New translation: Kinyarwanda
[deliverable/binutils-gdb.git] / bfd / peicode.h
1 /* Support for the generic parts of PE/PEI, for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005 Free Software Foundation, Inc.
4 Written by Cygnus Solutions.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* Most of this hacked by Steve Chamberlain,
23 sac@cygnus.com
24
25 PE/PEI rearrangement (and code added): Donn Terry
26 Softway Systems, Inc. */
27
28 /* Hey look, some documentation [and in a place you expect to find it]!
29
30 The main reference for the pei format is "Microsoft Portable Executable
31 and Common Object File Format Specification 4.1". Get it if you need to
32 do some serious hacking on this code.
33
34 Another reference:
35 "Peering Inside the PE: A Tour of the Win32 Portable Executable
36 File Format", MSJ 1994, Volume 9.
37
38 The *sole* difference between the pe format and the pei format is that the
39 latter has an MSDOS 2.0 .exe header on the front that prints the message
40 "This app must be run under Windows." (or some such).
41 (FIXME: Whether that statement is *really* true or not is unknown.
42 Are there more subtle differences between pe and pei formats?
43 For now assume there aren't. If you find one, then for God sakes
44 document it here!)
45
46 The Microsoft docs use the word "image" instead of "executable" because
47 the former can also refer to a DLL (shared library). Confusion can arise
48 because the `i' in `pei' also refers to "image". The `pe' format can
49 also create images (i.e. executables), it's just that to run on a win32
50 system you need to use the pei format.
51
52 FIXME: Please add more docs here so the next poor fool that has to hack
53 on this code has a chance of getting something accomplished without
54 wasting too much time. */
55
56 #include "libpei.h"
57
58 static bfd_boolean (*pe_saved_coff_bfd_print_private_bfd_data)
59 PARAMS ((bfd *, PTR)) =
60 #ifndef coff_bfd_print_private_bfd_data
61 NULL;
62 #else
63 coff_bfd_print_private_bfd_data;
64 #undef coff_bfd_print_private_bfd_data
65 #endif
66
67 static bfd_boolean pe_print_private_bfd_data PARAMS ((bfd *, PTR));
68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
69
70 static bfd_boolean (*pe_saved_coff_bfd_copy_private_bfd_data)
71 PARAMS ((bfd *, bfd *)) =
72 #ifndef coff_bfd_copy_private_bfd_data
73 NULL;
74 #else
75 coff_bfd_copy_private_bfd_data;
76 #undef coff_bfd_copy_private_bfd_data
77 #endif
78
79 static bfd_boolean pe_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
80 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
81
82 #define coff_mkobject pe_mkobject
83 #define coff_mkobject_hook pe_mkobject_hook
84
85 #ifndef NO_COFF_RELOCS
86 static void coff_swap_reloc_in PARAMS ((bfd *, PTR, PTR));
87 static unsigned int coff_swap_reloc_out PARAMS ((bfd *, PTR, PTR));
88 #endif
89 static void coff_swap_filehdr_in PARAMS ((bfd *, PTR, PTR));
90 static void coff_swap_scnhdr_in PARAMS ((bfd *, PTR, PTR));
91 static bfd_boolean pe_mkobject PARAMS ((bfd *));
92 static PTR pe_mkobject_hook PARAMS ((bfd *, PTR, PTR));
93
94 #ifdef COFF_IMAGE_WITH_PE
95 /* This structure contains static variables used by the ILF code. */
96 typedef asection * asection_ptr;
97
98 typedef struct
99 {
100 bfd * abfd;
101 bfd_byte * data;
102 struct bfd_in_memory * bim;
103 unsigned short magic;
104
105 arelent * reltab;
106 unsigned int relcount;
107
108 coff_symbol_type * sym_cache;
109 coff_symbol_type * sym_ptr;
110 unsigned int sym_index;
111
112 unsigned int * sym_table;
113 unsigned int * table_ptr;
114
115 combined_entry_type * native_syms;
116 combined_entry_type * native_ptr;
117
118 coff_symbol_type ** sym_ptr_table;
119 coff_symbol_type ** sym_ptr_ptr;
120
121 unsigned int sec_index;
122
123 char * string_table;
124 char * string_ptr;
125 char * end_string_ptr;
126
127 SYMENT * esym_table;
128 SYMENT * esym_ptr;
129
130 struct internal_reloc * int_reltab;
131 }
132 pe_ILF_vars;
133 #endif /* COFF_IMAGE_WITH_PE */
134
135 /**********************************************************************/
136
137 #ifndef NO_COFF_RELOCS
138 static void
139 coff_swap_reloc_in (abfd, src, dst)
140 bfd *abfd;
141 PTR src;
142 PTR dst;
143 {
144 RELOC *reloc_src = (RELOC *) src;
145 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
146
147 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr);
148 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
149
150 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type);
151
152 #ifdef SWAP_IN_RELOC_OFFSET
153 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
154 #endif
155 }
156
157 static unsigned int
158 coff_swap_reloc_out (abfd, src, dst)
159 bfd *abfd;
160 PTR src;
161 PTR dst;
162 {
163 struct internal_reloc *reloc_src = (struct internal_reloc *)src;
164 struct external_reloc *reloc_dst = (struct external_reloc *)dst;
165 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
166 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
167
168 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
169
170 #ifdef SWAP_OUT_RELOC_OFFSET
171 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
172 #endif
173 #ifdef SWAP_OUT_RELOC_EXTRA
174 SWAP_OUT_RELOC_EXTRA(abfd, reloc_src, reloc_dst);
175 #endif
176 return RELSZ;
177 }
178 #endif /* not NO_COFF_RELOCS */
179
180 static void
181 coff_swap_filehdr_in (abfd, src, dst)
182 bfd *abfd;
183 PTR src;
184 PTR dst;
185 {
186 FILHDR *filehdr_src = (FILHDR *) src;
187 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
188 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic);
189 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src-> f_nscns);
190 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src-> f_timdat);
191
192 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src-> f_nsyms);
193 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src-> f_flags);
194 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
195
196 /* Other people's tools sometimes generate headers with an nsyms but
197 a zero symptr. */
198 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
199 {
200 filehdr_dst->f_nsyms = 0;
201 filehdr_dst->f_flags |= F_LSYMS;
202 }
203
204 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
205 }
206
207 #ifdef COFF_IMAGE_WITH_PE
208 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
209 #else
210 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
211 #endif
212
213 static void
214 coff_swap_scnhdr_in (abfd, ext, in)
215 bfd *abfd;
216 PTR ext;
217 PTR in;
218 {
219 SCNHDR *scnhdr_ext = (SCNHDR *) ext;
220 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
221
222 memcpy(scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
223 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
224 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
225 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
226 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
227 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
228 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
229 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags);
230
231 /* MS handles overflow of line numbers by carrying into the reloc
232 field (it appears). Since it's supposed to be zero for PE
233 *IMAGE* format, that's safe. This is still a bit iffy. */
234 #ifdef COFF_IMAGE_WITH_PE
235 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
236 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
237 scnhdr_int->s_nreloc = 0;
238 #else
239 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
240 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
241 #endif
242
243 if (scnhdr_int->s_vaddr != 0)
244 {
245 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
246 scnhdr_int->s_vaddr &= 0xffffffff;
247 }
248
249 #ifndef COFF_NO_HACK_SCNHDR_SIZE
250 /* If this section holds uninitialized data and is from an object file
251 or from an executable image that has not initialized the field,
252 or if the image is an executable file and the physical size is padded,
253 use the virtual size (stored in s_paddr) instead. */
254 if (scnhdr_int->s_paddr > 0
255 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
256 && (! bfd_pe_executable_p (abfd) || scnhdr_int->s_size == 0))
257 || (bfd_pe_executable_p (abfd) && scnhdr_int->s_size > scnhdr_int->s_paddr)))
258 {
259 scnhdr_int->s_size = scnhdr_int->s_paddr;
260
261 /* This code used to set scnhdr_int->s_paddr to 0. However,
262 coff_set_alignment_hook stores s_paddr in virt_size, which
263 only works if it correctly holds the virtual size of the
264 section. */
265 }
266 #endif
267 }
268
269 static bfd_boolean
270 pe_mkobject (abfd)
271 bfd * abfd;
272 {
273 pe_data_type *pe;
274 bfd_size_type amt = sizeof (pe_data_type);
275
276 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
277
278 if (abfd->tdata.pe_obj_data == 0)
279 return FALSE;
280
281 pe = pe_data (abfd);
282
283 pe->coff.pe = 1;
284
285 /* in_reloc_p is architecture dependent. */
286 pe->in_reloc_p = in_reloc_p;
287
288 #ifdef PEI_FORCE_MINIMUM_ALIGNMENT
289 pe->force_minimum_alignment = 1;
290 #endif
291 #ifdef PEI_TARGET_SUBSYSTEM
292 pe->target_subsystem = PEI_TARGET_SUBSYSTEM;
293 #endif
294
295 return TRUE;
296 }
297
298 /* Create the COFF backend specific information. */
299 static PTR
300 pe_mkobject_hook (abfd, filehdr, aouthdr)
301 bfd * abfd;
302 PTR filehdr;
303 PTR aouthdr ATTRIBUTE_UNUSED;
304 {
305 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
306 pe_data_type *pe;
307
308 if (! pe_mkobject (abfd))
309 return NULL;
310
311 pe = pe_data (abfd);
312 pe->coff.sym_filepos = internal_f->f_symptr;
313 /* These members communicate important constants about the symbol
314 table to GDB's symbol-reading code. These `constants'
315 unfortunately vary among coff implementations... */
316 pe->coff.local_n_btmask = N_BTMASK;
317 pe->coff.local_n_btshft = N_BTSHFT;
318 pe->coff.local_n_tmask = N_TMASK;
319 pe->coff.local_n_tshift = N_TSHIFT;
320 pe->coff.local_symesz = SYMESZ;
321 pe->coff.local_auxesz = AUXESZ;
322 pe->coff.local_linesz = LINESZ;
323
324 pe->coff.timestamp = internal_f->f_timdat;
325
326 obj_raw_syment_count (abfd) =
327 obj_conv_table_size (abfd) =
328 internal_f->f_nsyms;
329
330 pe->real_flags = internal_f->f_flags;
331
332 if ((internal_f->f_flags & F_DLL) != 0)
333 pe->dll = 1;
334
335 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
336 abfd->flags |= HAS_DEBUG;
337
338 #ifdef COFF_IMAGE_WITH_PE
339 if (aouthdr)
340 pe->pe_opthdr = ((struct internal_aouthdr *)aouthdr)->pe;
341 #endif
342
343 #ifdef ARM
344 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
345 coff_data (abfd) ->flags = 0;
346 #endif
347
348 return (PTR) pe;
349 }
350
351 static bfd_boolean
352 pe_print_private_bfd_data (abfd, vfile)
353 bfd *abfd;
354 PTR vfile;
355 {
356 FILE *file = (FILE *) vfile;
357
358 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
359 return FALSE;
360
361 if (pe_saved_coff_bfd_print_private_bfd_data != NULL)
362 {
363 fputc ('\n', file);
364
365 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
366 }
367
368 return TRUE;
369 }
370
371 /* Copy any private info we understand from the input bfd
372 to the output bfd. */
373
374 static bfd_boolean
375 pe_bfd_copy_private_bfd_data (ibfd, obfd)
376 bfd *ibfd, *obfd;
377 {
378 /* PR binutils/716: Copy the large address aware flag.
379 XXX: Should we be copying other flags or other fields in the pe_data()
380 structure ? */
381 if (pe_data (obfd) != NULL
382 && pe_data (ibfd) != NULL
383 && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
384 pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
385
386 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
387 return FALSE;
388
389 if (pe_saved_coff_bfd_copy_private_bfd_data)
390 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
391
392 return TRUE;
393 }
394
395 #define coff_bfd_copy_private_section_data \
396 _bfd_XX_bfd_copy_private_section_data
397
398 #define coff_get_symbol_info _bfd_XX_get_symbol_info
399
400 #ifdef COFF_IMAGE_WITH_PE
401 \f
402 /* Code to handle Microsoft's Image Library Format.
403 Also known as LINK6 format.
404 Documentation about this format can be found at:
405
406 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */
407
408 /* The following constants specify the sizes of the various data
409 structures that we have to create in order to build a bfd describing
410 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6
411 and SIZEOF_IDATA7 below is to allow for the possibility that we might
412 need a padding byte in order to ensure 16 bit alignment for the section's
413 contents.
414
415 The value for SIZEOF_ILF_STRINGS is computed as follows:
416
417 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters
418 per symbol for their names (longest section name is .idata$x).
419
420 There will be two symbols for the imported value, one the symbol name
421 and one with _imp__ prefixed. Allowing for the terminating nul's this
422 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
423
424 The strings in the string table must start STRING__SIZE_SIZE bytes into
425 the table in order to for the string lookup code in coffgen/coffcode to
426 work. */
427 #define NUM_ILF_RELOCS 8
428 #define NUM_ILF_SECTIONS 6
429 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS)
430
431 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
432 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table))
433 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms))
434 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
435 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table))
436 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab))
437 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
438 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \
439 + 21 + strlen (source_dll) \
440 + NUM_ILF_SECTIONS * 9 \
441 + STRING_SIZE_SIZE)
442 #define SIZEOF_IDATA2 (5 * 4)
443 #define SIZEOF_IDATA4 (1 * 4)
444 #define SIZEOF_IDATA5 (1 * 4)
445 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1)
446 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1)
447 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
448
449 #define ILF_DATA_SIZE \
450 sizeof (* vars.bim) \
451 + SIZEOF_ILF_SYMS \
452 + SIZEOF_ILF_SYM_TABLE \
453 + SIZEOF_ILF_NATIVE_SYMS \
454 + SIZEOF_ILF_SYM_PTR_TABLE \
455 + SIZEOF_ILF_EXT_SYMS \
456 + SIZEOF_ILF_RELOCS \
457 + SIZEOF_ILF_INT_RELOCS \
458 + SIZEOF_ILF_STRINGS \
459 + SIZEOF_IDATA2 \
460 + SIZEOF_IDATA4 \
461 + SIZEOF_IDATA5 \
462 + SIZEOF_IDATA6 \
463 + SIZEOF_IDATA7 \
464 + SIZEOF_ILF_SECTIONS \
465 + MAX_TEXT_SECTION_SIZE
466
467 /* Create an empty relocation against the given symbol. */
468 static void
469 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars,
470 bfd_vma address,
471 bfd_reloc_code_real_type reloc,
472 struct bfd_symbol ** sym,
473 unsigned int sym_index)
474 {
475 arelent * entry;
476 struct internal_reloc * internal;
477
478 entry = vars->reltab + vars->relcount;
479 internal = vars->int_reltab + vars->relcount;
480
481 entry->address = address;
482 entry->addend = 0;
483 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc);
484 entry->sym_ptr_ptr = sym;
485
486 internal->r_vaddr = address;
487 internal->r_symndx = sym_index;
488 internal->r_type = entry->howto->type;
489
490 vars->relcount ++;
491
492 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
493 }
494
495 /* Create an empty relocation against the given section. */
496 static void
497 pe_ILF_make_a_reloc (pe_ILF_vars * vars,
498 bfd_vma address,
499 bfd_reloc_code_real_type reloc,
500 asection_ptr sec)
501 {
502 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
503 coff_section_data (vars->abfd, sec)->i);
504 }
505
506 /* Move the queued relocs into the given section. */
507 static void
508 pe_ILF_save_relocs (pe_ILF_vars * vars,
509 asection_ptr sec)
510 {
511 /* Make sure that there is somewhere to store the internal relocs. */
512 if (coff_section_data (vars->abfd, sec) == NULL)
513 /* We should probably return an error indication here. */
514 abort ();
515
516 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
517 coff_section_data (vars->abfd, sec)->keep_relocs = TRUE;
518
519 sec->relocation = vars->reltab;
520 sec->reloc_count = vars->relcount;
521 sec->flags |= SEC_RELOC;
522
523 vars->reltab += vars->relcount;
524 vars->int_reltab += vars->relcount;
525 vars->relcount = 0;
526
527 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
528 }
529
530 /* Create a global symbol and add it to the relevant tables. */
531 static void
532 pe_ILF_make_a_symbol (pe_ILF_vars * vars,
533 const char * prefix,
534 const char * symbol_name,
535 asection_ptr section,
536 flagword extra_flags)
537 {
538 coff_symbol_type * sym;
539 combined_entry_type * ent;
540 SYMENT * esym;
541 unsigned short sclass;
542
543 if (extra_flags & BSF_LOCAL)
544 sclass = C_STAT;
545 else
546 sclass = C_EXT;
547
548 #ifdef THUMBPEMAGIC
549 if (vars->magic == THUMBPEMAGIC)
550 {
551 if (extra_flags & BSF_FUNCTION)
552 sclass = C_THUMBEXTFUNC;
553 else if (extra_flags & BSF_LOCAL)
554 sclass = C_THUMBSTAT;
555 else
556 sclass = C_THUMBEXT;
557 }
558 #endif
559
560 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
561
562 sym = vars->sym_ptr;
563 ent = vars->native_ptr;
564 esym = vars->esym_ptr;
565
566 /* Copy the symbol's name into the string table. */
567 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
568
569 if (section == NULL)
570 section = (asection_ptr) & bfd_und_section;
571
572 /* Initialise the external symbol. */
573 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
574 esym->e.e.e_offset);
575 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
576 esym->e_sclass[0] = sclass;
577
578 /* The following initialisations are unnecessary - the memory is
579 zero initialised. They are just kept here as reminders. */
580
581 /* Initialise the internal symbol structure. */
582 ent->u.syment.n_sclass = sclass;
583 ent->u.syment.n_scnum = section->target_index;
584 ent->u.syment._n._n_n._n_offset = (long) sym;
585
586 sym->symbol.the_bfd = vars->abfd;
587 sym->symbol.name = vars->string_ptr;
588 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags;
589 sym->symbol.section = section;
590 sym->native = ent;
591
592 * vars->table_ptr = vars->sym_index;
593 * vars->sym_ptr_ptr = sym;
594
595 /* Adjust pointers for the next symbol. */
596 vars->sym_index ++;
597 vars->sym_ptr ++;
598 vars->sym_ptr_ptr ++;
599 vars->table_ptr ++;
600 vars->native_ptr ++;
601 vars->esym_ptr ++;
602 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
603
604 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
605 }
606
607 /* Create a section. */
608 static asection_ptr
609 pe_ILF_make_a_section (pe_ILF_vars * vars,
610 const char * name,
611 unsigned int size,
612 flagword extra_flags)
613 {
614 asection_ptr sec;
615 flagword flags;
616
617 sec = bfd_make_section_old_way (vars->abfd, name);
618 if (sec == NULL)
619 return NULL;
620
621 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
622
623 bfd_set_section_flags (vars->abfd, sec, flags | extra_flags);
624
625 bfd_set_section_alignment (vars->abfd, sec, 2);
626
627 /* Check that we will not run out of space. */
628 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
629
630 /* Set the section size and contents. The actual
631 contents are filled in by our parent. */
632 bfd_set_section_size (vars->abfd, sec, (bfd_size_type) size);
633 sec->contents = vars->data;
634 sec->target_index = vars->sec_index ++;
635
636 /* Advance data pointer in the vars structure. */
637 vars->data += size;
638
639 /* Skip the padding byte if it was not needed.
640 The logic here is that if the string length is odd,
641 then the entire string length, including the null byte,
642 is even and so the extra, padding byte, is not needed. */
643 if (size & 1)
644 vars->data --;
645
646 /* Create a coff_section_tdata structure for our use. */
647 sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
648 vars->data += sizeof (struct coff_section_tdata);
649
650 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
651
652 /* Create a symbol to refer to this section. */
653 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
654
655 /* Cache the index to the symbol in the coff_section_data structure. */
656 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
657
658 return sec;
659 }
660
661 /* This structure contains the code that goes into the .text section
662 in order to perform a jump into the DLL lookup table. The entries
663 in the table are index by the magic number used to represent the
664 machine type in the PE file. The contents of the data[] arrays in
665 these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
666 The SIZE field says how many bytes in the DATA array are actually
667 used. The OFFSET field says where in the data array the address
668 of the .idata$5 section should be placed. */
669 #define MAX_TEXT_SECTION_SIZE 32
670
671 typedef struct
672 {
673 unsigned short magic;
674 unsigned char data[MAX_TEXT_SECTION_SIZE];
675 unsigned int size;
676 unsigned int offset;
677 }
678 jump_table;
679
680 static jump_table jtab[] =
681 {
682 #ifdef I386MAGIC
683 { I386MAGIC,
684 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
685 8, 2
686 },
687 #endif
688
689 #ifdef MC68MAGIC
690 { MC68MAGIC, { /* XXX fill me in */ }, 0, 0 },
691 #endif
692 #ifdef MIPS_ARCH_MAGIC_WINCE
693 { MIPS_ARCH_MAGIC_WINCE,
694 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
695 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
696 16, 0
697 },
698 #endif
699
700 #ifdef SH_ARCH_MAGIC_WINCE
701 { SH_ARCH_MAGIC_WINCE,
702 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
703 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
704 12, 8
705 },
706 #endif
707
708 #ifdef ARMPEMAGIC
709 { ARMPEMAGIC,
710 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
711 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
712 12, 8
713 },
714 #endif
715
716 #ifdef THUMBPEMAGIC
717 { THUMBPEMAGIC,
718 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
719 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
720 16, 12
721 },
722 #endif
723 { 0, { 0 }, 0, 0 }
724 };
725
726 #ifndef NUM_ENTRIES
727 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
728 #endif
729
730 /* Build a full BFD from the information supplied in a ILF object. */
731 static bfd_boolean
732 pe_ILF_build_a_bfd (bfd * abfd,
733 unsigned int magic,
734 char * symbol_name,
735 char * source_dll,
736 unsigned int ordinal,
737 unsigned int types)
738 {
739 bfd_byte * ptr;
740 pe_ILF_vars vars;
741 struct internal_filehdr internal_f;
742 unsigned int import_type;
743 unsigned int import_name_type;
744 asection_ptr id4, id5, id6 = NULL, text = NULL;
745 coff_symbol_type ** imp_sym;
746 unsigned int imp_index;
747
748 /* Decode and verify the types field of the ILF structure. */
749 import_type = types & 0x3;
750 import_name_type = (types & 0x1c) >> 2;
751
752 switch (import_type)
753 {
754 case IMPORT_CODE:
755 case IMPORT_DATA:
756 break;
757
758 case IMPORT_CONST:
759 /* XXX code yet to be written. */
760 _bfd_error_handler (_("%B: Unhandled import type; %x"),
761 abfd, import_type);
762 return FALSE;
763
764 default:
765 _bfd_error_handler (_("%B: Unrecognised import type; %x"),
766 abfd, import_type);
767 return FALSE;
768 }
769
770 switch (import_name_type)
771 {
772 case IMPORT_ORDINAL:
773 case IMPORT_NAME:
774 case IMPORT_NAME_NOPREFIX:
775 case IMPORT_NAME_UNDECORATE:
776 break;
777
778 default:
779 _bfd_error_handler (_("%B: Unrecognised import name type; %x"),
780 abfd, import_name_type);
781 return FALSE;
782 }
783
784 /* Initialise local variables.
785
786 Note these are kept in a structure rather than being
787 declared as statics since bfd frowns on global variables.
788
789 We are going to construct the contents of the BFD in memory,
790 so allocate all the space that we will need right now. */
791 ptr = bfd_zalloc (abfd, (bfd_size_type) ILF_DATA_SIZE);
792 if (ptr == NULL)
793 return FALSE;
794
795 /* Create a bfd_in_memory structure. */
796 vars.bim = (struct bfd_in_memory *) ptr;
797 vars.bim->buffer = ptr;
798 vars.bim->size = ILF_DATA_SIZE;
799 ptr += sizeof (* vars.bim);
800
801 /* Initialise the pointers to regions of the memory and the
802 other contents of the pe_ILF_vars structure as well. */
803 vars.sym_cache = (coff_symbol_type *) ptr;
804 vars.sym_ptr = (coff_symbol_type *) ptr;
805 vars.sym_index = 0;
806 ptr += SIZEOF_ILF_SYMS;
807
808 vars.sym_table = (unsigned int *) ptr;
809 vars.table_ptr = (unsigned int *) ptr;
810 ptr += SIZEOF_ILF_SYM_TABLE;
811
812 vars.native_syms = (combined_entry_type *) ptr;
813 vars.native_ptr = (combined_entry_type *) ptr;
814 ptr += SIZEOF_ILF_NATIVE_SYMS;
815
816 vars.sym_ptr_table = (coff_symbol_type **) ptr;
817 vars.sym_ptr_ptr = (coff_symbol_type **) ptr;
818 ptr += SIZEOF_ILF_SYM_PTR_TABLE;
819
820 vars.esym_table = (SYMENT *) ptr;
821 vars.esym_ptr = (SYMENT *) ptr;
822 ptr += SIZEOF_ILF_EXT_SYMS;
823
824 vars.reltab = (arelent *) ptr;
825 vars.relcount = 0;
826 ptr += SIZEOF_ILF_RELOCS;
827
828 vars.int_reltab = (struct internal_reloc *) ptr;
829 ptr += SIZEOF_ILF_INT_RELOCS;
830
831 vars.string_table = (char *) ptr;
832 vars.string_ptr = (char *) ptr + STRING_SIZE_SIZE;
833 ptr += SIZEOF_ILF_STRINGS;
834 vars.end_string_ptr = (char *) ptr;
835
836 /* The remaining space in bim->buffer is used
837 by the pe_ILF_make_a_section() function. */
838 vars.data = ptr;
839 vars.abfd = abfd;
840 vars.sec_index = 0;
841 vars.magic = magic;
842
843 /* Create the initial .idata$<n> sections:
844 [.idata$2: Import Directory Table -- not needed]
845 .idata$4: Import Lookup Table
846 .idata$5: Import Address Table
847
848 Note we do not create a .idata$3 section as this is
849 created for us by the linker script. */
850 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
851 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
852 if (id4 == NULL || id5 == NULL)
853 return FALSE;
854
855 /* Fill in the contents of these sections. */
856 if (import_name_type == IMPORT_ORDINAL)
857 {
858 if (ordinal == 0)
859 /* XXX - treat as IMPORT_NAME ??? */
860 abort ();
861
862 * (unsigned int *) id4->contents = ordinal | 0x80000000;
863 * (unsigned int *) id5->contents = ordinal | 0x80000000;
864 }
865 else
866 {
867 char * symbol;
868 unsigned int len;
869
870 /* Create .idata$6 - the Hint Name Table. */
871 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
872 if (id6 == NULL)
873 return FALSE;
874
875 /* If necessary, trim the import symbol name. */
876 symbol = symbol_name;
877
878 /* As used by MS compiler, '_', '@', and '?' are alternative
879 forms of USER_LABEL_PREFIX, with '?' for c++ mangled names,
880 '@' used for fastcall (in C), '_' everywhere else. Only one
881 of these is used for a symbol. We strip this leading char for
882 IMPORT_NAME_NOPREFIX and IMPORT_NAME_UNDECORATE as per the
883 PE COFF 6.0 spec (section 8.3, Import Name Type). */
884
885 if (import_name_type != IMPORT_NAME)
886 {
887 char c = symbol[0];
888 if (c == '_' || c == '@' || c == '?')
889 symbol++;
890 }
891
892 len = strlen (symbol);
893 if (import_name_type == IMPORT_NAME_UNDECORATE)
894 {
895 /* Truncate at the first '@'. */
896 char *at = strchr (symbol, '@');
897
898 if (at != NULL)
899 len = at - symbol;
900 }
901
902 id6->contents[0] = ordinal & 0xff;
903 id6->contents[1] = ordinal >> 8;
904
905 memcpy ((char *) id6->contents + 2, symbol, len);
906 id6->contents[len + 2] = '\0';
907 }
908
909 if (import_name_type != IMPORT_ORDINAL)
910 {
911 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
912 pe_ILF_save_relocs (&vars, id4);
913
914 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
915 pe_ILF_save_relocs (&vars, id5);
916 }
917
918 /* Create extra sections depending upon the type of import we are dealing with. */
919 switch (import_type)
920 {
921 int i;
922
923 case IMPORT_CODE:
924 /* Create a .text section.
925 First we need to look up its contents in the jump table. */
926 for (i = NUM_ENTRIES (jtab); i--;)
927 {
928 if (jtab[i].size == 0)
929 continue;
930 if (jtab[i].magic == magic)
931 break;
932 }
933 /* If we did not find a matching entry something is wrong. */
934 if (i < 0)
935 abort ();
936
937 /* Create the .text section. */
938 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
939 if (text == NULL)
940 return FALSE;
941
942 /* Copy in the jump code. */
943 memcpy (text->contents, jtab[i].data, jtab[i].size);
944
945 /* Create an import symbol. */
946 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
947 imp_sym = vars.sym_ptr_ptr - 1;
948 imp_index = vars.sym_index - 1;
949
950 /* Create a reloc for the data in the text section. */
951 #ifdef MIPS_ARCH_MAGIC_WINCE
952 if (magic == MIPS_ARCH_MAGIC_WINCE)
953 {
954 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
955 (struct bfd_symbol **) imp_sym,
956 imp_index);
957 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
958 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
959 (struct bfd_symbol **) imp_sym,
960 imp_index);
961 }
962 else
963 #endif
964 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
965 BFD_RELOC_32, (asymbol **) imp_sym,
966 imp_index);
967
968 pe_ILF_save_relocs (& vars, text);
969 break;
970
971 case IMPORT_DATA:
972 break;
973
974 default:
975 /* XXX code not yet written. */
976 abort ();
977 }
978
979 /* Initialise the bfd. */
980 memset (& internal_f, 0, sizeof (internal_f));
981
982 internal_f.f_magic = magic;
983 internal_f.f_symptr = 0;
984 internal_f.f_nsyms = 0;
985 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */
986
987 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0)
988 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
989 return FALSE;
990
991 if (bfd_coff_mkobject_hook (abfd, (PTR) & internal_f, NULL) == NULL)
992 return FALSE;
993
994 coff_data (abfd)->pe = 1;
995 #ifdef THUMBPEMAGIC
996 if (vars.magic == THUMBPEMAGIC)
997 /* Stop some linker warnings about thumb code not supporting interworking. */
998 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
999 #endif
1000
1001 /* Switch from file contents to memory contents. */
1002 bfd_cache_close (abfd);
1003
1004 abfd->iostream = (PTR) vars.bim;
1005 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1006 abfd->where = 0;
1007 obj_sym_filepos (abfd) = 0;
1008
1009 /* Now create a symbol describing the imported value. */
1010 switch (import_type)
1011 {
1012 case IMPORT_CODE:
1013 pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1014 BSF_NOT_AT_END | BSF_FUNCTION);
1015
1016 /* Create an import symbol for the DLL, without the
1017 .dll suffix. */
1018 ptr = (bfd_byte *) strrchr (source_dll, '.');
1019 if (ptr)
1020 * ptr = 0;
1021 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1022 if (ptr)
1023 * ptr = '.';
1024 break;
1025
1026 case IMPORT_DATA:
1027 /* Nothing to do here. */
1028 break;
1029
1030 default:
1031 /* XXX code not yet written. */
1032 abort ();
1033 }
1034
1035 /* Point the bfd at the symbol table. */
1036 obj_symbols (abfd) = vars.sym_cache;
1037 bfd_get_symcount (abfd) = vars.sym_index;
1038
1039 obj_raw_syments (abfd) = vars.native_syms;
1040 obj_raw_syment_count (abfd) = vars.sym_index;
1041
1042 obj_coff_external_syms (abfd) = (PTR) vars.esym_table;
1043 obj_coff_keep_syms (abfd) = TRUE;
1044
1045 obj_convert (abfd) = vars.sym_table;
1046 obj_conv_table_size (abfd) = vars.sym_index;
1047
1048 obj_coff_strings (abfd) = vars.string_table;
1049 obj_coff_keep_strings (abfd) = TRUE;
1050
1051 abfd->flags |= HAS_SYMS;
1052
1053 return TRUE;
1054 }
1055
1056 /* We have detected a Image Library Format archive element.
1057 Decode the element and return the appropriate target. */
1058 static const bfd_target *
1059 pe_ILF_object_p (bfd * abfd)
1060 {
1061 bfd_byte buffer[16];
1062 bfd_byte * ptr;
1063 char * symbol_name;
1064 char * source_dll;
1065 unsigned int machine;
1066 bfd_size_type size;
1067 unsigned int ordinal;
1068 unsigned int types;
1069 unsigned int magic;
1070
1071 /* Upon entry the first four buyes of the ILF header have
1072 already been read. Now read the rest of the header. */
1073 if (bfd_bread (buffer, (bfd_size_type) 16, abfd) != 16)
1074 return NULL;
1075
1076 ptr = buffer;
1077
1078 /* We do not bother to check the version number.
1079 version = H_GET_16 (abfd, ptr); */
1080 ptr += 2;
1081
1082 machine = H_GET_16 (abfd, ptr);
1083 ptr += 2;
1084
1085 /* Check that the machine type is recognised. */
1086 magic = 0;
1087
1088 switch (machine)
1089 {
1090 case IMAGE_FILE_MACHINE_UNKNOWN:
1091 case IMAGE_FILE_MACHINE_ALPHA:
1092 case IMAGE_FILE_MACHINE_ALPHA64:
1093 case IMAGE_FILE_MACHINE_IA64:
1094 break;
1095
1096 case IMAGE_FILE_MACHINE_I386:
1097 #ifdef I386MAGIC
1098 magic = I386MAGIC;
1099 #endif
1100 break;
1101
1102 case IMAGE_FILE_MACHINE_M68K:
1103 #ifdef MC68AGIC
1104 magic = MC68MAGIC;
1105 #endif
1106 break;
1107
1108 case IMAGE_FILE_MACHINE_R3000:
1109 case IMAGE_FILE_MACHINE_R4000:
1110 case IMAGE_FILE_MACHINE_R10000:
1111
1112 case IMAGE_FILE_MACHINE_MIPS16:
1113 case IMAGE_FILE_MACHINE_MIPSFPU:
1114 case IMAGE_FILE_MACHINE_MIPSFPU16:
1115 #ifdef MIPS_ARCH_MAGIC_WINCE
1116 magic = MIPS_ARCH_MAGIC_WINCE;
1117 #endif
1118 break;
1119
1120 case IMAGE_FILE_MACHINE_SH3:
1121 case IMAGE_FILE_MACHINE_SH4:
1122 #ifdef SH_ARCH_MAGIC_WINCE
1123 magic = SH_ARCH_MAGIC_WINCE;
1124 #endif
1125 break;
1126
1127 case IMAGE_FILE_MACHINE_ARM:
1128 #ifdef ARMPEMAGIC
1129 magic = ARMPEMAGIC;
1130 #endif
1131 break;
1132
1133 case IMAGE_FILE_MACHINE_THUMB:
1134 #ifdef THUMBPEMAGIC
1135 {
1136 extern const bfd_target TARGET_LITTLE_SYM;
1137
1138 if (abfd->xvec == & TARGET_LITTLE_SYM)
1139 magic = THUMBPEMAGIC;
1140 }
1141 #endif
1142 break;
1143
1144 case IMAGE_FILE_MACHINE_POWERPC:
1145 /* We no longer support PowerPC. */
1146 default:
1147 _bfd_error_handler
1148 (_("%B: Unrecognised machine type (0x%x)"
1149 " in Import Library Format archive"),
1150 abfd, machine);
1151 bfd_set_error (bfd_error_malformed_archive);
1152
1153 return NULL;
1154 break;
1155 }
1156
1157 if (magic == 0)
1158 {
1159 _bfd_error_handler
1160 (_("%B: Recognised but unhandled machine type (0x%x)"
1161 " in Import Library Format archive"),
1162 abfd, machine);
1163 bfd_set_error (bfd_error_wrong_format);
1164
1165 return NULL;
1166 }
1167
1168 /* We do not bother to check the date.
1169 date = H_GET_32 (abfd, ptr); */
1170 ptr += 4;
1171
1172 size = H_GET_32 (abfd, ptr);
1173 ptr += 4;
1174
1175 if (size == 0)
1176 {
1177 _bfd_error_handler
1178 (_("%B: size field is zero in Import Library Format header"), abfd);
1179 bfd_set_error (bfd_error_malformed_archive);
1180
1181 return NULL;
1182 }
1183
1184 ordinal = H_GET_16 (abfd, ptr);
1185 ptr += 2;
1186
1187 types = H_GET_16 (abfd, ptr);
1188 /* ptr += 2; */
1189
1190 /* Now read in the two strings that follow. */
1191 ptr = bfd_alloc (abfd, size);
1192 if (ptr == NULL)
1193 return NULL;
1194
1195 if (bfd_bread (ptr, size, abfd) != size)
1196 {
1197 bfd_release (abfd, ptr);
1198 return NULL;
1199 }
1200
1201 symbol_name = (char *) ptr;
1202 source_dll = symbol_name + strlen (symbol_name) + 1;
1203
1204 /* Verify that the strings are null terminated. */
1205 if (ptr[size - 1] != 0
1206 || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size)
1207 {
1208 _bfd_error_handler
1209 (_("%B: string not null terminated in ILF object file."), abfd);
1210 bfd_set_error (bfd_error_malformed_archive);
1211 bfd_release (abfd, ptr);
1212 return NULL;
1213 }
1214
1215 /* Now construct the bfd. */
1216 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1217 source_dll, ordinal, types))
1218 {
1219 bfd_release (abfd, ptr);
1220 return NULL;
1221 }
1222
1223 return abfd->xvec;
1224 }
1225
1226 static const bfd_target *
1227 pe_bfd_object_p (bfd * abfd)
1228 {
1229 bfd_byte buffer[4];
1230 struct external_PEI_DOS_hdr dos_hdr;
1231 struct external_PEI_IMAGE_hdr image_hdr;
1232 file_ptr offset;
1233
1234 /* Detect if this a Microsoft Import Library Format element. */
1235 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1236 || bfd_bread (buffer, (bfd_size_type) 4, abfd) != 4)
1237 {
1238 if (bfd_get_error () != bfd_error_system_call)
1239 bfd_set_error (bfd_error_wrong_format);
1240 return NULL;
1241 }
1242
1243 if (H_GET_32 (abfd, buffer) == 0xffff0000)
1244 return pe_ILF_object_p (abfd);
1245
1246 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1247 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1248 != sizeof (dos_hdr))
1249 {
1250 if (bfd_get_error () != bfd_error_system_call)
1251 bfd_set_error (bfd_error_wrong_format);
1252 return NULL;
1253 }
1254
1255 /* There are really two magic numbers involved; the magic number
1256 that says this is a NT executable (PEI) and the magic number that
1257 determines the architecture. The former is DOSMAGIC, stored in
1258 the e_magic field. The latter is stored in the f_magic field.
1259 If the NT magic number isn't valid, the architecture magic number
1260 could be mimicked by some other field (specifically, the number
1261 of relocs in section 3). Since this routine can only be called
1262 correctly for a PEI file, check the e_magic number here, and, if
1263 it doesn't match, clobber the f_magic number so that we don't get
1264 a false match. */
1265 if (H_GET_16 (abfd, dos_hdr.e_magic) != DOSMAGIC)
1266 {
1267 bfd_set_error (bfd_error_wrong_format);
1268 return NULL;
1269 }
1270
1271 offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1272 if (bfd_seek (abfd, offset, SEEK_SET) != 0
1273 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1274 != sizeof (image_hdr)))
1275 {
1276 if (bfd_get_error () != bfd_error_system_call)
1277 bfd_set_error (bfd_error_wrong_format);
1278 return NULL;
1279 }
1280
1281 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1282 {
1283 bfd_set_error (bfd_error_wrong_format);
1284 return NULL;
1285 }
1286
1287 /* Here is the hack. coff_object_p wants to read filhsz bytes to
1288 pick up the COFF header for PE, see "struct external_PEI_filehdr"
1289 in include/coff/pe.h. We adjust so that that will work. */
1290 if (bfd_seek (abfd, (file_ptr) (offset - sizeof (dos_hdr)), SEEK_SET) != 0)
1291 {
1292 if (bfd_get_error () != bfd_error_system_call)
1293 bfd_set_error (bfd_error_wrong_format);
1294 return NULL;
1295 }
1296
1297 return coff_object_p (abfd);
1298 }
1299
1300 #define coff_object_p pe_bfd_object_p
1301 #endif /* COFF_IMAGE_WITH_PE */
This page took 0.075694 seconds and 4 git commands to generate.