common/
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 /*
25 SECTION
26 Sections
27
28 The raw data contained within a BFD is maintained through the
29 section abstraction. A single BFD may have any number of
30 sections. It keeps hold of them by pointing to the first;
31 each one points to the next in the list.
32
33 Sections are supported in BFD in <<section.c>>.
34
35 @menu
36 @* Section Input::
37 @* Section Output::
38 @* typedef asection::
39 @* section prototypes::
40 @end menu
41
42 INODE
43 Section Input, Section Output, Sections, Sections
44 SUBSECTION
45 Section input
46
47 When a BFD is opened for reading, the section structures are
48 created and attached to the BFD.
49
50 Each section has a name which describes the section in the
51 outside world---for example, <<a.out>> would contain at least
52 three sections, called <<.text>>, <<.data>> and <<.bss>>.
53
54 Names need not be unique; for example a COFF file may have several
55 sections named <<.data>>.
56
57 Sometimes a BFD will contain more than the ``natural'' number of
58 sections. A back end may attach other sections containing
59 constructor data, or an application may add a section (using
60 <<bfd_make_section>>) to the sections attached to an already open
61 BFD. For example, the linker creates an extra section
62 <<COMMON>> for each input file's BFD to hold information about
63 common storage.
64
65 The raw data is not necessarily read in when
66 the section descriptor is created. Some targets may leave the
67 data in place until a <<bfd_get_section_contents>> call is
68 made. Other back ends may read in all the data at once. For
69 example, an S-record file has to be read once to determine the
70 size of the data. An IEEE-695 file doesn't contain raw data in
71 sections, but data and relocation expressions intermixed, so
72 the data area has to be parsed to get out the data and
73 relocations.
74
75 INODE
76 Section Output, typedef asection, Section Input, Sections
77
78 SUBSECTION
79 Section output
80
81 To write a new object style BFD, the various sections to be
82 written have to be created. They are attached to the BFD in
83 the same way as input sections; data is written to the
84 sections using <<bfd_set_section_contents>>.
85
86 Any program that creates or combines sections (e.g., the assembler
87 and linker) must use the <<asection>> fields <<output_section>> and
88 <<output_offset>> to indicate the file sections to which each
89 section must be written. (If the section is being created from
90 scratch, <<output_section>> should probably point to the section
91 itself and <<output_offset>> should probably be zero.)
92
93 The data to be written comes from input sections attached
94 (via <<output_section>> pointers) to
95 the output sections. The output section structure can be
96 considered a filter for the input section: the output section
97 determines the vma of the output data and the name, but the
98 input section determines the offset into the output section of
99 the data to be written.
100
101 E.g., to create a section "O", starting at 0x100, 0x123 long,
102 containing two subsections, "A" at offset 0x0 (i.e., at vma
103 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
104 structures would look like:
105
106 | section name "A"
107 | output_offset 0x00
108 | size 0x20
109 | output_section -----------> section name "O"
110 | | vma 0x100
111 | section name "B" | size 0x123
112 | output_offset 0x20 |
113 | size 0x103 |
114 | output_section --------|
115
116 SUBSECTION
117 Link orders
118
119 The data within a section is stored in a @dfn{link_order}.
120 These are much like the fixups in <<gas>>. The link_order
121 abstraction allows a section to grow and shrink within itself.
122
123 A link_order knows how big it is, and which is the next
124 link_order and where the raw data for it is; it also points to
125 a list of relocations which apply to it.
126
127 The link_order is used by the linker to perform relaxing on
128 final code. The compiler creates code which is as big as
129 necessary to make it work without relaxing, and the user can
130 select whether to relax. Sometimes relaxing takes a lot of
131 time. The linker runs around the relocations to see if any
132 are attached to data which can be shrunk, if so it does it on
133 a link_order by link_order basis.
134
135 */
136
137 #include "sysdep.h"
138 #include "bfd.h"
139 #include "libbfd.h"
140 #include "bfdlink.h"
141
142 /*
143 DOCDD
144 INODE
145 typedef asection, section prototypes, Section Output, Sections
146 SUBSECTION
147 typedef asection
148
149 Here is the section structure:
150
151 CODE_FRAGMENT
152 .
153 .typedef struct bfd_section
154 .{
155 . {* The name of the section; the name isn't a copy, the pointer is
156 . the same as that passed to bfd_make_section. *}
157 . const char *name;
158 .
159 . {* A unique sequence number. *}
160 . int id;
161 .
162 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
163 . int index;
164 .
165 . {* The next section in the list belonging to the BFD, or NULL. *}
166 . struct bfd_section *next;
167 .
168 . {* The previous section in the list belonging to the BFD, or NULL. *}
169 . struct bfd_section *prev;
170 .
171 . {* The field flags contains attributes of the section. Some
172 . flags are read in from the object file, and some are
173 . synthesized from other information. *}
174 . flagword flags;
175 .
176 .#define SEC_NO_FLAGS 0x000
177 .
178 . {* Tells the OS to allocate space for this section when loading.
179 . This is clear for a section containing debug information only. *}
180 .#define SEC_ALLOC 0x001
181 .
182 . {* Tells the OS to load the section from the file when loading.
183 . This is clear for a .bss section. *}
184 .#define SEC_LOAD 0x002
185 .
186 . {* The section contains data still to be relocated, so there is
187 . some relocation information too. *}
188 .#define SEC_RELOC 0x004
189 .
190 . {* A signal to the OS that the section contains read only data. *}
191 .#define SEC_READONLY 0x008
192 .
193 . {* The section contains code only. *}
194 .#define SEC_CODE 0x010
195 .
196 . {* The section contains data only. *}
197 .#define SEC_DATA 0x020
198 .
199 . {* The section will reside in ROM. *}
200 .#define SEC_ROM 0x040
201 .
202 . {* The section contains constructor information. This section
203 . type is used by the linker to create lists of constructors and
204 . destructors used by <<g++>>. When a back end sees a symbol
205 . which should be used in a constructor list, it creates a new
206 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
207 . the symbol to it, and builds a relocation. To build the lists
208 . of constructors, all the linker has to do is catenate all the
209 . sections called <<__CTOR_LIST__>> and relocate the data
210 . contained within - exactly the operations it would peform on
211 . standard data. *}
212 .#define SEC_CONSTRUCTOR 0x080
213 .
214 . {* The section has contents - a data section could be
215 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
216 . <<SEC_HAS_CONTENTS>> *}
217 .#define SEC_HAS_CONTENTS 0x100
218 .
219 . {* An instruction to the linker to not output the section
220 . even if it has information which would normally be written. *}
221 .#define SEC_NEVER_LOAD 0x200
222 .
223 . {* The section contains thread local data. *}
224 .#define SEC_THREAD_LOCAL 0x400
225 .
226 . {* The section has GOT references. This flag is only for the
227 . linker, and is currently only used by the elf32-hppa back end.
228 . It will be set if global offset table references were detected
229 . in this section, which indicate to the linker that the section
230 . contains PIC code, and must be handled specially when doing a
231 . static link. *}
232 .#define SEC_HAS_GOT_REF 0x800
233 .
234 . {* The section contains common symbols (symbols may be defined
235 . multiple times, the value of a symbol is the amount of
236 . space it requires, and the largest symbol value is the one
237 . used). Most targets have exactly one of these (which we
238 . translate to bfd_com_section_ptr), but ECOFF has two. *}
239 .#define SEC_IS_COMMON 0x1000
240 .
241 . {* The section contains only debugging information. For
242 . example, this is set for ELF .debug and .stab sections.
243 . strip tests this flag to see if a section can be
244 . discarded. *}
245 .#define SEC_DEBUGGING 0x2000
246 .
247 . {* The contents of this section are held in memory pointed to
248 . by the contents field. This is checked by bfd_get_section_contents,
249 . and the data is retrieved from memory if appropriate. *}
250 .#define SEC_IN_MEMORY 0x4000
251 .
252 . {* The contents of this section are to be excluded by the
253 . linker for executable and shared objects unless those
254 . objects are to be further relocated. *}
255 .#define SEC_EXCLUDE 0x8000
256 .
257 . {* The contents of this section are to be sorted based on the sum of
258 . the symbol and addend values specified by the associated relocation
259 . entries. Entries without associated relocation entries will be
260 . appended to the end of the section in an unspecified order. *}
261 .#define SEC_SORT_ENTRIES 0x10000
262 .
263 . {* When linking, duplicate sections of the same name should be
264 . discarded, rather than being combined into a single section as
265 . is usually done. This is similar to how common symbols are
266 . handled. See SEC_LINK_DUPLICATES below. *}
267 .#define SEC_LINK_ONCE 0x20000
268 .
269 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
270 . should handle duplicate sections. *}
271 .#define SEC_LINK_DUPLICATES 0xc0000
272 .
273 . {* This value for SEC_LINK_DUPLICATES means that duplicate
274 . sections with the same name should simply be discarded. *}
275 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
276 .
277 . {* This value for SEC_LINK_DUPLICATES means that the linker
278 . should warn if there are any duplicate sections, although
279 . it should still only link one copy. *}
280 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
281 .
282 . {* This value for SEC_LINK_DUPLICATES means that the linker
283 . should warn if any duplicate sections are a different size. *}
284 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
285 .
286 . {* This value for SEC_LINK_DUPLICATES means that the linker
287 . should warn if any duplicate sections contain different
288 . contents. *}
289 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
290 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
291 .
292 . {* This section was created by the linker as part of dynamic
293 . relocation or other arcane processing. It is skipped when
294 . going through the first-pass output, trusting that someone
295 . else up the line will take care of it later. *}
296 .#define SEC_LINKER_CREATED 0x100000
297 .
298 . {* This section should not be subject to garbage collection.
299 . Also set to inform the linker that this section should not be
300 . listed in the link map as discarded. *}
301 .#define SEC_KEEP 0x200000
302 .
303 . {* This section contains "short" data, and should be placed
304 . "near" the GP. *}
305 .#define SEC_SMALL_DATA 0x400000
306 .
307 . {* Attempt to merge identical entities in the section.
308 . Entity size is given in the entsize field. *}
309 .#define SEC_MERGE 0x800000
310 .
311 . {* If given with SEC_MERGE, entities to merge are zero terminated
312 . strings where entsize specifies character size instead of fixed
313 . size entries. *}
314 .#define SEC_STRINGS 0x1000000
315 .
316 . {* This section contains data about section groups. *}
317 .#define SEC_GROUP 0x2000000
318 .
319 . {* The section is a COFF shared library section. This flag is
320 . only for the linker. If this type of section appears in
321 . the input file, the linker must copy it to the output file
322 . without changing the vma or size. FIXME: Although this
323 . was originally intended to be general, it really is COFF
324 . specific (and the flag was renamed to indicate this). It
325 . might be cleaner to have some more general mechanism to
326 . allow the back end to control what the linker does with
327 . sections. *}
328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
329 .
330 . {* This section contains data which may be shared with other
331 . executables or shared objects. This is for COFF only. *}
332 .#define SEC_COFF_SHARED 0x8000000
333 .
334 . {* When a section with this flag is being linked, then if the size of
335 . the input section is less than a page, it should not cross a page
336 . boundary. If the size of the input section is one page or more,
337 . it should be aligned on a page boundary. This is for TI
338 . TMS320C54X only. *}
339 .#define SEC_TIC54X_BLOCK 0x10000000
340 .
341 . {* Conditionally link this section; do not link if there are no
342 . references found to any symbol in the section. This is for TI
343 . TMS320C54X only. *}
344 .#define SEC_TIC54X_CLINK 0x20000000
345 .
346 . {* Indicate that section has the no read flag set. This happens
347 . when memory read flag isn't set. *}
348 .#define SEC_COFF_NOREAD 0x40000000
349 .
350 . {* End of section flags. *}
351 .
352 . {* Some internal packed boolean fields. *}
353 .
354 . {* See the vma field. *}
355 . unsigned int user_set_vma : 1;
356 .
357 . {* A mark flag used by some of the linker backends. *}
358 . unsigned int linker_mark : 1;
359 .
360 . {* Another mark flag used by some of the linker backends. Set for
361 . output sections that have an input section. *}
362 . unsigned int linker_has_input : 1;
363 .
364 . {* Mark flag used by some linker backends for garbage collection. *}
365 . unsigned int gc_mark : 1;
366 .
367 . {* The following flags are used by the ELF linker. *}
368 .
369 . {* Mark sections which have been allocated to segments. *}
370 . unsigned int segment_mark : 1;
371 .
372 . {* Type of sec_info information. *}
373 . unsigned int sec_info_type:3;
374 .#define ELF_INFO_TYPE_NONE 0
375 .#define ELF_INFO_TYPE_STABS 1
376 .#define ELF_INFO_TYPE_MERGE 2
377 .#define ELF_INFO_TYPE_EH_FRAME 3
378 .#define ELF_INFO_TYPE_JUST_SYMS 4
379 .
380 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
381 . unsigned int use_rela_p:1;
382 .
383 . {* Bits used by various backends. The generic code doesn't touch
384 . these fields. *}
385 .
386 . {* Nonzero if this section has TLS related relocations. *}
387 . unsigned int has_tls_reloc:1;
388 .
389 . {* Nonzero if this section has a call to __tls_get_addr. *}
390 . unsigned int has_tls_get_addr_call:1;
391 .
392 . {* Nonzero if this section has a gp reloc. *}
393 . unsigned int has_gp_reloc:1;
394 .
395 . {* Nonzero if this section needs the relax finalize pass. *}
396 . unsigned int need_finalize_relax:1;
397 .
398 . {* Whether relocations have been processed. *}
399 . unsigned int reloc_done : 1;
400 .
401 . {* End of internal packed boolean fields. *}
402 .
403 . {* The virtual memory address of the section - where it will be
404 . at run time. The symbols are relocated against this. The
405 . user_set_vma flag is maintained by bfd; if it's not set, the
406 . backend can assign addresses (for example, in <<a.out>>, where
407 . the default address for <<.data>> is dependent on the specific
408 . target and various flags). *}
409 . bfd_vma vma;
410 .
411 . {* The load address of the section - where it would be in a
412 . rom image; really only used for writing section header
413 . information. *}
414 . bfd_vma lma;
415 .
416 . {* The size of the section in octets, as it will be output.
417 . Contains a value even if the section has no contents (e.g., the
418 . size of <<.bss>>). *}
419 . bfd_size_type size;
420 .
421 . {* For input sections, the original size on disk of the section, in
422 . octets. This field should be set for any section whose size is
423 . changed by linker relaxation. It is required for sections where
424 . the linker relaxation scheme doesn't cache altered section and
425 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
426 . targets), and thus the original size needs to be kept to read the
427 . section multiple times. For output sections, rawsize holds the
428 . section size calculated on a previous linker relaxation pass. *}
429 . bfd_size_type rawsize;
430 .
431 . {* Relaxation table. *}
432 . struct relax_table *relax;
433 .
434 . {* Count of used relaxation table entries. *}
435 . int relax_count;
436 .
437 .
438 . {* If this section is going to be output, then this value is the
439 . offset in *bytes* into the output section of the first byte in the
440 . input section (byte ==> smallest addressable unit on the
441 . target). In most cases, if this was going to start at the
442 . 100th octet (8-bit quantity) in the output section, this value
443 . would be 100. However, if the target byte size is 16 bits
444 . (bfd_octets_per_byte is "2"), this value would be 50. *}
445 . bfd_vma output_offset;
446 .
447 . {* The output section through which to map on output. *}
448 . struct bfd_section *output_section;
449 .
450 . {* The alignment requirement of the section, as an exponent of 2 -
451 . e.g., 3 aligns to 2^3 (or 8). *}
452 . unsigned int alignment_power;
453 .
454 . {* If an input section, a pointer to a vector of relocation
455 . records for the data in this section. *}
456 . struct reloc_cache_entry *relocation;
457 .
458 . {* If an output section, a pointer to a vector of pointers to
459 . relocation records for the data in this section. *}
460 . struct reloc_cache_entry **orelocation;
461 .
462 . {* The number of relocation records in one of the above. *}
463 . unsigned reloc_count;
464 .
465 . {* Information below is back end specific - and not always used
466 . or updated. *}
467 .
468 . {* File position of section data. *}
469 . file_ptr filepos;
470 .
471 . {* File position of relocation info. *}
472 . file_ptr rel_filepos;
473 .
474 . {* File position of line data. *}
475 . file_ptr line_filepos;
476 .
477 . {* Pointer to data for applications. *}
478 . void *userdata;
479 .
480 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
481 . contents. *}
482 . unsigned char *contents;
483 .
484 . {* Attached line number information. *}
485 . alent *lineno;
486 .
487 . {* Number of line number records. *}
488 . unsigned int lineno_count;
489 .
490 . {* Entity size for merging purposes. *}
491 . unsigned int entsize;
492 .
493 . {* Points to the kept section if this section is a link-once section,
494 . and is discarded. *}
495 . struct bfd_section *kept_section;
496 .
497 . {* When a section is being output, this value changes as more
498 . linenumbers are written out. *}
499 . file_ptr moving_line_filepos;
500 .
501 . {* What the section number is in the target world. *}
502 . int target_index;
503 .
504 . void *used_by_bfd;
505 .
506 . {* If this is a constructor section then here is a list of the
507 . relocations created to relocate items within it. *}
508 . struct relent_chain *constructor_chain;
509 .
510 . {* The BFD which owns the section. *}
511 . bfd *owner;
512 .
513 . {* A symbol which points at this section only. *}
514 . struct bfd_symbol *symbol;
515 . struct bfd_symbol **symbol_ptr_ptr;
516 .
517 . {* Early in the link process, map_head and map_tail are used to build
518 . a list of input sections attached to an output section. Later,
519 . output sections use these fields for a list of bfd_link_order
520 . structs. *}
521 . union {
522 . struct bfd_link_order *link_order;
523 . struct bfd_section *s;
524 . } map_head, map_tail;
525 .} asection;
526 .
527 .{* Relax table contains information about instructions which can
528 . be removed by relaxation -- replacing a long address with a
529 . short address. *}
530 .struct relax_table {
531 . {* Address where bytes may be deleted. *}
532 . bfd_vma addr;
533 .
534 . {* Number of bytes to be deleted. *}
535 . int size;
536 .};
537 .
538 .{* These sections are global, and are managed by BFD. The application
539 . and target back end are not permitted to change the values in
540 . these sections. New code should use the section_ptr macros rather
541 . than referring directly to the const sections. The const sections
542 . may eventually vanish. *}
543 .#define BFD_ABS_SECTION_NAME "*ABS*"
544 .#define BFD_UND_SECTION_NAME "*UND*"
545 .#define BFD_COM_SECTION_NAME "*COM*"
546 .#define BFD_IND_SECTION_NAME "*IND*"
547 .
548 .{* The absolute section. *}
549 .extern asection bfd_abs_section;
550 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
551 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
552 .{* Pointer to the undefined section. *}
553 .extern asection bfd_und_section;
554 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
555 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
556 .{* Pointer to the common section. *}
557 .extern asection bfd_com_section;
558 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
559 .{* Pointer to the indirect section. *}
560 .extern asection bfd_ind_section;
561 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
562 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
563 .
564 .#define bfd_is_const_section(SEC) \
565 . ( ((SEC) == bfd_abs_section_ptr) \
566 . || ((SEC) == bfd_und_section_ptr) \
567 . || ((SEC) == bfd_com_section_ptr) \
568 . || ((SEC) == bfd_ind_section_ptr))
569 .
570 .{* Macros to handle insertion and deletion of a bfd's sections. These
571 . only handle the list pointers, ie. do not adjust section_count,
572 . target_index etc. *}
573 .#define bfd_section_list_remove(ABFD, S) \
574 . do \
575 . { \
576 . asection *_s = S; \
577 . asection *_next = _s->next; \
578 . asection *_prev = _s->prev; \
579 . if (_prev) \
580 . _prev->next = _next; \
581 . else \
582 . (ABFD)->sections = _next; \
583 . if (_next) \
584 . _next->prev = _prev; \
585 . else \
586 . (ABFD)->section_last = _prev; \
587 . } \
588 . while (0)
589 .#define bfd_section_list_append(ABFD, S) \
590 . do \
591 . { \
592 . asection *_s = S; \
593 . bfd *_abfd = ABFD; \
594 . _s->next = NULL; \
595 . if (_abfd->section_last) \
596 . { \
597 . _s->prev = _abfd->section_last; \
598 . _abfd->section_last->next = _s; \
599 . } \
600 . else \
601 . { \
602 . _s->prev = NULL; \
603 . _abfd->sections = _s; \
604 . } \
605 . _abfd->section_last = _s; \
606 . } \
607 . while (0)
608 .#define bfd_section_list_prepend(ABFD, S) \
609 . do \
610 . { \
611 . asection *_s = S; \
612 . bfd *_abfd = ABFD; \
613 . _s->prev = NULL; \
614 . if (_abfd->sections) \
615 . { \
616 . _s->next = _abfd->sections; \
617 . _abfd->sections->prev = _s; \
618 . } \
619 . else \
620 . { \
621 . _s->next = NULL; \
622 . _abfd->section_last = _s; \
623 . } \
624 . _abfd->sections = _s; \
625 . } \
626 . while (0)
627 .#define bfd_section_list_insert_after(ABFD, A, S) \
628 . do \
629 . { \
630 . asection *_a = A; \
631 . asection *_s = S; \
632 . asection *_next = _a->next; \
633 . _s->next = _next; \
634 . _s->prev = _a; \
635 . _a->next = _s; \
636 . if (_next) \
637 . _next->prev = _s; \
638 . else \
639 . (ABFD)->section_last = _s; \
640 . } \
641 . while (0)
642 .#define bfd_section_list_insert_before(ABFD, B, S) \
643 . do \
644 . { \
645 . asection *_b = B; \
646 . asection *_s = S; \
647 . asection *_prev = _b->prev; \
648 . _s->prev = _prev; \
649 . _s->next = _b; \
650 . _b->prev = _s; \
651 . if (_prev) \
652 . _prev->next = _s; \
653 . else \
654 . (ABFD)->sections = _s; \
655 . } \
656 . while (0)
657 .#define bfd_section_removed_from_list(ABFD, S) \
658 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
659 .
660 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
661 . {* name, id, index, next, prev, flags, user_set_vma, *} \
662 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
663 . \
664 . {* linker_mark, linker_has_input, gc_mark, *} \
665 . 0, 0, 1, \
666 . \
667 . {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, *} \
668 . 0, 0, 0, 0, \
669 . \
670 . {* has_tls_get_addr_call, has_gp_reloc, need_finalize_relax, *} \
671 . 0, 0, 0, \
672 . \
673 . {* reloc_done, vma, lma, size, rawsize, relax, relax_count, *} \
674 . 0, 0, 0, 0, 0, 0, 0, \
675 . \
676 . {* output_offset, output_section, alignment_power, *} \
677 . 0, (struct bfd_section *) &SEC, 0, \
678 . \
679 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
680 . NULL, NULL, 0, 0, 0, \
681 . \
682 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
683 . 0, NULL, NULL, NULL, 0, \
684 . \
685 . {* entsize, kept_section, moving_line_filepos, *} \
686 . 0, NULL, 0, \
687 . \
688 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
689 . 0, NULL, NULL, NULL, \
690 . \
691 . {* symbol, symbol_ptr_ptr, *} \
692 . (struct bfd_symbol *) SYM, &SEC.symbol, \
693 . \
694 . {* map_head, map_tail *} \
695 . { NULL }, { NULL } \
696 . }
697 .
698 */
699
700 /* We use a macro to initialize the static asymbol structures because
701 traditional C does not permit us to initialize a union member while
702 gcc warns if we don't initialize it. */
703 /* the_bfd, name, value, attr, section [, udata] */
704 #ifdef __STDC__
705 #define GLOBAL_SYM_INIT(NAME, SECTION) \
706 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
707 #else
708 #define GLOBAL_SYM_INIT(NAME, SECTION) \
709 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
710 #endif
711
712 /* These symbols are global, not specific to any BFD. Therefore, anything
713 that tries to change them is broken, and should be repaired. */
714
715 static const asymbol global_syms[] =
716 {
717 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
718 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
719 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
720 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
721 };
722
723 #define STD_SECTION(SEC, FLAGS, NAME, IDX) \
724 asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], \
725 NAME, IDX)
726
727 STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0);
728 STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1);
729 STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2);
730 STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3);
731 #undef STD_SECTION
732
733 /* Initialize an entry in the section hash table. */
734
735 struct bfd_hash_entry *
736 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
737 struct bfd_hash_table *table,
738 const char *string)
739 {
740 /* Allocate the structure if it has not already been allocated by a
741 subclass. */
742 if (entry == NULL)
743 {
744 entry = (struct bfd_hash_entry *)
745 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
746 if (entry == NULL)
747 return entry;
748 }
749
750 /* Call the allocation method of the superclass. */
751 entry = bfd_hash_newfunc (entry, table, string);
752 if (entry != NULL)
753 memset (&((struct section_hash_entry *) entry)->section, 0,
754 sizeof (asection));
755
756 return entry;
757 }
758
759 #define section_hash_lookup(table, string, create, copy) \
760 ((struct section_hash_entry *) \
761 bfd_hash_lookup ((table), (string), (create), (copy)))
762
763 /* Create a symbol whose only job is to point to this section. This
764 is useful for things like relocs which are relative to the base
765 of a section. */
766
767 bfd_boolean
768 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
769 {
770 newsect->symbol = bfd_make_empty_symbol (abfd);
771 if (newsect->symbol == NULL)
772 return FALSE;
773
774 newsect->symbol->name = newsect->name;
775 newsect->symbol->value = 0;
776 newsect->symbol->section = newsect;
777 newsect->symbol->flags = BSF_SECTION_SYM;
778
779 newsect->symbol_ptr_ptr = &newsect->symbol;
780 return TRUE;
781 }
782
783 /* Initializes a new section. NEWSECT->NAME is already set. */
784
785 static asection *
786 bfd_section_init (bfd *abfd, asection *newsect)
787 {
788 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
789
790 newsect->id = section_id;
791 newsect->index = abfd->section_count;
792 newsect->owner = abfd;
793
794 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
795 return NULL;
796
797 section_id++;
798 abfd->section_count++;
799 bfd_section_list_append (abfd, newsect);
800 return newsect;
801 }
802
803 /*
804 DOCDD
805 INODE
806 section prototypes, , typedef asection, Sections
807 SUBSECTION
808 Section prototypes
809
810 These are the functions exported by the section handling part of BFD.
811 */
812
813 /*
814 FUNCTION
815 bfd_section_list_clear
816
817 SYNOPSIS
818 void bfd_section_list_clear (bfd *);
819
820 DESCRIPTION
821 Clears the section list, and also resets the section count and
822 hash table entries.
823 */
824
825 void
826 bfd_section_list_clear (bfd *abfd)
827 {
828 abfd->sections = NULL;
829 abfd->section_last = NULL;
830 abfd->section_count = 0;
831 memset (abfd->section_htab.table, 0,
832 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
833 }
834
835 /*
836 FUNCTION
837 bfd_get_section_by_name
838
839 SYNOPSIS
840 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
841
842 DESCRIPTION
843 Run through @var{abfd} and return the one of the
844 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
845 @xref{Sections}, for more information.
846
847 This should only be used in special cases; the normal way to process
848 all sections of a given name is to use <<bfd_map_over_sections>> and
849 <<strcmp>> on the name (or better yet, base it on the section flags
850 or something else) for each section.
851 */
852
853 asection *
854 bfd_get_section_by_name (bfd *abfd, const char *name)
855 {
856 struct section_hash_entry *sh;
857
858 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
859 if (sh != NULL)
860 return &sh->section;
861
862 return NULL;
863 }
864
865 /*
866 FUNCTION
867 bfd_get_section_by_name_if
868
869 SYNOPSIS
870 asection *bfd_get_section_by_name_if
871 (bfd *abfd,
872 const char *name,
873 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
874 void *obj);
875
876 DESCRIPTION
877 Call the provided function @var{func} for each section
878 attached to the BFD @var{abfd} whose name matches @var{name},
879 passing @var{obj} as an argument. The function will be called
880 as if by
881
882 | func (abfd, the_section, obj);
883
884 It returns the first section for which @var{func} returns true,
885 otherwise <<NULL>>.
886
887 */
888
889 asection *
890 bfd_get_section_by_name_if (bfd *abfd, const char *name,
891 bfd_boolean (*operation) (bfd *,
892 asection *,
893 void *),
894 void *user_storage)
895 {
896 struct section_hash_entry *sh;
897 unsigned long hash;
898
899 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
900 if (sh == NULL)
901 return NULL;
902
903 hash = sh->root.hash;
904 do
905 {
906 if ((*operation) (abfd, &sh->section, user_storage))
907 return &sh->section;
908 sh = (struct section_hash_entry *) sh->root.next;
909 }
910 while (sh != NULL && sh->root.hash == hash
911 && strcmp (sh->root.string, name) == 0);
912
913 return NULL;
914 }
915
916 /*
917 FUNCTION
918 bfd_get_unique_section_name
919
920 SYNOPSIS
921 char *bfd_get_unique_section_name
922 (bfd *abfd, const char *templat, int *count);
923
924 DESCRIPTION
925 Invent a section name that is unique in @var{abfd} by tacking
926 a dot and a digit suffix onto the original @var{templat}. If
927 @var{count} is non-NULL, then it specifies the first number
928 tried as a suffix to generate a unique name. The value
929 pointed to by @var{count} will be incremented in this case.
930 */
931
932 char *
933 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
934 {
935 int num;
936 unsigned int len;
937 char *sname;
938
939 len = strlen (templat);
940 sname = (char *) bfd_malloc (len + 8);
941 if (sname == NULL)
942 return NULL;
943 memcpy (sname, templat, len);
944 num = 1;
945 if (count != NULL)
946 num = *count;
947
948 do
949 {
950 /* If we have a million sections, something is badly wrong. */
951 if (num > 999999)
952 abort ();
953 sprintf (sname + len, ".%d", num++);
954 }
955 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
956
957 if (count != NULL)
958 *count = num;
959 return sname;
960 }
961
962 /*
963 FUNCTION
964 bfd_make_section_old_way
965
966 SYNOPSIS
967 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
968
969 DESCRIPTION
970 Create a new empty section called @var{name}
971 and attach it to the end of the chain of sections for the
972 BFD @var{abfd}. An attempt to create a section with a name which
973 is already in use returns its pointer without changing the
974 section chain.
975
976 It has the funny name since this is the way it used to be
977 before it was rewritten....
978
979 Possible errors are:
980 o <<bfd_error_invalid_operation>> -
981 If output has already started for this BFD.
982 o <<bfd_error_no_memory>> -
983 If memory allocation fails.
984
985 */
986
987 asection *
988 bfd_make_section_old_way (bfd *abfd, const char *name)
989 {
990 asection *newsect;
991
992 if (abfd->output_has_begun)
993 {
994 bfd_set_error (bfd_error_invalid_operation);
995 return NULL;
996 }
997
998 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
999 newsect = bfd_abs_section_ptr;
1000 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1001 newsect = bfd_com_section_ptr;
1002 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1003 newsect = bfd_und_section_ptr;
1004 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1005 newsect = bfd_ind_section_ptr;
1006 else
1007 {
1008 struct section_hash_entry *sh;
1009
1010 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1011 if (sh == NULL)
1012 return NULL;
1013
1014 newsect = &sh->section;
1015 if (newsect->name != NULL)
1016 {
1017 /* Section already exists. */
1018 return newsect;
1019 }
1020
1021 newsect->name = name;
1022 return bfd_section_init (abfd, newsect);
1023 }
1024
1025 /* Call new_section_hook when "creating" the standard abs, com, und
1026 and ind sections to tack on format specific section data.
1027 Also, create a proper section symbol. */
1028 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1029 return NULL;
1030 return newsect;
1031 }
1032
1033 /*
1034 FUNCTION
1035 bfd_make_section_anyway_with_flags
1036
1037 SYNOPSIS
1038 asection *bfd_make_section_anyway_with_flags
1039 (bfd *abfd, const char *name, flagword flags);
1040
1041 DESCRIPTION
1042 Create a new empty section called @var{name} and attach it to the end of
1043 the chain of sections for @var{abfd}. Create a new section even if there
1044 is already a section with that name. Also set the attributes of the
1045 new section to the value @var{flags}.
1046
1047 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1048 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1049 o <<bfd_error_no_memory>> - If memory allocation fails.
1050 */
1051
1052 sec_ptr
1053 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1054 flagword flags)
1055 {
1056 struct section_hash_entry *sh;
1057 asection *newsect;
1058
1059 if (abfd->output_has_begun)
1060 {
1061 bfd_set_error (bfd_error_invalid_operation);
1062 return NULL;
1063 }
1064
1065 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1066 if (sh == NULL)
1067 return NULL;
1068
1069 newsect = &sh->section;
1070 if (newsect->name != NULL)
1071 {
1072 /* We are making a section of the same name. Put it in the
1073 section hash table. Even though we can't find it directly by a
1074 hash lookup, we'll be able to find the section by traversing
1075 sh->root.next quicker than looking at all the bfd sections. */
1076 struct section_hash_entry *new_sh;
1077 new_sh = (struct section_hash_entry *)
1078 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1079 if (new_sh == NULL)
1080 return NULL;
1081
1082 new_sh->root = sh->root;
1083 sh->root.next = &new_sh->root;
1084 newsect = &new_sh->section;
1085 }
1086
1087 newsect->flags = flags;
1088 newsect->name = name;
1089 return bfd_section_init (abfd, newsect);
1090 }
1091
1092 /*
1093 FUNCTION
1094 bfd_make_section_anyway
1095
1096 SYNOPSIS
1097 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1098
1099 DESCRIPTION
1100 Create a new empty section called @var{name} and attach it to the end of
1101 the chain of sections for @var{abfd}. Create a new section even if there
1102 is already a section with that name.
1103
1104 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1105 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1106 o <<bfd_error_no_memory>> - If memory allocation fails.
1107 */
1108
1109 sec_ptr
1110 bfd_make_section_anyway (bfd *abfd, const char *name)
1111 {
1112 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1113 }
1114
1115 /*
1116 FUNCTION
1117 bfd_make_section_with_flags
1118
1119 SYNOPSIS
1120 asection *bfd_make_section_with_flags
1121 (bfd *, const char *name, flagword flags);
1122
1123 DESCRIPTION
1124 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1125 bfd_set_error ()) without changing the section chain if there is already a
1126 section named @var{name}. Also set the attributes of the new section to
1127 the value @var{flags}. If there is an error, return <<NULL>> and set
1128 <<bfd_error>>.
1129 */
1130
1131 asection *
1132 bfd_make_section_with_flags (bfd *abfd, const char *name,
1133 flagword flags)
1134 {
1135 struct section_hash_entry *sh;
1136 asection *newsect;
1137
1138 if (abfd->output_has_begun)
1139 {
1140 bfd_set_error (bfd_error_invalid_operation);
1141 return NULL;
1142 }
1143
1144 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1145 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1146 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1147 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1148 return NULL;
1149
1150 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1151 if (sh == NULL)
1152 return NULL;
1153
1154 newsect = &sh->section;
1155 if (newsect->name != NULL)
1156 {
1157 /* Section already exists. */
1158 return NULL;
1159 }
1160
1161 newsect->name = name;
1162 newsect->flags = flags;
1163 return bfd_section_init (abfd, newsect);
1164 }
1165
1166 /*
1167 FUNCTION
1168 bfd_make_section
1169
1170 SYNOPSIS
1171 asection *bfd_make_section (bfd *, const char *name);
1172
1173 DESCRIPTION
1174 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1175 bfd_set_error ()) without changing the section chain if there is already a
1176 section named @var{name}. If there is an error, return <<NULL>> and set
1177 <<bfd_error>>.
1178 */
1179
1180 asection *
1181 bfd_make_section (bfd *abfd, const char *name)
1182 {
1183 return bfd_make_section_with_flags (abfd, name, 0);
1184 }
1185
1186 /*
1187 FUNCTION
1188 bfd_set_section_flags
1189
1190 SYNOPSIS
1191 bfd_boolean bfd_set_section_flags
1192 (bfd *abfd, asection *sec, flagword flags);
1193
1194 DESCRIPTION
1195 Set the attributes of the section @var{sec} in the BFD
1196 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1197 <<FALSE>> on error. Possible error returns are:
1198
1199 o <<bfd_error_invalid_operation>> -
1200 The section cannot have one or more of the attributes
1201 requested. For example, a .bss section in <<a.out>> may not
1202 have the <<SEC_HAS_CONTENTS>> field set.
1203
1204 */
1205
1206 bfd_boolean
1207 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1208 sec_ptr section,
1209 flagword flags)
1210 {
1211 section->flags = flags;
1212 return TRUE;
1213 }
1214
1215 /*
1216 FUNCTION
1217 bfd_map_over_sections
1218
1219 SYNOPSIS
1220 void bfd_map_over_sections
1221 (bfd *abfd,
1222 void (*func) (bfd *abfd, asection *sect, void *obj),
1223 void *obj);
1224
1225 DESCRIPTION
1226 Call the provided function @var{func} for each section
1227 attached to the BFD @var{abfd}, passing @var{obj} as an
1228 argument. The function will be called as if by
1229
1230 | func (abfd, the_section, obj);
1231
1232 This is the preferred method for iterating over sections; an
1233 alternative would be to use a loop:
1234
1235 | section *p;
1236 | for (p = abfd->sections; p != NULL; p = p->next)
1237 | func (abfd, p, ...)
1238
1239 */
1240
1241 void
1242 bfd_map_over_sections (bfd *abfd,
1243 void (*operation) (bfd *, asection *, void *),
1244 void *user_storage)
1245 {
1246 asection *sect;
1247 unsigned int i = 0;
1248
1249 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1250 (*operation) (abfd, sect, user_storage);
1251
1252 if (i != abfd->section_count) /* Debugging */
1253 abort ();
1254 }
1255
1256 /*
1257 FUNCTION
1258 bfd_sections_find_if
1259
1260 SYNOPSIS
1261 asection *bfd_sections_find_if
1262 (bfd *abfd,
1263 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1264 void *obj);
1265
1266 DESCRIPTION
1267 Call the provided function @var{operation} for each section
1268 attached to the BFD @var{abfd}, passing @var{obj} as an
1269 argument. The function will be called as if by
1270
1271 | operation (abfd, the_section, obj);
1272
1273 It returns the first section for which @var{operation} returns true.
1274
1275 */
1276
1277 asection *
1278 bfd_sections_find_if (bfd *abfd,
1279 bfd_boolean (*operation) (bfd *, asection *, void *),
1280 void *user_storage)
1281 {
1282 asection *sect;
1283
1284 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1285 if ((*operation) (abfd, sect, user_storage))
1286 break;
1287
1288 return sect;
1289 }
1290
1291 /*
1292 FUNCTION
1293 bfd_set_section_size
1294
1295 SYNOPSIS
1296 bfd_boolean bfd_set_section_size
1297 (bfd *abfd, asection *sec, bfd_size_type val);
1298
1299 DESCRIPTION
1300 Set @var{sec} to the size @var{val}. If the operation is
1301 ok, then <<TRUE>> is returned, else <<FALSE>>.
1302
1303 Possible error returns:
1304 o <<bfd_error_invalid_operation>> -
1305 Writing has started to the BFD, so setting the size is invalid.
1306
1307 */
1308
1309 bfd_boolean
1310 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1311 {
1312 /* Once you've started writing to any section you cannot create or change
1313 the size of any others. */
1314
1315 if (abfd->output_has_begun)
1316 {
1317 bfd_set_error (bfd_error_invalid_operation);
1318 return FALSE;
1319 }
1320
1321 ptr->size = val;
1322 return TRUE;
1323 }
1324
1325 /*
1326 FUNCTION
1327 bfd_set_section_contents
1328
1329 SYNOPSIS
1330 bfd_boolean bfd_set_section_contents
1331 (bfd *abfd, asection *section, const void *data,
1332 file_ptr offset, bfd_size_type count);
1333
1334 DESCRIPTION
1335 Sets the contents of the section @var{section} in BFD
1336 @var{abfd} to the data starting in memory at @var{data}. The
1337 data is written to the output section starting at offset
1338 @var{offset} for @var{count} octets.
1339
1340 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1341 returns are:
1342 o <<bfd_error_no_contents>> -
1343 The output section does not have the <<SEC_HAS_CONTENTS>>
1344 attribute, so nothing can be written to it.
1345 o and some more too
1346
1347 This routine is front end to the back end function
1348 <<_bfd_set_section_contents>>.
1349
1350 */
1351
1352 bfd_boolean
1353 bfd_set_section_contents (bfd *abfd,
1354 sec_ptr section,
1355 const void *location,
1356 file_ptr offset,
1357 bfd_size_type count)
1358 {
1359 bfd_size_type sz;
1360
1361 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1362 {
1363 bfd_set_error (bfd_error_no_contents);
1364 return FALSE;
1365 }
1366
1367 sz = section->size;
1368 if ((bfd_size_type) offset > sz
1369 || count > sz
1370 || offset + count > sz
1371 || count != (size_t) count)
1372 {
1373 bfd_set_error (bfd_error_bad_value);
1374 return FALSE;
1375 }
1376
1377 if (!bfd_write_p (abfd))
1378 {
1379 bfd_set_error (bfd_error_invalid_operation);
1380 return FALSE;
1381 }
1382
1383 /* Record a copy of the data in memory if desired. */
1384 if (section->contents
1385 && location != section->contents + offset)
1386 memcpy (section->contents + offset, location, (size_t) count);
1387
1388 if (BFD_SEND (abfd, _bfd_set_section_contents,
1389 (abfd, section, location, offset, count)))
1390 {
1391 abfd->output_has_begun = TRUE;
1392 return TRUE;
1393 }
1394
1395 return FALSE;
1396 }
1397
1398 /*
1399 FUNCTION
1400 bfd_get_section_contents
1401
1402 SYNOPSIS
1403 bfd_boolean bfd_get_section_contents
1404 (bfd *abfd, asection *section, void *location, file_ptr offset,
1405 bfd_size_type count);
1406
1407 DESCRIPTION
1408 Read data from @var{section} in BFD @var{abfd}
1409 into memory starting at @var{location}. The data is read at an
1410 offset of @var{offset} from the start of the input section,
1411 and is read for @var{count} bytes.
1412
1413 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1414 flag set are requested or if the section does not have the
1415 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1416 with zeroes. If no errors occur, <<TRUE>> is returned, else
1417 <<FALSE>>.
1418
1419 */
1420 bfd_boolean
1421 bfd_get_section_contents (bfd *abfd,
1422 sec_ptr section,
1423 void *location,
1424 file_ptr offset,
1425 bfd_size_type count)
1426 {
1427 bfd_size_type sz;
1428
1429 if (section->flags & SEC_CONSTRUCTOR)
1430 {
1431 memset (location, 0, (size_t) count);
1432 return TRUE;
1433 }
1434
1435 sz = section->rawsize ? section->rawsize : section->size;
1436 if ((bfd_size_type) offset > sz
1437 || count > sz
1438 || offset + count > sz
1439 || count != (size_t) count)
1440 {
1441 bfd_set_error (bfd_error_bad_value);
1442 return FALSE;
1443 }
1444
1445 if (count == 0)
1446 /* Don't bother. */
1447 return TRUE;
1448
1449 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1450 {
1451 memset (location, 0, (size_t) count);
1452 return TRUE;
1453 }
1454
1455 if ((section->flags & SEC_IN_MEMORY) != 0)
1456 {
1457 if (section->contents == NULL)
1458 {
1459 /* This can happen because of errors earlier on in the linking process.
1460 We do not want to seg-fault here, so clear the flag and return an
1461 error code. */
1462 section->flags &= ~ SEC_IN_MEMORY;
1463 bfd_set_error (bfd_error_invalid_operation);
1464 return FALSE;
1465 }
1466
1467 memcpy (location, section->contents + offset, (size_t) count);
1468 return TRUE;
1469 }
1470
1471 return BFD_SEND (abfd, _bfd_get_section_contents,
1472 (abfd, section, location, offset, count));
1473 }
1474
1475 /*
1476 FUNCTION
1477 bfd_malloc_and_get_section
1478
1479 SYNOPSIS
1480 bfd_boolean bfd_malloc_and_get_section
1481 (bfd *abfd, asection *section, bfd_byte **buf);
1482
1483 DESCRIPTION
1484 Read all data from @var{section} in BFD @var{abfd}
1485 into a buffer, *@var{buf}, malloc'd by this function.
1486 */
1487
1488 bfd_boolean
1489 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1490 {
1491 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1492 bfd_byte *p = NULL;
1493
1494 *buf = p;
1495 if (sz == 0)
1496 return TRUE;
1497
1498 p = (bfd_byte *)
1499 bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1500 if (p == NULL)
1501 return FALSE;
1502 *buf = p;
1503
1504 return bfd_get_section_contents (abfd, sec, p, 0, sz);
1505 }
1506 /*
1507 FUNCTION
1508 bfd_copy_private_section_data
1509
1510 SYNOPSIS
1511 bfd_boolean bfd_copy_private_section_data
1512 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1513
1514 DESCRIPTION
1515 Copy private section information from @var{isec} in the BFD
1516 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1517 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1518 returns are:
1519
1520 o <<bfd_error_no_memory>> -
1521 Not enough memory exists to create private data for @var{osec}.
1522
1523 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1524 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1525 . (ibfd, isection, obfd, osection))
1526 */
1527
1528 /*
1529 FUNCTION
1530 bfd_generic_is_group_section
1531
1532 SYNOPSIS
1533 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1534
1535 DESCRIPTION
1536 Returns TRUE if @var{sec} is a member of a group.
1537 */
1538
1539 bfd_boolean
1540 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1541 const asection *sec ATTRIBUTE_UNUSED)
1542 {
1543 return FALSE;
1544 }
1545
1546 /*
1547 FUNCTION
1548 bfd_generic_discard_group
1549
1550 SYNOPSIS
1551 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1552
1553 DESCRIPTION
1554 Remove all members of @var{group} from the output.
1555 */
1556
1557 bfd_boolean
1558 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1559 asection *group ATTRIBUTE_UNUSED)
1560 {
1561 return TRUE;
1562 }
This page took 0.061008 seconds and 4 git commands to generate.