Fix a null pointer dereference when reading the debug link info from a corrupt file.
[deliverable/binutils-gdb.git] / bfd / peXXigen.c
1 /* Support for the generic parts of PE/PEI; the common executable parts.
2 Copyright (C) 1995-2014 Free Software Foundation, Inc.
3 Written by Cygnus Solutions.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* Most of this hacked by Steve Chamberlain <sac@cygnus.com>.
24
25 PE/PEI rearrangement (and code added): Donn Terry
26 Softway Systems, Inc. */
27
28 /* Hey look, some documentation [and in a place you expect to find it]!
29
30 The main reference for the pei format is "Microsoft Portable Executable
31 and Common Object File Format Specification 4.1". Get it if you need to
32 do some serious hacking on this code.
33
34 Another reference:
35 "Peering Inside the PE: A Tour of the Win32 Portable Executable
36 File Format", MSJ 1994, Volume 9.
37
38 The *sole* difference between the pe format and the pei format is that the
39 latter has an MSDOS 2.0 .exe header on the front that prints the message
40 "This app must be run under Windows." (or some such).
41 (FIXME: Whether that statement is *really* true or not is unknown.
42 Are there more subtle differences between pe and pei formats?
43 For now assume there aren't. If you find one, then for God sakes
44 document it here!)
45
46 The Microsoft docs use the word "image" instead of "executable" because
47 the former can also refer to a DLL (shared library). Confusion can arise
48 because the `i' in `pei' also refers to "image". The `pe' format can
49 also create images (i.e. executables), it's just that to run on a win32
50 system you need to use the pei format.
51
52 FIXME: Please add more docs here so the next poor fool that has to hack
53 on this code has a chance of getting something accomplished without
54 wasting too much time. */
55
56 /* This expands into COFF_WITH_pe, COFF_WITH_pep, or COFF_WITH_pex64
57 depending on whether we're compiling for straight PE or PE+. */
58 #define COFF_WITH_XX
59
60 #include "sysdep.h"
61 #include "bfd.h"
62 #include "libbfd.h"
63 #include "coff/internal.h"
64 #include "bfdver.h"
65 #ifdef HAVE_WCHAR_H
66 #include <wchar.h>
67 #endif
68
69 /* NOTE: it's strange to be including an architecture specific header
70 in what's supposed to be general (to PE/PEI) code. However, that's
71 where the definitions are, and they don't vary per architecture
72 within PE/PEI, so we get them from there. FIXME: The lack of
73 variance is an assumption which may prove to be incorrect if new
74 PE/PEI targets are created. */
75 #if defined COFF_WITH_pex64
76 # include "coff/x86_64.h"
77 #elif defined COFF_WITH_pep
78 # include "coff/ia64.h"
79 #else
80 # include "coff/i386.h"
81 #endif
82
83 #include "coff/pe.h"
84 #include "libcoff.h"
85 #include "libpei.h"
86 #include "safe-ctype.h"
87
88 #if defined COFF_WITH_pep || defined COFF_WITH_pex64
89 # undef AOUTSZ
90 # define AOUTSZ PEPAOUTSZ
91 # define PEAOUTHDR PEPAOUTHDR
92 #endif
93
94 #define HighBitSet(val) ((val) & 0x80000000)
95 #define SetHighBit(val) ((val) | 0x80000000)
96 #define WithoutHighBit(val) ((val) & 0x7fffffff)
97
98 /* FIXME: This file has various tests of POWERPC_LE_PE. Those tests
99 worked when the code was in peicode.h, but no longer work now that
100 the code is in peigen.c. PowerPC NT is said to be dead. If
101 anybody wants to revive the code, you will have to figure out how
102 to handle those issues. */
103 \f
104 void
105 _bfd_XXi_swap_sym_in (bfd * abfd, void * ext1, void * in1)
106 {
107 SYMENT *ext = (SYMENT *) ext1;
108 struct internal_syment *in = (struct internal_syment *) in1;
109
110 if (ext->e.e_name[0] == 0)
111 {
112 in->_n._n_n._n_zeroes = 0;
113 in->_n._n_n._n_offset = H_GET_32 (abfd, ext->e.e.e_offset);
114 }
115 else
116 memcpy (in->_n._n_name, ext->e.e_name, SYMNMLEN);
117
118 in->n_value = H_GET_32 (abfd, ext->e_value);
119 in->n_scnum = H_GET_16 (abfd, ext->e_scnum);
120
121 if (sizeof (ext->e_type) == 2)
122 in->n_type = H_GET_16 (abfd, ext->e_type);
123 else
124 in->n_type = H_GET_32 (abfd, ext->e_type);
125
126 in->n_sclass = H_GET_8 (abfd, ext->e_sclass);
127 in->n_numaux = H_GET_8 (abfd, ext->e_numaux);
128
129 #ifndef STRICT_PE_FORMAT
130 /* This is for Gnu-created DLLs. */
131
132 /* The section symbols for the .idata$ sections have class 0x68
133 (C_SECTION), which MS documentation indicates is a section
134 symbol. Unfortunately, the value field in the symbol is simply a
135 copy of the .idata section's flags rather than something useful.
136 When these symbols are encountered, change the value to 0 so that
137 they will be handled somewhat correctly in the bfd code. */
138 if (in->n_sclass == C_SECTION)
139 {
140 char namebuf[SYMNMLEN + 1];
141 const char *name = NULL;
142
143 in->n_value = 0x0;
144
145 /* Create synthetic empty sections as needed. DJ */
146 if (in->n_scnum == 0)
147 {
148 asection *sec;
149
150 name = _bfd_coff_internal_syment_name (abfd, in, namebuf);
151 if (name == NULL)
152 {
153 _bfd_error_handler (_("%B: unable to find name for empty section"),
154 abfd);
155 bfd_set_error (bfd_error_invalid_target);
156 return;
157 }
158
159 sec = bfd_get_section_by_name (abfd, name);
160 if (sec != NULL)
161 in->n_scnum = sec->target_index;
162 }
163
164 if (in->n_scnum == 0)
165 {
166 int unused_section_number = 0;
167 asection *sec;
168 flagword flags;
169
170 for (sec = abfd->sections; sec; sec = sec->next)
171 if (unused_section_number <= sec->target_index)
172 unused_section_number = sec->target_index + 1;
173
174 if (name == namebuf)
175 {
176 name = (const char *) bfd_alloc (abfd, strlen (namebuf) + 1);
177 if (name == NULL)
178 {
179 _bfd_error_handler (_("%B: out of memory creating name for empty section"),
180 abfd);
181 return;
182 }
183 strcpy ((char *) name, namebuf);
184 }
185
186 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_DATA | SEC_LOAD;
187 sec = bfd_make_section_anyway_with_flags (abfd, name, flags);
188 if (sec == NULL)
189 {
190 _bfd_error_handler (_("%B: unable to create fake empty section"),
191 abfd);
192 return;
193 }
194
195 sec->vma = 0;
196 sec->lma = 0;
197 sec->size = 0;
198 sec->filepos = 0;
199 sec->rel_filepos = 0;
200 sec->reloc_count = 0;
201 sec->line_filepos = 0;
202 sec->lineno_count = 0;
203 sec->userdata = NULL;
204 sec->next = NULL;
205 sec->alignment_power = 2;
206
207 sec->target_index = unused_section_number;
208
209 in->n_scnum = unused_section_number;
210 }
211 in->n_sclass = C_STAT;
212 }
213 #endif
214
215 #ifdef coff_swap_sym_in_hook
216 /* This won't work in peigen.c, but since it's for PPC PE, it's not
217 worth fixing. */
218 coff_swap_sym_in_hook (abfd, ext1, in1);
219 #endif
220 }
221
222 static bfd_boolean
223 abs_finder (bfd * abfd ATTRIBUTE_UNUSED, asection * sec, void * data)
224 {
225 bfd_vma abs_val = * (bfd_vma *) data;
226
227 return (sec->vma <= abs_val) && ((sec->vma + (1ULL << 32)) > abs_val);
228 }
229
230 unsigned int
231 _bfd_XXi_swap_sym_out (bfd * abfd, void * inp, void * extp)
232 {
233 struct internal_syment *in = (struct internal_syment *) inp;
234 SYMENT *ext = (SYMENT *) extp;
235
236 if (in->_n._n_name[0] == 0)
237 {
238 H_PUT_32 (abfd, 0, ext->e.e.e_zeroes);
239 H_PUT_32 (abfd, in->_n._n_n._n_offset, ext->e.e.e_offset);
240 }
241 else
242 memcpy (ext->e.e_name, in->_n._n_name, SYMNMLEN);
243
244 /* The PE32 and PE32+ formats only use 4 bytes to hold the value of a
245 symbol. This is a problem on 64-bit targets where we can generate
246 absolute symbols with values >= 1^32. We try to work around this
247 problem by finding a section whose base address is sufficient to
248 reduce the absolute value to < 1^32, and then transforming the
249 symbol into a section relative symbol. This of course is a hack. */
250 if (sizeof (in->n_value) > 4
251 /* The strange computation of the shift amount is here in order to
252 avoid a compile time warning about the comparison always being
253 false. It does not matter if this test fails to work as expected
254 as the worst that can happen is that some absolute symbols are
255 needlessly converted into section relative symbols. */
256 && in->n_value > ((1ULL << (sizeof (in->n_value) > 4 ? 32 : 31)) - 1)
257 && in->n_scnum == -1)
258 {
259 asection * sec;
260
261 sec = bfd_sections_find_if (abfd, abs_finder, & in->n_value);
262 if (sec)
263 {
264 in->n_value -= sec->vma;
265 in->n_scnum = sec->target_index;
266 }
267 /* else: FIXME: The value is outside the range of any section. This
268 happens for __image_base__ and __ImageBase and maybe some other
269 symbols as well. We should find a way to handle these values. */
270 }
271
272 H_PUT_32 (abfd, in->n_value, ext->e_value);
273 H_PUT_16 (abfd, in->n_scnum, ext->e_scnum);
274
275 if (sizeof (ext->e_type) == 2)
276 H_PUT_16 (abfd, in->n_type, ext->e_type);
277 else
278 H_PUT_32 (abfd, in->n_type, ext->e_type);
279
280 H_PUT_8 (abfd, in->n_sclass, ext->e_sclass);
281 H_PUT_8 (abfd, in->n_numaux, ext->e_numaux);
282
283 return SYMESZ;
284 }
285
286 void
287 _bfd_XXi_swap_aux_in (bfd * abfd,
288 void * ext1,
289 int type,
290 int in_class,
291 int indx ATTRIBUTE_UNUSED,
292 int numaux ATTRIBUTE_UNUSED,
293 void * in1)
294 {
295 AUXENT *ext = (AUXENT *) ext1;
296 union internal_auxent *in = (union internal_auxent *) in1;
297
298 /* PR 17521: Make sure that all fields in the aux structure
299 are initialised. */
300 memset (in, 0, sizeof * in);
301 switch (in_class)
302 {
303 case C_FILE:
304 if (ext->x_file.x_fname[0] == 0)
305 {
306 in->x_file.x_n.x_zeroes = 0;
307 in->x_file.x_n.x_offset = H_GET_32 (abfd, ext->x_file.x_n.x_offset);
308 }
309 else
310 memcpy (in->x_file.x_fname, ext->x_file.x_fname, FILNMLEN);
311 return;
312
313 case C_STAT:
314 case C_LEAFSTAT:
315 case C_HIDDEN:
316 if (type == T_NULL)
317 {
318 in->x_scn.x_scnlen = GET_SCN_SCNLEN (abfd, ext);
319 in->x_scn.x_nreloc = GET_SCN_NRELOC (abfd, ext);
320 in->x_scn.x_nlinno = GET_SCN_NLINNO (abfd, ext);
321 in->x_scn.x_checksum = H_GET_32 (abfd, ext->x_scn.x_checksum);
322 in->x_scn.x_associated = H_GET_16 (abfd, ext->x_scn.x_associated);
323 in->x_scn.x_comdat = H_GET_8 (abfd, ext->x_scn.x_comdat);
324 return;
325 }
326 break;
327 }
328
329 in->x_sym.x_tagndx.l = H_GET_32 (abfd, ext->x_sym.x_tagndx);
330 in->x_sym.x_tvndx = H_GET_16 (abfd, ext->x_sym.x_tvndx);
331
332 if (in_class == C_BLOCK || in_class == C_FCN || ISFCN (type)
333 || ISTAG (in_class))
334 {
335 in->x_sym.x_fcnary.x_fcn.x_lnnoptr = GET_FCN_LNNOPTR (abfd, ext);
336 in->x_sym.x_fcnary.x_fcn.x_endndx.l = GET_FCN_ENDNDX (abfd, ext);
337 }
338 else
339 {
340 in->x_sym.x_fcnary.x_ary.x_dimen[0] =
341 H_GET_16 (abfd, ext->x_sym.x_fcnary.x_ary.x_dimen[0]);
342 in->x_sym.x_fcnary.x_ary.x_dimen[1] =
343 H_GET_16 (abfd, ext->x_sym.x_fcnary.x_ary.x_dimen[1]);
344 in->x_sym.x_fcnary.x_ary.x_dimen[2] =
345 H_GET_16 (abfd, ext->x_sym.x_fcnary.x_ary.x_dimen[2]);
346 in->x_sym.x_fcnary.x_ary.x_dimen[3] =
347 H_GET_16 (abfd, ext->x_sym.x_fcnary.x_ary.x_dimen[3]);
348 }
349
350 if (ISFCN (type))
351 {
352 in->x_sym.x_misc.x_fsize = H_GET_32 (abfd, ext->x_sym.x_misc.x_fsize);
353 }
354 else
355 {
356 in->x_sym.x_misc.x_lnsz.x_lnno = GET_LNSZ_LNNO (abfd, ext);
357 in->x_sym.x_misc.x_lnsz.x_size = GET_LNSZ_SIZE (abfd, ext);
358 }
359 }
360
361 unsigned int
362 _bfd_XXi_swap_aux_out (bfd * abfd,
363 void * inp,
364 int type,
365 int in_class,
366 int indx ATTRIBUTE_UNUSED,
367 int numaux ATTRIBUTE_UNUSED,
368 void * extp)
369 {
370 union internal_auxent *in = (union internal_auxent *) inp;
371 AUXENT *ext = (AUXENT *) extp;
372
373 memset (ext, 0, AUXESZ);
374
375 switch (in_class)
376 {
377 case C_FILE:
378 if (in->x_file.x_fname[0] == 0)
379 {
380 H_PUT_32 (abfd, 0, ext->x_file.x_n.x_zeroes);
381 H_PUT_32 (abfd, in->x_file.x_n.x_offset, ext->x_file.x_n.x_offset);
382 }
383 else
384 memcpy (ext->x_file.x_fname, in->x_file.x_fname, FILNMLEN);
385
386 return AUXESZ;
387
388 case C_STAT:
389 case C_LEAFSTAT:
390 case C_HIDDEN:
391 if (type == T_NULL)
392 {
393 PUT_SCN_SCNLEN (abfd, in->x_scn.x_scnlen, ext);
394 PUT_SCN_NRELOC (abfd, in->x_scn.x_nreloc, ext);
395 PUT_SCN_NLINNO (abfd, in->x_scn.x_nlinno, ext);
396 H_PUT_32 (abfd, in->x_scn.x_checksum, ext->x_scn.x_checksum);
397 H_PUT_16 (abfd, in->x_scn.x_associated, ext->x_scn.x_associated);
398 H_PUT_8 (abfd, in->x_scn.x_comdat, ext->x_scn.x_comdat);
399 return AUXESZ;
400 }
401 break;
402 }
403
404 H_PUT_32 (abfd, in->x_sym.x_tagndx.l, ext->x_sym.x_tagndx);
405 H_PUT_16 (abfd, in->x_sym.x_tvndx, ext->x_sym.x_tvndx);
406
407 if (in_class == C_BLOCK || in_class == C_FCN || ISFCN (type)
408 || ISTAG (in_class))
409 {
410 PUT_FCN_LNNOPTR (abfd, in->x_sym.x_fcnary.x_fcn.x_lnnoptr, ext);
411 PUT_FCN_ENDNDX (abfd, in->x_sym.x_fcnary.x_fcn.x_endndx.l, ext);
412 }
413 else
414 {
415 H_PUT_16 (abfd, in->x_sym.x_fcnary.x_ary.x_dimen[0],
416 ext->x_sym.x_fcnary.x_ary.x_dimen[0]);
417 H_PUT_16 (abfd, in->x_sym.x_fcnary.x_ary.x_dimen[1],
418 ext->x_sym.x_fcnary.x_ary.x_dimen[1]);
419 H_PUT_16 (abfd, in->x_sym.x_fcnary.x_ary.x_dimen[2],
420 ext->x_sym.x_fcnary.x_ary.x_dimen[2]);
421 H_PUT_16 (abfd, in->x_sym.x_fcnary.x_ary.x_dimen[3],
422 ext->x_sym.x_fcnary.x_ary.x_dimen[3]);
423 }
424
425 if (ISFCN (type))
426 H_PUT_32 (abfd, in->x_sym.x_misc.x_fsize, ext->x_sym.x_misc.x_fsize);
427 else
428 {
429 PUT_LNSZ_LNNO (abfd, in->x_sym.x_misc.x_lnsz.x_lnno, ext);
430 PUT_LNSZ_SIZE (abfd, in->x_sym.x_misc.x_lnsz.x_size, ext);
431 }
432
433 return AUXESZ;
434 }
435
436 void
437 _bfd_XXi_swap_lineno_in (bfd * abfd, void * ext1, void * in1)
438 {
439 LINENO *ext = (LINENO *) ext1;
440 struct internal_lineno *in = (struct internal_lineno *) in1;
441
442 in->l_addr.l_symndx = H_GET_32 (abfd, ext->l_addr.l_symndx);
443 in->l_lnno = GET_LINENO_LNNO (abfd, ext);
444 }
445
446 unsigned int
447 _bfd_XXi_swap_lineno_out (bfd * abfd, void * inp, void * outp)
448 {
449 struct internal_lineno *in = (struct internal_lineno *) inp;
450 struct external_lineno *ext = (struct external_lineno *) outp;
451 H_PUT_32 (abfd, in->l_addr.l_symndx, ext->l_addr.l_symndx);
452
453 PUT_LINENO_LNNO (abfd, in->l_lnno, ext);
454 return LINESZ;
455 }
456
457 void
458 _bfd_XXi_swap_aouthdr_in (bfd * abfd,
459 void * aouthdr_ext1,
460 void * aouthdr_int1)
461 {
462 PEAOUTHDR * src = (PEAOUTHDR *) aouthdr_ext1;
463 AOUTHDR * aouthdr_ext = (AOUTHDR *) aouthdr_ext1;
464 struct internal_aouthdr *aouthdr_int
465 = (struct internal_aouthdr *) aouthdr_int1;
466 struct internal_extra_pe_aouthdr *a = &aouthdr_int->pe;
467
468 aouthdr_int->magic = H_GET_16 (abfd, aouthdr_ext->magic);
469 aouthdr_int->vstamp = H_GET_16 (abfd, aouthdr_ext->vstamp);
470 aouthdr_int->tsize = GET_AOUTHDR_TSIZE (abfd, aouthdr_ext->tsize);
471 aouthdr_int->dsize = GET_AOUTHDR_DSIZE (abfd, aouthdr_ext->dsize);
472 aouthdr_int->bsize = GET_AOUTHDR_BSIZE (abfd, aouthdr_ext->bsize);
473 aouthdr_int->entry = GET_AOUTHDR_ENTRY (abfd, aouthdr_ext->entry);
474 aouthdr_int->text_start =
475 GET_AOUTHDR_TEXT_START (abfd, aouthdr_ext->text_start);
476
477 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
478 /* PE32+ does not have data_start member! */
479 aouthdr_int->data_start =
480 GET_AOUTHDR_DATA_START (abfd, aouthdr_ext->data_start);
481 a->BaseOfData = aouthdr_int->data_start;
482 #endif
483
484 a->Magic = aouthdr_int->magic;
485 a->MajorLinkerVersion = H_GET_8 (abfd, aouthdr_ext->vstamp);
486 a->MinorLinkerVersion = H_GET_8 (abfd, aouthdr_ext->vstamp + 1);
487 a->SizeOfCode = aouthdr_int->tsize ;
488 a->SizeOfInitializedData = aouthdr_int->dsize ;
489 a->SizeOfUninitializedData = aouthdr_int->bsize ;
490 a->AddressOfEntryPoint = aouthdr_int->entry;
491 a->BaseOfCode = aouthdr_int->text_start;
492 a->ImageBase = GET_OPTHDR_IMAGE_BASE (abfd, src->ImageBase);
493 a->SectionAlignment = H_GET_32 (abfd, src->SectionAlignment);
494 a->FileAlignment = H_GET_32 (abfd, src->FileAlignment);
495 a->MajorOperatingSystemVersion =
496 H_GET_16 (abfd, src->MajorOperatingSystemVersion);
497 a->MinorOperatingSystemVersion =
498 H_GET_16 (abfd, src->MinorOperatingSystemVersion);
499 a->MajorImageVersion = H_GET_16 (abfd, src->MajorImageVersion);
500 a->MinorImageVersion = H_GET_16 (abfd, src->MinorImageVersion);
501 a->MajorSubsystemVersion = H_GET_16 (abfd, src->MajorSubsystemVersion);
502 a->MinorSubsystemVersion = H_GET_16 (abfd, src->MinorSubsystemVersion);
503 a->Reserved1 = H_GET_32 (abfd, src->Reserved1);
504 a->SizeOfImage = H_GET_32 (abfd, src->SizeOfImage);
505 a->SizeOfHeaders = H_GET_32 (abfd, src->SizeOfHeaders);
506 a->CheckSum = H_GET_32 (abfd, src->CheckSum);
507 a->Subsystem = H_GET_16 (abfd, src->Subsystem);
508 a->DllCharacteristics = H_GET_16 (abfd, src->DllCharacteristics);
509 a->SizeOfStackReserve =
510 GET_OPTHDR_SIZE_OF_STACK_RESERVE (abfd, src->SizeOfStackReserve);
511 a->SizeOfStackCommit =
512 GET_OPTHDR_SIZE_OF_STACK_COMMIT (abfd, src->SizeOfStackCommit);
513 a->SizeOfHeapReserve =
514 GET_OPTHDR_SIZE_OF_HEAP_RESERVE (abfd, src->SizeOfHeapReserve);
515 a->SizeOfHeapCommit =
516 GET_OPTHDR_SIZE_OF_HEAP_COMMIT (abfd, src->SizeOfHeapCommit);
517 a->LoaderFlags = H_GET_32 (abfd, src->LoaderFlags);
518 a->NumberOfRvaAndSizes = H_GET_32 (abfd, src->NumberOfRvaAndSizes);
519
520 {
521 int idx;
522
523 /* PR 17512: Corrupt PE binaries can cause seg-faults. */
524 if (a->NumberOfRvaAndSizes > IMAGE_NUMBEROF_DIRECTORY_ENTRIES)
525 {
526 (*_bfd_error_handler)
527 (_("%B: aout header specifies an invalid number of data-directory entries: %d"),
528 abfd, a->NumberOfRvaAndSizes);
529 /* Paranoia: If the number is corrupt, then assume that the
530 actual entries themselves might be corrupt as well. */
531 a->NumberOfRvaAndSizes = 0;
532 }
533
534 for (idx = 0; idx < a->NumberOfRvaAndSizes; idx++)
535 {
536 /* If data directory is empty, rva also should be 0. */
537 int size =
538 H_GET_32 (abfd, src->DataDirectory[idx][1]);
539
540 a->DataDirectory[idx].Size = size;
541
542 if (size)
543 a->DataDirectory[idx].VirtualAddress =
544 H_GET_32 (abfd, src->DataDirectory[idx][0]);
545 else
546 a->DataDirectory[idx].VirtualAddress = 0;
547 }
548
549 while (idx < IMAGE_NUMBEROF_DIRECTORY_ENTRIES)
550 {
551 a->DataDirectory[idx].Size = 0;
552 a->DataDirectory[idx].VirtualAddress = 0;
553 idx ++;
554 }
555 }
556
557 if (aouthdr_int->entry)
558 {
559 aouthdr_int->entry += a->ImageBase;
560 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
561 aouthdr_int->entry &= 0xffffffff;
562 #endif
563 }
564
565 if (aouthdr_int->tsize)
566 {
567 aouthdr_int->text_start += a->ImageBase;
568 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
569 aouthdr_int->text_start &= 0xffffffff;
570 #endif
571 }
572
573 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
574 /* PE32+ does not have data_start member! */
575 if (aouthdr_int->dsize)
576 {
577 aouthdr_int->data_start += a->ImageBase;
578 aouthdr_int->data_start &= 0xffffffff;
579 }
580 #endif
581
582 #ifdef POWERPC_LE_PE
583 /* These three fields are normally set up by ppc_relocate_section.
584 In the case of reading a file in, we can pick them up from the
585 DataDirectory. */
586 first_thunk_address = a->DataDirectory[PE_IMPORT_ADDRESS_TABLE].VirtualAddress;
587 thunk_size = a->DataDirectory[PE_IMPORT_ADDRESS_TABLE].Size;
588 import_table_size = a->DataDirectory[PE_IMPORT_TABLE].Size;
589 #endif
590 }
591
592 /* A support function for below. */
593
594 static void
595 add_data_entry (bfd * abfd,
596 struct internal_extra_pe_aouthdr *aout,
597 int idx,
598 char *name,
599 bfd_vma base)
600 {
601 asection *sec = bfd_get_section_by_name (abfd, name);
602
603 /* Add import directory information if it exists. */
604 if ((sec != NULL)
605 && (coff_section_data (abfd, sec) != NULL)
606 && (pei_section_data (abfd, sec) != NULL))
607 {
608 /* If data directory is empty, rva also should be 0. */
609 int size = pei_section_data (abfd, sec)->virt_size;
610 aout->DataDirectory[idx].Size = size;
611
612 if (size)
613 {
614 aout->DataDirectory[idx].VirtualAddress =
615 (sec->vma - base) & 0xffffffff;
616 sec->flags |= SEC_DATA;
617 }
618 }
619 }
620
621 unsigned int
622 _bfd_XXi_swap_aouthdr_out (bfd * abfd, void * in, void * out)
623 {
624 struct internal_aouthdr *aouthdr_in = (struct internal_aouthdr *) in;
625 pe_data_type *pe = pe_data (abfd);
626 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
627 PEAOUTHDR *aouthdr_out = (PEAOUTHDR *) out;
628 bfd_vma sa, fa, ib;
629 IMAGE_DATA_DIRECTORY idata2, idata5, tls;
630
631 sa = extra->SectionAlignment;
632 fa = extra->FileAlignment;
633 ib = extra->ImageBase;
634
635 idata2 = pe->pe_opthdr.DataDirectory[PE_IMPORT_TABLE];
636 idata5 = pe->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE];
637 tls = pe->pe_opthdr.DataDirectory[PE_TLS_TABLE];
638
639 if (aouthdr_in->tsize)
640 {
641 aouthdr_in->text_start -= ib;
642 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
643 aouthdr_in->text_start &= 0xffffffff;
644 #endif
645 }
646
647 if (aouthdr_in->dsize)
648 {
649 aouthdr_in->data_start -= ib;
650 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
651 aouthdr_in->data_start &= 0xffffffff;
652 #endif
653 }
654
655 if (aouthdr_in->entry)
656 {
657 aouthdr_in->entry -= ib;
658 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
659 aouthdr_in->entry &= 0xffffffff;
660 #endif
661 }
662
663 #define FA(x) (((x) + fa -1 ) & (- fa))
664 #define SA(x) (((x) + sa -1 ) & (- sa))
665
666 /* We like to have the sizes aligned. */
667 aouthdr_in->bsize = FA (aouthdr_in->bsize);
668
669 extra->NumberOfRvaAndSizes = IMAGE_NUMBEROF_DIRECTORY_ENTRIES;
670
671 add_data_entry (abfd, extra, 0, ".edata", ib);
672 add_data_entry (abfd, extra, 2, ".rsrc", ib);
673 add_data_entry (abfd, extra, 3, ".pdata", ib);
674
675 /* In theory we do not need to call add_data_entry for .idata$2 or
676 .idata$5. It will be done in bfd_coff_final_link where all the
677 required information is available. If however, we are not going
678 to perform a final link, eg because we have been invoked by objcopy
679 or strip, then we need to make sure that these Data Directory
680 entries are initialised properly.
681
682 So - we copy the input values into the output values, and then, if
683 a final link is going to be performed, it can overwrite them. */
684 extra->DataDirectory[PE_IMPORT_TABLE] = idata2;
685 extra->DataDirectory[PE_IMPORT_ADDRESS_TABLE] = idata5;
686 extra->DataDirectory[PE_TLS_TABLE] = tls;
687
688 if (extra->DataDirectory[PE_IMPORT_TABLE].VirtualAddress == 0)
689 /* Until other .idata fixes are made (pending patch), the entry for
690 .idata is needed for backwards compatibility. FIXME. */
691 add_data_entry (abfd, extra, 1, ".idata", ib);
692
693 /* For some reason, the virtual size (which is what's set by
694 add_data_entry) for .reloc is not the same as the size recorded
695 in this slot by MSVC; it doesn't seem to cause problems (so far),
696 but since it's the best we've got, use it. It does do the right
697 thing for .pdata. */
698 if (pe->has_reloc_section)
699 add_data_entry (abfd, extra, 5, ".reloc", ib);
700
701 {
702 asection *sec;
703 bfd_vma hsize = 0;
704 bfd_vma dsize = 0;
705 bfd_vma isize = 0;
706 bfd_vma tsize = 0;
707
708 for (sec = abfd->sections; sec; sec = sec->next)
709 {
710 int rounded = FA (sec->size);
711
712 /* The first non-zero section filepos is the header size.
713 Sections without contents will have a filepos of 0. */
714 if (hsize == 0)
715 hsize = sec->filepos;
716 if (sec->flags & SEC_DATA)
717 dsize += rounded;
718 if (sec->flags & SEC_CODE)
719 tsize += rounded;
720 /* The image size is the total VIRTUAL size (which is what is
721 in the virt_size field). Files have been seen (from MSVC
722 5.0 link.exe) where the file size of the .data segment is
723 quite small compared to the virtual size. Without this
724 fix, strip munges the file.
725
726 FIXME: We need to handle holes between sections, which may
727 happpen when we covert from another format. We just use
728 the virtual address and virtual size of the last section
729 for the image size. */
730 if (coff_section_data (abfd, sec) != NULL
731 && pei_section_data (abfd, sec) != NULL)
732 isize = (sec->vma - extra->ImageBase
733 + SA (FA (pei_section_data (abfd, sec)->virt_size)));
734 }
735
736 aouthdr_in->dsize = dsize;
737 aouthdr_in->tsize = tsize;
738 extra->SizeOfHeaders = hsize;
739 extra->SizeOfImage = isize;
740 }
741
742 H_PUT_16 (abfd, aouthdr_in->magic, aouthdr_out->standard.magic);
743
744 /* e.g. 219510000 is linker version 2.19 */
745 #define LINKER_VERSION ((short) (BFD_VERSION / 1000000))
746
747 /* This piece of magic sets the "linker version" field to
748 LINKER_VERSION. */
749 H_PUT_16 (abfd, (LINKER_VERSION / 100 + (LINKER_VERSION % 100) * 256),
750 aouthdr_out->standard.vstamp);
751
752 PUT_AOUTHDR_TSIZE (abfd, aouthdr_in->tsize, aouthdr_out->standard.tsize);
753 PUT_AOUTHDR_DSIZE (abfd, aouthdr_in->dsize, aouthdr_out->standard.dsize);
754 PUT_AOUTHDR_BSIZE (abfd, aouthdr_in->bsize, aouthdr_out->standard.bsize);
755 PUT_AOUTHDR_ENTRY (abfd, aouthdr_in->entry, aouthdr_out->standard.entry);
756 PUT_AOUTHDR_TEXT_START (abfd, aouthdr_in->text_start,
757 aouthdr_out->standard.text_start);
758
759 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
760 /* PE32+ does not have data_start member! */
761 PUT_AOUTHDR_DATA_START (abfd, aouthdr_in->data_start,
762 aouthdr_out->standard.data_start);
763 #endif
764
765 PUT_OPTHDR_IMAGE_BASE (abfd, extra->ImageBase, aouthdr_out->ImageBase);
766 H_PUT_32 (abfd, extra->SectionAlignment, aouthdr_out->SectionAlignment);
767 H_PUT_32 (abfd, extra->FileAlignment, aouthdr_out->FileAlignment);
768 H_PUT_16 (abfd, extra->MajorOperatingSystemVersion,
769 aouthdr_out->MajorOperatingSystemVersion);
770 H_PUT_16 (abfd, extra->MinorOperatingSystemVersion,
771 aouthdr_out->MinorOperatingSystemVersion);
772 H_PUT_16 (abfd, extra->MajorImageVersion, aouthdr_out->MajorImageVersion);
773 H_PUT_16 (abfd, extra->MinorImageVersion, aouthdr_out->MinorImageVersion);
774 H_PUT_16 (abfd, extra->MajorSubsystemVersion,
775 aouthdr_out->MajorSubsystemVersion);
776 H_PUT_16 (abfd, extra->MinorSubsystemVersion,
777 aouthdr_out->MinorSubsystemVersion);
778 H_PUT_32 (abfd, extra->Reserved1, aouthdr_out->Reserved1);
779 H_PUT_32 (abfd, extra->SizeOfImage, aouthdr_out->SizeOfImage);
780 H_PUT_32 (abfd, extra->SizeOfHeaders, aouthdr_out->SizeOfHeaders);
781 H_PUT_32 (abfd, extra->CheckSum, aouthdr_out->CheckSum);
782 H_PUT_16 (abfd, extra->Subsystem, aouthdr_out->Subsystem);
783 H_PUT_16 (abfd, extra->DllCharacteristics, aouthdr_out->DllCharacteristics);
784 PUT_OPTHDR_SIZE_OF_STACK_RESERVE (abfd, extra->SizeOfStackReserve,
785 aouthdr_out->SizeOfStackReserve);
786 PUT_OPTHDR_SIZE_OF_STACK_COMMIT (abfd, extra->SizeOfStackCommit,
787 aouthdr_out->SizeOfStackCommit);
788 PUT_OPTHDR_SIZE_OF_HEAP_RESERVE (abfd, extra->SizeOfHeapReserve,
789 aouthdr_out->SizeOfHeapReserve);
790 PUT_OPTHDR_SIZE_OF_HEAP_COMMIT (abfd, extra->SizeOfHeapCommit,
791 aouthdr_out->SizeOfHeapCommit);
792 H_PUT_32 (abfd, extra->LoaderFlags, aouthdr_out->LoaderFlags);
793 H_PUT_32 (abfd, extra->NumberOfRvaAndSizes,
794 aouthdr_out->NumberOfRvaAndSizes);
795 {
796 int idx;
797
798 for (idx = 0; idx < IMAGE_NUMBEROF_DIRECTORY_ENTRIES; idx++)
799 {
800 H_PUT_32 (abfd, extra->DataDirectory[idx].VirtualAddress,
801 aouthdr_out->DataDirectory[idx][0]);
802 H_PUT_32 (abfd, extra->DataDirectory[idx].Size,
803 aouthdr_out->DataDirectory[idx][1]);
804 }
805 }
806
807 return AOUTSZ;
808 }
809
810 unsigned int
811 _bfd_XXi_only_swap_filehdr_out (bfd * abfd, void * in, void * out)
812 {
813 int idx;
814 struct internal_filehdr *filehdr_in = (struct internal_filehdr *) in;
815 struct external_PEI_filehdr *filehdr_out = (struct external_PEI_filehdr *) out;
816
817 if (pe_data (abfd)->has_reloc_section
818 || pe_data (abfd)->dont_strip_reloc)
819 filehdr_in->f_flags &= ~F_RELFLG;
820
821 if (pe_data (abfd)->dll)
822 filehdr_in->f_flags |= F_DLL;
823
824 filehdr_in->pe.e_magic = DOSMAGIC;
825 filehdr_in->pe.e_cblp = 0x90;
826 filehdr_in->pe.e_cp = 0x3;
827 filehdr_in->pe.e_crlc = 0x0;
828 filehdr_in->pe.e_cparhdr = 0x4;
829 filehdr_in->pe.e_minalloc = 0x0;
830 filehdr_in->pe.e_maxalloc = 0xffff;
831 filehdr_in->pe.e_ss = 0x0;
832 filehdr_in->pe.e_sp = 0xb8;
833 filehdr_in->pe.e_csum = 0x0;
834 filehdr_in->pe.e_ip = 0x0;
835 filehdr_in->pe.e_cs = 0x0;
836 filehdr_in->pe.e_lfarlc = 0x40;
837 filehdr_in->pe.e_ovno = 0x0;
838
839 for (idx = 0; idx < 4; idx++)
840 filehdr_in->pe.e_res[idx] = 0x0;
841
842 filehdr_in->pe.e_oemid = 0x0;
843 filehdr_in->pe.e_oeminfo = 0x0;
844
845 for (idx = 0; idx < 10; idx++)
846 filehdr_in->pe.e_res2[idx] = 0x0;
847
848 filehdr_in->pe.e_lfanew = 0x80;
849
850 /* This next collection of data are mostly just characters. It
851 appears to be constant within the headers put on NT exes. */
852 filehdr_in->pe.dos_message[0] = 0x0eba1f0e;
853 filehdr_in->pe.dos_message[1] = 0xcd09b400;
854 filehdr_in->pe.dos_message[2] = 0x4c01b821;
855 filehdr_in->pe.dos_message[3] = 0x685421cd;
856 filehdr_in->pe.dos_message[4] = 0x70207369;
857 filehdr_in->pe.dos_message[5] = 0x72676f72;
858 filehdr_in->pe.dos_message[6] = 0x63206d61;
859 filehdr_in->pe.dos_message[7] = 0x6f6e6e61;
860 filehdr_in->pe.dos_message[8] = 0x65622074;
861 filehdr_in->pe.dos_message[9] = 0x6e757220;
862 filehdr_in->pe.dos_message[10] = 0x206e6920;
863 filehdr_in->pe.dos_message[11] = 0x20534f44;
864 filehdr_in->pe.dos_message[12] = 0x65646f6d;
865 filehdr_in->pe.dos_message[13] = 0x0a0d0d2e;
866 filehdr_in->pe.dos_message[14] = 0x24;
867 filehdr_in->pe.dos_message[15] = 0x0;
868 filehdr_in->pe.nt_signature = NT_SIGNATURE;
869
870 H_PUT_16 (abfd, filehdr_in->f_magic, filehdr_out->f_magic);
871 H_PUT_16 (abfd, filehdr_in->f_nscns, filehdr_out->f_nscns);
872
873 /* Only use a real timestamp if the option was chosen. */
874 if ((pe_data (abfd)->insert_timestamp))
875 H_PUT_32 (abfd, time (0), filehdr_out->f_timdat);
876
877 PUT_FILEHDR_SYMPTR (abfd, filehdr_in->f_symptr,
878 filehdr_out->f_symptr);
879 H_PUT_32 (abfd, filehdr_in->f_nsyms, filehdr_out->f_nsyms);
880 H_PUT_16 (abfd, filehdr_in->f_opthdr, filehdr_out->f_opthdr);
881 H_PUT_16 (abfd, filehdr_in->f_flags, filehdr_out->f_flags);
882
883 /* Put in extra dos header stuff. This data remains essentially
884 constant, it just has to be tacked on to the beginning of all exes
885 for NT. */
886 H_PUT_16 (abfd, filehdr_in->pe.e_magic, filehdr_out->e_magic);
887 H_PUT_16 (abfd, filehdr_in->pe.e_cblp, filehdr_out->e_cblp);
888 H_PUT_16 (abfd, filehdr_in->pe.e_cp, filehdr_out->e_cp);
889 H_PUT_16 (abfd, filehdr_in->pe.e_crlc, filehdr_out->e_crlc);
890 H_PUT_16 (abfd, filehdr_in->pe.e_cparhdr, filehdr_out->e_cparhdr);
891 H_PUT_16 (abfd, filehdr_in->pe.e_minalloc, filehdr_out->e_minalloc);
892 H_PUT_16 (abfd, filehdr_in->pe.e_maxalloc, filehdr_out->e_maxalloc);
893 H_PUT_16 (abfd, filehdr_in->pe.e_ss, filehdr_out->e_ss);
894 H_PUT_16 (abfd, filehdr_in->pe.e_sp, filehdr_out->e_sp);
895 H_PUT_16 (abfd, filehdr_in->pe.e_csum, filehdr_out->e_csum);
896 H_PUT_16 (abfd, filehdr_in->pe.e_ip, filehdr_out->e_ip);
897 H_PUT_16 (abfd, filehdr_in->pe.e_cs, filehdr_out->e_cs);
898 H_PUT_16 (abfd, filehdr_in->pe.e_lfarlc, filehdr_out->e_lfarlc);
899 H_PUT_16 (abfd, filehdr_in->pe.e_ovno, filehdr_out->e_ovno);
900
901 for (idx = 0; idx < 4; idx++)
902 H_PUT_16 (abfd, filehdr_in->pe.e_res[idx], filehdr_out->e_res[idx]);
903
904 H_PUT_16 (abfd, filehdr_in->pe.e_oemid, filehdr_out->e_oemid);
905 H_PUT_16 (abfd, filehdr_in->pe.e_oeminfo, filehdr_out->e_oeminfo);
906
907 for (idx = 0; idx < 10; idx++)
908 H_PUT_16 (abfd, filehdr_in->pe.e_res2[idx], filehdr_out->e_res2[idx]);
909
910 H_PUT_32 (abfd, filehdr_in->pe.e_lfanew, filehdr_out->e_lfanew);
911
912 for (idx = 0; idx < 16; idx++)
913 H_PUT_32 (abfd, filehdr_in->pe.dos_message[idx],
914 filehdr_out->dos_message[idx]);
915
916 /* Also put in the NT signature. */
917 H_PUT_32 (abfd, filehdr_in->pe.nt_signature, filehdr_out->nt_signature);
918
919 return FILHSZ;
920 }
921
922 unsigned int
923 _bfd_XX_only_swap_filehdr_out (bfd * abfd, void * in, void * out)
924 {
925 struct internal_filehdr *filehdr_in = (struct internal_filehdr *) in;
926 FILHDR *filehdr_out = (FILHDR *) out;
927
928 H_PUT_16 (abfd, filehdr_in->f_magic, filehdr_out->f_magic);
929 H_PUT_16 (abfd, filehdr_in->f_nscns, filehdr_out->f_nscns);
930 H_PUT_32 (abfd, filehdr_in->f_timdat, filehdr_out->f_timdat);
931 PUT_FILEHDR_SYMPTR (abfd, filehdr_in->f_symptr, filehdr_out->f_symptr);
932 H_PUT_32 (abfd, filehdr_in->f_nsyms, filehdr_out->f_nsyms);
933 H_PUT_16 (abfd, filehdr_in->f_opthdr, filehdr_out->f_opthdr);
934 H_PUT_16 (abfd, filehdr_in->f_flags, filehdr_out->f_flags);
935
936 return FILHSZ;
937 }
938
939 unsigned int
940 _bfd_XXi_swap_scnhdr_out (bfd * abfd, void * in, void * out)
941 {
942 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
943 SCNHDR *scnhdr_ext = (SCNHDR *) out;
944 unsigned int ret = SCNHSZ;
945 bfd_vma ps;
946 bfd_vma ss;
947
948 memcpy (scnhdr_ext->s_name, scnhdr_int->s_name, sizeof (scnhdr_int->s_name));
949
950 PUT_SCNHDR_VADDR (abfd,
951 ((scnhdr_int->s_vaddr
952 - pe_data (abfd)->pe_opthdr.ImageBase)
953 & 0xffffffff),
954 scnhdr_ext->s_vaddr);
955
956 /* NT wants the size data to be rounded up to the next
957 NT_FILE_ALIGNMENT, but zero if it has no content (as in .bss,
958 sometimes). */
959 if ((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0)
960 {
961 if (bfd_pei_p (abfd))
962 {
963 ps = scnhdr_int->s_size;
964 ss = 0;
965 }
966 else
967 {
968 ps = 0;
969 ss = scnhdr_int->s_size;
970 }
971 }
972 else
973 {
974 if (bfd_pei_p (abfd))
975 ps = scnhdr_int->s_paddr;
976 else
977 ps = 0;
978
979 ss = scnhdr_int->s_size;
980 }
981
982 PUT_SCNHDR_SIZE (abfd, ss,
983 scnhdr_ext->s_size);
984
985 /* s_paddr in PE is really the virtual size. */
986 PUT_SCNHDR_PADDR (abfd, ps, scnhdr_ext->s_paddr);
987
988 PUT_SCNHDR_SCNPTR (abfd, scnhdr_int->s_scnptr,
989 scnhdr_ext->s_scnptr);
990 PUT_SCNHDR_RELPTR (abfd, scnhdr_int->s_relptr,
991 scnhdr_ext->s_relptr);
992 PUT_SCNHDR_LNNOPTR (abfd, scnhdr_int->s_lnnoptr,
993 scnhdr_ext->s_lnnoptr);
994
995 {
996 /* Extra flags must be set when dealing with PE. All sections should also
997 have the IMAGE_SCN_MEM_READ (0x40000000) flag set. In addition, the
998 .text section must have IMAGE_SCN_MEM_EXECUTE (0x20000000) and the data
999 sections (.idata, .data, .bss, .CRT) must have IMAGE_SCN_MEM_WRITE set
1000 (this is especially important when dealing with the .idata section since
1001 the addresses for routines from .dlls must be overwritten). If .reloc
1002 section data is ever generated, we must add IMAGE_SCN_MEM_DISCARDABLE
1003 (0x02000000). Also, the resource data should also be read and
1004 writable. */
1005
1006 /* FIXME: Alignment is also encoded in this field, at least on PPC and
1007 ARM-WINCE. Although - how do we get the original alignment field
1008 back ? */
1009
1010 typedef struct
1011 {
1012 const char * section_name;
1013 unsigned long must_have;
1014 }
1015 pe_required_section_flags;
1016
1017 pe_required_section_flags known_sections [] =
1018 {
1019 { ".arch", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_DISCARDABLE | IMAGE_SCN_ALIGN_8BYTES },
1020 { ".bss", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_WRITE },
1021 { ".data", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_WRITE },
1022 { ".edata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA },
1023 { ".idata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_WRITE },
1024 { ".pdata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA },
1025 { ".rdata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA },
1026 { ".reloc", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_DISCARDABLE },
1027 { ".rsrc", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_WRITE },
1028 { ".text" , IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_CODE | IMAGE_SCN_MEM_EXECUTE },
1029 { ".tls", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_WRITE },
1030 { ".xdata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA },
1031 { NULL, 0}
1032 };
1033
1034 pe_required_section_flags * p;
1035
1036 /* We have defaulted to adding the IMAGE_SCN_MEM_WRITE flag, but now
1037 we know exactly what this specific section wants so we remove it
1038 and then allow the must_have field to add it back in if necessary.
1039 However, we don't remove IMAGE_SCN_MEM_WRITE flag from .text if the
1040 default WP_TEXT file flag has been cleared. WP_TEXT may be cleared
1041 by ld --enable-auto-import (if auto-import is actually needed),
1042 by ld --omagic, or by obcopy --writable-text. */
1043
1044 for (p = known_sections; p->section_name; p++)
1045 if (strcmp (scnhdr_int->s_name, p->section_name) == 0)
1046 {
1047 if (strcmp (scnhdr_int->s_name, ".text")
1048 || (bfd_get_file_flags (abfd) & WP_TEXT))
1049 scnhdr_int->s_flags &= ~IMAGE_SCN_MEM_WRITE;
1050 scnhdr_int->s_flags |= p->must_have;
1051 break;
1052 }
1053
1054 H_PUT_32 (abfd, scnhdr_int->s_flags, scnhdr_ext->s_flags);
1055 }
1056
1057 if (coff_data (abfd)->link_info
1058 && ! coff_data (abfd)->link_info->relocatable
1059 && ! coff_data (abfd)->link_info->shared
1060 && strcmp (scnhdr_int->s_name, ".text") == 0)
1061 {
1062 /* By inference from looking at MS output, the 32 bit field
1063 which is the combination of the number_of_relocs and
1064 number_of_linenos is used for the line number count in
1065 executables. A 16-bit field won't do for cc1. The MS
1066 document says that the number of relocs is zero for
1067 executables, but the 17-th bit has been observed to be there.
1068 Overflow is not an issue: a 4G-line program will overflow a
1069 bunch of other fields long before this! */
1070 H_PUT_16 (abfd, (scnhdr_int->s_nlnno & 0xffff), scnhdr_ext->s_nlnno);
1071 H_PUT_16 (abfd, (scnhdr_int->s_nlnno >> 16), scnhdr_ext->s_nreloc);
1072 }
1073 else
1074 {
1075 if (scnhdr_int->s_nlnno <= 0xffff)
1076 H_PUT_16 (abfd, scnhdr_int->s_nlnno, scnhdr_ext->s_nlnno);
1077 else
1078 {
1079 (*_bfd_error_handler) (_("%s: line number overflow: 0x%lx > 0xffff"),
1080 bfd_get_filename (abfd),
1081 scnhdr_int->s_nlnno);
1082 bfd_set_error (bfd_error_file_truncated);
1083 H_PUT_16 (abfd, 0xffff, scnhdr_ext->s_nlnno);
1084 ret = 0;
1085 }
1086
1087 /* Although we could encode 0xffff relocs here, we do not, to be
1088 consistent with other parts of bfd. Also it lets us warn, as
1089 we should never see 0xffff here w/o having the overflow flag
1090 set. */
1091 if (scnhdr_int->s_nreloc < 0xffff)
1092 H_PUT_16 (abfd, scnhdr_int->s_nreloc, scnhdr_ext->s_nreloc);
1093 else
1094 {
1095 /* PE can deal with large #s of relocs, but not here. */
1096 H_PUT_16 (abfd, 0xffff, scnhdr_ext->s_nreloc);
1097 scnhdr_int->s_flags |= IMAGE_SCN_LNK_NRELOC_OVFL;
1098 H_PUT_32 (abfd, scnhdr_int->s_flags, scnhdr_ext->s_flags);
1099 }
1100 }
1101 return ret;
1102 }
1103
1104 void
1105 _bfd_XXi_swap_debugdir_in (bfd * abfd, void * ext1, void * in1)
1106 {
1107 struct external_IMAGE_DEBUG_DIRECTORY *ext = (struct external_IMAGE_DEBUG_DIRECTORY *) ext1;
1108 struct internal_IMAGE_DEBUG_DIRECTORY *in = (struct internal_IMAGE_DEBUG_DIRECTORY *) in1;
1109
1110 in->Characteristics = H_GET_32(abfd, ext->Characteristics);
1111 in->TimeDateStamp = H_GET_32(abfd, ext->TimeDateStamp);
1112 in->MajorVersion = H_GET_16(abfd, ext->MajorVersion);
1113 in->MinorVersion = H_GET_16(abfd, ext->MinorVersion);
1114 in->Type = H_GET_32(abfd, ext->Type);
1115 in->SizeOfData = H_GET_32(abfd, ext->SizeOfData);
1116 in->AddressOfRawData = H_GET_32(abfd, ext->AddressOfRawData);
1117 in->PointerToRawData = H_GET_32(abfd, ext->PointerToRawData);
1118 }
1119
1120 unsigned int
1121 _bfd_XXi_swap_debugdir_out (bfd * abfd, void * inp, void * extp)
1122 {
1123 struct external_IMAGE_DEBUG_DIRECTORY *ext = (struct external_IMAGE_DEBUG_DIRECTORY *) extp;
1124 struct internal_IMAGE_DEBUG_DIRECTORY *in = (struct internal_IMAGE_DEBUG_DIRECTORY *) inp;
1125
1126 H_PUT_32(abfd, in->Characteristics, ext->Characteristics);
1127 H_PUT_32(abfd, in->TimeDateStamp, ext->TimeDateStamp);
1128 H_PUT_16(abfd, in->MajorVersion, ext->MajorVersion);
1129 H_PUT_16(abfd, in->MinorVersion, ext->MinorVersion);
1130 H_PUT_32(abfd, in->Type, ext->Type);
1131 H_PUT_32(abfd, in->SizeOfData, ext->SizeOfData);
1132 H_PUT_32(abfd, in->AddressOfRawData, ext->AddressOfRawData);
1133 H_PUT_32(abfd, in->PointerToRawData, ext->PointerToRawData);
1134
1135 return sizeof (struct external_IMAGE_DEBUG_DIRECTORY);
1136 }
1137
1138 static CODEVIEW_INFO *
1139 _bfd_XXi_slurp_codeview_record (bfd * abfd, file_ptr where, unsigned long length, CODEVIEW_INFO *cvinfo)
1140 {
1141 char buffer[256+1];
1142
1143 if (bfd_seek (abfd, where, SEEK_SET) != 0)
1144 return NULL;
1145
1146 if (bfd_bread (buffer, 256, abfd) < 4)
1147 return NULL;
1148
1149 /* Ensure null termination of filename. */
1150 buffer[256] = '\0';
1151
1152 cvinfo->CVSignature = H_GET_32(abfd, buffer);
1153 cvinfo->Age = 0;
1154
1155 if ((cvinfo->CVSignature == CVINFO_PDB70_CVSIGNATURE)
1156 && (length > sizeof (CV_INFO_PDB70)))
1157 {
1158 CV_INFO_PDB70 *cvinfo70 = (CV_INFO_PDB70 *)(buffer);
1159
1160 cvinfo->Age = H_GET_32(abfd, cvinfo70->Age);
1161
1162 /* A GUID consists of 4,2,2 byte values in little-endian order, followed
1163 by 8 single bytes. Byte swap them so we can conveniently treat the GUID
1164 as 16 bytes in big-endian order. */
1165 bfd_putb32 (bfd_getl32 (cvinfo70->Signature), cvinfo->Signature);
1166 bfd_putb16 (bfd_getl16 (&(cvinfo70->Signature[4])), &(cvinfo->Signature[4]));
1167 bfd_putb16 (bfd_getl16 (&(cvinfo70->Signature[6])), &(cvinfo->Signature[6]));
1168 memcpy (&(cvinfo->Signature[8]), &(cvinfo70->Signature[8]), 8);
1169
1170 cvinfo->SignatureLength = CV_INFO_SIGNATURE_LENGTH;
1171 // cvinfo->PdbFileName = cvinfo70->PdbFileName;
1172
1173 return cvinfo;
1174 }
1175 else if ((cvinfo->CVSignature == CVINFO_PDB20_CVSIGNATURE)
1176 && (length > sizeof (CV_INFO_PDB20)))
1177 {
1178 CV_INFO_PDB20 *cvinfo20 = (CV_INFO_PDB20 *)(buffer);
1179 cvinfo->Age = H_GET_32(abfd, cvinfo20->Age);
1180 memcpy (cvinfo->Signature, cvinfo20->Signature, 4);
1181 cvinfo->SignatureLength = 4;
1182 // cvinfo->PdbFileName = cvinfo20->PdbFileName;
1183
1184 return cvinfo;
1185 }
1186
1187 return NULL;
1188 }
1189
1190 unsigned int
1191 _bfd_XXi_write_codeview_record (bfd * abfd, file_ptr where, CODEVIEW_INFO *cvinfo)
1192 {
1193 unsigned int size = sizeof (CV_INFO_PDB70) + 1;
1194 CV_INFO_PDB70 *cvinfo70;
1195 char buffer[size];
1196
1197 if (bfd_seek (abfd, where, SEEK_SET) != 0)
1198 return 0;
1199
1200 cvinfo70 = (CV_INFO_PDB70 *) buffer;
1201 H_PUT_32 (abfd, CVINFO_PDB70_CVSIGNATURE, cvinfo70->CvSignature);
1202
1203 /* Byte swap the GUID from 16 bytes in big-endian order to 4,2,2 byte values
1204 in little-endian order, followed by 8 single bytes. */
1205 bfd_putl32 (bfd_getb32 (cvinfo->Signature), cvinfo70->Signature);
1206 bfd_putl16 (bfd_getb16 (&(cvinfo->Signature[4])), &(cvinfo70->Signature[4]));
1207 bfd_putl16 (bfd_getb16 (&(cvinfo->Signature[6])), &(cvinfo70->Signature[6]));
1208 memcpy (&(cvinfo70->Signature[8]), &(cvinfo->Signature[8]), 8);
1209
1210 H_PUT_32 (abfd, cvinfo->Age, cvinfo70->Age);
1211 cvinfo70->PdbFileName[0] = '\0';
1212
1213 if (bfd_bwrite (buffer, size, abfd) != size)
1214 return 0;
1215
1216 return size;
1217 }
1218
1219 static char * dir_names[IMAGE_NUMBEROF_DIRECTORY_ENTRIES] =
1220 {
1221 N_("Export Directory [.edata (or where ever we found it)]"),
1222 N_("Import Directory [parts of .idata]"),
1223 N_("Resource Directory [.rsrc]"),
1224 N_("Exception Directory [.pdata]"),
1225 N_("Security Directory"),
1226 N_("Base Relocation Directory [.reloc]"),
1227 N_("Debug Directory"),
1228 N_("Description Directory"),
1229 N_("Special Directory"),
1230 N_("Thread Storage Directory [.tls]"),
1231 N_("Load Configuration Directory"),
1232 N_("Bound Import Directory"),
1233 N_("Import Address Table Directory"),
1234 N_("Delay Import Directory"),
1235 N_("CLR Runtime Header"),
1236 N_("Reserved")
1237 };
1238
1239 #ifdef POWERPC_LE_PE
1240 /* The code for the PPC really falls in the "architecture dependent"
1241 category. However, it's not clear that anyone will ever care, so
1242 we're ignoring the issue for now; if/when PPC matters, some of this
1243 may need to go into peicode.h, or arguments passed to enable the
1244 PPC- specific code. */
1245 #endif
1246
1247 static bfd_boolean
1248 pe_print_idata (bfd * abfd, void * vfile)
1249 {
1250 FILE *file = (FILE *) vfile;
1251 bfd_byte *data;
1252 asection *section;
1253 bfd_signed_vma adj;
1254
1255 #ifdef POWERPC_LE_PE
1256 asection *rel_section = bfd_get_section_by_name (abfd, ".reldata");
1257 #endif
1258
1259 bfd_size_type datasize = 0;
1260 bfd_size_type dataoff;
1261 bfd_size_type i;
1262 int onaline = 20;
1263
1264 pe_data_type *pe = pe_data (abfd);
1265 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
1266
1267 bfd_vma addr;
1268
1269 addr = extra->DataDirectory[PE_IMPORT_TABLE].VirtualAddress;
1270
1271 if (addr == 0 && extra->DataDirectory[PE_IMPORT_TABLE].Size == 0)
1272 {
1273 /* Maybe the extra header isn't there. Look for the section. */
1274 section = bfd_get_section_by_name (abfd, ".idata");
1275 if (section == NULL)
1276 return TRUE;
1277
1278 addr = section->vma;
1279 datasize = section->size;
1280 if (datasize == 0)
1281 return TRUE;
1282 }
1283 else
1284 {
1285 addr += extra->ImageBase;
1286 for (section = abfd->sections; section != NULL; section = section->next)
1287 {
1288 datasize = section->size;
1289 if (addr >= section->vma && addr < section->vma + datasize)
1290 break;
1291 }
1292
1293 if (section == NULL)
1294 {
1295 fprintf (file,
1296 _("\nThere is an import table, but the section containing it could not be found\n"));
1297 return TRUE;
1298 }
1299 else if (!(section->flags & SEC_HAS_CONTENTS))
1300 {
1301 fprintf (file,
1302 _("\nThere is an import table in %s, but that section has no contents\n"),
1303 section->name);
1304 return TRUE;
1305 }
1306 }
1307
1308 fprintf (file, _("\nThere is an import table in %s at 0x%lx\n"),
1309 section->name, (unsigned long) addr);
1310
1311 dataoff = addr - section->vma;
1312
1313 #ifdef POWERPC_LE_PE
1314 if (rel_section != 0 && rel_section->size != 0)
1315 {
1316 /* The toc address can be found by taking the starting address,
1317 which on the PPC locates a function descriptor. The
1318 descriptor consists of the function code starting address
1319 followed by the address of the toc. The starting address we
1320 get from the bfd, and the descriptor is supposed to be in the
1321 .reldata section. */
1322
1323 bfd_vma loadable_toc_address;
1324 bfd_vma toc_address;
1325 bfd_vma start_address;
1326 bfd_byte *data;
1327 bfd_vma offset;
1328
1329 if (!bfd_malloc_and_get_section (abfd, rel_section, &data))
1330 {
1331 if (data != NULL)
1332 free (data);
1333 return FALSE;
1334 }
1335
1336 offset = abfd->start_address - rel_section->vma;
1337
1338 if (offset >= rel_section->size || offset + 8 > rel_section->size)
1339 {
1340 if (data != NULL)
1341 free (data);
1342 return FALSE;
1343 }
1344
1345 start_address = bfd_get_32 (abfd, data + offset);
1346 loadable_toc_address = bfd_get_32 (abfd, data + offset + 4);
1347 toc_address = loadable_toc_address - 32768;
1348
1349 fprintf (file,
1350 _("\nFunction descriptor located at the start address: %04lx\n"),
1351 (unsigned long int) (abfd->start_address));
1352 fprintf (file,
1353 _("\tcode-base %08lx toc (loadable/actual) %08lx/%08lx\n"),
1354 start_address, loadable_toc_address, toc_address);
1355 if (data != NULL)
1356 free (data);
1357 }
1358 else
1359 {
1360 fprintf (file,
1361 _("\nNo reldata section! Function descriptor not decoded.\n"));
1362 }
1363 #endif
1364
1365 fprintf (file,
1366 _("\nThe Import Tables (interpreted %s section contents)\n"),
1367 section->name);
1368 fprintf (file,
1369 _("\
1370 vma: Hint Time Forward DLL First\n\
1371 Table Stamp Chain Name Thunk\n"));
1372
1373 /* Read the whole section. Some of the fields might be before dataoff. */
1374 if (!bfd_malloc_and_get_section (abfd, section, &data))
1375 {
1376 if (data != NULL)
1377 free (data);
1378 return FALSE;
1379 }
1380
1381 adj = section->vma - extra->ImageBase;
1382
1383 /* Print all image import descriptors. */
1384 for (i = dataoff; i + onaline <= datasize; i += onaline)
1385 {
1386 bfd_vma hint_addr;
1387 bfd_vma time_stamp;
1388 bfd_vma forward_chain;
1389 bfd_vma dll_name;
1390 bfd_vma first_thunk;
1391 int idx = 0;
1392 bfd_size_type j;
1393 char *dll;
1394
1395 /* Print (i + extra->DataDirectory[PE_IMPORT_TABLE].VirtualAddress). */
1396 fprintf (file, " %08lx\t", (unsigned long) (i + adj));
1397 hint_addr = bfd_get_32 (abfd, data + i);
1398 time_stamp = bfd_get_32 (abfd, data + i + 4);
1399 forward_chain = bfd_get_32 (abfd, data + i + 8);
1400 dll_name = bfd_get_32 (abfd, data + i + 12);
1401 first_thunk = bfd_get_32 (abfd, data + i + 16);
1402
1403 fprintf (file, "%08lx %08lx %08lx %08lx %08lx\n",
1404 (unsigned long) hint_addr,
1405 (unsigned long) time_stamp,
1406 (unsigned long) forward_chain,
1407 (unsigned long) dll_name,
1408 (unsigned long) first_thunk);
1409
1410 if (hint_addr == 0 && first_thunk == 0)
1411 break;
1412
1413 if (dll_name - adj >= section->size)
1414 break;
1415
1416 dll = (char *) data + dll_name - adj;
1417 /* PR 17512 file: 078-12277-0.004. */
1418 bfd_size_type maxlen = (char *)(data + datasize) - dll - 1;
1419 fprintf (file, _("\n\tDLL Name: %.*s\n"), (int) maxlen, dll);
1420
1421 if (hint_addr != 0)
1422 {
1423 bfd_byte *ft_data;
1424 asection *ft_section;
1425 bfd_vma ft_addr;
1426 bfd_size_type ft_datasize;
1427 int ft_idx;
1428 int ft_allocated;
1429
1430 fprintf (file, _("\tvma: Hint/Ord Member-Name Bound-To\n"));
1431
1432 idx = hint_addr - adj;
1433
1434 ft_addr = first_thunk + extra->ImageBase;
1435 ft_idx = first_thunk - adj;
1436 ft_data = data + ft_idx;
1437 ft_datasize = datasize - ft_idx;
1438 ft_allocated = 0;
1439
1440 if (first_thunk != hint_addr)
1441 {
1442 /* Find the section which contains the first thunk. */
1443 for (ft_section = abfd->sections;
1444 ft_section != NULL;
1445 ft_section = ft_section->next)
1446 {
1447 if (ft_addr >= ft_section->vma
1448 && ft_addr < ft_section->vma + ft_section->size)
1449 break;
1450 }
1451
1452 if (ft_section == NULL)
1453 {
1454 fprintf (file,
1455 _("\nThere is a first thunk, but the section containing it could not be found\n"));
1456 continue;
1457 }
1458
1459 /* Now check to see if this section is the same as our current
1460 section. If it is not then we will have to load its data in. */
1461 if (ft_section != section)
1462 {
1463 ft_idx = first_thunk - (ft_section->vma - extra->ImageBase);
1464 ft_datasize = ft_section->size - ft_idx;
1465 ft_data = (bfd_byte *) bfd_malloc (ft_datasize);
1466 if (ft_data == NULL)
1467 continue;
1468
1469 /* Read ft_datasize bytes starting at offset ft_idx. */
1470 if (!bfd_get_section_contents (abfd, ft_section, ft_data,
1471 (bfd_vma) ft_idx, ft_datasize))
1472 {
1473 free (ft_data);
1474 continue;
1475 }
1476 ft_allocated = 1;
1477 }
1478 }
1479
1480 /* Print HintName vector entries. */
1481 #ifdef COFF_WITH_pex64
1482 for (j = 0; idx + j + 8 <= datasize; j += 8)
1483 {
1484 bfd_size_type amt;
1485 unsigned long member = bfd_get_32 (abfd, data + idx + j);
1486 unsigned long member_high = bfd_get_32 (abfd, data + idx + j + 4);
1487
1488 if (!member && !member_high)
1489 break;
1490
1491 amt = member - adj;
1492
1493 if (HighBitSet (member_high))
1494 fprintf (file, "\t%lx%08lx\t %4lx%08lx <none>",
1495 member_high, member,
1496 WithoutHighBit (member_high), member);
1497 /* PR binutils/17512: Handle corrupt PE data. */
1498 else if (amt + 2 >= datasize)
1499 fprintf (file, _("\t<corrupt: 0x%04lx>"), member);
1500 else
1501 {
1502 int ordinal;
1503 char *member_name;
1504
1505 ordinal = bfd_get_16 (abfd, data + amt);
1506 member_name = (char *) data + amt + 2;
1507 fprintf (file, "\t%04lx\t %4d %.*s",member, ordinal,
1508 (int) (datasize - (amt + 2)), member_name);
1509 }
1510
1511 /* If the time stamp is not zero, the import address
1512 table holds actual addresses. */
1513 if (time_stamp != 0
1514 && first_thunk != 0
1515 && first_thunk != hint_addr
1516 && j + 4 <= ft_datasize)
1517 fprintf (file, "\t%04lx",
1518 (unsigned long) bfd_get_32 (abfd, ft_data + j));
1519 fprintf (file, "\n");
1520 }
1521 #else
1522 for (j = 0; idx + j + 4 <= datasize; j += 4)
1523 {
1524 bfd_size_type amt;
1525 unsigned long member = bfd_get_32 (abfd, data + idx + j);
1526
1527 /* Print single IMAGE_IMPORT_BY_NAME vector. */
1528 if (member == 0)
1529 break;
1530
1531 amt = member - adj;
1532 if (HighBitSet (member))
1533 fprintf (file, "\t%04lx\t %4lu <none>",
1534 member, WithoutHighBit (member));
1535 /* PR binutils/17512: Handle corrupt PE data. */
1536 else if (amt + 2 >= datasize)
1537 fprintf (file, _("\t<corrupt: 0x%04lx>"), member);
1538 else
1539 {
1540 int ordinal;
1541 char *member_name;
1542
1543 ordinal = bfd_get_16 (abfd, data + amt);
1544 member_name = (char *) data + amt + 2;
1545 fprintf (file, "\t%04lx\t %4d %.*s",
1546 member, ordinal,
1547 (int) (datasize - (amt + 2)), member_name);
1548 }
1549
1550 /* If the time stamp is not zero, the import address
1551 table holds actual addresses. */
1552 if (time_stamp != 0
1553 && first_thunk != 0
1554 && first_thunk != hint_addr
1555 && j + 4 <= ft_datasize)
1556 fprintf (file, "\t%04lx",
1557 (unsigned long) bfd_get_32 (abfd, ft_data + j));
1558
1559 fprintf (file, "\n");
1560 }
1561 #endif
1562 if (ft_allocated)
1563 free (ft_data);
1564 }
1565
1566 fprintf (file, "\n");
1567 }
1568
1569 free (data);
1570
1571 return TRUE;
1572 }
1573
1574 static bfd_boolean
1575 pe_print_edata (bfd * abfd, void * vfile)
1576 {
1577 FILE *file = (FILE *) vfile;
1578 bfd_byte *data;
1579 asection *section;
1580 bfd_size_type datasize = 0;
1581 bfd_size_type dataoff;
1582 bfd_size_type i;
1583 bfd_vma adj;
1584 struct EDT_type
1585 {
1586 long export_flags; /* Reserved - should be zero. */
1587 long time_stamp;
1588 short major_ver;
1589 short minor_ver;
1590 bfd_vma name; /* RVA - relative to image base. */
1591 long base; /* Ordinal base. */
1592 unsigned long num_functions;/* Number in the export address table. */
1593 unsigned long num_names; /* Number in the name pointer table. */
1594 bfd_vma eat_addr; /* RVA to the export address table. */
1595 bfd_vma npt_addr; /* RVA to the Export Name Pointer Table. */
1596 bfd_vma ot_addr; /* RVA to the Ordinal Table. */
1597 } edt;
1598
1599 pe_data_type *pe = pe_data (abfd);
1600 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
1601
1602 bfd_vma addr;
1603
1604 addr = extra->DataDirectory[PE_EXPORT_TABLE].VirtualAddress;
1605
1606 if (addr == 0 && extra->DataDirectory[PE_EXPORT_TABLE].Size == 0)
1607 {
1608 /* Maybe the extra header isn't there. Look for the section. */
1609 section = bfd_get_section_by_name (abfd, ".edata");
1610 if (section == NULL)
1611 return TRUE;
1612
1613 addr = section->vma;
1614 dataoff = 0;
1615 datasize = section->size;
1616 if (datasize == 0)
1617 return TRUE;
1618 }
1619 else
1620 {
1621 addr += extra->ImageBase;
1622
1623 for (section = abfd->sections; section != NULL; section = section->next)
1624 if (addr >= section->vma && addr < section->vma + section->size)
1625 break;
1626
1627 if (section == NULL)
1628 {
1629 fprintf (file,
1630 _("\nThere is an export table, but the section containing it could not be found\n"));
1631 return TRUE;
1632 }
1633 else if (!(section->flags & SEC_HAS_CONTENTS))
1634 {
1635 fprintf (file,
1636 _("\nThere is an export table in %s, but that section has no contents\n"),
1637 section->name);
1638 return TRUE;
1639 }
1640
1641 dataoff = addr - section->vma;
1642 datasize = extra->DataDirectory[PE_EXPORT_TABLE].Size;
1643 if (datasize > section->size - dataoff)
1644 {
1645 fprintf (file,
1646 _("\nThere is an export table in %s, but it does not fit into that section\n"),
1647 section->name);
1648 return TRUE;
1649 }
1650 }
1651
1652 /* PR 17512: Handle corrupt PE binaries. */
1653 if (datasize < 36)
1654 {
1655 fprintf (file,
1656 _("\nThere is an export table in %s, but it is too small (%d)\n"),
1657 section->name, (int) datasize);
1658 return TRUE;
1659 }
1660
1661 fprintf (file, _("\nThere is an export table in %s at 0x%lx\n"),
1662 section->name, (unsigned long) addr);
1663
1664 data = (bfd_byte *) bfd_malloc (datasize);
1665 if (data == NULL)
1666 return FALSE;
1667
1668 if (! bfd_get_section_contents (abfd, section, data,
1669 (file_ptr) dataoff, datasize))
1670 return FALSE;
1671
1672 /* Go get Export Directory Table. */
1673 edt.export_flags = bfd_get_32 (abfd, data + 0);
1674 edt.time_stamp = bfd_get_32 (abfd, data + 4);
1675 edt.major_ver = bfd_get_16 (abfd, data + 8);
1676 edt.minor_ver = bfd_get_16 (abfd, data + 10);
1677 edt.name = bfd_get_32 (abfd, data + 12);
1678 edt.base = bfd_get_32 (abfd, data + 16);
1679 edt.num_functions = bfd_get_32 (abfd, data + 20);
1680 edt.num_names = bfd_get_32 (abfd, data + 24);
1681 edt.eat_addr = bfd_get_32 (abfd, data + 28);
1682 edt.npt_addr = bfd_get_32 (abfd, data + 32);
1683 edt.ot_addr = bfd_get_32 (abfd, data + 36);
1684
1685 adj = section->vma - extra->ImageBase + dataoff;
1686
1687 /* Dump the EDT first. */
1688 fprintf (file,
1689 _("\nThe Export Tables (interpreted %s section contents)\n\n"),
1690 section->name);
1691
1692 fprintf (file,
1693 _("Export Flags \t\t\t%lx\n"), (unsigned long) edt.export_flags);
1694
1695 fprintf (file,
1696 _("Time/Date stamp \t\t%lx\n"), (unsigned long) edt.time_stamp);
1697
1698 fprintf (file,
1699 _("Major/Minor \t\t\t%d/%d\n"), edt.major_ver, edt.minor_ver);
1700
1701 fprintf (file,
1702 _("Name \t\t\t\t"));
1703 bfd_fprintf_vma (abfd, file, edt.name);
1704
1705 if ((edt.name >= adj) && (edt.name < adj + datasize))
1706 fprintf (file, " %.*s\n",
1707 (int) (datasize - (edt.name - adj)),
1708 data + edt.name - adj);
1709 else
1710 fprintf (file, "(outside .edata section)\n");
1711
1712 fprintf (file,
1713 _("Ordinal Base \t\t\t%ld\n"), edt.base);
1714
1715 fprintf (file,
1716 _("Number in:\n"));
1717
1718 fprintf (file,
1719 _("\tExport Address Table \t\t%08lx\n"),
1720 edt.num_functions);
1721
1722 fprintf (file,
1723 _("\t[Name Pointer/Ordinal] Table\t%08lx\n"), edt.num_names);
1724
1725 fprintf (file,
1726 _("Table Addresses\n"));
1727
1728 fprintf (file,
1729 _("\tExport Address Table \t\t"));
1730 bfd_fprintf_vma (abfd, file, edt.eat_addr);
1731 fprintf (file, "\n");
1732
1733 fprintf (file,
1734 _("\tName Pointer Table \t\t"));
1735 bfd_fprintf_vma (abfd, file, edt.npt_addr);
1736 fprintf (file, "\n");
1737
1738 fprintf (file,
1739 _("\tOrdinal Table \t\t\t"));
1740 bfd_fprintf_vma (abfd, file, edt.ot_addr);
1741 fprintf (file, "\n");
1742
1743 /* The next table to find is the Export Address Table. It's basically
1744 a list of pointers that either locate a function in this dll, or
1745 forward the call to another dll. Something like:
1746 typedef union
1747 {
1748 long export_rva;
1749 long forwarder_rva;
1750 } export_address_table_entry; */
1751
1752 fprintf (file,
1753 _("\nExport Address Table -- Ordinal Base %ld\n"),
1754 edt.base);
1755
1756 /* PR 17512: Handle corrupt PE binaries. */
1757 if (edt.eat_addr + (edt.num_functions * 4) - adj >= datasize
1758 /* PR 17512 file: 140-165018-0.004. */
1759 || data + edt.eat_addr - adj < data)
1760 fprintf (file, _("\tInvalid Export Address Table rva (0x%lx) or entry count (0x%lx)\n"),
1761 (long) edt.eat_addr,
1762 (long) edt.num_functions);
1763 else for (i = 0; i < edt.num_functions; ++i)
1764 {
1765 bfd_vma eat_member = bfd_get_32 (abfd,
1766 data + edt.eat_addr + (i * 4) - adj);
1767 if (eat_member == 0)
1768 continue;
1769
1770 if (eat_member - adj <= datasize)
1771 {
1772 /* This rva is to a name (forwarding function) in our section. */
1773 /* Should locate a function descriptor. */
1774 fprintf (file,
1775 "\t[%4ld] +base[%4ld] %04lx %s -- %.*s\n",
1776 (long) i,
1777 (long) (i + edt.base),
1778 (unsigned long) eat_member,
1779 _("Forwarder RVA"),
1780 (int)(datasize - (eat_member - adj)),
1781 data + eat_member - adj);
1782 }
1783 else
1784 {
1785 /* Should locate a function descriptor in the reldata section. */
1786 fprintf (file,
1787 "\t[%4ld] +base[%4ld] %04lx %s\n",
1788 (long) i,
1789 (long) (i + edt.base),
1790 (unsigned long) eat_member,
1791 _("Export RVA"));
1792 }
1793 }
1794
1795 /* The Export Name Pointer Table is paired with the Export Ordinal Table. */
1796 /* Dump them in parallel for clarity. */
1797 fprintf (file,
1798 _("\n[Ordinal/Name Pointer] Table\n"));
1799
1800 /* PR 17512: Handle corrupt PE binaries. */
1801 if (edt.npt_addr + (edt.num_names * 4) - adj >= datasize
1802 || (data + edt.npt_addr - adj) < data)
1803 fprintf (file, _("\tInvalid Name Pointer Table rva (0x%lx) or entry count (0x%lx)\n"),
1804 (long) edt.npt_addr,
1805 (long) edt.num_names);
1806 /* PR 17512: file: 140-147171-0.004. */
1807 else if (edt.ot_addr + (edt.num_names * 2) - adj >= datasize
1808 || data + edt.ot_addr - adj < data)
1809 fprintf (file, _("\tInvalid Ordinal Table rva (0x%lx) or entry count (0x%lx)\n"),
1810 (long) edt.ot_addr,
1811 (long) edt.num_names);
1812 else for (i = 0; i < edt.num_names; ++i)
1813 {
1814 bfd_vma name_ptr;
1815 bfd_vma ord;
1816
1817 ord = bfd_get_16 (abfd, data + edt.ot_addr + (i * 2) - adj);
1818 name_ptr = bfd_get_32 (abfd, data + edt.npt_addr + (i * 4) - adj);
1819
1820 if ((name_ptr - adj) >= datasize)
1821 {
1822 fprintf (file, _("\t[%4ld] <corrupt offset: %lx>\n"),
1823 (long) ord, (long) name_ptr);
1824 }
1825 else
1826 {
1827 char * name = (char *) data + name_ptr - adj;
1828
1829 fprintf (file, "\t[%4ld] %.*s\n", (long) ord,
1830 (int)((char *)(data + datasize) - name), name);
1831 }
1832 }
1833
1834 free (data);
1835
1836 return TRUE;
1837 }
1838
1839 /* This really is architecture dependent. On IA-64, a .pdata entry
1840 consists of three dwords containing relative virtual addresses that
1841 specify the start and end address of the code range the entry
1842 covers and the address of the corresponding unwind info data.
1843
1844 On ARM and SH-4, a compressed PDATA structure is used :
1845 _IMAGE_CE_RUNTIME_FUNCTION_ENTRY, whereas MIPS is documented to use
1846 _IMAGE_ALPHA_RUNTIME_FUNCTION_ENTRY.
1847 See http://msdn2.microsoft.com/en-us/library/ms253988(VS.80).aspx .
1848
1849 This is the version for uncompressed data. */
1850
1851 static bfd_boolean
1852 pe_print_pdata (bfd * abfd, void * vfile)
1853 {
1854 #if defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
1855 # define PDATA_ROW_SIZE (3 * 8)
1856 #else
1857 # define PDATA_ROW_SIZE (5 * 4)
1858 #endif
1859 FILE *file = (FILE *) vfile;
1860 bfd_byte *data = 0;
1861 asection *section = bfd_get_section_by_name (abfd, ".pdata");
1862 bfd_size_type datasize = 0;
1863 bfd_size_type i;
1864 bfd_size_type start, stop;
1865 int onaline = PDATA_ROW_SIZE;
1866
1867 if (section == NULL
1868 || coff_section_data (abfd, section) == NULL
1869 || pei_section_data (abfd, section) == NULL)
1870 return TRUE;
1871
1872 stop = pei_section_data (abfd, section)->virt_size;
1873 if ((stop % onaline) != 0)
1874 fprintf (file,
1875 _("Warning, .pdata section size (%ld) is not a multiple of %d\n"),
1876 (long) stop, onaline);
1877
1878 fprintf (file,
1879 _("\nThe Function Table (interpreted .pdata section contents)\n"));
1880 #if defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
1881 fprintf (file,
1882 _(" vma:\t\t\tBegin Address End Address Unwind Info\n"));
1883 #else
1884 fprintf (file, _("\
1885 vma:\t\tBegin End EH EH PrologEnd Exception\n\
1886 \t\tAddress Address Handler Data Address Mask\n"));
1887 #endif
1888
1889 datasize = section->size;
1890 if (datasize == 0)
1891 return TRUE;
1892
1893 if (! bfd_malloc_and_get_section (abfd, section, &data))
1894 {
1895 if (data != NULL)
1896 free (data);
1897 return FALSE;
1898 }
1899
1900 start = 0;
1901
1902 for (i = start; i < stop; i += onaline)
1903 {
1904 bfd_vma begin_addr;
1905 bfd_vma end_addr;
1906 bfd_vma eh_handler;
1907 bfd_vma eh_data;
1908 bfd_vma prolog_end_addr;
1909 #if !defined(COFF_WITH_pep) || defined(COFF_WITH_pex64)
1910 int em_data;
1911 #endif
1912
1913 if (i + PDATA_ROW_SIZE > stop)
1914 break;
1915
1916 begin_addr = GET_PDATA_ENTRY (abfd, data + i );
1917 end_addr = GET_PDATA_ENTRY (abfd, data + i + 4);
1918 eh_handler = GET_PDATA_ENTRY (abfd, data + i + 8);
1919 eh_data = GET_PDATA_ENTRY (abfd, data + i + 12);
1920 prolog_end_addr = GET_PDATA_ENTRY (abfd, data + i + 16);
1921
1922 if (begin_addr == 0 && end_addr == 0 && eh_handler == 0
1923 && eh_data == 0 && prolog_end_addr == 0)
1924 /* We are probably into the padding of the section now. */
1925 break;
1926
1927 #if !defined(COFF_WITH_pep) || defined(COFF_WITH_pex64)
1928 em_data = ((eh_handler & 0x1) << 2) | (prolog_end_addr & 0x3);
1929 #endif
1930 eh_handler &= ~(bfd_vma) 0x3;
1931 prolog_end_addr &= ~(bfd_vma) 0x3;
1932
1933 fputc (' ', file);
1934 bfd_fprintf_vma (abfd, file, i + section->vma); fputc ('\t', file);
1935 bfd_fprintf_vma (abfd, file, begin_addr); fputc (' ', file);
1936 bfd_fprintf_vma (abfd, file, end_addr); fputc (' ', file);
1937 bfd_fprintf_vma (abfd, file, eh_handler);
1938 #if !defined(COFF_WITH_pep) || defined(COFF_WITH_pex64)
1939 fputc (' ', file);
1940 bfd_fprintf_vma (abfd, file, eh_data); fputc (' ', file);
1941 bfd_fprintf_vma (abfd, file, prolog_end_addr);
1942 fprintf (file, " %x", em_data);
1943 #endif
1944
1945 #ifdef POWERPC_LE_PE
1946 if (eh_handler == 0 && eh_data != 0)
1947 {
1948 /* Special bits here, although the meaning may be a little
1949 mysterious. The only one I know for sure is 0x03
1950 Code Significance
1951 0x00 None
1952 0x01 Register Save Millicode
1953 0x02 Register Restore Millicode
1954 0x03 Glue Code Sequence. */
1955 switch (eh_data)
1956 {
1957 case 0x01:
1958 fprintf (file, _(" Register save millicode"));
1959 break;
1960 case 0x02:
1961 fprintf (file, _(" Register restore millicode"));
1962 break;
1963 case 0x03:
1964 fprintf (file, _(" Glue code sequence"));
1965 break;
1966 default:
1967 break;
1968 }
1969 }
1970 #endif
1971 fprintf (file, "\n");
1972 }
1973
1974 free (data);
1975
1976 return TRUE;
1977 #undef PDATA_ROW_SIZE
1978 }
1979
1980 typedef struct sym_cache
1981 {
1982 int symcount;
1983 asymbol ** syms;
1984 } sym_cache;
1985
1986 static asymbol **
1987 slurp_symtab (bfd *abfd, sym_cache *psc)
1988 {
1989 asymbol ** sy = NULL;
1990 long storage;
1991
1992 if (!(bfd_get_file_flags (abfd) & HAS_SYMS))
1993 {
1994 psc->symcount = 0;
1995 return NULL;
1996 }
1997
1998 storage = bfd_get_symtab_upper_bound (abfd);
1999 if (storage < 0)
2000 return NULL;
2001 if (storage)
2002 sy = (asymbol **) bfd_malloc (storage);
2003
2004 psc->symcount = bfd_canonicalize_symtab (abfd, sy);
2005 if (psc->symcount < 0)
2006 return NULL;
2007 return sy;
2008 }
2009
2010 static const char *
2011 my_symbol_for_address (bfd *abfd, bfd_vma func, sym_cache *psc)
2012 {
2013 int i;
2014
2015 if (psc->syms == 0)
2016 psc->syms = slurp_symtab (abfd, psc);
2017
2018 for (i = 0; i < psc->symcount; i++)
2019 {
2020 if (psc->syms[i]->section->vma + psc->syms[i]->value == func)
2021 return psc->syms[i]->name;
2022 }
2023
2024 return NULL;
2025 }
2026
2027 static void
2028 cleanup_syms (sym_cache *psc)
2029 {
2030 psc->symcount = 0;
2031 free (psc->syms);
2032 psc->syms = NULL;
2033 }
2034
2035 /* This is the version for "compressed" pdata. */
2036
2037 bfd_boolean
2038 _bfd_XX_print_ce_compressed_pdata (bfd * abfd, void * vfile)
2039 {
2040 # define PDATA_ROW_SIZE (2 * 4)
2041 FILE *file = (FILE *) vfile;
2042 bfd_byte *data = NULL;
2043 asection *section = bfd_get_section_by_name (abfd, ".pdata");
2044 bfd_size_type datasize = 0;
2045 bfd_size_type i;
2046 bfd_size_type start, stop;
2047 int onaline = PDATA_ROW_SIZE;
2048 struct sym_cache cache = {0, 0} ;
2049
2050 if (section == NULL
2051 || coff_section_data (abfd, section) == NULL
2052 || pei_section_data (abfd, section) == NULL)
2053 return TRUE;
2054
2055 stop = pei_section_data (abfd, section)->virt_size;
2056 if ((stop % onaline) != 0)
2057 fprintf (file,
2058 _("Warning, .pdata section size (%ld) is not a multiple of %d\n"),
2059 (long) stop, onaline);
2060
2061 fprintf (file,
2062 _("\nThe Function Table (interpreted .pdata section contents)\n"));
2063
2064 fprintf (file, _("\
2065 vma:\t\tBegin Prolog Function Flags Exception EH\n\
2066 \t\tAddress Length Length 32b exc Handler Data\n"));
2067
2068 datasize = section->size;
2069 if (datasize == 0)
2070 return TRUE;
2071
2072 if (! bfd_malloc_and_get_section (abfd, section, &data))
2073 {
2074 if (data != NULL)
2075 free (data);
2076 return FALSE;
2077 }
2078
2079 start = 0;
2080
2081 for (i = start; i < stop; i += onaline)
2082 {
2083 bfd_vma begin_addr;
2084 bfd_vma other_data;
2085 bfd_vma prolog_length, function_length;
2086 int flag32bit, exception_flag;
2087 asection *tsection;
2088
2089 if (i + PDATA_ROW_SIZE > stop)
2090 break;
2091
2092 begin_addr = GET_PDATA_ENTRY (abfd, data + i );
2093 other_data = GET_PDATA_ENTRY (abfd, data + i + 4);
2094
2095 if (begin_addr == 0 && other_data == 0)
2096 /* We are probably into the padding of the section now. */
2097 break;
2098
2099 prolog_length = (other_data & 0x000000FF);
2100 function_length = (other_data & 0x3FFFFF00) >> 8;
2101 flag32bit = (int)((other_data & 0x40000000) >> 30);
2102 exception_flag = (int)((other_data & 0x80000000) >> 31);
2103
2104 fputc (' ', file);
2105 bfd_fprintf_vma (abfd, file, i + section->vma); fputc ('\t', file);
2106 bfd_fprintf_vma (abfd, file, begin_addr); fputc (' ', file);
2107 bfd_fprintf_vma (abfd, file, prolog_length); fputc (' ', file);
2108 bfd_fprintf_vma (abfd, file, function_length); fputc (' ', file);
2109 fprintf (file, "%2d %2d ", flag32bit, exception_flag);
2110
2111 /* Get the exception handler's address and the data passed from the
2112 .text section. This is really the data that belongs with the .pdata
2113 but got "compressed" out for the ARM and SH4 architectures. */
2114 tsection = bfd_get_section_by_name (abfd, ".text");
2115 if (tsection && coff_section_data (abfd, tsection)
2116 && pei_section_data (abfd, tsection))
2117 {
2118 bfd_vma eh_off = (begin_addr - 8) - tsection->vma;
2119 bfd_byte *tdata;
2120
2121 tdata = (bfd_byte *) bfd_malloc (8);
2122 if (tdata)
2123 {
2124 if (bfd_get_section_contents (abfd, tsection, tdata, eh_off, 8))
2125 {
2126 bfd_vma eh, eh_data;
2127
2128 eh = bfd_get_32 (abfd, tdata);
2129 eh_data = bfd_get_32 (abfd, tdata + 4);
2130 fprintf (file, "%08x ", (unsigned int) eh);
2131 fprintf (file, "%08x", (unsigned int) eh_data);
2132 if (eh != 0)
2133 {
2134 const char *s = my_symbol_for_address (abfd, eh, &cache);
2135
2136 if (s)
2137 fprintf (file, " (%s) ", s);
2138 }
2139 }
2140 free (tdata);
2141 }
2142 }
2143
2144 fprintf (file, "\n");
2145 }
2146
2147 free (data);
2148
2149 cleanup_syms (& cache);
2150
2151 return TRUE;
2152 #undef PDATA_ROW_SIZE
2153 }
2154
2155 \f
2156 #define IMAGE_REL_BASED_HIGHADJ 4
2157 static const char * const tbl[] =
2158 {
2159 "ABSOLUTE",
2160 "HIGH",
2161 "LOW",
2162 "HIGHLOW",
2163 "HIGHADJ",
2164 "MIPS_JMPADDR",
2165 "SECTION",
2166 "REL32",
2167 "RESERVED1",
2168 "MIPS_JMPADDR16",
2169 "DIR64",
2170 "HIGH3ADJ",
2171 "UNKNOWN", /* MUST be last. */
2172 };
2173
2174 static bfd_boolean
2175 pe_print_reloc (bfd * abfd, void * vfile)
2176 {
2177 FILE *file = (FILE *) vfile;
2178 bfd_byte *data = 0;
2179 asection *section = bfd_get_section_by_name (abfd, ".reloc");
2180 bfd_byte *p, *end;
2181
2182 if (section == NULL || section->size == 0 || !(section->flags & SEC_HAS_CONTENTS))
2183 return TRUE;
2184
2185 fprintf (file,
2186 _("\n\nPE File Base Relocations (interpreted .reloc section contents)\n"));
2187
2188 if (! bfd_malloc_and_get_section (abfd, section, &data))
2189 {
2190 if (data != NULL)
2191 free (data);
2192 return FALSE;
2193 }
2194
2195 p = data;
2196 end = data + section->size;
2197 while (p + 8 <= end)
2198 {
2199 int j;
2200 bfd_vma virtual_address;
2201 long number, size;
2202 bfd_byte *chunk_end;
2203
2204 /* The .reloc section is a sequence of blocks, with a header consisting
2205 of two 32 bit quantities, followed by a number of 16 bit entries. */
2206 virtual_address = bfd_get_32 (abfd, p);
2207 size = bfd_get_32 (abfd, p + 4);
2208 p += 8;
2209 number = (size - 8) / 2;
2210
2211 if (size == 0)
2212 break;
2213
2214 fprintf (file,
2215 _("\nVirtual Address: %08lx Chunk size %ld (0x%lx) Number of fixups %ld\n"),
2216 (unsigned long) virtual_address, size, (unsigned long) size, number);
2217
2218 chunk_end = p + size;
2219 if (chunk_end > end)
2220 chunk_end = end;
2221 j = 0;
2222 while (p + 2 <= chunk_end)
2223 {
2224 unsigned short e = bfd_get_16 (abfd, p);
2225 unsigned int t = (e & 0xF000) >> 12;
2226 int off = e & 0x0FFF;
2227
2228 if (t >= sizeof (tbl) / sizeof (tbl[0]))
2229 t = (sizeof (tbl) / sizeof (tbl[0])) - 1;
2230
2231 fprintf (file,
2232 _("\treloc %4d offset %4x [%4lx] %s"),
2233 j, off, (unsigned long) (off + virtual_address), tbl[t]);
2234
2235 p += 2;
2236 j++;
2237
2238 /* HIGHADJ takes an argument, - the next record *is* the
2239 low 16 bits of addend. */
2240 if (t == IMAGE_REL_BASED_HIGHADJ && p + 2 <= chunk_end)
2241 {
2242 fprintf (file, " (%4x)", (unsigned int) bfd_get_16 (abfd, p));
2243 p += 2;
2244 j++;
2245 }
2246
2247 fprintf (file, "\n");
2248 }
2249 }
2250
2251 free (data);
2252
2253 return TRUE;
2254 }
2255 \f
2256 /* A data structure describing the regions of a .rsrc section.
2257 Some fields are filled in as the section is parsed. */
2258
2259 typedef struct rsrc_regions
2260 {
2261 bfd_byte * section_start;
2262 bfd_byte * section_end;
2263 bfd_byte * strings_start;
2264 bfd_byte * resource_start;
2265 } rsrc_regions;
2266
2267 static bfd_byte *
2268 rsrc_print_resource_directory (FILE * , bfd *, unsigned int, bfd_byte *,
2269 rsrc_regions *, bfd_vma);
2270
2271 /* Print the resource entry at DATA, with the text indented by INDENT.
2272 Recusively calls rsrc_print_resource_directory to print the contents
2273 of directory entries.
2274 Returns the address of the end of the data associated with the entry
2275 or section_end + 1 upon failure. */
2276
2277 static bfd_byte *
2278 rsrc_print_resource_entries (FILE * file,
2279 bfd * abfd,
2280 unsigned int indent,
2281 bfd_boolean is_name,
2282 bfd_byte * data,
2283 rsrc_regions * regions,
2284 bfd_vma rva_bias)
2285 {
2286 unsigned long entry, addr, size;
2287
2288 if (data + 8 >= regions->section_end)
2289 return regions->section_end + 1;
2290
2291 fprintf (file, _("%03x %*.s Entry: "), (int)(data - regions->section_start), indent, " ");
2292
2293 entry = (unsigned long) bfd_get_32 (abfd, data);
2294 if (is_name)
2295 {
2296 bfd_byte * name;
2297
2298 /* Note - the documentation says that this field is an RVA value
2299 but windres appears to produce a section relative offset with
2300 the top bit set. Support both styles for now. */
2301 if (HighBitSet (entry))
2302 name = regions->section_start + WithoutHighBit (entry);
2303 else
2304 name = regions->section_start + entry - rva_bias;
2305
2306 if (name + 2 < regions->section_end && name > regions->section_start)
2307 {
2308 unsigned int len;
2309
2310 if (regions->strings_start == NULL)
2311 regions->strings_start = name;
2312
2313 len = bfd_get_16 (abfd, name);
2314
2315 fprintf (file, _("name: [val: %08lx len %d]: "), entry, len);
2316
2317 if (name + 2 + len * 2 < regions->section_end)
2318 {
2319 /* This strange loop is to cope with multibyte characters. */
2320 while (len --)
2321 {
2322 char c;
2323
2324 name += 2;
2325 c = * name;
2326 /* Avoid printing control characters. */
2327 if (c > 0 && c < 32)
2328 fprintf (file, "^%c", c + 64);
2329 else
2330 fprintf (file, "%.1s", name);
2331 }
2332 }
2333 else
2334 {
2335 fprintf (file, _("<corrupt string length: %#x>\n"), len);
2336 /* PR binutils/17512: Do not try to continue decoding a
2337 corrupted resource section. It is likely to end up with
2338 reams of extraneous output. FIXME: We could probably
2339 continue if we disable the printing of strings... */
2340 return regions->section_end + 1;
2341 }
2342 }
2343 else
2344 {
2345 fprintf (file, _("<corrupt string offset: %#lx>\n"), entry);
2346 return regions->section_end + 1;
2347 }
2348 }
2349 else
2350 fprintf (file, _("ID: %#08lx"), entry);
2351
2352 entry = (long) bfd_get_32 (abfd, data + 4);
2353 fprintf (file, _(", Value: %#08lx\n"), entry);
2354
2355 if (HighBitSet (entry))
2356 {
2357 data = regions->section_start + WithoutHighBit (entry);
2358 if (data <= regions->section_start || data > regions->section_end)
2359 return regions->section_end + 1;
2360
2361 /* FIXME: PR binutils/17512: A corrupt file could contain a loop
2362 in the resource table. We need some way to detect this. */
2363 return rsrc_print_resource_directory (file, abfd, indent + 1, data,
2364 regions, rva_bias);
2365 }
2366
2367 if (regions->section_start + entry + 16 >= regions->section_end)
2368 return regions->section_end + 1;
2369
2370 fprintf (file, _("%03x %*.s Leaf: Addr: %#08lx, Size: %#08lx, Codepage: %d\n"),
2371 (int) (entry),
2372 indent, " ",
2373 addr = (long) bfd_get_32 (abfd, regions->section_start + entry),
2374 size = (long) bfd_get_32 (abfd, regions->section_start + entry + 4),
2375 (int) bfd_get_32 (abfd, regions->section_start + entry + 8));
2376
2377 /* Check that the reserved entry is 0. */
2378 if (bfd_get_32 (abfd, regions->section_start + entry + 12) != 0
2379 /* And that the data address/size is valid too. */
2380 || (regions->section_start + (addr - rva_bias) + size > regions->section_end))
2381 return regions->section_end + 1;
2382
2383 if (regions->resource_start == NULL)
2384 regions->resource_start = regions->section_start + (addr - rva_bias);
2385
2386 return regions->section_start + (addr - rva_bias) + size;
2387 }
2388
2389 #define max(a,b) ((a) > (b) ? (a) : (b))
2390 #define min(a,b) ((a) < (b) ? (a) : (b))
2391
2392 static bfd_byte *
2393 rsrc_print_resource_directory (FILE * file,
2394 bfd * abfd,
2395 unsigned int indent,
2396 bfd_byte * data,
2397 rsrc_regions * regions,
2398 bfd_vma rva_bias)
2399 {
2400 unsigned int num_names, num_ids;
2401 bfd_byte * highest_data = data;
2402
2403 if (data + 16 >= regions->section_end)
2404 return regions->section_end + 1;
2405
2406 fprintf (file, "%03x %*.s ", (int)(data - regions->section_start), indent, " ");
2407 switch (indent)
2408 {
2409 case 0: fprintf (file, "Type"); break;
2410 case 2: fprintf (file, "Name"); break;
2411 case 4: fprintf (file, "Language"); break;
2412 default:
2413 fprintf (file, _("<unknown directory type: %d>\n"), indent);
2414 /* FIXME: For now we end the printing here. If in the
2415 future more directory types are added to the RSRC spec
2416 then we will need to change this. */
2417 return regions->section_end + 1;
2418 }
2419
2420 fprintf (file, _(" Table: Char: %d, Time: %08lx, Ver: %d/%d, Num Names: %d, IDs: %d\n"),
2421 (int) bfd_get_32 (abfd, data),
2422 (long) bfd_get_32 (abfd, data + 4),
2423 (int) bfd_get_16 (abfd, data + 8),
2424 (int) bfd_get_16 (abfd, data + 10),
2425 num_names = (int) bfd_get_16 (abfd, data + 12),
2426 num_ids = (int) bfd_get_16 (abfd, data + 14));
2427 data += 16;
2428
2429 while (num_names --)
2430 {
2431 bfd_byte * entry_end;
2432
2433 entry_end = rsrc_print_resource_entries (file, abfd, indent + 1, TRUE,
2434 data, regions, rva_bias);
2435 data += 8;
2436 highest_data = max (highest_data, entry_end);
2437 if (entry_end >= regions->section_end)
2438 return entry_end;
2439 }
2440
2441 while (num_ids --)
2442 {
2443 bfd_byte * entry_end;
2444
2445 entry_end = rsrc_print_resource_entries (file, abfd, indent + 1, FALSE,
2446 data, regions, rva_bias);
2447 data += 8;
2448 highest_data = max (highest_data, entry_end);
2449 if (entry_end >= regions->section_end)
2450 return entry_end;
2451 }
2452
2453 return max (highest_data, data);
2454 }
2455
2456 /* Display the contents of a .rsrc section. We do not try to
2457 reproduce the resources, windres does that. Instead we dump
2458 the tables in a human readable format. */
2459
2460 static bfd_boolean
2461 rsrc_print_section (bfd * abfd, void * vfile)
2462 {
2463 bfd_vma rva_bias;
2464 pe_data_type * pe;
2465 FILE * file = (FILE *) vfile;
2466 bfd_size_type datasize;
2467 asection * section;
2468 bfd_byte * data;
2469 rsrc_regions regions;
2470
2471 pe = pe_data (abfd);
2472 if (pe == NULL)
2473 return TRUE;
2474
2475 section = bfd_get_section_by_name (abfd, ".rsrc");
2476 if (section == NULL)
2477 return TRUE;
2478 if (!(section->flags & SEC_HAS_CONTENTS))
2479 return TRUE;
2480
2481 datasize = section->size;
2482 if (datasize == 0)
2483 return TRUE;
2484
2485 rva_bias = section->vma - pe->pe_opthdr.ImageBase;
2486
2487 if (! bfd_malloc_and_get_section (abfd, section, & data))
2488 {
2489 if (data != NULL)
2490 free (data);
2491 return FALSE;
2492 }
2493
2494 regions.section_start = data;
2495 regions.section_end = data + datasize;
2496 regions.strings_start = NULL;
2497 regions.resource_start = NULL;
2498
2499 fflush (file);
2500 fprintf (file, "\nThe .rsrc Resource Directory section:\n");
2501
2502 while (data < regions.section_end)
2503 {
2504 bfd_byte * p = data;
2505
2506 data = rsrc_print_resource_directory (file, abfd, 0, data, & regions, rva_bias);
2507
2508 if (data == regions.section_end + 1)
2509 fprintf (file, _("Corrupt .rsrc section detected!\n"));
2510 else
2511 {
2512 /* Align data before continuing. */
2513 int align = (1 << section->alignment_power) - 1;
2514
2515 data = (bfd_byte *) (((ptrdiff_t) (data + align)) & ~ align);
2516 rva_bias += data - p;
2517
2518 /* For reasons that are unclear .rsrc sections are sometimes created
2519 aligned to a 1^3 boundary even when their alignment is set at
2520 1^2. Catch that case here before we issue a spurious warning
2521 message. */
2522 if (data == (regions.section_end - 4))
2523 data = regions.section_end;
2524 else if (data < regions.section_end)
2525 {
2526 /* If the extra data is all zeros then do not complain.
2527 This is just padding so that the section meets the
2528 page size requirements. */
2529 while (data ++ < regions.section_end)
2530 if (*data != 0)
2531 break;
2532 if (data < regions.section_end)
2533 fprintf (file, _("\nWARNING: Extra data in .rsrc section - it will be ignored by Windows:\n"));
2534 }
2535 }
2536 }
2537
2538 if (regions.strings_start != NULL)
2539 fprintf (file, " String table starts at offset: %#03x\n",
2540 (int) (regions.strings_start - regions.section_start));
2541 if (regions.resource_start != NULL)
2542 fprintf (file, " Resources start at offset: %#03x\n",
2543 (int) (regions.resource_start - regions.section_start));
2544
2545 free (regions.section_start);
2546 return TRUE;
2547 }
2548
2549 #define IMAGE_NUMBEROF_DEBUG_TYPES 12
2550
2551 static char * debug_type_names[IMAGE_NUMBEROF_DEBUG_TYPES] =
2552 {
2553 "Unknown",
2554 "COFF",
2555 "CodeView",
2556 "FPO",
2557 "Misc",
2558 "Exception",
2559 "Fixup",
2560 "OMAP-to-SRC",
2561 "OMAP-from-SRC",
2562 "Borland",
2563 "Reserved",
2564 "CLSID",
2565 };
2566
2567 static bfd_boolean
2568 pe_print_debugdata (bfd * abfd, void * vfile)
2569 {
2570 FILE *file = (FILE *) vfile;
2571 pe_data_type *pe = pe_data (abfd);
2572 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
2573 asection *section;
2574 bfd_byte *data = 0;
2575 bfd_size_type dataoff;
2576 unsigned int i;
2577
2578 bfd_vma addr = extra->DataDirectory[PE_DEBUG_DATA].VirtualAddress;
2579 bfd_size_type size = extra->DataDirectory[PE_DEBUG_DATA].Size;
2580
2581 if (size == 0)
2582 return TRUE;
2583
2584 addr += extra->ImageBase;
2585 for (section = abfd->sections; section != NULL; section = section->next)
2586 {
2587 if ((addr >= section->vma) && (addr < (section->vma + section->size)))
2588 break;
2589 }
2590
2591 if (section == NULL)
2592 {
2593 fprintf (file,
2594 _("\nThere is a debug directory, but the section containing it could not be found\n"));
2595 return TRUE;
2596 }
2597 else if (!(section->flags & SEC_HAS_CONTENTS))
2598 {
2599 fprintf (file,
2600 _("\nThere is a debug directory in %s, but that section has no contents\n"),
2601 section->name);
2602 return TRUE;
2603 }
2604 else if (section->size < size)
2605 {
2606 fprintf (file,
2607 _("\nError: section %s contains the debug data starting address but it is too small\n"),
2608 section->name);
2609 return FALSE;
2610 }
2611
2612 fprintf (file, _("\nThere is a debug directory in %s at 0x%lx\n\n"),
2613 section->name, (unsigned long) addr);
2614
2615 dataoff = addr - section->vma;
2616
2617 if (size > (section->size - dataoff))
2618 {
2619 fprintf (file, _("The debug data size field in the data directory is too big for the section"));
2620 return FALSE;
2621 }
2622
2623 fprintf (file,
2624 _("Type Size Rva Offset\n"));
2625
2626 /* Read the whole section. */
2627 if (!bfd_malloc_and_get_section (abfd, section, &data))
2628 {
2629 if (data != NULL)
2630 free (data);
2631 return FALSE;
2632 }
2633
2634 for (i = 0; i < size / sizeof (struct external_IMAGE_DEBUG_DIRECTORY); i++)
2635 {
2636 const char *type_name;
2637 struct external_IMAGE_DEBUG_DIRECTORY *ext
2638 = &((struct external_IMAGE_DEBUG_DIRECTORY *)(data + dataoff))[i];
2639 struct internal_IMAGE_DEBUG_DIRECTORY idd;
2640
2641 _bfd_XXi_swap_debugdir_in (abfd, ext, &idd);
2642
2643 if ((idd.Type) >= IMAGE_NUMBEROF_DEBUG_TYPES)
2644 type_name = debug_type_names[0];
2645 else
2646 type_name = debug_type_names[idd.Type];
2647
2648 fprintf (file, " %2ld %14s %08lx %08lx %08lx\n",
2649 idd.Type, type_name, idd.SizeOfData,
2650 idd.AddressOfRawData, idd.PointerToRawData);
2651
2652 if (idd.Type == PE_IMAGE_DEBUG_TYPE_CODEVIEW)
2653 {
2654 char signature[CV_INFO_SIGNATURE_LENGTH * 2 + 1];
2655 char buffer[256 + 1];
2656 CODEVIEW_INFO *cvinfo = (CODEVIEW_INFO *) buffer;
2657
2658 /* The debug entry doesn't have to have to be in a section,
2659 in which case AddressOfRawData is 0, so always use PointerToRawData. */
2660 if (!_bfd_XXi_slurp_codeview_record (abfd, (file_ptr) idd.PointerToRawData,
2661 idd.SizeOfData, cvinfo))
2662 continue;
2663
2664 for (i = 0; i < cvinfo->SignatureLength; i++)
2665 sprintf (&signature[i*2], "%02x", cvinfo->Signature[i] & 0xff);
2666
2667 fprintf (file, "(format %c%c%c%c signature %s age %ld)\n",
2668 buffer[0], buffer[1], buffer[2], buffer[3],
2669 signature, cvinfo->Age);
2670 }
2671 }
2672
2673 if (size % sizeof (struct external_IMAGE_DEBUG_DIRECTORY) != 0)
2674 fprintf (file,
2675 _("The debug directory size is not a multiple of the debug directory entry size\n"));
2676
2677 return TRUE;
2678 }
2679
2680 /* Print out the program headers. */
2681
2682 bfd_boolean
2683 _bfd_XX_print_private_bfd_data_common (bfd * abfd, void * vfile)
2684 {
2685 FILE *file = (FILE *) vfile;
2686 int j;
2687 pe_data_type *pe = pe_data (abfd);
2688 struct internal_extra_pe_aouthdr *i = &pe->pe_opthdr;
2689 const char *subsystem_name = NULL;
2690 const char *name;
2691
2692 /* The MS dumpbin program reportedly ands with 0xff0f before
2693 printing the characteristics field. Not sure why. No reason to
2694 emulate it here. */
2695 fprintf (file, _("\nCharacteristics 0x%x\n"), pe->real_flags);
2696 #undef PF
2697 #define PF(x, y) if (pe->real_flags & x) { fprintf (file, "\t%s\n", y); }
2698 PF (IMAGE_FILE_RELOCS_STRIPPED, "relocations stripped");
2699 PF (IMAGE_FILE_EXECUTABLE_IMAGE, "executable");
2700 PF (IMAGE_FILE_LINE_NUMS_STRIPPED, "line numbers stripped");
2701 PF (IMAGE_FILE_LOCAL_SYMS_STRIPPED, "symbols stripped");
2702 PF (IMAGE_FILE_LARGE_ADDRESS_AWARE, "large address aware");
2703 PF (IMAGE_FILE_BYTES_REVERSED_LO, "little endian");
2704 PF (IMAGE_FILE_32BIT_MACHINE, "32 bit words");
2705 PF (IMAGE_FILE_DEBUG_STRIPPED, "debugging information removed");
2706 PF (IMAGE_FILE_SYSTEM, "system file");
2707 PF (IMAGE_FILE_DLL, "DLL");
2708 PF (IMAGE_FILE_BYTES_REVERSED_HI, "big endian");
2709 #undef PF
2710
2711 /* ctime implies '\n'. */
2712 {
2713 time_t t = pe->coff.timestamp;
2714 fprintf (file, "\nTime/Date\t\t%s", ctime (&t));
2715 }
2716
2717 #ifndef IMAGE_NT_OPTIONAL_HDR_MAGIC
2718 # define IMAGE_NT_OPTIONAL_HDR_MAGIC 0x10b
2719 #endif
2720 #ifndef IMAGE_NT_OPTIONAL_HDR64_MAGIC
2721 # define IMAGE_NT_OPTIONAL_HDR64_MAGIC 0x20b
2722 #endif
2723 #ifndef IMAGE_NT_OPTIONAL_HDRROM_MAGIC
2724 # define IMAGE_NT_OPTIONAL_HDRROM_MAGIC 0x107
2725 #endif
2726
2727 switch (i->Magic)
2728 {
2729 case IMAGE_NT_OPTIONAL_HDR_MAGIC:
2730 name = "PE32";
2731 break;
2732 case IMAGE_NT_OPTIONAL_HDR64_MAGIC:
2733 name = "PE32+";
2734 break;
2735 case IMAGE_NT_OPTIONAL_HDRROM_MAGIC:
2736 name = "ROM";
2737 break;
2738 default:
2739 name = NULL;
2740 break;
2741 }
2742 fprintf (file, "Magic\t\t\t%04x", i->Magic);
2743 if (name)
2744 fprintf (file, "\t(%s)",name);
2745 fprintf (file, "\nMajorLinkerVersion\t%d\n", i->MajorLinkerVersion);
2746 fprintf (file, "MinorLinkerVersion\t%d\n", i->MinorLinkerVersion);
2747 fprintf (file, "SizeOfCode\t\t%08lx\n", (unsigned long) i->SizeOfCode);
2748 fprintf (file, "SizeOfInitializedData\t%08lx\n",
2749 (unsigned long) i->SizeOfInitializedData);
2750 fprintf (file, "SizeOfUninitializedData\t%08lx\n",
2751 (unsigned long) i->SizeOfUninitializedData);
2752 fprintf (file, "AddressOfEntryPoint\t");
2753 bfd_fprintf_vma (abfd, file, i->AddressOfEntryPoint);
2754 fprintf (file, "\nBaseOfCode\t\t");
2755 bfd_fprintf_vma (abfd, file, i->BaseOfCode);
2756 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
2757 /* PE32+ does not have BaseOfData member! */
2758 fprintf (file, "\nBaseOfData\t\t");
2759 bfd_fprintf_vma (abfd, file, i->BaseOfData);
2760 #endif
2761
2762 fprintf (file, "\nImageBase\t\t");
2763 bfd_fprintf_vma (abfd, file, i->ImageBase);
2764 fprintf (file, "\nSectionAlignment\t");
2765 bfd_fprintf_vma (abfd, file, i->SectionAlignment);
2766 fprintf (file, "\nFileAlignment\t\t");
2767 bfd_fprintf_vma (abfd, file, i->FileAlignment);
2768 fprintf (file, "\nMajorOSystemVersion\t%d\n", i->MajorOperatingSystemVersion);
2769 fprintf (file, "MinorOSystemVersion\t%d\n", i->MinorOperatingSystemVersion);
2770 fprintf (file, "MajorImageVersion\t%d\n", i->MajorImageVersion);
2771 fprintf (file, "MinorImageVersion\t%d\n", i->MinorImageVersion);
2772 fprintf (file, "MajorSubsystemVersion\t%d\n", i->MajorSubsystemVersion);
2773 fprintf (file, "MinorSubsystemVersion\t%d\n", i->MinorSubsystemVersion);
2774 fprintf (file, "Win32Version\t\t%08lx\n", (unsigned long) i->Reserved1);
2775 fprintf (file, "SizeOfImage\t\t%08lx\n", (unsigned long) i->SizeOfImage);
2776 fprintf (file, "SizeOfHeaders\t\t%08lx\n", (unsigned long) i->SizeOfHeaders);
2777 fprintf (file, "CheckSum\t\t%08lx\n", (unsigned long) i->CheckSum);
2778
2779 switch (i->Subsystem)
2780 {
2781 case IMAGE_SUBSYSTEM_UNKNOWN:
2782 subsystem_name = "unspecified";
2783 break;
2784 case IMAGE_SUBSYSTEM_NATIVE:
2785 subsystem_name = "NT native";
2786 break;
2787 case IMAGE_SUBSYSTEM_WINDOWS_GUI:
2788 subsystem_name = "Windows GUI";
2789 break;
2790 case IMAGE_SUBSYSTEM_WINDOWS_CUI:
2791 subsystem_name = "Windows CUI";
2792 break;
2793 case IMAGE_SUBSYSTEM_POSIX_CUI:
2794 subsystem_name = "POSIX CUI";
2795 break;
2796 case IMAGE_SUBSYSTEM_WINDOWS_CE_GUI:
2797 subsystem_name = "Wince CUI";
2798 break;
2799 // These are from UEFI Platform Initialization Specification 1.1.
2800 case IMAGE_SUBSYSTEM_EFI_APPLICATION:
2801 subsystem_name = "EFI application";
2802 break;
2803 case IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER:
2804 subsystem_name = "EFI boot service driver";
2805 break;
2806 case IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER:
2807 subsystem_name = "EFI runtime driver";
2808 break;
2809 case IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER:
2810 subsystem_name = "SAL runtime driver";
2811 break;
2812 // This is from revision 8.0 of the MS PE/COFF spec
2813 case IMAGE_SUBSYSTEM_XBOX:
2814 subsystem_name = "XBOX";
2815 break;
2816 // Added default case for clarity - subsystem_name is NULL anyway.
2817 default:
2818 subsystem_name = NULL;
2819 }
2820
2821 fprintf (file, "Subsystem\t\t%08x", i->Subsystem);
2822 if (subsystem_name)
2823 fprintf (file, "\t(%s)", subsystem_name);
2824 fprintf (file, "\nDllCharacteristics\t%08x\n", i->DllCharacteristics);
2825 fprintf (file, "SizeOfStackReserve\t");
2826 bfd_fprintf_vma (abfd, file, i->SizeOfStackReserve);
2827 fprintf (file, "\nSizeOfStackCommit\t");
2828 bfd_fprintf_vma (abfd, file, i->SizeOfStackCommit);
2829 fprintf (file, "\nSizeOfHeapReserve\t");
2830 bfd_fprintf_vma (abfd, file, i->SizeOfHeapReserve);
2831 fprintf (file, "\nSizeOfHeapCommit\t");
2832 bfd_fprintf_vma (abfd, file, i->SizeOfHeapCommit);
2833 fprintf (file, "\nLoaderFlags\t\t%08lx\n", (unsigned long) i->LoaderFlags);
2834 fprintf (file, "NumberOfRvaAndSizes\t%08lx\n",
2835 (unsigned long) i->NumberOfRvaAndSizes);
2836
2837 fprintf (file, "\nThe Data Directory\n");
2838 for (j = 0; j < IMAGE_NUMBEROF_DIRECTORY_ENTRIES; j++)
2839 {
2840 fprintf (file, "Entry %1x ", j);
2841 bfd_fprintf_vma (abfd, file, i->DataDirectory[j].VirtualAddress);
2842 fprintf (file, " %08lx ", (unsigned long) i->DataDirectory[j].Size);
2843 fprintf (file, "%s\n", dir_names[j]);
2844 }
2845
2846 pe_print_idata (abfd, vfile);
2847 pe_print_edata (abfd, vfile);
2848 if (bfd_coff_have_print_pdata (abfd))
2849 bfd_coff_print_pdata (abfd, vfile);
2850 else
2851 pe_print_pdata (abfd, vfile);
2852 pe_print_reloc (abfd, vfile);
2853 pe_print_debugdata (abfd, file);
2854
2855 rsrc_print_section (abfd, vfile);
2856
2857 return TRUE;
2858 }
2859
2860 static bfd_boolean
2861 is_vma_in_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sect, void *obj)
2862 {
2863 bfd_vma addr = * (bfd_vma *) obj;
2864 return (addr >= sect->vma) && (addr < (sect->vma + sect->size));
2865 }
2866
2867 static asection *
2868 find_section_by_vma (bfd *abfd, bfd_vma addr)
2869 {
2870 return bfd_sections_find_if (abfd, is_vma_in_section, (void *) & addr);
2871 }
2872
2873 /* Copy any private info we understand from the input bfd
2874 to the output bfd. */
2875
2876 bfd_boolean
2877 _bfd_XX_bfd_copy_private_bfd_data_common (bfd * ibfd, bfd * obfd)
2878 {
2879 pe_data_type *ipe, *ope;
2880
2881 /* One day we may try to grok other private data. */
2882 if (ibfd->xvec->flavour != bfd_target_coff_flavour
2883 || obfd->xvec->flavour != bfd_target_coff_flavour)
2884 return TRUE;
2885
2886 ipe = pe_data (ibfd);
2887 ope = pe_data (obfd);
2888
2889 /* pe_opthdr is copied in copy_object. */
2890 ope->dll = ipe->dll;
2891
2892 /* Don't copy input subsystem if output is different from input. */
2893 if (obfd->xvec != ibfd->xvec)
2894 ope->pe_opthdr.Subsystem = IMAGE_SUBSYSTEM_UNKNOWN;
2895
2896 /* For strip: if we removed .reloc, we'll make a real mess of things
2897 if we don't remove this entry as well. */
2898 if (! pe_data (obfd)->has_reloc_section)
2899 {
2900 pe_data (obfd)->pe_opthdr.DataDirectory[PE_BASE_RELOCATION_TABLE].VirtualAddress = 0;
2901 pe_data (obfd)->pe_opthdr.DataDirectory[PE_BASE_RELOCATION_TABLE].Size = 0;
2902 }
2903
2904 /* For PIE, if there is .reloc, we won't add IMAGE_FILE_RELOCS_STRIPPED.
2905 But there is no .reloc, we make sure that IMAGE_FILE_RELOCS_STRIPPED
2906 won't be added. */
2907 if (! pe_data (ibfd)->has_reloc_section
2908 && ! (pe_data (ibfd)->real_flags & IMAGE_FILE_RELOCS_STRIPPED))
2909 pe_data (obfd)->dont_strip_reloc = 1;
2910
2911 /* The file offsets contained in the debug directory need rewriting. */
2912 if (ope->pe_opthdr.DataDirectory[PE_DEBUG_DATA].Size != 0)
2913 {
2914 bfd_vma addr = ope->pe_opthdr.DataDirectory[PE_DEBUG_DATA].VirtualAddress
2915 + ope->pe_opthdr.ImageBase;
2916 asection *section = find_section_by_vma (obfd, addr);
2917 bfd_byte *data;
2918
2919 if (section && bfd_malloc_and_get_section (obfd, section, &data))
2920 {
2921 unsigned int i;
2922 struct external_IMAGE_DEBUG_DIRECTORY *dd =
2923 (struct external_IMAGE_DEBUG_DIRECTORY *)(data + (addr - section->vma));
2924
2925 for (i = 0; i < ope->pe_opthdr.DataDirectory[PE_DEBUG_DATA].Size
2926 / sizeof (struct external_IMAGE_DEBUG_DIRECTORY); i++)
2927 {
2928 asection *ddsection;
2929 struct external_IMAGE_DEBUG_DIRECTORY *edd = &(dd[i]);
2930 struct internal_IMAGE_DEBUG_DIRECTORY idd;
2931
2932 _bfd_XXi_swap_debugdir_in (obfd, edd, &idd);
2933
2934 if (idd.AddressOfRawData == 0)
2935 continue; /* RVA 0 means only offset is valid, not handled yet. */
2936
2937 ddsection = find_section_by_vma (obfd, idd.AddressOfRawData + ope->pe_opthdr.ImageBase);
2938 if (!ddsection)
2939 continue; /* Not in a section! */
2940
2941 idd.PointerToRawData = ddsection->filepos + (idd.AddressOfRawData
2942 + ope->pe_opthdr.ImageBase) - ddsection->vma;
2943
2944 _bfd_XXi_swap_debugdir_out (obfd, &idd, edd);
2945 }
2946
2947 if (!bfd_set_section_contents (obfd, section, data, 0, section->size))
2948 _bfd_error_handler (_("Failed to update file offsets in debug directory"));
2949 }
2950 }
2951
2952 return TRUE;
2953 }
2954
2955 /* Copy private section data. */
2956
2957 bfd_boolean
2958 _bfd_XX_bfd_copy_private_section_data (bfd *ibfd,
2959 asection *isec,
2960 bfd *obfd,
2961 asection *osec)
2962 {
2963 if (bfd_get_flavour (ibfd) != bfd_target_coff_flavour
2964 || bfd_get_flavour (obfd) != bfd_target_coff_flavour)
2965 return TRUE;
2966
2967 if (coff_section_data (ibfd, isec) != NULL
2968 && pei_section_data (ibfd, isec) != NULL)
2969 {
2970 if (coff_section_data (obfd, osec) == NULL)
2971 {
2972 bfd_size_type amt = sizeof (struct coff_section_tdata);
2973 osec->used_by_bfd = bfd_zalloc (obfd, amt);
2974 if (osec->used_by_bfd == NULL)
2975 return FALSE;
2976 }
2977
2978 if (pei_section_data (obfd, osec) == NULL)
2979 {
2980 bfd_size_type amt = sizeof (struct pei_section_tdata);
2981 coff_section_data (obfd, osec)->tdata = bfd_zalloc (obfd, amt);
2982 if (coff_section_data (obfd, osec)->tdata == NULL)
2983 return FALSE;
2984 }
2985
2986 pei_section_data (obfd, osec)->virt_size =
2987 pei_section_data (ibfd, isec)->virt_size;
2988 pei_section_data (obfd, osec)->pe_flags =
2989 pei_section_data (ibfd, isec)->pe_flags;
2990 }
2991
2992 return TRUE;
2993 }
2994
2995 void
2996 _bfd_XX_get_symbol_info (bfd * abfd, asymbol *symbol, symbol_info *ret)
2997 {
2998 coff_get_symbol_info (abfd, symbol, ret);
2999 }
3000
3001 #if !defined(COFF_WITH_pep) && defined(COFF_WITH_pex64)
3002 static int
3003 sort_x64_pdata (const void *l, const void *r)
3004 {
3005 const char *lp = (const char *) l;
3006 const char *rp = (const char *) r;
3007 bfd_vma vl, vr;
3008 vl = bfd_getl32 (lp); vr = bfd_getl32 (rp);
3009 if (vl != vr)
3010 return (vl < vr ? -1 : 1);
3011 /* We compare just begin address. */
3012 return 0;
3013 }
3014 #endif
3015 \f
3016 /* Functions to process a .rsrc section. */
3017
3018 static unsigned int sizeof_leaves;
3019 static unsigned int sizeof_strings;
3020 static unsigned int sizeof_tables_and_entries;
3021
3022 static bfd_byte *
3023 rsrc_count_directory (bfd *, bfd_byte *, bfd_byte *, bfd_byte *, bfd_vma);
3024
3025 static bfd_byte *
3026 rsrc_count_entries (bfd * abfd,
3027 bfd_boolean is_name,
3028 bfd_byte * datastart,
3029 bfd_byte * data,
3030 bfd_byte * dataend,
3031 bfd_vma rva_bias)
3032 {
3033 unsigned long entry, addr, size;
3034
3035 if (data + 8 >= dataend)
3036 return dataend + 1;
3037
3038 if (is_name)
3039 {
3040 bfd_byte * name;
3041
3042 entry = (long) bfd_get_32 (abfd, data);
3043
3044 if (HighBitSet (entry))
3045 name = datastart + WithoutHighBit (entry);
3046 else
3047 name = datastart + entry - rva_bias;
3048
3049 if (name + 2 >= dataend || name < datastart)
3050 return dataend + 1;
3051
3052 unsigned int len = bfd_get_16 (abfd, name);
3053 if (len == 0 || len > 256)
3054 return dataend + 1;
3055 }
3056
3057 entry = (long) bfd_get_32 (abfd, data + 4);
3058
3059 if (HighBitSet (entry))
3060 {
3061 data = datastart + WithoutHighBit (entry);
3062
3063 if (data <= datastart || data >= dataend)
3064 return dataend + 1;
3065
3066 return rsrc_count_directory (abfd, datastart, data, dataend, rva_bias);
3067 }
3068
3069 if (datastart + entry + 16 >= dataend)
3070 return dataend + 1;
3071
3072 addr = (long) bfd_get_32 (abfd, datastart + entry);
3073 size = (long) bfd_get_32 (abfd, datastart + entry + 4);
3074
3075 return datastart + addr - rva_bias + size;
3076 }
3077
3078 static bfd_byte *
3079 rsrc_count_directory (bfd * abfd,
3080 bfd_byte * datastart,
3081 bfd_byte * data,
3082 bfd_byte * dataend,
3083 bfd_vma rva_bias)
3084 {
3085 unsigned int num_entries, num_ids;
3086 bfd_byte * highest_data = data;
3087
3088 if (data + 16 >= dataend)
3089 return dataend + 1;
3090
3091 num_entries = (int) bfd_get_16 (abfd, data + 12);
3092 num_ids = (int) bfd_get_16 (abfd, data + 14);
3093
3094 num_entries += num_ids;
3095
3096 data += 16;
3097
3098 while (num_entries --)
3099 {
3100 bfd_byte * entry_end;
3101
3102 entry_end = rsrc_count_entries (abfd, num_entries >= num_ids,
3103 datastart, data, dataend, rva_bias);
3104 data += 8;
3105 highest_data = max (highest_data, entry_end);
3106 if (entry_end >= dataend)
3107 break;
3108 }
3109
3110 return max (highest_data, data);
3111 }
3112
3113 typedef struct rsrc_dir_chain
3114 {
3115 unsigned int num_entries;
3116 struct rsrc_entry * first_entry;
3117 struct rsrc_entry * last_entry;
3118 } rsrc_dir_chain;
3119
3120 typedef struct rsrc_directory
3121 {
3122 unsigned int characteristics;
3123 unsigned int time;
3124 unsigned int major;
3125 unsigned int minor;
3126
3127 rsrc_dir_chain names;
3128 rsrc_dir_chain ids;
3129
3130 struct rsrc_entry * entry;
3131 } rsrc_directory;
3132
3133 typedef struct rsrc_string
3134 {
3135 unsigned int len;
3136 bfd_byte * string;
3137 } rsrc_string;
3138
3139 typedef struct rsrc_leaf
3140 {
3141 unsigned int size;
3142 unsigned int codepage;
3143 bfd_byte * data;
3144 } rsrc_leaf;
3145
3146 typedef struct rsrc_entry
3147 {
3148 bfd_boolean is_name;
3149 union
3150 {
3151 unsigned int id;
3152 struct rsrc_string name;
3153 } name_id;
3154
3155 bfd_boolean is_dir;
3156 union
3157 {
3158 struct rsrc_directory * directory;
3159 struct rsrc_leaf * leaf;
3160 } value;
3161
3162 struct rsrc_entry * next_entry;
3163 struct rsrc_directory * parent;
3164 } rsrc_entry;
3165
3166 static bfd_byte *
3167 rsrc_parse_directory (bfd *, rsrc_directory *, bfd_byte *,
3168 bfd_byte *, bfd_byte *, bfd_vma, rsrc_entry *);
3169
3170 static bfd_byte *
3171 rsrc_parse_entry (bfd * abfd,
3172 bfd_boolean is_name,
3173 rsrc_entry * entry,
3174 bfd_byte * datastart,
3175 bfd_byte * data,
3176 bfd_byte * dataend,
3177 bfd_vma rva_bias,
3178 rsrc_directory * parent)
3179 {
3180 unsigned long val, addr, size;
3181
3182 val = bfd_get_32 (abfd, data);
3183
3184 entry->parent = parent;
3185 entry->is_name = is_name;
3186
3187 if (is_name)
3188 {
3189 bfd_byte * address;
3190
3191 if (HighBitSet (val))
3192 {
3193 val = WithoutHighBit (val);
3194
3195 address = datastart + val;
3196 }
3197 else
3198 {
3199 address = datastart + val - rva_bias;
3200 }
3201
3202 if (address + 3 > dataend)
3203 return dataend;
3204
3205 entry->name_id.name.len = bfd_get_16 (abfd, address);
3206 entry->name_id.name.string = address + 2;
3207 }
3208 else
3209 entry->name_id.id = val;
3210
3211 val = bfd_get_32 (abfd, data + 4);
3212
3213 if (HighBitSet (val))
3214 {
3215 entry->is_dir = TRUE;
3216 entry->value.directory = bfd_malloc (sizeof * entry->value.directory);
3217 if (entry->value.directory == NULL)
3218 return dataend;
3219
3220 return rsrc_parse_directory (abfd, entry->value.directory,
3221 datastart,
3222 datastart + WithoutHighBit (val),
3223 dataend, rva_bias, entry);
3224 }
3225
3226 entry->is_dir = FALSE;
3227 entry->value.leaf = bfd_malloc (sizeof * entry->value.leaf);
3228 if (entry->value.leaf == NULL)
3229 return dataend;
3230
3231 addr = bfd_get_32 (abfd, datastart + val);
3232 size = entry->value.leaf->size = bfd_get_32 (abfd, datastart + val + 4);
3233 entry->value.leaf->codepage = bfd_get_32 (abfd, datastart + val + 8);
3234
3235 entry->value.leaf->data = bfd_malloc (size);
3236 if (entry->value.leaf->data == NULL)
3237 return dataend;
3238
3239 memcpy (entry->value.leaf->data, datastart + addr - rva_bias, size);
3240 return datastart + (addr - rva_bias) + size;
3241 }
3242
3243 static bfd_byte *
3244 rsrc_parse_entries (bfd * abfd,
3245 rsrc_dir_chain * chain,
3246 bfd_boolean is_name,
3247 bfd_byte * highest_data,
3248 bfd_byte * datastart,
3249 bfd_byte * data,
3250 bfd_byte * dataend,
3251 bfd_vma rva_bias,
3252 rsrc_directory * parent)
3253 {
3254 unsigned int i;
3255 rsrc_entry * entry;
3256
3257 if (chain->num_entries == 0)
3258 {
3259 chain->first_entry = chain->last_entry = NULL;
3260 return highest_data;
3261 }
3262
3263 entry = bfd_malloc (sizeof * entry);
3264 if (entry == NULL)
3265 return dataend;
3266
3267 chain->first_entry = entry;
3268
3269 for (i = chain->num_entries; i--;)
3270 {
3271 bfd_byte * entry_end;
3272
3273 entry_end = rsrc_parse_entry (abfd, is_name, entry, datastart,
3274 data, dataend, rva_bias, parent);
3275 data += 8;
3276 highest_data = max (entry_end, highest_data);
3277 if (entry_end > dataend)
3278 return dataend;
3279
3280 if (i)
3281 {
3282 entry->next_entry = bfd_malloc (sizeof * entry);
3283 entry = entry->next_entry;
3284 if (entry == NULL)
3285 return dataend;
3286 }
3287 else
3288 entry->next_entry = NULL;
3289 }
3290
3291 chain->last_entry = entry;
3292
3293 return highest_data;
3294 }
3295
3296 static bfd_byte *
3297 rsrc_parse_directory (bfd * abfd,
3298 rsrc_directory * table,
3299 bfd_byte * datastart,
3300 bfd_byte * data,
3301 bfd_byte * dataend,
3302 bfd_vma rva_bias,
3303 rsrc_entry * entry)
3304 {
3305 bfd_byte * highest_data = data;
3306
3307 if (table == NULL)
3308 return dataend;
3309
3310 table->characteristics = bfd_get_32 (abfd, data);
3311 table->time = bfd_get_32 (abfd, data + 4);
3312 table->major = bfd_get_16 (abfd, data + 8);
3313 table->minor = bfd_get_16 (abfd, data + 10);
3314 table->names.num_entries = bfd_get_16 (abfd, data + 12);
3315 table->ids.num_entries = bfd_get_16 (abfd, data + 14);
3316 table->entry = entry;
3317
3318 data += 16;
3319
3320 highest_data = rsrc_parse_entries (abfd, & table->names, TRUE, data,
3321 datastart, data, dataend, rva_bias, table);
3322 data += table->names.num_entries * 8;
3323
3324 highest_data = rsrc_parse_entries (abfd, & table->ids, FALSE, highest_data,
3325 datastart, data, dataend, rva_bias, table);
3326 data += table->ids.num_entries * 8;
3327
3328 return max (highest_data, data);
3329 }
3330
3331 typedef struct rsrc_write_data
3332 {
3333 bfd * abfd;
3334 bfd_byte * datastart;
3335 bfd_byte * next_table;
3336 bfd_byte * next_leaf;
3337 bfd_byte * next_string;
3338 bfd_byte * next_data;
3339 bfd_vma rva_bias;
3340 } rsrc_write_data;
3341
3342 static void
3343 rsrc_write_string (rsrc_write_data * data,
3344 rsrc_string * string)
3345 {
3346 bfd_put_16 (data->abfd, string->len, data->next_string);
3347 memcpy (data->next_string + 2, string->string, string->len * 2);
3348 data->next_string += (string->len + 1) * 2;
3349 }
3350
3351 static inline unsigned int
3352 rsrc_compute_rva (rsrc_write_data * data,
3353 bfd_byte * addr)
3354 {
3355 return (addr - data->datastart) + data->rva_bias;
3356 }
3357
3358 static void
3359 rsrc_write_leaf (rsrc_write_data * data,
3360 rsrc_leaf * leaf)
3361 {
3362 bfd_put_32 (data->abfd, rsrc_compute_rva (data, data->next_data),
3363 data->next_leaf);
3364 bfd_put_32 (data->abfd, leaf->size, data->next_leaf + 4);
3365 bfd_put_32 (data->abfd, leaf->codepage, data->next_leaf + 8);
3366 bfd_put_32 (data->abfd, 0 /*reserved*/, data->next_leaf + 12);
3367 data->next_leaf += 16;
3368
3369 memcpy (data->next_data, leaf->data, leaf->size);
3370 /* An undocumented feature of Windows resources is that each unit
3371 of raw data is 8-byte aligned... */
3372 data->next_data += ((leaf->size + 7) & ~7);
3373 }
3374
3375 static void rsrc_write_directory (rsrc_write_data *, rsrc_directory *);
3376
3377 static void
3378 rsrc_write_entry (rsrc_write_data * data,
3379 bfd_byte * where,
3380 rsrc_entry * entry)
3381 {
3382 if (entry->is_name)
3383 {
3384 bfd_put_32 (data->abfd,
3385 SetHighBit (data->next_string - data->datastart),
3386 where);
3387 rsrc_write_string (data, & entry->name_id.name);
3388 }
3389 else
3390 bfd_put_32 (data->abfd, entry->name_id.id, where);
3391
3392 if (entry->is_dir)
3393 {
3394 bfd_put_32 (data->abfd,
3395 SetHighBit (data->next_table - data->datastart),
3396 where + 4);
3397 rsrc_write_directory (data, entry->value.directory);
3398 }
3399 else
3400 {
3401 bfd_put_32 (data->abfd, data->next_leaf - data->datastart, where + 4);
3402 rsrc_write_leaf (data, entry->value.leaf);
3403 }
3404 }
3405
3406 static void
3407 rsrc_compute_region_sizes (rsrc_directory * dir)
3408 {
3409 struct rsrc_entry * entry;
3410
3411 if (dir == NULL)
3412 return;
3413
3414 sizeof_tables_and_entries += 16;
3415
3416 for (entry = dir->names.first_entry; entry != NULL; entry = entry->next_entry)
3417 {
3418 sizeof_tables_and_entries += 8;
3419
3420 sizeof_strings += (entry->name_id.name.len + 1) * 2;
3421
3422 if (entry->is_dir)
3423 rsrc_compute_region_sizes (entry->value.directory);
3424 else
3425 sizeof_leaves += 16;
3426 }
3427
3428 for (entry = dir->ids.first_entry; entry != NULL; entry = entry->next_entry)
3429 {
3430 sizeof_tables_and_entries += 8;
3431
3432 if (entry->is_dir)
3433 rsrc_compute_region_sizes (entry->value.directory);
3434 else
3435 sizeof_leaves += 16;
3436 }
3437 }
3438
3439 static void
3440 rsrc_write_directory (rsrc_write_data * data,
3441 rsrc_directory * dir)
3442 {
3443 rsrc_entry * entry;
3444 unsigned int i;
3445 bfd_byte * next_entry;
3446 bfd_byte * nt;
3447
3448 bfd_put_32 (data->abfd, dir->characteristics, data->next_table);
3449 bfd_put_32 (data->abfd, 0 /*dir->time*/, data->next_table + 4);
3450 bfd_put_16 (data->abfd, dir->major, data->next_table + 8);
3451 bfd_put_16 (data->abfd, dir->minor, data->next_table + 10);
3452 bfd_put_16 (data->abfd, dir->names.num_entries, data->next_table + 12);
3453 bfd_put_16 (data->abfd, dir->ids.num_entries, data->next_table + 14);
3454
3455 /* Compute where the entries and the next table will be placed. */
3456 next_entry = data->next_table + 16;
3457 data->next_table = next_entry + (dir->names.num_entries * 8)
3458 + (dir->ids.num_entries * 8);
3459 nt = data->next_table;
3460
3461 /* Write the entries. */
3462 for (i = dir->names.num_entries, entry = dir->names.first_entry;
3463 i > 0 && entry != NULL;
3464 i--, entry = entry->next_entry)
3465 {
3466 BFD_ASSERT (entry->is_name);
3467 rsrc_write_entry (data, next_entry, entry);
3468 next_entry += 8;
3469 }
3470 BFD_ASSERT (i == 0);
3471 BFD_ASSERT (entry == NULL);
3472
3473 for (i = dir->ids.num_entries, entry = dir->ids.first_entry;
3474 i > 0 && entry != NULL;
3475 i--, entry = entry->next_entry)
3476 {
3477 BFD_ASSERT (! entry->is_name);
3478 rsrc_write_entry (data, next_entry, entry);
3479 next_entry += 8;
3480 }
3481 BFD_ASSERT (i == 0);
3482 BFD_ASSERT (entry == NULL);
3483 BFD_ASSERT (nt == next_entry);
3484 }
3485
3486 #if defined HAVE_WCHAR_H && ! defined __CYGWIN__ && ! defined __MINGW32__
3487 /* Return the length (number of units) of the first character in S,
3488 putting its 'ucs4_t' representation in *PUC. */
3489
3490 static unsigned int
3491 u16_mbtouc (wchar_t * puc, const unsigned short * s, unsigned int n)
3492 {
3493 unsigned short c = * s;
3494
3495 if (c < 0xd800 || c >= 0xe000)
3496 {
3497 *puc = c;
3498 return 1;
3499 }
3500
3501 if (c < 0xdc00)
3502 {
3503 if (n >= 2)
3504 {
3505 if (s[1] >= 0xdc00 && s[1] < 0xe000)
3506 {
3507 *puc = 0x10000 + ((c - 0xd800) << 10) + (s[1] - 0xdc00);
3508 return 2;
3509 }
3510 }
3511 else
3512 {
3513 /* Incomplete multibyte character. */
3514 *puc = 0xfffd;
3515 return n;
3516 }
3517 }
3518
3519 /* Invalid multibyte character. */
3520 *puc = 0xfffd;
3521 return 1;
3522 }
3523 #endif /* HAVE_WCHAR_H and not Cygwin/Mingw */
3524
3525 /* Perform a comparison of two entries. */
3526 static signed int
3527 rsrc_cmp (bfd_boolean is_name, rsrc_entry * a, rsrc_entry * b)
3528 {
3529 signed int res;
3530 bfd_byte * astring;
3531 unsigned int alen;
3532 bfd_byte * bstring;
3533 unsigned int blen;
3534
3535 if (! is_name)
3536 return a->name_id.id - b->name_id.id;
3537
3538 /* We have to perform a case insenstive, unicode string comparison... */
3539 astring = a->name_id.name.string;
3540 alen = a->name_id.name.len;
3541 bstring = b->name_id.name.string;
3542 blen = b->name_id.name.len;
3543
3544 #if defined __CYGWIN__ || defined __MINGW32__
3545 /* Under Windows hosts (both Cygwin and Mingw types),
3546 unicode == UTF-16 == wchar_t. The case insensitive string comparison
3547 function however goes by different names in the two environments... */
3548
3549 #undef rscpcmp
3550 #ifdef __CYGWIN__
3551 #define rscpcmp wcsncasecmp
3552 #endif
3553 #ifdef __MINGW32__
3554 #define rscpcmp wcsnicmp
3555 #endif
3556
3557 res = rscpcmp ((const wchar_t *) astring, (const wchar_t *) bstring,
3558 min (alen, blen));
3559
3560 #elif defined HAVE_WCHAR_H
3561 {
3562 unsigned int i;
3563 res = 0;
3564 for (i = min (alen, blen); i--; astring += 2, bstring += 2)
3565 {
3566 wchar_t awc;
3567 wchar_t bwc;
3568
3569 /* Convert UTF-16 unicode characters into wchar_t characters so
3570 that we can then perform a case insensitive comparison. */
3571 int Alen = u16_mbtouc (& awc, (const unsigned short *) astring, 2);
3572 int Blen = u16_mbtouc (& bwc, (const unsigned short *) bstring, 2);
3573
3574 if (Alen != Blen)
3575 return Alen - Blen;
3576 res = wcsncasecmp (& awc, & bwc, 1);
3577 if (res)
3578 break;
3579 }
3580 }
3581 #else
3582 /* Do the best we can - a case sensitive, untranslated comparison. */
3583 res = memcmp (astring, bstring, min (alen, blen) * 2);
3584 #endif
3585
3586 if (res == 0)
3587 res = alen - blen;
3588
3589 return res;
3590 }
3591
3592 static void
3593 rsrc_print_name (char * buffer, rsrc_string string)
3594 {
3595 unsigned int i;
3596 bfd_byte * name = string.string;
3597
3598 for (i = string.len; i--; name += 2)
3599 sprintf (buffer + strlen (buffer), "%.1s", name);
3600 }
3601
3602 static const char *
3603 rsrc_resource_name (rsrc_entry * entry, rsrc_directory * dir)
3604 {
3605 static char buffer [256];
3606 bfd_boolean is_string = FALSE;
3607
3608 buffer[0] = 0;
3609
3610 if (dir != NULL && dir->entry != NULL && dir->entry->parent != NULL
3611 && dir->entry->parent->entry != NULL)
3612 {
3613 strcpy (buffer, "type: ");
3614 if (dir->entry->parent->entry->is_name)
3615 rsrc_print_name (buffer + strlen (buffer),
3616 dir->entry->parent->entry->name_id.name);
3617 else
3618 {
3619 unsigned int id = dir->entry->parent->entry->name_id.id;
3620
3621 sprintf (buffer + strlen (buffer), "%x", id);
3622 switch (id)
3623 {
3624 case 1: strcat (buffer, " (CURSOR)"); break;
3625 case 2: strcat (buffer, " (BITMAP)"); break;
3626 case 3: strcat (buffer, " (ICON)"); break;
3627 case 4: strcat (buffer, " (MENU)"); break;
3628 case 5: strcat (buffer, " (DIALOG)"); break;
3629 case 6: strcat (buffer, " (STRING)"); is_string = TRUE; break;
3630 case 7: strcat (buffer, " (FONTDIR)"); break;
3631 case 8: strcat (buffer, " (FONT)"); break;
3632 case 9: strcat (buffer, " (ACCELERATOR)"); break;
3633 case 10: strcat (buffer, " (RCDATA)"); break;
3634 case 11: strcat (buffer, " (MESSAGETABLE)"); break;
3635 case 12: strcat (buffer, " (GROUP_CURSOR)"); break;
3636 case 14: strcat (buffer, " (GROUP_ICON)"); break;
3637 case 16: strcat (buffer, " (VERSION)"); break;
3638 case 17: strcat (buffer, " (DLGINCLUDE)"); break;
3639 case 19: strcat (buffer, " (PLUGPLAY)"); break;
3640 case 20: strcat (buffer, " (VXD)"); break;
3641 case 21: strcat (buffer, " (ANICURSOR)"); break;
3642 case 22: strcat (buffer, " (ANIICON)"); break;
3643 case 23: strcat (buffer, " (HTML)"); break;
3644 case 24: strcat (buffer, " (MANIFEST)"); break;
3645 case 240: strcat (buffer, " (DLGINIT)"); break;
3646 case 241: strcat (buffer, " (TOOLBAR)"); break;
3647 }
3648 }
3649 }
3650
3651 if (dir != NULL && dir->entry != NULL)
3652 {
3653 strcat (buffer, " name: ");
3654 if (dir->entry->is_name)
3655 rsrc_print_name (buffer + strlen (buffer), dir->entry->name_id.name);
3656 else
3657 {
3658 unsigned int id = dir->entry->name_id.id;
3659
3660 sprintf (buffer + strlen (buffer), "%x", id);
3661
3662 if (is_string)
3663 sprintf (buffer + strlen (buffer), " (resource id range: %d - %d)",
3664 (id - 1) << 4, (id << 4) - 1);
3665 }
3666 }
3667
3668 if (entry != NULL)
3669 {
3670 strcat (buffer, " lang: ");
3671
3672 if (entry->is_name)
3673 rsrc_print_name (buffer + strlen (buffer), entry->name_id.name);
3674 else
3675 sprintf (buffer + strlen (buffer), "%x", entry->name_id.id);
3676 }
3677
3678 return buffer;
3679 }
3680
3681 /* *sigh* Windows resource strings are special. Only the top 28-bits of
3682 their ID is stored in the NAME entry. The bottom four bits are used as
3683 an index into unicode string table that makes up the data of the leaf.
3684 So identical type-name-lang string resources may not actually be
3685 identical at all.
3686
3687 This function is called when we have detected two string resources with
3688 match top-28-bit IDs. We have to scan the string tables inside the leaves
3689 and discover if there are any real collisions. If there are then we report
3690 them and return FALSE. Otherwise we copy any strings from B into A and
3691 then return TRUE. */
3692
3693 static bfd_boolean
3694 rsrc_merge_string_entries (rsrc_entry * a ATTRIBUTE_UNUSED,
3695 rsrc_entry * b ATTRIBUTE_UNUSED)
3696 {
3697 unsigned int copy_needed = 0;
3698 unsigned int i;
3699 bfd_byte * astring;
3700 bfd_byte * bstring;
3701 bfd_byte * new_data;
3702 bfd_byte * nstring;
3703
3704 /* Step one: Find out what we have to do. */
3705 BFD_ASSERT (! a->is_dir);
3706 astring = a->value.leaf->data;
3707
3708 BFD_ASSERT (! b->is_dir);
3709 bstring = b->value.leaf->data;
3710
3711 for (i = 0; i < 16; i++)
3712 {
3713 unsigned int alen = astring[0] + (astring[1] << 8);
3714 unsigned int blen = bstring[0] + (bstring[1] << 8);
3715
3716 if (alen == 0)
3717 {
3718 copy_needed += blen * 2;
3719 }
3720 else if (blen == 0)
3721 ;
3722 else if (alen != blen)
3723 /* FIXME: Should we continue the loop in order to report other duplicates ? */
3724 break;
3725 /* alen == blen != 0. We might have two identical strings. If so we
3726 can ignore the second one. There is no need for wchar_t vs UTF-16
3727 theatrics here - we are only interested in (case sensitive) equality. */
3728 else if (memcmp (astring + 2, bstring + 2, alen * 2) != 0)
3729 break;
3730
3731 astring += (alen + 1) * 2;
3732 bstring += (blen + 1) * 2;
3733 }
3734
3735 if (i != 16)
3736 {
3737 if (a->parent != NULL
3738 && a->parent->entry != NULL
3739 && a->parent->entry->is_name == FALSE)
3740 _bfd_error_handler (_(".rsrc merge failure: duplicate string resource: %d"),
3741 ((a->parent->entry->name_id.id - 1) << 4) + i);
3742 return FALSE;
3743 }
3744
3745 if (copy_needed == 0)
3746 return TRUE;
3747
3748 /* If we reach here then A and B must both have non-colliding strings.
3749 (We never get string resources with fully empty string tables).
3750 We need to allocate an extra COPY_NEEDED bytes in A and then bring
3751 in B's strings. */
3752 new_data = bfd_malloc (a->value.leaf->size + copy_needed);
3753 if (new_data == NULL)
3754 return FALSE;
3755
3756 nstring = new_data;
3757 astring = a->value.leaf->data;
3758 bstring = b->value.leaf->data;
3759
3760 for (i = 0; i < 16; i++)
3761 {
3762 unsigned int alen = astring[0] + (astring[1] << 8);
3763 unsigned int blen = bstring[0] + (bstring[1] << 8);
3764
3765 if (alen != 0)
3766 {
3767 memcpy (nstring, astring, (alen + 1) * 2);
3768 nstring += (alen + 1) * 2;
3769 }
3770 else if (blen != 0)
3771 {
3772 memcpy (nstring, bstring, (blen + 1) * 2);
3773 nstring += (blen + 1) * 2;
3774 }
3775 else
3776 {
3777 * nstring++ = 0;
3778 * nstring++ = 0;
3779 }
3780
3781 astring += (alen + 1) * 2;
3782 bstring += (blen + 1) * 2;
3783 }
3784
3785 BFD_ASSERT (nstring - new_data == (signed) (a->value.leaf->size + copy_needed));
3786
3787 free (a->value.leaf->data);
3788 a->value.leaf->data = new_data;
3789 a->value.leaf->size += copy_needed;
3790
3791 return TRUE;
3792 }
3793
3794 static void rsrc_merge (rsrc_entry *, rsrc_entry *);
3795
3796 /* Sort the entries in given part of the directory.
3797 We use an old fashioned bubble sort because we are dealing
3798 with lists and we want to handle matches specially. */
3799
3800 static void
3801 rsrc_sort_entries (rsrc_dir_chain * chain,
3802 bfd_boolean is_name,
3803 rsrc_directory * dir)
3804 {
3805 rsrc_entry * entry;
3806 rsrc_entry * next;
3807 rsrc_entry ** points_to_entry;
3808 bfd_boolean swapped;
3809
3810 if (chain->num_entries < 2)
3811 return;
3812
3813 do
3814 {
3815 swapped = FALSE;
3816 points_to_entry = & chain->first_entry;
3817 entry = * points_to_entry;
3818 next = entry->next_entry;
3819
3820 do
3821 {
3822 signed int cmp = rsrc_cmp (is_name, entry, next);
3823
3824 if (cmp > 0)
3825 {
3826 entry->next_entry = next->next_entry;
3827 next->next_entry = entry;
3828 * points_to_entry = next;
3829 points_to_entry = & next->next_entry;
3830 next = entry->next_entry;
3831 swapped = TRUE;
3832 }
3833 else if (cmp == 0)
3834 {
3835 if (entry->is_dir && next->is_dir)
3836 {
3837 /* When we encounter identical directory entries we have to
3838 merge them together. The exception to this rule is for
3839 resource manifests - there can only be one of these,
3840 even if they differ in language. Zero-language manifests
3841 are assumed to be default manifests (provided by the
3842 Cygwin/MinGW build system) and these can be silently dropped,
3843 unless that would reduce the number of manifests to zero.
3844 There should only ever be one non-zero lang manifest -
3845 if there are more it is an error. A non-zero lang
3846 manifest takes precedence over a default manifest. */
3847 if (entry->is_name == FALSE
3848 && entry->name_id.id == 1
3849 && dir != NULL
3850 && dir->entry != NULL
3851 && dir->entry->is_name == FALSE
3852 && dir->entry->name_id.id == 0x18)
3853 {
3854 if (next->value.directory->names.num_entries == 0
3855 && next->value.directory->ids.num_entries == 1
3856 && next->value.directory->ids.first_entry->is_name == FALSE
3857 && next->value.directory->ids.first_entry->name_id.id == 0)
3858 /* Fall through so that NEXT is dropped. */
3859 ;
3860 else if (entry->value.directory->names.num_entries == 0
3861 && entry->value.directory->ids.num_entries == 1
3862 && entry->value.directory->ids.first_entry->is_name == FALSE
3863 && entry->value.directory->ids.first_entry->name_id.id == 0)
3864 {
3865 /* Swap ENTRY and NEXT. Then fall through so that the old ENTRY is dropped. */
3866 entry->next_entry = next->next_entry;
3867 next->next_entry = entry;
3868 * points_to_entry = next;
3869 points_to_entry = & next->next_entry;
3870 next = entry->next_entry;
3871 swapped = TRUE;
3872 }
3873 else
3874 {
3875 _bfd_error_handler (_(".rsrc merge failure: multiple non-default manifests"));
3876 bfd_set_error (bfd_error_file_truncated);
3877 return;
3878 }
3879
3880 /* Unhook NEXT from the chain. */
3881 /* FIXME: memory loss here. */
3882 entry->next_entry = next->next_entry;
3883 chain->num_entries --;
3884 if (chain->num_entries < 2)
3885 return;
3886 next = next->next_entry;
3887 }
3888 else
3889 rsrc_merge (entry, next);
3890 }
3891 else if (entry->is_dir != next->is_dir)
3892 {
3893 _bfd_error_handler (_(".rsrc merge failure: a directory matches a leaf"));
3894 bfd_set_error (bfd_error_file_truncated);
3895 return;
3896 }
3897 else
3898 {
3899 /* Otherwise with identical leaves we issue an error
3900 message - because there should never be duplicates.
3901 The exception is Type 18/Name 1/Lang 0 which is the
3902 defaul manifest - this can just be dropped. */
3903 if (entry->is_name == FALSE
3904 && entry->name_id.id == 0
3905 && dir != NULL
3906 && dir->entry != NULL
3907 && dir->entry->is_name == FALSE
3908 && dir->entry->name_id.id == 1
3909 && dir->entry->parent != NULL
3910 && dir->entry->parent->entry != NULL
3911 && dir->entry->parent->entry->is_name == FALSE
3912 && dir->entry->parent->entry->name_id.id == 0x18 /* RT_MANIFEST */)
3913 ;
3914 else if (dir != NULL
3915 && dir->entry != NULL
3916 && dir->entry->parent != NULL
3917 && dir->entry->parent->entry != NULL
3918 && dir->entry->parent->entry->is_name == FALSE
3919 && dir->entry->parent->entry->name_id.id == 0x6 /* RT_STRING */)
3920 {
3921 /* Strings need special handling. */
3922 if (! rsrc_merge_string_entries (entry, next))
3923 {
3924 /* _bfd_error_handler should have been called inside merge_strings. */
3925 bfd_set_error (bfd_error_file_truncated);
3926 return;
3927 }
3928 }
3929 else
3930 {
3931 if (dir == NULL
3932 || dir->entry == NULL
3933 || dir->entry->parent == NULL
3934 || dir->entry->parent->entry == NULL)
3935 _bfd_error_handler (_(".rsrc merge failure: duplicate leaf"));
3936 else
3937 _bfd_error_handler (_(".rsrc merge failure: duplicate leaf: %s"),
3938 rsrc_resource_name (entry, dir));
3939 bfd_set_error (bfd_error_file_truncated);
3940 return;
3941 }
3942 }
3943
3944 /* Unhook NEXT from the chain. */
3945 entry->next_entry = next->next_entry;
3946 chain->num_entries --;
3947 if (chain->num_entries < 2)
3948 return;
3949 next = next->next_entry;
3950 }
3951 else
3952 {
3953 points_to_entry = & entry->next_entry;
3954 entry = next;
3955 next = next->next_entry;
3956 }
3957 }
3958 while (next);
3959
3960 chain->last_entry = entry;
3961 }
3962 while (swapped);
3963 }
3964
3965 /* Attach B's chain onto A. */
3966 static void
3967 rsrc_attach_chain (rsrc_dir_chain * achain, rsrc_dir_chain * bchain)
3968 {
3969 if (bchain->num_entries == 0)
3970 return;
3971
3972 achain->num_entries += bchain->num_entries;
3973
3974 if (achain->first_entry == NULL)
3975 {
3976 achain->first_entry = bchain->first_entry;
3977 achain->last_entry = bchain->last_entry;
3978 }
3979 else
3980 {
3981 achain->last_entry->next_entry = bchain->first_entry;
3982 achain->last_entry = bchain->last_entry;
3983 }
3984
3985 bchain->num_entries = 0;
3986 bchain->first_entry = bchain->last_entry = NULL;
3987 }
3988
3989 static void
3990 rsrc_merge (struct rsrc_entry * a, struct rsrc_entry * b)
3991 {
3992 rsrc_directory * adir;
3993 rsrc_directory * bdir;
3994
3995 BFD_ASSERT (a->is_dir);
3996 BFD_ASSERT (b->is_dir);
3997
3998 adir = a->value.directory;
3999 bdir = b->value.directory;
4000
4001 if (adir->characteristics != bdir->characteristics)
4002 {
4003 _bfd_error_handler (_(".rsrc merge failure: dirs with differing characteristics\n"));
4004 bfd_set_error (bfd_error_file_truncated);
4005 return;
4006 }
4007
4008 if (adir->major != bdir->major || adir->minor != bdir->minor)
4009 {
4010 _bfd_error_handler (_(".rsrc merge failure: differing directory versions\n"));
4011 bfd_set_error (bfd_error_file_truncated);
4012 return;
4013 }
4014
4015 /* Attach B's name chain to A. */
4016 rsrc_attach_chain (& adir->names, & bdir->names);
4017
4018 /* Attach B's ID chain to A. */
4019 rsrc_attach_chain (& adir->ids, & bdir->ids);
4020
4021 /* Now sort A's entries. */
4022 rsrc_sort_entries (& adir->names, TRUE, adir);
4023 rsrc_sort_entries (& adir->ids, FALSE, adir);
4024 }
4025
4026 /* Check the .rsrc section. If it contains multiple concatenated
4027 resources then we must merge them properly. Otherwise Windows
4028 will ignore all but the first set. */
4029
4030 static void
4031 rsrc_process_section (bfd * abfd,
4032 struct coff_final_link_info * pfinfo)
4033 {
4034 rsrc_directory new_table;
4035 bfd_size_type size;
4036 asection * sec;
4037 pe_data_type * pe;
4038 bfd_vma rva_bias;
4039 bfd_byte * data;
4040 bfd_byte * datastart;
4041 bfd_byte * dataend;
4042 bfd_byte * new_data;
4043 unsigned int num_resource_sets;
4044 rsrc_directory * type_tables;
4045 rsrc_write_data write_data;
4046 unsigned int indx;
4047 bfd * input;
4048 unsigned int num_input_rsrc = 0;
4049 unsigned int max_num_input_rsrc = 4;
4050 ptrdiff_t * rsrc_sizes = NULL;
4051
4052 new_table.names.num_entries = 0;
4053 new_table.ids.num_entries = 0;
4054
4055 sec = bfd_get_section_by_name (abfd, ".rsrc");
4056 if (sec == NULL || (size = sec->rawsize) == 0)
4057 return;
4058
4059 pe = pe_data (abfd);
4060 if (pe == NULL)
4061 return;
4062
4063 rva_bias = sec->vma - pe->pe_opthdr.ImageBase;
4064
4065 data = bfd_malloc (size);
4066 if (data == NULL)
4067 return;
4068
4069 datastart = data;
4070
4071 if (! bfd_get_section_contents (abfd, sec, data, 0, size))
4072 goto end;
4073
4074 /* Step zero: Scan the input bfds looking for .rsrc sections and record
4075 their lengths. Note - we rely upon the fact that the linker script
4076 does *not* sort the input .rsrc sections, so that the order in the
4077 linkinfo list matches the order in the output .rsrc section.
4078
4079 We need to know the lengths because each input .rsrc section has padding
4080 at the end of a variable amount. (It does not appear to be based upon
4081 the section alignment or the file alignment). We need to skip any
4082 padding bytes when parsing the input .rsrc sections. */
4083 rsrc_sizes = bfd_malloc (max_num_input_rsrc * sizeof * rsrc_sizes);
4084 if (rsrc_sizes == NULL)
4085 goto end;
4086
4087 for (input = pfinfo->info->input_bfds;
4088 input != NULL;
4089 input = input->link.next)
4090 {
4091 asection * rsrc_sec = bfd_get_section_by_name (input, ".rsrc");
4092
4093 if (rsrc_sec != NULL)
4094 {
4095 if (num_input_rsrc == max_num_input_rsrc)
4096 {
4097 max_num_input_rsrc += 10;
4098 rsrc_sizes = bfd_realloc (rsrc_sizes, max_num_input_rsrc
4099 * sizeof * rsrc_sizes);
4100 if (rsrc_sizes == NULL)
4101 goto end;
4102 }
4103
4104 BFD_ASSERT (rsrc_sec->size > 0);
4105 rsrc_sizes [num_input_rsrc ++] = rsrc_sec->size;
4106 }
4107 }
4108
4109 if (num_input_rsrc < 2)
4110 goto end;
4111
4112 /* Step one: Walk the section, computing the size of the tables,
4113 leaves and data and decide if we need to do anything. */
4114 dataend = data + size;
4115 num_resource_sets = 0;
4116
4117 while (data < dataend)
4118 {
4119 bfd_byte * p = data;
4120
4121 data = rsrc_count_directory (abfd, data, data, dataend, rva_bias);
4122
4123 if (data > dataend)
4124 {
4125 /* Corrupted .rsrc section - cannot merge. */
4126 _bfd_error_handler (_("%s: .rsrc merge failure: corrupt .rsrc section"),
4127 bfd_get_filename (abfd));
4128 bfd_set_error (bfd_error_file_truncated);
4129 goto end;
4130 }
4131
4132 if ((data - p) > rsrc_sizes [num_resource_sets])
4133 {
4134 _bfd_error_handler (_("%s: .rsrc merge failure: unexpected .rsrc size"),
4135 bfd_get_filename (abfd));
4136 bfd_set_error (bfd_error_file_truncated);
4137 goto end;
4138 }
4139 /* FIXME: Should we add a check for "data - p" being much smaller
4140 than rsrc_sizes[num_resource_sets] ? */
4141
4142 data = p + rsrc_sizes[num_resource_sets];
4143 rva_bias += data - p;
4144 ++ num_resource_sets;
4145 }
4146 BFD_ASSERT (num_resource_sets == num_input_rsrc);
4147
4148 /* Step two: Walk the data again, building trees of the resources. */
4149 data = datastart;
4150 rva_bias = sec->vma - pe->pe_opthdr.ImageBase;
4151
4152 type_tables = bfd_malloc (num_resource_sets * sizeof * type_tables);
4153 if (type_tables == NULL)
4154 goto end;
4155
4156 indx = 0;
4157 while (data < dataend)
4158 {
4159 bfd_byte * p = data;
4160
4161 (void) rsrc_parse_directory (abfd, type_tables + indx, data, data,
4162 dataend, rva_bias, NULL);
4163 data = p + rsrc_sizes[indx];
4164 rva_bias += data - p;
4165 ++ indx;
4166 }
4167 BFD_ASSERT (indx == num_resource_sets);
4168
4169 /* Step three: Merge the top level tables (there can be only one).
4170
4171 We must ensure that the merged entries are in ascending order.
4172
4173 We also thread the top level table entries from the old tree onto
4174 the new table, so that they can be pulled off later. */
4175
4176 /* FIXME: Should we verify that all type tables are the same ? */
4177 new_table.characteristics = type_tables[0].characteristics;
4178 new_table.time = type_tables[0].time;
4179 new_table.major = type_tables[0].major;
4180 new_table.minor = type_tables[0].minor;
4181
4182 /* Chain the NAME entries onto the table. */
4183 new_table.names.first_entry = NULL;
4184 new_table.names.last_entry = NULL;
4185
4186 for (indx = 0; indx < num_resource_sets; indx++)
4187 rsrc_attach_chain (& new_table.names, & type_tables[indx].names);
4188
4189 rsrc_sort_entries (& new_table.names, TRUE, & new_table);
4190
4191 /* Chain the ID entries onto the table. */
4192 new_table.ids.first_entry = NULL;
4193 new_table.ids.last_entry = NULL;
4194
4195 for (indx = 0; indx < num_resource_sets; indx++)
4196 rsrc_attach_chain (& new_table.ids, & type_tables[indx].ids);
4197
4198 rsrc_sort_entries (& new_table.ids, FALSE, & new_table);
4199
4200 /* Step four: Create new contents for the .rsrc section. */
4201 /* Step four point one: Compute the size of each region of the .rsrc section.
4202 We do this now, rather than earlier, as the merging above may have dropped
4203 some entries. */
4204 sizeof_leaves = sizeof_strings = sizeof_tables_and_entries = 0;
4205 rsrc_compute_region_sizes (& new_table);
4206 /* We increment sizeof_strings to make sure that resource data
4207 starts on an 8-byte boundary. FIXME: Is this correct ? */
4208 sizeof_strings = (sizeof_strings + 7) & ~ 7;
4209
4210 new_data = bfd_zalloc (abfd, size);
4211 if (new_data == NULL)
4212 goto end;
4213
4214 write_data.abfd = abfd;
4215 write_data.datastart = new_data;
4216 write_data.next_table = new_data;
4217 write_data.next_leaf = new_data + sizeof_tables_and_entries;
4218 write_data.next_string = write_data.next_leaf + sizeof_leaves;
4219 write_data.next_data = write_data.next_string + sizeof_strings;
4220 write_data.rva_bias = sec->vma - pe->pe_opthdr.ImageBase;
4221
4222 rsrc_write_directory (& write_data, & new_table);
4223
4224 /* Step five: Replace the old contents with the new.
4225 We recompute the size as we may have lost entries due to mergeing. */
4226 size = ((write_data.next_data - new_data) + 3) & ~ 3;
4227
4228 {
4229 int page_size;
4230
4231 if (coff_data (abfd)->link_info)
4232 {
4233 page_size = pe_data (abfd)->pe_opthdr.FileAlignment;
4234
4235 /* If no file alignment has been set, default to one.
4236 This repairs 'ld -r' for arm-wince-pe target. */
4237 if (page_size == 0)
4238 page_size = 1;
4239 }
4240 else
4241 page_size = PE_DEF_FILE_ALIGNMENT;
4242 size = (size + page_size - 1) & - page_size;
4243 }
4244
4245 bfd_set_section_contents (pfinfo->output_bfd, sec, new_data, 0, size);
4246 sec->size = sec->rawsize = size;
4247
4248 end:
4249 /* Step six: Free all the memory that we have used. */
4250 /* FIXME: Free the resource tree, if we have one. */
4251 free (datastart);
4252 free (rsrc_sizes);
4253 }
4254
4255 /* Handle the .idata section and other things that need symbol table
4256 access. */
4257
4258 bfd_boolean
4259 _bfd_XXi_final_link_postscript (bfd * abfd, struct coff_final_link_info *pfinfo)
4260 {
4261 struct coff_link_hash_entry *h1;
4262 struct bfd_link_info *info = pfinfo->info;
4263 bfd_boolean result = TRUE;
4264
4265 /* There are a few fields that need to be filled in now while we
4266 have symbol table access.
4267
4268 The .idata subsections aren't directly available as sections, but
4269 they are in the symbol table, so get them from there. */
4270
4271 /* The import directory. This is the address of .idata$2, with size
4272 of .idata$2 + .idata$3. */
4273 h1 = coff_link_hash_lookup (coff_hash_table (info),
4274 ".idata$2", FALSE, FALSE, TRUE);
4275 if (h1 != NULL)
4276 {
4277 /* PR ld/2729: We cannot rely upon all the output sections having been
4278 created properly, so check before referencing them. Issue a warning
4279 message for any sections tht could not be found. */
4280 if ((h1->root.type == bfd_link_hash_defined
4281 || h1->root.type == bfd_link_hash_defweak)
4282 && h1->root.u.def.section != NULL
4283 && h1->root.u.def.section->output_section != NULL)
4284 pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_TABLE].VirtualAddress =
4285 (h1->root.u.def.value
4286 + h1->root.u.def.section->output_section->vma
4287 + h1->root.u.def.section->output_offset);
4288 else
4289 {
4290 _bfd_error_handler
4291 (_("%B: unable to fill in DataDictionary[1] because .idata$2 is missing"),
4292 abfd);
4293 result = FALSE;
4294 }
4295
4296 h1 = coff_link_hash_lookup (coff_hash_table (info),
4297 ".idata$4", FALSE, FALSE, TRUE);
4298 if (h1 != NULL
4299 && (h1->root.type == bfd_link_hash_defined
4300 || h1->root.type == bfd_link_hash_defweak)
4301 && h1->root.u.def.section != NULL
4302 && h1->root.u.def.section->output_section != NULL)
4303 pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_TABLE].Size =
4304 ((h1->root.u.def.value
4305 + h1->root.u.def.section->output_section->vma
4306 + h1->root.u.def.section->output_offset)
4307 - pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_TABLE].VirtualAddress);
4308 else
4309 {
4310 _bfd_error_handler
4311 (_("%B: unable to fill in DataDictionary[1] because .idata$4 is missing"),
4312 abfd);
4313 result = FALSE;
4314 }
4315
4316 /* The import address table. This is the size/address of
4317 .idata$5. */
4318 h1 = coff_link_hash_lookup (coff_hash_table (info),
4319 ".idata$5", FALSE, FALSE, TRUE);
4320 if (h1 != NULL
4321 && (h1->root.type == bfd_link_hash_defined
4322 || h1->root.type == bfd_link_hash_defweak)
4323 && h1->root.u.def.section != NULL
4324 && h1->root.u.def.section->output_section != NULL)
4325 pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].VirtualAddress =
4326 (h1->root.u.def.value
4327 + h1->root.u.def.section->output_section->vma
4328 + h1->root.u.def.section->output_offset);
4329 else
4330 {
4331 _bfd_error_handler
4332 (_("%B: unable to fill in DataDictionary[12] because .idata$5 is missing"),
4333 abfd);
4334 result = FALSE;
4335 }
4336
4337 h1 = coff_link_hash_lookup (coff_hash_table (info),
4338 ".idata$6", FALSE, FALSE, TRUE);
4339 if (h1 != NULL
4340 && (h1->root.type == bfd_link_hash_defined
4341 || h1->root.type == bfd_link_hash_defweak)
4342 && h1->root.u.def.section != NULL
4343 && h1->root.u.def.section->output_section != NULL)
4344 pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].Size =
4345 ((h1->root.u.def.value
4346 + h1->root.u.def.section->output_section->vma
4347 + h1->root.u.def.section->output_offset)
4348 - pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].VirtualAddress);
4349 else
4350 {
4351 _bfd_error_handler
4352 (_("%B: unable to fill in DataDictionary[PE_IMPORT_ADDRESS_TABLE (12)] because .idata$6 is missing"),
4353 abfd);
4354 result = FALSE;
4355 }
4356 }
4357 else
4358 {
4359 h1 = coff_link_hash_lookup (coff_hash_table (info),
4360 "__IAT_start__", FALSE, FALSE, TRUE);
4361 if (h1 != NULL
4362 && (h1->root.type == bfd_link_hash_defined
4363 || h1->root.type == bfd_link_hash_defweak)
4364 && h1->root.u.def.section != NULL
4365 && h1->root.u.def.section->output_section != NULL)
4366 {
4367 bfd_vma iat_va;
4368
4369 iat_va =
4370 (h1->root.u.def.value
4371 + h1->root.u.def.section->output_section->vma
4372 + h1->root.u.def.section->output_offset);
4373
4374 h1 = coff_link_hash_lookup (coff_hash_table (info),
4375 "__IAT_end__", FALSE, FALSE, TRUE);
4376 if (h1 != NULL
4377 && (h1->root.type == bfd_link_hash_defined
4378 || h1->root.type == bfd_link_hash_defweak)
4379 && h1->root.u.def.section != NULL
4380 && h1->root.u.def.section->output_section != NULL)
4381 {
4382 pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].Size =
4383 ((h1->root.u.def.value
4384 + h1->root.u.def.section->output_section->vma
4385 + h1->root.u.def.section->output_offset)
4386 - iat_va);
4387 if (pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].Size != 0)
4388 pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].VirtualAddress =
4389 iat_va - pe_data (abfd)->pe_opthdr.ImageBase;
4390 }
4391 else
4392 {
4393 _bfd_error_handler
4394 (_("%B: unable to fill in DataDictionary[PE_IMPORT_ADDRESS_TABLE(12)]"
4395 " because .idata$6 is missing"), abfd);
4396 result = FALSE;
4397 }
4398 }
4399 }
4400
4401 h1 = coff_link_hash_lookup (coff_hash_table (info),
4402 (bfd_get_symbol_leading_char (abfd) != 0
4403 ? "__tls_used" : "_tls_used"),
4404 FALSE, FALSE, TRUE);
4405 if (h1 != NULL)
4406 {
4407 if ((h1->root.type == bfd_link_hash_defined
4408 || h1->root.type == bfd_link_hash_defweak)
4409 && h1->root.u.def.section != NULL
4410 && h1->root.u.def.section->output_section != NULL)
4411 pe_data (abfd)->pe_opthdr.DataDirectory[PE_TLS_TABLE].VirtualAddress =
4412 (h1->root.u.def.value
4413 + h1->root.u.def.section->output_section->vma
4414 + h1->root.u.def.section->output_offset
4415 - pe_data (abfd)->pe_opthdr.ImageBase);
4416 else
4417 {
4418 _bfd_error_handler
4419 (_("%B: unable to fill in DataDictionary[9] because __tls_used is missing"),
4420 abfd);
4421 result = FALSE;
4422 }
4423 /* According to PECOFF sepcifications by Microsoft version 8.2
4424 the TLS data directory consists of 4 pointers, followed
4425 by two 4-byte integer. This implies that the total size
4426 is different for 32-bit and 64-bit executables. */
4427 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
4428 pe_data (abfd)->pe_opthdr.DataDirectory[PE_TLS_TABLE].Size = 0x18;
4429 #else
4430 pe_data (abfd)->pe_opthdr.DataDirectory[PE_TLS_TABLE].Size = 0x28;
4431 #endif
4432 }
4433
4434 /* If there is a .pdata section and we have linked pdata finally, we
4435 need to sort the entries ascending. */
4436 #if !defined(COFF_WITH_pep) && defined(COFF_WITH_pex64)
4437 {
4438 asection *sec = bfd_get_section_by_name (abfd, ".pdata");
4439
4440 if (sec)
4441 {
4442 bfd_size_type x = sec->rawsize;
4443 bfd_byte *tmp_data = NULL;
4444
4445 if (x)
4446 tmp_data = bfd_malloc (x);
4447
4448 if (tmp_data != NULL)
4449 {
4450 if (bfd_get_section_contents (abfd, sec, tmp_data, 0, x))
4451 {
4452 qsort (tmp_data,
4453 (size_t) (x / 12),
4454 12, sort_x64_pdata);
4455 bfd_set_section_contents (pfinfo->output_bfd, sec,
4456 tmp_data, 0, x);
4457 }
4458 free (tmp_data);
4459 }
4460 }
4461 }
4462 #endif
4463
4464 rsrc_process_section (abfd, pfinfo);
4465
4466 /* If we couldn't find idata$2, we either have an excessively
4467 trivial program or are in DEEP trouble; we have to assume trivial
4468 program.... */
4469 return result;
4470 }
This page took 0.119782 seconds and 4 git commands to generate.