0c63652772a4fa8d73d9b0cf26017a23384242dd
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67
68 /* HIUX in it's infinite stupidity changed the names for several "well
69 known" constants. Work around such braindamage. Try the HPUX version
70 first, then the HIUX version, and finally provide a default. */
71 #ifdef HPUX_AUX_ID
72 #define EXEC_AUX_ID HPUX_AUX_ID
73 #endif
74
75 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
76 #define EXEC_AUX_ID HIUX_AUX_ID
77 #endif
78
79 #ifndef EXEC_AUX_ID
80 #define EXEC_AUX_ID 0
81 #endif
82
83 /* Size (in chars) of the temporary buffers used during fixup and string
84 table writes. */
85
86 #define SOM_TMP_BUFSIZE 8192
87
88 /* Size of the hash table in archives. */
89 #define SOM_LST_HASH_SIZE 31
90
91 /* Max number of SOMs to be found in an archive. */
92 #define SOM_LST_MODULE_LIMIT 1024
93
94 /* Generic alignment macro. */
95 #define SOM_ALIGN(val, alignment) \
96 (((val) + (alignment) - 1) & ~((alignment) - 1))
97
98 /* SOM allows any one of the four previous relocations to be reused
99 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
100 relocations are always a single byte, using a R_PREV_FIXUP instead
101 of some multi-byte relocation makes object files smaller.
102
103 Note one side effect of using a R_PREV_FIXUP is the relocation that
104 is being repeated moves to the front of the queue. */
105 struct reloc_queue
106 {
107 unsigned char *reloc;
108 unsigned int size;
109 } reloc_queue[4];
110
111 /* This fully describes the symbol types which may be attached to
112 an EXPORT or IMPORT directive. Only SOM uses this formation
113 (ELF has no need for it). */
114 typedef enum
115 {
116 SYMBOL_TYPE_UNKNOWN,
117 SYMBOL_TYPE_ABSOLUTE,
118 SYMBOL_TYPE_CODE,
119 SYMBOL_TYPE_DATA,
120 SYMBOL_TYPE_ENTRY,
121 SYMBOL_TYPE_MILLICODE,
122 SYMBOL_TYPE_PLABEL,
123 SYMBOL_TYPE_PRI_PROG,
124 SYMBOL_TYPE_SEC_PROG,
125 } pa_symbol_type;
126
127 struct section_to_type
128 {
129 char *section;
130 char type;
131 };
132
133 /* Assorted symbol information that needs to be derived from the BFD symbol
134 and/or the BFD backend private symbol data. */
135 struct som_misc_symbol_info
136 {
137 unsigned int symbol_type;
138 unsigned int symbol_scope;
139 unsigned int arg_reloc;
140 unsigned int symbol_info;
141 unsigned int symbol_value;
142 };
143
144 /* Forward declarations */
145
146 static boolean som_mkobject PARAMS ((bfd *));
147 static const bfd_target * som_object_setup PARAMS ((bfd *,
148 struct header *,
149 struct som_exec_auxhdr *));
150 static boolean setup_sections PARAMS ((bfd *, struct header *));
151 static const bfd_target * som_object_p PARAMS ((bfd *));
152 static boolean som_write_object_contents PARAMS ((bfd *));
153 static boolean som_slurp_string_table PARAMS ((bfd *));
154 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
155 static long som_get_symtab_upper_bound PARAMS ((bfd *));
156 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
157 arelent **, asymbol **));
158 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
159 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
160 arelent *, asection *,
161 asymbol **, boolean));
162 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
163 asymbol **, boolean));
164 static long som_get_symtab PARAMS ((bfd *, asymbol **));
165 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
166 static void som_print_symbol PARAMS ((bfd *, PTR,
167 asymbol *, bfd_print_symbol_type));
168 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
169 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
170 bfd *, asection *));
171 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
172 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
173 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
174 file_ptr, bfd_size_type));
175 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
176 file_ptr, bfd_size_type));
177 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
178 unsigned long));
179 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
180 asymbol **, bfd_vma,
181 CONST char **,
182 CONST char **,
183 unsigned int *));
184 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
185 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
186 struct symbol_dictionary_record *));
187 static int log2 PARAMS ((unsigned int));
188 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
189 asymbol *, PTR,
190 asection *, bfd *,
191 char **));
192 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
193 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
194 struct reloc_queue *));
195 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
196 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
197 struct reloc_queue *));
198 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
199 unsigned int,
200 struct reloc_queue *));
201
202 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
203 unsigned char *, unsigned int *,
204 struct reloc_queue *));
205 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
206 unsigned int *,
207 struct reloc_queue *));
208 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
209 unsigned int *,
210 arelent *, int,
211 struct reloc_queue *));
212 static unsigned long som_count_spaces PARAMS ((bfd *));
213 static unsigned long som_count_subspaces PARAMS ((bfd *));
214 static int compare_syms PARAMS ((const void *, const void *));
215 static unsigned long som_compute_checksum PARAMS ((bfd *));
216 static boolean som_prep_headers PARAMS ((bfd *));
217 static int som_sizeof_headers PARAMS ((bfd *, boolean));
218 static boolean som_write_headers PARAMS ((bfd *));
219 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
220 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
221 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
222 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
223 unsigned int *));
224 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
225 asymbol **, unsigned int,
226 unsigned *));
227 static boolean som_begin_writing PARAMS ((bfd *));
228 static const reloc_howto_type * som_bfd_reloc_type_lookup
229 PARAMS ((bfd *, bfd_reloc_code_real_type));
230 static char som_section_type PARAMS ((const char *));
231 static int som_decode_symclass PARAMS ((asymbol *));
232 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
233 symindex *));
234
235 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
236 carsym **syms));
237 static boolean som_slurp_armap PARAMS ((bfd *));
238 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
239 unsigned int, int));
240 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
241 struct som_misc_symbol_info *));
242 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
243 unsigned int *));
244 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
245 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
246 unsigned int,
247 struct lst_header));
248 static CONST char *normalize PARAMS ((CONST char *file));
249 static boolean som_is_space PARAMS ((asection *));
250 static boolean som_is_subspace PARAMS ((asection *));
251 static boolean som_is_container PARAMS ((asection *, asection *));
252 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
253
254 /* Map SOM section names to POSIX/BSD single-character symbol types.
255
256 This table includes all the standard subspaces as defined in the
257 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
258 some reason was left out, and sections specific to embedded stabs. */
259
260 static const struct section_to_type stt[] = {
261 {"$TEXT$", 't'},
262 {"$SHLIB_INFO$", 't'},
263 {"$MILLICODE$", 't'},
264 {"$LIT$", 't'},
265 {"$CODE$", 't'},
266 {"$UNWIND_START$", 't'},
267 {"$UNWIND$", 't'},
268 {"$PRIVATE$", 'd'},
269 {"$PLT$", 'd'},
270 {"$SHLIB_DATA$", 'd'},
271 {"$DATA$", 'd'},
272 {"$SHORTDATA$", 'g'},
273 {"$DLT$", 'd'},
274 {"$GLOBAL$", 'g'},
275 {"$SHORTBSS$", 's'},
276 {"$BSS$", 'b'},
277 {"$GDB_STRINGS$", 'N'},
278 {"$GDB_SYMBOLS$", 'N'},
279 {0, 0}
280 };
281
282 /* About the relocation formatting table...
283
284 There are 256 entries in the table, one for each possible
285 relocation opcode available in SOM. We index the table by
286 the relocation opcode. The names and operations are those
287 defined by a.out_800 (4).
288
289 Right now this table is only used to count and perform minimal
290 processing on relocation streams so that they can be internalized
291 into BFD and symbolically printed by utilities. To make actual use
292 of them would be much more difficult, BFD's concept of relocations
293 is far too simple to handle SOM relocations. The basic assumption
294 that a relocation can be completely processed independent of other
295 relocations before an object file is written is invalid for SOM.
296
297 The SOM relocations are meant to be processed as a stream, they
298 specify copying of data from the input section to the output section
299 while possibly modifying the data in some manner. They also can
300 specify that a variable number of zeros or uninitialized data be
301 inserted on in the output segment at the current offset. Some
302 relocations specify that some previous relocation be re-applied at
303 the current location in the input/output sections. And finally a number
304 of relocations have effects on other sections (R_ENTRY, R_EXIT,
305 R_UNWIND_AUX and a variety of others). There isn't even enough room
306 in the BFD relocation data structure to store enough information to
307 perform all the relocations.
308
309 Each entry in the table has three fields.
310
311 The first entry is an index into this "class" of relocations. This
312 index can then be used as a variable within the relocation itself.
313
314 The second field is a format string which actually controls processing
315 of the relocation. It uses a simple postfix machine to do calculations
316 based on variables/constants found in the string and the relocation
317 stream.
318
319 The third field specifys whether or not this relocation may use
320 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
321 stored in the instruction.
322
323 Variables:
324
325 L = input space byte count
326 D = index into class of relocations
327 M = output space byte count
328 N = statement number (unused?)
329 O = stack operation
330 R = parameter relocation bits
331 S = symbol index
332 T = first 32 bits of stack unwind information
333 U = second 32 bits of stack unwind information
334 V = a literal constant (usually used in the next relocation)
335 P = a previous relocation
336
337 Lower case letters (starting with 'b') refer to following
338 bytes in the relocation stream. 'b' is the next 1 byte,
339 c is the next 2 bytes, d is the next 3 bytes, etc...
340 This is the variable part of the relocation entries that
341 makes our life a living hell.
342
343 numerical constants are also used in the format string. Note
344 the constants are represented in decimal.
345
346 '+', "*" and "=" represents the obvious postfix operators.
347 '<' represents a left shift.
348
349 Stack Operations:
350
351 Parameter Relocation Bits:
352
353 Unwind Entries:
354
355 Previous Relocations: The index field represents which in the queue
356 of 4 previous fixups should be re-applied.
357
358 Literal Constants: These are generally used to represent addend
359 parts of relocations when these constants are not stored in the
360 fields of the instructions themselves. For example the instruction
361 addil foo-$global$-0x1234 would use an override for "0x1234" rather
362 than storing it into the addil itself. */
363
364 struct fixup_format
365 {
366 int D;
367 char *format;
368 };
369
370 static const struct fixup_format som_fixup_formats[256] =
371 {
372 /* R_NO_RELOCATION */
373 0, "LD1+4*=", /* 0x00 */
374 1, "LD1+4*=", /* 0x01 */
375 2, "LD1+4*=", /* 0x02 */
376 3, "LD1+4*=", /* 0x03 */
377 4, "LD1+4*=", /* 0x04 */
378 5, "LD1+4*=", /* 0x05 */
379 6, "LD1+4*=", /* 0x06 */
380 7, "LD1+4*=", /* 0x07 */
381 8, "LD1+4*=", /* 0x08 */
382 9, "LD1+4*=", /* 0x09 */
383 10, "LD1+4*=", /* 0x0a */
384 11, "LD1+4*=", /* 0x0b */
385 12, "LD1+4*=", /* 0x0c */
386 13, "LD1+4*=", /* 0x0d */
387 14, "LD1+4*=", /* 0x0e */
388 15, "LD1+4*=", /* 0x0f */
389 16, "LD1+4*=", /* 0x10 */
390 17, "LD1+4*=", /* 0x11 */
391 18, "LD1+4*=", /* 0x12 */
392 19, "LD1+4*=", /* 0x13 */
393 20, "LD1+4*=", /* 0x14 */
394 21, "LD1+4*=", /* 0x15 */
395 22, "LD1+4*=", /* 0x16 */
396 23, "LD1+4*=", /* 0x17 */
397 0, "LD8<b+1+4*=", /* 0x18 */
398 1, "LD8<b+1+4*=", /* 0x19 */
399 2, "LD8<b+1+4*=", /* 0x1a */
400 3, "LD8<b+1+4*=", /* 0x1b */
401 0, "LD16<c+1+4*=", /* 0x1c */
402 1, "LD16<c+1+4*=", /* 0x1d */
403 2, "LD16<c+1+4*=", /* 0x1e */
404 0, "Ld1+=", /* 0x1f */
405 /* R_ZEROES */
406 0, "Lb1+4*=", /* 0x20 */
407 1, "Ld1+=", /* 0x21 */
408 /* R_UNINIT */
409 0, "Lb1+4*=", /* 0x22 */
410 1, "Ld1+=", /* 0x23 */
411 /* R_RELOCATION */
412 0, "L4=", /* 0x24 */
413 /* R_DATA_ONE_SYMBOL */
414 0, "L4=Sb=", /* 0x25 */
415 1, "L4=Sd=", /* 0x26 */
416 /* R_DATA_PLEBEL */
417 0, "L4=Sb=", /* 0x27 */
418 1, "L4=Sd=", /* 0x28 */
419 /* R_SPACE_REF */
420 0, "L4=", /* 0x29 */
421 /* R_REPEATED_INIT */
422 0, "L4=Mb1+4*=", /* 0x2a */
423 1, "Lb4*=Mb1+L*=", /* 0x2b */
424 2, "Lb4*=Md1+4*=", /* 0x2c */
425 3, "Ld1+=Me1+=", /* 0x2d */
426 /* R_RESERVED */
427 0, "", /* 0x2e */
428 0, "", /* 0x2f */
429 /* R_PCREL_CALL */
430 0, "L4=RD=Sb=", /* 0x30 */
431 1, "L4=RD=Sb=", /* 0x31 */
432 2, "L4=RD=Sb=", /* 0x32 */
433 3, "L4=RD=Sb=", /* 0x33 */
434 4, "L4=RD=Sb=", /* 0x34 */
435 5, "L4=RD=Sb=", /* 0x35 */
436 6, "L4=RD=Sb=", /* 0x36 */
437 7, "L4=RD=Sb=", /* 0x37 */
438 8, "L4=RD=Sb=", /* 0x38 */
439 9, "L4=RD=Sb=", /* 0x39 */
440 0, "L4=RD8<b+=Sb=",/* 0x3a */
441 1, "L4=RD8<b+=Sb=",/* 0x3b */
442 0, "L4=RD8<b+=Sd=",/* 0x3c */
443 1, "L4=RD8<b+=Sd=",/* 0x3d */
444 /* R_RESERVED */
445 0, "", /* 0x3e */
446 0, "", /* 0x3f */
447 /* R_ABS_CALL */
448 0, "L4=RD=Sb=", /* 0x40 */
449 1, "L4=RD=Sb=", /* 0x41 */
450 2, "L4=RD=Sb=", /* 0x42 */
451 3, "L4=RD=Sb=", /* 0x43 */
452 4, "L4=RD=Sb=", /* 0x44 */
453 5, "L4=RD=Sb=", /* 0x45 */
454 6, "L4=RD=Sb=", /* 0x46 */
455 7, "L4=RD=Sb=", /* 0x47 */
456 8, "L4=RD=Sb=", /* 0x48 */
457 9, "L4=RD=Sb=", /* 0x49 */
458 0, "L4=RD8<b+=Sb=",/* 0x4a */
459 1, "L4=RD8<b+=Sb=",/* 0x4b */
460 0, "L4=RD8<b+=Sd=",/* 0x4c */
461 1, "L4=RD8<b+=Sd=",/* 0x4d */
462 /* R_RESERVED */
463 0, "", /* 0x4e */
464 0, "", /* 0x4f */
465 /* R_DP_RELATIVE */
466 0, "L4=SD=", /* 0x50 */
467 1, "L4=SD=", /* 0x51 */
468 2, "L4=SD=", /* 0x52 */
469 3, "L4=SD=", /* 0x53 */
470 4, "L4=SD=", /* 0x54 */
471 5, "L4=SD=", /* 0x55 */
472 6, "L4=SD=", /* 0x56 */
473 7, "L4=SD=", /* 0x57 */
474 8, "L4=SD=", /* 0x58 */
475 9, "L4=SD=", /* 0x59 */
476 10, "L4=SD=", /* 0x5a */
477 11, "L4=SD=", /* 0x5b */
478 12, "L4=SD=", /* 0x5c */
479 13, "L4=SD=", /* 0x5d */
480 14, "L4=SD=", /* 0x5e */
481 15, "L4=SD=", /* 0x5f */
482 16, "L4=SD=", /* 0x60 */
483 17, "L4=SD=", /* 0x61 */
484 18, "L4=SD=", /* 0x62 */
485 19, "L4=SD=", /* 0x63 */
486 20, "L4=SD=", /* 0x64 */
487 21, "L4=SD=", /* 0x65 */
488 22, "L4=SD=", /* 0x66 */
489 23, "L4=SD=", /* 0x67 */
490 24, "L4=SD=", /* 0x68 */
491 25, "L4=SD=", /* 0x69 */
492 26, "L4=SD=", /* 0x6a */
493 27, "L4=SD=", /* 0x6b */
494 28, "L4=SD=", /* 0x6c */
495 29, "L4=SD=", /* 0x6d */
496 30, "L4=SD=", /* 0x6e */
497 31, "L4=SD=", /* 0x6f */
498 32, "L4=Sb=", /* 0x70 */
499 33, "L4=Sd=", /* 0x71 */
500 /* R_RESERVED */
501 0, "", /* 0x72 */
502 0, "", /* 0x73 */
503 0, "", /* 0x74 */
504 0, "", /* 0x75 */
505 0, "", /* 0x76 */
506 0, "", /* 0x77 */
507 /* R_DLT_REL */
508 0, "L4=Sb=", /* 0x78 */
509 1, "L4=Sd=", /* 0x79 */
510 /* R_RESERVED */
511 0, "", /* 0x7a */
512 0, "", /* 0x7b */
513 0, "", /* 0x7c */
514 0, "", /* 0x7d */
515 0, "", /* 0x7e */
516 0, "", /* 0x7f */
517 /* R_CODE_ONE_SYMBOL */
518 0, "L4=SD=", /* 0x80 */
519 1, "L4=SD=", /* 0x81 */
520 2, "L4=SD=", /* 0x82 */
521 3, "L4=SD=", /* 0x83 */
522 4, "L4=SD=", /* 0x84 */
523 5, "L4=SD=", /* 0x85 */
524 6, "L4=SD=", /* 0x86 */
525 7, "L4=SD=", /* 0x87 */
526 8, "L4=SD=", /* 0x88 */
527 9, "L4=SD=", /* 0x89 */
528 10, "L4=SD=", /* 0x8q */
529 11, "L4=SD=", /* 0x8b */
530 12, "L4=SD=", /* 0x8c */
531 13, "L4=SD=", /* 0x8d */
532 14, "L4=SD=", /* 0x8e */
533 15, "L4=SD=", /* 0x8f */
534 16, "L4=SD=", /* 0x90 */
535 17, "L4=SD=", /* 0x91 */
536 18, "L4=SD=", /* 0x92 */
537 19, "L4=SD=", /* 0x93 */
538 20, "L4=SD=", /* 0x94 */
539 21, "L4=SD=", /* 0x95 */
540 22, "L4=SD=", /* 0x96 */
541 23, "L4=SD=", /* 0x97 */
542 24, "L4=SD=", /* 0x98 */
543 25, "L4=SD=", /* 0x99 */
544 26, "L4=SD=", /* 0x9a */
545 27, "L4=SD=", /* 0x9b */
546 28, "L4=SD=", /* 0x9c */
547 29, "L4=SD=", /* 0x9d */
548 30, "L4=SD=", /* 0x9e */
549 31, "L4=SD=", /* 0x9f */
550 32, "L4=Sb=", /* 0xa0 */
551 33, "L4=Sd=", /* 0xa1 */
552 /* R_RESERVED */
553 0, "", /* 0xa2 */
554 0, "", /* 0xa3 */
555 0, "", /* 0xa4 */
556 0, "", /* 0xa5 */
557 0, "", /* 0xa6 */
558 0, "", /* 0xa7 */
559 0, "", /* 0xa8 */
560 0, "", /* 0xa9 */
561 0, "", /* 0xaa */
562 0, "", /* 0xab */
563 0, "", /* 0xac */
564 0, "", /* 0xad */
565 /* R_MILLI_REL */
566 0, "L4=Sb=", /* 0xae */
567 1, "L4=Sd=", /* 0xaf */
568 /* R_CODE_PLABEL */
569 0, "L4=Sb=", /* 0xb0 */
570 1, "L4=Sd=", /* 0xb1 */
571 /* R_BREAKPOINT */
572 0, "L4=", /* 0xb2 */
573 /* R_ENTRY */
574 0, "Te=Ue=", /* 0xb3 */
575 1, "Uf=", /* 0xb4 */
576 /* R_ALT_ENTRY */
577 0, "", /* 0xb5 */
578 /* R_EXIT */
579 0, "", /* 0xb6 */
580 /* R_BEGIN_TRY */
581 0, "", /* 0xb7 */
582 /* R_END_TRY */
583 0, "R0=", /* 0xb8 */
584 1, "Rb4*=", /* 0xb9 */
585 2, "Rd4*=", /* 0xba */
586 /* R_BEGIN_BRTAB */
587 0, "", /* 0xbb */
588 /* R_END_BRTAB */
589 0, "", /* 0xbc */
590 /* R_STATEMENT */
591 0, "Nb=", /* 0xbd */
592 1, "Nc=", /* 0xbe */
593 2, "Nd=", /* 0xbf */
594 /* R_DATA_EXPR */
595 0, "L4=", /* 0xc0 */
596 /* R_CODE_EXPR */
597 0, "L4=", /* 0xc1 */
598 /* R_FSEL */
599 0, "", /* 0xc2 */
600 /* R_LSEL */
601 0, "", /* 0xc3 */
602 /* R_RSEL */
603 0, "", /* 0xc4 */
604 /* R_N_MODE */
605 0, "", /* 0xc5 */
606 /* R_S_MODE */
607 0, "", /* 0xc6 */
608 /* R_D_MODE */
609 0, "", /* 0xc7 */
610 /* R_R_MODE */
611 0, "", /* 0xc8 */
612 /* R_DATA_OVERRIDE */
613 0, "V0=", /* 0xc9 */
614 1, "Vb=", /* 0xca */
615 2, "Vc=", /* 0xcb */
616 3, "Vd=", /* 0xcc */
617 4, "Ve=", /* 0xcd */
618 /* R_TRANSLATED */
619 0, "", /* 0xce */
620 /* R_RESERVED */
621 0, "", /* 0xcf */
622 /* R_COMP1 */
623 0, "Ob=", /* 0xd0 */
624 /* R_COMP2 */
625 0, "Ob=Sd=", /* 0xd1 */
626 /* R_COMP3 */
627 0, "Ob=Ve=", /* 0xd2 */
628 /* R_PREV_FIXUP */
629 0, "P", /* 0xd3 */
630 1, "P", /* 0xd4 */
631 2, "P", /* 0xd5 */
632 3, "P", /* 0xd6 */
633 /* R_RESERVED */
634 0, "", /* 0xd7 */
635 0, "", /* 0xd8 */
636 0, "", /* 0xd9 */
637 0, "", /* 0xda */
638 0, "", /* 0xdb */
639 0, "", /* 0xdc */
640 0, "", /* 0xdd */
641 0, "", /* 0xde */
642 0, "", /* 0xdf */
643 0, "", /* 0xe0 */
644 0, "", /* 0xe1 */
645 0, "", /* 0xe2 */
646 0, "", /* 0xe3 */
647 0, "", /* 0xe4 */
648 0, "", /* 0xe5 */
649 0, "", /* 0xe6 */
650 0, "", /* 0xe7 */
651 0, "", /* 0xe8 */
652 0, "", /* 0xe9 */
653 0, "", /* 0xea */
654 0, "", /* 0xeb */
655 0, "", /* 0xec */
656 0, "", /* 0xed */
657 0, "", /* 0xee */
658 0, "", /* 0xef */
659 0, "", /* 0xf0 */
660 0, "", /* 0xf1 */
661 0, "", /* 0xf2 */
662 0, "", /* 0xf3 */
663 0, "", /* 0xf4 */
664 0, "", /* 0xf5 */
665 0, "", /* 0xf6 */
666 0, "", /* 0xf7 */
667 0, "", /* 0xf8 */
668 0, "", /* 0xf9 */
669 0, "", /* 0xfa */
670 0, "", /* 0xfb */
671 0, "", /* 0xfc */
672 0, "", /* 0xfd */
673 0, "", /* 0xfe */
674 0, "", /* 0xff */
675 };
676
677 static const int comp1_opcodes[] =
678 {
679 0x00,
680 0x40,
681 0x41,
682 0x42,
683 0x43,
684 0x44,
685 0x45,
686 0x46,
687 0x47,
688 0x48,
689 0x49,
690 0x4a,
691 0x4b,
692 0x60,
693 0x80,
694 0xa0,
695 0xc0,
696 -1
697 };
698
699 static const int comp2_opcodes[] =
700 {
701 0x00,
702 0x80,
703 0x82,
704 0xc0,
705 -1
706 };
707
708 static const int comp3_opcodes[] =
709 {
710 0x00,
711 0x02,
712 -1
713 };
714
715 /* These apparently are not in older versions of hpux reloc.h. */
716 #ifndef R_DLT_REL
717 #define R_DLT_REL 0x78
718 #endif
719
720 #ifndef R_AUX_UNWIND
721 #define R_AUX_UNWIND 0xcf
722 #endif
723
724 #ifndef R_SEC_STMT
725 #define R_SEC_STMT 0xd7
726 #endif
727
728 static reloc_howto_type som_hppa_howto_table[] =
729 {
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
762 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
763 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
764 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
765 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
766 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
767 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
768 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
769 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
770 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
771 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
772 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
773 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
778 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
779 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
794 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
795 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
808 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
809 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
845 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
846 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
850 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
851 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
905 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
906 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
907 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
908 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
909 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
910 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
911 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
912 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
913 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
914 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
915 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
916 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
917 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
918 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
919 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
920 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
921 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
922 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
923 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
924 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
925 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
926 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
927 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
928 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
929 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
930 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
931 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
932 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
936 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
937 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
938 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
939 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
940 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
941 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
942 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
945 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
985 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
986
987 /* Initialize the SOM relocation queue. By definition the queue holds
988 the last four multibyte fixups. */
989
990 static void
991 som_initialize_reloc_queue (queue)
992 struct reloc_queue *queue;
993 {
994 queue[0].reloc = NULL;
995 queue[0].size = 0;
996 queue[1].reloc = NULL;
997 queue[1].size = 0;
998 queue[2].reloc = NULL;
999 queue[2].size = 0;
1000 queue[3].reloc = NULL;
1001 queue[3].size = 0;
1002 }
1003
1004 /* Insert a new relocation into the relocation queue. */
1005
1006 static void
1007 som_reloc_queue_insert (p, size, queue)
1008 unsigned char *p;
1009 unsigned int size;
1010 struct reloc_queue *queue;
1011 {
1012 queue[3].reloc = queue[2].reloc;
1013 queue[3].size = queue[2].size;
1014 queue[2].reloc = queue[1].reloc;
1015 queue[2].size = queue[1].size;
1016 queue[1].reloc = queue[0].reloc;
1017 queue[1].size = queue[0].size;
1018 queue[0].reloc = p;
1019 queue[0].size = size;
1020 }
1021
1022 /* When an entry in the relocation queue is reused, the entry moves
1023 to the front of the queue. */
1024
1025 static void
1026 som_reloc_queue_fix (queue, index)
1027 struct reloc_queue *queue;
1028 unsigned int index;
1029 {
1030 if (index == 0)
1031 return;
1032
1033 if (index == 1)
1034 {
1035 unsigned char *tmp1 = queue[0].reloc;
1036 unsigned int tmp2 = queue[0].size;
1037 queue[0].reloc = queue[1].reloc;
1038 queue[0].size = queue[1].size;
1039 queue[1].reloc = tmp1;
1040 queue[1].size = tmp2;
1041 return;
1042 }
1043
1044 if (index == 2)
1045 {
1046 unsigned char *tmp1 = queue[0].reloc;
1047 unsigned int tmp2 = queue[0].size;
1048 queue[0].reloc = queue[2].reloc;
1049 queue[0].size = queue[2].size;
1050 queue[2].reloc = queue[1].reloc;
1051 queue[2].size = queue[1].size;
1052 queue[1].reloc = tmp1;
1053 queue[1].size = tmp2;
1054 return;
1055 }
1056
1057 if (index == 3)
1058 {
1059 unsigned char *tmp1 = queue[0].reloc;
1060 unsigned int tmp2 = queue[0].size;
1061 queue[0].reloc = queue[3].reloc;
1062 queue[0].size = queue[3].size;
1063 queue[3].reloc = queue[2].reloc;
1064 queue[3].size = queue[2].size;
1065 queue[2].reloc = queue[1].reloc;
1066 queue[2].size = queue[1].size;
1067 queue[1].reloc = tmp1;
1068 queue[1].size = tmp2;
1069 return;
1070 }
1071 abort();
1072 }
1073
1074 /* Search for a particular relocation in the relocation queue. */
1075
1076 static int
1077 som_reloc_queue_find (p, size, queue)
1078 unsigned char *p;
1079 unsigned int size;
1080 struct reloc_queue *queue;
1081 {
1082 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1083 && size == queue[0].size)
1084 return 0;
1085 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1086 && size == queue[1].size)
1087 return 1;
1088 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1089 && size == queue[2].size)
1090 return 2;
1091 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1092 && size == queue[3].size)
1093 return 3;
1094 return -1;
1095 }
1096
1097 static unsigned char *
1098 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1099 bfd *abfd;
1100 int *subspace_reloc_sizep;
1101 unsigned char *p;
1102 unsigned int size;
1103 struct reloc_queue *queue;
1104 {
1105 int queue_index = som_reloc_queue_find (p, size, queue);
1106
1107 if (queue_index != -1)
1108 {
1109 /* Found this in a previous fixup. Undo the fixup we
1110 just built and use R_PREV_FIXUP instead. We saved
1111 a total of size - 1 bytes in the fixup stream. */
1112 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1113 p += 1;
1114 *subspace_reloc_sizep += 1;
1115 som_reloc_queue_fix (queue, queue_index);
1116 }
1117 else
1118 {
1119 som_reloc_queue_insert (p, size, queue);
1120 *subspace_reloc_sizep += size;
1121 p += size;
1122 }
1123 return p;
1124 }
1125
1126 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1127 bytes without any relocation. Update the size of the subspace
1128 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1129 current pointer into the relocation stream. */
1130
1131 static unsigned char *
1132 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1133 bfd *abfd;
1134 unsigned int skip;
1135 unsigned char *p;
1136 unsigned int *subspace_reloc_sizep;
1137 struct reloc_queue *queue;
1138 {
1139 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1140 then R_PREV_FIXUPs to get the difference down to a
1141 reasonable size. */
1142 if (skip >= 0x1000000)
1143 {
1144 skip -= 0x1000000;
1145 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1146 bfd_put_8 (abfd, 0xff, p + 1);
1147 bfd_put_16 (abfd, 0xffff, p + 2);
1148 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1149 while (skip >= 0x1000000)
1150 {
1151 skip -= 0x1000000;
1152 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1153 p++;
1154 *subspace_reloc_sizep += 1;
1155 /* No need to adjust queue here since we are repeating the
1156 most recent fixup. */
1157 }
1158 }
1159
1160 /* The difference must be less than 0x1000000. Use one
1161 more R_NO_RELOCATION entry to get to the right difference. */
1162 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1163 {
1164 /* Difference can be handled in a simple single-byte
1165 R_NO_RELOCATION entry. */
1166 if (skip <= 0x60)
1167 {
1168 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1169 *subspace_reloc_sizep += 1;
1170 p++;
1171 }
1172 /* Handle it with a two byte R_NO_RELOCATION entry. */
1173 else if (skip <= 0x1000)
1174 {
1175 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1176 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1177 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1178 }
1179 /* Handle it with a three byte R_NO_RELOCATION entry. */
1180 else
1181 {
1182 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1183 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1184 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1185 }
1186 }
1187 /* Ugh. Punt and use a 4 byte entry. */
1188 else if (skip > 0)
1189 {
1190 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1191 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1192 bfd_put_16 (abfd, skip - 1, p + 2);
1193 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1194 }
1195 return p;
1196 }
1197
1198 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1199 from a BFD relocation. Update the size of the subspace relocation
1200 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1201 into the relocation stream. */
1202
1203 static unsigned char *
1204 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1205 bfd *abfd;
1206 int addend;
1207 unsigned char *p;
1208 unsigned int *subspace_reloc_sizep;
1209 struct reloc_queue *queue;
1210 {
1211 if ((unsigned)(addend) + 0x80 < 0x100)
1212 {
1213 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1214 bfd_put_8 (abfd, addend, p + 1);
1215 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1216 }
1217 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1218 {
1219 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1220 bfd_put_16 (abfd, addend, p + 1);
1221 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1222 }
1223 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1224 {
1225 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1226 bfd_put_8 (abfd, addend >> 16, p + 1);
1227 bfd_put_16 (abfd, addend, p + 2);
1228 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1229 }
1230 else
1231 {
1232 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1233 bfd_put_32 (abfd, addend, p + 1);
1234 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1235 }
1236 return p;
1237 }
1238
1239 /* Handle a single function call relocation. */
1240
1241 static unsigned char *
1242 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1243 bfd *abfd;
1244 unsigned char *p;
1245 unsigned int *subspace_reloc_sizep;
1246 arelent *bfd_reloc;
1247 int sym_num;
1248 struct reloc_queue *queue;
1249 {
1250 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1251 int rtn_bits = arg_bits & 0x3;
1252 int type, done = 0;
1253
1254 /* You'll never believe all this is necessary to handle relocations
1255 for function calls. Having to compute and pack the argument
1256 relocation bits is the real nightmare.
1257
1258 If you're interested in how this works, just forget it. You really
1259 do not want to know about this braindamage. */
1260
1261 /* First see if this can be done with a "simple" relocation. Simple
1262 relocations have a symbol number < 0x100 and have simple encodings
1263 of argument relocations. */
1264
1265 if (sym_num < 0x100)
1266 {
1267 switch (arg_bits)
1268 {
1269 case 0:
1270 case 1:
1271 type = 0;
1272 break;
1273 case 1 << 8:
1274 case 1 << 8 | 1:
1275 type = 1;
1276 break;
1277 case 1 << 8 | 1 << 6:
1278 case 1 << 8 | 1 << 6 | 1:
1279 type = 2;
1280 break;
1281 case 1 << 8 | 1 << 6 | 1 << 4:
1282 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1283 type = 3;
1284 break;
1285 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1286 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1287 type = 4;
1288 break;
1289 default:
1290 /* Not one of the easy encodings. This will have to be
1291 handled by the more complex code below. */
1292 type = -1;
1293 break;
1294 }
1295 if (type != -1)
1296 {
1297 /* Account for the return value too. */
1298 if (rtn_bits)
1299 type += 5;
1300
1301 /* Emit a 2 byte relocation. Then see if it can be handled
1302 with a relocation which is already in the relocation queue. */
1303 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1304 bfd_put_8 (abfd, sym_num, p + 1);
1305 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1306 done = 1;
1307 }
1308 }
1309
1310 /* If this could not be handled with a simple relocation, then do a hard
1311 one. Hard relocations occur if the symbol number was too high or if
1312 the encoding of argument relocation bits is too complex. */
1313 if (! done)
1314 {
1315 /* Don't ask about these magic sequences. I took them straight
1316 from gas-1.36 which took them from the a.out man page. */
1317 type = rtn_bits;
1318 if ((arg_bits >> 6 & 0xf) == 0xe)
1319 type += 9 * 40;
1320 else
1321 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1322 if ((arg_bits >> 2 & 0xf) == 0xe)
1323 type += 9 * 4;
1324 else
1325 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1326
1327 /* Output the first two bytes of the relocation. These describe
1328 the length of the relocation and encoding style. */
1329 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1330 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1331 p);
1332 bfd_put_8 (abfd, type, p + 1);
1333
1334 /* Now output the symbol index and see if this bizarre relocation
1335 just happened to be in the relocation queue. */
1336 if (sym_num < 0x100)
1337 {
1338 bfd_put_8 (abfd, sym_num, p + 2);
1339 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1340 }
1341 else
1342 {
1343 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1344 bfd_put_16 (abfd, sym_num, p + 3);
1345 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1346 }
1347 }
1348 return p;
1349 }
1350
1351
1352 /* Return the logarithm of X, base 2, considering X unsigned.
1353 Abort -1 if X is not a power or two or is zero. */
1354
1355 static int
1356 log2 (x)
1357 unsigned int x;
1358 {
1359 int log = 0;
1360
1361 /* Test for 0 or a power of 2. */
1362 if (x == 0 || x != (x & -x))
1363 return -1;
1364
1365 while ((x >>= 1) != 0)
1366 log++;
1367 return log;
1368 }
1369
1370 static bfd_reloc_status_type
1371 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1372 input_section, output_bfd, error_message)
1373 bfd *abfd;
1374 arelent *reloc_entry;
1375 asymbol *symbol_in;
1376 PTR data;
1377 asection *input_section;
1378 bfd *output_bfd;
1379 char **error_message;
1380 {
1381 if (output_bfd)
1382 {
1383 reloc_entry->address += input_section->output_offset;
1384 return bfd_reloc_ok;
1385 }
1386 return bfd_reloc_ok;
1387 }
1388
1389 /* Given a generic HPPA relocation type, the instruction format,
1390 and a field selector, return one or more appropriate SOM relocations. */
1391
1392 int **
1393 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1394 bfd *abfd;
1395 int base_type;
1396 int format;
1397 enum hppa_reloc_field_selector_type_alt field;
1398 {
1399 int *final_type, **final_types;
1400
1401 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1402 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1403 if (!final_types || !final_type)
1404 {
1405 bfd_set_error (bfd_error_no_memory);
1406 return NULL;
1407 }
1408
1409 /* The field selector may require additional relocations to be
1410 generated. It's impossible to know at this moment if additional
1411 relocations will be needed, so we make them. The code to actually
1412 write the relocation/fixup stream is responsible for removing
1413 any redundant relocations. */
1414 switch (field)
1415 {
1416 case e_fsel:
1417 case e_psel:
1418 case e_lpsel:
1419 case e_rpsel:
1420 final_types[0] = final_type;
1421 final_types[1] = NULL;
1422 final_types[2] = NULL;
1423 *final_type = base_type;
1424 break;
1425
1426 case e_tsel:
1427 case e_ltsel:
1428 case e_rtsel:
1429 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1430 if (!final_types[0])
1431 {
1432 bfd_set_error (bfd_error_no_memory);
1433 return NULL;
1434 }
1435 if (field == e_tsel)
1436 *final_types[0] = R_FSEL;
1437 else if (field == e_ltsel)
1438 *final_types[0] = R_LSEL;
1439 else
1440 *final_types[0] = R_RSEL;
1441 final_types[1] = final_type;
1442 final_types[2] = NULL;
1443 *final_type = base_type;
1444 break;
1445
1446 case e_lssel:
1447 case e_rssel:
1448 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1449 if (!final_types[0])
1450 {
1451 bfd_set_error (bfd_error_no_memory);
1452 return NULL;
1453 }
1454 *final_types[0] = R_S_MODE;
1455 final_types[1] = final_type;
1456 final_types[2] = NULL;
1457 *final_type = base_type;
1458 break;
1459
1460 case e_lsel:
1461 case e_rsel:
1462 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1463 if (!final_types[0])
1464 {
1465 bfd_set_error (bfd_error_no_memory);
1466 return NULL;
1467 }
1468 *final_types[0] = R_N_MODE;
1469 final_types[1] = final_type;
1470 final_types[2] = NULL;
1471 *final_type = base_type;
1472 break;
1473
1474 case e_ldsel:
1475 case e_rdsel:
1476 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1477 if (!final_types[0])
1478 {
1479 bfd_set_error (bfd_error_no_memory);
1480 return NULL;
1481 }
1482 *final_types[0] = R_D_MODE;
1483 final_types[1] = final_type;
1484 final_types[2] = NULL;
1485 *final_type = base_type;
1486 break;
1487
1488 case e_lrsel:
1489 case e_rrsel:
1490 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1491 if (!final_types[0])
1492 {
1493 bfd_set_error (bfd_error_no_memory);
1494 return NULL;
1495 }
1496 *final_types[0] = R_R_MODE;
1497 final_types[1] = final_type;
1498 final_types[2] = NULL;
1499 *final_type = base_type;
1500 break;
1501 }
1502
1503 switch (base_type)
1504 {
1505 case R_HPPA:
1506 /* PLABELs get their own relocation type. */
1507 if (field == e_psel
1508 || field == e_lpsel
1509 || field == e_rpsel)
1510 {
1511 /* A PLABEL relocation that has a size of 32 bits must
1512 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1513 if (format == 32)
1514 *final_type = R_DATA_PLABEL;
1515 else
1516 *final_type = R_CODE_PLABEL;
1517 }
1518 /* PIC stuff. */
1519 else if (field == e_tsel
1520 || field == e_ltsel
1521 || field == e_rtsel)
1522 *final_type = R_DLT_REL;
1523 /* A relocation in the data space is always a full 32bits. */
1524 else if (format == 32)
1525 *final_type = R_DATA_ONE_SYMBOL;
1526
1527 break;
1528
1529 case R_HPPA_GOTOFF:
1530 /* More PLABEL special cases. */
1531 if (field == e_psel
1532 || field == e_lpsel
1533 || field == e_rpsel)
1534 *final_type = R_DATA_PLABEL;
1535 break;
1536
1537 case R_HPPA_NONE:
1538 case R_HPPA_ABS_CALL:
1539 case R_HPPA_PCREL_CALL:
1540 /* Right now we can default all these. */
1541 break;
1542 }
1543 return final_types;
1544 }
1545
1546 /* Return the address of the correct entry in the PA SOM relocation
1547 howto table. */
1548
1549 /*ARGSUSED*/
1550 static const reloc_howto_type *
1551 som_bfd_reloc_type_lookup (abfd, code)
1552 bfd *abfd;
1553 bfd_reloc_code_real_type code;
1554 {
1555 if ((int) code < (int) R_NO_RELOCATION + 255)
1556 {
1557 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1558 return &som_hppa_howto_table[(int) code];
1559 }
1560
1561 return (reloc_howto_type *) 0;
1562 }
1563
1564 /* Perform some initialization for an object. Save results of this
1565 initialization in the BFD. */
1566
1567 static const bfd_target *
1568 som_object_setup (abfd, file_hdrp, aux_hdrp)
1569 bfd *abfd;
1570 struct header *file_hdrp;
1571 struct som_exec_auxhdr *aux_hdrp;
1572 {
1573 /* som_mkobject will set bfd_error if som_mkobject fails. */
1574 if (som_mkobject (abfd) != true)
1575 return 0;
1576
1577 /* Set BFD flags based on what information is available in the SOM. */
1578 abfd->flags = NO_FLAGS;
1579 if (file_hdrp->symbol_total)
1580 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1581
1582 switch (file_hdrp->a_magic)
1583 {
1584 case DEMAND_MAGIC:
1585 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1586 break;
1587 case SHARE_MAGIC:
1588 abfd->flags |= (WP_TEXT | EXEC_P);
1589 break;
1590 case EXEC_MAGIC:
1591 abfd->flags |= (EXEC_P);
1592 break;
1593 case RELOC_MAGIC:
1594 abfd->flags |= HAS_RELOC;
1595 break;
1596 #ifdef SHL_MAGIC
1597 case SHL_MAGIC:
1598 #endif
1599 #ifdef DL_MAGIC
1600 case DL_MAGIC:
1601 #endif
1602 abfd->flags |= DYNAMIC;
1603 break;
1604
1605 default:
1606 break;
1607 }
1608
1609 /* Allocate space to hold the saved exec header information. */
1610 obj_som_exec_data (abfd) = (struct som_exec_data *)
1611 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1612 if (obj_som_exec_data (abfd) == NULL)
1613 {
1614 bfd_set_error (bfd_error_no_memory);
1615 return NULL;
1616 }
1617
1618 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1619
1620 It seems rather backward that the OSF1 linker which is much
1621 older than any HPUX linker I've got uses a newer SOM version
1622 id... But that's what I've found by experimentation. */
1623 if (file_hdrp->version_id == NEW_VERSION_ID)
1624 {
1625 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1626 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1627 }
1628 else
1629 {
1630 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1631 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1632 }
1633
1634 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1635 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1636
1637 /* Initialize the saved symbol table and string table to NULL.
1638 Save important offsets and sizes from the SOM header into
1639 the BFD. */
1640 obj_som_stringtab (abfd) = (char *) NULL;
1641 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1642 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1643 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1644 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1645 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1646 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1647
1648 return abfd->xvec;
1649 }
1650
1651 /* Convert all of the space and subspace info into BFD sections. Each space
1652 contains a number of subspaces, which in turn describe the mapping between
1653 regions of the exec file, and the address space that the program runs in.
1654 BFD sections which correspond to spaces will overlap the sections for the
1655 associated subspaces. */
1656
1657 static boolean
1658 setup_sections (abfd, file_hdr)
1659 bfd *abfd;
1660 struct header *file_hdr;
1661 {
1662 char *space_strings;
1663 int space_index;
1664 unsigned int total_subspaces = 0;
1665
1666 /* First, read in space names */
1667
1668 space_strings = malloc (file_hdr->space_strings_size);
1669 if (!space_strings && file_hdr->space_strings_size != 0)
1670 {
1671 bfd_set_error (bfd_error_no_memory);
1672 goto error_return;
1673 }
1674
1675 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1676 goto error_return;
1677 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1678 != file_hdr->space_strings_size)
1679 goto error_return;
1680
1681 /* Loop over all of the space dictionaries, building up sections */
1682 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1683 {
1684 struct space_dictionary_record space;
1685 struct subspace_dictionary_record subspace, save_subspace;
1686 int subspace_index;
1687 asection *space_asect;
1688 char *newname;
1689
1690 /* Read the space dictionary element */
1691 if (bfd_seek (abfd, file_hdr->space_location
1692 + space_index * sizeof space, SEEK_SET) < 0)
1693 goto error_return;
1694 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1695 goto error_return;
1696
1697 /* Setup the space name string */
1698 space.name.n_name = space.name.n_strx + space_strings;
1699
1700 /* Make a section out of it */
1701 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1702 if (!newname)
1703 goto error_return;
1704 strcpy (newname, space.name.n_name);
1705
1706 space_asect = bfd_make_section_anyway (abfd, newname);
1707 if (!space_asect)
1708 goto error_return;
1709
1710 if (space.is_loadable == 0)
1711 space_asect->flags |= SEC_DEBUGGING;
1712
1713 /* Set up all the attributes for the space. */
1714 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1715 space.is_private, space.sort_key,
1716 space.space_number) == false)
1717 goto error_return;
1718
1719 /* Now, read in the first subspace for this space */
1720 if (bfd_seek (abfd, file_hdr->subspace_location
1721 + space.subspace_index * sizeof subspace,
1722 SEEK_SET) < 0)
1723 goto error_return;
1724 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1725 goto error_return;
1726 /* Seek back to the start of the subspaces for loop below */
1727 if (bfd_seek (abfd, file_hdr->subspace_location
1728 + space.subspace_index * sizeof subspace,
1729 SEEK_SET) < 0)
1730 goto error_return;
1731
1732 /* Setup the start address and file loc from the first subspace record */
1733 space_asect->vma = subspace.subspace_start;
1734 space_asect->filepos = subspace.file_loc_init_value;
1735 space_asect->alignment_power = log2 (subspace.alignment);
1736 if (space_asect->alignment_power == -1)
1737 goto error_return;
1738
1739 /* Initialize save_subspace so we can reliably determine if this
1740 loop placed any useful values into it. */
1741 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1742
1743 /* Loop over the rest of the subspaces, building up more sections */
1744 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1745 subspace_index++)
1746 {
1747 asection *subspace_asect;
1748
1749 /* Read in the next subspace */
1750 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1751 != sizeof subspace)
1752 goto error_return;
1753
1754 /* Setup the subspace name string */
1755 subspace.name.n_name = subspace.name.n_strx + space_strings;
1756
1757 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1758 if (!newname)
1759 goto error_return;
1760 strcpy (newname, subspace.name.n_name);
1761
1762 /* Make a section out of this subspace */
1763 subspace_asect = bfd_make_section_anyway (abfd, newname);
1764 if (!subspace_asect)
1765 goto error_return;
1766
1767 /* Store private information about the section. */
1768 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1769 subspace.access_control_bits,
1770 subspace.sort_key,
1771 subspace.quadrant) == false)
1772 goto error_return;
1773
1774 /* Keep an easy mapping between subspaces and sections. */
1775 subspace_asect->target_index = total_subspaces++;
1776
1777 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1778 by the access_control_bits in the subspace header. */
1779 switch (subspace.access_control_bits >> 4)
1780 {
1781 /* Readonly data. */
1782 case 0x0:
1783 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1784 break;
1785
1786 /* Normal data. */
1787 case 0x1:
1788 subspace_asect->flags |= SEC_DATA;
1789 break;
1790
1791 /* Readonly code and the gateways.
1792 Gateways have other attributes which do not map
1793 into anything BFD knows about. */
1794 case 0x2:
1795 case 0x4:
1796 case 0x5:
1797 case 0x6:
1798 case 0x7:
1799 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1800 break;
1801
1802 /* dynamic (writable) code. */
1803 case 0x3:
1804 subspace_asect->flags |= SEC_CODE;
1805 break;
1806 }
1807
1808 if (subspace.dup_common || subspace.is_common)
1809 subspace_asect->flags |= SEC_IS_COMMON;
1810 else if (subspace.subspace_length > 0)
1811 subspace_asect->flags |= SEC_HAS_CONTENTS;
1812
1813 if (subspace.is_loadable)
1814 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1815 else
1816 subspace_asect->flags |= SEC_DEBUGGING;
1817
1818 if (subspace.code_only)
1819 subspace_asect->flags |= SEC_CODE;
1820
1821 /* Both file_loc_init_value and initialization_length will
1822 be zero for a BSS like subspace. */
1823 if (subspace.file_loc_init_value == 0
1824 && subspace.initialization_length == 0)
1825 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1826
1827 /* This subspace has relocations.
1828 The fixup_request_quantity is a byte count for the number of
1829 entries in the relocation stream; it is not the actual number
1830 of relocations in the subspace. */
1831 if (subspace.fixup_request_quantity != 0)
1832 {
1833 subspace_asect->flags |= SEC_RELOC;
1834 subspace_asect->rel_filepos = subspace.fixup_request_index;
1835 som_section_data (subspace_asect)->reloc_size
1836 = subspace.fixup_request_quantity;
1837 /* We can not determine this yet. When we read in the
1838 relocation table the correct value will be filled in. */
1839 subspace_asect->reloc_count = -1;
1840 }
1841
1842 /* Update save_subspace if appropriate. */
1843 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1844 save_subspace = subspace;
1845
1846 subspace_asect->vma = subspace.subspace_start;
1847 subspace_asect->_cooked_size = subspace.subspace_length;
1848 subspace_asect->_raw_size = subspace.subspace_length;
1849 subspace_asect->filepos = subspace.file_loc_init_value;
1850 subspace_asect->alignment_power = log2 (subspace.alignment);
1851 if (subspace_asect->alignment_power == -1)
1852 goto error_return;
1853 }
1854
1855 /* Yow! there is no subspace within the space which actually
1856 has initialized information in it; this should never happen
1857 as far as I know. */
1858 if (!save_subspace.file_loc_init_value)
1859 goto error_return;
1860
1861 /* Setup the sizes for the space section based upon the info in the
1862 last subspace of the space. */
1863 space_asect->_cooked_size = save_subspace.subspace_start
1864 - space_asect->vma + save_subspace.subspace_length;
1865 space_asect->_raw_size = save_subspace.file_loc_init_value
1866 - space_asect->filepos + save_subspace.initialization_length;
1867 }
1868 if (space_strings != NULL)
1869 free (space_strings);
1870 return true;
1871
1872 error_return:
1873 if (space_strings != NULL)
1874 free (space_strings);
1875 return false;
1876 }
1877
1878 /* Read in a SOM object and make it into a BFD. */
1879
1880 static const bfd_target *
1881 som_object_p (abfd)
1882 bfd *abfd;
1883 {
1884 struct header file_hdr;
1885 struct som_exec_auxhdr aux_hdr;
1886
1887 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1888 {
1889 if (bfd_get_error () != bfd_error_system_call)
1890 bfd_set_error (bfd_error_wrong_format);
1891 return 0;
1892 }
1893
1894 if (!_PA_RISC_ID (file_hdr.system_id))
1895 {
1896 bfd_set_error (bfd_error_wrong_format);
1897 return 0;
1898 }
1899
1900 switch (file_hdr.a_magic)
1901 {
1902 case RELOC_MAGIC:
1903 case EXEC_MAGIC:
1904 case SHARE_MAGIC:
1905 case DEMAND_MAGIC:
1906 #ifdef DL_MAGIC
1907 case DL_MAGIC:
1908 #endif
1909 #ifdef SHL_MAGIC
1910 case SHL_MAGIC:
1911 #endif
1912 #ifdef EXECLIBMAGIC
1913 case EXECLIBMAGIC:
1914 #endif
1915 #ifdef SHARED_MAGIC_CNX
1916 case SHARED_MAGIC_CNX:
1917 #endif
1918 break;
1919 default:
1920 bfd_set_error (bfd_error_wrong_format);
1921 return 0;
1922 }
1923
1924 if (file_hdr.version_id != VERSION_ID
1925 && file_hdr.version_id != NEW_VERSION_ID)
1926 {
1927 bfd_set_error (bfd_error_wrong_format);
1928 return 0;
1929 }
1930
1931 /* If the aux_header_size field in the file header is zero, then this
1932 object is an incomplete executable (a .o file). Do not try to read
1933 a non-existant auxiliary header. */
1934 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1935 if (file_hdr.aux_header_size != 0)
1936 {
1937 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1938 {
1939 if (bfd_get_error () != bfd_error_system_call)
1940 bfd_set_error (bfd_error_wrong_format);
1941 return 0;
1942 }
1943 }
1944
1945 if (!setup_sections (abfd, &file_hdr))
1946 {
1947 /* setup_sections does not bubble up a bfd error code. */
1948 bfd_set_error (bfd_error_bad_value);
1949 return 0;
1950 }
1951
1952 /* This appears to be a valid SOM object. Do some initialization. */
1953 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1954 }
1955
1956 /* Create a SOM object. */
1957
1958 static boolean
1959 som_mkobject (abfd)
1960 bfd *abfd;
1961 {
1962 /* Allocate memory to hold backend information. */
1963 abfd->tdata.som_data = (struct som_data_struct *)
1964 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1965 if (abfd->tdata.som_data == NULL)
1966 {
1967 bfd_set_error (bfd_error_no_memory);
1968 return false;
1969 }
1970 return true;
1971 }
1972
1973 /* Initialize some information in the file header. This routine makes
1974 not attempt at doing the right thing for a full executable; it
1975 is only meant to handle relocatable objects. */
1976
1977 static boolean
1978 som_prep_headers (abfd)
1979 bfd *abfd;
1980 {
1981 struct header *file_hdr;
1982 asection *section;
1983
1984 /* Make and attach a file header to the BFD. */
1985 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1986 if (file_hdr == NULL)
1987
1988 {
1989 bfd_set_error (bfd_error_no_memory);
1990 return false;
1991 }
1992 obj_som_file_hdr (abfd) = file_hdr;
1993
1994 if (abfd->flags & (EXEC_P | DYNAMIC))
1995 {
1996
1997 /* Make and attach an exec header to the BFD. */
1998 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
1999 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2000 if (obj_som_exec_hdr (abfd) == NULL)
2001 {
2002 bfd_set_error (bfd_error_no_memory);
2003 return false;
2004 }
2005
2006 if (abfd->flags & D_PAGED)
2007 file_hdr->a_magic = DEMAND_MAGIC;
2008 else if (abfd->flags & WP_TEXT)
2009 file_hdr->a_magic = SHARE_MAGIC;
2010 #ifdef SHL_MAGIC
2011 else if (abfd->flags & DYNAMIC)
2012 file_hdr->a_magic = SHL_MAGIC;
2013 #endif
2014 else
2015 file_hdr->a_magic = EXEC_MAGIC;
2016 }
2017 else
2018 file_hdr->a_magic = RELOC_MAGIC;
2019
2020 /* Only new format SOM is supported. */
2021 file_hdr->version_id = NEW_VERSION_ID;
2022
2023 /* These fields are optional, and embedding timestamps is not always
2024 a wise thing to do, it makes comparing objects during a multi-stage
2025 bootstrap difficult. */
2026 file_hdr->file_time.secs = 0;
2027 file_hdr->file_time.nanosecs = 0;
2028
2029 file_hdr->entry_space = 0;
2030 file_hdr->entry_subspace = 0;
2031 file_hdr->entry_offset = 0;
2032 file_hdr->presumed_dp = 0;
2033
2034 /* Now iterate over the sections translating information from
2035 BFD sections to SOM spaces/subspaces. */
2036
2037 for (section = abfd->sections; section != NULL; section = section->next)
2038 {
2039 /* Ignore anything which has not been marked as a space or
2040 subspace. */
2041 if (!som_is_space (section) && !som_is_subspace (section))
2042 continue;
2043
2044 if (som_is_space (section))
2045 {
2046 /* Allocate space for the space dictionary. */
2047 som_section_data (section)->space_dict
2048 = (struct space_dictionary_record *)
2049 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2050 if (som_section_data (section)->space_dict == NULL)
2051 {
2052 bfd_set_error (bfd_error_no_memory);
2053 return false;
2054 }
2055 /* Set space attributes. Note most attributes of SOM spaces
2056 are set based on the subspaces it contains. */
2057 som_section_data (section)->space_dict->loader_fix_index = -1;
2058 som_section_data (section)->space_dict->init_pointer_index = -1;
2059
2060 /* Set more attributes that were stuffed away in private data. */
2061 som_section_data (section)->space_dict->sort_key =
2062 som_section_data (section)->copy_data->sort_key;
2063 som_section_data (section)->space_dict->is_defined =
2064 som_section_data (section)->copy_data->is_defined;
2065 som_section_data (section)->space_dict->is_private =
2066 som_section_data (section)->copy_data->is_private;
2067 som_section_data (section)->space_dict->space_number =
2068 som_section_data (section)->copy_data->space_number;
2069 }
2070 else
2071 {
2072 /* Allocate space for the subspace dictionary. */
2073 som_section_data (section)->subspace_dict
2074 = (struct subspace_dictionary_record *)
2075 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2076 if (som_section_data (section)->subspace_dict == NULL)
2077 {
2078 bfd_set_error (bfd_error_no_memory);
2079 return false;
2080 }
2081
2082 /* Set subspace attributes. Basic stuff is done here, additional
2083 attributes are filled in later as more information becomes
2084 available. */
2085 if (section->flags & SEC_IS_COMMON)
2086 {
2087 som_section_data (section)->subspace_dict->dup_common = 1;
2088 som_section_data (section)->subspace_dict->is_common = 1;
2089 }
2090
2091 if (section->flags & SEC_ALLOC)
2092 som_section_data (section)->subspace_dict->is_loadable = 1;
2093
2094 if (section->flags & SEC_CODE)
2095 som_section_data (section)->subspace_dict->code_only = 1;
2096
2097 som_section_data (section)->subspace_dict->subspace_start =
2098 section->vma;
2099 som_section_data (section)->subspace_dict->subspace_length =
2100 bfd_section_size (abfd, section);
2101 som_section_data (section)->subspace_dict->initialization_length =
2102 bfd_section_size (abfd, section);
2103 som_section_data (section)->subspace_dict->alignment =
2104 1 << section->alignment_power;
2105
2106 /* Set more attributes that were stuffed away in private data. */
2107 som_section_data (section)->subspace_dict->sort_key =
2108 som_section_data (section)->copy_data->sort_key;
2109 som_section_data (section)->subspace_dict->access_control_bits =
2110 som_section_data (section)->copy_data->access_control_bits;
2111 som_section_data (section)->subspace_dict->quadrant =
2112 som_section_data (section)->copy_data->quadrant;
2113 }
2114 }
2115 return true;
2116 }
2117
2118 /* Return true if the given section is a SOM space, false otherwise. */
2119
2120 static boolean
2121 som_is_space (section)
2122 asection *section;
2123 {
2124 /* If no copy data is available, then it's neither a space nor a
2125 subspace. */
2126 if (som_section_data (section)->copy_data == NULL)
2127 return false;
2128
2129 /* If the containing space isn't the same as the given section,
2130 then this isn't a space. */
2131 if (som_section_data (section)->copy_data->container != section)
2132 return false;
2133
2134 /* OK. Must be a space. */
2135 return true;
2136 }
2137
2138 /* Return true if the given section is a SOM subspace, false otherwise. */
2139
2140 static boolean
2141 som_is_subspace (section)
2142 asection *section;
2143 {
2144 /* If no copy data is available, then it's neither a space nor a
2145 subspace. */
2146 if (som_section_data (section)->copy_data == NULL)
2147 return false;
2148
2149 /* If the containing space is the same as the given section,
2150 then this isn't a subspace. */
2151 if (som_section_data (section)->copy_data->container == section)
2152 return false;
2153
2154 /* OK. Must be a subspace. */
2155 return true;
2156 }
2157
2158 /* Return true if the given space containins the given subspace. It
2159 is safe to assume space really is a space, and subspace really
2160 is a subspace. */
2161
2162 static boolean
2163 som_is_container (space, subspace)
2164 asection *space, *subspace;
2165 {
2166 return som_section_data (subspace)->copy_data->container == space;
2167 }
2168
2169 /* Count and return the number of spaces attached to the given BFD. */
2170
2171 static unsigned long
2172 som_count_spaces (abfd)
2173 bfd *abfd;
2174 {
2175 int count = 0;
2176 asection *section;
2177
2178 for (section = abfd->sections; section != NULL; section = section->next)
2179 count += som_is_space (section);
2180
2181 return count;
2182 }
2183
2184 /* Count the number of subspaces attached to the given BFD. */
2185
2186 static unsigned long
2187 som_count_subspaces (abfd)
2188 bfd *abfd;
2189 {
2190 int count = 0;
2191 asection *section;
2192
2193 for (section = abfd->sections; section != NULL; section = section->next)
2194 count += som_is_subspace (section);
2195
2196 return count;
2197 }
2198
2199 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2200
2201 We desire symbols to be ordered starting with the symbol with the
2202 highest relocation count down to the symbol with the lowest relocation
2203 count. Doing so compacts the relocation stream. */
2204
2205 static int
2206 compare_syms (arg1, arg2)
2207 const PTR arg1;
2208 const PTR arg2;
2209
2210 {
2211 asymbol **sym1 = (asymbol **) arg1;
2212 asymbol **sym2 = (asymbol **) arg2;
2213 unsigned int count1, count2;
2214
2215 /* Get relocation count for each symbol. Note that the count
2216 is stored in the udata pointer for section symbols! */
2217 if ((*sym1)->flags & BSF_SECTION_SYM)
2218 count1 = (int)(*sym1)->udata;
2219 else
2220 count1 = som_symbol_data (*sym1)->reloc_count;
2221
2222 if ((*sym2)->flags & BSF_SECTION_SYM)
2223 count2 = (int)(*sym2)->udata;
2224 else
2225 count2 = som_symbol_data (*sym2)->reloc_count;
2226
2227 /* Return the appropriate value. */
2228 if (count1 < count2)
2229 return 1;
2230 else if (count1 > count2)
2231 return -1;
2232 return 0;
2233 }
2234
2235 /* Perform various work in preparation for emitting the fixup stream. */
2236
2237 static void
2238 som_prep_for_fixups (abfd, syms, num_syms)
2239 bfd *abfd;
2240 asymbol **syms;
2241 unsigned long num_syms;
2242 {
2243 int i;
2244 asection *section;
2245
2246 /* Most SOM relocations involving a symbol have a length which is
2247 dependent on the index of the symbol. So symbols which are
2248 used often in relocations should have a small index. */
2249
2250 /* First initialize the counters for each symbol. */
2251 for (i = 0; i < num_syms; i++)
2252 {
2253 /* Handle a section symbol; these have no pointers back to the
2254 SOM symbol info. So we just use the pointer field (udata)
2255 to hold the relocation count. */
2256 if (som_symbol_data (syms[i]) == NULL
2257 || syms[i]->flags & BSF_SECTION_SYM)
2258 {
2259 syms[i]->flags |= BSF_SECTION_SYM;
2260 syms[i]->udata = (PTR) 0;
2261 }
2262 else
2263 som_symbol_data (syms[i])->reloc_count = 0;
2264 }
2265
2266 /* Now that the counters are initialized, make a weighted count
2267 of how often a given symbol is used in a relocation. */
2268 for (section = abfd->sections; section != NULL; section = section->next)
2269 {
2270 int i;
2271
2272 /* Does this section have any relocations? */
2273 if (section->reloc_count <= 0)
2274 continue;
2275
2276 /* Walk through each relocation for this section. */
2277 for (i = 1; i < section->reloc_count; i++)
2278 {
2279 arelent *reloc = section->orelocation[i];
2280 int scale;
2281
2282 /* A relocation against a symbol in the *ABS* section really
2283 does not have a symbol. Likewise if the symbol isn't associated
2284 with any section. */
2285 if (reloc->sym_ptr_ptr == NULL
2286 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2287 continue;
2288
2289 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2290 and R_CODE_ONE_SYMBOL relocations to come first. These
2291 two relocations have single byte versions if the symbol
2292 index is very small. */
2293 if (reloc->howto->type == R_DP_RELATIVE
2294 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2295 scale = 2;
2296 else
2297 scale = 1;
2298
2299 /* Handle section symbols by ramming the count in the udata
2300 field. It will not be used and the count is very important
2301 for these symbols. */
2302 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2303 {
2304 (*reloc->sym_ptr_ptr)->udata =
2305 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2306 continue;
2307 }
2308
2309 /* A normal symbol. Increment the count. */
2310 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2311 }
2312 }
2313
2314 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2315
2316 /* Compute the symbol indexes, they will be needed by the relocation
2317 code. */
2318 for (i = 0; i < num_syms; i++)
2319 {
2320 /* A section symbol. Again, there is no pointer to backend symbol
2321 information, so we reuse (abuse) the udata field again. */
2322 if (syms[i]->flags & BSF_SECTION_SYM)
2323 syms[i]->udata = (PTR) i;
2324 else
2325 som_symbol_data (syms[i])->index = i;
2326 }
2327 }
2328
2329 static boolean
2330 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2331 bfd *abfd;
2332 unsigned long current_offset;
2333 unsigned int *total_reloc_sizep;
2334 {
2335 unsigned int i, j;
2336 /* Chunk of memory that we can use as buffer space, then throw
2337 away. */
2338 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2339 unsigned char *p;
2340 unsigned int total_reloc_size = 0;
2341 unsigned int subspace_reloc_size = 0;
2342 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2343 asection *section = abfd->sections;
2344
2345 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2346 p = tmp_space;
2347
2348 /* All the fixups for a particular subspace are emitted in a single
2349 stream. All the subspaces for a particular space are emitted
2350 as a single stream.
2351
2352 So, to get all the locations correct one must iterate through all the
2353 spaces, for each space iterate through its subspaces and output a
2354 fixups stream. */
2355 for (i = 0; i < num_spaces; i++)
2356 {
2357 asection *subsection;
2358
2359 /* Find a space. */
2360 while (!som_is_space (section))
2361 section = section->next;
2362
2363 /* Now iterate through each of its subspaces. */
2364 for (subsection = abfd->sections;
2365 subsection != NULL;
2366 subsection = subsection->next)
2367 {
2368 int reloc_offset, current_rounding_mode;
2369
2370 /* Find a subspace of this space. */
2371 if (!som_is_subspace (subsection)
2372 || !som_is_container (section, subsection))
2373 continue;
2374
2375 /* If this subspace does not have real data, then we are
2376 finised with it. */
2377 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2378 {
2379 som_section_data (subsection)->subspace_dict->fixup_request_index
2380 = -1;
2381 continue;
2382 }
2383
2384 /* This subspace has some relocations. Put the relocation stream
2385 index into the subspace record. */
2386 som_section_data (subsection)->subspace_dict->fixup_request_index
2387 = total_reloc_size;
2388
2389 /* To make life easier start over with a clean slate for
2390 each subspace. Seek to the start of the relocation stream
2391 for this subspace in preparation for writing out its fixup
2392 stream. */
2393 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2394 return false;
2395
2396 /* Buffer space has already been allocated. Just perform some
2397 initialization here. */
2398 p = tmp_space;
2399 subspace_reloc_size = 0;
2400 reloc_offset = 0;
2401 som_initialize_reloc_queue (reloc_queue);
2402 current_rounding_mode = R_N_MODE;
2403
2404 /* Translate each BFD relocation into one or more SOM
2405 relocations. */
2406 for (j = 0; j < subsection->reloc_count; j++)
2407 {
2408 arelent *bfd_reloc = subsection->orelocation[j];
2409 unsigned int skip;
2410 int sym_num;
2411
2412 /* Get the symbol number. Remember it's stored in a
2413 special place for section symbols. */
2414 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2415 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2416 else
2417 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2418
2419 /* If there is not enough room for the next couple relocations,
2420 then dump the current buffer contents now. Also reinitialize
2421 the relocation queue.
2422
2423 No single BFD relocation could ever translate into more
2424 than 100 bytes of SOM relocations (20bytes is probably the
2425 upper limit, but leave lots of space for growth). */
2426 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2427 {
2428 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2429 != p - tmp_space)
2430 return false;
2431
2432 p = tmp_space;
2433 som_initialize_reloc_queue (reloc_queue);
2434 }
2435
2436 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2437 skipped. */
2438 skip = bfd_reloc->address - reloc_offset;
2439 p = som_reloc_skip (abfd, skip, p,
2440 &subspace_reloc_size, reloc_queue);
2441
2442 /* Update reloc_offset for the next iteration.
2443
2444 Many relocations do not consume input bytes. They
2445 are markers, or set state necessary to perform some
2446 later relocation. */
2447 switch (bfd_reloc->howto->type)
2448 {
2449 /* This only needs to handle relocations that may be
2450 made by hppa_som_gen_reloc. */
2451 case R_ENTRY:
2452 case R_ALT_ENTRY:
2453 case R_EXIT:
2454 case R_N_MODE:
2455 case R_S_MODE:
2456 case R_D_MODE:
2457 case R_R_MODE:
2458 case R_FSEL:
2459 case R_LSEL:
2460 case R_RSEL:
2461 reloc_offset = bfd_reloc->address;
2462 break;
2463
2464 default:
2465 reloc_offset = bfd_reloc->address + 4;
2466 break;
2467 }
2468
2469 /* Now the actual relocation we care about. */
2470 switch (bfd_reloc->howto->type)
2471 {
2472 case R_PCREL_CALL:
2473 case R_ABS_CALL:
2474 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2475 bfd_reloc, sym_num, reloc_queue);
2476 break;
2477
2478 case R_CODE_ONE_SYMBOL:
2479 case R_DP_RELATIVE:
2480 /* Account for any addend. */
2481 if (bfd_reloc->addend)
2482 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2483 &subspace_reloc_size, reloc_queue);
2484
2485 if (sym_num < 0x20)
2486 {
2487 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2488 subspace_reloc_size += 1;
2489 p += 1;
2490 }
2491 else if (sym_num < 0x100)
2492 {
2493 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2494 bfd_put_8 (abfd, sym_num, p + 1);
2495 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2496 2, reloc_queue);
2497 }
2498 else if (sym_num < 0x10000000)
2499 {
2500 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2501 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2502 bfd_put_16 (abfd, sym_num, p + 2);
2503 p = try_prev_fixup (abfd, &subspace_reloc_size,
2504 p, 4, reloc_queue);
2505 }
2506 else
2507 abort ();
2508 break;
2509
2510 case R_DATA_ONE_SYMBOL:
2511 case R_DATA_PLABEL:
2512 case R_CODE_PLABEL:
2513 case R_DLT_REL:
2514 /* Account for any addend. */
2515 if (bfd_reloc->addend)
2516 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2517 &subspace_reloc_size, reloc_queue);
2518
2519 if (sym_num < 0x100)
2520 {
2521 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2522 bfd_put_8 (abfd, sym_num, p + 1);
2523 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2524 2, reloc_queue);
2525 }
2526 else if (sym_num < 0x10000000)
2527 {
2528 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2529 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2530 bfd_put_16 (abfd, sym_num, p + 2);
2531 p = try_prev_fixup (abfd, &subspace_reloc_size,
2532 p, 4, reloc_queue);
2533 }
2534 else
2535 abort ();
2536 break;
2537
2538 case R_ENTRY:
2539 {
2540 int tmp;
2541 arelent *tmp_reloc;
2542 bfd_put_8 (abfd, R_ENTRY, p);
2543
2544 /* R_ENTRY relocations have 64 bits of associated
2545 data. Unfortunately the addend field of a bfd
2546 relocation is only 32 bits. So, we split up
2547 the 64bit unwind information and store part in
2548 the R_ENTRY relocation, and the rest in the R_EXIT
2549 relocation. */
2550 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2551
2552 /* Find the next R_EXIT relocation. */
2553 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2554 {
2555 tmp_reloc = subsection->orelocation[tmp];
2556 if (tmp_reloc->howto->type == R_EXIT)
2557 break;
2558 }
2559
2560 if (tmp == subsection->reloc_count)
2561 abort ();
2562
2563 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2564 p = try_prev_fixup (abfd, &subspace_reloc_size,
2565 p, 9, reloc_queue);
2566 break;
2567 }
2568
2569 case R_N_MODE:
2570 case R_S_MODE:
2571 case R_D_MODE:
2572 case R_R_MODE:
2573 /* If this relocation requests the current rounding
2574 mode, then it is redundant. */
2575 if (bfd_reloc->howto->type != current_rounding_mode)
2576 {
2577 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2578 subspace_reloc_size += 1;
2579 p += 1;
2580 current_rounding_mode = bfd_reloc->howto->type;
2581 }
2582 break;
2583
2584 case R_EXIT:
2585 case R_ALT_ENTRY:
2586 case R_FSEL:
2587 case R_LSEL:
2588 case R_RSEL:
2589 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2590 subspace_reloc_size += 1;
2591 p += 1;
2592 break;
2593
2594 /* Put a "R_RESERVED" relocation in the stream if
2595 we hit something we do not understand. The linker
2596 will complain loudly if this ever happens. */
2597 default:
2598 bfd_put_8 (abfd, 0xff, p);
2599 subspace_reloc_size += 1;
2600 p += 1;
2601 break;
2602 }
2603 }
2604
2605 /* Last BFD relocation for a subspace has been processed.
2606 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2607 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2608 - reloc_offset,
2609 p, &subspace_reloc_size, reloc_queue);
2610
2611 /* Scribble out the relocations. */
2612 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2613 != p - tmp_space)
2614 return false;
2615 p = tmp_space;
2616
2617 total_reloc_size += subspace_reloc_size;
2618 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2619 = subspace_reloc_size;
2620 }
2621 section = section->next;
2622 }
2623 *total_reloc_sizep = total_reloc_size;
2624 return true;
2625 }
2626
2627 /* Write out the space/subspace string table. */
2628
2629 static boolean
2630 som_write_space_strings (abfd, current_offset, string_sizep)
2631 bfd *abfd;
2632 unsigned long current_offset;
2633 unsigned int *string_sizep;
2634 {
2635 /* Chunk of memory that we can use as buffer space, then throw
2636 away. */
2637 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2638 unsigned char *p;
2639 unsigned int strings_size = 0;
2640 asection *section;
2641
2642 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2643 p = tmp_space;
2644
2645 /* Seek to the start of the space strings in preparation for writing
2646 them out. */
2647 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2648 return false;
2649
2650 /* Walk through all the spaces and subspaces (order is not important)
2651 building up and writing string table entries for their names. */
2652 for (section = abfd->sections; section != NULL; section = section->next)
2653 {
2654 int length;
2655
2656 /* Only work with space/subspaces; avoid any other sections
2657 which might have been made (.text for example). */
2658 if (!som_is_space (section) && !som_is_subspace (section))
2659 continue;
2660
2661 /* Get the length of the space/subspace name. */
2662 length = strlen (section->name);
2663
2664 /* If there is not enough room for the next entry, then dump the
2665 current buffer contents now. Each entry will take 4 bytes to
2666 hold the string length + the string itself + null terminator. */
2667 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2668 {
2669 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2670 != p - tmp_space)
2671 return false;
2672 /* Reset to beginning of the buffer space. */
2673 p = tmp_space;
2674 }
2675
2676 /* First element in a string table entry is the length of the
2677 string. Alignment issues are already handled. */
2678 bfd_put_32 (abfd, length, p);
2679 p += 4;
2680 strings_size += 4;
2681
2682 /* Record the index in the space/subspace records. */
2683 if (som_is_space (section))
2684 som_section_data (section)->space_dict->name.n_strx = strings_size;
2685 else
2686 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2687
2688 /* Next comes the string itself + a null terminator. */
2689 strcpy (p, section->name);
2690 p += length + 1;
2691 strings_size += length + 1;
2692
2693 /* Always align up to the next word boundary. */
2694 while (strings_size % 4)
2695 {
2696 bfd_put_8 (abfd, 0, p);
2697 p++;
2698 strings_size++;
2699 }
2700 }
2701
2702 /* Done with the space/subspace strings. Write out any information
2703 contained in a partial block. */
2704 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2705 return false;
2706 *string_sizep = strings_size;
2707 return true;
2708 }
2709
2710 /* Write out the symbol string table. */
2711
2712 static boolean
2713 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2714 bfd *abfd;
2715 unsigned long current_offset;
2716 asymbol **syms;
2717 unsigned int num_syms;
2718 unsigned int *string_sizep;
2719 {
2720 unsigned int i;
2721
2722 /* Chunk of memory that we can use as buffer space, then throw
2723 away. */
2724 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2725 unsigned char *p;
2726 unsigned int strings_size = 0;
2727
2728 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2729 p = tmp_space;
2730
2731 /* Seek to the start of the space strings in preparation for writing
2732 them out. */
2733 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2734 return false;
2735
2736 for (i = 0; i < num_syms; i++)
2737 {
2738 int length = strlen (syms[i]->name);
2739
2740 /* If there is not enough room for the next entry, then dump the
2741 current buffer contents now. */
2742 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2743 {
2744 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2745 != p - tmp_space)
2746 return false;
2747 /* Reset to beginning of the buffer space. */
2748 p = tmp_space;
2749 }
2750
2751 /* First element in a string table entry is the length of the
2752 string. This must always be 4 byte aligned. This is also
2753 an appropriate time to fill in the string index field in the
2754 symbol table entry. */
2755 bfd_put_32 (abfd, length, p);
2756 strings_size += 4;
2757 p += 4;
2758
2759 /* Next comes the string itself + a null terminator. */
2760 strcpy (p, syms[i]->name);
2761
2762 /* ACK. FIXME. */
2763 syms[i]->name = (char *)strings_size;
2764 p += length + 1;
2765 strings_size += length + 1;
2766
2767 /* Always align up to the next word boundary. */
2768 while (strings_size % 4)
2769 {
2770 bfd_put_8 (abfd, 0, p);
2771 strings_size++;
2772 p++;
2773 }
2774 }
2775
2776 /* Scribble out any partial block. */
2777 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2778 return false;
2779
2780 *string_sizep = strings_size;
2781 return true;
2782 }
2783
2784 /* Compute variable information to be placed in the SOM headers,
2785 space/subspace dictionaries, relocation streams, etc. Begin
2786 writing parts of the object file. */
2787
2788 static boolean
2789 som_begin_writing (abfd)
2790 bfd *abfd;
2791 {
2792 unsigned long current_offset = 0;
2793 int strings_size = 0;
2794 unsigned int total_reloc_size = 0;
2795 unsigned long num_spaces, num_subspaces, num_syms, i;
2796 asection *section;
2797 asymbol **syms = bfd_get_outsymbols (abfd);
2798 unsigned int total_subspaces = 0;
2799 struct som_exec_auxhdr *exec_header;
2800
2801 /* The file header will always be first in an object file,
2802 everything else can be in random locations. To keep things
2803 "simple" BFD will lay out the object file in the manner suggested
2804 by the PRO ABI for PA-RISC Systems. */
2805
2806 /* Before any output can really begin offsets for all the major
2807 portions of the object file must be computed. So, starting
2808 with the initial file header compute (and sometimes write)
2809 each portion of the object file. */
2810
2811 /* Make room for the file header, it's contents are not complete
2812 yet, so it can not be written at this time. */
2813 current_offset += sizeof (struct header);
2814
2815 /* Any auxiliary headers will follow the file header. Right now
2816 we support only the copyright and version headers. */
2817 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2818 obj_som_file_hdr (abfd)->aux_header_size = 0;
2819 if (abfd->flags & (EXEC_P | DYNAMIC))
2820 {
2821 /* Parts of the exec header will be filled in later, so
2822 delay writing the header itself. Fill in the defaults,
2823 and write it later. */
2824 current_offset += sizeof (struct som_exec_auxhdr);
2825 obj_som_file_hdr (abfd)->aux_header_size
2826 += sizeof (struct som_exec_auxhdr);
2827 exec_header = obj_som_exec_hdr (abfd);
2828 exec_header->som_auxhdr.type = EXEC_AUX_ID;
2829 exec_header->som_auxhdr.length = 40;
2830 }
2831 if (obj_som_version_hdr (abfd) != NULL)
2832 {
2833 unsigned int len;
2834
2835 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2836 return false;
2837
2838 /* Write the aux_id structure and the string length. */
2839 len = sizeof (struct aux_id) + sizeof (unsigned int);
2840 obj_som_file_hdr (abfd)->aux_header_size += len;
2841 current_offset += len;
2842 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2843 return false;
2844
2845 /* Write the version string. */
2846 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2847 obj_som_file_hdr (abfd)->aux_header_size += len;
2848 current_offset += len;
2849 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2850 len, 1, abfd) != len)
2851 return false;
2852 }
2853
2854 if (obj_som_copyright_hdr (abfd) != NULL)
2855 {
2856 unsigned int len;
2857
2858 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2859 return false;
2860
2861 /* Write the aux_id structure and the string length. */
2862 len = sizeof (struct aux_id) + sizeof (unsigned int);
2863 obj_som_file_hdr (abfd)->aux_header_size += len;
2864 current_offset += len;
2865 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2866 return false;
2867
2868 /* Write the copyright string. */
2869 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2870 obj_som_file_hdr (abfd)->aux_header_size += len;
2871 current_offset += len;
2872 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2873 len, 1, abfd) != len)
2874 return false;
2875 }
2876
2877 /* Next comes the initialization pointers; we have no initialization
2878 pointers, so current offset does not change. */
2879 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2880 obj_som_file_hdr (abfd)->init_array_total = 0;
2881
2882 /* Next are the space records. These are fixed length records.
2883
2884 Count the number of spaces to determine how much room is needed
2885 in the object file for the space records.
2886
2887 The names of the spaces are stored in a separate string table,
2888 and the index for each space into the string table is computed
2889 below. Therefore, it is not possible to write the space headers
2890 at this time. */
2891 num_spaces = som_count_spaces (abfd);
2892 obj_som_file_hdr (abfd)->space_location = current_offset;
2893 obj_som_file_hdr (abfd)->space_total = num_spaces;
2894 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2895
2896 /* Next are the subspace records. These are fixed length records.
2897
2898 Count the number of subspaes to determine how much room is needed
2899 in the object file for the subspace records.
2900
2901 A variety if fields in the subspace record are still unknown at
2902 this time (index into string table, fixup stream location/size, etc). */
2903 num_subspaces = som_count_subspaces (abfd);
2904 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2905 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2906 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2907
2908 /* Next is the string table for the space/subspace names. We will
2909 build and write the string table on the fly. At the same time
2910 we will fill in the space/subspace name index fields. */
2911
2912 /* The string table needs to be aligned on a word boundary. */
2913 if (current_offset % 4)
2914 current_offset += (4 - (current_offset % 4));
2915
2916 /* Mark the offset of the space/subspace string table in the
2917 file header. */
2918 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2919
2920 /* Scribble out the space strings. */
2921 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2922 return false;
2923
2924 /* Record total string table size in the header and update the
2925 current offset. */
2926 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2927 current_offset += strings_size;
2928
2929 /* Next is the symbol table. These are fixed length records.
2930
2931 Count the number of symbols to determine how much room is needed
2932 in the object file for the symbol table.
2933
2934 The names of the symbols are stored in a separate string table,
2935 and the index for each symbol name into the string table is computed
2936 below. Therefore, it is not possible to write the symobl table
2937 at this time. */
2938 num_syms = bfd_get_symcount (abfd);
2939 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2940 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2941 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2942
2943 /* Do prep work before handling fixups. */
2944 som_prep_for_fixups (abfd, syms, num_syms);
2945
2946 /* Next comes the fixup stream which starts on a word boundary. */
2947 if (current_offset % 4)
2948 current_offset += (4 - (current_offset % 4));
2949 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2950
2951 /* Write the fixups and update fields in subspace headers which
2952 relate to the fixup stream. */
2953 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2954 return false;
2955
2956 /* Record the total size of the fixup stream in the file header. */
2957 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2958 current_offset += total_reloc_size;
2959
2960 /* Next are the symbol strings.
2961 Align them to a word boundary. */
2962 if (current_offset % 4)
2963 current_offset += (4 - (current_offset % 4));
2964 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2965
2966 /* Scribble out the symbol strings. */
2967 if (som_write_symbol_strings (abfd, current_offset, syms,
2968 num_syms, &strings_size)
2969 == false)
2970 return false;
2971
2972 /* Record total string table size in header and update the
2973 current offset. */
2974 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2975 current_offset += strings_size;
2976
2977 /* Next is the compiler records. We do not use these. */
2978 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2979 obj_som_file_hdr (abfd)->compiler_total = 0;
2980
2981 /* Now compute the file positions for the loadable subspaces, taking
2982 care to make sure everything stays properly aligned. */
2983
2984 section = abfd->sections;
2985 for (i = 0; i < num_spaces; i++)
2986 {
2987 asection *subsection;
2988 int first_subspace;
2989 unsigned int subspace_offset = 0;
2990
2991 /* Find a space. */
2992 while (!som_is_space (section))
2993 section = section->next;
2994
2995 first_subspace = 1;
2996 /* Now look for all its subspaces. */
2997 for (subsection = abfd->sections;
2998 subsection != NULL;
2999 subsection = subsection->next)
3000 {
3001
3002 if (!som_is_subspace (subsection)
3003 || !som_is_container (section, subsection)
3004 || (subsection->flags & SEC_ALLOC) == 0)
3005 continue;
3006
3007 /* If this is the first subspace in the space, and we are
3008 building an executable, then take care to make sure all
3009 the alignments are correct and update the exec header. */
3010 if (first_subspace
3011 && (abfd->flags & (EXEC_P | DYNAMIC)))
3012 {
3013 /* Demand paged executables have each space aligned to a
3014 page boundary. Sharable executables (write-protected
3015 text) have just the private (aka data & bss) space aligned
3016 to a page boundary. Ugh. Not true for HPUX.
3017
3018 The HPUX kernel requires the text to always be page aligned
3019 within the file regardless of the executable's type. */
3020 if (abfd->flags & (D_PAGED | DYNAMIC)
3021 || (subsection->flags & SEC_CODE)
3022 || ((abfd->flags & WP_TEXT)
3023 && (subsection->flags & SEC_DATA)))
3024 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3025
3026 /* Update the exec header. */
3027 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3028 {
3029 exec_header->exec_tmem = section->vma;
3030 exec_header->exec_tfile = current_offset;
3031 }
3032 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3033 {
3034 exec_header->exec_dmem = section->vma;
3035 exec_header->exec_dfile = current_offset;
3036 }
3037
3038 /* Keep track of exactly where we are within a particular
3039 space. This is necessary as the braindamaged HPUX
3040 loader will create holes between subspaces *and*
3041 subspace alignments are *NOT* preserved. What a crock. */
3042 subspace_offset = subsection->vma;
3043
3044 /* Only do this for the first subspace within each space. */
3045 first_subspace = 0;
3046 }
3047 else if (abfd->flags & (EXEC_P | DYNAMIC))
3048 {
3049 /* The braindamaged HPUX loader may have created a hole
3050 between two subspaces. It is *not* sufficient to use
3051 the alignment specifications within the subspaces to
3052 account for these holes -- I've run into at least one
3053 case where the loader left one code subspace unaligned
3054 in a final executable.
3055
3056 To combat this we keep a current offset within each space,
3057 and use the subspace vma fields to detect and preserve
3058 holes. What a crock!
3059
3060 ps. This is not necessary for unloadable space/subspaces. */
3061 current_offset += subsection->vma - subspace_offset;
3062 if (subsection->flags & SEC_CODE)
3063 exec_header->exec_tsize += subsection->vma - subspace_offset;
3064 else
3065 exec_header->exec_dsize += subsection->vma - subspace_offset;
3066 subspace_offset += subsection->vma - subspace_offset;
3067 }
3068
3069
3070 subsection->target_index = total_subspaces++;
3071 /* This is real data to be loaded from the file. */
3072 if (subsection->flags & SEC_LOAD)
3073 {
3074 /* Update the size of the code & data. */
3075 if (abfd->flags & (EXEC_P | DYNAMIC)
3076 && subsection->flags & SEC_CODE)
3077 exec_header->exec_tsize += subsection->_cooked_size;
3078 else if (abfd->flags & (EXEC_P | DYNAMIC)
3079 && subsection->flags & SEC_DATA)
3080 exec_header->exec_dsize += subsection->_cooked_size;
3081 som_section_data (subsection)->subspace_dict->file_loc_init_value
3082 = current_offset;
3083 subsection->filepos = current_offset;
3084 current_offset += bfd_section_size (abfd, subsection);
3085 subspace_offset += bfd_section_size (abfd, subsection);
3086 }
3087 /* Looks like uninitialized data. */
3088 else
3089 {
3090 /* Update the size of the bss section. */
3091 if (abfd->flags & (EXEC_P | DYNAMIC))
3092 exec_header->exec_bsize += subsection->_cooked_size;
3093
3094 som_section_data (subsection)->subspace_dict->file_loc_init_value
3095 = 0;
3096 som_section_data (subsection)->subspace_dict->
3097 initialization_length = 0;
3098 }
3099 }
3100 /* Goto the next section. */
3101 section = section->next;
3102 }
3103
3104 /* Finally compute the file positions for unloadable subspaces.
3105 If building an executable, start the unloadable stuff on its
3106 own page. */
3107
3108 if (abfd->flags & (EXEC_P | DYNAMIC))
3109 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3110
3111 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3112 section = abfd->sections;
3113 for (i = 0; i < num_spaces; i++)
3114 {
3115 asection *subsection;
3116
3117 /* Find a space. */
3118 while (!som_is_space (section))
3119 section = section->next;
3120
3121 if (abfd->flags & (EXEC_P | DYNAMIC))
3122 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3123
3124 /* Now look for all its subspaces. */
3125 for (subsection = abfd->sections;
3126 subsection != NULL;
3127 subsection = subsection->next)
3128 {
3129
3130 if (!som_is_subspace (subsection)
3131 || !som_is_container (section, subsection)
3132 || (subsection->flags & SEC_ALLOC) != 0)
3133 continue;
3134
3135 subsection->target_index = total_subspaces;
3136 /* This is real data to be loaded from the file. */
3137 if ((subsection->flags & SEC_LOAD) == 0)
3138 {
3139 som_section_data (subsection)->subspace_dict->file_loc_init_value
3140 = current_offset;
3141 subsection->filepos = current_offset;
3142 current_offset += bfd_section_size (abfd, subsection);
3143 }
3144 /* Looks like uninitialized data. */
3145 else
3146 {
3147 som_section_data (subsection)->subspace_dict->file_loc_init_value
3148 = 0;
3149 som_section_data (subsection)->subspace_dict->
3150 initialization_length = bfd_section_size (abfd, subsection);
3151 }
3152 }
3153 /* Goto the next section. */
3154 section = section->next;
3155 }
3156
3157 /* If building an executable, then make sure to seek to and write
3158 one byte at the end of the file to make sure any necessary
3159 zeros are filled in. Ugh. */
3160 if (abfd->flags & (EXEC_P | DYNAMIC))
3161 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3162 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3163 return false;
3164 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3165 return false;
3166
3167 obj_som_file_hdr (abfd)->unloadable_sp_size
3168 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3169
3170 /* Loader fixups are not supported in any way shape or form. */
3171 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3172 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3173
3174 /* Done. Store the total size of the SOM. */
3175 obj_som_file_hdr (abfd)->som_length = current_offset;
3176
3177 return true;
3178 }
3179
3180 /* Finally, scribble out the various headers to the disk. */
3181
3182 static boolean
3183 som_write_headers (abfd)
3184 bfd *abfd;
3185 {
3186 int num_spaces = som_count_spaces (abfd);
3187 int i;
3188 int subspace_index = 0;
3189 file_ptr location;
3190 asection *section;
3191
3192 /* Subspaces are written first so that we can set up information
3193 about them in their containing spaces as the subspace is written. */
3194
3195 /* Seek to the start of the subspace dictionary records. */
3196 location = obj_som_file_hdr (abfd)->subspace_location;
3197 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3198 return false;
3199
3200 section = abfd->sections;
3201 /* Now for each loadable space write out records for its subspaces. */
3202 for (i = 0; i < num_spaces; i++)
3203 {
3204 asection *subsection;
3205
3206 /* Find a space. */
3207 while (!som_is_space (section))
3208 section = section->next;
3209
3210 /* Now look for all its subspaces. */
3211 for (subsection = abfd->sections;
3212 subsection != NULL;
3213 subsection = subsection->next)
3214 {
3215
3216 /* Skip any section which does not correspond to a space
3217 or subspace. Or does not have SEC_ALLOC set (and therefore
3218 has no real bits on the disk). */
3219 if (!som_is_subspace (subsection)
3220 || !som_is_container (section, subsection)
3221 || (subsection->flags & SEC_ALLOC) == 0)
3222 continue;
3223
3224 /* If this is the first subspace for this space, then save
3225 the index of the subspace in its containing space. Also
3226 set "is_loadable" in the containing space. */
3227
3228 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3229 {
3230 som_section_data (section)->space_dict->is_loadable = 1;
3231 som_section_data (section)->space_dict->subspace_index
3232 = subspace_index;
3233 }
3234
3235 /* Increment the number of subspaces seen and the number of
3236 subspaces contained within the current space. */
3237 subspace_index++;
3238 som_section_data (section)->space_dict->subspace_quantity++;
3239
3240 /* Mark the index of the current space within the subspace's
3241 dictionary record. */
3242 som_section_data (subsection)->subspace_dict->space_index = i;
3243
3244 /* Dump the current subspace header. */
3245 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3246 sizeof (struct subspace_dictionary_record), 1, abfd)
3247 != sizeof (struct subspace_dictionary_record))
3248 return false;
3249 }
3250 /* Goto the next section. */
3251 section = section->next;
3252 }
3253
3254 /* Now repeat the process for unloadable subspaces. */
3255 section = abfd->sections;
3256 /* Now for each space write out records for its subspaces. */
3257 for (i = 0; i < num_spaces; i++)
3258 {
3259 asection *subsection;
3260
3261 /* Find a space. */
3262 while (!som_is_space (section))
3263 section = section->next;
3264
3265 /* Now look for all its subspaces. */
3266 for (subsection = abfd->sections;
3267 subsection != NULL;
3268 subsection = subsection->next)
3269 {
3270
3271 /* Skip any section which does not correspond to a space or
3272 subspace, or which SEC_ALLOC set (and therefore handled
3273 in the loadable spaces/subspaces code above). */
3274
3275 if (!som_is_subspace (subsection)
3276 || !som_is_container (section, subsection)
3277 || (subsection->flags & SEC_ALLOC) != 0)
3278 continue;
3279
3280 /* If this is the first subspace for this space, then save
3281 the index of the subspace in its containing space. Clear
3282 "is_loadable". */
3283
3284 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3285 {
3286 som_section_data (section)->space_dict->is_loadable = 0;
3287 som_section_data (section)->space_dict->subspace_index
3288 = subspace_index;
3289 }
3290
3291 /* Increment the number of subspaces seen and the number of
3292 subspaces contained within the current space. */
3293 som_section_data (section)->space_dict->subspace_quantity++;
3294 subspace_index++;
3295
3296 /* Mark the index of the current space within the subspace's
3297 dictionary record. */
3298 som_section_data (subsection)->subspace_dict->space_index = i;
3299
3300 /* Dump this subspace header. */
3301 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3302 sizeof (struct subspace_dictionary_record), 1, abfd)
3303 != sizeof (struct subspace_dictionary_record))
3304 return false;
3305 }
3306 /* Goto the next section. */
3307 section = section->next;
3308 }
3309
3310 /* All the subspace dictiondary records are written, and all the
3311 fields are set up in the space dictionary records.
3312
3313 Seek to the right location and start writing the space
3314 dictionary records. */
3315 location = obj_som_file_hdr (abfd)->space_location;
3316 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3317 return false;
3318
3319 section = abfd->sections;
3320 for (i = 0; i < num_spaces; i++)
3321 {
3322
3323 /* Find a space. */
3324 while (!som_is_space (section))
3325 section = section->next;
3326
3327 /* Dump its header */
3328 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3329 sizeof (struct space_dictionary_record), 1, abfd)
3330 != sizeof (struct space_dictionary_record))
3331 return false;
3332
3333 /* Goto the next section. */
3334 section = section->next;
3335 }
3336
3337 /* FIXME. This should really be conditional based on whether or not
3338 PA1.1 instructions/registers have been used.
3339
3340 Setting of the system_id has to happen very late now that copying of
3341 BFD private data happens *after* section contents are set. */
3342 if (abfd->flags & (EXEC_P | DYNAMIC))
3343 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3344 else
3345 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3346
3347 /* Compute the checksum for the file header just before writing
3348 the header to disk. */
3349 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3350
3351 /* Only thing left to do is write out the file header. It is always
3352 at location zero. Seek there and write it. */
3353 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3354 return false;
3355 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3356 sizeof (struct header), 1, abfd)
3357 != sizeof (struct header))
3358 return false;
3359
3360 /* Now write the exec header. */
3361 if (abfd->flags & (EXEC_P | DYNAMIC))
3362 {
3363 long tmp;
3364 struct som_exec_auxhdr *exec_header;
3365
3366 exec_header = obj_som_exec_hdr (abfd);
3367 exec_header->exec_entry = bfd_get_start_address (abfd);
3368 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3369
3370 /* Oh joys. Ram some of the BSS data into the DATA section
3371 to be compatable with how the hp linker makes objects
3372 (saves memory space). */
3373 tmp = exec_header->exec_dsize;
3374 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3375 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3376 if (exec_header->exec_bsize < 0)
3377 exec_header->exec_bsize = 0;
3378 exec_header->exec_dsize = tmp;
3379
3380 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3381 SEEK_SET) < 0)
3382 return false;
3383
3384 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3385 != AUX_HDR_SIZE)
3386 return false;
3387 }
3388 return true;
3389 }
3390
3391 /* Compute and return the checksum for a SOM file header. */
3392
3393 static unsigned long
3394 som_compute_checksum (abfd)
3395 bfd *abfd;
3396 {
3397 unsigned long checksum, count, i;
3398 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3399
3400 checksum = 0;
3401 count = sizeof (struct header) / sizeof (unsigned long);
3402 for (i = 0; i < count; i++)
3403 checksum ^= *(buffer + i);
3404
3405 return checksum;
3406 }
3407
3408 static void
3409 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3410 bfd *abfd;
3411 asymbol *sym;
3412 struct som_misc_symbol_info *info;
3413 {
3414 /* Initialize. */
3415 memset (info, 0, sizeof (struct som_misc_symbol_info));
3416
3417 /* The HP SOM linker requires detailed type information about
3418 all symbols (including undefined symbols!). Unfortunately,
3419 the type specified in an import/export statement does not
3420 always match what the linker wants. Severe braindamage. */
3421
3422 /* Section symbols will not have a SOM symbol type assigned to
3423 them yet. Assign all section symbols type ST_DATA. */
3424 if (sym->flags & BSF_SECTION_SYM)
3425 info->symbol_type = ST_DATA;
3426 else
3427 {
3428 /* Common symbols must have scope SS_UNSAT and type
3429 ST_STORAGE or the linker will choke. */
3430 if (bfd_is_com_section (sym->section))
3431 {
3432 info->symbol_scope = SS_UNSAT;
3433 info->symbol_type = ST_STORAGE;
3434 }
3435
3436 /* It is possible to have a symbol without an associated
3437 type. This happens if the user imported the symbol
3438 without a type and the symbol was never defined
3439 locally. If BSF_FUNCTION is set for this symbol, then
3440 assign it type ST_CODE (the HP linker requires undefined
3441 external functions to have type ST_CODE rather than ST_ENTRY). */
3442 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3443 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3444 && bfd_is_und_section (sym->section)
3445 && sym->flags & BSF_FUNCTION)
3446 info->symbol_type = ST_CODE;
3447
3448 /* Handle function symbols which were defined in this file.
3449 They should have type ST_ENTRY. Also retrieve the argument
3450 relocation bits from the SOM backend information. */
3451 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3452 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3453 && (sym->flags & BSF_FUNCTION))
3454 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3455 && (sym->flags & BSF_FUNCTION)))
3456 {
3457 info->symbol_type = ST_ENTRY;
3458 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3459 }
3460
3461 /* If the type is unknown at this point, it should be ST_DATA or
3462 ST_CODE (function/ST_ENTRY symbols were handled as special
3463 cases above). */
3464 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3465 {
3466 if (sym->section->flags & SEC_CODE)
3467 info->symbol_type = ST_CODE;
3468 else
3469 info->symbol_type = ST_DATA;
3470 }
3471
3472 /* From now on it's a very simple mapping. */
3473 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3474 info->symbol_type = ST_ABSOLUTE;
3475 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3476 info->symbol_type = ST_CODE;
3477 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3478 info->symbol_type = ST_DATA;
3479 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3480 info->symbol_type = ST_MILLICODE;
3481 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3482 info->symbol_type = ST_PLABEL;
3483 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3484 info->symbol_type = ST_PRI_PROG;
3485 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3486 info->symbol_type = ST_SEC_PROG;
3487 }
3488
3489 /* Now handle the symbol's scope. Exported data which is not
3490 in the common section has scope SS_UNIVERSAL. Note scope
3491 of common symbols was handled earlier! */
3492 if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3493 info->symbol_scope = SS_UNIVERSAL;
3494 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3495 else if (bfd_is_und_section (sym->section))
3496 info->symbol_scope = SS_UNSAT;
3497 /* Anything else which is not in the common section has scope
3498 SS_LOCAL. */
3499 else if (! bfd_is_com_section (sym->section))
3500 info->symbol_scope = SS_LOCAL;
3501
3502 /* Now set the symbol_info field. It has no real meaning
3503 for undefined or common symbols, but the HP linker will
3504 choke if it's not set to some "reasonable" value. We
3505 use zero as a reasonable value. */
3506 if (bfd_is_com_section (sym->section)
3507 || bfd_is_und_section (sym->section)
3508 || bfd_is_abs_section (sym->section))
3509 info->symbol_info = 0;
3510 /* For all other symbols, the symbol_info field contains the
3511 subspace index of the space this symbol is contained in. */
3512 else
3513 info->symbol_info = sym->section->target_index;
3514
3515 /* Set the symbol's value. */
3516 info->symbol_value = sym->value + sym->section->vma;
3517 }
3518
3519 /* Build and write, in one big chunk, the entire symbol table for
3520 this BFD. */
3521
3522 static boolean
3523 som_build_and_write_symbol_table (abfd)
3524 bfd *abfd;
3525 {
3526 unsigned int num_syms = bfd_get_symcount (abfd);
3527 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3528 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3529 struct symbol_dictionary_record *som_symtab = NULL;
3530 int i, symtab_size;
3531
3532 /* Compute total symbol table size and allocate a chunk of memory
3533 to hold the symbol table as we build it. */
3534 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3535 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3536 if (som_symtab == NULL && symtab_size != 0)
3537 {
3538 bfd_set_error (bfd_error_no_memory);
3539 goto error_return;
3540 }
3541 memset (som_symtab, 0, symtab_size);
3542
3543 /* Walk over each symbol. */
3544 for (i = 0; i < num_syms; i++)
3545 {
3546 struct som_misc_symbol_info info;
3547
3548 /* This is really an index into the symbol strings table.
3549 By the time we get here, the index has already been
3550 computed and stored into the name field in the BFD symbol. */
3551 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3552
3553 /* Derive SOM information from the BFD symbol. */
3554 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3555
3556 /* Now use it. */
3557 som_symtab[i].symbol_type = info.symbol_type;
3558 som_symtab[i].symbol_scope = info.symbol_scope;
3559 som_symtab[i].arg_reloc = info.arg_reloc;
3560 som_symtab[i].symbol_info = info.symbol_info;
3561 som_symtab[i].symbol_value = info.symbol_value;
3562 }
3563
3564 /* Everything is ready, seek to the right location and
3565 scribble out the symbol table. */
3566 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3567 return false;
3568
3569 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3570 goto error_return;
3571
3572 if (som_symtab != NULL)
3573 free (som_symtab);
3574 return true;
3575 error_return:
3576 if (som_symtab != NULL)
3577 free (som_symtab);
3578 return false;
3579 }
3580
3581 /* Write an object in SOM format. */
3582
3583 static boolean
3584 som_write_object_contents (abfd)
3585 bfd *abfd;
3586 {
3587 if (abfd->output_has_begun == false)
3588 {
3589 /* Set up fixed parts of the file, space, and subspace headers.
3590 Notify the world that output has begun. */
3591 som_prep_headers (abfd);
3592 abfd->output_has_begun = true;
3593 /* Start writing the object file. This include all the string
3594 tables, fixup streams, and other portions of the object file. */
3595 som_begin_writing (abfd);
3596 }
3597
3598 /* Now that the symbol table information is complete, build and
3599 write the symbol table. */
3600 if (som_build_and_write_symbol_table (abfd) == false)
3601 return false;
3602
3603 return (som_write_headers (abfd));
3604 }
3605
3606 \f
3607 /* Read and save the string table associated with the given BFD. */
3608
3609 static boolean
3610 som_slurp_string_table (abfd)
3611 bfd *abfd;
3612 {
3613 char *stringtab;
3614
3615 /* Use the saved version if its available. */
3616 if (obj_som_stringtab (abfd) != NULL)
3617 return true;
3618
3619 /* I don't think this can currently happen, and I'm not sure it should
3620 really be an error, but it's better than getting unpredictable results
3621 from the host's malloc when passed a size of zero. */
3622 if (obj_som_stringtab_size (abfd) == 0)
3623 {
3624 bfd_set_error (bfd_error_no_symbols);
3625 return false;
3626 }
3627
3628 /* Allocate and read in the string table. */
3629 stringtab = malloc (obj_som_stringtab_size (abfd));
3630 if (stringtab == NULL)
3631 {
3632 bfd_set_error (bfd_error_no_memory);
3633 return false;
3634 }
3635
3636 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3637 return false;
3638
3639 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3640 != obj_som_stringtab_size (abfd))
3641 return false;
3642
3643 /* Save our results and return success. */
3644 obj_som_stringtab (abfd) = stringtab;
3645 return true;
3646 }
3647
3648 /* Return the amount of data (in bytes) required to hold the symbol
3649 table for this object. */
3650
3651 static long
3652 som_get_symtab_upper_bound (abfd)
3653 bfd *abfd;
3654 {
3655 if (!som_slurp_symbol_table (abfd))
3656 return -1;
3657
3658 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3659 }
3660
3661 /* Convert from a SOM subspace index to a BFD section. */
3662
3663 static asection *
3664 bfd_section_from_som_symbol (abfd, symbol)
3665 bfd *abfd;
3666 struct symbol_dictionary_record *symbol;
3667 {
3668 asection *section;
3669
3670 /* The meaning of the symbol_info field changes for functions
3671 within executables. So only use the quick symbol_info mapping for
3672 incomplete objects and non-function symbols in executables. */
3673 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3674 || (symbol->symbol_type != ST_ENTRY
3675 && symbol->symbol_type != ST_PRI_PROG
3676 && symbol->symbol_type != ST_SEC_PROG
3677 && symbol->symbol_type != ST_MILLICODE))
3678 {
3679 unsigned int index = symbol->symbol_info;
3680 for (section = abfd->sections; section != NULL; section = section->next)
3681 if (section->target_index == index)
3682 return section;
3683
3684 /* Could be a symbol from an external library (such as an OMOS
3685 shared library). Don't abort. */
3686 return bfd_abs_section_ptr;
3687
3688 }
3689 else
3690 {
3691 unsigned int value = symbol->symbol_value;
3692
3693 /* For executables we will have to use the symbol's address and
3694 find out what section would contain that address. Yuk. */
3695 for (section = abfd->sections; section; section = section->next)
3696 {
3697 if (value >= section->vma
3698 && value <= section->vma + section->_cooked_size)
3699 return section;
3700 }
3701
3702 /* Could be a symbol from an external library (such as an OMOS
3703 shared library). Don't abort. */
3704 return bfd_abs_section_ptr;
3705
3706 }
3707 }
3708
3709 /* Read and save the symbol table associated with the given BFD. */
3710
3711 static unsigned int
3712 som_slurp_symbol_table (abfd)
3713 bfd *abfd;
3714 {
3715 int symbol_count = bfd_get_symcount (abfd);
3716 int symsize = sizeof (struct symbol_dictionary_record);
3717 char *stringtab;
3718 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3719 som_symbol_type *sym, *symbase;
3720
3721 /* Return saved value if it exists. */
3722 if (obj_som_symtab (abfd) != NULL)
3723 goto successful_return;
3724
3725 /* Special case. This is *not* an error. */
3726 if (symbol_count == 0)
3727 goto successful_return;
3728
3729 if (!som_slurp_string_table (abfd))
3730 goto error_return;
3731
3732 stringtab = obj_som_stringtab (abfd);
3733
3734 symbase = (som_symbol_type *)
3735 malloc (symbol_count * sizeof (som_symbol_type));
3736 if (symbase == NULL)
3737 {
3738 bfd_set_error (bfd_error_no_memory);
3739 goto error_return;
3740 }
3741
3742 /* Read in the external SOM representation. */
3743 buf = malloc (symbol_count * symsize);
3744 if (buf == NULL && symbol_count * symsize != 0)
3745 {
3746 bfd_set_error (bfd_error_no_memory);
3747 goto error_return;
3748 }
3749 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3750 goto error_return;
3751 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3752 != symbol_count * symsize)
3753 goto error_return;
3754
3755 /* Iterate over all the symbols and internalize them. */
3756 endbufp = buf + symbol_count;
3757 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3758 {
3759
3760 /* I don't think we care about these. */
3761 if (bufp->symbol_type == ST_SYM_EXT
3762 || bufp->symbol_type == ST_ARG_EXT)
3763 continue;
3764
3765 /* Set some private data we care about. */
3766 if (bufp->symbol_type == ST_NULL)
3767 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3768 else if (bufp->symbol_type == ST_ABSOLUTE)
3769 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3770 else if (bufp->symbol_type == ST_DATA)
3771 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3772 else if (bufp->symbol_type == ST_CODE)
3773 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3774 else if (bufp->symbol_type == ST_PRI_PROG)
3775 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3776 else if (bufp->symbol_type == ST_SEC_PROG)
3777 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3778 else if (bufp->symbol_type == ST_ENTRY)
3779 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3780 else if (bufp->symbol_type == ST_MILLICODE)
3781 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3782 else if (bufp->symbol_type == ST_PLABEL)
3783 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3784 else
3785 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3786 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3787
3788 /* Some reasonable defaults. */
3789 sym->symbol.the_bfd = abfd;
3790 sym->symbol.name = bufp->name.n_strx + stringtab;
3791 sym->symbol.value = bufp->symbol_value;
3792 sym->symbol.section = 0;
3793 sym->symbol.flags = 0;
3794
3795 switch (bufp->symbol_type)
3796 {
3797 case ST_ENTRY:
3798 case ST_MILLICODE:
3799 sym->symbol.flags |= BSF_FUNCTION;
3800 sym->symbol.value &= ~0x3;
3801 break;
3802
3803 case ST_STUB:
3804 case ST_CODE:
3805 case ST_PRI_PROG:
3806 case ST_SEC_PROG:
3807 sym->symbol.value &= ~0x3;
3808 /* If the symbol's scope is ST_UNSAT, then these are
3809 undefined function symbols. */
3810 if (bufp->symbol_scope == SS_UNSAT)
3811 sym->symbol.flags |= BSF_FUNCTION;
3812
3813
3814 default:
3815 break;
3816 }
3817
3818 /* Handle scoping and section information. */
3819 switch (bufp->symbol_scope)
3820 {
3821 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3822 so the section associated with this symbol can't be known. */
3823 case SS_EXTERNAL:
3824 if (bufp->symbol_type != ST_STORAGE)
3825 sym->symbol.section = bfd_und_section_ptr;
3826 else
3827 sym->symbol.section = bfd_com_section_ptr;
3828 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3829 break;
3830
3831 case SS_UNSAT:
3832 if (bufp->symbol_type != ST_STORAGE)
3833 sym->symbol.section = bfd_und_section_ptr;
3834 else
3835 sym->symbol.section = bfd_com_section_ptr;
3836 break;
3837
3838 case SS_UNIVERSAL:
3839 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3840 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3841 sym->symbol.value -= sym->symbol.section->vma;
3842 break;
3843
3844 #if 0
3845 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3846 Sound dumb? It is. */
3847 case SS_GLOBAL:
3848 #endif
3849 case SS_LOCAL:
3850 sym->symbol.flags |= BSF_LOCAL;
3851 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3852 sym->symbol.value -= sym->symbol.section->vma;
3853 break;
3854 }
3855
3856 /* Mark section symbols and symbols used by the debugger.
3857 Note $START$ is a magic code symbol, NOT a section symbol. */
3858 if (sym->symbol.name[0] == '$'
3859 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
3860 && strcmp (sym->symbol.name, "$START$"))
3861 sym->symbol.flags |= BSF_SECTION_SYM;
3862 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3863 {
3864 sym->symbol.flags |= BSF_SECTION_SYM;
3865 sym->symbol.name = sym->symbol.section->name;
3866 }
3867 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3868 sym->symbol.flags |= BSF_DEBUGGING;
3869
3870 /* Note increment at bottom of loop, since we skip some symbols
3871 we can not include it as part of the for statement. */
3872 sym++;
3873 }
3874
3875 /* Save our results and return success. */
3876 obj_som_symtab (abfd) = symbase;
3877 successful_return:
3878 if (buf != NULL)
3879 free (buf);
3880 return (true);
3881
3882 error_return:
3883 if (buf != NULL)
3884 free (buf);
3885 return false;
3886 }
3887
3888 /* Canonicalize a SOM symbol table. Return the number of entries
3889 in the symbol table. */
3890
3891 static long
3892 som_get_symtab (abfd, location)
3893 bfd *abfd;
3894 asymbol **location;
3895 {
3896 int i;
3897 som_symbol_type *symbase;
3898
3899 if (!som_slurp_symbol_table (abfd))
3900 return -1;
3901
3902 i = bfd_get_symcount (abfd);
3903 symbase = obj_som_symtab (abfd);
3904
3905 for (; i > 0; i--, location++, symbase++)
3906 *location = &symbase->symbol;
3907
3908 /* Final null pointer. */
3909 *location = 0;
3910 return (bfd_get_symcount (abfd));
3911 }
3912
3913 /* Make a SOM symbol. There is nothing special to do here. */
3914
3915 static asymbol *
3916 som_make_empty_symbol (abfd)
3917 bfd *abfd;
3918 {
3919 som_symbol_type *new =
3920 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3921 if (new == NULL)
3922 {
3923 bfd_set_error (bfd_error_no_memory);
3924 return 0;
3925 }
3926 new->symbol.the_bfd = abfd;
3927
3928 return &new->symbol;
3929 }
3930
3931 /* Print symbol information. */
3932
3933 static void
3934 som_print_symbol (ignore_abfd, afile, symbol, how)
3935 bfd *ignore_abfd;
3936 PTR afile;
3937 asymbol *symbol;
3938 bfd_print_symbol_type how;
3939 {
3940 FILE *file = (FILE *) afile;
3941 switch (how)
3942 {
3943 case bfd_print_symbol_name:
3944 fprintf (file, "%s", symbol->name);
3945 break;
3946 case bfd_print_symbol_more:
3947 fprintf (file, "som ");
3948 fprintf_vma (file, symbol->value);
3949 fprintf (file, " %lx", (long) symbol->flags);
3950 break;
3951 case bfd_print_symbol_all:
3952 {
3953 CONST char *section_name;
3954 section_name = symbol->section ? symbol->section->name : "(*none*)";
3955 bfd_print_symbol_vandf ((PTR) file, symbol);
3956 fprintf (file, " %s\t%s", section_name, symbol->name);
3957 break;
3958 }
3959 }
3960 }
3961
3962 static boolean
3963 som_bfd_is_local_label (abfd, sym)
3964 bfd *abfd;
3965 asymbol *sym;
3966 {
3967 return (sym->name[0] == 'L' && sym->name[1] == '$');
3968 }
3969
3970 /* Count or process variable-length SOM fixup records.
3971
3972 To avoid code duplication we use this code both to compute the number
3973 of relocations requested by a stream, and to internalize the stream.
3974
3975 When computing the number of relocations requested by a stream the
3976 variables rptr, section, and symbols have no meaning.
3977
3978 Return the number of relocations requested by the fixup stream. When
3979 not just counting
3980
3981 This needs at least two or three more passes to get it cleaned up. */
3982
3983 static unsigned int
3984 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3985 unsigned char *fixup;
3986 unsigned int end;
3987 arelent *internal_relocs;
3988 asection *section;
3989 asymbol **symbols;
3990 boolean just_count;
3991 {
3992 unsigned int op, varname;
3993 unsigned char *end_fixups = &fixup[end];
3994 const struct fixup_format *fp;
3995 char *cp;
3996 unsigned char *save_fixup;
3997 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
3998 const int *subop;
3999 arelent *rptr= internal_relocs;
4000 unsigned int offset = 0;
4001
4002 #define var(c) variables[(c) - 'A']
4003 #define push(v) (*sp++ = (v))
4004 #define pop() (*--sp)
4005 #define emptystack() (sp == stack)
4006
4007 som_initialize_reloc_queue (reloc_queue);
4008 memset (variables, 0, sizeof (variables));
4009 memset (stack, 0, sizeof (stack));
4010 count = 0;
4011 prev_fixup = 0;
4012 saved_unwind_bits = 0;
4013 sp = stack;
4014
4015 while (fixup < end_fixups)
4016 {
4017
4018 /* Save pointer to the start of this fixup. We'll use
4019 it later to determine if it is necessary to put this fixup
4020 on the queue. */
4021 save_fixup = fixup;
4022
4023 /* Get the fixup code and its associated format. */
4024 op = *fixup++;
4025 fp = &som_fixup_formats[op];
4026
4027 /* Handle a request for a previous fixup. */
4028 if (*fp->format == 'P')
4029 {
4030 /* Get pointer to the beginning of the prev fixup, move
4031 the repeated fixup to the head of the queue. */
4032 fixup = reloc_queue[fp->D].reloc;
4033 som_reloc_queue_fix (reloc_queue, fp->D);
4034 prev_fixup = 1;
4035
4036 /* Get the fixup code and its associated format. */
4037 op = *fixup++;
4038 fp = &som_fixup_formats[op];
4039 }
4040
4041 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4042 if (! just_count
4043 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4044 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4045 {
4046 rptr->address = offset;
4047 rptr->howto = &som_hppa_howto_table[op];
4048 rptr->addend = 0;
4049 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4050 }
4051
4052 /* Set default input length to 0. Get the opcode class index
4053 into D. */
4054 var ('L') = 0;
4055 var ('D') = fp->D;
4056 var ('U') = saved_unwind_bits;
4057
4058 /* Get the opcode format. */
4059 cp = fp->format;
4060
4061 /* Process the format string. Parsing happens in two phases,
4062 parse RHS, then assign to LHS. Repeat until no more
4063 characters in the format string. */
4064 while (*cp)
4065 {
4066 /* The variable this pass is going to compute a value for. */
4067 varname = *cp++;
4068
4069 /* Start processing RHS. Continue until a NULL or '=' is found. */
4070 do
4071 {
4072 c = *cp++;
4073
4074 /* If this is a variable, push it on the stack. */
4075 if (isupper (c))
4076 push (var (c));
4077
4078 /* If this is a lower case letter, then it represents
4079 additional data from the fixup stream to be pushed onto
4080 the stack. */
4081 else if (islower (c))
4082 {
4083 for (v = 0; c > 'a'; --c)
4084 v = (v << 8) | *fixup++;
4085 push (v);
4086 }
4087
4088 /* A decimal constant. Push it on the stack. */
4089 else if (isdigit (c))
4090 {
4091 v = c - '0';
4092 while (isdigit (*cp))
4093 v = (v * 10) + (*cp++ - '0');
4094 push (v);
4095 }
4096 else
4097
4098 /* An operator. Pop two two values from the stack and
4099 use them as operands to the given operation. Push
4100 the result of the operation back on the stack. */
4101 switch (c)
4102 {
4103 case '+':
4104 v = pop ();
4105 v += pop ();
4106 push (v);
4107 break;
4108 case '*':
4109 v = pop ();
4110 v *= pop ();
4111 push (v);
4112 break;
4113 case '<':
4114 v = pop ();
4115 v = pop () << v;
4116 push (v);
4117 break;
4118 default:
4119 abort ();
4120 }
4121 }
4122 while (*cp && *cp != '=');
4123
4124 /* Move over the equal operator. */
4125 cp++;
4126
4127 /* Pop the RHS off the stack. */
4128 c = pop ();
4129
4130 /* Perform the assignment. */
4131 var (varname) = c;
4132
4133 /* Handle side effects. and special 'O' stack cases. */
4134 switch (varname)
4135 {
4136 /* Consume some bytes from the input space. */
4137 case 'L':
4138 offset += c;
4139 break;
4140 /* A symbol to use in the relocation. Make a note
4141 of this if we are not just counting. */
4142 case 'S':
4143 if (! just_count)
4144 rptr->sym_ptr_ptr = &symbols[c];
4145 break;
4146 /* Handle the linker expression stack. */
4147 case 'O':
4148 switch (op)
4149 {
4150 case R_COMP1:
4151 subop = comp1_opcodes;
4152 break;
4153 case R_COMP2:
4154 subop = comp2_opcodes;
4155 break;
4156 case R_COMP3:
4157 subop = comp3_opcodes;
4158 break;
4159 default:
4160 abort ();
4161 }
4162 while (*subop <= (unsigned char) c)
4163 ++subop;
4164 --subop;
4165 break;
4166 /* The lower 32unwind bits must be persistent. */
4167 case 'U':
4168 saved_unwind_bits = var ('U');
4169 break;
4170
4171 default:
4172 break;
4173 }
4174 }
4175
4176 /* If we used a previous fixup, clean up after it. */
4177 if (prev_fixup)
4178 {
4179 fixup = save_fixup + 1;
4180 prev_fixup = 0;
4181 }
4182 /* Queue it. */
4183 else if (fixup > save_fixup + 1)
4184 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4185
4186 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4187 fixups to BFD. */
4188 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4189 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4190 {
4191 /* Done with a single reloction. Loop back to the top. */
4192 if (! just_count)
4193 {
4194 if (som_hppa_howto_table[op].type == R_ENTRY)
4195 rptr->addend = var ('T');
4196 else if (som_hppa_howto_table[op].type == R_EXIT)
4197 rptr->addend = var ('U');
4198 else
4199 rptr->addend = var ('V');
4200 rptr++;
4201 }
4202 count++;
4203 /* Now that we've handled a "full" relocation, reset
4204 some state. */
4205 memset (variables, 0, sizeof (variables));
4206 memset (stack, 0, sizeof (stack));
4207 }
4208 }
4209 return count;
4210
4211 #undef var
4212 #undef push
4213 #undef pop
4214 #undef emptystack
4215 }
4216
4217 /* Read in the relocs (aka fixups in SOM terms) for a section.
4218
4219 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4220 set to true to indicate it only needs a count of the number
4221 of actual relocations. */
4222
4223 static boolean
4224 som_slurp_reloc_table (abfd, section, symbols, just_count)
4225 bfd *abfd;
4226 asection *section;
4227 asymbol **symbols;
4228 boolean just_count;
4229 {
4230 char *external_relocs;
4231 unsigned int fixup_stream_size;
4232 arelent *internal_relocs;
4233 unsigned int num_relocs;
4234
4235 fixup_stream_size = som_section_data (section)->reloc_size;
4236 /* If there were no relocations, then there is nothing to do. */
4237 if (section->reloc_count == 0)
4238 return true;
4239
4240 /* If reloc_count is -1, then the relocation stream has not been
4241 parsed. We must do so now to know how many relocations exist. */
4242 if (section->reloc_count == -1)
4243 {
4244 external_relocs = (char *) malloc (fixup_stream_size);
4245 if (external_relocs == (char *) NULL)
4246 {
4247 bfd_set_error (bfd_error_no_memory);
4248 return false;
4249 }
4250 /* Read in the external forms. */
4251 if (bfd_seek (abfd,
4252 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4253 SEEK_SET)
4254 != 0)
4255 return false;
4256 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4257 != fixup_stream_size)
4258 return false;
4259
4260 /* Let callers know how many relocations found.
4261 also save the relocation stream as we will
4262 need it again. */
4263 section->reloc_count = som_set_reloc_info (external_relocs,
4264 fixup_stream_size,
4265 NULL, NULL, NULL, true);
4266
4267 som_section_data (section)->reloc_stream = external_relocs;
4268 }
4269
4270 /* If the caller only wanted a count, then return now. */
4271 if (just_count)
4272 return true;
4273
4274 num_relocs = section->reloc_count;
4275 external_relocs = som_section_data (section)->reloc_stream;
4276 /* Return saved information about the relocations if it is available. */
4277 if (section->relocation != (arelent *) NULL)
4278 return true;
4279
4280 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4281 if (internal_relocs == (arelent *) NULL)
4282 {
4283 bfd_set_error (bfd_error_no_memory);
4284 return false;
4285 }
4286
4287 /* Process and internalize the relocations. */
4288 som_set_reloc_info (external_relocs, fixup_stream_size,
4289 internal_relocs, section, symbols, false);
4290
4291 /* Save our results and return success. */
4292 section->relocation = internal_relocs;
4293 return (true);
4294 }
4295
4296 /* Return the number of bytes required to store the relocation
4297 information associated with the given section. */
4298
4299 static long
4300 som_get_reloc_upper_bound (abfd, asect)
4301 bfd *abfd;
4302 sec_ptr asect;
4303 {
4304 /* If section has relocations, then read in the relocation stream
4305 and parse it to determine how many relocations exist. */
4306 if (asect->flags & SEC_RELOC)
4307 {
4308 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4309 return false;
4310 return (asect->reloc_count + 1) * sizeof (arelent);
4311 }
4312 /* There are no relocations. */
4313 return 0;
4314 }
4315
4316 /* Convert relocations from SOM (external) form into BFD internal
4317 form. Return the number of relocations. */
4318
4319 static long
4320 som_canonicalize_reloc (abfd, section, relptr, symbols)
4321 bfd *abfd;
4322 sec_ptr section;
4323 arelent **relptr;
4324 asymbol **symbols;
4325 {
4326 arelent *tblptr;
4327 int count;
4328
4329 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4330 return -1;
4331
4332 count = section->reloc_count;
4333 tblptr = section->relocation;
4334
4335 while (count--)
4336 *relptr++ = tblptr++;
4337
4338 *relptr = (arelent *) NULL;
4339 return section->reloc_count;
4340 }
4341
4342 extern const bfd_target som_vec;
4343
4344 /* A hook to set up object file dependent section information. */
4345
4346 static boolean
4347 som_new_section_hook (abfd, newsect)
4348 bfd *abfd;
4349 asection *newsect;
4350 {
4351 newsect->used_by_bfd =
4352 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4353 if (!newsect->used_by_bfd)
4354 {
4355 bfd_set_error (bfd_error_no_memory);
4356 return false;
4357 }
4358 newsect->alignment_power = 3;
4359
4360 /* We allow more than three sections internally */
4361 return true;
4362 }
4363
4364 /* Copy any private info we understand from the input section
4365 to the output section. */
4366 static boolean
4367 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4368 bfd *ibfd;
4369 asection *isection;
4370 bfd *obfd;
4371 asection *osection;
4372 {
4373 /* One day we may try to grok other private data. */
4374 if (ibfd->xvec->flavour != bfd_target_som_flavour
4375 || obfd->xvec->flavour != bfd_target_som_flavour
4376 || (!som_is_space (isection) && !som_is_subspace (isection)))
4377 return false;
4378
4379 som_section_data (osection)->copy_data
4380 = (struct som_copyable_section_data_struct *)
4381 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4382 if (som_section_data (osection)->copy_data == NULL)
4383 {
4384 bfd_set_error (bfd_error_no_memory);
4385 return false;
4386 }
4387
4388 memcpy (som_section_data (osection)->copy_data,
4389 som_section_data (isection)->copy_data,
4390 sizeof (struct som_copyable_section_data_struct));
4391
4392 /* Reparent if necessary. */
4393 if (som_section_data (osection)->copy_data->container)
4394 som_section_data (osection)->copy_data->container =
4395 som_section_data (osection)->copy_data->container->output_section;
4396
4397 return true;
4398 }
4399
4400 /* Copy any private info we understand from the input bfd
4401 to the output bfd. */
4402
4403 static boolean
4404 som_bfd_copy_private_bfd_data (ibfd, obfd)
4405 bfd *ibfd, *obfd;
4406 {
4407 /* One day we may try to grok other private data. */
4408 if (ibfd->xvec->flavour != bfd_target_som_flavour
4409 || obfd->xvec->flavour != bfd_target_som_flavour)
4410 return false;
4411
4412 /* Allocate some memory to hold the data we need. */
4413 obj_som_exec_data (obfd) = (struct som_exec_data *)
4414 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4415 if (obj_som_exec_data (obfd) == NULL)
4416 {
4417 bfd_set_error (bfd_error_no_memory);
4418 return false;
4419 }
4420
4421 /* Now copy the data. */
4422 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4423 sizeof (struct som_exec_data));
4424
4425 return true;
4426 }
4427
4428 /* Set backend info for sections which can not be described
4429 in the BFD data structures. */
4430
4431 boolean
4432 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4433 asection *section;
4434 int defined;
4435 int private;
4436 unsigned int sort_key;
4437 int spnum;
4438 {
4439 /* Allocate memory to hold the magic information. */
4440 if (som_section_data (section)->copy_data == NULL)
4441 {
4442 som_section_data (section)->copy_data
4443 = (struct som_copyable_section_data_struct *)
4444 bfd_zalloc (section->owner,
4445 sizeof (struct som_copyable_section_data_struct));
4446 if (som_section_data (section)->copy_data == NULL)
4447 {
4448 bfd_set_error (bfd_error_no_memory);
4449 return false;
4450 }
4451 }
4452 som_section_data (section)->copy_data->sort_key = sort_key;
4453 som_section_data (section)->copy_data->is_defined = defined;
4454 som_section_data (section)->copy_data->is_private = private;
4455 som_section_data (section)->copy_data->container = section;
4456 som_section_data (section)->copy_data->space_number = spnum;
4457 return true;
4458 }
4459
4460 /* Set backend info for subsections which can not be described
4461 in the BFD data structures. */
4462
4463 boolean
4464 bfd_som_set_subsection_attributes (section, container, access,
4465 sort_key, quadrant)
4466 asection *section;
4467 asection *container;
4468 int access;
4469 unsigned int sort_key;
4470 int quadrant;
4471 {
4472 /* Allocate memory to hold the magic information. */
4473 if (som_section_data (section)->copy_data == NULL)
4474 {
4475 som_section_data (section)->copy_data
4476 = (struct som_copyable_section_data_struct *)
4477 bfd_zalloc (section->owner,
4478 sizeof (struct som_copyable_section_data_struct));
4479 if (som_section_data (section)->copy_data == NULL)
4480 {
4481 bfd_set_error (bfd_error_no_memory);
4482 return false;
4483 }
4484 }
4485 som_section_data (section)->copy_data->sort_key = sort_key;
4486 som_section_data (section)->copy_data->access_control_bits = access;
4487 som_section_data (section)->copy_data->quadrant = quadrant;
4488 som_section_data (section)->copy_data->container = container;
4489 return true;
4490 }
4491
4492 /* Set the full SOM symbol type. SOM needs far more symbol information
4493 than any other object file format I'm aware of. It is mandatory
4494 to be able to know if a symbol is an entry point, millicode, data,
4495 code, absolute, storage request, or procedure label. If you get
4496 the symbol type wrong your program will not link. */
4497
4498 void
4499 bfd_som_set_symbol_type (symbol, type)
4500 asymbol *symbol;
4501 unsigned int type;
4502 {
4503 som_symbol_data (symbol)->som_type = type;
4504 }
4505
4506 /* Attach an auxiliary header to the BFD backend so that it may be
4507 written into the object file. */
4508 boolean
4509 bfd_som_attach_aux_hdr (abfd, type, string)
4510 bfd *abfd;
4511 int type;
4512 char *string;
4513 {
4514 if (type == VERSION_AUX_ID)
4515 {
4516 int len = strlen (string);
4517 int pad = 0;
4518
4519 if (len % 4)
4520 pad = (4 - (len % 4));
4521 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4522 bfd_zalloc (abfd, sizeof (struct aux_id)
4523 + sizeof (unsigned int) + len + pad);
4524 if (!obj_som_version_hdr (abfd))
4525 {
4526 bfd_set_error (bfd_error_no_memory);
4527 return false;
4528 }
4529 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4530 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4531 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4532 obj_som_version_hdr (abfd)->string_length = len;
4533 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4534 }
4535 else if (type == COPYRIGHT_AUX_ID)
4536 {
4537 int len = strlen (string);
4538 int pad = 0;
4539
4540 if (len % 4)
4541 pad = (4 - (len % 4));
4542 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4543 bfd_zalloc (abfd, sizeof (struct aux_id)
4544 + sizeof (unsigned int) + len + pad);
4545 if (!obj_som_copyright_hdr (abfd))
4546 {
4547 bfd_set_error (bfd_error_no_memory);
4548 return false;
4549 }
4550 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4551 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4552 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4553 obj_som_copyright_hdr (abfd)->string_length = len;
4554 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4555 }
4556 return true;
4557 }
4558
4559 static boolean
4560 som_get_section_contents (abfd, section, location, offset, count)
4561 bfd *abfd;
4562 sec_ptr section;
4563 PTR location;
4564 file_ptr offset;
4565 bfd_size_type count;
4566 {
4567 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4568 return true;
4569 if ((bfd_size_type)(offset+count) > section->_raw_size
4570 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4571 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4572 return (false); /* on error */
4573 return (true);
4574 }
4575
4576 static boolean
4577 som_set_section_contents (abfd, section, location, offset, count)
4578 bfd *abfd;
4579 sec_ptr section;
4580 PTR location;
4581 file_ptr offset;
4582 bfd_size_type count;
4583 {
4584 if (abfd->output_has_begun == false)
4585 {
4586 /* Set up fixed parts of the file, space, and subspace headers.
4587 Notify the world that output has begun. */
4588 som_prep_headers (abfd);
4589 abfd->output_has_begun = true;
4590 /* Start writing the object file. This include all the string
4591 tables, fixup streams, and other portions of the object file. */
4592 som_begin_writing (abfd);
4593 }
4594
4595 /* Only write subspaces which have "real" contents (eg. the contents
4596 are not generated at run time by the OS). */
4597 if (!som_is_subspace (section)
4598 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4599 return true;
4600
4601 /* Seek to the proper offset within the object file and write the
4602 data. */
4603 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4604 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4605 return false;
4606
4607 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4608 return false;
4609 return true;
4610 }
4611
4612 static boolean
4613 som_set_arch_mach (abfd, arch, machine)
4614 bfd *abfd;
4615 enum bfd_architecture arch;
4616 unsigned long machine;
4617 {
4618 /* Allow any architecture to be supported by the SOM backend */
4619 return bfd_default_set_arch_mach (abfd, arch, machine);
4620 }
4621
4622 static boolean
4623 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4624 functionname_ptr, line_ptr)
4625 bfd *abfd;
4626 asection *section;
4627 asymbol **symbols;
4628 bfd_vma offset;
4629 CONST char **filename_ptr;
4630 CONST char **functionname_ptr;
4631 unsigned int *line_ptr;
4632 {
4633 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4634 fflush (stderr);
4635 abort ();
4636 return (false);
4637 }
4638
4639 static int
4640 som_sizeof_headers (abfd, reloc)
4641 bfd *abfd;
4642 boolean reloc;
4643 {
4644 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4645 fflush (stderr);
4646 abort ();
4647 return (0);
4648 }
4649
4650 /* Return the single-character symbol type corresponding to
4651 SOM section S, or '?' for an unknown SOM section. */
4652
4653 static char
4654 som_section_type (s)
4655 const char *s;
4656 {
4657 const struct section_to_type *t;
4658
4659 for (t = &stt[0]; t->section; t++)
4660 if (!strcmp (s, t->section))
4661 return t->type;
4662 return '?';
4663 }
4664
4665 static int
4666 som_decode_symclass (symbol)
4667 asymbol *symbol;
4668 {
4669 char c;
4670
4671 if (bfd_is_com_section (symbol->section))
4672 return 'C';
4673 if (bfd_is_und_section (symbol->section))
4674 return 'U';
4675 if (bfd_is_ind_section (symbol->section))
4676 return 'I';
4677 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4678 return '?';
4679
4680 if (bfd_is_abs_section (symbol->section))
4681 c = 'a';
4682 else if (symbol->section)
4683 c = som_section_type (symbol->section->name);
4684 else
4685 return '?';
4686 if (symbol->flags & BSF_GLOBAL)
4687 c = toupper (c);
4688 return c;
4689 }
4690
4691 /* Return information about SOM symbol SYMBOL in RET. */
4692
4693 static void
4694 som_get_symbol_info (ignore_abfd, symbol, ret)
4695 bfd *ignore_abfd;
4696 asymbol *symbol;
4697 symbol_info *ret;
4698 {
4699 ret->type = som_decode_symclass (symbol);
4700 if (ret->type != 'U')
4701 ret->value = symbol->value+symbol->section->vma;
4702 else
4703 ret->value = 0;
4704 ret->name = symbol->name;
4705 }
4706
4707 /* Count the number of symbols in the archive symbol table. Necessary
4708 so that we can allocate space for all the carsyms at once. */
4709
4710 static boolean
4711 som_bfd_count_ar_symbols (abfd, lst_header, count)
4712 bfd *abfd;
4713 struct lst_header *lst_header;
4714 symindex *count;
4715 {
4716 unsigned int i;
4717 unsigned int *hash_table = NULL;
4718 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4719
4720 hash_table =
4721 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4722 if (hash_table == NULL && lst_header->hash_size != 0)
4723 {
4724 bfd_set_error (bfd_error_no_memory);
4725 goto error_return;
4726 }
4727
4728 /* Don't forget to initialize the counter! */
4729 *count = 0;
4730
4731 /* Read in the hash table. The has table is an array of 32bit file offsets
4732 which point to the hash chains. */
4733 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4734 != lst_header->hash_size * 4)
4735 goto error_return;
4736
4737 /* Walk each chain counting the number of symbols found on that particular
4738 chain. */
4739 for (i = 0; i < lst_header->hash_size; i++)
4740 {
4741 struct lst_symbol_record lst_symbol;
4742
4743 /* An empty chain has zero as it's file offset. */
4744 if (hash_table[i] == 0)
4745 continue;
4746
4747 /* Seek to the first symbol in this hash chain. */
4748 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4749 goto error_return;
4750
4751 /* Read in this symbol and update the counter. */
4752 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4753 != sizeof (lst_symbol))
4754 goto error_return;
4755
4756 (*count)++;
4757
4758 /* Now iterate through the rest of the symbols on this chain. */
4759 while (lst_symbol.next_entry)
4760 {
4761
4762 /* Seek to the next symbol. */
4763 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4764 < 0)
4765 goto error_return;
4766
4767 /* Read the symbol in and update the counter. */
4768 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4769 != sizeof (lst_symbol))
4770 goto error_return;
4771
4772 (*count)++;
4773 }
4774 }
4775 if (hash_table != NULL)
4776 free (hash_table);
4777 return true;
4778
4779 error_return:
4780 if (hash_table != NULL)
4781 free (hash_table);
4782 return false;
4783 }
4784
4785 /* Fill in the canonical archive symbols (SYMS) from the archive described
4786 by ABFD and LST_HEADER. */
4787
4788 static boolean
4789 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4790 bfd *abfd;
4791 struct lst_header *lst_header;
4792 carsym **syms;
4793 {
4794 unsigned int i, len;
4795 carsym *set = syms[0];
4796 unsigned int *hash_table = NULL;
4797 struct som_entry *som_dict = NULL;
4798 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4799
4800 hash_table =
4801 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4802 if (hash_table == NULL && lst_header->hash_size != 0)
4803 {
4804 bfd_set_error (bfd_error_no_memory);
4805 goto error_return;
4806 }
4807
4808 som_dict =
4809 (struct som_entry *) malloc (lst_header->module_count
4810 * sizeof (struct som_entry));
4811 if (som_dict == NULL && lst_header->module_count != 0)
4812 {
4813 bfd_set_error (bfd_error_no_memory);
4814 goto error_return;
4815 }
4816
4817 /* Read in the hash table. The has table is an array of 32bit file offsets
4818 which point to the hash chains. */
4819 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4820 != lst_header->hash_size * 4)
4821 goto error_return;
4822
4823 /* Seek to and read in the SOM dictionary. We will need this to fill
4824 in the carsym's filepos field. */
4825 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4826 goto error_return;
4827
4828 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4829 sizeof (struct som_entry), abfd)
4830 != lst_header->module_count * sizeof (struct som_entry))
4831 goto error_return;
4832
4833 /* Walk each chain filling in the carsyms as we go along. */
4834 for (i = 0; i < lst_header->hash_size; i++)
4835 {
4836 struct lst_symbol_record lst_symbol;
4837
4838 /* An empty chain has zero as it's file offset. */
4839 if (hash_table[i] == 0)
4840 continue;
4841
4842 /* Seek to and read the first symbol on the chain. */
4843 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4844 goto error_return;
4845
4846 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4847 != sizeof (lst_symbol))
4848 goto error_return;
4849
4850 /* Get the name of the symbol, first get the length which is stored
4851 as a 32bit integer just before the symbol.
4852
4853 One might ask why we don't just read in the entire string table
4854 and index into it. Well, according to the SOM ABI the string
4855 index can point *anywhere* in the archive to save space, so just
4856 using the string table would not be safe. */
4857 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4858 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4859 goto error_return;
4860
4861 if (bfd_read (&len, 1, 4, abfd) != 4)
4862 goto error_return;
4863
4864 /* Allocate space for the name and null terminate it too. */
4865 set->name = bfd_zalloc (abfd, len + 1);
4866 if (!set->name)
4867 {
4868 bfd_set_error (bfd_error_no_memory);
4869 goto error_return;
4870 }
4871 if (bfd_read (set->name, 1, len, abfd) != len)
4872 goto error_return;
4873
4874 set->name[len] = 0;
4875
4876 /* Fill in the file offset. Note that the "location" field points
4877 to the SOM itself, not the ar_hdr in front of it. */
4878 set->file_offset = som_dict[lst_symbol.som_index].location
4879 - sizeof (struct ar_hdr);
4880
4881 /* Go to the next symbol. */
4882 set++;
4883
4884 /* Iterate through the rest of the chain. */
4885 while (lst_symbol.next_entry)
4886 {
4887 /* Seek to the next symbol and read it in. */
4888 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4889 goto error_return;
4890
4891 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4892 != sizeof (lst_symbol))
4893 goto error_return;
4894
4895 /* Seek to the name length & string and read them in. */
4896 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4897 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4898 goto error_return;
4899
4900 if (bfd_read (&len, 1, 4, abfd) != 4)
4901 goto error_return;
4902
4903 /* Allocate space for the name and null terminate it too. */
4904 set->name = bfd_zalloc (abfd, len + 1);
4905 if (!set->name)
4906 {
4907 bfd_set_error (bfd_error_no_memory);
4908 goto error_return;
4909 }
4910
4911 if (bfd_read (set->name, 1, len, abfd) != len)
4912 goto error_return;
4913 set->name[len] = 0;
4914
4915 /* Fill in the file offset. Note that the "location" field points
4916 to the SOM itself, not the ar_hdr in front of it. */
4917 set->file_offset = som_dict[lst_symbol.som_index].location
4918 - sizeof (struct ar_hdr);
4919
4920 /* Go on to the next symbol. */
4921 set++;
4922 }
4923 }
4924 /* If we haven't died by now, then we successfully read the entire
4925 archive symbol table. */
4926 if (hash_table != NULL)
4927 free (hash_table);
4928 if (som_dict != NULL)
4929 free (som_dict);
4930 return true;
4931
4932 error_return:
4933 if (hash_table != NULL)
4934 free (hash_table);
4935 if (som_dict != NULL)
4936 free (som_dict);
4937 return false;
4938 }
4939
4940 /* Read in the LST from the archive. */
4941 static boolean
4942 som_slurp_armap (abfd)
4943 bfd *abfd;
4944 {
4945 struct lst_header lst_header;
4946 struct ar_hdr ar_header;
4947 unsigned int parsed_size;
4948 struct artdata *ardata = bfd_ardata (abfd);
4949 char nextname[17];
4950 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4951
4952 /* Special cases. */
4953 if (i == 0)
4954 return true;
4955 if (i != 16)
4956 return false;
4957
4958 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4959 return false;
4960
4961 /* For archives without .o files there is no symbol table. */
4962 if (strncmp (nextname, "/ ", 16))
4963 {
4964 bfd_has_map (abfd) = false;
4965 return true;
4966 }
4967
4968 /* Read in and sanity check the archive header. */
4969 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4970 != sizeof (struct ar_hdr))
4971 return false;
4972
4973 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4974 {
4975 bfd_set_error (bfd_error_malformed_archive);
4976 return false;
4977 }
4978
4979 /* How big is the archive symbol table entry? */
4980 errno = 0;
4981 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4982 if (errno != 0)
4983 {
4984 bfd_set_error (bfd_error_malformed_archive);
4985 return false;
4986 }
4987
4988 /* Save off the file offset of the first real user data. */
4989 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4990
4991 /* Read in the library symbol table. We'll make heavy use of this
4992 in just a minute. */
4993 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4994 != sizeof (struct lst_header))
4995 return false;
4996
4997 /* Sanity check. */
4998 if (lst_header.a_magic != LIBMAGIC)
4999 {
5000 bfd_set_error (bfd_error_malformed_archive);
5001 return false;
5002 }
5003
5004 /* Count the number of symbols in the library symbol table. */
5005 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5006 == false)
5007 return false;
5008
5009 /* Get back to the start of the library symbol table. */
5010 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5011 + sizeof (struct lst_header), SEEK_SET) < 0)
5012 return false;
5013
5014 /* Initializae the cache and allocate space for the library symbols. */
5015 ardata->cache = 0;
5016 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5017 (ardata->symdef_count
5018 * sizeof (carsym)));
5019 if (!ardata->symdefs)
5020 {
5021 bfd_set_error (bfd_error_no_memory);
5022 return false;
5023 }
5024
5025 /* Now fill in the canonical archive symbols. */
5026 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5027 == false)
5028 return false;
5029
5030 /* Seek back to the "first" file in the archive. Note the "first"
5031 file may be the extended name table. */
5032 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5033 return false;
5034
5035 /* Notify the generic archive code that we have a symbol map. */
5036 bfd_has_map (abfd) = true;
5037 return true;
5038 }
5039
5040 /* Begin preparing to write a SOM library symbol table.
5041
5042 As part of the prep work we need to determine the number of symbols
5043 and the size of the associated string section. */
5044
5045 static boolean
5046 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5047 bfd *abfd;
5048 unsigned int *num_syms, *stringsize;
5049 {
5050 bfd *curr_bfd = abfd->archive_head;
5051
5052 /* Some initialization. */
5053 *num_syms = 0;
5054 *stringsize = 0;
5055
5056 /* Iterate over each BFD within this archive. */
5057 while (curr_bfd != NULL)
5058 {
5059 unsigned int curr_count, i;
5060 som_symbol_type *sym;
5061
5062 /* Don't bother for non-SOM objects. */
5063 if (curr_bfd->format != bfd_object
5064 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5065 {
5066 curr_bfd = curr_bfd->next;
5067 continue;
5068 }
5069
5070 /* Make sure the symbol table has been read, then snag a pointer
5071 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5072 but doing so avoids allocating lots of extra memory. */
5073 if (som_slurp_symbol_table (curr_bfd) == false)
5074 return false;
5075
5076 sym = obj_som_symtab (curr_bfd);
5077 curr_count = bfd_get_symcount (curr_bfd);
5078
5079 /* Examine each symbol to determine if it belongs in the
5080 library symbol table. */
5081 for (i = 0; i < curr_count; i++, sym++)
5082 {
5083 struct som_misc_symbol_info info;
5084
5085 /* Derive SOM information from the BFD symbol. */
5086 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5087
5088 /* Should we include this symbol? */
5089 if (info.symbol_type == ST_NULL
5090 || info.symbol_type == ST_SYM_EXT
5091 || info.symbol_type == ST_ARG_EXT)
5092 continue;
5093
5094 /* Only global symbols and unsatisfied commons. */
5095 if (info.symbol_scope != SS_UNIVERSAL
5096 && info.symbol_type != ST_STORAGE)
5097 continue;
5098
5099 /* Do no include undefined symbols. */
5100 if (bfd_is_und_section (sym->symbol.section))
5101 continue;
5102
5103 /* Bump the various counters, being careful to honor
5104 alignment considerations in the string table. */
5105 (*num_syms)++;
5106 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5107 while (*stringsize % 4)
5108 (*stringsize)++;
5109 }
5110
5111 curr_bfd = curr_bfd->next;
5112 }
5113 return true;
5114 }
5115
5116 /* Hash a symbol name based on the hashing algorithm presented in the
5117 SOM ABI. */
5118 static unsigned int
5119 som_bfd_ar_symbol_hash (symbol)
5120 asymbol *symbol;
5121 {
5122 unsigned int len = strlen (symbol->name);
5123
5124 /* Names with length 1 are special. */
5125 if (len == 1)
5126 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5127
5128 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5129 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5130 }
5131
5132 static CONST char *
5133 normalize (file)
5134 CONST char *file;
5135 {
5136 CONST char *filename = strrchr (file, '/');
5137
5138 if (filename != NULL)
5139 filename++;
5140 else
5141 filename = file;
5142 return filename;
5143 }
5144
5145 /* Do the bulk of the work required to write the SOM library
5146 symbol table. */
5147
5148 static boolean
5149 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5150 bfd *abfd;
5151 unsigned int nsyms, string_size;
5152 struct lst_header lst;
5153 {
5154 file_ptr lst_filepos;
5155 char *strings = NULL, *p;
5156 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5157 bfd *curr_bfd;
5158 unsigned int *hash_table = NULL;
5159 struct som_entry *som_dict = NULL;
5160 struct lst_symbol_record **last_hash_entry = NULL;
5161 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5162 unsigned int maxname = abfd->xvec->ar_max_namelen;
5163
5164 hash_table =
5165 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5166 if (hash_table == NULL && lst.hash_size != 0)
5167 {
5168 bfd_set_error (bfd_error_no_memory);
5169 goto error_return;
5170 }
5171 som_dict =
5172 (struct som_entry *) malloc (lst.module_count
5173 * sizeof (struct som_entry));
5174 if (som_dict == NULL && lst.module_count != 0)
5175 {
5176 bfd_set_error (bfd_error_no_memory);
5177 goto error_return;
5178 }
5179
5180 last_hash_entry =
5181 ((struct lst_symbol_record **)
5182 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5183 if (last_hash_entry == NULL && lst.hash_size != 0)
5184 {
5185 bfd_set_error (bfd_error_no_memory);
5186 goto error_return;
5187 }
5188
5189 /* Lots of fields are file positions relative to the start
5190 of the lst record. So save its location. */
5191 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5192
5193 /* Some initialization. */
5194 memset (hash_table, 0, 4 * lst.hash_size);
5195 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5196 memset (last_hash_entry, 0,
5197 lst.hash_size * sizeof (struct lst_symbol_record *));
5198
5199 /* Symbols have som_index fields, so we have to keep track of the
5200 index of each SOM in the archive.
5201
5202 The SOM dictionary has (among other things) the absolute file
5203 position for the SOM which a particular dictionary entry
5204 describes. We have to compute that information as we iterate
5205 through the SOMs/symbols. */
5206 som_index = 0;
5207 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5208
5209 /* Yow! We have to know the size of the extended name table
5210 too. */
5211 for (curr_bfd = abfd->archive_head;
5212 curr_bfd != NULL;
5213 curr_bfd = curr_bfd->next)
5214 {
5215 CONST char *normal = normalize (curr_bfd->filename);
5216 unsigned int thislen;
5217
5218 if (!normal)
5219 {
5220 bfd_set_error (bfd_error_no_memory);
5221 return false;
5222 }
5223 thislen = strlen (normal);
5224 if (thislen > maxname)
5225 extended_name_length += thislen + 1;
5226 }
5227
5228 /* Make room for the archive header and the contents of the
5229 extended string table. */
5230 if (extended_name_length)
5231 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5232
5233 /* Make sure we're properly aligned. */
5234 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5235
5236 /* FIXME should be done with buffers just like everything else... */
5237 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5238 if (lst_syms == NULL && nsyms != 0)
5239 {
5240 bfd_set_error (bfd_error_no_memory);
5241 goto error_return;
5242 }
5243 strings = malloc (string_size);
5244 if (strings == NULL && string_size != 0)
5245 {
5246 bfd_set_error (bfd_error_no_memory);
5247 goto error_return;
5248 }
5249
5250 p = strings;
5251 curr_lst_sym = lst_syms;
5252
5253 curr_bfd = abfd->archive_head;
5254 while (curr_bfd != NULL)
5255 {
5256 unsigned int curr_count, i;
5257 som_symbol_type *sym;
5258
5259 /* Don't bother for non-SOM objects. */
5260 if (curr_bfd->format != bfd_object
5261 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5262 {
5263 curr_bfd = curr_bfd->next;
5264 continue;
5265 }
5266
5267 /* Make sure the symbol table has been read, then snag a pointer
5268 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5269 but doing so avoids allocating lots of extra memory. */
5270 if (som_slurp_symbol_table (curr_bfd) == false)
5271 goto error_return;
5272
5273 sym = obj_som_symtab (curr_bfd);
5274 curr_count = bfd_get_symcount (curr_bfd);
5275
5276 for (i = 0; i < curr_count; i++, sym++)
5277 {
5278 struct som_misc_symbol_info info;
5279
5280 /* Derive SOM information from the BFD symbol. */
5281 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5282
5283 /* Should we include this symbol? */
5284 if (info.symbol_type == ST_NULL
5285 || info.symbol_type == ST_SYM_EXT
5286 || info.symbol_type == ST_ARG_EXT)
5287 continue;
5288
5289 /* Only global symbols and unsatisfied commons. */
5290 if (info.symbol_scope != SS_UNIVERSAL
5291 && info.symbol_type != ST_STORAGE)
5292 continue;
5293
5294 /* Do no include undefined symbols. */
5295 if (bfd_is_und_section (sym->symbol.section))
5296 continue;
5297
5298 /* If this is the first symbol from this SOM, then update
5299 the SOM dictionary too. */
5300 if (som_dict[som_index].location == 0)
5301 {
5302 som_dict[som_index].location = curr_som_offset;
5303 som_dict[som_index].length = arelt_size (curr_bfd);
5304 }
5305
5306 /* Fill in the lst symbol record. */
5307 curr_lst_sym->hidden = 0;
5308 curr_lst_sym->secondary_def = 0;
5309 curr_lst_sym->symbol_type = info.symbol_type;
5310 curr_lst_sym->symbol_scope = info.symbol_scope;
5311 curr_lst_sym->check_level = 0;
5312 curr_lst_sym->must_qualify = 0;
5313 curr_lst_sym->initially_frozen = 0;
5314 curr_lst_sym->memory_resident = 0;
5315 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5316 curr_lst_sym->dup_common = 0;
5317 curr_lst_sym->xleast = 0;
5318 curr_lst_sym->arg_reloc = info.arg_reloc;
5319 curr_lst_sym->name.n_strx = p - strings + 4;
5320 curr_lst_sym->qualifier_name.n_strx = 0;
5321 curr_lst_sym->symbol_info = info.symbol_info;
5322 curr_lst_sym->symbol_value = info.symbol_value;
5323 curr_lst_sym->symbol_descriptor = 0;
5324 curr_lst_sym->reserved = 0;
5325 curr_lst_sym->som_index = som_index;
5326 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5327 curr_lst_sym->next_entry = 0;
5328
5329 /* Insert into the hash table. */
5330 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5331 {
5332 struct lst_symbol_record *tmp;
5333
5334 /* There is already something at the head of this hash chain,
5335 so tack this symbol onto the end of the chain. */
5336 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5337 tmp->next_entry
5338 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5339 + lst.hash_size * 4
5340 + lst.module_count * sizeof (struct som_entry)
5341 + sizeof (struct lst_header);
5342 }
5343 else
5344 {
5345 /* First entry in this hash chain. */
5346 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5347 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5348 + lst.hash_size * 4
5349 + lst.module_count * sizeof (struct som_entry)
5350 + sizeof (struct lst_header);
5351 }
5352
5353 /* Keep track of the last symbol we added to this chain so we can
5354 easily update its next_entry pointer. */
5355 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5356 = curr_lst_sym;
5357
5358
5359 /* Update the string table. */
5360 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5361 p += 4;
5362 strcpy (p, sym->symbol.name);
5363 p += strlen (sym->symbol.name) + 1;
5364 while ((int)p % 4)
5365 {
5366 bfd_put_8 (abfd, 0, p);
5367 p++;
5368 }
5369
5370 /* Head to the next symbol. */
5371 curr_lst_sym++;
5372 }
5373
5374 /* Keep track of where each SOM will finally reside; then look
5375 at the next BFD. */
5376 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5377 curr_bfd = curr_bfd->next;
5378 som_index++;
5379 }
5380
5381 /* Now scribble out the hash table. */
5382 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5383 != lst.hash_size * 4)
5384 goto error_return;
5385
5386 /* Then the SOM dictionary. */
5387 if (bfd_write ((PTR) som_dict, lst.module_count,
5388 sizeof (struct som_entry), abfd)
5389 != lst.module_count * sizeof (struct som_entry))
5390 goto error_return;
5391
5392 /* The library symbols. */
5393 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5394 != nsyms * sizeof (struct lst_symbol_record))
5395 goto error_return;
5396
5397 /* And finally the strings. */
5398 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5399 goto error_return;
5400
5401 if (hash_table != NULL)
5402 free (hash_table);
5403 if (som_dict != NULL)
5404 free (som_dict);
5405 if (last_hash_entry != NULL)
5406 free (last_hash_entry);
5407 if (lst_syms != NULL)
5408 free (lst_syms);
5409 if (strings != NULL)
5410 free (strings);
5411 return true;
5412
5413 error_return:
5414 if (hash_table != NULL)
5415 free (hash_table);
5416 if (som_dict != NULL)
5417 free (som_dict);
5418 if (last_hash_entry != NULL)
5419 free (last_hash_entry);
5420 if (lst_syms != NULL)
5421 free (lst_syms);
5422 if (strings != NULL)
5423 free (strings);
5424
5425 return false;
5426 }
5427
5428 /* Write out the LST for the archive.
5429
5430 You'll never believe this is really how armaps are handled in SOM... */
5431
5432 /*ARGSUSED*/
5433 static boolean
5434 som_write_armap (abfd, elength, map, orl_count, stridx)
5435 bfd *abfd;
5436 unsigned int elength;
5437 struct orl *map;
5438 unsigned int orl_count;
5439 int stridx;
5440 {
5441 bfd *curr_bfd;
5442 struct stat statbuf;
5443 unsigned int i, lst_size, nsyms, stringsize;
5444 struct ar_hdr hdr;
5445 struct lst_header lst;
5446 int *p;
5447
5448 /* We'll use this for the archive's date and mode later. */
5449 if (stat (abfd->filename, &statbuf) != 0)
5450 {
5451 bfd_set_error (bfd_error_system_call);
5452 return false;
5453 }
5454 /* Fudge factor. */
5455 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5456
5457 /* Account for the lst header first. */
5458 lst_size = sizeof (struct lst_header);
5459
5460 /* Start building the LST header. */
5461 lst.system_id = CPU_PA_RISC1_0;
5462 lst.a_magic = LIBMAGIC;
5463 lst.version_id = VERSION_ID;
5464 lst.file_time.secs = 0;
5465 lst.file_time.nanosecs = 0;
5466
5467 lst.hash_loc = lst_size;
5468 lst.hash_size = SOM_LST_HASH_SIZE;
5469
5470 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5471 lst_size += 4 * SOM_LST_HASH_SIZE;
5472
5473 /* We need to count the number of SOMs in this archive. */
5474 curr_bfd = abfd->archive_head;
5475 lst.module_count = 0;
5476 while (curr_bfd != NULL)
5477 {
5478 /* Only true SOM objects count. */
5479 if (curr_bfd->format == bfd_object
5480 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5481 lst.module_count++;
5482 curr_bfd = curr_bfd->next;
5483 }
5484 lst.module_limit = lst.module_count;
5485 lst.dir_loc = lst_size;
5486 lst_size += sizeof (struct som_entry) * lst.module_count;
5487
5488 /* We don't support import/export tables, auxiliary headers,
5489 or free lists yet. Make the linker work a little harder
5490 to make our life easier. */
5491
5492 lst.export_loc = 0;
5493 lst.export_count = 0;
5494 lst.import_loc = 0;
5495 lst.aux_loc = 0;
5496 lst.aux_size = 0;
5497
5498 /* Count how many symbols we will have on the hash chains and the
5499 size of the associated string table. */
5500 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5501 return false;
5502
5503 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5504
5505 /* For the string table. One day we might actually use this info
5506 to avoid small seeks/reads when reading archives. */
5507 lst.string_loc = lst_size;
5508 lst.string_size = stringsize;
5509 lst_size += stringsize;
5510
5511 /* SOM ABI says this must be zero. */
5512 lst.free_list = 0;
5513 lst.file_end = lst_size;
5514
5515 /* Compute the checksum. Must happen after the entire lst header
5516 has filled in. */
5517 p = (int *)&lst;
5518 lst.checksum = 0;
5519 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5520 lst.checksum ^= *p++;
5521
5522 sprintf (hdr.ar_name, "/ ");
5523 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5524 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5525 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5526 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5527 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5528 hdr.ar_fmag[0] = '`';
5529 hdr.ar_fmag[1] = '\012';
5530
5531 /* Turn any nulls into spaces. */
5532 for (i = 0; i < sizeof (struct ar_hdr); i++)
5533 if (((char *) (&hdr))[i] == '\0')
5534 (((char *) (&hdr))[i]) = ' ';
5535
5536 /* Scribble out the ar header. */
5537 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5538 != sizeof (struct ar_hdr))
5539 return false;
5540
5541 /* Now scribble out the lst header. */
5542 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5543 != sizeof (struct lst_header))
5544 return false;
5545
5546 /* Build and write the armap. */
5547 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5548 return false;
5549
5550 /* Done. */
5551 return true;
5552 }
5553
5554 /* Free all information we have cached for this BFD. We can always
5555 read it again later if we need it. */
5556
5557 static boolean
5558 som_bfd_free_cached_info (abfd)
5559 bfd *abfd;
5560 {
5561 asection *o;
5562
5563 if (bfd_get_format (abfd) != bfd_object)
5564 return true;
5565
5566 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5567 /* Free the native string and symbol tables. */
5568 FREE (obj_som_symtab (abfd));
5569 FREE (obj_som_stringtab (abfd));
5570 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5571 {
5572 /* Free the native relocations. */
5573 o->reloc_count = -1;
5574 FREE (som_section_data (o)->reloc_stream);
5575 /* Free the generic relocations. */
5576 FREE (o->relocation);
5577 }
5578 #undef FREE
5579
5580 return true;
5581 }
5582
5583 /* End of miscellaneous support functions. */
5584
5585 #define som_close_and_cleanup som_bfd_free_cached_info
5586
5587 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5588 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5589 #define som_truncate_arname bfd_bsd_truncate_arname
5590 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5591 #define som_update_armap_timestamp bfd_true
5592
5593 #define som_get_lineno _bfd_nosymbols_get_lineno
5594 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5595
5596 #define som_bfd_get_relocated_section_contents \
5597 bfd_generic_get_relocated_section_contents
5598 #define som_bfd_relax_section bfd_generic_relax_section
5599 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5600 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5601 #define som_bfd_final_link _bfd_generic_final_link
5602
5603 const bfd_target som_vec =
5604 {
5605 "som", /* name */
5606 bfd_target_som_flavour,
5607 true, /* target byte order */
5608 true, /* target headers byte order */
5609 (HAS_RELOC | EXEC_P | /* object flags */
5610 HAS_LINENO | HAS_DEBUG |
5611 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5612 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5613 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5614
5615 /* leading_symbol_char: is the first char of a user symbol
5616 predictable, and if so what is it */
5617 0,
5618 '/', /* ar_pad_char */
5619 14, /* ar_max_namelen */
5620 3, /* minimum alignment */
5621 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5622 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5623 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5624 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5625 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5626 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5627 {_bfd_dummy_target,
5628 som_object_p, /* bfd_check_format */
5629 bfd_generic_archive_p,
5630 _bfd_dummy_target
5631 },
5632 {
5633 bfd_false,
5634 som_mkobject,
5635 _bfd_generic_mkarchive,
5636 bfd_false
5637 },
5638 {
5639 bfd_false,
5640 som_write_object_contents,
5641 _bfd_write_archive_contents,
5642 bfd_false,
5643 },
5644 #undef som
5645
5646 BFD_JUMP_TABLE_GENERIC (som),
5647 BFD_JUMP_TABLE_COPY (som),
5648 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5649 BFD_JUMP_TABLE_ARCHIVE (som),
5650 BFD_JUMP_TABLE_SYMBOLS (som),
5651 BFD_JUMP_TABLE_RELOCS (som),
5652 BFD_JUMP_TABLE_WRITE (som),
5653 BFD_JUMP_TABLE_LINK (som),
5654 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5655
5656 (PTR) 0
5657 };
5658
5659 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.242419 seconds and 4 git commands to generate.