Revert accidental checkin.
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "bfdlink.h"
28 #include "genlink.h"
29
30 /*
31 SECTION
32 Linker Functions
33
34 @cindex Linker
35 The linker uses three special entry points in the BFD target
36 vector. It is not necessary to write special routines for
37 these entry points when creating a new BFD back end, since
38 generic versions are provided. However, writing them can
39 speed up linking and make it use significantly less runtime
40 memory.
41
42 The first routine creates a hash table used by the other
43 routines. The second routine adds the symbols from an object
44 file to the hash table. The third routine takes all the
45 object files and links them together to create the output
46 file. These routines are designed so that the linker proper
47 does not need to know anything about the symbols in the object
48 files that it is linking. The linker merely arranges the
49 sections as directed by the linker script and lets BFD handle
50 the details of symbols and relocs.
51
52 The second routine and third routines are passed a pointer to
53 a <<struct bfd_link_info>> structure (defined in
54 <<bfdlink.h>>) which holds information relevant to the link,
55 including the linker hash table (which was created by the
56 first routine) and a set of callback functions to the linker
57 proper.
58
59 The generic linker routines are in <<linker.c>>, and use the
60 header file <<genlink.h>>. As of this writing, the only back
61 ends which have implemented versions of these routines are
62 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
63 routines are used as examples throughout this section.
64
65 @menu
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
69 @end menu
70
71 INODE
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
73 SUBSECTION
74 Creating a linker hash table
75
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 The linker routines must create a hash table, which must be
79 derived from <<struct bfd_link_hash_table>> described in
80 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
81 create a derived hash table. This entry point is called using
82 the target vector of the linker output file.
83
84 The <<_bfd_link_hash_table_create>> entry point must allocate
85 and initialize an instance of the desired hash table. If the
86 back end does not require any additional information to be
87 stored with the entries in the hash table, the entry point may
88 simply create a <<struct bfd_link_hash_table>>. Most likely,
89 however, some additional information will be needed.
90
91 For example, with each entry in the hash table the a.out
92 linker keeps the index the symbol has in the final output file
93 (this index number is used so that when doing a relocatable
94 link the symbol index used in the output file can be quickly
95 filled in when copying over a reloc). The a.out linker code
96 defines the required structures and functions for a hash table
97 derived from <<struct bfd_link_hash_table>>. The a.out linker
98 hash table is created by the function
99 <<NAME(aout,link_hash_table_create)>>; it simply allocates
100 space for the hash table, initializes it, and returns a
101 pointer to it.
102
103 When writing the linker routines for a new back end, you will
104 generally not know exactly which fields will be required until
105 you have finished. You should simply create a new hash table
106 which defines no additional fields, and then simply add fields
107 as they become necessary.
108
109 INODE
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
111 SUBSECTION
112 Adding symbols to the hash table
113
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 The linker proper will call the <<_bfd_link_add_symbols>>
117 entry point for each object file or archive which is to be
118 linked (typically these are the files named on the command
119 line, but some may also come from the linker script). The
120 entry point is responsible for examining the file. For an
121 object file, BFD must add any relevant symbol information to
122 the hash table. For an archive, BFD must determine which
123 elements of the archive should be used and adding them to the
124 link.
125
126 The a.out version of this entry point is
127 <<NAME(aout,link_add_symbols)>>.
128
129 @menu
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
133 @end menu
134
135 INODE
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
137 SUBSUBSECTION
138 Differing file formats
139
140 Normally all the files involved in a link will be of the same
141 format, but it is also possible to link together different
142 format object files, and the back end must support that. The
143 <<_bfd_link_add_symbols>> entry point is called via the target
144 vector of the file to be added. This has an important
145 consequence: the function may not assume that the hash table
146 is the type created by the corresponding
147 <<_bfd_link_hash_table_create>> vector. All the
148 <<_bfd_link_add_symbols>> function can assume about the hash
149 table is that it is derived from <<struct
150 bfd_link_hash_table>>.
151
152 Sometimes the <<_bfd_link_add_symbols>> function must store
153 some information in the hash table entry to be used by the
154 <<_bfd_final_link>> function. In such a case the output bfd
155 xvec must be checked to make sure that the hash table was
156 created by an object file of the same format.
157
158 The <<_bfd_final_link>> routine must be prepared to handle a
159 hash entry without any extra information added by the
160 <<_bfd_link_add_symbols>> function. A hash entry without
161 extra information will also occur when the linker script
162 directs the linker to create a symbol. Note that, regardless
163 of how a hash table entry is added, all the fields will be
164 initialized to some sort of null value by the hash table entry
165 initialization function.
166
167 See <<ecoff_link_add_externals>> for an example of how to
168 check the output bfd before saving information (in this
169 case, the ECOFF external symbol debugging information) in a
170 hash table entry.
171
172 INODE
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
174 SUBSUBSECTION
175 Adding symbols from an object file
176
177 When the <<_bfd_link_add_symbols>> routine is passed an object
178 file, it must add all externally visible symbols in that
179 object file to the hash table. The actual work of adding the
180 symbol to the hash table is normally handled by the function
181 <<_bfd_generic_link_add_one_symbol>>. The
182 <<_bfd_link_add_symbols>> routine is responsible for reading
183 all the symbols from the object file and passing the correct
184 information to <<_bfd_generic_link_add_one_symbol>>.
185
186 The <<_bfd_link_add_symbols>> routine should not use
187 <<bfd_canonicalize_symtab>> to read the symbols. The point of
188 providing this routine is to avoid the overhead of converting
189 the symbols into generic <<asymbol>> structures.
190
191 @findex _bfd_generic_link_add_one_symbol
192 <<_bfd_generic_link_add_one_symbol>> handles the details of
193 combining common symbols, warning about multiple definitions,
194 and so forth. It takes arguments which describe the symbol to
195 add, notably symbol flags, a section, and an offset. The
196 symbol flags include such things as <<BSF_WEAK>> or
197 <<BSF_INDIRECT>>. The section is a section in the object
198 file, or something like <<bfd_und_section_ptr>> for an undefined
199 symbol or <<bfd_com_section_ptr>> for a common symbol.
200
201 If the <<_bfd_final_link>> routine is also going to need to
202 read the symbol information, the <<_bfd_link_add_symbols>>
203 routine should save it somewhere attached to the object file
204 BFD. However, the information should only be saved if the
205 <<keep_memory>> field of the <<info>> argument is TRUE, so
206 that the <<-no-keep-memory>> linker switch is effective.
207
208 The a.out function which adds symbols from an object file is
209 <<aout_link_add_object_symbols>>, and most of the interesting
210 work is in <<aout_link_add_symbols>>. The latter saves
211 pointers to the hash tables entries created by
212 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 so that the <<_bfd_final_link>> routine does not have to call
214 the hash table lookup routine to locate the entry.
215
216 INODE
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
218 SUBSUBSECTION
219 Adding symbols from an archive
220
221 When the <<_bfd_link_add_symbols>> routine is passed an
222 archive, it must look through the symbols defined by the
223 archive and decide which elements of the archive should be
224 included in the link. For each such element it must call the
225 <<add_archive_element>> linker callback, and it must add the
226 symbols from the object file to the linker hash table.
227
228 @findex _bfd_generic_link_add_archive_symbols
229 In most cases the work of looking through the symbols in the
230 archive should be done by the
231 <<_bfd_generic_link_add_archive_symbols>> function. This
232 function builds a hash table from the archive symbol table and
233 looks through the list of undefined symbols to see which
234 elements should be included.
235 <<_bfd_generic_link_add_archive_symbols>> is passed a function
236 to call to make the final decision about adding an archive
237 element to the link and to do the actual work of adding the
238 symbols to the linker hash table.
239
240 The function passed to
241 <<_bfd_generic_link_add_archive_symbols>> must read the
242 symbols of the archive element and decide whether the archive
243 element should be included in the link. If the element is to
244 be included, the <<add_archive_element>> linker callback
245 routine must be called with the element as an argument, and
246 the elements symbols must be added to the linker hash table
247 just as though the element had itself been passed to the
248 <<_bfd_link_add_symbols>> function.
249
250 When the a.out <<_bfd_link_add_symbols>> function receives an
251 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
252 passing <<aout_link_check_archive_element>> as the function
253 argument. <<aout_link_check_archive_element>> calls
254 <<aout_link_check_ar_symbols>>. If the latter decides to add
255 the element (an element is only added if it provides a real,
256 non-common, definition for a previously undefined or common
257 symbol) it calls the <<add_archive_element>> callback and then
258 <<aout_link_check_archive_element>> calls
259 <<aout_link_add_symbols>> to actually add the symbols to the
260 linker hash table.
261
262 The ECOFF back end is unusual in that it does not normally
263 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
264 archives already contain a hash table of symbols. The ECOFF
265 back end searches the archive itself to avoid the overhead of
266 creating a new hash table.
267
268 INODE
269 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
270 SUBSECTION
271 Performing the final link
272
273 @cindex _bfd_link_final_link in target vector
274 @cindex target vector (_bfd_final_link)
275 When all the input files have been processed, the linker calls
276 the <<_bfd_final_link>> entry point of the output BFD. This
277 routine is responsible for producing the final output file,
278 which has several aspects. It must relocate the contents of
279 the input sections and copy the data into the output sections.
280 It must build an output symbol table including any local
281 symbols from the input files and the global symbols from the
282 hash table. When producing relocatable output, it must
283 modify the input relocs and write them into the output file.
284 There may also be object format dependent work to be done.
285
286 The linker will also call the <<write_object_contents>> entry
287 point when the BFD is closed. The two entry points must work
288 together in order to produce the correct output file.
289
290 The details of how this works are inevitably dependent upon
291 the specific object file format. The a.out
292 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
293
294 @menu
295 @* Information provided by the linker::
296 @* Relocating the section contents::
297 @* Writing the symbol table::
298 @end menu
299
300 INODE
301 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
302 SUBSUBSECTION
303 Information provided by the linker
304
305 Before the linker calls the <<_bfd_final_link>> entry point,
306 it sets up some data structures for the function to use.
307
308 The <<input_bfds>> field of the <<bfd_link_info>> structure
309 will point to a list of all the input files included in the
310 link. These files are linked through the <<link_next>> field
311 of the <<bfd>> structure.
312
313 Each section in the output file will have a list of
314 <<link_order>> structures attached to the <<map_head.link_order>>
315 field (the <<link_order>> structure is defined in
316 <<bfdlink.h>>). These structures describe how to create the
317 contents of the output section in terms of the contents of
318 various input sections, fill constants, and, eventually, other
319 types of information. They also describe relocs that must be
320 created by the BFD backend, but do not correspond to any input
321 file; this is used to support -Ur, which builds constructors
322 while generating a relocatable object file.
323
324 INODE
325 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
326 SUBSUBSECTION
327 Relocating the section contents
328
329 The <<_bfd_final_link>> function should look through the
330 <<link_order>> structures attached to each section of the
331 output file. Each <<link_order>> structure should either be
332 handled specially, or it should be passed to the function
333 <<_bfd_default_link_order>> which will do the right thing
334 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
335
336 For efficiency, a <<link_order>> of type
337 <<bfd_indirect_link_order>> whose associated section belongs
338 to a BFD of the same format as the output BFD must be handled
339 specially. This type of <<link_order>> describes part of an
340 output section in terms of a section belonging to one of the
341 input files. The <<_bfd_final_link>> function should read the
342 contents of the section and any associated relocs, apply the
343 relocs to the section contents, and write out the modified
344 section contents. If performing a relocatable link, the
345 relocs themselves must also be modified and written out.
346
347 @findex _bfd_relocate_contents
348 @findex _bfd_final_link_relocate
349 The functions <<_bfd_relocate_contents>> and
350 <<_bfd_final_link_relocate>> provide some general support for
351 performing the actual relocations, notably overflow checking.
352 Their arguments include information about the symbol the
353 relocation is against and a <<reloc_howto_type>> argument
354 which describes the relocation to perform. These functions
355 are defined in <<reloc.c>>.
356
357 The a.out function which handles reading, relocating, and
358 writing section contents is <<aout_link_input_section>>. The
359 actual relocation is done in <<aout_link_input_section_std>>
360 and <<aout_link_input_section_ext>>.
361
362 INODE
363 Writing the symbol table, , Relocating the section contents, Performing the Final Link
364 SUBSUBSECTION
365 Writing the symbol table
366
367 The <<_bfd_final_link>> function must gather all the symbols
368 in the input files and write them out. It must also write out
369 all the symbols in the global hash table. This must be
370 controlled by the <<strip>> and <<discard>> fields of the
371 <<bfd_link_info>> structure.
372
373 The local symbols of the input files will not have been
374 entered into the linker hash table. The <<_bfd_final_link>>
375 routine must consider each input file and include the symbols
376 in the output file. It may be convenient to do this when
377 looking through the <<link_order>> structures, or it may be
378 done by stepping through the <<input_bfds>> list.
379
380 The <<_bfd_final_link>> routine must also traverse the global
381 hash table to gather all the externally visible symbols. It
382 is possible that most of the externally visible symbols may be
383 written out when considering the symbols of each input file,
384 but it is still necessary to traverse the hash table since the
385 linker script may have defined some symbols that are not in
386 any of the input files.
387
388 The <<strip>> field of the <<bfd_link_info>> structure
389 controls which symbols are written out. The possible values
390 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
391 then the <<keep_hash>> field of the <<bfd_link_info>>
392 structure is a hash table of symbols to keep; each symbol
393 should be looked up in this hash table, and only symbols which
394 are present should be included in the output file.
395
396 If the <<strip>> field of the <<bfd_link_info>> structure
397 permits local symbols to be written out, the <<discard>> field
398 is used to further controls which local symbols are included
399 in the output file. If the value is <<discard_l>>, then all
400 local symbols which begin with a certain prefix are discarded;
401 this is controlled by the <<bfd_is_local_label_name>> entry point.
402
403 The a.out backend handles symbols by calling
404 <<aout_link_write_symbols>> on each input BFD and then
405 traversing the global hash table with the function
406 <<aout_link_write_other_symbol>>. It builds a string table
407 while writing out the symbols, which is written to the output
408 file at the end of <<NAME(aout,final_link)>>.
409 */
410
411 static bfd_boolean generic_link_add_object_symbols
412 (bfd *, struct bfd_link_info *, bfd_boolean collect);
413 static bfd_boolean generic_link_add_symbols
414 (bfd *, struct bfd_link_info *, bfd_boolean);
415 static bfd_boolean generic_link_check_archive_element_no_collect
416 (bfd *, struct bfd_link_info *, bfd_boolean *);
417 static bfd_boolean generic_link_check_archive_element_collect
418 (bfd *, struct bfd_link_info *, bfd_boolean *);
419 static bfd_boolean generic_link_check_archive_element
420 (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
421 static bfd_boolean generic_link_add_symbol_list
422 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
423 bfd_boolean);
424 static bfd_boolean generic_add_output_symbol
425 (bfd *, size_t *psymalloc, asymbol *);
426 static bfd_boolean default_data_link_order
427 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
428 static bfd_boolean default_indirect_link_order
429 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
430 bfd_boolean);
431
432 /* The link hash table structure is defined in bfdlink.h. It provides
433 a base hash table which the backend specific hash tables are built
434 upon. */
435
436 /* Routine to create an entry in the link hash table. */
437
438 struct bfd_hash_entry *
439 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
440 struct bfd_hash_table *table,
441 const char *string)
442 {
443 /* Allocate the structure if it has not already been allocated by a
444 subclass. */
445 if (entry == NULL)
446 {
447 entry = (struct bfd_hash_entry *)
448 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
449 if (entry == NULL)
450 return entry;
451 }
452
453 /* Call the allocation method of the superclass. */
454 entry = bfd_hash_newfunc (entry, table, string);
455 if (entry)
456 {
457 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
458
459 /* Initialize the local fields. */
460 h->type = bfd_link_hash_new;
461 memset (&h->u.undef.next, 0,
462 (sizeof (struct bfd_link_hash_entry)
463 - offsetof (struct bfd_link_hash_entry, u.undef.next)));
464 }
465
466 return entry;
467 }
468
469 /* Initialize a link hash table. The BFD argument is the one
470 responsible for creating this table. */
471
472 bfd_boolean
473 _bfd_link_hash_table_init
474 (struct bfd_link_hash_table *table,
475 bfd *abfd ATTRIBUTE_UNUSED,
476 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
477 struct bfd_hash_table *,
478 const char *),
479 unsigned int entsize)
480 {
481 table->undefs = NULL;
482 table->undefs_tail = NULL;
483 table->type = bfd_link_generic_hash_table;
484
485 return bfd_hash_table_init (&table->table, newfunc, entsize);
486 }
487
488 /* Look up a symbol in a link hash table. If follow is TRUE, we
489 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
490 the real symbol. */
491
492 struct bfd_link_hash_entry *
493 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
494 const char *string,
495 bfd_boolean create,
496 bfd_boolean copy,
497 bfd_boolean follow)
498 {
499 struct bfd_link_hash_entry *ret;
500
501 ret = ((struct bfd_link_hash_entry *)
502 bfd_hash_lookup (&table->table, string, create, copy));
503
504 if (follow && ret != NULL)
505 {
506 while (ret->type == bfd_link_hash_indirect
507 || ret->type == bfd_link_hash_warning)
508 ret = ret->u.i.link;
509 }
510
511 return ret;
512 }
513
514 /* Look up a symbol in the main linker hash table if the symbol might
515 be wrapped. This should only be used for references to an
516 undefined symbol, not for definitions of a symbol. */
517
518 struct bfd_link_hash_entry *
519 bfd_wrapped_link_hash_lookup (bfd *abfd,
520 struct bfd_link_info *info,
521 const char *string,
522 bfd_boolean create,
523 bfd_boolean copy,
524 bfd_boolean follow)
525 {
526 bfd_size_type amt;
527
528 if (info->wrap_hash != NULL)
529 {
530 const char *l;
531 char prefix = '\0';
532
533 l = string;
534 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
535 {
536 prefix = *l;
537 ++l;
538 }
539
540 #undef WRAP
541 #define WRAP "__wrap_"
542
543 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
544 {
545 char *n;
546 struct bfd_link_hash_entry *h;
547
548 /* This symbol is being wrapped. We want to replace all
549 references to SYM with references to __wrap_SYM. */
550
551 amt = strlen (l) + sizeof WRAP + 1;
552 n = (char *) bfd_malloc (amt);
553 if (n == NULL)
554 return NULL;
555
556 n[0] = prefix;
557 n[1] = '\0';
558 strcat (n, WRAP);
559 strcat (n, l);
560 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
561 free (n);
562 return h;
563 }
564
565 #undef WRAP
566
567 #undef REAL
568 #define REAL "__real_"
569
570 if (*l == '_'
571 && CONST_STRNEQ (l, REAL)
572 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
573 FALSE, FALSE) != NULL)
574 {
575 char *n;
576 struct bfd_link_hash_entry *h;
577
578 /* This is a reference to __real_SYM, where SYM is being
579 wrapped. We want to replace all references to __real_SYM
580 with references to SYM. */
581
582 amt = strlen (l + sizeof REAL - 1) + 2;
583 n = (char *) bfd_malloc (amt);
584 if (n == NULL)
585 return NULL;
586
587 n[0] = prefix;
588 n[1] = '\0';
589 strcat (n, l + sizeof REAL - 1);
590 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
591 free (n);
592 return h;
593 }
594
595 #undef REAL
596 }
597
598 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
599 }
600
601 /* Traverse a generic link hash table. The only reason this is not a
602 macro is to do better type checking. This code presumes that an
603 argument passed as a struct bfd_hash_entry * may be caught as a
604 struct bfd_link_hash_entry * with no explicit cast required on the
605 call. */
606
607 void
608 bfd_link_hash_traverse
609 (struct bfd_link_hash_table *table,
610 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
611 void *info)
612 {
613 bfd_hash_traverse (&table->table,
614 (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
615 info);
616 }
617
618 /* Add a symbol to the linker hash table undefs list. */
619
620 void
621 bfd_link_add_undef (struct bfd_link_hash_table *table,
622 struct bfd_link_hash_entry *h)
623 {
624 BFD_ASSERT (h->u.undef.next == NULL);
625 if (table->undefs_tail != NULL)
626 table->undefs_tail->u.undef.next = h;
627 if (table->undefs == NULL)
628 table->undefs = h;
629 table->undefs_tail = h;
630 }
631
632 /* The undefs list was designed so that in normal use we don't need to
633 remove entries. However, if symbols on the list are changed from
634 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
635 bfd_link_hash_new for some reason, then they must be removed from the
636 list. Failure to do so might result in the linker attempting to add
637 the symbol to the list again at a later stage. */
638
639 void
640 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
641 {
642 struct bfd_link_hash_entry **pun;
643
644 pun = &table->undefs;
645 while (*pun != NULL)
646 {
647 struct bfd_link_hash_entry *h = *pun;
648
649 if (h->type == bfd_link_hash_new
650 || h->type == bfd_link_hash_undefweak)
651 {
652 *pun = h->u.undef.next;
653 h->u.undef.next = NULL;
654 if (h == table->undefs_tail)
655 {
656 if (pun == &table->undefs)
657 table->undefs_tail = NULL;
658 else
659 /* pun points at an u.undef.next field. Go back to
660 the start of the link_hash_entry. */
661 table->undefs_tail = (struct bfd_link_hash_entry *)
662 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
663 break;
664 }
665 }
666 else
667 pun = &h->u.undef.next;
668 }
669 }
670 \f
671 /* Routine to create an entry in a generic link hash table. */
672
673 struct bfd_hash_entry *
674 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
675 struct bfd_hash_table *table,
676 const char *string)
677 {
678 /* Allocate the structure if it has not already been allocated by a
679 subclass. */
680 if (entry == NULL)
681 {
682 entry = (struct bfd_hash_entry *)
683 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
684 if (entry == NULL)
685 return entry;
686 }
687
688 /* Call the allocation method of the superclass. */
689 entry = _bfd_link_hash_newfunc (entry, table, string);
690 if (entry)
691 {
692 struct generic_link_hash_entry *ret;
693
694 /* Set local fields. */
695 ret = (struct generic_link_hash_entry *) entry;
696 ret->written = FALSE;
697 ret->sym = NULL;
698 }
699
700 return entry;
701 }
702
703 /* Create a generic link hash table. */
704
705 struct bfd_link_hash_table *
706 _bfd_generic_link_hash_table_create (bfd *abfd)
707 {
708 struct generic_link_hash_table *ret;
709 bfd_size_type amt = sizeof (struct generic_link_hash_table);
710
711 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
712 if (ret == NULL)
713 return NULL;
714 if (! _bfd_link_hash_table_init (&ret->root, abfd,
715 _bfd_generic_link_hash_newfunc,
716 sizeof (struct generic_link_hash_entry)))
717 {
718 free (ret);
719 return NULL;
720 }
721 return &ret->root;
722 }
723
724 void
725 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
726 {
727 struct generic_link_hash_table *ret
728 = (struct generic_link_hash_table *) hash;
729
730 bfd_hash_table_free (&ret->root.table);
731 free (ret);
732 }
733
734 /* Grab the symbols for an object file when doing a generic link. We
735 store the symbols in the outsymbols field. We need to keep them
736 around for the entire link to ensure that we only read them once.
737 If we read them multiple times, we might wind up with relocs and
738 the hash table pointing to different instances of the symbol
739 structure. */
740
741 bfd_boolean
742 bfd_generic_link_read_symbols (bfd *abfd)
743 {
744 if (bfd_get_outsymbols (abfd) == NULL)
745 {
746 long symsize;
747 long symcount;
748
749 symsize = bfd_get_symtab_upper_bound (abfd);
750 if (symsize < 0)
751 return FALSE;
752 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
753 symsize);
754 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
755 return FALSE;
756 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
757 if (symcount < 0)
758 return FALSE;
759 bfd_get_symcount (abfd) = symcount;
760 }
761
762 return TRUE;
763 }
764 \f
765 /* Generic function to add symbols to from an object file to the
766 global hash table. This version does not automatically collect
767 constructors by name. */
768
769 bfd_boolean
770 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
771 {
772 return generic_link_add_symbols (abfd, info, FALSE);
773 }
774
775 /* Generic function to add symbols from an object file to the global
776 hash table. This version automatically collects constructors by
777 name, as the collect2 program does. It should be used for any
778 target which does not provide some other mechanism for setting up
779 constructors and destructors; these are approximately those targets
780 for which gcc uses collect2 and do not support stabs. */
781
782 bfd_boolean
783 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
784 {
785 return generic_link_add_symbols (abfd, info, TRUE);
786 }
787
788 /* Indicate that we are only retrieving symbol values from this
789 section. We want the symbols to act as though the values in the
790 file are absolute. */
791
792 void
793 _bfd_generic_link_just_syms (asection *sec,
794 struct bfd_link_info *info ATTRIBUTE_UNUSED)
795 {
796 sec->output_section = bfd_abs_section_ptr;
797 sec->output_offset = sec->vma;
798 }
799
800 /* Add symbols from an object file to the global hash table. */
801
802 static bfd_boolean
803 generic_link_add_symbols (bfd *abfd,
804 struct bfd_link_info *info,
805 bfd_boolean collect)
806 {
807 bfd_boolean ret;
808
809 switch (bfd_get_format (abfd))
810 {
811 case bfd_object:
812 ret = generic_link_add_object_symbols (abfd, info, collect);
813 break;
814 case bfd_archive:
815 ret = (_bfd_generic_link_add_archive_symbols
816 (abfd, info,
817 (collect
818 ? generic_link_check_archive_element_collect
819 : generic_link_check_archive_element_no_collect)));
820 break;
821 default:
822 bfd_set_error (bfd_error_wrong_format);
823 ret = FALSE;
824 }
825
826 return ret;
827 }
828
829 /* Add symbols from an object file to the global hash table. */
830
831 static bfd_boolean
832 generic_link_add_object_symbols (bfd *abfd,
833 struct bfd_link_info *info,
834 bfd_boolean collect)
835 {
836 bfd_size_type symcount;
837 struct bfd_symbol **outsyms;
838
839 if (!bfd_generic_link_read_symbols (abfd))
840 return FALSE;
841 symcount = _bfd_generic_link_get_symcount (abfd);
842 outsyms = _bfd_generic_link_get_symbols (abfd);
843 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
844 }
845 \f
846 /* We build a hash table of all symbols defined in an archive. */
847
848 /* An archive symbol may be defined by multiple archive elements.
849 This linked list is used to hold the elements. */
850
851 struct archive_list
852 {
853 struct archive_list *next;
854 unsigned int indx;
855 };
856
857 /* An entry in an archive hash table. */
858
859 struct archive_hash_entry
860 {
861 struct bfd_hash_entry root;
862 /* Where the symbol is defined. */
863 struct archive_list *defs;
864 };
865
866 /* An archive hash table itself. */
867
868 struct archive_hash_table
869 {
870 struct bfd_hash_table table;
871 };
872
873 /* Create a new entry for an archive hash table. */
874
875 static struct bfd_hash_entry *
876 archive_hash_newfunc (struct bfd_hash_entry *entry,
877 struct bfd_hash_table *table,
878 const char *string)
879 {
880 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
881
882 /* Allocate the structure if it has not already been allocated by a
883 subclass. */
884 if (ret == NULL)
885 ret = (struct archive_hash_entry *)
886 bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
887 if (ret == NULL)
888 return NULL;
889
890 /* Call the allocation method of the superclass. */
891 ret = ((struct archive_hash_entry *)
892 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
893
894 if (ret)
895 {
896 /* Initialize the local fields. */
897 ret->defs = NULL;
898 }
899
900 return &ret->root;
901 }
902
903 /* Initialize an archive hash table. */
904
905 static bfd_boolean
906 archive_hash_table_init
907 (struct archive_hash_table *table,
908 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
909 struct bfd_hash_table *,
910 const char *),
911 unsigned int entsize)
912 {
913 return bfd_hash_table_init (&table->table, newfunc, entsize);
914 }
915
916 /* Look up an entry in an archive hash table. */
917
918 #define archive_hash_lookup(t, string, create, copy) \
919 ((struct archive_hash_entry *) \
920 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
921
922 /* Allocate space in an archive hash table. */
923
924 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
925
926 /* Free an archive hash table. */
927
928 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
929
930 /* Generic function to add symbols from an archive file to the global
931 hash file. This function presumes that the archive symbol table
932 has already been read in (this is normally done by the
933 bfd_check_format entry point). It looks through the undefined and
934 common symbols and searches the archive symbol table for them. If
935 it finds an entry, it includes the associated object file in the
936 link.
937
938 The old linker looked through the archive symbol table for
939 undefined symbols. We do it the other way around, looking through
940 undefined symbols for symbols defined in the archive. The
941 advantage of the newer scheme is that we only have to look through
942 the list of undefined symbols once, whereas the old method had to
943 re-search the symbol table each time a new object file was added.
944
945 The CHECKFN argument is used to see if an object file should be
946 included. CHECKFN should set *PNEEDED to TRUE if the object file
947 should be included, and must also call the bfd_link_info
948 add_archive_element callback function and handle adding the symbols
949 to the global hash table. CHECKFN should only return FALSE if some
950 sort of error occurs.
951
952 For some formats, such as a.out, it is possible to look through an
953 object file but not actually include it in the link. The
954 archive_pass field in a BFD is used to avoid checking the symbols
955 of an object files too many times. When an object is included in
956 the link, archive_pass is set to -1. If an object is scanned but
957 not included, archive_pass is set to the pass number. The pass
958 number is incremented each time a new object file is included. The
959 pass number is used because when a new object file is included it
960 may create new undefined symbols which cause a previously examined
961 object file to be included. */
962
963 bfd_boolean
964 _bfd_generic_link_add_archive_symbols
965 (bfd *abfd,
966 struct bfd_link_info *info,
967 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
968 {
969 carsym *arsyms;
970 carsym *arsym_end;
971 register carsym *arsym;
972 int pass;
973 struct archive_hash_table arsym_hash;
974 unsigned int indx;
975 struct bfd_link_hash_entry **pundef;
976
977 if (! bfd_has_map (abfd))
978 {
979 /* An empty archive is a special case. */
980 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
981 return TRUE;
982 bfd_set_error (bfd_error_no_armap);
983 return FALSE;
984 }
985
986 arsyms = bfd_ardata (abfd)->symdefs;
987 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
988
989 /* In order to quickly determine whether an symbol is defined in
990 this archive, we build a hash table of the symbols. */
991 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
992 sizeof (struct archive_hash_entry)))
993 return FALSE;
994 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
995 {
996 struct archive_hash_entry *arh;
997 struct archive_list *l, **pp;
998
999 arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
1000 if (arh == NULL)
1001 goto error_return;
1002 l = ((struct archive_list *)
1003 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1004 if (l == NULL)
1005 goto error_return;
1006 l->indx = indx;
1007 for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1008 ;
1009 *pp = l;
1010 l->next = NULL;
1011 }
1012
1013 /* The archive_pass field in the archive itself is used to
1014 initialize PASS, sine we may search the same archive multiple
1015 times. */
1016 pass = abfd->archive_pass + 1;
1017
1018 /* New undefined symbols are added to the end of the list, so we
1019 only need to look through it once. */
1020 pundef = &info->hash->undefs;
1021 while (*pundef != NULL)
1022 {
1023 struct bfd_link_hash_entry *h;
1024 struct archive_hash_entry *arh;
1025 struct archive_list *l;
1026
1027 h = *pundef;
1028
1029 /* When a symbol is defined, it is not necessarily removed from
1030 the list. */
1031 if (h->type != bfd_link_hash_undefined
1032 && h->type != bfd_link_hash_common)
1033 {
1034 /* Remove this entry from the list, for general cleanliness
1035 and because we are going to look through the list again
1036 if we search any more libraries. We can't remove the
1037 entry if it is the tail, because that would lose any
1038 entries we add to the list later on (it would also cause
1039 us to lose track of whether the symbol has been
1040 referenced). */
1041 if (*pundef != info->hash->undefs_tail)
1042 *pundef = (*pundef)->u.undef.next;
1043 else
1044 pundef = &(*pundef)->u.undef.next;
1045 continue;
1046 }
1047
1048 /* Look for this symbol in the archive symbol map. */
1049 arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1050 if (arh == NULL)
1051 {
1052 /* If we haven't found the exact symbol we're looking for,
1053 let's look for its import thunk */
1054 if (info->pei386_auto_import)
1055 {
1056 bfd_size_type amt = strlen (h->root.string) + 10;
1057 char *buf = (char *) bfd_malloc (amt);
1058 if (buf == NULL)
1059 return FALSE;
1060
1061 sprintf (buf, "__imp_%s", h->root.string);
1062 arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1063 free(buf);
1064 }
1065 if (arh == NULL)
1066 {
1067 pundef = &(*pundef)->u.undef.next;
1068 continue;
1069 }
1070 }
1071 /* Look at all the objects which define this symbol. */
1072 for (l = arh->defs; l != NULL; l = l->next)
1073 {
1074 bfd *element;
1075 bfd_boolean needed;
1076
1077 /* If the symbol has gotten defined along the way, quit. */
1078 if (h->type != bfd_link_hash_undefined
1079 && h->type != bfd_link_hash_common)
1080 break;
1081
1082 element = bfd_get_elt_at_index (abfd, l->indx);
1083 if (element == NULL)
1084 goto error_return;
1085
1086 /* If we've already included this element, or if we've
1087 already checked it on this pass, continue. */
1088 if (element->archive_pass == -1
1089 || element->archive_pass == pass)
1090 continue;
1091
1092 /* If we can't figure this element out, just ignore it. */
1093 if (! bfd_check_format (element, bfd_object))
1094 {
1095 element->archive_pass = -1;
1096 continue;
1097 }
1098
1099 /* CHECKFN will see if this element should be included, and
1100 go ahead and include it if appropriate. */
1101 if (! (*checkfn) (element, info, &needed))
1102 goto error_return;
1103
1104 if (! needed)
1105 element->archive_pass = pass;
1106 else
1107 {
1108 element->archive_pass = -1;
1109
1110 /* Increment the pass count to show that we may need to
1111 recheck object files which were already checked. */
1112 ++pass;
1113 }
1114 }
1115
1116 pundef = &(*pundef)->u.undef.next;
1117 }
1118
1119 archive_hash_table_free (&arsym_hash);
1120
1121 /* Save PASS in case we are called again. */
1122 abfd->archive_pass = pass;
1123
1124 return TRUE;
1125
1126 error_return:
1127 archive_hash_table_free (&arsym_hash);
1128 return FALSE;
1129 }
1130 \f
1131 /* See if we should include an archive element. This version is used
1132 when we do not want to automatically collect constructors based on
1133 the symbol name, presumably because we have some other mechanism
1134 for finding them. */
1135
1136 static bfd_boolean
1137 generic_link_check_archive_element_no_collect (
1138 bfd *abfd,
1139 struct bfd_link_info *info,
1140 bfd_boolean *pneeded)
1141 {
1142 return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1143 }
1144
1145 /* See if we should include an archive element. This version is used
1146 when we want to automatically collect constructors based on the
1147 symbol name, as collect2 does. */
1148
1149 static bfd_boolean
1150 generic_link_check_archive_element_collect (bfd *abfd,
1151 struct bfd_link_info *info,
1152 bfd_boolean *pneeded)
1153 {
1154 return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1155 }
1156
1157 /* See if we should include an archive element. Optionally collect
1158 constructors. */
1159
1160 static bfd_boolean
1161 generic_link_check_archive_element (bfd *abfd,
1162 struct bfd_link_info *info,
1163 bfd_boolean *pneeded,
1164 bfd_boolean collect)
1165 {
1166 asymbol **pp, **ppend;
1167
1168 *pneeded = FALSE;
1169
1170 if (!bfd_generic_link_read_symbols (abfd))
1171 return FALSE;
1172
1173 pp = _bfd_generic_link_get_symbols (abfd);
1174 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1175 for (; pp < ppend; pp++)
1176 {
1177 asymbol *p;
1178 struct bfd_link_hash_entry *h;
1179
1180 p = *pp;
1181
1182 /* We are only interested in globally visible symbols. */
1183 if (! bfd_is_com_section (p->section)
1184 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1185 continue;
1186
1187 /* We are only interested if we know something about this
1188 symbol, and it is undefined or common. An undefined weak
1189 symbol (type bfd_link_hash_undefweak) is not considered to be
1190 a reference when pulling files out of an archive. See the
1191 SVR4 ABI, p. 4-27. */
1192 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1193 FALSE, TRUE);
1194 if (h == NULL
1195 || (h->type != bfd_link_hash_undefined
1196 && h->type != bfd_link_hash_common))
1197 continue;
1198
1199 /* P is a symbol we are looking for. */
1200
1201 if (! bfd_is_com_section (p->section))
1202 {
1203 bfd_size_type symcount;
1204 asymbol **symbols;
1205
1206 /* This object file defines this symbol, so pull it in. */
1207 if (! (*info->callbacks->add_archive_element) (info, abfd,
1208 bfd_asymbol_name (p)))
1209 return FALSE;
1210 symcount = _bfd_generic_link_get_symcount (abfd);
1211 symbols = _bfd_generic_link_get_symbols (abfd);
1212 if (! generic_link_add_symbol_list (abfd, info, symcount,
1213 symbols, collect))
1214 return FALSE;
1215 *pneeded = TRUE;
1216 return TRUE;
1217 }
1218
1219 /* P is a common symbol. */
1220
1221 if (h->type == bfd_link_hash_undefined)
1222 {
1223 bfd *symbfd;
1224 bfd_vma size;
1225 unsigned int power;
1226
1227 symbfd = h->u.undef.abfd;
1228 if (symbfd == NULL)
1229 {
1230 /* This symbol was created as undefined from outside
1231 BFD. We assume that we should link in the object
1232 file. This is for the -u option in the linker. */
1233 if (! (*info->callbacks->add_archive_element)
1234 (info, abfd, bfd_asymbol_name (p)))
1235 return FALSE;
1236 *pneeded = TRUE;
1237 return TRUE;
1238 }
1239
1240 /* Turn the symbol into a common symbol but do not link in
1241 the object file. This is how a.out works. Object
1242 formats that require different semantics must implement
1243 this function differently. This symbol is already on the
1244 undefs list. We add the section to a common section
1245 attached to symbfd to ensure that it is in a BFD which
1246 will be linked in. */
1247 h->type = bfd_link_hash_common;
1248 h->u.c.p = (struct bfd_link_hash_common_entry *)
1249 bfd_hash_allocate (&info->hash->table,
1250 sizeof (struct bfd_link_hash_common_entry));
1251 if (h->u.c.p == NULL)
1252 return FALSE;
1253
1254 size = bfd_asymbol_value (p);
1255 h->u.c.size = size;
1256
1257 power = bfd_log2 (size);
1258 if (power > 4)
1259 power = 4;
1260 h->u.c.p->alignment_power = power;
1261
1262 if (p->section == bfd_com_section_ptr)
1263 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1264 else
1265 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1266 p->section->name);
1267 h->u.c.p->section->flags = SEC_ALLOC;
1268 }
1269 else
1270 {
1271 /* Adjust the size of the common symbol if necessary. This
1272 is how a.out works. Object formats that require
1273 different semantics must implement this function
1274 differently. */
1275 if (bfd_asymbol_value (p) > h->u.c.size)
1276 h->u.c.size = bfd_asymbol_value (p);
1277 }
1278 }
1279
1280 /* This archive element is not needed. */
1281 return TRUE;
1282 }
1283
1284 /* Add the symbols from an object file to the global hash table. ABFD
1285 is the object file. INFO is the linker information. SYMBOL_COUNT
1286 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1287 is TRUE if constructors should be automatically collected by name
1288 as is done by collect2. */
1289
1290 static bfd_boolean
1291 generic_link_add_symbol_list (bfd *abfd,
1292 struct bfd_link_info *info,
1293 bfd_size_type symbol_count,
1294 asymbol **symbols,
1295 bfd_boolean collect)
1296 {
1297 asymbol **pp, **ppend;
1298
1299 pp = symbols;
1300 ppend = symbols + symbol_count;
1301 for (; pp < ppend; pp++)
1302 {
1303 asymbol *p;
1304
1305 p = *pp;
1306
1307 if ((p->flags & (BSF_INDIRECT
1308 | BSF_WARNING
1309 | BSF_GLOBAL
1310 | BSF_CONSTRUCTOR
1311 | BSF_WEAK)) != 0
1312 || bfd_is_und_section (bfd_get_section (p))
1313 || bfd_is_com_section (bfd_get_section (p))
1314 || bfd_is_ind_section (bfd_get_section (p)))
1315 {
1316 const char *name;
1317 const char *string;
1318 struct generic_link_hash_entry *h;
1319 struct bfd_link_hash_entry *bh;
1320
1321 string = name = bfd_asymbol_name (p);
1322 if (((p->flags & BSF_INDIRECT) != 0
1323 || bfd_is_ind_section (p->section))
1324 && pp + 1 < ppend)
1325 {
1326 pp++;
1327 string = bfd_asymbol_name (*pp);
1328 }
1329 else if ((p->flags & BSF_WARNING) != 0
1330 && pp + 1 < ppend)
1331 {
1332 /* The name of P is actually the warning string, and the
1333 next symbol is the one to warn about. */
1334 pp++;
1335 name = bfd_asymbol_name (*pp);
1336 }
1337
1338 bh = NULL;
1339 if (! (_bfd_generic_link_add_one_symbol
1340 (info, abfd, name, p->flags, bfd_get_section (p),
1341 p->value, string, FALSE, collect, &bh)))
1342 return FALSE;
1343 h = (struct generic_link_hash_entry *) bh;
1344
1345 /* If this is a constructor symbol, and the linker didn't do
1346 anything with it, then we want to just pass the symbol
1347 through to the output file. This will happen when
1348 linking with -r. */
1349 if ((p->flags & BSF_CONSTRUCTOR) != 0
1350 && (h == NULL || h->root.type == bfd_link_hash_new))
1351 {
1352 p->udata.p = NULL;
1353 continue;
1354 }
1355
1356 /* Save the BFD symbol so that we don't lose any backend
1357 specific information that may be attached to it. We only
1358 want this one if it gives more information than the
1359 existing one; we don't want to replace a defined symbol
1360 with an undefined one. This routine may be called with a
1361 hash table other than the generic hash table, so we only
1362 do this if we are certain that the hash table is a
1363 generic one. */
1364 if (info->output_bfd->xvec == abfd->xvec)
1365 {
1366 if (h->sym == NULL
1367 || (! bfd_is_und_section (bfd_get_section (p))
1368 && (! bfd_is_com_section (bfd_get_section (p))
1369 || bfd_is_und_section (bfd_get_section (h->sym)))))
1370 {
1371 h->sym = p;
1372 /* BSF_OLD_COMMON is a hack to support COFF reloc
1373 reading, and it should go away when the COFF
1374 linker is switched to the new version. */
1375 if (bfd_is_com_section (bfd_get_section (p)))
1376 p->flags |= BSF_OLD_COMMON;
1377 }
1378 }
1379
1380 /* Store a back pointer from the symbol to the hash
1381 table entry for the benefit of relaxation code until
1382 it gets rewritten to not use asymbol structures.
1383 Setting this is also used to check whether these
1384 symbols were set up by the generic linker. */
1385 p->udata.p = h;
1386 }
1387 }
1388
1389 return TRUE;
1390 }
1391 \f
1392 /* We use a state table to deal with adding symbols from an object
1393 file. The first index into the state table describes the symbol
1394 from the object file. The second index into the state table is the
1395 type of the symbol in the hash table. */
1396
1397 /* The symbol from the object file is turned into one of these row
1398 values. */
1399
1400 enum link_row
1401 {
1402 UNDEF_ROW, /* Undefined. */
1403 UNDEFW_ROW, /* Weak undefined. */
1404 DEF_ROW, /* Defined. */
1405 DEFW_ROW, /* Weak defined. */
1406 COMMON_ROW, /* Common. */
1407 INDR_ROW, /* Indirect. */
1408 WARN_ROW, /* Warning. */
1409 SET_ROW /* Member of set. */
1410 };
1411
1412 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1413 #undef FAIL
1414
1415 /* The actions to take in the state table. */
1416
1417 enum link_action
1418 {
1419 FAIL, /* Abort. */
1420 UND, /* Mark symbol undefined. */
1421 WEAK, /* Mark symbol weak undefined. */
1422 DEF, /* Mark symbol defined. */
1423 DEFW, /* Mark symbol weak defined. */
1424 COM, /* Mark symbol common. */
1425 REF, /* Mark defined symbol referenced. */
1426 CREF, /* Possibly warn about common reference to defined symbol. */
1427 CDEF, /* Define existing common symbol. */
1428 NOACT, /* No action. */
1429 BIG, /* Mark symbol common using largest size. */
1430 MDEF, /* Multiple definition error. */
1431 MIND, /* Multiple indirect symbols. */
1432 IND, /* Make indirect symbol. */
1433 CIND, /* Make indirect symbol from existing common symbol. */
1434 SET, /* Add value to set. */
1435 MWARN, /* Make warning symbol. */
1436 WARN, /* Issue warning. */
1437 CWARN, /* Warn if referenced, else MWARN. */
1438 CYCLE, /* Repeat with symbol pointed to. */
1439 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1440 WARNC /* Issue warning and then CYCLE. */
1441 };
1442
1443 /* The state table itself. The first index is a link_row and the
1444 second index is a bfd_link_hash_type. */
1445
1446 static const enum link_action link_action[8][8] =
1447 {
1448 /* current\prev new undef undefw def defw com indr warn */
1449 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1450 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1451 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1452 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1453 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1454 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1455 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, NOACT },
1456 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1457 };
1458
1459 /* Most of the entries in the LINK_ACTION table are straightforward,
1460 but a few are somewhat subtle.
1461
1462 A reference to an indirect symbol (UNDEF_ROW/indr or
1463 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1464 symbol and to the symbol the indirect symbol points to.
1465
1466 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1467 causes the warning to be issued.
1468
1469 A common definition of an indirect symbol (COMMON_ROW/indr) is
1470 treated as a multiple definition error. Likewise for an indirect
1471 definition of a common symbol (INDR_ROW/com).
1472
1473 An indirect definition of a warning (INDR_ROW/warn) does not cause
1474 the warning to be issued.
1475
1476 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1477 warning is created for the symbol the indirect symbol points to.
1478
1479 Adding an entry to a set does not count as a reference to a set,
1480 and no warning is issued (SET_ROW/warn). */
1481
1482 /* Return the BFD in which a hash entry has been defined, if known. */
1483
1484 static bfd *
1485 hash_entry_bfd (struct bfd_link_hash_entry *h)
1486 {
1487 while (h->type == bfd_link_hash_warning)
1488 h = h->u.i.link;
1489 switch (h->type)
1490 {
1491 default:
1492 return NULL;
1493 case bfd_link_hash_undefined:
1494 case bfd_link_hash_undefweak:
1495 return h->u.undef.abfd;
1496 case bfd_link_hash_defined:
1497 case bfd_link_hash_defweak:
1498 return h->u.def.section->owner;
1499 case bfd_link_hash_common:
1500 return h->u.c.p->section->owner;
1501 }
1502 /*NOTREACHED*/
1503 }
1504
1505 /* Add a symbol to the global hash table.
1506 ABFD is the BFD the symbol comes from.
1507 NAME is the name of the symbol.
1508 FLAGS is the BSF_* bits associated with the symbol.
1509 SECTION is the section in which the symbol is defined; this may be
1510 bfd_und_section_ptr or bfd_com_section_ptr.
1511 VALUE is the value of the symbol, relative to the section.
1512 STRING is used for either an indirect symbol, in which case it is
1513 the name of the symbol to indirect to, or a warning symbol, in
1514 which case it is the warning string.
1515 COPY is TRUE if NAME or STRING must be copied into locally
1516 allocated memory if they need to be saved.
1517 COLLECT is TRUE if we should automatically collect gcc constructor
1518 or destructor names as collect2 does.
1519 HASHP, if not NULL, is a place to store the created hash table
1520 entry; if *HASHP is not NULL, the caller has already looked up
1521 the hash table entry, and stored it in *HASHP. */
1522
1523 bfd_boolean
1524 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1525 bfd *abfd,
1526 const char *name,
1527 flagword flags,
1528 asection *section,
1529 bfd_vma value,
1530 const char *string,
1531 bfd_boolean copy,
1532 bfd_boolean collect,
1533 struct bfd_link_hash_entry **hashp)
1534 {
1535 enum link_row row;
1536 struct bfd_link_hash_entry *h;
1537 bfd_boolean cycle;
1538
1539 if (bfd_is_ind_section (section)
1540 || (flags & BSF_INDIRECT) != 0)
1541 row = INDR_ROW;
1542 else if ((flags & BSF_WARNING) != 0)
1543 row = WARN_ROW;
1544 else if ((flags & BSF_CONSTRUCTOR) != 0)
1545 row = SET_ROW;
1546 else if (bfd_is_und_section (section))
1547 {
1548 if ((flags & BSF_WEAK) != 0)
1549 row = UNDEFW_ROW;
1550 else
1551 row = UNDEF_ROW;
1552 }
1553 else if ((flags & BSF_WEAK) != 0)
1554 row = DEFW_ROW;
1555 else if (bfd_is_com_section (section))
1556 row = COMMON_ROW;
1557 else
1558 row = DEF_ROW;
1559
1560 if (hashp != NULL && *hashp != NULL)
1561 h = *hashp;
1562 else
1563 {
1564 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1565 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1566 else
1567 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1568 if (h == NULL)
1569 {
1570 if (hashp != NULL)
1571 *hashp = NULL;
1572 return FALSE;
1573 }
1574 }
1575
1576 if (info->notice_all
1577 || (info->notice_hash != NULL
1578 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1579 {
1580 if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1581 value))
1582 return FALSE;
1583 }
1584
1585 if (hashp != NULL)
1586 *hashp = h;
1587
1588 do
1589 {
1590 enum link_action action;
1591
1592 cycle = FALSE;
1593 action = link_action[(int) row][(int) h->type];
1594 switch (action)
1595 {
1596 case FAIL:
1597 abort ();
1598
1599 case NOACT:
1600 /* Do nothing. */
1601 break;
1602
1603 case UND:
1604 /* Make a new undefined symbol. */
1605 h->type = bfd_link_hash_undefined;
1606 h->u.undef.abfd = abfd;
1607 bfd_link_add_undef (info->hash, h);
1608 break;
1609
1610 case WEAK:
1611 /* Make a new weak undefined symbol. */
1612 h->type = bfd_link_hash_undefweak;
1613 h->u.undef.abfd = abfd;
1614 h->u.undef.weak = abfd;
1615 break;
1616
1617 case CDEF:
1618 /* We have found a definition for a symbol which was
1619 previously common. */
1620 BFD_ASSERT (h->type == bfd_link_hash_common);
1621 if (! ((*info->callbacks->multiple_common)
1622 (info, h->root.string,
1623 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1624 abfd, bfd_link_hash_defined, 0)))
1625 return FALSE;
1626 /* Fall through. */
1627 case DEF:
1628 case DEFW:
1629 {
1630 enum bfd_link_hash_type oldtype;
1631
1632 /* Define a symbol. */
1633 oldtype = h->type;
1634 if (action == DEFW)
1635 h->type = bfd_link_hash_defweak;
1636 else
1637 h->type = bfd_link_hash_defined;
1638 h->u.def.section = section;
1639 h->u.def.value = value;
1640
1641 /* If we have been asked to, we act like collect2 and
1642 identify all functions that might be global
1643 constructors and destructors and pass them up in a
1644 callback. We only do this for certain object file
1645 types, since many object file types can handle this
1646 automatically. */
1647 if (collect && name[0] == '_')
1648 {
1649 const char *s;
1650
1651 /* A constructor or destructor name starts like this:
1652 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1653 the second are the same character (we accept any
1654 character there, in case a new object file format
1655 comes along with even worse naming restrictions). */
1656
1657 #define CONS_PREFIX "GLOBAL_"
1658 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1659
1660 s = name + 1;
1661 while (*s == '_')
1662 ++s;
1663 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1664 {
1665 char c;
1666
1667 c = s[CONS_PREFIX_LEN + 1];
1668 if ((c == 'I' || c == 'D')
1669 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1670 {
1671 /* If this is a definition of a symbol which
1672 was previously weakly defined, we are in
1673 trouble. We have already added a
1674 constructor entry for the weak defined
1675 symbol, and now we are trying to add one
1676 for the new symbol. Fortunately, this case
1677 should never arise in practice. */
1678 if (oldtype == bfd_link_hash_defweak)
1679 abort ();
1680
1681 if (! ((*info->callbacks->constructor)
1682 (info, c == 'I',
1683 h->root.string, abfd, section, value)))
1684 return FALSE;
1685 }
1686 }
1687 }
1688 }
1689
1690 break;
1691
1692 case COM:
1693 /* We have found a common definition for a symbol. */
1694 if (h->type == bfd_link_hash_new)
1695 bfd_link_add_undef (info->hash, h);
1696 h->type = bfd_link_hash_common;
1697 h->u.c.p = (struct bfd_link_hash_common_entry *)
1698 bfd_hash_allocate (&info->hash->table,
1699 sizeof (struct bfd_link_hash_common_entry));
1700 if (h->u.c.p == NULL)
1701 return FALSE;
1702
1703 h->u.c.size = value;
1704
1705 /* Select a default alignment based on the size. This may
1706 be overridden by the caller. */
1707 {
1708 unsigned int power;
1709
1710 power = bfd_log2 (value);
1711 if (power > 4)
1712 power = 4;
1713 h->u.c.p->alignment_power = power;
1714 }
1715
1716 /* The section of a common symbol is only used if the common
1717 symbol is actually allocated. It basically provides a
1718 hook for the linker script to decide which output section
1719 the common symbols should be put in. In most cases, the
1720 section of a common symbol will be bfd_com_section_ptr,
1721 the code here will choose a common symbol section named
1722 "COMMON", and the linker script will contain *(COMMON) in
1723 the appropriate place. A few targets use separate common
1724 sections for small symbols, and they require special
1725 handling. */
1726 if (section == bfd_com_section_ptr)
1727 {
1728 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1729 h->u.c.p->section->flags = SEC_ALLOC;
1730 }
1731 else if (section->owner != abfd)
1732 {
1733 h->u.c.p->section = bfd_make_section_old_way (abfd,
1734 section->name);
1735 h->u.c.p->section->flags = SEC_ALLOC;
1736 }
1737 else
1738 h->u.c.p->section = section;
1739 break;
1740
1741 case REF:
1742 /* A reference to a defined symbol. */
1743 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1744 h->u.undef.next = h;
1745 break;
1746
1747 case BIG:
1748 /* We have found a common definition for a symbol which
1749 already had a common definition. Use the maximum of the
1750 two sizes, and use the section required by the larger symbol. */
1751 BFD_ASSERT (h->type == bfd_link_hash_common);
1752 if (! ((*info->callbacks->multiple_common)
1753 (info, h->root.string,
1754 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1755 abfd, bfd_link_hash_common, value)))
1756 return FALSE;
1757 if (value > h->u.c.size)
1758 {
1759 unsigned int power;
1760
1761 h->u.c.size = value;
1762
1763 /* Select a default alignment based on the size. This may
1764 be overridden by the caller. */
1765 power = bfd_log2 (value);
1766 if (power > 4)
1767 power = 4;
1768 h->u.c.p->alignment_power = power;
1769
1770 /* Some systems have special treatment for small commons,
1771 hence we want to select the section used by the larger
1772 symbol. This makes sure the symbol does not go in a
1773 small common section if it is now too large. */
1774 if (section == bfd_com_section_ptr)
1775 {
1776 h->u.c.p->section
1777 = bfd_make_section_old_way (abfd, "COMMON");
1778 h->u.c.p->section->flags = SEC_ALLOC;
1779 }
1780 else if (section->owner != abfd)
1781 {
1782 h->u.c.p->section
1783 = bfd_make_section_old_way (abfd, section->name);
1784 h->u.c.p->section->flags = SEC_ALLOC;
1785 }
1786 else
1787 h->u.c.p->section = section;
1788 }
1789 break;
1790
1791 case CREF:
1792 {
1793 bfd *obfd;
1794
1795 /* We have found a common definition for a symbol which
1796 was already defined. FIXME: It would nice if we could
1797 report the BFD which defined an indirect symbol, but we
1798 don't have anywhere to store the information. */
1799 if (h->type == bfd_link_hash_defined
1800 || h->type == bfd_link_hash_defweak)
1801 obfd = h->u.def.section->owner;
1802 else
1803 obfd = NULL;
1804 if (! ((*info->callbacks->multiple_common)
1805 (info, h->root.string, obfd, h->type, 0,
1806 abfd, bfd_link_hash_common, value)))
1807 return FALSE;
1808 }
1809 break;
1810
1811 case MIND:
1812 /* Multiple indirect symbols. This is OK if they both point
1813 to the same symbol. */
1814 if (strcmp (h->u.i.link->root.string, string) == 0)
1815 break;
1816 /* Fall through. */
1817 case MDEF:
1818 /* Handle a multiple definition. */
1819 if (!info->allow_multiple_definition)
1820 {
1821 asection *msec = NULL;
1822 bfd_vma mval = 0;
1823
1824 switch (h->type)
1825 {
1826 case bfd_link_hash_defined:
1827 msec = h->u.def.section;
1828 mval = h->u.def.value;
1829 break;
1830 case bfd_link_hash_indirect:
1831 msec = bfd_ind_section_ptr;
1832 mval = 0;
1833 break;
1834 default:
1835 abort ();
1836 }
1837
1838 /* Ignore a redefinition of an absolute symbol to the
1839 same value; it's harmless. */
1840 if (h->type == bfd_link_hash_defined
1841 && bfd_is_abs_section (msec)
1842 && bfd_is_abs_section (section)
1843 && value == mval)
1844 break;
1845
1846 if (! ((*info->callbacks->multiple_definition)
1847 (info, h->root.string, msec->owner, msec, mval,
1848 abfd, section, value)))
1849 return FALSE;
1850 }
1851 break;
1852
1853 case CIND:
1854 /* Create an indirect symbol from an existing common symbol. */
1855 BFD_ASSERT (h->type == bfd_link_hash_common);
1856 if (! ((*info->callbacks->multiple_common)
1857 (info, h->root.string,
1858 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1859 abfd, bfd_link_hash_indirect, 0)))
1860 return FALSE;
1861 /* Fall through. */
1862 case IND:
1863 /* Create an indirect symbol. */
1864 {
1865 struct bfd_link_hash_entry *inh;
1866
1867 /* STRING is the name of the symbol we want to indirect
1868 to. */
1869 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1870 copy, FALSE);
1871 if (inh == NULL)
1872 return FALSE;
1873 if (inh->type == bfd_link_hash_indirect
1874 && inh->u.i.link == h)
1875 {
1876 (*_bfd_error_handler)
1877 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1878 abfd, name, string);
1879 bfd_set_error (bfd_error_invalid_operation);
1880 return FALSE;
1881 }
1882 if (inh->type == bfd_link_hash_new)
1883 {
1884 inh->type = bfd_link_hash_undefined;
1885 inh->u.undef.abfd = abfd;
1886 bfd_link_add_undef (info->hash, inh);
1887 }
1888
1889 /* If the indirect symbol has been referenced, we need to
1890 push the reference down to the symbol we are
1891 referencing. */
1892 if (h->type != bfd_link_hash_new)
1893 {
1894 row = UNDEF_ROW;
1895 cycle = TRUE;
1896 }
1897
1898 h->type = bfd_link_hash_indirect;
1899 h->u.i.link = inh;
1900 }
1901 break;
1902
1903 case SET:
1904 /* Add an entry to a set. */
1905 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1906 abfd, section, value))
1907 return FALSE;
1908 break;
1909
1910 case WARNC:
1911 /* Issue a warning and cycle. */
1912 if (h->u.i.warning != NULL)
1913 {
1914 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1915 h->root.string, abfd,
1916 NULL, 0))
1917 return FALSE;
1918 /* Only issue a warning once. */
1919 h->u.i.warning = NULL;
1920 }
1921 /* Fall through. */
1922 case CYCLE:
1923 /* Try again with the referenced symbol. */
1924 h = h->u.i.link;
1925 cycle = TRUE;
1926 break;
1927
1928 case REFC:
1929 /* A reference to an indirect symbol. */
1930 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1931 h->u.undef.next = h;
1932 h = h->u.i.link;
1933 cycle = TRUE;
1934 break;
1935
1936 case WARN:
1937 /* Issue a warning. */
1938 if (! (*info->callbacks->warning) (info, string, h->root.string,
1939 hash_entry_bfd (h), NULL, 0))
1940 return FALSE;
1941 break;
1942
1943 case CWARN:
1944 /* Warn if this symbol has been referenced already,
1945 otherwise add a warning. A symbol has been referenced if
1946 the u.undef.next field is not NULL, or it is the tail of the
1947 undefined symbol list. The REF case above helps to
1948 ensure this. */
1949 if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1950 {
1951 if (! (*info->callbacks->warning) (info, string, h->root.string,
1952 hash_entry_bfd (h), NULL, 0))
1953 return FALSE;
1954 break;
1955 }
1956 /* Fall through. */
1957 case MWARN:
1958 /* Make a warning symbol. */
1959 {
1960 struct bfd_link_hash_entry *sub;
1961
1962 /* STRING is the warning to give. */
1963 sub = ((struct bfd_link_hash_entry *)
1964 ((*info->hash->table.newfunc)
1965 (NULL, &info->hash->table, h->root.string)));
1966 if (sub == NULL)
1967 return FALSE;
1968 *sub = *h;
1969 sub->type = bfd_link_hash_warning;
1970 sub->u.i.link = h;
1971 if (! copy)
1972 sub->u.i.warning = string;
1973 else
1974 {
1975 char *w;
1976 size_t len = strlen (string) + 1;
1977
1978 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1979 if (w == NULL)
1980 return FALSE;
1981 memcpy (w, string, len);
1982 sub->u.i.warning = w;
1983 }
1984
1985 bfd_hash_replace (&info->hash->table,
1986 (struct bfd_hash_entry *) h,
1987 (struct bfd_hash_entry *) sub);
1988 if (hashp != NULL)
1989 *hashp = sub;
1990 }
1991 break;
1992 }
1993 }
1994 while (cycle);
1995
1996 return TRUE;
1997 }
1998 \f
1999 /* Generic final link routine. */
2000
2001 bfd_boolean
2002 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
2003 {
2004 bfd *sub;
2005 asection *o;
2006 struct bfd_link_order *p;
2007 size_t outsymalloc;
2008 struct generic_write_global_symbol_info wginfo;
2009
2010 bfd_get_outsymbols (abfd) = NULL;
2011 bfd_get_symcount (abfd) = 0;
2012 outsymalloc = 0;
2013
2014 /* Mark all sections which will be included in the output file. */
2015 for (o = abfd->sections; o != NULL; o = o->next)
2016 for (p = o->map_head.link_order; p != NULL; p = p->next)
2017 if (p->type == bfd_indirect_link_order)
2018 p->u.indirect.section->linker_mark = TRUE;
2019
2020 /* Build the output symbol table. */
2021 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2022 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2023 return FALSE;
2024
2025 /* Accumulate the global symbols. */
2026 wginfo.info = info;
2027 wginfo.output_bfd = abfd;
2028 wginfo.psymalloc = &outsymalloc;
2029 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2030 _bfd_generic_link_write_global_symbol,
2031 &wginfo);
2032
2033 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2034 shouldn't really need one, since we have SYMCOUNT, but some old
2035 code still expects one. */
2036 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2037 return FALSE;
2038
2039 if (info->relocatable)
2040 {
2041 /* Allocate space for the output relocs for each section. */
2042 for (o = abfd->sections; o != NULL; o = o->next)
2043 {
2044 o->reloc_count = 0;
2045 for (p = o->map_head.link_order; p != NULL; p = p->next)
2046 {
2047 if (p->type == bfd_section_reloc_link_order
2048 || p->type == bfd_symbol_reloc_link_order)
2049 ++o->reloc_count;
2050 else if (p->type == bfd_indirect_link_order)
2051 {
2052 asection *input_section;
2053 bfd *input_bfd;
2054 long relsize;
2055 arelent **relocs;
2056 asymbol **symbols;
2057 long reloc_count;
2058
2059 input_section = p->u.indirect.section;
2060 input_bfd = input_section->owner;
2061 relsize = bfd_get_reloc_upper_bound (input_bfd,
2062 input_section);
2063 if (relsize < 0)
2064 return FALSE;
2065 relocs = (arelent **) bfd_malloc (relsize);
2066 if (!relocs && relsize != 0)
2067 return FALSE;
2068 symbols = _bfd_generic_link_get_symbols (input_bfd);
2069 reloc_count = bfd_canonicalize_reloc (input_bfd,
2070 input_section,
2071 relocs,
2072 symbols);
2073 free (relocs);
2074 if (reloc_count < 0)
2075 return FALSE;
2076 BFD_ASSERT ((unsigned long) reloc_count
2077 == input_section->reloc_count);
2078 o->reloc_count += reloc_count;
2079 }
2080 }
2081 if (o->reloc_count > 0)
2082 {
2083 bfd_size_type amt;
2084
2085 amt = o->reloc_count;
2086 amt *= sizeof (arelent *);
2087 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
2088 if (!o->orelocation)
2089 return FALSE;
2090 o->flags |= SEC_RELOC;
2091 /* Reset the count so that it can be used as an index
2092 when putting in the output relocs. */
2093 o->reloc_count = 0;
2094 }
2095 }
2096 }
2097
2098 /* Handle all the link order information for the sections. */
2099 for (o = abfd->sections; o != NULL; o = o->next)
2100 {
2101 for (p = o->map_head.link_order; p != NULL; p = p->next)
2102 {
2103 switch (p->type)
2104 {
2105 case bfd_section_reloc_link_order:
2106 case bfd_symbol_reloc_link_order:
2107 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2108 return FALSE;
2109 break;
2110 case bfd_indirect_link_order:
2111 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2112 return FALSE;
2113 break;
2114 default:
2115 if (! _bfd_default_link_order (abfd, info, o, p))
2116 return FALSE;
2117 break;
2118 }
2119 }
2120 }
2121
2122 return TRUE;
2123 }
2124
2125 /* Add an output symbol to the output BFD. */
2126
2127 static bfd_boolean
2128 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2129 {
2130 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2131 {
2132 asymbol **newsyms;
2133 bfd_size_type amt;
2134
2135 if (*psymalloc == 0)
2136 *psymalloc = 124;
2137 else
2138 *psymalloc *= 2;
2139 amt = *psymalloc;
2140 amt *= sizeof (asymbol *);
2141 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2142 if (newsyms == NULL)
2143 return FALSE;
2144 bfd_get_outsymbols (output_bfd) = newsyms;
2145 }
2146
2147 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2148 if (sym != NULL)
2149 ++ bfd_get_symcount (output_bfd);
2150
2151 return TRUE;
2152 }
2153
2154 /* Handle the symbols for an input BFD. */
2155
2156 bfd_boolean
2157 _bfd_generic_link_output_symbols (bfd *output_bfd,
2158 bfd *input_bfd,
2159 struct bfd_link_info *info,
2160 size_t *psymalloc)
2161 {
2162 asymbol **sym_ptr;
2163 asymbol **sym_end;
2164
2165 if (!bfd_generic_link_read_symbols (input_bfd))
2166 return FALSE;
2167
2168 /* Create a filename symbol if we are supposed to. */
2169 if (info->create_object_symbols_section != NULL)
2170 {
2171 asection *sec;
2172
2173 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2174 {
2175 if (sec->output_section == info->create_object_symbols_section)
2176 {
2177 asymbol *newsym;
2178
2179 newsym = bfd_make_empty_symbol (input_bfd);
2180 if (!newsym)
2181 return FALSE;
2182 newsym->name = input_bfd->filename;
2183 newsym->value = 0;
2184 newsym->flags = BSF_LOCAL | BSF_FILE;
2185 newsym->section = sec;
2186
2187 if (! generic_add_output_symbol (output_bfd, psymalloc,
2188 newsym))
2189 return FALSE;
2190
2191 break;
2192 }
2193 }
2194 }
2195
2196 /* Adjust the values of the globally visible symbols, and write out
2197 local symbols. */
2198 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2199 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2200 for (; sym_ptr < sym_end; sym_ptr++)
2201 {
2202 asymbol *sym;
2203 struct generic_link_hash_entry *h;
2204 bfd_boolean output;
2205
2206 h = NULL;
2207 sym = *sym_ptr;
2208 if ((sym->flags & (BSF_INDIRECT
2209 | BSF_WARNING
2210 | BSF_GLOBAL
2211 | BSF_CONSTRUCTOR
2212 | BSF_WEAK)) != 0
2213 || bfd_is_und_section (bfd_get_section (sym))
2214 || bfd_is_com_section (bfd_get_section (sym))
2215 || bfd_is_ind_section (bfd_get_section (sym)))
2216 {
2217 if (sym->udata.p != NULL)
2218 h = (struct generic_link_hash_entry *) sym->udata.p;
2219 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2220 {
2221 /* This case normally means that the main linker code
2222 deliberately ignored this constructor symbol. We
2223 should just pass it through. This will screw up if
2224 the constructor symbol is from a different,
2225 non-generic, object file format, but the case will
2226 only arise when linking with -r, which will probably
2227 fail anyhow, since there will be no way to represent
2228 the relocs in the output format being used. */
2229 h = NULL;
2230 }
2231 else if (bfd_is_und_section (bfd_get_section (sym)))
2232 h = ((struct generic_link_hash_entry *)
2233 bfd_wrapped_link_hash_lookup (output_bfd, info,
2234 bfd_asymbol_name (sym),
2235 FALSE, FALSE, TRUE));
2236 else
2237 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2238 bfd_asymbol_name (sym),
2239 FALSE, FALSE, TRUE);
2240
2241 if (h != NULL)
2242 {
2243 /* Force all references to this symbol to point to
2244 the same area in memory. It is possible that
2245 this routine will be called with a hash table
2246 other than a generic hash table, so we double
2247 check that. */
2248 if (info->output_bfd->xvec == input_bfd->xvec)
2249 {
2250 if (h->sym != NULL)
2251 *sym_ptr = sym = h->sym;
2252 }
2253
2254 switch (h->root.type)
2255 {
2256 default:
2257 case bfd_link_hash_new:
2258 abort ();
2259 case bfd_link_hash_undefined:
2260 break;
2261 case bfd_link_hash_undefweak:
2262 sym->flags |= BSF_WEAK;
2263 break;
2264 case bfd_link_hash_indirect:
2265 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2266 /* fall through */
2267 case bfd_link_hash_defined:
2268 sym->flags |= BSF_GLOBAL;
2269 sym->flags &=~ BSF_CONSTRUCTOR;
2270 sym->value = h->root.u.def.value;
2271 sym->section = h->root.u.def.section;
2272 break;
2273 case bfd_link_hash_defweak:
2274 sym->flags |= BSF_WEAK;
2275 sym->flags &=~ BSF_CONSTRUCTOR;
2276 sym->value = h->root.u.def.value;
2277 sym->section = h->root.u.def.section;
2278 break;
2279 case bfd_link_hash_common:
2280 sym->value = h->root.u.c.size;
2281 sym->flags |= BSF_GLOBAL;
2282 if (! bfd_is_com_section (sym->section))
2283 {
2284 BFD_ASSERT (bfd_is_und_section (sym->section));
2285 sym->section = bfd_com_section_ptr;
2286 }
2287 /* We do not set the section of the symbol to
2288 h->root.u.c.p->section. That value was saved so
2289 that we would know where to allocate the symbol
2290 if it was defined. In this case the type is
2291 still bfd_link_hash_common, so we did not define
2292 it, so we do not want to use that section. */
2293 break;
2294 }
2295 }
2296 }
2297
2298 /* This switch is straight from the old code in
2299 write_file_locals in ldsym.c. */
2300 if (info->strip == strip_all
2301 || (info->strip == strip_some
2302 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2303 FALSE, FALSE) == NULL))
2304 output = FALSE;
2305 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2306 {
2307 /* If this symbol is marked as occurring now, rather
2308 than at the end, output it now. This is used for
2309 COFF C_EXT FCN symbols. FIXME: There must be a
2310 better way. */
2311 if (bfd_asymbol_bfd (sym) == input_bfd
2312 && (sym->flags & BSF_NOT_AT_END) != 0)
2313 output = TRUE;
2314 else
2315 output = FALSE;
2316 }
2317 else if (bfd_is_ind_section (sym->section))
2318 output = FALSE;
2319 else if ((sym->flags & BSF_DEBUGGING) != 0)
2320 {
2321 if (info->strip == strip_none)
2322 output = TRUE;
2323 else
2324 output = FALSE;
2325 }
2326 else if (bfd_is_und_section (sym->section)
2327 || bfd_is_com_section (sym->section))
2328 output = FALSE;
2329 else if ((sym->flags & BSF_LOCAL) != 0)
2330 {
2331 if ((sym->flags & BSF_WARNING) != 0)
2332 output = FALSE;
2333 else
2334 {
2335 switch (info->discard)
2336 {
2337 default:
2338 case discard_all:
2339 output = FALSE;
2340 break;
2341 case discard_sec_merge:
2342 output = TRUE;
2343 if (info->relocatable
2344 || ! (sym->section->flags & SEC_MERGE))
2345 break;
2346 /* FALLTHROUGH */
2347 case discard_l:
2348 if (bfd_is_local_label (input_bfd, sym))
2349 output = FALSE;
2350 else
2351 output = TRUE;
2352 break;
2353 case discard_none:
2354 output = TRUE;
2355 break;
2356 }
2357 }
2358 }
2359 else if ((sym->flags & BSF_CONSTRUCTOR))
2360 {
2361 if (info->strip != strip_all)
2362 output = TRUE;
2363 else
2364 output = FALSE;
2365 }
2366 else
2367 abort ();
2368
2369 /* If this symbol is in a section which is not being included
2370 in the output file, then we don't want to output the
2371 symbol. */
2372 if (!bfd_is_abs_section (sym->section)
2373 && bfd_section_removed_from_list (output_bfd,
2374 sym->section->output_section))
2375 output = FALSE;
2376
2377 if (output)
2378 {
2379 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2380 return FALSE;
2381 if (h != NULL)
2382 h->written = TRUE;
2383 }
2384 }
2385
2386 return TRUE;
2387 }
2388
2389 /* Set the section and value of a generic BFD symbol based on a linker
2390 hash table entry. */
2391
2392 static void
2393 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2394 {
2395 switch (h->type)
2396 {
2397 default:
2398 abort ();
2399 break;
2400 case bfd_link_hash_new:
2401 /* This can happen when a constructor symbol is seen but we are
2402 not building constructors. */
2403 if (sym->section != NULL)
2404 {
2405 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2406 }
2407 else
2408 {
2409 sym->flags |= BSF_CONSTRUCTOR;
2410 sym->section = bfd_abs_section_ptr;
2411 sym->value = 0;
2412 }
2413 break;
2414 case bfd_link_hash_undefined:
2415 sym->section = bfd_und_section_ptr;
2416 sym->value = 0;
2417 break;
2418 case bfd_link_hash_undefweak:
2419 sym->section = bfd_und_section_ptr;
2420 sym->value = 0;
2421 sym->flags |= BSF_WEAK;
2422 break;
2423 case bfd_link_hash_defined:
2424 sym->section = h->u.def.section;
2425 sym->value = h->u.def.value;
2426 break;
2427 case bfd_link_hash_defweak:
2428 sym->flags |= BSF_WEAK;
2429 sym->section = h->u.def.section;
2430 sym->value = h->u.def.value;
2431 break;
2432 case bfd_link_hash_common:
2433 sym->value = h->u.c.size;
2434 if (sym->section == NULL)
2435 sym->section = bfd_com_section_ptr;
2436 else if (! bfd_is_com_section (sym->section))
2437 {
2438 BFD_ASSERT (bfd_is_und_section (sym->section));
2439 sym->section = bfd_com_section_ptr;
2440 }
2441 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2442 break;
2443 case bfd_link_hash_indirect:
2444 case bfd_link_hash_warning:
2445 /* FIXME: What should we do here? */
2446 break;
2447 }
2448 }
2449
2450 /* Write out a global symbol, if it hasn't already been written out.
2451 This is called for each symbol in the hash table. */
2452
2453 bfd_boolean
2454 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2455 void *data)
2456 {
2457 struct generic_write_global_symbol_info *wginfo =
2458 (struct generic_write_global_symbol_info *) data;
2459 asymbol *sym;
2460
2461 if (h->root.type == bfd_link_hash_warning)
2462 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2463
2464 if (h->written)
2465 return TRUE;
2466
2467 h->written = TRUE;
2468
2469 if (wginfo->info->strip == strip_all
2470 || (wginfo->info->strip == strip_some
2471 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2472 FALSE, FALSE) == NULL))
2473 return TRUE;
2474
2475 if (h->sym != NULL)
2476 sym = h->sym;
2477 else
2478 {
2479 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2480 if (!sym)
2481 return FALSE;
2482 sym->name = h->root.root.string;
2483 sym->flags = 0;
2484 }
2485
2486 set_symbol_from_hash (sym, &h->root);
2487
2488 sym->flags |= BSF_GLOBAL;
2489
2490 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2491 sym))
2492 {
2493 /* FIXME: No way to return failure. */
2494 abort ();
2495 }
2496
2497 return TRUE;
2498 }
2499
2500 /* Create a relocation. */
2501
2502 bfd_boolean
2503 _bfd_generic_reloc_link_order (bfd *abfd,
2504 struct bfd_link_info *info,
2505 asection *sec,
2506 struct bfd_link_order *link_order)
2507 {
2508 arelent *r;
2509
2510 if (! info->relocatable)
2511 abort ();
2512 if (sec->orelocation == NULL)
2513 abort ();
2514
2515 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2516 if (r == NULL)
2517 return FALSE;
2518
2519 r->address = link_order->offset;
2520 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2521 if (r->howto == 0)
2522 {
2523 bfd_set_error (bfd_error_bad_value);
2524 return FALSE;
2525 }
2526
2527 /* Get the symbol to use for the relocation. */
2528 if (link_order->type == bfd_section_reloc_link_order)
2529 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2530 else
2531 {
2532 struct generic_link_hash_entry *h;
2533
2534 h = ((struct generic_link_hash_entry *)
2535 bfd_wrapped_link_hash_lookup (abfd, info,
2536 link_order->u.reloc.p->u.name,
2537 FALSE, FALSE, TRUE));
2538 if (h == NULL
2539 || ! h->written)
2540 {
2541 if (! ((*info->callbacks->unattached_reloc)
2542 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2543 return FALSE;
2544 bfd_set_error (bfd_error_bad_value);
2545 return FALSE;
2546 }
2547 r->sym_ptr_ptr = &h->sym;
2548 }
2549
2550 /* If this is an inplace reloc, write the addend to the object file.
2551 Otherwise, store it in the reloc addend. */
2552 if (! r->howto->partial_inplace)
2553 r->addend = link_order->u.reloc.p->addend;
2554 else
2555 {
2556 bfd_size_type size;
2557 bfd_reloc_status_type rstat;
2558 bfd_byte *buf;
2559 bfd_boolean ok;
2560 file_ptr loc;
2561
2562 size = bfd_get_reloc_size (r->howto);
2563 buf = (bfd_byte *) bfd_zmalloc (size);
2564 if (buf == NULL)
2565 return FALSE;
2566 rstat = _bfd_relocate_contents (r->howto, abfd,
2567 (bfd_vma) link_order->u.reloc.p->addend,
2568 buf);
2569 switch (rstat)
2570 {
2571 case bfd_reloc_ok:
2572 break;
2573 default:
2574 case bfd_reloc_outofrange:
2575 abort ();
2576 case bfd_reloc_overflow:
2577 if (! ((*info->callbacks->reloc_overflow)
2578 (info, NULL,
2579 (link_order->type == bfd_section_reloc_link_order
2580 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2581 : link_order->u.reloc.p->u.name),
2582 r->howto->name, link_order->u.reloc.p->addend,
2583 NULL, NULL, 0)))
2584 {
2585 free (buf);
2586 return FALSE;
2587 }
2588 break;
2589 }
2590 loc = link_order->offset * bfd_octets_per_byte (abfd);
2591 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2592 free (buf);
2593 if (! ok)
2594 return FALSE;
2595
2596 r->addend = 0;
2597 }
2598
2599 sec->orelocation[sec->reloc_count] = r;
2600 ++sec->reloc_count;
2601
2602 return TRUE;
2603 }
2604 \f
2605 /* Allocate a new link_order for a section. */
2606
2607 struct bfd_link_order *
2608 bfd_new_link_order (bfd *abfd, asection *section)
2609 {
2610 bfd_size_type amt = sizeof (struct bfd_link_order);
2611 struct bfd_link_order *new_lo;
2612
2613 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2614 if (!new_lo)
2615 return NULL;
2616
2617 new_lo->type = bfd_undefined_link_order;
2618
2619 if (section->map_tail.link_order != NULL)
2620 section->map_tail.link_order->next = new_lo;
2621 else
2622 section->map_head.link_order = new_lo;
2623 section->map_tail.link_order = new_lo;
2624
2625 return new_lo;
2626 }
2627
2628 /* Default link order processing routine. Note that we can not handle
2629 the reloc_link_order types here, since they depend upon the details
2630 of how the particular backends generates relocs. */
2631
2632 bfd_boolean
2633 _bfd_default_link_order (bfd *abfd,
2634 struct bfd_link_info *info,
2635 asection *sec,
2636 struct bfd_link_order *link_order)
2637 {
2638 switch (link_order->type)
2639 {
2640 case bfd_undefined_link_order:
2641 case bfd_section_reloc_link_order:
2642 case bfd_symbol_reloc_link_order:
2643 default:
2644 abort ();
2645 case bfd_indirect_link_order:
2646 return default_indirect_link_order (abfd, info, sec, link_order,
2647 FALSE);
2648 case bfd_data_link_order:
2649 return default_data_link_order (abfd, info, sec, link_order);
2650 }
2651 }
2652
2653 /* Default routine to handle a bfd_data_link_order. */
2654
2655 static bfd_boolean
2656 default_data_link_order (bfd *abfd,
2657 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2658 asection *sec,
2659 struct bfd_link_order *link_order)
2660 {
2661 bfd_size_type size;
2662 size_t fill_size;
2663 bfd_byte *fill;
2664 file_ptr loc;
2665 bfd_boolean result;
2666
2667 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2668
2669 size = link_order->size;
2670 if (size == 0)
2671 return TRUE;
2672
2673 fill = link_order->u.data.contents;
2674 fill_size = link_order->u.data.size;
2675 if (fill_size != 0 && fill_size < size)
2676 {
2677 bfd_byte *p;
2678 fill = (bfd_byte *) bfd_malloc (size);
2679 if (fill == NULL)
2680 return FALSE;
2681 p = fill;
2682 if (fill_size == 1)
2683 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2684 else
2685 {
2686 do
2687 {
2688 memcpy (p, link_order->u.data.contents, fill_size);
2689 p += fill_size;
2690 size -= fill_size;
2691 }
2692 while (size >= fill_size);
2693 if (size != 0)
2694 memcpy (p, link_order->u.data.contents, (size_t) size);
2695 size = link_order->size;
2696 }
2697 }
2698
2699 loc = link_order->offset * bfd_octets_per_byte (abfd);
2700 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2701
2702 if (fill != link_order->u.data.contents)
2703 free (fill);
2704 return result;
2705 }
2706
2707 /* Default routine to handle a bfd_indirect_link_order. */
2708
2709 static bfd_boolean
2710 default_indirect_link_order (bfd *output_bfd,
2711 struct bfd_link_info *info,
2712 asection *output_section,
2713 struct bfd_link_order *link_order,
2714 bfd_boolean generic_linker)
2715 {
2716 asection *input_section;
2717 bfd *input_bfd;
2718 bfd_byte *contents = NULL;
2719 bfd_byte *new_contents;
2720 bfd_size_type sec_size;
2721 file_ptr loc;
2722
2723 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2724
2725 input_section = link_order->u.indirect.section;
2726 input_bfd = input_section->owner;
2727 if (input_section->size == 0)
2728 return TRUE;
2729
2730 BFD_ASSERT (input_section->output_section == output_section);
2731 BFD_ASSERT (input_section->output_offset == link_order->offset);
2732 BFD_ASSERT (input_section->size == link_order->size);
2733
2734 if (info->relocatable
2735 && input_section->reloc_count > 0
2736 && output_section->orelocation == NULL)
2737 {
2738 /* Space has not been allocated for the output relocations.
2739 This can happen when we are called by a specific backend
2740 because somebody is attempting to link together different
2741 types of object files. Handling this case correctly is
2742 difficult, and sometimes impossible. */
2743 (*_bfd_error_handler)
2744 (_("Attempt to do relocatable link with %s input and %s output"),
2745 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2746 bfd_set_error (bfd_error_wrong_format);
2747 return FALSE;
2748 }
2749
2750 if (! generic_linker)
2751 {
2752 asymbol **sympp;
2753 asymbol **symppend;
2754
2755 /* Get the canonical symbols. The generic linker will always
2756 have retrieved them by this point, but we are being called by
2757 a specific linker, presumably because we are linking
2758 different types of object files together. */
2759 if (!bfd_generic_link_read_symbols (input_bfd))
2760 return FALSE;
2761
2762 /* Since we have been called by a specific linker, rather than
2763 the generic linker, the values of the symbols will not be
2764 right. They will be the values as seen in the input file,
2765 not the values of the final link. We need to fix them up
2766 before we can relocate the section. */
2767 sympp = _bfd_generic_link_get_symbols (input_bfd);
2768 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2769 for (; sympp < symppend; sympp++)
2770 {
2771 asymbol *sym;
2772 struct bfd_link_hash_entry *h;
2773
2774 sym = *sympp;
2775
2776 if ((sym->flags & (BSF_INDIRECT
2777 | BSF_WARNING
2778 | BSF_GLOBAL
2779 | BSF_CONSTRUCTOR
2780 | BSF_WEAK)) != 0
2781 || bfd_is_und_section (bfd_get_section (sym))
2782 || bfd_is_com_section (bfd_get_section (sym))
2783 || bfd_is_ind_section (bfd_get_section (sym)))
2784 {
2785 /* sym->udata may have been set by
2786 generic_link_add_symbol_list. */
2787 if (sym->udata.p != NULL)
2788 h = (struct bfd_link_hash_entry *) sym->udata.p;
2789 else if (bfd_is_und_section (bfd_get_section (sym)))
2790 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2791 bfd_asymbol_name (sym),
2792 FALSE, FALSE, TRUE);
2793 else
2794 h = bfd_link_hash_lookup (info->hash,
2795 bfd_asymbol_name (sym),
2796 FALSE, FALSE, TRUE);
2797 if (h != NULL)
2798 set_symbol_from_hash (sym, h);
2799 }
2800 }
2801 }
2802
2803 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2804 && input_section->size != 0)
2805 {
2806 /* Group section contents are set by bfd_elf_set_group_contents. */
2807 if (!output_bfd->output_has_begun)
2808 {
2809 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2810 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2811 goto error_return;
2812 }
2813 new_contents = output_section->contents;
2814 BFD_ASSERT (new_contents != NULL);
2815 BFD_ASSERT (input_section->output_offset == 0);
2816 }
2817 else
2818 {
2819 /* Get and relocate the section contents. */
2820 sec_size = (input_section->rawsize > input_section->size
2821 ? input_section->rawsize
2822 : input_section->size);
2823 contents = (bfd_byte *) bfd_malloc (sec_size);
2824 if (contents == NULL && sec_size != 0)
2825 goto error_return;
2826 new_contents = (bfd_get_relocated_section_contents
2827 (output_bfd, info, link_order, contents,
2828 info->relocatable,
2829 _bfd_generic_link_get_symbols (input_bfd)));
2830 if (!new_contents)
2831 goto error_return;
2832 }
2833
2834 /* Output the section contents. */
2835 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2836 if (! bfd_set_section_contents (output_bfd, output_section,
2837 new_contents, loc, input_section->size))
2838 goto error_return;
2839
2840 if (contents != NULL)
2841 free (contents);
2842 return TRUE;
2843
2844 error_return:
2845 if (contents != NULL)
2846 free (contents);
2847 return FALSE;
2848 }
2849
2850 /* A little routine to count the number of relocs in a link_order
2851 list. */
2852
2853 unsigned int
2854 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2855 {
2856 register unsigned int c;
2857 register struct bfd_link_order *l;
2858
2859 c = 0;
2860 for (l = link_order; l != NULL; l = l->next)
2861 {
2862 if (l->type == bfd_section_reloc_link_order
2863 || l->type == bfd_symbol_reloc_link_order)
2864 ++c;
2865 }
2866
2867 return c;
2868 }
2869
2870 /*
2871 FUNCTION
2872 bfd_link_split_section
2873
2874 SYNOPSIS
2875 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2876
2877 DESCRIPTION
2878 Return nonzero if @var{sec} should be split during a
2879 reloceatable or final link.
2880
2881 .#define bfd_link_split_section(abfd, sec) \
2882 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2883 .
2884
2885 */
2886
2887 bfd_boolean
2888 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2889 asection *sec ATTRIBUTE_UNUSED)
2890 {
2891 return FALSE;
2892 }
2893
2894 /*
2895 FUNCTION
2896 bfd_section_already_linked
2897
2898 SYNOPSIS
2899 void bfd_section_already_linked (bfd *abfd, asection *sec,
2900 struct bfd_link_info *info);
2901
2902 DESCRIPTION
2903 Check if @var{sec} has been already linked during a reloceatable
2904 or final link.
2905
2906 .#define bfd_section_already_linked(abfd, sec, info) \
2907 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2908 .
2909
2910 */
2911
2912 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2913 once into the output. This routine checks each section, and
2914 arrange to discard it if a section of the same name has already
2915 been linked. This code assumes that all relevant sections have the
2916 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2917 section name. bfd_section_already_linked is called via
2918 bfd_map_over_sections. */
2919
2920 /* The hash table. */
2921
2922 static struct bfd_hash_table _bfd_section_already_linked_table;
2923
2924 /* Support routines for the hash table used by section_already_linked,
2925 initialize the table, traverse, lookup, fill in an entry and remove
2926 the table. */
2927
2928 void
2929 bfd_section_already_linked_table_traverse
2930 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2931 void *), void *info)
2932 {
2933 bfd_hash_traverse (&_bfd_section_already_linked_table,
2934 (bfd_boolean (*) (struct bfd_hash_entry *,
2935 void *)) func,
2936 info);
2937 }
2938
2939 struct bfd_section_already_linked_hash_entry *
2940 bfd_section_already_linked_table_lookup (const char *name)
2941 {
2942 return ((struct bfd_section_already_linked_hash_entry *)
2943 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2944 TRUE, FALSE));
2945 }
2946
2947 bfd_boolean
2948 bfd_section_already_linked_table_insert
2949 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2950 asection *sec)
2951 {
2952 struct bfd_section_already_linked *l;
2953
2954 /* Allocate the memory from the same obstack as the hash table is
2955 kept in. */
2956 l = (struct bfd_section_already_linked *)
2957 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2958 if (l == NULL)
2959 return FALSE;
2960 l->sec = sec;
2961 l->next = already_linked_list->entry;
2962 already_linked_list->entry = l;
2963 return TRUE;
2964 }
2965
2966 static struct bfd_hash_entry *
2967 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2968 struct bfd_hash_table *table,
2969 const char *string ATTRIBUTE_UNUSED)
2970 {
2971 struct bfd_section_already_linked_hash_entry *ret =
2972 (struct bfd_section_already_linked_hash_entry *)
2973 bfd_hash_allocate (table, sizeof *ret);
2974
2975 if (ret == NULL)
2976 return NULL;
2977
2978 ret->entry = NULL;
2979
2980 return &ret->root;
2981 }
2982
2983 bfd_boolean
2984 bfd_section_already_linked_table_init (void)
2985 {
2986 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2987 already_linked_newfunc,
2988 sizeof (struct bfd_section_already_linked_hash_entry),
2989 42);
2990 }
2991
2992 void
2993 bfd_section_already_linked_table_free (void)
2994 {
2995 bfd_hash_table_free (&_bfd_section_already_linked_table);
2996 }
2997
2998 /* This is used on non-ELF inputs. */
2999
3000 void
3001 _bfd_generic_section_already_linked (bfd *abfd, asection *sec,
3002 struct bfd_link_info *info)
3003 {
3004 flagword flags;
3005 const char *name;
3006 struct bfd_section_already_linked *l;
3007 struct bfd_section_already_linked_hash_entry *already_linked_list;
3008
3009 flags = sec->flags;
3010 if ((flags & SEC_LINK_ONCE) == 0)
3011 return;
3012
3013 /* FIXME: When doing a relocatable link, we may have trouble
3014 copying relocations in other sections that refer to local symbols
3015 in the section being discarded. Those relocations will have to
3016 be converted somehow; as of this writing I'm not sure that any of
3017 the backends handle that correctly.
3018
3019 It is tempting to instead not discard link once sections when
3020 doing a relocatable link (technically, they should be discarded
3021 whenever we are building constructors). However, that fails,
3022 because the linker winds up combining all the link once sections
3023 into a single large link once section, which defeats the purpose
3024 of having link once sections in the first place. */
3025
3026 name = bfd_get_section_name (abfd, sec);
3027
3028 already_linked_list = bfd_section_already_linked_table_lookup (name);
3029
3030 for (l = already_linked_list->entry; l != NULL; l = l->next)
3031 {
3032 bfd_boolean skip = FALSE;
3033 struct coff_comdat_info *s_comdat
3034 = bfd_coff_get_comdat_section (abfd, sec);
3035 struct coff_comdat_info *l_comdat
3036 = bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3037
3038 /* We may have 3 different sections on the list: group section,
3039 comdat section and linkonce section. SEC may be a linkonce or
3040 comdat section. We always ignore group section. For non-COFF
3041 inputs, we also ignore comdat section.
3042
3043 FIXME: Is that safe to match a linkonce section with a comdat
3044 section for COFF inputs? */
3045 if ((l->sec->flags & SEC_GROUP) != 0)
3046 skip = TRUE;
3047 else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3048 {
3049 if (s_comdat != NULL
3050 && l_comdat != NULL
3051 && strcmp (s_comdat->name, l_comdat->name) != 0)
3052 skip = TRUE;
3053 }
3054 else if (l_comdat != NULL)
3055 skip = TRUE;
3056
3057 if (!skip)
3058 {
3059 /* The section has already been linked. See if we should
3060 issue a warning. */
3061 switch (flags & SEC_LINK_DUPLICATES)
3062 {
3063 default:
3064 abort ();
3065
3066 case SEC_LINK_DUPLICATES_DISCARD:
3067 break;
3068
3069 case SEC_LINK_DUPLICATES_ONE_ONLY:
3070 (*_bfd_error_handler)
3071 (_("%B: warning: ignoring duplicate section `%A'\n"),
3072 abfd, sec);
3073 break;
3074
3075 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3076 /* FIXME: We should really dig out the contents of both
3077 sections and memcmp them. The COFF/PE spec says that
3078 the Microsoft linker does not implement this
3079 correctly, so I'm not going to bother doing it
3080 either. */
3081 /* Fall through. */
3082 case SEC_LINK_DUPLICATES_SAME_SIZE:
3083 if (sec->size != l->sec->size)
3084 (*_bfd_error_handler)
3085 (_("%B: warning: duplicate section `%A' has different size\n"),
3086 abfd, sec);
3087 break;
3088 }
3089
3090 /* Set the output_section field so that lang_add_section
3091 does not create a lang_input_section structure for this
3092 section. Since there might be a symbol in the section
3093 being discarded, we must retain a pointer to the section
3094 which we are really going to use. */
3095 sec->output_section = bfd_abs_section_ptr;
3096 sec->kept_section = l->sec;
3097
3098 return;
3099 }
3100 }
3101
3102 /* This is the first section with this name. Record it. */
3103 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
3104 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3105 }
3106
3107 /* Convert symbols in excluded output sections to use a kept section. */
3108
3109 static bfd_boolean
3110 fix_syms (struct bfd_link_hash_entry *h, void *data)
3111 {
3112 bfd *obfd = (bfd *) data;
3113
3114 if (h->type == bfd_link_hash_warning)
3115 h = h->u.i.link;
3116
3117 if (h->type == bfd_link_hash_defined
3118 || h->type == bfd_link_hash_defweak)
3119 {
3120 asection *s = h->u.def.section;
3121 if (s != NULL
3122 && s->output_section != NULL
3123 && (s->output_section->flags & SEC_EXCLUDE) != 0
3124 && bfd_section_removed_from_list (obfd, s->output_section))
3125 {
3126 asection *op, *op1;
3127
3128 h->u.def.value += s->output_offset + s->output_section->vma;
3129
3130 /* Find preceding kept section. */
3131 for (op1 = s->output_section->prev; op1 != NULL; op1 = op1->prev)
3132 if ((op1->flags & SEC_EXCLUDE) == 0
3133 && !bfd_section_removed_from_list (obfd, op1))
3134 break;
3135
3136 /* Find following kept section. Start at prev->next because
3137 other sections may have been added after S was removed. */
3138 if (s->output_section->prev != NULL)
3139 op = s->output_section->prev->next;
3140 else
3141 op = s->output_section->owner->sections;
3142 for (; op != NULL; op = op->next)
3143 if ((op->flags & SEC_EXCLUDE) == 0
3144 && !bfd_section_removed_from_list (obfd, op))
3145 break;
3146
3147 /* Choose better of two sections, based on flags. The idea
3148 is to choose a section that will be in the same segment
3149 as S would have been if it was kept. */
3150 if (op1 == NULL)
3151 {
3152 if (op == NULL)
3153 op = bfd_abs_section_ptr;
3154 }
3155 else if (op == NULL)
3156 op = op1;
3157 else if (((op1->flags ^ op->flags)
3158 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3159 {
3160 if (((op->flags ^ s->flags)
3161 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3162 /* We prefer to choose a loaded section. Section S
3163 doesn't have SEC_LOAD set (it being excluded, that
3164 part of the flag processing didn't happen) so we
3165 can't compare that flag to those of OP and OP1. */
3166 || ((op1->flags & SEC_LOAD) != 0
3167 && (op->flags & SEC_LOAD) == 0))
3168 op = op1;
3169 }
3170 else if (((op1->flags ^ op->flags) & SEC_READONLY) != 0)
3171 {
3172 if (((op->flags ^ s->flags) & SEC_READONLY) != 0)
3173 op = op1;
3174 }
3175 else if (((op1->flags ^ op->flags) & SEC_CODE) != 0)
3176 {
3177 if (((op->flags ^ s->flags) & SEC_CODE) != 0)
3178 op = op1;
3179 }
3180 else
3181 {
3182 /* Flags we care about are the same. Prefer the following
3183 section if that will result in a positive valued sym. */
3184 if (h->u.def.value < op->vma)
3185 op = op1;
3186 }
3187
3188 h->u.def.value -= op->vma;
3189 h->u.def.section = op;
3190 }
3191 }
3192
3193 return TRUE;
3194 }
3195
3196 void
3197 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3198 {
3199 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3200 }
3201
3202 /*
3203 FUNCTION
3204 bfd_generic_define_common_symbol
3205
3206 SYNOPSIS
3207 bfd_boolean bfd_generic_define_common_symbol
3208 (bfd *output_bfd, struct bfd_link_info *info,
3209 struct bfd_link_hash_entry *h);
3210
3211 DESCRIPTION
3212 Convert common symbol @var{h} into a defined symbol.
3213 Return TRUE on success and FALSE on failure.
3214
3215 .#define bfd_define_common_symbol(output_bfd, info, h) \
3216 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3217 .
3218 */
3219
3220 bfd_boolean
3221 bfd_generic_define_common_symbol (bfd *output_bfd,
3222 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3223 struct bfd_link_hash_entry *h)
3224 {
3225 unsigned int power_of_two;
3226 bfd_vma alignment, size;
3227 asection *section;
3228
3229 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3230
3231 size = h->u.c.size;
3232 power_of_two = h->u.c.p->alignment_power;
3233 section = h->u.c.p->section;
3234
3235 /* Increase the size of the section to align the common symbol.
3236 The alignment must be a power of two. */
3237 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3238 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3239 section->size += alignment - 1;
3240 section->size &= -alignment;
3241
3242 /* Adjust the section's overall alignment if necessary. */
3243 if (power_of_two > section->alignment_power)
3244 section->alignment_power = power_of_two;
3245
3246 /* Change the symbol from common to defined. */
3247 h->type = bfd_link_hash_defined;
3248 h->u.def.section = section;
3249 h->u.def.value = section->size;
3250
3251 /* Increase the size of the section. */
3252 section->size += size;
3253
3254 /* Make sure the section is allocated in memory, and make sure that
3255 it is no longer a common section. */
3256 section->flags |= SEC_ALLOC;
3257 section->flags &= ~SEC_IS_COMMON;
3258 return TRUE;
3259 }
3260
3261 /*
3262 FUNCTION
3263 bfd_find_version_for_sym
3264
3265 SYNOPSIS
3266 struct bfd_elf_version_tree * bfd_find_version_for_sym
3267 (struct bfd_elf_version_tree *verdefs,
3268 const char *sym_name, bfd_boolean *hide);
3269
3270 DESCRIPTION
3271 Search an elf version script tree for symbol versioning
3272 info and export / don't-export status for a given symbol.
3273 Return non-NULL on success and NULL on failure; also sets
3274 the output @samp{hide} boolean parameter.
3275
3276 */
3277
3278 struct bfd_elf_version_tree *
3279 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3280 const char *sym_name,
3281 bfd_boolean *hide)
3282 {
3283 struct bfd_elf_version_tree *t;
3284 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3285 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3286
3287 local_ver = NULL;
3288 global_ver = NULL;
3289 star_local_ver = NULL;
3290 star_global_ver = NULL;
3291 exist_ver = NULL;
3292 for (t = verdefs; t != NULL; t = t->next)
3293 {
3294 if (t->globals.list != NULL)
3295 {
3296 struct bfd_elf_version_expr *d = NULL;
3297
3298 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3299 {
3300 if (d->literal || strcmp (d->pattern, "*") != 0)
3301 global_ver = t;
3302 else
3303 star_global_ver = t;
3304 if (d->symver)
3305 exist_ver = t;
3306 d->script = 1;
3307 /* If the match is a wildcard pattern, keep looking for
3308 a more explicit, perhaps even local, match. */
3309 if (d->literal)
3310 break;
3311 }
3312
3313 if (d != NULL)
3314 break;
3315 }
3316
3317 if (t->locals.list != NULL)
3318 {
3319 struct bfd_elf_version_expr *d = NULL;
3320
3321 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3322 {
3323 if (d->literal || strcmp (d->pattern, "*") != 0)
3324 local_ver = t;
3325 else
3326 star_local_ver = t;
3327 /* If the match is a wildcard pattern, keep looking for
3328 a more explicit, perhaps even global, match. */
3329 if (d->literal)
3330 {
3331 /* An exact match overrides a global wildcard. */
3332 global_ver = NULL;
3333 star_global_ver = NULL;
3334 break;
3335 }
3336 }
3337
3338 if (d != NULL)
3339 break;
3340 }
3341 }
3342
3343 if (global_ver == NULL && local_ver == NULL)
3344 global_ver = star_global_ver;
3345
3346 if (global_ver != NULL)
3347 {
3348 /* If we already have a versioned symbol that matches the
3349 node for this symbol, then we don't want to create a
3350 duplicate from the unversioned symbol. Instead hide the
3351 unversioned symbol. */
3352 *hide = exist_ver == global_ver;
3353 return global_ver;
3354 }
3355
3356 if (local_ver == NULL)
3357 local_ver = star_local_ver;
3358
3359 if (local_ver != NULL)
3360 {
3361 *hide = TRUE;
3362 return local_ver;
3363 }
3364
3365 return NULL;
3366 }
This page took 0.102155 seconds and 4 git commands to generate.