daily update
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the <<creator>>
153 field of the hash table must be checked to make sure that the
154 hash table was created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the <<creator>> field before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table.
225
226 @findex _bfd_generic_link_add_archive_symbols
227 In most cases the work of looking through the symbols in the
228 archive should be done by the
229 <<_bfd_generic_link_add_archive_symbols>> function. This
230 function builds a hash table from the archive symbol table and
231 looks through the list of undefined symbols to see which
232 elements should be included.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table.
237
238 The function passed to
239 <<_bfd_generic_link_add_archive_symbols>> must read the
240 symbols of the archive element and decide whether the archive
241 element should be included in the link. If the element is to
242 be included, the <<add_archive_element>> linker callback
243 routine must be called with the element as an argument, and
244 the elements symbols must be added to the linker hash table
245 just as though the element had itself been passed to the
246 <<_bfd_link_add_symbols>> function.
247
248 When the a.out <<_bfd_link_add_symbols>> function receives an
249 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 passing <<aout_link_check_archive_element>> as the function
251 argument. <<aout_link_check_archive_element>> calls
252 <<aout_link_check_ar_symbols>>. If the latter decides to add
253 the element (an element is only added if it provides a real,
254 non-common, definition for a previously undefined or common
255 symbol) it calls the <<add_archive_element>> callback and then
256 <<aout_link_check_archive_element>> calls
257 <<aout_link_add_symbols>> to actually add the symbols to the
258 linker hash table.
259
260 The ECOFF back end is unusual in that it does not normally
261 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 archives already contain a hash table of symbols. The ECOFF
263 back end searches the archive itself to avoid the overhead of
264 creating a new hash table.
265
266 INODE
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268 SUBSECTION
269 Performing the final link
270
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 When all the input files have been processed, the linker calls
274 the <<_bfd_final_link>> entry point of the output BFD. This
275 routine is responsible for producing the final output file,
276 which has several aspects. It must relocate the contents of
277 the input sections and copy the data into the output sections.
278 It must build an output symbol table including any local
279 symbols from the input files and the global symbols from the
280 hash table. When producing relocatable output, it must
281 modify the input relocs and write them into the output file.
282 There may also be object format dependent work to be done.
283
284 The linker will also call the <<write_object_contents>> entry
285 point when the BFD is closed. The two entry points must work
286 together in order to produce the correct output file.
287
288 The details of how this works are inevitably dependent upon
289 the specific object file format. The a.out
290 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
291
292 @menu
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
296 @end menu
297
298 INODE
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300 SUBSUBSECTION
301 Information provided by the linker
302
303 Before the linker calls the <<_bfd_final_link>> entry point,
304 it sets up some data structures for the function to use.
305
306 The <<input_bfds>> field of the <<bfd_link_info>> structure
307 will point to a list of all the input files included in the
308 link. These files are linked through the <<link_next>> field
309 of the <<bfd>> structure.
310
311 Each section in the output file will have a list of
312 <<link_order>> structures attached to the <<link_order_head>>
313 field (the <<link_order>> structure is defined in
314 <<bfdlink.h>>). These structures describe how to create the
315 contents of the output section in terms of the contents of
316 various input sections, fill constants, and, eventually, other
317 types of information. They also describe relocs that must be
318 created by the BFD backend, but do not correspond to any input
319 file; this is used to support -Ur, which builds constructors
320 while generating a relocatable object file.
321
322 INODE
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324 SUBSUBSECTION
325 Relocating the section contents
326
327 The <<_bfd_final_link>> function should look through the
328 <<link_order>> structures attached to each section of the
329 output file. Each <<link_order>> structure should either be
330 handled specially, or it should be passed to the function
331 <<_bfd_default_link_order>> which will do the right thing
332 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
333
334 For efficiency, a <<link_order>> of type
335 <<bfd_indirect_link_order>> whose associated section belongs
336 to a BFD of the same format as the output BFD must be handled
337 specially. This type of <<link_order>> describes part of an
338 output section in terms of a section belonging to one of the
339 input files. The <<_bfd_final_link>> function should read the
340 contents of the section and any associated relocs, apply the
341 relocs to the section contents, and write out the modified
342 section contents. If performing a relocatable link, the
343 relocs themselves must also be modified and written out.
344
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 The functions <<_bfd_relocate_contents>> and
348 <<_bfd_final_link_relocate>> provide some general support for
349 performing the actual relocations, notably overflow checking.
350 Their arguments include information about the symbol the
351 relocation is against and a <<reloc_howto_type>> argument
352 which describes the relocation to perform. These functions
353 are defined in <<reloc.c>>.
354
355 The a.out function which handles reading, relocating, and
356 writing section contents is <<aout_link_input_section>>. The
357 actual relocation is done in <<aout_link_input_section_std>>
358 and <<aout_link_input_section_ext>>.
359
360 INODE
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
362 SUBSUBSECTION
363 Writing the symbol table
364
365 The <<_bfd_final_link>> function must gather all the symbols
366 in the input files and write them out. It must also write out
367 all the symbols in the global hash table. This must be
368 controlled by the <<strip>> and <<discard>> fields of the
369 <<bfd_link_info>> structure.
370
371 The local symbols of the input files will not have been
372 entered into the linker hash table. The <<_bfd_final_link>>
373 routine must consider each input file and include the symbols
374 in the output file. It may be convenient to do this when
375 looking through the <<link_order>> structures, or it may be
376 done by stepping through the <<input_bfds>> list.
377
378 The <<_bfd_final_link>> routine must also traverse the global
379 hash table to gather all the externally visible symbols. It
380 is possible that most of the externally visible symbols may be
381 written out when considering the symbols of each input file,
382 but it is still necessary to traverse the hash table since the
383 linker script may have defined some symbols that are not in
384 any of the input files.
385
386 The <<strip>> field of the <<bfd_link_info>> structure
387 controls which symbols are written out. The possible values
388 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
389 then the <<keep_hash>> field of the <<bfd_link_info>>
390 structure is a hash table of symbols to keep; each symbol
391 should be looked up in this hash table, and only symbols which
392 are present should be included in the output file.
393
394 If the <<strip>> field of the <<bfd_link_info>> structure
395 permits local symbols to be written out, the <<discard>> field
396 is used to further controls which local symbols are included
397 in the output file. If the value is <<discard_l>>, then all
398 local symbols which begin with a certain prefix are discarded;
399 this is controlled by the <<bfd_is_local_label_name>> entry point.
400
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
407 */
408
409 static bfd_boolean generic_link_add_object_symbols
410 (bfd *, struct bfd_link_info *, bfd_boolean collect);
411 static bfd_boolean generic_link_add_symbols
412 (bfd *, struct bfd_link_info *, bfd_boolean);
413 static bfd_boolean generic_link_check_archive_element_no_collect
414 (bfd *, struct bfd_link_info *, bfd_boolean *);
415 static bfd_boolean generic_link_check_archive_element_collect
416 (bfd *, struct bfd_link_info *, bfd_boolean *);
417 static bfd_boolean generic_link_check_archive_element
418 (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
419 static bfd_boolean generic_link_add_symbol_list
420 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
421 bfd_boolean);
422 static bfd_boolean generic_add_output_symbol
423 (bfd *, size_t *psymalloc, asymbol *);
424 static bfd_boolean default_data_link_order
425 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
426 static bfd_boolean default_indirect_link_order
427 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
428 bfd_boolean);
429
430 /* The link hash table structure is defined in bfdlink.h. It provides
431 a base hash table which the backend specific hash tables are built
432 upon. */
433
434 /* Routine to create an entry in the link hash table. */
435
436 struct bfd_hash_entry *
437 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
438 struct bfd_hash_table *table,
439 const char *string)
440 {
441 /* Allocate the structure if it has not already been allocated by a
442 subclass. */
443 if (entry == NULL)
444 {
445 entry = bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446 if (entry == NULL)
447 return entry;
448 }
449
450 /* Call the allocation method of the superclass. */
451 entry = bfd_hash_newfunc (entry, table, string);
452 if (entry)
453 {
454 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455
456 /* Initialize the local fields. */
457 h->type = bfd_link_hash_new;
458 h->u.undef.next = NULL;
459 }
460
461 return entry;
462 }
463
464 /* Initialize a link hash table. The BFD argument is the one
465 responsible for creating this table. */
466
467 bfd_boolean
468 _bfd_link_hash_table_init
469 (struct bfd_link_hash_table *table,
470 bfd *abfd,
471 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
472 struct bfd_hash_table *,
473 const char *))
474 {
475 table->creator = abfd->xvec;
476 table->undefs = NULL;
477 table->undefs_tail = NULL;
478 table->type = bfd_link_generic_hash_table;
479
480 return bfd_hash_table_init (&table->table, newfunc);
481 }
482
483 /* Look up a symbol in a link hash table. If follow is TRUE, we
484 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
485 the real symbol. */
486
487 struct bfd_link_hash_entry *
488 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
489 const char *string,
490 bfd_boolean create,
491 bfd_boolean copy,
492 bfd_boolean follow)
493 {
494 struct bfd_link_hash_entry *ret;
495
496 ret = ((struct bfd_link_hash_entry *)
497 bfd_hash_lookup (&table->table, string, create, copy));
498
499 if (follow && ret != NULL)
500 {
501 while (ret->type == bfd_link_hash_indirect
502 || ret->type == bfd_link_hash_warning)
503 ret = ret->u.i.link;
504 }
505
506 return ret;
507 }
508
509 /* Look up a symbol in the main linker hash table if the symbol might
510 be wrapped. This should only be used for references to an
511 undefined symbol, not for definitions of a symbol. */
512
513 struct bfd_link_hash_entry *
514 bfd_wrapped_link_hash_lookup (bfd *abfd,
515 struct bfd_link_info *info,
516 const char *string,
517 bfd_boolean create,
518 bfd_boolean copy,
519 bfd_boolean follow)
520 {
521 bfd_size_type amt;
522
523 if (info->wrap_hash != NULL)
524 {
525 const char *l;
526 char prefix = '\0';
527
528 l = string;
529 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
530 {
531 prefix = *l;
532 ++l;
533 }
534
535 #undef WRAP
536 #define WRAP "__wrap_"
537
538 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
539 {
540 char *n;
541 struct bfd_link_hash_entry *h;
542
543 /* This symbol is being wrapped. We want to replace all
544 references to SYM with references to __wrap_SYM. */
545
546 amt = strlen (l) + sizeof WRAP + 1;
547 n = bfd_malloc (amt);
548 if (n == NULL)
549 return NULL;
550
551 n[0] = prefix;
552 n[1] = '\0';
553 strcat (n, WRAP);
554 strcat (n, l);
555 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
556 free (n);
557 return h;
558 }
559
560 #undef WRAP
561
562 #undef REAL
563 #define REAL "__real_"
564
565 if (*l == '_'
566 && strncmp (l, REAL, sizeof REAL - 1) == 0
567 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
568 FALSE, FALSE) != NULL)
569 {
570 char *n;
571 struct bfd_link_hash_entry *h;
572
573 /* This is a reference to __real_SYM, where SYM is being
574 wrapped. We want to replace all references to __real_SYM
575 with references to SYM. */
576
577 amt = strlen (l + sizeof REAL - 1) + 2;
578 n = bfd_malloc (amt);
579 if (n == NULL)
580 return NULL;
581
582 n[0] = prefix;
583 n[1] = '\0';
584 strcat (n, l + sizeof REAL - 1);
585 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
586 free (n);
587 return h;
588 }
589
590 #undef REAL
591 }
592
593 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
594 }
595
596 /* Traverse a generic link hash table. The only reason this is not a
597 macro is to do better type checking. This code presumes that an
598 argument passed as a struct bfd_hash_entry * may be caught as a
599 struct bfd_link_hash_entry * with no explicit cast required on the
600 call. */
601
602 void
603 bfd_link_hash_traverse
604 (struct bfd_link_hash_table *table,
605 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
606 void *info)
607 {
608 bfd_hash_traverse (&table->table,
609 (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
610 info);
611 }
612
613 /* Add a symbol to the linker hash table undefs list. */
614
615 void
616 bfd_link_add_undef (struct bfd_link_hash_table *table,
617 struct bfd_link_hash_entry *h)
618 {
619 BFD_ASSERT (h->u.undef.next == NULL);
620 if (table->undefs_tail != NULL)
621 table->undefs_tail->u.undef.next = h;
622 if (table->undefs == NULL)
623 table->undefs = h;
624 table->undefs_tail = h;
625 }
626
627 /* The undefs list was designed so that in normal use we don't need to
628 remove entries. However, if symbols on the list are changed from
629 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
630 bfd_link_hash_new for some reason, then they must be removed from the
631 list. Failure to do so might result in the linker attempting to add
632 the symbol to the list again at a later stage. */
633
634 void
635 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
636 {
637 struct bfd_link_hash_entry **pun;
638
639 pun = &table->undefs;
640 while (*pun != NULL)
641 {
642 struct bfd_link_hash_entry *h = *pun;
643
644 if (h->type == bfd_link_hash_new
645 || h->type == bfd_link_hash_undefweak)
646 {
647 *pun = h->u.undef.next;
648 h->u.undef.next = NULL;
649 if (h == table->undefs_tail)
650 {
651 if (pun == &table->undefs)
652 table->undefs_tail = NULL;
653 else
654 /* pun points at an u.undef.next field. Go back to
655 the start of the link_hash_entry. */
656 table->undefs_tail = (struct bfd_link_hash_entry *)
657 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
658 break;
659 }
660 }
661 else
662 pun = &h->u.undef.next;
663 }
664 }
665 \f
666 /* Routine to create an entry in a generic link hash table. */
667
668 struct bfd_hash_entry *
669 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
670 struct bfd_hash_table *table,
671 const char *string)
672 {
673 /* Allocate the structure if it has not already been allocated by a
674 subclass. */
675 if (entry == NULL)
676 {
677 entry =
678 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
679 if (entry == NULL)
680 return entry;
681 }
682
683 /* Call the allocation method of the superclass. */
684 entry = _bfd_link_hash_newfunc (entry, table, string);
685 if (entry)
686 {
687 struct generic_link_hash_entry *ret;
688
689 /* Set local fields. */
690 ret = (struct generic_link_hash_entry *) entry;
691 ret->written = FALSE;
692 ret->sym = NULL;
693 }
694
695 return entry;
696 }
697
698 /* Create a generic link hash table. */
699
700 struct bfd_link_hash_table *
701 _bfd_generic_link_hash_table_create (bfd *abfd)
702 {
703 struct generic_link_hash_table *ret;
704 bfd_size_type amt = sizeof (struct generic_link_hash_table);
705
706 ret = bfd_malloc (amt);
707 if (ret == NULL)
708 return NULL;
709 if (! _bfd_link_hash_table_init (&ret->root, abfd,
710 _bfd_generic_link_hash_newfunc))
711 {
712 free (ret);
713 return NULL;
714 }
715 return &ret->root;
716 }
717
718 void
719 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
720 {
721 struct generic_link_hash_table *ret
722 = (struct generic_link_hash_table *) hash;
723
724 bfd_hash_table_free (&ret->root.table);
725 free (ret);
726 }
727
728 /* Grab the symbols for an object file when doing a generic link. We
729 store the symbols in the outsymbols field. We need to keep them
730 around for the entire link to ensure that we only read them once.
731 If we read them multiple times, we might wind up with relocs and
732 the hash table pointing to different instances of the symbol
733 structure. */
734
735 static bfd_boolean
736 generic_link_read_symbols (bfd *abfd)
737 {
738 if (bfd_get_outsymbols (abfd) == NULL)
739 {
740 long symsize;
741 long symcount;
742
743 symsize = bfd_get_symtab_upper_bound (abfd);
744 if (symsize < 0)
745 return FALSE;
746 bfd_get_outsymbols (abfd) = bfd_alloc (abfd, symsize);
747 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
748 return FALSE;
749 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
750 if (symcount < 0)
751 return FALSE;
752 bfd_get_symcount (abfd) = symcount;
753 }
754
755 return TRUE;
756 }
757 \f
758 /* Generic function to add symbols to from an object file to the
759 global hash table. This version does not automatically collect
760 constructors by name. */
761
762 bfd_boolean
763 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
764 {
765 return generic_link_add_symbols (abfd, info, FALSE);
766 }
767
768 /* Generic function to add symbols from an object file to the global
769 hash table. This version automatically collects constructors by
770 name, as the collect2 program does. It should be used for any
771 target which does not provide some other mechanism for setting up
772 constructors and destructors; these are approximately those targets
773 for which gcc uses collect2 and do not support stabs. */
774
775 bfd_boolean
776 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
777 {
778 return generic_link_add_symbols (abfd, info, TRUE);
779 }
780
781 /* Indicate that we are only retrieving symbol values from this
782 section. We want the symbols to act as though the values in the
783 file are absolute. */
784
785 void
786 _bfd_generic_link_just_syms (asection *sec,
787 struct bfd_link_info *info ATTRIBUTE_UNUSED)
788 {
789 sec->output_section = bfd_abs_section_ptr;
790 sec->output_offset = sec->vma;
791 }
792
793 /* Add symbols from an object file to the global hash table. */
794
795 static bfd_boolean
796 generic_link_add_symbols (bfd *abfd,
797 struct bfd_link_info *info,
798 bfd_boolean collect)
799 {
800 bfd_boolean ret;
801
802 switch (bfd_get_format (abfd))
803 {
804 case bfd_object:
805 ret = generic_link_add_object_symbols (abfd, info, collect);
806 break;
807 case bfd_archive:
808 ret = (_bfd_generic_link_add_archive_symbols
809 (abfd, info,
810 (collect
811 ? generic_link_check_archive_element_collect
812 : generic_link_check_archive_element_no_collect)));
813 break;
814 default:
815 bfd_set_error (bfd_error_wrong_format);
816 ret = FALSE;
817 }
818
819 return ret;
820 }
821
822 /* Add symbols from an object file to the global hash table. */
823
824 static bfd_boolean
825 generic_link_add_object_symbols (bfd *abfd,
826 struct bfd_link_info *info,
827 bfd_boolean collect)
828 {
829 bfd_size_type symcount;
830 struct bfd_symbol **outsyms;
831
832 if (! generic_link_read_symbols (abfd))
833 return FALSE;
834 symcount = _bfd_generic_link_get_symcount (abfd);
835 outsyms = _bfd_generic_link_get_symbols (abfd);
836 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
837 }
838 \f
839 /* We build a hash table of all symbols defined in an archive. */
840
841 /* An archive symbol may be defined by multiple archive elements.
842 This linked list is used to hold the elements. */
843
844 struct archive_list
845 {
846 struct archive_list *next;
847 unsigned int indx;
848 };
849
850 /* An entry in an archive hash table. */
851
852 struct archive_hash_entry
853 {
854 struct bfd_hash_entry root;
855 /* Where the symbol is defined. */
856 struct archive_list *defs;
857 };
858
859 /* An archive hash table itself. */
860
861 struct archive_hash_table
862 {
863 struct bfd_hash_table table;
864 };
865
866 /* Create a new entry for an archive hash table. */
867
868 static struct bfd_hash_entry *
869 archive_hash_newfunc (struct bfd_hash_entry *entry,
870 struct bfd_hash_table *table,
871 const char *string)
872 {
873 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
874
875 /* Allocate the structure if it has not already been allocated by a
876 subclass. */
877 if (ret == NULL)
878 ret = bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
879 if (ret == NULL)
880 return NULL;
881
882 /* Call the allocation method of the superclass. */
883 ret = ((struct archive_hash_entry *)
884 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
885
886 if (ret)
887 {
888 /* Initialize the local fields. */
889 ret->defs = NULL;
890 }
891
892 return &ret->root;
893 }
894
895 /* Initialize an archive hash table. */
896
897 static bfd_boolean
898 archive_hash_table_init
899 (struct archive_hash_table *table,
900 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
901 struct bfd_hash_table *,
902 const char *))
903 {
904 return bfd_hash_table_init (&table->table, newfunc);
905 }
906
907 /* Look up an entry in an archive hash table. */
908
909 #define archive_hash_lookup(t, string, create, copy) \
910 ((struct archive_hash_entry *) \
911 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
912
913 /* Allocate space in an archive hash table. */
914
915 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
916
917 /* Free an archive hash table. */
918
919 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
920
921 /* Generic function to add symbols from an archive file to the global
922 hash file. This function presumes that the archive symbol table
923 has already been read in (this is normally done by the
924 bfd_check_format entry point). It looks through the undefined and
925 common symbols and searches the archive symbol table for them. If
926 it finds an entry, it includes the associated object file in the
927 link.
928
929 The old linker looked through the archive symbol table for
930 undefined symbols. We do it the other way around, looking through
931 undefined symbols for symbols defined in the archive. The
932 advantage of the newer scheme is that we only have to look through
933 the list of undefined symbols once, whereas the old method had to
934 re-search the symbol table each time a new object file was added.
935
936 The CHECKFN argument is used to see if an object file should be
937 included. CHECKFN should set *PNEEDED to TRUE if the object file
938 should be included, and must also call the bfd_link_info
939 add_archive_element callback function and handle adding the symbols
940 to the global hash table. CHECKFN should only return FALSE if some
941 sort of error occurs.
942
943 For some formats, such as a.out, it is possible to look through an
944 object file but not actually include it in the link. The
945 archive_pass field in a BFD is used to avoid checking the symbols
946 of an object files too many times. When an object is included in
947 the link, archive_pass is set to -1. If an object is scanned but
948 not included, archive_pass is set to the pass number. The pass
949 number is incremented each time a new object file is included. The
950 pass number is used because when a new object file is included it
951 may create new undefined symbols which cause a previously examined
952 object file to be included. */
953
954 bfd_boolean
955 _bfd_generic_link_add_archive_symbols
956 (bfd *abfd,
957 struct bfd_link_info *info,
958 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
959 {
960 carsym *arsyms;
961 carsym *arsym_end;
962 register carsym *arsym;
963 int pass;
964 struct archive_hash_table arsym_hash;
965 unsigned int indx;
966 struct bfd_link_hash_entry **pundef;
967
968 if (! bfd_has_map (abfd))
969 {
970 /* An empty archive is a special case. */
971 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
972 return TRUE;
973 bfd_set_error (bfd_error_no_armap);
974 return FALSE;
975 }
976
977 arsyms = bfd_ardata (abfd)->symdefs;
978 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
979
980 /* In order to quickly determine whether an symbol is defined in
981 this archive, we build a hash table of the symbols. */
982 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
983 return FALSE;
984 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
985 {
986 struct archive_hash_entry *arh;
987 struct archive_list *l, **pp;
988
989 arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
990 if (arh == NULL)
991 goto error_return;
992 l = ((struct archive_list *)
993 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
994 if (l == NULL)
995 goto error_return;
996 l->indx = indx;
997 for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
998 ;
999 *pp = l;
1000 l->next = NULL;
1001 }
1002
1003 /* The archive_pass field in the archive itself is used to
1004 initialize PASS, sine we may search the same archive multiple
1005 times. */
1006 pass = abfd->archive_pass + 1;
1007
1008 /* New undefined symbols are added to the end of the list, so we
1009 only need to look through it once. */
1010 pundef = &info->hash->undefs;
1011 while (*pundef != NULL)
1012 {
1013 struct bfd_link_hash_entry *h;
1014 struct archive_hash_entry *arh;
1015 struct archive_list *l;
1016
1017 h = *pundef;
1018
1019 /* When a symbol is defined, it is not necessarily removed from
1020 the list. */
1021 if (h->type != bfd_link_hash_undefined
1022 && h->type != bfd_link_hash_common)
1023 {
1024 /* Remove this entry from the list, for general cleanliness
1025 and because we are going to look through the list again
1026 if we search any more libraries. We can't remove the
1027 entry if it is the tail, because that would lose any
1028 entries we add to the list later on (it would also cause
1029 us to lose track of whether the symbol has been
1030 referenced). */
1031 if (*pundef != info->hash->undefs_tail)
1032 *pundef = (*pundef)->u.undef.next;
1033 else
1034 pundef = &(*pundef)->u.undef.next;
1035 continue;
1036 }
1037
1038 /* Look for this symbol in the archive symbol map. */
1039 arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1040 if (arh == NULL)
1041 {
1042 /* If we haven't found the exact symbol we're looking for,
1043 let's look for its import thunk */
1044 if (info->pei386_auto_import)
1045 {
1046 bfd_size_type amt = strlen (h->root.string) + 10;
1047 char *buf = bfd_malloc (amt);
1048 if (buf == NULL)
1049 return FALSE;
1050
1051 sprintf (buf, "__imp_%s", h->root.string);
1052 arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1053 free(buf);
1054 }
1055 if (arh == NULL)
1056 {
1057 pundef = &(*pundef)->u.undef.next;
1058 continue;
1059 }
1060 }
1061 /* Look at all the objects which define this symbol. */
1062 for (l = arh->defs; l != NULL; l = l->next)
1063 {
1064 bfd *element;
1065 bfd_boolean needed;
1066
1067 /* If the symbol has gotten defined along the way, quit. */
1068 if (h->type != bfd_link_hash_undefined
1069 && h->type != bfd_link_hash_common)
1070 break;
1071
1072 element = bfd_get_elt_at_index (abfd, l->indx);
1073 if (element == NULL)
1074 goto error_return;
1075
1076 /* If we've already included this element, or if we've
1077 already checked it on this pass, continue. */
1078 if (element->archive_pass == -1
1079 || element->archive_pass == pass)
1080 continue;
1081
1082 /* If we can't figure this element out, just ignore it. */
1083 if (! bfd_check_format (element, bfd_object))
1084 {
1085 element->archive_pass = -1;
1086 continue;
1087 }
1088
1089 /* CHECKFN will see if this element should be included, and
1090 go ahead and include it if appropriate. */
1091 if (! (*checkfn) (element, info, &needed))
1092 goto error_return;
1093
1094 if (! needed)
1095 element->archive_pass = pass;
1096 else
1097 {
1098 element->archive_pass = -1;
1099
1100 /* Increment the pass count to show that we may need to
1101 recheck object files which were already checked. */
1102 ++pass;
1103 }
1104 }
1105
1106 pundef = &(*pundef)->u.undef.next;
1107 }
1108
1109 archive_hash_table_free (&arsym_hash);
1110
1111 /* Save PASS in case we are called again. */
1112 abfd->archive_pass = pass;
1113
1114 return TRUE;
1115
1116 error_return:
1117 archive_hash_table_free (&arsym_hash);
1118 return FALSE;
1119 }
1120 \f
1121 /* See if we should include an archive element. This version is used
1122 when we do not want to automatically collect constructors based on
1123 the symbol name, presumably because we have some other mechanism
1124 for finding them. */
1125
1126 static bfd_boolean
1127 generic_link_check_archive_element_no_collect (
1128 bfd *abfd,
1129 struct bfd_link_info *info,
1130 bfd_boolean *pneeded)
1131 {
1132 return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1133 }
1134
1135 /* See if we should include an archive element. This version is used
1136 when we want to automatically collect constructors based on the
1137 symbol name, as collect2 does. */
1138
1139 static bfd_boolean
1140 generic_link_check_archive_element_collect (bfd *abfd,
1141 struct bfd_link_info *info,
1142 bfd_boolean *pneeded)
1143 {
1144 return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1145 }
1146
1147 /* See if we should include an archive element. Optionally collect
1148 constructors. */
1149
1150 static bfd_boolean
1151 generic_link_check_archive_element (bfd *abfd,
1152 struct bfd_link_info *info,
1153 bfd_boolean *pneeded,
1154 bfd_boolean collect)
1155 {
1156 asymbol **pp, **ppend;
1157
1158 *pneeded = FALSE;
1159
1160 if (! generic_link_read_symbols (abfd))
1161 return FALSE;
1162
1163 pp = _bfd_generic_link_get_symbols (abfd);
1164 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1165 for (; pp < ppend; pp++)
1166 {
1167 asymbol *p;
1168 struct bfd_link_hash_entry *h;
1169
1170 p = *pp;
1171
1172 /* We are only interested in globally visible symbols. */
1173 if (! bfd_is_com_section (p->section)
1174 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1175 continue;
1176
1177 /* We are only interested if we know something about this
1178 symbol, and it is undefined or common. An undefined weak
1179 symbol (type bfd_link_hash_undefweak) is not considered to be
1180 a reference when pulling files out of an archive. See the
1181 SVR4 ABI, p. 4-27. */
1182 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1183 FALSE, TRUE);
1184 if (h == NULL
1185 || (h->type != bfd_link_hash_undefined
1186 && h->type != bfd_link_hash_common))
1187 continue;
1188
1189 /* P is a symbol we are looking for. */
1190
1191 if (! bfd_is_com_section (p->section))
1192 {
1193 bfd_size_type symcount;
1194 asymbol **symbols;
1195
1196 /* This object file defines this symbol, so pull it in. */
1197 if (! (*info->callbacks->add_archive_element) (info, abfd,
1198 bfd_asymbol_name (p)))
1199 return FALSE;
1200 symcount = _bfd_generic_link_get_symcount (abfd);
1201 symbols = _bfd_generic_link_get_symbols (abfd);
1202 if (! generic_link_add_symbol_list (abfd, info, symcount,
1203 symbols, collect))
1204 return FALSE;
1205 *pneeded = TRUE;
1206 return TRUE;
1207 }
1208
1209 /* P is a common symbol. */
1210
1211 if (h->type == bfd_link_hash_undefined)
1212 {
1213 bfd *symbfd;
1214 bfd_vma size;
1215 unsigned int power;
1216
1217 symbfd = h->u.undef.abfd;
1218 if (symbfd == NULL)
1219 {
1220 /* This symbol was created as undefined from outside
1221 BFD. We assume that we should link in the object
1222 file. This is for the -u option in the linker. */
1223 if (! (*info->callbacks->add_archive_element)
1224 (info, abfd, bfd_asymbol_name (p)))
1225 return FALSE;
1226 *pneeded = TRUE;
1227 return TRUE;
1228 }
1229
1230 /* Turn the symbol into a common symbol but do not link in
1231 the object file. This is how a.out works. Object
1232 formats that require different semantics must implement
1233 this function differently. This symbol is already on the
1234 undefs list. We add the section to a common section
1235 attached to symbfd to ensure that it is in a BFD which
1236 will be linked in. */
1237 h->type = bfd_link_hash_common;
1238 h->u.c.p =
1239 bfd_hash_allocate (&info->hash->table,
1240 sizeof (struct bfd_link_hash_common_entry));
1241 if (h->u.c.p == NULL)
1242 return FALSE;
1243
1244 size = bfd_asymbol_value (p);
1245 h->u.c.size = size;
1246
1247 power = bfd_log2 (size);
1248 if (power > 4)
1249 power = 4;
1250 h->u.c.p->alignment_power = power;
1251
1252 if (p->section == bfd_com_section_ptr)
1253 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1254 else
1255 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1256 p->section->name);
1257 h->u.c.p->section->flags = SEC_ALLOC;
1258 }
1259 else
1260 {
1261 /* Adjust the size of the common symbol if necessary. This
1262 is how a.out works. Object formats that require
1263 different semantics must implement this function
1264 differently. */
1265 if (bfd_asymbol_value (p) > h->u.c.size)
1266 h->u.c.size = bfd_asymbol_value (p);
1267 }
1268 }
1269
1270 /* This archive element is not needed. */
1271 return TRUE;
1272 }
1273
1274 /* Add the symbols from an object file to the global hash table. ABFD
1275 is the object file. INFO is the linker information. SYMBOL_COUNT
1276 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1277 is TRUE if constructors should be automatically collected by name
1278 as is done by collect2. */
1279
1280 static bfd_boolean
1281 generic_link_add_symbol_list (bfd *abfd,
1282 struct bfd_link_info *info,
1283 bfd_size_type symbol_count,
1284 asymbol **symbols,
1285 bfd_boolean collect)
1286 {
1287 asymbol **pp, **ppend;
1288
1289 pp = symbols;
1290 ppend = symbols + symbol_count;
1291 for (; pp < ppend; pp++)
1292 {
1293 asymbol *p;
1294
1295 p = *pp;
1296
1297 if ((p->flags & (BSF_INDIRECT
1298 | BSF_WARNING
1299 | BSF_GLOBAL
1300 | BSF_CONSTRUCTOR
1301 | BSF_WEAK)) != 0
1302 || bfd_is_und_section (bfd_get_section (p))
1303 || bfd_is_com_section (bfd_get_section (p))
1304 || bfd_is_ind_section (bfd_get_section (p)))
1305 {
1306 const char *name;
1307 const char *string;
1308 struct generic_link_hash_entry *h;
1309 struct bfd_link_hash_entry *bh;
1310
1311 name = bfd_asymbol_name (p);
1312 if (((p->flags & BSF_INDIRECT) != 0
1313 || bfd_is_ind_section (p->section))
1314 && pp + 1 < ppend)
1315 {
1316 pp++;
1317 string = bfd_asymbol_name (*pp);
1318 }
1319 else if ((p->flags & BSF_WARNING) != 0
1320 && pp + 1 < ppend)
1321 {
1322 /* The name of P is actually the warning string, and the
1323 next symbol is the one to warn about. */
1324 string = name;
1325 pp++;
1326 name = bfd_asymbol_name (*pp);
1327 }
1328 else
1329 string = NULL;
1330
1331 bh = NULL;
1332 if (! (_bfd_generic_link_add_one_symbol
1333 (info, abfd, name, p->flags, bfd_get_section (p),
1334 p->value, string, FALSE, collect, &bh)))
1335 return FALSE;
1336 h = (struct generic_link_hash_entry *) bh;
1337
1338 /* If this is a constructor symbol, and the linker didn't do
1339 anything with it, then we want to just pass the symbol
1340 through to the output file. This will happen when
1341 linking with -r. */
1342 if ((p->flags & BSF_CONSTRUCTOR) != 0
1343 && (h == NULL || h->root.type == bfd_link_hash_new))
1344 {
1345 p->udata.p = NULL;
1346 continue;
1347 }
1348
1349 /* Save the BFD symbol so that we don't lose any backend
1350 specific information that may be attached to it. We only
1351 want this one if it gives more information than the
1352 existing one; we don't want to replace a defined symbol
1353 with an undefined one. This routine may be called with a
1354 hash table other than the generic hash table, so we only
1355 do this if we are certain that the hash table is a
1356 generic one. */
1357 if (info->hash->creator == abfd->xvec)
1358 {
1359 if (h->sym == NULL
1360 || (! bfd_is_und_section (bfd_get_section (p))
1361 && (! bfd_is_com_section (bfd_get_section (p))
1362 || bfd_is_und_section (bfd_get_section (h->sym)))))
1363 {
1364 h->sym = p;
1365 /* BSF_OLD_COMMON is a hack to support COFF reloc
1366 reading, and it should go away when the COFF
1367 linker is switched to the new version. */
1368 if (bfd_is_com_section (bfd_get_section (p)))
1369 p->flags |= BSF_OLD_COMMON;
1370 }
1371 }
1372
1373 /* Store a back pointer from the symbol to the hash
1374 table entry for the benefit of relaxation code until
1375 it gets rewritten to not use asymbol structures.
1376 Setting this is also used to check whether these
1377 symbols were set up by the generic linker. */
1378 p->udata.p = h;
1379 }
1380 }
1381
1382 return TRUE;
1383 }
1384 \f
1385 /* We use a state table to deal with adding symbols from an object
1386 file. The first index into the state table describes the symbol
1387 from the object file. The second index into the state table is the
1388 type of the symbol in the hash table. */
1389
1390 /* The symbol from the object file is turned into one of these row
1391 values. */
1392
1393 enum link_row
1394 {
1395 UNDEF_ROW, /* Undefined. */
1396 UNDEFW_ROW, /* Weak undefined. */
1397 DEF_ROW, /* Defined. */
1398 DEFW_ROW, /* Weak defined. */
1399 COMMON_ROW, /* Common. */
1400 INDR_ROW, /* Indirect. */
1401 WARN_ROW, /* Warning. */
1402 SET_ROW /* Member of set. */
1403 };
1404
1405 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1406 #undef FAIL
1407
1408 /* The actions to take in the state table. */
1409
1410 enum link_action
1411 {
1412 FAIL, /* Abort. */
1413 UND, /* Mark symbol undefined. */
1414 WEAK, /* Mark symbol weak undefined. */
1415 DEF, /* Mark symbol defined. */
1416 DEFW, /* Mark symbol weak defined. */
1417 COM, /* Mark symbol common. */
1418 REF, /* Mark defined symbol referenced. */
1419 CREF, /* Possibly warn about common reference to defined symbol. */
1420 CDEF, /* Define existing common symbol. */
1421 NOACT, /* No action. */
1422 BIG, /* Mark symbol common using largest size. */
1423 MDEF, /* Multiple definition error. */
1424 MIND, /* Multiple indirect symbols. */
1425 IND, /* Make indirect symbol. */
1426 CIND, /* Make indirect symbol from existing common symbol. */
1427 SET, /* Add value to set. */
1428 MWARN, /* Make warning symbol. */
1429 WARN, /* Issue warning. */
1430 CWARN, /* Warn if referenced, else MWARN. */
1431 CYCLE, /* Repeat with symbol pointed to. */
1432 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1433 WARNC /* Issue warning and then CYCLE. */
1434 };
1435
1436 /* The state table itself. The first index is a link_row and the
1437 second index is a bfd_link_hash_type. */
1438
1439 static const enum link_action link_action[8][8] =
1440 {
1441 /* current\prev new undef undefw def defw com indr warn */
1442 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1443 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1444 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1445 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1446 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1447 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1448 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, NOACT },
1449 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1450 };
1451
1452 /* Most of the entries in the LINK_ACTION table are straightforward,
1453 but a few are somewhat subtle.
1454
1455 A reference to an indirect symbol (UNDEF_ROW/indr or
1456 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1457 symbol and to the symbol the indirect symbol points to.
1458
1459 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1460 causes the warning to be issued.
1461
1462 A common definition of an indirect symbol (COMMON_ROW/indr) is
1463 treated as a multiple definition error. Likewise for an indirect
1464 definition of a common symbol (INDR_ROW/com).
1465
1466 An indirect definition of a warning (INDR_ROW/warn) does not cause
1467 the warning to be issued.
1468
1469 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1470 warning is created for the symbol the indirect symbol points to.
1471
1472 Adding an entry to a set does not count as a reference to a set,
1473 and no warning is issued (SET_ROW/warn). */
1474
1475 /* Return the BFD in which a hash entry has been defined, if known. */
1476
1477 static bfd *
1478 hash_entry_bfd (struct bfd_link_hash_entry *h)
1479 {
1480 while (h->type == bfd_link_hash_warning)
1481 h = h->u.i.link;
1482 switch (h->type)
1483 {
1484 default:
1485 return NULL;
1486 case bfd_link_hash_undefined:
1487 case bfd_link_hash_undefweak:
1488 return h->u.undef.abfd;
1489 case bfd_link_hash_defined:
1490 case bfd_link_hash_defweak:
1491 return h->u.def.section->owner;
1492 case bfd_link_hash_common:
1493 return h->u.c.p->section->owner;
1494 }
1495 /*NOTREACHED*/
1496 }
1497
1498 /* Add a symbol to the global hash table.
1499 ABFD is the BFD the symbol comes from.
1500 NAME is the name of the symbol.
1501 FLAGS is the BSF_* bits associated with the symbol.
1502 SECTION is the section in which the symbol is defined; this may be
1503 bfd_und_section_ptr or bfd_com_section_ptr.
1504 VALUE is the value of the symbol, relative to the section.
1505 STRING is used for either an indirect symbol, in which case it is
1506 the name of the symbol to indirect to, or a warning symbol, in
1507 which case it is the warning string.
1508 COPY is TRUE if NAME or STRING must be copied into locally
1509 allocated memory if they need to be saved.
1510 COLLECT is TRUE if we should automatically collect gcc constructor
1511 or destructor names as collect2 does.
1512 HASHP, if not NULL, is a place to store the created hash table
1513 entry; if *HASHP is not NULL, the caller has already looked up
1514 the hash table entry, and stored it in *HASHP. */
1515
1516 bfd_boolean
1517 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1518 bfd *abfd,
1519 const char *name,
1520 flagword flags,
1521 asection *section,
1522 bfd_vma value,
1523 const char *string,
1524 bfd_boolean copy,
1525 bfd_boolean collect,
1526 struct bfd_link_hash_entry **hashp)
1527 {
1528 enum link_row row;
1529 struct bfd_link_hash_entry *h;
1530 bfd_boolean cycle;
1531
1532 if (bfd_is_ind_section (section)
1533 || (flags & BSF_INDIRECT) != 0)
1534 row = INDR_ROW;
1535 else if ((flags & BSF_WARNING) != 0)
1536 row = WARN_ROW;
1537 else if ((flags & BSF_CONSTRUCTOR) != 0)
1538 row = SET_ROW;
1539 else if (bfd_is_und_section (section))
1540 {
1541 if ((flags & BSF_WEAK) != 0)
1542 row = UNDEFW_ROW;
1543 else
1544 row = UNDEF_ROW;
1545 }
1546 else if ((flags & BSF_WEAK) != 0)
1547 row = DEFW_ROW;
1548 else if (bfd_is_com_section (section))
1549 row = COMMON_ROW;
1550 else
1551 row = DEF_ROW;
1552
1553 if (hashp != NULL && *hashp != NULL)
1554 h = *hashp;
1555 else
1556 {
1557 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1558 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1559 else
1560 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1561 if (h == NULL)
1562 {
1563 if (hashp != NULL)
1564 *hashp = NULL;
1565 return FALSE;
1566 }
1567 }
1568
1569 if (info->notice_all
1570 || (info->notice_hash != NULL
1571 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1572 {
1573 if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1574 value))
1575 return FALSE;
1576 }
1577
1578 if (hashp != NULL)
1579 *hashp = h;
1580
1581 do
1582 {
1583 enum link_action action;
1584
1585 cycle = FALSE;
1586 action = link_action[(int) row][(int) h->type];
1587 switch (action)
1588 {
1589 case FAIL:
1590 abort ();
1591
1592 case NOACT:
1593 /* Do nothing. */
1594 break;
1595
1596 case UND:
1597 /* Make a new undefined symbol. */
1598 h->type = bfd_link_hash_undefined;
1599 h->u.undef.abfd = abfd;
1600 bfd_link_add_undef (info->hash, h);
1601 break;
1602
1603 case WEAK:
1604 /* Make a new weak undefined symbol. */
1605 h->type = bfd_link_hash_undefweak;
1606 h->u.undef.abfd = abfd;
1607 break;
1608
1609 case CDEF:
1610 /* We have found a definition for a symbol which was
1611 previously common. */
1612 BFD_ASSERT (h->type == bfd_link_hash_common);
1613 if (! ((*info->callbacks->multiple_common)
1614 (info, h->root.string,
1615 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1616 abfd, bfd_link_hash_defined, 0)))
1617 return FALSE;
1618 /* Fall through. */
1619 case DEF:
1620 case DEFW:
1621 {
1622 enum bfd_link_hash_type oldtype;
1623
1624 /* Define a symbol. */
1625 oldtype = h->type;
1626 if (action == DEFW)
1627 h->type = bfd_link_hash_defweak;
1628 else
1629 h->type = bfd_link_hash_defined;
1630 h->u.def.section = section;
1631 h->u.def.value = value;
1632
1633 /* If we have been asked to, we act like collect2 and
1634 identify all functions that might be global
1635 constructors and destructors and pass them up in a
1636 callback. We only do this for certain object file
1637 types, since many object file types can handle this
1638 automatically. */
1639 if (collect && name[0] == '_')
1640 {
1641 const char *s;
1642
1643 /* A constructor or destructor name starts like this:
1644 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1645 the second are the same character (we accept any
1646 character there, in case a new object file format
1647 comes along with even worse naming restrictions). */
1648
1649 #define CONS_PREFIX "GLOBAL_"
1650 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1651
1652 s = name + 1;
1653 while (*s == '_')
1654 ++s;
1655 if (s[0] == 'G'
1656 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1657 {
1658 char c;
1659
1660 c = s[CONS_PREFIX_LEN + 1];
1661 if ((c == 'I' || c == 'D')
1662 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1663 {
1664 /* If this is a definition of a symbol which
1665 was previously weakly defined, we are in
1666 trouble. We have already added a
1667 constructor entry for the weak defined
1668 symbol, and now we are trying to add one
1669 for the new symbol. Fortunately, this case
1670 should never arise in practice. */
1671 if (oldtype == bfd_link_hash_defweak)
1672 abort ();
1673
1674 if (! ((*info->callbacks->constructor)
1675 (info, c == 'I',
1676 h->root.string, abfd, section, value)))
1677 return FALSE;
1678 }
1679 }
1680 }
1681 }
1682
1683 break;
1684
1685 case COM:
1686 /* We have found a common definition for a symbol. */
1687 if (h->type == bfd_link_hash_new)
1688 bfd_link_add_undef (info->hash, h);
1689 h->type = bfd_link_hash_common;
1690 h->u.c.p =
1691 bfd_hash_allocate (&info->hash->table,
1692 sizeof (struct bfd_link_hash_common_entry));
1693 if (h->u.c.p == NULL)
1694 return FALSE;
1695
1696 h->u.c.size = value;
1697
1698 /* Select a default alignment based on the size. This may
1699 be overridden by the caller. */
1700 {
1701 unsigned int power;
1702
1703 power = bfd_log2 (value);
1704 if (power > 4)
1705 power = 4;
1706 h->u.c.p->alignment_power = power;
1707 }
1708
1709 /* The section of a common symbol is only used if the common
1710 symbol is actually allocated. It basically provides a
1711 hook for the linker script to decide which output section
1712 the common symbols should be put in. In most cases, the
1713 section of a common symbol will be bfd_com_section_ptr,
1714 the code here will choose a common symbol section named
1715 "COMMON", and the linker script will contain *(COMMON) in
1716 the appropriate place. A few targets use separate common
1717 sections for small symbols, and they require special
1718 handling. */
1719 if (section == bfd_com_section_ptr)
1720 {
1721 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1722 h->u.c.p->section->flags = SEC_ALLOC;
1723 }
1724 else if (section->owner != abfd)
1725 {
1726 h->u.c.p->section = bfd_make_section_old_way (abfd,
1727 section->name);
1728 h->u.c.p->section->flags = SEC_ALLOC;
1729 }
1730 else
1731 h->u.c.p->section = section;
1732 break;
1733
1734 case REF:
1735 /* A reference to a defined symbol. */
1736 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1737 h->u.undef.next = h;
1738 break;
1739
1740 case BIG:
1741 /* We have found a common definition for a symbol which
1742 already had a common definition. Use the maximum of the
1743 two sizes, and use the section required by the larger symbol. */
1744 BFD_ASSERT (h->type == bfd_link_hash_common);
1745 if (! ((*info->callbacks->multiple_common)
1746 (info, h->root.string,
1747 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1748 abfd, bfd_link_hash_common, value)))
1749 return FALSE;
1750 if (value > h->u.c.size)
1751 {
1752 unsigned int power;
1753
1754 h->u.c.size = value;
1755
1756 /* Select a default alignment based on the size. This may
1757 be overridden by the caller. */
1758 power = bfd_log2 (value);
1759 if (power > 4)
1760 power = 4;
1761 h->u.c.p->alignment_power = power;
1762
1763 /* Some systems have special treatment for small commons,
1764 hence we want to select the section used by the larger
1765 symbol. This makes sure the symbol does not go in a
1766 small common section if it is now too large. */
1767 if (section == bfd_com_section_ptr)
1768 {
1769 h->u.c.p->section
1770 = bfd_make_section_old_way (abfd, "COMMON");
1771 h->u.c.p->section->flags = SEC_ALLOC;
1772 }
1773 else if (section->owner != abfd)
1774 {
1775 h->u.c.p->section
1776 = bfd_make_section_old_way (abfd, section->name);
1777 h->u.c.p->section->flags = SEC_ALLOC;
1778 }
1779 else
1780 h->u.c.p->section = section;
1781 }
1782 break;
1783
1784 case CREF:
1785 {
1786 bfd *obfd;
1787
1788 /* We have found a common definition for a symbol which
1789 was already defined. FIXME: It would nice if we could
1790 report the BFD which defined an indirect symbol, but we
1791 don't have anywhere to store the information. */
1792 if (h->type == bfd_link_hash_defined
1793 || h->type == bfd_link_hash_defweak)
1794 obfd = h->u.def.section->owner;
1795 else
1796 obfd = NULL;
1797 if (! ((*info->callbacks->multiple_common)
1798 (info, h->root.string, obfd, h->type, 0,
1799 abfd, bfd_link_hash_common, value)))
1800 return FALSE;
1801 }
1802 break;
1803
1804 case MIND:
1805 /* Multiple indirect symbols. This is OK if they both point
1806 to the same symbol. */
1807 if (strcmp (h->u.i.link->root.string, string) == 0)
1808 break;
1809 /* Fall through. */
1810 case MDEF:
1811 /* Handle a multiple definition. */
1812 if (!info->allow_multiple_definition)
1813 {
1814 asection *msec = NULL;
1815 bfd_vma mval = 0;
1816
1817 switch (h->type)
1818 {
1819 case bfd_link_hash_defined:
1820 msec = h->u.def.section;
1821 mval = h->u.def.value;
1822 break;
1823 case bfd_link_hash_indirect:
1824 msec = bfd_ind_section_ptr;
1825 mval = 0;
1826 break;
1827 default:
1828 abort ();
1829 }
1830
1831 /* Ignore a redefinition of an absolute symbol to the
1832 same value; it's harmless. */
1833 if (h->type == bfd_link_hash_defined
1834 && bfd_is_abs_section (msec)
1835 && bfd_is_abs_section (section)
1836 && value == mval)
1837 break;
1838
1839 if (! ((*info->callbacks->multiple_definition)
1840 (info, h->root.string, msec->owner, msec, mval,
1841 abfd, section, value)))
1842 return FALSE;
1843 }
1844 break;
1845
1846 case CIND:
1847 /* Create an indirect symbol from an existing common symbol. */
1848 BFD_ASSERT (h->type == bfd_link_hash_common);
1849 if (! ((*info->callbacks->multiple_common)
1850 (info, h->root.string,
1851 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1852 abfd, bfd_link_hash_indirect, 0)))
1853 return FALSE;
1854 /* Fall through. */
1855 case IND:
1856 /* Create an indirect symbol. */
1857 {
1858 struct bfd_link_hash_entry *inh;
1859
1860 /* STRING is the name of the symbol we want to indirect
1861 to. */
1862 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1863 copy, FALSE);
1864 if (inh == NULL)
1865 return FALSE;
1866 if (inh->type == bfd_link_hash_indirect
1867 && inh->u.i.link == h)
1868 {
1869 (*_bfd_error_handler)
1870 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1871 abfd, name, string);
1872 bfd_set_error (bfd_error_invalid_operation);
1873 return FALSE;
1874 }
1875 if (inh->type == bfd_link_hash_new)
1876 {
1877 inh->type = bfd_link_hash_undefined;
1878 inh->u.undef.abfd = abfd;
1879 bfd_link_add_undef (info->hash, inh);
1880 }
1881
1882 /* If the indirect symbol has been referenced, we need to
1883 push the reference down to the symbol we are
1884 referencing. */
1885 if (h->type != bfd_link_hash_new)
1886 {
1887 row = UNDEF_ROW;
1888 cycle = TRUE;
1889 }
1890
1891 h->type = bfd_link_hash_indirect;
1892 h->u.i.link = inh;
1893 }
1894 break;
1895
1896 case SET:
1897 /* Add an entry to a set. */
1898 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1899 abfd, section, value))
1900 return FALSE;
1901 break;
1902
1903 case WARNC:
1904 /* Issue a warning and cycle. */
1905 if (h->u.i.warning != NULL)
1906 {
1907 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1908 h->root.string, abfd,
1909 NULL, 0))
1910 return FALSE;
1911 /* Only issue a warning once. */
1912 h->u.i.warning = NULL;
1913 }
1914 /* Fall through. */
1915 case CYCLE:
1916 /* Try again with the referenced symbol. */
1917 h = h->u.i.link;
1918 cycle = TRUE;
1919 break;
1920
1921 case REFC:
1922 /* A reference to an indirect symbol. */
1923 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1924 h->u.undef.next = h;
1925 h = h->u.i.link;
1926 cycle = TRUE;
1927 break;
1928
1929 case WARN:
1930 /* Issue a warning. */
1931 if (! (*info->callbacks->warning) (info, string, h->root.string,
1932 hash_entry_bfd (h), NULL, 0))
1933 return FALSE;
1934 break;
1935
1936 case CWARN:
1937 /* Warn if this symbol has been referenced already,
1938 otherwise add a warning. A symbol has been referenced if
1939 the u.undef.next field is not NULL, or it is the tail of the
1940 undefined symbol list. The REF case above helps to
1941 ensure this. */
1942 if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1943 {
1944 if (! (*info->callbacks->warning) (info, string, h->root.string,
1945 hash_entry_bfd (h), NULL, 0))
1946 return FALSE;
1947 break;
1948 }
1949 /* Fall through. */
1950 case MWARN:
1951 /* Make a warning symbol. */
1952 {
1953 struct bfd_link_hash_entry *sub;
1954
1955 /* STRING is the warning to give. */
1956 sub = ((struct bfd_link_hash_entry *)
1957 ((*info->hash->table.newfunc)
1958 (NULL, &info->hash->table, h->root.string)));
1959 if (sub == NULL)
1960 return FALSE;
1961 *sub = *h;
1962 sub->type = bfd_link_hash_warning;
1963 sub->u.i.link = h;
1964 if (! copy)
1965 sub->u.i.warning = string;
1966 else
1967 {
1968 char *w;
1969 size_t len = strlen (string) + 1;
1970
1971 w = bfd_hash_allocate (&info->hash->table, len);
1972 if (w == NULL)
1973 return FALSE;
1974 memcpy (w, string, len);
1975 sub->u.i.warning = w;
1976 }
1977
1978 bfd_hash_replace (&info->hash->table,
1979 (struct bfd_hash_entry *) h,
1980 (struct bfd_hash_entry *) sub);
1981 if (hashp != NULL)
1982 *hashp = sub;
1983 }
1984 break;
1985 }
1986 }
1987 while (cycle);
1988
1989 return TRUE;
1990 }
1991 \f
1992 /* Generic final link routine. */
1993
1994 bfd_boolean
1995 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1996 {
1997 bfd *sub;
1998 asection *o;
1999 struct bfd_link_order *p;
2000 size_t outsymalloc;
2001 struct generic_write_global_symbol_info wginfo;
2002
2003 bfd_get_outsymbols (abfd) = NULL;
2004 bfd_get_symcount (abfd) = 0;
2005 outsymalloc = 0;
2006
2007 /* Mark all sections which will be included in the output file. */
2008 for (o = abfd->sections; o != NULL; o = o->next)
2009 for (p = o->link_order_head; p != NULL; p = p->next)
2010 if (p->type == bfd_indirect_link_order)
2011 p->u.indirect.section->linker_mark = TRUE;
2012
2013 /* Build the output symbol table. */
2014 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2015 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2016 return FALSE;
2017
2018 /* Accumulate the global symbols. */
2019 wginfo.info = info;
2020 wginfo.output_bfd = abfd;
2021 wginfo.psymalloc = &outsymalloc;
2022 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2023 _bfd_generic_link_write_global_symbol,
2024 &wginfo);
2025
2026 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2027 shouldn't really need one, since we have SYMCOUNT, but some old
2028 code still expects one. */
2029 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2030 return FALSE;
2031
2032 if (info->relocatable)
2033 {
2034 /* Allocate space for the output relocs for each section. */
2035 for (o = abfd->sections; o != NULL; o = o->next)
2036 {
2037 o->reloc_count = 0;
2038 for (p = o->link_order_head; p != NULL; p = p->next)
2039 {
2040 if (p->type == bfd_section_reloc_link_order
2041 || p->type == bfd_symbol_reloc_link_order)
2042 ++o->reloc_count;
2043 else if (p->type == bfd_indirect_link_order)
2044 {
2045 asection *input_section;
2046 bfd *input_bfd;
2047 long relsize;
2048 arelent **relocs;
2049 asymbol **symbols;
2050 long reloc_count;
2051
2052 input_section = p->u.indirect.section;
2053 input_bfd = input_section->owner;
2054 relsize = bfd_get_reloc_upper_bound (input_bfd,
2055 input_section);
2056 if (relsize < 0)
2057 return FALSE;
2058 relocs = bfd_malloc (relsize);
2059 if (!relocs && relsize != 0)
2060 return FALSE;
2061 symbols = _bfd_generic_link_get_symbols (input_bfd);
2062 reloc_count = bfd_canonicalize_reloc (input_bfd,
2063 input_section,
2064 relocs,
2065 symbols);
2066 free (relocs);
2067 if (reloc_count < 0)
2068 return FALSE;
2069 BFD_ASSERT ((unsigned long) reloc_count
2070 == input_section->reloc_count);
2071 o->reloc_count += reloc_count;
2072 }
2073 }
2074 if (o->reloc_count > 0)
2075 {
2076 bfd_size_type amt;
2077
2078 amt = o->reloc_count;
2079 amt *= sizeof (arelent *);
2080 o->orelocation = bfd_alloc (abfd, amt);
2081 if (!o->orelocation)
2082 return FALSE;
2083 o->flags |= SEC_RELOC;
2084 /* Reset the count so that it can be used as an index
2085 when putting in the output relocs. */
2086 o->reloc_count = 0;
2087 }
2088 }
2089 }
2090
2091 /* Handle all the link order information for the sections. */
2092 for (o = abfd->sections; o != NULL; o = o->next)
2093 {
2094 for (p = o->link_order_head; p != NULL; p = p->next)
2095 {
2096 switch (p->type)
2097 {
2098 case bfd_section_reloc_link_order:
2099 case bfd_symbol_reloc_link_order:
2100 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2101 return FALSE;
2102 break;
2103 case bfd_indirect_link_order:
2104 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2105 return FALSE;
2106 break;
2107 default:
2108 if (! _bfd_default_link_order (abfd, info, o, p))
2109 return FALSE;
2110 break;
2111 }
2112 }
2113 }
2114
2115 return TRUE;
2116 }
2117
2118 /* Add an output symbol to the output BFD. */
2119
2120 static bfd_boolean
2121 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2122 {
2123 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2124 {
2125 asymbol **newsyms;
2126 bfd_size_type amt;
2127
2128 if (*psymalloc == 0)
2129 *psymalloc = 124;
2130 else
2131 *psymalloc *= 2;
2132 amt = *psymalloc;
2133 amt *= sizeof (asymbol *);
2134 newsyms = bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2135 if (newsyms == NULL)
2136 return FALSE;
2137 bfd_get_outsymbols (output_bfd) = newsyms;
2138 }
2139
2140 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2141 if (sym != NULL)
2142 ++ bfd_get_symcount (output_bfd);
2143
2144 return TRUE;
2145 }
2146
2147 /* Handle the symbols for an input BFD. */
2148
2149 bfd_boolean
2150 _bfd_generic_link_output_symbols (bfd *output_bfd,
2151 bfd *input_bfd,
2152 struct bfd_link_info *info,
2153 size_t *psymalloc)
2154 {
2155 asymbol **sym_ptr;
2156 asymbol **sym_end;
2157
2158 if (! generic_link_read_symbols (input_bfd))
2159 return FALSE;
2160
2161 /* Create a filename symbol if we are supposed to. */
2162 if (info->create_object_symbols_section != NULL)
2163 {
2164 asection *sec;
2165
2166 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2167 {
2168 if (sec->output_section == info->create_object_symbols_section)
2169 {
2170 asymbol *newsym;
2171
2172 newsym = bfd_make_empty_symbol (input_bfd);
2173 if (!newsym)
2174 return FALSE;
2175 newsym->name = input_bfd->filename;
2176 newsym->value = 0;
2177 newsym->flags = BSF_LOCAL | BSF_FILE;
2178 newsym->section = sec;
2179
2180 if (! generic_add_output_symbol (output_bfd, psymalloc,
2181 newsym))
2182 return FALSE;
2183
2184 break;
2185 }
2186 }
2187 }
2188
2189 /* Adjust the values of the globally visible symbols, and write out
2190 local symbols. */
2191 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2192 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2193 for (; sym_ptr < sym_end; sym_ptr++)
2194 {
2195 asymbol *sym;
2196 struct generic_link_hash_entry *h;
2197 bfd_boolean output;
2198
2199 h = NULL;
2200 sym = *sym_ptr;
2201 if ((sym->flags & (BSF_INDIRECT
2202 | BSF_WARNING
2203 | BSF_GLOBAL
2204 | BSF_CONSTRUCTOR
2205 | BSF_WEAK)) != 0
2206 || bfd_is_und_section (bfd_get_section (sym))
2207 || bfd_is_com_section (bfd_get_section (sym))
2208 || bfd_is_ind_section (bfd_get_section (sym)))
2209 {
2210 if (sym->udata.p != NULL)
2211 h = sym->udata.p;
2212 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2213 {
2214 /* This case normally means that the main linker code
2215 deliberately ignored this constructor symbol. We
2216 should just pass it through. This will screw up if
2217 the constructor symbol is from a different,
2218 non-generic, object file format, but the case will
2219 only arise when linking with -r, which will probably
2220 fail anyhow, since there will be no way to represent
2221 the relocs in the output format being used. */
2222 h = NULL;
2223 }
2224 else if (bfd_is_und_section (bfd_get_section (sym)))
2225 h = ((struct generic_link_hash_entry *)
2226 bfd_wrapped_link_hash_lookup (output_bfd, info,
2227 bfd_asymbol_name (sym),
2228 FALSE, FALSE, TRUE));
2229 else
2230 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2231 bfd_asymbol_name (sym),
2232 FALSE, FALSE, TRUE);
2233
2234 if (h != NULL)
2235 {
2236 /* Force all references to this symbol to point to
2237 the same area in memory. It is possible that
2238 this routine will be called with a hash table
2239 other than a generic hash table, so we double
2240 check that. */
2241 if (info->hash->creator == input_bfd->xvec)
2242 {
2243 if (h->sym != NULL)
2244 *sym_ptr = sym = h->sym;
2245 }
2246
2247 switch (h->root.type)
2248 {
2249 default:
2250 case bfd_link_hash_new:
2251 abort ();
2252 case bfd_link_hash_undefined:
2253 break;
2254 case bfd_link_hash_undefweak:
2255 sym->flags |= BSF_WEAK;
2256 break;
2257 case bfd_link_hash_indirect:
2258 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2259 /* fall through */
2260 case bfd_link_hash_defined:
2261 sym->flags |= BSF_GLOBAL;
2262 sym->flags &=~ BSF_CONSTRUCTOR;
2263 sym->value = h->root.u.def.value;
2264 sym->section = h->root.u.def.section;
2265 break;
2266 case bfd_link_hash_defweak:
2267 sym->flags |= BSF_WEAK;
2268 sym->flags &=~ BSF_CONSTRUCTOR;
2269 sym->value = h->root.u.def.value;
2270 sym->section = h->root.u.def.section;
2271 break;
2272 case bfd_link_hash_common:
2273 sym->value = h->root.u.c.size;
2274 sym->flags |= BSF_GLOBAL;
2275 if (! bfd_is_com_section (sym->section))
2276 {
2277 BFD_ASSERT (bfd_is_und_section (sym->section));
2278 sym->section = bfd_com_section_ptr;
2279 }
2280 /* We do not set the section of the symbol to
2281 h->root.u.c.p->section. That value was saved so
2282 that we would know where to allocate the symbol
2283 if it was defined. In this case the type is
2284 still bfd_link_hash_common, so we did not define
2285 it, so we do not want to use that section. */
2286 break;
2287 }
2288 }
2289 }
2290
2291 /* This switch is straight from the old code in
2292 write_file_locals in ldsym.c. */
2293 if (info->strip == strip_all
2294 || (info->strip == strip_some
2295 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2296 FALSE, FALSE) == NULL))
2297 output = FALSE;
2298 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2299 {
2300 /* If this symbol is marked as occurring now, rather
2301 than at the end, output it now. This is used for
2302 COFF C_EXT FCN symbols. FIXME: There must be a
2303 better way. */
2304 if (bfd_asymbol_bfd (sym) == input_bfd
2305 && (sym->flags & BSF_NOT_AT_END) != 0)
2306 output = TRUE;
2307 else
2308 output = FALSE;
2309 }
2310 else if (bfd_is_ind_section (sym->section))
2311 output = FALSE;
2312 else if ((sym->flags & BSF_DEBUGGING) != 0)
2313 {
2314 if (info->strip == strip_none)
2315 output = TRUE;
2316 else
2317 output = FALSE;
2318 }
2319 else if (bfd_is_und_section (sym->section)
2320 || bfd_is_com_section (sym->section))
2321 output = FALSE;
2322 else if ((sym->flags & BSF_LOCAL) != 0)
2323 {
2324 if ((sym->flags & BSF_WARNING) != 0)
2325 output = FALSE;
2326 else
2327 {
2328 switch (info->discard)
2329 {
2330 default:
2331 case discard_all:
2332 output = FALSE;
2333 break;
2334 case discard_sec_merge:
2335 output = TRUE;
2336 if (info->relocatable
2337 || ! (sym->section->flags & SEC_MERGE))
2338 break;
2339 /* FALLTHROUGH */
2340 case discard_l:
2341 if (bfd_is_local_label (input_bfd, sym))
2342 output = FALSE;
2343 else
2344 output = TRUE;
2345 break;
2346 case discard_none:
2347 output = TRUE;
2348 break;
2349 }
2350 }
2351 }
2352 else if ((sym->flags & BSF_CONSTRUCTOR))
2353 {
2354 if (info->strip != strip_all)
2355 output = TRUE;
2356 else
2357 output = FALSE;
2358 }
2359 else
2360 abort ();
2361
2362 /* If this symbol is in a section which is not being included
2363 in the output file, then we don't want to output the symbol.
2364
2365 Gross. .bss and similar sections won't have the linker_mark
2366 field set. */
2367 if ((sym->section->flags & SEC_HAS_CONTENTS) != 0
2368 && ! sym->section->linker_mark)
2369 output = FALSE;
2370
2371 if (output)
2372 {
2373 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2374 return FALSE;
2375 if (h != NULL)
2376 h->written = TRUE;
2377 }
2378 }
2379
2380 return TRUE;
2381 }
2382
2383 /* Set the section and value of a generic BFD symbol based on a linker
2384 hash table entry. */
2385
2386 static void
2387 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2388 {
2389 switch (h->type)
2390 {
2391 default:
2392 abort ();
2393 break;
2394 case bfd_link_hash_new:
2395 /* This can happen when a constructor symbol is seen but we are
2396 not building constructors. */
2397 if (sym->section != NULL)
2398 {
2399 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2400 }
2401 else
2402 {
2403 sym->flags |= BSF_CONSTRUCTOR;
2404 sym->section = bfd_abs_section_ptr;
2405 sym->value = 0;
2406 }
2407 break;
2408 case bfd_link_hash_undefined:
2409 sym->section = bfd_und_section_ptr;
2410 sym->value = 0;
2411 break;
2412 case bfd_link_hash_undefweak:
2413 sym->section = bfd_und_section_ptr;
2414 sym->value = 0;
2415 sym->flags |= BSF_WEAK;
2416 break;
2417 case bfd_link_hash_defined:
2418 sym->section = h->u.def.section;
2419 sym->value = h->u.def.value;
2420 break;
2421 case bfd_link_hash_defweak:
2422 sym->flags |= BSF_WEAK;
2423 sym->section = h->u.def.section;
2424 sym->value = h->u.def.value;
2425 break;
2426 case bfd_link_hash_common:
2427 sym->value = h->u.c.size;
2428 if (sym->section == NULL)
2429 sym->section = bfd_com_section_ptr;
2430 else if (! bfd_is_com_section (sym->section))
2431 {
2432 BFD_ASSERT (bfd_is_und_section (sym->section));
2433 sym->section = bfd_com_section_ptr;
2434 }
2435 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2436 break;
2437 case bfd_link_hash_indirect:
2438 case bfd_link_hash_warning:
2439 /* FIXME: What should we do here? */
2440 break;
2441 }
2442 }
2443
2444 /* Write out a global symbol, if it hasn't already been written out.
2445 This is called for each symbol in the hash table. */
2446
2447 bfd_boolean
2448 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2449 void *data)
2450 {
2451 struct generic_write_global_symbol_info *wginfo = data;
2452 asymbol *sym;
2453
2454 if (h->root.type == bfd_link_hash_warning)
2455 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2456
2457 if (h->written)
2458 return TRUE;
2459
2460 h->written = TRUE;
2461
2462 if (wginfo->info->strip == strip_all
2463 || (wginfo->info->strip == strip_some
2464 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2465 FALSE, FALSE) == NULL))
2466 return TRUE;
2467
2468 if (h->sym != NULL)
2469 sym = h->sym;
2470 else
2471 {
2472 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2473 if (!sym)
2474 return FALSE;
2475 sym->name = h->root.root.string;
2476 sym->flags = 0;
2477 }
2478
2479 set_symbol_from_hash (sym, &h->root);
2480
2481 sym->flags |= BSF_GLOBAL;
2482
2483 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2484 sym))
2485 {
2486 /* FIXME: No way to return failure. */
2487 abort ();
2488 }
2489
2490 return TRUE;
2491 }
2492
2493 /* Create a relocation. */
2494
2495 bfd_boolean
2496 _bfd_generic_reloc_link_order (bfd *abfd,
2497 struct bfd_link_info *info,
2498 asection *sec,
2499 struct bfd_link_order *link_order)
2500 {
2501 arelent *r;
2502
2503 if (! info->relocatable)
2504 abort ();
2505 if (sec->orelocation == NULL)
2506 abort ();
2507
2508 r = bfd_alloc (abfd, sizeof (arelent));
2509 if (r == NULL)
2510 return FALSE;
2511
2512 r->address = link_order->offset;
2513 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2514 if (r->howto == 0)
2515 {
2516 bfd_set_error (bfd_error_bad_value);
2517 return FALSE;
2518 }
2519
2520 /* Get the symbol to use for the relocation. */
2521 if (link_order->type == bfd_section_reloc_link_order)
2522 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2523 else
2524 {
2525 struct generic_link_hash_entry *h;
2526
2527 h = ((struct generic_link_hash_entry *)
2528 bfd_wrapped_link_hash_lookup (abfd, info,
2529 link_order->u.reloc.p->u.name,
2530 FALSE, FALSE, TRUE));
2531 if (h == NULL
2532 || ! h->written)
2533 {
2534 if (! ((*info->callbacks->unattached_reloc)
2535 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2536 return FALSE;
2537 bfd_set_error (bfd_error_bad_value);
2538 return FALSE;
2539 }
2540 r->sym_ptr_ptr = &h->sym;
2541 }
2542
2543 /* If this is an inplace reloc, write the addend to the object file.
2544 Otherwise, store it in the reloc addend. */
2545 if (! r->howto->partial_inplace)
2546 r->addend = link_order->u.reloc.p->addend;
2547 else
2548 {
2549 bfd_size_type size;
2550 bfd_reloc_status_type rstat;
2551 bfd_byte *buf;
2552 bfd_boolean ok;
2553 file_ptr loc;
2554
2555 size = bfd_get_reloc_size (r->howto);
2556 buf = bfd_zmalloc (size);
2557 if (buf == NULL)
2558 return FALSE;
2559 rstat = _bfd_relocate_contents (r->howto, abfd,
2560 (bfd_vma) link_order->u.reloc.p->addend,
2561 buf);
2562 switch (rstat)
2563 {
2564 case bfd_reloc_ok:
2565 break;
2566 default:
2567 case bfd_reloc_outofrange:
2568 abort ();
2569 case bfd_reloc_overflow:
2570 if (! ((*info->callbacks->reloc_overflow)
2571 (info, NULL,
2572 (link_order->type == bfd_section_reloc_link_order
2573 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2574 : link_order->u.reloc.p->u.name),
2575 r->howto->name, link_order->u.reloc.p->addend,
2576 NULL, NULL, 0)))
2577 {
2578 free (buf);
2579 return FALSE;
2580 }
2581 break;
2582 }
2583 loc = link_order->offset * bfd_octets_per_byte (abfd);
2584 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2585 free (buf);
2586 if (! ok)
2587 return FALSE;
2588
2589 r->addend = 0;
2590 }
2591
2592 sec->orelocation[sec->reloc_count] = r;
2593 ++sec->reloc_count;
2594
2595 return TRUE;
2596 }
2597 \f
2598 /* Allocate a new link_order for a section. */
2599
2600 struct bfd_link_order *
2601 bfd_new_link_order (bfd *abfd, asection *section)
2602 {
2603 bfd_size_type amt = sizeof (struct bfd_link_order);
2604 struct bfd_link_order *new;
2605
2606 new = bfd_zalloc (abfd, amt);
2607 if (!new)
2608 return NULL;
2609
2610 new->type = bfd_undefined_link_order;
2611
2612 if (section->link_order_tail != NULL)
2613 section->link_order_tail->next = new;
2614 else
2615 section->link_order_head = new;
2616 section->link_order_tail = new;
2617
2618 return new;
2619 }
2620
2621 /* Default link order processing routine. Note that we can not handle
2622 the reloc_link_order types here, since they depend upon the details
2623 of how the particular backends generates relocs. */
2624
2625 bfd_boolean
2626 _bfd_default_link_order (bfd *abfd,
2627 struct bfd_link_info *info,
2628 asection *sec,
2629 struct bfd_link_order *link_order)
2630 {
2631 switch (link_order->type)
2632 {
2633 case bfd_undefined_link_order:
2634 case bfd_section_reloc_link_order:
2635 case bfd_symbol_reloc_link_order:
2636 default:
2637 abort ();
2638 case bfd_indirect_link_order:
2639 return default_indirect_link_order (abfd, info, sec, link_order,
2640 FALSE);
2641 case bfd_data_link_order:
2642 return default_data_link_order (abfd, info, sec, link_order);
2643 }
2644 }
2645
2646 /* Default routine to handle a bfd_data_link_order. */
2647
2648 static bfd_boolean
2649 default_data_link_order (bfd *abfd,
2650 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2651 asection *sec,
2652 struct bfd_link_order *link_order)
2653 {
2654 bfd_size_type size;
2655 size_t fill_size;
2656 bfd_byte *fill;
2657 file_ptr loc;
2658 bfd_boolean result;
2659
2660 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2661
2662 size = link_order->size;
2663 if (size == 0)
2664 return TRUE;
2665
2666 fill = link_order->u.data.contents;
2667 fill_size = link_order->u.data.size;
2668 if (fill_size != 0 && fill_size < size)
2669 {
2670 bfd_byte *p;
2671 fill = bfd_malloc (size);
2672 if (fill == NULL)
2673 return FALSE;
2674 p = fill;
2675 if (fill_size == 1)
2676 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2677 else
2678 {
2679 do
2680 {
2681 memcpy (p, link_order->u.data.contents, fill_size);
2682 p += fill_size;
2683 size -= fill_size;
2684 }
2685 while (size >= fill_size);
2686 if (size != 0)
2687 memcpy (p, link_order->u.data.contents, (size_t) size);
2688 size = link_order->size;
2689 }
2690 }
2691
2692 loc = link_order->offset * bfd_octets_per_byte (abfd);
2693 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2694
2695 if (fill != link_order->u.data.contents)
2696 free (fill);
2697 return result;
2698 }
2699
2700 /* Default routine to handle a bfd_indirect_link_order. */
2701
2702 static bfd_boolean
2703 default_indirect_link_order (bfd *output_bfd,
2704 struct bfd_link_info *info,
2705 asection *output_section,
2706 struct bfd_link_order *link_order,
2707 bfd_boolean generic_linker)
2708 {
2709 asection *input_section;
2710 bfd *input_bfd;
2711 bfd_byte *contents = NULL;
2712 bfd_byte *new_contents;
2713 bfd_size_type sec_size;
2714 file_ptr loc;
2715
2716 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2717
2718 if (link_order->size == 0)
2719 return TRUE;
2720
2721 input_section = link_order->u.indirect.section;
2722 input_bfd = input_section->owner;
2723
2724 BFD_ASSERT (input_section->output_section == output_section);
2725 BFD_ASSERT (input_section->output_offset == link_order->offset);
2726 BFD_ASSERT (input_section->size == link_order->size);
2727
2728 if (info->relocatable
2729 && input_section->reloc_count > 0
2730 && output_section->orelocation == NULL)
2731 {
2732 /* Space has not been allocated for the output relocations.
2733 This can happen when we are called by a specific backend
2734 because somebody is attempting to link together different
2735 types of object files. Handling this case correctly is
2736 difficult, and sometimes impossible. */
2737 (*_bfd_error_handler)
2738 (_("Attempt to do relocatable link with %s input and %s output"),
2739 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2740 bfd_set_error (bfd_error_wrong_format);
2741 return FALSE;
2742 }
2743
2744 if (! generic_linker)
2745 {
2746 asymbol **sympp;
2747 asymbol **symppend;
2748
2749 /* Get the canonical symbols. The generic linker will always
2750 have retrieved them by this point, but we are being called by
2751 a specific linker, presumably because we are linking
2752 different types of object files together. */
2753 if (! generic_link_read_symbols (input_bfd))
2754 return FALSE;
2755
2756 /* Since we have been called by a specific linker, rather than
2757 the generic linker, the values of the symbols will not be
2758 right. They will be the values as seen in the input file,
2759 not the values of the final link. We need to fix them up
2760 before we can relocate the section. */
2761 sympp = _bfd_generic_link_get_symbols (input_bfd);
2762 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2763 for (; sympp < symppend; sympp++)
2764 {
2765 asymbol *sym;
2766 struct bfd_link_hash_entry *h;
2767
2768 sym = *sympp;
2769
2770 if ((sym->flags & (BSF_INDIRECT
2771 | BSF_WARNING
2772 | BSF_GLOBAL
2773 | BSF_CONSTRUCTOR
2774 | BSF_WEAK)) != 0
2775 || bfd_is_und_section (bfd_get_section (sym))
2776 || bfd_is_com_section (bfd_get_section (sym))
2777 || bfd_is_ind_section (bfd_get_section (sym)))
2778 {
2779 /* sym->udata may have been set by
2780 generic_link_add_symbol_list. */
2781 if (sym->udata.p != NULL)
2782 h = sym->udata.p;
2783 else if (bfd_is_und_section (bfd_get_section (sym)))
2784 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2785 bfd_asymbol_name (sym),
2786 FALSE, FALSE, TRUE);
2787 else
2788 h = bfd_link_hash_lookup (info->hash,
2789 bfd_asymbol_name (sym),
2790 FALSE, FALSE, TRUE);
2791 if (h != NULL)
2792 set_symbol_from_hash (sym, h);
2793 }
2794 }
2795 }
2796
2797 /* Get and relocate the section contents. */
2798 sec_size = (input_section->rawsize > input_section->size
2799 ? input_section->rawsize
2800 : input_section->size);
2801 contents = bfd_malloc (sec_size);
2802 if (contents == NULL && sec_size != 0)
2803 goto error_return;
2804 new_contents = (bfd_get_relocated_section_contents
2805 (output_bfd, info, link_order, contents, info->relocatable,
2806 _bfd_generic_link_get_symbols (input_bfd)));
2807 if (!new_contents)
2808 goto error_return;
2809
2810 /* Output the section contents. */
2811 loc = link_order->offset * bfd_octets_per_byte (output_bfd);
2812 if (! bfd_set_section_contents (output_bfd, output_section,
2813 new_contents, loc, link_order->size))
2814 goto error_return;
2815
2816 if (contents != NULL)
2817 free (contents);
2818 return TRUE;
2819
2820 error_return:
2821 if (contents != NULL)
2822 free (contents);
2823 return FALSE;
2824 }
2825
2826 /* A little routine to count the number of relocs in a link_order
2827 list. */
2828
2829 unsigned int
2830 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2831 {
2832 register unsigned int c;
2833 register struct bfd_link_order *l;
2834
2835 c = 0;
2836 for (l = link_order; l != NULL; l = l->next)
2837 {
2838 if (l->type == bfd_section_reloc_link_order
2839 || l->type == bfd_symbol_reloc_link_order)
2840 ++c;
2841 }
2842
2843 return c;
2844 }
2845
2846 /*
2847 FUNCTION
2848 bfd_link_split_section
2849
2850 SYNOPSIS
2851 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2852
2853 DESCRIPTION
2854 Return nonzero if @var{sec} should be split during a
2855 reloceatable or final link.
2856
2857 .#define bfd_link_split_section(abfd, sec) \
2858 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2859 .
2860
2861 */
2862
2863 bfd_boolean
2864 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2865 asection *sec ATTRIBUTE_UNUSED)
2866 {
2867 return FALSE;
2868 }
2869
2870 /*
2871 FUNCTION
2872 bfd_section_already_linked
2873
2874 SYNOPSIS
2875 void bfd_section_already_linked (bfd *abfd, asection *sec);
2876
2877 DESCRIPTION
2878 Check if @var{sec} has been already linked during a reloceatable
2879 or final link.
2880
2881 .#define bfd_section_already_linked(abfd, sec) \
2882 . BFD_SEND (abfd, _section_already_linked, (abfd, sec))
2883 .
2884
2885 */
2886
2887 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2888 once into the output. This routine checks each section, and
2889 arrange to discard it if a section of the same name has already
2890 been linked. This code assumes that all relevant sections have the
2891 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2892 section name. bfd_section_already_linked is called via
2893 bfd_map_over_sections. */
2894
2895 /* The hash table. */
2896
2897 static struct bfd_hash_table _bfd_section_already_linked_table;
2898
2899 /* Support routines for the hash table used by section_already_linked,
2900 initialize the table, traverse, lookup, fill in an entry and remove
2901 the table. */
2902
2903 void
2904 bfd_section_already_linked_table_traverse
2905 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2906 void *), void *info)
2907 {
2908 bfd_hash_traverse (&_bfd_section_already_linked_table,
2909 (bfd_boolean (*) (struct bfd_hash_entry *,
2910 void *)) func,
2911 info);
2912 }
2913
2914 struct bfd_section_already_linked_hash_entry *
2915 bfd_section_already_linked_table_lookup (const char *name)
2916 {
2917 return ((struct bfd_section_already_linked_hash_entry *)
2918 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2919 TRUE, FALSE));
2920 }
2921
2922 void
2923 bfd_section_already_linked_table_insert
2924 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2925 asection *sec)
2926 {
2927 struct bfd_section_already_linked *l;
2928
2929 /* Allocate the memory from the same obstack as the hash table is
2930 kept in. */
2931 l = bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2932 l->sec = sec;
2933 l->next = already_linked_list->entry;
2934 already_linked_list->entry = l;
2935 }
2936
2937 static struct bfd_hash_entry *
2938 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2939 struct bfd_hash_table *table,
2940 const char *string ATTRIBUTE_UNUSED)
2941 {
2942 struct bfd_section_already_linked_hash_entry *ret =
2943 bfd_hash_allocate (table, sizeof *ret);
2944
2945 ret->entry = NULL;
2946
2947 return &ret->root;
2948 }
2949
2950 bfd_boolean
2951 bfd_section_already_linked_table_init (void)
2952 {
2953 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2954 already_linked_newfunc, 42);
2955 }
2956
2957 void
2958 bfd_section_already_linked_table_free (void)
2959 {
2960 bfd_hash_table_free (&_bfd_section_already_linked_table);
2961 }
2962
2963 /* This is used on non-ELF inputs. */
2964
2965 void
2966 _bfd_generic_section_already_linked (bfd *abfd, asection *sec)
2967 {
2968 flagword flags;
2969 const char *name;
2970 struct bfd_section_already_linked *l;
2971 struct bfd_section_already_linked_hash_entry *already_linked_list;
2972
2973 flags = sec->flags;
2974 if ((flags & SEC_LINK_ONCE) == 0)
2975 return;
2976
2977 /* FIXME: When doing a relocatable link, we may have trouble
2978 copying relocations in other sections that refer to local symbols
2979 in the section being discarded. Those relocations will have to
2980 be converted somehow; as of this writing I'm not sure that any of
2981 the backends handle that correctly.
2982
2983 It is tempting to instead not discard link once sections when
2984 doing a relocatable link (technically, they should be discarded
2985 whenever we are building constructors). However, that fails,
2986 because the linker winds up combining all the link once sections
2987 into a single large link once section, which defeats the purpose
2988 of having link once sections in the first place. */
2989
2990 name = bfd_get_section_name (abfd, sec);
2991
2992 already_linked_list = bfd_section_already_linked_table_lookup (name);
2993
2994 for (l = already_linked_list->entry; l != NULL; l = l->next)
2995 {
2996 bfd_boolean skip = FALSE;
2997 struct coff_comdat_info *s_comdat
2998 = bfd_coff_get_comdat_section (abfd, sec);
2999 struct coff_comdat_info *l_comdat
3000 = bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3001
3002 /* We may have 3 different sections on the list: group section,
3003 comdat section and linkonce section. SEC may be a linkonce or
3004 comdat section. We always ignore group section. For non-COFF
3005 inputs, we also ignore comdat section.
3006
3007 FIXME: Is that safe to match a linkonce section with a comdat
3008 section for COFF inputs? */
3009 if ((l->sec->flags & SEC_GROUP) != 0)
3010 skip = TRUE;
3011 else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3012 {
3013 if (s_comdat != NULL
3014 && l_comdat != NULL
3015 && strcmp (s_comdat->name, l_comdat->name) != 0)
3016 skip = TRUE;
3017 }
3018 else if (l_comdat != NULL)
3019 skip = TRUE;
3020
3021 if (!skip)
3022 {
3023 /* The section has already been linked. See if we should
3024 issue a warning. */
3025 switch (flags & SEC_LINK_DUPLICATES)
3026 {
3027 default:
3028 abort ();
3029
3030 case SEC_LINK_DUPLICATES_DISCARD:
3031 break;
3032
3033 case SEC_LINK_DUPLICATES_ONE_ONLY:
3034 (*_bfd_error_handler)
3035 (_("%B: warning: ignoring duplicate section `%A'\n"),
3036 abfd, sec);
3037 break;
3038
3039 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3040 /* FIXME: We should really dig out the contents of both
3041 sections and memcmp them. The COFF/PE spec says that
3042 the Microsoft linker does not implement this
3043 correctly, so I'm not going to bother doing it
3044 either. */
3045 /* Fall through. */
3046 case SEC_LINK_DUPLICATES_SAME_SIZE:
3047 if (sec->size != l->sec->size)
3048 (*_bfd_error_handler)
3049 (_("%B: warning: duplicate section `%A' has different size\n"),
3050 abfd, sec);
3051 break;
3052 }
3053
3054 /* Set the output_section field so that lang_add_section
3055 does not create a lang_input_section structure for this
3056 section. Since there might be a symbol in the section
3057 being discarded, we must retain a pointer to the section
3058 which we are really going to use. */
3059 sec->output_section = bfd_abs_section_ptr;
3060 sec->kept_section = l->sec;
3061
3062 return;
3063 }
3064 }
3065
3066 /* This is the first section with this name. Record it. */
3067 bfd_section_already_linked_table_insert (already_linked_list, sec);
3068 }
This page took 0.129162 seconds and 4 git commands to generate.