX5, we adjust add some additional symbols and change the
5969 alignments of several sections. There is no ABI documentation
5970 indicating that this is necessary on IRIX6, nor any evidence that
5971 the linker takes such action. */
5972 if (IRIX_COMPAT (abfd) == ict_irix5)
5973 {
5974 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5975 {
5976 bh = NULL;
5977 if (! (_bfd_generic_link_add_one_symbol
5978 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5979 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5980 return FALSE;
5981
5982 h = (struct elf_link_hash_entry *) bh;
5983 h->non_elf = 0;
5984 h->def_regular = 1;
5985 h->type = STT_SECTION;
5986
5987 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5988 return FALSE;
5989 }
5990
5991 /* We need to create a .compact_rel section. */
5992 if (SGI_COMPAT (abfd))
5993 {
5994 if (!mips_elf_create_compact_rel_section (abfd, info))
5995 return FALSE;
5996 }
5997
5998 /* Change alignments of some sections. */
5999 s = bfd_get_section_by_name (abfd, ".hash");
6000 if (s != NULL)
6001 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6002 s = bfd_get_section_by_name (abfd, ".dynsym");
6003 if (s != NULL)
6004 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6005 s = bfd_get_section_by_name (abfd, ".dynstr");
6006 if (s != NULL)
6007 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6008 s = bfd_get_section_by_name (abfd, ".reginfo");
6009 if (s != NULL)
6010 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6011 s = bfd_get_section_by_name (abfd, ".dynamic");
6012 if (s != NULL)
6013 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6014 }
6015
6016 if (!info->shared)
6017 {
6018 const char *name;
6019
6020 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6021 bh = NULL;
6022 if (!(_bfd_generic_link_add_one_symbol
6023 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6024 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6025 return FALSE;
6026
6027 h = (struct elf_link_hash_entry *) bh;
6028 h->non_elf = 0;
6029 h->def_regular = 1;
6030 h->type = STT_SECTION;
6031
6032 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6033 return FALSE;
6034
6035 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6036 {
6037 /* __rld_map is a four byte word located in the .data section
6038 and is filled in by the rtld to contain a pointer to
6039 the _r_debug structure. Its symbol value will be set in
6040 _bfd_mips_elf_finish_dynamic_symbol. */
6041 s = bfd_get_section_by_name (abfd, ".rld_map");
6042 BFD_ASSERT (s != NULL);
6043
6044 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6045 bh = NULL;
6046 if (!(_bfd_generic_link_add_one_symbol
6047 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6048 get_elf_backend_data (abfd)->collect, &bh)))
6049 return FALSE;
6050
6051 h = (struct elf_link_hash_entry *) bh;
6052 h->non_elf = 0;
6053 h->def_regular = 1;
6054 h->type = STT_OBJECT;
6055
6056 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6057 return FALSE;
6058 }
6059 }
6060
6061 if (htab->is_vxworks)
6062 {
6063 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6064 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6065 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6066 return FALSE;
6067
6068 /* Cache the sections created above. */
6069 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6070 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6071 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6072 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6073 if (!htab->sdynbss
6074 || (!htab->srelbss && !info->shared)
6075 || !htab->srelplt
6076 || !htab->splt)
6077 abort ();
6078
6079 /* Do the usual VxWorks handling. */
6080 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6081 return FALSE;
6082
6083 /* Work out the PLT sizes. */
6084 if (info->shared)
6085 {
6086 htab->plt_header_size
6087 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6088 htab->plt_entry_size
6089 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6090 }
6091 else
6092 {
6093 htab->plt_header_size
6094 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6095 htab->plt_entry_size
6096 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6097 }
6098 }
6099
6100 return TRUE;
6101 }
6102 \f
6103 /* Look through the relocs for a section during the first phase, and
6104 allocate space in the global offset table. */
6105
6106 bfd_boolean
6107 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6108 asection *sec, const Elf_Internal_Rela *relocs)
6109 {
6110 const char *name;
6111 bfd *dynobj;
6112 Elf_Internal_Shdr *symtab_hdr;
6113 struct elf_link_hash_entry **sym_hashes;
6114 struct mips_got_info *g;
6115 size_t extsymoff;
6116 const Elf_Internal_Rela *rel;
6117 const Elf_Internal_Rela *rel_end;
6118 asection *sgot;
6119 asection *sreloc;
6120 const struct elf_backend_data *bed;
6121 struct mips_elf_link_hash_table *htab;
6122
6123 if (info->relocatable)
6124 return TRUE;
6125
6126 htab = mips_elf_hash_table (info);
6127 dynobj = elf_hash_table (info)->dynobj;
6128 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6129 sym_hashes = elf_sym_hashes (abfd);
6130 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6131
6132 /* Check for the mips16 stub sections. */
6133
6134 name = bfd_get_section_name (abfd, sec);
6135 if (FN_STUB_P (name))
6136 {
6137 unsigned long r_symndx;
6138
6139 /* Look at the relocation information to figure out which symbol
6140 this is for. */
6141
6142 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6143
6144 if (r_symndx < extsymoff
6145 || sym_hashes[r_symndx - extsymoff] == NULL)
6146 {
6147 asection *o;
6148
6149 /* This stub is for a local symbol. This stub will only be
6150 needed if there is some relocation in this BFD, other
6151 than a 16 bit function call, which refers to this symbol. */
6152 for (o = abfd->sections; o != NULL; o = o->next)
6153 {
6154 Elf_Internal_Rela *sec_relocs;
6155 const Elf_Internal_Rela *r, *rend;
6156
6157 /* We can ignore stub sections when looking for relocs. */
6158 if ((o->flags & SEC_RELOC) == 0
6159 || o->reloc_count == 0
6160 || mips16_stub_section_p (abfd, o))
6161 continue;
6162
6163 sec_relocs
6164 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6165 info->keep_memory);
6166 if (sec_relocs == NULL)
6167 return FALSE;
6168
6169 rend = sec_relocs + o->reloc_count;
6170 for (r = sec_relocs; r < rend; r++)
6171 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6172 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6173 break;
6174
6175 if (elf_section_data (o)->relocs != sec_relocs)
6176 free (sec_relocs);
6177
6178 if (r < rend)
6179 break;
6180 }
6181
6182 if (o == NULL)
6183 {
6184 /* There is no non-call reloc for this stub, so we do
6185 not need it. Since this function is called before
6186 the linker maps input sections to output sections, we
6187 can easily discard it by setting the SEC_EXCLUDE
6188 flag. */
6189 sec->flags |= SEC_EXCLUDE;
6190 return TRUE;
6191 }
6192
6193 /* Record this stub in an array of local symbol stubs for
6194 this BFD. */
6195 if (elf_tdata (abfd)->local_stubs == NULL)
6196 {
6197 unsigned long symcount;
6198 asection **n;
6199 bfd_size_type amt;
6200
6201 if (elf_bad_symtab (abfd))
6202 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6203 else
6204 symcount = symtab_hdr->sh_info;
6205 amt = symcount * sizeof (asection *);
6206 n = bfd_zalloc (abfd, amt);
6207 if (n == NULL)
6208 return FALSE;
6209 elf_tdata (abfd)->local_stubs = n;
6210 }
6211
6212 sec->flags |= SEC_KEEP;
6213 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6214
6215 /* We don't need to set mips16_stubs_seen in this case.
6216 That flag is used to see whether we need to look through
6217 the global symbol table for stubs. We don't need to set
6218 it here, because we just have a local stub. */
6219 }
6220 else
6221 {
6222 struct mips_elf_link_hash_entry *h;
6223
6224 h = ((struct mips_elf_link_hash_entry *)
6225 sym_hashes[r_symndx - extsymoff]);
6226
6227 while (h->root.root.type == bfd_link_hash_indirect
6228 || h->root.root.type == bfd_link_hash_warning)
6229 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6230
6231 /* H is the symbol this stub is for. */
6232
6233 /* If we already have an appropriate stub for this function, we
6234 don't need another one, so we can discard this one. Since
6235 this function is called before the linker maps input sections
6236 to output sections, we can easily discard it by setting the
6237 SEC_EXCLUDE flag. */
6238 if (h->fn_stub != NULL)
6239 {
6240 sec->flags |= SEC_EXCLUDE;
6241 return TRUE;
6242 }
6243
6244 sec->flags |= SEC_KEEP;
6245 h->fn_stub = sec;
6246 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6247 }
6248 }
6249 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6250 {
6251 unsigned long r_symndx;
6252 struct mips_elf_link_hash_entry *h;
6253 asection **loc;
6254
6255 /* Look at the relocation information to figure out which symbol
6256 this is for. */
6257
6258 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6259
6260 if (r_symndx < extsymoff
6261 || sym_hashes[r_symndx - extsymoff] == NULL)
6262 {
6263 asection *o;
6264
6265 /* This stub is for a local symbol. This stub will only be
6266 needed if there is some relocation (R_MIPS16_26) in this BFD
6267 that refers to this symbol. */
6268 for (o = abfd->sections; o != NULL; o = o->next)
6269 {
6270 Elf_Internal_Rela *sec_relocs;
6271 const Elf_Internal_Rela *r, *rend;
6272
6273 /* We can ignore stub sections when looking for relocs. */
6274 if ((o->flags & SEC_RELOC) == 0
6275 || o->reloc_count == 0
6276 || mips16_stub_section_p (abfd, o))
6277 continue;
6278
6279 sec_relocs
6280 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6281 info->keep_memory);
6282 if (sec_relocs == NULL)
6283 return FALSE;
6284
6285 rend = sec_relocs + o->reloc_count;
6286 for (r = sec_relocs; r < rend; r++)
6287 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6288 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6289 break;
6290
6291 if (elf_section_data (o)->relocs != sec_relocs)
6292 free (sec_relocs);
6293
6294 if (r < rend)
6295 break;
6296 }
6297
6298 if (o == NULL)
6299 {
6300 /* There is no non-call reloc for this stub, so we do
6301 not need it. Since this function is called before
6302 the linker maps input sections to output sections, we
6303 can easily discard it by setting the SEC_EXCLUDE
6304 flag. */
6305 sec->flags |= SEC_EXCLUDE;
6306 return TRUE;
6307 }
6308
6309 /* Record this stub in an array of local symbol call_stubs for
6310 this BFD. */
6311 if (elf_tdata (abfd)->local_call_stubs == NULL)
6312 {
6313 unsigned long symcount;
6314 asection **n;
6315 bfd_size_type amt;
6316
6317 if (elf_bad_symtab (abfd))
6318 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6319 else
6320 symcount = symtab_hdr->sh_info;
6321 amt = symcount * sizeof (asection *);
6322 n = bfd_zalloc (abfd, amt);
6323 if (n == NULL)
6324 return FALSE;
6325 elf_tdata (abfd)->local_call_stubs = n;
6326 }
6327
6328 sec->flags |= SEC_KEEP;
6329 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6330
6331 /* We don't need to set mips16_stubs_seen in this case.
6332 That flag is used to see whether we need to look through
6333 the global symbol table for stubs. We don't need to set
6334 it here, because we just have a local stub. */
6335 }
6336 else
6337 {
6338 h = ((struct mips_elf_link_hash_entry *)
6339 sym_hashes[r_symndx - extsymoff]);
6340
6341 /* H is the symbol this stub is for. */
6342
6343 if (CALL_FP_STUB_P (name))
6344 loc = &h->call_fp_stub;
6345 else
6346 loc = &h->call_stub;
6347
6348 /* If we already have an appropriate stub for this function, we
6349 don't need another one, so we can discard this one. Since
6350 this function is called before the linker maps input sections
6351 to output sections, we can easily discard it by setting the
6352 SEC_EXCLUDE flag. */
6353 if (*loc != NULL)
6354 {
6355 sec->flags |= SEC_EXCLUDE;
6356 return TRUE;
6357 }
6358
6359 sec->flags |= SEC_KEEP;
6360 *loc = sec;
6361 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6362 }
6363 }
6364
6365 if (dynobj == NULL)
6366 {
6367 sgot = NULL;
6368 g = NULL;
6369 }
6370 else
6371 {
6372 sgot = mips_elf_got_section (dynobj, FALSE);
6373 if (sgot == NULL)
6374 g = NULL;
6375 else
6376 {
6377 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6378 g = mips_elf_section_data (sgot)->u.got_info;
6379 BFD_ASSERT (g != NULL);
6380 }
6381 }
6382
6383 sreloc = NULL;
6384 bed = get_elf_backend_data (abfd);
6385 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6386 for (rel = relocs; rel < rel_end; ++rel)
6387 {
6388 unsigned long r_symndx;
6389 unsigned int r_type;
6390 struct elf_link_hash_entry *h;
6391
6392 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6393 r_type = ELF_R_TYPE (abfd, rel->r_info);
6394
6395 if (r_symndx < extsymoff)
6396 h = NULL;
6397 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6398 {
6399 (*_bfd_error_handler)
6400 (_("%B: Malformed reloc detected for section %s"),
6401 abfd, name);
6402 bfd_set_error (bfd_error_bad_value);
6403 return FALSE;
6404 }
6405 else
6406 {
6407 h = sym_hashes[r_symndx - extsymoff];
6408
6409 /* This may be an indirect symbol created because of a version. */
6410 if (h != NULL)
6411 {
6412 while (h->root.type == bfd_link_hash_indirect)
6413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6414 }
6415 }
6416
6417 /* Some relocs require a global offset table. */
6418 if (dynobj == NULL || sgot == NULL)
6419 {
6420 switch (r_type)
6421 {
6422 case R_MIPS_GOT16:
6423 case R_MIPS_CALL16:
6424 case R_MIPS_CALL_HI16:
6425 case R_MIPS_CALL_LO16:
6426 case R_MIPS_GOT_HI16:
6427 case R_MIPS_GOT_LO16:
6428 case R_MIPS_GOT_PAGE:
6429 case R_MIPS_GOT_OFST:
6430 case R_MIPS_GOT_DISP:
6431 case R_MIPS_TLS_GOTTPREL:
6432 case R_MIPS_TLS_GD:
6433 case R_MIPS_TLS_LDM:
6434 if (dynobj == NULL)
6435 elf_hash_table (info)->dynobj = dynobj = abfd;
6436 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6437 return FALSE;
6438 g = mips_elf_got_info (dynobj, &sgot);
6439 if (htab->is_vxworks && !info->shared)
6440 {
6441 (*_bfd_error_handler)
6442 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6443 abfd, (unsigned long) rel->r_offset);
6444 bfd_set_error (bfd_error_bad_value);
6445 return FALSE;
6446 }
6447 break;
6448
6449 case R_MIPS_32:
6450 case R_MIPS_REL32:
6451 case R_MIPS_64:
6452 /* In VxWorks executables, references to external symbols
6453 are handled using copy relocs or PLT stubs, so there's
6454 no need to add a dynamic relocation here. */
6455 if (dynobj == NULL
6456 && (info->shared || (h != NULL && !htab->is_vxworks))
6457 && (sec->flags & SEC_ALLOC) != 0)
6458 elf_hash_table (info)->dynobj = dynobj = abfd;
6459 break;
6460
6461 default:
6462 break;
6463 }
6464 }
6465
6466 if (h)
6467 {
6468 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6469
6470 /* Relocations against the special VxWorks __GOTT_BASE__ and
6471 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6472 room for them in .rela.dyn. */
6473 if (is_gott_symbol (info, h))
6474 {
6475 if (sreloc == NULL)
6476 {
6477 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6478 if (sreloc == NULL)
6479 return FALSE;
6480 }
6481 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6482 if (MIPS_ELF_READONLY_SECTION (sec))
6483 /* We tell the dynamic linker that there are
6484 relocations against the text segment. */
6485 info->flags |= DF_TEXTREL;
6486 }
6487 }
6488 else if (r_type == R_MIPS_CALL_LO16
6489 || r_type == R_MIPS_GOT_LO16
6490 || r_type == R_MIPS_GOT_DISP
6491 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6492 {
6493 /* We may need a local GOT entry for this relocation. We
6494 don't count R_MIPS_GOT_PAGE because we can estimate the
6495 maximum number of pages needed by looking at the size of
6496 the segment. Similar comments apply to R_MIPS_GOT16 and
6497 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6498 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6499 R_MIPS_CALL_HI16 because these are always followed by an
6500 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6501 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6502 rel->r_addend, g, 0))
6503 return FALSE;
6504 }
6505
6506 switch (r_type)
6507 {
6508 case R_MIPS_CALL16:
6509 if (h == NULL)
6510 {
6511 (*_bfd_error_handler)
6512 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6513 abfd, (unsigned long) rel->r_offset);
6514 bfd_set_error (bfd_error_bad_value);
6515 return FALSE;
6516 }
6517 /* Fall through. */
6518
6519 case R_MIPS_CALL_HI16:
6520 case R_MIPS_CALL_LO16:
6521 if (h != NULL)
6522 {
6523 /* VxWorks call relocations point the function's .got.plt
6524 entry, which will be allocated by adjust_dynamic_symbol.
6525 Otherwise, this symbol requires a global GOT entry. */
6526 if (!htab->is_vxworks
6527 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6528 return FALSE;
6529
6530 /* We need a stub, not a plt entry for the undefined
6531 function. But we record it as if it needs plt. See
6532 _bfd_elf_adjust_dynamic_symbol. */
6533 h->needs_plt = 1;
6534 h->type = STT_FUNC;
6535 }
6536 break;
6537
6538 case R_MIPS_GOT_PAGE:
6539 /* If this is a global, overridable symbol, GOT_PAGE will
6540 decay to GOT_DISP, so we'll need a GOT entry for it. */
6541 if (h == NULL)
6542 break;
6543 else
6544 {
6545 struct mips_elf_link_hash_entry *hmips =
6546 (struct mips_elf_link_hash_entry *) h;
6547
6548 while (hmips->root.root.type == bfd_link_hash_indirect
6549 || hmips->root.root.type == bfd_link_hash_warning)
6550 hmips = (struct mips_elf_link_hash_entry *)
6551 hmips->root.root.u.i.link;
6552
6553 if (hmips->root.def_regular
6554 && ! (info->shared && ! info->symbolic
6555 && ! hmips->root.forced_local))
6556 break;
6557 }
6558 /* Fall through. */
6559
6560 case R_MIPS_GOT16:
6561 case R_MIPS_GOT_HI16:
6562 case R_MIPS_GOT_LO16:
6563 case R_MIPS_GOT_DISP:
6564 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6565 return FALSE;
6566 break;
6567
6568 case R_MIPS_TLS_GOTTPREL:
6569 if (info->shared)
6570 info->flags |= DF_STATIC_TLS;
6571 /* Fall through */
6572
6573 case R_MIPS_TLS_LDM:
6574 if (r_type == R_MIPS_TLS_LDM)
6575 {
6576 r_symndx = 0;
6577 h = NULL;
6578 }
6579 /* Fall through */
6580
6581 case R_MIPS_TLS_GD:
6582 /* This symbol requires a global offset table entry, or two
6583 for TLS GD relocations. */
6584 {
6585 unsigned char flag = (r_type == R_MIPS_TLS_GD
6586 ? GOT_TLS_GD
6587 : r_type == R_MIPS_TLS_LDM
6588 ? GOT_TLS_LDM
6589 : GOT_TLS_IE);
6590 if (h != NULL)
6591 {
6592 struct mips_elf_link_hash_entry *hmips =
6593 (struct mips_elf_link_hash_entry *) h;
6594 hmips->tls_type |= flag;
6595
6596 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6597 return FALSE;
6598 }
6599 else
6600 {
6601 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6602
6603 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6604 rel->r_addend, g, flag))
6605 return FALSE;
6606 }
6607 }
6608 break;
6609
6610 case R_MIPS_32:
6611 case R_MIPS_REL32:
6612 case R_MIPS_64:
6613 /* In VxWorks executables, references to external symbols
6614 are handled using copy relocs or PLT stubs, so there's
6615 no need to add a .rela.dyn entry for this relocation. */
6616 if ((info->shared || (h != NULL && !htab->is_vxworks))
6617 && (sec->flags & SEC_ALLOC) != 0)
6618 {
6619 if (sreloc == NULL)
6620 {
6621 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6622 if (sreloc == NULL)
6623 return FALSE;
6624 }
6625 if (info->shared)
6626 {
6627 /* When creating a shared object, we must copy these
6628 reloc types into the output file as R_MIPS_REL32
6629 relocs. Make room for this reloc in .rel(a).dyn. */
6630 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6631 if (MIPS_ELF_READONLY_SECTION (sec))
6632 /* We tell the dynamic linker that there are
6633 relocations against the text segment. */
6634 info->flags |= DF_TEXTREL;
6635 }
6636 else
6637 {
6638 struct mips_elf_link_hash_entry *hmips;
6639
6640 /* We only need to copy this reloc if the symbol is
6641 defined in a dynamic object. */
6642 hmips = (struct mips_elf_link_hash_entry *) h;
6643 ++hmips->possibly_dynamic_relocs;
6644 if (MIPS_ELF_READONLY_SECTION (sec))
6645 /* We need it to tell the dynamic linker if there
6646 are relocations against the text segment. */
6647 hmips->readonly_reloc = TRUE;
6648 }
6649
6650 /* Even though we don't directly need a GOT entry for
6651 this symbol, a symbol must have a dynamic symbol
6652 table index greater that DT_MIPS_GOTSYM if there are
6653 dynamic relocations against it. This does not apply
6654 to VxWorks, which does not have the usual coupling
6655 between global GOT entries and .dynsym entries. */
6656 if (h != NULL && !htab->is_vxworks)
6657 {
6658 if (dynobj == NULL)
6659 elf_hash_table (info)->dynobj = dynobj = abfd;
6660 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6661 return FALSE;
6662 g = mips_elf_got_info (dynobj, &sgot);
6663 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6664 return FALSE;
6665 }
6666 }
6667
6668 if (SGI_COMPAT (abfd))
6669 mips_elf_hash_table (info)->compact_rel_size +=
6670 sizeof (Elf32_External_crinfo);
6671 break;
6672
6673 case R_MIPS_PC16:
6674 if (h)
6675 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6676 break;
6677
6678 case R_MIPS_26:
6679 if (h)
6680 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6681 /* Fall through. */
6682
6683 case R_MIPS_GPREL16:
6684 case R_MIPS_LITERAL:
6685 case R_MIPS_GPREL32:
6686 if (SGI_COMPAT (abfd))
6687 mips_elf_hash_table (info)->compact_rel_size +=
6688 sizeof (Elf32_External_crinfo);
6689 break;
6690
6691 /* This relocation describes the C++ object vtable hierarchy.
6692 Reconstruct it for later use during GC. */
6693 case R_MIPS_GNU_VTINHERIT:
6694 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6695 return FALSE;
6696 break;
6697
6698 /* This relocation describes which C++ vtable entries are actually
6699 used. Record for later use during GC. */
6700 case R_MIPS_GNU_VTENTRY:
6701 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6702 return FALSE;
6703 break;
6704
6705 default:
6706 break;
6707 }
6708
6709 /* We must not create a stub for a symbol that has relocations
6710 related to taking the function's address. This doesn't apply to
6711 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6712 a normal .got entry. */
6713 if (!htab->is_vxworks && h != NULL)
6714 switch (r_type)
6715 {
6716 default:
6717 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6718 break;
6719 case R_MIPS_CALL16:
6720 case R_MIPS_CALL_HI16:
6721 case R_MIPS_CALL_LO16:
6722 case R_MIPS_JALR:
6723 break;
6724 }
6725
6726 /* If this reloc is not a 16 bit call, and it has a global
6727 symbol, then we will need the fn_stub if there is one.
6728 References from a stub section do not count. */
6729 if (h != NULL
6730 && r_type != R_MIPS16_26
6731 && !mips16_stub_section_p (abfd, sec))
6732 {
6733 struct mips_elf_link_hash_entry *mh;
6734
6735 mh = (struct mips_elf_link_hash_entry *) h;
6736 mh->need_fn_stub = TRUE;
6737 }
6738 }
6739
6740 return TRUE;
6741 }
6742 \f
6743 bfd_boolean
6744 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6745 struct bfd_link_info *link_info,
6746 bfd_boolean *again)
6747 {
6748 Elf_Internal_Rela *internal_relocs;
6749 Elf_Internal_Rela *irel, *irelend;
6750 Elf_Internal_Shdr *symtab_hdr;
6751 bfd_byte *contents = NULL;
6752 size_t extsymoff;
6753 bfd_boolean changed_contents = FALSE;
6754 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6755 Elf_Internal_Sym *isymbuf = NULL;
6756
6757 /* We are not currently changing any sizes, so only one pass. */
6758 *again = FALSE;
6759
6760 if (link_info->relocatable)
6761 return TRUE;
6762
6763 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6764 link_info->keep_memory);
6765 if (internal_relocs == NULL)
6766 return TRUE;
6767
6768 irelend = internal_relocs + sec->reloc_count
6769 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6770 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6771 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6772
6773 for (irel = internal_relocs; irel < irelend; irel++)
6774 {
6775 bfd_vma symval;
6776 bfd_signed_vma sym_offset;
6777 unsigned int r_type;
6778 unsigned long r_symndx;
6779 asection *sym_sec;
6780 unsigned long instruction;
6781
6782 /* Turn jalr into bgezal, and jr into beq, if they're marked
6783 with a JALR relocation, that indicate where they jump to.
6784 This saves some pipeline bubbles. */
6785 r_type = ELF_R_TYPE (abfd, irel->r_info);
6786 if (r_type != R_MIPS_JALR)
6787 continue;
6788
6789 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6790 /* Compute the address of the jump target. */
6791 if (r_symndx >= extsymoff)
6792 {
6793 struct mips_elf_link_hash_entry *h
6794 = ((struct mips_elf_link_hash_entry *)
6795 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6796
6797 while (h->root.root.type == bfd_link_hash_indirect
6798 || h->root.root.type == bfd_link_hash_warning)
6799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6800
6801 /* If a symbol is undefined, or if it may be overridden,
6802 skip it. */
6803 if (! ((h->root.root.type == bfd_link_hash_defined
6804 || h->root.root.type == bfd_link_hash_defweak)
6805 && h->root.root.u.def.section)
6806 || (link_info->shared && ! link_info->symbolic
6807 && !h->root.forced_local))
6808 continue;
6809
6810 sym_sec = h->root.root.u.def.section;
6811 if (sym_sec->output_section)
6812 symval = (h->root.root.u.def.value
6813 + sym_sec->output_section->vma
6814 + sym_sec->output_offset);
6815 else
6816 symval = h->root.root.u.def.value;
6817 }
6818 else
6819 {
6820 Elf_Internal_Sym *isym;
6821
6822 /* Read this BFD's symbols if we haven't done so already. */
6823 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6824 {
6825 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6826 if (isymbuf == NULL)
6827 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6828 symtab_hdr->sh_info, 0,
6829 NULL, NULL, NULL);
6830 if (isymbuf == NULL)
6831 goto relax_return;
6832 }
6833
6834 isym = isymbuf + r_symndx;
6835 if (isym->st_shndx == SHN_UNDEF)
6836 continue;
6837 else if (isym->st_shndx == SHN_ABS)
6838 sym_sec = bfd_abs_section_ptr;
6839 else if (isym->st_shndx == SHN_COMMON)
6840 sym_sec = bfd_com_section_ptr;
6841 else
6842 sym_sec
6843 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6844 symval = isym->st_value
6845 + sym_sec->output_section->vma
6846 + sym_sec->output_offset;
6847 }
6848
6849 /* Compute branch offset, from delay slot of the jump to the
6850 branch target. */
6851 sym_offset = (symval + irel->r_addend)
6852 - (sec_start + irel->r_offset + 4);
6853
6854 /* Branch offset must be properly aligned. */
6855 if ((sym_offset & 3) != 0)
6856 continue;
6857
6858 sym_offset >>= 2;
6859
6860 /* Check that it's in range. */
6861 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6862 continue;
6863
6864 /* Get the section contents if we haven't done so already. */
6865 if (contents == NULL)
6866 {
6867 /* Get cached copy if it exists. */
6868 if (elf_section_data (sec)->this_hdr.contents != NULL)
6869 contents = elf_section_data (sec)->this_hdr.contents;
6870 else
6871 {
6872 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6873 goto relax_return;
6874 }
6875 }
6876
6877 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6878
6879 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6880 if ((instruction & 0xfc1fffff) == 0x0000f809)
6881 instruction = 0x04110000;
6882 /* If it was jr <reg>, turn it into b <target>. */
6883 else if ((instruction & 0xfc1fffff) == 0x00000008)
6884 instruction = 0x10000000;
6885 else
6886 continue;
6887
6888 instruction |= (sym_offset & 0xffff);
6889 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6890 changed_contents = TRUE;
6891 }
6892
6893 if (contents != NULL
6894 && elf_section_data (sec)->this_hdr.contents != contents)
6895 {
6896 if (!changed_contents && !link_info->keep_memory)
6897 free (contents);
6898 else
6899 {
6900 /* Cache the section contents for elf_link_input_bfd. */
6901 elf_section_data (sec)->this_hdr.contents = contents;
6902 }
6903 }
6904 return TRUE;
6905
6906 relax_return:
6907 if (contents != NULL
6908 && elf_section_data (sec)->this_hdr.contents != contents)
6909 free (contents);
6910 return FALSE;
6911 }
6912 \f
6913 /* Adjust a symbol defined by a dynamic object and referenced by a
6914 regular object. The current definition is in some section of the
6915 dynamic object, but we're not including those sections. We have to
6916 change the definition to something the rest of the link can
6917 understand. */
6918
6919 bfd_boolean
6920 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6921 struct elf_link_hash_entry *h)
6922 {
6923 bfd *dynobj;
6924 struct mips_elf_link_hash_entry *hmips;
6925 asection *s;
6926 struct mips_elf_link_hash_table *htab;
6927
6928 htab = mips_elf_hash_table (info);
6929 dynobj = elf_hash_table (info)->dynobj;
6930
6931 /* Make sure we know what is going on here. */
6932 BFD_ASSERT (dynobj != NULL
6933 && (h->needs_plt
6934 || h->u.weakdef != NULL
6935 || (h->def_dynamic
6936 && h->ref_regular
6937 && !h->def_regular)));
6938
6939 /* If this symbol is defined in a dynamic object, we need to copy
6940 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6941 file. */
6942 hmips = (struct mips_elf_link_hash_entry *) h;
6943 if (! info->relocatable
6944 && hmips->possibly_dynamic_relocs != 0
6945 && (h->root.type == bfd_link_hash_defweak
6946 || !h->def_regular))
6947 {
6948 mips_elf_allocate_dynamic_relocations
6949 (dynobj, info, hmips->possibly_dynamic_relocs);
6950 if (hmips->readonly_reloc)
6951 /* We tell the dynamic linker that there are relocations
6952 against the text segment. */
6953 info->flags |= DF_TEXTREL;
6954 }
6955
6956 /* For a function, create a stub, if allowed. */
6957 if (! hmips->no_fn_stub
6958 && h->needs_plt)
6959 {
6960 if (! elf_hash_table (info)->dynamic_sections_created)
6961 return TRUE;
6962
6963 /* If this symbol is not defined in a regular file, then set
6964 the symbol to the stub location. This is required to make
6965 function pointers compare as equal between the normal
6966 executable and the shared library. */
6967 if (!h->def_regular)
6968 {
6969 /* We need .stub section. */
6970 s = bfd_get_section_by_name (dynobj,
6971 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6972 BFD_ASSERT (s != NULL);
6973
6974 h->root.u.def.section = s;
6975 h->root.u.def.value = s->size;
6976
6977 /* XXX Write this stub address somewhere. */
6978 h->plt.offset = s->size;
6979
6980 /* Make room for this stub code. */
6981 s->size += htab->function_stub_size;
6982
6983 /* The last half word of the stub will be filled with the index
6984 of this symbol in .dynsym section. */
6985 return TRUE;
6986 }
6987 }
6988 else if ((h->type == STT_FUNC)
6989 && !h->needs_plt)
6990 {
6991 /* This will set the entry for this symbol in the GOT to 0, and
6992 the dynamic linker will take care of this. */
6993 h->root.u.def.value = 0;
6994 return TRUE;
6995 }
6996
6997 /* If this is a weak symbol, and there is a real definition, the
6998 processor independent code will have arranged for us to see the
6999 real definition first, and we can just use the same value. */
7000 if (h->u.weakdef != NULL)
7001 {
7002 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7003 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7004 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7005 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7006 return TRUE;
7007 }
7008
7009 /* This is a reference to a symbol defined by a dynamic object which
7010 is not a function. */
7011
7012 return TRUE;
7013 }
7014
7015 /* Likewise, for VxWorks. */
7016
7017 bfd_boolean
7018 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7019 struct elf_link_hash_entry *h)
7020 {
7021 bfd *dynobj;
7022 struct mips_elf_link_hash_entry *hmips;
7023 struct mips_elf_link_hash_table *htab;
7024
7025 htab = mips_elf_hash_table (info);
7026 dynobj = elf_hash_table (info)->dynobj;
7027 hmips = (struct mips_elf_link_hash_entry *) h;
7028
7029 /* Make sure we know what is going on here. */
7030 BFD_ASSERT (dynobj != NULL
7031 && (h->needs_plt
7032 || h->needs_copy
7033 || h->u.weakdef != NULL
7034 || (h->def_dynamic
7035 && h->ref_regular
7036 && !h->def_regular)));
7037
7038 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7039 either (a) we want to branch to the symbol or (b) we're linking an
7040 executable that needs a canonical function address. In the latter
7041 case, the canonical address will be the address of the executable's
7042 load stub. */
7043 if ((hmips->is_branch_target
7044 || (!info->shared
7045 && h->type == STT_FUNC
7046 && hmips->is_relocation_target))
7047 && h->def_dynamic
7048 && h->ref_regular
7049 && !h->def_regular
7050 && !h->forced_local)
7051 h->needs_plt = 1;
7052
7053 /* Locally-binding symbols do not need a PLT stub; we can refer to
7054 the functions directly. */
7055 else if (h->needs_plt
7056 && (SYMBOL_CALLS_LOCAL (info, h)
7057 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7058 && h->root.type == bfd_link_hash_undefweak)))
7059 {
7060 h->needs_plt = 0;
7061 return TRUE;
7062 }
7063
7064 if (h->needs_plt)
7065 {
7066 /* If this is the first symbol to need a PLT entry, allocate room
7067 for the header, and for the header's .rela.plt.unloaded entries. */
7068 if (htab->splt->size == 0)
7069 {
7070 htab->splt->size += htab->plt_header_size;
7071 if (!info->shared)
7072 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7073 }
7074
7075 /* Assign the next .plt entry to this symbol. */
7076 h->plt.offset = htab->splt->size;
7077 htab->splt->size += htab->plt_entry_size;
7078
7079 /* If the output file has no definition of the symbol, set the
7080 symbol's value to the address of the stub. For executables,
7081 point at the PLT load stub rather than the lazy resolution stub;
7082 this stub will become the canonical function address. */
7083 if (!h->def_regular)
7084 {
7085 h->root.u.def.section = htab->splt;
7086 h->root.u.def.value = h->plt.offset;
7087 if (!info->shared)
7088 h->root.u.def.value += 8;
7089 }
7090
7091 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7092 htab->sgotplt->size += 4;
7093 htab->srelplt->size += sizeof (Elf32_External_Rela);
7094
7095 /* Make room for the .rela.plt.unloaded relocations. */
7096 if (!info->shared)
7097 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7098
7099 return TRUE;
7100 }
7101
7102 /* If a function symbol is defined by a dynamic object, and we do not
7103 need a PLT stub for it, the symbol's value should be zero. */
7104 if (h->type == STT_FUNC
7105 && h->def_dynamic
7106 && h->ref_regular
7107 && !h->def_regular)
7108 {
7109 h->root.u.def.value = 0;
7110 return TRUE;
7111 }
7112
7113 /* If this is a weak symbol, and there is a real definition, the
7114 processor independent code will have arranged for us to see the
7115 real definition first, and we can just use the same value. */
7116 if (h->u.weakdef != NULL)
7117 {
7118 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7119 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7120 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7121 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7122 return TRUE;
7123 }
7124
7125 /* This is a reference to a symbol defined by a dynamic object which
7126 is not a function. */
7127 if (info->shared)
7128 return TRUE;
7129
7130 /* We must allocate the symbol in our .dynbss section, which will
7131 become part of the .bss section of the executable. There will be
7132 an entry for this symbol in the .dynsym section. The dynamic
7133 object will contain position independent code, so all references
7134 from the dynamic object to this symbol will go through the global
7135 offset table. The dynamic linker will use the .dynsym entry to
7136 determine the address it must put in the global offset table, so
7137 both the dynamic object and the regular object will refer to the
7138 same memory location for the variable. */
7139
7140 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7141 {
7142 htab->srelbss->size += sizeof (Elf32_External_Rela);
7143 h->needs_copy = 1;
7144 }
7145
7146 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7147 }
7148 \f
7149 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7150 The number might be exact or a worst-case estimate, depending on how
7151 much information is available to elf_backend_omit_section_dynsym at
7152 the current linking stage. */
7153
7154 static bfd_size_type
7155 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7156 {
7157 bfd_size_type count;
7158
7159 count = 0;
7160 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7161 {
7162 asection *p;
7163 const struct elf_backend_data *bed;
7164
7165 bed = get_elf_backend_data (output_bfd);
7166 for (p = output_bfd->sections; p ; p = p->next)
7167 if ((p->flags & SEC_EXCLUDE) == 0
7168 && (p->flags & SEC_ALLOC) != 0
7169 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7170 ++count;
7171 }
7172 return count;
7173 }
7174
7175 /* This function is called after all the input files have been read,
7176 and the input sections have been assigned to output sections. We
7177 check for any mips16 stub sections that we can discard. */
7178
7179 bfd_boolean
7180 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7181 struct bfd_link_info *info)
7182 {
7183 asection *ri;
7184
7185 bfd *dynobj;
7186 asection *s;
7187 struct mips_got_info *g;
7188 int i;
7189 bfd_size_type loadable_size = 0;
7190 bfd_size_type local_gotno;
7191 bfd_size_type dynsymcount;
7192 bfd *sub;
7193 struct mips_elf_count_tls_arg count_tls_arg;
7194 struct mips_elf_link_hash_table *htab;
7195
7196 htab = mips_elf_hash_table (info);
7197
7198 /* The .reginfo section has a fixed size. */
7199 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7200 if (ri != NULL)
7201 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7202
7203 if (! (info->relocatable
7204 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7205 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7206 mips_elf_check_mips16_stubs, NULL);
7207
7208 dynobj = elf_hash_table (info)->dynobj;
7209 if (dynobj == NULL)
7210 /* Relocatable links don't have it. */
7211 return TRUE;
7212
7213 g = mips_elf_got_info (dynobj, &s);
7214 if (s == NULL)
7215 return TRUE;
7216
7217 /* Calculate the total loadable size of the output. That
7218 will give us the maximum number of GOT_PAGE entries
7219 required. */
7220 for (sub = info->input_bfds; sub; sub = sub->link_next)
7221 {
7222 asection *subsection;
7223
7224 for (subsection = sub->sections;
7225 subsection;
7226 subsection = subsection->next)
7227 {
7228 if ((subsection->flags & SEC_ALLOC) == 0)
7229 continue;
7230 loadable_size += ((subsection->size + 0xf)
7231 &~ (bfd_size_type) 0xf);
7232 }
7233 }
7234
7235 /* There has to be a global GOT entry for every symbol with
7236 a dynamic symbol table index of DT_MIPS_GOTSYM or
7237 higher. Therefore, it make sense to put those symbols
7238 that need GOT entries at the end of the symbol table. We
7239 do that here. */
7240 if (! mips_elf_sort_hash_table (info, 1))
7241 return FALSE;
7242
7243 if (g->global_gotsym != NULL)
7244 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7245 else
7246 /* If there are no global symbols, or none requiring
7247 relocations, then GLOBAL_GOTSYM will be NULL. */
7248 i = 0;
7249
7250 /* Get a worst-case estimate of the number of dynamic symbols needed.
7251 At this point, dynsymcount does not account for section symbols
7252 and count_section_dynsyms may overestimate the number that will
7253 be needed. */
7254 dynsymcount = (elf_hash_table (info)->dynsymcount
7255 + count_section_dynsyms (output_bfd, info));
7256
7257 /* Determine the size of one stub entry. */
7258 htab->function_stub_size = (dynsymcount > 0x10000
7259 ? MIPS_FUNCTION_STUB_BIG_SIZE
7260 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7261
7262 /* In the worst case, we'll get one stub per dynamic symbol, plus
7263 one to account for the dummy entry at the end required by IRIX
7264 rld. */
7265 loadable_size += htab->function_stub_size * (i + 1);
7266
7267 if (htab->is_vxworks)
7268 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7269 relocations against local symbols evaluate to "G", and the EABI does
7270 not include R_MIPS_GOT_PAGE. */
7271 local_gotno = 0;
7272 else
7273 /* Assume there are two loadable segments consisting of contiguous
7274 sections. Is 5 enough? */
7275 local_gotno = (loadable_size >> 16) + 5;
7276
7277 g->local_gotno += local_gotno;
7278 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7279
7280 g->global_gotno = i;
7281 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7282
7283 /* We need to calculate tls_gotno for global symbols at this point
7284 instead of building it up earlier, to avoid doublecounting
7285 entries for one global symbol from multiple input files. */
7286 count_tls_arg.info = info;
7287 count_tls_arg.needed = 0;
7288 elf_link_hash_traverse (elf_hash_table (info),
7289 mips_elf_count_global_tls_entries,
7290 &count_tls_arg);
7291 g->tls_gotno += count_tls_arg.needed;
7292 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7293
7294 mips_elf_resolve_final_got_entries (g);
7295
7296 /* VxWorks does not support multiple GOTs. It initializes $gp to
7297 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7298 dynamic loader. */
7299 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7300 {
7301 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7302 return FALSE;
7303 }
7304 else
7305 {
7306 /* Set up TLS entries for the first GOT. */
7307 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7308 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7309 }
7310
7311 return TRUE;
7312 }
7313
7314 /* Set the sizes of the dynamic sections. */
7315
7316 bfd_boolean
7317 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7318 struct bfd_link_info *info)
7319 {
7320 bfd *dynobj;
7321 asection *s, *sreldyn;
7322 bfd_boolean reltext;
7323 struct mips_elf_link_hash_table *htab;
7324
7325 htab = mips_elf_hash_table (info);
7326 dynobj = elf_hash_table (info)->dynobj;
7327 BFD_ASSERT (dynobj != NULL);
7328
7329 if (elf_hash_table (info)->dynamic_sections_created)
7330 {
7331 /* Set the contents of the .interp section to the interpreter. */
7332 if (info->executable)
7333 {
7334 s = bfd_get_section_by_name (dynobj, ".interp");
7335 BFD_ASSERT (s != NULL);
7336 s->size
7337 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7338 s->contents
7339 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7340 }
7341 }
7342
7343 /* The check_relocs and adjust_dynamic_symbol entry points have
7344 determined the sizes of the various dynamic sections. Allocate
7345 memory for them. */
7346 reltext = FALSE;
7347 sreldyn = NULL;
7348 for (s = dynobj->sections; s != NULL; s = s->next)
7349 {
7350 const char *name;
7351
7352 /* It's OK to base decisions on the section name, because none
7353 of the dynobj section names depend upon the input files. */
7354 name = bfd_get_section_name (dynobj, s);
7355
7356 if ((s->flags & SEC_LINKER_CREATED) == 0)
7357 continue;
7358
7359 if (CONST_STRNEQ (name, ".rel"))
7360 {
7361 if (s->size != 0)
7362 {
7363 const char *outname;
7364 asection *target;
7365
7366 /* If this relocation section applies to a read only
7367 section, then we probably need a DT_TEXTREL entry.
7368 If the relocation section is .rel(a).dyn, we always
7369 assert a DT_TEXTREL entry rather than testing whether
7370 there exists a relocation to a read only section or
7371 not. */
7372 outname = bfd_get_section_name (output_bfd,
7373 s->output_section);
7374 target = bfd_get_section_by_name (output_bfd, outname + 4);
7375 if ((target != NULL
7376 && (target->flags & SEC_READONLY) != 0
7377 && (target->flags & SEC_ALLOC) != 0)
7378 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7379 reltext = TRUE;
7380
7381 /* We use the reloc_count field as a counter if we need
7382 to copy relocs into the output file. */
7383 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7384 s->reloc_count = 0;
7385
7386 /* If combreloc is enabled, elf_link_sort_relocs() will
7387 sort relocations, but in a different way than we do,
7388 and before we're done creating relocations. Also, it
7389 will move them around between input sections'
7390 relocation's contents, so our sorting would be
7391 broken, so don't let it run. */
7392 info->combreloc = 0;
7393 }
7394 }
7395 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7396 {
7397 /* Executables do not need a GOT. */
7398 if (info->shared)
7399 {
7400 /* Allocate relocations for all but the reserved entries. */
7401 struct mips_got_info *g;
7402 unsigned int count;
7403
7404 g = mips_elf_got_info (dynobj, NULL);
7405 count = (g->global_gotno
7406 + g->local_gotno
7407 - MIPS_RESERVED_GOTNO (info));
7408 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7409 }
7410 }
7411 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7412 {
7413 /* _bfd_mips_elf_always_size_sections() has already done
7414 most of the work, but some symbols may have been mapped
7415 to versions that we must now resolve in the got_entries
7416 hash tables. */
7417 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7418 struct mips_got_info *g = gg;
7419 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7420 unsigned int needed_relocs = 0;
7421
7422 if (gg->next)
7423 {
7424 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7425 set_got_offset_arg.info = info;
7426
7427 /* NOTE 2005-02-03: How can this call, or the next, ever
7428 find any indirect entries to resolve? They were all
7429 resolved in mips_elf_multi_got. */
7430 mips_elf_resolve_final_got_entries (gg);
7431 for (g = gg->next; g && g->next != gg; g = g->next)
7432 {
7433 unsigned int save_assign;
7434
7435 mips_elf_resolve_final_got_entries (g);
7436
7437 /* Assign offsets to global GOT entries. */
7438 save_assign = g->assigned_gotno;
7439 g->assigned_gotno = g->local_gotno;
7440 set_got_offset_arg.g = g;
7441 set_got_offset_arg.needed_relocs = 0;
7442 htab_traverse (g->got_entries,
7443 mips_elf_set_global_got_offset,
7444 &set_got_offset_arg);
7445 needed_relocs += set_got_offset_arg.needed_relocs;
7446 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7447 <= g->global_gotno);
7448
7449 g->assigned_gotno = save_assign;
7450 if (info->shared)
7451 {
7452 needed_relocs += g->local_gotno - g->assigned_gotno;
7453 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7454 + g->next->global_gotno
7455 + g->next->tls_gotno
7456 + MIPS_RESERVED_GOTNO (info));
7457 }
7458 }
7459 }
7460 else
7461 {
7462 struct mips_elf_count_tls_arg arg;
7463 arg.info = info;
7464 arg.needed = 0;
7465
7466 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7467 &arg);
7468 elf_link_hash_traverse (elf_hash_table (info),
7469 mips_elf_count_global_tls_relocs,
7470 &arg);
7471
7472 needed_relocs += arg.needed;
7473 }
7474
7475 if (needed_relocs)
7476 mips_elf_allocate_dynamic_relocations (dynobj, info,
7477 needed_relocs);
7478 }
7479 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7480 {
7481 /* IRIX rld assumes that the function stub isn't at the end
7482 of .text section. So put a dummy. XXX */
7483 s->size += htab->function_stub_size;
7484 }
7485 else if (! info->shared
7486 && ! mips_elf_hash_table (info)->use_rld_obj_head
7487 && CONST_STRNEQ (name, ".rld_map"))
7488 {
7489 /* We add a room for __rld_map. It will be filled in by the
7490 rtld to contain a pointer to the _r_debug structure. */
7491 s->size += 4;
7492 }
7493 else if (SGI_COMPAT (output_bfd)
7494 && CONST_STRNEQ (name, ".compact_rel"))
7495 s->size += mips_elf_hash_table (info)->compact_rel_size;
7496 else if (! CONST_STRNEQ (name, ".init")
7497 && s != htab->sgotplt
7498 && s != htab->splt)
7499 {
7500 /* It's not one of our sections, so don't allocate space. */
7501 continue;
7502 }
7503
7504 if (s->size == 0)
7505 {
7506 s->flags |= SEC_EXCLUDE;
7507 continue;
7508 }
7509
7510 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7511 continue;
7512
7513 /* Allocate memory for this section last, since we may increase its
7514 size above. */
7515 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7516 {
7517 sreldyn = s;
7518 continue;
7519 }
7520
7521 /* Allocate memory for the section contents. */
7522 s->contents = bfd_zalloc (dynobj, s->size);
7523 if (s->contents == NULL)
7524 {
7525 bfd_set_error (bfd_error_no_memory);
7526 return FALSE;
7527 }
7528 }
7529
7530 /* Allocate memory for the .rel(a).dyn section. */
7531 if (sreldyn != NULL)
7532 {
7533 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7534 if (sreldyn->contents == NULL)
7535 {
7536 bfd_set_error (bfd_error_no_memory);
7537 return FALSE;
7538 }
7539 }
7540
7541 if (elf_hash_table (info)->dynamic_sections_created)
7542 {
7543 /* Add some entries to the .dynamic section. We fill in the
7544 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7545 must add the entries now so that we get the correct size for
7546 the .dynamic section. */
7547
7548 /* SGI object has the equivalence of DT_DEBUG in the
7549 DT_MIPS_RLD_MAP entry. This must come first because glibc
7550 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7551 looks at the first one it sees. */
7552 if (!info->shared
7553 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7554 return FALSE;
7555
7556 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7557 used by the debugger. */
7558 if (info->executable
7559 && !SGI_COMPAT (output_bfd)
7560 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7561 return FALSE;
7562
7563 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7564 info->flags |= DF_TEXTREL;
7565
7566 if ((info->flags & DF_TEXTREL) != 0)
7567 {
7568 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7569 return FALSE;
7570
7571 /* Clear the DF_TEXTREL flag. It will be set again if we
7572 write out an actual text relocation; we may not, because
7573 at this point we do not know whether e.g. any .eh_frame
7574 absolute relocations have been converted to PC-relative. */
7575 info->flags &= ~DF_TEXTREL;
7576 }
7577
7578 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7579 return FALSE;
7580
7581 if (htab->is_vxworks)
7582 {
7583 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7584 use any of the DT_MIPS_* tags. */
7585 if (mips_elf_rel_dyn_section (info, FALSE))
7586 {
7587 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7588 return FALSE;
7589
7590 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7591 return FALSE;
7592
7593 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7594 return FALSE;
7595 }
7596 if (htab->splt->size > 0)
7597 {
7598 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7599 return FALSE;
7600
7601 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7602 return FALSE;
7603
7604 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7605 return FALSE;
7606 }
7607 }
7608 else
7609 {
7610 if (mips_elf_rel_dyn_section (info, FALSE))
7611 {
7612 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7613 return FALSE;
7614
7615 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7616 return FALSE;
7617
7618 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7619 return FALSE;
7620 }
7621
7622 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7623 return FALSE;
7624
7625 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7626 return FALSE;
7627
7628 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7629 return FALSE;
7630
7631 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7632 return FALSE;
7633
7634 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7635 return FALSE;
7636
7637 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7638 return FALSE;
7639
7640 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7641 return FALSE;
7642
7643 if (IRIX_COMPAT (dynobj) == ict_irix5
7644 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7645 return FALSE;
7646
7647 if (IRIX_COMPAT (dynobj) == ict_irix6
7648 && (bfd_get_section_by_name
7649 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7650 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7651 return FALSE;
7652 }
7653 }
7654
7655 return TRUE;
7656 }
7657 \f
7658 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7659 Adjust its R_ADDEND field so that it is correct for the output file.
7660 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7661 and sections respectively; both use symbol indexes. */
7662
7663 static void
7664 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7665 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7666 asection **local_sections, Elf_Internal_Rela *rel)
7667 {
7668 unsigned int r_type, r_symndx;
7669 Elf_Internal_Sym *sym;
7670 asection *sec;
7671
7672 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7673 {
7674 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7675 if (r_type == R_MIPS16_GPREL
7676 || r_type == R_MIPS_GPREL16
7677 || r_type == R_MIPS_GPREL32
7678 || r_type == R_MIPS_LITERAL)
7679 {
7680 rel->r_addend += _bfd_get_gp_value (input_bfd);
7681 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7682 }
7683
7684 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7685 sym = local_syms + r_symndx;
7686
7687 /* Adjust REL's addend to account for section merging. */
7688 if (!info->relocatable)
7689 {
7690 sec = local_sections[r_symndx];
7691 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7692 }
7693
7694 /* This would normally be done by the rela_normal code in elflink.c. */
7695 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7696 rel->r_addend += local_sections[r_symndx]->output_offset;
7697 }
7698 }
7699
7700 /* Relocate a MIPS ELF section. */
7701
7702 bfd_boolean
7703 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7704 bfd *input_bfd, asection *input_section,
7705 bfd_byte *contents, Elf_Internal_Rela *relocs,
7706 Elf_Internal_Sym *local_syms,
7707 asection **local_sections)
7708 {
7709 Elf_Internal_Rela *rel;
7710 const Elf_Internal_Rela *relend;
7711 bfd_vma addend = 0;
7712 bfd_boolean use_saved_addend_p = FALSE;
7713 const struct elf_backend_data *bed;
7714
7715 bed = get_elf_backend_data (output_bfd);
7716 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7717 for (rel = relocs; rel < relend; ++rel)
7718 {
7719 const char *name;
7720 bfd_vma value = 0;
7721 reloc_howto_type *howto;
7722 bfd_boolean require_jalx;
7723 /* TRUE if the relocation is a RELA relocation, rather than a
7724 REL relocation. */
7725 bfd_boolean rela_relocation_p = TRUE;
7726 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7727 const char *msg;
7728 unsigned long r_symndx;
7729 asection *sec;
7730 Elf_Internal_Shdr *symtab_hdr;
7731 struct elf_link_hash_entry *h;
7732
7733 /* Find the relocation howto for this relocation. */
7734 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7735 NEWABI_P (input_bfd)
7736 && (MIPS_RELOC_RELA_P
7737 (input_bfd, input_section,
7738 rel - relocs)));
7739
7740 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7741 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7742 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7743 {
7744 sec = local_sections[r_symndx];
7745 h = NULL;
7746 }
7747 else
7748 {
7749 unsigned long extsymoff;
7750
7751 extsymoff = 0;
7752 if (!elf_bad_symtab (input_bfd))
7753 extsymoff = symtab_hdr->sh_info;
7754 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7755 while (h->root.type == bfd_link_hash_indirect
7756 || h->root.type == bfd_link_hash_warning)
7757 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7758
7759 sec = NULL;
7760 if (h->root.type == bfd_link_hash_defined
7761 || h->root.type == bfd_link_hash_defweak)
7762 sec = h->root.u.def.section;
7763 }
7764
7765 if (sec != NULL && elf_discarded_section (sec))
7766 {
7767 /* For relocs against symbols from removed linkonce sections,
7768 or sections discarded by a linker script, we just want the
7769 section contents zeroed. Avoid any special processing. */
7770 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7771 rel->r_info = 0;
7772 rel->r_addend = 0;
7773 continue;
7774 }
7775
7776 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7777 {
7778 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7779 64-bit code, but make sure all their addresses are in the
7780 lowermost or uppermost 32-bit section of the 64-bit address
7781 space. Thus, when they use an R_MIPS_64 they mean what is
7782 usually meant by R_MIPS_32, with the exception that the
7783 stored value is sign-extended to 64 bits. */
7784 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7785
7786 /* On big-endian systems, we need to lie about the position
7787 of the reloc. */
7788 if (bfd_big_endian (input_bfd))
7789 rel->r_offset += 4;
7790 }
7791
7792 if (!use_saved_addend_p)
7793 {
7794 Elf_Internal_Shdr *rel_hdr;
7795
7796 /* If these relocations were originally of the REL variety,
7797 we must pull the addend out of the field that will be
7798 relocated. Otherwise, we simply use the contents of the
7799 RELA relocation. To determine which flavor or relocation
7800 this is, we depend on the fact that the INPUT_SECTION's
7801 REL_HDR is read before its REL_HDR2. */
7802 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7803 if ((size_t) (rel - relocs)
7804 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7805 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7806 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7807 {
7808 bfd_byte *location = contents + rel->r_offset;
7809
7810 /* Note that this is a REL relocation. */
7811 rela_relocation_p = FALSE;
7812
7813 /* Get the addend, which is stored in the input file. */
7814 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7815 location);
7816 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7817 contents);
7818 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7819 location);
7820
7821 addend &= howto->src_mask;
7822
7823 /* For some kinds of relocations, the ADDEND is a
7824 combination of the addend stored in two different
7825 relocations. */
7826 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7827 || (r_type == R_MIPS_GOT16
7828 && mips_elf_local_relocation_p (input_bfd, rel,
7829 local_sections, FALSE)))
7830 {
7831 const Elf_Internal_Rela *lo16_relocation;
7832 reloc_howto_type *lo16_howto;
7833 int lo16_type;
7834
7835 if (r_type == R_MIPS16_HI16)
7836 lo16_type = R_MIPS16_LO16;
7837 else
7838 lo16_type = R_MIPS_LO16;
7839
7840 /* The combined value is the sum of the HI16 addend,
7841 left-shifted by sixteen bits, and the LO16
7842 addend, sign extended. (Usually, the code does
7843 a `lui' of the HI16 value, and then an `addiu' of
7844 the LO16 value.)
7845
7846 Scan ahead to find a matching LO16 relocation.
7847
7848 According to the MIPS ELF ABI, the R_MIPS_LO16
7849 relocation must be immediately following.
7850 However, for the IRIX6 ABI, the next relocation
7851 may be a composed relocation consisting of
7852 several relocations for the same address. In
7853 that case, the R_MIPS_LO16 relocation may occur
7854 as one of these. We permit a similar extension
7855 in general, as that is useful for GCC.
7856
7857 In some cases GCC dead code elimination removes
7858 the LO16 but keeps the corresponding HI16. This
7859 is strictly speaking a violation of the ABI but
7860 not immediately harmful. */
7861 lo16_relocation = mips_elf_next_relocation (input_bfd,
7862 lo16_type,
7863 rel, relend);
7864 if (lo16_relocation == NULL)
7865 {
7866 const char *name;
7867
7868 if (h)
7869 name = h->root.root.string;
7870 else
7871 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7872 local_syms + r_symndx,
7873 sec);
7874 (*_bfd_error_handler)
7875 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7876 input_bfd, input_section, name, howto->name,
7877 rel->r_offset);
7878 }
7879 else
7880 {
7881 bfd_byte *lo16_location;
7882 bfd_vma l;
7883
7884 lo16_location = contents + lo16_relocation->r_offset;
7885
7886 /* Obtain the addend kept there. */
7887 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7888 lo16_type, FALSE);
7889 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7890 FALSE, lo16_location);
7891 l = mips_elf_obtain_contents (lo16_howto,
7892 lo16_relocation,
7893 input_bfd, contents);
7894 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7895 FALSE, lo16_location);
7896 l &= lo16_howto->src_mask;
7897 l <<= lo16_howto->rightshift;
7898 l = _bfd_mips_elf_sign_extend (l, 16);
7899
7900 addend <<= 16;
7901
7902 /* Compute the combined addend. */
7903 addend += l;
7904 }
7905 }
7906 else
7907 addend <<= howto->rightshift;
7908 }
7909 else
7910 addend = rel->r_addend;
7911 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7912 local_syms, local_sections, rel);
7913 }
7914
7915 if (info->relocatable)
7916 {
7917 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7918 && bfd_big_endian (input_bfd))
7919 rel->r_offset -= 4;
7920
7921 if (!rela_relocation_p && rel->r_addend)
7922 {
7923 addend += rel->r_addend;
7924 if (r_type == R_MIPS_HI16
7925 || r_type == R_MIPS_GOT16)
7926 addend = mips_elf_high (addend);
7927 else if (r_type == R_MIPS_HIGHER)
7928 addend = mips_elf_higher (addend);
7929 else if (r_type == R_MIPS_HIGHEST)
7930 addend = mips_elf_highest (addend);
7931 else
7932 addend >>= howto->rightshift;
7933
7934 /* We use the source mask, rather than the destination
7935 mask because the place to which we are writing will be
7936 source of the addend in the final link. */
7937 addend &= howto->src_mask;
7938
7939 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7940 /* See the comment above about using R_MIPS_64 in the 32-bit
7941 ABI. Here, we need to update the addend. It would be
7942 possible to get away with just using the R_MIPS_32 reloc
7943 but for endianness. */
7944 {
7945 bfd_vma sign_bits;
7946 bfd_vma low_bits;
7947 bfd_vma high_bits;
7948
7949 if (addend & ((bfd_vma) 1 << 31))
7950 #ifdef BFD64
7951 sign_bits = ((bfd_vma) 1 << 32) - 1;
7952 #else
7953 sign_bits = -1;
7954 #endif
7955 else
7956 sign_bits = 0;
7957
7958 /* If we don't know that we have a 64-bit type,
7959 do two separate stores. */
7960 if (bfd_big_endian (input_bfd))
7961 {
7962 /* Store the sign-bits (which are most significant)
7963 first. */
7964 low_bits = sign_bits;
7965 high_bits = addend;
7966 }
7967 else
7968 {
7969 low_bits = addend;
7970 high_bits = sign_bits;
7971 }
7972 bfd_put_32 (input_bfd, low_bits,
7973 contents + rel->r_offset);
7974 bfd_put_32 (input_bfd, high_bits,
7975 contents + rel->r_offset + 4);
7976 continue;
7977 }
7978
7979 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7980 input_bfd, input_section,
7981 contents, FALSE))
7982 return FALSE;
7983 }
7984
7985 /* Go on to the next relocation. */
7986 continue;
7987 }
7988
7989 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7990 relocations for the same offset. In that case we are
7991 supposed to treat the output of each relocation as the addend
7992 for the next. */
7993 if (rel + 1 < relend
7994 && rel->r_offset == rel[1].r_offset
7995 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7996 use_saved_addend_p = TRUE;
7997 else
7998 use_saved_addend_p = FALSE;
7999
8000 /* Figure out what value we are supposed to relocate. */
8001 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8002 input_section, info, rel,
8003 addend, howto, local_syms,
8004 local_sections, &value,
8005 &name, &require_jalx,
8006 use_saved_addend_p))
8007 {
8008 case bfd_reloc_continue:
8009 /* There's nothing to do. */
8010 continue;
8011
8012 case bfd_reloc_undefined:
8013 /* mips_elf_calculate_relocation already called the
8014 undefined_symbol callback. There's no real point in
8015 trying to perform the relocation at this point, so we
8016 just skip ahead to the next relocation. */
8017 continue;
8018
8019 case bfd_reloc_notsupported:
8020 msg = _("internal error: unsupported relocation error");
8021 info->callbacks->warning
8022 (info, msg, name, input_bfd, input_section, rel->r_offset);
8023 return FALSE;
8024
8025 case bfd_reloc_overflow:
8026 if (use_saved_addend_p)
8027 /* Ignore overflow until we reach the last relocation for
8028 a given location. */
8029 ;
8030 else
8031 {
8032 BFD_ASSERT (name != NULL);
8033 if (! ((*info->callbacks->reloc_overflow)
8034 (info, NULL, name, howto->name, (bfd_vma) 0,
8035 input_bfd, input_section, rel->r_offset)))
8036 return FALSE;
8037 }
8038 break;
8039
8040 case bfd_reloc_ok:
8041 break;
8042
8043 default:
8044 abort ();
8045 break;
8046 }
8047
8048 /* If we've got another relocation for the address, keep going
8049 until we reach the last one. */
8050 if (use_saved_addend_p)
8051 {
8052 addend = value;
8053 continue;
8054 }
8055
8056 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8057 /* See the comment above about using R_MIPS_64 in the 32-bit
8058 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8059 that calculated the right value. Now, however, we
8060 sign-extend the 32-bit result to 64-bits, and store it as a
8061 64-bit value. We are especially generous here in that we
8062 go to extreme lengths to support this usage on systems with
8063 only a 32-bit VMA. */
8064 {
8065 bfd_vma sign_bits;
8066 bfd_vma low_bits;
8067 bfd_vma high_bits;
8068
8069 if (value & ((bfd_vma) 1 << 31))
8070 #ifdef BFD64
8071 sign_bits = ((bfd_vma) 1 << 32) - 1;
8072 #else
8073 sign_bits = -1;
8074 #endif
8075 else
8076 sign_bits = 0;
8077
8078 /* If we don't know that we have a 64-bit type,
8079 do two separate stores. */
8080 if (bfd_big_endian (input_bfd))
8081 {
8082 /* Undo what we did above. */
8083 rel->r_offset -= 4;
8084 /* Store the sign-bits (which are most significant)
8085 first. */
8086 low_bits = sign_bits;
8087 high_bits = value;
8088 }
8089 else
8090 {
8091 low_bits = value;
8092 high_bits = sign_bits;
8093 }
8094 bfd_put_32 (input_bfd, low_bits,
8095 contents + rel->r_offset);
8096 bfd_put_32 (input_bfd, high_bits,
8097 contents + rel->r_offset + 4);
8098 continue;
8099 }
8100
8101 /* Actually perform the relocation. */
8102 if (! mips_elf_perform_relocation (info, howto, rel, value,
8103 input_bfd, input_section,
8104 contents, require_jalx))
8105 return FALSE;
8106 }
8107
8108 return TRUE;
8109 }
8110 \f
8111 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8112 adjust it appropriately now. */
8113
8114 static void
8115 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8116 const char *name, Elf_Internal_Sym *sym)
8117 {
8118 /* The linker script takes care of providing names and values for
8119 these, but we must place them into the right sections. */
8120 static const char* const text_section_symbols[] = {
8121 "_ftext",
8122 "_etext",
8123 "__dso_displacement",
8124 "__elf_header",
8125 "__program_header_table",
8126 NULL
8127 };
8128
8129 static const char* const data_section_symbols[] = {
8130 "_fdata",
8131 "_edata",
8132 "_end",
8133 "_fbss",
8134 NULL
8135 };
8136
8137 const char* const *p;
8138 int i;
8139
8140 for (i = 0; i < 2; ++i)
8141 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8142 *p;
8143 ++p)
8144 if (strcmp (*p, name) == 0)
8145 {
8146 /* All of these symbols are given type STT_SECTION by the
8147 IRIX6 linker. */
8148 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8149 sym->st_other = STO_PROTECTED;
8150
8151 /* The IRIX linker puts these symbols in special sections. */
8152 if (i == 0)
8153 sym->st_shndx = SHN_MIPS_TEXT;
8154 else
8155 sym->st_shndx = SHN_MIPS_DATA;
8156
8157 break;
8158 }
8159 }
8160
8161 /* Finish up dynamic symbol handling. We set the contents of various
8162 dynamic sections here. */
8163
8164 bfd_boolean
8165 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8166 struct bfd_link_info *info,
8167 struct elf_link_hash_entry *h,
8168 Elf_Internal_Sym *sym)
8169 {
8170 bfd *dynobj;
8171 asection *sgot;
8172 struct mips_got_info *g, *gg;
8173 const char *name;
8174 int idx;
8175 struct mips_elf_link_hash_table *htab;
8176
8177 htab = mips_elf_hash_table (info);
8178 dynobj = elf_hash_table (info)->dynobj;
8179
8180 if (h->plt.offset != MINUS_ONE)
8181 {
8182 asection *s;
8183 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8184
8185 /* This symbol has a stub. Set it up. */
8186
8187 BFD_ASSERT (h->dynindx != -1);
8188
8189 s = bfd_get_section_by_name (dynobj,
8190 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8191 BFD_ASSERT (s != NULL);
8192
8193 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8194 || (h->dynindx <= 0xffff));
8195
8196 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8197 sign extension at runtime in the stub, resulting in a negative
8198 index value. */
8199 if (h->dynindx & ~0x7fffffff)
8200 return FALSE;
8201
8202 /* Fill the stub. */
8203 idx = 0;
8204 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8205 idx += 4;
8206 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8207 idx += 4;
8208 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8209 {
8210 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8211 stub + idx);
8212 idx += 4;
8213 }
8214 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8215 idx += 4;
8216
8217 /* If a large stub is not required and sign extension is not a
8218 problem, then use legacy code in the stub. */
8219 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8220 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8221 else if (h->dynindx & ~0x7fff)
8222 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8223 else
8224 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8225 stub + idx);
8226
8227 BFD_ASSERT (h->plt.offset <= s->size);
8228 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8229
8230 /* Mark the symbol as undefined. plt.offset != -1 occurs
8231 only for the referenced symbol. */
8232 sym->st_shndx = SHN_UNDEF;
8233
8234 /* The run-time linker uses the st_value field of the symbol
8235 to reset the global offset table entry for this external
8236 to its stub address when unlinking a shared object. */
8237 sym->st_value = (s->output_section->vma + s->output_offset
8238 + h->plt.offset);
8239 }
8240
8241 BFD_ASSERT (h->dynindx != -1
8242 || h->forced_local);
8243
8244 sgot = mips_elf_got_section (dynobj, FALSE);
8245 BFD_ASSERT (sgot != NULL);
8246 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8247 g = mips_elf_section_data (sgot)->u.got_info;
8248 BFD_ASSERT (g != NULL);
8249
8250 /* Run through the global symbol table, creating GOT entries for all
8251 the symbols that need them. */
8252 if (g->global_gotsym != NULL
8253 && h->dynindx >= g->global_gotsym->dynindx)
8254 {
8255 bfd_vma offset;
8256 bfd_vma value;
8257
8258 value = sym->st_value;
8259 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8260 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8261 }
8262
8263 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8264 {
8265 struct mips_got_entry e, *p;
8266 bfd_vma entry;
8267 bfd_vma offset;
8268
8269 gg = g;
8270
8271 e.abfd = output_bfd;
8272 e.symndx = -1;
8273 e.d.h = (struct mips_elf_link_hash_entry *)h;
8274 e.tls_type = 0;
8275
8276 for (g = g->next; g->next != gg; g = g->next)
8277 {
8278 if (g->got_entries
8279 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8280 &e)))
8281 {
8282 offset = p->gotidx;
8283 if (info->shared
8284 || (elf_hash_table (info)->dynamic_sections_created
8285 && p->d.h != NULL
8286 && p->d.h->root.def_dynamic
8287 && !p->d.h->root.def_regular))
8288 {
8289 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8290 the various compatibility problems, it's easier to mock
8291 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8292 mips_elf_create_dynamic_relocation to calculate the
8293 appropriate addend. */
8294 Elf_Internal_Rela rel[3];
8295
8296 memset (rel, 0, sizeof (rel));
8297 if (ABI_64_P (output_bfd))
8298 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8299 else
8300 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8301 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8302
8303 entry = 0;
8304 if (! (mips_elf_create_dynamic_relocation
8305 (output_bfd, info, rel,
8306 e.d.h, NULL, sym->st_value, &entry, sgot)))
8307 return FALSE;
8308 }
8309 else
8310 entry = sym->st_value;
8311 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8312 }
8313 }
8314 }
8315
8316 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8317 name = h->root.root.string;
8318 if (strcmp (name, "_DYNAMIC") == 0
8319 || h == elf_hash_table (info)->hgot)
8320 sym->st_shndx = SHN_ABS;
8321 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8322 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8323 {
8324 sym->st_shndx = SHN_ABS;
8325 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8326 sym->st_value = 1;
8327 }
8328 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8329 {
8330 sym->st_shndx = SHN_ABS;
8331 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8332 sym->st_value = elf_gp (output_bfd);
8333 }
8334 else if (SGI_COMPAT (output_bfd))
8335 {
8336 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8337 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8338 {
8339 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8340 sym->st_other = STO_PROTECTED;
8341 sym->st_value = 0;
8342 sym->st_shndx = SHN_MIPS_DATA;
8343 }
8344 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8345 {
8346 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8347 sym->st_other = STO_PROTECTED;
8348 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8349 sym->st_shndx = SHN_ABS;
8350 }
8351 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8352 {
8353 if (h->type == STT_FUNC)
8354 sym->st_shndx = SHN_MIPS_TEXT;
8355 else if (h->type == STT_OBJECT)
8356 sym->st_shndx = SHN_MIPS_DATA;
8357 }
8358 }
8359
8360 /* Handle the IRIX6-specific symbols. */
8361 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8362 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8363
8364 if (! info->shared)
8365 {
8366 if (! mips_elf_hash_table (info)->use_rld_obj_head
8367 && (strcmp (name, "__rld_map") == 0
8368 || strcmp (name, "__RLD_MAP") == 0))
8369 {
8370 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8371 BFD_ASSERT (s != NULL);
8372 sym->st_value = s->output_section->vma + s->output_offset;
8373 bfd_put_32 (output_bfd, 0, s->contents);
8374 if (mips_elf_hash_table (info)->rld_value == 0)
8375 mips_elf_hash_table (info)->rld_value = sym->st_value;
8376 }
8377 else if (mips_elf_hash_table (info)->use_rld_obj_head
8378 && strcmp (name, "__rld_obj_head") == 0)
8379 {
8380 /* IRIX6 does not use a .rld_map section. */
8381 if (IRIX_COMPAT (output_bfd) == ict_irix5
8382 || IRIX_COMPAT (output_bfd) == ict_none)
8383 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8384 != NULL);
8385 mips_elf_hash_table (info)->rld_value = sym->st_value;
8386 }
8387 }
8388
8389 /* If this is a mips16 symbol, force the value to be even. */
8390 if (sym->st_other == STO_MIPS16)
8391 sym->st_value &= ~1;
8392
8393 return TRUE;
8394 }
8395
8396 /* Likewise, for VxWorks. */
8397
8398 bfd_boolean
8399 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8400 struct bfd_link_info *info,
8401 struct elf_link_hash_entry *h,
8402 Elf_Internal_Sym *sym)
8403 {
8404 bfd *dynobj;
8405 asection *sgot;
8406 struct mips_got_info *g;
8407 struct mips_elf_link_hash_table *htab;
8408
8409 htab = mips_elf_hash_table (info);
8410 dynobj = elf_hash_table (info)->dynobj;
8411
8412 if (h->plt.offset != (bfd_vma) -1)
8413 {
8414 bfd_byte *loc;
8415 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8416 Elf_Internal_Rela rel;
8417 static const bfd_vma *plt_entry;
8418
8419 BFD_ASSERT (h->dynindx != -1);
8420 BFD_ASSERT (htab->splt != NULL);
8421 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8422
8423 /* Calculate the address of the .plt entry. */
8424 plt_address = (htab->splt->output_section->vma
8425 + htab->splt->output_offset
8426 + h->plt.offset);
8427
8428 /* Calculate the index of the entry. */
8429 plt_index = ((h->plt.offset - htab->plt_header_size)
8430 / htab->plt_entry_size);
8431
8432 /* Calculate the address of the .got.plt entry. */
8433 got_address = (htab->sgotplt->output_section->vma
8434 + htab->sgotplt->output_offset
8435 + plt_index * 4);
8436
8437 /* Calculate the offset of the .got.plt entry from
8438 _GLOBAL_OFFSET_TABLE_. */
8439 got_offset = mips_elf_gotplt_index (info, h);
8440
8441 /* Calculate the offset for the branch at the start of the PLT
8442 entry. The branch jumps to the beginning of .plt. */
8443 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8444
8445 /* Fill in the initial value of the .got.plt entry. */
8446 bfd_put_32 (output_bfd, plt_address,
8447 htab->sgotplt->contents + plt_index * 4);
8448
8449 /* Find out where the .plt entry should go. */
8450 loc = htab->splt->contents + h->plt.offset;
8451
8452 if (info->shared)
8453 {
8454 plt_entry = mips_vxworks_shared_plt_entry;
8455 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8456 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8457 }
8458 else
8459 {
8460 bfd_vma got_address_high, got_address_low;
8461
8462 plt_entry = mips_vxworks_exec_plt_entry;
8463 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8464 got_address_low = got_address & 0xffff;
8465
8466 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8467 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8468 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8469 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8470 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8471 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8472 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8473 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8474
8475 loc = (htab->srelplt2->contents
8476 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8477
8478 /* Emit a relocation for the .got.plt entry. */
8479 rel.r_offset = got_address;
8480 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8481 rel.r_addend = h->plt.offset;
8482 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8483
8484 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8485 loc += sizeof (Elf32_External_Rela);
8486 rel.r_offset = plt_address + 8;
8487 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8488 rel.r_addend = got_offset;
8489 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8490
8491 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8492 loc += sizeof (Elf32_External_Rela);
8493 rel.r_offset += 4;
8494 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8495 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8496 }
8497
8498 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8499 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8500 rel.r_offset = got_address;
8501 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8502 rel.r_addend = 0;
8503 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8504
8505 if (!h->def_regular)
8506 sym->st_shndx = SHN_UNDEF;
8507 }
8508
8509 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8510
8511 sgot = mips_elf_got_section (dynobj, FALSE);
8512 BFD_ASSERT (sgot != NULL);
8513 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8514 g = mips_elf_section_data (sgot)->u.got_info;
8515 BFD_ASSERT (g != NULL);
8516
8517 /* See if this symbol has an entry in the GOT. */
8518 if (g->global_gotsym != NULL
8519 && h->dynindx >= g->global_gotsym->dynindx)
8520 {
8521 bfd_vma offset;
8522 Elf_Internal_Rela outrel;
8523 bfd_byte *loc;
8524 asection *s;
8525
8526 /* Install the symbol value in the GOT. */
8527 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8528 R_MIPS_GOT16, info);
8529 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8530
8531 /* Add a dynamic relocation for it. */
8532 s = mips_elf_rel_dyn_section (info, FALSE);
8533 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8534 outrel.r_offset = (sgot->output_section->vma
8535 + sgot->output_offset
8536 + offset);
8537 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8538 outrel.r_addend = 0;
8539 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8540 }
8541
8542 /* Emit a copy reloc, if needed. */
8543 if (h->needs_copy)
8544 {
8545 Elf_Internal_Rela rel;
8546
8547 BFD_ASSERT (h->dynindx != -1);
8548
8549 rel.r_offset = (h->root.u.def.section->output_section->vma
8550 + h->root.u.def.section->output_offset
8551 + h->root.u.def.value);
8552 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8553 rel.r_addend = 0;
8554 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8555 htab->srelbss->contents
8556 + (htab->srelbss->reloc_count
8557 * sizeof (Elf32_External_Rela)));
8558 ++htab->srelbss->reloc_count;
8559 }
8560
8561 /* If this is a mips16 symbol, force the value to be even. */
8562 if (sym->st_other == STO_MIPS16)
8563 sym->st_value &= ~1;
8564
8565 return TRUE;
8566 }
8567
8568 /* Install the PLT header for a VxWorks executable and finalize the
8569 contents of .rela.plt.unloaded. */
8570
8571 static void
8572 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8573 {
8574 Elf_Internal_Rela rela;
8575 bfd_byte *loc;
8576 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8577 static const bfd_vma *plt_entry;
8578 struct mips_elf_link_hash_table *htab;
8579
8580 htab = mips_elf_hash_table (info);
8581 plt_entry = mips_vxworks_exec_plt0_entry;
8582
8583 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8584 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8585 + htab->root.hgot->root.u.def.section->output_offset
8586 + htab->root.hgot->root.u.def.value);
8587
8588 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8589 got_value_low = got_value & 0xffff;
8590
8591 /* Calculate the address of the PLT header. */
8592 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8593
8594 /* Install the PLT header. */
8595 loc = htab->splt->contents;
8596 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8597 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8598 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8599 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8600 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8601 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8602
8603 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8604 loc = htab->srelplt2->contents;
8605 rela.r_offset = plt_address;
8606 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8607 rela.r_addend = 0;
8608 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8609 loc += sizeof (Elf32_External_Rela);
8610
8611 /* Output the relocation for the following addiu of
8612 %lo(_GLOBAL_OFFSET_TABLE_). */
8613 rela.r_offset += 4;
8614 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8615 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8616 loc += sizeof (Elf32_External_Rela);
8617
8618 /* Fix up the remaining relocations. They may have the wrong
8619 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8620 in which symbols were output. */
8621 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8622 {
8623 Elf_Internal_Rela rel;
8624
8625 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8626 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8627 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8628 loc += sizeof (Elf32_External_Rela);
8629
8630 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8631 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8632 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8633 loc += sizeof (Elf32_External_Rela);
8634
8635 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8636 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8637 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8638 loc += sizeof (Elf32_External_Rela);
8639 }
8640 }
8641
8642 /* Install the PLT header for a VxWorks shared library. */
8643
8644 static void
8645 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8646 {
8647 unsigned int i;
8648 struct mips_elf_link_hash_table *htab;
8649
8650 htab = mips_elf_hash_table (info);
8651
8652 /* We just need to copy the entry byte-by-byte. */
8653 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8654 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8655 htab->splt->contents + i * 4);
8656 }
8657
8658 /* Finish up the dynamic sections. */
8659
8660 bfd_boolean
8661 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8662 struct bfd_link_info *info)
8663 {
8664 bfd *dynobj;
8665 asection *sdyn;
8666 asection *sgot;
8667 struct mips_got_info *gg, *g;
8668 struct mips_elf_link_hash_table *htab;
8669
8670 htab = mips_elf_hash_table (info);
8671 dynobj = elf_hash_table (info)->dynobj;
8672
8673 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8674
8675 sgot = mips_elf_got_section (dynobj, FALSE);
8676 if (sgot == NULL)
8677 gg = g = NULL;
8678 else
8679 {
8680 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8681 gg = mips_elf_section_data (sgot)->u.got_info;
8682 BFD_ASSERT (gg != NULL);
8683 g = mips_elf_got_for_ibfd (gg, output_bfd);
8684 BFD_ASSERT (g != NULL);
8685 }
8686
8687 if (elf_hash_table (info)->dynamic_sections_created)
8688 {
8689 bfd_byte *b;
8690 int dyn_to_skip = 0, dyn_skipped = 0;
8691
8692 BFD_ASSERT (sdyn != NULL);
8693 BFD_ASSERT (g != NULL);
8694
8695 for (b = sdyn->contents;
8696 b < sdyn->contents + sdyn->size;
8697 b += MIPS_ELF_DYN_SIZE (dynobj))
8698 {
8699 Elf_Internal_Dyn dyn;
8700 const char *name;
8701 size_t elemsize;
8702 asection *s;
8703 bfd_boolean swap_out_p;
8704
8705 /* Read in the current dynamic entry. */
8706 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8707
8708 /* Assume that we're going to modify it and write it out. */
8709 swap_out_p = TRUE;
8710
8711 switch (dyn.d_tag)
8712 {
8713 case DT_RELENT:
8714 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8715 break;
8716
8717 case DT_RELAENT:
8718 BFD_ASSERT (htab->is_vxworks);
8719 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8720 break;
8721
8722 case DT_STRSZ:
8723 /* Rewrite DT_STRSZ. */
8724 dyn.d_un.d_val =
8725 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8726 break;
8727
8728 case DT_PLTGOT:
8729 name = ".got";
8730 if (htab->is_vxworks)
8731 {
8732 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8733 of the ".got" section in DYNOBJ. */
8734 s = bfd_get_section_by_name (dynobj, name);
8735 BFD_ASSERT (s != NULL);
8736 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8737 }
8738 else
8739 {
8740 s = bfd_get_section_by_name (output_bfd, name);
8741 BFD_ASSERT (s != NULL);
8742 dyn.d_un.d_ptr = s->vma;
8743 }
8744 break;
8745
8746 case DT_MIPS_RLD_VERSION:
8747 dyn.d_un.d_val = 1; /* XXX */
8748 break;
8749
8750 case DT_MIPS_FLAGS:
8751 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8752 break;
8753
8754 case DT_MIPS_TIME_STAMP:
8755 {
8756 time_t t;
8757 time (&t);
8758 dyn.d_un.d_val = t;
8759 }
8760 break;
8761
8762 case DT_MIPS_ICHECKSUM:
8763 /* XXX FIXME: */
8764 swap_out_p = FALSE;
8765 break;
8766
8767 case DT_MIPS_IVERSION:
8768 /* XXX FIXME: */
8769 swap_out_p = FALSE;
8770 break;
8771
8772 case DT_MIPS_BASE_ADDRESS:
8773 s = output_bfd->sections;
8774 BFD_ASSERT (s != NULL);
8775 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8776 break;
8777
8778 case DT_MIPS_LOCAL_GOTNO:
8779 dyn.d_un.d_val = g->local_gotno;
8780 break;
8781
8782 case DT_MIPS_UNREFEXTNO:
8783 /* The index into the dynamic symbol table which is the
8784 entry of the first external symbol that is not
8785 referenced within the same object. */
8786 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8787 break;
8788
8789 case DT_MIPS_GOTSYM:
8790 if (gg->global_gotsym)
8791 {
8792 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8793 break;
8794 }
8795 /* In case if we don't have global got symbols we default
8796 to setting DT_MIPS_GOTSYM to the same value as
8797 DT_MIPS_SYMTABNO, so we just fall through. */
8798
8799 case DT_MIPS_SYMTABNO:
8800 name = ".dynsym";
8801 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8802 s = bfd_get_section_by_name (output_bfd, name);
8803 BFD_ASSERT (s != NULL);
8804
8805 dyn.d_un.d_val = s->size / elemsize;
8806 break;
8807
8808 case DT_MIPS_HIPAGENO:
8809 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8810 break;
8811
8812 case DT_MIPS_RLD_MAP:
8813 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8814 break;
8815
8816 case DT_MIPS_OPTIONS:
8817 s = (bfd_get_section_by_name
8818 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8819 dyn.d_un.d_ptr = s->vma;
8820 break;
8821
8822 case DT_RELASZ:
8823 BFD_ASSERT (htab->is_vxworks);
8824 /* The count does not include the JUMP_SLOT relocations. */
8825 if (htab->srelplt)
8826 dyn.d_un.d_val -= htab->srelplt->size;
8827 break;
8828
8829 case DT_PLTREL:
8830 BFD_ASSERT (htab->is_vxworks);
8831 dyn.d_un.d_val = DT_RELA;
8832 break;
8833
8834 case DT_PLTRELSZ:
8835 BFD_ASSERT (htab->is_vxworks);
8836 dyn.d_un.d_val = htab->srelplt->size;
8837 break;
8838
8839 case DT_JMPREL:
8840 BFD_ASSERT (htab->is_vxworks);
8841 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8842 + htab->srelplt->output_offset);
8843 break;
8844
8845 case DT_TEXTREL:
8846 /* If we didn't need any text relocations after all, delete
8847 the dynamic tag. */
8848 if (!(info->flags & DF_TEXTREL))
8849 {
8850 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8851 swap_out_p = FALSE;
8852 }
8853 break;
8854
8855 case DT_FLAGS:
8856 /* If we didn't need any text relocations after all, clear
8857 DF_TEXTREL from DT_FLAGS. */
8858 if (!(info->flags & DF_TEXTREL))
8859 dyn.d_un.d_val &= ~DF_TEXTREL;
8860 else
8861 swap_out_p = FALSE;
8862 break;
8863
8864 default:
8865 swap_out_p = FALSE;
8866 break;
8867 }
8868
8869 if (swap_out_p || dyn_skipped)
8870 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8871 (dynobj, &dyn, b - dyn_skipped);
8872
8873 if (dyn_to_skip)
8874 {
8875 dyn_skipped += dyn_to_skip;
8876 dyn_to_skip = 0;
8877 }
8878 }
8879
8880 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8881 if (dyn_skipped > 0)
8882 memset (b - dyn_skipped, 0, dyn_skipped);
8883 }
8884
8885 if (sgot != NULL && sgot->size > 0)
8886 {
8887 if (htab->is_vxworks)
8888 {
8889 /* The first entry of the global offset table points to the
8890 ".dynamic" section. The second is initialized by the
8891 loader and contains the shared library identifier.
8892 The third is also initialized by the loader and points
8893 to the lazy resolution stub. */
8894 MIPS_ELF_PUT_WORD (output_bfd,
8895 sdyn->output_offset + sdyn->output_section->vma,
8896 sgot->contents);
8897 MIPS_ELF_PUT_WORD (output_bfd, 0,
8898 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8899 MIPS_ELF_PUT_WORD (output_bfd, 0,
8900 sgot->contents
8901 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8902 }
8903 else
8904 {
8905 /* The first entry of the global offset table will be filled at
8906 runtime. The second entry will be used by some runtime loaders.
8907 This isn't the case of IRIX rld. */
8908 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8909 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8910 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8911 }
8912
8913 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8914 = MIPS_ELF_GOT_SIZE (output_bfd);
8915 }
8916
8917 /* Generate dynamic relocations for the non-primary gots. */
8918 if (gg != NULL && gg->next)
8919 {
8920 Elf_Internal_Rela rel[3];
8921 bfd_vma addend = 0;
8922
8923 memset (rel, 0, sizeof (rel));
8924 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8925
8926 for (g = gg->next; g->next != gg; g = g->next)
8927 {
8928 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8929 + g->next->tls_gotno;
8930
8931 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8932 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8933 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8934 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8935
8936 if (! info->shared)
8937 continue;
8938
8939 while (index < g->assigned_gotno)
8940 {
8941 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8942 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8943 if (!(mips_elf_create_dynamic_relocation
8944 (output_bfd, info, rel, NULL,
8945 bfd_abs_section_ptr,
8946 0, &addend, sgot)))
8947 return FALSE;
8948 BFD_ASSERT (addend == 0);
8949 }
8950 }
8951 }
8952
8953 /* The generation of dynamic relocations for the non-primary gots
8954 adds more dynamic relocations. We cannot count them until
8955 here. */
8956
8957 if (elf_hash_table (info)->dynamic_sections_created)
8958 {
8959 bfd_byte *b;
8960 bfd_boolean swap_out_p;
8961
8962 BFD_ASSERT (sdyn != NULL);
8963
8964 for (b = sdyn->contents;
8965 b < sdyn->contents + sdyn->size;
8966 b += MIPS_ELF_DYN_SIZE (dynobj))
8967 {
8968 Elf_Internal_Dyn dyn;
8969 asection *s;
8970
8971 /* Read in the current dynamic entry. */
8972 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8973
8974 /* Assume that we're going to modify it and write it out. */
8975 swap_out_p = TRUE;
8976
8977 switch (dyn.d_tag)
8978 {
8979 case DT_RELSZ:
8980 /* Reduce DT_RELSZ to account for any relocations we
8981 decided not to make. This is for the n64 irix rld,
8982 which doesn't seem to apply any relocations if there
8983 are trailing null entries. */
8984 s = mips_elf_rel_dyn_section (info, FALSE);
8985 dyn.d_un.d_val = (s->reloc_count
8986 * (ABI_64_P (output_bfd)
8987 ? sizeof (Elf64_Mips_External_Rel)
8988 : sizeof (Elf32_External_Rel)));
8989 /* Adjust the section size too. Tools like the prelinker
8990 can reasonably expect the values to the same. */
8991 elf_section_data (s->output_section)->this_hdr.sh_size
8992 = dyn.d_un.d_val;
8993 break;
8994
8995 default:
8996 swap_out_p = FALSE;
8997 break;
8998 }
8999
9000 if (swap_out_p)
9001 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9002 (dynobj, &dyn, b);
9003 }
9004 }
9005
9006 {
9007 asection *s;
9008 Elf32_compact_rel cpt;
9009
9010 if (SGI_COMPAT (output_bfd))
9011 {
9012 /* Write .compact_rel section out. */
9013 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9014 if (s != NULL)
9015 {
9016 cpt.id1 = 1;
9017 cpt.num = s->reloc_count;
9018 cpt.id2 = 2;
9019 cpt.offset = (s->output_section->filepos
9020 + sizeof (Elf32_External_compact_rel));
9021 cpt.reserved0 = 0;
9022 cpt.reserved1 = 0;
9023 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9024 ((Elf32_External_compact_rel *)
9025 s->contents));
9026
9027 /* Clean up a dummy stub function entry in .text. */
9028 s = bfd_get_section_by_name (dynobj,
9029 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9030 if (s != NULL)
9031 {
9032 file_ptr dummy_offset;
9033
9034 BFD_ASSERT (s->size >= htab->function_stub_size);
9035 dummy_offset = s->size - htab->function_stub_size;
9036 memset (s->contents + dummy_offset, 0,
9037 htab->function_stub_size);
9038 }
9039 }
9040 }
9041
9042 /* The psABI says that the dynamic relocations must be sorted in
9043 increasing order of r_symndx. The VxWorks EABI doesn't require
9044 this, and because the code below handles REL rather than RELA
9045 relocations, using it for VxWorks would be outright harmful. */
9046 if (!htab->is_vxworks)
9047 {
9048 s = mips_elf_rel_dyn_section (info, FALSE);
9049 if (s != NULL
9050 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9051 {
9052 reldyn_sorting_bfd = output_bfd;
9053
9054 if (ABI_64_P (output_bfd))
9055 qsort ((Elf64_External_Rel *) s->contents + 1,
9056 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9057 sort_dynamic_relocs_64);
9058 else
9059 qsort ((Elf32_External_Rel *) s->contents + 1,
9060 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9061 sort_dynamic_relocs);
9062 }
9063 }
9064 }
9065
9066 if (htab->is_vxworks && htab->splt->size > 0)
9067 {
9068 if (info->shared)
9069 mips_vxworks_finish_shared_plt (output_bfd, info);
9070 else
9071 mips_vxworks_finish_exec_plt (output_bfd, info);
9072 }
9073 return TRUE;
9074 }
9075
9076
9077 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9078
9079 static void
9080 mips_set_isa_flags (bfd *abfd)
9081 {
9082 flagword val;
9083
9084 switch (bfd_get_mach (abfd))
9085 {
9086 default:
9087 case bfd_mach_mips3000:
9088 val = E_MIPS_ARCH_1;
9089 break;
9090
9091 case bfd_mach_mips3900:
9092 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9093 break;
9094
9095 case bfd_mach_mips6000:
9096 val = E_MIPS_ARCH_2;
9097 break;
9098
9099 case bfd_mach_mips4000:
9100 case bfd_mach_mips4300:
9101 case bfd_mach_mips4400:
9102 case bfd_mach_mips4600:
9103 val = E_MIPS_ARCH_3;
9104 break;
9105
9106 case bfd_mach_mips4010:
9107 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9108 break;
9109
9110 case bfd_mach_mips4100:
9111 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9112 break;
9113
9114 case bfd_mach_mips4111:
9115 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9116 break;
9117
9118 case bfd_mach_mips4120:
9119 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9120 break;
9121
9122 case bfd_mach_mips4650:
9123 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9124 break;
9125
9126 case bfd_mach_mips5400:
9127 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9128 break;
9129
9130 case bfd_mach_mips5500:
9131 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9132 break;
9133
9134 case bfd_mach_mips9000:
9135 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9136 break;
9137
9138 case bfd_mach_mips5000:
9139 case bfd_mach_mips7000:
9140 case bfd_mach_mips8000:
9141 case bfd_mach_mips10000:
9142 case bfd_mach_mips12000:
9143 val = E_MIPS_ARCH_4;
9144 break;
9145
9146 case bfd_mach_mips5:
9147 val = E_MIPS_ARCH_5;
9148 break;
9149
9150 case bfd_mach_mips_sb1:
9151 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9152 break;
9153
9154 case bfd_mach_mipsisa32:
9155 val = E_MIPS_ARCH_32;
9156 break;
9157
9158 case bfd_mach_mipsisa64:
9159 val = E_MIPS_ARCH_64;
9160 break;
9161
9162 case bfd_mach_mipsisa32r2:
9163 val = E_MIPS_ARCH_32R2;
9164 break;
9165
9166 case bfd_mach_mipsisa64r2:
9167 val = E_MIPS_ARCH_64R2;
9168 break;
9169 }
9170 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9171 elf_elfheader (abfd)->e_flags |= val;
9172
9173 }
9174
9175
9176 /* The final processing done just before writing out a MIPS ELF object
9177 file. This gets the MIPS architecture right based on the machine
9178 number. This is used by both the 32-bit and the 64-bit ABI. */
9179
9180 void
9181 _bfd_mips_elf_final_write_processing (bfd *abfd,
9182 bfd_boolean linker ATTRIBUTE_UNUSED)
9183 {
9184 unsigned int i;
9185 Elf_Internal_Shdr **hdrpp;
9186 const char *name;
9187 asection *sec;
9188
9189 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9190 is nonzero. This is for compatibility with old objects, which used
9191 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9192 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9193 mips_set_isa_flags (abfd);
9194
9195 /* Set the sh_info field for .gptab sections and other appropriate
9196 info for each special section. */
9197 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9198 i < elf_numsections (abfd);
9199 i++, hdrpp++)
9200 {
9201 switch ((*hdrpp)->sh_type)
9202 {
9203 case SHT_MIPS_MSYM:
9204 case SHT_MIPS_LIBLIST:
9205 sec = bfd_get_section_by_name (abfd, ".dynstr");
9206 if (sec != NULL)
9207 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9208 break;
9209
9210 case SHT_MIPS_GPTAB:
9211 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9212 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9213 BFD_ASSERT (name != NULL
9214 && CONST_STRNEQ (name, ".gptab."));
9215 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9216 BFD_ASSERT (sec != NULL);
9217 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9218 break;
9219
9220 case SHT_MIPS_CONTENT:
9221 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9222 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9223 BFD_ASSERT (name != NULL
9224 && CONST_STRNEQ (name, ".MIPS.content"));
9225 sec = bfd_get_section_by_name (abfd,
9226 name + sizeof ".MIPS.content" - 1);
9227 BFD_ASSERT (sec != NULL);
9228 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9229 break;
9230
9231 case SHT_MIPS_SYMBOL_LIB:
9232 sec = bfd_get_section_by_name (abfd, ".dynsym");
9233 if (sec != NULL)
9234 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9235 sec = bfd_get_section_by_name (abfd, ".liblist");
9236 if (sec != NULL)
9237 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9238 break;
9239
9240 case SHT_MIPS_EVENTS:
9241 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9242 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9243 BFD_ASSERT (name != NULL);
9244 if (CONST_STRNEQ (name, ".MIPS.events"))
9245 sec = bfd_get_section_by_name (abfd,
9246 name + sizeof ".MIPS.events" - 1);
9247 else
9248 {
9249 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9250 sec = bfd_get_section_by_name (abfd,
9251 (name
9252 + sizeof ".MIPS.post_rel" - 1));
9253 }
9254 BFD_ASSERT (sec != NULL);
9255 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9256 break;
9257
9258 }
9259 }
9260 }
9261 \f
9262 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9263 segments. */
9264
9265 int
9266 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9267 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9268 {
9269 asection *s;
9270 int ret = 0;
9271
9272 /* See if we need a PT_MIPS_REGINFO segment. */
9273 s = bfd_get_section_by_name (abfd, ".reginfo");
9274 if (s && (s->flags & SEC_LOAD))
9275 ++ret;
9276
9277 /* See if we need a PT_MIPS_OPTIONS segment. */
9278 if (IRIX_COMPAT (abfd) == ict_irix6
9279 && bfd_get_section_by_name (abfd,
9280 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9281 ++ret;
9282
9283 /* See if we need a PT_MIPS_RTPROC segment. */
9284 if (IRIX_COMPAT (abfd) == ict_irix5
9285 && bfd_get_section_by_name (abfd, ".dynamic")
9286 && bfd_get_section_by_name (abfd, ".mdebug"))
9287 ++ret;
9288
9289 /* Allocate a PT_NULL header in dynamic objects. See
9290 _bfd_mips_elf_modify_segment_map for details. */
9291 if (!SGI_COMPAT (abfd)
9292 && bfd_get_section_by_name (abfd, ".dynamic"))
9293 ++ret;
9294
9295 return ret;
9296 }
9297
9298 /* Modify the segment map for an IRIX5 executable. */
9299
9300 bfd_boolean
9301 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9302 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9303 {
9304 asection *s;
9305 struct elf_segment_map *m, **pm;
9306 bfd_size_type amt;
9307
9308 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9309 segment. */
9310 s = bfd_get_section_by_name (abfd, ".reginfo");
9311 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9312 {
9313 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9314 if (m->p_type == PT_MIPS_REGINFO)
9315 break;
9316 if (m == NULL)
9317 {
9318 amt = sizeof *m;
9319 m = bfd_zalloc (abfd, amt);
9320 if (m == NULL)
9321 return FALSE;
9322
9323 m->p_type = PT_MIPS_REGINFO;
9324 m->count = 1;
9325 m->sections[0] = s;
9326
9327 /* We want to put it after the PHDR and INTERP segments. */
9328 pm = &elf_tdata (abfd)->segment_map;
9329 while (*pm != NULL
9330 && ((*pm)->p_type == PT_PHDR
9331 || (*pm)->p_type == PT_INTERP))
9332 pm = &(*pm)->next;
9333
9334 m->next = *pm;
9335 *pm = m;
9336 }
9337 }
9338
9339 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9340 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9341 PT_MIPS_OPTIONS segment immediately following the program header
9342 table. */
9343 if (NEWABI_P (abfd)
9344 /* On non-IRIX6 new abi, we'll have already created a segment
9345 for this section, so don't create another. I'm not sure this
9346 is not also the case for IRIX 6, but I can't test it right
9347 now. */
9348 && IRIX_COMPAT (abfd) == ict_irix6)
9349 {
9350 for (s = abfd->sections; s; s = s->next)
9351 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9352 break;
9353
9354 if (s)
9355 {
9356 struct elf_segment_map *options_segment;
9357
9358 pm = &elf_tdata (abfd)->segment_map;
9359 while (*pm != NULL
9360 && ((*pm)->p_type == PT_PHDR
9361 || (*pm)->p_type == PT_INTERP))
9362 pm = &(*pm)->next;
9363
9364 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9365 {
9366 amt = sizeof (struct elf_segment_map);
9367 options_segment = bfd_zalloc (abfd, amt);
9368 options_segment->next = *pm;
9369 options_segment->p_type = PT_MIPS_OPTIONS;
9370 options_segment->p_flags = PF_R;
9371 options_segment->p_flags_valid = TRUE;
9372 options_segment->count = 1;
9373 options_segment->sections[0] = s;
9374 *pm = options_segment;
9375 }
9376 }
9377 }
9378 else
9379 {
9380 if (IRIX_COMPAT (abfd) == ict_irix5)
9381 {
9382 /* If there are .dynamic and .mdebug sections, we make a room
9383 for the RTPROC header. FIXME: Rewrite without section names. */
9384 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9385 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9386 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9387 {
9388 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9389 if (m->p_type == PT_MIPS_RTPROC)
9390 break;
9391 if (m == NULL)
9392 {
9393 amt = sizeof *m;
9394 m = bfd_zalloc (abfd, amt);
9395 if (m == NULL)
9396 return FALSE;
9397
9398 m->p_type = PT_MIPS_RTPROC;
9399
9400 s = bfd_get_section_by_name (abfd, ".rtproc");
9401 if (s == NULL)
9402 {
9403 m->count = 0;
9404 m->p_flags = 0;
9405 m->p_flags_valid = 1;
9406 }
9407 else
9408 {
9409 m->count = 1;
9410 m->sections[0] = s;
9411 }
9412
9413 /* We want to put it after the DYNAMIC segment. */
9414 pm = &elf_tdata (abfd)->segment_map;
9415 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9416 pm = &(*pm)->next;
9417 if (*pm != NULL)
9418 pm = &(*pm)->next;
9419
9420 m->next = *pm;
9421 *pm = m;
9422 }
9423 }
9424 }
9425 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9426 .dynstr, .dynsym, and .hash sections, and everything in
9427 between. */
9428 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9429 pm = &(*pm)->next)
9430 if ((*pm)->p_type == PT_DYNAMIC)
9431 break;
9432 m = *pm;
9433 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9434 {
9435 /* For a normal mips executable the permissions for the PT_DYNAMIC
9436 segment are read, write and execute. We do that here since
9437 the code in elf.c sets only the read permission. This matters
9438 sometimes for the dynamic linker. */
9439 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9440 {
9441 m->p_flags = PF_R | PF_W | PF_X;
9442 m->p_flags_valid = 1;
9443 }
9444 }
9445 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9446 glibc's dynamic linker has traditionally derived the number of
9447 tags from the p_filesz field, and sometimes allocates stack
9448 arrays of that size. An overly-big PT_DYNAMIC segment can
9449 be actively harmful in such cases. Making PT_DYNAMIC contain
9450 other sections can also make life hard for the prelinker,
9451 which might move one of the other sections to a different
9452 PT_LOAD segment. */
9453 if (SGI_COMPAT (abfd)
9454 && m != NULL
9455 && m->count == 1
9456 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9457 {
9458 static const char *sec_names[] =
9459 {
9460 ".dynamic", ".dynstr", ".dynsym", ".hash"
9461 };
9462 bfd_vma low, high;
9463 unsigned int i, c;
9464 struct elf_segment_map *n;
9465
9466 low = ~(bfd_vma) 0;
9467 high = 0;
9468 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9469 {
9470 s = bfd_get_section_by_name (abfd, sec_names[i]);
9471 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9472 {
9473 bfd_size_type sz;
9474
9475 if (low > s->vma)
9476 low = s->vma;
9477 sz = s->size;
9478 if (high < s->vma + sz)
9479 high = s->vma + sz;
9480 }
9481 }
9482
9483 c = 0;
9484 for (s = abfd->sections; s != NULL; s = s->next)
9485 if ((s->flags & SEC_LOAD) != 0
9486 && s->vma >= low
9487 && s->vma + s->size <= high)
9488 ++c;
9489
9490 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9491 n = bfd_zalloc (abfd, amt);
9492 if (n == NULL)
9493 return FALSE;
9494 *n = *m;
9495 n->count = c;
9496
9497 i = 0;
9498 for (s = abfd->sections; s != NULL; s = s->next)
9499 {
9500 if ((s->flags & SEC_LOAD) != 0
9501 && s->vma >= low
9502 && s->vma + s->size <= high)
9503 {
9504 n->sections[i] = s;
9505 ++i;
9506 }
9507 }
9508
9509 *pm = n;
9510 }
9511 }
9512
9513 /* Allocate a spare program header in dynamic objects so that tools
9514 like the prelinker can add an extra PT_LOAD entry.
9515
9516 If the prelinker needs to make room for a new PT_LOAD entry, its
9517 standard procedure is to move the first (read-only) sections into
9518 the new (writable) segment. However, the MIPS ABI requires
9519 .dynamic to be in a read-only segment, and the section will often
9520 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9521
9522 Although the prelinker could in principle move .dynamic to a
9523 writable segment, it seems better to allocate a spare program
9524 header instead, and avoid the need to move any sections.
9525 There is a long tradition of allocating spare dynamic tags,
9526 so allocating a spare program header seems like a natural
9527 extension. */
9528 if (!SGI_COMPAT (abfd)
9529 && bfd_get_section_by_name (abfd, ".dynamic"))
9530 {
9531 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9532 if ((*pm)->p_type == PT_NULL)
9533 break;
9534 if (*pm == NULL)
9535 {
9536 m = bfd_zalloc (abfd, sizeof (*m));
9537 if (m == NULL)
9538 return FALSE;
9539
9540 m->p_type = PT_NULL;
9541 *pm = m;
9542 }
9543 }
9544
9545 return TRUE;
9546 }
9547 \f
9548 /* Return the section that should be marked against GC for a given
9549 relocation. */
9550
9551 asection *
9552 _bfd_mips_elf_gc_mark_hook (asection *sec,
9553 struct bfd_link_info *info,
9554 Elf_Internal_Rela *rel,
9555 struct elf_link_hash_entry *h,
9556 Elf_Internal_Sym *sym)
9557 {
9558 /* ??? Do mips16 stub sections need to be handled special? */
9559
9560 if (h != NULL)
9561 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9562 {
9563 case R_MIPS_GNU_VTINHERIT:
9564 case R_MIPS_GNU_VTENTRY:
9565 return NULL;
9566 }
9567
9568 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9569 }
9570
9571 /* Update the got entry reference counts for the section being removed. */
9572
9573 bfd_boolean
9574 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9575 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9576 asection *sec ATTRIBUTE_UNUSED,
9577 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9578 {
9579 #if 0
9580 Elf_Internal_Shdr *symtab_hdr;
9581 struct elf_link_hash_entry **sym_hashes;
9582 bfd_signed_vma *local_got_refcounts;
9583 const Elf_Internal_Rela *rel, *relend;
9584 unsigned long r_symndx;
9585 struct elf_link_hash_entry *h;
9586
9587 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9588 sym_hashes = elf_sym_hashes (abfd);
9589 local_got_refcounts = elf_local_got_refcounts (abfd);
9590
9591 relend = relocs + sec->reloc_count;
9592 for (rel = relocs; rel < relend; rel++)
9593 switch (ELF_R_TYPE (abfd, rel->r_info))
9594 {
9595 case R_MIPS_GOT16:
9596 case R_MIPS_CALL16:
9597 case R_MIPS_CALL_HI16:
9598 case R_MIPS_CALL_LO16:
9599 case R_MIPS_GOT_HI16:
9600 case R_MIPS_GOT_LO16:
9601 case R_MIPS_GOT_DISP:
9602 case R_MIPS_GOT_PAGE:
9603 case R_MIPS_GOT_OFST:
9604 /* ??? It would seem that the existing MIPS code does no sort
9605 of reference counting or whatnot on its GOT and PLT entries,
9606 so it is not possible to garbage collect them at this time. */
9607 break;
9608
9609 default:
9610 break;
9611 }
9612 #endif
9613
9614 return TRUE;
9615 }
9616 \f
9617 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9618 hiding the old indirect symbol. Process additional relocation
9619 information. Also called for weakdefs, in which case we just let
9620 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9621
9622 void
9623 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9624 struct elf_link_hash_entry *dir,
9625 struct elf_link_hash_entry *ind)
9626 {
9627 struct mips_elf_link_hash_entry *dirmips, *indmips;
9628
9629 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9630
9631 if (ind->root.type != bfd_link_hash_indirect)
9632 return;
9633
9634 dirmips = (struct mips_elf_link_hash_entry *) dir;
9635 indmips = (struct mips_elf_link_hash_entry *) ind;
9636 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9637 if (indmips->readonly_reloc)
9638 dirmips->readonly_reloc = TRUE;
9639 if (indmips->no_fn_stub)
9640 dirmips->no_fn_stub = TRUE;
9641
9642 if (dirmips->tls_type == 0)
9643 dirmips->tls_type = indmips->tls_type;
9644 }
9645
9646 void
9647 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9648 struct elf_link_hash_entry *entry,
9649 bfd_boolean force_local)
9650 {
9651 bfd *dynobj;
9652 asection *got;
9653 struct mips_got_info *g;
9654 struct mips_elf_link_hash_entry *h;
9655
9656 h = (struct mips_elf_link_hash_entry *) entry;
9657 if (h->forced_local)
9658 return;
9659 h->forced_local = force_local;
9660
9661 dynobj = elf_hash_table (info)->dynobj;
9662 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9663 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9664 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9665 {
9666 if (g->next)
9667 {
9668 struct mips_got_entry e;
9669 struct mips_got_info *gg = g;
9670
9671 /* Since we're turning what used to be a global symbol into a
9672 local one, bump up the number of local entries of each GOT
9673 that had an entry for it. This will automatically decrease
9674 the number of global entries, since global_gotno is actually
9675 the upper limit of global entries. */
9676 e.abfd = dynobj;
9677 e.symndx = -1;
9678 e.d.h = h;
9679 e.tls_type = 0;
9680
9681 for (g = g->next; g != gg; g = g->next)
9682 if (htab_find (g->got_entries, &e))
9683 {
9684 BFD_ASSERT (g->global_gotno > 0);
9685 g->local_gotno++;
9686 g->global_gotno--;
9687 }
9688
9689 /* If this was a global symbol forced into the primary GOT, we
9690 no longer need an entry for it. We can't release the entry
9691 at this point, but we must at least stop counting it as one
9692 of the symbols that required a forced got entry. */
9693 if (h->root.got.offset == 2)
9694 {
9695 BFD_ASSERT (gg->assigned_gotno > 0);
9696 gg->assigned_gotno--;
9697 }
9698 }
9699 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9700 /* If we haven't got through GOT allocation yet, just bump up the
9701 number of local entries, as this symbol won't be counted as
9702 global. */
9703 g->local_gotno++;
9704 else if (h->root.got.offset == 1)
9705 {
9706 /* If we're past non-multi-GOT allocation and this symbol had
9707 been marked for a global got entry, give it a local entry
9708 instead. */
9709 BFD_ASSERT (g->global_gotno > 0);
9710 g->local_gotno++;
9711 g->global_gotno--;
9712 }
9713 }
9714
9715 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9716 }
9717 \f
9718 #define PDR_SIZE 32
9719
9720 bfd_boolean
9721 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9722 struct bfd_link_info *info)
9723 {
9724 asection *o;
9725 bfd_boolean ret = FALSE;
9726 unsigned char *tdata;
9727 size_t i, skip;
9728
9729 o = bfd_get_section_by_name (abfd, ".pdr");
9730 if (! o)
9731 return FALSE;
9732 if (o->size == 0)
9733 return FALSE;
9734 if (o->size % PDR_SIZE != 0)
9735 return FALSE;
9736 if (o->output_section != NULL
9737 && bfd_is_abs_section (o->output_section))
9738 return FALSE;
9739
9740 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9741 if (! tdata)
9742 return FALSE;
9743
9744 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9745 info->keep_memory);
9746 if (!cookie->rels)
9747 {
9748 free (tdata);
9749 return FALSE;
9750 }
9751
9752 cookie->rel = cookie->rels;
9753 cookie->relend = cookie->rels + o->reloc_count;
9754
9755 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9756 {
9757 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9758 {
9759 tdata[i] = 1;
9760 skip ++;
9761 }
9762 }
9763
9764 if (skip != 0)
9765 {
9766 mips_elf_section_data (o)->u.tdata = tdata;
9767 o->size -= skip * PDR_SIZE;
9768 ret = TRUE;
9769 }
9770 else
9771 free (tdata);
9772
9773 if (! info->keep_memory)
9774 free (cookie->rels);
9775
9776 return ret;
9777 }
9778
9779 bfd_boolean
9780 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9781 {
9782 if (strcmp (sec->name, ".pdr") == 0)
9783 return TRUE;
9784 return FALSE;
9785 }
9786
9787 bfd_boolean
9788 _bfd_mips_elf_write_section (bfd *output_bfd,
9789 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9790 asection *sec, bfd_byte *contents)
9791 {
9792 bfd_byte *to, *from, *end;
9793 int i;
9794
9795 if (strcmp (sec->name, ".pdr") != 0)
9796 return FALSE;
9797
9798 if (mips_elf_section_data (sec)->u.tdata == NULL)
9799 return FALSE;
9800
9801 to = contents;
9802 end = contents + sec->size;
9803 for (from = contents, i = 0;
9804 from < end;
9805 from += PDR_SIZE, i++)
9806 {
9807 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9808 continue;
9809 if (to != from)
9810 memcpy (to, from, PDR_SIZE);
9811 to += PDR_SIZE;
9812 }
9813 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9814 sec->output_offset, sec->size);
9815 return TRUE;
9816 }
9817 \f
9818 /* MIPS ELF uses a special find_nearest_line routine in order the
9819 handle the ECOFF debugging information. */
9820
9821 struct mips_elf_find_line
9822 {
9823 struct ecoff_debug_info d;
9824 struct ecoff_find_line i;
9825 };
9826
9827 bfd_boolean
9828 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9829 asymbol **symbols, bfd_vma offset,
9830 const char **filename_ptr,
9831 const char **functionname_ptr,
9832 unsigned int *line_ptr)
9833 {
9834 asection *msec;
9835
9836 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9837 filename_ptr, functionname_ptr,
9838 line_ptr))
9839 return TRUE;
9840
9841 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9842 filename_ptr, functionname_ptr,
9843 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9844 &elf_tdata (abfd)->dwarf2_find_line_info))
9845 return TRUE;
9846
9847 msec = bfd_get_section_by_name (abfd, ".mdebug");
9848 if (msec != NULL)
9849 {
9850 flagword origflags;
9851 struct mips_elf_find_line *fi;
9852 const struct ecoff_debug_swap * const swap =
9853 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9854
9855 /* If we are called during a link, mips_elf_final_link may have
9856 cleared the SEC_HAS_CONTENTS field. We force it back on here
9857 if appropriate (which it normally will be). */
9858 origflags = msec->flags;
9859 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9860 msec->flags |= SEC_HAS_CONTENTS;
9861
9862 fi = elf_tdata (abfd)->find_line_info;
9863 if (fi == NULL)
9864 {
9865 bfd_size_type external_fdr_size;
9866 char *fraw_src;
9867 char *fraw_end;
9868 struct fdr *fdr_ptr;
9869 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9870
9871 fi = bfd_zalloc (abfd, amt);
9872 if (fi == NULL)
9873 {
9874 msec->flags = origflags;
9875 return FALSE;
9876 }
9877
9878 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9879 {
9880 msec->flags = origflags;
9881 return FALSE;
9882 }
9883
9884 /* Swap in the FDR information. */
9885 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9886 fi->d.fdr = bfd_alloc (abfd, amt);
9887 if (fi->d.fdr == NULL)
9888 {
9889 msec->flags = origflags;
9890 return FALSE;
9891 }
9892 external_fdr_size = swap->external_fdr_size;
9893 fdr_ptr = fi->d.fdr;
9894 fraw_src = (char *) fi->d.external_fdr;
9895 fraw_end = (fraw_src
9896 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9897 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9898 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9899
9900 elf_tdata (abfd)->find_line_info = fi;
9901
9902 /* Note that we don't bother to ever free this information.
9903 find_nearest_line is either called all the time, as in
9904 objdump -l, so the information should be saved, or it is
9905 rarely called, as in ld error messages, so the memory
9906 wasted is unimportant. Still, it would probably be a
9907 good idea for free_cached_info to throw it away. */
9908 }
9909
9910 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9911 &fi->i, filename_ptr, functionname_ptr,
9912 line_ptr))
9913 {
9914 msec->flags = origflags;
9915 return TRUE;
9916 }
9917
9918 msec->flags = origflags;
9919 }
9920
9921 /* Fall back on the generic ELF find_nearest_line routine. */
9922
9923 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9924 filename_ptr, functionname_ptr,
9925 line_ptr);
9926 }
9927
9928 bfd_boolean
9929 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9930 const char **filename_ptr,
9931 const char **functionname_ptr,
9932 unsigned int *line_ptr)
9933 {
9934 bfd_boolean found;
9935 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9936 functionname_ptr, line_ptr,
9937 & elf_tdata (abfd)->dwarf2_find_line_info);
9938 return found;
9939 }
9940
9941 \f
9942 /* When are writing out the .options or .MIPS.options section,
9943 remember the bytes we are writing out, so that we can install the
9944 GP value in the section_processing routine. */
9945
9946 bfd_boolean
9947 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9948 const void *location,
9949 file_ptr offset, bfd_size_type count)
9950 {
9951 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9952 {
9953 bfd_byte *c;
9954
9955 if (elf_section_data (section) == NULL)
9956 {
9957 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9958 section->used_by_bfd = bfd_zalloc (abfd, amt);
9959 if (elf_section_data (section) == NULL)
9960 return FALSE;
9961 }
9962 c = mips_elf_section_data (section)->u.tdata;
9963 if (c == NULL)
9964 {
9965 c = bfd_zalloc (abfd, section->size);
9966 if (c == NULL)
9967 return FALSE;
9968 mips_elf_section_data (section)->u.tdata = c;
9969 }
9970
9971 memcpy (c + offset, location, count);
9972 }
9973
9974 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9975 count);
9976 }
9977
9978 /* This is almost identical to bfd_generic_get_... except that some
9979 MIPS relocations need to be handled specially. Sigh. */
9980
9981 bfd_byte *
9982 _bfd_elf_mips_get_relocated_section_contents
9983 (bfd *abfd,
9984 struct bfd_link_info *link_info,
9985 struct bfd_link_order *link_order,
9986 bfd_byte *data,
9987 bfd_boolean relocatable,
9988 asymbol **symbols)
9989 {
9990 /* Get enough memory to hold the stuff */
9991 bfd *input_bfd = link_order->u.indirect.section->owner;
9992 asection *input_section = link_order->u.indirect.section;
9993 bfd_size_type sz;
9994
9995 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9996 arelent **reloc_vector = NULL;
9997 long reloc_count;
9998
9999 if (reloc_size < 0)
10000 goto error_return;
10001
10002 reloc_vector = bfd_malloc (reloc_size);
10003 if (reloc_vector == NULL && reloc_size != 0)
10004 goto error_return;
10005
10006 /* read in the section */
10007 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10008 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10009 goto error_return;
10010
10011 reloc_count = bfd_canonicalize_reloc (input_bfd,
10012 input_section,
10013 reloc_vector,
10014 symbols);
10015 if (reloc_count < 0)
10016 goto error_return;
10017
10018 if (reloc_count > 0)
10019 {
10020 arelent **parent;
10021 /* for mips */
10022 int gp_found;
10023 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10024
10025 {
10026 struct bfd_hash_entry *h;
10027 struct bfd_link_hash_entry *lh;
10028 /* Skip all this stuff if we aren't mixing formats. */
10029 if (abfd && input_bfd
10030 && abfd->xvec == input_bfd->xvec)
10031 lh = 0;
10032 else
10033 {
10034 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10035 lh = (struct bfd_link_hash_entry *) h;
10036 }
10037 lookup:
10038 if (lh)
10039 {
10040 switch (lh->type)
10041 {
10042 case bfd_link_hash_undefined:
10043 case bfd_link_hash_undefweak:
10044 case bfd_link_hash_common:
10045 gp_found = 0;
10046 break;
10047 case bfd_link_hash_defined:
10048 case bfd_link_hash_defweak:
10049 gp_found = 1;
10050 gp = lh->u.def.value;
10051 break;
10052 case bfd_link_hash_indirect:
10053 case bfd_link_hash_warning:
10054 lh = lh->u.i.link;
10055 /* @@FIXME ignoring warning for now */
10056 goto lookup;
10057 case bfd_link_hash_new:
10058 default:
10059 abort ();
10060 }
10061 }
10062 else
10063 gp_found = 0;
10064 }
10065 /* end mips */
10066 for (parent = reloc_vector; *parent != NULL; parent++)
10067 {
10068 char *error_message = NULL;
10069 bfd_reloc_status_type r;
10070
10071 /* Specific to MIPS: Deal with relocation types that require
10072 knowing the gp of the output bfd. */
10073 asymbol *sym = *(*parent)->sym_ptr_ptr;
10074
10075 /* If we've managed to find the gp and have a special
10076 function for the relocation then go ahead, else default
10077 to the generic handling. */
10078 if (gp_found
10079 && (*parent)->howto->special_function
10080 == _bfd_mips_elf32_gprel16_reloc)
10081 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10082 input_section, relocatable,
10083 data, gp);
10084 else
10085 r = bfd_perform_relocation (input_bfd, *parent, data,
10086 input_section,
10087 relocatable ? abfd : NULL,
10088 &error_message);
10089
10090 if (relocatable)
10091 {
10092 asection *os = input_section->output_section;
10093
10094 /* A partial link, so keep the relocs */
10095 os->orelocation[os->reloc_count] = *parent;
10096 os->reloc_count++;
10097 }
10098
10099 if (r != bfd_reloc_ok)
10100 {
10101 switch (r)
10102 {
10103 case bfd_reloc_undefined:
10104 if (!((*link_info->callbacks->undefined_symbol)
10105 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10106 input_bfd, input_section, (*parent)->address, TRUE)))
10107 goto error_return;
10108 break;
10109 case bfd_reloc_dangerous:
10110 BFD_ASSERT (error_message != NULL);
10111 if (!((*link_info->callbacks->reloc_dangerous)
10112 (link_info, error_message, input_bfd, input_section,
10113 (*parent)->address)))
10114 goto error_return;
10115 break;
10116 case bfd_reloc_overflow:
10117 if (!((*link_info->callbacks->reloc_overflow)
10118 (link_info, NULL,
10119 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10120 (*parent)->howto->name, (*parent)->addend,
10121 input_bfd, input_section, (*parent)->address)))
10122 goto error_return;
10123 break;
10124 case bfd_reloc_outofrange:
10125 default:
10126 abort ();
10127 break;
10128 }
10129
10130 }
10131 }
10132 }
10133 if (reloc_vector != NULL)
10134 free (reloc_vector);
10135 return data;
10136
10137 error_return:
10138 if (reloc_vector != NULL)
10139 free (reloc_vector);
10140 return NULL;
10141 }
10142 \f
10143 /* Create a MIPS ELF linker hash table. */
10144
10145 struct bfd_link_hash_table *
10146 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10147 {
10148 struct mips_elf_link_hash_table *ret;
10149 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10150
10151 ret = bfd_malloc (amt);
10152 if (ret == NULL)
10153 return NULL;
10154
10155 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10156 mips_elf_link_hash_newfunc,
10157 sizeof (struct mips_elf_link_hash_entry)))
10158 {
10159 free (ret);
10160 return NULL;
10161 }
10162
10163 #if 0
10164 /* We no longer use this. */
10165 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10166 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10167 #endif
10168 ret->procedure_count = 0;
10169 ret->compact_rel_size = 0;
10170 ret->use_rld_obj_head = FALSE;
10171 ret->rld_value = 0;
10172 ret->mips16_stubs_seen = FALSE;
10173 ret->is_vxworks = FALSE;
10174 ret->srelbss = NULL;
10175 ret->sdynbss = NULL;
10176 ret->srelplt = NULL;
10177 ret->srelplt2 = NULL;
10178 ret->sgotplt = NULL;
10179 ret->splt = NULL;
10180 ret->plt_header_size = 0;
10181 ret->plt_entry_size = 0;
10182 ret->function_stub_size = 0;
10183
10184 return &ret->root.root;
10185 }
10186
10187 /* Likewise, but indicate that the target is VxWorks. */
10188
10189 struct bfd_link_hash_table *
10190 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10191 {
10192 struct bfd_link_hash_table *ret;
10193
10194 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10195 if (ret)
10196 {
10197 struct mips_elf_link_hash_table *htab;
10198
10199 htab = (struct mips_elf_link_hash_table *) ret;
10200 htab->is_vxworks = 1;
10201 }
10202 return ret;
10203 }
10204 \f
10205 /* We need to use a special link routine to handle the .reginfo and
10206 the .mdebug sections. We need to merge all instances of these
10207 sections together, not write them all out sequentially. */
10208
10209 bfd_boolean
10210 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10211 {
10212 asection *o;
10213 struct bfd_link_order *p;
10214 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10215 asection *rtproc_sec;
10216 Elf32_RegInfo reginfo;
10217 struct ecoff_debug_info debug;
10218 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10219 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10220 HDRR *symhdr = &debug.symbolic_header;
10221 void *mdebug_handle = NULL;
10222 asection *s;
10223 EXTR esym;
10224 unsigned int i;
10225 bfd_size_type amt;
10226 struct mips_elf_link_hash_table *htab;
10227
10228 static const char * const secname[] =
10229 {
10230 ".text", ".init", ".fini", ".data",
10231 ".rodata", ".sdata", ".sbss", ".bss"
10232 };
10233 static const int sc[] =
10234 {
10235 scText, scInit, scFini, scData,
10236 scRData, scSData, scSBss, scBss
10237 };
10238
10239 /* We'd carefully arranged the dynamic symbol indices, and then the
10240 generic size_dynamic_sections renumbered them out from under us.
10241 Rather than trying somehow to prevent the renumbering, just do
10242 the sort again. */
10243 htab = mips_elf_hash_table (info);
10244 if (elf_hash_table (info)->dynamic_sections_created)
10245 {
10246 bfd *dynobj;
10247 asection *got;
10248 struct mips_got_info *g;
10249 bfd_size_type dynsecsymcount;
10250
10251 /* When we resort, we must tell mips_elf_sort_hash_table what
10252 the lowest index it may use is. That's the number of section
10253 symbols we're going to add. The generic ELF linker only
10254 adds these symbols when building a shared object. Note that
10255 we count the sections after (possibly) removing the .options
10256 section above. */
10257
10258 dynsecsymcount = count_section_dynsyms (abfd, info);
10259 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10260 return FALSE;
10261
10262 /* Make sure we didn't grow the global .got region. */
10263 dynobj = elf_hash_table (info)->dynobj;
10264 got = mips_elf_got_section (dynobj, FALSE);
10265 g = mips_elf_section_data (got)->u.got_info;
10266
10267 if (g->global_gotsym != NULL)
10268 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10269 - g->global_gotsym->dynindx)
10270 <= g->global_gotno);
10271 }
10272
10273 /* Get a value for the GP register. */
10274 if (elf_gp (abfd) == 0)
10275 {
10276 struct bfd_link_hash_entry *h;
10277
10278 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10279 if (h != NULL && h->type == bfd_link_hash_defined)
10280 elf_gp (abfd) = (h->u.def.value
10281 + h->u.def.section->output_section->vma
10282 + h->u.def.section->output_offset);
10283 else if (htab->is_vxworks
10284 && (h = bfd_link_hash_lookup (info->hash,
10285 "_GLOBAL_OFFSET_TABLE_",
10286 FALSE, FALSE, TRUE))
10287 && h->type == bfd_link_hash_defined)
10288 elf_gp (abfd) = (h->u.def.section->output_section->vma
10289 + h->u.def.section->output_offset
10290 + h->u.def.value);
10291 else if (info->relocatable)
10292 {
10293 bfd_vma lo = MINUS_ONE;
10294
10295 /* Find the GP-relative section with the lowest offset. */
10296 for (o = abfd->sections; o != NULL; o = o->next)
10297 if (o->vma < lo
10298 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10299 lo = o->vma;
10300
10301 /* And calculate GP relative to that. */
10302 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10303 }
10304 else
10305 {
10306 /* If the relocate_section function needs to do a reloc
10307 involving the GP value, it should make a reloc_dangerous
10308 callback to warn that GP is not defined. */
10309 }
10310 }
10311
10312 /* Go through the sections and collect the .reginfo and .mdebug
10313 information. */
10314 reginfo_sec = NULL;
10315 mdebug_sec = NULL;
10316 gptab_data_sec = NULL;
10317 gptab_bss_sec = NULL;
10318 for (o = abfd->sections; o != NULL; o = o->next)
10319 {
10320 if (strcmp (o->name, ".reginfo") == 0)
10321 {
10322 memset (&reginfo, 0, sizeof reginfo);
10323
10324 /* We have found the .reginfo section in the output file.
10325 Look through all the link_orders comprising it and merge
10326 the information together. */
10327 for (p = o->map_head.link_order; p != NULL; p = p->next)
10328 {
10329 asection *input_section;
10330 bfd *input_bfd;
10331 Elf32_External_RegInfo ext;
10332 Elf32_RegInfo sub;
10333
10334 if (p->type != bfd_indirect_link_order)
10335 {
10336 if (p->type == bfd_data_link_order)
10337 continue;
10338 abort ();
10339 }
10340
10341 input_section = p->u.indirect.section;
10342 input_bfd = input_section->owner;
10343
10344 if (! bfd_get_section_contents (input_bfd, input_section,
10345 &ext, 0, sizeof ext))
10346 return FALSE;
10347
10348 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10349
10350 reginfo.ri_gprmask |= sub.ri_gprmask;
10351 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10352 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10353 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10354 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10355
10356 /* ri_gp_value is set by the function
10357 mips_elf32_section_processing when the section is
10358 finally written out. */
10359
10360 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10361 elf_link_input_bfd ignores this section. */
10362 input_section->flags &= ~SEC_HAS_CONTENTS;
10363 }
10364
10365 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10366 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10367
10368 /* Skip this section later on (I don't think this currently
10369 matters, but someday it might). */
10370 o->map_head.link_order = NULL;
10371
10372 reginfo_sec = o;
10373 }
10374
10375 if (strcmp (o->name, ".mdebug") == 0)
10376 {
10377 struct extsym_info einfo;
10378 bfd_vma last;
10379
10380 /* We have found the .mdebug section in the output file.
10381 Look through all the link_orders comprising it and merge
10382 the information together. */
10383 symhdr->magic = swap->sym_magic;
10384 /* FIXME: What should the version stamp be? */
10385 symhdr->vstamp = 0;
10386 symhdr->ilineMax = 0;
10387 symhdr->cbLine = 0;
10388 symhdr->idnMax = 0;
10389 symhdr->ipdMax = 0;
10390 symhdr->isymMax = 0;
10391 symhdr->ioptMax = 0;
10392 symhdr->iauxMax = 0;
10393 symhdr->issMax = 0;
10394 symhdr->issExtMax = 0;
10395 symhdr->ifdMax = 0;
10396 symhdr->crfd = 0;
10397 symhdr->iextMax = 0;
10398
10399 /* We accumulate the debugging information itself in the
10400 debug_info structure. */
10401 debug.line = NULL;
10402 debug.external_dnr = NULL;
10403 debug.external_pdr = NULL;
10404 debug.external_sym = NULL;
10405 debug.external_opt = NULL;
10406 debug.external_aux = NULL;
10407 debug.ss = NULL;
10408 debug.ssext = debug.ssext_end = NULL;
10409 debug.external_fdr = NULL;
10410 debug.external_rfd = NULL;
10411 debug.external_ext = debug.external_ext_end = NULL;
10412
10413 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10414 if (mdebug_handle == NULL)
10415 return FALSE;
10416
10417 esym.jmptbl = 0;
10418 esym.cobol_main = 0;
10419 esym.weakext = 0;
10420 esym.reserved = 0;
10421 esym.ifd = ifdNil;
10422 esym.asym.iss = issNil;
10423 esym.asym.st = stLocal;
10424 esym.asym.reserved = 0;
10425 esym.asym.index = indexNil;
10426 last = 0;
10427 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10428 {
10429 esym.asym.sc = sc[i];
10430 s = bfd_get_section_by_name (abfd, secname[i]);
10431 if (s != NULL)
10432 {
10433 esym.asym.value = s->vma;
10434 last = s->vma + s->size;
10435 }
10436 else
10437 esym.asym.value = last;
10438 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10439 secname[i], &esym))
10440 return FALSE;
10441 }
10442
10443 for (p = o->map_head.link_order; p != NULL; p = p->next)
10444 {
10445 asection *input_section;
10446 bfd *input_bfd;
10447 const struct ecoff_debug_swap *input_swap;
10448 struct ecoff_debug_info input_debug;
10449 char *eraw_src;
10450 char *eraw_end;
10451
10452 if (p->type != bfd_indirect_link_order)
10453 {
10454 if (p->type == bfd_data_link_order)
10455 continue;
10456 abort ();
10457 }
10458
10459 input_section = p->u.indirect.section;
10460 input_bfd = input_section->owner;
10461
10462 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10463 || (get_elf_backend_data (input_bfd)
10464 ->elf_backend_ecoff_debug_swap) == NULL)
10465 {
10466 /* I don't know what a non MIPS ELF bfd would be
10467 doing with a .mdebug section, but I don't really
10468 want to deal with it. */
10469 continue;
10470 }
10471
10472 input_swap = (get_elf_backend_data (input_bfd)
10473 ->elf_backend_ecoff_debug_swap);
10474
10475 BFD_ASSERT (p->size == input_section->size);
10476
10477 /* The ECOFF linking code expects that we have already
10478 read in the debugging information and set up an
10479 ecoff_debug_info structure, so we do that now. */
10480 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10481 &input_debug))
10482 return FALSE;
10483
10484 if (! (bfd_ecoff_debug_accumulate
10485 (mdebug_handle, abfd, &debug, swap, input_bfd,
10486 &input_debug, input_swap, info)))
10487 return FALSE;
10488
10489 /* Loop through the external symbols. For each one with
10490 interesting information, try to find the symbol in
10491 the linker global hash table and save the information
10492 for the output external symbols. */
10493 eraw_src = input_debug.external_ext;
10494 eraw_end = (eraw_src
10495 + (input_debug.symbolic_header.iextMax
10496 * input_swap->external_ext_size));
10497 for (;
10498 eraw_src < eraw_end;
10499 eraw_src += input_swap->external_ext_size)
10500 {
10501 EXTR ext;
10502 const char *name;
10503 struct mips_elf_link_hash_entry *h;
10504
10505 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10506 if (ext.asym.sc == scNil
10507 || ext.asym.sc == scUndefined
10508 || ext.asym.sc == scSUndefined)
10509 continue;
10510
10511 name = input_debug.ssext + ext.asym.iss;
10512 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10513 name, FALSE, FALSE, TRUE);
10514 if (h == NULL || h->esym.ifd != -2)
10515 continue;
10516
10517 if (ext.ifd != -1)
10518 {
10519 BFD_ASSERT (ext.ifd
10520 < input_debug.symbolic_header.ifdMax);
10521 ext.ifd = input_debug.ifdmap[ext.ifd];
10522 }
10523
10524 h->esym = ext;
10525 }
10526
10527 /* Free up the information we just read. */
10528 free (input_debug.line);
10529 free (input_debug.external_dnr);
10530 free (input_debug.external_pdr);
10531 free (input_debug.external_sym);
10532 free (input_debug.external_opt);
10533 free (input_debug.external_aux);
10534 free (input_debug.ss);
10535 free (input_debug.ssext);
10536 free (input_debug.external_fdr);
10537 free (input_debug.external_rfd);
10538 free (input_debug.external_ext);
10539
10540 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10541 elf_link_input_bfd ignores this section. */
10542 input_section->flags &= ~SEC_HAS_CONTENTS;
10543 }
10544
10545 if (SGI_COMPAT (abfd) && info->shared)
10546 {
10547 /* Create .rtproc section. */
10548 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10549 if (rtproc_sec == NULL)
10550 {
10551 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10552 | SEC_LINKER_CREATED | SEC_READONLY);
10553
10554 rtproc_sec = bfd_make_section_with_flags (abfd,
10555 ".rtproc",
10556 flags);
10557 if (rtproc_sec == NULL
10558 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10559 return FALSE;
10560 }
10561
10562 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10563 info, rtproc_sec,
10564 &debug))
10565 return FALSE;
10566 }
10567
10568 /* Build the external symbol information. */
10569 einfo.abfd = abfd;
10570 einfo.info = info;
10571 einfo.debug = &debug;
10572 einfo.swap = swap;
10573 einfo.failed = FALSE;
10574 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10575 mips_elf_output_extsym, &einfo);
10576 if (einfo.failed)
10577 return FALSE;
10578
10579 /* Set the size of the .mdebug section. */
10580 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10581
10582 /* Skip this section later on (I don't think this currently
10583 matters, but someday it might). */
10584 o->map_head.link_order = NULL;
10585
10586 mdebug_sec = o;
10587 }
10588
10589 if (CONST_STRNEQ (o->name, ".gptab."))
10590 {
10591 const char *subname;
10592 unsigned int c;
10593 Elf32_gptab *tab;
10594 Elf32_External_gptab *ext_tab;
10595 unsigned int j;
10596
10597 /* The .gptab.sdata and .gptab.sbss sections hold
10598 information describing how the small data area would
10599 change depending upon the -G switch. These sections
10600 not used in executables files. */
10601 if (! info->relocatable)
10602 {
10603 for (p = o->map_head.link_order; p != NULL; p = p->next)
10604 {
10605 asection *input_section;
10606
10607 if (p->type != bfd_indirect_link_order)
10608 {
10609 if (p->type == bfd_data_link_order)
10610 continue;
10611 abort ();
10612 }
10613
10614 input_section = p->u.indirect.section;
10615
10616 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10617 elf_link_input_bfd ignores this section. */
10618 input_section->flags &= ~SEC_HAS_CONTENTS;
10619 }
10620
10621 /* Skip this section later on (I don't think this
10622 currently matters, but someday it might). */
10623 o->map_head.link_order = NULL;
10624
10625 /* Really remove the section. */
10626 bfd_section_list_remove (abfd, o);
10627 --abfd->section_count;
10628
10629 continue;
10630 }
10631
10632 /* There is one gptab for initialized data, and one for
10633 uninitialized data. */
10634 if (strcmp (o->name, ".gptab.sdata") == 0)
10635 gptab_data_sec = o;
10636 else if (strcmp (o->name, ".gptab.sbss") == 0)
10637 gptab_bss_sec = o;
10638 else
10639 {
10640 (*_bfd_error_handler)
10641 (_("%s: illegal section name `%s'"),
10642 bfd_get_filename (abfd), o->name);
10643 bfd_set_error (bfd_error_nonrepresentable_section);
10644 return FALSE;
10645 }
10646
10647 /* The linker script always combines .gptab.data and
10648 .gptab.sdata into .gptab.sdata, and likewise for
10649 .gptab.bss and .gptab.sbss. It is possible that there is
10650 no .sdata or .sbss section in the output file, in which
10651 case we must change the name of the output section. */
10652 subname = o->name + sizeof ".gptab" - 1;
10653 if (bfd_get_section_by_name (abfd, subname) == NULL)
10654 {
10655 if (o == gptab_data_sec)
10656 o->name = ".gptab.data";
10657 else
10658 o->name = ".gptab.bss";
10659 subname = o->name + sizeof ".gptab" - 1;
10660 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10661 }
10662
10663 /* Set up the first entry. */
10664 c = 1;
10665 amt = c * sizeof (Elf32_gptab);
10666 tab = bfd_malloc (amt);
10667 if (tab == NULL)
10668 return FALSE;
10669 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10670 tab[0].gt_header.gt_unused = 0;
10671
10672 /* Combine the input sections. */
10673 for (p = o->map_head.link_order; p != NULL; p = p->next)
10674 {
10675 asection *input_section;
10676 bfd *input_bfd;
10677 bfd_size_type size;
10678 unsigned long last;
10679 bfd_size_type gpentry;
10680
10681 if (p->type != bfd_indirect_link_order)
10682 {
10683 if (p->type == bfd_data_link_order)
10684 continue;
10685 abort ();
10686 }
10687
10688 input_section = p->u.indirect.section;
10689 input_bfd = input_section->owner;
10690
10691 /* Combine the gptab entries for this input section one
10692 by one. We know that the input gptab entries are
10693 sorted by ascending -G value. */
10694 size = input_section->size;
10695 last = 0;
10696 for (gpentry = sizeof (Elf32_External_gptab);
10697 gpentry < size;
10698 gpentry += sizeof (Elf32_External_gptab))
10699 {
10700 Elf32_External_gptab ext_gptab;
10701 Elf32_gptab int_gptab;
10702 unsigned long val;
10703 unsigned long add;
10704 bfd_boolean exact;
10705 unsigned int look;
10706
10707 if (! (bfd_get_section_contents
10708 (input_bfd, input_section, &ext_gptab, gpentry,
10709 sizeof (Elf32_External_gptab))))
10710 {
10711 free (tab);
10712 return FALSE;
10713 }
10714
10715 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10716 &int_gptab);
10717 val = int_gptab.gt_entry.gt_g_value;
10718 add = int_gptab.gt_entry.gt_bytes - last;
10719
10720 exact = FALSE;
10721 for (look = 1; look < c; look++)
10722 {
10723 if (tab[look].gt_entry.gt_g_value >= val)
10724 tab[look].gt_entry.gt_bytes += add;
10725
10726 if (tab[look].gt_entry.gt_g_value == val)
10727 exact = TRUE;
10728 }
10729
10730 if (! exact)
10731 {
10732 Elf32_gptab *new_tab;
10733 unsigned int max;
10734
10735 /* We need a new table entry. */
10736 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10737 new_tab = bfd_realloc (tab, amt);
10738 if (new_tab == NULL)
10739 {
10740 free (tab);
10741 return FALSE;
10742 }
10743 tab = new_tab;
10744 tab[c].gt_entry.gt_g_value = val;
10745 tab[c].gt_entry.gt_bytes = add;
10746
10747 /* Merge in the size for the next smallest -G
10748 value, since that will be implied by this new
10749 value. */
10750 max = 0;
10751 for (look = 1; look < c; look++)
10752 {
10753 if (tab[look].gt_entry.gt_g_value < val
10754 && (max == 0
10755 || (tab[look].gt_entry.gt_g_value
10756 > tab[max].gt_entry.gt_g_value)))
10757 max = look;
10758 }
10759 if (max != 0)
10760 tab[c].gt_entry.gt_bytes +=
10761 tab[max].gt_entry.gt_bytes;
10762
10763 ++c;
10764 }
10765
10766 last = int_gptab.gt_entry.gt_bytes;
10767 }
10768
10769 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10770 elf_link_input_bfd ignores this section. */
10771 input_section->flags &= ~SEC_HAS_CONTENTS;
10772 }
10773
10774 /* The table must be sorted by -G value. */
10775 if (c > 2)
10776 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10777
10778 /* Swap out the table. */
10779 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10780 ext_tab = bfd_alloc (abfd, amt);
10781 if (ext_tab == NULL)
10782 {
10783 free (tab);
10784 return FALSE;
10785 }
10786
10787 for (j = 0; j < c; j++)
10788 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10789 free (tab);
10790
10791 o->size = c * sizeof (Elf32_External_gptab);
10792 o->contents = (bfd_byte *) ext_tab;
10793
10794 /* Skip this section later on (I don't think this currently
10795 matters, but someday it might). */
10796 o->map_head.link_order = NULL;
10797 }
10798 }
10799
10800 /* Invoke the regular ELF backend linker to do all the work. */
10801 if (!bfd_elf_final_link (abfd, info))
10802 return FALSE;
10803
10804 /* Now write out the computed sections. */
10805
10806 if (reginfo_sec != NULL)
10807 {
10808 Elf32_External_RegInfo ext;
10809
10810 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10811 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10812 return FALSE;
10813 }
10814
10815 if (mdebug_sec != NULL)
10816 {
10817 BFD_ASSERT (abfd->output_has_begun);
10818 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10819 swap, info,
10820 mdebug_sec->filepos))
10821 return FALSE;
10822
10823 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10824 }
10825
10826 if (gptab_data_sec != NULL)
10827 {
10828 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10829 gptab_data_sec->contents,
10830 0, gptab_data_sec->size))
10831 return FALSE;
10832 }
10833
10834 if (gptab_bss_sec != NULL)
10835 {
10836 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10837 gptab_bss_sec->contents,
10838 0, gptab_bss_sec->size))
10839 return FALSE;
10840 }
10841
10842 if (SGI_COMPAT (abfd))
10843 {
10844 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10845 if (rtproc_sec != NULL)
10846 {
10847 if (! bfd_set_section_contents (abfd, rtproc_sec,
10848 rtproc_sec->contents,
10849 0, rtproc_sec->size))
10850 return FALSE;
10851 }
10852 }
10853
10854 return TRUE;
10855 }
10856 \f
10857 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10858
10859 struct mips_mach_extension {
10860 unsigned long extension, base;
10861 };
10862
10863
10864 /* An array describing how BFD machines relate to one another. The entries
10865 are ordered topologically with MIPS I extensions listed last. */
10866
10867 static const struct mips_mach_extension mips_mach_extensions[] = {
10868 /* MIPS64 extensions. */
10869 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10870 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10871
10872 /* MIPS V extensions. */
10873 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10874
10875 /* R10000 extensions. */
10876 { bfd_mach_mips12000, bfd_mach_mips10000 },
10877
10878 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10879 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10880 better to allow vr5400 and vr5500 code to be merged anyway, since
10881 many libraries will just use the core ISA. Perhaps we could add
10882 some sort of ASE flag if this ever proves a problem. */
10883 { bfd_mach_mips5500, bfd_mach_mips5400 },
10884 { bfd_mach_mips5400, bfd_mach_mips5000 },
10885
10886 /* MIPS IV extensions. */
10887 { bfd_mach_mips5, bfd_mach_mips8000 },
10888 { bfd_mach_mips10000, bfd_mach_mips8000 },
10889 { bfd_mach_mips5000, bfd_mach_mips8000 },
10890 { bfd_mach_mips7000, bfd_mach_mips8000 },
10891 { bfd_mach_mips9000, bfd_mach_mips8000 },
10892
10893 /* VR4100 extensions. */
10894 { bfd_mach_mips4120, bfd_mach_mips4100 },
10895 { bfd_mach_mips4111, bfd_mach_mips4100 },
10896
10897 /* MIPS III extensions. */
10898 { bfd_mach_mips8000, bfd_mach_mips4000 },
10899 { bfd_mach_mips4650, bfd_mach_mips4000 },
10900 { bfd_mach_mips4600, bfd_mach_mips4000 },
10901 { bfd_mach_mips4400, bfd_mach_mips4000 },
10902 { bfd_mach_mips4300, bfd_mach_mips4000 },
10903 { bfd_mach_mips4100, bfd_mach_mips4000 },
10904 { bfd_mach_mips4010, bfd_mach_mips4000 },
10905
10906 /* MIPS32 extensions. */
10907 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10908
10909 /* MIPS II extensions. */
10910 { bfd_mach_mips4000, bfd_mach_mips6000 },
10911 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10912
10913 /* MIPS I extensions. */
10914 { bfd_mach_mips6000, bfd_mach_mips3000 },
10915 { bfd_mach_mips3900, bfd_mach_mips3000 }
10916 };
10917
10918
10919 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10920
10921 static bfd_boolean
10922 mips_mach_extends_p (unsigned long base, unsigned long extension)
10923 {
10924 size_t i;
10925
10926 if (extension == base)
10927 return TRUE;
10928
10929 if (base == bfd_mach_mipsisa32
10930 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10931 return TRUE;
10932
10933 if (base == bfd_mach_mipsisa32r2
10934 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10935 return TRUE;
10936
10937 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10938 if (extension == mips_mach_extensions[i].extension)
10939 {
10940 extension = mips_mach_extensions[i].base;
10941 if (extension == base)
10942 return TRUE;
10943 }
10944
10945 return FALSE;
10946 }
10947
10948
10949 /* Return true if the given ELF header flags describe a 32-bit binary. */
10950
10951 static bfd_boolean
10952 mips_32bit_flags_p (flagword flags)
10953 {
10954 return ((flags & EF_MIPS_32BITMODE) != 0
10955 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10956 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10957 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10958 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10959 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10960 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10961 }
10962
10963
10964 /* Merge backend specific data from an object file to the output
10965 object file when linking. */
10966
10967 bfd_boolean
10968 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10969 {
10970 flagword old_flags;
10971 flagword new_flags;
10972 bfd_boolean ok;
10973 bfd_boolean null_input_bfd = TRUE;
10974 asection *sec;
10975
10976 /* Check if we have the same endianess */
10977 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10978 {
10979 (*_bfd_error_handler)
10980 (_("%B: endianness incompatible with that of the selected emulation"),
10981 ibfd);
10982 return FALSE;
10983 }
10984
10985 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10986 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10987 return TRUE;
10988
10989 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10990 {
10991 (*_bfd_error_handler)
10992 (_("%B: ABI is incompatible with that of the selected emulation"),
10993 ibfd);
10994 return FALSE;
10995 }
10996
10997 new_flags = elf_elfheader (ibfd)->e_flags;
10998 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10999 old_flags = elf_elfheader (obfd)->e_flags;
11000
11001 if (! elf_flags_init (obfd))
11002 {
11003 elf_flags_init (obfd) = TRUE;
11004 elf_elfheader (obfd)->e_flags = new_flags;
11005 elf_elfheader (obfd)->e_ident[EI_CLASS]
11006 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11007
11008 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11009 && (bfd_get_arch_info (obfd)->the_default
11010 || mips_mach_extends_p (bfd_get_mach (obfd),
11011 bfd_get_mach (ibfd))))
11012 {
11013 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11014 bfd_get_mach (ibfd)))
11015 return FALSE;
11016 }
11017
11018 return TRUE;
11019 }
11020
11021 /* Check flag compatibility. */
11022
11023 new_flags &= ~EF_MIPS_NOREORDER;
11024 old_flags &= ~EF_MIPS_NOREORDER;
11025
11026 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11027 doesn't seem to matter. */
11028 new_flags &= ~EF_MIPS_XGOT;
11029 old_flags &= ~EF_MIPS_XGOT;
11030
11031 /* MIPSpro generates ucode info in n64 objects. Again, we should
11032 just be able to ignore this. */
11033 new_flags &= ~EF_MIPS_UCODE;
11034 old_flags &= ~EF_MIPS_UCODE;
11035
11036 /* Don't care about the PIC flags from dynamic objects; they are
11037 PIC by design. */
11038 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11039 && (ibfd->flags & DYNAMIC) != 0)
11040 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11041
11042 if (new_flags == old_flags)
11043 return TRUE;
11044
11045 /* Check to see if the input BFD actually contains any sections.
11046 If not, its flags may not have been initialised either, but it cannot
11047 actually cause any incompatibility. */
11048 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11049 {
11050 /* Ignore synthetic sections and empty .text, .data and .bss sections
11051 which are automatically generated by gas. */
11052 if (strcmp (sec->name, ".reginfo")
11053 && strcmp (sec->name, ".mdebug")
11054 && (sec->size != 0
11055 || (strcmp (sec->name, ".text")
11056 && strcmp (sec->name, ".data")
11057 && strcmp (sec->name, ".bss"))))
11058 {
11059 null_input_bfd = FALSE;
11060 break;
11061 }
11062 }
11063 if (null_input_bfd)
11064 return TRUE;
11065
11066 ok = TRUE;
11067
11068 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11069 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11070 {
11071 (*_bfd_error_handler)
11072 (_("%B: warning: linking PIC files with non-PIC files"),
11073 ibfd);
11074 ok = TRUE;
11075 }
11076
11077 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11078 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11079 if (! (new_flags & EF_MIPS_PIC))
11080 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11081
11082 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11083 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11084
11085 /* Compare the ISAs. */
11086 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11087 {
11088 (*_bfd_error_handler)
11089 (_("%B: linking 32-bit code with 64-bit code"),
11090 ibfd);
11091 ok = FALSE;
11092 }
11093 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11094 {
11095 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11096 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11097 {
11098 /* Copy the architecture info from IBFD to OBFD. Also copy
11099 the 32-bit flag (if set) so that we continue to recognise
11100 OBFD as a 32-bit binary. */
11101 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11102 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11103 elf_elfheader (obfd)->e_flags
11104 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11105
11106 /* Copy across the ABI flags if OBFD doesn't use them
11107 and if that was what caused us to treat IBFD as 32-bit. */
11108 if ((old_flags & EF_MIPS_ABI) == 0
11109 && mips_32bit_flags_p (new_flags)
11110 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11111 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11112 }
11113 else
11114 {
11115 /* The ISAs aren't compatible. */
11116 (*_bfd_error_handler)
11117 (_("%B: linking %s module with previous %s modules"),
11118 ibfd,
11119 bfd_printable_name (ibfd),
11120 bfd_printable_name (obfd));
11121 ok = FALSE;
11122 }
11123 }
11124
11125 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11126 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11127
11128 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11129 does set EI_CLASS differently from any 32-bit ABI. */
11130 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11131 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11132 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11133 {
11134 /* Only error if both are set (to different values). */
11135 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11136 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11137 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11138 {
11139 (*_bfd_error_handler)
11140 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11141 ibfd,
11142 elf_mips_abi_name (ibfd),
11143 elf_mips_abi_name (obfd));
11144 ok = FALSE;
11145 }
11146 new_flags &= ~EF_MIPS_ABI;
11147 old_flags &= ~EF_MIPS_ABI;
11148 }
11149
11150 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11151 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11152 {
11153 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11154
11155 new_flags &= ~ EF_MIPS_ARCH_ASE;
11156 old_flags &= ~ EF_MIPS_ARCH_ASE;
11157 }
11158
11159 /* Warn about any other mismatches */
11160 if (new_flags != old_flags)
11161 {
11162 (*_bfd_error_handler)
11163 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11164 ibfd, (unsigned long) new_flags,
11165 (unsigned long) old_flags);
11166 ok = FALSE;
11167 }
11168
11169 if (! ok)
11170 {
11171 bfd_set_error (bfd_error_bad_value);
11172 return FALSE;
11173 }
11174
11175 return TRUE;
11176 }
11177
11178 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11179
11180 bfd_boolean
11181 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11182 {
11183 BFD_ASSERT (!elf_flags_init (abfd)
11184 || elf_elfheader (abfd)->e_flags == flags);
11185
11186 elf_elfheader (abfd)->e_flags = flags;
11187 elf_flags_init (abfd) = TRUE;
11188 return TRUE;
11189 }
11190
11191 bfd_boolean
11192 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11193 {
11194 FILE *file = ptr;
11195
11196 BFD_ASSERT (abfd != NULL && ptr != NULL);
11197
11198 /* Print normal ELF private data. */
11199 _bfd_elf_print_private_bfd_data (abfd, ptr);
11200
11201 /* xgettext:c-format */
11202 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11203
11204 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11205 fprintf (file, _(" [abi=O32]"));
11206 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11207 fprintf (file, _(" [abi=O64]"));
11208 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11209 fprintf (file, _(" [abi=EABI32]"));
11210 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11211 fprintf (file, _(" [abi=EABI64]"));
11212 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11213 fprintf (file, _(" [abi unknown]"));
11214 else if (ABI_N32_P (abfd))
11215 fprintf (file, _(" [abi=N32]"));
11216 else if (ABI_64_P (abfd))
11217 fprintf (file, _(" [abi=64]"));
11218 else
11219 fprintf (file, _(" [no abi set]"));
11220
11221 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11222 fprintf (file, " [mips1]");
11223 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11224 fprintf (file, " [mips2]");
11225 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11226 fprintf (file, " [mips3]");
11227 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11228 fprintf (file, " [mips4]");
11229 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11230 fprintf (file, " [mips5]");
11231 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11232 fprintf (file, " [mips32]");
11233 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11234 fprintf (file, " [mips64]");
11235 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11236 fprintf (file, " [mips32r2]");
11237 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11238 fprintf (file, " [mips64r2]");
11239 else
11240 fprintf (file, _(" [unknown ISA]"));
11241
11242 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11243 fprintf (file, " [mdmx]");
11244
11245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11246 fprintf (file, " [mips16]");
11247
11248 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11249 fprintf (file, " [32bitmode]");
11250 else
11251 fprintf (file, _(" [not 32bitmode]"));
11252
11253 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11254 fprintf (file, " [noreorder]");
11255
11256 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11257 fprintf (file, " [PIC]");
11258
11259 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11260 fprintf (file, " [CPIC]");
11261
11262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11263 fprintf (file, " [XGOT]");
11264
11265 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11266 fprintf (file, " [UCODE]");
11267
11268 fputc ('\n', file);
11269
11270 return TRUE;
11271 }
11272
11273 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11274 {
11275 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11276 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11277 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11278 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11279 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11280 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11281 { NULL, 0, 0, 0, 0 }
11282 };
11283
11284 /* Merge non visibility st_other attributes. Ensure that the
11285 STO_OPTIONAL flag is copied into h->other, even if this is not a
11286 definiton of the symbol. */
11287 void
11288 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11289 const Elf_Internal_Sym *isym,
11290 bfd_boolean definition,
11291 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11292 {
11293 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11294 {
11295 unsigned char other;
11296
11297 other = (definition ? isym->st_other : h->other);
11298 other &= ~ELF_ST_VISIBILITY (-1);
11299 h->other = other | ELF_ST_VISIBILITY (h->other);
11300 }
11301
11302 if (!definition
11303 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11304 h->other |= STO_OPTIONAL;
11305 }
11306
11307 /* Decide whether an undefined symbol is special and can be ignored.
11308 This is the case for OPTIONAL symbols on IRIX. */
11309 bfd_boolean
11310 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11311 {
11312 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11313 }
11314
11315 bfd_boolean
11316 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11317 {
11318 return (sym->st_shndx == SHN_COMMON
11319 || sym->st_shndx == SHN_MIPS_ACOMMON
11320 || sym->st_shndx == SHN_MIPS_SCOMMON);
11321 }
This page took 0.292662 seconds and 5 git commands to generate.