daily update
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012
5 Free Software Foundation, Inc.
6 Written by Cygnus Support.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 MA 02110-1301, USA. */
24
25 /*
26 SECTION
27 Sections
28
29 The raw data contained within a BFD is maintained through the
30 section abstraction. A single BFD may have any number of
31 sections. It keeps hold of them by pointing to the first;
32 each one points to the next in the list.
33
34 Sections are supported in BFD in <<section.c>>.
35
36 @menu
37 @* Section Input::
38 @* Section Output::
39 @* typedef asection::
40 @* section prototypes::
41 @end menu
42
43 INODE
44 Section Input, Section Output, Sections, Sections
45 SUBSECTION
46 Section input
47
48 When a BFD is opened for reading, the section structures are
49 created and attached to the BFD.
50
51 Each section has a name which describes the section in the
52 outside world---for example, <<a.out>> would contain at least
53 three sections, called <<.text>>, <<.data>> and <<.bss>>.
54
55 Names need not be unique; for example a COFF file may have several
56 sections named <<.data>>.
57
58 Sometimes a BFD will contain more than the ``natural'' number of
59 sections. A back end may attach other sections containing
60 constructor data, or an application may add a section (using
61 <<bfd_make_section>>) to the sections attached to an already open
62 BFD. For example, the linker creates an extra section
63 <<COMMON>> for each input file's BFD to hold information about
64 common storage.
65
66 The raw data is not necessarily read in when
67 the section descriptor is created. Some targets may leave the
68 data in place until a <<bfd_get_section_contents>> call is
69 made. Other back ends may read in all the data at once. For
70 example, an S-record file has to be read once to determine the
71 size of the data. An IEEE-695 file doesn't contain raw data in
72 sections, but data and relocation expressions intermixed, so
73 the data area has to be parsed to get out the data and
74 relocations.
75
76 INODE
77 Section Output, typedef asection, Section Input, Sections
78
79 SUBSECTION
80 Section output
81
82 To write a new object style BFD, the various sections to be
83 written have to be created. They are attached to the BFD in
84 the same way as input sections; data is written to the
85 sections using <<bfd_set_section_contents>>.
86
87 Any program that creates or combines sections (e.g., the assembler
88 and linker) must use the <<asection>> fields <<output_section>> and
89 <<output_offset>> to indicate the file sections to which each
90 section must be written. (If the section is being created from
91 scratch, <<output_section>> should probably point to the section
92 itself and <<output_offset>> should probably be zero.)
93
94 The data to be written comes from input sections attached
95 (via <<output_section>> pointers) to
96 the output sections. The output section structure can be
97 considered a filter for the input section: the output section
98 determines the vma of the output data and the name, but the
99 input section determines the offset into the output section of
100 the data to be written.
101
102 E.g., to create a section "O", starting at 0x100, 0x123 long,
103 containing two subsections, "A" at offset 0x0 (i.e., at vma
104 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
105 structures would look like:
106
107 | section name "A"
108 | output_offset 0x00
109 | size 0x20
110 | output_section -----------> section name "O"
111 | | vma 0x100
112 | section name "B" | size 0x123
113 | output_offset 0x20 |
114 | size 0x103 |
115 | output_section --------|
116
117 SUBSECTION
118 Link orders
119
120 The data within a section is stored in a @dfn{link_order}.
121 These are much like the fixups in <<gas>>. The link_order
122 abstraction allows a section to grow and shrink within itself.
123
124 A link_order knows how big it is, and which is the next
125 link_order and where the raw data for it is; it also points to
126 a list of relocations which apply to it.
127
128 The link_order is used by the linker to perform relaxing on
129 final code. The compiler creates code which is as big as
130 necessary to make it work without relaxing, and the user can
131 select whether to relax. Sometimes relaxing takes a lot of
132 time. The linker runs around the relocations to see if any
133 are attached to data which can be shrunk, if so it does it on
134 a link_order by link_order basis.
135
136 */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libbfd.h"
141 #include "bfdlink.h"
142
143 /*
144 DOCDD
145 INODE
146 typedef asection, section prototypes, Section Output, Sections
147 SUBSECTION
148 typedef asection
149
150 Here is the section structure:
151
152 CODE_FRAGMENT
153 .
154 .typedef struct bfd_section
155 .{
156 . {* The name of the section; the name isn't a copy, the pointer is
157 . the same as that passed to bfd_make_section. *}
158 . const char *name;
159 .
160 . {* A unique sequence number. *}
161 . int id;
162 .
163 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
164 . int index;
165 .
166 . {* The next section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *next;
168 .
169 . {* The previous section in the list belonging to the BFD, or NULL. *}
170 . struct bfd_section *prev;
171 .
172 . {* The field flags contains attributes of the section. Some
173 . flags are read in from the object file, and some are
174 . synthesized from other information. *}
175 . flagword flags;
176 .
177 .#define SEC_NO_FLAGS 0x000
178 .
179 . {* Tells the OS to allocate space for this section when loading.
180 . This is clear for a section containing debug information only. *}
181 .#define SEC_ALLOC 0x001
182 .
183 . {* Tells the OS to load the section from the file when loading.
184 . This is clear for a .bss section. *}
185 .#define SEC_LOAD 0x002
186 .
187 . {* The section contains data still to be relocated, so there is
188 . some relocation information too. *}
189 .#define SEC_RELOC 0x004
190 .
191 . {* A signal to the OS that the section contains read only data. *}
192 .#define SEC_READONLY 0x008
193 .
194 . {* The section contains code only. *}
195 .#define SEC_CODE 0x010
196 .
197 . {* The section contains data only. *}
198 .#define SEC_DATA 0x020
199 .
200 . {* The section will reside in ROM. *}
201 .#define SEC_ROM 0x040
202 .
203 . {* The section contains constructor information. This section
204 . type is used by the linker to create lists of constructors and
205 . destructors used by <<g++>>. When a back end sees a symbol
206 . which should be used in a constructor list, it creates a new
207 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
208 . the symbol to it, and builds a relocation. To build the lists
209 . of constructors, all the linker has to do is catenate all the
210 . sections called <<__CTOR_LIST__>> and relocate the data
211 . contained within - exactly the operations it would peform on
212 . standard data. *}
213 .#define SEC_CONSTRUCTOR 0x080
214 .
215 . {* The section has contents - a data section could be
216 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
217 . <<SEC_HAS_CONTENTS>> *}
218 .#define SEC_HAS_CONTENTS 0x100
219 .
220 . {* An instruction to the linker to not output the section
221 . even if it has information which would normally be written. *}
222 .#define SEC_NEVER_LOAD 0x200
223 .
224 . {* The section contains thread local data. *}
225 .#define SEC_THREAD_LOCAL 0x400
226 .
227 . {* The section has GOT references. This flag is only for the
228 . linker, and is currently only used by the elf32-hppa back end.
229 . It will be set if global offset table references were detected
230 . in this section, which indicate to the linker that the section
231 . contains PIC code, and must be handled specially when doing a
232 . static link. *}
233 .#define SEC_HAS_GOT_REF 0x800
234 .
235 . {* The section contains common symbols (symbols may be defined
236 . multiple times, the value of a symbol is the amount of
237 . space it requires, and the largest symbol value is the one
238 . used). Most targets have exactly one of these (which we
239 . translate to bfd_com_section_ptr), but ECOFF has two. *}
240 .#define SEC_IS_COMMON 0x1000
241 .
242 . {* The section contains only debugging information. For
243 . example, this is set for ELF .debug and .stab sections.
244 . strip tests this flag to see if a section can be
245 . discarded. *}
246 .#define SEC_DEBUGGING 0x2000
247 .
248 . {* The contents of this section are held in memory pointed to
249 . by the contents field. This is checked by bfd_get_section_contents,
250 . and the data is retrieved from memory if appropriate. *}
251 .#define SEC_IN_MEMORY 0x4000
252 .
253 . {* The contents of this section are to be excluded by the
254 . linker for executable and shared objects unless those
255 . objects are to be further relocated. *}
256 .#define SEC_EXCLUDE 0x8000
257 .
258 . {* The contents of this section are to be sorted based on the sum of
259 . the symbol and addend values specified by the associated relocation
260 . entries. Entries without associated relocation entries will be
261 . appended to the end of the section in an unspecified order. *}
262 .#define SEC_SORT_ENTRIES 0x10000
263 .
264 . {* When linking, duplicate sections of the same name should be
265 . discarded, rather than being combined into a single section as
266 . is usually done. This is similar to how common symbols are
267 . handled. See SEC_LINK_DUPLICATES below. *}
268 .#define SEC_LINK_ONCE 0x20000
269 .
270 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
271 . should handle duplicate sections. *}
272 .#define SEC_LINK_DUPLICATES 0xc0000
273 .
274 . {* This value for SEC_LINK_DUPLICATES means that duplicate
275 . sections with the same name should simply be discarded. *}
276 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
277 .
278 . {* This value for SEC_LINK_DUPLICATES means that the linker
279 . should warn if there are any duplicate sections, although
280 . it should still only link one copy. *}
281 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
282 .
283 . {* This value for SEC_LINK_DUPLICATES means that the linker
284 . should warn if any duplicate sections are a different size. *}
285 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
286 .
287 . {* This value for SEC_LINK_DUPLICATES means that the linker
288 . should warn if any duplicate sections contain different
289 . contents. *}
290 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
291 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
292 .
293 . {* This section was created by the linker as part of dynamic
294 . relocation or other arcane processing. It is skipped when
295 . going through the first-pass output, trusting that someone
296 . else up the line will take care of it later. *}
297 .#define SEC_LINKER_CREATED 0x100000
298 .
299 . {* This section should not be subject to garbage collection.
300 . Also set to inform the linker that this section should not be
301 . listed in the link map as discarded. *}
302 .#define SEC_KEEP 0x200000
303 .
304 . {* This section contains "short" data, and should be placed
305 . "near" the GP. *}
306 .#define SEC_SMALL_DATA 0x400000
307 .
308 . {* Attempt to merge identical entities in the section.
309 . Entity size is given in the entsize field. *}
310 .#define SEC_MERGE 0x800000
311 .
312 . {* If given with SEC_MERGE, entities to merge are zero terminated
313 . strings where entsize specifies character size instead of fixed
314 . size entries. *}
315 .#define SEC_STRINGS 0x1000000
316 .
317 . {* This section contains data about section groups. *}
318 .#define SEC_GROUP 0x2000000
319 .
320 . {* The section is a COFF shared library section. This flag is
321 . only for the linker. If this type of section appears in
322 . the input file, the linker must copy it to the output file
323 . without changing the vma or size. FIXME: Although this
324 . was originally intended to be general, it really is COFF
325 . specific (and the flag was renamed to indicate this). It
326 . might be cleaner to have some more general mechanism to
327 . allow the back end to control what the linker does with
328 . sections. *}
329 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
330 .
331 . {* This input section should be copied to output in reverse order
332 . as an array of pointers. This is for ELF linker internal use
333 . only. *}
334 .#define SEC_ELF_REVERSE_COPY 0x4000000
335 .
336 . {* This section contains data which may be shared with other
337 . executables or shared objects. This is for COFF only. *}
338 .#define SEC_COFF_SHARED 0x8000000
339 .
340 . {* When a section with this flag is being linked, then if the size of
341 . the input section is less than a page, it should not cross a page
342 . boundary. If the size of the input section is one page or more,
343 . it should be aligned on a page boundary. This is for TI
344 . TMS320C54X only. *}
345 .#define SEC_TIC54X_BLOCK 0x10000000
346 .
347 . {* Conditionally link this section; do not link if there are no
348 . references found to any symbol in the section. This is for TI
349 . TMS320C54X only. *}
350 .#define SEC_TIC54X_CLINK 0x20000000
351 .
352 . {* Indicate that section has the no read flag set. This happens
353 . when memory read flag isn't set. *}
354 .#define SEC_COFF_NOREAD 0x40000000
355 .
356 . {* End of section flags. *}
357 .
358 . {* Some internal packed boolean fields. *}
359 .
360 . {* See the vma field. *}
361 . unsigned int user_set_vma : 1;
362 .
363 . {* A mark flag used by some of the linker backends. *}
364 . unsigned int linker_mark : 1;
365 .
366 . {* Another mark flag used by some of the linker backends. Set for
367 . output sections that have an input section. *}
368 . unsigned int linker_has_input : 1;
369 .
370 . {* Mark flag used by some linker backends for garbage collection. *}
371 . unsigned int gc_mark : 1;
372 .
373 . {* Section compression status. *}
374 . unsigned int compress_status : 2;
375 .#define COMPRESS_SECTION_NONE 0
376 .#define COMPRESS_SECTION_DONE 1
377 .#define DECOMPRESS_SECTION_SIZED 2
378 .
379 . {* The following flags are used by the ELF linker. *}
380 .
381 . {* Mark sections which have been allocated to segments. *}
382 . unsigned int segment_mark : 1;
383 .
384 . {* Type of sec_info information. *}
385 . unsigned int sec_info_type:3;
386 .#define SEC_INFO_TYPE_NONE 0
387 .#define SEC_INFO_TYPE_STABS 1
388 .#define SEC_INFO_TYPE_MERGE 2
389 .#define SEC_INFO_TYPE_EH_FRAME 3
390 .#define SEC_INFO_TYPE_JUST_SYMS 4
391 .
392 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
393 . unsigned int use_rela_p:1;
394 .
395 . {* Bits used by various backends. The generic code doesn't touch
396 . these fields. *}
397 .
398 . unsigned int sec_flg0:1;
399 . unsigned int sec_flg1:1;
400 . unsigned int sec_flg2:1;
401 . unsigned int sec_flg3:1;
402 . unsigned int sec_flg4:1;
403 . unsigned int sec_flg5:1;
404 .
405 . {* End of internal packed boolean fields. *}
406 .
407 . {* The virtual memory address of the section - where it will be
408 . at run time. The symbols are relocated against this. The
409 . user_set_vma flag is maintained by bfd; if it's not set, the
410 . backend can assign addresses (for example, in <<a.out>>, where
411 . the default address for <<.data>> is dependent on the specific
412 . target and various flags). *}
413 . bfd_vma vma;
414 .
415 . {* The load address of the section - where it would be in a
416 . rom image; really only used for writing section header
417 . information. *}
418 . bfd_vma lma;
419 .
420 . {* The size of the section in octets, as it will be output.
421 . Contains a value even if the section has no contents (e.g., the
422 . size of <<.bss>>). *}
423 . bfd_size_type size;
424 .
425 . {* For input sections, the original size on disk of the section, in
426 . octets. This field should be set for any section whose size is
427 . changed by linker relaxation. It is required for sections where
428 . the linker relaxation scheme doesn't cache altered section and
429 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
430 . targets), and thus the original size needs to be kept to read the
431 . section multiple times. For output sections, rawsize holds the
432 . section size calculated on a previous linker relaxation pass. *}
433 . bfd_size_type rawsize;
434 .
435 . {* The compressed size of the section in octets. *}
436 . bfd_size_type compressed_size;
437 .
438 . {* Relaxation table. *}
439 . struct relax_table *relax;
440 .
441 . {* Count of used relaxation table entries. *}
442 . int relax_count;
443 .
444 .
445 . {* If this section is going to be output, then this value is the
446 . offset in *bytes* into the output section of the first byte in the
447 . input section (byte ==> smallest addressable unit on the
448 . target). In most cases, if this was going to start at the
449 . 100th octet (8-bit quantity) in the output section, this value
450 . would be 100. However, if the target byte size is 16 bits
451 . (bfd_octets_per_byte is "2"), this value would be 50. *}
452 . bfd_vma output_offset;
453 .
454 . {* The output section through which to map on output. *}
455 . struct bfd_section *output_section;
456 .
457 . {* The alignment requirement of the section, as an exponent of 2 -
458 . e.g., 3 aligns to 2^3 (or 8). *}
459 . unsigned int alignment_power;
460 .
461 . {* If an input section, a pointer to a vector of relocation
462 . records for the data in this section. *}
463 . struct reloc_cache_entry *relocation;
464 .
465 . {* If an output section, a pointer to a vector of pointers to
466 . relocation records for the data in this section. *}
467 . struct reloc_cache_entry **orelocation;
468 .
469 . {* The number of relocation records in one of the above. *}
470 . unsigned reloc_count;
471 .
472 . {* Information below is back end specific - and not always used
473 . or updated. *}
474 .
475 . {* File position of section data. *}
476 . file_ptr filepos;
477 .
478 . {* File position of relocation info. *}
479 . file_ptr rel_filepos;
480 .
481 . {* File position of line data. *}
482 . file_ptr line_filepos;
483 .
484 . {* Pointer to data for applications. *}
485 . void *userdata;
486 .
487 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
488 . contents. *}
489 . unsigned char *contents;
490 .
491 . {* Attached line number information. *}
492 . alent *lineno;
493 .
494 . {* Number of line number records. *}
495 . unsigned int lineno_count;
496 .
497 . {* Entity size for merging purposes. *}
498 . unsigned int entsize;
499 .
500 . {* Points to the kept section if this section is a link-once section,
501 . and is discarded. *}
502 . struct bfd_section *kept_section;
503 .
504 . {* When a section is being output, this value changes as more
505 . linenumbers are written out. *}
506 . file_ptr moving_line_filepos;
507 .
508 . {* What the section number is in the target world. *}
509 . int target_index;
510 .
511 . void *used_by_bfd;
512 .
513 . {* If this is a constructor section then here is a list of the
514 . relocations created to relocate items within it. *}
515 . struct relent_chain *constructor_chain;
516 .
517 . {* The BFD which owns the section. *}
518 . bfd *owner;
519 .
520 . {* A symbol which points at this section only. *}
521 . struct bfd_symbol *symbol;
522 . struct bfd_symbol **symbol_ptr_ptr;
523 .
524 . {* Early in the link process, map_head and map_tail are used to build
525 . a list of input sections attached to an output section. Later,
526 . output sections use these fields for a list of bfd_link_order
527 . structs. *}
528 . union {
529 . struct bfd_link_order *link_order;
530 . struct bfd_section *s;
531 . } map_head, map_tail;
532 .} asection;
533 .
534 .{* Relax table contains information about instructions which can
535 . be removed by relaxation -- replacing a long address with a
536 . short address. *}
537 .struct relax_table {
538 . {* Address where bytes may be deleted. *}
539 . bfd_vma addr;
540 .
541 . {* Number of bytes to be deleted. *}
542 . int size;
543 .};
544 .
545 .{* These sections are global, and are managed by BFD. The application
546 . and target back end are not permitted to change the values in
547 . these sections. *}
548 .extern asection std_section[4];
549 .
550 .#define BFD_ABS_SECTION_NAME "*ABS*"
551 .#define BFD_UND_SECTION_NAME "*UND*"
552 .#define BFD_COM_SECTION_NAME "*COM*"
553 .#define BFD_IND_SECTION_NAME "*IND*"
554 .
555 .{* Pointer to the common section. *}
556 .#define bfd_com_section_ptr (&std_section[0])
557 .{* Pointer to the undefined section. *}
558 .#define bfd_und_section_ptr (&std_section[1])
559 .{* Pointer to the absolute section. *}
560 .#define bfd_abs_section_ptr (&std_section[2])
561 .{* Pointer to the indirect section. *}
562 .#define bfd_ind_section_ptr (&std_section[3])
563 .
564 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
565 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
566 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
567 .
568 .#define bfd_is_const_section(SEC) \
569 . ( ((SEC) == bfd_abs_section_ptr) \
570 . || ((SEC) == bfd_und_section_ptr) \
571 . || ((SEC) == bfd_com_section_ptr) \
572 . || ((SEC) == bfd_ind_section_ptr))
573 .
574 .{* Macros to handle insertion and deletion of a bfd's sections. These
575 . only handle the list pointers, ie. do not adjust section_count,
576 . target_index etc. *}
577 .#define bfd_section_list_remove(ABFD, S) \
578 . do \
579 . { \
580 . asection *_s = S; \
581 . asection *_next = _s->next; \
582 . asection *_prev = _s->prev; \
583 . if (_prev) \
584 . _prev->next = _next; \
585 . else \
586 . (ABFD)->sections = _next; \
587 . if (_next) \
588 . _next->prev = _prev; \
589 . else \
590 . (ABFD)->section_last = _prev; \
591 . } \
592 . while (0)
593 .#define bfd_section_list_append(ABFD, S) \
594 . do \
595 . { \
596 . asection *_s = S; \
597 . bfd *_abfd = ABFD; \
598 . _s->next = NULL; \
599 . if (_abfd->section_last) \
600 . { \
601 . _s->prev = _abfd->section_last; \
602 . _abfd->section_last->next = _s; \
603 . } \
604 . else \
605 . { \
606 . _s->prev = NULL; \
607 . _abfd->sections = _s; \
608 . } \
609 . _abfd->section_last = _s; \
610 . } \
611 . while (0)
612 .#define bfd_section_list_prepend(ABFD, S) \
613 . do \
614 . { \
615 . asection *_s = S; \
616 . bfd *_abfd = ABFD; \
617 . _s->prev = NULL; \
618 . if (_abfd->sections) \
619 . { \
620 . _s->next = _abfd->sections; \
621 . _abfd->sections->prev = _s; \
622 . } \
623 . else \
624 . { \
625 . _s->next = NULL; \
626 . _abfd->section_last = _s; \
627 . } \
628 . _abfd->sections = _s; \
629 . } \
630 . while (0)
631 .#define bfd_section_list_insert_after(ABFD, A, S) \
632 . do \
633 . { \
634 . asection *_a = A; \
635 . asection *_s = S; \
636 . asection *_next = _a->next; \
637 . _s->next = _next; \
638 . _s->prev = _a; \
639 . _a->next = _s; \
640 . if (_next) \
641 . _next->prev = _s; \
642 . else \
643 . (ABFD)->section_last = _s; \
644 . } \
645 . while (0)
646 .#define bfd_section_list_insert_before(ABFD, B, S) \
647 . do \
648 . { \
649 . asection *_b = B; \
650 . asection *_s = S; \
651 . asection *_prev = _b->prev; \
652 . _s->prev = _prev; \
653 . _s->next = _b; \
654 . _b->prev = _s; \
655 . if (_prev) \
656 . _prev->next = _s; \
657 . else \
658 . (ABFD)->sections = _s; \
659 . } \
660 . while (0)
661 .#define bfd_section_removed_from_list(ABFD, S) \
662 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
663 .
664 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
665 . {* name, id, index, next, prev, flags, user_set_vma, *} \
666 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
667 . \
668 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
669 . 0, 0, 1, 0, \
670 . \
671 . {* segment_mark, sec_info_type, use_rela_p, *} \
672 . 0, 0, 0, \
673 . \
674 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
675 . 0, 0, 0, 0, 0, 0, \
676 . \
677 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
678 . 0, 0, 0, 0, 0, 0, 0, \
679 . \
680 . {* output_offset, output_section, alignment_power, *} \
681 . 0, &SEC, 0, \
682 . \
683 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
684 . NULL, NULL, 0, 0, 0, \
685 . \
686 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
687 . 0, NULL, NULL, NULL, 0, \
688 . \
689 . {* entsize, kept_section, moving_line_filepos, *} \
690 . 0, NULL, 0, \
691 . \
692 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
693 . 0, NULL, NULL, NULL, \
694 . \
695 . {* symbol, symbol_ptr_ptr, *} \
696 . (struct bfd_symbol *) SYM, &SEC.symbol, \
697 . \
698 . {* map_head, map_tail *} \
699 . { NULL }, { NULL } \
700 . }
701 .
702 */
703
704 /* We use a macro to initialize the static asymbol structures because
705 traditional C does not permit us to initialize a union member while
706 gcc warns if we don't initialize it. */
707 /* the_bfd, name, value, attr, section [, udata] */
708 #ifdef __STDC__
709 #define GLOBAL_SYM_INIT(NAME, SECTION) \
710 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
711 #else
712 #define GLOBAL_SYM_INIT(NAME, SECTION) \
713 { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
714 #endif
715
716 /* These symbols are global, not specific to any BFD. Therefore, anything
717 that tries to change them is broken, and should be repaired. */
718
719 static const asymbol global_syms[] =
720 {
721 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
722 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
723 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
724 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
725 };
726
727 #define STD_SECTION(NAME, IDX, FLAGS) \
728 BFD_FAKE_SECTION(std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
729
730 asection std_section[] = {
731 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
732 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
733 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
734 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
735 };
736 #undef STD_SECTION
737
738 /* Initialize an entry in the section hash table. */
739
740 struct bfd_hash_entry *
741 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
742 struct bfd_hash_table *table,
743 const char *string)
744 {
745 /* Allocate the structure if it has not already been allocated by a
746 subclass. */
747 if (entry == NULL)
748 {
749 entry = (struct bfd_hash_entry *)
750 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
751 if (entry == NULL)
752 return entry;
753 }
754
755 /* Call the allocation method of the superclass. */
756 entry = bfd_hash_newfunc (entry, table, string);
757 if (entry != NULL)
758 memset (&((struct section_hash_entry *) entry)->section, 0,
759 sizeof (asection));
760
761 return entry;
762 }
763
764 #define section_hash_lookup(table, string, create, copy) \
765 ((struct section_hash_entry *) \
766 bfd_hash_lookup ((table), (string), (create), (copy)))
767
768 /* Create a symbol whose only job is to point to this section. This
769 is useful for things like relocs which are relative to the base
770 of a section. */
771
772 bfd_boolean
773 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
774 {
775 newsect->symbol = bfd_make_empty_symbol (abfd);
776 if (newsect->symbol == NULL)
777 return FALSE;
778
779 newsect->symbol->name = newsect->name;
780 newsect->symbol->value = 0;
781 newsect->symbol->section = newsect;
782 newsect->symbol->flags = BSF_SECTION_SYM;
783
784 newsect->symbol_ptr_ptr = &newsect->symbol;
785 return TRUE;
786 }
787
788 /* Initializes a new section. NEWSECT->NAME is already set. */
789
790 static asection *
791 bfd_section_init (bfd *abfd, asection *newsect)
792 {
793 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
794
795 newsect->id = section_id;
796 newsect->index = abfd->section_count;
797 newsect->owner = abfd;
798
799 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
800 return NULL;
801
802 section_id++;
803 abfd->section_count++;
804 bfd_section_list_append (abfd, newsect);
805 return newsect;
806 }
807
808 /*
809 DOCDD
810 INODE
811 section prototypes, , typedef asection, Sections
812 SUBSECTION
813 Section prototypes
814
815 These are the functions exported by the section handling part of BFD.
816 */
817
818 /*
819 FUNCTION
820 bfd_section_list_clear
821
822 SYNOPSIS
823 void bfd_section_list_clear (bfd *);
824
825 DESCRIPTION
826 Clears the section list, and also resets the section count and
827 hash table entries.
828 */
829
830 void
831 bfd_section_list_clear (bfd *abfd)
832 {
833 abfd->sections = NULL;
834 abfd->section_last = NULL;
835 abfd->section_count = 0;
836 memset (abfd->section_htab.table, 0,
837 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
838 }
839
840 /*
841 FUNCTION
842 bfd_get_section_by_name
843
844 SYNOPSIS
845 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
846
847 DESCRIPTION
848 Return the most recently created section attached to @var{abfd}
849 named @var{name}. Return NULL if no such section exists.
850 */
851
852 asection *
853 bfd_get_section_by_name (bfd *abfd, const char *name)
854 {
855 struct section_hash_entry *sh;
856
857 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
858 if (sh != NULL)
859 return &sh->section;
860
861 return NULL;
862 }
863
864 /*
865 FUNCTION
866 bfd_get_next_section_by_name
867
868 SYNOPSIS
869 asection *bfd_get_next_section_by_name (asection *sec);
870
871 DESCRIPTION
872 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
873 return the next most recently created section attached to the same
874 BFD with the same name. Return NULL if no such section exists.
875 */
876
877 asection *
878 bfd_get_next_section_by_name (asection *sec)
879 {
880 struct section_hash_entry *sh;
881 const char *name;
882 unsigned long hash;
883
884 sh = ((struct section_hash_entry *)
885 ((char *) sec - offsetof (struct section_hash_entry, section)));
886
887 hash = sh->root.hash;
888 name = sec->name;
889 for (sh = (struct section_hash_entry *) sh->root.next;
890 sh != NULL;
891 sh = (struct section_hash_entry *) sh->root.next)
892 if (sh->root.hash == hash
893 && strcmp (sh->root.string, name) == 0)
894 return &sh->section;
895
896 return NULL;
897 }
898
899 /*
900 FUNCTION
901 bfd_get_section_by_name_if
902
903 SYNOPSIS
904 asection *bfd_get_section_by_name_if
905 (bfd *abfd,
906 const char *name,
907 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
908 void *obj);
909
910 DESCRIPTION
911 Call the provided function @var{func} for each section
912 attached to the BFD @var{abfd} whose name matches @var{name},
913 passing @var{obj} as an argument. The function will be called
914 as if by
915
916 | func (abfd, the_section, obj);
917
918 It returns the first section for which @var{func} returns true,
919 otherwise <<NULL>>.
920
921 */
922
923 asection *
924 bfd_get_section_by_name_if (bfd *abfd, const char *name,
925 bfd_boolean (*operation) (bfd *,
926 asection *,
927 void *),
928 void *user_storage)
929 {
930 struct section_hash_entry *sh;
931 unsigned long hash;
932
933 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
934 if (sh == NULL)
935 return NULL;
936
937 hash = sh->root.hash;
938 do
939 {
940 if ((*operation) (abfd, &sh->section, user_storage))
941 return &sh->section;
942 sh = (struct section_hash_entry *) sh->root.next;
943 }
944 while (sh != NULL && sh->root.hash == hash
945 && strcmp (sh->root.string, name) == 0);
946
947 return NULL;
948 }
949
950 /*
951 FUNCTION
952 bfd_get_unique_section_name
953
954 SYNOPSIS
955 char *bfd_get_unique_section_name
956 (bfd *abfd, const char *templat, int *count);
957
958 DESCRIPTION
959 Invent a section name that is unique in @var{abfd} by tacking
960 a dot and a digit suffix onto the original @var{templat}. If
961 @var{count} is non-NULL, then it specifies the first number
962 tried as a suffix to generate a unique name. The value
963 pointed to by @var{count} will be incremented in this case.
964 */
965
966 char *
967 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
968 {
969 int num;
970 unsigned int len;
971 char *sname;
972
973 len = strlen (templat);
974 sname = (char *) bfd_malloc (len + 8);
975 if (sname == NULL)
976 return NULL;
977 memcpy (sname, templat, len);
978 num = 1;
979 if (count != NULL)
980 num = *count;
981
982 do
983 {
984 /* If we have a million sections, something is badly wrong. */
985 if (num > 999999)
986 abort ();
987 sprintf (sname + len, ".%d", num++);
988 }
989 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
990
991 if (count != NULL)
992 *count = num;
993 return sname;
994 }
995
996 /*
997 FUNCTION
998 bfd_make_section_old_way
999
1000 SYNOPSIS
1001 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1002
1003 DESCRIPTION
1004 Create a new empty section called @var{name}
1005 and attach it to the end of the chain of sections for the
1006 BFD @var{abfd}. An attempt to create a section with a name which
1007 is already in use returns its pointer without changing the
1008 section chain.
1009
1010 It has the funny name since this is the way it used to be
1011 before it was rewritten....
1012
1013 Possible errors are:
1014 o <<bfd_error_invalid_operation>> -
1015 If output has already started for this BFD.
1016 o <<bfd_error_no_memory>> -
1017 If memory allocation fails.
1018
1019 */
1020
1021 asection *
1022 bfd_make_section_old_way (bfd *abfd, const char *name)
1023 {
1024 asection *newsect;
1025
1026 if (abfd->output_has_begun)
1027 {
1028 bfd_set_error (bfd_error_invalid_operation);
1029 return NULL;
1030 }
1031
1032 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1033 newsect = bfd_abs_section_ptr;
1034 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1035 newsect = bfd_com_section_ptr;
1036 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1037 newsect = bfd_und_section_ptr;
1038 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1039 newsect = bfd_ind_section_ptr;
1040 else
1041 {
1042 struct section_hash_entry *sh;
1043
1044 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1045 if (sh == NULL)
1046 return NULL;
1047
1048 newsect = &sh->section;
1049 if (newsect->name != NULL)
1050 {
1051 /* Section already exists. */
1052 return newsect;
1053 }
1054
1055 newsect->name = name;
1056 return bfd_section_init (abfd, newsect);
1057 }
1058
1059 /* Call new_section_hook when "creating" the standard abs, com, und
1060 and ind sections to tack on format specific section data.
1061 Also, create a proper section symbol. */
1062 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1063 return NULL;
1064 return newsect;
1065 }
1066
1067 /*
1068 FUNCTION
1069 bfd_make_section_anyway_with_flags
1070
1071 SYNOPSIS
1072 asection *bfd_make_section_anyway_with_flags
1073 (bfd *abfd, const char *name, flagword flags);
1074
1075 DESCRIPTION
1076 Create a new empty section called @var{name} and attach it to the end of
1077 the chain of sections for @var{abfd}. Create a new section even if there
1078 is already a section with that name. Also set the attributes of the
1079 new section to the value @var{flags}.
1080
1081 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1082 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1083 o <<bfd_error_no_memory>> - If memory allocation fails.
1084 */
1085
1086 sec_ptr
1087 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1088 flagword flags)
1089 {
1090 struct section_hash_entry *sh;
1091 asection *newsect;
1092
1093 if (abfd->output_has_begun)
1094 {
1095 bfd_set_error (bfd_error_invalid_operation);
1096 return NULL;
1097 }
1098
1099 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1100 if (sh == NULL)
1101 return NULL;
1102
1103 newsect = &sh->section;
1104 if (newsect->name != NULL)
1105 {
1106 /* We are making a section of the same name. Put it in the
1107 section hash table. Even though we can't find it directly by a
1108 hash lookup, we'll be able to find the section by traversing
1109 sh->root.next quicker than looking at all the bfd sections. */
1110 struct section_hash_entry *new_sh;
1111 new_sh = (struct section_hash_entry *)
1112 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1113 if (new_sh == NULL)
1114 return NULL;
1115
1116 new_sh->root = sh->root;
1117 sh->root.next = &new_sh->root;
1118 newsect = &new_sh->section;
1119 }
1120
1121 newsect->flags = flags;
1122 newsect->name = name;
1123 return bfd_section_init (abfd, newsect);
1124 }
1125
1126 /*
1127 FUNCTION
1128 bfd_make_section_anyway
1129
1130 SYNOPSIS
1131 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1132
1133 DESCRIPTION
1134 Create a new empty section called @var{name} and attach it to the end of
1135 the chain of sections for @var{abfd}. Create a new section even if there
1136 is already a section with that name.
1137
1138 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1139 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1140 o <<bfd_error_no_memory>> - If memory allocation fails.
1141 */
1142
1143 sec_ptr
1144 bfd_make_section_anyway (bfd *abfd, const char *name)
1145 {
1146 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1147 }
1148
1149 /*
1150 FUNCTION
1151 bfd_make_section_with_flags
1152
1153 SYNOPSIS
1154 asection *bfd_make_section_with_flags
1155 (bfd *, const char *name, flagword flags);
1156
1157 DESCRIPTION
1158 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1159 bfd_set_error ()) without changing the section chain if there is already a
1160 section named @var{name}. Also set the attributes of the new section to
1161 the value @var{flags}. If there is an error, return <<NULL>> and set
1162 <<bfd_error>>.
1163 */
1164
1165 asection *
1166 bfd_make_section_with_flags (bfd *abfd, const char *name,
1167 flagword flags)
1168 {
1169 struct section_hash_entry *sh;
1170 asection *newsect;
1171
1172 if (abfd->output_has_begun)
1173 {
1174 bfd_set_error (bfd_error_invalid_operation);
1175 return NULL;
1176 }
1177
1178 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1179 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1180 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1181 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1182 return NULL;
1183
1184 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1185 if (sh == NULL)
1186 return NULL;
1187
1188 newsect = &sh->section;
1189 if (newsect->name != NULL)
1190 {
1191 /* Section already exists. */
1192 return NULL;
1193 }
1194
1195 newsect->name = name;
1196 newsect->flags = flags;
1197 return bfd_section_init (abfd, newsect);
1198 }
1199
1200 /*
1201 FUNCTION
1202 bfd_make_section
1203
1204 SYNOPSIS
1205 asection *bfd_make_section (bfd *, const char *name);
1206
1207 DESCRIPTION
1208 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1209 bfd_set_error ()) without changing the section chain if there is already a
1210 section named @var{name}. If there is an error, return <<NULL>> and set
1211 <<bfd_error>>.
1212 */
1213
1214 asection *
1215 bfd_make_section (bfd *abfd, const char *name)
1216 {
1217 return bfd_make_section_with_flags (abfd, name, 0);
1218 }
1219
1220 /*
1221 FUNCTION
1222 bfd_set_section_flags
1223
1224 SYNOPSIS
1225 bfd_boolean bfd_set_section_flags
1226 (bfd *abfd, asection *sec, flagword flags);
1227
1228 DESCRIPTION
1229 Set the attributes of the section @var{sec} in the BFD
1230 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1231 <<FALSE>> on error. Possible error returns are:
1232
1233 o <<bfd_error_invalid_operation>> -
1234 The section cannot have one or more of the attributes
1235 requested. For example, a .bss section in <<a.out>> may not
1236 have the <<SEC_HAS_CONTENTS>> field set.
1237
1238 */
1239
1240 bfd_boolean
1241 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1242 sec_ptr section,
1243 flagword flags)
1244 {
1245 section->flags = flags;
1246 return TRUE;
1247 }
1248
1249 /*
1250 FUNCTION
1251 bfd_rename_section
1252
1253 SYNOPSIS
1254 void bfd_rename_section
1255 (bfd *abfd, asection *sec, const char *newname);
1256
1257 DESCRIPTION
1258 Rename section @var{sec} in @var{abfd} to @var{newname}.
1259 */
1260
1261 void
1262 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1263 {
1264 struct section_hash_entry *sh;
1265
1266 sh = (struct section_hash_entry *)
1267 ((char *) sec - offsetof (struct section_hash_entry, section));
1268 sh->section.name = newname;
1269 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1270 }
1271
1272 /*
1273 FUNCTION
1274 bfd_map_over_sections
1275
1276 SYNOPSIS
1277 void bfd_map_over_sections
1278 (bfd *abfd,
1279 void (*func) (bfd *abfd, asection *sect, void *obj),
1280 void *obj);
1281
1282 DESCRIPTION
1283 Call the provided function @var{func} for each section
1284 attached to the BFD @var{abfd}, passing @var{obj} as an
1285 argument. The function will be called as if by
1286
1287 | func (abfd, the_section, obj);
1288
1289 This is the preferred method for iterating over sections; an
1290 alternative would be to use a loop:
1291
1292 | section *p;
1293 | for (p = abfd->sections; p != NULL; p = p->next)
1294 | func (abfd, p, ...)
1295
1296 */
1297
1298 void
1299 bfd_map_over_sections (bfd *abfd,
1300 void (*operation) (bfd *, asection *, void *),
1301 void *user_storage)
1302 {
1303 asection *sect;
1304 unsigned int i = 0;
1305
1306 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1307 (*operation) (abfd, sect, user_storage);
1308
1309 if (i != abfd->section_count) /* Debugging */
1310 abort ();
1311 }
1312
1313 /*
1314 FUNCTION
1315 bfd_sections_find_if
1316
1317 SYNOPSIS
1318 asection *bfd_sections_find_if
1319 (bfd *abfd,
1320 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1321 void *obj);
1322
1323 DESCRIPTION
1324 Call the provided function @var{operation} for each section
1325 attached to the BFD @var{abfd}, passing @var{obj} as an
1326 argument. The function will be called as if by
1327
1328 | operation (abfd, the_section, obj);
1329
1330 It returns the first section for which @var{operation} returns true.
1331
1332 */
1333
1334 asection *
1335 bfd_sections_find_if (bfd *abfd,
1336 bfd_boolean (*operation) (bfd *, asection *, void *),
1337 void *user_storage)
1338 {
1339 asection *sect;
1340
1341 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1342 if ((*operation) (abfd, sect, user_storage))
1343 break;
1344
1345 return sect;
1346 }
1347
1348 /*
1349 FUNCTION
1350 bfd_set_section_size
1351
1352 SYNOPSIS
1353 bfd_boolean bfd_set_section_size
1354 (bfd *abfd, asection *sec, bfd_size_type val);
1355
1356 DESCRIPTION
1357 Set @var{sec} to the size @var{val}. If the operation is
1358 ok, then <<TRUE>> is returned, else <<FALSE>>.
1359
1360 Possible error returns:
1361 o <<bfd_error_invalid_operation>> -
1362 Writing has started to the BFD, so setting the size is invalid.
1363
1364 */
1365
1366 bfd_boolean
1367 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1368 {
1369 /* Once you've started writing to any section you cannot create or change
1370 the size of any others. */
1371
1372 if (abfd->output_has_begun)
1373 {
1374 bfd_set_error (bfd_error_invalid_operation);
1375 return FALSE;
1376 }
1377
1378 ptr->size = val;
1379 return TRUE;
1380 }
1381
1382 /*
1383 FUNCTION
1384 bfd_set_section_contents
1385
1386 SYNOPSIS
1387 bfd_boolean bfd_set_section_contents
1388 (bfd *abfd, asection *section, const void *data,
1389 file_ptr offset, bfd_size_type count);
1390
1391 DESCRIPTION
1392 Sets the contents of the section @var{section} in BFD
1393 @var{abfd} to the data starting in memory at @var{data}. The
1394 data is written to the output section starting at offset
1395 @var{offset} for @var{count} octets.
1396
1397 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1398 returns are:
1399 o <<bfd_error_no_contents>> -
1400 The output section does not have the <<SEC_HAS_CONTENTS>>
1401 attribute, so nothing can be written to it.
1402 o and some more too
1403
1404 This routine is front end to the back end function
1405 <<_bfd_set_section_contents>>.
1406
1407 */
1408
1409 bfd_boolean
1410 bfd_set_section_contents (bfd *abfd,
1411 sec_ptr section,
1412 const void *location,
1413 file_ptr offset,
1414 bfd_size_type count)
1415 {
1416 bfd_size_type sz;
1417
1418 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1419 {
1420 bfd_set_error (bfd_error_no_contents);
1421 return FALSE;
1422 }
1423
1424 sz = section->size;
1425 if ((bfd_size_type) offset > sz
1426 || count > sz
1427 || offset + count > sz
1428 || count != (size_t) count)
1429 {
1430 bfd_set_error (bfd_error_bad_value);
1431 return FALSE;
1432 }
1433
1434 if (!bfd_write_p (abfd))
1435 {
1436 bfd_set_error (bfd_error_invalid_operation);
1437 return FALSE;
1438 }
1439
1440 /* Record a copy of the data in memory if desired. */
1441 if (section->contents
1442 && location != section->contents + offset)
1443 memcpy (section->contents + offset, location, (size_t) count);
1444
1445 if (BFD_SEND (abfd, _bfd_set_section_contents,
1446 (abfd, section, location, offset, count)))
1447 {
1448 abfd->output_has_begun = TRUE;
1449 return TRUE;
1450 }
1451
1452 return FALSE;
1453 }
1454
1455 /*
1456 FUNCTION
1457 bfd_get_section_contents
1458
1459 SYNOPSIS
1460 bfd_boolean bfd_get_section_contents
1461 (bfd *abfd, asection *section, void *location, file_ptr offset,
1462 bfd_size_type count);
1463
1464 DESCRIPTION
1465 Read data from @var{section} in BFD @var{abfd}
1466 into memory starting at @var{location}. The data is read at an
1467 offset of @var{offset} from the start of the input section,
1468 and is read for @var{count} bytes.
1469
1470 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1471 flag set are requested or if the section does not have the
1472 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1473 with zeroes. If no errors occur, <<TRUE>> is returned, else
1474 <<FALSE>>.
1475
1476 */
1477 bfd_boolean
1478 bfd_get_section_contents (bfd *abfd,
1479 sec_ptr section,
1480 void *location,
1481 file_ptr offset,
1482 bfd_size_type count)
1483 {
1484 bfd_size_type sz;
1485
1486 if (section->flags & SEC_CONSTRUCTOR)
1487 {
1488 memset (location, 0, (size_t) count);
1489 return TRUE;
1490 }
1491
1492 if (abfd->direction != write_direction && section->rawsize != 0)
1493 sz = section->rawsize;
1494 else
1495 sz = section->size;
1496 if ((bfd_size_type) offset > sz
1497 || count > sz
1498 || offset + count > sz
1499 || count != (size_t) count)
1500 {
1501 bfd_set_error (bfd_error_bad_value);
1502 return FALSE;
1503 }
1504
1505 if (count == 0)
1506 /* Don't bother. */
1507 return TRUE;
1508
1509 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1510 {
1511 memset (location, 0, (size_t) count);
1512 return TRUE;
1513 }
1514
1515 if ((section->flags & SEC_IN_MEMORY) != 0)
1516 {
1517 if (section->contents == NULL)
1518 {
1519 /* This can happen because of errors earlier on in the linking process.
1520 We do not want to seg-fault here, so clear the flag and return an
1521 error code. */
1522 section->flags &= ~ SEC_IN_MEMORY;
1523 bfd_set_error (bfd_error_invalid_operation);
1524 return FALSE;
1525 }
1526
1527 memcpy (location, section->contents + offset, (size_t) count);
1528 return TRUE;
1529 }
1530
1531 return BFD_SEND (abfd, _bfd_get_section_contents,
1532 (abfd, section, location, offset, count));
1533 }
1534
1535 /*
1536 FUNCTION
1537 bfd_malloc_and_get_section
1538
1539 SYNOPSIS
1540 bfd_boolean bfd_malloc_and_get_section
1541 (bfd *abfd, asection *section, bfd_byte **buf);
1542
1543 DESCRIPTION
1544 Read all data from @var{section} in BFD @var{abfd}
1545 into a buffer, *@var{buf}, malloc'd by this function.
1546 */
1547
1548 bfd_boolean
1549 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1550 {
1551 *buf = NULL;
1552 return bfd_get_full_section_contents (abfd, sec, buf);
1553 }
1554 /*
1555 FUNCTION
1556 bfd_copy_private_section_data
1557
1558 SYNOPSIS
1559 bfd_boolean bfd_copy_private_section_data
1560 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1561
1562 DESCRIPTION
1563 Copy private section information from @var{isec} in the BFD
1564 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1565 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1566 returns are:
1567
1568 o <<bfd_error_no_memory>> -
1569 Not enough memory exists to create private data for @var{osec}.
1570
1571 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1572 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1573 . (ibfd, isection, obfd, osection))
1574 */
1575
1576 /*
1577 FUNCTION
1578 bfd_generic_is_group_section
1579
1580 SYNOPSIS
1581 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1582
1583 DESCRIPTION
1584 Returns TRUE if @var{sec} is a member of a group.
1585 */
1586
1587 bfd_boolean
1588 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1589 const asection *sec ATTRIBUTE_UNUSED)
1590 {
1591 return FALSE;
1592 }
1593
1594 /*
1595 FUNCTION
1596 bfd_generic_discard_group
1597
1598 SYNOPSIS
1599 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1600
1601 DESCRIPTION
1602 Remove all members of @var{group} from the output.
1603 */
1604
1605 bfd_boolean
1606 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1607 asection *group ATTRIBUTE_UNUSED)
1608 {
1609 return TRUE;
1610 }
This page took 0.06124 seconds and 4 git commands to generate.