* som.h (som_symbol_type): Delete unused a.out-related fields.
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67
68 /* HIUX in it's infinite stupidity changed the names for several "well
69 known" constants. Work around such braindamage. Try the HPUX version
70 first, then the HIUX version, and finally provide a default. */
71 #ifdef HPUX_AUX_ID
72 #define EXEC_AUX_ID HPUX_AUX_ID
73 #endif
74
75 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
76 #define EXEC_AUX_ID HIUX_AUX_ID
77 #endif
78
79 #ifndef EXEC_AUX_ID
80 #define EXEC_AUX_ID 0
81 #endif
82
83 /* Size (in chars) of the temporary buffers used during fixup and string
84 table writes. */
85
86 #define SOM_TMP_BUFSIZE 8192
87
88 /* Size of the hash table in archives. */
89 #define SOM_LST_HASH_SIZE 31
90
91 /* Max number of SOMs to be found in an archive. */
92 #define SOM_LST_MODULE_LIMIT 1024
93
94 /* Generic alignment macro. */
95 #define SOM_ALIGN(val, alignment) \
96 (((val) + (alignment) - 1) & ~((alignment) - 1))
97
98 /* SOM allows any one of the four previous relocations to be reused
99 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
100 relocations are always a single byte, using a R_PREV_FIXUP instead
101 of some multi-byte relocation makes object files smaller.
102
103 Note one side effect of using a R_PREV_FIXUP is the relocation that
104 is being repeated moves to the front of the queue. */
105 struct reloc_queue
106 {
107 unsigned char *reloc;
108 unsigned int size;
109 } reloc_queue[4];
110
111 /* This fully describes the symbol types which may be attached to
112 an EXPORT or IMPORT directive. Only SOM uses this formation
113 (ELF has no need for it). */
114 typedef enum
115 {
116 SYMBOL_TYPE_UNKNOWN,
117 SYMBOL_TYPE_ABSOLUTE,
118 SYMBOL_TYPE_CODE,
119 SYMBOL_TYPE_DATA,
120 SYMBOL_TYPE_ENTRY,
121 SYMBOL_TYPE_MILLICODE,
122 SYMBOL_TYPE_PLABEL,
123 SYMBOL_TYPE_PRI_PROG,
124 SYMBOL_TYPE_SEC_PROG,
125 } pa_symbol_type;
126
127 struct section_to_type
128 {
129 char *section;
130 char type;
131 };
132
133 /* Assorted symbol information that needs to be derived from the BFD symbol
134 and/or the BFD backend private symbol data. */
135 struct som_misc_symbol_info
136 {
137 unsigned int symbol_type;
138 unsigned int symbol_scope;
139 unsigned int arg_reloc;
140 unsigned int symbol_info;
141 unsigned int symbol_value;
142 };
143
144 /* Forward declarations */
145
146 static boolean som_mkobject PARAMS ((bfd *));
147 static const bfd_target * som_object_setup PARAMS ((bfd *,
148 struct header *,
149 struct som_exec_auxhdr *));
150 static boolean setup_sections PARAMS ((bfd *, struct header *));
151 static const bfd_target * som_object_p PARAMS ((bfd *));
152 static boolean som_write_object_contents PARAMS ((bfd *));
153 static boolean som_slurp_string_table PARAMS ((bfd *));
154 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
155 static long som_get_symtab_upper_bound PARAMS ((bfd *));
156 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
157 arelent **, asymbol **));
158 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
159 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
160 arelent *, asection *,
161 asymbol **, boolean));
162 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
163 asymbol **, boolean));
164 static long som_get_symtab PARAMS ((bfd *, asymbol **));
165 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
166 static void som_print_symbol PARAMS ((bfd *, PTR,
167 asymbol *, bfd_print_symbol_type));
168 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
169 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
170 bfd *, asection *));
171 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
172 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
173 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
174 file_ptr, bfd_size_type));
175 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
176 file_ptr, bfd_size_type));
177 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
178 unsigned long));
179 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
180 asymbol **, bfd_vma,
181 CONST char **,
182 CONST char **,
183 unsigned int *));
184 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
185 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
186 struct symbol_dictionary_record *));
187 static int log2 PARAMS ((unsigned int));
188 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
189 asymbol *, PTR,
190 asection *, bfd *,
191 char **));
192 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
193 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
194 struct reloc_queue *));
195 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
196 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
197 struct reloc_queue *));
198 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
199 unsigned int,
200 struct reloc_queue *));
201
202 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
203 unsigned char *, unsigned int *,
204 struct reloc_queue *));
205 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
206 unsigned int *,
207 struct reloc_queue *));
208 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
209 unsigned int *,
210 arelent *, int,
211 struct reloc_queue *));
212 static unsigned long som_count_spaces PARAMS ((bfd *));
213 static unsigned long som_count_subspaces PARAMS ((bfd *));
214 static int compare_syms PARAMS ((const void *, const void *));
215 static unsigned long som_compute_checksum PARAMS ((bfd *));
216 static boolean som_prep_headers PARAMS ((bfd *));
217 static int som_sizeof_headers PARAMS ((bfd *, boolean));
218 static boolean som_write_headers PARAMS ((bfd *));
219 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
220 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
221 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
222 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
223 unsigned int *));
224 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
225 asymbol **, unsigned int,
226 unsigned *));
227 static boolean som_begin_writing PARAMS ((bfd *));
228 static const reloc_howto_type * som_bfd_reloc_type_lookup
229 PARAMS ((bfd *, bfd_reloc_code_real_type));
230 static char som_section_type PARAMS ((const char *));
231 static int som_decode_symclass PARAMS ((asymbol *));
232 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
233 symindex *));
234
235 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
236 carsym **syms));
237 static boolean som_slurp_armap PARAMS ((bfd *));
238 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
239 unsigned int, int));
240 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
241 struct som_misc_symbol_info *));
242 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
243 unsigned int *));
244 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
245 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
246 unsigned int,
247 struct lst_header));
248 static CONST char *normalize PARAMS ((CONST char *file));
249 static boolean som_is_space PARAMS ((asection *));
250 static boolean som_is_subspace PARAMS ((asection *));
251 static boolean som_is_container PARAMS ((asection *, asection *));
252 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
253
254 /* Map SOM section names to POSIX/BSD single-character symbol types.
255
256 This table includes all the standard subspaces as defined in the
257 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
258 some reason was left out, and sections specific to embedded stabs. */
259
260 static const struct section_to_type stt[] = {
261 {"$TEXT$", 't'},
262 {"$SHLIB_INFO$", 't'},
263 {"$MILLICODE$", 't'},
264 {"$LIT$", 't'},
265 {"$CODE$", 't'},
266 {"$UNWIND_START$", 't'},
267 {"$UNWIND$", 't'},
268 {"$PRIVATE$", 'd'},
269 {"$PLT$", 'd'},
270 {"$SHLIB_DATA$", 'd'},
271 {"$DATA$", 'd'},
272 {"$SHORTDATA$", 'g'},
273 {"$DLT$", 'd'},
274 {"$GLOBAL$", 'g'},
275 {"$SHORTBSS$", 's'},
276 {"$BSS$", 'b'},
277 {"$GDB_STRINGS$", 'N'},
278 {"$GDB_SYMBOLS$", 'N'},
279 {0, 0}
280 };
281
282 /* About the relocation formatting table...
283
284 There are 256 entries in the table, one for each possible
285 relocation opcode available in SOM. We index the table by
286 the relocation opcode. The names and operations are those
287 defined by a.out_800 (4).
288
289 Right now this table is only used to count and perform minimal
290 processing on relocation streams so that they can be internalized
291 into BFD and symbolically printed by utilities. To make actual use
292 of them would be much more difficult, BFD's concept of relocations
293 is far too simple to handle SOM relocations. The basic assumption
294 that a relocation can be completely processed independent of other
295 relocations before an object file is written is invalid for SOM.
296
297 The SOM relocations are meant to be processed as a stream, they
298 specify copying of data from the input section to the output section
299 while possibly modifying the data in some manner. They also can
300 specify that a variable number of zeros or uninitialized data be
301 inserted on in the output segment at the current offset. Some
302 relocations specify that some previous relocation be re-applied at
303 the current location in the input/output sections. And finally a number
304 of relocations have effects on other sections (R_ENTRY, R_EXIT,
305 R_UNWIND_AUX and a variety of others). There isn't even enough room
306 in the BFD relocation data structure to store enough information to
307 perform all the relocations.
308
309 Each entry in the table has three fields.
310
311 The first entry is an index into this "class" of relocations. This
312 index can then be used as a variable within the relocation itself.
313
314 The second field is a format string which actually controls processing
315 of the relocation. It uses a simple postfix machine to do calculations
316 based on variables/constants found in the string and the relocation
317 stream.
318
319 The third field specifys whether or not this relocation may use
320 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
321 stored in the instruction.
322
323 Variables:
324
325 L = input space byte count
326 D = index into class of relocations
327 M = output space byte count
328 N = statement number (unused?)
329 O = stack operation
330 R = parameter relocation bits
331 S = symbol index
332 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
333 V = a literal constant (usually used in the next relocation)
334 P = a previous relocation
335
336 Lower case letters (starting with 'b') refer to following
337 bytes in the relocation stream. 'b' is the next 1 byte,
338 c is the next 2 bytes, d is the next 3 bytes, etc...
339 This is the variable part of the relocation entries that
340 makes our life a living hell.
341
342 numerical constants are also used in the format string. Note
343 the constants are represented in decimal.
344
345 '+', "*" and "=" represents the obvious postfix operators.
346 '<' represents a left shift.
347
348 Stack Operations:
349
350 Parameter Relocation Bits:
351
352 Unwind Entries:
353
354 Previous Relocations: The index field represents which in the queue
355 of 4 previous fixups should be re-applied.
356
357 Literal Constants: These are generally used to represent addend
358 parts of relocations when these constants are not stored in the
359 fields of the instructions themselves. For example the instruction
360 addil foo-$global$-0x1234 would use an override for "0x1234" rather
361 than storing it into the addil itself. */
362
363 struct fixup_format
364 {
365 int D;
366 char *format;
367 };
368
369 static const struct fixup_format som_fixup_formats[256] =
370 {
371 /* R_NO_RELOCATION */
372 0, "LD1+4*=", /* 0x00 */
373 1, "LD1+4*=", /* 0x01 */
374 2, "LD1+4*=", /* 0x02 */
375 3, "LD1+4*=", /* 0x03 */
376 4, "LD1+4*=", /* 0x04 */
377 5, "LD1+4*=", /* 0x05 */
378 6, "LD1+4*=", /* 0x06 */
379 7, "LD1+4*=", /* 0x07 */
380 8, "LD1+4*=", /* 0x08 */
381 9, "LD1+4*=", /* 0x09 */
382 10, "LD1+4*=", /* 0x0a */
383 11, "LD1+4*=", /* 0x0b */
384 12, "LD1+4*=", /* 0x0c */
385 13, "LD1+4*=", /* 0x0d */
386 14, "LD1+4*=", /* 0x0e */
387 15, "LD1+4*=", /* 0x0f */
388 16, "LD1+4*=", /* 0x10 */
389 17, "LD1+4*=", /* 0x11 */
390 18, "LD1+4*=", /* 0x12 */
391 19, "LD1+4*=", /* 0x13 */
392 20, "LD1+4*=", /* 0x14 */
393 21, "LD1+4*=", /* 0x15 */
394 22, "LD1+4*=", /* 0x16 */
395 23, "LD1+4*=", /* 0x17 */
396 0, "LD8<b+1+4*=", /* 0x18 */
397 1, "LD8<b+1+4*=", /* 0x19 */
398 2, "LD8<b+1+4*=", /* 0x1a */
399 3, "LD8<b+1+4*=", /* 0x1b */
400 0, "LD16<c+1+4*=", /* 0x1c */
401 1, "LD16<c+1+4*=", /* 0x1d */
402 2, "LD16<c+1+4*=", /* 0x1e */
403 0, "Ld1+=", /* 0x1f */
404 /* R_ZEROES */
405 0, "Lb1+4*=", /* 0x20 */
406 1, "Ld1+=", /* 0x21 */
407 /* R_UNINIT */
408 0, "Lb1+4*=", /* 0x22 */
409 1, "Ld1+=", /* 0x23 */
410 /* R_RELOCATION */
411 0, "L4=", /* 0x24 */
412 /* R_DATA_ONE_SYMBOL */
413 0, "L4=Sb=", /* 0x25 */
414 1, "L4=Sd=", /* 0x26 */
415 /* R_DATA_PLEBEL */
416 0, "L4=Sb=", /* 0x27 */
417 1, "L4=Sd=", /* 0x28 */
418 /* R_SPACE_REF */
419 0, "L4=", /* 0x29 */
420 /* R_REPEATED_INIT */
421 0, "L4=Mb1+4*=", /* 0x2a */
422 1, "Lb4*=Mb1+L*=", /* 0x2b */
423 2, "Lb4*=Md1+4*=", /* 0x2c */
424 3, "Ld1+=Me1+=", /* 0x2d */
425 /* R_RESERVED */
426 0, "", /* 0x2e */
427 0, "", /* 0x2f */
428 /* R_PCREL_CALL */
429 0, "L4=RD=Sb=", /* 0x30 */
430 1, "L4=RD=Sb=", /* 0x31 */
431 2, "L4=RD=Sb=", /* 0x32 */
432 3, "L4=RD=Sb=", /* 0x33 */
433 4, "L4=RD=Sb=", /* 0x34 */
434 5, "L4=RD=Sb=", /* 0x35 */
435 6, "L4=RD=Sb=", /* 0x36 */
436 7, "L4=RD=Sb=", /* 0x37 */
437 8, "L4=RD=Sb=", /* 0x38 */
438 9, "L4=RD=Sb=", /* 0x39 */
439 0, "L4=RD8<b+=Sb=",/* 0x3a */
440 1, "L4=RD8<b+=Sb=",/* 0x3b */
441 0, "L4=RD8<b+=Sd=",/* 0x3c */
442 1, "L4=RD8<b+=Sd=",/* 0x3d */
443 /* R_RESERVED */
444 0, "", /* 0x3e */
445 0, "", /* 0x3f */
446 /* R_ABS_CALL */
447 0, "L4=RD=Sb=", /* 0x40 */
448 1, "L4=RD=Sb=", /* 0x41 */
449 2, "L4=RD=Sb=", /* 0x42 */
450 3, "L4=RD=Sb=", /* 0x43 */
451 4, "L4=RD=Sb=", /* 0x44 */
452 5, "L4=RD=Sb=", /* 0x45 */
453 6, "L4=RD=Sb=", /* 0x46 */
454 7, "L4=RD=Sb=", /* 0x47 */
455 8, "L4=RD=Sb=", /* 0x48 */
456 9, "L4=RD=Sb=", /* 0x49 */
457 0, "L4=RD8<b+=Sb=",/* 0x4a */
458 1, "L4=RD8<b+=Sb=",/* 0x4b */
459 0, "L4=RD8<b+=Sd=",/* 0x4c */
460 1, "L4=RD8<b+=Sd=",/* 0x4d */
461 /* R_RESERVED */
462 0, "", /* 0x4e */
463 0, "", /* 0x4f */
464 /* R_DP_RELATIVE */
465 0, "L4=SD=", /* 0x50 */
466 1, "L4=SD=", /* 0x51 */
467 2, "L4=SD=", /* 0x52 */
468 3, "L4=SD=", /* 0x53 */
469 4, "L4=SD=", /* 0x54 */
470 5, "L4=SD=", /* 0x55 */
471 6, "L4=SD=", /* 0x56 */
472 7, "L4=SD=", /* 0x57 */
473 8, "L4=SD=", /* 0x58 */
474 9, "L4=SD=", /* 0x59 */
475 10, "L4=SD=", /* 0x5a */
476 11, "L4=SD=", /* 0x5b */
477 12, "L4=SD=", /* 0x5c */
478 13, "L4=SD=", /* 0x5d */
479 14, "L4=SD=", /* 0x5e */
480 15, "L4=SD=", /* 0x5f */
481 16, "L4=SD=", /* 0x60 */
482 17, "L4=SD=", /* 0x61 */
483 18, "L4=SD=", /* 0x62 */
484 19, "L4=SD=", /* 0x63 */
485 20, "L4=SD=", /* 0x64 */
486 21, "L4=SD=", /* 0x65 */
487 22, "L4=SD=", /* 0x66 */
488 23, "L4=SD=", /* 0x67 */
489 24, "L4=SD=", /* 0x68 */
490 25, "L4=SD=", /* 0x69 */
491 26, "L4=SD=", /* 0x6a */
492 27, "L4=SD=", /* 0x6b */
493 28, "L4=SD=", /* 0x6c */
494 29, "L4=SD=", /* 0x6d */
495 30, "L4=SD=", /* 0x6e */
496 31, "L4=SD=", /* 0x6f */
497 32, "L4=Sb=", /* 0x70 */
498 33, "L4=Sd=", /* 0x71 */
499 /* R_RESERVED */
500 0, "", /* 0x72 */
501 0, "", /* 0x73 */
502 0, "", /* 0x74 */
503 0, "", /* 0x75 */
504 0, "", /* 0x76 */
505 0, "", /* 0x77 */
506 /* R_DLT_REL */
507 0, "L4=Sb=", /* 0x78 */
508 1, "L4=Sd=", /* 0x79 */
509 /* R_RESERVED */
510 0, "", /* 0x7a */
511 0, "", /* 0x7b */
512 0, "", /* 0x7c */
513 0, "", /* 0x7d */
514 0, "", /* 0x7e */
515 0, "", /* 0x7f */
516 /* R_CODE_ONE_SYMBOL */
517 0, "L4=SD=", /* 0x80 */
518 1, "L4=SD=", /* 0x81 */
519 2, "L4=SD=", /* 0x82 */
520 3, "L4=SD=", /* 0x83 */
521 4, "L4=SD=", /* 0x84 */
522 5, "L4=SD=", /* 0x85 */
523 6, "L4=SD=", /* 0x86 */
524 7, "L4=SD=", /* 0x87 */
525 8, "L4=SD=", /* 0x88 */
526 9, "L4=SD=", /* 0x89 */
527 10, "L4=SD=", /* 0x8q */
528 11, "L4=SD=", /* 0x8b */
529 12, "L4=SD=", /* 0x8c */
530 13, "L4=SD=", /* 0x8d */
531 14, "L4=SD=", /* 0x8e */
532 15, "L4=SD=", /* 0x8f */
533 16, "L4=SD=", /* 0x90 */
534 17, "L4=SD=", /* 0x91 */
535 18, "L4=SD=", /* 0x92 */
536 19, "L4=SD=", /* 0x93 */
537 20, "L4=SD=", /* 0x94 */
538 21, "L4=SD=", /* 0x95 */
539 22, "L4=SD=", /* 0x96 */
540 23, "L4=SD=", /* 0x97 */
541 24, "L4=SD=", /* 0x98 */
542 25, "L4=SD=", /* 0x99 */
543 26, "L4=SD=", /* 0x9a */
544 27, "L4=SD=", /* 0x9b */
545 28, "L4=SD=", /* 0x9c */
546 29, "L4=SD=", /* 0x9d */
547 30, "L4=SD=", /* 0x9e */
548 31, "L4=SD=", /* 0x9f */
549 32, "L4=Sb=", /* 0xa0 */
550 33, "L4=Sd=", /* 0xa1 */
551 /* R_RESERVED */
552 0, "", /* 0xa2 */
553 0, "", /* 0xa3 */
554 0, "", /* 0xa4 */
555 0, "", /* 0xa5 */
556 0, "", /* 0xa6 */
557 0, "", /* 0xa7 */
558 0, "", /* 0xa8 */
559 0, "", /* 0xa9 */
560 0, "", /* 0xaa */
561 0, "", /* 0xab */
562 0, "", /* 0xac */
563 0, "", /* 0xad */
564 /* R_MILLI_REL */
565 0, "L4=Sb=", /* 0xae */
566 1, "L4=Sd=", /* 0xaf */
567 /* R_CODE_PLABEL */
568 0, "L4=Sb=", /* 0xb0 */
569 1, "L4=Sd=", /* 0xb1 */
570 /* R_BREAKPOINT */
571 0, "L4=", /* 0xb2 */
572 /* R_ENTRY */
573 0, "Ui=", /* 0xb3 */
574 1, "Uf=", /* 0xb4 */
575 /* R_ALT_ENTRY */
576 0, "", /* 0xb5 */
577 /* R_EXIT */
578 0, "", /* 0xb6 */
579 /* R_BEGIN_TRY */
580 0, "", /* 0xb7 */
581 /* R_END_TRY */
582 0, "R0=", /* 0xb8 */
583 1, "Rb4*=", /* 0xb9 */
584 2, "Rd4*=", /* 0xba */
585 /* R_BEGIN_BRTAB */
586 0, "", /* 0xbb */
587 /* R_END_BRTAB */
588 0, "", /* 0xbc */
589 /* R_STATEMENT */
590 0, "Nb=", /* 0xbd */
591 1, "Nc=", /* 0xbe */
592 2, "Nd=", /* 0xbf */
593 /* R_DATA_EXPR */
594 0, "L4=", /* 0xc0 */
595 /* R_CODE_EXPR */
596 0, "L4=", /* 0xc1 */
597 /* R_FSEL */
598 0, "", /* 0xc2 */
599 /* R_LSEL */
600 0, "", /* 0xc3 */
601 /* R_RSEL */
602 0, "", /* 0xc4 */
603 /* R_N_MODE */
604 0, "", /* 0xc5 */
605 /* R_S_MODE */
606 0, "", /* 0xc6 */
607 /* R_D_MODE */
608 0, "", /* 0xc7 */
609 /* R_R_MODE */
610 0, "", /* 0xc8 */
611 /* R_DATA_OVERRIDE */
612 0, "V0=", /* 0xc9 */
613 1, "Vb=", /* 0xca */
614 2, "Vc=", /* 0xcb */
615 3, "Vd=", /* 0xcc */
616 4, "Ve=", /* 0xcd */
617 /* R_TRANSLATED */
618 0, "", /* 0xce */
619 /* R_RESERVED */
620 0, "", /* 0xcf */
621 /* R_COMP1 */
622 0, "Ob=", /* 0xd0 */
623 /* R_COMP2 */
624 0, "Ob=Sd=", /* 0xd1 */
625 /* R_COMP3 */
626 0, "Ob=Ve=", /* 0xd2 */
627 /* R_PREV_FIXUP */
628 0, "P", /* 0xd3 */
629 1, "P", /* 0xd4 */
630 2, "P", /* 0xd5 */
631 3, "P", /* 0xd6 */
632 /* R_RESERVED */
633 0, "", /* 0xd7 */
634 0, "", /* 0xd8 */
635 0, "", /* 0xd9 */
636 0, "", /* 0xda */
637 0, "", /* 0xdb */
638 0, "", /* 0xdc */
639 0, "", /* 0xdd */
640 0, "", /* 0xde */
641 0, "", /* 0xdf */
642 0, "", /* 0xe0 */
643 0, "", /* 0xe1 */
644 0, "", /* 0xe2 */
645 0, "", /* 0xe3 */
646 0, "", /* 0xe4 */
647 0, "", /* 0xe5 */
648 0, "", /* 0xe6 */
649 0, "", /* 0xe7 */
650 0, "", /* 0xe8 */
651 0, "", /* 0xe9 */
652 0, "", /* 0xea */
653 0, "", /* 0xeb */
654 0, "", /* 0xec */
655 0, "", /* 0xed */
656 0, "", /* 0xee */
657 0, "", /* 0xef */
658 0, "", /* 0xf0 */
659 0, "", /* 0xf1 */
660 0, "", /* 0xf2 */
661 0, "", /* 0xf3 */
662 0, "", /* 0xf4 */
663 0, "", /* 0xf5 */
664 0, "", /* 0xf6 */
665 0, "", /* 0xf7 */
666 0, "", /* 0xf8 */
667 0, "", /* 0xf9 */
668 0, "", /* 0xfa */
669 0, "", /* 0xfb */
670 0, "", /* 0xfc */
671 0, "", /* 0xfd */
672 0, "", /* 0xfe */
673 0, "", /* 0xff */
674 };
675
676 static const int comp1_opcodes[] =
677 {
678 0x00,
679 0x40,
680 0x41,
681 0x42,
682 0x43,
683 0x44,
684 0x45,
685 0x46,
686 0x47,
687 0x48,
688 0x49,
689 0x4a,
690 0x4b,
691 0x60,
692 0x80,
693 0xa0,
694 0xc0,
695 -1
696 };
697
698 static const int comp2_opcodes[] =
699 {
700 0x00,
701 0x80,
702 0x82,
703 0xc0,
704 -1
705 };
706
707 static const int comp3_opcodes[] =
708 {
709 0x00,
710 0x02,
711 -1
712 };
713
714 /* These apparently are not in older versions of hpux reloc.h. */
715 #ifndef R_DLT_REL
716 #define R_DLT_REL 0x78
717 #endif
718
719 #ifndef R_AUX_UNWIND
720 #define R_AUX_UNWIND 0xcf
721 #endif
722
723 #ifndef R_SEC_STMT
724 #define R_SEC_STMT 0xd7
725 #endif
726
727 static reloc_howto_type som_hppa_howto_table[] =
728 {
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
762 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
763 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
764 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
765 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
766 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
767 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
768 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
769 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
770 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
771 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
772 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
773 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
778 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
779 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
794 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
795 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
808 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
845 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
846 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
850 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
851 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
904 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
905 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
906 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
907 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
908 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
909 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
910 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
911 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
912 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
913 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
914 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
915 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
916 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
917 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
918 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
919 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
920 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
921 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
922 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
923 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
924 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
925 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
926 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
927 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
928 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
929 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
930 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
931 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
932 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
936 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
937 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
938 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
939 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
940 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
941 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
942 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
985
986 /* Initialize the SOM relocation queue. By definition the queue holds
987 the last four multibyte fixups. */
988
989 static void
990 som_initialize_reloc_queue (queue)
991 struct reloc_queue *queue;
992 {
993 queue[0].reloc = NULL;
994 queue[0].size = 0;
995 queue[1].reloc = NULL;
996 queue[1].size = 0;
997 queue[2].reloc = NULL;
998 queue[2].size = 0;
999 queue[3].reloc = NULL;
1000 queue[3].size = 0;
1001 }
1002
1003 /* Insert a new relocation into the relocation queue. */
1004
1005 static void
1006 som_reloc_queue_insert (p, size, queue)
1007 unsigned char *p;
1008 unsigned int size;
1009 struct reloc_queue *queue;
1010 {
1011 queue[3].reloc = queue[2].reloc;
1012 queue[3].size = queue[2].size;
1013 queue[2].reloc = queue[1].reloc;
1014 queue[2].size = queue[1].size;
1015 queue[1].reloc = queue[0].reloc;
1016 queue[1].size = queue[0].size;
1017 queue[0].reloc = p;
1018 queue[0].size = size;
1019 }
1020
1021 /* When an entry in the relocation queue is reused, the entry moves
1022 to the front of the queue. */
1023
1024 static void
1025 som_reloc_queue_fix (queue, index)
1026 struct reloc_queue *queue;
1027 unsigned int index;
1028 {
1029 if (index == 0)
1030 return;
1031
1032 if (index == 1)
1033 {
1034 unsigned char *tmp1 = queue[0].reloc;
1035 unsigned int tmp2 = queue[0].size;
1036 queue[0].reloc = queue[1].reloc;
1037 queue[0].size = queue[1].size;
1038 queue[1].reloc = tmp1;
1039 queue[1].size = tmp2;
1040 return;
1041 }
1042
1043 if (index == 2)
1044 {
1045 unsigned char *tmp1 = queue[0].reloc;
1046 unsigned int tmp2 = queue[0].size;
1047 queue[0].reloc = queue[2].reloc;
1048 queue[0].size = queue[2].size;
1049 queue[2].reloc = queue[1].reloc;
1050 queue[2].size = queue[1].size;
1051 queue[1].reloc = tmp1;
1052 queue[1].size = tmp2;
1053 return;
1054 }
1055
1056 if (index == 3)
1057 {
1058 unsigned char *tmp1 = queue[0].reloc;
1059 unsigned int tmp2 = queue[0].size;
1060 queue[0].reloc = queue[3].reloc;
1061 queue[0].size = queue[3].size;
1062 queue[3].reloc = queue[2].reloc;
1063 queue[3].size = queue[2].size;
1064 queue[2].reloc = queue[1].reloc;
1065 queue[2].size = queue[1].size;
1066 queue[1].reloc = tmp1;
1067 queue[1].size = tmp2;
1068 return;
1069 }
1070 abort();
1071 }
1072
1073 /* Search for a particular relocation in the relocation queue. */
1074
1075 static int
1076 som_reloc_queue_find (p, size, queue)
1077 unsigned char *p;
1078 unsigned int size;
1079 struct reloc_queue *queue;
1080 {
1081 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1082 && size == queue[0].size)
1083 return 0;
1084 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1085 && size == queue[1].size)
1086 return 1;
1087 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1088 && size == queue[2].size)
1089 return 2;
1090 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1091 && size == queue[3].size)
1092 return 3;
1093 return -1;
1094 }
1095
1096 static unsigned char *
1097 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1098 bfd *abfd;
1099 int *subspace_reloc_sizep;
1100 unsigned char *p;
1101 unsigned int size;
1102 struct reloc_queue *queue;
1103 {
1104 int queue_index = som_reloc_queue_find (p, size, queue);
1105
1106 if (queue_index != -1)
1107 {
1108 /* Found this in a previous fixup. Undo the fixup we
1109 just built and use R_PREV_FIXUP instead. We saved
1110 a total of size - 1 bytes in the fixup stream. */
1111 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1112 p += 1;
1113 *subspace_reloc_sizep += 1;
1114 som_reloc_queue_fix (queue, queue_index);
1115 }
1116 else
1117 {
1118 som_reloc_queue_insert (p, size, queue);
1119 *subspace_reloc_sizep += size;
1120 p += size;
1121 }
1122 return p;
1123 }
1124
1125 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1126 bytes without any relocation. Update the size of the subspace
1127 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1128 current pointer into the relocation stream. */
1129
1130 static unsigned char *
1131 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1132 bfd *abfd;
1133 unsigned int skip;
1134 unsigned char *p;
1135 unsigned int *subspace_reloc_sizep;
1136 struct reloc_queue *queue;
1137 {
1138 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1139 then R_PREV_FIXUPs to get the difference down to a
1140 reasonable size. */
1141 if (skip >= 0x1000000)
1142 {
1143 skip -= 0x1000000;
1144 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1145 bfd_put_8 (abfd, 0xff, p + 1);
1146 bfd_put_16 (abfd, 0xffff, p + 2);
1147 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1148 while (skip >= 0x1000000)
1149 {
1150 skip -= 0x1000000;
1151 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1152 p++;
1153 *subspace_reloc_sizep += 1;
1154 /* No need to adjust queue here since we are repeating the
1155 most recent fixup. */
1156 }
1157 }
1158
1159 /* The difference must be less than 0x1000000. Use one
1160 more R_NO_RELOCATION entry to get to the right difference. */
1161 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1162 {
1163 /* Difference can be handled in a simple single-byte
1164 R_NO_RELOCATION entry. */
1165 if (skip <= 0x60)
1166 {
1167 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1168 *subspace_reloc_sizep += 1;
1169 p++;
1170 }
1171 /* Handle it with a two byte R_NO_RELOCATION entry. */
1172 else if (skip <= 0x1000)
1173 {
1174 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1175 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1177 }
1178 /* Handle it with a three byte R_NO_RELOCATION entry. */
1179 else
1180 {
1181 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1182 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1183 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1184 }
1185 }
1186 /* Ugh. Punt and use a 4 byte entry. */
1187 else if (skip > 0)
1188 {
1189 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1190 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1191 bfd_put_16 (abfd, skip - 1, p + 2);
1192 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1193 }
1194 return p;
1195 }
1196
1197 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1198 from a BFD relocation. Update the size of the subspace relocation
1199 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1200 into the relocation stream. */
1201
1202 static unsigned char *
1203 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1204 bfd *abfd;
1205 int addend;
1206 unsigned char *p;
1207 unsigned int *subspace_reloc_sizep;
1208 struct reloc_queue *queue;
1209 {
1210 if ((unsigned)(addend) + 0x80 < 0x100)
1211 {
1212 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1213 bfd_put_8 (abfd, addend, p + 1);
1214 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1215 }
1216 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1217 {
1218 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1219 bfd_put_16 (abfd, addend, p + 1);
1220 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1221 }
1222 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1223 {
1224 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1225 bfd_put_8 (abfd, addend >> 16, p + 1);
1226 bfd_put_16 (abfd, addend, p + 2);
1227 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1228 }
1229 else
1230 {
1231 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1232 bfd_put_32 (abfd, addend, p + 1);
1233 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1234 }
1235 return p;
1236 }
1237
1238 /* Handle a single function call relocation. */
1239
1240 static unsigned char *
1241 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1242 bfd *abfd;
1243 unsigned char *p;
1244 unsigned int *subspace_reloc_sizep;
1245 arelent *bfd_reloc;
1246 int sym_num;
1247 struct reloc_queue *queue;
1248 {
1249 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1250 int rtn_bits = arg_bits & 0x3;
1251 int type, done = 0;
1252
1253 /* You'll never believe all this is necessary to handle relocations
1254 for function calls. Having to compute and pack the argument
1255 relocation bits is the real nightmare.
1256
1257 If you're interested in how this works, just forget it. You really
1258 do not want to know about this braindamage. */
1259
1260 /* First see if this can be done with a "simple" relocation. Simple
1261 relocations have a symbol number < 0x100 and have simple encodings
1262 of argument relocations. */
1263
1264 if (sym_num < 0x100)
1265 {
1266 switch (arg_bits)
1267 {
1268 case 0:
1269 case 1:
1270 type = 0;
1271 break;
1272 case 1 << 8:
1273 case 1 << 8 | 1:
1274 type = 1;
1275 break;
1276 case 1 << 8 | 1 << 6:
1277 case 1 << 8 | 1 << 6 | 1:
1278 type = 2;
1279 break;
1280 case 1 << 8 | 1 << 6 | 1 << 4:
1281 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1282 type = 3;
1283 break;
1284 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1285 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1286 type = 4;
1287 break;
1288 default:
1289 /* Not one of the easy encodings. This will have to be
1290 handled by the more complex code below. */
1291 type = -1;
1292 break;
1293 }
1294 if (type != -1)
1295 {
1296 /* Account for the return value too. */
1297 if (rtn_bits)
1298 type += 5;
1299
1300 /* Emit a 2 byte relocation. Then see if it can be handled
1301 with a relocation which is already in the relocation queue. */
1302 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1303 bfd_put_8 (abfd, sym_num, p + 1);
1304 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1305 done = 1;
1306 }
1307 }
1308
1309 /* If this could not be handled with a simple relocation, then do a hard
1310 one. Hard relocations occur if the symbol number was too high or if
1311 the encoding of argument relocation bits is too complex. */
1312 if (! done)
1313 {
1314 /* Don't ask about these magic sequences. I took them straight
1315 from gas-1.36 which took them from the a.out man page. */
1316 type = rtn_bits;
1317 if ((arg_bits >> 6 & 0xf) == 0xe)
1318 type += 9 * 40;
1319 else
1320 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1321 if ((arg_bits >> 2 & 0xf) == 0xe)
1322 type += 9 * 4;
1323 else
1324 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1325
1326 /* Output the first two bytes of the relocation. These describe
1327 the length of the relocation and encoding style. */
1328 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1329 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1330 p);
1331 bfd_put_8 (abfd, type, p + 1);
1332
1333 /* Now output the symbol index and see if this bizarre relocation
1334 just happened to be in the relocation queue. */
1335 if (sym_num < 0x100)
1336 {
1337 bfd_put_8 (abfd, sym_num, p + 2);
1338 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1339 }
1340 else
1341 {
1342 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1343 bfd_put_16 (abfd, sym_num, p + 3);
1344 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1345 }
1346 }
1347 return p;
1348 }
1349
1350
1351 /* Return the logarithm of X, base 2, considering X unsigned.
1352 Abort -1 if X is not a power or two or is zero. */
1353
1354 static int
1355 log2 (x)
1356 unsigned int x;
1357 {
1358 int log = 0;
1359
1360 /* Test for 0 or a power of 2. */
1361 if (x == 0 || x != (x & -x))
1362 return -1;
1363
1364 while ((x >>= 1) != 0)
1365 log++;
1366 return log;
1367 }
1368
1369 static bfd_reloc_status_type
1370 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1371 input_section, output_bfd, error_message)
1372 bfd *abfd;
1373 arelent *reloc_entry;
1374 asymbol *symbol_in;
1375 PTR data;
1376 asection *input_section;
1377 bfd *output_bfd;
1378 char **error_message;
1379 {
1380 if (output_bfd)
1381 {
1382 reloc_entry->address += input_section->output_offset;
1383 return bfd_reloc_ok;
1384 }
1385 return bfd_reloc_ok;
1386 }
1387
1388 /* Given a generic HPPA relocation type, the instruction format,
1389 and a field selector, return one or more appropriate SOM relocations. */
1390
1391 int **
1392 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1393 bfd *abfd;
1394 int base_type;
1395 int format;
1396 enum hppa_reloc_field_selector_type_alt field;
1397 {
1398 int *final_type, **final_types;
1399
1400 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1401 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1402 if (!final_types || !final_type)
1403 {
1404 bfd_set_error (bfd_error_no_memory);
1405 return NULL;
1406 }
1407
1408 /* The field selector may require additional relocations to be
1409 generated. It's impossible to know at this moment if additional
1410 relocations will be needed, so we make them. The code to actually
1411 write the relocation/fixup stream is responsible for removing
1412 any redundant relocations. */
1413 switch (field)
1414 {
1415 case e_fsel:
1416 case e_psel:
1417 case e_lpsel:
1418 case e_rpsel:
1419 final_types[0] = final_type;
1420 final_types[1] = NULL;
1421 final_types[2] = NULL;
1422 *final_type = base_type;
1423 break;
1424
1425 case e_tsel:
1426 case e_ltsel:
1427 case e_rtsel:
1428 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1429 if (!final_types[0])
1430 {
1431 bfd_set_error (bfd_error_no_memory);
1432 return NULL;
1433 }
1434 if (field == e_tsel)
1435 *final_types[0] = R_FSEL;
1436 else if (field == e_ltsel)
1437 *final_types[0] = R_LSEL;
1438 else
1439 *final_types[0] = R_RSEL;
1440 final_types[1] = final_type;
1441 final_types[2] = NULL;
1442 *final_type = base_type;
1443 break;
1444
1445 case e_lssel:
1446 case e_rssel:
1447 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1448 if (!final_types[0])
1449 {
1450 bfd_set_error (bfd_error_no_memory);
1451 return NULL;
1452 }
1453 *final_types[0] = R_S_MODE;
1454 final_types[1] = final_type;
1455 final_types[2] = NULL;
1456 *final_type = base_type;
1457 break;
1458
1459 case e_lsel:
1460 case e_rsel:
1461 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1462 if (!final_types[0])
1463 {
1464 bfd_set_error (bfd_error_no_memory);
1465 return NULL;
1466 }
1467 *final_types[0] = R_N_MODE;
1468 final_types[1] = final_type;
1469 final_types[2] = NULL;
1470 *final_type = base_type;
1471 break;
1472
1473 case e_ldsel:
1474 case e_rdsel:
1475 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1476 if (!final_types[0])
1477 {
1478 bfd_set_error (bfd_error_no_memory);
1479 return NULL;
1480 }
1481 *final_types[0] = R_D_MODE;
1482 final_types[1] = final_type;
1483 final_types[2] = NULL;
1484 *final_type = base_type;
1485 break;
1486
1487 case e_lrsel:
1488 case e_rrsel:
1489 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1490 if (!final_types[0])
1491 {
1492 bfd_set_error (bfd_error_no_memory);
1493 return NULL;
1494 }
1495 *final_types[0] = R_R_MODE;
1496 final_types[1] = final_type;
1497 final_types[2] = NULL;
1498 *final_type = base_type;
1499 break;
1500 }
1501
1502 switch (base_type)
1503 {
1504 case R_HPPA:
1505 /* PLABELs get their own relocation type. */
1506 if (field == e_psel
1507 || field == e_lpsel
1508 || field == e_rpsel)
1509 {
1510 /* A PLABEL relocation that has a size of 32 bits must
1511 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1512 if (format == 32)
1513 *final_type = R_DATA_PLABEL;
1514 else
1515 *final_type = R_CODE_PLABEL;
1516 }
1517 /* PIC stuff. */
1518 else if (field == e_tsel
1519 || field == e_ltsel
1520 || field == e_rtsel)
1521 *final_type = R_DLT_REL;
1522 /* A relocation in the data space is always a full 32bits. */
1523 else if (format == 32)
1524 *final_type = R_DATA_ONE_SYMBOL;
1525
1526 break;
1527
1528 case R_HPPA_GOTOFF:
1529 /* More PLABEL special cases. */
1530 if (field == e_psel
1531 || field == e_lpsel
1532 || field == e_rpsel)
1533 *final_type = R_DATA_PLABEL;
1534 break;
1535
1536 case R_HPPA_NONE:
1537 case R_HPPA_ABS_CALL:
1538 case R_HPPA_PCREL_CALL:
1539 /* Right now we can default all these. */
1540 break;
1541 }
1542 return final_types;
1543 }
1544
1545 /* Return the address of the correct entry in the PA SOM relocation
1546 howto table. */
1547
1548 /*ARGSUSED*/
1549 static const reloc_howto_type *
1550 som_bfd_reloc_type_lookup (abfd, code)
1551 bfd *abfd;
1552 bfd_reloc_code_real_type code;
1553 {
1554 if ((int) code < (int) R_NO_RELOCATION + 255)
1555 {
1556 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1557 return &som_hppa_howto_table[(int) code];
1558 }
1559
1560 return (reloc_howto_type *) 0;
1561 }
1562
1563 /* Perform some initialization for an object. Save results of this
1564 initialization in the BFD. */
1565
1566 static const bfd_target *
1567 som_object_setup (abfd, file_hdrp, aux_hdrp)
1568 bfd *abfd;
1569 struct header *file_hdrp;
1570 struct som_exec_auxhdr *aux_hdrp;
1571 {
1572 /* som_mkobject will set bfd_error if som_mkobject fails. */
1573 if (som_mkobject (abfd) != true)
1574 return 0;
1575
1576 /* Set BFD flags based on what information is available in the SOM. */
1577 abfd->flags = NO_FLAGS;
1578 if (file_hdrp->symbol_total)
1579 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1580
1581 switch (file_hdrp->a_magic)
1582 {
1583 case DEMAND_MAGIC:
1584 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1585 break;
1586 case SHARE_MAGIC:
1587 abfd->flags |= (WP_TEXT | EXEC_P);
1588 break;
1589 case EXEC_MAGIC:
1590 abfd->flags |= (EXEC_P);
1591 break;
1592 case RELOC_MAGIC:
1593 abfd->flags |= HAS_RELOC;
1594 break;
1595 #ifdef SHL_MAGIC
1596 case SHL_MAGIC:
1597 #endif
1598 #ifdef DL_MAGIC
1599 case DL_MAGIC:
1600 #endif
1601 abfd->flags |= DYNAMIC;
1602 break;
1603
1604 default:
1605 break;
1606 }
1607
1608 /* Allocate space to hold the saved exec header information. */
1609 obj_som_exec_data (abfd) = (struct som_exec_data *)
1610 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1611 if (obj_som_exec_data (abfd) == NULL)
1612 {
1613 bfd_set_error (bfd_error_no_memory);
1614 return NULL;
1615 }
1616
1617 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1618
1619 It seems rather backward that the OSF1 linker which is much
1620 older than any HPUX linker I've got uses a newer SOM version
1621 id... But that's what I've found by experimentation. */
1622 if (file_hdrp->version_id == NEW_VERSION_ID)
1623 {
1624 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1625 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1626 }
1627 else
1628 {
1629 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1630 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1631 }
1632
1633 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1634 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1635
1636 /* Initialize the saved symbol table and string table to NULL.
1637 Save important offsets and sizes from the SOM header into
1638 the BFD. */
1639 obj_som_stringtab (abfd) = (char *) NULL;
1640 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1641 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1642 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1643 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1644 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1645 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1646
1647 return abfd->xvec;
1648 }
1649
1650 /* Convert all of the space and subspace info into BFD sections. Each space
1651 contains a number of subspaces, which in turn describe the mapping between
1652 regions of the exec file, and the address space that the program runs in.
1653 BFD sections which correspond to spaces will overlap the sections for the
1654 associated subspaces. */
1655
1656 static boolean
1657 setup_sections (abfd, file_hdr)
1658 bfd *abfd;
1659 struct header *file_hdr;
1660 {
1661 char *space_strings;
1662 int space_index;
1663 unsigned int total_subspaces = 0;
1664
1665 /* First, read in space names */
1666
1667 space_strings = malloc (file_hdr->space_strings_size);
1668 if (!space_strings && file_hdr->space_strings_size != 0)
1669 {
1670 bfd_set_error (bfd_error_no_memory);
1671 goto error_return;
1672 }
1673
1674 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1675 goto error_return;
1676 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1677 != file_hdr->space_strings_size)
1678 goto error_return;
1679
1680 /* Loop over all of the space dictionaries, building up sections */
1681 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1682 {
1683 struct space_dictionary_record space;
1684 struct subspace_dictionary_record subspace, save_subspace;
1685 int subspace_index;
1686 asection *space_asect;
1687 char *newname;
1688
1689 /* Read the space dictionary element */
1690 if (bfd_seek (abfd, file_hdr->space_location
1691 + space_index * sizeof space, SEEK_SET) < 0)
1692 goto error_return;
1693 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1694 goto error_return;
1695
1696 /* Setup the space name string */
1697 space.name.n_name = space.name.n_strx + space_strings;
1698
1699 /* Make a section out of it */
1700 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1701 if (!newname)
1702 goto error_return;
1703 strcpy (newname, space.name.n_name);
1704
1705 space_asect = bfd_make_section_anyway (abfd, newname);
1706 if (!space_asect)
1707 goto error_return;
1708
1709 if (space.is_loadable == 0)
1710 space_asect->flags |= SEC_DEBUGGING;
1711
1712 /* Set up all the attributes for the space. */
1713 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1714 space.is_private, space.sort_key,
1715 space.space_number) == false)
1716 goto error_return;
1717
1718 /* Now, read in the first subspace for this space */
1719 if (bfd_seek (abfd, file_hdr->subspace_location
1720 + space.subspace_index * sizeof subspace,
1721 SEEK_SET) < 0)
1722 goto error_return;
1723 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1724 goto error_return;
1725 /* Seek back to the start of the subspaces for loop below */
1726 if (bfd_seek (abfd, file_hdr->subspace_location
1727 + space.subspace_index * sizeof subspace,
1728 SEEK_SET) < 0)
1729 goto error_return;
1730
1731 /* Setup the start address and file loc from the first subspace record */
1732 space_asect->vma = subspace.subspace_start;
1733 space_asect->filepos = subspace.file_loc_init_value;
1734 space_asect->alignment_power = log2 (subspace.alignment);
1735 if (space_asect->alignment_power == -1)
1736 goto error_return;
1737
1738 /* Initialize save_subspace so we can reliably determine if this
1739 loop placed any useful values into it. */
1740 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1741
1742 /* Loop over the rest of the subspaces, building up more sections */
1743 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1744 subspace_index++)
1745 {
1746 asection *subspace_asect;
1747
1748 /* Read in the next subspace */
1749 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1750 != sizeof subspace)
1751 goto error_return;
1752
1753 /* Setup the subspace name string */
1754 subspace.name.n_name = subspace.name.n_strx + space_strings;
1755
1756 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1757 if (!newname)
1758 goto error_return;
1759 strcpy (newname, subspace.name.n_name);
1760
1761 /* Make a section out of this subspace */
1762 subspace_asect = bfd_make_section_anyway (abfd, newname);
1763 if (!subspace_asect)
1764 goto error_return;
1765
1766 /* Store private information about the section. */
1767 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1768 subspace.access_control_bits,
1769 subspace.sort_key,
1770 subspace.quadrant) == false)
1771 goto error_return;
1772
1773 /* Keep an easy mapping between subspaces and sections. */
1774 subspace_asect->target_index = total_subspaces++;
1775
1776 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1777 by the access_control_bits in the subspace header. */
1778 switch (subspace.access_control_bits >> 4)
1779 {
1780 /* Readonly data. */
1781 case 0x0:
1782 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1783 break;
1784
1785 /* Normal data. */
1786 case 0x1:
1787 subspace_asect->flags |= SEC_DATA;
1788 break;
1789
1790 /* Readonly code and the gateways.
1791 Gateways have other attributes which do not map
1792 into anything BFD knows about. */
1793 case 0x2:
1794 case 0x4:
1795 case 0x5:
1796 case 0x6:
1797 case 0x7:
1798 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1799 break;
1800
1801 /* dynamic (writable) code. */
1802 case 0x3:
1803 subspace_asect->flags |= SEC_CODE;
1804 break;
1805 }
1806
1807 if (subspace.dup_common || subspace.is_common)
1808 subspace_asect->flags |= SEC_IS_COMMON;
1809 else if (subspace.subspace_length > 0)
1810 subspace_asect->flags |= SEC_HAS_CONTENTS;
1811
1812 if (subspace.is_loadable)
1813 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1814 else
1815 subspace_asect->flags |= SEC_DEBUGGING;
1816
1817 if (subspace.code_only)
1818 subspace_asect->flags |= SEC_CODE;
1819
1820 /* Both file_loc_init_value and initialization_length will
1821 be zero for a BSS like subspace. */
1822 if (subspace.file_loc_init_value == 0
1823 && subspace.initialization_length == 0)
1824 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1825
1826 /* This subspace has relocations.
1827 The fixup_request_quantity is a byte count for the number of
1828 entries in the relocation stream; it is not the actual number
1829 of relocations in the subspace. */
1830 if (subspace.fixup_request_quantity != 0)
1831 {
1832 subspace_asect->flags |= SEC_RELOC;
1833 subspace_asect->rel_filepos = subspace.fixup_request_index;
1834 som_section_data (subspace_asect)->reloc_size
1835 = subspace.fixup_request_quantity;
1836 /* We can not determine this yet. When we read in the
1837 relocation table the correct value will be filled in. */
1838 subspace_asect->reloc_count = -1;
1839 }
1840
1841 /* Update save_subspace if appropriate. */
1842 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1843 save_subspace = subspace;
1844
1845 subspace_asect->vma = subspace.subspace_start;
1846 subspace_asect->_cooked_size = subspace.subspace_length;
1847 subspace_asect->_raw_size = subspace.subspace_length;
1848 subspace_asect->filepos = subspace.file_loc_init_value;
1849 subspace_asect->alignment_power = log2 (subspace.alignment);
1850 if (subspace_asect->alignment_power == -1)
1851 goto error_return;
1852 }
1853
1854 /* Yow! there is no subspace within the space which actually
1855 has initialized information in it; this should never happen
1856 as far as I know. */
1857 if (!save_subspace.file_loc_init_value)
1858 goto error_return;
1859
1860 /* Setup the sizes for the space section based upon the info in the
1861 last subspace of the space. */
1862 space_asect->_cooked_size = save_subspace.subspace_start
1863 - space_asect->vma + save_subspace.subspace_length;
1864 space_asect->_raw_size = save_subspace.file_loc_init_value
1865 - space_asect->filepos + save_subspace.initialization_length;
1866 }
1867 if (space_strings != NULL)
1868 free (space_strings);
1869 return true;
1870
1871 error_return:
1872 if (space_strings != NULL)
1873 free (space_strings);
1874 return false;
1875 }
1876
1877 /* Read in a SOM object and make it into a BFD. */
1878
1879 static const bfd_target *
1880 som_object_p (abfd)
1881 bfd *abfd;
1882 {
1883 struct header file_hdr;
1884 struct som_exec_auxhdr aux_hdr;
1885
1886 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1887 {
1888 if (bfd_get_error () != bfd_error_system_call)
1889 bfd_set_error (bfd_error_wrong_format);
1890 return 0;
1891 }
1892
1893 if (!_PA_RISC_ID (file_hdr.system_id))
1894 {
1895 bfd_set_error (bfd_error_wrong_format);
1896 return 0;
1897 }
1898
1899 switch (file_hdr.a_magic)
1900 {
1901 case RELOC_MAGIC:
1902 case EXEC_MAGIC:
1903 case SHARE_MAGIC:
1904 case DEMAND_MAGIC:
1905 #ifdef DL_MAGIC
1906 case DL_MAGIC:
1907 #endif
1908 #ifdef SHL_MAGIC
1909 case SHL_MAGIC:
1910 #endif
1911 #ifdef EXECLIBMAGIC
1912 case EXECLIBMAGIC:
1913 #endif
1914 #ifdef SHARED_MAGIC_CNX
1915 case SHARED_MAGIC_CNX:
1916 #endif
1917 break;
1918 default:
1919 bfd_set_error (bfd_error_wrong_format);
1920 return 0;
1921 }
1922
1923 if (file_hdr.version_id != VERSION_ID
1924 && file_hdr.version_id != NEW_VERSION_ID)
1925 {
1926 bfd_set_error (bfd_error_wrong_format);
1927 return 0;
1928 }
1929
1930 /* If the aux_header_size field in the file header is zero, then this
1931 object is an incomplete executable (a .o file). Do not try to read
1932 a non-existant auxiliary header. */
1933 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1934 if (file_hdr.aux_header_size != 0)
1935 {
1936 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1937 {
1938 if (bfd_get_error () != bfd_error_system_call)
1939 bfd_set_error (bfd_error_wrong_format);
1940 return 0;
1941 }
1942 }
1943
1944 if (!setup_sections (abfd, &file_hdr))
1945 {
1946 /* setup_sections does not bubble up a bfd error code. */
1947 bfd_set_error (bfd_error_bad_value);
1948 return 0;
1949 }
1950
1951 /* This appears to be a valid SOM object. Do some initialization. */
1952 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1953 }
1954
1955 /* Create a SOM object. */
1956
1957 static boolean
1958 som_mkobject (abfd)
1959 bfd *abfd;
1960 {
1961 /* Allocate memory to hold backend information. */
1962 abfd->tdata.som_data = (struct som_data_struct *)
1963 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1964 if (abfd->tdata.som_data == NULL)
1965 {
1966 bfd_set_error (bfd_error_no_memory);
1967 return false;
1968 }
1969 return true;
1970 }
1971
1972 /* Initialize some information in the file header. This routine makes
1973 not attempt at doing the right thing for a full executable; it
1974 is only meant to handle relocatable objects. */
1975
1976 static boolean
1977 som_prep_headers (abfd)
1978 bfd *abfd;
1979 {
1980 struct header *file_hdr;
1981 asection *section;
1982
1983 /* Make and attach a file header to the BFD. */
1984 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1985 if (file_hdr == NULL)
1986
1987 {
1988 bfd_set_error (bfd_error_no_memory);
1989 return false;
1990 }
1991 obj_som_file_hdr (abfd) = file_hdr;
1992
1993 if (abfd->flags & (EXEC_P | DYNAMIC))
1994 {
1995
1996 /* Make and attach an exec header to the BFD. */
1997 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
1998 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
1999 if (obj_som_exec_hdr (abfd) == NULL)
2000 {
2001 bfd_set_error (bfd_error_no_memory);
2002 return false;
2003 }
2004
2005 if (abfd->flags & D_PAGED)
2006 file_hdr->a_magic = DEMAND_MAGIC;
2007 else if (abfd->flags & WP_TEXT)
2008 file_hdr->a_magic = SHARE_MAGIC;
2009 #ifdef SHL_MAGIC
2010 else if (abfd->flags & DYNAMIC)
2011 file_hdr->a_magic = SHL_MAGIC;
2012 #endif
2013 else
2014 file_hdr->a_magic = EXEC_MAGIC;
2015 }
2016 else
2017 file_hdr->a_magic = RELOC_MAGIC;
2018
2019 /* Only new format SOM is supported. */
2020 file_hdr->version_id = NEW_VERSION_ID;
2021
2022 /* These fields are optional, and embedding timestamps is not always
2023 a wise thing to do, it makes comparing objects during a multi-stage
2024 bootstrap difficult. */
2025 file_hdr->file_time.secs = 0;
2026 file_hdr->file_time.nanosecs = 0;
2027
2028 file_hdr->entry_space = 0;
2029 file_hdr->entry_subspace = 0;
2030 file_hdr->entry_offset = 0;
2031 file_hdr->presumed_dp = 0;
2032
2033 /* Now iterate over the sections translating information from
2034 BFD sections to SOM spaces/subspaces. */
2035
2036 for (section = abfd->sections; section != NULL; section = section->next)
2037 {
2038 /* Ignore anything which has not been marked as a space or
2039 subspace. */
2040 if (!som_is_space (section) && !som_is_subspace (section))
2041 continue;
2042
2043 if (som_is_space (section))
2044 {
2045 /* Allocate space for the space dictionary. */
2046 som_section_data (section)->space_dict
2047 = (struct space_dictionary_record *)
2048 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2049 if (som_section_data (section)->space_dict == NULL)
2050 {
2051 bfd_set_error (bfd_error_no_memory);
2052 return false;
2053 }
2054 /* Set space attributes. Note most attributes of SOM spaces
2055 are set based on the subspaces it contains. */
2056 som_section_data (section)->space_dict->loader_fix_index = -1;
2057 som_section_data (section)->space_dict->init_pointer_index = -1;
2058
2059 /* Set more attributes that were stuffed away in private data. */
2060 som_section_data (section)->space_dict->sort_key =
2061 som_section_data (section)->copy_data->sort_key;
2062 som_section_data (section)->space_dict->is_defined =
2063 som_section_data (section)->copy_data->is_defined;
2064 som_section_data (section)->space_dict->is_private =
2065 som_section_data (section)->copy_data->is_private;
2066 som_section_data (section)->space_dict->space_number =
2067 som_section_data (section)->copy_data->space_number;
2068 }
2069 else
2070 {
2071 /* Allocate space for the subspace dictionary. */
2072 som_section_data (section)->subspace_dict
2073 = (struct subspace_dictionary_record *)
2074 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2075 if (som_section_data (section)->subspace_dict == NULL)
2076 {
2077 bfd_set_error (bfd_error_no_memory);
2078 return false;
2079 }
2080
2081 /* Set subspace attributes. Basic stuff is done here, additional
2082 attributes are filled in later as more information becomes
2083 available. */
2084 if (section->flags & SEC_IS_COMMON)
2085 {
2086 som_section_data (section)->subspace_dict->dup_common = 1;
2087 som_section_data (section)->subspace_dict->is_common = 1;
2088 }
2089
2090 if (section->flags & SEC_ALLOC)
2091 som_section_data (section)->subspace_dict->is_loadable = 1;
2092
2093 if (section->flags & SEC_CODE)
2094 som_section_data (section)->subspace_dict->code_only = 1;
2095
2096 som_section_data (section)->subspace_dict->subspace_start =
2097 section->vma;
2098 som_section_data (section)->subspace_dict->subspace_length =
2099 bfd_section_size (abfd, section);
2100 som_section_data (section)->subspace_dict->initialization_length =
2101 bfd_section_size (abfd, section);
2102 som_section_data (section)->subspace_dict->alignment =
2103 1 << section->alignment_power;
2104
2105 /* Set more attributes that were stuffed away in private data. */
2106 som_section_data (section)->subspace_dict->sort_key =
2107 som_section_data (section)->copy_data->sort_key;
2108 som_section_data (section)->subspace_dict->access_control_bits =
2109 som_section_data (section)->copy_data->access_control_bits;
2110 som_section_data (section)->subspace_dict->quadrant =
2111 som_section_data (section)->copy_data->quadrant;
2112 }
2113 }
2114 return true;
2115 }
2116
2117 /* Return true if the given section is a SOM space, false otherwise. */
2118
2119 static boolean
2120 som_is_space (section)
2121 asection *section;
2122 {
2123 /* If no copy data is available, then it's neither a space nor a
2124 subspace. */
2125 if (som_section_data (section)->copy_data == NULL)
2126 return false;
2127
2128 /* If the containing space isn't the same as the given section,
2129 then this isn't a space. */
2130 if (som_section_data (section)->copy_data->container != section)
2131 return false;
2132
2133 /* OK. Must be a space. */
2134 return true;
2135 }
2136
2137 /* Return true if the given section is a SOM subspace, false otherwise. */
2138
2139 static boolean
2140 som_is_subspace (section)
2141 asection *section;
2142 {
2143 /* If no copy data is available, then it's neither a space nor a
2144 subspace. */
2145 if (som_section_data (section)->copy_data == NULL)
2146 return false;
2147
2148 /* If the containing space is the same as the given section,
2149 then this isn't a subspace. */
2150 if (som_section_data (section)->copy_data->container == section)
2151 return false;
2152
2153 /* OK. Must be a subspace. */
2154 return true;
2155 }
2156
2157 /* Return true if the given space containins the given subspace. It
2158 is safe to assume space really is a space, and subspace really
2159 is a subspace. */
2160
2161 static boolean
2162 som_is_container (space, subspace)
2163 asection *space, *subspace;
2164 {
2165 return som_section_data (subspace)->copy_data->container == space;
2166 }
2167
2168 /* Count and return the number of spaces attached to the given BFD. */
2169
2170 static unsigned long
2171 som_count_spaces (abfd)
2172 bfd *abfd;
2173 {
2174 int count = 0;
2175 asection *section;
2176
2177 for (section = abfd->sections; section != NULL; section = section->next)
2178 count += som_is_space (section);
2179
2180 return count;
2181 }
2182
2183 /* Count the number of subspaces attached to the given BFD. */
2184
2185 static unsigned long
2186 som_count_subspaces (abfd)
2187 bfd *abfd;
2188 {
2189 int count = 0;
2190 asection *section;
2191
2192 for (section = abfd->sections; section != NULL; section = section->next)
2193 count += som_is_subspace (section);
2194
2195 return count;
2196 }
2197
2198 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2199
2200 We desire symbols to be ordered starting with the symbol with the
2201 highest relocation count down to the symbol with the lowest relocation
2202 count. Doing so compacts the relocation stream. */
2203
2204 static int
2205 compare_syms (arg1, arg2)
2206 const PTR arg1;
2207 const PTR arg2;
2208
2209 {
2210 asymbol **sym1 = (asymbol **) arg1;
2211 asymbol **sym2 = (asymbol **) arg2;
2212 unsigned int count1, count2;
2213
2214 /* Get relocation count for each symbol. Note that the count
2215 is stored in the udata pointer for section symbols! */
2216 if ((*sym1)->flags & BSF_SECTION_SYM)
2217 count1 = (int)(*sym1)->udata;
2218 else
2219 count1 = som_symbol_data (*sym1)->reloc_count;
2220
2221 if ((*sym2)->flags & BSF_SECTION_SYM)
2222 count2 = (int)(*sym2)->udata;
2223 else
2224 count2 = som_symbol_data (*sym2)->reloc_count;
2225
2226 /* Return the appropriate value. */
2227 if (count1 < count2)
2228 return 1;
2229 else if (count1 > count2)
2230 return -1;
2231 return 0;
2232 }
2233
2234 /* Perform various work in preparation for emitting the fixup stream. */
2235
2236 static void
2237 som_prep_for_fixups (abfd, syms, num_syms)
2238 bfd *abfd;
2239 asymbol **syms;
2240 unsigned long num_syms;
2241 {
2242 int i;
2243 asection *section;
2244
2245 /* Most SOM relocations involving a symbol have a length which is
2246 dependent on the index of the symbol. So symbols which are
2247 used often in relocations should have a small index. */
2248
2249 /* First initialize the counters for each symbol. */
2250 for (i = 0; i < num_syms; i++)
2251 {
2252 /* Handle a section symbol; these have no pointers back to the
2253 SOM symbol info. So we just use the pointer field (udata)
2254 to hold the relocation count. */
2255 if (som_symbol_data (syms[i]) == NULL
2256 || syms[i]->flags & BSF_SECTION_SYM)
2257 {
2258 syms[i]->flags |= BSF_SECTION_SYM;
2259 syms[i]->udata = (PTR) 0;
2260 }
2261 else
2262 som_symbol_data (syms[i])->reloc_count = 0;
2263 }
2264
2265 /* Now that the counters are initialized, make a weighted count
2266 of how often a given symbol is used in a relocation. */
2267 for (section = abfd->sections; section != NULL; section = section->next)
2268 {
2269 int i;
2270
2271 /* Does this section have any relocations? */
2272 if (section->reloc_count <= 0)
2273 continue;
2274
2275 /* Walk through each relocation for this section. */
2276 for (i = 1; i < section->reloc_count; i++)
2277 {
2278 arelent *reloc = section->orelocation[i];
2279 int scale;
2280
2281 /* A relocation against a symbol in the *ABS* section really
2282 does not have a symbol. Likewise if the symbol isn't associated
2283 with any section. */
2284 if (reloc->sym_ptr_ptr == NULL
2285 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2286 continue;
2287
2288 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2289 and R_CODE_ONE_SYMBOL relocations to come first. These
2290 two relocations have single byte versions if the symbol
2291 index is very small. */
2292 if (reloc->howto->type == R_DP_RELATIVE
2293 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2294 scale = 2;
2295 else
2296 scale = 1;
2297
2298 /* Handle section symbols by ramming the count in the udata
2299 field. It will not be used and the count is very important
2300 for these symbols. */
2301 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2302 {
2303 (*reloc->sym_ptr_ptr)->udata =
2304 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2305 continue;
2306 }
2307
2308 /* A normal symbol. Increment the count. */
2309 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2310 }
2311 }
2312
2313 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2314
2315 /* Compute the symbol indexes, they will be needed by the relocation
2316 code. */
2317 for (i = 0; i < num_syms; i++)
2318 {
2319 /* A section symbol. Again, there is no pointer to backend symbol
2320 information, so we reuse (abuse) the udata field again. */
2321 if (syms[i]->flags & BSF_SECTION_SYM)
2322 syms[i]->udata = (PTR) i;
2323 else
2324 som_symbol_data (syms[i])->index = i;
2325 }
2326 }
2327
2328 static boolean
2329 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2330 bfd *abfd;
2331 unsigned long current_offset;
2332 unsigned int *total_reloc_sizep;
2333 {
2334 unsigned int i, j;
2335 /* Chunk of memory that we can use as buffer space, then throw
2336 away. */
2337 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2338 unsigned char *p;
2339 unsigned int total_reloc_size = 0;
2340 unsigned int subspace_reloc_size = 0;
2341 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2342 asection *section = abfd->sections;
2343
2344 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2345 p = tmp_space;
2346
2347 /* All the fixups for a particular subspace are emitted in a single
2348 stream. All the subspaces for a particular space are emitted
2349 as a single stream.
2350
2351 So, to get all the locations correct one must iterate through all the
2352 spaces, for each space iterate through its subspaces and output a
2353 fixups stream. */
2354 for (i = 0; i < num_spaces; i++)
2355 {
2356 asection *subsection;
2357
2358 /* Find a space. */
2359 while (!som_is_space (section))
2360 section = section->next;
2361
2362 /* Now iterate through each of its subspaces. */
2363 for (subsection = abfd->sections;
2364 subsection != NULL;
2365 subsection = subsection->next)
2366 {
2367 int reloc_offset, current_rounding_mode;
2368
2369 /* Find a subspace of this space. */
2370 if (!som_is_subspace (subsection)
2371 || !som_is_container (section, subsection))
2372 continue;
2373
2374 /* If this subspace does not have real data, then we are
2375 finised with it. */
2376 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2377 {
2378 som_section_data (subsection)->subspace_dict->fixup_request_index
2379 = -1;
2380 continue;
2381 }
2382
2383 /* This subspace has some relocations. Put the relocation stream
2384 index into the subspace record. */
2385 som_section_data (subsection)->subspace_dict->fixup_request_index
2386 = total_reloc_size;
2387
2388 /* To make life easier start over with a clean slate for
2389 each subspace. Seek to the start of the relocation stream
2390 for this subspace in preparation for writing out its fixup
2391 stream. */
2392 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2393 return false;
2394
2395 /* Buffer space has already been allocated. Just perform some
2396 initialization here. */
2397 p = tmp_space;
2398 subspace_reloc_size = 0;
2399 reloc_offset = 0;
2400 som_initialize_reloc_queue (reloc_queue);
2401 current_rounding_mode = R_N_MODE;
2402
2403 /* Translate each BFD relocation into one or more SOM
2404 relocations. */
2405 for (j = 0; j < subsection->reloc_count; j++)
2406 {
2407 arelent *bfd_reloc = subsection->orelocation[j];
2408 unsigned int skip;
2409 int sym_num;
2410
2411 /* Get the symbol number. Remember it's stored in a
2412 special place for section symbols. */
2413 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2414 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2415 else
2416 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2417
2418 /* If there is not enough room for the next couple relocations,
2419 then dump the current buffer contents now. Also reinitialize
2420 the relocation queue.
2421
2422 No single BFD relocation could ever translate into more
2423 than 100 bytes of SOM relocations (20bytes is probably the
2424 upper limit, but leave lots of space for growth). */
2425 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2426 {
2427 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2428 != p - tmp_space)
2429 return false;
2430
2431 p = tmp_space;
2432 som_initialize_reloc_queue (reloc_queue);
2433 }
2434
2435 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2436 skipped. */
2437 skip = bfd_reloc->address - reloc_offset;
2438 p = som_reloc_skip (abfd, skip, p,
2439 &subspace_reloc_size, reloc_queue);
2440
2441 /* Update reloc_offset for the next iteration.
2442
2443 Many relocations do not consume input bytes. They
2444 are markers, or set state necessary to perform some
2445 later relocation. */
2446 switch (bfd_reloc->howto->type)
2447 {
2448 /* This only needs to handle relocations that may be
2449 made by hppa_som_gen_reloc. */
2450 case R_ENTRY:
2451 case R_ALT_ENTRY:
2452 case R_EXIT:
2453 case R_N_MODE:
2454 case R_S_MODE:
2455 case R_D_MODE:
2456 case R_R_MODE:
2457 case R_FSEL:
2458 case R_LSEL:
2459 case R_RSEL:
2460 reloc_offset = bfd_reloc->address;
2461 break;
2462
2463 default:
2464 reloc_offset = bfd_reloc->address + 4;
2465 break;
2466 }
2467
2468 /* Now the actual relocation we care about. */
2469 switch (bfd_reloc->howto->type)
2470 {
2471 case R_PCREL_CALL:
2472 case R_ABS_CALL:
2473 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2474 bfd_reloc, sym_num, reloc_queue);
2475 break;
2476
2477 case R_CODE_ONE_SYMBOL:
2478 case R_DP_RELATIVE:
2479 /* Account for any addend. */
2480 if (bfd_reloc->addend)
2481 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2482 &subspace_reloc_size, reloc_queue);
2483
2484 if (sym_num < 0x20)
2485 {
2486 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2487 subspace_reloc_size += 1;
2488 p += 1;
2489 }
2490 else if (sym_num < 0x100)
2491 {
2492 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2493 bfd_put_8 (abfd, sym_num, p + 1);
2494 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2495 2, reloc_queue);
2496 }
2497 else if (sym_num < 0x10000000)
2498 {
2499 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2500 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2501 bfd_put_16 (abfd, sym_num, p + 2);
2502 p = try_prev_fixup (abfd, &subspace_reloc_size,
2503 p, 4, reloc_queue);
2504 }
2505 else
2506 abort ();
2507 break;
2508
2509 case R_DATA_ONE_SYMBOL:
2510 case R_DATA_PLABEL:
2511 case R_CODE_PLABEL:
2512 case R_DLT_REL:
2513 /* Account for any addend. */
2514 if (bfd_reloc->addend)
2515 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2516 &subspace_reloc_size, reloc_queue);
2517
2518 if (sym_num < 0x100)
2519 {
2520 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2521 bfd_put_8 (abfd, sym_num, p + 1);
2522 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2523 2, reloc_queue);
2524 }
2525 else if (sym_num < 0x10000000)
2526 {
2527 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2528 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2529 bfd_put_16 (abfd, sym_num, p + 2);
2530 p = try_prev_fixup (abfd, &subspace_reloc_size,
2531 p, 4, reloc_queue);
2532 }
2533 else
2534 abort ();
2535 break;
2536
2537 case R_ENTRY:
2538 {
2539 int *descp = (int *)
2540 som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2541 bfd_put_8 (abfd, R_ENTRY, p);
2542
2543 /* FIXME: We should set the sym_ptr for the R_ENTRY
2544 reloc to point to the appropriate function symbol,
2545 and attach unwind bits to the function symbol as
2546 we canonicalize the relocs. Doing so would ensure
2547 descp would always point to something useful. */
2548 if (descp)
2549 {
2550 bfd_put_32 (abfd, descp[0], p + 1);
2551 bfd_put_32 (abfd, descp[1], p + 5);
2552 }
2553 else
2554 {
2555 bfd_put_32 (abfd, 0, p + 1);
2556 bfd_put_32 (abfd, 0, p + 5);
2557 }
2558 p = try_prev_fixup (abfd, &subspace_reloc_size,
2559 p, 9, reloc_queue);
2560 break;
2561 }
2562
2563 case R_N_MODE:
2564 case R_S_MODE:
2565 case R_D_MODE:
2566 case R_R_MODE:
2567 /* If this relocation requests the current rounding
2568 mode, then it is redundant. */
2569 if (bfd_reloc->howto->type != current_rounding_mode)
2570 {
2571 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2572 subspace_reloc_size += 1;
2573 p += 1;
2574 current_rounding_mode = bfd_reloc->howto->type;
2575 }
2576 break;
2577
2578 case R_EXIT:
2579 case R_ALT_ENTRY:
2580 case R_FSEL:
2581 case R_LSEL:
2582 case R_RSEL:
2583 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2584 subspace_reloc_size += 1;
2585 p += 1;
2586 break;
2587
2588 /* Put a "R_RESERVED" relocation in the stream if
2589 we hit something we do not understand. The linker
2590 will complain loudly if this ever happens. */
2591 default:
2592 bfd_put_8 (abfd, 0xff, p);
2593 subspace_reloc_size += 1;
2594 p += 1;
2595 break;
2596 }
2597 }
2598
2599 /* Last BFD relocation for a subspace has been processed.
2600 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2601 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2602 - reloc_offset,
2603 p, &subspace_reloc_size, reloc_queue);
2604
2605 /* Scribble out the relocations. */
2606 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2607 != p - tmp_space)
2608 return false;
2609 p = tmp_space;
2610
2611 total_reloc_size += subspace_reloc_size;
2612 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2613 = subspace_reloc_size;
2614 }
2615 section = section->next;
2616 }
2617 *total_reloc_sizep = total_reloc_size;
2618 return true;
2619 }
2620
2621 /* Write out the space/subspace string table. */
2622
2623 static boolean
2624 som_write_space_strings (abfd, current_offset, string_sizep)
2625 bfd *abfd;
2626 unsigned long current_offset;
2627 unsigned int *string_sizep;
2628 {
2629 /* Chunk of memory that we can use as buffer space, then throw
2630 away. */
2631 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2632 unsigned char *p;
2633 unsigned int strings_size = 0;
2634 asection *section;
2635
2636 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2637 p = tmp_space;
2638
2639 /* Seek to the start of the space strings in preparation for writing
2640 them out. */
2641 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2642 return false;
2643
2644 /* Walk through all the spaces and subspaces (order is not important)
2645 building up and writing string table entries for their names. */
2646 for (section = abfd->sections; section != NULL; section = section->next)
2647 {
2648 int length;
2649
2650 /* Only work with space/subspaces; avoid any other sections
2651 which might have been made (.text for example). */
2652 if (!som_is_space (section) && !som_is_subspace (section))
2653 continue;
2654
2655 /* Get the length of the space/subspace name. */
2656 length = strlen (section->name);
2657
2658 /* If there is not enough room for the next entry, then dump the
2659 current buffer contents now. Each entry will take 4 bytes to
2660 hold the string length + the string itself + null terminator. */
2661 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2662 {
2663 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2664 != p - tmp_space)
2665 return false;
2666 /* Reset to beginning of the buffer space. */
2667 p = tmp_space;
2668 }
2669
2670 /* First element in a string table entry is the length of the
2671 string. Alignment issues are already handled. */
2672 bfd_put_32 (abfd, length, p);
2673 p += 4;
2674 strings_size += 4;
2675
2676 /* Record the index in the space/subspace records. */
2677 if (som_is_space (section))
2678 som_section_data (section)->space_dict->name.n_strx = strings_size;
2679 else
2680 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2681
2682 /* Next comes the string itself + a null terminator. */
2683 strcpy (p, section->name);
2684 p += length + 1;
2685 strings_size += length + 1;
2686
2687 /* Always align up to the next word boundary. */
2688 while (strings_size % 4)
2689 {
2690 bfd_put_8 (abfd, 0, p);
2691 p++;
2692 strings_size++;
2693 }
2694 }
2695
2696 /* Done with the space/subspace strings. Write out any information
2697 contained in a partial block. */
2698 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2699 return false;
2700 *string_sizep = strings_size;
2701 return true;
2702 }
2703
2704 /* Write out the symbol string table. */
2705
2706 static boolean
2707 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2708 bfd *abfd;
2709 unsigned long current_offset;
2710 asymbol **syms;
2711 unsigned int num_syms;
2712 unsigned int *string_sizep;
2713 {
2714 unsigned int i;
2715
2716 /* Chunk of memory that we can use as buffer space, then throw
2717 away. */
2718 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2719 unsigned char *p;
2720 unsigned int strings_size = 0;
2721
2722 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2723 p = tmp_space;
2724
2725 /* Seek to the start of the space strings in preparation for writing
2726 them out. */
2727 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2728 return false;
2729
2730 for (i = 0; i < num_syms; i++)
2731 {
2732 int length = strlen (syms[i]->name);
2733
2734 /* If there is not enough room for the next entry, then dump the
2735 current buffer contents now. */
2736 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2737 {
2738 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2739 != p - tmp_space)
2740 return false;
2741 /* Reset to beginning of the buffer space. */
2742 p = tmp_space;
2743 }
2744
2745 /* First element in a string table entry is the length of the
2746 string. This must always be 4 byte aligned. This is also
2747 an appropriate time to fill in the string index field in the
2748 symbol table entry. */
2749 bfd_put_32 (abfd, length, p);
2750 strings_size += 4;
2751 p += 4;
2752
2753 /* Next comes the string itself + a null terminator. */
2754 strcpy (p, syms[i]->name);
2755
2756 /* ACK. FIXME. */
2757 syms[i]->name = (char *)strings_size;
2758 p += length + 1;
2759 strings_size += length + 1;
2760
2761 /* Always align up to the next word boundary. */
2762 while (strings_size % 4)
2763 {
2764 bfd_put_8 (abfd, 0, p);
2765 strings_size++;
2766 p++;
2767 }
2768 }
2769
2770 /* Scribble out any partial block. */
2771 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2772 return false;
2773
2774 *string_sizep = strings_size;
2775 return true;
2776 }
2777
2778 /* Compute variable information to be placed in the SOM headers,
2779 space/subspace dictionaries, relocation streams, etc. Begin
2780 writing parts of the object file. */
2781
2782 static boolean
2783 som_begin_writing (abfd)
2784 bfd *abfd;
2785 {
2786 unsigned long current_offset = 0;
2787 int strings_size = 0;
2788 unsigned int total_reloc_size = 0;
2789 unsigned long num_spaces, num_subspaces, num_syms, i;
2790 asection *section;
2791 asymbol **syms = bfd_get_outsymbols (abfd);
2792 unsigned int total_subspaces = 0;
2793 struct som_exec_auxhdr *exec_header;
2794
2795 /* The file header will always be first in an object file,
2796 everything else can be in random locations. To keep things
2797 "simple" BFD will lay out the object file in the manner suggested
2798 by the PRO ABI for PA-RISC Systems. */
2799
2800 /* Before any output can really begin offsets for all the major
2801 portions of the object file must be computed. So, starting
2802 with the initial file header compute (and sometimes write)
2803 each portion of the object file. */
2804
2805 /* Make room for the file header, it's contents are not complete
2806 yet, so it can not be written at this time. */
2807 current_offset += sizeof (struct header);
2808
2809 /* Any auxiliary headers will follow the file header. Right now
2810 we support only the copyright and version headers. */
2811 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2812 obj_som_file_hdr (abfd)->aux_header_size = 0;
2813 if (abfd->flags & (EXEC_P | DYNAMIC))
2814 {
2815 /* Parts of the exec header will be filled in later, so
2816 delay writing the header itself. Fill in the defaults,
2817 and write it later. */
2818 current_offset += sizeof (struct som_exec_auxhdr);
2819 obj_som_file_hdr (abfd)->aux_header_size
2820 += sizeof (struct som_exec_auxhdr);
2821 exec_header = obj_som_exec_hdr (abfd);
2822 exec_header->som_auxhdr.type = EXEC_AUX_ID;
2823 exec_header->som_auxhdr.length = 40;
2824 }
2825 if (obj_som_version_hdr (abfd) != NULL)
2826 {
2827 unsigned int len;
2828
2829 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2830 return false;
2831
2832 /* Write the aux_id structure and the string length. */
2833 len = sizeof (struct aux_id) + sizeof (unsigned int);
2834 obj_som_file_hdr (abfd)->aux_header_size += len;
2835 current_offset += len;
2836 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2837 return false;
2838
2839 /* Write the version string. */
2840 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2841 obj_som_file_hdr (abfd)->aux_header_size += len;
2842 current_offset += len;
2843 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2844 len, 1, abfd) != len)
2845 return false;
2846 }
2847
2848 if (obj_som_copyright_hdr (abfd) != NULL)
2849 {
2850 unsigned int len;
2851
2852 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2853 return false;
2854
2855 /* Write the aux_id structure and the string length. */
2856 len = sizeof (struct aux_id) + sizeof (unsigned int);
2857 obj_som_file_hdr (abfd)->aux_header_size += len;
2858 current_offset += len;
2859 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2860 return false;
2861
2862 /* Write the copyright string. */
2863 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2864 obj_som_file_hdr (abfd)->aux_header_size += len;
2865 current_offset += len;
2866 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2867 len, 1, abfd) != len)
2868 return false;
2869 }
2870
2871 /* Next comes the initialization pointers; we have no initialization
2872 pointers, so current offset does not change. */
2873 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2874 obj_som_file_hdr (abfd)->init_array_total = 0;
2875
2876 /* Next are the space records. These are fixed length records.
2877
2878 Count the number of spaces to determine how much room is needed
2879 in the object file for the space records.
2880
2881 The names of the spaces are stored in a separate string table,
2882 and the index for each space into the string table is computed
2883 below. Therefore, it is not possible to write the space headers
2884 at this time. */
2885 num_spaces = som_count_spaces (abfd);
2886 obj_som_file_hdr (abfd)->space_location = current_offset;
2887 obj_som_file_hdr (abfd)->space_total = num_spaces;
2888 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2889
2890 /* Next are the subspace records. These are fixed length records.
2891
2892 Count the number of subspaes to determine how much room is needed
2893 in the object file for the subspace records.
2894
2895 A variety if fields in the subspace record are still unknown at
2896 this time (index into string table, fixup stream location/size, etc). */
2897 num_subspaces = som_count_subspaces (abfd);
2898 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2899 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2900 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2901
2902 /* Next is the string table for the space/subspace names. We will
2903 build and write the string table on the fly. At the same time
2904 we will fill in the space/subspace name index fields. */
2905
2906 /* The string table needs to be aligned on a word boundary. */
2907 if (current_offset % 4)
2908 current_offset += (4 - (current_offset % 4));
2909
2910 /* Mark the offset of the space/subspace string table in the
2911 file header. */
2912 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2913
2914 /* Scribble out the space strings. */
2915 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2916 return false;
2917
2918 /* Record total string table size in the header and update the
2919 current offset. */
2920 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2921 current_offset += strings_size;
2922
2923 /* Next is the symbol table. These are fixed length records.
2924
2925 Count the number of symbols to determine how much room is needed
2926 in the object file for the symbol table.
2927
2928 The names of the symbols are stored in a separate string table,
2929 and the index for each symbol name into the string table is computed
2930 below. Therefore, it is not possible to write the symobl table
2931 at this time. */
2932 num_syms = bfd_get_symcount (abfd);
2933 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2934 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2935 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2936
2937 /* Do prep work before handling fixups. */
2938 som_prep_for_fixups (abfd, syms, num_syms);
2939
2940 /* Next comes the fixup stream which starts on a word boundary. */
2941 if (current_offset % 4)
2942 current_offset += (4 - (current_offset % 4));
2943 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2944
2945 /* Write the fixups and update fields in subspace headers which
2946 relate to the fixup stream. */
2947 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2948 return false;
2949
2950 /* Record the total size of the fixup stream in the file header. */
2951 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2952 current_offset += total_reloc_size;
2953
2954 /* Next are the symbol strings.
2955 Align them to a word boundary. */
2956 if (current_offset % 4)
2957 current_offset += (4 - (current_offset % 4));
2958 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2959
2960 /* Scribble out the symbol strings. */
2961 if (som_write_symbol_strings (abfd, current_offset, syms,
2962 num_syms, &strings_size)
2963 == false)
2964 return false;
2965
2966 /* Record total string table size in header and update the
2967 current offset. */
2968 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2969 current_offset += strings_size;
2970
2971 /* Next is the compiler records. We do not use these. */
2972 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2973 obj_som_file_hdr (abfd)->compiler_total = 0;
2974
2975 /* Now compute the file positions for the loadable subspaces, taking
2976 care to make sure everything stays properly aligned. */
2977
2978 section = abfd->sections;
2979 for (i = 0; i < num_spaces; i++)
2980 {
2981 asection *subsection;
2982 int first_subspace;
2983 unsigned int subspace_offset = 0;
2984
2985 /* Find a space. */
2986 while (!som_is_space (section))
2987 section = section->next;
2988
2989 first_subspace = 1;
2990 /* Now look for all its subspaces. */
2991 for (subsection = abfd->sections;
2992 subsection != NULL;
2993 subsection = subsection->next)
2994 {
2995
2996 if (!som_is_subspace (subsection)
2997 || !som_is_container (section, subsection)
2998 || (subsection->flags & SEC_ALLOC) == 0)
2999 continue;
3000
3001 /* If this is the first subspace in the space, and we are
3002 building an executable, then take care to make sure all
3003 the alignments are correct and update the exec header. */
3004 if (first_subspace
3005 && (abfd->flags & (EXEC_P | DYNAMIC)))
3006 {
3007 /* Demand paged executables have each space aligned to a
3008 page boundary. Sharable executables (write-protected
3009 text) have just the private (aka data & bss) space aligned
3010 to a page boundary. Ugh. Not true for HPUX.
3011
3012 The HPUX kernel requires the text to always be page aligned
3013 within the file regardless of the executable's type. */
3014 if (abfd->flags & (D_PAGED | DYNAMIC)
3015 || (subsection->flags & SEC_CODE)
3016 || ((abfd->flags & WP_TEXT)
3017 && (subsection->flags & SEC_DATA)))
3018 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3019
3020 /* Update the exec header. */
3021 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3022 {
3023 exec_header->exec_tmem = section->vma;
3024 exec_header->exec_tfile = current_offset;
3025 }
3026 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3027 {
3028 exec_header->exec_dmem = section->vma;
3029 exec_header->exec_dfile = current_offset;
3030 }
3031
3032 /* Keep track of exactly where we are within a particular
3033 space. This is necessary as the braindamaged HPUX
3034 loader will create holes between subspaces *and*
3035 subspace alignments are *NOT* preserved. What a crock. */
3036 subspace_offset = subsection->vma;
3037
3038 /* Only do this for the first subspace within each space. */
3039 first_subspace = 0;
3040 }
3041 else if (abfd->flags & (EXEC_P | DYNAMIC))
3042 {
3043 /* The braindamaged HPUX loader may have created a hole
3044 between two subspaces. It is *not* sufficient to use
3045 the alignment specifications within the subspaces to
3046 account for these holes -- I've run into at least one
3047 case where the loader left one code subspace unaligned
3048 in a final executable.
3049
3050 To combat this we keep a current offset within each space,
3051 and use the subspace vma fields to detect and preserve
3052 holes. What a crock!
3053
3054 ps. This is not necessary for unloadable space/subspaces. */
3055 current_offset += subsection->vma - subspace_offset;
3056 if (subsection->flags & SEC_CODE)
3057 exec_header->exec_tsize += subsection->vma - subspace_offset;
3058 else
3059 exec_header->exec_dsize += subsection->vma - subspace_offset;
3060 subspace_offset += subsection->vma - subspace_offset;
3061 }
3062
3063
3064 subsection->target_index = total_subspaces++;
3065 /* This is real data to be loaded from the file. */
3066 if (subsection->flags & SEC_LOAD)
3067 {
3068 /* Update the size of the code & data. */
3069 if (abfd->flags & (EXEC_P | DYNAMIC)
3070 && subsection->flags & SEC_CODE)
3071 exec_header->exec_tsize += subsection->_cooked_size;
3072 else if (abfd->flags & (EXEC_P | DYNAMIC)
3073 && subsection->flags & SEC_DATA)
3074 exec_header->exec_dsize += subsection->_cooked_size;
3075 som_section_data (subsection)->subspace_dict->file_loc_init_value
3076 = current_offset;
3077 subsection->filepos = current_offset;
3078 current_offset += bfd_section_size (abfd, subsection);
3079 subspace_offset += bfd_section_size (abfd, subsection);
3080 }
3081 /* Looks like uninitialized data. */
3082 else
3083 {
3084 /* Update the size of the bss section. */
3085 if (abfd->flags & (EXEC_P | DYNAMIC))
3086 exec_header->exec_bsize += subsection->_cooked_size;
3087
3088 som_section_data (subsection)->subspace_dict->file_loc_init_value
3089 = 0;
3090 som_section_data (subsection)->subspace_dict->
3091 initialization_length = 0;
3092 }
3093 }
3094 /* Goto the next section. */
3095 section = section->next;
3096 }
3097
3098 /* Finally compute the file positions for unloadable subspaces.
3099 If building an executable, start the unloadable stuff on its
3100 own page. */
3101
3102 if (abfd->flags & (EXEC_P | DYNAMIC))
3103 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3104
3105 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3106 section = abfd->sections;
3107 for (i = 0; i < num_spaces; i++)
3108 {
3109 asection *subsection;
3110
3111 /* Find a space. */
3112 while (!som_is_space (section))
3113 section = section->next;
3114
3115 if (abfd->flags & (EXEC_P | DYNAMIC))
3116 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3117
3118 /* Now look for all its subspaces. */
3119 for (subsection = abfd->sections;
3120 subsection != NULL;
3121 subsection = subsection->next)
3122 {
3123
3124 if (!som_is_subspace (subsection)
3125 || !som_is_container (section, subsection)
3126 || (subsection->flags & SEC_ALLOC) != 0)
3127 continue;
3128
3129 subsection->target_index = total_subspaces;
3130 /* This is real data to be loaded from the file. */
3131 if ((subsection->flags & SEC_LOAD) == 0)
3132 {
3133 som_section_data (subsection)->subspace_dict->file_loc_init_value
3134 = current_offset;
3135 subsection->filepos = current_offset;
3136 current_offset += bfd_section_size (abfd, subsection);
3137 }
3138 /* Looks like uninitialized data. */
3139 else
3140 {
3141 som_section_data (subsection)->subspace_dict->file_loc_init_value
3142 = 0;
3143 som_section_data (subsection)->subspace_dict->
3144 initialization_length = bfd_section_size (abfd, subsection);
3145 }
3146 }
3147 /* Goto the next section. */
3148 section = section->next;
3149 }
3150
3151 /* If building an executable, then make sure to seek to and write
3152 one byte at the end of the file to make sure any necessary
3153 zeros are filled in. Ugh. */
3154 if (abfd->flags & (EXEC_P | DYNAMIC))
3155 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3156 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3157 return false;
3158 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3159 return false;
3160
3161 obj_som_file_hdr (abfd)->unloadable_sp_size
3162 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3163
3164 /* Loader fixups are not supported in any way shape or form. */
3165 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3166 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3167
3168 /* Done. Store the total size of the SOM. */
3169 obj_som_file_hdr (abfd)->som_length = current_offset;
3170
3171 return true;
3172 }
3173
3174 /* Finally, scribble out the various headers to the disk. */
3175
3176 static boolean
3177 som_write_headers (abfd)
3178 bfd *abfd;
3179 {
3180 int num_spaces = som_count_spaces (abfd);
3181 int i;
3182 int subspace_index = 0;
3183 file_ptr location;
3184 asection *section;
3185
3186 /* Subspaces are written first so that we can set up information
3187 about them in their containing spaces as the subspace is written. */
3188
3189 /* Seek to the start of the subspace dictionary records. */
3190 location = obj_som_file_hdr (abfd)->subspace_location;
3191 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3192 return false;
3193
3194 section = abfd->sections;
3195 /* Now for each loadable space write out records for its subspaces. */
3196 for (i = 0; i < num_spaces; i++)
3197 {
3198 asection *subsection;
3199
3200 /* Find a space. */
3201 while (!som_is_space (section))
3202 section = section->next;
3203
3204 /* Now look for all its subspaces. */
3205 for (subsection = abfd->sections;
3206 subsection != NULL;
3207 subsection = subsection->next)
3208 {
3209
3210 /* Skip any section which does not correspond to a space
3211 or subspace. Or does not have SEC_ALLOC set (and therefore
3212 has no real bits on the disk). */
3213 if (!som_is_subspace (subsection)
3214 || !som_is_container (section, subsection)
3215 || (subsection->flags & SEC_ALLOC) == 0)
3216 continue;
3217
3218 /* If this is the first subspace for this space, then save
3219 the index of the subspace in its containing space. Also
3220 set "is_loadable" in the containing space. */
3221
3222 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3223 {
3224 som_section_data (section)->space_dict->is_loadable = 1;
3225 som_section_data (section)->space_dict->subspace_index
3226 = subspace_index;
3227 }
3228
3229 /* Increment the number of subspaces seen and the number of
3230 subspaces contained within the current space. */
3231 subspace_index++;
3232 som_section_data (section)->space_dict->subspace_quantity++;
3233
3234 /* Mark the index of the current space within the subspace's
3235 dictionary record. */
3236 som_section_data (subsection)->subspace_dict->space_index = i;
3237
3238 /* Dump the current subspace header. */
3239 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3240 sizeof (struct subspace_dictionary_record), 1, abfd)
3241 != sizeof (struct subspace_dictionary_record))
3242 return false;
3243 }
3244 /* Goto the next section. */
3245 section = section->next;
3246 }
3247
3248 /* Now repeat the process for unloadable subspaces. */
3249 section = abfd->sections;
3250 /* Now for each space write out records for its subspaces. */
3251 for (i = 0; i < num_spaces; i++)
3252 {
3253 asection *subsection;
3254
3255 /* Find a space. */
3256 while (!som_is_space (section))
3257 section = section->next;
3258
3259 /* Now look for all its subspaces. */
3260 for (subsection = abfd->sections;
3261 subsection != NULL;
3262 subsection = subsection->next)
3263 {
3264
3265 /* Skip any section which does not correspond to a space or
3266 subspace, or which SEC_ALLOC set (and therefore handled
3267 in the loadable spaces/subspaces code above). */
3268
3269 if (!som_is_subspace (subsection)
3270 || !som_is_container (section, subsection)
3271 || (subsection->flags & SEC_ALLOC) != 0)
3272 continue;
3273
3274 /* If this is the first subspace for this space, then save
3275 the index of the subspace in its containing space. Clear
3276 "is_loadable". */
3277
3278 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3279 {
3280 som_section_data (section)->space_dict->is_loadable = 0;
3281 som_section_data (section)->space_dict->subspace_index
3282 = subspace_index;
3283 }
3284
3285 /* Increment the number of subspaces seen and the number of
3286 subspaces contained within the current space. */
3287 som_section_data (section)->space_dict->subspace_quantity++;
3288 subspace_index++;
3289
3290 /* Mark the index of the current space within the subspace's
3291 dictionary record. */
3292 som_section_data (subsection)->subspace_dict->space_index = i;
3293
3294 /* Dump this subspace header. */
3295 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3296 sizeof (struct subspace_dictionary_record), 1, abfd)
3297 != sizeof (struct subspace_dictionary_record))
3298 return false;
3299 }
3300 /* Goto the next section. */
3301 section = section->next;
3302 }
3303
3304 /* All the subspace dictiondary records are written, and all the
3305 fields are set up in the space dictionary records.
3306
3307 Seek to the right location and start writing the space
3308 dictionary records. */
3309 location = obj_som_file_hdr (abfd)->space_location;
3310 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3311 return false;
3312
3313 section = abfd->sections;
3314 for (i = 0; i < num_spaces; i++)
3315 {
3316
3317 /* Find a space. */
3318 while (!som_is_space (section))
3319 section = section->next;
3320
3321 /* Dump its header */
3322 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3323 sizeof (struct space_dictionary_record), 1, abfd)
3324 != sizeof (struct space_dictionary_record))
3325 return false;
3326
3327 /* Goto the next section. */
3328 section = section->next;
3329 }
3330
3331 /* FIXME. This should really be conditional based on whether or not
3332 PA1.1 instructions/registers have been used.
3333
3334 Setting of the system_id has to happen very late now that copying of
3335 BFD private data happens *after* section contents are set. */
3336 if (abfd->flags & (EXEC_P | DYNAMIC))
3337 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3338 else
3339 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3340
3341 /* Compute the checksum for the file header just before writing
3342 the header to disk. */
3343 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3344
3345 /* Only thing left to do is write out the file header. It is always
3346 at location zero. Seek there and write it. */
3347 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3348 return false;
3349 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3350 sizeof (struct header), 1, abfd)
3351 != sizeof (struct header))
3352 return false;
3353
3354 /* Now write the exec header. */
3355 if (abfd->flags & (EXEC_P | DYNAMIC))
3356 {
3357 long tmp;
3358 struct som_exec_auxhdr *exec_header;
3359
3360 exec_header = obj_som_exec_hdr (abfd);
3361 exec_header->exec_entry = bfd_get_start_address (abfd);
3362 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3363
3364 /* Oh joys. Ram some of the BSS data into the DATA section
3365 to be compatable with how the hp linker makes objects
3366 (saves memory space). */
3367 tmp = exec_header->exec_dsize;
3368 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3369 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3370 if (exec_header->exec_bsize < 0)
3371 exec_header->exec_bsize = 0;
3372 exec_header->exec_dsize = tmp;
3373
3374 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3375 SEEK_SET) < 0)
3376 return false;
3377
3378 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3379 != AUX_HDR_SIZE)
3380 return false;
3381 }
3382 return true;
3383 }
3384
3385 /* Compute and return the checksum for a SOM file header. */
3386
3387 static unsigned long
3388 som_compute_checksum (abfd)
3389 bfd *abfd;
3390 {
3391 unsigned long checksum, count, i;
3392 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3393
3394 checksum = 0;
3395 count = sizeof (struct header) / sizeof (unsigned long);
3396 for (i = 0; i < count; i++)
3397 checksum ^= *(buffer + i);
3398
3399 return checksum;
3400 }
3401
3402 static void
3403 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3404 bfd *abfd;
3405 asymbol *sym;
3406 struct som_misc_symbol_info *info;
3407 {
3408 /* Initialize. */
3409 memset (info, 0, sizeof (struct som_misc_symbol_info));
3410
3411 /* The HP SOM linker requires detailed type information about
3412 all symbols (including undefined symbols!). Unfortunately,
3413 the type specified in an import/export statement does not
3414 always match what the linker wants. Severe braindamage. */
3415
3416 /* Section symbols will not have a SOM symbol type assigned to
3417 them yet. Assign all section symbols type ST_DATA. */
3418 if (sym->flags & BSF_SECTION_SYM)
3419 info->symbol_type = ST_DATA;
3420 else
3421 {
3422 /* Common symbols must have scope SS_UNSAT and type
3423 ST_STORAGE or the linker will choke. */
3424 if (bfd_is_com_section (sym->section))
3425 {
3426 info->symbol_scope = SS_UNSAT;
3427 info->symbol_type = ST_STORAGE;
3428 }
3429
3430 /* It is possible to have a symbol without an associated
3431 type. This happens if the user imported the symbol
3432 without a type and the symbol was never defined
3433 locally. If BSF_FUNCTION is set for this symbol, then
3434 assign it type ST_CODE (the HP linker requires undefined
3435 external functions to have type ST_CODE rather than ST_ENTRY). */
3436 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3437 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3438 && bfd_is_und_section (sym->section)
3439 && sym->flags & BSF_FUNCTION)
3440 info->symbol_type = ST_CODE;
3441
3442 /* Handle function symbols which were defined in this file.
3443 They should have type ST_ENTRY. Also retrieve the argument
3444 relocation bits from the SOM backend information. */
3445 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3446 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3447 && (sym->flags & BSF_FUNCTION))
3448 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3449 && (sym->flags & BSF_FUNCTION)))
3450 {
3451 info->symbol_type = ST_ENTRY;
3452 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3453 }
3454
3455 /* If the type is unknown at this point, it should be ST_DATA or
3456 ST_CODE (function/ST_ENTRY symbols were handled as special
3457 cases above). */
3458 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3459 {
3460 if (sym->section->flags & SEC_CODE)
3461 info->symbol_type = ST_CODE;
3462 else
3463 info->symbol_type = ST_DATA;
3464 }
3465
3466 /* From now on it's a very simple mapping. */
3467 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3468 info->symbol_type = ST_ABSOLUTE;
3469 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3470 info->symbol_type = ST_CODE;
3471 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3472 info->symbol_type = ST_DATA;
3473 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3474 info->symbol_type = ST_MILLICODE;
3475 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3476 info->symbol_type = ST_PLABEL;
3477 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3478 info->symbol_type = ST_PRI_PROG;
3479 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3480 info->symbol_type = ST_SEC_PROG;
3481 }
3482
3483 /* Now handle the symbol's scope. Exported data which is not
3484 in the common section has scope SS_UNIVERSAL. Note scope
3485 of common symbols was handled earlier! */
3486 if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3487 info->symbol_scope = SS_UNIVERSAL;
3488 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3489 else if (bfd_is_und_section (sym->section))
3490 info->symbol_scope = SS_UNSAT;
3491 /* Anything else which is not in the common section has scope
3492 SS_LOCAL. */
3493 else if (! bfd_is_com_section (sym->section))
3494 info->symbol_scope = SS_LOCAL;
3495
3496 /* Now set the symbol_info field. It has no real meaning
3497 for undefined or common symbols, but the HP linker will
3498 choke if it's not set to some "reasonable" value. We
3499 use zero as a reasonable value. */
3500 if (bfd_is_com_section (sym->section)
3501 || bfd_is_und_section (sym->section)
3502 || bfd_is_abs_section (sym->section))
3503 info->symbol_info = 0;
3504 /* For all other symbols, the symbol_info field contains the
3505 subspace index of the space this symbol is contained in. */
3506 else
3507 info->symbol_info = sym->section->target_index;
3508
3509 /* Set the symbol's value. */
3510 info->symbol_value = sym->value + sym->section->vma;
3511 }
3512
3513 /* Build and write, in one big chunk, the entire symbol table for
3514 this BFD. */
3515
3516 static boolean
3517 som_build_and_write_symbol_table (abfd)
3518 bfd *abfd;
3519 {
3520 unsigned int num_syms = bfd_get_symcount (abfd);
3521 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3522 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3523 struct symbol_dictionary_record *som_symtab = NULL;
3524 int i, symtab_size;
3525
3526 /* Compute total symbol table size and allocate a chunk of memory
3527 to hold the symbol table as we build it. */
3528 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3529 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3530 if (som_symtab == NULL && symtab_size != 0)
3531 {
3532 bfd_set_error (bfd_error_no_memory);
3533 goto error_return;
3534 }
3535 memset (som_symtab, 0, symtab_size);
3536
3537 /* Walk over each symbol. */
3538 for (i = 0; i < num_syms; i++)
3539 {
3540 struct som_misc_symbol_info info;
3541
3542 /* This is really an index into the symbol strings table.
3543 By the time we get here, the index has already been
3544 computed and stored into the name field in the BFD symbol. */
3545 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3546
3547 /* Derive SOM information from the BFD symbol. */
3548 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3549
3550 /* Now use it. */
3551 som_symtab[i].symbol_type = info.symbol_type;
3552 som_symtab[i].symbol_scope = info.symbol_scope;
3553 som_symtab[i].arg_reloc = info.arg_reloc;
3554 som_symtab[i].symbol_info = info.symbol_info;
3555 som_symtab[i].symbol_value = info.symbol_value;
3556 }
3557
3558 /* Everything is ready, seek to the right location and
3559 scribble out the symbol table. */
3560 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3561 return false;
3562
3563 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3564 goto error_return;
3565
3566 if (som_symtab != NULL)
3567 free (som_symtab);
3568 return true;
3569 error_return:
3570 if (som_symtab != NULL)
3571 free (som_symtab);
3572 return false;
3573 }
3574
3575 /* Write an object in SOM format. */
3576
3577 static boolean
3578 som_write_object_contents (abfd)
3579 bfd *abfd;
3580 {
3581 if (abfd->output_has_begun == false)
3582 {
3583 /* Set up fixed parts of the file, space, and subspace headers.
3584 Notify the world that output has begun. */
3585 som_prep_headers (abfd);
3586 abfd->output_has_begun = true;
3587 /* Start writing the object file. This include all the string
3588 tables, fixup streams, and other portions of the object file. */
3589 som_begin_writing (abfd);
3590 }
3591
3592 /* Now that the symbol table information is complete, build and
3593 write the symbol table. */
3594 if (som_build_and_write_symbol_table (abfd) == false)
3595 return false;
3596
3597 return (som_write_headers (abfd));
3598 }
3599
3600 \f
3601 /* Read and save the string table associated with the given BFD. */
3602
3603 static boolean
3604 som_slurp_string_table (abfd)
3605 bfd *abfd;
3606 {
3607 char *stringtab;
3608
3609 /* Use the saved version if its available. */
3610 if (obj_som_stringtab (abfd) != NULL)
3611 return true;
3612
3613 /* I don't think this can currently happen, and I'm not sure it should
3614 really be an error, but it's better than getting unpredictable results
3615 from the host's malloc when passed a size of zero. */
3616 if (obj_som_stringtab_size (abfd) == 0)
3617 {
3618 bfd_set_error (bfd_error_no_symbols);
3619 return false;
3620 }
3621
3622 /* Allocate and read in the string table. */
3623 stringtab = malloc (obj_som_stringtab_size (abfd));
3624 if (stringtab == NULL)
3625 {
3626 bfd_set_error (bfd_error_no_memory);
3627 return false;
3628 }
3629
3630 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3631 return false;
3632
3633 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3634 != obj_som_stringtab_size (abfd))
3635 return false;
3636
3637 /* Save our results and return success. */
3638 obj_som_stringtab (abfd) = stringtab;
3639 return true;
3640 }
3641
3642 /* Return the amount of data (in bytes) required to hold the symbol
3643 table for this object. */
3644
3645 static long
3646 som_get_symtab_upper_bound (abfd)
3647 bfd *abfd;
3648 {
3649 if (!som_slurp_symbol_table (abfd))
3650 return -1;
3651
3652 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3653 }
3654
3655 /* Convert from a SOM subspace index to a BFD section. */
3656
3657 static asection *
3658 bfd_section_from_som_symbol (abfd, symbol)
3659 bfd *abfd;
3660 struct symbol_dictionary_record *symbol;
3661 {
3662 asection *section;
3663
3664 /* The meaning of the symbol_info field changes for functions
3665 within executables. So only use the quick symbol_info mapping for
3666 incomplete objects and non-function symbols in executables. */
3667 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3668 || (symbol->symbol_type != ST_ENTRY
3669 && symbol->symbol_type != ST_PRI_PROG
3670 && symbol->symbol_type != ST_SEC_PROG
3671 && symbol->symbol_type != ST_MILLICODE))
3672 {
3673 unsigned int index = symbol->symbol_info;
3674 for (section = abfd->sections; section != NULL; section = section->next)
3675 if (section->target_index == index)
3676 return section;
3677
3678 /* Could be a symbol from an external library (such as an OMOS
3679 shared library). Don't abort. */
3680 return bfd_abs_section_ptr;
3681
3682 }
3683 else
3684 {
3685 unsigned int value = symbol->symbol_value;
3686
3687 /* For executables we will have to use the symbol's address and
3688 find out what section would contain that address. Yuk. */
3689 for (section = abfd->sections; section; section = section->next)
3690 {
3691 if (value >= section->vma
3692 && value <= section->vma + section->_cooked_size)
3693 return section;
3694 }
3695
3696 /* Could be a symbol from an external library (such as an OMOS
3697 shared library). Don't abort. */
3698 return bfd_abs_section_ptr;
3699
3700 }
3701 }
3702
3703 /* Read and save the symbol table associated with the given BFD. */
3704
3705 static unsigned int
3706 som_slurp_symbol_table (abfd)
3707 bfd *abfd;
3708 {
3709 int symbol_count = bfd_get_symcount (abfd);
3710 int symsize = sizeof (struct symbol_dictionary_record);
3711 char *stringtab;
3712 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3713 som_symbol_type *sym, *symbase;
3714
3715 /* Return saved value if it exists. */
3716 if (obj_som_symtab (abfd) != NULL)
3717 goto successful_return;
3718
3719 /* Special case. This is *not* an error. */
3720 if (symbol_count == 0)
3721 goto successful_return;
3722
3723 if (!som_slurp_string_table (abfd))
3724 goto error_return;
3725
3726 stringtab = obj_som_stringtab (abfd);
3727
3728 symbase = (som_symbol_type *)
3729 malloc (symbol_count * sizeof (som_symbol_type));
3730 if (symbase == NULL)
3731 {
3732 bfd_set_error (bfd_error_no_memory);
3733 goto error_return;
3734 }
3735
3736 /* Read in the external SOM representation. */
3737 buf = malloc (symbol_count * symsize);
3738 if (buf == NULL && symbol_count * symsize != 0)
3739 {
3740 bfd_set_error (bfd_error_no_memory);
3741 goto error_return;
3742 }
3743 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3744 goto error_return;
3745 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3746 != symbol_count * symsize)
3747 goto error_return;
3748
3749 /* Iterate over all the symbols and internalize them. */
3750 endbufp = buf + symbol_count;
3751 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3752 {
3753
3754 /* I don't think we care about these. */
3755 if (bufp->symbol_type == ST_SYM_EXT
3756 || bufp->symbol_type == ST_ARG_EXT)
3757 continue;
3758
3759 /* Set some private data we care about. */
3760 if (bufp->symbol_type == ST_NULL)
3761 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3762 else if (bufp->symbol_type == ST_ABSOLUTE)
3763 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3764 else if (bufp->symbol_type == ST_DATA)
3765 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3766 else if (bufp->symbol_type == ST_CODE)
3767 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3768 else if (bufp->symbol_type == ST_PRI_PROG)
3769 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3770 else if (bufp->symbol_type == ST_SEC_PROG)
3771 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3772 else if (bufp->symbol_type == ST_ENTRY)
3773 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3774 else if (bufp->symbol_type == ST_MILLICODE)
3775 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3776 else if (bufp->symbol_type == ST_PLABEL)
3777 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3778 else
3779 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3780 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3781
3782 /* Some reasonable defaults. */
3783 sym->symbol.the_bfd = abfd;
3784 sym->symbol.name = bufp->name.n_strx + stringtab;
3785 sym->symbol.value = bufp->symbol_value;
3786 sym->symbol.section = 0;
3787 sym->symbol.flags = 0;
3788
3789 switch (bufp->symbol_type)
3790 {
3791 case ST_ENTRY:
3792 case ST_MILLICODE:
3793 sym->symbol.flags |= BSF_FUNCTION;
3794 sym->symbol.value &= ~0x3;
3795 break;
3796
3797 case ST_STUB:
3798 case ST_CODE:
3799 case ST_PRI_PROG:
3800 case ST_SEC_PROG:
3801 sym->symbol.value &= ~0x3;
3802 /* If the symbol's scope is ST_UNSAT, then these are
3803 undefined function symbols. */
3804 if (bufp->symbol_scope == SS_UNSAT)
3805 sym->symbol.flags |= BSF_FUNCTION;
3806
3807
3808 default:
3809 break;
3810 }
3811
3812 /* Handle scoping and section information. */
3813 switch (bufp->symbol_scope)
3814 {
3815 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3816 so the section associated with this symbol can't be known. */
3817 case SS_EXTERNAL:
3818 if (bufp->symbol_type != ST_STORAGE)
3819 sym->symbol.section = bfd_und_section_ptr;
3820 else
3821 sym->symbol.section = bfd_com_section_ptr;
3822 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3823 break;
3824
3825 case SS_UNSAT:
3826 if (bufp->symbol_type != ST_STORAGE)
3827 sym->symbol.section = bfd_und_section_ptr;
3828 else
3829 sym->symbol.section = bfd_com_section_ptr;
3830 break;
3831
3832 case SS_UNIVERSAL:
3833 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3834 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3835 sym->symbol.value -= sym->symbol.section->vma;
3836 break;
3837
3838 #if 0
3839 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3840 Sound dumb? It is. */
3841 case SS_GLOBAL:
3842 #endif
3843 case SS_LOCAL:
3844 sym->symbol.flags |= BSF_LOCAL;
3845 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3846 sym->symbol.value -= sym->symbol.section->vma;
3847 break;
3848 }
3849
3850 /* Mark section symbols and symbols used by the debugger.
3851 Note $START$ is a magic code symbol, NOT a section symbol. */
3852 if (sym->symbol.name[0] == '$'
3853 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
3854 && strcmp (sym->symbol.name, "$START$"))
3855 sym->symbol.flags |= BSF_SECTION_SYM;
3856 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3857 {
3858 sym->symbol.flags |= BSF_SECTION_SYM;
3859 sym->symbol.name = sym->symbol.section->name;
3860 }
3861 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3862 sym->symbol.flags |= BSF_DEBUGGING;
3863
3864 /* Note increment at bottom of loop, since we skip some symbols
3865 we can not include it as part of the for statement. */
3866 sym++;
3867 }
3868
3869 /* Save our results and return success. */
3870 obj_som_symtab (abfd) = symbase;
3871 successful_return:
3872 if (buf != NULL)
3873 free (buf);
3874 return (true);
3875
3876 error_return:
3877 if (buf != NULL)
3878 free (buf);
3879 return false;
3880 }
3881
3882 /* Canonicalize a SOM symbol table. Return the number of entries
3883 in the symbol table. */
3884
3885 static long
3886 som_get_symtab (abfd, location)
3887 bfd *abfd;
3888 asymbol **location;
3889 {
3890 int i;
3891 som_symbol_type *symbase;
3892
3893 if (!som_slurp_symbol_table (abfd))
3894 return -1;
3895
3896 i = bfd_get_symcount (abfd);
3897 symbase = obj_som_symtab (abfd);
3898
3899 for (; i > 0; i--, location++, symbase++)
3900 *location = &symbase->symbol;
3901
3902 /* Final null pointer. */
3903 *location = 0;
3904 return (bfd_get_symcount (abfd));
3905 }
3906
3907 /* Make a SOM symbol. There is nothing special to do here. */
3908
3909 static asymbol *
3910 som_make_empty_symbol (abfd)
3911 bfd *abfd;
3912 {
3913 som_symbol_type *new =
3914 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3915 if (new == NULL)
3916 {
3917 bfd_set_error (bfd_error_no_memory);
3918 return 0;
3919 }
3920 new->symbol.the_bfd = abfd;
3921
3922 return &new->symbol;
3923 }
3924
3925 /* Print symbol information. */
3926
3927 static void
3928 som_print_symbol (ignore_abfd, afile, symbol, how)
3929 bfd *ignore_abfd;
3930 PTR afile;
3931 asymbol *symbol;
3932 bfd_print_symbol_type how;
3933 {
3934 FILE *file = (FILE *) afile;
3935 switch (how)
3936 {
3937 case bfd_print_symbol_name:
3938 fprintf (file, "%s", symbol->name);
3939 break;
3940 case bfd_print_symbol_more:
3941 fprintf (file, "som ");
3942 fprintf_vma (file, symbol->value);
3943 fprintf (file, " %lx", (long) symbol->flags);
3944 break;
3945 case bfd_print_symbol_all:
3946 {
3947 CONST char *section_name;
3948 section_name = symbol->section ? symbol->section->name : "(*none*)";
3949 bfd_print_symbol_vandf ((PTR) file, symbol);
3950 fprintf (file, " %s\t%s", section_name, symbol->name);
3951 break;
3952 }
3953 }
3954 }
3955
3956 static boolean
3957 som_bfd_is_local_label (abfd, sym)
3958 bfd *abfd;
3959 asymbol *sym;
3960 {
3961 return (sym->name[0] == 'L' && sym->name[1] == '$');
3962 }
3963
3964 /* Count or process variable-length SOM fixup records.
3965
3966 To avoid code duplication we use this code both to compute the number
3967 of relocations requested by a stream, and to internalize the stream.
3968
3969 When computing the number of relocations requested by a stream the
3970 variables rptr, section, and symbols have no meaning.
3971
3972 Return the number of relocations requested by the fixup stream. When
3973 not just counting
3974
3975 This needs at least two or three more passes to get it cleaned up. */
3976
3977 static unsigned int
3978 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3979 unsigned char *fixup;
3980 unsigned int end;
3981 arelent *internal_relocs;
3982 asection *section;
3983 asymbol **symbols;
3984 boolean just_count;
3985 {
3986 unsigned int op, varname;
3987 unsigned char *end_fixups = &fixup[end];
3988 const struct fixup_format *fp;
3989 char *cp;
3990 unsigned char *save_fixup;
3991 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3992 const int *subop;
3993 arelent *rptr= internal_relocs;
3994 unsigned int offset = 0;
3995
3996 #define var(c) variables[(c) - 'A']
3997 #define push(v) (*sp++ = (v))
3998 #define pop() (*--sp)
3999 #define emptystack() (sp == stack)
4000
4001 som_initialize_reloc_queue (reloc_queue);
4002 memset (variables, 0, sizeof (variables));
4003 memset (stack, 0, sizeof (stack));
4004 count = 0;
4005 prev_fixup = 0;
4006 sp = stack;
4007
4008 while (fixup < end_fixups)
4009 {
4010
4011 /* Save pointer to the start of this fixup. We'll use
4012 it later to determine if it is necessary to put this fixup
4013 on the queue. */
4014 save_fixup = fixup;
4015
4016 /* Get the fixup code and its associated format. */
4017 op = *fixup++;
4018 fp = &som_fixup_formats[op];
4019
4020 /* Handle a request for a previous fixup. */
4021 if (*fp->format == 'P')
4022 {
4023 /* Get pointer to the beginning of the prev fixup, move
4024 the repeated fixup to the head of the queue. */
4025 fixup = reloc_queue[fp->D].reloc;
4026 som_reloc_queue_fix (reloc_queue, fp->D);
4027 prev_fixup = 1;
4028
4029 /* Get the fixup code and its associated format. */
4030 op = *fixup++;
4031 fp = &som_fixup_formats[op];
4032 }
4033
4034 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4035 if (! just_count
4036 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4037 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4038 {
4039 rptr->address = offset;
4040 rptr->howto = &som_hppa_howto_table[op];
4041 rptr->addend = 0;
4042 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4043 }
4044
4045 /* Set default input length to 0. Get the opcode class index
4046 into D. */
4047 var ('L') = 0;
4048 var ('D') = fp->D;
4049
4050 /* Get the opcode format. */
4051 cp = fp->format;
4052
4053 /* Process the format string. Parsing happens in two phases,
4054 parse RHS, then assign to LHS. Repeat until no more
4055 characters in the format string. */
4056 while (*cp)
4057 {
4058 /* The variable this pass is going to compute a value for. */
4059 varname = *cp++;
4060
4061 /* Start processing RHS. Continue until a NULL or '=' is found. */
4062 do
4063 {
4064 c = *cp++;
4065
4066 /* If this is a variable, push it on the stack. */
4067 if (isupper (c))
4068 push (var (c));
4069
4070 /* If this is a lower case letter, then it represents
4071 additional data from the fixup stream to be pushed onto
4072 the stack. */
4073 else if (islower (c))
4074 {
4075 for (v = 0; c > 'a'; --c)
4076 v = (v << 8) | *fixup++;
4077 push (v);
4078 }
4079
4080 /* A decimal constant. Push it on the stack. */
4081 else if (isdigit (c))
4082 {
4083 v = c - '0';
4084 while (isdigit (*cp))
4085 v = (v * 10) + (*cp++ - '0');
4086 push (v);
4087 }
4088 else
4089
4090 /* An operator. Pop two two values from the stack and
4091 use them as operands to the given operation. Push
4092 the result of the operation back on the stack. */
4093 switch (c)
4094 {
4095 case '+':
4096 v = pop ();
4097 v += pop ();
4098 push (v);
4099 break;
4100 case '*':
4101 v = pop ();
4102 v *= pop ();
4103 push (v);
4104 break;
4105 case '<':
4106 v = pop ();
4107 v = pop () << v;
4108 push (v);
4109 break;
4110 default:
4111 abort ();
4112 }
4113 }
4114 while (*cp && *cp != '=');
4115
4116 /* Move over the equal operator. */
4117 cp++;
4118
4119 /* Pop the RHS off the stack. */
4120 c = pop ();
4121
4122 /* Perform the assignment. */
4123 var (varname) = c;
4124
4125 /* Handle side effects. and special 'O' stack cases. */
4126 switch (varname)
4127 {
4128 /* Consume some bytes from the input space. */
4129 case 'L':
4130 offset += c;
4131 break;
4132 /* A symbol to use in the relocation. Make a note
4133 of this if we are not just counting. */
4134 case 'S':
4135 if (! just_count)
4136 rptr->sym_ptr_ptr = &symbols[c];
4137 break;
4138 /* Handle the linker expression stack. */
4139 case 'O':
4140 switch (op)
4141 {
4142 case R_COMP1:
4143 subop = comp1_opcodes;
4144 break;
4145 case R_COMP2:
4146 subop = comp2_opcodes;
4147 break;
4148 case R_COMP3:
4149 subop = comp3_opcodes;
4150 break;
4151 default:
4152 abort ();
4153 }
4154 while (*subop <= (unsigned char) c)
4155 ++subop;
4156 --subop;
4157 break;
4158 default:
4159 break;
4160 }
4161 }
4162
4163 /* If we used a previous fixup, clean up after it. */
4164 if (prev_fixup)
4165 {
4166 fixup = save_fixup + 1;
4167 prev_fixup = 0;
4168 }
4169 /* Queue it. */
4170 else if (fixup > save_fixup + 1)
4171 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4172
4173 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4174 fixups to BFD. */
4175 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4176 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4177 {
4178 /* Done with a single reloction. Loop back to the top. */
4179 if (! just_count)
4180 {
4181 rptr->addend = var ('V');
4182 rptr++;
4183 }
4184 count++;
4185 /* Now that we've handled a "full" relocation, reset
4186 some state. */
4187 memset (variables, 0, sizeof (variables));
4188 memset (stack, 0, sizeof (stack));
4189 }
4190 }
4191 return count;
4192
4193 #undef var
4194 #undef push
4195 #undef pop
4196 #undef emptystack
4197 }
4198
4199 /* Read in the relocs (aka fixups in SOM terms) for a section.
4200
4201 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4202 set to true to indicate it only needs a count of the number
4203 of actual relocations. */
4204
4205 static boolean
4206 som_slurp_reloc_table (abfd, section, symbols, just_count)
4207 bfd *abfd;
4208 asection *section;
4209 asymbol **symbols;
4210 boolean just_count;
4211 {
4212 char *external_relocs;
4213 unsigned int fixup_stream_size;
4214 arelent *internal_relocs;
4215 unsigned int num_relocs;
4216
4217 fixup_stream_size = som_section_data (section)->reloc_size;
4218 /* If there were no relocations, then there is nothing to do. */
4219 if (section->reloc_count == 0)
4220 return true;
4221
4222 /* If reloc_count is -1, then the relocation stream has not been
4223 parsed. We must do so now to know how many relocations exist. */
4224 if (section->reloc_count == -1)
4225 {
4226 external_relocs = (char *) malloc (fixup_stream_size);
4227 if (external_relocs == (char *) NULL)
4228 {
4229 bfd_set_error (bfd_error_no_memory);
4230 return false;
4231 }
4232 /* Read in the external forms. */
4233 if (bfd_seek (abfd,
4234 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4235 SEEK_SET)
4236 != 0)
4237 return false;
4238 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4239 != fixup_stream_size)
4240 return false;
4241
4242 /* Let callers know how many relocations found.
4243 also save the relocation stream as we will
4244 need it again. */
4245 section->reloc_count = som_set_reloc_info (external_relocs,
4246 fixup_stream_size,
4247 NULL, NULL, NULL, true);
4248
4249 som_section_data (section)->reloc_stream = external_relocs;
4250 }
4251
4252 /* If the caller only wanted a count, then return now. */
4253 if (just_count)
4254 return true;
4255
4256 num_relocs = section->reloc_count;
4257 external_relocs = som_section_data (section)->reloc_stream;
4258 /* Return saved information about the relocations if it is available. */
4259 if (section->relocation != (arelent *) NULL)
4260 return true;
4261
4262 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4263 if (internal_relocs == (arelent *) NULL)
4264 {
4265 bfd_set_error (bfd_error_no_memory);
4266 return false;
4267 }
4268
4269 /* Process and internalize the relocations. */
4270 som_set_reloc_info (external_relocs, fixup_stream_size,
4271 internal_relocs, section, symbols, false);
4272
4273 /* Save our results and return success. */
4274 section->relocation = internal_relocs;
4275 return (true);
4276 }
4277
4278 /* Return the number of bytes required to store the relocation
4279 information associated with the given section. */
4280
4281 static long
4282 som_get_reloc_upper_bound (abfd, asect)
4283 bfd *abfd;
4284 sec_ptr asect;
4285 {
4286 /* If section has relocations, then read in the relocation stream
4287 and parse it to determine how many relocations exist. */
4288 if (asect->flags & SEC_RELOC)
4289 {
4290 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4291 return false;
4292 return (asect->reloc_count + 1) * sizeof (arelent);
4293 }
4294 /* There are no relocations. */
4295 return 0;
4296 }
4297
4298 /* Convert relocations from SOM (external) form into BFD internal
4299 form. Return the number of relocations. */
4300
4301 static long
4302 som_canonicalize_reloc (abfd, section, relptr, symbols)
4303 bfd *abfd;
4304 sec_ptr section;
4305 arelent **relptr;
4306 asymbol **symbols;
4307 {
4308 arelent *tblptr;
4309 int count;
4310
4311 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4312 return -1;
4313
4314 count = section->reloc_count;
4315 tblptr = section->relocation;
4316
4317 while (count--)
4318 *relptr++ = tblptr++;
4319
4320 *relptr = (arelent *) NULL;
4321 return section->reloc_count;
4322 }
4323
4324 extern const bfd_target som_vec;
4325
4326 /* A hook to set up object file dependent section information. */
4327
4328 static boolean
4329 som_new_section_hook (abfd, newsect)
4330 bfd *abfd;
4331 asection *newsect;
4332 {
4333 newsect->used_by_bfd =
4334 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4335 if (!newsect->used_by_bfd)
4336 {
4337 bfd_set_error (bfd_error_no_memory);
4338 return false;
4339 }
4340 newsect->alignment_power = 3;
4341
4342 /* We allow more than three sections internally */
4343 return true;
4344 }
4345
4346 /* Copy any private info we understand from the input section
4347 to the output section. */
4348 static boolean
4349 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4350 bfd *ibfd;
4351 asection *isection;
4352 bfd *obfd;
4353 asection *osection;
4354 {
4355 /* One day we may try to grok other private data. */
4356 if (ibfd->xvec->flavour != bfd_target_som_flavour
4357 || obfd->xvec->flavour != bfd_target_som_flavour
4358 || (!som_is_space (isection) && !som_is_subspace (isection)))
4359 return false;
4360
4361 som_section_data (osection)->copy_data
4362 = (struct som_copyable_section_data_struct *)
4363 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4364 if (som_section_data (osection)->copy_data == NULL)
4365 {
4366 bfd_set_error (bfd_error_no_memory);
4367 return false;
4368 }
4369
4370 memcpy (som_section_data (osection)->copy_data,
4371 som_section_data (isection)->copy_data,
4372 sizeof (struct som_copyable_section_data_struct));
4373
4374 /* Reparent if necessary. */
4375 if (som_section_data (osection)->copy_data->container)
4376 som_section_data (osection)->copy_data->container =
4377 som_section_data (osection)->copy_data->container->output_section;
4378
4379 return true;
4380 }
4381
4382 /* Copy any private info we understand from the input bfd
4383 to the output bfd. */
4384
4385 static boolean
4386 som_bfd_copy_private_bfd_data (ibfd, obfd)
4387 bfd *ibfd, *obfd;
4388 {
4389 /* One day we may try to grok other private data. */
4390 if (ibfd->xvec->flavour != bfd_target_som_flavour
4391 || obfd->xvec->flavour != bfd_target_som_flavour)
4392 return false;
4393
4394 /* Allocate some memory to hold the data we need. */
4395 obj_som_exec_data (obfd) = (struct som_exec_data *)
4396 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4397 if (obj_som_exec_data (obfd) == NULL)
4398 {
4399 bfd_set_error (bfd_error_no_memory);
4400 return false;
4401 }
4402
4403 /* Now copy the data. */
4404 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4405 sizeof (struct som_exec_data));
4406
4407 return true;
4408 }
4409
4410 /* Set backend info for sections which can not be described
4411 in the BFD data structures. */
4412
4413 boolean
4414 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4415 asection *section;
4416 int defined;
4417 int private;
4418 unsigned int sort_key;
4419 int spnum;
4420 {
4421 /* Allocate memory to hold the magic information. */
4422 if (som_section_data (section)->copy_data == NULL)
4423 {
4424 som_section_data (section)->copy_data
4425 = (struct som_copyable_section_data_struct *)
4426 bfd_zalloc (section->owner,
4427 sizeof (struct som_copyable_section_data_struct));
4428 if (som_section_data (section)->copy_data == NULL)
4429 {
4430 bfd_set_error (bfd_error_no_memory);
4431 return false;
4432 }
4433 }
4434 som_section_data (section)->copy_data->sort_key = sort_key;
4435 som_section_data (section)->copy_data->is_defined = defined;
4436 som_section_data (section)->copy_data->is_private = private;
4437 som_section_data (section)->copy_data->container = section;
4438 som_section_data (section)->copy_data->space_number = spnum;
4439 return true;
4440 }
4441
4442 /* Set backend info for subsections which can not be described
4443 in the BFD data structures. */
4444
4445 boolean
4446 bfd_som_set_subsection_attributes (section, container, access,
4447 sort_key, quadrant)
4448 asection *section;
4449 asection *container;
4450 int access;
4451 unsigned int sort_key;
4452 int quadrant;
4453 {
4454 /* Allocate memory to hold the magic information. */
4455 if (som_section_data (section)->copy_data == NULL)
4456 {
4457 som_section_data (section)->copy_data
4458 = (struct som_copyable_section_data_struct *)
4459 bfd_zalloc (section->owner,
4460 sizeof (struct som_copyable_section_data_struct));
4461 if (som_section_data (section)->copy_data == NULL)
4462 {
4463 bfd_set_error (bfd_error_no_memory);
4464 return false;
4465 }
4466 }
4467 som_section_data (section)->copy_data->sort_key = sort_key;
4468 som_section_data (section)->copy_data->access_control_bits = access;
4469 som_section_data (section)->copy_data->quadrant = quadrant;
4470 som_section_data (section)->copy_data->container = container;
4471 return true;
4472 }
4473
4474 /* Set the full SOM symbol type. SOM needs far more symbol information
4475 than any other object file format I'm aware of. It is mandatory
4476 to be able to know if a symbol is an entry point, millicode, data,
4477 code, absolute, storage request, or procedure label. If you get
4478 the symbol type wrong your program will not link. */
4479
4480 void
4481 bfd_som_set_symbol_type (symbol, type)
4482 asymbol *symbol;
4483 unsigned int type;
4484 {
4485 som_symbol_data (symbol)->som_type = type;
4486 }
4487
4488 /* Attach 64bits of unwind information to a symbol (which hopefully
4489 is a function of some kind!). It would be better to keep this
4490 in the R_ENTRY relocation, but there is not enough space. */
4491
4492 void
4493 bfd_som_attach_unwind_info (symbol, unwind_desc)
4494 asymbol *symbol;
4495 char *unwind_desc;
4496 {
4497 som_symbol_data (symbol)->unwind = unwind_desc;
4498 }
4499
4500 /* Attach an auxiliary header to the BFD backend so that it may be
4501 written into the object file. */
4502 boolean
4503 bfd_som_attach_aux_hdr (abfd, type, string)
4504 bfd *abfd;
4505 int type;
4506 char *string;
4507 {
4508 if (type == VERSION_AUX_ID)
4509 {
4510 int len = strlen (string);
4511 int pad = 0;
4512
4513 if (len % 4)
4514 pad = (4 - (len % 4));
4515 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4516 bfd_zalloc (abfd, sizeof (struct aux_id)
4517 + sizeof (unsigned int) + len + pad);
4518 if (!obj_som_version_hdr (abfd))
4519 {
4520 bfd_set_error (bfd_error_no_memory);
4521 return false;
4522 }
4523 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4524 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4525 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4526 obj_som_version_hdr (abfd)->string_length = len;
4527 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4528 }
4529 else if (type == COPYRIGHT_AUX_ID)
4530 {
4531 int len = strlen (string);
4532 int pad = 0;
4533
4534 if (len % 4)
4535 pad = (4 - (len % 4));
4536 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4537 bfd_zalloc (abfd, sizeof (struct aux_id)
4538 + sizeof (unsigned int) + len + pad);
4539 if (!obj_som_copyright_hdr (abfd))
4540 {
4541 bfd_set_error (bfd_error_no_memory);
4542 return false;
4543 }
4544 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4545 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4546 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4547 obj_som_copyright_hdr (abfd)->string_length = len;
4548 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4549 }
4550 return true;
4551 }
4552
4553 static boolean
4554 som_get_section_contents (abfd, section, location, offset, count)
4555 bfd *abfd;
4556 sec_ptr section;
4557 PTR location;
4558 file_ptr offset;
4559 bfd_size_type count;
4560 {
4561 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4562 return true;
4563 if ((bfd_size_type)(offset+count) > section->_raw_size
4564 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4565 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4566 return (false); /* on error */
4567 return (true);
4568 }
4569
4570 static boolean
4571 som_set_section_contents (abfd, section, location, offset, count)
4572 bfd *abfd;
4573 sec_ptr section;
4574 PTR location;
4575 file_ptr offset;
4576 bfd_size_type count;
4577 {
4578 if (abfd->output_has_begun == false)
4579 {
4580 /* Set up fixed parts of the file, space, and subspace headers.
4581 Notify the world that output has begun. */
4582 som_prep_headers (abfd);
4583 abfd->output_has_begun = true;
4584 /* Start writing the object file. This include all the string
4585 tables, fixup streams, and other portions of the object file. */
4586 som_begin_writing (abfd);
4587 }
4588
4589 /* Only write subspaces which have "real" contents (eg. the contents
4590 are not generated at run time by the OS). */
4591 if (!som_is_subspace (section)
4592 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4593 return true;
4594
4595 /* Seek to the proper offset within the object file and write the
4596 data. */
4597 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4598 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4599 return false;
4600
4601 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4602 return false;
4603 return true;
4604 }
4605
4606 static boolean
4607 som_set_arch_mach (abfd, arch, machine)
4608 bfd *abfd;
4609 enum bfd_architecture arch;
4610 unsigned long machine;
4611 {
4612 /* Allow any architecture to be supported by the SOM backend */
4613 return bfd_default_set_arch_mach (abfd, arch, machine);
4614 }
4615
4616 static boolean
4617 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4618 functionname_ptr, line_ptr)
4619 bfd *abfd;
4620 asection *section;
4621 asymbol **symbols;
4622 bfd_vma offset;
4623 CONST char **filename_ptr;
4624 CONST char **functionname_ptr;
4625 unsigned int *line_ptr;
4626 {
4627 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4628 fflush (stderr);
4629 abort ();
4630 return (false);
4631 }
4632
4633 static int
4634 som_sizeof_headers (abfd, reloc)
4635 bfd *abfd;
4636 boolean reloc;
4637 {
4638 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4639 fflush (stderr);
4640 abort ();
4641 return (0);
4642 }
4643
4644 /* Return the single-character symbol type corresponding to
4645 SOM section S, or '?' for an unknown SOM section. */
4646
4647 static char
4648 som_section_type (s)
4649 const char *s;
4650 {
4651 const struct section_to_type *t;
4652
4653 for (t = &stt[0]; t->section; t++)
4654 if (!strcmp (s, t->section))
4655 return t->type;
4656 return '?';
4657 }
4658
4659 static int
4660 som_decode_symclass (symbol)
4661 asymbol *symbol;
4662 {
4663 char c;
4664
4665 if (bfd_is_com_section (symbol->section))
4666 return 'C';
4667 if (bfd_is_und_section (symbol->section))
4668 return 'U';
4669 if (bfd_is_ind_section (symbol->section))
4670 return 'I';
4671 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4672 return '?';
4673
4674 if (bfd_is_abs_section (symbol->section))
4675 c = 'a';
4676 else if (symbol->section)
4677 c = som_section_type (symbol->section->name);
4678 else
4679 return '?';
4680 if (symbol->flags & BSF_GLOBAL)
4681 c = toupper (c);
4682 return c;
4683 }
4684
4685 /* Return information about SOM symbol SYMBOL in RET. */
4686
4687 static void
4688 som_get_symbol_info (ignore_abfd, symbol, ret)
4689 bfd *ignore_abfd;
4690 asymbol *symbol;
4691 symbol_info *ret;
4692 {
4693 ret->type = som_decode_symclass (symbol);
4694 if (ret->type != 'U')
4695 ret->value = symbol->value+symbol->section->vma;
4696 else
4697 ret->value = 0;
4698 ret->name = symbol->name;
4699 }
4700
4701 /* Count the number of symbols in the archive symbol table. Necessary
4702 so that we can allocate space for all the carsyms at once. */
4703
4704 static boolean
4705 som_bfd_count_ar_symbols (abfd, lst_header, count)
4706 bfd *abfd;
4707 struct lst_header *lst_header;
4708 symindex *count;
4709 {
4710 unsigned int i;
4711 unsigned int *hash_table = NULL;
4712 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4713
4714 hash_table =
4715 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4716 if (hash_table == NULL && lst_header->hash_size != 0)
4717 {
4718 bfd_set_error (bfd_error_no_memory);
4719 goto error_return;
4720 }
4721
4722 /* Don't forget to initialize the counter! */
4723 *count = 0;
4724
4725 /* Read in the hash table. The has table is an array of 32bit file offsets
4726 which point to the hash chains. */
4727 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4728 != lst_header->hash_size * 4)
4729 goto error_return;
4730
4731 /* Walk each chain counting the number of symbols found on that particular
4732 chain. */
4733 for (i = 0; i < lst_header->hash_size; i++)
4734 {
4735 struct lst_symbol_record lst_symbol;
4736
4737 /* An empty chain has zero as it's file offset. */
4738 if (hash_table[i] == 0)
4739 continue;
4740
4741 /* Seek to the first symbol in this hash chain. */
4742 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4743 goto error_return;
4744
4745 /* Read in this symbol and update the counter. */
4746 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4747 != sizeof (lst_symbol))
4748 goto error_return;
4749
4750 (*count)++;
4751
4752 /* Now iterate through the rest of the symbols on this chain. */
4753 while (lst_symbol.next_entry)
4754 {
4755
4756 /* Seek to the next symbol. */
4757 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4758 < 0)
4759 goto error_return;
4760
4761 /* Read the symbol in and update the counter. */
4762 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4763 != sizeof (lst_symbol))
4764 goto error_return;
4765
4766 (*count)++;
4767 }
4768 }
4769 if (hash_table != NULL)
4770 free (hash_table);
4771 return true;
4772
4773 error_return:
4774 if (hash_table != NULL)
4775 free (hash_table);
4776 return false;
4777 }
4778
4779 /* Fill in the canonical archive symbols (SYMS) from the archive described
4780 by ABFD and LST_HEADER. */
4781
4782 static boolean
4783 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4784 bfd *abfd;
4785 struct lst_header *lst_header;
4786 carsym **syms;
4787 {
4788 unsigned int i, len;
4789 carsym *set = syms[0];
4790 unsigned int *hash_table = NULL;
4791 struct som_entry *som_dict = NULL;
4792 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4793
4794 hash_table =
4795 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4796 if (hash_table == NULL && lst_header->hash_size != 0)
4797 {
4798 bfd_set_error (bfd_error_no_memory);
4799 goto error_return;
4800 }
4801
4802 som_dict =
4803 (struct som_entry *) malloc (lst_header->module_count
4804 * sizeof (struct som_entry));
4805 if (som_dict == NULL && lst_header->module_count != 0)
4806 {
4807 bfd_set_error (bfd_error_no_memory);
4808 goto error_return;
4809 }
4810
4811 /* Read in the hash table. The has table is an array of 32bit file offsets
4812 which point to the hash chains. */
4813 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4814 != lst_header->hash_size * 4)
4815 goto error_return;
4816
4817 /* Seek to and read in the SOM dictionary. We will need this to fill
4818 in the carsym's filepos field. */
4819 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4820 goto error_return;
4821
4822 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4823 sizeof (struct som_entry), abfd)
4824 != lst_header->module_count * sizeof (struct som_entry))
4825 goto error_return;
4826
4827 /* Walk each chain filling in the carsyms as we go along. */
4828 for (i = 0; i < lst_header->hash_size; i++)
4829 {
4830 struct lst_symbol_record lst_symbol;
4831
4832 /* An empty chain has zero as it's file offset. */
4833 if (hash_table[i] == 0)
4834 continue;
4835
4836 /* Seek to and read the first symbol on the chain. */
4837 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4838 goto error_return;
4839
4840 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4841 != sizeof (lst_symbol))
4842 goto error_return;
4843
4844 /* Get the name of the symbol, first get the length which is stored
4845 as a 32bit integer just before the symbol.
4846
4847 One might ask why we don't just read in the entire string table
4848 and index into it. Well, according to the SOM ABI the string
4849 index can point *anywhere* in the archive to save space, so just
4850 using the string table would not be safe. */
4851 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4852 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4853 goto error_return;
4854
4855 if (bfd_read (&len, 1, 4, abfd) != 4)
4856 goto error_return;
4857
4858 /* Allocate space for the name and null terminate it too. */
4859 set->name = bfd_zalloc (abfd, len + 1);
4860 if (!set->name)
4861 {
4862 bfd_set_error (bfd_error_no_memory);
4863 goto error_return;
4864 }
4865 if (bfd_read (set->name, 1, len, abfd) != len)
4866 goto error_return;
4867
4868 set->name[len] = 0;
4869
4870 /* Fill in the file offset. Note that the "location" field points
4871 to the SOM itself, not the ar_hdr in front of it. */
4872 set->file_offset = som_dict[lst_symbol.som_index].location
4873 - sizeof (struct ar_hdr);
4874
4875 /* Go to the next symbol. */
4876 set++;
4877
4878 /* Iterate through the rest of the chain. */
4879 while (lst_symbol.next_entry)
4880 {
4881 /* Seek to the next symbol and read it in. */
4882 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4883 goto error_return;
4884
4885 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4886 != sizeof (lst_symbol))
4887 goto error_return;
4888
4889 /* Seek to the name length & string and read them in. */
4890 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4891 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4892 goto error_return;
4893
4894 if (bfd_read (&len, 1, 4, abfd) != 4)
4895 goto error_return;
4896
4897 /* Allocate space for the name and null terminate it too. */
4898 set->name = bfd_zalloc (abfd, len + 1);
4899 if (!set->name)
4900 {
4901 bfd_set_error (bfd_error_no_memory);
4902 goto error_return;
4903 }
4904
4905 if (bfd_read (set->name, 1, len, abfd) != len)
4906 goto error_return;
4907 set->name[len] = 0;
4908
4909 /* Fill in the file offset. Note that the "location" field points
4910 to the SOM itself, not the ar_hdr in front of it. */
4911 set->file_offset = som_dict[lst_symbol.som_index].location
4912 - sizeof (struct ar_hdr);
4913
4914 /* Go on to the next symbol. */
4915 set++;
4916 }
4917 }
4918 /* If we haven't died by now, then we successfully read the entire
4919 archive symbol table. */
4920 if (hash_table != NULL)
4921 free (hash_table);
4922 if (som_dict != NULL)
4923 free (som_dict);
4924 return true;
4925
4926 error_return:
4927 if (hash_table != NULL)
4928 free (hash_table);
4929 if (som_dict != NULL)
4930 free (som_dict);
4931 return false;
4932 }
4933
4934 /* Read in the LST from the archive. */
4935 static boolean
4936 som_slurp_armap (abfd)
4937 bfd *abfd;
4938 {
4939 struct lst_header lst_header;
4940 struct ar_hdr ar_header;
4941 unsigned int parsed_size;
4942 struct artdata *ardata = bfd_ardata (abfd);
4943 char nextname[17];
4944 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4945
4946 /* Special cases. */
4947 if (i == 0)
4948 return true;
4949 if (i != 16)
4950 return false;
4951
4952 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4953 return false;
4954
4955 /* For archives without .o files there is no symbol table. */
4956 if (strncmp (nextname, "/ ", 16))
4957 {
4958 bfd_has_map (abfd) = false;
4959 return true;
4960 }
4961
4962 /* Read in and sanity check the archive header. */
4963 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4964 != sizeof (struct ar_hdr))
4965 return false;
4966
4967 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4968 {
4969 bfd_set_error (bfd_error_malformed_archive);
4970 return false;
4971 }
4972
4973 /* How big is the archive symbol table entry? */
4974 errno = 0;
4975 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4976 if (errno != 0)
4977 {
4978 bfd_set_error (bfd_error_malformed_archive);
4979 return false;
4980 }
4981
4982 /* Save off the file offset of the first real user data. */
4983 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4984
4985 /* Read in the library symbol table. We'll make heavy use of this
4986 in just a minute. */
4987 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4988 != sizeof (struct lst_header))
4989 return false;
4990
4991 /* Sanity check. */
4992 if (lst_header.a_magic != LIBMAGIC)
4993 {
4994 bfd_set_error (bfd_error_malformed_archive);
4995 return false;
4996 }
4997
4998 /* Count the number of symbols in the library symbol table. */
4999 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5000 == false)
5001 return false;
5002
5003 /* Get back to the start of the library symbol table. */
5004 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5005 + sizeof (struct lst_header), SEEK_SET) < 0)
5006 return false;
5007
5008 /* Initializae the cache and allocate space for the library symbols. */
5009 ardata->cache = 0;
5010 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5011 (ardata->symdef_count
5012 * sizeof (carsym)));
5013 if (!ardata->symdefs)
5014 {
5015 bfd_set_error (bfd_error_no_memory);
5016 return false;
5017 }
5018
5019 /* Now fill in the canonical archive symbols. */
5020 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5021 == false)
5022 return false;
5023
5024 /* Seek back to the "first" file in the archive. Note the "first"
5025 file may be the extended name table. */
5026 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5027 return false;
5028
5029 /* Notify the generic archive code that we have a symbol map. */
5030 bfd_has_map (abfd) = true;
5031 return true;
5032 }
5033
5034 /* Begin preparing to write a SOM library symbol table.
5035
5036 As part of the prep work we need to determine the number of symbols
5037 and the size of the associated string section. */
5038
5039 static boolean
5040 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5041 bfd *abfd;
5042 unsigned int *num_syms, *stringsize;
5043 {
5044 bfd *curr_bfd = abfd->archive_head;
5045
5046 /* Some initialization. */
5047 *num_syms = 0;
5048 *stringsize = 0;
5049
5050 /* Iterate over each BFD within this archive. */
5051 while (curr_bfd != NULL)
5052 {
5053 unsigned int curr_count, i;
5054 som_symbol_type *sym;
5055
5056 /* Don't bother for non-SOM objects. */
5057 if (curr_bfd->format != bfd_object
5058 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5059 {
5060 curr_bfd = curr_bfd->next;
5061 continue;
5062 }
5063
5064 /* Make sure the symbol table has been read, then snag a pointer
5065 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5066 but doing so avoids allocating lots of extra memory. */
5067 if (som_slurp_symbol_table (curr_bfd) == false)
5068 return false;
5069
5070 sym = obj_som_symtab (curr_bfd);
5071 curr_count = bfd_get_symcount (curr_bfd);
5072
5073 /* Examine each symbol to determine if it belongs in the
5074 library symbol table. */
5075 for (i = 0; i < curr_count; i++, sym++)
5076 {
5077 struct som_misc_symbol_info info;
5078
5079 /* Derive SOM information from the BFD symbol. */
5080 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5081
5082 /* Should we include this symbol? */
5083 if (info.symbol_type == ST_NULL
5084 || info.symbol_type == ST_SYM_EXT
5085 || info.symbol_type == ST_ARG_EXT)
5086 continue;
5087
5088 /* Only global symbols and unsatisfied commons. */
5089 if (info.symbol_scope != SS_UNIVERSAL
5090 && info.symbol_type != ST_STORAGE)
5091 continue;
5092
5093 /* Do no include undefined symbols. */
5094 if (bfd_is_und_section (sym->symbol.section))
5095 continue;
5096
5097 /* Bump the various counters, being careful to honor
5098 alignment considerations in the string table. */
5099 (*num_syms)++;
5100 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5101 while (*stringsize % 4)
5102 (*stringsize)++;
5103 }
5104
5105 curr_bfd = curr_bfd->next;
5106 }
5107 return true;
5108 }
5109
5110 /* Hash a symbol name based on the hashing algorithm presented in the
5111 SOM ABI. */
5112 static unsigned int
5113 som_bfd_ar_symbol_hash (symbol)
5114 asymbol *symbol;
5115 {
5116 unsigned int len = strlen (symbol->name);
5117
5118 /* Names with length 1 are special. */
5119 if (len == 1)
5120 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5121
5122 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5123 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5124 }
5125
5126 static CONST char *
5127 normalize (file)
5128 CONST char *file;
5129 {
5130 CONST char *filename = strrchr (file, '/');
5131
5132 if (filename != NULL)
5133 filename++;
5134 else
5135 filename = file;
5136 return filename;
5137 }
5138
5139 /* Do the bulk of the work required to write the SOM library
5140 symbol table. */
5141
5142 static boolean
5143 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5144 bfd *abfd;
5145 unsigned int nsyms, string_size;
5146 struct lst_header lst;
5147 {
5148 file_ptr lst_filepos;
5149 char *strings = NULL, *p;
5150 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5151 bfd *curr_bfd;
5152 unsigned int *hash_table = NULL;
5153 struct som_entry *som_dict = NULL;
5154 struct lst_symbol_record **last_hash_entry = NULL;
5155 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5156 unsigned int maxname = abfd->xvec->ar_max_namelen;
5157
5158 hash_table =
5159 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5160 if (hash_table == NULL && lst.hash_size != 0)
5161 {
5162 bfd_set_error (bfd_error_no_memory);
5163 goto error_return;
5164 }
5165 som_dict =
5166 (struct som_entry *) malloc (lst.module_count
5167 * sizeof (struct som_entry));
5168 if (som_dict == NULL && lst.module_count != 0)
5169 {
5170 bfd_set_error (bfd_error_no_memory);
5171 goto error_return;
5172 }
5173
5174 last_hash_entry =
5175 ((struct lst_symbol_record **)
5176 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5177 if (last_hash_entry == NULL && lst.hash_size != 0)
5178 {
5179 bfd_set_error (bfd_error_no_memory);
5180 goto error_return;
5181 }
5182
5183 /* Lots of fields are file positions relative to the start
5184 of the lst record. So save its location. */
5185 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5186
5187 /* Some initialization. */
5188 memset (hash_table, 0, 4 * lst.hash_size);
5189 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5190 memset (last_hash_entry, 0,
5191 lst.hash_size * sizeof (struct lst_symbol_record *));
5192
5193 /* Symbols have som_index fields, so we have to keep track of the
5194 index of each SOM in the archive.
5195
5196 The SOM dictionary has (among other things) the absolute file
5197 position for the SOM which a particular dictionary entry
5198 describes. We have to compute that information as we iterate
5199 through the SOMs/symbols. */
5200 som_index = 0;
5201 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5202
5203 /* Yow! We have to know the size of the extended name table
5204 too. */
5205 for (curr_bfd = abfd->archive_head;
5206 curr_bfd != NULL;
5207 curr_bfd = curr_bfd->next)
5208 {
5209 CONST char *normal = normalize (curr_bfd->filename);
5210 unsigned int thislen;
5211
5212 if (!normal)
5213 {
5214 bfd_set_error (bfd_error_no_memory);
5215 return false;
5216 }
5217 thislen = strlen (normal);
5218 if (thislen > maxname)
5219 extended_name_length += thislen + 1;
5220 }
5221
5222 /* Make room for the archive header and the contents of the
5223 extended string table. */
5224 if (extended_name_length)
5225 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5226
5227 /* Make sure we're properly aligned. */
5228 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5229
5230 /* FIXME should be done with buffers just like everything else... */
5231 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5232 if (lst_syms == NULL && nsyms != 0)
5233 {
5234 bfd_set_error (bfd_error_no_memory);
5235 goto error_return;
5236 }
5237 strings = malloc (string_size);
5238 if (strings == NULL && string_size != 0)
5239 {
5240 bfd_set_error (bfd_error_no_memory);
5241 goto error_return;
5242 }
5243
5244 p = strings;
5245 curr_lst_sym = lst_syms;
5246
5247 curr_bfd = abfd->archive_head;
5248 while (curr_bfd != NULL)
5249 {
5250 unsigned int curr_count, i;
5251 som_symbol_type *sym;
5252
5253 /* Don't bother for non-SOM objects. */
5254 if (curr_bfd->format != bfd_object
5255 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5256 {
5257 curr_bfd = curr_bfd->next;
5258 continue;
5259 }
5260
5261 /* Make sure the symbol table has been read, then snag a pointer
5262 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5263 but doing so avoids allocating lots of extra memory. */
5264 if (som_slurp_symbol_table (curr_bfd) == false)
5265 goto error_return;
5266
5267 sym = obj_som_symtab (curr_bfd);
5268 curr_count = bfd_get_symcount (curr_bfd);
5269
5270 for (i = 0; i < curr_count; i++, sym++)
5271 {
5272 struct som_misc_symbol_info info;
5273
5274 /* Derive SOM information from the BFD symbol. */
5275 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5276
5277 /* Should we include this symbol? */
5278 if (info.symbol_type == ST_NULL
5279 || info.symbol_type == ST_SYM_EXT
5280 || info.symbol_type == ST_ARG_EXT)
5281 continue;
5282
5283 /* Only global symbols and unsatisfied commons. */
5284 if (info.symbol_scope != SS_UNIVERSAL
5285 && info.symbol_type != ST_STORAGE)
5286 continue;
5287
5288 /* Do no include undefined symbols. */
5289 if (bfd_is_und_section (sym->symbol.section))
5290 continue;
5291
5292 /* If this is the first symbol from this SOM, then update
5293 the SOM dictionary too. */
5294 if (som_dict[som_index].location == 0)
5295 {
5296 som_dict[som_index].location = curr_som_offset;
5297 som_dict[som_index].length = arelt_size (curr_bfd);
5298 }
5299
5300 /* Fill in the lst symbol record. */
5301 curr_lst_sym->hidden = 0;
5302 curr_lst_sym->secondary_def = 0;
5303 curr_lst_sym->symbol_type = info.symbol_type;
5304 curr_lst_sym->symbol_scope = info.symbol_scope;
5305 curr_lst_sym->check_level = 0;
5306 curr_lst_sym->must_qualify = 0;
5307 curr_lst_sym->initially_frozen = 0;
5308 curr_lst_sym->memory_resident = 0;
5309 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5310 curr_lst_sym->dup_common = 0;
5311 curr_lst_sym->xleast = 0;
5312 curr_lst_sym->arg_reloc = info.arg_reloc;
5313 curr_lst_sym->name.n_strx = p - strings + 4;
5314 curr_lst_sym->qualifier_name.n_strx = 0;
5315 curr_lst_sym->symbol_info = info.symbol_info;
5316 curr_lst_sym->symbol_value = info.symbol_value;
5317 curr_lst_sym->symbol_descriptor = 0;
5318 curr_lst_sym->reserved = 0;
5319 curr_lst_sym->som_index = som_index;
5320 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5321 curr_lst_sym->next_entry = 0;
5322
5323 /* Insert into the hash table. */
5324 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5325 {
5326 struct lst_symbol_record *tmp;
5327
5328 /* There is already something at the head of this hash chain,
5329 so tack this symbol onto the end of the chain. */
5330 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5331 tmp->next_entry
5332 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5333 + lst.hash_size * 4
5334 + lst.module_count * sizeof (struct som_entry)
5335 + sizeof (struct lst_header);
5336 }
5337 else
5338 {
5339 /* First entry in this hash chain. */
5340 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5341 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5342 + lst.hash_size * 4
5343 + lst.module_count * sizeof (struct som_entry)
5344 + sizeof (struct lst_header);
5345 }
5346
5347 /* Keep track of the last symbol we added to this chain so we can
5348 easily update its next_entry pointer. */
5349 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5350 = curr_lst_sym;
5351
5352
5353 /* Update the string table. */
5354 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5355 p += 4;
5356 strcpy (p, sym->symbol.name);
5357 p += strlen (sym->symbol.name) + 1;
5358 while ((int)p % 4)
5359 {
5360 bfd_put_8 (abfd, 0, p);
5361 p++;
5362 }
5363
5364 /* Head to the next symbol. */
5365 curr_lst_sym++;
5366 }
5367
5368 /* Keep track of where each SOM will finally reside; then look
5369 at the next BFD. */
5370 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5371 curr_bfd = curr_bfd->next;
5372 som_index++;
5373 }
5374
5375 /* Now scribble out the hash table. */
5376 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5377 != lst.hash_size * 4)
5378 goto error_return;
5379
5380 /* Then the SOM dictionary. */
5381 if (bfd_write ((PTR) som_dict, lst.module_count,
5382 sizeof (struct som_entry), abfd)
5383 != lst.module_count * sizeof (struct som_entry))
5384 goto error_return;
5385
5386 /* The library symbols. */
5387 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5388 != nsyms * sizeof (struct lst_symbol_record))
5389 goto error_return;
5390
5391 /* And finally the strings. */
5392 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5393 goto error_return;
5394
5395 if (hash_table != NULL)
5396 free (hash_table);
5397 if (som_dict != NULL)
5398 free (som_dict);
5399 if (last_hash_entry != NULL)
5400 free (last_hash_entry);
5401 if (lst_syms != NULL)
5402 free (lst_syms);
5403 if (strings != NULL)
5404 free (strings);
5405 return true;
5406
5407 error_return:
5408 if (hash_table != NULL)
5409 free (hash_table);
5410 if (som_dict != NULL)
5411 free (som_dict);
5412 if (last_hash_entry != NULL)
5413 free (last_hash_entry);
5414 if (lst_syms != NULL)
5415 free (lst_syms);
5416 if (strings != NULL)
5417 free (strings);
5418
5419 return false;
5420 }
5421
5422 /* Write out the LST for the archive.
5423
5424 You'll never believe this is really how armaps are handled in SOM... */
5425
5426 /*ARGSUSED*/
5427 static boolean
5428 som_write_armap (abfd, elength, map, orl_count, stridx)
5429 bfd *abfd;
5430 unsigned int elength;
5431 struct orl *map;
5432 unsigned int orl_count;
5433 int stridx;
5434 {
5435 bfd *curr_bfd;
5436 struct stat statbuf;
5437 unsigned int i, lst_size, nsyms, stringsize;
5438 struct ar_hdr hdr;
5439 struct lst_header lst;
5440 int *p;
5441
5442 /* We'll use this for the archive's date and mode later. */
5443 if (stat (abfd->filename, &statbuf) != 0)
5444 {
5445 bfd_set_error (bfd_error_system_call);
5446 return false;
5447 }
5448 /* Fudge factor. */
5449 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5450
5451 /* Account for the lst header first. */
5452 lst_size = sizeof (struct lst_header);
5453
5454 /* Start building the LST header. */
5455 lst.system_id = CPU_PA_RISC1_0;
5456 lst.a_magic = LIBMAGIC;
5457 lst.version_id = VERSION_ID;
5458 lst.file_time.secs = 0;
5459 lst.file_time.nanosecs = 0;
5460
5461 lst.hash_loc = lst_size;
5462 lst.hash_size = SOM_LST_HASH_SIZE;
5463
5464 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5465 lst_size += 4 * SOM_LST_HASH_SIZE;
5466
5467 /* We need to count the number of SOMs in this archive. */
5468 curr_bfd = abfd->archive_head;
5469 lst.module_count = 0;
5470 while (curr_bfd != NULL)
5471 {
5472 /* Only true SOM objects count. */
5473 if (curr_bfd->format == bfd_object
5474 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5475 lst.module_count++;
5476 curr_bfd = curr_bfd->next;
5477 }
5478 lst.module_limit = lst.module_count;
5479 lst.dir_loc = lst_size;
5480 lst_size += sizeof (struct som_entry) * lst.module_count;
5481
5482 /* We don't support import/export tables, auxiliary headers,
5483 or free lists yet. Make the linker work a little harder
5484 to make our life easier. */
5485
5486 lst.export_loc = 0;
5487 lst.export_count = 0;
5488 lst.import_loc = 0;
5489 lst.aux_loc = 0;
5490 lst.aux_size = 0;
5491
5492 /* Count how many symbols we will have on the hash chains and the
5493 size of the associated string table. */
5494 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5495 return false;
5496
5497 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5498
5499 /* For the string table. One day we might actually use this info
5500 to avoid small seeks/reads when reading archives. */
5501 lst.string_loc = lst_size;
5502 lst.string_size = stringsize;
5503 lst_size += stringsize;
5504
5505 /* SOM ABI says this must be zero. */
5506 lst.free_list = 0;
5507 lst.file_end = lst_size;
5508
5509 /* Compute the checksum. Must happen after the entire lst header
5510 has filled in. */
5511 p = (int *)&lst;
5512 lst.checksum = 0;
5513 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5514 lst.checksum ^= *p++;
5515
5516 sprintf (hdr.ar_name, "/ ");
5517 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5518 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5519 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5520 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5521 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5522 hdr.ar_fmag[0] = '`';
5523 hdr.ar_fmag[1] = '\012';
5524
5525 /* Turn any nulls into spaces. */
5526 for (i = 0; i < sizeof (struct ar_hdr); i++)
5527 if (((char *) (&hdr))[i] == '\0')
5528 (((char *) (&hdr))[i]) = ' ';
5529
5530 /* Scribble out the ar header. */
5531 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5532 != sizeof (struct ar_hdr))
5533 return false;
5534
5535 /* Now scribble out the lst header. */
5536 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5537 != sizeof (struct lst_header))
5538 return false;
5539
5540 /* Build and write the armap. */
5541 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5542 return false;
5543
5544 /* Done. */
5545 return true;
5546 }
5547
5548 /* Free all information we have cached for this BFD. We can always
5549 read it again later if we need it. */
5550
5551 static boolean
5552 som_bfd_free_cached_info (abfd)
5553 bfd *abfd;
5554 {
5555 asection *o;
5556
5557 if (bfd_get_format (abfd) != bfd_object)
5558 return true;
5559
5560 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5561 /* Free the native string and symbol tables. */
5562 FREE (obj_som_symtab (abfd));
5563 FREE (obj_som_stringtab (abfd));
5564 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5565 {
5566 /* Free the native relocations. */
5567 o->reloc_count = -1;
5568 FREE (som_section_data (o)->reloc_stream);
5569 /* Free the generic relocations. */
5570 FREE (o->relocation);
5571 }
5572 #undef FREE
5573
5574 return true;
5575 }
5576
5577 /* End of miscellaneous support functions. */
5578
5579 #define som_close_and_cleanup som_bfd_free_cached_info
5580
5581 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5582 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5583 #define som_truncate_arname bfd_bsd_truncate_arname
5584 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5585 #define som_update_armap_timestamp bfd_true
5586
5587 #define som_get_lineno _bfd_nosymbols_get_lineno
5588 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5589
5590 #define som_bfd_get_relocated_section_contents \
5591 bfd_generic_get_relocated_section_contents
5592 #define som_bfd_relax_section bfd_generic_relax_section
5593 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5594 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5595 #define som_bfd_final_link _bfd_generic_final_link
5596
5597 const bfd_target som_vec =
5598 {
5599 "som", /* name */
5600 bfd_target_som_flavour,
5601 true, /* target byte order */
5602 true, /* target headers byte order */
5603 (HAS_RELOC | EXEC_P | /* object flags */
5604 HAS_LINENO | HAS_DEBUG |
5605 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5606 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5607 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5608
5609 /* leading_symbol_char: is the first char of a user symbol
5610 predictable, and if so what is it */
5611 0,
5612 '/', /* ar_pad_char */
5613 14, /* ar_max_namelen */
5614 3, /* minimum alignment */
5615 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5616 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5617 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5618 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5619 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5620 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5621 {_bfd_dummy_target,
5622 som_object_p, /* bfd_check_format */
5623 bfd_generic_archive_p,
5624 _bfd_dummy_target
5625 },
5626 {
5627 bfd_false,
5628 som_mkobject,
5629 _bfd_generic_mkarchive,
5630 bfd_false
5631 },
5632 {
5633 bfd_false,
5634 som_write_object_contents,
5635 _bfd_write_archive_contents,
5636 bfd_false,
5637 },
5638 #undef som
5639
5640 BFD_JUMP_TABLE_GENERIC (som),
5641 BFD_JUMP_TABLE_COPY (som),
5642 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5643 BFD_JUMP_TABLE_ARCHIVE (som),
5644 BFD_JUMP_TABLE_SYMBOLS (som),
5645 BFD_JUMP_TABLE_RELOCS (som),
5646 BFD_JUMP_TABLE_WRITE (som),
5647 BFD_JUMP_TABLE_LINK (som),
5648 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5649
5650 (PTR) 0
5651 };
5652
5653 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.239066 seconds and 4 git commands to generate.