Handle R_X86_64_64 properly for x32
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012
5 Free Software Foundation, Inc.
6 Written by Cygnus Support.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 MA 02110-1301, USA. */
24
25 /*
26 SECTION
27 Sections
28
29 The raw data contained within a BFD is maintained through the
30 section abstraction. A single BFD may have any number of
31 sections. It keeps hold of them by pointing to the first;
32 each one points to the next in the list.
33
34 Sections are supported in BFD in <<section.c>>.
35
36 @menu
37 @* Section Input::
38 @* Section Output::
39 @* typedef asection::
40 @* section prototypes::
41 @end menu
42
43 INODE
44 Section Input, Section Output, Sections, Sections
45 SUBSECTION
46 Section input
47
48 When a BFD is opened for reading, the section structures are
49 created and attached to the BFD.
50
51 Each section has a name which describes the section in the
52 outside world---for example, <<a.out>> would contain at least
53 three sections, called <<.text>>, <<.data>> and <<.bss>>.
54
55 Names need not be unique; for example a COFF file may have several
56 sections named <<.data>>.
57
58 Sometimes a BFD will contain more than the ``natural'' number of
59 sections. A back end may attach other sections containing
60 constructor data, or an application may add a section (using
61 <<bfd_make_section>>) to the sections attached to an already open
62 BFD. For example, the linker creates an extra section
63 <<COMMON>> for each input file's BFD to hold information about
64 common storage.
65
66 The raw data is not necessarily read in when
67 the section descriptor is created. Some targets may leave the
68 data in place until a <<bfd_get_section_contents>> call is
69 made. Other back ends may read in all the data at once. For
70 example, an S-record file has to be read once to determine the
71 size of the data. An IEEE-695 file doesn't contain raw data in
72 sections, but data and relocation expressions intermixed, so
73 the data area has to be parsed to get out the data and
74 relocations.
75
76 INODE
77 Section Output, typedef asection, Section Input, Sections
78
79 SUBSECTION
80 Section output
81
82 To write a new object style BFD, the various sections to be
83 written have to be created. They are attached to the BFD in
84 the same way as input sections; data is written to the
85 sections using <<bfd_set_section_contents>>.
86
87 Any program that creates or combines sections (e.g., the assembler
88 and linker) must use the <<asection>> fields <<output_section>> and
89 <<output_offset>> to indicate the file sections to which each
90 section must be written. (If the section is being created from
91 scratch, <<output_section>> should probably point to the section
92 itself and <<output_offset>> should probably be zero.)
93
94 The data to be written comes from input sections attached
95 (via <<output_section>> pointers) to
96 the output sections. The output section structure can be
97 considered a filter for the input section: the output section
98 determines the vma of the output data and the name, but the
99 input section determines the offset into the output section of
100 the data to be written.
101
102 E.g., to create a section "O", starting at 0x100, 0x123 long,
103 containing two subsections, "A" at offset 0x0 (i.e., at vma
104 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
105 structures would look like:
106
107 | section name "A"
108 | output_offset 0x00
109 | size 0x20
110 | output_section -----------> section name "O"
111 | | vma 0x100
112 | section name "B" | size 0x123
113 | output_offset 0x20 |
114 | size 0x103 |
115 | output_section --------|
116
117 SUBSECTION
118 Link orders
119
120 The data within a section is stored in a @dfn{link_order}.
121 These are much like the fixups in <<gas>>. The link_order
122 abstraction allows a section to grow and shrink within itself.
123
124 A link_order knows how big it is, and which is the next
125 link_order and where the raw data for it is; it also points to
126 a list of relocations which apply to it.
127
128 The link_order is used by the linker to perform relaxing on
129 final code. The compiler creates code which is as big as
130 necessary to make it work without relaxing, and the user can
131 select whether to relax. Sometimes relaxing takes a lot of
132 time. The linker runs around the relocations to see if any
133 are attached to data which can be shrunk, if so it does it on
134 a link_order by link_order basis.
135
136 */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libbfd.h"
141 #include "bfdlink.h"
142
143 /*
144 DOCDD
145 INODE
146 typedef asection, section prototypes, Section Output, Sections
147 SUBSECTION
148 typedef asection
149
150 Here is the section structure:
151
152 CODE_FRAGMENT
153 .
154 .typedef struct bfd_section
155 .{
156 . {* The name of the section; the name isn't a copy, the pointer is
157 . the same as that passed to bfd_make_section. *}
158 . const char *name;
159 .
160 . {* A unique sequence number. *}
161 . int id;
162 .
163 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
164 . int index;
165 .
166 . {* The next section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *next;
168 .
169 . {* The previous section in the list belonging to the BFD, or NULL. *}
170 . struct bfd_section *prev;
171 .
172 . {* The field flags contains attributes of the section. Some
173 . flags are read in from the object file, and some are
174 . synthesized from other information. *}
175 . flagword flags;
176 .
177 .#define SEC_NO_FLAGS 0x000
178 .
179 . {* Tells the OS to allocate space for this section when loading.
180 . This is clear for a section containing debug information only. *}
181 .#define SEC_ALLOC 0x001
182 .
183 . {* Tells the OS to load the section from the file when loading.
184 . This is clear for a .bss section. *}
185 .#define SEC_LOAD 0x002
186 .
187 . {* The section contains data still to be relocated, so there is
188 . some relocation information too. *}
189 .#define SEC_RELOC 0x004
190 .
191 . {* A signal to the OS that the section contains read only data. *}
192 .#define SEC_READONLY 0x008
193 .
194 . {* The section contains code only. *}
195 .#define SEC_CODE 0x010
196 .
197 . {* The section contains data only. *}
198 .#define SEC_DATA 0x020
199 .
200 . {* The section will reside in ROM. *}
201 .#define SEC_ROM 0x040
202 .
203 . {* The section contains constructor information. This section
204 . type is used by the linker to create lists of constructors and
205 . destructors used by <<g++>>. When a back end sees a symbol
206 . which should be used in a constructor list, it creates a new
207 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
208 . the symbol to it, and builds a relocation. To build the lists
209 . of constructors, all the linker has to do is catenate all the
210 . sections called <<__CTOR_LIST__>> and relocate the data
211 . contained within - exactly the operations it would peform on
212 . standard data. *}
213 .#define SEC_CONSTRUCTOR 0x080
214 .
215 . {* The section has contents - a data section could be
216 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
217 . <<SEC_HAS_CONTENTS>> *}
218 .#define SEC_HAS_CONTENTS 0x100
219 .
220 . {* An instruction to the linker to not output the section
221 . even if it has information which would normally be written. *}
222 .#define SEC_NEVER_LOAD 0x200
223 .
224 . {* The section contains thread local data. *}
225 .#define SEC_THREAD_LOCAL 0x400
226 .
227 . {* The section has GOT references. This flag is only for the
228 . linker, and is currently only used by the elf32-hppa back end.
229 . It will be set if global offset table references were detected
230 . in this section, which indicate to the linker that the section
231 . contains PIC code, and must be handled specially when doing a
232 . static link. *}
233 .#define SEC_HAS_GOT_REF 0x800
234 .
235 . {* The section contains common symbols (symbols may be defined
236 . multiple times, the value of a symbol is the amount of
237 . space it requires, and the largest symbol value is the one
238 . used). Most targets have exactly one of these (which we
239 . translate to bfd_com_section_ptr), but ECOFF has two. *}
240 .#define SEC_IS_COMMON 0x1000
241 .
242 . {* The section contains only debugging information. For
243 . example, this is set for ELF .debug and .stab sections.
244 . strip tests this flag to see if a section can be
245 . discarded. *}
246 .#define SEC_DEBUGGING 0x2000
247 .
248 . {* The contents of this section are held in memory pointed to
249 . by the contents field. This is checked by bfd_get_section_contents,
250 . and the data is retrieved from memory if appropriate. *}
251 .#define SEC_IN_MEMORY 0x4000
252 .
253 . {* The contents of this section are to be excluded by the
254 . linker for executable and shared objects unless those
255 . objects are to be further relocated. *}
256 .#define SEC_EXCLUDE 0x8000
257 .
258 . {* The contents of this section are to be sorted based on the sum of
259 . the symbol and addend values specified by the associated relocation
260 . entries. Entries without associated relocation entries will be
261 . appended to the end of the section in an unspecified order. *}
262 .#define SEC_SORT_ENTRIES 0x10000
263 .
264 . {* When linking, duplicate sections of the same name should be
265 . discarded, rather than being combined into a single section as
266 . is usually done. This is similar to how common symbols are
267 . handled. See SEC_LINK_DUPLICATES below. *}
268 .#define SEC_LINK_ONCE 0x20000
269 .
270 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
271 . should handle duplicate sections. *}
272 .#define SEC_LINK_DUPLICATES 0xc0000
273 .
274 . {* This value for SEC_LINK_DUPLICATES means that duplicate
275 . sections with the same name should simply be discarded. *}
276 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
277 .
278 . {* This value for SEC_LINK_DUPLICATES means that the linker
279 . should warn if there are any duplicate sections, although
280 . it should still only link one copy. *}
281 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
282 .
283 . {* This value for SEC_LINK_DUPLICATES means that the linker
284 . should warn if any duplicate sections are a different size. *}
285 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
286 .
287 . {* This value for SEC_LINK_DUPLICATES means that the linker
288 . should warn if any duplicate sections contain different
289 . contents. *}
290 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
291 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
292 .
293 . {* This section was created by the linker as part of dynamic
294 . relocation or other arcane processing. It is skipped when
295 . going through the first-pass output, trusting that someone
296 . else up the line will take care of it later. *}
297 .#define SEC_LINKER_CREATED 0x100000
298 .
299 . {* This section should not be subject to garbage collection.
300 . Also set to inform the linker that this section should not be
301 . listed in the link map as discarded. *}
302 .#define SEC_KEEP 0x200000
303 .
304 . {* This section contains "short" data, and should be placed
305 . "near" the GP. *}
306 .#define SEC_SMALL_DATA 0x400000
307 .
308 . {* Attempt to merge identical entities in the section.
309 . Entity size is given in the entsize field. *}
310 .#define SEC_MERGE 0x800000
311 .
312 . {* If given with SEC_MERGE, entities to merge are zero terminated
313 . strings where entsize specifies character size instead of fixed
314 . size entries. *}
315 .#define SEC_STRINGS 0x1000000
316 .
317 . {* This section contains data about section groups. *}
318 .#define SEC_GROUP 0x2000000
319 .
320 . {* The section is a COFF shared library section. This flag is
321 . only for the linker. If this type of section appears in
322 . the input file, the linker must copy it to the output file
323 . without changing the vma or size. FIXME: Although this
324 . was originally intended to be general, it really is COFF
325 . specific (and the flag was renamed to indicate this). It
326 . might be cleaner to have some more general mechanism to
327 . allow the back end to control what the linker does with
328 . sections. *}
329 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
330 .
331 . {* This input section should be copied to output in reverse order
332 . as an array of pointers. This is for ELF linker internal use
333 . only. *}
334 .#define SEC_ELF_REVERSE_COPY 0x4000000
335 .
336 . {* This section contains data which may be shared with other
337 . executables or shared objects. This is for COFF only. *}
338 .#define SEC_COFF_SHARED 0x8000000
339 .
340 . {* When a section with this flag is being linked, then if the size of
341 . the input section is less than a page, it should not cross a page
342 . boundary. If the size of the input section is one page or more,
343 . it should be aligned on a page boundary. This is for TI
344 . TMS320C54X only. *}
345 .#define SEC_TIC54X_BLOCK 0x10000000
346 .
347 . {* Conditionally link this section; do not link if there are no
348 . references found to any symbol in the section. This is for TI
349 . TMS320C54X only. *}
350 .#define SEC_TIC54X_CLINK 0x20000000
351 .
352 . {* Indicate that section has the no read flag set. This happens
353 . when memory read flag isn't set. *}
354 .#define SEC_COFF_NOREAD 0x40000000
355 .
356 . {* End of section flags. *}
357 .
358 . {* Some internal packed boolean fields. *}
359 .
360 . {* See the vma field. *}
361 . unsigned int user_set_vma : 1;
362 .
363 . {* A mark flag used by some of the linker backends. *}
364 . unsigned int linker_mark : 1;
365 .
366 . {* Another mark flag used by some of the linker backends. Set for
367 . output sections that have an input section. *}
368 . unsigned int linker_has_input : 1;
369 .
370 . {* Mark flag used by some linker backends for garbage collection. *}
371 . unsigned int gc_mark : 1;
372 .
373 . {* Section compression status. *}
374 . unsigned int compress_status : 2;
375 .#define COMPRESS_SECTION_NONE 0
376 .#define COMPRESS_SECTION_DONE 1
377 .#define DECOMPRESS_SECTION_SIZED 2
378 .
379 . {* The following flags are used by the ELF linker. *}
380 .
381 . {* Mark sections which have been allocated to segments. *}
382 . unsigned int segment_mark : 1;
383 .
384 . {* Type of sec_info information. *}
385 . unsigned int sec_info_type:3;
386 .#define SEC_INFO_TYPE_NONE 0
387 .#define SEC_INFO_TYPE_STABS 1
388 .#define SEC_INFO_TYPE_MERGE 2
389 .#define SEC_INFO_TYPE_EH_FRAME 3
390 .#define SEC_INFO_TYPE_JUST_SYMS 4
391 .
392 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
393 . unsigned int use_rela_p:1;
394 .
395 . {* Bits used by various backends. The generic code doesn't touch
396 . these fields. *}
397 .
398 . unsigned int sec_flg0:1;
399 . unsigned int sec_flg1:1;
400 . unsigned int sec_flg2:1;
401 . unsigned int sec_flg3:1;
402 . unsigned int sec_flg4:1;
403 . unsigned int sec_flg5:1;
404 .
405 . {* End of internal packed boolean fields. *}
406 .
407 . {* The virtual memory address of the section - where it will be
408 . at run time. The symbols are relocated against this. The
409 . user_set_vma flag is maintained by bfd; if it's not set, the
410 . backend can assign addresses (for example, in <<a.out>>, where
411 . the default address for <<.data>> is dependent on the specific
412 . target and various flags). *}
413 . bfd_vma vma;
414 .
415 . {* The load address of the section - where it would be in a
416 . rom image; really only used for writing section header
417 . information. *}
418 . bfd_vma lma;
419 .
420 . {* The size of the section in octets, as it will be output.
421 . Contains a value even if the section has no contents (e.g., the
422 . size of <<.bss>>). *}
423 . bfd_size_type size;
424 .
425 . {* For input sections, the original size on disk of the section, in
426 . octets. This field should be set for any section whose size is
427 . changed by linker relaxation. It is required for sections where
428 . the linker relaxation scheme doesn't cache altered section and
429 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
430 . targets), and thus the original size needs to be kept to read the
431 . section multiple times. For output sections, rawsize holds the
432 . section size calculated on a previous linker relaxation pass. *}
433 . bfd_size_type rawsize;
434 .
435 . {* The compressed size of the section in octets. *}
436 . bfd_size_type compressed_size;
437 .
438 . {* Relaxation table. *}
439 . struct relax_table *relax;
440 .
441 . {* Count of used relaxation table entries. *}
442 . int relax_count;
443 .
444 .
445 . {* If this section is going to be output, then this value is the
446 . offset in *bytes* into the output section of the first byte in the
447 . input section (byte ==> smallest addressable unit on the
448 . target). In most cases, if this was going to start at the
449 . 100th octet (8-bit quantity) in the output section, this value
450 . would be 100. However, if the target byte size is 16 bits
451 . (bfd_octets_per_byte is "2"), this value would be 50. *}
452 . bfd_vma output_offset;
453 .
454 . {* The output section through which to map on output. *}
455 . struct bfd_section *output_section;
456 .
457 . {* The alignment requirement of the section, as an exponent of 2 -
458 . e.g., 3 aligns to 2^3 (or 8). *}
459 . unsigned int alignment_power;
460 .
461 . {* If an input section, a pointer to a vector of relocation
462 . records for the data in this section. *}
463 . struct reloc_cache_entry *relocation;
464 .
465 . {* If an output section, a pointer to a vector of pointers to
466 . relocation records for the data in this section. *}
467 . struct reloc_cache_entry **orelocation;
468 .
469 . {* The number of relocation records in one of the above. *}
470 . unsigned reloc_count;
471 .
472 . {* Information below is back end specific - and not always used
473 . or updated. *}
474 .
475 . {* File position of section data. *}
476 . file_ptr filepos;
477 .
478 . {* File position of relocation info. *}
479 . file_ptr rel_filepos;
480 .
481 . {* File position of line data. *}
482 . file_ptr line_filepos;
483 .
484 . {* Pointer to data for applications. *}
485 . void *userdata;
486 .
487 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
488 . contents. *}
489 . unsigned char *contents;
490 .
491 . {* Attached line number information. *}
492 . alent *lineno;
493 .
494 . {* Number of line number records. *}
495 . unsigned int lineno_count;
496 .
497 . {* Entity size for merging purposes. *}
498 . unsigned int entsize;
499 .
500 . {* Points to the kept section if this section is a link-once section,
501 . and is discarded. *}
502 . struct bfd_section *kept_section;
503 .
504 . {* When a section is being output, this value changes as more
505 . linenumbers are written out. *}
506 . file_ptr moving_line_filepos;
507 .
508 . {* What the section number is in the target world. *}
509 . int target_index;
510 .
511 . void *used_by_bfd;
512 .
513 . {* If this is a constructor section then here is a list of the
514 . relocations created to relocate items within it. *}
515 . struct relent_chain *constructor_chain;
516 .
517 . {* The BFD which owns the section. *}
518 . bfd *owner;
519 .
520 . {* INPUT_SECTION_FLAGS if specified in the linker script. *}
521 . struct flag_info *section_flag_info;
522 .
523 . {* A symbol which points at this section only. *}
524 . struct bfd_symbol *symbol;
525 . struct bfd_symbol **symbol_ptr_ptr;
526 .
527 . {* Early in the link process, map_head and map_tail are used to build
528 . a list of input sections attached to an output section. Later,
529 . output sections use these fields for a list of bfd_link_order
530 . structs. *}
531 . union {
532 . struct bfd_link_order *link_order;
533 . struct bfd_section *s;
534 . } map_head, map_tail;
535 .} asection;
536 .
537 .{* Relax table contains information about instructions which can
538 . be removed by relaxation -- replacing a long address with a
539 . short address. *}
540 .struct relax_table {
541 . {* Address where bytes may be deleted. *}
542 . bfd_vma addr;
543 .
544 . {* Number of bytes to be deleted. *}
545 . int size;
546 .};
547 .
548 .{* These sections are global, and are managed by BFD. The application
549 . and target back end are not permitted to change the values in
550 . these sections. *}
551 .extern asection std_section[4];
552 .
553 .#define BFD_ABS_SECTION_NAME "*ABS*"
554 .#define BFD_UND_SECTION_NAME "*UND*"
555 .#define BFD_COM_SECTION_NAME "*COM*"
556 .#define BFD_IND_SECTION_NAME "*IND*"
557 .
558 .{* Pointer to the common section. *}
559 .#define bfd_com_section_ptr (&std_section[0])
560 .{* Pointer to the undefined section. *}
561 .#define bfd_und_section_ptr (&std_section[1])
562 .{* Pointer to the absolute section. *}
563 .#define bfd_abs_section_ptr (&std_section[2])
564 .{* Pointer to the indirect section. *}
565 .#define bfd_ind_section_ptr (&std_section[3])
566 .
567 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
568 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
569 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
570 .
571 .#define bfd_is_const_section(SEC) \
572 . ( ((SEC) == bfd_abs_section_ptr) \
573 . || ((SEC) == bfd_und_section_ptr) \
574 . || ((SEC) == bfd_com_section_ptr) \
575 . || ((SEC) == bfd_ind_section_ptr))
576 .
577 .{* Macros to handle insertion and deletion of a bfd's sections. These
578 . only handle the list pointers, ie. do not adjust section_count,
579 . target_index etc. *}
580 .#define bfd_section_list_remove(ABFD, S) \
581 . do \
582 . { \
583 . asection *_s = S; \
584 . asection *_next = _s->next; \
585 . asection *_prev = _s->prev; \
586 . if (_prev) \
587 . _prev->next = _next; \
588 . else \
589 . (ABFD)->sections = _next; \
590 . if (_next) \
591 . _next->prev = _prev; \
592 . else \
593 . (ABFD)->section_last = _prev; \
594 . } \
595 . while (0)
596 .#define bfd_section_list_append(ABFD, S) \
597 . do \
598 . { \
599 . asection *_s = S; \
600 . bfd *_abfd = ABFD; \
601 . _s->next = NULL; \
602 . if (_abfd->section_last) \
603 . { \
604 . _s->prev = _abfd->section_last; \
605 . _abfd->section_last->next = _s; \
606 . } \
607 . else \
608 . { \
609 . _s->prev = NULL; \
610 . _abfd->sections = _s; \
611 . } \
612 . _abfd->section_last = _s; \
613 . } \
614 . while (0)
615 .#define bfd_section_list_prepend(ABFD, S) \
616 . do \
617 . { \
618 . asection *_s = S; \
619 . bfd *_abfd = ABFD; \
620 . _s->prev = NULL; \
621 . if (_abfd->sections) \
622 . { \
623 . _s->next = _abfd->sections; \
624 . _abfd->sections->prev = _s; \
625 . } \
626 . else \
627 . { \
628 . _s->next = NULL; \
629 . _abfd->section_last = _s; \
630 . } \
631 . _abfd->sections = _s; \
632 . } \
633 . while (0)
634 .#define bfd_section_list_insert_after(ABFD, A, S) \
635 . do \
636 . { \
637 . asection *_a = A; \
638 . asection *_s = S; \
639 . asection *_next = _a->next; \
640 . _s->next = _next; \
641 . _s->prev = _a; \
642 . _a->next = _s; \
643 . if (_next) \
644 . _next->prev = _s; \
645 . else \
646 . (ABFD)->section_last = _s; \
647 . } \
648 . while (0)
649 .#define bfd_section_list_insert_before(ABFD, B, S) \
650 . do \
651 . { \
652 . asection *_b = B; \
653 . asection *_s = S; \
654 . asection *_prev = _b->prev; \
655 . _s->prev = _prev; \
656 . _s->next = _b; \
657 . _b->prev = _s; \
658 . if (_prev) \
659 . _prev->next = _s; \
660 . else \
661 . (ABFD)->sections = _s; \
662 . } \
663 . while (0)
664 .#define bfd_section_removed_from_list(ABFD, S) \
665 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
666 .
667 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
668 . {* name, id, index, next, prev, flags, user_set_vma, *} \
669 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
670 . \
671 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
672 . 0, 0, 1, 0, \
673 . \
674 . {* segment_mark, sec_info_type, use_rela_p, *} \
675 . 0, 0, 0, \
676 . \
677 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
678 . 0, 0, 0, 0, 0, 0, \
679 . \
680 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
681 . 0, 0, 0, 0, 0, 0, 0, \
682 . \
683 . {* output_offset, output_section, alignment_power, *} \
684 . 0, &SEC, 0, \
685 . \
686 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
687 . NULL, NULL, 0, 0, 0, \
688 . \
689 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
690 . 0, NULL, NULL, NULL, 0, \
691 . \
692 . {* entsize, kept_section, moving_line_filepos, *} \
693 . 0, NULL, 0, \
694 . \
695 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
696 . 0, NULL, NULL, NULL, \
697 . \
698 . {* flag_info, *} \
699 . NULL, \
700 . \
701 . {* symbol, symbol_ptr_ptr, *} \
702 . (struct bfd_symbol *) SYM, &SEC.symbol, \
703 . \
704 . {* map_head, map_tail *} \
705 . { NULL }, { NULL } \
706 . }
707 .
708 */
709
710 /* We use a macro to initialize the static asymbol structures because
711 traditional C does not permit us to initialize a union member while
712 gcc warns if we don't initialize it. */
713 /* the_bfd, name, value, attr, section [, udata] */
714 #ifdef __STDC__
715 #define GLOBAL_SYM_INIT(NAME, SECTION) \
716 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
717 #else
718 #define GLOBAL_SYM_INIT(NAME, SECTION) \
719 { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
720 #endif
721
722 /* These symbols are global, not specific to any BFD. Therefore, anything
723 that tries to change them is broken, and should be repaired. */
724
725 static const asymbol global_syms[] =
726 {
727 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
728 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
729 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
730 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
731 };
732
733 #define STD_SECTION(NAME, IDX, FLAGS) \
734 BFD_FAKE_SECTION(std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
735
736 asection std_section[] = {
737 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
738 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
739 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
740 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
741 };
742 #undef STD_SECTION
743
744 /* Initialize an entry in the section hash table. */
745
746 struct bfd_hash_entry *
747 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
748 struct bfd_hash_table *table,
749 const char *string)
750 {
751 /* Allocate the structure if it has not already been allocated by a
752 subclass. */
753 if (entry == NULL)
754 {
755 entry = (struct bfd_hash_entry *)
756 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
757 if (entry == NULL)
758 return entry;
759 }
760
761 /* Call the allocation method of the superclass. */
762 entry = bfd_hash_newfunc (entry, table, string);
763 if (entry != NULL)
764 memset (&((struct section_hash_entry *) entry)->section, 0,
765 sizeof (asection));
766
767 return entry;
768 }
769
770 #define section_hash_lookup(table, string, create, copy) \
771 ((struct section_hash_entry *) \
772 bfd_hash_lookup ((table), (string), (create), (copy)))
773
774 /* Create a symbol whose only job is to point to this section. This
775 is useful for things like relocs which are relative to the base
776 of a section. */
777
778 bfd_boolean
779 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
780 {
781 newsect->symbol = bfd_make_empty_symbol (abfd);
782 if (newsect->symbol == NULL)
783 return FALSE;
784
785 newsect->symbol->name = newsect->name;
786 newsect->symbol->value = 0;
787 newsect->symbol->section = newsect;
788 newsect->symbol->flags = BSF_SECTION_SYM;
789
790 newsect->symbol_ptr_ptr = &newsect->symbol;
791 return TRUE;
792 }
793
794 /* Initializes a new section. NEWSECT->NAME is already set. */
795
796 static asection *
797 bfd_section_init (bfd *abfd, asection *newsect)
798 {
799 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
800
801 newsect->id = section_id;
802 newsect->index = abfd->section_count;
803 newsect->owner = abfd;
804
805 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
806 return NULL;
807
808 section_id++;
809 abfd->section_count++;
810 bfd_section_list_append (abfd, newsect);
811 return newsect;
812 }
813
814 /*
815 DOCDD
816 INODE
817 section prototypes, , typedef asection, Sections
818 SUBSECTION
819 Section prototypes
820
821 These are the functions exported by the section handling part of BFD.
822 */
823
824 /*
825 FUNCTION
826 bfd_section_list_clear
827
828 SYNOPSIS
829 void bfd_section_list_clear (bfd *);
830
831 DESCRIPTION
832 Clears the section list, and also resets the section count and
833 hash table entries.
834 */
835
836 void
837 bfd_section_list_clear (bfd *abfd)
838 {
839 abfd->sections = NULL;
840 abfd->section_last = NULL;
841 abfd->section_count = 0;
842 memset (abfd->section_htab.table, 0,
843 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
844 }
845
846 /*
847 FUNCTION
848 bfd_get_section_by_name
849
850 SYNOPSIS
851 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
852
853 DESCRIPTION
854 Run through @var{abfd} and return the one of the
855 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
856 @xref{Sections}, for more information.
857
858 This should only be used in special cases; the normal way to process
859 all sections of a given name is to use <<bfd_map_over_sections>> and
860 <<strcmp>> on the name (or better yet, base it on the section flags
861 or something else) for each section.
862 */
863
864 asection *
865 bfd_get_section_by_name (bfd *abfd, const char *name)
866 {
867 struct section_hash_entry *sh;
868
869 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
870 if (sh != NULL)
871 return &sh->section;
872
873 return NULL;
874 }
875
876 /*
877 FUNCTION
878 bfd_get_section_by_name_if
879
880 SYNOPSIS
881 asection *bfd_get_section_by_name_if
882 (bfd *abfd,
883 const char *name,
884 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
885 void *obj);
886
887 DESCRIPTION
888 Call the provided function @var{func} for each section
889 attached to the BFD @var{abfd} whose name matches @var{name},
890 passing @var{obj} as an argument. The function will be called
891 as if by
892
893 | func (abfd, the_section, obj);
894
895 It returns the first section for which @var{func} returns true,
896 otherwise <<NULL>>.
897
898 */
899
900 asection *
901 bfd_get_section_by_name_if (bfd *abfd, const char *name,
902 bfd_boolean (*operation) (bfd *,
903 asection *,
904 void *),
905 void *user_storage)
906 {
907 struct section_hash_entry *sh;
908 unsigned long hash;
909
910 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
911 if (sh == NULL)
912 return NULL;
913
914 hash = sh->root.hash;
915 do
916 {
917 if ((*operation) (abfd, &sh->section, user_storage))
918 return &sh->section;
919 sh = (struct section_hash_entry *) sh->root.next;
920 }
921 while (sh != NULL && sh->root.hash == hash
922 && strcmp (sh->root.string, name) == 0);
923
924 return NULL;
925 }
926
927 /*
928 FUNCTION
929 bfd_get_unique_section_name
930
931 SYNOPSIS
932 char *bfd_get_unique_section_name
933 (bfd *abfd, const char *templat, int *count);
934
935 DESCRIPTION
936 Invent a section name that is unique in @var{abfd} by tacking
937 a dot and a digit suffix onto the original @var{templat}. If
938 @var{count} is non-NULL, then it specifies the first number
939 tried as a suffix to generate a unique name. The value
940 pointed to by @var{count} will be incremented in this case.
941 */
942
943 char *
944 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
945 {
946 int num;
947 unsigned int len;
948 char *sname;
949
950 len = strlen (templat);
951 sname = (char *) bfd_malloc (len + 8);
952 if (sname == NULL)
953 return NULL;
954 memcpy (sname, templat, len);
955 num = 1;
956 if (count != NULL)
957 num = *count;
958
959 do
960 {
961 /* If we have a million sections, something is badly wrong. */
962 if (num > 999999)
963 abort ();
964 sprintf (sname + len, ".%d", num++);
965 }
966 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
967
968 if (count != NULL)
969 *count = num;
970 return sname;
971 }
972
973 /*
974 FUNCTION
975 bfd_make_section_old_way
976
977 SYNOPSIS
978 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
979
980 DESCRIPTION
981 Create a new empty section called @var{name}
982 and attach it to the end of the chain of sections for the
983 BFD @var{abfd}. An attempt to create a section with a name which
984 is already in use returns its pointer without changing the
985 section chain.
986
987 It has the funny name since this is the way it used to be
988 before it was rewritten....
989
990 Possible errors are:
991 o <<bfd_error_invalid_operation>> -
992 If output has already started for this BFD.
993 o <<bfd_error_no_memory>> -
994 If memory allocation fails.
995
996 */
997
998 asection *
999 bfd_make_section_old_way (bfd *abfd, const char *name)
1000 {
1001 asection *newsect;
1002
1003 if (abfd->output_has_begun)
1004 {
1005 bfd_set_error (bfd_error_invalid_operation);
1006 return NULL;
1007 }
1008
1009 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1010 newsect = bfd_abs_section_ptr;
1011 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1012 newsect = bfd_com_section_ptr;
1013 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1014 newsect = bfd_und_section_ptr;
1015 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1016 newsect = bfd_ind_section_ptr;
1017 else
1018 {
1019 struct section_hash_entry *sh;
1020
1021 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1022 if (sh == NULL)
1023 return NULL;
1024
1025 newsect = &sh->section;
1026 if (newsect->name != NULL)
1027 {
1028 /* Section already exists. */
1029 return newsect;
1030 }
1031
1032 newsect->name = name;
1033 return bfd_section_init (abfd, newsect);
1034 }
1035
1036 /* Call new_section_hook when "creating" the standard abs, com, und
1037 and ind sections to tack on format specific section data.
1038 Also, create a proper section symbol. */
1039 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1040 return NULL;
1041 return newsect;
1042 }
1043
1044 /*
1045 FUNCTION
1046 bfd_make_section_anyway_with_flags
1047
1048 SYNOPSIS
1049 asection *bfd_make_section_anyway_with_flags
1050 (bfd *abfd, const char *name, flagword flags);
1051
1052 DESCRIPTION
1053 Create a new empty section called @var{name} and attach it to the end of
1054 the chain of sections for @var{abfd}. Create a new section even if there
1055 is already a section with that name. Also set the attributes of the
1056 new section to the value @var{flags}.
1057
1058 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1059 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1060 o <<bfd_error_no_memory>> - If memory allocation fails.
1061 */
1062
1063 sec_ptr
1064 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1065 flagword flags)
1066 {
1067 struct section_hash_entry *sh;
1068 asection *newsect;
1069
1070 if (abfd->output_has_begun)
1071 {
1072 bfd_set_error (bfd_error_invalid_operation);
1073 return NULL;
1074 }
1075
1076 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1077 if (sh == NULL)
1078 return NULL;
1079
1080 newsect = &sh->section;
1081 if (newsect->name != NULL)
1082 {
1083 /* We are making a section of the same name. Put it in the
1084 section hash table. Even though we can't find it directly by a
1085 hash lookup, we'll be able to find the section by traversing
1086 sh->root.next quicker than looking at all the bfd sections. */
1087 struct section_hash_entry *new_sh;
1088 new_sh = (struct section_hash_entry *)
1089 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1090 if (new_sh == NULL)
1091 return NULL;
1092
1093 new_sh->root = sh->root;
1094 sh->root.next = &new_sh->root;
1095 newsect = &new_sh->section;
1096 }
1097
1098 newsect->flags = flags;
1099 newsect->name = name;
1100 return bfd_section_init (abfd, newsect);
1101 }
1102
1103 /*
1104 FUNCTION
1105 bfd_make_section_anyway
1106
1107 SYNOPSIS
1108 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1109
1110 DESCRIPTION
1111 Create a new empty section called @var{name} and attach it to the end of
1112 the chain of sections for @var{abfd}. Create a new section even if there
1113 is already a section with that name.
1114
1115 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1116 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1117 o <<bfd_error_no_memory>> - If memory allocation fails.
1118 */
1119
1120 sec_ptr
1121 bfd_make_section_anyway (bfd *abfd, const char *name)
1122 {
1123 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1124 }
1125
1126 /*
1127 FUNCTION
1128 bfd_make_section_with_flags
1129
1130 SYNOPSIS
1131 asection *bfd_make_section_with_flags
1132 (bfd *, const char *name, flagword flags);
1133
1134 DESCRIPTION
1135 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1136 bfd_set_error ()) without changing the section chain if there is already a
1137 section named @var{name}. Also set the attributes of the new section to
1138 the value @var{flags}. If there is an error, return <<NULL>> and set
1139 <<bfd_error>>.
1140 */
1141
1142 asection *
1143 bfd_make_section_with_flags (bfd *abfd, const char *name,
1144 flagword flags)
1145 {
1146 struct section_hash_entry *sh;
1147 asection *newsect;
1148
1149 if (abfd->output_has_begun)
1150 {
1151 bfd_set_error (bfd_error_invalid_operation);
1152 return NULL;
1153 }
1154
1155 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1156 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1157 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1158 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1159 return NULL;
1160
1161 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1162 if (sh == NULL)
1163 return NULL;
1164
1165 newsect = &sh->section;
1166 if (newsect->name != NULL)
1167 {
1168 /* Section already exists. */
1169 return NULL;
1170 }
1171
1172 newsect->name = name;
1173 newsect->flags = flags;
1174 return bfd_section_init (abfd, newsect);
1175 }
1176
1177 /*
1178 FUNCTION
1179 bfd_make_section
1180
1181 SYNOPSIS
1182 asection *bfd_make_section (bfd *, const char *name);
1183
1184 DESCRIPTION
1185 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1186 bfd_set_error ()) without changing the section chain if there is already a
1187 section named @var{name}. If there is an error, return <<NULL>> and set
1188 <<bfd_error>>.
1189 */
1190
1191 asection *
1192 bfd_make_section (bfd *abfd, const char *name)
1193 {
1194 return bfd_make_section_with_flags (abfd, name, 0);
1195 }
1196
1197 /*
1198 FUNCTION
1199 bfd_set_section_flags
1200
1201 SYNOPSIS
1202 bfd_boolean bfd_set_section_flags
1203 (bfd *abfd, asection *sec, flagword flags);
1204
1205 DESCRIPTION
1206 Set the attributes of the section @var{sec} in the BFD
1207 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1208 <<FALSE>> on error. Possible error returns are:
1209
1210 o <<bfd_error_invalid_operation>> -
1211 The section cannot have one or more of the attributes
1212 requested. For example, a .bss section in <<a.out>> may not
1213 have the <<SEC_HAS_CONTENTS>> field set.
1214
1215 */
1216
1217 bfd_boolean
1218 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1219 sec_ptr section,
1220 flagword flags)
1221 {
1222 section->flags = flags;
1223 return TRUE;
1224 }
1225
1226 /*
1227 FUNCTION
1228 bfd_rename_section
1229
1230 SYNOPSIS
1231 void bfd_rename_section
1232 (bfd *abfd, asection *sec, const char *newname);
1233
1234 DESCRIPTION
1235 Rename section @var{sec} in @var{abfd} to @var{newname}.
1236 */
1237
1238 void
1239 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1240 {
1241 struct section_hash_entry *sh;
1242
1243 sh = (struct section_hash_entry *)
1244 ((char *) sec - offsetof (struct section_hash_entry, section));
1245 sh->section.name = newname;
1246 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1247 }
1248
1249 /*
1250 FUNCTION
1251 bfd_map_over_sections
1252
1253 SYNOPSIS
1254 void bfd_map_over_sections
1255 (bfd *abfd,
1256 void (*func) (bfd *abfd, asection *sect, void *obj),
1257 void *obj);
1258
1259 DESCRIPTION
1260 Call the provided function @var{func} for each section
1261 attached to the BFD @var{abfd}, passing @var{obj} as an
1262 argument. The function will be called as if by
1263
1264 | func (abfd, the_section, obj);
1265
1266 This is the preferred method for iterating over sections; an
1267 alternative would be to use a loop:
1268
1269 | section *p;
1270 | for (p = abfd->sections; p != NULL; p = p->next)
1271 | func (abfd, p, ...)
1272
1273 */
1274
1275 void
1276 bfd_map_over_sections (bfd *abfd,
1277 void (*operation) (bfd *, asection *, void *),
1278 void *user_storage)
1279 {
1280 asection *sect;
1281 unsigned int i = 0;
1282
1283 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1284 (*operation) (abfd, sect, user_storage);
1285
1286 if (i != abfd->section_count) /* Debugging */
1287 abort ();
1288 }
1289
1290 /*
1291 FUNCTION
1292 bfd_sections_find_if
1293
1294 SYNOPSIS
1295 asection *bfd_sections_find_if
1296 (bfd *abfd,
1297 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1298 void *obj);
1299
1300 DESCRIPTION
1301 Call the provided function @var{operation} for each section
1302 attached to the BFD @var{abfd}, passing @var{obj} as an
1303 argument. The function will be called as if by
1304
1305 | operation (abfd, the_section, obj);
1306
1307 It returns the first section for which @var{operation} returns true.
1308
1309 */
1310
1311 asection *
1312 bfd_sections_find_if (bfd *abfd,
1313 bfd_boolean (*operation) (bfd *, asection *, void *),
1314 void *user_storage)
1315 {
1316 asection *sect;
1317
1318 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1319 if ((*operation) (abfd, sect, user_storage))
1320 break;
1321
1322 return sect;
1323 }
1324
1325 /*
1326 FUNCTION
1327 bfd_set_section_size
1328
1329 SYNOPSIS
1330 bfd_boolean bfd_set_section_size
1331 (bfd *abfd, asection *sec, bfd_size_type val);
1332
1333 DESCRIPTION
1334 Set @var{sec} to the size @var{val}. If the operation is
1335 ok, then <<TRUE>> is returned, else <<FALSE>>.
1336
1337 Possible error returns:
1338 o <<bfd_error_invalid_operation>> -
1339 Writing has started to the BFD, so setting the size is invalid.
1340
1341 */
1342
1343 bfd_boolean
1344 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1345 {
1346 /* Once you've started writing to any section you cannot create or change
1347 the size of any others. */
1348
1349 if (abfd->output_has_begun)
1350 {
1351 bfd_set_error (bfd_error_invalid_operation);
1352 return FALSE;
1353 }
1354
1355 ptr->size = val;
1356 return TRUE;
1357 }
1358
1359 /*
1360 FUNCTION
1361 bfd_set_section_contents
1362
1363 SYNOPSIS
1364 bfd_boolean bfd_set_section_contents
1365 (bfd *abfd, asection *section, const void *data,
1366 file_ptr offset, bfd_size_type count);
1367
1368 DESCRIPTION
1369 Sets the contents of the section @var{section} in BFD
1370 @var{abfd} to the data starting in memory at @var{data}. The
1371 data is written to the output section starting at offset
1372 @var{offset} for @var{count} octets.
1373
1374 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1375 returns are:
1376 o <<bfd_error_no_contents>> -
1377 The output section does not have the <<SEC_HAS_CONTENTS>>
1378 attribute, so nothing can be written to it.
1379 o and some more too
1380
1381 This routine is front end to the back end function
1382 <<_bfd_set_section_contents>>.
1383
1384 */
1385
1386 bfd_boolean
1387 bfd_set_section_contents (bfd *abfd,
1388 sec_ptr section,
1389 const void *location,
1390 file_ptr offset,
1391 bfd_size_type count)
1392 {
1393 bfd_size_type sz;
1394
1395 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1396 {
1397 bfd_set_error (bfd_error_no_contents);
1398 return FALSE;
1399 }
1400
1401 sz = section->size;
1402 if ((bfd_size_type) offset > sz
1403 || count > sz
1404 || offset + count > sz
1405 || count != (size_t) count)
1406 {
1407 bfd_set_error (bfd_error_bad_value);
1408 return FALSE;
1409 }
1410
1411 if (!bfd_write_p (abfd))
1412 {
1413 bfd_set_error (bfd_error_invalid_operation);
1414 return FALSE;
1415 }
1416
1417 /* Record a copy of the data in memory if desired. */
1418 if (section->contents
1419 && location != section->contents + offset)
1420 memcpy (section->contents + offset, location, (size_t) count);
1421
1422 if (BFD_SEND (abfd, _bfd_set_section_contents,
1423 (abfd, section, location, offset, count)))
1424 {
1425 abfd->output_has_begun = TRUE;
1426 return TRUE;
1427 }
1428
1429 return FALSE;
1430 }
1431
1432 /*
1433 FUNCTION
1434 bfd_get_section_contents
1435
1436 SYNOPSIS
1437 bfd_boolean bfd_get_section_contents
1438 (bfd *abfd, asection *section, void *location, file_ptr offset,
1439 bfd_size_type count);
1440
1441 DESCRIPTION
1442 Read data from @var{section} in BFD @var{abfd}
1443 into memory starting at @var{location}. The data is read at an
1444 offset of @var{offset} from the start of the input section,
1445 and is read for @var{count} bytes.
1446
1447 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1448 flag set are requested or if the section does not have the
1449 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1450 with zeroes. If no errors occur, <<TRUE>> is returned, else
1451 <<FALSE>>.
1452
1453 */
1454 bfd_boolean
1455 bfd_get_section_contents (bfd *abfd,
1456 sec_ptr section,
1457 void *location,
1458 file_ptr offset,
1459 bfd_size_type count)
1460 {
1461 bfd_size_type sz;
1462
1463 if (section->flags & SEC_CONSTRUCTOR)
1464 {
1465 memset (location, 0, (size_t) count);
1466 return TRUE;
1467 }
1468
1469 if (abfd->direction != write_direction && section->rawsize != 0)
1470 sz = section->rawsize;
1471 else
1472 sz = section->size;
1473 if ((bfd_size_type) offset > sz
1474 || count > sz
1475 || offset + count > sz
1476 || count != (size_t) count)
1477 {
1478 bfd_set_error (bfd_error_bad_value);
1479 return FALSE;
1480 }
1481
1482 if (count == 0)
1483 /* Don't bother. */
1484 return TRUE;
1485
1486 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1487 {
1488 memset (location, 0, (size_t) count);
1489 return TRUE;
1490 }
1491
1492 if ((section->flags & SEC_IN_MEMORY) != 0)
1493 {
1494 if (section->contents == NULL)
1495 {
1496 /* This can happen because of errors earlier on in the linking process.
1497 We do not want to seg-fault here, so clear the flag and return an
1498 error code. */
1499 section->flags &= ~ SEC_IN_MEMORY;
1500 bfd_set_error (bfd_error_invalid_operation);
1501 return FALSE;
1502 }
1503
1504 memcpy (location, section->contents + offset, (size_t) count);
1505 return TRUE;
1506 }
1507
1508 return BFD_SEND (abfd, _bfd_get_section_contents,
1509 (abfd, section, location, offset, count));
1510 }
1511
1512 /*
1513 FUNCTION
1514 bfd_malloc_and_get_section
1515
1516 SYNOPSIS
1517 bfd_boolean bfd_malloc_and_get_section
1518 (bfd *abfd, asection *section, bfd_byte **buf);
1519
1520 DESCRIPTION
1521 Read all data from @var{section} in BFD @var{abfd}
1522 into a buffer, *@var{buf}, malloc'd by this function.
1523 */
1524
1525 bfd_boolean
1526 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1527 {
1528 *buf = NULL;
1529 return bfd_get_full_section_contents (abfd, sec, buf);
1530 }
1531 /*
1532 FUNCTION
1533 bfd_copy_private_section_data
1534
1535 SYNOPSIS
1536 bfd_boolean bfd_copy_private_section_data
1537 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1538
1539 DESCRIPTION
1540 Copy private section information from @var{isec} in the BFD
1541 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1542 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1543 returns are:
1544
1545 o <<bfd_error_no_memory>> -
1546 Not enough memory exists to create private data for @var{osec}.
1547
1548 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1549 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1550 . (ibfd, isection, obfd, osection))
1551 */
1552
1553 /*
1554 FUNCTION
1555 bfd_generic_is_group_section
1556
1557 SYNOPSIS
1558 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1559
1560 DESCRIPTION
1561 Returns TRUE if @var{sec} is a member of a group.
1562 */
1563
1564 bfd_boolean
1565 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1566 const asection *sec ATTRIBUTE_UNUSED)
1567 {
1568 return FALSE;
1569 }
1570
1571 /*
1572 FUNCTION
1573 bfd_generic_discard_group
1574
1575 SYNOPSIS
1576 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1577
1578 DESCRIPTION
1579 Remove all members of @var{group} from the output.
1580 */
1581
1582 bfd_boolean
1583 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1584 asection *group ATTRIBUTE_UNUSED)
1585 {
1586 return TRUE;
1587 }
This page took 0.06366 seconds and 4 git commands to generate.