2005-02-11 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / peicode.h
1 /* Support for the generic parts of PE/PEI, for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Written by Cygnus Solutions.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* Most of this hacked by Steve Chamberlain,
23 sac@cygnus.com
24
25 PE/PEI rearrangement (and code added): Donn Terry
26 Softway Systems, Inc. */
27
28 /* Hey look, some documentation [and in a place you expect to find it]!
29
30 The main reference for the pei format is "Microsoft Portable Executable
31 and Common Object File Format Specification 4.1". Get it if you need to
32 do some serious hacking on this code.
33
34 Another reference:
35 "Peering Inside the PE: A Tour of the Win32 Portable Executable
36 File Format", MSJ 1994, Volume 9.
37
38 The *sole* difference between the pe format and the pei format is that the
39 latter has an MSDOS 2.0 .exe header on the front that prints the message
40 "This app must be run under Windows." (or some such).
41 (FIXME: Whether that statement is *really* true or not is unknown.
42 Are there more subtle differences between pe and pei formats?
43 For now assume there aren't. If you find one, then for God sakes
44 document it here!)
45
46 The Microsoft docs use the word "image" instead of "executable" because
47 the former can also refer to a DLL (shared library). Confusion can arise
48 because the `i' in `pei' also refers to "image". The `pe' format can
49 also create images (i.e. executables), it's just that to run on a win32
50 system you need to use the pei format.
51
52 FIXME: Please add more docs here so the next poor fool that has to hack
53 on this code has a chance of getting something accomplished without
54 wasting too much time. */
55
56 #include "libpei.h"
57
58 static bfd_boolean (*pe_saved_coff_bfd_print_private_bfd_data)
59 PARAMS ((bfd *, PTR)) =
60 #ifndef coff_bfd_print_private_bfd_data
61 NULL;
62 #else
63 coff_bfd_print_private_bfd_data;
64 #undef coff_bfd_print_private_bfd_data
65 #endif
66
67 static bfd_boolean pe_print_private_bfd_data PARAMS ((bfd *, PTR));
68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
69
70 static bfd_boolean (*pe_saved_coff_bfd_copy_private_bfd_data)
71 PARAMS ((bfd *, bfd *)) =
72 #ifndef coff_bfd_copy_private_bfd_data
73 NULL;
74 #else
75 coff_bfd_copy_private_bfd_data;
76 #undef coff_bfd_copy_private_bfd_data
77 #endif
78
79 static bfd_boolean pe_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
80 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
81
82 #define coff_mkobject pe_mkobject
83 #define coff_mkobject_hook pe_mkobject_hook
84
85 #ifndef NO_COFF_RELOCS
86 static void coff_swap_reloc_in PARAMS ((bfd *, PTR, PTR));
87 static unsigned int coff_swap_reloc_out PARAMS ((bfd *, PTR, PTR));
88 #endif
89 static void coff_swap_filehdr_in PARAMS ((bfd *, PTR, PTR));
90 static void coff_swap_scnhdr_in PARAMS ((bfd *, PTR, PTR));
91 static bfd_boolean pe_mkobject PARAMS ((bfd *));
92 static PTR pe_mkobject_hook PARAMS ((bfd *, PTR, PTR));
93
94 #ifdef COFF_IMAGE_WITH_PE
95 /* This structure contains static variables used by the ILF code. */
96 typedef asection * asection_ptr;
97
98 typedef struct
99 {
100 bfd * abfd;
101 bfd_byte * data;
102 struct bfd_in_memory * bim;
103 unsigned short magic;
104
105 arelent * reltab;
106 unsigned int relcount;
107
108 coff_symbol_type * sym_cache;
109 coff_symbol_type * sym_ptr;
110 unsigned int sym_index;
111
112 unsigned int * sym_table;
113 unsigned int * table_ptr;
114
115 combined_entry_type * native_syms;
116 combined_entry_type * native_ptr;
117
118 coff_symbol_type ** sym_ptr_table;
119 coff_symbol_type ** sym_ptr_ptr;
120
121 unsigned int sec_index;
122
123 char * string_table;
124 char * string_ptr;
125 char * end_string_ptr;
126
127 SYMENT * esym_table;
128 SYMENT * esym_ptr;
129
130 struct internal_reloc * int_reltab;
131 }
132 pe_ILF_vars;
133
134 static asection_ptr pe_ILF_make_a_section PARAMS ((pe_ILF_vars *, const char *, unsigned int, flagword));
135 static void pe_ILF_make_a_reloc PARAMS ((pe_ILF_vars *, bfd_vma, bfd_reloc_code_real_type, asection_ptr));
136 static void pe_ILF_make_a_symbol PARAMS ((pe_ILF_vars *, const char *, const char *, asection_ptr, flagword));
137 static void pe_ILF_save_relocs PARAMS ((pe_ILF_vars *, asection_ptr));
138 static void pe_ILF_make_a_symbol_reloc PARAMS ((pe_ILF_vars *, bfd_vma, bfd_reloc_code_real_type, struct bfd_symbol **, unsigned int));
139 static bfd_boolean pe_ILF_build_a_bfd PARAMS ((bfd *, unsigned int, bfd_byte *, bfd_byte *, unsigned int, unsigned int));
140 static const bfd_target * pe_ILF_object_p PARAMS ((bfd *));
141 static const bfd_target * pe_bfd_object_p PARAMS ((bfd *));
142 #endif /* COFF_IMAGE_WITH_PE */
143
144 /**********************************************************************/
145
146 #ifndef NO_COFF_RELOCS
147 static void
148 coff_swap_reloc_in (abfd, src, dst)
149 bfd *abfd;
150 PTR src;
151 PTR dst;
152 {
153 RELOC *reloc_src = (RELOC *) src;
154 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
155
156 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr);
157 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
158
159 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type);
160
161 #ifdef SWAP_IN_RELOC_OFFSET
162 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
163 #endif
164 }
165
166 static unsigned int
167 coff_swap_reloc_out (abfd, src, dst)
168 bfd *abfd;
169 PTR src;
170 PTR dst;
171 {
172 struct internal_reloc *reloc_src = (struct internal_reloc *)src;
173 struct external_reloc *reloc_dst = (struct external_reloc *)dst;
174 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
175 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
176
177 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
178
179 #ifdef SWAP_OUT_RELOC_OFFSET
180 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
181 #endif
182 #ifdef SWAP_OUT_RELOC_EXTRA
183 SWAP_OUT_RELOC_EXTRA(abfd, reloc_src, reloc_dst);
184 #endif
185 return RELSZ;
186 }
187 #endif /* not NO_COFF_RELOCS */
188
189 static void
190 coff_swap_filehdr_in (abfd, src, dst)
191 bfd *abfd;
192 PTR src;
193 PTR dst;
194 {
195 FILHDR *filehdr_src = (FILHDR *) src;
196 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
197 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic);
198 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src-> f_nscns);
199 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src-> f_timdat);
200
201 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src-> f_nsyms);
202 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src-> f_flags);
203 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
204
205 /* Other people's tools sometimes generate headers with an nsyms but
206 a zero symptr. */
207 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
208 {
209 filehdr_dst->f_nsyms = 0;
210 filehdr_dst->f_flags |= F_LSYMS;
211 }
212
213 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
214 }
215
216 #ifdef COFF_IMAGE_WITH_PE
217 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
218 #else
219 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
220 #endif
221
222 static void
223 coff_swap_scnhdr_in (abfd, ext, in)
224 bfd *abfd;
225 PTR ext;
226 PTR in;
227 {
228 SCNHDR *scnhdr_ext = (SCNHDR *) ext;
229 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
230
231 memcpy(scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
232 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
233 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
234 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
235 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
236 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
237 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
238 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags);
239
240 /* MS handles overflow of line numbers by carrying into the reloc
241 field (it appears). Since it's supposed to be zero for PE
242 *IMAGE* format, that's safe. This is still a bit iffy. */
243 #ifdef COFF_IMAGE_WITH_PE
244 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
245 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
246 scnhdr_int->s_nreloc = 0;
247 #else
248 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
249 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
250 #endif
251
252 if (scnhdr_int->s_vaddr != 0)
253 {
254 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
255 scnhdr_int->s_vaddr &= 0xffffffff;
256 }
257
258 #ifndef COFF_NO_HACK_SCNHDR_SIZE
259 /* If this section holds uninitialized data and is from an object file
260 or from an executable image that has not initialized the field,
261 or if the image is an executable file and the physical size is padded,
262 use the virtual size (stored in s_paddr) instead. */
263 if (scnhdr_int->s_paddr > 0
264 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
265 && (! bfd_pe_executable_p (abfd) || scnhdr_int->s_size == 0))
266 || (bfd_pe_executable_p (abfd) && scnhdr_int->s_size > scnhdr_int->s_paddr)))
267 {
268 scnhdr_int->s_size = scnhdr_int->s_paddr;
269
270 /* This code used to set scnhdr_int->s_paddr to 0. However,
271 coff_set_alignment_hook stores s_paddr in virt_size, which
272 only works if it correctly holds the virtual size of the
273 section. */
274 }
275 #endif
276 }
277
278 static bfd_boolean
279 pe_mkobject (abfd)
280 bfd * abfd;
281 {
282 pe_data_type *pe;
283 bfd_size_type amt = sizeof (pe_data_type);
284
285 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
286
287 if (abfd->tdata.pe_obj_data == 0)
288 return FALSE;
289
290 pe = pe_data (abfd);
291
292 pe->coff.pe = 1;
293
294 /* in_reloc_p is architecture dependent. */
295 pe->in_reloc_p = in_reloc_p;
296
297 #ifdef PEI_FORCE_MINIMUM_ALIGNMENT
298 pe->force_minimum_alignment = 1;
299 #endif
300 #ifdef PEI_TARGET_SUBSYSTEM
301 pe->target_subsystem = PEI_TARGET_SUBSYSTEM;
302 #endif
303
304 return TRUE;
305 }
306
307 /* Create the COFF backend specific information. */
308 static PTR
309 pe_mkobject_hook (abfd, filehdr, aouthdr)
310 bfd * abfd;
311 PTR filehdr;
312 PTR aouthdr ATTRIBUTE_UNUSED;
313 {
314 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
315 pe_data_type *pe;
316
317 if (! pe_mkobject (abfd))
318 return NULL;
319
320 pe = pe_data (abfd);
321 pe->coff.sym_filepos = internal_f->f_symptr;
322 /* These members communicate important constants about the symbol
323 table to GDB's symbol-reading code. These `constants'
324 unfortunately vary among coff implementations... */
325 pe->coff.local_n_btmask = N_BTMASK;
326 pe->coff.local_n_btshft = N_BTSHFT;
327 pe->coff.local_n_tmask = N_TMASK;
328 pe->coff.local_n_tshift = N_TSHIFT;
329 pe->coff.local_symesz = SYMESZ;
330 pe->coff.local_auxesz = AUXESZ;
331 pe->coff.local_linesz = LINESZ;
332
333 pe->coff.timestamp = internal_f->f_timdat;
334
335 obj_raw_syment_count (abfd) =
336 obj_conv_table_size (abfd) =
337 internal_f->f_nsyms;
338
339 pe->real_flags = internal_f->f_flags;
340
341 if ((internal_f->f_flags & F_DLL) != 0)
342 pe->dll = 1;
343
344 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
345 abfd->flags |= HAS_DEBUG;
346
347 #ifdef COFF_IMAGE_WITH_PE
348 if (aouthdr)
349 pe->pe_opthdr = ((struct internal_aouthdr *)aouthdr)->pe;
350 #endif
351
352 #ifdef ARM
353 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
354 coff_data (abfd) ->flags = 0;
355 #endif
356
357 return (PTR) pe;
358 }
359
360 static bfd_boolean
361 pe_print_private_bfd_data (abfd, vfile)
362 bfd *abfd;
363 PTR vfile;
364 {
365 FILE *file = (FILE *) vfile;
366
367 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
368 return FALSE;
369
370 if (pe_saved_coff_bfd_print_private_bfd_data != NULL)
371 {
372 fputc ('\n', file);
373
374 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
375 }
376
377 return TRUE;
378 }
379
380 /* Copy any private info we understand from the input bfd
381 to the output bfd. */
382
383 static bfd_boolean
384 pe_bfd_copy_private_bfd_data (ibfd, obfd)
385 bfd *ibfd, *obfd;
386 {
387 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
388 return FALSE;
389
390 if (pe_saved_coff_bfd_copy_private_bfd_data)
391 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
392
393 return TRUE;
394 }
395
396 #define coff_bfd_copy_private_section_data \
397 _bfd_XX_bfd_copy_private_section_data
398
399 #define coff_get_symbol_info _bfd_XX_get_symbol_info
400
401 #ifdef COFF_IMAGE_WITH_PE
402 \f
403 /* Code to handle Microsoft's Image Library Format.
404 Also known as LINK6 format.
405 Documentation about this format can be found at:
406
407 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */
408
409 /* The following constants specify the sizes of the various data
410 structures that we have to create in order to build a bfd describing
411 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6
412 and SIZEOF_IDATA7 below is to allow for the possibility that we might
413 need a padding byte in order to ensure 16 bit alignment for the section's
414 contents.
415
416 The value for SIZEOF_ILF_STRINGS is computed as follows:
417
418 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters
419 per symbol for their names (longest section name is .idata$x).
420
421 There will be two symbols for the imported value, one the symbol name
422 and one with _imp__ prefixed. Allowing for the terminating nul's this
423 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
424
425 The strings in the string table must start STRING__SIZE_SIZE bytes into
426 the table in order to for the string lookup code in coffgen/coffcode to
427 work. */
428 #define NUM_ILF_RELOCS 8
429 #define NUM_ILF_SECTIONS 6
430 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS)
431
432 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
433 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table))
434 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms))
435 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
436 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table))
437 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab))
438 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
439 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \
440 + 21 + strlen (source_dll) \
441 + NUM_ILF_SECTIONS * 9 \
442 + STRING_SIZE_SIZE)
443 #define SIZEOF_IDATA2 (5 * 4)
444 #define SIZEOF_IDATA4 (1 * 4)
445 #define SIZEOF_IDATA5 (1 * 4)
446 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1)
447 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1)
448 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
449
450 #define ILF_DATA_SIZE \
451 sizeof (* vars.bim) \
452 + SIZEOF_ILF_SYMS \
453 + SIZEOF_ILF_SYM_TABLE \
454 + SIZEOF_ILF_NATIVE_SYMS \
455 + SIZEOF_ILF_SYM_PTR_TABLE \
456 + SIZEOF_ILF_EXT_SYMS \
457 + SIZEOF_ILF_RELOCS \
458 + SIZEOF_ILF_INT_RELOCS \
459 + SIZEOF_ILF_STRINGS \
460 + SIZEOF_IDATA2 \
461 + SIZEOF_IDATA4 \
462 + SIZEOF_IDATA5 \
463 + SIZEOF_IDATA6 \
464 + SIZEOF_IDATA7 \
465 + SIZEOF_ILF_SECTIONS \
466 + MAX_TEXT_SECTION_SIZE
467
468 /* Create an empty relocation against the given symbol. */
469 static void
470 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars,
471 bfd_vma address,
472 bfd_reloc_code_real_type reloc,
473 struct bfd_symbol ** sym,
474 unsigned int sym_index)
475 {
476 arelent * entry;
477 struct internal_reloc * internal;
478
479 entry = vars->reltab + vars->relcount;
480 internal = vars->int_reltab + vars->relcount;
481
482 entry->address = address;
483 entry->addend = 0;
484 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc);
485 entry->sym_ptr_ptr = sym;
486
487 internal->r_vaddr = address;
488 internal->r_symndx = sym_index;
489 internal->r_type = entry->howto->type;
490
491 vars->relcount ++;
492
493 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
494 }
495
496 /* Create an empty relocation against the given section. */
497 static void
498 pe_ILF_make_a_reloc (pe_ILF_vars * vars,
499 bfd_vma address,
500 bfd_reloc_code_real_type reloc,
501 asection_ptr sec)
502 {
503 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
504 coff_section_data (vars->abfd, sec)->i);
505 }
506
507 /* Move the queued relocs into the given section. */
508 static void
509 pe_ILF_save_relocs (pe_ILF_vars * vars,
510 asection_ptr sec)
511 {
512 /* Make sure that there is somewhere to store the internal relocs. */
513 if (coff_section_data (vars->abfd, sec) == NULL)
514 /* We should probably return an error indication here. */
515 abort ();
516
517 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
518 coff_section_data (vars->abfd, sec)->keep_relocs = TRUE;
519
520 sec->relocation = vars->reltab;
521 sec->reloc_count = vars->relcount;
522 sec->flags |= SEC_RELOC;
523
524 vars->reltab += vars->relcount;
525 vars->int_reltab += vars->relcount;
526 vars->relcount = 0;
527
528 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
529 }
530
531 /* Create a global symbol and add it to the relevant tables. */
532 static void
533 pe_ILF_make_a_symbol (pe_ILF_vars * vars,
534 const char * prefix,
535 const char * symbol_name,
536 asection_ptr section,
537 flagword extra_flags)
538 {
539 coff_symbol_type * sym;
540 combined_entry_type * ent;
541 SYMENT * esym;
542 unsigned short sclass;
543
544 if (extra_flags & BSF_LOCAL)
545 sclass = C_STAT;
546 else
547 sclass = C_EXT;
548
549 #ifdef THUMBPEMAGIC
550 if (vars->magic == THUMBPEMAGIC)
551 {
552 if (extra_flags & BSF_FUNCTION)
553 sclass = C_THUMBEXTFUNC;
554 else if (extra_flags & BSF_LOCAL)
555 sclass = C_THUMBSTAT;
556 else
557 sclass = C_THUMBEXT;
558 }
559 #endif
560
561 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
562
563 sym = vars->sym_ptr;
564 ent = vars->native_ptr;
565 esym = vars->esym_ptr;
566
567 /* Copy the symbol's name into the string table. */
568 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
569
570 if (section == NULL)
571 section = (asection_ptr) & bfd_und_section;
572
573 /* Initialise the external symbol. */
574 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
575 esym->e.e.e_offset);
576 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
577 esym->e_sclass[0] = sclass;
578
579 /* The following initialisations are unnecessary - the memory is
580 zero initialised. They are just kept here as reminders. */
581
582 /* Initialise the internal symbol structure. */
583 ent->u.syment.n_sclass = sclass;
584 ent->u.syment.n_scnum = section->target_index;
585 ent->u.syment._n._n_n._n_offset = (long) sym;
586
587 sym->symbol.the_bfd = vars->abfd;
588 sym->symbol.name = vars->string_ptr;
589 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags;
590 sym->symbol.section = section;
591 sym->native = ent;
592
593 * vars->table_ptr = vars->sym_index;
594 * vars->sym_ptr_ptr = sym;
595
596 /* Adjust pointers for the next symbol. */
597 vars->sym_index ++;
598 vars->sym_ptr ++;
599 vars->sym_ptr_ptr ++;
600 vars->table_ptr ++;
601 vars->native_ptr ++;
602 vars->esym_ptr ++;
603 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
604
605 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
606 }
607
608 /* Create a section. */
609 static asection_ptr
610 pe_ILF_make_a_section (pe_ILF_vars * vars,
611 const char * name,
612 unsigned int size,
613 flagword extra_flags)
614 {
615 asection_ptr sec;
616 flagword flags;
617
618 sec = bfd_make_section_old_way (vars->abfd, name);
619 if (sec == NULL)
620 return NULL;
621
622 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
623
624 bfd_set_section_flags (vars->abfd, sec, flags | extra_flags);
625
626 bfd_set_section_alignment (vars->abfd, sec, 2);
627
628 /* Check that we will not run out of space. */
629 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
630
631 /* Set the section size and contents. The actual
632 contents are filled in by our parent. */
633 bfd_set_section_size (vars->abfd, sec, (bfd_size_type) size);
634 sec->contents = vars->data;
635 sec->target_index = vars->sec_index ++;
636
637 /* Advance data pointer in the vars structure. */
638 vars->data += size;
639
640 /* Skip the padding byte if it was not needed.
641 The logic here is that if the string length is odd,
642 then the entire string length, including the null byte,
643 is even and so the extra, padding byte, is not needed. */
644 if (size & 1)
645 vars->data --;
646
647 /* Create a coff_section_tdata structure for our use. */
648 sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
649 vars->data += sizeof (struct coff_section_tdata);
650
651 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
652
653 /* Create a symbol to refer to this section. */
654 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
655
656 /* Cache the index to the symbol in the coff_section_data structure. */
657 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
658
659 return sec;
660 }
661
662 /* This structure contains the code that goes into the .text section
663 in order to perform a jump into the DLL lookup table. The entries
664 in the table are index by the magic number used to represent the
665 machine type in the PE file. The contents of the data[] arrays in
666 these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
667 The SIZE field says how many bytes in the DATA array are actually
668 used. The OFFSET field says where in the data array the address
669 of the .idata$5 section should be placed. */
670 #define MAX_TEXT_SECTION_SIZE 32
671
672 typedef struct
673 {
674 unsigned short magic;
675 unsigned char data[MAX_TEXT_SECTION_SIZE];
676 unsigned int size;
677 unsigned int offset;
678 }
679 jump_table;
680
681 static jump_table jtab[] =
682 {
683 #ifdef I386MAGIC
684 { I386MAGIC,
685 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
686 8, 2
687 },
688 #endif
689
690 #ifdef MC68MAGIC
691 { MC68MAGIC, { /* XXX fill me in */ }, 0, 0 },
692 #endif
693 #ifdef MIPS_ARCH_MAGIC_WINCE
694 { MIPS_ARCH_MAGIC_WINCE,
695 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
696 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
697 16, 0
698 },
699 #endif
700
701 #ifdef SH_ARCH_MAGIC_WINCE
702 { SH_ARCH_MAGIC_WINCE,
703 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
704 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
705 12, 8
706 },
707 #endif
708
709 #ifdef ARMPEMAGIC
710 { ARMPEMAGIC,
711 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
712 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
713 12, 8
714 },
715 #endif
716
717 #ifdef THUMBPEMAGIC
718 { THUMBPEMAGIC,
719 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
720 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
721 16, 12
722 },
723 #endif
724 { 0, { 0 }, 0, 0 }
725 };
726
727 #ifndef NUM_ENTRIES
728 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
729 #endif
730
731 /* Build a full BFD from the information supplied in a ILF object. */
732 static bfd_boolean
733 pe_ILF_build_a_bfd (bfd * abfd,
734 unsigned int magic,
735 bfd_byte * symbol_name,
736 bfd_byte * source_dll,
737 unsigned int ordinal,
738 unsigned int types)
739 {
740 bfd_byte * ptr;
741 pe_ILF_vars vars;
742 struct internal_filehdr internal_f;
743 unsigned int import_type;
744 unsigned int import_name_type;
745 asection_ptr id4, id5, id6 = NULL, text = NULL;
746 coff_symbol_type ** imp_sym;
747 unsigned int imp_index;
748
749 /* Decode and verify the types field of the ILF structure. */
750 import_type = types & 0x3;
751 import_name_type = (types & 0x1c) >> 2;
752
753 switch (import_type)
754 {
755 case IMPORT_CODE:
756 case IMPORT_DATA:
757 break;
758
759 case IMPORT_CONST:
760 /* XXX code yet to be written. */
761 _bfd_error_handler (_("%B: Unhandled import type; %x"),
762 abfd, import_type);
763 return FALSE;
764
765 default:
766 _bfd_error_handler (_("%B: Unrecognised import type; %x"),
767 abfd, import_type);
768 return FALSE;
769 }
770
771 switch (import_name_type)
772 {
773 case IMPORT_ORDINAL:
774 case IMPORT_NAME:
775 case IMPORT_NAME_NOPREFIX:
776 case IMPORT_NAME_UNDECORATE:
777 break;
778
779 default:
780 _bfd_error_handler (_("%B: Unrecognised import name type; %x"),
781 abfd, import_name_type);
782 return FALSE;
783 }
784
785 /* Initialise local variables.
786
787 Note these are kept in a structure rather than being
788 declared as statics since bfd frowns on global variables.
789
790 We are going to construct the contents of the BFD in memory,
791 so allocate all the space that we will need right now. */
792 ptr = bfd_zalloc (abfd, (bfd_size_type) ILF_DATA_SIZE);
793 if (ptr == NULL)
794 return FALSE;
795
796 /* Create a bfd_in_memory structure. */
797 vars.bim = (struct bfd_in_memory *) ptr;
798 vars.bim->buffer = ptr;
799 vars.bim->size = ILF_DATA_SIZE;
800 ptr += sizeof (* vars.bim);
801
802 /* Initialise the pointers to regions of the memory and the
803 other contents of the pe_ILF_vars structure as well. */
804 vars.sym_cache = (coff_symbol_type *) ptr;
805 vars.sym_ptr = (coff_symbol_type *) ptr;
806 vars.sym_index = 0;
807 ptr += SIZEOF_ILF_SYMS;
808
809 vars.sym_table = (unsigned int *) ptr;
810 vars.table_ptr = (unsigned int *) ptr;
811 ptr += SIZEOF_ILF_SYM_TABLE;
812
813 vars.native_syms = (combined_entry_type *) ptr;
814 vars.native_ptr = (combined_entry_type *) ptr;
815 ptr += SIZEOF_ILF_NATIVE_SYMS;
816
817 vars.sym_ptr_table = (coff_symbol_type **) ptr;
818 vars.sym_ptr_ptr = (coff_symbol_type **) ptr;
819 ptr += SIZEOF_ILF_SYM_PTR_TABLE;
820
821 vars.esym_table = (SYMENT *) ptr;
822 vars.esym_ptr = (SYMENT *) ptr;
823 ptr += SIZEOF_ILF_EXT_SYMS;
824
825 vars.reltab = (arelent *) ptr;
826 vars.relcount = 0;
827 ptr += SIZEOF_ILF_RELOCS;
828
829 vars.int_reltab = (struct internal_reloc *) ptr;
830 ptr += SIZEOF_ILF_INT_RELOCS;
831
832 vars.string_table = ptr;
833 vars.string_ptr = ptr + STRING_SIZE_SIZE;
834 ptr += SIZEOF_ILF_STRINGS;
835 vars.end_string_ptr = ptr;
836
837 /* The remaining space in bim->buffer is used
838 by the pe_ILF_make_a_section() function. */
839 vars.data = ptr;
840 vars.abfd = abfd;
841 vars.sec_index = 0;
842 vars.magic = magic;
843
844 /* Create the initial .idata$<n> sections:
845 [.idata$2: Import Directory Table -- not needed]
846 .idata$4: Import Lookup Table
847 .idata$5: Import Address Table
848
849 Note we do not create a .idata$3 section as this is
850 created for us by the linker script. */
851 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
852 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
853 if (id4 == NULL || id5 == NULL)
854 return FALSE;
855
856 /* Fill in the contents of these sections. */
857 if (import_name_type == IMPORT_ORDINAL)
858 {
859 if (ordinal == 0)
860 /* XXX - treat as IMPORT_NAME ??? */
861 abort ();
862
863 * (unsigned int *) id4->contents = ordinal | 0x80000000;
864 * (unsigned int *) id5->contents = ordinal | 0x80000000;
865 }
866 else
867 {
868 char * symbol;
869
870 /* Create .idata$6 - the Hint Name Table. */
871 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
872 if (id6 == NULL)
873 return FALSE;
874
875 /* If necessary, trim the import symbol name. */
876 symbol = symbol_name;
877
878 if (import_name_type != IMPORT_NAME)
879 {
880 bfd_boolean skipped_leading_underscore = FALSE;
881 bfd_boolean skipped_leading_at = FALSE;
882 bfd_boolean skipped_leading_question_mark = FALSE;
883 bfd_boolean check_again;
884
885 /* Skip any prefix in symbol_name. */
886 -- symbol;
887 do
888 {
889 check_again = FALSE;
890 ++ symbol;
891
892 switch (*symbol)
893 {
894 case '@':
895 if (! skipped_leading_at)
896 check_again = skipped_leading_at = TRUE;
897 break;
898 case '?':
899 if (! skipped_leading_question_mark)
900 check_again = skipped_leading_question_mark = TRUE;
901 break;
902 case '_':
903 if (! skipped_leading_underscore)
904 check_again = skipped_leading_underscore = TRUE;
905 break;
906 default:
907 break;
908 }
909 }
910 while (check_again);
911 }
912
913 if (import_name_type == IMPORT_NAME_UNDECORATE)
914 {
915 /* Truncate at the first '@' */
916 while (* symbol != 0 && * symbol != '@')
917 symbol ++;
918
919 * symbol = 0;
920 }
921
922 id6->contents[0] = ordinal & 0xff;
923 id6->contents[1] = ordinal >> 8;
924
925 strcpy (id6->contents + 2, symbol);
926 }
927
928 if (import_name_type != IMPORT_ORDINAL)
929 {
930 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
931 pe_ILF_save_relocs (&vars, id4);
932
933 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
934 pe_ILF_save_relocs (&vars, id5);
935 }
936
937 /* Create extra sections depending upon the type of import we are dealing with. */
938 switch (import_type)
939 {
940 int i;
941
942 case IMPORT_CODE:
943 /* Create a .text section.
944 First we need to look up its contents in the jump table. */
945 for (i = NUM_ENTRIES (jtab); i--;)
946 {
947 if (jtab[i].size == 0)
948 continue;
949 if (jtab[i].magic == magic)
950 break;
951 }
952 /* If we did not find a matching entry something is wrong. */
953 if (i < 0)
954 abort ();
955
956 /* Create the .text section. */
957 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
958 if (text == NULL)
959 return FALSE;
960
961 /* Copy in the jump code. */
962 memcpy (text->contents, jtab[i].data, jtab[i].size);
963
964 /* Create an import symbol. */
965 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
966 imp_sym = vars.sym_ptr_ptr - 1;
967 imp_index = vars.sym_index - 1;
968
969 /* Create a reloc for the data in the text section. */
970 #ifdef MIPS_ARCH_MAGIC_WINCE
971 if (magic == MIPS_ARCH_MAGIC_WINCE)
972 {
973 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
974 (struct bfd_symbol **) imp_sym,
975 imp_index);
976 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
977 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
978 (struct bfd_symbol **) imp_sym,
979 imp_index);
980 }
981 else
982 #endif
983 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
984 BFD_RELOC_32, (asymbol **) imp_sym,
985 imp_index);
986
987 pe_ILF_save_relocs (& vars, text);
988 break;
989
990 case IMPORT_DATA:
991 break;
992
993 default:
994 /* XXX code not yet written. */
995 abort ();
996 }
997
998 /* Initialise the bfd. */
999 memset (& internal_f, 0, sizeof (internal_f));
1000
1001 internal_f.f_magic = magic;
1002 internal_f.f_symptr = 0;
1003 internal_f.f_nsyms = 0;
1004 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */
1005
1006 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0)
1007 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
1008 return FALSE;
1009
1010 if (bfd_coff_mkobject_hook (abfd, (PTR) & internal_f, NULL) == NULL)
1011 return FALSE;
1012
1013 coff_data (abfd)->pe = 1;
1014 #ifdef THUMBPEMAGIC
1015 if (vars.magic == THUMBPEMAGIC)
1016 /* Stop some linker warnings about thumb code not supporting interworking. */
1017 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1018 #endif
1019
1020 /* Switch from file contents to memory contents. */
1021 bfd_cache_close (abfd);
1022
1023 abfd->iostream = (PTR) vars.bim;
1024 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1025 abfd->where = 0;
1026 obj_sym_filepos (abfd) = 0;
1027
1028 /* Now create a symbol describing the imported value. */
1029 switch (import_type)
1030 {
1031 case IMPORT_CODE:
1032 pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1033 BSF_NOT_AT_END | BSF_FUNCTION);
1034
1035 /* Create an import symbol for the DLL, without the
1036 .dll suffix. */
1037 ptr = strrchr (source_dll, '.');
1038 if (ptr)
1039 * ptr = 0;
1040 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1041 if (ptr)
1042 * ptr = '.';
1043 break;
1044
1045 case IMPORT_DATA:
1046 /* Nothing to do here. */
1047 break;
1048
1049 default:
1050 /* XXX code not yet written. */
1051 abort ();
1052 }
1053
1054 /* Point the bfd at the symbol table. */
1055 obj_symbols (abfd) = vars.sym_cache;
1056 bfd_get_symcount (abfd) = vars.sym_index;
1057
1058 obj_raw_syments (abfd) = vars.native_syms;
1059 obj_raw_syment_count (abfd) = vars.sym_index;
1060
1061 obj_coff_external_syms (abfd) = (PTR) vars.esym_table;
1062 obj_coff_keep_syms (abfd) = TRUE;
1063
1064 obj_convert (abfd) = vars.sym_table;
1065 obj_conv_table_size (abfd) = vars.sym_index;
1066
1067 obj_coff_strings (abfd) = vars.string_table;
1068 obj_coff_keep_strings (abfd) = TRUE;
1069
1070 abfd->flags |= HAS_SYMS;
1071
1072 return TRUE;
1073 }
1074
1075 /* We have detected a Image Library Format archive element.
1076 Decode the element and return the appropriate target. */
1077 static const bfd_target *
1078 pe_ILF_object_p (bfd * abfd)
1079 {
1080 bfd_byte buffer[16];
1081 bfd_byte * ptr;
1082 bfd_byte * symbol_name;
1083 bfd_byte * source_dll;
1084 unsigned int machine;
1085 bfd_size_type size;
1086 unsigned int ordinal;
1087 unsigned int types;
1088 unsigned int magic;
1089
1090 /* Upon entry the first four buyes of the ILF header have
1091 already been read. Now read the rest of the header. */
1092 if (bfd_bread (buffer, (bfd_size_type) 16, abfd) != 16)
1093 return NULL;
1094
1095 ptr = buffer;
1096
1097 /* We do not bother to check the version number.
1098 version = H_GET_16 (abfd, ptr); */
1099 ptr += 2;
1100
1101 machine = H_GET_16 (abfd, ptr);
1102 ptr += 2;
1103
1104 /* Check that the machine type is recognised. */
1105 magic = 0;
1106
1107 switch (machine)
1108 {
1109 case IMAGE_FILE_MACHINE_UNKNOWN:
1110 case IMAGE_FILE_MACHINE_ALPHA:
1111 case IMAGE_FILE_MACHINE_ALPHA64:
1112 case IMAGE_FILE_MACHINE_IA64:
1113 break;
1114
1115 case IMAGE_FILE_MACHINE_I386:
1116 #ifdef I386MAGIC
1117 magic = I386MAGIC;
1118 #endif
1119 break;
1120
1121 case IMAGE_FILE_MACHINE_M68K:
1122 #ifdef MC68AGIC
1123 magic = MC68MAGIC;
1124 #endif
1125 break;
1126
1127 case IMAGE_FILE_MACHINE_R3000:
1128 case IMAGE_FILE_MACHINE_R4000:
1129 case IMAGE_FILE_MACHINE_R10000:
1130
1131 case IMAGE_FILE_MACHINE_MIPS16:
1132 case IMAGE_FILE_MACHINE_MIPSFPU:
1133 case IMAGE_FILE_MACHINE_MIPSFPU16:
1134 #ifdef MIPS_ARCH_MAGIC_WINCE
1135 magic = MIPS_ARCH_MAGIC_WINCE;
1136 #endif
1137 break;
1138
1139 case IMAGE_FILE_MACHINE_SH3:
1140 case IMAGE_FILE_MACHINE_SH4:
1141 #ifdef SH_ARCH_MAGIC_WINCE
1142 magic = SH_ARCH_MAGIC_WINCE;
1143 #endif
1144 break;
1145
1146 case IMAGE_FILE_MACHINE_ARM:
1147 #ifdef ARMPEMAGIC
1148 magic = ARMPEMAGIC;
1149 #endif
1150 break;
1151
1152 case IMAGE_FILE_MACHINE_THUMB:
1153 #ifdef THUMBPEMAGIC
1154 {
1155 extern const bfd_target TARGET_LITTLE_SYM;
1156
1157 if (abfd->xvec == & TARGET_LITTLE_SYM)
1158 magic = THUMBPEMAGIC;
1159 }
1160 #endif
1161 break;
1162
1163 case IMAGE_FILE_MACHINE_POWERPC:
1164 /* We no longer support PowerPC. */
1165 default:
1166 _bfd_error_handler
1167 (_("%B: Unrecognised machine type (0x%x)"
1168 " in Import Library Format archive"),
1169 abfd, machine);
1170 bfd_set_error (bfd_error_malformed_archive);
1171
1172 return NULL;
1173 break;
1174 }
1175
1176 if (magic == 0)
1177 {
1178 _bfd_error_handler
1179 (_("%B: Recognised but unhandled machine type (0x%x)"
1180 " in Import Library Format archive"),
1181 abfd, machine);
1182 bfd_set_error (bfd_error_wrong_format);
1183
1184 return NULL;
1185 }
1186
1187 /* We do not bother to check the date.
1188 date = H_GET_32 (abfd, ptr); */
1189 ptr += 4;
1190
1191 size = H_GET_32 (abfd, ptr);
1192 ptr += 4;
1193
1194 if (size == 0)
1195 {
1196 _bfd_error_handler
1197 (_("%B: size field is zero in Import Library Format header"), abfd);
1198 bfd_set_error (bfd_error_malformed_archive);
1199
1200 return NULL;
1201 }
1202
1203 ordinal = H_GET_16 (abfd, ptr);
1204 ptr += 2;
1205
1206 types = H_GET_16 (abfd, ptr);
1207 /* ptr += 2; */
1208
1209 /* Now read in the two strings that follow. */
1210 ptr = bfd_alloc (abfd, size);
1211 if (ptr == NULL)
1212 return NULL;
1213
1214 if (bfd_bread (ptr, size, abfd) != size)
1215 {
1216 bfd_release (abfd, ptr);
1217 return NULL;
1218 }
1219
1220 symbol_name = ptr;
1221 source_dll = ptr + strlen (ptr) + 1;
1222
1223 /* Verify that the strings are null terminated. */
1224 if (ptr[size - 1] != 0 || ((unsigned long) (source_dll - ptr) >= size))
1225 {
1226 _bfd_error_handler
1227 (_("%B: string not null terminated in ILF object file."), abfd);
1228 bfd_set_error (bfd_error_malformed_archive);
1229 bfd_release (abfd, ptr);
1230 return NULL;
1231 }
1232
1233 /* Now construct the bfd. */
1234 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1235 source_dll, ordinal, types))
1236 {
1237 bfd_release (abfd, ptr);
1238 return NULL;
1239 }
1240
1241 return abfd->xvec;
1242 }
1243
1244 static const bfd_target *
1245 pe_bfd_object_p (bfd * abfd)
1246 {
1247 bfd_byte buffer[4];
1248 struct external_PEI_DOS_hdr dos_hdr;
1249 struct external_PEI_IMAGE_hdr image_hdr;
1250 file_ptr offset;
1251
1252 /* Detect if this a Microsoft Import Library Format element. */
1253 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1254 || bfd_bread (buffer, (bfd_size_type) 4, abfd) != 4)
1255 {
1256 if (bfd_get_error () != bfd_error_system_call)
1257 bfd_set_error (bfd_error_wrong_format);
1258 return NULL;
1259 }
1260
1261 if (H_GET_32 (abfd, buffer) == 0xffff0000)
1262 return pe_ILF_object_p (abfd);
1263
1264 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1265 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1266 != sizeof (dos_hdr))
1267 {
1268 if (bfd_get_error () != bfd_error_system_call)
1269 bfd_set_error (bfd_error_wrong_format);
1270 return NULL;
1271 }
1272
1273 /* There are really two magic numbers involved; the magic number
1274 that says this is a NT executable (PEI) and the magic number that
1275 determines the architecture. The former is DOSMAGIC, stored in
1276 the e_magic field. The latter is stored in the f_magic field.
1277 If the NT magic number isn't valid, the architecture magic number
1278 could be mimicked by some other field (specifically, the number
1279 of relocs in section 3). Since this routine can only be called
1280 correctly for a PEI file, check the e_magic number here, and, if
1281 it doesn't match, clobber the f_magic number so that we don't get
1282 a false match. */
1283 if (H_GET_16 (abfd, dos_hdr.e_magic) != DOSMAGIC)
1284 {
1285 bfd_set_error (bfd_error_wrong_format);
1286 return NULL;
1287 }
1288
1289 offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1290 if (bfd_seek (abfd, offset, SEEK_SET) != 0
1291 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1292 != sizeof (image_hdr)))
1293 {
1294 if (bfd_get_error () != bfd_error_system_call)
1295 bfd_set_error (bfd_error_wrong_format);
1296 return NULL;
1297 }
1298
1299 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1300 {
1301 bfd_set_error (bfd_error_wrong_format);
1302 return NULL;
1303 }
1304
1305 /* Here is the hack. coff_object_p wants to read filhsz bytes to
1306 pick up the COFF header for PE, see "struct external_PEI_filehdr"
1307 in include/coff/pe.h. We adjust so that that will work. */
1308 if (bfd_seek (abfd, (file_ptr) (offset - sizeof (dos_hdr)), SEEK_SET) != 0)
1309 {
1310 if (bfd_get_error () != bfd_error_system_call)
1311 bfd_set_error (bfd_error_wrong_format);
1312 return NULL;
1313 }
1314
1315 return coff_object_p (abfd);
1316 }
1317
1318 #define coff_object_p pe_bfd_object_p
1319 #endif /* COFF_IMAGE_WITH_PE */
This page took 0.07752 seconds and 4 git commands to generate.