* elf64-alpha.c (SKIP_HOWTO): New.
[deliverable/binutils-gdb.git] / bfd / reloc.c
1 /* BFD support for handling relocation entries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
29 en-masse and translated into an internal form. A common
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40 @menu
41 @* typedef arelent::
42 @* howto manager::
43 @end menu
44
45 */
46
47 /* DO compile in the reloc_code name table from libbfd.h. */
48 #define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50 #include "bfd.h"
51 #include "sysdep.h"
52 #include "bfdlink.h"
53 #include "libbfd.h"
54 /*
55 DOCDD
56 INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59 SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64 CODE_FRAGMENT
65 .
66 .typedef enum bfd_reloc_status
67 .{
68 . {* No errors detected *}
69 . bfd_reloc_ok,
70 .
71 . {* The relocation was performed, but there was an overflow. *}
72 . bfd_reloc_overflow,
73 .
74 . {* The address to relocate was not within the section supplied. *}
75 . bfd_reloc_outofrange,
76 .
77 . {* Used by special functions *}
78 . bfd_reloc_continue,
79 .
80 . {* Unsupported relocation size requested. *}
81 . bfd_reloc_notsupported,
82 .
83 . {* Unused *}
84 . bfd_reloc_other,
85 .
86 . {* The symbol to relocate against was undefined. *}
87 . bfd_reloc_undefined,
88 .
89 . {* The relocation was performed, but may not be ok - presently
90 . generated only when linking i960 coff files with i960 b.out
91 . symbols. If this type is returned, the error_message argument
92 . to bfd_perform_relocation will be set. *}
93 . bfd_reloc_dangerous
94 . }
95 . bfd_reloc_status_type;
96 .
97 .
98 .typedef struct reloc_cache_entry
99 .{
100 . {* A pointer into the canonical table of pointers *}
101 . struct symbol_cache_entry **sym_ptr_ptr;
102 .
103 . {* offset in section *}
104 . bfd_size_type address;
105 .
106 . {* addend for relocation value *}
107 . bfd_vma addend;
108 .
109 . {* Pointer to how to perform the required relocation *}
110 . reloc_howto_type *howto;
111 .
112 .} arelent;
113
114 */
115
116 /*
117 DESCRIPTION
118
119 Here is a description of each of the fields within an <<arelent>>:
120
121 o <<sym_ptr_ptr>>
122
123 The symbol table pointer points to a pointer to the symbol
124 associated with the relocation request. It is
125 the pointer into the table returned by the back end's
126 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
127 through a pointer to a pointer so that tools like the linker
128 can fix up all the symbols of the same name by modifying only
129 one pointer. The relocation routine looks in the symbol and
130 uses the base of the section the symbol is attached to and the
131 value of the symbol as the initial relocation offset. If the
132 symbol pointer is zero, then the section provided is looked up.
133
134 o <<address>>
135
136 The <<address>> field gives the offset in bytes from the base of
137 the section data which owns the relocation record to the first
138 byte of relocatable information. The actual data relocated
139 will be relative to this point; for example, a relocation
140 type which modifies the bottom two bytes of a four byte word
141 would not touch the first byte pointed to in a big endian
142 world.
143
144 o <<addend>>
145
146 The <<addend>> is a value provided by the back end to be added (!)
147 to the relocation offset. Its interpretation is dependent upon
148 the howto. For example, on the 68k the code:
149
150 | char foo[];
151 | main()
152 | {
153 | return foo[0x12345678];
154 | }
155
156 Could be compiled into:
157
158 | linkw fp,#-4
159 | moveb @@#12345678,d0
160 | extbl d0
161 | unlk fp
162 | rts
163
164 This could create a reloc pointing to <<foo>>, but leave the
165 offset in the data, something like:
166
167 |RELOCATION RECORDS FOR [.text]:
168 |offset type value
169 |00000006 32 _foo
170 |
171 |00000000 4e56 fffc ; linkw fp,#-4
172 |00000004 1039 1234 5678 ; moveb @@#12345678,d0
173 |0000000a 49c0 ; extbl d0
174 |0000000c 4e5e ; unlk fp
175 |0000000e 4e75 ; rts
176
177 Using coff and an 88k, some instructions don't have enough
178 space in them to represent the full address range, and
179 pointers have to be loaded in two parts. So you'd get something like:
180
181 | or.u r13,r0,hi16(_foo+0x12345678)
182 | ld.b r2,r13,lo16(_foo+0x12345678)
183 | jmp r1
184
185 This should create two relocs, both pointing to <<_foo>>, and with
186 0x12340000 in their addend field. The data would consist of:
187
188 |RELOCATION RECORDS FOR [.text]:
189 |offset type value
190 |00000002 HVRT16 _foo+0x12340000
191 |00000006 LVRT16 _foo+0x12340000
192 |
193 |00000000 5da05678 ; or.u r13,r0,0x5678
194 |00000004 1c4d5678 ; ld.b r2,r13,0x5678
195 |00000008 f400c001 ; jmp r1
196
197 The relocation routine digs out the value from the data, adds
198 it to the addend to get the original offset, and then adds the
199 value of <<_foo>>. Note that all 32 bits have to be kept around
200 somewhere, to cope with carry from bit 15 to bit 16.
201
202 One further example is the sparc and the a.out format. The
203 sparc has a similar problem to the 88k, in that some
204 instructions don't have room for an entire offset, but on the
205 sparc the parts are created in odd sized lumps. The designers of
206 the a.out format chose to not use the data within the section
207 for storing part of the offset; all the offset is kept within
208 the reloc. Anything in the data should be ignored.
209
210 | save %sp,-112,%sp
211 | sethi %hi(_foo+0x12345678),%g2
212 | ldsb [%g2+%lo(_foo+0x12345678)],%i0
213 | ret
214 | restore
215
216 Both relocs contain a pointer to <<foo>>, and the offsets
217 contain junk.
218
219 |RELOCATION RECORDS FOR [.text]:
220 |offset type value
221 |00000004 HI22 _foo+0x12345678
222 |00000008 LO10 _foo+0x12345678
223 |
224 |00000000 9de3bf90 ; save %sp,-112,%sp
225 |00000004 05000000 ; sethi %hi(_foo+0),%g2
226 |00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
227 |0000000c 81c7e008 ; ret
228 |00000010 81e80000 ; restore
229
230 o <<howto>>
231
232 The <<howto>> field can be imagined as a
233 relocation instruction. It is a pointer to a structure which
234 contains information on what to do with all of the other
235 information in the reloc record and data section. A back end
236 would normally have a relocation instruction set and turn
237 relocations into pointers to the correct structure on input -
238 but it would be possible to create each howto field on demand.
239
240 */
241
242 /*
243 SUBSUBSECTION
244 <<enum complain_overflow>>
245
246 Indicates what sort of overflow checking should be done when
247 performing a relocation.
248
249 CODE_FRAGMENT
250 .
251 .enum complain_overflow
252 .{
253 . {* Do not complain on overflow. *}
254 . complain_overflow_dont,
255 .
256 . {* Complain if the bitfield overflows, whether it is considered
257 . as signed or unsigned. *}
258 . complain_overflow_bitfield,
259 .
260 . {* Complain if the value overflows when considered as signed
261 . number. *}
262 . complain_overflow_signed,
263 .
264 . {* Complain if the value overflows when considered as an
265 . unsigned number. *}
266 . complain_overflow_unsigned
267 .};
268
269 */
270
271 /*
272 SUBSUBSECTION
273 <<reloc_howto_type>>
274
275 The <<reloc_howto_type>> is a structure which contains all the
276 information that libbfd needs to know to tie up a back end's data.
277
278 CODE_FRAGMENT
279 .struct symbol_cache_entry; {* Forward declaration *}
280 .
281 .struct reloc_howto_struct
282 .{
283 . {* The type field has mainly a documentary use - the back end can
284 . do what it wants with it, though normally the back end's
285 . external idea of what a reloc number is stored
286 . in this field. For example, a PC relative word relocation
287 . in a coff environment has the type 023 - because that's
288 . what the outside world calls a R_PCRWORD reloc. *}
289 . unsigned int type;
290 .
291 . {* The value the final relocation is shifted right by. This drops
292 . unwanted data from the relocation. *}
293 . unsigned int rightshift;
294 .
295 . {* The size of the item to be relocated. This is *not* a
296 . power-of-two measure. To get the number of bytes operated
297 . on by a type of relocation, use bfd_get_reloc_size. *}
298 . int size;
299 .
300 . {* The number of bits in the item to be relocated. This is used
301 . when doing overflow checking. *}
302 . unsigned int bitsize;
303 .
304 . {* Notes that the relocation is relative to the location in the
305 . data section of the addend. The relocation function will
306 . subtract from the relocation value the address of the location
307 . being relocated. *}
308 . boolean pc_relative;
309 .
310 . {* The bit position of the reloc value in the destination.
311 . The relocated value is left shifted by this amount. *}
312 . unsigned int bitpos;
313 .
314 . {* What type of overflow error should be checked for when
315 . relocating. *}
316 . enum complain_overflow complain_on_overflow;
317 .
318 . {* If this field is non null, then the supplied function is
319 . called rather than the normal function. This allows really
320 . strange relocation methods to be accomodated (e.g., i960 callj
321 . instructions). *}
322 . bfd_reloc_status_type (*special_function)
323 . PARAMS ((bfd *abfd,
324 . arelent *reloc_entry,
325 . struct symbol_cache_entry *symbol,
326 . PTR data,
327 . asection *input_section,
328 . bfd *output_bfd,
329 . char **error_message));
330 .
331 . {* The textual name of the relocation type. *}
332 . char *name;
333 .
334 . {* Some formats record a relocation addend in the section contents
335 . rather than with the relocation. For ELF formats this is the
336 . distinction between USE_REL and USE_RELA (though the code checks
337 . for USE_REL == 1/0). The value of this field is TRUE if the
338 . addend is recorded with the section contents; when performing a
339 . partial link (ld -r) the section contents (the data) will be
340 . modified. The value of this field is FALSE if addends are
341 . recorded with the relocation (in arelent.addend); when performing
342 . a partial link the relocation will be modified.
343 . All relocations for all ELF USE_RELA targets should set this field
344 . to FALSE (values of TRUE should be looked on with suspicion).
345 . However, the converse is not true: not all relocations of all ELF
346 . USE_REL targets set this field to TRUE. Why this is so is peculiar
347 . to each particular target. For relocs that aren't used in partial
348 . links (e.g. GOT stuff) it doesn't matter what this is set to. *}
349 . boolean partial_inplace;
350 .
351 . {* The src_mask selects which parts of the read in data
352 . are to be used in the relocation sum. E.g., if this was an 8 bit
353 . byte of data which we read and relocated, this would be
354 . 0x000000ff. When we have relocs which have an addend, such as
355 . sun4 extended relocs, the value in the offset part of a
356 . relocating field is garbage so we never use it. In this case
357 . the mask would be 0x00000000. *}
358 . bfd_vma src_mask;
359 .
360 . {* The dst_mask selects which parts of the instruction are replaced
361 . into the instruction. In most cases src_mask == dst_mask,
362 . except in the above special case, where dst_mask would be
363 . 0x000000ff, and src_mask would be 0x00000000. *}
364 . bfd_vma dst_mask;
365 .
366 . {* When some formats create PC relative instructions, they leave
367 . the value of the pc of the place being relocated in the offset
368 . slot of the instruction, so that a PC relative relocation can
369 . be made just by adding in an ordinary offset (e.g., sun3 a.out).
370 . Some formats leave the displacement part of an instruction
371 . empty (e.g., m88k bcs); this flag signals the fact.*}
372 . boolean pcrel_offset;
373 .
374 .};
375
376 */
377
378 /*
379 FUNCTION
380 The HOWTO Macro
381
382 DESCRIPTION
383 The HOWTO define is horrible and will go away.
384
385 .#define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
386 . {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
387
388 DESCRIPTION
389 And will be replaced with the totally magic way. But for the
390 moment, we are compatible, so do it this way.
391
392 .#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN)
393 .
394
395 DESCRIPTION
396 This is used to fill in an empty howto entry in an array.
397
398 .#define EMPTY_HOWTO(C) \
399 . HOWTO((C),0,0,0,false,0,complain_overflow_dont,NULL,NULL,false,0,0,false)
400 .
401
402 DESCRIPTION
403 Helper routine to turn a symbol into a relocation value.
404
405 .#define HOWTO_PREPARE(relocation, symbol) \
406 . { \
407 . if (symbol != (asymbol *)NULL) { \
408 . if (bfd_is_com_section (symbol->section)) { \
409 . relocation = 0; \
410 . } \
411 . else { \
412 . relocation = symbol->value; \
413 . } \
414 . } \
415 .}
416
417 */
418
419 /*
420 FUNCTION
421 bfd_get_reloc_size
422
423 SYNOPSIS
424 unsigned int bfd_get_reloc_size (reloc_howto_type *);
425
426 DESCRIPTION
427 For a reloc_howto_type that operates on a fixed number of bytes,
428 this returns the number of bytes operated on.
429 */
430
431 unsigned int
432 bfd_get_reloc_size (howto)
433 reloc_howto_type *howto;
434 {
435 switch (howto->size)
436 {
437 case 0: return 1;
438 case 1: return 2;
439 case 2: return 4;
440 case 3: return 0;
441 case 4: return 8;
442 case 8: return 16;
443 case -2: return 4;
444 default: abort ();
445 }
446 }
447
448 /*
449 TYPEDEF
450 arelent_chain
451
452 DESCRIPTION
453
454 How relocs are tied together in an <<asection>>:
455
456 .typedef struct relent_chain {
457 . arelent relent;
458 . struct relent_chain *next;
459 .} arelent_chain;
460
461 */
462
463 /* N_ONES produces N one bits, without overflowing machine arithmetic. */
464 #define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
465
466 /*
467 FUNCTION
468 bfd_check_overflow
469
470 SYNOPSIS
471 bfd_reloc_status_type
472 bfd_check_overflow
473 (enum complain_overflow how,
474 unsigned int bitsize,
475 unsigned int rightshift,
476 unsigned int addrsize,
477 bfd_vma relocation);
478
479 DESCRIPTION
480 Perform overflow checking on @var{relocation} which has
481 @var{bitsize} significant bits and will be shifted right by
482 @var{rightshift} bits, on a machine with addresses containing
483 @var{addrsize} significant bits. The result is either of
484 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
485
486 */
487
488 bfd_reloc_status_type
489 bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
490 enum complain_overflow how;
491 unsigned int bitsize;
492 unsigned int rightshift;
493 unsigned int addrsize;
494 bfd_vma relocation;
495 {
496 bfd_vma fieldmask, addrmask, signmask, ss, a;
497 bfd_reloc_status_type flag = bfd_reloc_ok;
498
499 a = relocation;
500
501 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
502 we'll be permissive: extra bits in the field mask will
503 automatically extend the address mask for purposes of the
504 overflow check. */
505 fieldmask = N_ONES (bitsize);
506 addrmask = N_ONES (addrsize) | fieldmask;
507
508 switch (how)
509 {
510 case complain_overflow_dont:
511 break;
512
513 case complain_overflow_signed:
514 /* If any sign bits are set, all sign bits must be set. That
515 is, A must be a valid negative address after shifting. */
516 a = (a & addrmask) >> rightshift;
517 signmask = ~ (fieldmask >> 1);
518 ss = a & signmask;
519 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
520 flag = bfd_reloc_overflow;
521 break;
522
523 case complain_overflow_unsigned:
524 /* We have an overflow if the address does not fit in the field. */
525 a = (a & addrmask) >> rightshift;
526 if ((a & ~ fieldmask) != 0)
527 flag = bfd_reloc_overflow;
528 break;
529
530 case complain_overflow_bitfield:
531 /* Bitfields are sometimes signed, sometimes unsigned. We
532 explicitly allow an address wrap too, which means a bitfield
533 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
534 if the value has some, but not all, bits set outside the
535 field. */
536 a >>= rightshift;
537 ss = a & ~ fieldmask;
538 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
539 flag = bfd_reloc_overflow;
540 break;
541
542 default:
543 abort ();
544 }
545
546 return flag;
547 }
548
549 /*
550 FUNCTION
551 bfd_perform_relocation
552
553 SYNOPSIS
554 bfd_reloc_status_type
555 bfd_perform_relocation
556 (bfd *abfd,
557 arelent *reloc_entry,
558 PTR data,
559 asection *input_section,
560 bfd *output_bfd,
561 char **error_message);
562
563 DESCRIPTION
564 If @var{output_bfd} is supplied to this function, the
565 generated image will be relocatable; the relocations are
566 copied to the output file after they have been changed to
567 reflect the new state of the world. There are two ways of
568 reflecting the results of partial linkage in an output file:
569 by modifying the output data in place, and by modifying the
570 relocation record. Some native formats (e.g., basic a.out and
571 basic coff) have no way of specifying an addend in the
572 relocation type, so the addend has to go in the output data.
573 This is no big deal since in these formats the output data
574 slot will always be big enough for the addend. Complex reloc
575 types with addends were invented to solve just this problem.
576 The @var{error_message} argument is set to an error message if
577 this return @code{bfd_reloc_dangerous}.
578
579 */
580
581 bfd_reloc_status_type
582 bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
583 error_message)
584 bfd *abfd;
585 arelent *reloc_entry;
586 PTR data;
587 asection *input_section;
588 bfd *output_bfd;
589 char **error_message;
590 {
591 bfd_vma relocation;
592 bfd_reloc_status_type flag = bfd_reloc_ok;
593 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
594 bfd_vma output_base = 0;
595 reloc_howto_type *howto = reloc_entry->howto;
596 asection *reloc_target_output_section;
597 asymbol *symbol;
598
599 symbol = *(reloc_entry->sym_ptr_ptr);
600 if (bfd_is_abs_section (symbol->section)
601 && output_bfd != (bfd *) NULL)
602 {
603 reloc_entry->address += input_section->output_offset;
604 return bfd_reloc_ok;
605 }
606
607 /* If we are not producing relocateable output, return an error if
608 the symbol is not defined. An undefined weak symbol is
609 considered to have a value of zero (SVR4 ABI, p. 4-27). */
610 if (bfd_is_und_section (symbol->section)
611 && (symbol->flags & BSF_WEAK) == 0
612 && output_bfd == (bfd *) NULL)
613 flag = bfd_reloc_undefined;
614
615 /* If there is a function supplied to handle this relocation type,
616 call it. It'll return `bfd_reloc_continue' if further processing
617 can be done. */
618 if (howto->special_function)
619 {
620 bfd_reloc_status_type cont;
621 cont = howto->special_function (abfd, reloc_entry, symbol, data,
622 input_section, output_bfd,
623 error_message);
624 if (cont != bfd_reloc_continue)
625 return cont;
626 }
627
628 /* Is the address of the relocation really within the section? */
629 if (reloc_entry->address > input_section->_cooked_size /
630 bfd_octets_per_byte (abfd))
631 return bfd_reloc_outofrange;
632
633 /* Work out which section the relocation is targetted at and the
634 initial relocation command value. */
635
636 /* Get symbol value. (Common symbols are special.) */
637 if (bfd_is_com_section (symbol->section))
638 relocation = 0;
639 else
640 relocation = symbol->value;
641
642 reloc_target_output_section = symbol->section->output_section;
643
644 /* Convert input-section-relative symbol value to absolute. */
645 if (output_bfd && howto->partial_inplace == false)
646 output_base = 0;
647 else
648 output_base = reloc_target_output_section->vma;
649
650 relocation += output_base + symbol->section->output_offset;
651
652 /* Add in supplied addend. */
653 relocation += reloc_entry->addend;
654
655 /* Here the variable relocation holds the final address of the
656 symbol we are relocating against, plus any addend. */
657
658 if (howto->pc_relative == true)
659 {
660 /* This is a PC relative relocation. We want to set RELOCATION
661 to the distance between the address of the symbol and the
662 location. RELOCATION is already the address of the symbol.
663
664 We start by subtracting the address of the section containing
665 the location.
666
667 If pcrel_offset is set, we must further subtract the position
668 of the location within the section. Some targets arrange for
669 the addend to be the negative of the position of the location
670 within the section; for example, i386-aout does this. For
671 i386-aout, pcrel_offset is false. Some other targets do not
672 include the position of the location; for example, m88kbcs,
673 or ELF. For those targets, pcrel_offset is true.
674
675 If we are producing relocateable output, then we must ensure
676 that this reloc will be correctly computed when the final
677 relocation is done. If pcrel_offset is false we want to wind
678 up with the negative of the location within the section,
679 which means we must adjust the existing addend by the change
680 in the location within the section. If pcrel_offset is true
681 we do not want to adjust the existing addend at all.
682
683 FIXME: This seems logical to me, but for the case of
684 producing relocateable output it is not what the code
685 actually does. I don't want to change it, because it seems
686 far too likely that something will break. */
687
688 relocation -=
689 input_section->output_section->vma + input_section->output_offset;
690
691 if (howto->pcrel_offset == true)
692 relocation -= reloc_entry->address;
693 }
694
695 if (output_bfd != (bfd *) NULL)
696 {
697 if (howto->partial_inplace == false)
698 {
699 /* This is a partial relocation, and we want to apply the relocation
700 to the reloc entry rather than the raw data. Modify the reloc
701 inplace to reflect what we now know. */
702 reloc_entry->addend = relocation;
703 reloc_entry->address += input_section->output_offset;
704 return flag;
705 }
706 else
707 {
708 /* This is a partial relocation, but inplace, so modify the
709 reloc record a bit.
710
711 If we've relocated with a symbol with a section, change
712 into a ref to the section belonging to the symbol. */
713
714 reloc_entry->address += input_section->output_offset;
715
716 /* WTF?? */
717 if (abfd->xvec->flavour == bfd_target_coff_flavour
718 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
719 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
720 {
721 #if 1
722 /* For m68k-coff, the addend was being subtracted twice during
723 relocation with -r. Removing the line below this comment
724 fixes that problem; see PR 2953.
725
726 However, Ian wrote the following, regarding removing the line below,
727 which explains why it is still enabled: --djm
728
729 If you put a patch like that into BFD you need to check all the COFF
730 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
731 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
732 problem in a different way. There may very well be a reason that the
733 code works as it does.
734
735 Hmmm. The first obvious point is that bfd_perform_relocation should
736 not have any tests that depend upon the flavour. It's seem like
737 entirely the wrong place for such a thing. The second obvious point
738 is that the current code ignores the reloc addend when producing
739 relocateable output for COFF. That's peculiar. In fact, I really
740 have no idea what the point of the line you want to remove is.
741
742 A typical COFF reloc subtracts the old value of the symbol and adds in
743 the new value to the location in the object file (if it's a pc
744 relative reloc it adds the difference between the symbol value and the
745 location). When relocating we need to preserve that property.
746
747 BFD handles this by setting the addend to the negative of the old
748 value of the symbol. Unfortunately it handles common symbols in a
749 non-standard way (it doesn't subtract the old value) but that's a
750 different story (we can't change it without losing backward
751 compatibility with old object files) (coff-i386 does subtract the old
752 value, to be compatible with existing coff-i386 targets, like SCO).
753
754 So everything works fine when not producing relocateable output. When
755 we are producing relocateable output, logically we should do exactly
756 what we do when not producing relocateable output. Therefore, your
757 patch is correct. In fact, it should probably always just set
758 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
759 add the value into the object file. This won't hurt the COFF code,
760 which doesn't use the addend; I'm not sure what it will do to other
761 formats (the thing to check for would be whether any formats both use
762 the addend and set partial_inplace).
763
764 When I wanted to make coff-i386 produce relocateable output, I ran
765 into the problem that you are running into: I wanted to remove that
766 line. Rather than risk it, I made the coff-i386 relocs use a special
767 function; it's coff_i386_reloc in coff-i386.c. The function
768 specifically adds the addend field into the object file, knowing that
769 bfd_perform_relocation is not going to. If you remove that line, then
770 coff-i386.c will wind up adding the addend field in twice. It's
771 trivial to fix; it just needs to be done.
772
773 The problem with removing the line is just that it may break some
774 working code. With BFD it's hard to be sure of anything. The right
775 way to deal with this is simply to build and test at least all the
776 supported COFF targets. It should be straightforward if time and disk
777 space consuming. For each target:
778 1) build the linker
779 2) generate some executable, and link it using -r (I would
780 probably use paranoia.o and link against newlib/libc.a, which
781 for all the supported targets would be available in
782 /usr/cygnus/progressive/H-host/target/lib/libc.a).
783 3) make the change to reloc.c
784 4) rebuild the linker
785 5) repeat step 2
786 6) if the resulting object files are the same, you have at least
787 made it no worse
788 7) if they are different you have to figure out which version is
789 right
790 */
791 relocation -= reloc_entry->addend;
792 #endif
793 reloc_entry->addend = 0;
794 }
795 else
796 {
797 reloc_entry->addend = relocation;
798 }
799 }
800 }
801 else
802 {
803 reloc_entry->addend = 0;
804 }
805
806 /* FIXME: This overflow checking is incomplete, because the value
807 might have overflowed before we get here. For a correct check we
808 need to compute the value in a size larger than bitsize, but we
809 can't reasonably do that for a reloc the same size as a host
810 machine word.
811 FIXME: We should also do overflow checking on the result after
812 adding in the value contained in the object file. */
813 if (howto->complain_on_overflow != complain_overflow_dont
814 && flag == bfd_reloc_ok)
815 flag = bfd_check_overflow (howto->complain_on_overflow,
816 howto->bitsize,
817 howto->rightshift,
818 bfd_arch_bits_per_address (abfd),
819 relocation);
820
821 /*
822 Either we are relocating all the way, or we don't want to apply
823 the relocation to the reloc entry (probably because there isn't
824 any room in the output format to describe addends to relocs)
825 */
826
827 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
828 (OSF version 1.3, compiler version 3.11). It miscompiles the
829 following program:
830
831 struct str
832 {
833 unsigned int i0;
834 } s = { 0 };
835
836 int
837 main ()
838 {
839 unsigned long x;
840
841 x = 0x100000000;
842 x <<= (unsigned long) s.i0;
843 if (x == 0)
844 printf ("failed\n");
845 else
846 printf ("succeeded (%lx)\n", x);
847 }
848 */
849
850 relocation >>= (bfd_vma) howto->rightshift;
851
852 /* Shift everything up to where it's going to be used */
853
854 relocation <<= (bfd_vma) howto->bitpos;
855
856 /* Wait for the day when all have the mask in them */
857
858 /* What we do:
859 i instruction to be left alone
860 o offset within instruction
861 r relocation offset to apply
862 S src mask
863 D dst mask
864 N ~dst mask
865 A part 1
866 B part 2
867 R result
868
869 Do this:
870 (( i i i i i o o o o o from bfd_get<size>
871 and S S S S S) to get the size offset we want
872 + r r r r r r r r r r) to get the final value to place
873 and D D D D D to chop to right size
874 -----------------------
875 = A A A A A
876 And this:
877 ( i i i i i o o o o o from bfd_get<size>
878 and N N N N N ) get instruction
879 -----------------------
880 = B B B B B
881
882 And then:
883 ( B B B B B
884 or A A A A A)
885 -----------------------
886 = R R R R R R R R R R put into bfd_put<size>
887 */
888
889 #define DOIT(x) \
890 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
891
892 switch (howto->size)
893 {
894 case 0:
895 {
896 char x = bfd_get_8 (abfd, (char *) data + octets);
897 DOIT (x);
898 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
899 }
900 break;
901
902 case 1:
903 {
904 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
905 DOIT (x);
906 bfd_put_16 (abfd, x, (unsigned char *) data + octets);
907 }
908 break;
909 case 2:
910 {
911 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
912 DOIT (x);
913 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
914 }
915 break;
916 case -2:
917 {
918 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
919 relocation = -relocation;
920 DOIT (x);
921 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
922 }
923 break;
924
925 case -1:
926 {
927 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
928 relocation = -relocation;
929 DOIT (x);
930 bfd_put_16 (abfd, x, (bfd_byte *) data + octets);
931 }
932 break;
933
934 case 3:
935 /* Do nothing */
936 break;
937
938 case 4:
939 #ifdef BFD64
940 {
941 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
942 DOIT (x);
943 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
944 }
945 #else
946 abort ();
947 #endif
948 break;
949 default:
950 return bfd_reloc_other;
951 }
952
953 return flag;
954 }
955
956 /*
957 FUNCTION
958 bfd_install_relocation
959
960 SYNOPSIS
961 bfd_reloc_status_type
962 bfd_install_relocation
963 (bfd *abfd,
964 arelent *reloc_entry,
965 PTR data, bfd_vma data_start,
966 asection *input_section,
967 char **error_message);
968
969 DESCRIPTION
970 This looks remarkably like <<bfd_perform_relocation>>, except it
971 does not expect that the section contents have been filled in.
972 I.e., it's suitable for use when creating, rather than applying
973 a relocation.
974
975 For now, this function should be considered reserved for the
976 assembler.
977
978 */
979
980 bfd_reloc_status_type
981 bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
982 input_section, error_message)
983 bfd *abfd;
984 arelent *reloc_entry;
985 PTR data_start;
986 bfd_vma data_start_offset;
987 asection *input_section;
988 char **error_message;
989 {
990 bfd_vma relocation;
991 bfd_reloc_status_type flag = bfd_reloc_ok;
992 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
993 bfd_vma output_base = 0;
994 reloc_howto_type *howto = reloc_entry->howto;
995 asection *reloc_target_output_section;
996 asymbol *symbol;
997 bfd_byte *data;
998
999 symbol = *(reloc_entry->sym_ptr_ptr);
1000 if (bfd_is_abs_section (symbol->section))
1001 {
1002 reloc_entry->address += input_section->output_offset;
1003 return bfd_reloc_ok;
1004 }
1005
1006 /* If there is a function supplied to handle this relocation type,
1007 call it. It'll return `bfd_reloc_continue' if further processing
1008 can be done. */
1009 if (howto->special_function)
1010 {
1011 bfd_reloc_status_type cont;
1012
1013 /* XXX - The special_function calls haven't been fixed up to deal
1014 with creating new relocations and section contents. */
1015 cont = howto->special_function (abfd, reloc_entry, symbol,
1016 /* XXX - Non-portable! */
1017 ((bfd_byte *) data_start
1018 - data_start_offset),
1019 input_section, abfd, error_message);
1020 if (cont != bfd_reloc_continue)
1021 return cont;
1022 }
1023
1024 /* Is the address of the relocation really within the section? */
1025 if (reloc_entry->address > input_section->_cooked_size)
1026 return bfd_reloc_outofrange;
1027
1028 /* Work out which section the relocation is targetted at and the
1029 initial relocation command value. */
1030
1031 /* Get symbol value. (Common symbols are special.) */
1032 if (bfd_is_com_section (symbol->section))
1033 relocation = 0;
1034 else
1035 relocation = symbol->value;
1036
1037 reloc_target_output_section = symbol->section->output_section;
1038
1039 /* Convert input-section-relative symbol value to absolute. */
1040 if (howto->partial_inplace == false)
1041 output_base = 0;
1042 else
1043 output_base = reloc_target_output_section->vma;
1044
1045 relocation += output_base + symbol->section->output_offset;
1046
1047 /* Add in supplied addend. */
1048 relocation += reloc_entry->addend;
1049
1050 /* Here the variable relocation holds the final address of the
1051 symbol we are relocating against, plus any addend. */
1052
1053 if (howto->pc_relative == true)
1054 {
1055 /* This is a PC relative relocation. We want to set RELOCATION
1056 to the distance between the address of the symbol and the
1057 location. RELOCATION is already the address of the symbol.
1058
1059 We start by subtracting the address of the section containing
1060 the location.
1061
1062 If pcrel_offset is set, we must further subtract the position
1063 of the location within the section. Some targets arrange for
1064 the addend to be the negative of the position of the location
1065 within the section; for example, i386-aout does this. For
1066 i386-aout, pcrel_offset is false. Some other targets do not
1067 include the position of the location; for example, m88kbcs,
1068 or ELF. For those targets, pcrel_offset is true.
1069
1070 If we are producing relocateable output, then we must ensure
1071 that this reloc will be correctly computed when the final
1072 relocation is done. If pcrel_offset is false we want to wind
1073 up with the negative of the location within the section,
1074 which means we must adjust the existing addend by the change
1075 in the location within the section. If pcrel_offset is true
1076 we do not want to adjust the existing addend at all.
1077
1078 FIXME: This seems logical to me, but for the case of
1079 producing relocateable output it is not what the code
1080 actually does. I don't want to change it, because it seems
1081 far too likely that something will break. */
1082
1083 relocation -=
1084 input_section->output_section->vma + input_section->output_offset;
1085
1086 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1087 relocation -= reloc_entry->address;
1088 }
1089
1090 if (howto->partial_inplace == false)
1091 {
1092 /* This is a partial relocation, and we want to apply the relocation
1093 to the reloc entry rather than the raw data. Modify the reloc
1094 inplace to reflect what we now know. */
1095 reloc_entry->addend = relocation;
1096 reloc_entry->address += input_section->output_offset;
1097 return flag;
1098 }
1099 else
1100 {
1101 /* This is a partial relocation, but inplace, so modify the
1102 reloc record a bit.
1103
1104 If we've relocated with a symbol with a section, change
1105 into a ref to the section belonging to the symbol. */
1106
1107 reloc_entry->address += input_section->output_offset;
1108
1109 /* WTF?? */
1110 if (abfd->xvec->flavour == bfd_target_coff_flavour
1111 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1112 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1113 {
1114 #if 1
1115 /* For m68k-coff, the addend was being subtracted twice during
1116 relocation with -r. Removing the line below this comment
1117 fixes that problem; see PR 2953.
1118
1119 However, Ian wrote the following, regarding removing the line below,
1120 which explains why it is still enabled: --djm
1121
1122 If you put a patch like that into BFD you need to check all the COFF
1123 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1124 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1125 problem in a different way. There may very well be a reason that the
1126 code works as it does.
1127
1128 Hmmm. The first obvious point is that bfd_install_relocation should
1129 not have any tests that depend upon the flavour. It's seem like
1130 entirely the wrong place for such a thing. The second obvious point
1131 is that the current code ignores the reloc addend when producing
1132 relocateable output for COFF. That's peculiar. In fact, I really
1133 have no idea what the point of the line you want to remove is.
1134
1135 A typical COFF reloc subtracts the old value of the symbol and adds in
1136 the new value to the location in the object file (if it's a pc
1137 relative reloc it adds the difference between the symbol value and the
1138 location). When relocating we need to preserve that property.
1139
1140 BFD handles this by setting the addend to the negative of the old
1141 value of the symbol. Unfortunately it handles common symbols in a
1142 non-standard way (it doesn't subtract the old value) but that's a
1143 different story (we can't change it without losing backward
1144 compatibility with old object files) (coff-i386 does subtract the old
1145 value, to be compatible with existing coff-i386 targets, like SCO).
1146
1147 So everything works fine when not producing relocateable output. When
1148 we are producing relocateable output, logically we should do exactly
1149 what we do when not producing relocateable output. Therefore, your
1150 patch is correct. In fact, it should probably always just set
1151 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1152 add the value into the object file. This won't hurt the COFF code,
1153 which doesn't use the addend; I'm not sure what it will do to other
1154 formats (the thing to check for would be whether any formats both use
1155 the addend and set partial_inplace).
1156
1157 When I wanted to make coff-i386 produce relocateable output, I ran
1158 into the problem that you are running into: I wanted to remove that
1159 line. Rather than risk it, I made the coff-i386 relocs use a special
1160 function; it's coff_i386_reloc in coff-i386.c. The function
1161 specifically adds the addend field into the object file, knowing that
1162 bfd_install_relocation is not going to. If you remove that line, then
1163 coff-i386.c will wind up adding the addend field in twice. It's
1164 trivial to fix; it just needs to be done.
1165
1166 The problem with removing the line is just that it may break some
1167 working code. With BFD it's hard to be sure of anything. The right
1168 way to deal with this is simply to build and test at least all the
1169 supported COFF targets. It should be straightforward if time and disk
1170 space consuming. For each target:
1171 1) build the linker
1172 2) generate some executable, and link it using -r (I would
1173 probably use paranoia.o and link against newlib/libc.a, which
1174 for all the supported targets would be available in
1175 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1176 3) make the change to reloc.c
1177 4) rebuild the linker
1178 5) repeat step 2
1179 6) if the resulting object files are the same, you have at least
1180 made it no worse
1181 7) if they are different you have to figure out which version is
1182 right
1183 */
1184 relocation -= reloc_entry->addend;
1185 #endif
1186 reloc_entry->addend = 0;
1187 }
1188 else
1189 {
1190 reloc_entry->addend = relocation;
1191 }
1192 }
1193
1194 /* FIXME: This overflow checking is incomplete, because the value
1195 might have overflowed before we get here. For a correct check we
1196 need to compute the value in a size larger than bitsize, but we
1197 can't reasonably do that for a reloc the same size as a host
1198 machine word.
1199 FIXME: We should also do overflow checking on the result after
1200 adding in the value contained in the object file. */
1201 if (howto->complain_on_overflow != complain_overflow_dont)
1202 flag = bfd_check_overflow (howto->complain_on_overflow,
1203 howto->bitsize,
1204 howto->rightshift,
1205 bfd_arch_bits_per_address (abfd),
1206 relocation);
1207
1208 /*
1209 Either we are relocating all the way, or we don't want to apply
1210 the relocation to the reloc entry (probably because there isn't
1211 any room in the output format to describe addends to relocs)
1212 */
1213
1214 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1215 (OSF version 1.3, compiler version 3.11). It miscompiles the
1216 following program:
1217
1218 struct str
1219 {
1220 unsigned int i0;
1221 } s = { 0 };
1222
1223 int
1224 main ()
1225 {
1226 unsigned long x;
1227
1228 x = 0x100000000;
1229 x <<= (unsigned long) s.i0;
1230 if (x == 0)
1231 printf ("failed\n");
1232 else
1233 printf ("succeeded (%lx)\n", x);
1234 }
1235 */
1236
1237 relocation >>= (bfd_vma) howto->rightshift;
1238
1239 /* Shift everything up to where it's going to be used */
1240
1241 relocation <<= (bfd_vma) howto->bitpos;
1242
1243 /* Wait for the day when all have the mask in them */
1244
1245 /* What we do:
1246 i instruction to be left alone
1247 o offset within instruction
1248 r relocation offset to apply
1249 S src mask
1250 D dst mask
1251 N ~dst mask
1252 A part 1
1253 B part 2
1254 R result
1255
1256 Do this:
1257 (( i i i i i o o o o o from bfd_get<size>
1258 and S S S S S) to get the size offset we want
1259 + r r r r r r r r r r) to get the final value to place
1260 and D D D D D to chop to right size
1261 -----------------------
1262 = A A A A A
1263 And this:
1264 ( i i i i i o o o o o from bfd_get<size>
1265 and N N N N N ) get instruction
1266 -----------------------
1267 = B B B B B
1268
1269 And then:
1270 ( B B B B B
1271 or A A A A A)
1272 -----------------------
1273 = R R R R R R R R R R put into bfd_put<size>
1274 */
1275
1276 #define DOIT(x) \
1277 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1278
1279 data = (bfd_byte *) data_start + (octets - data_start_offset);
1280
1281 switch (howto->size)
1282 {
1283 case 0:
1284 {
1285 char x = bfd_get_8 (abfd, (char *) data);
1286 DOIT (x);
1287 bfd_put_8 (abfd, x, (unsigned char *) data);
1288 }
1289 break;
1290
1291 case 1:
1292 {
1293 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1294 DOIT (x);
1295 bfd_put_16 (abfd, x, (unsigned char *) data);
1296 }
1297 break;
1298 case 2:
1299 {
1300 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1301 DOIT (x);
1302 bfd_put_32 (abfd, x, (bfd_byte *) data);
1303 }
1304 break;
1305 case -2:
1306 {
1307 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1308 relocation = -relocation;
1309 DOIT (x);
1310 bfd_put_32 (abfd, x, (bfd_byte *) data);
1311 }
1312 break;
1313
1314 case 3:
1315 /* Do nothing */
1316 break;
1317
1318 case 4:
1319 {
1320 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1321 DOIT (x);
1322 bfd_put_64 (abfd, x, (bfd_byte *) data);
1323 }
1324 break;
1325 default:
1326 return bfd_reloc_other;
1327 }
1328
1329 return flag;
1330 }
1331
1332 /* This relocation routine is used by some of the backend linkers.
1333 They do not construct asymbol or arelent structures, so there is no
1334 reason for them to use bfd_perform_relocation. Also,
1335 bfd_perform_relocation is so hacked up it is easier to write a new
1336 function than to try to deal with it.
1337
1338 This routine does a final relocation. Whether it is useful for a
1339 relocateable link depends upon how the object format defines
1340 relocations.
1341
1342 FIXME: This routine ignores any special_function in the HOWTO,
1343 since the existing special_function values have been written for
1344 bfd_perform_relocation.
1345
1346 HOWTO is the reloc howto information.
1347 INPUT_BFD is the BFD which the reloc applies to.
1348 INPUT_SECTION is the section which the reloc applies to.
1349 CONTENTS is the contents of the section.
1350 ADDRESS is the address of the reloc within INPUT_SECTION.
1351 VALUE is the value of the symbol the reloc refers to.
1352 ADDEND is the addend of the reloc. */
1353
1354 bfd_reloc_status_type
1355 _bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1356 value, addend)
1357 reloc_howto_type *howto;
1358 bfd *input_bfd;
1359 asection *input_section;
1360 bfd_byte *contents;
1361 bfd_vma address;
1362 bfd_vma value;
1363 bfd_vma addend;
1364 {
1365 bfd_vma relocation;
1366
1367 /* Sanity check the address. */
1368 if (address > input_section->_raw_size)
1369 return bfd_reloc_outofrange;
1370
1371 /* This function assumes that we are dealing with a basic relocation
1372 against a symbol. We want to compute the value of the symbol to
1373 relocate to. This is just VALUE, the value of the symbol, plus
1374 ADDEND, any addend associated with the reloc. */
1375 relocation = value + addend;
1376
1377 /* If the relocation is PC relative, we want to set RELOCATION to
1378 the distance between the symbol (currently in RELOCATION) and the
1379 location we are relocating. Some targets (e.g., i386-aout)
1380 arrange for the contents of the section to be the negative of the
1381 offset of the location within the section; for such targets
1382 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1383 simply leave the contents of the section as zero; for such
1384 targets pcrel_offset is true. If pcrel_offset is false we do not
1385 need to subtract out the offset of the location within the
1386 section (which is just ADDRESS). */
1387 if (howto->pc_relative)
1388 {
1389 relocation -= (input_section->output_section->vma
1390 + input_section->output_offset);
1391 if (howto->pcrel_offset)
1392 relocation -= address;
1393 }
1394
1395 return _bfd_relocate_contents (howto, input_bfd, relocation,
1396 contents + address);
1397 }
1398
1399 /* Relocate a given location using a given value and howto. */
1400
1401 bfd_reloc_status_type
1402 _bfd_relocate_contents (howto, input_bfd, relocation, location)
1403 reloc_howto_type *howto;
1404 bfd *input_bfd;
1405 bfd_vma relocation;
1406 bfd_byte *location;
1407 {
1408 int size;
1409 bfd_vma x = 0;
1410 bfd_reloc_status_type flag;
1411 unsigned int rightshift = howto->rightshift;
1412 unsigned int bitpos = howto->bitpos;
1413
1414 /* If the size is negative, negate RELOCATION. This isn't very
1415 general. */
1416 if (howto->size < 0)
1417 relocation = -relocation;
1418
1419 /* Get the value we are going to relocate. */
1420 size = bfd_get_reloc_size (howto);
1421 switch (size)
1422 {
1423 default:
1424 case 0:
1425 abort ();
1426 case 1:
1427 x = bfd_get_8 (input_bfd, location);
1428 break;
1429 case 2:
1430 x = bfd_get_16 (input_bfd, location);
1431 break;
1432 case 4:
1433 x = bfd_get_32 (input_bfd, location);
1434 break;
1435 case 8:
1436 #ifdef BFD64
1437 x = bfd_get_64 (input_bfd, location);
1438 #else
1439 abort ();
1440 #endif
1441 break;
1442 }
1443
1444 /* Check for overflow. FIXME: We may drop bits during the addition
1445 which we don't check for. We must either check at every single
1446 operation, which would be tedious, or we must do the computations
1447 in a type larger than bfd_vma, which would be inefficient. */
1448 flag = bfd_reloc_ok;
1449 if (howto->complain_on_overflow != complain_overflow_dont)
1450 {
1451 bfd_vma addrmask, fieldmask, signmask, ss;
1452 bfd_vma a, b, sum;
1453
1454 /* Get the values to be added together. For signed and unsigned
1455 relocations, we assume that all values should be truncated to
1456 the size of an address. For bitfields, all the bits matter.
1457 See also bfd_check_overflow. */
1458 fieldmask = N_ONES (howto->bitsize);
1459 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1460 a = relocation;
1461 b = x & howto->src_mask;
1462
1463 switch (howto->complain_on_overflow)
1464 {
1465 case complain_overflow_signed:
1466 a = (a & addrmask) >> rightshift;
1467
1468 /* If any sign bits are set, all sign bits must be set.
1469 That is, A must be a valid negative address after
1470 shifting. */
1471 signmask = ~ (fieldmask >> 1);
1472 ss = a & signmask;
1473 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
1474 flag = bfd_reloc_overflow;
1475
1476 /* We only need this next bit of code if the sign bit of B
1477 is below the sign bit of A. This would only happen if
1478 SRC_MASK had fewer bits than BITSIZE. Note that if
1479 SRC_MASK has more bits than BITSIZE, we can get into
1480 trouble; we would need to verify that B is in range, as
1481 we do for A above. */
1482 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1483
1484 /* Set all the bits above the sign bit. */
1485 b = (b ^ signmask) - signmask;
1486
1487 b = (b & addrmask) >> bitpos;
1488
1489 /* Now we can do the addition. */
1490 sum = a + b;
1491
1492 /* See if the result has the correct sign. Bits above the
1493 sign bit are junk now; ignore them. If the sum is
1494 positive, make sure we did not have all negative inputs;
1495 if the sum is negative, make sure we did not have all
1496 positive inputs. The test below looks only at the sign
1497 bits, and it really just
1498 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1499 */
1500 signmask = (fieldmask >> 1) + 1;
1501 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1502 flag = bfd_reloc_overflow;
1503
1504 break;
1505
1506 case complain_overflow_unsigned:
1507 /* Checking for an unsigned overflow is relatively easy:
1508 trim the addresses and add, and trim the result as well.
1509 Overflow is normally indicated when the result does not
1510 fit in the field. However, we also need to consider the
1511 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1512 input is 0x80000000, and bfd_vma is only 32 bits; then we
1513 will get sum == 0, but there is an overflow, since the
1514 inputs did not fit in the field. Instead of doing a
1515 separate test, we can check for this by or-ing in the
1516 operands when testing for the sum overflowing its final
1517 field. */
1518 a = (a & addrmask) >> rightshift;
1519 b = (b & addrmask) >> bitpos;
1520 sum = (a + b) & addrmask;
1521 if ((a | b | sum) & ~ fieldmask)
1522 flag = bfd_reloc_overflow;
1523
1524 break;
1525
1526 case complain_overflow_bitfield:
1527 /* Much like the signed check, but for a field one bit
1528 wider, and no trimming inputs with addrmask. We allow a
1529 bitfield to represent numbers in the range -2**n to
1530 2**n-1, where n is the number of bits in the field.
1531 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1532 overflow, which is exactly what we want. */
1533 a >>= rightshift;
1534
1535 signmask = ~ fieldmask;
1536 ss = a & signmask;
1537 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1538 flag = bfd_reloc_overflow;
1539
1540 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1541 b = (b ^ signmask) - signmask;
1542
1543 b >>= bitpos;
1544
1545 sum = a + b;
1546
1547 /* We mask with addrmask here to explicitly allow an address
1548 wrap-around. The Linux kernel relies on it, and it is
1549 the only way to write assembler code which can run when
1550 loaded at a location 0x80000000 away from the location at
1551 which it is linked. */
1552 signmask = fieldmask + 1;
1553 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
1554 flag = bfd_reloc_overflow;
1555
1556 break;
1557
1558 default:
1559 abort ();
1560 }
1561 }
1562
1563 /* Put RELOCATION in the right bits. */
1564 relocation >>= (bfd_vma) rightshift;
1565 relocation <<= (bfd_vma) bitpos;
1566
1567 /* Add RELOCATION to the right bits of X. */
1568 x = ((x & ~howto->dst_mask)
1569 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1570
1571 /* Put the relocated value back in the object file. */
1572 switch (size)
1573 {
1574 default:
1575 case 0:
1576 abort ();
1577 case 1:
1578 bfd_put_8 (input_bfd, x, location);
1579 break;
1580 case 2:
1581 bfd_put_16 (input_bfd, x, location);
1582 break;
1583 case 4:
1584 bfd_put_32 (input_bfd, x, location);
1585 break;
1586 case 8:
1587 #ifdef BFD64
1588 bfd_put_64 (input_bfd, x, location);
1589 #else
1590 abort ();
1591 #endif
1592 break;
1593 }
1594
1595 return flag;
1596 }
1597
1598 /*
1599 DOCDD
1600 INODE
1601 howto manager, , typedef arelent, Relocations
1602
1603 SECTION
1604 The howto manager
1605
1606 When an application wants to create a relocation, but doesn't
1607 know what the target machine might call it, it can find out by
1608 using this bit of code.
1609
1610 */
1611
1612 /*
1613 TYPEDEF
1614 bfd_reloc_code_type
1615
1616 DESCRIPTION
1617 The insides of a reloc code. The idea is that, eventually, there
1618 will be one enumerator for every type of relocation we ever do.
1619 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1620 return a howto pointer.
1621
1622 This does mean that the application must determine the correct
1623 enumerator value; you can't get a howto pointer from a random set
1624 of attributes.
1625
1626 SENUM
1627 bfd_reloc_code_real
1628
1629 ENUM
1630 BFD_RELOC_64
1631 ENUMX
1632 BFD_RELOC_32
1633 ENUMX
1634 BFD_RELOC_26
1635 ENUMX
1636 BFD_RELOC_24
1637 ENUMX
1638 BFD_RELOC_16
1639 ENUMX
1640 BFD_RELOC_14
1641 ENUMX
1642 BFD_RELOC_8
1643 ENUMDOC
1644 Basic absolute relocations of N bits.
1645
1646 ENUM
1647 BFD_RELOC_64_PCREL
1648 ENUMX
1649 BFD_RELOC_32_PCREL
1650 ENUMX
1651 BFD_RELOC_24_PCREL
1652 ENUMX
1653 BFD_RELOC_16_PCREL
1654 ENUMX
1655 BFD_RELOC_12_PCREL
1656 ENUMX
1657 BFD_RELOC_8_PCREL
1658 ENUMDOC
1659 PC-relative relocations. Sometimes these are relative to the address
1660 of the relocation itself; sometimes they are relative to the start of
1661 the section containing the relocation. It depends on the specific target.
1662
1663 The 24-bit relocation is used in some Intel 960 configurations.
1664
1665 ENUM
1666 BFD_RELOC_32_GOT_PCREL
1667 ENUMX
1668 BFD_RELOC_16_GOT_PCREL
1669 ENUMX
1670 BFD_RELOC_8_GOT_PCREL
1671 ENUMX
1672 BFD_RELOC_32_GOTOFF
1673 ENUMX
1674 BFD_RELOC_16_GOTOFF
1675 ENUMX
1676 BFD_RELOC_LO16_GOTOFF
1677 ENUMX
1678 BFD_RELOC_HI16_GOTOFF
1679 ENUMX
1680 BFD_RELOC_HI16_S_GOTOFF
1681 ENUMX
1682 BFD_RELOC_8_GOTOFF
1683 ENUMX
1684 BFD_RELOC_64_PLT_PCREL
1685 ENUMX
1686 BFD_RELOC_32_PLT_PCREL
1687 ENUMX
1688 BFD_RELOC_24_PLT_PCREL
1689 ENUMX
1690 BFD_RELOC_16_PLT_PCREL
1691 ENUMX
1692 BFD_RELOC_8_PLT_PCREL
1693 ENUMX
1694 BFD_RELOC_64_PLTOFF
1695 ENUMX
1696 BFD_RELOC_32_PLTOFF
1697 ENUMX
1698 BFD_RELOC_16_PLTOFF
1699 ENUMX
1700 BFD_RELOC_LO16_PLTOFF
1701 ENUMX
1702 BFD_RELOC_HI16_PLTOFF
1703 ENUMX
1704 BFD_RELOC_HI16_S_PLTOFF
1705 ENUMX
1706 BFD_RELOC_8_PLTOFF
1707 ENUMDOC
1708 For ELF.
1709
1710 ENUM
1711 BFD_RELOC_68K_GLOB_DAT
1712 ENUMX
1713 BFD_RELOC_68K_JMP_SLOT
1714 ENUMX
1715 BFD_RELOC_68K_RELATIVE
1716 ENUMDOC
1717 Relocations used by 68K ELF.
1718
1719 ENUM
1720 BFD_RELOC_32_BASEREL
1721 ENUMX
1722 BFD_RELOC_16_BASEREL
1723 ENUMX
1724 BFD_RELOC_LO16_BASEREL
1725 ENUMX
1726 BFD_RELOC_HI16_BASEREL
1727 ENUMX
1728 BFD_RELOC_HI16_S_BASEREL
1729 ENUMX
1730 BFD_RELOC_8_BASEREL
1731 ENUMX
1732 BFD_RELOC_RVA
1733 ENUMDOC
1734 Linkage-table relative.
1735
1736 ENUM
1737 BFD_RELOC_8_FFnn
1738 ENUMDOC
1739 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1740
1741 ENUM
1742 BFD_RELOC_32_PCREL_S2
1743 ENUMX
1744 BFD_RELOC_16_PCREL_S2
1745 ENUMX
1746 BFD_RELOC_23_PCREL_S2
1747 ENUMDOC
1748 These PC-relative relocations are stored as word displacements --
1749 i.e., byte displacements shifted right two bits. The 30-bit word
1750 displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1751 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1752 signed 16-bit displacement is used on the MIPS, and the 23-bit
1753 displacement is used on the Alpha.
1754
1755 ENUM
1756 BFD_RELOC_HI22
1757 ENUMX
1758 BFD_RELOC_LO10
1759 ENUMDOC
1760 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1761 the target word. These are used on the SPARC.
1762
1763 ENUM
1764 BFD_RELOC_GPREL16
1765 ENUMX
1766 BFD_RELOC_GPREL32
1767 ENUMDOC
1768 For systems that allocate a Global Pointer register, these are
1769 displacements off that register. These relocation types are
1770 handled specially, because the value the register will have is
1771 decided relatively late.
1772
1773 ENUM
1774 BFD_RELOC_I960_CALLJ
1775 ENUMDOC
1776 Reloc types used for i960/b.out.
1777
1778 ENUM
1779 BFD_RELOC_NONE
1780 ENUMX
1781 BFD_RELOC_SPARC_WDISP22
1782 ENUMX
1783 BFD_RELOC_SPARC22
1784 ENUMX
1785 BFD_RELOC_SPARC13
1786 ENUMX
1787 BFD_RELOC_SPARC_GOT10
1788 ENUMX
1789 BFD_RELOC_SPARC_GOT13
1790 ENUMX
1791 BFD_RELOC_SPARC_GOT22
1792 ENUMX
1793 BFD_RELOC_SPARC_PC10
1794 ENUMX
1795 BFD_RELOC_SPARC_PC22
1796 ENUMX
1797 BFD_RELOC_SPARC_WPLT30
1798 ENUMX
1799 BFD_RELOC_SPARC_COPY
1800 ENUMX
1801 BFD_RELOC_SPARC_GLOB_DAT
1802 ENUMX
1803 BFD_RELOC_SPARC_JMP_SLOT
1804 ENUMX
1805 BFD_RELOC_SPARC_RELATIVE
1806 ENUMX
1807 BFD_RELOC_SPARC_UA16
1808 ENUMX
1809 BFD_RELOC_SPARC_UA32
1810 ENUMX
1811 BFD_RELOC_SPARC_UA64
1812 ENUMDOC
1813 SPARC ELF relocations. There is probably some overlap with other
1814 relocation types already defined.
1815
1816 ENUM
1817 BFD_RELOC_SPARC_BASE13
1818 ENUMX
1819 BFD_RELOC_SPARC_BASE22
1820 ENUMDOC
1821 I think these are specific to SPARC a.out (e.g., Sun 4).
1822
1823 ENUMEQ
1824 BFD_RELOC_SPARC_64
1825 BFD_RELOC_64
1826 ENUMX
1827 BFD_RELOC_SPARC_10
1828 ENUMX
1829 BFD_RELOC_SPARC_11
1830 ENUMX
1831 BFD_RELOC_SPARC_OLO10
1832 ENUMX
1833 BFD_RELOC_SPARC_HH22
1834 ENUMX
1835 BFD_RELOC_SPARC_HM10
1836 ENUMX
1837 BFD_RELOC_SPARC_LM22
1838 ENUMX
1839 BFD_RELOC_SPARC_PC_HH22
1840 ENUMX
1841 BFD_RELOC_SPARC_PC_HM10
1842 ENUMX
1843 BFD_RELOC_SPARC_PC_LM22
1844 ENUMX
1845 BFD_RELOC_SPARC_WDISP16
1846 ENUMX
1847 BFD_RELOC_SPARC_WDISP19
1848 ENUMX
1849 BFD_RELOC_SPARC_7
1850 ENUMX
1851 BFD_RELOC_SPARC_6
1852 ENUMX
1853 BFD_RELOC_SPARC_5
1854 ENUMEQX
1855 BFD_RELOC_SPARC_DISP64
1856 BFD_RELOC_64_PCREL
1857 ENUMX
1858 BFD_RELOC_SPARC_PLT64
1859 ENUMX
1860 BFD_RELOC_SPARC_HIX22
1861 ENUMX
1862 BFD_RELOC_SPARC_LOX10
1863 ENUMX
1864 BFD_RELOC_SPARC_H44
1865 ENUMX
1866 BFD_RELOC_SPARC_M44
1867 ENUMX
1868 BFD_RELOC_SPARC_L44
1869 ENUMX
1870 BFD_RELOC_SPARC_REGISTER
1871 ENUMDOC
1872 SPARC64 relocations
1873
1874 ENUM
1875 BFD_RELOC_SPARC_REV32
1876 ENUMDOC
1877 SPARC little endian relocation
1878
1879 ENUM
1880 BFD_RELOC_ALPHA_GPDISP_HI16
1881 ENUMDOC
1882 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1883 "addend" in some special way.
1884 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1885 writing; when reading, it will be the absolute section symbol. The
1886 addend is the displacement in bytes of the "lda" instruction from
1887 the "ldah" instruction (which is at the address of this reloc).
1888 ENUM
1889 BFD_RELOC_ALPHA_GPDISP_LO16
1890 ENUMDOC
1891 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1892 with GPDISP_HI16 relocs. The addend is ignored when writing the
1893 relocations out, and is filled in with the file's GP value on
1894 reading, for convenience.
1895
1896 ENUM
1897 BFD_RELOC_ALPHA_GPDISP
1898 ENUMDOC
1899 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1900 relocation except that there is no accompanying GPDISP_LO16
1901 relocation.
1902
1903 ENUM
1904 BFD_RELOC_ALPHA_LITERAL
1905 ENUMX
1906 BFD_RELOC_ALPHA_ELF_LITERAL
1907 ENUMX
1908 BFD_RELOC_ALPHA_LITUSE
1909 ENUMDOC
1910 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1911 the assembler turns it into a LDQ instruction to load the address of
1912 the symbol, and then fills in a register in the real instruction.
1913
1914 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1915 section symbol. The addend is ignored when writing, but is filled
1916 in with the file's GP value on reading, for convenience, as with the
1917 GPDISP_LO16 reloc.
1918
1919 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1920 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1921 but it generates output not based on the position within the .got
1922 section, but relative to the GP value chosen for the file during the
1923 final link stage.
1924
1925 The LITUSE reloc, on the instruction using the loaded address, gives
1926 information to the linker that it might be able to use to optimize
1927 away some literal section references. The symbol is ignored (read
1928 as the absolute section symbol), and the "addend" indicates the type
1929 of instruction using the register:
1930 1 - "memory" fmt insn
1931 2 - byte-manipulation (byte offset reg)
1932 3 - jsr (target of branch)
1933
1934 ENUM
1935 BFD_RELOC_ALPHA_HINT
1936 ENUMDOC
1937 The HINT relocation indicates a value that should be filled into the
1938 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1939 prediction logic which may be provided on some processors.
1940
1941 ENUM
1942 BFD_RELOC_ALPHA_LINKAGE
1943 ENUMDOC
1944 The LINKAGE relocation outputs a linkage pair in the object file,
1945 which is filled by the linker.
1946
1947 ENUM
1948 BFD_RELOC_ALPHA_CODEADDR
1949 ENUMDOC
1950 The CODEADDR relocation outputs a STO_CA in the object file,
1951 which is filled by the linker.
1952
1953 ENUM
1954 BFD_RELOC_ALPHA_GPREL_HI16
1955 ENUMX
1956 BFD_RELOC_ALPHA_GPREL_LO16
1957 ENUMDOC
1958 The GPREL_HI/LO relocations together form a 32-bit offset from the
1959 GP register.
1960
1961 ENUM
1962 BFD_RELOC_MIPS_JMP
1963 ENUMDOC
1964 Bits 27..2 of the relocation address shifted right 2 bits;
1965 simple reloc otherwise.
1966
1967 ENUM
1968 BFD_RELOC_MIPS16_JMP
1969 ENUMDOC
1970 The MIPS16 jump instruction.
1971
1972 ENUM
1973 BFD_RELOC_MIPS16_GPREL
1974 ENUMDOC
1975 MIPS16 GP relative reloc.
1976
1977 ENUM
1978 BFD_RELOC_HI16
1979 ENUMDOC
1980 High 16 bits of 32-bit value; simple reloc.
1981 ENUM
1982 BFD_RELOC_HI16_S
1983 ENUMDOC
1984 High 16 bits of 32-bit value but the low 16 bits will be sign
1985 extended and added to form the final result. If the low 16
1986 bits form a negative number, we need to add one to the high value
1987 to compensate for the borrow when the low bits are added.
1988 ENUM
1989 BFD_RELOC_LO16
1990 ENUMDOC
1991 Low 16 bits.
1992 ENUM
1993 BFD_RELOC_PCREL_HI16_S
1994 ENUMDOC
1995 Like BFD_RELOC_HI16_S, but PC relative.
1996 ENUM
1997 BFD_RELOC_PCREL_LO16
1998 ENUMDOC
1999 Like BFD_RELOC_LO16, but PC relative.
2000
2001 ENUMEQ
2002 BFD_RELOC_MIPS_GPREL
2003 BFD_RELOC_GPREL16
2004 ENUMDOC
2005 Relocation relative to the global pointer.
2006
2007 ENUM
2008 BFD_RELOC_MIPS_LITERAL
2009 ENUMDOC
2010 Relocation against a MIPS literal section.
2011
2012 ENUM
2013 BFD_RELOC_MIPS_GOT16
2014 ENUMX
2015 BFD_RELOC_MIPS_CALL16
2016 ENUMEQX
2017 BFD_RELOC_MIPS_GPREL32
2018 BFD_RELOC_GPREL32
2019 ENUMX
2020 BFD_RELOC_MIPS_GOT_HI16
2021 ENUMX
2022 BFD_RELOC_MIPS_GOT_LO16
2023 ENUMX
2024 BFD_RELOC_MIPS_CALL_HI16
2025 ENUMX
2026 BFD_RELOC_MIPS_CALL_LO16
2027 ENUMX
2028 BFD_RELOC_MIPS_SUB
2029 ENUMX
2030 BFD_RELOC_MIPS_GOT_PAGE
2031 ENUMX
2032 BFD_RELOC_MIPS_GOT_OFST
2033 ENUMX
2034 BFD_RELOC_MIPS_GOT_DISP
2035 ENUMX
2036 BFD_RELOC_MIPS_SHIFT5
2037 ENUMX
2038 BFD_RELOC_MIPS_SHIFT6
2039 ENUMX
2040 BFD_RELOC_MIPS_INSERT_A
2041 ENUMX
2042 BFD_RELOC_MIPS_INSERT_B
2043 ENUMX
2044 BFD_RELOC_MIPS_DELETE
2045 ENUMX
2046 BFD_RELOC_MIPS_HIGHEST
2047 ENUMX
2048 BFD_RELOC_MIPS_HIGHER
2049 ENUMX
2050 BFD_RELOC_MIPS_SCN_DISP
2051 ENUMX
2052 BFD_RELOC_MIPS_REL16
2053 ENUMX
2054 BFD_RELOC_MIPS_RELGOT
2055 ENUMX
2056 BFD_RELOC_MIPS_JALR
2057 COMMENT
2058 ENUMDOC
2059 MIPS ELF relocations.
2060
2061 COMMENT
2062
2063 ENUM
2064 BFD_RELOC_386_GOT32
2065 ENUMX
2066 BFD_RELOC_386_PLT32
2067 ENUMX
2068 BFD_RELOC_386_COPY
2069 ENUMX
2070 BFD_RELOC_386_GLOB_DAT
2071 ENUMX
2072 BFD_RELOC_386_JUMP_SLOT
2073 ENUMX
2074 BFD_RELOC_386_RELATIVE
2075 ENUMX
2076 BFD_RELOC_386_GOTOFF
2077 ENUMX
2078 BFD_RELOC_386_GOTPC
2079 ENUMDOC
2080 i386/elf relocations
2081
2082 ENUM
2083 BFD_RELOC_X86_64_GOT32
2084 ENUMX
2085 BFD_RELOC_X86_64_PLT32
2086 ENUMX
2087 BFD_RELOC_X86_64_COPY
2088 ENUMX
2089 BFD_RELOC_X86_64_GLOB_DAT
2090 ENUMX
2091 BFD_RELOC_X86_64_JUMP_SLOT
2092 ENUMX
2093 BFD_RELOC_X86_64_RELATIVE
2094 ENUMX
2095 BFD_RELOC_X86_64_GOTPCREL
2096 ENUMX
2097 BFD_RELOC_X86_64_32S
2098 ENUMDOC
2099 x86-64/elf relocations
2100
2101 ENUM
2102 BFD_RELOC_NS32K_IMM_8
2103 ENUMX
2104 BFD_RELOC_NS32K_IMM_16
2105 ENUMX
2106 BFD_RELOC_NS32K_IMM_32
2107 ENUMX
2108 BFD_RELOC_NS32K_IMM_8_PCREL
2109 ENUMX
2110 BFD_RELOC_NS32K_IMM_16_PCREL
2111 ENUMX
2112 BFD_RELOC_NS32K_IMM_32_PCREL
2113 ENUMX
2114 BFD_RELOC_NS32K_DISP_8
2115 ENUMX
2116 BFD_RELOC_NS32K_DISP_16
2117 ENUMX
2118 BFD_RELOC_NS32K_DISP_32
2119 ENUMX
2120 BFD_RELOC_NS32K_DISP_8_PCREL
2121 ENUMX
2122 BFD_RELOC_NS32K_DISP_16_PCREL
2123 ENUMX
2124 BFD_RELOC_NS32K_DISP_32_PCREL
2125 ENUMDOC
2126 ns32k relocations
2127
2128 ENUM
2129 BFD_RELOC_PDP11_DISP_8_PCREL
2130 ENUMX
2131 BFD_RELOC_PDP11_DISP_6_PCREL
2132 ENUMDOC
2133 PDP11 relocations
2134
2135 ENUM
2136 BFD_RELOC_PJ_CODE_HI16
2137 ENUMX
2138 BFD_RELOC_PJ_CODE_LO16
2139 ENUMX
2140 BFD_RELOC_PJ_CODE_DIR16
2141 ENUMX
2142 BFD_RELOC_PJ_CODE_DIR32
2143 ENUMX
2144 BFD_RELOC_PJ_CODE_REL16
2145 ENUMX
2146 BFD_RELOC_PJ_CODE_REL32
2147 ENUMDOC
2148 Picojava relocs. Not all of these appear in object files.
2149
2150 ENUM
2151 BFD_RELOC_PPC_B26
2152 ENUMX
2153 BFD_RELOC_PPC_BA26
2154 ENUMX
2155 BFD_RELOC_PPC_TOC16
2156 ENUMX
2157 BFD_RELOC_PPC_B16
2158 ENUMX
2159 BFD_RELOC_PPC_B16_BRTAKEN
2160 ENUMX
2161 BFD_RELOC_PPC_B16_BRNTAKEN
2162 ENUMX
2163 BFD_RELOC_PPC_BA16
2164 ENUMX
2165 BFD_RELOC_PPC_BA16_BRTAKEN
2166 ENUMX
2167 BFD_RELOC_PPC_BA16_BRNTAKEN
2168 ENUMX
2169 BFD_RELOC_PPC_COPY
2170 ENUMX
2171 BFD_RELOC_PPC_GLOB_DAT
2172 ENUMX
2173 BFD_RELOC_PPC_JMP_SLOT
2174 ENUMX
2175 BFD_RELOC_PPC_RELATIVE
2176 ENUMX
2177 BFD_RELOC_PPC_LOCAL24PC
2178 ENUMX
2179 BFD_RELOC_PPC_EMB_NADDR32
2180 ENUMX
2181 BFD_RELOC_PPC_EMB_NADDR16
2182 ENUMX
2183 BFD_RELOC_PPC_EMB_NADDR16_LO
2184 ENUMX
2185 BFD_RELOC_PPC_EMB_NADDR16_HI
2186 ENUMX
2187 BFD_RELOC_PPC_EMB_NADDR16_HA
2188 ENUMX
2189 BFD_RELOC_PPC_EMB_SDAI16
2190 ENUMX
2191 BFD_RELOC_PPC_EMB_SDA2I16
2192 ENUMX
2193 BFD_RELOC_PPC_EMB_SDA2REL
2194 ENUMX
2195 BFD_RELOC_PPC_EMB_SDA21
2196 ENUMX
2197 BFD_RELOC_PPC_EMB_MRKREF
2198 ENUMX
2199 BFD_RELOC_PPC_EMB_RELSEC16
2200 ENUMX
2201 BFD_RELOC_PPC_EMB_RELST_LO
2202 ENUMX
2203 BFD_RELOC_PPC_EMB_RELST_HI
2204 ENUMX
2205 BFD_RELOC_PPC_EMB_RELST_HA
2206 ENUMX
2207 BFD_RELOC_PPC_EMB_BIT_FLD
2208 ENUMX
2209 BFD_RELOC_PPC_EMB_RELSDA
2210 ENUMX
2211 BFD_RELOC_PPC64_HIGHER
2212 ENUMX
2213 BFD_RELOC_PPC64_HIGHER_S
2214 ENUMX
2215 BFD_RELOC_PPC64_HIGHEST
2216 ENUMX
2217 BFD_RELOC_PPC64_HIGHEST_S
2218 ENUMX
2219 BFD_RELOC_PPC64_TOC16_LO
2220 ENUMX
2221 BFD_RELOC_PPC64_TOC16_HI
2222 ENUMX
2223 BFD_RELOC_PPC64_TOC16_HA
2224 ENUMX
2225 BFD_RELOC_PPC64_TOC
2226 ENUMX
2227 BFD_RELOC_PPC64_PLTGOT16
2228 ENUMX
2229 BFD_RELOC_PPC64_PLTGOT16_LO
2230 ENUMX
2231 BFD_RELOC_PPC64_PLTGOT16_HI
2232 ENUMX
2233 BFD_RELOC_PPC64_PLTGOT16_HA
2234 ENUMX
2235 BFD_RELOC_PPC64_ADDR16_DS
2236 ENUMX
2237 BFD_RELOC_PPC64_ADDR16_LO_DS
2238 ENUMX
2239 BFD_RELOC_PPC64_GOT16_DS
2240 ENUMX
2241 BFD_RELOC_PPC64_GOT16_LO_DS
2242 ENUMX
2243 BFD_RELOC_PPC64_PLT16_LO_DS
2244 ENUMX
2245 BFD_RELOC_PPC64_SECTOFF_DS
2246 ENUMX
2247 BFD_RELOC_PPC64_SECTOFF_LO_DS
2248 ENUMX
2249 BFD_RELOC_PPC64_TOC16_DS
2250 ENUMX
2251 BFD_RELOC_PPC64_TOC16_LO_DS
2252 ENUMX
2253 BFD_RELOC_PPC64_PLTGOT16_DS
2254 ENUMX
2255 BFD_RELOC_PPC64_PLTGOT16_LO_DS
2256 ENUMDOC
2257 Power(rs6000) and PowerPC relocations.
2258
2259 ENUM
2260 BFD_RELOC_I370_D12
2261 ENUMDOC
2262 IBM 370/390 relocations
2263
2264 ENUM
2265 BFD_RELOC_CTOR
2266 ENUMDOC
2267 The type of reloc used to build a contructor table - at the moment
2268 probably a 32 bit wide absolute relocation, but the target can choose.
2269 It generally does map to one of the other relocation types.
2270
2271 ENUM
2272 BFD_RELOC_ARM_PCREL_BRANCH
2273 ENUMDOC
2274 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2275 not stored in the instruction.
2276 ENUM
2277 BFD_RELOC_ARM_PCREL_BLX
2278 ENUMDOC
2279 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2280 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2281 field in the instruction.
2282 ENUM
2283 BFD_RELOC_THUMB_PCREL_BLX
2284 ENUMDOC
2285 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2286 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2287 field in the instruction.
2288 ENUM
2289 BFD_RELOC_ARM_IMMEDIATE
2290 ENUMX
2291 BFD_RELOC_ARM_ADRL_IMMEDIATE
2292 ENUMX
2293 BFD_RELOC_ARM_OFFSET_IMM
2294 ENUMX
2295 BFD_RELOC_ARM_SHIFT_IMM
2296 ENUMX
2297 BFD_RELOC_ARM_SWI
2298 ENUMX
2299 BFD_RELOC_ARM_MULTI
2300 ENUMX
2301 BFD_RELOC_ARM_CP_OFF_IMM
2302 ENUMX
2303 BFD_RELOC_ARM_ADR_IMM
2304 ENUMX
2305 BFD_RELOC_ARM_LDR_IMM
2306 ENUMX
2307 BFD_RELOC_ARM_LITERAL
2308 ENUMX
2309 BFD_RELOC_ARM_IN_POOL
2310 ENUMX
2311 BFD_RELOC_ARM_OFFSET_IMM8
2312 ENUMX
2313 BFD_RELOC_ARM_HWLITERAL
2314 ENUMX
2315 BFD_RELOC_ARM_THUMB_ADD
2316 ENUMX
2317 BFD_RELOC_ARM_THUMB_IMM
2318 ENUMX
2319 BFD_RELOC_ARM_THUMB_SHIFT
2320 ENUMX
2321 BFD_RELOC_ARM_THUMB_OFFSET
2322 ENUMX
2323 BFD_RELOC_ARM_GOT12
2324 ENUMX
2325 BFD_RELOC_ARM_GOT32
2326 ENUMX
2327 BFD_RELOC_ARM_JUMP_SLOT
2328 ENUMX
2329 BFD_RELOC_ARM_COPY
2330 ENUMX
2331 BFD_RELOC_ARM_GLOB_DAT
2332 ENUMX
2333 BFD_RELOC_ARM_PLT32
2334 ENUMX
2335 BFD_RELOC_ARM_RELATIVE
2336 ENUMX
2337 BFD_RELOC_ARM_GOTOFF
2338 ENUMX
2339 BFD_RELOC_ARM_GOTPC
2340 ENUMDOC
2341 These relocs are only used within the ARM assembler. They are not
2342 (at present) written to any object files.
2343
2344 ENUM
2345 BFD_RELOC_SH_PCDISP8BY2
2346 ENUMX
2347 BFD_RELOC_SH_PCDISP12BY2
2348 ENUMX
2349 BFD_RELOC_SH_IMM4
2350 ENUMX
2351 BFD_RELOC_SH_IMM4BY2
2352 ENUMX
2353 BFD_RELOC_SH_IMM4BY4
2354 ENUMX
2355 BFD_RELOC_SH_IMM8
2356 ENUMX
2357 BFD_RELOC_SH_IMM8BY2
2358 ENUMX
2359 BFD_RELOC_SH_IMM8BY4
2360 ENUMX
2361 BFD_RELOC_SH_PCRELIMM8BY2
2362 ENUMX
2363 BFD_RELOC_SH_PCRELIMM8BY4
2364 ENUMX
2365 BFD_RELOC_SH_SWITCH16
2366 ENUMX
2367 BFD_RELOC_SH_SWITCH32
2368 ENUMX
2369 BFD_RELOC_SH_USES
2370 ENUMX
2371 BFD_RELOC_SH_COUNT
2372 ENUMX
2373 BFD_RELOC_SH_ALIGN
2374 ENUMX
2375 BFD_RELOC_SH_CODE
2376 ENUMX
2377 BFD_RELOC_SH_DATA
2378 ENUMX
2379 BFD_RELOC_SH_LABEL
2380 ENUMX
2381 BFD_RELOC_SH_LOOP_START
2382 ENUMX
2383 BFD_RELOC_SH_LOOP_END
2384 ENUMX
2385 BFD_RELOC_SH_COPY
2386 ENUMX
2387 BFD_RELOC_SH_GLOB_DAT
2388 ENUMX
2389 BFD_RELOC_SH_JMP_SLOT
2390 ENUMX
2391 BFD_RELOC_SH_RELATIVE
2392 ENUMX
2393 BFD_RELOC_SH_GOTPC
2394 ENUMDOC
2395 Hitachi SH relocs. Not all of these appear in object files.
2396
2397 ENUM
2398 BFD_RELOC_THUMB_PCREL_BRANCH9
2399 ENUMX
2400 BFD_RELOC_THUMB_PCREL_BRANCH12
2401 ENUMX
2402 BFD_RELOC_THUMB_PCREL_BRANCH23
2403 ENUMDOC
2404 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2405 be zero and is not stored in the instruction.
2406
2407 ENUM
2408 BFD_RELOC_ARC_B22_PCREL
2409 ENUMDOC
2410 ARC Cores relocs.
2411 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2412 not stored in the instruction. The high 20 bits are installed in bits 26
2413 through 7 of the instruction.
2414 ENUM
2415 BFD_RELOC_ARC_B26
2416 ENUMDOC
2417 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2418 stored in the instruction. The high 24 bits are installed in bits 23
2419 through 0.
2420
2421 ENUM
2422 BFD_RELOC_D10V_10_PCREL_R
2423 ENUMDOC
2424 Mitsubishi D10V relocs.
2425 This is a 10-bit reloc with the right 2 bits
2426 assumed to be 0.
2427 ENUM
2428 BFD_RELOC_D10V_10_PCREL_L
2429 ENUMDOC
2430 Mitsubishi D10V relocs.
2431 This is a 10-bit reloc with the right 2 bits
2432 assumed to be 0. This is the same as the previous reloc
2433 except it is in the left container, i.e.,
2434 shifted left 15 bits.
2435 ENUM
2436 BFD_RELOC_D10V_18
2437 ENUMDOC
2438 This is an 18-bit reloc with the right 2 bits
2439 assumed to be 0.
2440 ENUM
2441 BFD_RELOC_D10V_18_PCREL
2442 ENUMDOC
2443 This is an 18-bit reloc with the right 2 bits
2444 assumed to be 0.
2445
2446 ENUM
2447 BFD_RELOC_D30V_6
2448 ENUMDOC
2449 Mitsubishi D30V relocs.
2450 This is a 6-bit absolute reloc.
2451 ENUM
2452 BFD_RELOC_D30V_9_PCREL
2453 ENUMDOC
2454 This is a 6-bit pc-relative reloc with
2455 the right 3 bits assumed to be 0.
2456 ENUM
2457 BFD_RELOC_D30V_9_PCREL_R
2458 ENUMDOC
2459 This is a 6-bit pc-relative reloc with
2460 the right 3 bits assumed to be 0. Same
2461 as the previous reloc but on the right side
2462 of the container.
2463 ENUM
2464 BFD_RELOC_D30V_15
2465 ENUMDOC
2466 This is a 12-bit absolute reloc with the
2467 right 3 bitsassumed to be 0.
2468 ENUM
2469 BFD_RELOC_D30V_15_PCREL
2470 ENUMDOC
2471 This is a 12-bit pc-relative reloc with
2472 the right 3 bits assumed to be 0.
2473 ENUM
2474 BFD_RELOC_D30V_15_PCREL_R
2475 ENUMDOC
2476 This is a 12-bit pc-relative reloc with
2477 the right 3 bits assumed to be 0. Same
2478 as the previous reloc but on the right side
2479 of the container.
2480 ENUM
2481 BFD_RELOC_D30V_21
2482 ENUMDOC
2483 This is an 18-bit absolute reloc with
2484 the right 3 bits assumed to be 0.
2485 ENUM
2486 BFD_RELOC_D30V_21_PCREL
2487 ENUMDOC
2488 This is an 18-bit pc-relative reloc with
2489 the right 3 bits assumed to be 0.
2490 ENUM
2491 BFD_RELOC_D30V_21_PCREL_R
2492 ENUMDOC
2493 This is an 18-bit pc-relative reloc with
2494 the right 3 bits assumed to be 0. Same
2495 as the previous reloc but on the right side
2496 of the container.
2497 ENUM
2498 BFD_RELOC_D30V_32
2499 ENUMDOC
2500 This is a 32-bit absolute reloc.
2501 ENUM
2502 BFD_RELOC_D30V_32_PCREL
2503 ENUMDOC
2504 This is a 32-bit pc-relative reloc.
2505
2506 ENUM
2507 BFD_RELOC_M32R_24
2508 ENUMDOC
2509 Mitsubishi M32R relocs.
2510 This is a 24 bit absolute address.
2511 ENUM
2512 BFD_RELOC_M32R_10_PCREL
2513 ENUMDOC
2514 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2515 ENUM
2516 BFD_RELOC_M32R_18_PCREL
2517 ENUMDOC
2518 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2519 ENUM
2520 BFD_RELOC_M32R_26_PCREL
2521 ENUMDOC
2522 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2523 ENUM
2524 BFD_RELOC_M32R_HI16_ULO
2525 ENUMDOC
2526 This is a 16-bit reloc containing the high 16 bits of an address
2527 used when the lower 16 bits are treated as unsigned.
2528 ENUM
2529 BFD_RELOC_M32R_HI16_SLO
2530 ENUMDOC
2531 This is a 16-bit reloc containing the high 16 bits of an address
2532 used when the lower 16 bits are treated as signed.
2533 ENUM
2534 BFD_RELOC_M32R_LO16
2535 ENUMDOC
2536 This is a 16-bit reloc containing the lower 16 bits of an address.
2537 ENUM
2538 BFD_RELOC_M32R_SDA16
2539 ENUMDOC
2540 This is a 16-bit reloc containing the small data area offset for use in
2541 add3, load, and store instructions.
2542
2543 ENUM
2544 BFD_RELOC_V850_9_PCREL
2545 ENUMDOC
2546 This is a 9-bit reloc
2547 ENUM
2548 BFD_RELOC_V850_22_PCREL
2549 ENUMDOC
2550 This is a 22-bit reloc
2551
2552 ENUM
2553 BFD_RELOC_V850_SDA_16_16_OFFSET
2554 ENUMDOC
2555 This is a 16 bit offset from the short data area pointer.
2556 ENUM
2557 BFD_RELOC_V850_SDA_15_16_OFFSET
2558 ENUMDOC
2559 This is a 16 bit offset (of which only 15 bits are used) from the
2560 short data area pointer.
2561 ENUM
2562 BFD_RELOC_V850_ZDA_16_16_OFFSET
2563 ENUMDOC
2564 This is a 16 bit offset from the zero data area pointer.
2565 ENUM
2566 BFD_RELOC_V850_ZDA_15_16_OFFSET
2567 ENUMDOC
2568 This is a 16 bit offset (of which only 15 bits are used) from the
2569 zero data area pointer.
2570 ENUM
2571 BFD_RELOC_V850_TDA_6_8_OFFSET
2572 ENUMDOC
2573 This is an 8 bit offset (of which only 6 bits are used) from the
2574 tiny data area pointer.
2575 ENUM
2576 BFD_RELOC_V850_TDA_7_8_OFFSET
2577 ENUMDOC
2578 This is an 8bit offset (of which only 7 bits are used) from the tiny
2579 data area pointer.
2580 ENUM
2581 BFD_RELOC_V850_TDA_7_7_OFFSET
2582 ENUMDOC
2583 This is a 7 bit offset from the tiny data area pointer.
2584 ENUM
2585 BFD_RELOC_V850_TDA_16_16_OFFSET
2586 ENUMDOC
2587 This is a 16 bit offset from the tiny data area pointer.
2588 COMMENT
2589 ENUM
2590 BFD_RELOC_V850_TDA_4_5_OFFSET
2591 ENUMDOC
2592 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2593 data area pointer.
2594 ENUM
2595 BFD_RELOC_V850_TDA_4_4_OFFSET
2596 ENUMDOC
2597 This is a 4 bit offset from the tiny data area pointer.
2598 ENUM
2599 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2600 ENUMDOC
2601 This is a 16 bit offset from the short data area pointer, with the
2602 bits placed non-contigously in the instruction.
2603 ENUM
2604 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2605 ENUMDOC
2606 This is a 16 bit offset from the zero data area pointer, with the
2607 bits placed non-contigously in the instruction.
2608 ENUM
2609 BFD_RELOC_V850_CALLT_6_7_OFFSET
2610 ENUMDOC
2611 This is a 6 bit offset from the call table base pointer.
2612 ENUM
2613 BFD_RELOC_V850_CALLT_16_16_OFFSET
2614 ENUMDOC
2615 This is a 16 bit offset from the call table base pointer.
2616 COMMENT
2617
2618 ENUM
2619 BFD_RELOC_MN10300_32_PCREL
2620 ENUMDOC
2621 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2622 instruction.
2623 ENUM
2624 BFD_RELOC_MN10300_16_PCREL
2625 ENUMDOC
2626 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2627 instruction.
2628
2629 ENUM
2630 BFD_RELOC_TIC30_LDP
2631 ENUMDOC
2632 This is a 8bit DP reloc for the tms320c30, where the most
2633 significant 8 bits of a 24 bit word are placed into the least
2634 significant 8 bits of the opcode.
2635
2636 ENUM
2637 BFD_RELOC_TIC54X_PARTLS7
2638 ENUMDOC
2639 This is a 7bit reloc for the tms320c54x, where the least
2640 significant 7 bits of a 16 bit word are placed into the least
2641 significant 7 bits of the opcode.
2642
2643 ENUM
2644 BFD_RELOC_TIC54X_PARTMS9
2645 ENUMDOC
2646 This is a 9bit DP reloc for the tms320c54x, where the most
2647 significant 9 bits of a 16 bit word are placed into the least
2648 significant 9 bits of the opcode.
2649
2650 ENUM
2651 BFD_RELOC_TIC54X_23
2652 ENUMDOC
2653 This is an extended address 23-bit reloc for the tms320c54x.
2654
2655 ENUM
2656 BFD_RELOC_TIC54X_16_OF_23
2657 ENUMDOC
2658 This is a 16-bit reloc for the tms320c54x, where the least
2659 significant 16 bits of a 23-bit extended address are placed into
2660 the opcode.
2661
2662 ENUM
2663 BFD_RELOC_TIC54X_MS7_OF_23
2664 ENUMDOC
2665 This is a reloc for the tms320c54x, where the most
2666 significant 7 bits of a 23-bit extended address are placed into
2667 the opcode.
2668
2669 ENUM
2670 BFD_RELOC_FR30_48
2671 ENUMDOC
2672 This is a 48 bit reloc for the FR30 that stores 32 bits.
2673 ENUM
2674 BFD_RELOC_FR30_20
2675 ENUMDOC
2676 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2677 two sections.
2678 ENUM
2679 BFD_RELOC_FR30_6_IN_4
2680 ENUMDOC
2681 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2682 4 bits.
2683 ENUM
2684 BFD_RELOC_FR30_8_IN_8
2685 ENUMDOC
2686 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2687 into 8 bits.
2688 ENUM
2689 BFD_RELOC_FR30_9_IN_8
2690 ENUMDOC
2691 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2692 into 8 bits.
2693 ENUM
2694 BFD_RELOC_FR30_10_IN_8
2695 ENUMDOC
2696 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2697 into 8 bits.
2698 ENUM
2699 BFD_RELOC_FR30_9_PCREL
2700 ENUMDOC
2701 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2702 short offset into 8 bits.
2703 ENUM
2704 BFD_RELOC_FR30_12_PCREL
2705 ENUMDOC
2706 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2707 short offset into 11 bits.
2708
2709 ENUM
2710 BFD_RELOC_MCORE_PCREL_IMM8BY4
2711 ENUMX
2712 BFD_RELOC_MCORE_PCREL_IMM11BY2
2713 ENUMX
2714 BFD_RELOC_MCORE_PCREL_IMM4BY2
2715 ENUMX
2716 BFD_RELOC_MCORE_PCREL_32
2717 ENUMX
2718 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
2719 ENUMX
2720 BFD_RELOC_MCORE_RVA
2721 ENUMDOC
2722 Motorola Mcore relocations.
2723
2724 ENUM
2725 BFD_RELOC_AVR_7_PCREL
2726 ENUMDOC
2727 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2728 short offset into 7 bits.
2729 ENUM
2730 BFD_RELOC_AVR_13_PCREL
2731 ENUMDOC
2732 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2733 short offset into 12 bits.
2734 ENUM
2735 BFD_RELOC_AVR_16_PM
2736 ENUMDOC
2737 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
2738 program memory address) into 16 bits.
2739 ENUM
2740 BFD_RELOC_AVR_LO8_LDI
2741 ENUMDOC
2742 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2743 data memory address) into 8 bit immediate value of LDI insn.
2744 ENUM
2745 BFD_RELOC_AVR_HI8_LDI
2746 ENUMDOC
2747 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2748 of data memory address) into 8 bit immediate value of LDI insn.
2749 ENUM
2750 BFD_RELOC_AVR_HH8_LDI
2751 ENUMDOC
2752 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2753 of program memory address) into 8 bit immediate value of LDI insn.
2754 ENUM
2755 BFD_RELOC_AVR_LO8_LDI_NEG
2756 ENUMDOC
2757 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2758 (usually data memory address) into 8 bit immediate value of SUBI insn.
2759 ENUM
2760 BFD_RELOC_AVR_HI8_LDI_NEG
2761 ENUMDOC
2762 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2763 (high 8 bit of data memory address) into 8 bit immediate value of
2764 SUBI insn.
2765 ENUM
2766 BFD_RELOC_AVR_HH8_LDI_NEG
2767 ENUMDOC
2768 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2769 (most high 8 bit of program memory address) into 8 bit immediate value
2770 of LDI or SUBI insn.
2771 ENUM
2772 BFD_RELOC_AVR_LO8_LDI_PM
2773 ENUMDOC
2774 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2775 command address) into 8 bit immediate value of LDI insn.
2776 ENUM
2777 BFD_RELOC_AVR_HI8_LDI_PM
2778 ENUMDOC
2779 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2780 of command address) into 8 bit immediate value of LDI insn.
2781 ENUM
2782 BFD_RELOC_AVR_HH8_LDI_PM
2783 ENUMDOC
2784 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2785 of command address) into 8 bit immediate value of LDI insn.
2786 ENUM
2787 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2788 ENUMDOC
2789 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2790 (usually command address) into 8 bit immediate value of SUBI insn.
2791 ENUM
2792 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2793 ENUMDOC
2794 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2795 (high 8 bit of 16 bit command address) into 8 bit immediate value
2796 of SUBI insn.
2797 ENUM
2798 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2799 ENUMDOC
2800 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2801 (high 6 bit of 22 bit command address) into 8 bit immediate
2802 value of SUBI insn.
2803 ENUM
2804 BFD_RELOC_AVR_CALL
2805 ENUMDOC
2806 This is a 32 bit reloc for the AVR that stores 23 bit value
2807 into 22 bits.
2808
2809 ENUM
2810 BFD_RELOC_390_12
2811 ENUMDOC
2812 Direct 12 bit.
2813 ENUM
2814 BFD_RELOC_390_GOT12
2815 ENUMDOC
2816 12 bit GOT offset.
2817 ENUM
2818 BFD_RELOC_390_PLT32
2819 ENUMDOC
2820 32 bit PC relative PLT address.
2821 ENUM
2822 BFD_RELOC_390_COPY
2823 ENUMDOC
2824 Copy symbol at runtime.
2825 ENUM
2826 BFD_RELOC_390_GLOB_DAT
2827 ENUMDOC
2828 Create GOT entry.
2829 ENUM
2830 BFD_RELOC_390_JMP_SLOT
2831 ENUMDOC
2832 Create PLT entry.
2833 ENUM
2834 BFD_RELOC_390_RELATIVE
2835 ENUMDOC
2836 Adjust by program base.
2837 ENUM
2838 BFD_RELOC_390_GOTPC
2839 ENUMDOC
2840 32 bit PC relative offset to GOT.
2841 ENUM
2842 BFD_RELOC_390_GOT16
2843 ENUMDOC
2844 16 bit GOT offset.
2845 ENUM
2846 BFD_RELOC_390_PC16DBL
2847 ENUMDOC
2848 PC relative 16 bit shifted by 1.
2849 ENUM
2850 BFD_RELOC_390_PLT16DBL
2851 ENUMDOC
2852 16 bit PC rel. PLT shifted by 1.
2853 ENUM
2854 BFD_RELOC_390_PC32DBL
2855 ENUMDOC
2856 PC relative 32 bit shifted by 1.
2857 ENUM
2858 BFD_RELOC_390_PLT32DBL
2859 ENUMDOC
2860 32 bit PC rel. PLT shifted by 1.
2861 ENUM
2862 BFD_RELOC_390_GOTPCDBL
2863 ENUMDOC
2864 32 bit PC rel. GOT shifted by 1.
2865 ENUM
2866 BFD_RELOC_390_GOT64
2867 ENUMDOC
2868 64 bit GOT offset.
2869 ENUM
2870 BFD_RELOC_390_PLT64
2871 ENUMDOC
2872 64 bit PC relative PLT address.
2873 ENUM
2874 BFD_RELOC_390_GOTENT
2875 ENUMDOC
2876 32 bit rel. offset to GOT entry.
2877
2878 ENUM
2879 BFD_RELOC_VTABLE_INHERIT
2880 ENUMX
2881 BFD_RELOC_VTABLE_ENTRY
2882 ENUMDOC
2883 These two relocations are used by the linker to determine which of
2884 the entries in a C++ virtual function table are actually used. When
2885 the --gc-sections option is given, the linker will zero out the entries
2886 that are not used, so that the code for those functions need not be
2887 included in the output.
2888
2889 VTABLE_INHERIT is a zero-space relocation used to describe to the
2890 linker the inheritence tree of a C++ virtual function table. The
2891 relocation's symbol should be the parent class' vtable, and the
2892 relocation should be located at the child vtable.
2893
2894 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2895 virtual function table entry. The reloc's symbol should refer to the
2896 table of the class mentioned in the code. Off of that base, an offset
2897 describes the entry that is being used. For Rela hosts, this offset
2898 is stored in the reloc's addend. For Rel hosts, we are forced to put
2899 this offset in the reloc's section offset.
2900
2901 ENUM
2902 BFD_RELOC_IA64_IMM14
2903 ENUMX
2904 BFD_RELOC_IA64_IMM22
2905 ENUMX
2906 BFD_RELOC_IA64_IMM64
2907 ENUMX
2908 BFD_RELOC_IA64_DIR32MSB
2909 ENUMX
2910 BFD_RELOC_IA64_DIR32LSB
2911 ENUMX
2912 BFD_RELOC_IA64_DIR64MSB
2913 ENUMX
2914 BFD_RELOC_IA64_DIR64LSB
2915 ENUMX
2916 BFD_RELOC_IA64_GPREL22
2917 ENUMX
2918 BFD_RELOC_IA64_GPREL64I
2919 ENUMX
2920 BFD_RELOC_IA64_GPREL32MSB
2921 ENUMX
2922 BFD_RELOC_IA64_GPREL32LSB
2923 ENUMX
2924 BFD_RELOC_IA64_GPREL64MSB
2925 ENUMX
2926 BFD_RELOC_IA64_GPREL64LSB
2927 ENUMX
2928 BFD_RELOC_IA64_LTOFF22
2929 ENUMX
2930 BFD_RELOC_IA64_LTOFF64I
2931 ENUMX
2932 BFD_RELOC_IA64_PLTOFF22
2933 ENUMX
2934 BFD_RELOC_IA64_PLTOFF64I
2935 ENUMX
2936 BFD_RELOC_IA64_PLTOFF64MSB
2937 ENUMX
2938 BFD_RELOC_IA64_PLTOFF64LSB
2939 ENUMX
2940 BFD_RELOC_IA64_FPTR64I
2941 ENUMX
2942 BFD_RELOC_IA64_FPTR32MSB
2943 ENUMX
2944 BFD_RELOC_IA64_FPTR32LSB
2945 ENUMX
2946 BFD_RELOC_IA64_FPTR64MSB
2947 ENUMX
2948 BFD_RELOC_IA64_FPTR64LSB
2949 ENUMX
2950 BFD_RELOC_IA64_PCREL21B
2951 ENUMX
2952 BFD_RELOC_IA64_PCREL21BI
2953 ENUMX
2954 BFD_RELOC_IA64_PCREL21M
2955 ENUMX
2956 BFD_RELOC_IA64_PCREL21F
2957 ENUMX
2958 BFD_RELOC_IA64_PCREL22
2959 ENUMX
2960 BFD_RELOC_IA64_PCREL60B
2961 ENUMX
2962 BFD_RELOC_IA64_PCREL64I
2963 ENUMX
2964 BFD_RELOC_IA64_PCREL32MSB
2965 ENUMX
2966 BFD_RELOC_IA64_PCREL32LSB
2967 ENUMX
2968 BFD_RELOC_IA64_PCREL64MSB
2969 ENUMX
2970 BFD_RELOC_IA64_PCREL64LSB
2971 ENUMX
2972 BFD_RELOC_IA64_LTOFF_FPTR22
2973 ENUMX
2974 BFD_RELOC_IA64_LTOFF_FPTR64I
2975 ENUMX
2976 BFD_RELOC_IA64_LTOFF_FPTR32MSB
2977 ENUMX
2978 BFD_RELOC_IA64_LTOFF_FPTR32LSB
2979 ENUMX
2980 BFD_RELOC_IA64_LTOFF_FPTR64MSB
2981 ENUMX
2982 BFD_RELOC_IA64_LTOFF_FPTR64LSB
2983 ENUMX
2984 BFD_RELOC_IA64_SEGREL32MSB
2985 ENUMX
2986 BFD_RELOC_IA64_SEGREL32LSB
2987 ENUMX
2988 BFD_RELOC_IA64_SEGREL64MSB
2989 ENUMX
2990 BFD_RELOC_IA64_SEGREL64LSB
2991 ENUMX
2992 BFD_RELOC_IA64_SECREL32MSB
2993 ENUMX
2994 BFD_RELOC_IA64_SECREL32LSB
2995 ENUMX
2996 BFD_RELOC_IA64_SECREL64MSB
2997 ENUMX
2998 BFD_RELOC_IA64_SECREL64LSB
2999 ENUMX
3000 BFD_RELOC_IA64_REL32MSB
3001 ENUMX
3002 BFD_RELOC_IA64_REL32LSB
3003 ENUMX
3004 BFD_RELOC_IA64_REL64MSB
3005 ENUMX
3006 BFD_RELOC_IA64_REL64LSB
3007 ENUMX
3008 BFD_RELOC_IA64_LTV32MSB
3009 ENUMX
3010 BFD_RELOC_IA64_LTV32LSB
3011 ENUMX
3012 BFD_RELOC_IA64_LTV64MSB
3013 ENUMX
3014 BFD_RELOC_IA64_LTV64LSB
3015 ENUMX
3016 BFD_RELOC_IA64_IPLTMSB
3017 ENUMX
3018 BFD_RELOC_IA64_IPLTLSB
3019 ENUMX
3020 BFD_RELOC_IA64_COPY
3021 ENUMX
3022 BFD_RELOC_IA64_TPREL22
3023 ENUMX
3024 BFD_RELOC_IA64_TPREL64MSB
3025 ENUMX
3026 BFD_RELOC_IA64_TPREL64LSB
3027 ENUMX
3028 BFD_RELOC_IA64_LTOFF_TP22
3029 ENUMX
3030 BFD_RELOC_IA64_LTOFF22X
3031 ENUMX
3032 BFD_RELOC_IA64_LDXMOV
3033 ENUMDOC
3034 Intel IA64 Relocations.
3035
3036 ENUM
3037 BFD_RELOC_M68HC11_HI8
3038 ENUMDOC
3039 Motorola 68HC11 reloc.
3040 This is the 8 bits high part of an absolute address.
3041 ENUM
3042 BFD_RELOC_M68HC11_LO8
3043 ENUMDOC
3044 Motorola 68HC11 reloc.
3045 This is the 8 bits low part of an absolute address.
3046 ENUM
3047 BFD_RELOC_M68HC11_3B
3048 ENUMDOC
3049 Motorola 68HC11 reloc.
3050 This is the 3 bits of a value.
3051
3052 ENUM
3053 BFD_RELOC_CRIS_BDISP8
3054 ENUMX
3055 BFD_RELOC_CRIS_UNSIGNED_5
3056 ENUMX
3057 BFD_RELOC_CRIS_SIGNED_6
3058 ENUMX
3059 BFD_RELOC_CRIS_UNSIGNED_6
3060 ENUMX
3061 BFD_RELOC_CRIS_UNSIGNED_4
3062 ENUMDOC
3063 These relocs are only used within the CRIS assembler. They are not
3064 (at present) written to any object files.
3065 ENUM
3066 BFD_RELOC_CRIS_COPY
3067 ENUMX
3068 BFD_RELOC_CRIS_GLOB_DAT
3069 ENUMX
3070 BFD_RELOC_CRIS_JUMP_SLOT
3071 ENUMX
3072 BFD_RELOC_CRIS_RELATIVE
3073 ENUMDOC
3074 Relocs used in ELF shared libraries for CRIS.
3075 ENUM
3076 BFD_RELOC_CRIS_32_GOT
3077 ENUMDOC
3078 32-bit offset to symbol-entry within GOT.
3079 ENUM
3080 BFD_RELOC_CRIS_16_GOT
3081 ENUMDOC
3082 16-bit offset to symbol-entry within GOT.
3083 ENUM
3084 BFD_RELOC_CRIS_32_GOTPLT
3085 ENUMDOC
3086 32-bit offset to symbol-entry within GOT, with PLT handling.
3087 ENUM
3088 BFD_RELOC_CRIS_16_GOTPLT
3089 ENUMDOC
3090 16-bit offset to symbol-entry within GOT, with PLT handling.
3091 ENUM
3092 BFD_RELOC_CRIS_32_GOTREL
3093 ENUMDOC
3094 32-bit offset to symbol, relative to GOT.
3095 ENUM
3096 BFD_RELOC_CRIS_32_PLT_GOTREL
3097 ENUMDOC
3098 32-bit offset to symbol with PLT entry, relative to GOT.
3099 ENUM
3100 BFD_RELOC_CRIS_32_PLT_PCREL
3101 ENUMDOC
3102 32-bit offset to symbol with PLT entry, relative to this relocation.
3103
3104 ENUM
3105 BFD_RELOC_860_COPY
3106 ENUMX
3107 BFD_RELOC_860_GLOB_DAT
3108 ENUMX
3109 BFD_RELOC_860_JUMP_SLOT
3110 ENUMX
3111 BFD_RELOC_860_RELATIVE
3112 ENUMX
3113 BFD_RELOC_860_PC26
3114 ENUMX
3115 BFD_RELOC_860_PLT26
3116 ENUMX
3117 BFD_RELOC_860_PC16
3118 ENUMX
3119 BFD_RELOC_860_LOW0
3120 ENUMX
3121 BFD_RELOC_860_SPLIT0
3122 ENUMX
3123 BFD_RELOC_860_LOW1
3124 ENUMX
3125 BFD_RELOC_860_SPLIT1
3126 ENUMX
3127 BFD_RELOC_860_LOW2
3128 ENUMX
3129 BFD_RELOC_860_SPLIT2
3130 ENUMX
3131 BFD_RELOC_860_LOW3
3132 ENUMX
3133 BFD_RELOC_860_LOGOT0
3134 ENUMX
3135 BFD_RELOC_860_SPGOT0
3136 ENUMX
3137 BFD_RELOC_860_LOGOT1
3138 ENUMX
3139 BFD_RELOC_860_SPGOT1
3140 ENUMX
3141 BFD_RELOC_860_LOGOTOFF0
3142 ENUMX
3143 BFD_RELOC_860_SPGOTOFF0
3144 ENUMX
3145 BFD_RELOC_860_LOGOTOFF1
3146 ENUMX
3147 BFD_RELOC_860_SPGOTOFF1
3148 ENUMX
3149 BFD_RELOC_860_LOGOTOFF2
3150 ENUMX
3151 BFD_RELOC_860_LOGOTOFF3
3152 ENUMX
3153 BFD_RELOC_860_LOPC
3154 ENUMX
3155 BFD_RELOC_860_HIGHADJ
3156 ENUMX
3157 BFD_RELOC_860_HAGOT
3158 ENUMX
3159 BFD_RELOC_860_HAGOTOFF
3160 ENUMX
3161 BFD_RELOC_860_HAPC
3162 ENUMX
3163 BFD_RELOC_860_HIGH
3164 ENUMX
3165 BFD_RELOC_860_HIGOT
3166 ENUMX
3167 BFD_RELOC_860_HIGOTOFF
3168 ENUMDOC
3169 Intel i860 Relocations.
3170
3171 ENUM
3172 BFD_RELOC_OPENRISC_ABS_26
3173 ENUMX
3174 BFD_RELOC_OPENRISC_REL_26
3175 ENUMDOC
3176 OpenRISC Relocations.
3177
3178 ENUM
3179 BFD_RELOC_H8_DIR16A8
3180 ENUMX
3181 BFD_RELOC_H8_DIR16R8
3182 ENUMX
3183 BFD_RELOC_H8_DIR24A8
3184 ENUMX
3185 BFD_RELOC_H8_DIR24R8
3186 ENUMX
3187 BFD_RELOC_H8_DIR32A16
3188 ENUMDOC
3189 H8 elf Relocations.
3190
3191 ENDSENUM
3192 BFD_RELOC_UNUSED
3193 CODE_FRAGMENT
3194 .
3195 .typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3196 */
3197
3198 /*
3199 FUNCTION
3200 bfd_reloc_type_lookup
3201
3202 SYNOPSIS
3203 reloc_howto_type *
3204 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3205
3206 DESCRIPTION
3207 Return a pointer to a howto structure which, when
3208 invoked, will perform the relocation @var{code} on data from the
3209 architecture noted.
3210
3211 */
3212
3213 reloc_howto_type *
3214 bfd_reloc_type_lookup (abfd, code)
3215 bfd *abfd;
3216 bfd_reloc_code_real_type code;
3217 {
3218 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3219 }
3220
3221 static reloc_howto_type bfd_howto_32 =
3222 HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3223
3224 /*
3225 INTERNAL_FUNCTION
3226 bfd_default_reloc_type_lookup
3227
3228 SYNOPSIS
3229 reloc_howto_type *bfd_default_reloc_type_lookup
3230 (bfd *abfd, bfd_reloc_code_real_type code);
3231
3232 DESCRIPTION
3233 Provides a default relocation lookup routine for any architecture.
3234
3235 */
3236
3237 reloc_howto_type *
3238 bfd_default_reloc_type_lookup (abfd, code)
3239 bfd *abfd;
3240 bfd_reloc_code_real_type code;
3241 {
3242 switch (code)
3243 {
3244 case BFD_RELOC_CTOR:
3245 /* The type of reloc used in a ctor, which will be as wide as the
3246 address - so either a 64, 32, or 16 bitter. */
3247 switch (bfd_get_arch_info (abfd)->bits_per_address)
3248 {
3249 case 64:
3250 BFD_FAIL ();
3251 case 32:
3252 return &bfd_howto_32;
3253 case 16:
3254 BFD_FAIL ();
3255 default:
3256 BFD_FAIL ();
3257 }
3258 default:
3259 BFD_FAIL ();
3260 }
3261 return (reloc_howto_type *) NULL;
3262 }
3263
3264 /*
3265 FUNCTION
3266 bfd_get_reloc_code_name
3267
3268 SYNOPSIS
3269 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3270
3271 DESCRIPTION
3272 Provides a printable name for the supplied relocation code.
3273 Useful mainly for printing error messages.
3274 */
3275
3276 const char *
3277 bfd_get_reloc_code_name (code)
3278 bfd_reloc_code_real_type code;
3279 {
3280 if (code > BFD_RELOC_UNUSED)
3281 return 0;
3282 return bfd_reloc_code_real_names[(int)code];
3283 }
3284
3285 /*
3286 INTERNAL_FUNCTION
3287 bfd_generic_relax_section
3288
3289 SYNOPSIS
3290 boolean bfd_generic_relax_section
3291 (bfd *abfd,
3292 asection *section,
3293 struct bfd_link_info *,
3294 boolean *);
3295
3296 DESCRIPTION
3297 Provides default handling for relaxing for back ends which
3298 don't do relaxing -- i.e., does nothing.
3299 */
3300
3301 /*ARGSUSED*/
3302 boolean
3303 bfd_generic_relax_section (abfd, section, link_info, again)
3304 bfd *abfd ATTRIBUTE_UNUSED;
3305 asection *section ATTRIBUTE_UNUSED;
3306 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3307 boolean *again;
3308 {
3309 *again = false;
3310 return true;
3311 }
3312
3313 /*
3314 INTERNAL_FUNCTION
3315 bfd_generic_gc_sections
3316
3317 SYNOPSIS
3318 boolean bfd_generic_gc_sections
3319 (bfd *, struct bfd_link_info *);
3320
3321 DESCRIPTION
3322 Provides default handling for relaxing for back ends which
3323 don't do section gc -- i.e., does nothing.
3324 */
3325
3326 /*ARGSUSED*/
3327 boolean
3328 bfd_generic_gc_sections (abfd, link_info)
3329 bfd *abfd ATTRIBUTE_UNUSED;
3330 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3331 {
3332 return true;
3333 }
3334
3335 /*
3336 INTERNAL_FUNCTION
3337 bfd_generic_merge_sections
3338
3339 SYNOPSIS
3340 boolean bfd_generic_merge_sections
3341 (bfd *, struct bfd_link_info *);
3342
3343 DESCRIPTION
3344 Provides default handling for SEC_MERGE section merging for back ends
3345 which don't have SEC_MERGE support -- i.e., does nothing.
3346 */
3347
3348 /*ARGSUSED*/
3349 boolean
3350 bfd_generic_merge_sections (abfd, link_info)
3351 bfd *abfd ATTRIBUTE_UNUSED;
3352 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3353 {
3354 return true;
3355 }
3356
3357 /*
3358 INTERNAL_FUNCTION
3359 bfd_generic_get_relocated_section_contents
3360
3361 SYNOPSIS
3362 bfd_byte *
3363 bfd_generic_get_relocated_section_contents (bfd *abfd,
3364 struct bfd_link_info *link_info,
3365 struct bfd_link_order *link_order,
3366 bfd_byte *data,
3367 boolean relocateable,
3368 asymbol **symbols);
3369
3370 DESCRIPTION
3371 Provides default handling of relocation effort for back ends
3372 which can't be bothered to do it efficiently.
3373
3374 */
3375
3376 bfd_byte *
3377 bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3378 relocateable, symbols)
3379 bfd *abfd;
3380 struct bfd_link_info *link_info;
3381 struct bfd_link_order *link_order;
3382 bfd_byte *data;
3383 boolean relocateable;
3384 asymbol **symbols;
3385 {
3386 /* Get enough memory to hold the stuff */
3387 bfd *input_bfd = link_order->u.indirect.section->owner;
3388 asection *input_section = link_order->u.indirect.section;
3389
3390 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3391 arelent **reloc_vector = NULL;
3392 long reloc_count;
3393
3394 if (reloc_size < 0)
3395 goto error_return;
3396
3397 reloc_vector = (arelent **) bfd_malloc ((size_t) reloc_size);
3398 if (reloc_vector == NULL && reloc_size != 0)
3399 goto error_return;
3400
3401 /* read in the section */
3402 if (!bfd_get_section_contents (input_bfd,
3403 input_section,
3404 (PTR) data,
3405 0,
3406 input_section->_raw_size))
3407 goto error_return;
3408
3409 /* We're not relaxing the section, so just copy the size info */
3410 input_section->_cooked_size = input_section->_raw_size;
3411 input_section->reloc_done = true;
3412
3413 reloc_count = bfd_canonicalize_reloc (input_bfd,
3414 input_section,
3415 reloc_vector,
3416 symbols);
3417 if (reloc_count < 0)
3418 goto error_return;
3419
3420 if (reloc_count > 0)
3421 {
3422 arelent **parent;
3423 for (parent = reloc_vector; *parent != (arelent *) NULL;
3424 parent++)
3425 {
3426 char *error_message = (char *) NULL;
3427 bfd_reloc_status_type r =
3428 bfd_perform_relocation (input_bfd,
3429 *parent,
3430 (PTR) data,
3431 input_section,
3432 relocateable ? abfd : (bfd *) NULL,
3433 &error_message);
3434
3435 if (relocateable)
3436 {
3437 asection *os = input_section->output_section;
3438
3439 /* A partial link, so keep the relocs */
3440 os->orelocation[os->reloc_count] = *parent;
3441 os->reloc_count++;
3442 }
3443
3444 if (r != bfd_reloc_ok)
3445 {
3446 switch (r)
3447 {
3448 case bfd_reloc_undefined:
3449 if (!((*link_info->callbacks->undefined_symbol)
3450 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3451 input_bfd, input_section, (*parent)->address,
3452 true)))
3453 goto error_return;
3454 break;
3455 case bfd_reloc_dangerous:
3456 BFD_ASSERT (error_message != (char *) NULL);
3457 if (!((*link_info->callbacks->reloc_dangerous)
3458 (link_info, error_message, input_bfd, input_section,
3459 (*parent)->address)))
3460 goto error_return;
3461 break;
3462 case bfd_reloc_overflow:
3463 if (!((*link_info->callbacks->reloc_overflow)
3464 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3465 (*parent)->howto->name, (*parent)->addend,
3466 input_bfd, input_section, (*parent)->address)))
3467 goto error_return;
3468 break;
3469 case bfd_reloc_outofrange:
3470 default:
3471 abort ();
3472 break;
3473 }
3474
3475 }
3476 }
3477 }
3478 if (reloc_vector != NULL)
3479 free (reloc_vector);
3480 return data;
3481
3482 error_return:
3483 if (reloc_vector != NULL)
3484 free (reloc_vector);
3485 return NULL;
3486 }
This page took 0.123964 seconds and 4 git commands to generate.