Update copyright years
[deliverable/binutils-gdb.git] / bfd / hash.c
1 /* hash.c -- hash table routines for BFD
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3 Written by Steve Chamberlain <sac@cygnus.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "objalloc.h"
26 #include "libiberty.h"
27
28 /*
29 SECTION
30 Hash Tables
31
32 @cindex Hash tables
33 BFD provides a simple set of hash table functions. Routines
34 are provided to initialize a hash table, to free a hash table,
35 to look up a string in a hash table and optionally create an
36 entry for it, and to traverse a hash table. There is
37 currently no routine to delete an string from a hash table.
38
39 The basic hash table does not permit any data to be stored
40 with a string. However, a hash table is designed to present a
41 base class from which other types of hash tables may be
42 derived. These derived types may store additional information
43 with the string. Hash tables were implemented in this way,
44 rather than simply providing a data pointer in a hash table
45 entry, because they were designed for use by the linker back
46 ends. The linker may create thousands of hash table entries,
47 and the overhead of allocating private data and storing and
48 following pointers becomes noticeable.
49
50 The basic hash table code is in <<hash.c>>.
51
52 @menu
53 @* Creating and Freeing a Hash Table::
54 @* Looking Up or Entering a String::
55 @* Traversing a Hash Table::
56 @* Deriving a New Hash Table Type::
57 @end menu
58
59 INODE
60 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
61 SUBSECTION
62 Creating and freeing a hash table
63
64 @findex bfd_hash_table_init
65 @findex bfd_hash_table_init_n
66 To create a hash table, create an instance of a <<struct
67 bfd_hash_table>> (defined in <<bfd.h>>) and call
68 <<bfd_hash_table_init>> (if you know approximately how many
69 entries you will need, the function <<bfd_hash_table_init_n>>,
70 which takes a @var{size} argument, may be used).
71 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
72 error occurs.
73
74 @findex bfd_hash_newfunc
75 The function <<bfd_hash_table_init>> take as an argument a
76 function to use to create new entries. For a basic hash
77 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
78 a New Hash Table Type}, for why you would want to use a
79 different value for this argument.
80
81 @findex bfd_hash_allocate
82 <<bfd_hash_table_init>> will create an objalloc which will be
83 used to allocate new entries. You may allocate memory on this
84 objalloc using <<bfd_hash_allocate>>.
85
86 @findex bfd_hash_table_free
87 Use <<bfd_hash_table_free>> to free up all the memory that has
88 been allocated for a hash table. This will not free up the
89 <<struct bfd_hash_table>> itself, which you must provide.
90
91 @findex bfd_hash_set_default_size
92 Use <<bfd_hash_set_default_size>> to set the default size of
93 hash table to use.
94
95 INODE
96 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
97 SUBSECTION
98 Looking up or entering a string
99
100 @findex bfd_hash_lookup
101 The function <<bfd_hash_lookup>> is used both to look up a
102 string in the hash table and to create a new entry.
103
104 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
105 will look up a string. If the string is found, it will
106 returns a pointer to a <<struct bfd_hash_entry>>. If the
107 string is not found in the table <<bfd_hash_lookup>> will
108 return <<NULL>>. You should not modify any of the fields in
109 the returns <<struct bfd_hash_entry>>.
110
111 If the @var{create} argument is <<TRUE>>, the string will be
112 entered into the hash table if it is not already there.
113 Either way a pointer to a <<struct bfd_hash_entry>> will be
114 returned, either to the existing structure or to a newly
115 created one. In this case, a <<NULL>> return means that an
116 error occurred.
117
118 If the @var{create} argument is <<TRUE>>, and a new entry is
119 created, the @var{copy} argument is used to decide whether to
120 copy the string onto the hash table objalloc or not. If
121 @var{copy} is passed as <<FALSE>>, you must be careful not to
122 deallocate or modify the string as long as the hash table
123 exists.
124
125 INODE
126 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
127 SUBSECTION
128 Traversing a hash table
129
130 @findex bfd_hash_traverse
131 The function <<bfd_hash_traverse>> may be used to traverse a
132 hash table, calling a function on each element. The traversal
133 is done in a random order.
134
135 <<bfd_hash_traverse>> takes as arguments a function and a
136 generic <<void *>> pointer. The function is called with a
137 hash table entry (a <<struct bfd_hash_entry *>>) and the
138 generic pointer passed to <<bfd_hash_traverse>>. The function
139 must return a <<boolean>> value, which indicates whether to
140 continue traversing the hash table. If the function returns
141 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
142 return immediately.
143
144 INODE
145 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
146 SUBSECTION
147 Deriving a new hash table type
148
149 Many uses of hash tables want to store additional information
150 which each entry in the hash table. Some also find it
151 convenient to store additional information with the hash table
152 itself. This may be done using a derived hash table.
153
154 Since C is not an object oriented language, creating a derived
155 hash table requires sticking together some boilerplate
156 routines with a few differences specific to the type of hash
157 table you want to create.
158
159 An example of a derived hash table is the linker hash table.
160 The structures for this are defined in <<bfdlink.h>>. The
161 functions are in <<linker.c>>.
162
163 You may also derive a hash table from an already derived hash
164 table. For example, the a.out linker backend code uses a hash
165 table derived from the linker hash table.
166
167 @menu
168 @* Define the Derived Structures::
169 @* Write the Derived Creation Routine::
170 @* Write Other Derived Routines::
171 @end menu
172
173 INODE
174 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
175 SUBSUBSECTION
176 Define the derived structures
177
178 You must define a structure for an entry in the hash table,
179 and a structure for the hash table itself.
180
181 The first field in the structure for an entry in the hash
182 table must be of the type used for an entry in the hash table
183 you are deriving from. If you are deriving from a basic hash
184 table this is <<struct bfd_hash_entry>>, which is defined in
185 <<bfd.h>>. The first field in the structure for the hash
186 table itself must be of the type of the hash table you are
187 deriving from itself. If you are deriving from a basic hash
188 table, this is <<struct bfd_hash_table>>.
189
190 For example, the linker hash table defines <<struct
191 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
192 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
193 the first field in <<struct bfd_link_hash_table>>, <<table>>,
194 is of type <<struct bfd_hash_table>>.
195
196 INODE
197 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
198 SUBSUBSECTION
199 Write the derived creation routine
200
201 You must write a routine which will create and initialize an
202 entry in the hash table. This routine is passed as the
203 function argument to <<bfd_hash_table_init>>.
204
205 In order to permit other hash tables to be derived from the
206 hash table you are creating, this routine must be written in a
207 standard way.
208
209 The first argument to the creation routine is a pointer to a
210 hash table entry. This may be <<NULL>>, in which case the
211 routine should allocate the right amount of space. Otherwise
212 the space has already been allocated by a hash table type
213 derived from this one.
214
215 After allocating space, the creation routine must call the
216 creation routine of the hash table type it is derived from,
217 passing in a pointer to the space it just allocated. This
218 will initialize any fields used by the base hash table.
219
220 Finally the creation routine must initialize any local fields
221 for the new hash table type.
222
223 Here is a boilerplate example of a creation routine.
224 @var{function_name} is the name of the routine.
225 @var{entry_type} is the type of an entry in the hash table you
226 are creating. @var{base_newfunc} is the name of the creation
227 routine of the hash table type your hash table is derived
228 from.
229
230 EXAMPLE
231
232 .struct bfd_hash_entry *
233 .@var{function_name} (struct bfd_hash_entry *entry,
234 . struct bfd_hash_table *table,
235 . const char *string)
236 .{
237 . struct @var{entry_type} *ret = (@var{entry_type} *) entry;
238 .
239 . {* Allocate the structure if it has not already been allocated by a
240 . derived class. *}
241 . if (ret == NULL)
242 . {
243 . ret = bfd_hash_allocate (table, sizeof (* ret));
244 . if (ret == NULL)
245 . return NULL;
246 . }
247 .
248 . {* Call the allocation method of the base class. *}
249 . ret = ((@var{entry_type} *)
250 . @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
251 .
252 . {* Initialize the local fields here. *}
253 .
254 . return (struct bfd_hash_entry *) ret;
255 .}
256
257 DESCRIPTION
258 The creation routine for the linker hash table, which is in
259 <<linker.c>>, looks just like this example.
260 @var{function_name} is <<_bfd_link_hash_newfunc>>.
261 @var{entry_type} is <<struct bfd_link_hash_entry>>.
262 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
263 routine for a basic hash table.
264
265 <<_bfd_link_hash_newfunc>> also initializes the local fields
266 in a linker hash table entry: <<type>>, <<written>> and
267 <<next>>.
268
269 INODE
270 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
271 SUBSUBSECTION
272 Write other derived routines
273
274 You will want to write other routines for your new hash table,
275 as well.
276
277 You will want an initialization routine which calls the
278 initialization routine of the hash table you are deriving from
279 and initializes any other local fields. For the linker hash
280 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
281
282 You will want a lookup routine which calls the lookup routine
283 of the hash table you are deriving from and casts the result.
284 The linker hash table uses <<bfd_link_hash_lookup>> in
285 <<linker.c>> (this actually takes an additional argument which
286 it uses to decide how to return the looked up value).
287
288 You may want a traversal routine. This should just call the
289 traversal routine of the hash table you are deriving from with
290 appropriate casts. The linker hash table uses
291 <<bfd_link_hash_traverse>> in <<linker.c>>.
292
293 These routines may simply be defined as macros. For example,
294 the a.out backend linker hash table, which is derived from the
295 linker hash table, uses macros for the lookup and traversal
296 routines. These are <<aout_link_hash_lookup>> and
297 <<aout_link_hash_traverse>> in aoutx.h.
298 */
299
300 /* The default number of entries to use when creating a hash table. */
301 #define DEFAULT_SIZE 4051
302
303 /* The following function returns a nearest prime number which is
304 greater than N, and near a power of two. Copied from libiberty.
305 Returns zero for ridiculously large N to signify an error. */
306
307 static unsigned long
308 higher_prime_number (unsigned long n)
309 {
310 /* These are primes that are near, but slightly smaller than, a
311 power of two. */
312 static const unsigned long primes[] =
313 {
314 (unsigned long) 31,
315 (unsigned long) 61,
316 (unsigned long) 127,
317 (unsigned long) 251,
318 (unsigned long) 509,
319 (unsigned long) 1021,
320 (unsigned long) 2039,
321 (unsigned long) 4093,
322 (unsigned long) 8191,
323 (unsigned long) 16381,
324 (unsigned long) 32749,
325 (unsigned long) 65521,
326 (unsigned long) 131071,
327 (unsigned long) 262139,
328 (unsigned long) 524287,
329 (unsigned long) 1048573,
330 (unsigned long) 2097143,
331 (unsigned long) 4194301,
332 (unsigned long) 8388593,
333 (unsigned long) 16777213,
334 (unsigned long) 33554393,
335 (unsigned long) 67108859,
336 (unsigned long) 134217689,
337 (unsigned long) 268435399,
338 (unsigned long) 536870909,
339 (unsigned long) 1073741789,
340 (unsigned long) 2147483647,
341 /* 4294967291L */
342 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
343 };
344
345 const unsigned long *low = &primes[0];
346 const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
347
348 while (low != high)
349 {
350 const unsigned long *mid = low + (high - low) / 2;
351 if (n >= *mid)
352 low = mid + 1;
353 else
354 high = mid;
355 }
356
357 if (n >= *low)
358 return 0;
359
360 return *low;
361 }
362
363 static unsigned long bfd_default_hash_table_size = DEFAULT_SIZE;
364
365 /* Create a new hash table, given a number of entries. */
366
367 bfd_boolean
368 bfd_hash_table_init_n (struct bfd_hash_table *table,
369 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
370 struct bfd_hash_table *,
371 const char *),
372 unsigned int entsize,
373 unsigned int size)
374 {
375 unsigned long alloc;
376
377 alloc = size;
378 alloc *= sizeof (struct bfd_hash_entry *);
379 if (alloc / sizeof (struct bfd_hash_entry *) != size)
380 {
381 bfd_set_error (bfd_error_no_memory);
382 return FALSE;
383 }
384
385 table->memory = (void *) objalloc_create ();
386 if (table->memory == NULL)
387 {
388 bfd_set_error (bfd_error_no_memory);
389 return FALSE;
390 }
391 table->table = (struct bfd_hash_entry **)
392 objalloc_alloc ((struct objalloc *) table->memory, alloc);
393 if (table->table == NULL)
394 {
395 bfd_set_error (bfd_error_no_memory);
396 return FALSE;
397 }
398 memset ((void *) table->table, 0, alloc);
399 table->size = size;
400 table->entsize = entsize;
401 table->count = 0;
402 table->frozen = 0;
403 table->newfunc = newfunc;
404 return TRUE;
405 }
406
407 /* Create a new hash table with the default number of entries. */
408
409 bfd_boolean
410 bfd_hash_table_init (struct bfd_hash_table *table,
411 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
412 struct bfd_hash_table *,
413 const char *),
414 unsigned int entsize)
415 {
416 return bfd_hash_table_init_n (table, newfunc, entsize,
417 bfd_default_hash_table_size);
418 }
419
420 /* Free a hash table. */
421
422 void
423 bfd_hash_table_free (struct bfd_hash_table *table)
424 {
425 objalloc_free ((struct objalloc *) table->memory);
426 table->memory = NULL;
427 }
428
429 static inline unsigned long
430 bfd_hash_hash (const char *string, unsigned int *lenp)
431 {
432 const unsigned char *s;
433 unsigned long hash;
434 unsigned int len;
435 unsigned int c;
436
437 hash = 0;
438 len = 0;
439 s = (const unsigned char *) string;
440 while ((c = *s++) != '\0')
441 {
442 hash += c + (c << 17);
443 hash ^= hash >> 2;
444 }
445 len = (s - (const unsigned char *) string) - 1;
446 hash += len + (len << 17);
447 hash ^= hash >> 2;
448 if (lenp != NULL)
449 *lenp = len;
450 return hash;
451 }
452
453 /* Look up a string in a hash table. */
454
455 struct bfd_hash_entry *
456 bfd_hash_lookup (struct bfd_hash_table *table,
457 const char *string,
458 bfd_boolean create,
459 bfd_boolean copy)
460 {
461 unsigned long hash;
462 struct bfd_hash_entry *hashp;
463 unsigned int len;
464 unsigned int _index;
465
466 hash = bfd_hash_hash (string, &len);
467 _index = hash % table->size;
468 for (hashp = table->table[_index];
469 hashp != NULL;
470 hashp = hashp->next)
471 {
472 if (hashp->hash == hash
473 && strcmp (hashp->string, string) == 0)
474 return hashp;
475 }
476
477 if (! create)
478 return NULL;
479
480 if (copy)
481 {
482 char *new_string;
483
484 new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
485 len + 1);
486 if (!new_string)
487 {
488 bfd_set_error (bfd_error_no_memory);
489 return NULL;
490 }
491 memcpy (new_string, string, len + 1);
492 string = new_string;
493 }
494
495 return bfd_hash_insert (table, string, hash);
496 }
497
498 /* Insert an entry in a hash table. */
499
500 struct bfd_hash_entry *
501 bfd_hash_insert (struct bfd_hash_table *table,
502 const char *string,
503 unsigned long hash)
504 {
505 struct bfd_hash_entry *hashp;
506 unsigned int _index;
507
508 hashp = (*table->newfunc) (NULL, table, string);
509 if (hashp == NULL)
510 return NULL;
511 hashp->string = string;
512 hashp->hash = hash;
513 _index = hash % table->size;
514 hashp->next = table->table[_index];
515 table->table[_index] = hashp;
516 table->count++;
517
518 if (!table->frozen && table->count > table->size * 3 / 4)
519 {
520 unsigned long newsize = higher_prime_number (table->size);
521 struct bfd_hash_entry **newtable;
522 unsigned int hi;
523 unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
524
525 /* If we can't find a higher prime, or we can't possibly alloc
526 that much memory, don't try to grow the table. */
527 if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
528 {
529 table->frozen = 1;
530 return hashp;
531 }
532
533 newtable = ((struct bfd_hash_entry **)
534 objalloc_alloc ((struct objalloc *) table->memory, alloc));
535 if (newtable == NULL)
536 {
537 table->frozen = 1;
538 return hashp;
539 }
540 memset (newtable, 0, alloc);
541
542 for (hi = 0; hi < table->size; hi ++)
543 while (table->table[hi])
544 {
545 struct bfd_hash_entry *chain = table->table[hi];
546 struct bfd_hash_entry *chain_end = chain;
547
548 while (chain_end->next && chain_end->next->hash == chain->hash)
549 chain_end = chain_end->next;
550
551 table->table[hi] = chain_end->next;
552 _index = chain->hash % newsize;
553 chain_end->next = newtable[_index];
554 newtable[_index] = chain;
555 }
556 table->table = newtable;
557 table->size = newsize;
558 }
559
560 return hashp;
561 }
562
563 /* Rename an entry in a hash table. */
564
565 void
566 bfd_hash_rename (struct bfd_hash_table *table,
567 const char *string,
568 struct bfd_hash_entry *ent)
569 {
570 unsigned int _index;
571 struct bfd_hash_entry **pph;
572
573 _index = ent->hash % table->size;
574 for (pph = &table->table[_index]; *pph != NULL; pph = &(*pph)->next)
575 if (*pph == ent)
576 break;
577 if (*pph == NULL)
578 abort ();
579
580 *pph = ent->next;
581 ent->string = string;
582 ent->hash = bfd_hash_hash (string, NULL);
583 _index = ent->hash % table->size;
584 ent->next = table->table[_index];
585 table->table[_index] = ent;
586 }
587
588 /* Replace an entry in a hash table. */
589
590 void
591 bfd_hash_replace (struct bfd_hash_table *table,
592 struct bfd_hash_entry *old,
593 struct bfd_hash_entry *nw)
594 {
595 unsigned int _index;
596 struct bfd_hash_entry **pph;
597
598 _index = old->hash % table->size;
599 for (pph = &table->table[_index];
600 (*pph) != NULL;
601 pph = &(*pph)->next)
602 {
603 if (*pph == old)
604 {
605 *pph = nw;
606 return;
607 }
608 }
609
610 abort ();
611 }
612
613 /* Allocate space in a hash table. */
614
615 void *
616 bfd_hash_allocate (struct bfd_hash_table *table,
617 unsigned int size)
618 {
619 void * ret;
620
621 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
622 if (ret == NULL && size != 0)
623 bfd_set_error (bfd_error_no_memory);
624 return ret;
625 }
626
627 /* Base method for creating a new hash table entry. */
628
629 struct bfd_hash_entry *
630 bfd_hash_newfunc (struct bfd_hash_entry *entry,
631 struct bfd_hash_table *table,
632 const char *string ATTRIBUTE_UNUSED)
633 {
634 if (entry == NULL)
635 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
636 sizeof (* entry));
637 return entry;
638 }
639
640 /* Traverse a hash table. */
641
642 void
643 bfd_hash_traverse (struct bfd_hash_table *table,
644 bfd_boolean (*func) (struct bfd_hash_entry *, void *),
645 void * info)
646 {
647 unsigned int i;
648
649 table->frozen = 1;
650 for (i = 0; i < table->size; i++)
651 {
652 struct bfd_hash_entry *p;
653
654 for (p = table->table[i]; p != NULL; p = p->next)
655 if (! (*func) (p, info))
656 goto out;
657 }
658 out:
659 table->frozen = 0;
660 }
661 \f
662 unsigned long
663 bfd_hash_set_default_size (unsigned long hash_size)
664 {
665 /* Extend this prime list if you want more granularity of hash table size. */
666 static const unsigned long hash_size_primes[] =
667 {
668 31, 61, 127, 251, 509, 1021, 2039, 4091, 8191, 16381, 32749, 65537
669 };
670 unsigned int _index;
671
672 /* Work out best prime number near the hash_size. */
673 for (_index = 0; _index < ARRAY_SIZE (hash_size_primes) - 1; ++_index)
674 if (hash_size <= hash_size_primes[_index])
675 break;
676
677 bfd_default_hash_table_size = hash_size_primes[_index];
678 return bfd_default_hash_table_size;
679 }
680 \f
681 /* A few different object file formats (a.out, COFF, ELF) use a string
682 table. These functions support adding strings to a string table,
683 returning the byte offset, and writing out the table.
684
685 Possible improvements:
686 + look for strings matching trailing substrings of other strings
687 + better data structures? balanced trees?
688 + look at reducing memory use elsewhere -- maybe if we didn't have
689 to construct the entire symbol table at once, we could get by
690 with smaller amounts of VM? (What effect does that have on the
691 string table reductions?) */
692
693 /* An entry in the strtab hash table. */
694
695 struct strtab_hash_entry
696 {
697 struct bfd_hash_entry root;
698 /* Index in string table. */
699 bfd_size_type index;
700 /* Next string in strtab. */
701 struct strtab_hash_entry *next;
702 };
703
704 /* The strtab hash table. */
705
706 struct bfd_strtab_hash
707 {
708 struct bfd_hash_table table;
709 /* Size of strtab--also next available index. */
710 bfd_size_type size;
711 /* First string in strtab. */
712 struct strtab_hash_entry *first;
713 /* Last string in strtab. */
714 struct strtab_hash_entry *last;
715 /* Whether to precede strings with a two byte length, as in the
716 XCOFF .debug section. */
717 bfd_boolean xcoff;
718 };
719
720 /* Routine to create an entry in a strtab. */
721
722 static struct bfd_hash_entry *
723 strtab_hash_newfunc (struct bfd_hash_entry *entry,
724 struct bfd_hash_table *table,
725 const char *string)
726 {
727 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
728
729 /* Allocate the structure if it has not already been allocated by a
730 subclass. */
731 if (ret == NULL)
732 ret = (struct strtab_hash_entry *) bfd_hash_allocate (table,
733 sizeof (* ret));
734 if (ret == NULL)
735 return NULL;
736
737 /* Call the allocation method of the superclass. */
738 ret = (struct strtab_hash_entry *)
739 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
740
741 if (ret)
742 {
743 /* Initialize the local fields. */
744 ret->index = (bfd_size_type) -1;
745 ret->next = NULL;
746 }
747
748 return (struct bfd_hash_entry *) ret;
749 }
750
751 /* Look up an entry in an strtab. */
752
753 #define strtab_hash_lookup(t, string, create, copy) \
754 ((struct strtab_hash_entry *) \
755 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
756
757 /* Create a new strtab. */
758
759 struct bfd_strtab_hash *
760 _bfd_stringtab_init (void)
761 {
762 struct bfd_strtab_hash *table;
763 bfd_size_type amt = sizeof (* table);
764
765 table = (struct bfd_strtab_hash *) bfd_malloc (amt);
766 if (table == NULL)
767 return NULL;
768
769 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
770 sizeof (struct strtab_hash_entry)))
771 {
772 free (table);
773 return NULL;
774 }
775
776 table->size = 0;
777 table->first = NULL;
778 table->last = NULL;
779 table->xcoff = FALSE;
780
781 return table;
782 }
783
784 /* Create a new strtab in which the strings are output in the format
785 used in the XCOFF .debug section: a two byte length precedes each
786 string. */
787
788 struct bfd_strtab_hash *
789 _bfd_xcoff_stringtab_init (void)
790 {
791 struct bfd_strtab_hash *ret;
792
793 ret = _bfd_stringtab_init ();
794 if (ret != NULL)
795 ret->xcoff = TRUE;
796 return ret;
797 }
798
799 /* Free a strtab. */
800
801 void
802 _bfd_stringtab_free (struct bfd_strtab_hash *table)
803 {
804 bfd_hash_table_free (&table->table);
805 free (table);
806 }
807
808 /* Get the index of a string in a strtab, adding it if it is not
809 already present. If HASH is FALSE, we don't really use the hash
810 table, and we don't eliminate duplicate strings. If COPY is true
811 then store a copy of STR if creating a new entry. */
812
813 bfd_size_type
814 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
815 const char *str,
816 bfd_boolean hash,
817 bfd_boolean copy)
818 {
819 struct strtab_hash_entry *entry;
820
821 if (hash)
822 {
823 entry = strtab_hash_lookup (tab, str, TRUE, copy);
824 if (entry == NULL)
825 return (bfd_size_type) -1;
826 }
827 else
828 {
829 entry = (struct strtab_hash_entry *) bfd_hash_allocate (&tab->table,
830 sizeof (* entry));
831 if (entry == NULL)
832 return (bfd_size_type) -1;
833 if (! copy)
834 entry->root.string = str;
835 else
836 {
837 size_t len = strlen (str) + 1;
838 char *n;
839
840 n = (char *) bfd_hash_allocate (&tab->table, len);
841 if (n == NULL)
842 return (bfd_size_type) -1;
843 memcpy (n, str, len);
844 entry->root.string = n;
845 }
846 entry->index = (bfd_size_type) -1;
847 entry->next = NULL;
848 }
849
850 if (entry->index == (bfd_size_type) -1)
851 {
852 entry->index = tab->size;
853 tab->size += strlen (str) + 1;
854 if (tab->xcoff)
855 {
856 entry->index += 2;
857 tab->size += 2;
858 }
859 if (tab->first == NULL)
860 tab->first = entry;
861 else
862 tab->last->next = entry;
863 tab->last = entry;
864 }
865
866 return entry->index;
867 }
868
869 /* Get the number of bytes in a strtab. */
870
871 bfd_size_type
872 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
873 {
874 return tab->size;
875 }
876
877 /* Write out a strtab. ABFD must already be at the right location in
878 the file. */
879
880 bfd_boolean
881 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
882 {
883 bfd_boolean xcoff;
884 struct strtab_hash_entry *entry;
885
886 xcoff = tab->xcoff;
887
888 for (entry = tab->first; entry != NULL; entry = entry->next)
889 {
890 const char *str;
891 size_t len;
892
893 str = entry->root.string;
894 len = strlen (str) + 1;
895
896 if (xcoff)
897 {
898 bfd_byte buf[2];
899
900 /* The output length includes the null byte. */
901 bfd_put_16 (abfd, (bfd_vma) len, buf);
902 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
903 return FALSE;
904 }
905
906 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
907 return FALSE;
908 }
909
910 return TRUE;
911 }
This page took 0.051903 seconds and 5 git commands to generate.