Contribute sh64-elf.
[deliverable/binutils-gdb.git] / bfd / reloc.c
1 /* BFD support for handling relocation entries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
29 en-masse and translated into an internal form. A common
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40 @menu
41 @* typedef arelent::
42 @* howto manager::
43 @end menu
44
45 */
46
47 /* DO compile in the reloc_code name table from libbfd.h. */
48 #define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50 #include "bfd.h"
51 #include "sysdep.h"
52 #include "bfdlink.h"
53 #include "libbfd.h"
54 /*
55 DOCDD
56 INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59 SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64 CODE_FRAGMENT
65 .
66 .typedef enum bfd_reloc_status
67 .{
68 . {* No errors detected. *}
69 . bfd_reloc_ok,
70 .
71 . {* The relocation was performed, but there was an overflow. *}
72 . bfd_reloc_overflow,
73 .
74 . {* The address to relocate was not within the section supplied. *}
75 . bfd_reloc_outofrange,
76 .
77 . {* Used by special functions. *}
78 . bfd_reloc_continue,
79 .
80 . {* Unsupported relocation size requested. *}
81 . bfd_reloc_notsupported,
82 .
83 . {* Unused. *}
84 . bfd_reloc_other,
85 .
86 . {* The symbol to relocate against was undefined. *}
87 . bfd_reloc_undefined,
88 .
89 . {* The relocation was performed, but may not be ok - presently
90 . generated only when linking i960 coff files with i960 b.out
91 . symbols. If this type is returned, the error_message argument
92 . to bfd_perform_relocation will be set. *}
93 . bfd_reloc_dangerous
94 . }
95 . bfd_reloc_status_type;
96 .
97 .
98 .typedef struct reloc_cache_entry
99 .{
100 . {* A pointer into the canonical table of pointers. *}
101 . struct symbol_cache_entry **sym_ptr_ptr;
102 .
103 . {* offset in section. *}
104 . bfd_size_type address;
105 .
106 . {* addend for relocation value. *}
107 . bfd_vma addend;
108 .
109 . {* Pointer to how to perform the required relocation. *}
110 . reloc_howto_type *howto;
111 .
112 .}
113 .arelent;
114 .
115 */
116
117 /*
118 DESCRIPTION
119
120 Here is a description of each of the fields within an <<arelent>>:
121
122 o <<sym_ptr_ptr>>
123
124 The symbol table pointer points to a pointer to the symbol
125 associated with the relocation request. It is
126 the pointer into the table returned by the back end's
127 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
128 through a pointer to a pointer so that tools like the linker
129 can fix up all the symbols of the same name by modifying only
130 one pointer. The relocation routine looks in the symbol and
131 uses the base of the section the symbol is attached to and the
132 value of the symbol as the initial relocation offset. If the
133 symbol pointer is zero, then the section provided is looked up.
134
135 o <<address>>
136
137 The <<address>> field gives the offset in bytes from the base of
138 the section data which owns the relocation record to the first
139 byte of relocatable information. The actual data relocated
140 will be relative to this point; for example, a relocation
141 type which modifies the bottom two bytes of a four byte word
142 would not touch the first byte pointed to in a big endian
143 world.
144
145 o <<addend>>
146
147 The <<addend>> is a value provided by the back end to be added (!)
148 to the relocation offset. Its interpretation is dependent upon
149 the howto. For example, on the 68k the code:
150
151 | char foo[];
152 | main()
153 | {
154 | return foo[0x12345678];
155 | }
156
157 Could be compiled into:
158
159 | linkw fp,#-4
160 | moveb @@#12345678,d0
161 | extbl d0
162 | unlk fp
163 | rts
164
165 This could create a reloc pointing to <<foo>>, but leave the
166 offset in the data, something like:
167
168 |RELOCATION RECORDS FOR [.text]:
169 |offset type value
170 |00000006 32 _foo
171 |
172 |00000000 4e56 fffc ; linkw fp,#-4
173 |00000004 1039 1234 5678 ; moveb @@#12345678,d0
174 |0000000a 49c0 ; extbl d0
175 |0000000c 4e5e ; unlk fp
176 |0000000e 4e75 ; rts
177
178 Using coff and an 88k, some instructions don't have enough
179 space in them to represent the full address range, and
180 pointers have to be loaded in two parts. So you'd get something like:
181
182 | or.u r13,r0,hi16(_foo+0x12345678)
183 | ld.b r2,r13,lo16(_foo+0x12345678)
184 | jmp r1
185
186 This should create two relocs, both pointing to <<_foo>>, and with
187 0x12340000 in their addend field. The data would consist of:
188
189 |RELOCATION RECORDS FOR [.text]:
190 |offset type value
191 |00000002 HVRT16 _foo+0x12340000
192 |00000006 LVRT16 _foo+0x12340000
193 |
194 |00000000 5da05678 ; or.u r13,r0,0x5678
195 |00000004 1c4d5678 ; ld.b r2,r13,0x5678
196 |00000008 f400c001 ; jmp r1
197
198 The relocation routine digs out the value from the data, adds
199 it to the addend to get the original offset, and then adds the
200 value of <<_foo>>. Note that all 32 bits have to be kept around
201 somewhere, to cope with carry from bit 15 to bit 16.
202
203 One further example is the sparc and the a.out format. The
204 sparc has a similar problem to the 88k, in that some
205 instructions don't have room for an entire offset, but on the
206 sparc the parts are created in odd sized lumps. The designers of
207 the a.out format chose to not use the data within the section
208 for storing part of the offset; all the offset is kept within
209 the reloc. Anything in the data should be ignored.
210
211 | save %sp,-112,%sp
212 | sethi %hi(_foo+0x12345678),%g2
213 | ldsb [%g2+%lo(_foo+0x12345678)],%i0
214 | ret
215 | restore
216
217 Both relocs contain a pointer to <<foo>>, and the offsets
218 contain junk.
219
220 |RELOCATION RECORDS FOR [.text]:
221 |offset type value
222 |00000004 HI22 _foo+0x12345678
223 |00000008 LO10 _foo+0x12345678
224 |
225 |00000000 9de3bf90 ; save %sp,-112,%sp
226 |00000004 05000000 ; sethi %hi(_foo+0),%g2
227 |00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
228 |0000000c 81c7e008 ; ret
229 |00000010 81e80000 ; restore
230
231 o <<howto>>
232
233 The <<howto>> field can be imagined as a
234 relocation instruction. It is a pointer to a structure which
235 contains information on what to do with all of the other
236 information in the reloc record and data section. A back end
237 would normally have a relocation instruction set and turn
238 relocations into pointers to the correct structure on input -
239 but it would be possible to create each howto field on demand.
240
241 */
242
243 /*
244 SUBSUBSECTION
245 <<enum complain_overflow>>
246
247 Indicates what sort of overflow checking should be done when
248 performing a relocation.
249
250 CODE_FRAGMENT
251 .
252 .enum complain_overflow
253 .{
254 . {* Do not complain on overflow. *}
255 . complain_overflow_dont,
256 .
257 . {* Complain if the bitfield overflows, whether it is considered
258 . as signed or unsigned. *}
259 . complain_overflow_bitfield,
260 .
261 . {* Complain if the value overflows when considered as signed
262 . number. *}
263 . complain_overflow_signed,
264 .
265 . {* Complain if the value overflows when considered as an
266 . unsigned number. *}
267 . complain_overflow_unsigned
268 .};
269
270 */
271
272 /*
273 SUBSUBSECTION
274 <<reloc_howto_type>>
275
276 The <<reloc_howto_type>> is a structure which contains all the
277 information that libbfd needs to know to tie up a back end's data.
278
279 CODE_FRAGMENT
280 .struct symbol_cache_entry; {* Forward declaration. *}
281 .
282 .struct reloc_howto_struct
283 .{
284 . {* The type field has mainly a documentary use - the back end can
285 . do what it wants with it, though normally the back end's
286 . external idea of what a reloc number is stored
287 . in this field. For example, a PC relative word relocation
288 . in a coff environment has the type 023 - because that's
289 . what the outside world calls a R_PCRWORD reloc. *}
290 . unsigned int type;
291 .
292 . {* The value the final relocation is shifted right by. This drops
293 . unwanted data from the relocation. *}
294 . unsigned int rightshift;
295 .
296 . {* The size of the item to be relocated. This is *not* a
297 . power-of-two measure. To get the number of bytes operated
298 . on by a type of relocation, use bfd_get_reloc_size. *}
299 . int size;
300 .
301 . {* The number of bits in the item to be relocated. This is used
302 . when doing overflow checking. *}
303 . unsigned int bitsize;
304 .
305 . {* Notes that the relocation is relative to the location in the
306 . data section of the addend. The relocation function will
307 . subtract from the relocation value the address of the location
308 . being relocated. *}
309 . boolean pc_relative;
310 .
311 . {* The bit position of the reloc value in the destination.
312 . The relocated value is left shifted by this amount. *}
313 . unsigned int bitpos;
314 .
315 . {* What type of overflow error should be checked for when
316 . relocating. *}
317 . enum complain_overflow complain_on_overflow;
318 .
319 . {* If this field is non null, then the supplied function is
320 . called rather than the normal function. This allows really
321 . strange relocation methods to be accomodated (e.g., i960 callj
322 . instructions). *}
323 . bfd_reloc_status_type (*special_function)
324 . PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
325 . bfd *, char **));
326 .
327 . {* The textual name of the relocation type. *}
328 . char *name;
329 .
330 . {* Some formats record a relocation addend in the section contents
331 . rather than with the relocation. For ELF formats this is the
332 . distinction between USE_REL and USE_RELA (though the code checks
333 . for USE_REL == 1/0). The value of this field is TRUE if the
334 . addend is recorded with the section contents; when performing a
335 . partial link (ld -r) the section contents (the data) will be
336 . modified. The value of this field is FALSE if addends are
337 . recorded with the relocation (in arelent.addend); when performing
338 . a partial link the relocation will be modified.
339 . All relocations for all ELF USE_RELA targets should set this field
340 . to FALSE (values of TRUE should be looked on with suspicion).
341 . However, the converse is not true: not all relocations of all ELF
342 . USE_REL targets set this field to TRUE. Why this is so is peculiar
343 . to each particular target. For relocs that aren't used in partial
344 . links (e.g. GOT stuff) it doesn't matter what this is set to. *}
345 . boolean partial_inplace;
346 .
347 . {* The src_mask selects which parts of the read in data
348 . are to be used in the relocation sum. E.g., if this was an 8 bit
349 . byte of data which we read and relocated, this would be
350 . 0x000000ff. When we have relocs which have an addend, such as
351 . sun4 extended relocs, the value in the offset part of a
352 . relocating field is garbage so we never use it. In this case
353 . the mask would be 0x00000000. *}
354 . bfd_vma src_mask;
355 .
356 . {* The dst_mask selects which parts of the instruction are replaced
357 . into the instruction. In most cases src_mask == dst_mask,
358 . except in the above special case, where dst_mask would be
359 . 0x000000ff, and src_mask would be 0x00000000. *}
360 . bfd_vma dst_mask;
361 .
362 . {* When some formats create PC relative instructions, they leave
363 . the value of the pc of the place being relocated in the offset
364 . slot of the instruction, so that a PC relative relocation can
365 . be made just by adding in an ordinary offset (e.g., sun3 a.out).
366 . Some formats leave the displacement part of an instruction
367 . empty (e.g., m88k bcs); this flag signals the fact. *}
368 . boolean pcrel_offset;
369 .};
370 .
371 */
372
373 /*
374 FUNCTION
375 The HOWTO Macro
376
377 DESCRIPTION
378 The HOWTO define is horrible and will go away.
379
380 .#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
381 . { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
382
383 DESCRIPTION
384 And will be replaced with the totally magic way. But for the
385 moment, we are compatible, so do it this way.
386
387 .#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
388 . HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
389 . NAME, false, 0, 0, IN)
390 .
391
392 DESCRIPTION
393 This is used to fill in an empty howto entry in an array.
394
395 .#define EMPTY_HOWTO(C) \
396 . HOWTO ((C), 0, 0, 0, false, 0, complain_overflow_dont, NULL, \
397 . NULL, false, 0, 0, false)
398 .
399
400 DESCRIPTION
401 Helper routine to turn a symbol into a relocation value.
402
403 .#define HOWTO_PREPARE(relocation, symbol) \
404 . { \
405 . if (symbol != (asymbol *) NULL) \
406 . { \
407 . if (bfd_is_com_section (symbol->section)) \
408 . { \
409 . relocation = 0; \
410 . } \
411 . else \
412 . { \
413 . relocation = symbol->value; \
414 . } \
415 . } \
416 . }
417 .
418 */
419
420 /*
421 FUNCTION
422 bfd_get_reloc_size
423
424 SYNOPSIS
425 unsigned int bfd_get_reloc_size (reloc_howto_type *);
426
427 DESCRIPTION
428 For a reloc_howto_type that operates on a fixed number of bytes,
429 this returns the number of bytes operated on.
430 */
431
432 unsigned int
433 bfd_get_reloc_size (howto)
434 reloc_howto_type *howto;
435 {
436 switch (howto->size)
437 {
438 case 0: return 1;
439 case 1: return 2;
440 case 2: return 4;
441 case 3: return 0;
442 case 4: return 8;
443 case 8: return 16;
444 case -2: return 4;
445 default: abort ();
446 }
447 }
448
449 /*
450 TYPEDEF
451 arelent_chain
452
453 DESCRIPTION
454
455 How relocs are tied together in an <<asection>>:
456
457 .typedef struct relent_chain
458 .{
459 . arelent relent;
460 . struct relent_chain *next;
461 .}
462 .arelent_chain;
463 .
464 */
465
466 /* N_ONES produces N one bits, without overflowing machine arithmetic. */
467 #define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
468
469 /*
470 FUNCTION
471 bfd_check_overflow
472
473 SYNOPSIS
474 bfd_reloc_status_type
475 bfd_check_overflow
476 (enum complain_overflow how,
477 unsigned int bitsize,
478 unsigned int rightshift,
479 unsigned int addrsize,
480 bfd_vma relocation);
481
482 DESCRIPTION
483 Perform overflow checking on @var{relocation} which has
484 @var{bitsize} significant bits and will be shifted right by
485 @var{rightshift} bits, on a machine with addresses containing
486 @var{addrsize} significant bits. The result is either of
487 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
488
489 */
490
491 bfd_reloc_status_type
492 bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
493 enum complain_overflow how;
494 unsigned int bitsize;
495 unsigned int rightshift;
496 unsigned int addrsize;
497 bfd_vma relocation;
498 {
499 bfd_vma fieldmask, addrmask, signmask, ss, a;
500 bfd_reloc_status_type flag = bfd_reloc_ok;
501
502 a = relocation;
503
504 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
505 we'll be permissive: extra bits in the field mask will
506 automatically extend the address mask for purposes of the
507 overflow check. */
508 fieldmask = N_ONES (bitsize);
509 addrmask = N_ONES (addrsize) | fieldmask;
510
511 switch (how)
512 {
513 case complain_overflow_dont:
514 break;
515
516 case complain_overflow_signed:
517 /* If any sign bits are set, all sign bits must be set. That
518 is, A must be a valid negative address after shifting. */
519 a = (a & addrmask) >> rightshift;
520 signmask = ~ (fieldmask >> 1);
521 ss = a & signmask;
522 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
523 flag = bfd_reloc_overflow;
524 break;
525
526 case complain_overflow_unsigned:
527 /* We have an overflow if the address does not fit in the field. */
528 a = (a & addrmask) >> rightshift;
529 if ((a & ~ fieldmask) != 0)
530 flag = bfd_reloc_overflow;
531 break;
532
533 case complain_overflow_bitfield:
534 /* Bitfields are sometimes signed, sometimes unsigned. We
535 explicitly allow an address wrap too, which means a bitfield
536 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
537 if the value has some, but not all, bits set outside the
538 field. */
539 a >>= rightshift;
540 ss = a & ~ fieldmask;
541 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
542 flag = bfd_reloc_overflow;
543 break;
544
545 default:
546 abort ();
547 }
548
549 return flag;
550 }
551
552 /*
553 FUNCTION
554 bfd_perform_relocation
555
556 SYNOPSIS
557 bfd_reloc_status_type
558 bfd_perform_relocation
559 (bfd *abfd,
560 arelent *reloc_entry,
561 PTR data,
562 asection *input_section,
563 bfd *output_bfd,
564 char **error_message);
565
566 DESCRIPTION
567 If @var{output_bfd} is supplied to this function, the
568 generated image will be relocatable; the relocations are
569 copied to the output file after they have been changed to
570 reflect the new state of the world. There are two ways of
571 reflecting the results of partial linkage in an output file:
572 by modifying the output data in place, and by modifying the
573 relocation record. Some native formats (e.g., basic a.out and
574 basic coff) have no way of specifying an addend in the
575 relocation type, so the addend has to go in the output data.
576 This is no big deal since in these formats the output data
577 slot will always be big enough for the addend. Complex reloc
578 types with addends were invented to solve just this problem.
579 The @var{error_message} argument is set to an error message if
580 this return @code{bfd_reloc_dangerous}.
581
582 */
583
584 bfd_reloc_status_type
585 bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
586 error_message)
587 bfd *abfd;
588 arelent *reloc_entry;
589 PTR data;
590 asection *input_section;
591 bfd *output_bfd;
592 char **error_message;
593 {
594 bfd_vma relocation;
595 bfd_reloc_status_type flag = bfd_reloc_ok;
596 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
597 bfd_vma output_base = 0;
598 reloc_howto_type *howto = reloc_entry->howto;
599 asection *reloc_target_output_section;
600 asymbol *symbol;
601
602 symbol = *(reloc_entry->sym_ptr_ptr);
603 if (bfd_is_abs_section (symbol->section)
604 && output_bfd != (bfd *) NULL)
605 {
606 reloc_entry->address += input_section->output_offset;
607 return bfd_reloc_ok;
608 }
609
610 /* If we are not producing relocateable output, return an error if
611 the symbol is not defined. An undefined weak symbol is
612 considered to have a value of zero (SVR4 ABI, p. 4-27). */
613 if (bfd_is_und_section (symbol->section)
614 && (symbol->flags & BSF_WEAK) == 0
615 && output_bfd == (bfd *) NULL)
616 flag = bfd_reloc_undefined;
617
618 /* If there is a function supplied to handle this relocation type,
619 call it. It'll return `bfd_reloc_continue' if further processing
620 can be done. */
621 if (howto->special_function)
622 {
623 bfd_reloc_status_type cont;
624 cont = howto->special_function (abfd, reloc_entry, symbol, data,
625 input_section, output_bfd,
626 error_message);
627 if (cont != bfd_reloc_continue)
628 return cont;
629 }
630
631 /* Is the address of the relocation really within the section? */
632 if (reloc_entry->address > (input_section->_cooked_size
633 / bfd_octets_per_byte (abfd)))
634 return bfd_reloc_outofrange;
635
636 /* Work out which section the relocation is targetted at and the
637 initial relocation command value. */
638
639 /* Get symbol value. (Common symbols are special.) */
640 if (bfd_is_com_section (symbol->section))
641 relocation = 0;
642 else
643 relocation = symbol->value;
644
645 reloc_target_output_section = symbol->section->output_section;
646
647 /* Convert input-section-relative symbol value to absolute. */
648 if (output_bfd && howto->partial_inplace == false)
649 output_base = 0;
650 else
651 output_base = reloc_target_output_section->vma;
652
653 relocation += output_base + symbol->section->output_offset;
654
655 /* Add in supplied addend. */
656 relocation += reloc_entry->addend;
657
658 /* Here the variable relocation holds the final address of the
659 symbol we are relocating against, plus any addend. */
660
661 if (howto->pc_relative == true)
662 {
663 /* This is a PC relative relocation. We want to set RELOCATION
664 to the distance between the address of the symbol and the
665 location. RELOCATION is already the address of the symbol.
666
667 We start by subtracting the address of the section containing
668 the location.
669
670 If pcrel_offset is set, we must further subtract the position
671 of the location within the section. Some targets arrange for
672 the addend to be the negative of the position of the location
673 within the section; for example, i386-aout does this. For
674 i386-aout, pcrel_offset is false. Some other targets do not
675 include the position of the location; for example, m88kbcs,
676 or ELF. For those targets, pcrel_offset is true.
677
678 If we are producing relocateable output, then we must ensure
679 that this reloc will be correctly computed when the final
680 relocation is done. If pcrel_offset is false we want to wind
681 up with the negative of the location within the section,
682 which means we must adjust the existing addend by the change
683 in the location within the section. If pcrel_offset is true
684 we do not want to adjust the existing addend at all.
685
686 FIXME: This seems logical to me, but for the case of
687 producing relocateable output it is not what the code
688 actually does. I don't want to change it, because it seems
689 far too likely that something will break. */
690
691 relocation -=
692 input_section->output_section->vma + input_section->output_offset;
693
694 if (howto->pcrel_offset == true)
695 relocation -= reloc_entry->address;
696 }
697
698 if (output_bfd != (bfd *) NULL)
699 {
700 if (howto->partial_inplace == false)
701 {
702 /* This is a partial relocation, and we want to apply the relocation
703 to the reloc entry rather than the raw data. Modify the reloc
704 inplace to reflect what we now know. */
705 reloc_entry->addend = relocation;
706 reloc_entry->address += input_section->output_offset;
707 return flag;
708 }
709 else
710 {
711 /* This is a partial relocation, but inplace, so modify the
712 reloc record a bit.
713
714 If we've relocated with a symbol with a section, change
715 into a ref to the section belonging to the symbol. */
716
717 reloc_entry->address += input_section->output_offset;
718
719 /* WTF?? */
720 if (abfd->xvec->flavour == bfd_target_coff_flavour
721 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
722 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
723 {
724 #if 1
725 /* For m68k-coff, the addend was being subtracted twice during
726 relocation with -r. Removing the line below this comment
727 fixes that problem; see PR 2953.
728
729 However, Ian wrote the following, regarding removing the line below,
730 which explains why it is still enabled: --djm
731
732 If you put a patch like that into BFD you need to check all the COFF
733 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
734 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
735 problem in a different way. There may very well be a reason that the
736 code works as it does.
737
738 Hmmm. The first obvious point is that bfd_perform_relocation should
739 not have any tests that depend upon the flavour. It's seem like
740 entirely the wrong place for such a thing. The second obvious point
741 is that the current code ignores the reloc addend when producing
742 relocateable output for COFF. That's peculiar. In fact, I really
743 have no idea what the point of the line you want to remove is.
744
745 A typical COFF reloc subtracts the old value of the symbol and adds in
746 the new value to the location in the object file (if it's a pc
747 relative reloc it adds the difference between the symbol value and the
748 location). When relocating we need to preserve that property.
749
750 BFD handles this by setting the addend to the negative of the old
751 value of the symbol. Unfortunately it handles common symbols in a
752 non-standard way (it doesn't subtract the old value) but that's a
753 different story (we can't change it without losing backward
754 compatibility with old object files) (coff-i386 does subtract the old
755 value, to be compatible with existing coff-i386 targets, like SCO).
756
757 So everything works fine when not producing relocateable output. When
758 we are producing relocateable output, logically we should do exactly
759 what we do when not producing relocateable output. Therefore, your
760 patch is correct. In fact, it should probably always just set
761 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
762 add the value into the object file. This won't hurt the COFF code,
763 which doesn't use the addend; I'm not sure what it will do to other
764 formats (the thing to check for would be whether any formats both use
765 the addend and set partial_inplace).
766
767 When I wanted to make coff-i386 produce relocateable output, I ran
768 into the problem that you are running into: I wanted to remove that
769 line. Rather than risk it, I made the coff-i386 relocs use a special
770 function; it's coff_i386_reloc in coff-i386.c. The function
771 specifically adds the addend field into the object file, knowing that
772 bfd_perform_relocation is not going to. If you remove that line, then
773 coff-i386.c will wind up adding the addend field in twice. It's
774 trivial to fix; it just needs to be done.
775
776 The problem with removing the line is just that it may break some
777 working code. With BFD it's hard to be sure of anything. The right
778 way to deal with this is simply to build and test at least all the
779 supported COFF targets. It should be straightforward if time and disk
780 space consuming. For each target:
781 1) build the linker
782 2) generate some executable, and link it using -r (I would
783 probably use paranoia.o and link against newlib/libc.a, which
784 for all the supported targets would be available in
785 /usr/cygnus/progressive/H-host/target/lib/libc.a).
786 3) make the change to reloc.c
787 4) rebuild the linker
788 5) repeat step 2
789 6) if the resulting object files are the same, you have at least
790 made it no worse
791 7) if they are different you have to figure out which version is
792 right
793 */
794 relocation -= reloc_entry->addend;
795 #endif
796 reloc_entry->addend = 0;
797 }
798 else
799 {
800 reloc_entry->addend = relocation;
801 }
802 }
803 }
804 else
805 {
806 reloc_entry->addend = 0;
807 }
808
809 /* FIXME: This overflow checking is incomplete, because the value
810 might have overflowed before we get here. For a correct check we
811 need to compute the value in a size larger than bitsize, but we
812 can't reasonably do that for a reloc the same size as a host
813 machine word.
814 FIXME: We should also do overflow checking on the result after
815 adding in the value contained in the object file. */
816 if (howto->complain_on_overflow != complain_overflow_dont
817 && flag == bfd_reloc_ok)
818 flag = bfd_check_overflow (howto->complain_on_overflow,
819 howto->bitsize,
820 howto->rightshift,
821 bfd_arch_bits_per_address (abfd),
822 relocation);
823
824 /* Either we are relocating all the way, or we don't want to apply
825 the relocation to the reloc entry (probably because there isn't
826 any room in the output format to describe addends to relocs). */
827
828 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
829 (OSF version 1.3, compiler version 3.11). It miscompiles the
830 following program:
831
832 struct str
833 {
834 unsigned int i0;
835 } s = { 0 };
836
837 int
838 main ()
839 {
840 unsigned long x;
841
842 x = 0x100000000;
843 x <<= (unsigned long) s.i0;
844 if (x == 0)
845 printf ("failed\n");
846 else
847 printf ("succeeded (%lx)\n", x);
848 }
849 */
850
851 relocation >>= (bfd_vma) howto->rightshift;
852
853 /* Shift everything up to where it's going to be used. */
854 relocation <<= (bfd_vma) howto->bitpos;
855
856 /* Wait for the day when all have the mask in them. */
857
858 /* What we do:
859 i instruction to be left alone
860 o offset within instruction
861 r relocation offset to apply
862 S src mask
863 D dst mask
864 N ~dst mask
865 A part 1
866 B part 2
867 R result
868
869 Do this:
870 (( i i i i i o o o o o from bfd_get<size>
871 and S S S S S) to get the size offset we want
872 + r r r r r r r r r r) to get the final value to place
873 and D D D D D to chop to right size
874 -----------------------
875 = A A A A A
876 And this:
877 ( i i i i i o o o o o from bfd_get<size>
878 and N N N N N ) get instruction
879 -----------------------
880 = B B B B B
881
882 And then:
883 ( B B B B B
884 or A A A A A)
885 -----------------------
886 = R R R R R R R R R R put into bfd_put<size>
887 */
888
889 #define DOIT(x) \
890 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
891
892 switch (howto->size)
893 {
894 case 0:
895 {
896 char x = bfd_get_8 (abfd, (char *) data + octets);
897 DOIT (x);
898 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
899 }
900 break;
901
902 case 1:
903 {
904 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
905 DOIT (x);
906 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
907 }
908 break;
909 case 2:
910 {
911 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
912 DOIT (x);
913 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
914 }
915 break;
916 case -2:
917 {
918 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
919 relocation = -relocation;
920 DOIT (x);
921 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
922 }
923 break;
924
925 case -1:
926 {
927 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
928 relocation = -relocation;
929 DOIT (x);
930 bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
931 }
932 break;
933
934 case 3:
935 /* Do nothing */
936 break;
937
938 case 4:
939 #ifdef BFD64
940 {
941 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
942 DOIT (x);
943 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
944 }
945 #else
946 abort ();
947 #endif
948 break;
949 default:
950 return bfd_reloc_other;
951 }
952
953 return flag;
954 }
955
956 /*
957 FUNCTION
958 bfd_install_relocation
959
960 SYNOPSIS
961 bfd_reloc_status_type
962 bfd_install_relocation
963 (bfd *abfd,
964 arelent *reloc_entry,
965 PTR data, bfd_vma data_start,
966 asection *input_section,
967 char **error_message);
968
969 DESCRIPTION
970 This looks remarkably like <<bfd_perform_relocation>>, except it
971 does not expect that the section contents have been filled in.
972 I.e., it's suitable for use when creating, rather than applying
973 a relocation.
974
975 For now, this function should be considered reserved for the
976 assembler.
977 */
978
979 bfd_reloc_status_type
980 bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
981 input_section, error_message)
982 bfd *abfd;
983 arelent *reloc_entry;
984 PTR data_start;
985 bfd_vma data_start_offset;
986 asection *input_section;
987 char **error_message;
988 {
989 bfd_vma relocation;
990 bfd_reloc_status_type flag = bfd_reloc_ok;
991 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
992 bfd_vma output_base = 0;
993 reloc_howto_type *howto = reloc_entry->howto;
994 asection *reloc_target_output_section;
995 asymbol *symbol;
996 bfd_byte *data;
997
998 symbol = *(reloc_entry->sym_ptr_ptr);
999 if (bfd_is_abs_section (symbol->section))
1000 {
1001 reloc_entry->address += input_section->output_offset;
1002 return bfd_reloc_ok;
1003 }
1004
1005 /* If there is a function supplied to handle this relocation type,
1006 call it. It'll return `bfd_reloc_continue' if further processing
1007 can be done. */
1008 if (howto->special_function)
1009 {
1010 bfd_reloc_status_type cont;
1011
1012 /* XXX - The special_function calls haven't been fixed up to deal
1013 with creating new relocations and section contents. */
1014 cont = howto->special_function (abfd, reloc_entry, symbol,
1015 /* XXX - Non-portable! */
1016 ((bfd_byte *) data_start
1017 - data_start_offset),
1018 input_section, abfd, error_message);
1019 if (cont != bfd_reloc_continue)
1020 return cont;
1021 }
1022
1023 /* Is the address of the relocation really within the section? */
1024 if (reloc_entry->address > (input_section->_cooked_size
1025 / bfd_octets_per_byte (abfd)))
1026 return bfd_reloc_outofrange;
1027
1028 /* Work out which section the relocation is targetted at and the
1029 initial relocation command value. */
1030
1031 /* Get symbol value. (Common symbols are special.) */
1032 if (bfd_is_com_section (symbol->section))
1033 relocation = 0;
1034 else
1035 relocation = symbol->value;
1036
1037 reloc_target_output_section = symbol->section->output_section;
1038
1039 /* Convert input-section-relative symbol value to absolute. */
1040 if (howto->partial_inplace == false)
1041 output_base = 0;
1042 else
1043 output_base = reloc_target_output_section->vma;
1044
1045 relocation += output_base + symbol->section->output_offset;
1046
1047 /* Add in supplied addend. */
1048 relocation += reloc_entry->addend;
1049
1050 /* Here the variable relocation holds the final address of the
1051 symbol we are relocating against, plus any addend. */
1052
1053 if (howto->pc_relative == true)
1054 {
1055 /* This is a PC relative relocation. We want to set RELOCATION
1056 to the distance between the address of the symbol and the
1057 location. RELOCATION is already the address of the symbol.
1058
1059 We start by subtracting the address of the section containing
1060 the location.
1061
1062 If pcrel_offset is set, we must further subtract the position
1063 of the location within the section. Some targets arrange for
1064 the addend to be the negative of the position of the location
1065 within the section; for example, i386-aout does this. For
1066 i386-aout, pcrel_offset is false. Some other targets do not
1067 include the position of the location; for example, m88kbcs,
1068 or ELF. For those targets, pcrel_offset is true.
1069
1070 If we are producing relocateable output, then we must ensure
1071 that this reloc will be correctly computed when the final
1072 relocation is done. If pcrel_offset is false we want to wind
1073 up with the negative of the location within the section,
1074 which means we must adjust the existing addend by the change
1075 in the location within the section. If pcrel_offset is true
1076 we do not want to adjust the existing addend at all.
1077
1078 FIXME: This seems logical to me, but for the case of
1079 producing relocateable output it is not what the code
1080 actually does. I don't want to change it, because it seems
1081 far too likely that something will break. */
1082
1083 relocation -=
1084 input_section->output_section->vma + input_section->output_offset;
1085
1086 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1087 relocation -= reloc_entry->address;
1088 }
1089
1090 if (howto->partial_inplace == false)
1091 {
1092 /* This is a partial relocation, and we want to apply the relocation
1093 to the reloc entry rather than the raw data. Modify the reloc
1094 inplace to reflect what we now know. */
1095 reloc_entry->addend = relocation;
1096 reloc_entry->address += input_section->output_offset;
1097 return flag;
1098 }
1099 else
1100 {
1101 /* This is a partial relocation, but inplace, so modify the
1102 reloc record a bit.
1103
1104 If we've relocated with a symbol with a section, change
1105 into a ref to the section belonging to the symbol. */
1106 reloc_entry->address += input_section->output_offset;
1107
1108 /* WTF?? */
1109 if (abfd->xvec->flavour == bfd_target_coff_flavour
1110 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1111 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1112 {
1113 #if 1
1114 /* For m68k-coff, the addend was being subtracted twice during
1115 relocation with -r. Removing the line below this comment
1116 fixes that problem; see PR 2953.
1117
1118 However, Ian wrote the following, regarding removing the line below,
1119 which explains why it is still enabled: --djm
1120
1121 If you put a patch like that into BFD you need to check all the COFF
1122 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1123 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1124 problem in a different way. There may very well be a reason that the
1125 code works as it does.
1126
1127 Hmmm. The first obvious point is that bfd_install_relocation should
1128 not have any tests that depend upon the flavour. It's seem like
1129 entirely the wrong place for such a thing. The second obvious point
1130 is that the current code ignores the reloc addend when producing
1131 relocateable output for COFF. That's peculiar. In fact, I really
1132 have no idea what the point of the line you want to remove is.
1133
1134 A typical COFF reloc subtracts the old value of the symbol and adds in
1135 the new value to the location in the object file (if it's a pc
1136 relative reloc it adds the difference between the symbol value and the
1137 location). When relocating we need to preserve that property.
1138
1139 BFD handles this by setting the addend to the negative of the old
1140 value of the symbol. Unfortunately it handles common symbols in a
1141 non-standard way (it doesn't subtract the old value) but that's a
1142 different story (we can't change it without losing backward
1143 compatibility with old object files) (coff-i386 does subtract the old
1144 value, to be compatible with existing coff-i386 targets, like SCO).
1145
1146 So everything works fine when not producing relocateable output. When
1147 we are producing relocateable output, logically we should do exactly
1148 what we do when not producing relocateable output. Therefore, your
1149 patch is correct. In fact, it should probably always just set
1150 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1151 add the value into the object file. This won't hurt the COFF code,
1152 which doesn't use the addend; I'm not sure what it will do to other
1153 formats (the thing to check for would be whether any formats both use
1154 the addend and set partial_inplace).
1155
1156 When I wanted to make coff-i386 produce relocateable output, I ran
1157 into the problem that you are running into: I wanted to remove that
1158 line. Rather than risk it, I made the coff-i386 relocs use a special
1159 function; it's coff_i386_reloc in coff-i386.c. The function
1160 specifically adds the addend field into the object file, knowing that
1161 bfd_install_relocation is not going to. If you remove that line, then
1162 coff-i386.c will wind up adding the addend field in twice. It's
1163 trivial to fix; it just needs to be done.
1164
1165 The problem with removing the line is just that it may break some
1166 working code. With BFD it's hard to be sure of anything. The right
1167 way to deal with this is simply to build and test at least all the
1168 supported COFF targets. It should be straightforward if time and disk
1169 space consuming. For each target:
1170 1) build the linker
1171 2) generate some executable, and link it using -r (I would
1172 probably use paranoia.o and link against newlib/libc.a, which
1173 for all the supported targets would be available in
1174 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1175 3) make the change to reloc.c
1176 4) rebuild the linker
1177 5) repeat step 2
1178 6) if the resulting object files are the same, you have at least
1179 made it no worse
1180 7) if they are different you have to figure out which version is
1181 right. */
1182 relocation -= reloc_entry->addend;
1183 #endif
1184 reloc_entry->addend = 0;
1185 }
1186 else
1187 {
1188 reloc_entry->addend = relocation;
1189 }
1190 }
1191
1192 /* FIXME: This overflow checking is incomplete, because the value
1193 might have overflowed before we get here. For a correct check we
1194 need to compute the value in a size larger than bitsize, but we
1195 can't reasonably do that for a reloc the same size as a host
1196 machine word.
1197 FIXME: We should also do overflow checking on the result after
1198 adding in the value contained in the object file. */
1199 if (howto->complain_on_overflow != complain_overflow_dont)
1200 flag = bfd_check_overflow (howto->complain_on_overflow,
1201 howto->bitsize,
1202 howto->rightshift,
1203 bfd_arch_bits_per_address (abfd),
1204 relocation);
1205
1206 /* Either we are relocating all the way, or we don't want to apply
1207 the relocation to the reloc entry (probably because there isn't
1208 any room in the output format to describe addends to relocs). */
1209
1210 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1211 (OSF version 1.3, compiler version 3.11). It miscompiles the
1212 following program:
1213
1214 struct str
1215 {
1216 unsigned int i0;
1217 } s = { 0 };
1218
1219 int
1220 main ()
1221 {
1222 unsigned long x;
1223
1224 x = 0x100000000;
1225 x <<= (unsigned long) s.i0;
1226 if (x == 0)
1227 printf ("failed\n");
1228 else
1229 printf ("succeeded (%lx)\n", x);
1230 }
1231 */
1232
1233 relocation >>= (bfd_vma) howto->rightshift;
1234
1235 /* Shift everything up to where it's going to be used. */
1236 relocation <<= (bfd_vma) howto->bitpos;
1237
1238 /* Wait for the day when all have the mask in them. */
1239
1240 /* What we do:
1241 i instruction to be left alone
1242 o offset within instruction
1243 r relocation offset to apply
1244 S src mask
1245 D dst mask
1246 N ~dst mask
1247 A part 1
1248 B part 2
1249 R result
1250
1251 Do this:
1252 (( i i i i i o o o o o from bfd_get<size>
1253 and S S S S S) to get the size offset we want
1254 + r r r r r r r r r r) to get the final value to place
1255 and D D D D D to chop to right size
1256 -----------------------
1257 = A A A A A
1258 And this:
1259 ( i i i i i o o o o o from bfd_get<size>
1260 and N N N N N ) get instruction
1261 -----------------------
1262 = B B B B B
1263
1264 And then:
1265 ( B B B B B
1266 or A A A A A)
1267 -----------------------
1268 = R R R R R R R R R R put into bfd_put<size>
1269 */
1270
1271 #define DOIT(x) \
1272 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1273
1274 data = (bfd_byte *) data_start + (octets - data_start_offset);
1275
1276 switch (howto->size)
1277 {
1278 case 0:
1279 {
1280 char x = bfd_get_8 (abfd, (char *) data);
1281 DOIT (x);
1282 bfd_put_8 (abfd, x, (unsigned char *) data);
1283 }
1284 break;
1285
1286 case 1:
1287 {
1288 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1289 DOIT (x);
1290 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
1291 }
1292 break;
1293 case 2:
1294 {
1295 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1296 DOIT (x);
1297 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
1298 }
1299 break;
1300 case -2:
1301 {
1302 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1303 relocation = -relocation;
1304 DOIT (x);
1305 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
1306 }
1307 break;
1308
1309 case 3:
1310 /* Do nothing */
1311 break;
1312
1313 case 4:
1314 {
1315 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1316 DOIT (x);
1317 bfd_put_64 (abfd, x, (bfd_byte *) data);
1318 }
1319 break;
1320 default:
1321 return bfd_reloc_other;
1322 }
1323
1324 return flag;
1325 }
1326
1327 /* This relocation routine is used by some of the backend linkers.
1328 They do not construct asymbol or arelent structures, so there is no
1329 reason for them to use bfd_perform_relocation. Also,
1330 bfd_perform_relocation is so hacked up it is easier to write a new
1331 function than to try to deal with it.
1332
1333 This routine does a final relocation. Whether it is useful for a
1334 relocateable link depends upon how the object format defines
1335 relocations.
1336
1337 FIXME: This routine ignores any special_function in the HOWTO,
1338 since the existing special_function values have been written for
1339 bfd_perform_relocation.
1340
1341 HOWTO is the reloc howto information.
1342 INPUT_BFD is the BFD which the reloc applies to.
1343 INPUT_SECTION is the section which the reloc applies to.
1344 CONTENTS is the contents of the section.
1345 ADDRESS is the address of the reloc within INPUT_SECTION.
1346 VALUE is the value of the symbol the reloc refers to.
1347 ADDEND is the addend of the reloc. */
1348
1349 bfd_reloc_status_type
1350 _bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1351 value, addend)
1352 reloc_howto_type *howto;
1353 bfd *input_bfd;
1354 asection *input_section;
1355 bfd_byte *contents;
1356 bfd_vma address;
1357 bfd_vma value;
1358 bfd_vma addend;
1359 {
1360 bfd_vma relocation;
1361
1362 /* Sanity check the address. */
1363 if (address > input_section->_raw_size)
1364 return bfd_reloc_outofrange;
1365
1366 /* This function assumes that we are dealing with a basic relocation
1367 against a symbol. We want to compute the value of the symbol to
1368 relocate to. This is just VALUE, the value of the symbol, plus
1369 ADDEND, any addend associated with the reloc. */
1370 relocation = value + addend;
1371
1372 /* If the relocation is PC relative, we want to set RELOCATION to
1373 the distance between the symbol (currently in RELOCATION) and the
1374 location we are relocating. Some targets (e.g., i386-aout)
1375 arrange for the contents of the section to be the negative of the
1376 offset of the location within the section; for such targets
1377 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1378 simply leave the contents of the section as zero; for such
1379 targets pcrel_offset is true. If pcrel_offset is false we do not
1380 need to subtract out the offset of the location within the
1381 section (which is just ADDRESS). */
1382 if (howto->pc_relative)
1383 {
1384 relocation -= (input_section->output_section->vma
1385 + input_section->output_offset);
1386 if (howto->pcrel_offset)
1387 relocation -= address;
1388 }
1389
1390 return _bfd_relocate_contents (howto, input_bfd, relocation,
1391 contents + address);
1392 }
1393
1394 /* Relocate a given location using a given value and howto. */
1395
1396 bfd_reloc_status_type
1397 _bfd_relocate_contents (howto, input_bfd, relocation, location)
1398 reloc_howto_type *howto;
1399 bfd *input_bfd;
1400 bfd_vma relocation;
1401 bfd_byte *location;
1402 {
1403 int size;
1404 bfd_vma x = 0;
1405 bfd_reloc_status_type flag;
1406 unsigned int rightshift = howto->rightshift;
1407 unsigned int bitpos = howto->bitpos;
1408
1409 /* If the size is negative, negate RELOCATION. This isn't very
1410 general. */
1411 if (howto->size < 0)
1412 relocation = -relocation;
1413
1414 /* Get the value we are going to relocate. */
1415 size = bfd_get_reloc_size (howto);
1416 switch (size)
1417 {
1418 default:
1419 case 0:
1420 abort ();
1421 case 1:
1422 x = bfd_get_8 (input_bfd, location);
1423 break;
1424 case 2:
1425 x = bfd_get_16 (input_bfd, location);
1426 break;
1427 case 4:
1428 x = bfd_get_32 (input_bfd, location);
1429 break;
1430 case 8:
1431 #ifdef BFD64
1432 x = bfd_get_64 (input_bfd, location);
1433 #else
1434 abort ();
1435 #endif
1436 break;
1437 }
1438
1439 /* Check for overflow. FIXME: We may drop bits during the addition
1440 which we don't check for. We must either check at every single
1441 operation, which would be tedious, or we must do the computations
1442 in a type larger than bfd_vma, which would be inefficient. */
1443 flag = bfd_reloc_ok;
1444 if (howto->complain_on_overflow != complain_overflow_dont)
1445 {
1446 bfd_vma addrmask, fieldmask, signmask, ss;
1447 bfd_vma a, b, sum;
1448
1449 /* Get the values to be added together. For signed and unsigned
1450 relocations, we assume that all values should be truncated to
1451 the size of an address. For bitfields, all the bits matter.
1452 See also bfd_check_overflow. */
1453 fieldmask = N_ONES (howto->bitsize);
1454 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1455 a = relocation;
1456 b = x & howto->src_mask;
1457
1458 switch (howto->complain_on_overflow)
1459 {
1460 case complain_overflow_signed:
1461 a = (a & addrmask) >> rightshift;
1462
1463 /* If any sign bits are set, all sign bits must be set.
1464 That is, A must be a valid negative address after
1465 shifting. */
1466 signmask = ~ (fieldmask >> 1);
1467 ss = a & signmask;
1468 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
1469 flag = bfd_reloc_overflow;
1470
1471 /* We only need this next bit of code if the sign bit of B
1472 is below the sign bit of A. This would only happen if
1473 SRC_MASK had fewer bits than BITSIZE. Note that if
1474 SRC_MASK has more bits than BITSIZE, we can get into
1475 trouble; we would need to verify that B is in range, as
1476 we do for A above. */
1477 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1478
1479 /* Set all the bits above the sign bit. */
1480 b = (b ^ signmask) - signmask;
1481
1482 b = (b & addrmask) >> bitpos;
1483
1484 /* Now we can do the addition. */
1485 sum = a + b;
1486
1487 /* See if the result has the correct sign. Bits above the
1488 sign bit are junk now; ignore them. If the sum is
1489 positive, make sure we did not have all negative inputs;
1490 if the sum is negative, make sure we did not have all
1491 positive inputs. The test below looks only at the sign
1492 bits, and it really just
1493 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1494 */
1495 signmask = (fieldmask >> 1) + 1;
1496 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1497 flag = bfd_reloc_overflow;
1498
1499 break;
1500
1501 case complain_overflow_unsigned:
1502 /* Checking for an unsigned overflow is relatively easy:
1503 trim the addresses and add, and trim the result as well.
1504 Overflow is normally indicated when the result does not
1505 fit in the field. However, we also need to consider the
1506 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1507 input is 0x80000000, and bfd_vma is only 32 bits; then we
1508 will get sum == 0, but there is an overflow, since the
1509 inputs did not fit in the field. Instead of doing a
1510 separate test, we can check for this by or-ing in the
1511 operands when testing for the sum overflowing its final
1512 field. */
1513 a = (a & addrmask) >> rightshift;
1514 b = (b & addrmask) >> bitpos;
1515 sum = (a + b) & addrmask;
1516 if ((a | b | sum) & ~ fieldmask)
1517 flag = bfd_reloc_overflow;
1518
1519 break;
1520
1521 case complain_overflow_bitfield:
1522 /* Much like the signed check, but for a field one bit
1523 wider, and no trimming inputs with addrmask. We allow a
1524 bitfield to represent numbers in the range -2**n to
1525 2**n-1, where n is the number of bits in the field.
1526 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1527 overflow, which is exactly what we want. */
1528 a >>= rightshift;
1529
1530 signmask = ~ fieldmask;
1531 ss = a & signmask;
1532 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1533 flag = bfd_reloc_overflow;
1534
1535 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1536 b = (b ^ signmask) - signmask;
1537
1538 b >>= bitpos;
1539
1540 sum = a + b;
1541
1542 /* We mask with addrmask here to explicitly allow an address
1543 wrap-around. The Linux kernel relies on it, and it is
1544 the only way to write assembler code which can run when
1545 loaded at a location 0x80000000 away from the location at
1546 which it is linked. */
1547 signmask = fieldmask + 1;
1548 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
1549 flag = bfd_reloc_overflow;
1550
1551 break;
1552
1553 default:
1554 abort ();
1555 }
1556 }
1557
1558 /* Put RELOCATION in the right bits. */
1559 relocation >>= (bfd_vma) rightshift;
1560 relocation <<= (bfd_vma) bitpos;
1561
1562 /* Add RELOCATION to the right bits of X. */
1563 x = ((x & ~howto->dst_mask)
1564 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1565
1566 /* Put the relocated value back in the object file. */
1567 switch (size)
1568 {
1569 default:
1570 case 0:
1571 abort ();
1572 case 1:
1573 bfd_put_8 (input_bfd, x, location);
1574 break;
1575 case 2:
1576 bfd_put_16 (input_bfd, x, location);
1577 break;
1578 case 4:
1579 bfd_put_32 (input_bfd, x, location);
1580 break;
1581 case 8:
1582 #ifdef BFD64
1583 bfd_put_64 (input_bfd, x, location);
1584 #else
1585 abort ();
1586 #endif
1587 break;
1588 }
1589
1590 return flag;
1591 }
1592
1593 /*
1594 DOCDD
1595 INODE
1596 howto manager, , typedef arelent, Relocations
1597
1598 SECTION
1599 The howto manager
1600
1601 When an application wants to create a relocation, but doesn't
1602 know what the target machine might call it, it can find out by
1603 using this bit of code.
1604
1605 */
1606
1607 /*
1608 TYPEDEF
1609 bfd_reloc_code_type
1610
1611 DESCRIPTION
1612 The insides of a reloc code. The idea is that, eventually, there
1613 will be one enumerator for every type of relocation we ever do.
1614 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1615 return a howto pointer.
1616
1617 This does mean that the application must determine the correct
1618 enumerator value; you can't get a howto pointer from a random set
1619 of attributes.
1620
1621 SENUM
1622 bfd_reloc_code_real
1623
1624 ENUM
1625 BFD_RELOC_64
1626 ENUMX
1627 BFD_RELOC_32
1628 ENUMX
1629 BFD_RELOC_26
1630 ENUMX
1631 BFD_RELOC_24
1632 ENUMX
1633 BFD_RELOC_16
1634 ENUMX
1635 BFD_RELOC_14
1636 ENUMX
1637 BFD_RELOC_8
1638 ENUMDOC
1639 Basic absolute relocations of N bits.
1640
1641 ENUM
1642 BFD_RELOC_64_PCREL
1643 ENUMX
1644 BFD_RELOC_32_PCREL
1645 ENUMX
1646 BFD_RELOC_24_PCREL
1647 ENUMX
1648 BFD_RELOC_16_PCREL
1649 ENUMX
1650 BFD_RELOC_12_PCREL
1651 ENUMX
1652 BFD_RELOC_8_PCREL
1653 ENUMDOC
1654 PC-relative relocations. Sometimes these are relative to the address
1655 of the relocation itself; sometimes they are relative to the start of
1656 the section containing the relocation. It depends on the specific target.
1657
1658 The 24-bit relocation is used in some Intel 960 configurations.
1659
1660 ENUM
1661 BFD_RELOC_32_GOT_PCREL
1662 ENUMX
1663 BFD_RELOC_16_GOT_PCREL
1664 ENUMX
1665 BFD_RELOC_8_GOT_PCREL
1666 ENUMX
1667 BFD_RELOC_32_GOTOFF
1668 ENUMX
1669 BFD_RELOC_16_GOTOFF
1670 ENUMX
1671 BFD_RELOC_LO16_GOTOFF
1672 ENUMX
1673 BFD_RELOC_HI16_GOTOFF
1674 ENUMX
1675 BFD_RELOC_HI16_S_GOTOFF
1676 ENUMX
1677 BFD_RELOC_8_GOTOFF
1678 ENUMX
1679 BFD_RELOC_64_PLT_PCREL
1680 ENUMX
1681 BFD_RELOC_32_PLT_PCREL
1682 ENUMX
1683 BFD_RELOC_24_PLT_PCREL
1684 ENUMX
1685 BFD_RELOC_16_PLT_PCREL
1686 ENUMX
1687 BFD_RELOC_8_PLT_PCREL
1688 ENUMX
1689 BFD_RELOC_64_PLTOFF
1690 ENUMX
1691 BFD_RELOC_32_PLTOFF
1692 ENUMX
1693 BFD_RELOC_16_PLTOFF
1694 ENUMX
1695 BFD_RELOC_LO16_PLTOFF
1696 ENUMX
1697 BFD_RELOC_HI16_PLTOFF
1698 ENUMX
1699 BFD_RELOC_HI16_S_PLTOFF
1700 ENUMX
1701 BFD_RELOC_8_PLTOFF
1702 ENUMDOC
1703 For ELF.
1704
1705 ENUM
1706 BFD_RELOC_68K_GLOB_DAT
1707 ENUMX
1708 BFD_RELOC_68K_JMP_SLOT
1709 ENUMX
1710 BFD_RELOC_68K_RELATIVE
1711 ENUMDOC
1712 Relocations used by 68K ELF.
1713
1714 ENUM
1715 BFD_RELOC_32_BASEREL
1716 ENUMX
1717 BFD_RELOC_16_BASEREL
1718 ENUMX
1719 BFD_RELOC_LO16_BASEREL
1720 ENUMX
1721 BFD_RELOC_HI16_BASEREL
1722 ENUMX
1723 BFD_RELOC_HI16_S_BASEREL
1724 ENUMX
1725 BFD_RELOC_8_BASEREL
1726 ENUMX
1727 BFD_RELOC_RVA
1728 ENUMDOC
1729 Linkage-table relative.
1730
1731 ENUM
1732 BFD_RELOC_8_FFnn
1733 ENUMDOC
1734 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1735
1736 ENUM
1737 BFD_RELOC_32_PCREL_S2
1738 ENUMX
1739 BFD_RELOC_16_PCREL_S2
1740 ENUMX
1741 BFD_RELOC_23_PCREL_S2
1742 ENUMDOC
1743 These PC-relative relocations are stored as word displacements --
1744 i.e., byte displacements shifted right two bits. The 30-bit word
1745 displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1746 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1747 signed 16-bit displacement is used on the MIPS, and the 23-bit
1748 displacement is used on the Alpha.
1749
1750 ENUM
1751 BFD_RELOC_HI22
1752 ENUMX
1753 BFD_RELOC_LO10
1754 ENUMDOC
1755 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1756 the target word. These are used on the SPARC.
1757
1758 ENUM
1759 BFD_RELOC_GPREL16
1760 ENUMX
1761 BFD_RELOC_GPREL32
1762 ENUMDOC
1763 For systems that allocate a Global Pointer register, these are
1764 displacements off that register. These relocation types are
1765 handled specially, because the value the register will have is
1766 decided relatively late.
1767
1768 ENUM
1769 BFD_RELOC_I960_CALLJ
1770 ENUMDOC
1771 Reloc types used for i960/b.out.
1772
1773 ENUM
1774 BFD_RELOC_NONE
1775 ENUMX
1776 BFD_RELOC_SPARC_WDISP22
1777 ENUMX
1778 BFD_RELOC_SPARC22
1779 ENUMX
1780 BFD_RELOC_SPARC13
1781 ENUMX
1782 BFD_RELOC_SPARC_GOT10
1783 ENUMX
1784 BFD_RELOC_SPARC_GOT13
1785 ENUMX
1786 BFD_RELOC_SPARC_GOT22
1787 ENUMX
1788 BFD_RELOC_SPARC_PC10
1789 ENUMX
1790 BFD_RELOC_SPARC_PC22
1791 ENUMX
1792 BFD_RELOC_SPARC_WPLT30
1793 ENUMX
1794 BFD_RELOC_SPARC_COPY
1795 ENUMX
1796 BFD_RELOC_SPARC_GLOB_DAT
1797 ENUMX
1798 BFD_RELOC_SPARC_JMP_SLOT
1799 ENUMX
1800 BFD_RELOC_SPARC_RELATIVE
1801 ENUMX
1802 BFD_RELOC_SPARC_UA16
1803 ENUMX
1804 BFD_RELOC_SPARC_UA32
1805 ENUMX
1806 BFD_RELOC_SPARC_UA64
1807 ENUMDOC
1808 SPARC ELF relocations. There is probably some overlap with other
1809 relocation types already defined.
1810
1811 ENUM
1812 BFD_RELOC_SPARC_BASE13
1813 ENUMX
1814 BFD_RELOC_SPARC_BASE22
1815 ENUMDOC
1816 I think these are specific to SPARC a.out (e.g., Sun 4).
1817
1818 ENUMEQ
1819 BFD_RELOC_SPARC_64
1820 BFD_RELOC_64
1821 ENUMX
1822 BFD_RELOC_SPARC_10
1823 ENUMX
1824 BFD_RELOC_SPARC_11
1825 ENUMX
1826 BFD_RELOC_SPARC_OLO10
1827 ENUMX
1828 BFD_RELOC_SPARC_HH22
1829 ENUMX
1830 BFD_RELOC_SPARC_HM10
1831 ENUMX
1832 BFD_RELOC_SPARC_LM22
1833 ENUMX
1834 BFD_RELOC_SPARC_PC_HH22
1835 ENUMX
1836 BFD_RELOC_SPARC_PC_HM10
1837 ENUMX
1838 BFD_RELOC_SPARC_PC_LM22
1839 ENUMX
1840 BFD_RELOC_SPARC_WDISP16
1841 ENUMX
1842 BFD_RELOC_SPARC_WDISP19
1843 ENUMX
1844 BFD_RELOC_SPARC_7
1845 ENUMX
1846 BFD_RELOC_SPARC_6
1847 ENUMX
1848 BFD_RELOC_SPARC_5
1849 ENUMEQX
1850 BFD_RELOC_SPARC_DISP64
1851 BFD_RELOC_64_PCREL
1852 ENUMX
1853 BFD_RELOC_SPARC_PLT32
1854 ENUMX
1855 BFD_RELOC_SPARC_PLT64
1856 ENUMX
1857 BFD_RELOC_SPARC_HIX22
1858 ENUMX
1859 BFD_RELOC_SPARC_LOX10
1860 ENUMX
1861 BFD_RELOC_SPARC_H44
1862 ENUMX
1863 BFD_RELOC_SPARC_M44
1864 ENUMX
1865 BFD_RELOC_SPARC_L44
1866 ENUMX
1867 BFD_RELOC_SPARC_REGISTER
1868 ENUMDOC
1869 SPARC64 relocations
1870
1871 ENUM
1872 BFD_RELOC_SPARC_REV32
1873 ENUMDOC
1874 SPARC little endian relocation
1875
1876 ENUM
1877 BFD_RELOC_ALPHA_GPDISP_HI16
1878 ENUMDOC
1879 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1880 "addend" in some special way.
1881 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1882 writing; when reading, it will be the absolute section symbol. The
1883 addend is the displacement in bytes of the "lda" instruction from
1884 the "ldah" instruction (which is at the address of this reloc).
1885 ENUM
1886 BFD_RELOC_ALPHA_GPDISP_LO16
1887 ENUMDOC
1888 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1889 with GPDISP_HI16 relocs. The addend is ignored when writing the
1890 relocations out, and is filled in with the file's GP value on
1891 reading, for convenience.
1892
1893 ENUM
1894 BFD_RELOC_ALPHA_GPDISP
1895 ENUMDOC
1896 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1897 relocation except that there is no accompanying GPDISP_LO16
1898 relocation.
1899
1900 ENUM
1901 BFD_RELOC_ALPHA_LITERAL
1902 ENUMX
1903 BFD_RELOC_ALPHA_ELF_LITERAL
1904 ENUMX
1905 BFD_RELOC_ALPHA_LITUSE
1906 ENUMDOC
1907 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1908 the assembler turns it into a LDQ instruction to load the address of
1909 the symbol, and then fills in a register in the real instruction.
1910
1911 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1912 section symbol. The addend is ignored when writing, but is filled
1913 in with the file's GP value on reading, for convenience, as with the
1914 GPDISP_LO16 reloc.
1915
1916 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1917 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1918 but it generates output not based on the position within the .got
1919 section, but relative to the GP value chosen for the file during the
1920 final link stage.
1921
1922 The LITUSE reloc, on the instruction using the loaded address, gives
1923 information to the linker that it might be able to use to optimize
1924 away some literal section references. The symbol is ignored (read
1925 as the absolute section symbol), and the "addend" indicates the type
1926 of instruction using the register:
1927 1 - "memory" fmt insn
1928 2 - byte-manipulation (byte offset reg)
1929 3 - jsr (target of branch)
1930
1931 ENUM
1932 BFD_RELOC_ALPHA_HINT
1933 ENUMDOC
1934 The HINT relocation indicates a value that should be filled into the
1935 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1936 prediction logic which may be provided on some processors.
1937
1938 ENUM
1939 BFD_RELOC_ALPHA_LINKAGE
1940 ENUMDOC
1941 The LINKAGE relocation outputs a linkage pair in the object file,
1942 which is filled by the linker.
1943
1944 ENUM
1945 BFD_RELOC_ALPHA_CODEADDR
1946 ENUMDOC
1947 The CODEADDR relocation outputs a STO_CA in the object file,
1948 which is filled by the linker.
1949
1950 ENUM
1951 BFD_RELOC_ALPHA_GPREL_HI16
1952 ENUMX
1953 BFD_RELOC_ALPHA_GPREL_LO16
1954 ENUMDOC
1955 The GPREL_HI/LO relocations together form a 32-bit offset from the
1956 GP register.
1957
1958 ENUM
1959 BFD_RELOC_MIPS_JMP
1960 ENUMDOC
1961 Bits 27..2 of the relocation address shifted right 2 bits;
1962 simple reloc otherwise.
1963
1964 ENUM
1965 BFD_RELOC_MIPS16_JMP
1966 ENUMDOC
1967 The MIPS16 jump instruction.
1968
1969 ENUM
1970 BFD_RELOC_MIPS16_GPREL
1971 ENUMDOC
1972 MIPS16 GP relative reloc.
1973
1974 ENUM
1975 BFD_RELOC_HI16
1976 ENUMDOC
1977 High 16 bits of 32-bit value; simple reloc.
1978 ENUM
1979 BFD_RELOC_HI16_S
1980 ENUMDOC
1981 High 16 bits of 32-bit value but the low 16 bits will be sign
1982 extended and added to form the final result. If the low 16
1983 bits form a negative number, we need to add one to the high value
1984 to compensate for the borrow when the low bits are added.
1985 ENUM
1986 BFD_RELOC_LO16
1987 ENUMDOC
1988 Low 16 bits.
1989 ENUM
1990 BFD_RELOC_PCREL_HI16_S
1991 ENUMDOC
1992 Like BFD_RELOC_HI16_S, but PC relative.
1993 ENUM
1994 BFD_RELOC_PCREL_LO16
1995 ENUMDOC
1996 Like BFD_RELOC_LO16, but PC relative.
1997
1998 ENUM
1999 BFD_RELOC_MIPS_LITERAL
2000 ENUMDOC
2001 Relocation against a MIPS literal section.
2002
2003 ENUM
2004 BFD_RELOC_MIPS_GOT16
2005 ENUMX
2006 BFD_RELOC_MIPS_CALL16
2007 ENUMX
2008 BFD_RELOC_MIPS_GOT_HI16
2009 ENUMX
2010 BFD_RELOC_MIPS_GOT_LO16
2011 ENUMX
2012 BFD_RELOC_MIPS_CALL_HI16
2013 ENUMX
2014 BFD_RELOC_MIPS_CALL_LO16
2015 ENUMX
2016 BFD_RELOC_MIPS_SUB
2017 ENUMX
2018 BFD_RELOC_MIPS_GOT_PAGE
2019 ENUMX
2020 BFD_RELOC_MIPS_GOT_OFST
2021 ENUMX
2022 BFD_RELOC_MIPS_GOT_DISP
2023 ENUMX
2024 BFD_RELOC_MIPS_SHIFT5
2025 ENUMX
2026 BFD_RELOC_MIPS_SHIFT6
2027 ENUMX
2028 BFD_RELOC_MIPS_INSERT_A
2029 ENUMX
2030 BFD_RELOC_MIPS_INSERT_B
2031 ENUMX
2032 BFD_RELOC_MIPS_DELETE
2033 ENUMX
2034 BFD_RELOC_MIPS_HIGHEST
2035 ENUMX
2036 BFD_RELOC_MIPS_HIGHER
2037 ENUMX
2038 BFD_RELOC_MIPS_SCN_DISP
2039 ENUMX
2040 BFD_RELOC_MIPS_REL16
2041 ENUMX
2042 BFD_RELOC_MIPS_RELGOT
2043 ENUMX
2044 BFD_RELOC_MIPS_JALR
2045 COMMENT
2046 COMMENT
2047 ENUMX
2048 BFD_RELOC_SH_GOT_LOW16
2049 ENUMX
2050 BFD_RELOC_SH_GOT_MEDLOW16
2051 ENUMX
2052 BFD_RELOC_SH_GOT_MEDHI16
2053 ENUMX
2054 BFD_RELOC_SH_GOT_HI16
2055 ENUMX
2056 BFD_RELOC_SH_GOTPLT_LOW16
2057 ENUMX
2058 BFD_RELOC_SH_GOTPLT_MEDLOW16
2059 ENUMX
2060 BFD_RELOC_SH_GOTPLT_MEDHI16
2061 ENUMX
2062 BFD_RELOC_SH_GOTPLT_HI16
2063 ENUMX
2064 BFD_RELOC_SH_PLT_LOW16
2065 ENUMX
2066 BFD_RELOC_SH_PLT_MEDLOW16
2067 ENUMX
2068 BFD_RELOC_SH_PLT_MEDHI16
2069 ENUMX
2070 BFD_RELOC_SH_PLT_HI16
2071 ENUMX
2072 BFD_RELOC_SH_GOTOFF_LOW16
2073 ENUMX
2074 BFD_RELOC_SH_GOTOFF_MEDLOW16
2075 ENUMX
2076 BFD_RELOC_SH_GOTOFF_MEDHI16
2077 ENUMX
2078 BFD_RELOC_SH_GOTOFF_HI16
2079 ENUMX
2080 BFD_RELOC_SH_GOTPC_LOW16
2081 ENUMX
2082 BFD_RELOC_SH_GOTPC_MEDLOW16
2083 ENUMX
2084 BFD_RELOC_SH_GOTPC_MEDHI16
2085 ENUMX
2086 BFD_RELOC_SH_GOTPC_HI16
2087 ENUMX
2088 BFD_RELOC_SH_COPY64
2089 ENUMX
2090 BFD_RELOC_SH_GLOB_DAT64
2091 ENUMX
2092 BFD_RELOC_SH_JMP_SLOT64
2093 ENUMX
2094 BFD_RELOC_SH_RELATIVE64
2095 ENUMX
2096 BFD_RELOC_SH_GOT10BY4
2097 ENUMX
2098 BFD_RELOC_SH_GOT10BY8
2099 ENUMX
2100 BFD_RELOC_SH_GOTPLT10BY4
2101 ENUMX
2102 BFD_RELOC_SH_GOTPLT10BY8
2103 ENUMX
2104 BFD_RELOC_SH_GOTPLT32
2105 COMMENT
2106 ENUMX
2107 BFD_RELOC_SH_SHMEDIA_CODE
2108 ENUMX
2109 BFD_RELOC_SH_IMMU5
2110 ENUMX
2111 BFD_RELOC_SH_IMMS6
2112 ENUMX
2113 BFD_RELOC_SH_IMMS6BY32
2114 ENUMX
2115 BFD_RELOC_SH_IMMU6
2116 ENUMX
2117 BFD_RELOC_SH_IMMS10
2118 ENUMX
2119 BFD_RELOC_SH_IMMS10BY2
2120 ENUMX
2121 BFD_RELOC_SH_IMMS10BY4
2122 ENUMX
2123 BFD_RELOC_SH_IMMS10BY8
2124 ENUMX
2125 BFD_RELOC_SH_IMMS16
2126 ENUMX
2127 BFD_RELOC_SH_IMMU16
2128 ENUMX
2129 BFD_RELOC_SH_IMM_LOW16
2130 ENUMX
2131 BFD_RELOC_SH_IMM_LOW16_PCREL
2132 ENUMX
2133 BFD_RELOC_SH_IMM_MEDLOW16
2134 ENUMX
2135 BFD_RELOC_SH_IMM_MEDLOW16_PCREL
2136 ENUMX
2137 BFD_RELOC_SH_IMM_MEDHI16
2138 ENUMX
2139 BFD_RELOC_SH_IMM_MEDHI16_PCREL
2140 ENUMX
2141 BFD_RELOC_SH_IMM_HI16
2142 ENUMX
2143 BFD_RELOC_SH_IMM_HI16_PCREL
2144 ENUMX
2145 BFD_RELOC_SH_PT_16
2146 COMMENT
2147 ENUMDOC
2148 MIPS ELF relocations.
2149
2150 COMMENT
2151
2152 ENUM
2153 BFD_RELOC_386_GOT32
2154 ENUMX
2155 BFD_RELOC_386_PLT32
2156 ENUMX
2157 BFD_RELOC_386_COPY
2158 ENUMX
2159 BFD_RELOC_386_GLOB_DAT
2160 ENUMX
2161 BFD_RELOC_386_JUMP_SLOT
2162 ENUMX
2163 BFD_RELOC_386_RELATIVE
2164 ENUMX
2165 BFD_RELOC_386_GOTOFF
2166 ENUMX
2167 BFD_RELOC_386_GOTPC
2168 ENUMDOC
2169 i386/elf relocations
2170
2171 ENUM
2172 BFD_RELOC_X86_64_GOT32
2173 ENUMX
2174 BFD_RELOC_X86_64_PLT32
2175 ENUMX
2176 BFD_RELOC_X86_64_COPY
2177 ENUMX
2178 BFD_RELOC_X86_64_GLOB_DAT
2179 ENUMX
2180 BFD_RELOC_X86_64_JUMP_SLOT
2181 ENUMX
2182 BFD_RELOC_X86_64_RELATIVE
2183 ENUMX
2184 BFD_RELOC_X86_64_GOTPCREL
2185 ENUMX
2186 BFD_RELOC_X86_64_32S
2187 ENUMDOC
2188 x86-64/elf relocations
2189
2190 ENUM
2191 BFD_RELOC_NS32K_IMM_8
2192 ENUMX
2193 BFD_RELOC_NS32K_IMM_16
2194 ENUMX
2195 BFD_RELOC_NS32K_IMM_32
2196 ENUMX
2197 BFD_RELOC_NS32K_IMM_8_PCREL
2198 ENUMX
2199 BFD_RELOC_NS32K_IMM_16_PCREL
2200 ENUMX
2201 BFD_RELOC_NS32K_IMM_32_PCREL
2202 ENUMX
2203 BFD_RELOC_NS32K_DISP_8
2204 ENUMX
2205 BFD_RELOC_NS32K_DISP_16
2206 ENUMX
2207 BFD_RELOC_NS32K_DISP_32
2208 ENUMX
2209 BFD_RELOC_NS32K_DISP_8_PCREL
2210 ENUMX
2211 BFD_RELOC_NS32K_DISP_16_PCREL
2212 ENUMX
2213 BFD_RELOC_NS32K_DISP_32_PCREL
2214 ENUMDOC
2215 ns32k relocations
2216
2217 ENUM
2218 BFD_RELOC_PDP11_DISP_8_PCREL
2219 ENUMX
2220 BFD_RELOC_PDP11_DISP_6_PCREL
2221 ENUMDOC
2222 PDP11 relocations
2223
2224 ENUM
2225 BFD_RELOC_PJ_CODE_HI16
2226 ENUMX
2227 BFD_RELOC_PJ_CODE_LO16
2228 ENUMX
2229 BFD_RELOC_PJ_CODE_DIR16
2230 ENUMX
2231 BFD_RELOC_PJ_CODE_DIR32
2232 ENUMX
2233 BFD_RELOC_PJ_CODE_REL16
2234 ENUMX
2235 BFD_RELOC_PJ_CODE_REL32
2236 ENUMDOC
2237 Picojava relocs. Not all of these appear in object files.
2238
2239 ENUM
2240 BFD_RELOC_PPC_B26
2241 ENUMX
2242 BFD_RELOC_PPC_BA26
2243 ENUMX
2244 BFD_RELOC_PPC_TOC16
2245 ENUMX
2246 BFD_RELOC_PPC_B16
2247 ENUMX
2248 BFD_RELOC_PPC_B16_BRTAKEN
2249 ENUMX
2250 BFD_RELOC_PPC_B16_BRNTAKEN
2251 ENUMX
2252 BFD_RELOC_PPC_BA16
2253 ENUMX
2254 BFD_RELOC_PPC_BA16_BRTAKEN
2255 ENUMX
2256 BFD_RELOC_PPC_BA16_BRNTAKEN
2257 ENUMX
2258 BFD_RELOC_PPC_COPY
2259 ENUMX
2260 BFD_RELOC_PPC_GLOB_DAT
2261 ENUMX
2262 BFD_RELOC_PPC_JMP_SLOT
2263 ENUMX
2264 BFD_RELOC_PPC_RELATIVE
2265 ENUMX
2266 BFD_RELOC_PPC_LOCAL24PC
2267 ENUMX
2268 BFD_RELOC_PPC_EMB_NADDR32
2269 ENUMX
2270 BFD_RELOC_PPC_EMB_NADDR16
2271 ENUMX
2272 BFD_RELOC_PPC_EMB_NADDR16_LO
2273 ENUMX
2274 BFD_RELOC_PPC_EMB_NADDR16_HI
2275 ENUMX
2276 BFD_RELOC_PPC_EMB_NADDR16_HA
2277 ENUMX
2278 BFD_RELOC_PPC_EMB_SDAI16
2279 ENUMX
2280 BFD_RELOC_PPC_EMB_SDA2I16
2281 ENUMX
2282 BFD_RELOC_PPC_EMB_SDA2REL
2283 ENUMX
2284 BFD_RELOC_PPC_EMB_SDA21
2285 ENUMX
2286 BFD_RELOC_PPC_EMB_MRKREF
2287 ENUMX
2288 BFD_RELOC_PPC_EMB_RELSEC16
2289 ENUMX
2290 BFD_RELOC_PPC_EMB_RELST_LO
2291 ENUMX
2292 BFD_RELOC_PPC_EMB_RELST_HI
2293 ENUMX
2294 BFD_RELOC_PPC_EMB_RELST_HA
2295 ENUMX
2296 BFD_RELOC_PPC_EMB_BIT_FLD
2297 ENUMX
2298 BFD_RELOC_PPC_EMB_RELSDA
2299 ENUMX
2300 BFD_RELOC_PPC64_HIGHER
2301 ENUMX
2302 BFD_RELOC_PPC64_HIGHER_S
2303 ENUMX
2304 BFD_RELOC_PPC64_HIGHEST
2305 ENUMX
2306 BFD_RELOC_PPC64_HIGHEST_S
2307 ENUMX
2308 BFD_RELOC_PPC64_TOC16_LO
2309 ENUMX
2310 BFD_RELOC_PPC64_TOC16_HI
2311 ENUMX
2312 BFD_RELOC_PPC64_TOC16_HA
2313 ENUMX
2314 BFD_RELOC_PPC64_TOC
2315 ENUMX
2316 BFD_RELOC_PPC64_PLTGOT16
2317 ENUMX
2318 BFD_RELOC_PPC64_PLTGOT16_LO
2319 ENUMX
2320 BFD_RELOC_PPC64_PLTGOT16_HI
2321 ENUMX
2322 BFD_RELOC_PPC64_PLTGOT16_HA
2323 ENUMX
2324 BFD_RELOC_PPC64_ADDR16_DS
2325 ENUMX
2326 BFD_RELOC_PPC64_ADDR16_LO_DS
2327 ENUMX
2328 BFD_RELOC_PPC64_GOT16_DS
2329 ENUMX
2330 BFD_RELOC_PPC64_GOT16_LO_DS
2331 ENUMX
2332 BFD_RELOC_PPC64_PLT16_LO_DS
2333 ENUMX
2334 BFD_RELOC_PPC64_SECTOFF_DS
2335 ENUMX
2336 BFD_RELOC_PPC64_SECTOFF_LO_DS
2337 ENUMX
2338 BFD_RELOC_PPC64_TOC16_DS
2339 ENUMX
2340 BFD_RELOC_PPC64_TOC16_LO_DS
2341 ENUMX
2342 BFD_RELOC_PPC64_PLTGOT16_DS
2343 ENUMX
2344 BFD_RELOC_PPC64_PLTGOT16_LO_DS
2345 ENUMDOC
2346 Power(rs6000) and PowerPC relocations.
2347
2348 ENUM
2349 BFD_RELOC_I370_D12
2350 ENUMDOC
2351 IBM 370/390 relocations
2352
2353 ENUM
2354 BFD_RELOC_CTOR
2355 ENUMDOC
2356 The type of reloc used to build a contructor table - at the moment
2357 probably a 32 bit wide absolute relocation, but the target can choose.
2358 It generally does map to one of the other relocation types.
2359
2360 ENUM
2361 BFD_RELOC_ARM_PCREL_BRANCH
2362 ENUMDOC
2363 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2364 not stored in the instruction.
2365 ENUM
2366 BFD_RELOC_ARM_PCREL_BLX
2367 ENUMDOC
2368 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2369 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2370 field in the instruction.
2371 ENUM
2372 BFD_RELOC_THUMB_PCREL_BLX
2373 ENUMDOC
2374 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2375 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2376 field in the instruction.
2377 ENUM
2378 BFD_RELOC_ARM_IMMEDIATE
2379 ENUMX
2380 BFD_RELOC_ARM_ADRL_IMMEDIATE
2381 ENUMX
2382 BFD_RELOC_ARM_OFFSET_IMM
2383 ENUMX
2384 BFD_RELOC_ARM_SHIFT_IMM
2385 ENUMX
2386 BFD_RELOC_ARM_SWI
2387 ENUMX
2388 BFD_RELOC_ARM_MULTI
2389 ENUMX
2390 BFD_RELOC_ARM_CP_OFF_IMM
2391 ENUMX
2392 BFD_RELOC_ARM_ADR_IMM
2393 ENUMX
2394 BFD_RELOC_ARM_LDR_IMM
2395 ENUMX
2396 BFD_RELOC_ARM_LITERAL
2397 ENUMX
2398 BFD_RELOC_ARM_IN_POOL
2399 ENUMX
2400 BFD_RELOC_ARM_OFFSET_IMM8
2401 ENUMX
2402 BFD_RELOC_ARM_HWLITERAL
2403 ENUMX
2404 BFD_RELOC_ARM_THUMB_ADD
2405 ENUMX
2406 BFD_RELOC_ARM_THUMB_IMM
2407 ENUMX
2408 BFD_RELOC_ARM_THUMB_SHIFT
2409 ENUMX
2410 BFD_RELOC_ARM_THUMB_OFFSET
2411 ENUMX
2412 BFD_RELOC_ARM_GOT12
2413 ENUMX
2414 BFD_RELOC_ARM_GOT32
2415 ENUMX
2416 BFD_RELOC_ARM_JUMP_SLOT
2417 ENUMX
2418 BFD_RELOC_ARM_COPY
2419 ENUMX
2420 BFD_RELOC_ARM_GLOB_DAT
2421 ENUMX
2422 BFD_RELOC_ARM_PLT32
2423 ENUMX
2424 BFD_RELOC_ARM_RELATIVE
2425 ENUMX
2426 BFD_RELOC_ARM_GOTOFF
2427 ENUMX
2428 BFD_RELOC_ARM_GOTPC
2429 ENUMDOC
2430 These relocs are only used within the ARM assembler. They are not
2431 (at present) written to any object files.
2432
2433 ENUM
2434 BFD_RELOC_SH_PCDISP8BY2
2435 ENUMX
2436 BFD_RELOC_SH_PCDISP12BY2
2437 ENUMX
2438 BFD_RELOC_SH_IMM4
2439 ENUMX
2440 BFD_RELOC_SH_IMM4BY2
2441 ENUMX
2442 BFD_RELOC_SH_IMM4BY4
2443 ENUMX
2444 BFD_RELOC_SH_IMM8
2445 ENUMX
2446 BFD_RELOC_SH_IMM8BY2
2447 ENUMX
2448 BFD_RELOC_SH_IMM8BY4
2449 ENUMX
2450 BFD_RELOC_SH_PCRELIMM8BY2
2451 ENUMX
2452 BFD_RELOC_SH_PCRELIMM8BY4
2453 ENUMX
2454 BFD_RELOC_SH_SWITCH16
2455 ENUMX
2456 BFD_RELOC_SH_SWITCH32
2457 ENUMX
2458 BFD_RELOC_SH_USES
2459 ENUMX
2460 BFD_RELOC_SH_COUNT
2461 ENUMX
2462 BFD_RELOC_SH_ALIGN
2463 ENUMX
2464 BFD_RELOC_SH_CODE
2465 ENUMX
2466 BFD_RELOC_SH_DATA
2467 ENUMX
2468 BFD_RELOC_SH_LABEL
2469 ENUMX
2470 BFD_RELOC_SH_LOOP_START
2471 ENUMX
2472 BFD_RELOC_SH_LOOP_END
2473 ENUMX
2474 BFD_RELOC_SH_COPY
2475 ENUMX
2476 BFD_RELOC_SH_GLOB_DAT
2477 ENUMX
2478 BFD_RELOC_SH_JMP_SLOT
2479 ENUMX
2480 BFD_RELOC_SH_RELATIVE
2481 ENUMX
2482 BFD_RELOC_SH_GOTPC
2483 ENUMDOC
2484 Hitachi SH relocs. Not all of these appear in object files.
2485
2486 ENUM
2487 BFD_RELOC_THUMB_PCREL_BRANCH9
2488 ENUMX
2489 BFD_RELOC_THUMB_PCREL_BRANCH12
2490 ENUMX
2491 BFD_RELOC_THUMB_PCREL_BRANCH23
2492 ENUMDOC
2493 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2494 be zero and is not stored in the instruction.
2495
2496 ENUM
2497 BFD_RELOC_ARC_B22_PCREL
2498 ENUMDOC
2499 ARC Cores relocs.
2500 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2501 not stored in the instruction. The high 20 bits are installed in bits 26
2502 through 7 of the instruction.
2503 ENUM
2504 BFD_RELOC_ARC_B26
2505 ENUMDOC
2506 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2507 stored in the instruction. The high 24 bits are installed in bits 23
2508 through 0.
2509
2510 ENUM
2511 BFD_RELOC_D10V_10_PCREL_R
2512 ENUMDOC
2513 Mitsubishi D10V relocs.
2514 This is a 10-bit reloc with the right 2 bits
2515 assumed to be 0.
2516 ENUM
2517 BFD_RELOC_D10V_10_PCREL_L
2518 ENUMDOC
2519 Mitsubishi D10V relocs.
2520 This is a 10-bit reloc with the right 2 bits
2521 assumed to be 0. This is the same as the previous reloc
2522 except it is in the left container, i.e.,
2523 shifted left 15 bits.
2524 ENUM
2525 BFD_RELOC_D10V_18
2526 ENUMDOC
2527 This is an 18-bit reloc with the right 2 bits
2528 assumed to be 0.
2529 ENUM
2530 BFD_RELOC_D10V_18_PCREL
2531 ENUMDOC
2532 This is an 18-bit reloc with the right 2 bits
2533 assumed to be 0.
2534
2535 ENUM
2536 BFD_RELOC_D30V_6
2537 ENUMDOC
2538 Mitsubishi D30V relocs.
2539 This is a 6-bit absolute reloc.
2540 ENUM
2541 BFD_RELOC_D30V_9_PCREL
2542 ENUMDOC
2543 This is a 6-bit pc-relative reloc with
2544 the right 3 bits assumed to be 0.
2545 ENUM
2546 BFD_RELOC_D30V_9_PCREL_R
2547 ENUMDOC
2548 This is a 6-bit pc-relative reloc with
2549 the right 3 bits assumed to be 0. Same
2550 as the previous reloc but on the right side
2551 of the container.
2552 ENUM
2553 BFD_RELOC_D30V_15
2554 ENUMDOC
2555 This is a 12-bit absolute reloc with the
2556 right 3 bitsassumed to be 0.
2557 ENUM
2558 BFD_RELOC_D30V_15_PCREL
2559 ENUMDOC
2560 This is a 12-bit pc-relative reloc with
2561 the right 3 bits assumed to be 0.
2562 ENUM
2563 BFD_RELOC_D30V_15_PCREL_R
2564 ENUMDOC
2565 This is a 12-bit pc-relative reloc with
2566 the right 3 bits assumed to be 0. Same
2567 as the previous reloc but on the right side
2568 of the container.
2569 ENUM
2570 BFD_RELOC_D30V_21
2571 ENUMDOC
2572 This is an 18-bit absolute reloc with
2573 the right 3 bits assumed to be 0.
2574 ENUM
2575 BFD_RELOC_D30V_21_PCREL
2576 ENUMDOC
2577 This is an 18-bit pc-relative reloc with
2578 the right 3 bits assumed to be 0.
2579 ENUM
2580 BFD_RELOC_D30V_21_PCREL_R
2581 ENUMDOC
2582 This is an 18-bit pc-relative reloc with
2583 the right 3 bits assumed to be 0. Same
2584 as the previous reloc but on the right side
2585 of the container.
2586 ENUM
2587 BFD_RELOC_D30V_32
2588 ENUMDOC
2589 This is a 32-bit absolute reloc.
2590 ENUM
2591 BFD_RELOC_D30V_32_PCREL
2592 ENUMDOC
2593 This is a 32-bit pc-relative reloc.
2594
2595 ENUM
2596 BFD_RELOC_M32R_24
2597 ENUMDOC
2598 Mitsubishi M32R relocs.
2599 This is a 24 bit absolute address.
2600 ENUM
2601 BFD_RELOC_M32R_10_PCREL
2602 ENUMDOC
2603 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2604 ENUM
2605 BFD_RELOC_M32R_18_PCREL
2606 ENUMDOC
2607 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2608 ENUM
2609 BFD_RELOC_M32R_26_PCREL
2610 ENUMDOC
2611 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2612 ENUM
2613 BFD_RELOC_M32R_HI16_ULO
2614 ENUMDOC
2615 This is a 16-bit reloc containing the high 16 bits of an address
2616 used when the lower 16 bits are treated as unsigned.
2617 ENUM
2618 BFD_RELOC_M32R_HI16_SLO
2619 ENUMDOC
2620 This is a 16-bit reloc containing the high 16 bits of an address
2621 used when the lower 16 bits are treated as signed.
2622 ENUM
2623 BFD_RELOC_M32R_LO16
2624 ENUMDOC
2625 This is a 16-bit reloc containing the lower 16 bits of an address.
2626 ENUM
2627 BFD_RELOC_M32R_SDA16
2628 ENUMDOC
2629 This is a 16-bit reloc containing the small data area offset for use in
2630 add3, load, and store instructions.
2631
2632 ENUM
2633 BFD_RELOC_V850_9_PCREL
2634 ENUMDOC
2635 This is a 9-bit reloc
2636 ENUM
2637 BFD_RELOC_V850_22_PCREL
2638 ENUMDOC
2639 This is a 22-bit reloc
2640
2641 ENUM
2642 BFD_RELOC_V850_SDA_16_16_OFFSET
2643 ENUMDOC
2644 This is a 16 bit offset from the short data area pointer.
2645 ENUM
2646 BFD_RELOC_V850_SDA_15_16_OFFSET
2647 ENUMDOC
2648 This is a 16 bit offset (of which only 15 bits are used) from the
2649 short data area pointer.
2650 ENUM
2651 BFD_RELOC_V850_ZDA_16_16_OFFSET
2652 ENUMDOC
2653 This is a 16 bit offset from the zero data area pointer.
2654 ENUM
2655 BFD_RELOC_V850_ZDA_15_16_OFFSET
2656 ENUMDOC
2657 This is a 16 bit offset (of which only 15 bits are used) from the
2658 zero data area pointer.
2659 ENUM
2660 BFD_RELOC_V850_TDA_6_8_OFFSET
2661 ENUMDOC
2662 This is an 8 bit offset (of which only 6 bits are used) from the
2663 tiny data area pointer.
2664 ENUM
2665 BFD_RELOC_V850_TDA_7_8_OFFSET
2666 ENUMDOC
2667 This is an 8bit offset (of which only 7 bits are used) from the tiny
2668 data area pointer.
2669 ENUM
2670 BFD_RELOC_V850_TDA_7_7_OFFSET
2671 ENUMDOC
2672 This is a 7 bit offset from the tiny data area pointer.
2673 ENUM
2674 BFD_RELOC_V850_TDA_16_16_OFFSET
2675 ENUMDOC
2676 This is a 16 bit offset from the tiny data area pointer.
2677 COMMENT
2678 ENUM
2679 BFD_RELOC_V850_TDA_4_5_OFFSET
2680 ENUMDOC
2681 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2682 data area pointer.
2683 ENUM
2684 BFD_RELOC_V850_TDA_4_4_OFFSET
2685 ENUMDOC
2686 This is a 4 bit offset from the tiny data area pointer.
2687 ENUM
2688 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2689 ENUMDOC
2690 This is a 16 bit offset from the short data area pointer, with the
2691 bits placed non-contigously in the instruction.
2692 ENUM
2693 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2694 ENUMDOC
2695 This is a 16 bit offset from the zero data area pointer, with the
2696 bits placed non-contigously in the instruction.
2697 ENUM
2698 BFD_RELOC_V850_CALLT_6_7_OFFSET
2699 ENUMDOC
2700 This is a 6 bit offset from the call table base pointer.
2701 ENUM
2702 BFD_RELOC_V850_CALLT_16_16_OFFSET
2703 ENUMDOC
2704 This is a 16 bit offset from the call table base pointer.
2705 COMMENT
2706
2707 ENUM
2708 BFD_RELOC_MN10300_32_PCREL
2709 ENUMDOC
2710 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2711 instruction.
2712 ENUM
2713 BFD_RELOC_MN10300_16_PCREL
2714 ENUMDOC
2715 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2716 instruction.
2717
2718 ENUM
2719 BFD_RELOC_TIC30_LDP
2720 ENUMDOC
2721 This is a 8bit DP reloc for the tms320c30, where the most
2722 significant 8 bits of a 24 bit word are placed into the least
2723 significant 8 bits of the opcode.
2724
2725 ENUM
2726 BFD_RELOC_TIC54X_PARTLS7
2727 ENUMDOC
2728 This is a 7bit reloc for the tms320c54x, where the least
2729 significant 7 bits of a 16 bit word are placed into the least
2730 significant 7 bits of the opcode.
2731
2732 ENUM
2733 BFD_RELOC_TIC54X_PARTMS9
2734 ENUMDOC
2735 This is a 9bit DP reloc for the tms320c54x, where the most
2736 significant 9 bits of a 16 bit word are placed into the least
2737 significant 9 bits of the opcode.
2738
2739 ENUM
2740 BFD_RELOC_TIC54X_23
2741 ENUMDOC
2742 This is an extended address 23-bit reloc for the tms320c54x.
2743
2744 ENUM
2745 BFD_RELOC_TIC54X_16_OF_23
2746 ENUMDOC
2747 This is a 16-bit reloc for the tms320c54x, where the least
2748 significant 16 bits of a 23-bit extended address are placed into
2749 the opcode.
2750
2751 ENUM
2752 BFD_RELOC_TIC54X_MS7_OF_23
2753 ENUMDOC
2754 This is a reloc for the tms320c54x, where the most
2755 significant 7 bits of a 23-bit extended address are placed into
2756 the opcode.
2757
2758 ENUM
2759 BFD_RELOC_FR30_48
2760 ENUMDOC
2761 This is a 48 bit reloc for the FR30 that stores 32 bits.
2762 ENUM
2763 BFD_RELOC_FR30_20
2764 ENUMDOC
2765 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2766 two sections.
2767 ENUM
2768 BFD_RELOC_FR30_6_IN_4
2769 ENUMDOC
2770 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2771 4 bits.
2772 ENUM
2773 BFD_RELOC_FR30_8_IN_8
2774 ENUMDOC
2775 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2776 into 8 bits.
2777 ENUM
2778 BFD_RELOC_FR30_9_IN_8
2779 ENUMDOC
2780 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2781 into 8 bits.
2782 ENUM
2783 BFD_RELOC_FR30_10_IN_8
2784 ENUMDOC
2785 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2786 into 8 bits.
2787 ENUM
2788 BFD_RELOC_FR30_9_PCREL
2789 ENUMDOC
2790 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2791 short offset into 8 bits.
2792 ENUM
2793 BFD_RELOC_FR30_12_PCREL
2794 ENUMDOC
2795 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2796 short offset into 11 bits.
2797
2798 ENUM
2799 BFD_RELOC_MCORE_PCREL_IMM8BY4
2800 ENUMX
2801 BFD_RELOC_MCORE_PCREL_IMM11BY2
2802 ENUMX
2803 BFD_RELOC_MCORE_PCREL_IMM4BY2
2804 ENUMX
2805 BFD_RELOC_MCORE_PCREL_32
2806 ENUMX
2807 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
2808 ENUMX
2809 BFD_RELOC_MCORE_RVA
2810 ENUMDOC
2811 Motorola Mcore relocations.
2812
2813 ENUM
2814 BFD_RELOC_MMIX_GETA
2815 ENUMX
2816 BFD_RELOC_MMIX_GETA_1
2817 ENUMX
2818 BFD_RELOC_MMIX_GETA_2
2819 ENUMX
2820 BFD_RELOC_MMIX_GETA_3
2821 ENUMDOC
2822 These are relocations for the GETA instruction.
2823 ENUM
2824 BFD_RELOC_MMIX_CBRANCH
2825 ENUMX
2826 BFD_RELOC_MMIX_CBRANCH_J
2827 ENUMX
2828 BFD_RELOC_MMIX_CBRANCH_1
2829 ENUMX
2830 BFD_RELOC_MMIX_CBRANCH_2
2831 ENUMX
2832 BFD_RELOC_MMIX_CBRANCH_3
2833 ENUMDOC
2834 These are relocations for a conditional branch instruction.
2835 ENUM
2836 BFD_RELOC_MMIX_PUSHJ
2837 ENUMX
2838 BFD_RELOC_MMIX_PUSHJ_1
2839 ENUMX
2840 BFD_RELOC_MMIX_PUSHJ_2
2841 ENUMX
2842 BFD_RELOC_MMIX_PUSHJ_3
2843 ENUMDOC
2844 These are relocations for the PUSHJ instruction.
2845 ENUM
2846 BFD_RELOC_MMIX_JMP
2847 ENUMX
2848 BFD_RELOC_MMIX_JMP_1
2849 ENUMX
2850 BFD_RELOC_MMIX_JMP_2
2851 ENUMX
2852 BFD_RELOC_MMIX_JMP_3
2853 ENUMDOC
2854 These are relocations for the JMP instruction.
2855 ENUM
2856 BFD_RELOC_MMIX_ADDR19
2857 ENUMDOC
2858 This is a relocation for a relative address as in a GETA instruction or
2859 a branch.
2860 ENUM
2861 BFD_RELOC_MMIX_ADDR27
2862 ENUMDOC
2863 This is a relocation for a relative address as in a JMP instruction.
2864 ENUM
2865 BFD_RELOC_MMIX_REG_OR_BYTE
2866 ENUMDOC
2867 This is a relocation for an instruction field that may be a general
2868 register or a value 0..255.
2869 ENUM
2870 BFD_RELOC_MMIX_REG
2871 ENUMDOC
2872 This is a relocation for an instruction field that may be a general
2873 register.
2874 ENUM
2875 BFD_RELOC_MMIX_BASE_PLUS_OFFSET
2876 ENUMDOC
2877 This is a relocation for two instruction fields holding a register and
2878 an offset, the equivalent of the relocation.
2879 ENUM
2880 BFD_RELOC_MMIX_LOCAL
2881 ENUMDOC
2882 This relocation is an assertion that the expression is not allocated as
2883 a global register. It does not modify contents.
2884
2885 ENUM
2886 BFD_RELOC_AVR_7_PCREL
2887 ENUMDOC
2888 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2889 short offset into 7 bits.
2890 ENUM
2891 BFD_RELOC_AVR_13_PCREL
2892 ENUMDOC
2893 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2894 short offset into 12 bits.
2895 ENUM
2896 BFD_RELOC_AVR_16_PM
2897 ENUMDOC
2898 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
2899 program memory address) into 16 bits.
2900 ENUM
2901 BFD_RELOC_AVR_LO8_LDI
2902 ENUMDOC
2903 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2904 data memory address) into 8 bit immediate value of LDI insn.
2905 ENUM
2906 BFD_RELOC_AVR_HI8_LDI
2907 ENUMDOC
2908 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2909 of data memory address) into 8 bit immediate value of LDI insn.
2910 ENUM
2911 BFD_RELOC_AVR_HH8_LDI
2912 ENUMDOC
2913 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2914 of program memory address) into 8 bit immediate value of LDI insn.
2915 ENUM
2916 BFD_RELOC_AVR_LO8_LDI_NEG
2917 ENUMDOC
2918 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2919 (usually data memory address) into 8 bit immediate value of SUBI insn.
2920 ENUM
2921 BFD_RELOC_AVR_HI8_LDI_NEG
2922 ENUMDOC
2923 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2924 (high 8 bit of data memory address) into 8 bit immediate value of
2925 SUBI insn.
2926 ENUM
2927 BFD_RELOC_AVR_HH8_LDI_NEG
2928 ENUMDOC
2929 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2930 (most high 8 bit of program memory address) into 8 bit immediate value
2931 of LDI or SUBI insn.
2932 ENUM
2933 BFD_RELOC_AVR_LO8_LDI_PM
2934 ENUMDOC
2935 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2936 command address) into 8 bit immediate value of LDI insn.
2937 ENUM
2938 BFD_RELOC_AVR_HI8_LDI_PM
2939 ENUMDOC
2940 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2941 of command address) into 8 bit immediate value of LDI insn.
2942 ENUM
2943 BFD_RELOC_AVR_HH8_LDI_PM
2944 ENUMDOC
2945 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2946 of command address) into 8 bit immediate value of LDI insn.
2947 ENUM
2948 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2949 ENUMDOC
2950 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2951 (usually command address) into 8 bit immediate value of SUBI insn.
2952 ENUM
2953 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2954 ENUMDOC
2955 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2956 (high 8 bit of 16 bit command address) into 8 bit immediate value
2957 of SUBI insn.
2958 ENUM
2959 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2960 ENUMDOC
2961 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2962 (high 6 bit of 22 bit command address) into 8 bit immediate
2963 value of SUBI insn.
2964 ENUM
2965 BFD_RELOC_AVR_CALL
2966 ENUMDOC
2967 This is a 32 bit reloc for the AVR that stores 23 bit value
2968 into 22 bits.
2969
2970 ENUM
2971 BFD_RELOC_390_12
2972 ENUMDOC
2973 Direct 12 bit.
2974 ENUM
2975 BFD_RELOC_390_GOT12
2976 ENUMDOC
2977 12 bit GOT offset.
2978 ENUM
2979 BFD_RELOC_390_PLT32
2980 ENUMDOC
2981 32 bit PC relative PLT address.
2982 ENUM
2983 BFD_RELOC_390_COPY
2984 ENUMDOC
2985 Copy symbol at runtime.
2986 ENUM
2987 BFD_RELOC_390_GLOB_DAT
2988 ENUMDOC
2989 Create GOT entry.
2990 ENUM
2991 BFD_RELOC_390_JMP_SLOT
2992 ENUMDOC
2993 Create PLT entry.
2994 ENUM
2995 BFD_RELOC_390_RELATIVE
2996 ENUMDOC
2997 Adjust by program base.
2998 ENUM
2999 BFD_RELOC_390_GOTPC
3000 ENUMDOC
3001 32 bit PC relative offset to GOT.
3002 ENUM
3003 BFD_RELOC_390_GOT16
3004 ENUMDOC
3005 16 bit GOT offset.
3006 ENUM
3007 BFD_RELOC_390_PC16DBL
3008 ENUMDOC
3009 PC relative 16 bit shifted by 1.
3010 ENUM
3011 BFD_RELOC_390_PLT16DBL
3012 ENUMDOC
3013 16 bit PC rel. PLT shifted by 1.
3014 ENUM
3015 BFD_RELOC_390_PC32DBL
3016 ENUMDOC
3017 PC relative 32 bit shifted by 1.
3018 ENUM
3019 BFD_RELOC_390_PLT32DBL
3020 ENUMDOC
3021 32 bit PC rel. PLT shifted by 1.
3022 ENUM
3023 BFD_RELOC_390_GOTPCDBL
3024 ENUMDOC
3025 32 bit PC rel. GOT shifted by 1.
3026 ENUM
3027 BFD_RELOC_390_GOT64
3028 ENUMDOC
3029 64 bit GOT offset.
3030 ENUM
3031 BFD_RELOC_390_PLT64
3032 ENUMDOC
3033 64 bit PC relative PLT address.
3034 ENUM
3035 BFD_RELOC_390_GOTENT
3036 ENUMDOC
3037 32 bit rel. offset to GOT entry.
3038
3039 ENUM
3040 BFD_RELOC_VTABLE_INHERIT
3041 ENUMX
3042 BFD_RELOC_VTABLE_ENTRY
3043 ENUMDOC
3044 These two relocations are used by the linker to determine which of
3045 the entries in a C++ virtual function table are actually used. When
3046 the --gc-sections option is given, the linker will zero out the entries
3047 that are not used, so that the code for those functions need not be
3048 included in the output.
3049
3050 VTABLE_INHERIT is a zero-space relocation used to describe to the
3051 linker the inheritence tree of a C++ virtual function table. The
3052 relocation's symbol should be the parent class' vtable, and the
3053 relocation should be located at the child vtable.
3054
3055 VTABLE_ENTRY is a zero-space relocation that describes the use of a
3056 virtual function table entry. The reloc's symbol should refer to the
3057 table of the class mentioned in the code. Off of that base, an offset
3058 describes the entry that is being used. For Rela hosts, this offset
3059 is stored in the reloc's addend. For Rel hosts, we are forced to put
3060 this offset in the reloc's section offset.
3061
3062 ENUM
3063 BFD_RELOC_IA64_IMM14
3064 ENUMX
3065 BFD_RELOC_IA64_IMM22
3066 ENUMX
3067 BFD_RELOC_IA64_IMM64
3068 ENUMX
3069 BFD_RELOC_IA64_DIR32MSB
3070 ENUMX
3071 BFD_RELOC_IA64_DIR32LSB
3072 ENUMX
3073 BFD_RELOC_IA64_DIR64MSB
3074 ENUMX
3075 BFD_RELOC_IA64_DIR64LSB
3076 ENUMX
3077 BFD_RELOC_IA64_GPREL22
3078 ENUMX
3079 BFD_RELOC_IA64_GPREL64I
3080 ENUMX
3081 BFD_RELOC_IA64_GPREL32MSB
3082 ENUMX
3083 BFD_RELOC_IA64_GPREL32LSB
3084 ENUMX
3085 BFD_RELOC_IA64_GPREL64MSB
3086 ENUMX
3087 BFD_RELOC_IA64_GPREL64LSB
3088 ENUMX
3089 BFD_RELOC_IA64_LTOFF22
3090 ENUMX
3091 BFD_RELOC_IA64_LTOFF64I
3092 ENUMX
3093 BFD_RELOC_IA64_PLTOFF22
3094 ENUMX
3095 BFD_RELOC_IA64_PLTOFF64I
3096 ENUMX
3097 BFD_RELOC_IA64_PLTOFF64MSB
3098 ENUMX
3099 BFD_RELOC_IA64_PLTOFF64LSB
3100 ENUMX
3101 BFD_RELOC_IA64_FPTR64I
3102 ENUMX
3103 BFD_RELOC_IA64_FPTR32MSB
3104 ENUMX
3105 BFD_RELOC_IA64_FPTR32LSB
3106 ENUMX
3107 BFD_RELOC_IA64_FPTR64MSB
3108 ENUMX
3109 BFD_RELOC_IA64_FPTR64LSB
3110 ENUMX
3111 BFD_RELOC_IA64_PCREL21B
3112 ENUMX
3113 BFD_RELOC_IA64_PCREL21BI
3114 ENUMX
3115 BFD_RELOC_IA64_PCREL21M
3116 ENUMX
3117 BFD_RELOC_IA64_PCREL21F
3118 ENUMX
3119 BFD_RELOC_IA64_PCREL22
3120 ENUMX
3121 BFD_RELOC_IA64_PCREL60B
3122 ENUMX
3123 BFD_RELOC_IA64_PCREL64I
3124 ENUMX
3125 BFD_RELOC_IA64_PCREL32MSB
3126 ENUMX
3127 BFD_RELOC_IA64_PCREL32LSB
3128 ENUMX
3129 BFD_RELOC_IA64_PCREL64MSB
3130 ENUMX
3131 BFD_RELOC_IA64_PCREL64LSB
3132 ENUMX
3133 BFD_RELOC_IA64_LTOFF_FPTR22
3134 ENUMX
3135 BFD_RELOC_IA64_LTOFF_FPTR64I
3136 ENUMX
3137 BFD_RELOC_IA64_LTOFF_FPTR32MSB
3138 ENUMX
3139 BFD_RELOC_IA64_LTOFF_FPTR32LSB
3140 ENUMX
3141 BFD_RELOC_IA64_LTOFF_FPTR64MSB
3142 ENUMX
3143 BFD_RELOC_IA64_LTOFF_FPTR64LSB
3144 ENUMX
3145 BFD_RELOC_IA64_SEGREL32MSB
3146 ENUMX
3147 BFD_RELOC_IA64_SEGREL32LSB
3148 ENUMX
3149 BFD_RELOC_IA64_SEGREL64MSB
3150 ENUMX
3151 BFD_RELOC_IA64_SEGREL64LSB
3152 ENUMX
3153 BFD_RELOC_IA64_SECREL32MSB
3154 ENUMX
3155 BFD_RELOC_IA64_SECREL32LSB
3156 ENUMX
3157 BFD_RELOC_IA64_SECREL64MSB
3158 ENUMX
3159 BFD_RELOC_IA64_SECREL64LSB
3160 ENUMX
3161 BFD_RELOC_IA64_REL32MSB
3162 ENUMX
3163 BFD_RELOC_IA64_REL32LSB
3164 ENUMX
3165 BFD_RELOC_IA64_REL64MSB
3166 ENUMX
3167 BFD_RELOC_IA64_REL64LSB
3168 ENUMX
3169 BFD_RELOC_IA64_LTV32MSB
3170 ENUMX
3171 BFD_RELOC_IA64_LTV32LSB
3172 ENUMX
3173 BFD_RELOC_IA64_LTV64MSB
3174 ENUMX
3175 BFD_RELOC_IA64_LTV64LSB
3176 ENUMX
3177 BFD_RELOC_IA64_IPLTMSB
3178 ENUMX
3179 BFD_RELOC_IA64_IPLTLSB
3180 ENUMX
3181 BFD_RELOC_IA64_COPY
3182 ENUMX
3183 BFD_RELOC_IA64_TPREL22
3184 ENUMX
3185 BFD_RELOC_IA64_TPREL64MSB
3186 ENUMX
3187 BFD_RELOC_IA64_TPREL64LSB
3188 ENUMX
3189 BFD_RELOC_IA64_LTOFF_TP22
3190 ENUMX
3191 BFD_RELOC_IA64_LTOFF22X
3192 ENUMX
3193 BFD_RELOC_IA64_LDXMOV
3194 ENUMDOC
3195 Intel IA64 Relocations.
3196
3197 ENUM
3198 BFD_RELOC_M68HC11_HI8
3199 ENUMDOC
3200 Motorola 68HC11 reloc.
3201 This is the 8 bits high part of an absolute address.
3202 ENUM
3203 BFD_RELOC_M68HC11_LO8
3204 ENUMDOC
3205 Motorola 68HC11 reloc.
3206 This is the 8 bits low part of an absolute address.
3207 ENUM
3208 BFD_RELOC_M68HC11_3B
3209 ENUMDOC
3210 Motorola 68HC11 reloc.
3211 This is the 3 bits of a value.
3212
3213 ENUM
3214 BFD_RELOC_CRIS_BDISP8
3215 ENUMX
3216 BFD_RELOC_CRIS_UNSIGNED_5
3217 ENUMX
3218 BFD_RELOC_CRIS_SIGNED_6
3219 ENUMX
3220 BFD_RELOC_CRIS_UNSIGNED_6
3221 ENUMX
3222 BFD_RELOC_CRIS_UNSIGNED_4
3223 ENUMDOC
3224 These relocs are only used within the CRIS assembler. They are not
3225 (at present) written to any object files.
3226 ENUM
3227 BFD_RELOC_CRIS_COPY
3228 ENUMX
3229 BFD_RELOC_CRIS_GLOB_DAT
3230 ENUMX
3231 BFD_RELOC_CRIS_JUMP_SLOT
3232 ENUMX
3233 BFD_RELOC_CRIS_RELATIVE
3234 ENUMDOC
3235 Relocs used in ELF shared libraries for CRIS.
3236 ENUM
3237 BFD_RELOC_CRIS_32_GOT
3238 ENUMDOC
3239 32-bit offset to symbol-entry within GOT.
3240 ENUM
3241 BFD_RELOC_CRIS_16_GOT
3242 ENUMDOC
3243 16-bit offset to symbol-entry within GOT.
3244 ENUM
3245 BFD_RELOC_CRIS_32_GOTPLT
3246 ENUMDOC
3247 32-bit offset to symbol-entry within GOT, with PLT handling.
3248 ENUM
3249 BFD_RELOC_CRIS_16_GOTPLT
3250 ENUMDOC
3251 16-bit offset to symbol-entry within GOT, with PLT handling.
3252 ENUM
3253 BFD_RELOC_CRIS_32_GOTREL
3254 ENUMDOC
3255 32-bit offset to symbol, relative to GOT.
3256 ENUM
3257 BFD_RELOC_CRIS_32_PLT_GOTREL
3258 ENUMDOC
3259 32-bit offset to symbol with PLT entry, relative to GOT.
3260 ENUM
3261 BFD_RELOC_CRIS_32_PLT_PCREL
3262 ENUMDOC
3263 32-bit offset to symbol with PLT entry, relative to this relocation.
3264
3265 ENUM
3266 BFD_RELOC_860_COPY
3267 ENUMX
3268 BFD_RELOC_860_GLOB_DAT
3269 ENUMX
3270 BFD_RELOC_860_JUMP_SLOT
3271 ENUMX
3272 BFD_RELOC_860_RELATIVE
3273 ENUMX
3274 BFD_RELOC_860_PC26
3275 ENUMX
3276 BFD_RELOC_860_PLT26
3277 ENUMX
3278 BFD_RELOC_860_PC16
3279 ENUMX
3280 BFD_RELOC_860_LOW0
3281 ENUMX
3282 BFD_RELOC_860_SPLIT0
3283 ENUMX
3284 BFD_RELOC_860_LOW1
3285 ENUMX
3286 BFD_RELOC_860_SPLIT1
3287 ENUMX
3288 BFD_RELOC_860_LOW2
3289 ENUMX
3290 BFD_RELOC_860_SPLIT2
3291 ENUMX
3292 BFD_RELOC_860_LOW3
3293 ENUMX
3294 BFD_RELOC_860_LOGOT0
3295 ENUMX
3296 BFD_RELOC_860_SPGOT0
3297 ENUMX
3298 BFD_RELOC_860_LOGOT1
3299 ENUMX
3300 BFD_RELOC_860_SPGOT1
3301 ENUMX
3302 BFD_RELOC_860_LOGOTOFF0
3303 ENUMX
3304 BFD_RELOC_860_SPGOTOFF0
3305 ENUMX
3306 BFD_RELOC_860_LOGOTOFF1
3307 ENUMX
3308 BFD_RELOC_860_SPGOTOFF1
3309 ENUMX
3310 BFD_RELOC_860_LOGOTOFF2
3311 ENUMX
3312 BFD_RELOC_860_LOGOTOFF3
3313 ENUMX
3314 BFD_RELOC_860_LOPC
3315 ENUMX
3316 BFD_RELOC_860_HIGHADJ
3317 ENUMX
3318 BFD_RELOC_860_HAGOT
3319 ENUMX
3320 BFD_RELOC_860_HAGOTOFF
3321 ENUMX
3322 BFD_RELOC_860_HAPC
3323 ENUMX
3324 BFD_RELOC_860_HIGH
3325 ENUMX
3326 BFD_RELOC_860_HIGOT
3327 ENUMX
3328 BFD_RELOC_860_HIGOTOFF
3329 ENUMDOC
3330 Intel i860 Relocations.
3331
3332 ENUM
3333 BFD_RELOC_OPENRISC_ABS_26
3334 ENUMX
3335 BFD_RELOC_OPENRISC_REL_26
3336 ENUMDOC
3337 OpenRISC Relocations.
3338
3339 ENUM
3340 BFD_RELOC_H8_DIR16A8
3341 ENUMX
3342 BFD_RELOC_H8_DIR16R8
3343 ENUMX
3344 BFD_RELOC_H8_DIR24A8
3345 ENUMX
3346 BFD_RELOC_H8_DIR24R8
3347 ENUMX
3348 BFD_RELOC_H8_DIR32A16
3349 ENUMDOC
3350 H8 elf Relocations.
3351
3352 ENUM
3353 BFD_RELOC_XSTORMY16_REL_12
3354 ENUMX
3355 BFD_RELOC_XSTORMY16_24
3356 ENUMX
3357 BFD_RELOC_XSTORMY16_FPTR16
3358 ENUMDOC
3359 Sony Xstormy16 Relocations.
3360
3361 ENDSENUM
3362 BFD_RELOC_UNUSED
3363 CODE_FRAGMENT
3364 .
3365 .typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3366 */
3367
3368 /*
3369 FUNCTION
3370 bfd_reloc_type_lookup
3371
3372 SYNOPSIS
3373 reloc_howto_type *
3374 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3375
3376 DESCRIPTION
3377 Return a pointer to a howto structure which, when
3378 invoked, will perform the relocation @var{code} on data from the
3379 architecture noted.
3380
3381 */
3382
3383 reloc_howto_type *
3384 bfd_reloc_type_lookup (abfd, code)
3385 bfd *abfd;
3386 bfd_reloc_code_real_type code;
3387 {
3388 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3389 }
3390
3391 static reloc_howto_type bfd_howto_32 =
3392 HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3393
3394 /*
3395 INTERNAL_FUNCTION
3396 bfd_default_reloc_type_lookup
3397
3398 SYNOPSIS
3399 reloc_howto_type *bfd_default_reloc_type_lookup
3400 (bfd *abfd, bfd_reloc_code_real_type code);
3401
3402 DESCRIPTION
3403 Provides a default relocation lookup routine for any architecture.
3404
3405 */
3406
3407 reloc_howto_type *
3408 bfd_default_reloc_type_lookup (abfd, code)
3409 bfd *abfd;
3410 bfd_reloc_code_real_type code;
3411 {
3412 switch (code)
3413 {
3414 case BFD_RELOC_CTOR:
3415 /* The type of reloc used in a ctor, which will be as wide as the
3416 address - so either a 64, 32, or 16 bitter. */
3417 switch (bfd_get_arch_info (abfd)->bits_per_address)
3418 {
3419 case 64:
3420 BFD_FAIL ();
3421 case 32:
3422 return &bfd_howto_32;
3423 case 16:
3424 BFD_FAIL ();
3425 default:
3426 BFD_FAIL ();
3427 }
3428 default:
3429 BFD_FAIL ();
3430 }
3431 return (reloc_howto_type *) NULL;
3432 }
3433
3434 /*
3435 FUNCTION
3436 bfd_get_reloc_code_name
3437
3438 SYNOPSIS
3439 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3440
3441 DESCRIPTION
3442 Provides a printable name for the supplied relocation code.
3443 Useful mainly for printing error messages.
3444 */
3445
3446 const char *
3447 bfd_get_reloc_code_name (code)
3448 bfd_reloc_code_real_type code;
3449 {
3450 if (code > BFD_RELOC_UNUSED)
3451 return 0;
3452 return bfd_reloc_code_real_names[(int)code];
3453 }
3454
3455 /*
3456 INTERNAL_FUNCTION
3457 bfd_generic_relax_section
3458
3459 SYNOPSIS
3460 boolean bfd_generic_relax_section
3461 (bfd *abfd,
3462 asection *section,
3463 struct bfd_link_info *,
3464 boolean *);
3465
3466 DESCRIPTION
3467 Provides default handling for relaxing for back ends which
3468 don't do relaxing -- i.e., does nothing.
3469 */
3470
3471 boolean
3472 bfd_generic_relax_section (abfd, section, link_info, again)
3473 bfd *abfd ATTRIBUTE_UNUSED;
3474 asection *section ATTRIBUTE_UNUSED;
3475 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3476 boolean *again;
3477 {
3478 *again = false;
3479 return true;
3480 }
3481
3482 /*
3483 INTERNAL_FUNCTION
3484 bfd_generic_gc_sections
3485
3486 SYNOPSIS
3487 boolean bfd_generic_gc_sections
3488 (bfd *, struct bfd_link_info *);
3489
3490 DESCRIPTION
3491 Provides default handling for relaxing for back ends which
3492 don't do section gc -- i.e., does nothing.
3493 */
3494
3495 boolean
3496 bfd_generic_gc_sections (abfd, link_info)
3497 bfd *abfd ATTRIBUTE_UNUSED;
3498 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3499 {
3500 return true;
3501 }
3502
3503 /*
3504 INTERNAL_FUNCTION
3505 bfd_generic_merge_sections
3506
3507 SYNOPSIS
3508 boolean bfd_generic_merge_sections
3509 (bfd *, struct bfd_link_info *);
3510
3511 DESCRIPTION
3512 Provides default handling for SEC_MERGE section merging for back ends
3513 which don't have SEC_MERGE support -- i.e., does nothing.
3514 */
3515
3516 boolean
3517 bfd_generic_merge_sections (abfd, link_info)
3518 bfd *abfd ATTRIBUTE_UNUSED;
3519 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3520 {
3521 return true;
3522 }
3523
3524 /*
3525 INTERNAL_FUNCTION
3526 bfd_generic_get_relocated_section_contents
3527
3528 SYNOPSIS
3529 bfd_byte *
3530 bfd_generic_get_relocated_section_contents (bfd *abfd,
3531 struct bfd_link_info *link_info,
3532 struct bfd_link_order *link_order,
3533 bfd_byte *data,
3534 boolean relocateable,
3535 asymbol **symbols);
3536
3537 DESCRIPTION
3538 Provides default handling of relocation effort for back ends
3539 which can't be bothered to do it efficiently.
3540
3541 */
3542
3543 bfd_byte *
3544 bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3545 relocateable, symbols)
3546 bfd *abfd;
3547 struct bfd_link_info *link_info;
3548 struct bfd_link_order *link_order;
3549 bfd_byte *data;
3550 boolean relocateable;
3551 asymbol **symbols;
3552 {
3553 /* Get enough memory to hold the stuff. */
3554 bfd *input_bfd = link_order->u.indirect.section->owner;
3555 asection *input_section = link_order->u.indirect.section;
3556
3557 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3558 arelent **reloc_vector = NULL;
3559 long reloc_count;
3560
3561 if (reloc_size < 0)
3562 goto error_return;
3563
3564 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
3565 if (reloc_vector == NULL && reloc_size != 0)
3566 goto error_return;
3567
3568 /* Read in the section. */
3569 if (!bfd_get_section_contents (input_bfd,
3570 input_section,
3571 (PTR) data,
3572 (bfd_vma) 0,
3573 input_section->_raw_size))
3574 goto error_return;
3575
3576 /* We're not relaxing the section, so just copy the size info. */
3577 input_section->_cooked_size = input_section->_raw_size;
3578 input_section->reloc_done = true;
3579
3580 reloc_count = bfd_canonicalize_reloc (input_bfd,
3581 input_section,
3582 reloc_vector,
3583 symbols);
3584 if (reloc_count < 0)
3585 goto error_return;
3586
3587 if (reloc_count > 0)
3588 {
3589 arelent **parent;
3590 for (parent = reloc_vector; *parent != (arelent *) NULL;
3591 parent++)
3592 {
3593 char *error_message = (char *) NULL;
3594 bfd_reloc_status_type r =
3595 bfd_perform_relocation (input_bfd,
3596 *parent,
3597 (PTR) data,
3598 input_section,
3599 relocateable ? abfd : (bfd *) NULL,
3600 &error_message);
3601
3602 if (relocateable)
3603 {
3604 asection *os = input_section->output_section;
3605
3606 /* A partial link, so keep the relocs. */
3607 os->orelocation[os->reloc_count] = *parent;
3608 os->reloc_count++;
3609 }
3610
3611 if (r != bfd_reloc_ok)
3612 {
3613 switch (r)
3614 {
3615 case bfd_reloc_undefined:
3616 if (!((*link_info->callbacks->undefined_symbol)
3617 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3618 input_bfd, input_section, (*parent)->address,
3619 true)))
3620 goto error_return;
3621 break;
3622 case bfd_reloc_dangerous:
3623 BFD_ASSERT (error_message != (char *) NULL);
3624 if (!((*link_info->callbacks->reloc_dangerous)
3625 (link_info, error_message, input_bfd, input_section,
3626 (*parent)->address)))
3627 goto error_return;
3628 break;
3629 case bfd_reloc_overflow:
3630 if (!((*link_info->callbacks->reloc_overflow)
3631 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3632 (*parent)->howto->name, (*parent)->addend,
3633 input_bfd, input_section, (*parent)->address)))
3634 goto error_return;
3635 break;
3636 case bfd_reloc_outofrange:
3637 default:
3638 abort ();
3639 break;
3640 }
3641
3642 }
3643 }
3644 }
3645 if (reloc_vector != NULL)
3646 free (reloc_vector);
3647 return data;
3648
3649 error_return:
3650 if (reloc_vector != NULL)
3651 free (reloc_vector);
3652 return NULL;
3653 }
This page took 0.118712 seconds and 5 git commands to generate.