* bfd-in.h (bfd_hash_table): Add count field.
[deliverable/binutils-gdb.git] / bfd / hash.c
1 /* hash.c -- hash table routines for BFD
2 Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
3 2006 Free Software Foundation, Inc.
4 Written by Steve Chamberlain <sac@cygnus.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "objalloc.h"
26 #include "libiberty.h"
27
28 /*
29 SECTION
30 Hash Tables
31
32 @cindex Hash tables
33 BFD provides a simple set of hash table functions. Routines
34 are provided to initialize a hash table, to free a hash table,
35 to look up a string in a hash table and optionally create an
36 entry for it, and to traverse a hash table. There is
37 currently no routine to delete an string from a hash table.
38
39 The basic hash table does not permit any data to be stored
40 with a string. However, a hash table is designed to present a
41 base class from which other types of hash tables may be
42 derived. These derived types may store additional information
43 with the string. Hash tables were implemented in this way,
44 rather than simply providing a data pointer in a hash table
45 entry, because they were designed for use by the linker back
46 ends. The linker may create thousands of hash table entries,
47 and the overhead of allocating private data and storing and
48 following pointers becomes noticeable.
49
50 The basic hash table code is in <<hash.c>>.
51
52 @menu
53 @* Creating and Freeing a Hash Table::
54 @* Looking Up or Entering a String::
55 @* Traversing a Hash Table::
56 @* Deriving a New Hash Table Type::
57 @end menu
58
59 INODE
60 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
61 SUBSECTION
62 Creating and freeing a hash table
63
64 @findex bfd_hash_table_init
65 @findex bfd_hash_table_init_n
66 To create a hash table, create an instance of a <<struct
67 bfd_hash_table>> (defined in <<bfd.h>>) and call
68 <<bfd_hash_table_init>> (if you know approximately how many
69 entries you will need, the function <<bfd_hash_table_init_n>>,
70 which takes a @var{size} argument, may be used).
71 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
72 error occurs.
73
74 @findex bfd_hash_newfunc
75 The function <<bfd_hash_table_init>> take as an argument a
76 function to use to create new entries. For a basic hash
77 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
78 a New Hash Table Type}, for why you would want to use a
79 different value for this argument.
80
81 @findex bfd_hash_allocate
82 <<bfd_hash_table_init>> will create an objalloc which will be
83 used to allocate new entries. You may allocate memory on this
84 objalloc using <<bfd_hash_allocate>>.
85
86 @findex bfd_hash_table_free
87 Use <<bfd_hash_table_free>> to free up all the memory that has
88 been allocated for a hash table. This will not free up the
89 <<struct bfd_hash_table>> itself, which you must provide.
90
91 @findex bfd_hash_set_default_size
92 Use <<bfd_hash_set_default_size>> to set the default size of
93 hash table to use.
94
95 INODE
96 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
97 SUBSECTION
98 Looking up or entering a string
99
100 @findex bfd_hash_lookup
101 The function <<bfd_hash_lookup>> is used both to look up a
102 string in the hash table and to create a new entry.
103
104 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
105 will look up a string. If the string is found, it will
106 returns a pointer to a <<struct bfd_hash_entry>>. If the
107 string is not found in the table <<bfd_hash_lookup>> will
108 return <<NULL>>. You should not modify any of the fields in
109 the returns <<struct bfd_hash_entry>>.
110
111 If the @var{create} argument is <<TRUE>>, the string will be
112 entered into the hash table if it is not already there.
113 Either way a pointer to a <<struct bfd_hash_entry>> will be
114 returned, either to the existing structure or to a newly
115 created one. In this case, a <<NULL>> return means that an
116 error occurred.
117
118 If the @var{create} argument is <<TRUE>>, and a new entry is
119 created, the @var{copy} argument is used to decide whether to
120 copy the string onto the hash table objalloc or not. If
121 @var{copy} is passed as <<FALSE>>, you must be careful not to
122 deallocate or modify the string as long as the hash table
123 exists.
124
125 INODE
126 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
127 SUBSECTION
128 Traversing a hash table
129
130 @findex bfd_hash_traverse
131 The function <<bfd_hash_traverse>> may be used to traverse a
132 hash table, calling a function on each element. The traversal
133 is done in a random order.
134
135 <<bfd_hash_traverse>> takes as arguments a function and a
136 generic <<void *>> pointer. The function is called with a
137 hash table entry (a <<struct bfd_hash_entry *>>) and the
138 generic pointer passed to <<bfd_hash_traverse>>. The function
139 must return a <<boolean>> value, which indicates whether to
140 continue traversing the hash table. If the function returns
141 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
142 return immediately.
143
144 INODE
145 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
146 SUBSECTION
147 Deriving a new hash table type
148
149 Many uses of hash tables want to store additional information
150 which each entry in the hash table. Some also find it
151 convenient to store additional information with the hash table
152 itself. This may be done using a derived hash table.
153
154 Since C is not an object oriented language, creating a derived
155 hash table requires sticking together some boilerplate
156 routines with a few differences specific to the type of hash
157 table you want to create.
158
159 An example of a derived hash table is the linker hash table.
160 The structures for this are defined in <<bfdlink.h>>. The
161 functions are in <<linker.c>>.
162
163 You may also derive a hash table from an already derived hash
164 table. For example, the a.out linker backend code uses a hash
165 table derived from the linker hash table.
166
167 @menu
168 @* Define the Derived Structures::
169 @* Write the Derived Creation Routine::
170 @* Write Other Derived Routines::
171 @end menu
172
173 INODE
174 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
175 SUBSUBSECTION
176 Define the derived structures
177
178 You must define a structure for an entry in the hash table,
179 and a structure for the hash table itself.
180
181 The first field in the structure for an entry in the hash
182 table must be of the type used for an entry in the hash table
183 you are deriving from. If you are deriving from a basic hash
184 table this is <<struct bfd_hash_entry>>, which is defined in
185 <<bfd.h>>. The first field in the structure for the hash
186 table itself must be of the type of the hash table you are
187 deriving from itself. If you are deriving from a basic hash
188 table, this is <<struct bfd_hash_table>>.
189
190 For example, the linker hash table defines <<struct
191 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
192 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
193 the first field in <<struct bfd_link_hash_table>>, <<table>>,
194 is of type <<struct bfd_hash_table>>.
195
196 INODE
197 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
198 SUBSUBSECTION
199 Write the derived creation routine
200
201 You must write a routine which will create and initialize an
202 entry in the hash table. This routine is passed as the
203 function argument to <<bfd_hash_table_init>>.
204
205 In order to permit other hash tables to be derived from the
206 hash table you are creating, this routine must be written in a
207 standard way.
208
209 The first argument to the creation routine is a pointer to a
210 hash table entry. This may be <<NULL>>, in which case the
211 routine should allocate the right amount of space. Otherwise
212 the space has already been allocated by a hash table type
213 derived from this one.
214
215 After allocating space, the creation routine must call the
216 creation routine of the hash table type it is derived from,
217 passing in a pointer to the space it just allocated. This
218 will initialize any fields used by the base hash table.
219
220 Finally the creation routine must initialize any local fields
221 for the new hash table type.
222
223 Here is a boilerplate example of a creation routine.
224 @var{function_name} is the name of the routine.
225 @var{entry_type} is the type of an entry in the hash table you
226 are creating. @var{base_newfunc} is the name of the creation
227 routine of the hash table type your hash table is derived
228 from.
229
230 EXAMPLE
231
232 .struct bfd_hash_entry *
233 .@var{function_name} (struct bfd_hash_entry *entry,
234 . struct bfd_hash_table *table,
235 . const char *string)
236 .{
237 . struct @var{entry_type} *ret = (@var{entry_type} *) entry;
238 .
239 . {* Allocate the structure if it has not already been allocated by a
240 . derived class. *}
241 . if (ret == NULL)
242 . {
243 . ret = bfd_hash_allocate (table, sizeof (* ret));
244 . if (ret == NULL)
245 . return NULL;
246 . }
247 .
248 . {* Call the allocation method of the base class. *}
249 . ret = ((@var{entry_type} *)
250 . @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
251 .
252 . {* Initialize the local fields here. *}
253 .
254 . return (struct bfd_hash_entry *) ret;
255 .}
256
257 DESCRIPTION
258 The creation routine for the linker hash table, which is in
259 <<linker.c>>, looks just like this example.
260 @var{function_name} is <<_bfd_link_hash_newfunc>>.
261 @var{entry_type} is <<struct bfd_link_hash_entry>>.
262 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
263 routine for a basic hash table.
264
265 <<_bfd_link_hash_newfunc>> also initializes the local fields
266 in a linker hash table entry: <<type>>, <<written>> and
267 <<next>>.
268
269 INODE
270 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
271 SUBSUBSECTION
272 Write other derived routines
273
274 You will want to write other routines for your new hash table,
275 as well.
276
277 You will want an initialization routine which calls the
278 initialization routine of the hash table you are deriving from
279 and initializes any other local fields. For the linker hash
280 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
281
282 You will want a lookup routine which calls the lookup routine
283 of the hash table you are deriving from and casts the result.
284 The linker hash table uses <<bfd_link_hash_lookup>> in
285 <<linker.c>> (this actually takes an additional argument which
286 it uses to decide how to return the looked up value).
287
288 You may want a traversal routine. This should just call the
289 traversal routine of the hash table you are deriving from with
290 appropriate casts. The linker hash table uses
291 <<bfd_link_hash_traverse>> in <<linker.c>>.
292
293 These routines may simply be defined as macros. For example,
294 the a.out backend linker hash table, which is derived from the
295 linker hash table, uses macros for the lookup and traversal
296 routines. These are <<aout_link_hash_lookup>> and
297 <<aout_link_hash_traverse>> in aoutx.h.
298 */
299
300 /* The default number of entries to use when creating a hash table. */
301 #define DEFAULT_SIZE (4093)
302
303 /* The following function returns a nearest prime number which is
304 greater than N, and near a power of two. Copied from libiberty. */
305
306 static unsigned long
307 higher_prime_number (unsigned long n)
308 {
309 /* These are primes that are near, but slightly smaller than, a
310 power of two. */
311 static const unsigned long primes[] = {
312 (unsigned long) 7,
313 (unsigned long) 13,
314 (unsigned long) 31,
315 (unsigned long) 61,
316 (unsigned long) 127,
317 (unsigned long) 251,
318 (unsigned long) 509,
319 (unsigned long) 1021,
320 (unsigned long) 2039,
321 (unsigned long) 4093,
322 (unsigned long) 8191,
323 (unsigned long) 16381,
324 (unsigned long) 32749,
325 (unsigned long) 65521,
326 (unsigned long) 131071,
327 (unsigned long) 262139,
328 (unsigned long) 524287,
329 (unsigned long) 1048573,
330 (unsigned long) 2097143,
331 (unsigned long) 4194301,
332 (unsigned long) 8388593,
333 (unsigned long) 16777213,
334 (unsigned long) 33554393,
335 (unsigned long) 67108859,
336 (unsigned long) 134217689,
337 (unsigned long) 268435399,
338 (unsigned long) 536870909,
339 (unsigned long) 1073741789,
340 (unsigned long) 2147483647,
341 /* 4294967291L */
342 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
343 };
344
345 const unsigned long *low = &primes[0];
346 const unsigned long *high = &primes[sizeof(primes) / sizeof(primes[0])];
347
348 while (low != high)
349 {
350 const unsigned long *mid = low + (high - low) / 2;
351 if (n >= *mid)
352 low = mid + 1;
353 else
354 high = mid;
355 }
356
357 /* If we've run out of primes, abort. */
358 if (n > *low)
359 {
360 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
361 abort ();
362 }
363
364 return *low;
365 }
366
367 static size_t bfd_default_hash_table_size = DEFAULT_SIZE;
368
369 /* Create a new hash table, given a number of entries. */
370
371 bfd_boolean
372 bfd_hash_table_init_n (struct bfd_hash_table *table,
373 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
374 struct bfd_hash_table *,
375 const char *),
376 unsigned int entsize,
377 unsigned int size)
378 {
379 unsigned int alloc;
380
381 alloc = size * sizeof (struct bfd_hash_entry *);
382
383 table->memory = (void *) objalloc_create ();
384 if (table->memory == NULL)
385 {
386 bfd_set_error (bfd_error_no_memory);
387 return FALSE;
388 }
389 table->table = objalloc_alloc ((struct objalloc *) table->memory, alloc);
390 if (table->table == NULL)
391 {
392 bfd_set_error (bfd_error_no_memory);
393 return FALSE;
394 }
395 memset ((void *) table->table, 0, alloc);
396 table->size = size;
397 table->entsize = entsize;
398 table->count = 0;
399 table->newfunc = newfunc;
400 return TRUE;
401 }
402
403 /* Create a new hash table with the default number of entries. */
404
405 bfd_boolean
406 bfd_hash_table_init (struct bfd_hash_table *table,
407 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
408 struct bfd_hash_table *,
409 const char *),
410 unsigned int entsize)
411 {
412 return bfd_hash_table_init_n (table, newfunc, entsize,
413 bfd_default_hash_table_size);
414 }
415
416 /* Free a hash table. */
417
418 void
419 bfd_hash_table_free (struct bfd_hash_table *table)
420 {
421 objalloc_free (table->memory);
422 table->memory = NULL;
423 }
424
425 /* Look up a string in a hash table. */
426
427 struct bfd_hash_entry *
428 bfd_hash_lookup (struct bfd_hash_table *table,
429 const char *string,
430 bfd_boolean create,
431 bfd_boolean copy)
432 {
433 const unsigned char *s;
434 unsigned long hash;
435 unsigned int c;
436 struct bfd_hash_entry *hashp;
437 unsigned int len;
438 unsigned int index;
439
440 hash = 0;
441 len = 0;
442 s = (const unsigned char *) string;
443 while ((c = *s++) != '\0')
444 {
445 hash += c + (c << 17);
446 hash ^= hash >> 2;
447 }
448 len = (s - (const unsigned char *) string) - 1;
449 hash += len + (len << 17);
450 hash ^= hash >> 2;
451
452 index = hash % table->size;
453 for (hashp = table->table[index];
454 hashp != NULL;
455 hashp = hashp->next)
456 {
457 if (hashp->hash == hash
458 && strcmp (hashp->string, string) == 0)
459 return hashp;
460 }
461
462 if (! create)
463 return NULL;
464
465 hashp = (*table->newfunc) (NULL, table, string);
466 if (hashp == NULL)
467 return NULL;
468 if (copy)
469 {
470 char *new;
471 table->count ++;
472
473 new = objalloc_alloc ((struct objalloc *) table->memory, len + 1);
474 if (!new)
475 {
476 bfd_set_error (bfd_error_no_memory);
477 return NULL;
478 }
479 memcpy (new, string, len + 1);
480 string = new;
481 }
482 hashp->string = string;
483 hashp->hash = hash;
484 hashp->next = table->table[index];
485 table->table[index] = hashp;
486
487 if (table->count > table->size * 3 / 4)
488 {
489 int newsize = higher_prime_number (table->size);
490 struct bfd_hash_entry **newtable;
491 unsigned int hi;
492 unsigned int alloc;
493
494 alloc = newsize * sizeof (struct bfd_hash_entry *);
495
496 newtable = ((struct bfd_hash_entry **)
497 objalloc_alloc ((struct objalloc *) table->memory, alloc));
498 memset ((PTR) newtable, 0, alloc);
499
500 for (hi = 0; hi < table->size; hi ++)
501 while (table->table[hi])
502 {
503 struct bfd_hash_entry *chain = table->table[hi];
504 struct bfd_hash_entry *chain_end = chain;
505 int index;
506
507 while (chain_end->next && chain_end->next->hash == chain->hash)
508 chain_end = chain_end->next;
509
510 table->table[hi] = chain_end->next;
511 index = chain->hash % newsize;
512 chain_end->next = newtable[index];
513 newtable[index] = chain;
514 }
515 table->table = newtable;
516 table->size = newsize;
517 }
518
519 return hashp;
520 }
521
522 /* Replace an entry in a hash table. */
523
524 void
525 bfd_hash_replace (struct bfd_hash_table *table,
526 struct bfd_hash_entry *old,
527 struct bfd_hash_entry *nw)
528 {
529 unsigned int index;
530 struct bfd_hash_entry **pph;
531
532 index = old->hash % table->size;
533 for (pph = &table->table[index];
534 (*pph) != NULL;
535 pph = &(*pph)->next)
536 {
537 if (*pph == old)
538 {
539 *pph = nw;
540 return;
541 }
542 }
543
544 abort ();
545 }
546
547 /* Allocate space in a hash table. */
548
549 void *
550 bfd_hash_allocate (struct bfd_hash_table *table,
551 unsigned int size)
552 {
553 void * ret;
554
555 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
556 if (ret == NULL && size != 0)
557 bfd_set_error (bfd_error_no_memory);
558 return ret;
559 }
560
561 /* Base method for creating a new hash table entry. */
562
563 struct bfd_hash_entry *
564 bfd_hash_newfunc (struct bfd_hash_entry *entry,
565 struct bfd_hash_table *table,
566 const char *string ATTRIBUTE_UNUSED)
567 {
568 if (entry == NULL)
569 entry = bfd_hash_allocate (table, sizeof (* entry));
570 return entry;
571 }
572
573 /* Traverse a hash table. */
574
575 void
576 bfd_hash_traverse (struct bfd_hash_table *table,
577 bfd_boolean (*func) (struct bfd_hash_entry *, void *),
578 void * info)
579 {
580 unsigned int i;
581
582 for (i = 0; i < table->size; i++)
583 {
584 struct bfd_hash_entry *p;
585
586 for (p = table->table[i]; p != NULL; p = p->next)
587 if (! (*func) (p, info))
588 return;
589 }
590 }
591 \f
592 void
593 bfd_hash_set_default_size (bfd_size_type hash_size)
594 {
595 /* Extend this prime list if you want more granularity of hash table size. */
596 static const bfd_size_type hash_size_primes[] =
597 {
598 251, 509, 1021, 2039, 4051, 8599, 16699, 32749
599 };
600 size_t index;
601
602 /* Work out best prime number near the hash_size. */
603 for (index = 0; index < ARRAY_SIZE (hash_size_primes) - 1; ++index)
604 if (hash_size <= hash_size_primes[index])
605 break;
606
607 bfd_default_hash_table_size = hash_size_primes[index];
608 }
609 \f
610 /* A few different object file formats (a.out, COFF, ELF) use a string
611 table. These functions support adding strings to a string table,
612 returning the byte offset, and writing out the table.
613
614 Possible improvements:
615 + look for strings matching trailing substrings of other strings
616 + better data structures? balanced trees?
617 + look at reducing memory use elsewhere -- maybe if we didn't have
618 to construct the entire symbol table at once, we could get by
619 with smaller amounts of VM? (What effect does that have on the
620 string table reductions?) */
621
622 /* An entry in the strtab hash table. */
623
624 struct strtab_hash_entry
625 {
626 struct bfd_hash_entry root;
627 /* Index in string table. */
628 bfd_size_type index;
629 /* Next string in strtab. */
630 struct strtab_hash_entry *next;
631 };
632
633 /* The strtab hash table. */
634
635 struct bfd_strtab_hash
636 {
637 struct bfd_hash_table table;
638 /* Size of strtab--also next available index. */
639 bfd_size_type size;
640 /* First string in strtab. */
641 struct strtab_hash_entry *first;
642 /* Last string in strtab. */
643 struct strtab_hash_entry *last;
644 /* Whether to precede strings with a two byte length, as in the
645 XCOFF .debug section. */
646 bfd_boolean xcoff;
647 };
648
649 /* Routine to create an entry in a strtab. */
650
651 static struct bfd_hash_entry *
652 strtab_hash_newfunc (struct bfd_hash_entry *entry,
653 struct bfd_hash_table *table,
654 const char *string)
655 {
656 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
657
658 /* Allocate the structure if it has not already been allocated by a
659 subclass. */
660 if (ret == NULL)
661 ret = bfd_hash_allocate (table, sizeof (* ret));
662 if (ret == NULL)
663 return NULL;
664
665 /* Call the allocation method of the superclass. */
666 ret = (struct strtab_hash_entry *)
667 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
668
669 if (ret)
670 {
671 /* Initialize the local fields. */
672 ret->index = (bfd_size_type) -1;
673 ret->next = NULL;
674 }
675
676 return (struct bfd_hash_entry *) ret;
677 }
678
679 /* Look up an entry in an strtab. */
680
681 #define strtab_hash_lookup(t, string, create, copy) \
682 ((struct strtab_hash_entry *) \
683 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
684
685 /* Create a new strtab. */
686
687 struct bfd_strtab_hash *
688 _bfd_stringtab_init (void)
689 {
690 struct bfd_strtab_hash *table;
691 bfd_size_type amt = sizeof (* table);
692
693 table = bfd_malloc (amt);
694 if (table == NULL)
695 return NULL;
696
697 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
698 sizeof (struct strtab_hash_entry)))
699 {
700 free (table);
701 return NULL;
702 }
703
704 table->size = 0;
705 table->first = NULL;
706 table->last = NULL;
707 table->xcoff = FALSE;
708
709 return table;
710 }
711
712 /* Create a new strtab in which the strings are output in the format
713 used in the XCOFF .debug section: a two byte length precedes each
714 string. */
715
716 struct bfd_strtab_hash *
717 _bfd_xcoff_stringtab_init (void)
718 {
719 struct bfd_strtab_hash *ret;
720
721 ret = _bfd_stringtab_init ();
722 if (ret != NULL)
723 ret->xcoff = TRUE;
724 return ret;
725 }
726
727 /* Free a strtab. */
728
729 void
730 _bfd_stringtab_free (struct bfd_strtab_hash *table)
731 {
732 bfd_hash_table_free (&table->table);
733 free (table);
734 }
735
736 /* Get the index of a string in a strtab, adding it if it is not
737 already present. If HASH is FALSE, we don't really use the hash
738 table, and we don't eliminate duplicate strings. */
739
740 bfd_size_type
741 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
742 const char *str,
743 bfd_boolean hash,
744 bfd_boolean copy)
745 {
746 struct strtab_hash_entry *entry;
747
748 if (hash)
749 {
750 entry = strtab_hash_lookup (tab, str, TRUE, copy);
751 if (entry == NULL)
752 return (bfd_size_type) -1;
753 }
754 else
755 {
756 entry = bfd_hash_allocate (&tab->table, sizeof (* entry));
757 if (entry == NULL)
758 return (bfd_size_type) -1;
759 if (! copy)
760 entry->root.string = str;
761 else
762 {
763 char *n;
764
765 n = bfd_hash_allocate (&tab->table, strlen (str) + 1);
766 if (n == NULL)
767 return (bfd_size_type) -1;
768 entry->root.string = n;
769 }
770 entry->index = (bfd_size_type) -1;
771 entry->next = NULL;
772 }
773
774 if (entry->index == (bfd_size_type) -1)
775 {
776 entry->index = tab->size;
777 tab->size += strlen (str) + 1;
778 if (tab->xcoff)
779 {
780 entry->index += 2;
781 tab->size += 2;
782 }
783 if (tab->first == NULL)
784 tab->first = entry;
785 else
786 tab->last->next = entry;
787 tab->last = entry;
788 }
789
790 return entry->index;
791 }
792
793 /* Get the number of bytes in a strtab. */
794
795 bfd_size_type
796 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
797 {
798 return tab->size;
799 }
800
801 /* Write out a strtab. ABFD must already be at the right location in
802 the file. */
803
804 bfd_boolean
805 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
806 {
807 bfd_boolean xcoff;
808 struct strtab_hash_entry *entry;
809
810 xcoff = tab->xcoff;
811
812 for (entry = tab->first; entry != NULL; entry = entry->next)
813 {
814 const char *str;
815 size_t len;
816
817 str = entry->root.string;
818 len = strlen (str) + 1;
819
820 if (xcoff)
821 {
822 bfd_byte buf[2];
823
824 /* The output length includes the null byte. */
825 bfd_put_16 (abfd, (bfd_vma) len, buf);
826 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
827 return FALSE;
828 }
829
830 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
831 return FALSE;
832 }
833
834 return TRUE;
835 }
This page took 0.062338 seconds and 5 git commands to generate.