758f3065bd0eb3353fc8008eeb56c3bd4546836f
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30 #include "libhppa.h"
31
32 #include <stdio.h>
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/dir.h>
36 #include <signal.h>
37 #include <machine/reg.h>
38 #include <sys/user.h> /* After a.out.h */
39 #include <sys/file.h>
40 #include <errno.h>
41
42 /* Magic not defined in standard HP-UX header files until 8.0 */
43
44 #ifndef CPU_PA_RISC1_0
45 #define CPU_PA_RISC1_0 0x20B
46 #endif /* CPU_PA_RISC1_0 */
47
48 #ifndef CPU_PA_RISC1_1
49 #define CPU_PA_RISC1_1 0x210
50 #endif /* CPU_PA_RISC1_1 */
51
52 #ifndef _PA_RISC1_0_ID
53 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
54 #endif /* _PA_RISC1_0_ID */
55
56 #ifndef _PA_RISC1_1_ID
57 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
58 #endif /* _PA_RISC1_1_ID */
59
60 #ifndef _PA_RISC_MAXID
61 #define _PA_RISC_MAXID 0x2FF
62 #endif /* _PA_RISC_MAXID */
63
64 #ifndef _PA_RISC_ID
65 #define _PA_RISC_ID(__m_num) \
66 (((__m_num) == _PA_RISC1_0_ID) || \
67 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
68 #endif /* _PA_RISC_ID */
69
70 /* Size (in chars) of the temporary buffers used during fixup and string
71 table writes. */
72
73 #define SOM_TMP_BUFSIZE 8192
74
75 /* Size of the hash table in archives. */
76 #define SOM_LST_HASH_SIZE 31
77
78 /* Max number of SOMs to be found in an archive. */
79 #define SOM_LST_MODULE_LIMIT 1024
80
81 /* SOM allows any one of the four previous relocations to be reused
82 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
83 relocations are always a single byte, using a R_PREV_FIXUP instead
84 of some multi-byte relocation makes object files smaller.
85
86 Note one side effect of using a R_PREV_FIXUP is the relocation that
87 is being repeated moves to the front of the queue. */
88 struct reloc_queue
89 {
90 unsigned char *reloc;
91 unsigned int size;
92 } reloc_queue[4];
93
94 /* This fully describes the symbol types which may be attached to
95 an EXPORT or IMPORT directive. Only SOM uses this formation
96 (ELF has no need for it). */
97 typedef enum
98 {
99 SYMBOL_TYPE_UNKNOWN,
100 SYMBOL_TYPE_ABSOLUTE,
101 SYMBOL_TYPE_CODE,
102 SYMBOL_TYPE_DATA,
103 SYMBOL_TYPE_ENTRY,
104 SYMBOL_TYPE_MILLICODE,
105 SYMBOL_TYPE_PLABEL,
106 SYMBOL_TYPE_PRI_PROG,
107 SYMBOL_TYPE_SEC_PROG,
108 } pa_symbol_type;
109
110 struct section_to_type
111 {
112 char *section;
113 char type;
114 };
115
116 /* Assorted symbol information that needs to be derived from the BFD symbol
117 and/or the BFD backend private symbol data. */
118 struct som_misc_symbol_info
119 {
120 unsigned int symbol_type;
121 unsigned int symbol_scope;
122 unsigned int arg_reloc;
123 unsigned int symbol_info;
124 unsigned int symbol_value;
125 };
126
127 /* Forward declarations */
128
129 static boolean som_mkobject PARAMS ((bfd *));
130 static bfd_target * som_object_setup PARAMS ((bfd *,
131 struct header *,
132 struct som_exec_auxhdr *));
133 static asection * make_unique_section PARAMS ((bfd *, CONST char *, int));
134 static boolean setup_sections PARAMS ((bfd *, struct header *));
135 static bfd_target * som_object_p PARAMS ((bfd *));
136 static boolean som_write_object_contents PARAMS ((bfd *));
137 static boolean som_slurp_string_table PARAMS ((bfd *));
138 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
139 static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
140 static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
141 arelent **, asymbol **));
142 static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
143 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
144 arelent *, asection *,
145 asymbol **, boolean));
146 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
147 asymbol **, boolean));
148 static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
149 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
150 static void som_print_symbol PARAMS ((bfd *, PTR,
151 asymbol *, bfd_print_symbol_type));
152 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
153 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
154 file_ptr, bfd_size_type));
155 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
156 unsigned long));
157 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
158 asymbol **, bfd_vma,
159 CONST char **,
160 CONST char **,
161 unsigned int *));
162 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
163 static asection * som_section_from_subspace_index PARAMS ((bfd *,
164 unsigned int));
165 static int log2 PARAMS ((unsigned int));
166 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
167 asymbol *, PTR,
168 asection *, bfd *,
169 char **));
170 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
171 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
172 struct reloc_queue *));
173 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
174 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
175 struct reloc_queue *));
176 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
177 unsigned int,
178 struct reloc_queue *));
179
180 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
181 unsigned char *, unsigned int *,
182 struct reloc_queue *));
183 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
184 unsigned int *,
185 struct reloc_queue *));
186 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
187 unsigned int *,
188 arelent *, int,
189 struct reloc_queue *));
190 static unsigned long som_count_spaces PARAMS ((bfd *));
191 static unsigned long som_count_subspaces PARAMS ((bfd *));
192 static int compare_syms PARAMS ((asymbol **, asymbol **));
193 static unsigned long som_compute_checksum PARAMS ((bfd *));
194 static boolean som_prep_headers PARAMS ((bfd *));
195 static int som_sizeof_headers PARAMS ((bfd *, boolean));
196 static boolean som_write_headers PARAMS ((bfd *));
197 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
198 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
199 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
200 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
201 unsigned int *));
202 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
203 asymbol **, unsigned int,
204 unsigned *));
205 static boolean som_begin_writing PARAMS ((bfd *));
206 static const reloc_howto_type * som_bfd_reloc_type_lookup
207 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
208 static char som_section_type PARAMS ((const char *));
209 static int som_decode_symclass PARAMS ((asymbol *));
210 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
211 symindex *));
212
213 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
214 carsym **syms));
215 static boolean som_slurp_armap PARAMS ((bfd *));
216 static boolean som_write_armap PARAMS ((bfd *));
217 static boolean som_slurp_extended_name_table PARAMS ((bfd *));
218 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
219 struct som_misc_symbol_info *));
220 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
221 unsigned int *));
222 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
223 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
224 unsigned int,
225 struct lst_header));
226
227 /* Map SOM section names to POSIX/BSD single-character symbol types.
228
229 This table includes all the standard subspaces as defined in the
230 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
231 some reason was left out, and sections specific to embedded stabs. */
232
233 static const struct section_to_type stt[] = {
234 {"$TEXT$", 't'},
235 {"$SHLIB_INFO$", 't'},
236 {"$MILLICODE$", 't'},
237 {"$LIT$", 't'},
238 {"$CODE$", 't'},
239 {"$UNWIND_START$", 't'},
240 {"$UNWIND$", 't'},
241 {"$PRIVATE$", 'd'},
242 {"$PLT$", 'd'},
243 {"$SHLIB_DATA$", 'd'},
244 {"$DATA$", 'd'},
245 {"$SHORTDATA$", 'g'},
246 {"$DLT$", 'd'},
247 {"$GLOBAL$", 'g'},
248 {"$SHORTBSS$", 's'},
249 {"$BSS$", 'b'},
250 {"$GDB_STRINGS$", 'N'},
251 {"$GDB_SYMBOLS$", 'N'},
252 {0, 0}
253 };
254
255 /* About the relocation formatting table...
256
257 There are 256 entries in the table, one for each possible
258 relocation opcode available in SOM. We index the table by
259 the relocation opcode. The names and operations are those
260 defined by a.out_800 (4).
261
262 Right now this table is only used to count and perform minimal
263 processing on relocation streams so that they can be internalized
264 into BFD and symbolically printed by utilities. To make actual use
265 of them would be much more difficult, BFD's concept of relocations
266 is far too simple to handle SOM relocations. The basic assumption
267 that a relocation can be completely processed independent of other
268 relocations before an object file is written is invalid for SOM.
269
270 The SOM relocations are meant to be processed as a stream, they
271 specify copying of data from the input section to the output section
272 while possibly modifying the data in some manner. They also can
273 specify that a variable number of zeros or uninitialized data be
274 inserted on in the output segment at the current offset. Some
275 relocations specify that some previous relocation be re-applied at
276 the current location in the input/output sections. And finally a number
277 of relocations have effects on other sections (R_ENTRY, R_EXIT,
278 R_UNWIND_AUX and a variety of others). There isn't even enough room
279 in the BFD relocation data structure to store enough information to
280 perform all the relocations.
281
282 Each entry in the table has three fields.
283
284 The first entry is an index into this "class" of relocations. This
285 index can then be used as a variable within the relocation itself.
286
287 The second field is a format string which actually controls processing
288 of the relocation. It uses a simple postfix machine to do calculations
289 based on variables/constants found in the string and the relocation
290 stream.
291
292 The third field specifys whether or not this relocation may use
293 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
294 stored in the instruction.
295
296 Variables:
297
298 L = input space byte count
299 D = index into class of relocations
300 M = output space byte count
301 N = statement number (unused?)
302 O = stack operation
303 R = parameter relocation bits
304 S = symbol index
305 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
306 V = a literal constant (usually used in the next relocation)
307 P = a previous relocation
308
309 Lower case letters (starting with 'b') refer to following
310 bytes in the relocation stream. 'b' is the next 1 byte,
311 c is the next 2 bytes, d is the next 3 bytes, etc...
312 This is the variable part of the relocation entries that
313 makes our life a living hell.
314
315 numerical constants are also used in the format string. Note
316 the constants are represented in decimal.
317
318 '+', "*" and "=" represents the obvious postfix operators.
319 '<' represents a left shift.
320
321 Stack Operations:
322
323 Parameter Relocation Bits:
324
325 Unwind Entries:
326
327 Previous Relocations: The index field represents which in the queue
328 of 4 previous fixups should be re-applied.
329
330 Literal Constants: These are generally used to represent addend
331 parts of relocations when these constants are not stored in the
332 fields of the instructions themselves. For example the instruction
333 addil foo-$global$-0x1234 would use an override for "0x1234" rather
334 than storing it into the addil itself. */
335
336 struct fixup_format
337 {
338 int D;
339 char *format;
340 };
341
342 static const struct fixup_format som_fixup_formats[256] =
343 {
344 /* R_NO_RELOCATION */
345 0, "LD1+4*=", /* 0x00 */
346 1, "LD1+4*=", /* 0x01 */
347 2, "LD1+4*=", /* 0x02 */
348 3, "LD1+4*=", /* 0x03 */
349 4, "LD1+4*=", /* 0x04 */
350 5, "LD1+4*=", /* 0x05 */
351 6, "LD1+4*=", /* 0x06 */
352 7, "LD1+4*=", /* 0x07 */
353 8, "LD1+4*=", /* 0x08 */
354 9, "LD1+4*=", /* 0x09 */
355 10, "LD1+4*=", /* 0x0a */
356 11, "LD1+4*=", /* 0x0b */
357 12, "LD1+4*=", /* 0x0c */
358 13, "LD1+4*=", /* 0x0d */
359 14, "LD1+4*=", /* 0x0e */
360 15, "LD1+4*=", /* 0x0f */
361 16, "LD1+4*=", /* 0x10 */
362 17, "LD1+4*=", /* 0x11 */
363 18, "LD1+4*=", /* 0x12 */
364 19, "LD1+4*=", /* 0x13 */
365 20, "LD1+4*=", /* 0x14 */
366 21, "LD1+4*=", /* 0x15 */
367 22, "LD1+4*=", /* 0x16 */
368 23, "LD1+4*=", /* 0x17 */
369 0, "LD8<b+1+4*=", /* 0x18 */
370 1, "LD8<b+1+4*=", /* 0x19 */
371 2, "LD8<b+1+4*=", /* 0x1a */
372 3, "LD8<b+1+4*=", /* 0x1b */
373 0, "LD16<c+1+4*=", /* 0x1c */
374 1, "LD16<c+1+4*=", /* 0x1d */
375 2, "LD16<c+1+4*=", /* 0x1e */
376 0, "Ld1+=", /* 0x1f */
377 /* R_ZEROES */
378 0, "Lb1+4*=", /* 0x20 */
379 1, "Ld1+=", /* 0x21 */
380 /* R_UNINIT */
381 0, "Lb1+4*=", /* 0x22 */
382 1, "Ld1+=", /* 0x23 */
383 /* R_RELOCATION */
384 0, "L4=", /* 0x24 */
385 /* R_DATA_ONE_SYMBOL */
386 0, "L4=Sb=", /* 0x25 */
387 1, "L4=Sd=", /* 0x26 */
388 /* R_DATA_PLEBEL */
389 0, "L4=Sb=", /* 0x27 */
390 1, "L4=Sd=", /* 0x28 */
391 /* R_SPACE_REF */
392 0, "L4=", /* 0x29 */
393 /* R_REPEATED_INIT */
394 0, "L4=Mb1+4*=", /* 0x2a */
395 1, "Lb4*=Mb1+L*=", /* 0x2b */
396 2, "Lb4*=Md1+4*=", /* 0x2c */
397 3, "Ld1+=Me1+=", /* 0x2d */
398 /* R_RESERVED */
399 0, "", /* 0x2e */
400 0, "", /* 0x2f */
401 /* R_PCREL_CALL */
402 0, "L4=RD=Sb=", /* 0x30 */
403 1, "L4=RD=Sb=", /* 0x31 */
404 2, "L4=RD=Sb=", /* 0x32 */
405 3, "L4=RD=Sb=", /* 0x33 */
406 4, "L4=RD=Sb=", /* 0x34 */
407 5, "L4=RD=Sb=", /* 0x35 */
408 6, "L4=RD=Sb=", /* 0x36 */
409 7, "L4=RD=Sb=", /* 0x37 */
410 8, "L4=RD=Sb=", /* 0x38 */
411 9, "L4=RD=Sb=", /* 0x39 */
412 0, "L4=RD8<b+=Sb=",/* 0x3a */
413 1, "L4=RD8<b+=Sb=",/* 0x3b */
414 0, "L4=RD8<b+=Sd=",/* 0x3c */
415 1, "L4=RD8<b+=Sd=",/* 0x3d */
416 /* R_RESERVED */
417 0, "", /* 0x3e */
418 0, "", /* 0x3f */
419 /* R_ABS_CALL */
420 0, "L4=RD=Sb=", /* 0x40 */
421 1, "L4=RD=Sb=", /* 0x41 */
422 2, "L4=RD=Sb=", /* 0x42 */
423 3, "L4=RD=Sb=", /* 0x43 */
424 4, "L4=RD=Sb=", /* 0x44 */
425 5, "L4=RD=Sb=", /* 0x45 */
426 6, "L4=RD=Sb=", /* 0x46 */
427 7, "L4=RD=Sb=", /* 0x47 */
428 8, "L4=RD=Sb=", /* 0x48 */
429 9, "L4=RD=Sb=", /* 0x49 */
430 0, "L4=RD8<b+=Sb=",/* 0x4a */
431 1, "L4=RD8<b+=Sb=",/* 0x4b */
432 0, "L4=RD8<b+=Sd=",/* 0x4c */
433 1, "L4=RD8<b+=Sd=",/* 0x4d */
434 /* R_RESERVED */
435 0, "", /* 0x4e */
436 0, "", /* 0x4f */
437 /* R_DP_RELATIVE */
438 0, "L4=SD=", /* 0x50 */
439 1, "L4=SD=", /* 0x51 */
440 2, "L4=SD=", /* 0x52 */
441 3, "L4=SD=", /* 0x53 */
442 4, "L4=SD=", /* 0x54 */
443 5, "L4=SD=", /* 0x55 */
444 6, "L4=SD=", /* 0x56 */
445 7, "L4=SD=", /* 0x57 */
446 8, "L4=SD=", /* 0x58 */
447 9, "L4=SD=", /* 0x59 */
448 10, "L4=SD=", /* 0x5a */
449 11, "L4=SD=", /* 0x5b */
450 12, "L4=SD=", /* 0x5c */
451 13, "L4=SD=", /* 0x5d */
452 14, "L4=SD=", /* 0x5e */
453 15, "L4=SD=", /* 0x5f */
454 16, "L4=SD=", /* 0x60 */
455 17, "L4=SD=", /* 0x61 */
456 18, "L4=SD=", /* 0x62 */
457 19, "L4=SD=", /* 0x63 */
458 20, "L4=SD=", /* 0x64 */
459 21, "L4=SD=", /* 0x65 */
460 22, "L4=SD=", /* 0x66 */
461 23, "L4=SD=", /* 0x67 */
462 24, "L4=SD=", /* 0x68 */
463 25, "L4=SD=", /* 0x69 */
464 26, "L4=SD=", /* 0x6a */
465 27, "L4=SD=", /* 0x6b */
466 28, "L4=SD=", /* 0x6c */
467 29, "L4=SD=", /* 0x6d */
468 30, "L4=SD=", /* 0x6e */
469 31, "L4=SD=", /* 0x6f */
470 32, "L4=Sb=", /* 0x70 */
471 33, "L4=Sd=", /* 0x71 */
472 /* R_RESERVED */
473 0, "", /* 0x72 */
474 0, "", /* 0x73 */
475 0, "", /* 0x74 */
476 0, "", /* 0x75 */
477 0, "", /* 0x76 */
478 0, "", /* 0x77 */
479 /* R_DLT_REL */
480 0, "L4=Sb=", /* 0x78 */
481 1, "L4=Sd=", /* 0x79 */
482 /* R_RESERVED */
483 0, "", /* 0x7a */
484 0, "", /* 0x7b */
485 0, "", /* 0x7c */
486 0, "", /* 0x7d */
487 0, "", /* 0x7e */
488 0, "", /* 0x7f */
489 /* R_CODE_ONE_SYMBOL */
490 0, "L4=SD=", /* 0x80 */
491 1, "L4=SD=", /* 0x81 */
492 2, "L4=SD=", /* 0x82 */
493 3, "L4=SD=", /* 0x83 */
494 4, "L4=SD=", /* 0x84 */
495 5, "L4=SD=", /* 0x85 */
496 6, "L4=SD=", /* 0x86 */
497 7, "L4=SD=", /* 0x87 */
498 8, "L4=SD=", /* 0x88 */
499 9, "L4=SD=", /* 0x89 */
500 10, "L4=SD=", /* 0x8q */
501 11, "L4=SD=", /* 0x8b */
502 12, "L4=SD=", /* 0x8c */
503 13, "L4=SD=", /* 0x8d */
504 14, "L4=SD=", /* 0x8e */
505 15, "L4=SD=", /* 0x8f */
506 16, "L4=SD=", /* 0x90 */
507 17, "L4=SD=", /* 0x91 */
508 18, "L4=SD=", /* 0x92 */
509 19, "L4=SD=", /* 0x93 */
510 20, "L4=SD=", /* 0x94 */
511 21, "L4=SD=", /* 0x95 */
512 22, "L4=SD=", /* 0x96 */
513 23, "L4=SD=", /* 0x97 */
514 24, "L4=SD=", /* 0x98 */
515 25, "L4=SD=", /* 0x99 */
516 26, "L4=SD=", /* 0x9a */
517 27, "L4=SD=", /* 0x9b */
518 28, "L4=SD=", /* 0x9c */
519 29, "L4=SD=", /* 0x9d */
520 30, "L4=SD=", /* 0x9e */
521 31, "L4=SD=", /* 0x9f */
522 32, "L4=Sb=", /* 0xa0 */
523 33, "L4=Sd=", /* 0xa1 */
524 /* R_RESERVED */
525 0, "", /* 0xa2 */
526 0, "", /* 0xa3 */
527 0, "", /* 0xa4 */
528 0, "", /* 0xa5 */
529 0, "", /* 0xa6 */
530 0, "", /* 0xa7 */
531 0, "", /* 0xa8 */
532 0, "", /* 0xa9 */
533 0, "", /* 0xaa */
534 0, "", /* 0xab */
535 0, "", /* 0xac */
536 0, "", /* 0xad */
537 /* R_MILLI_REL */
538 0, "L4=Sb=", /* 0xae */
539 1, "L4=Sd=", /* 0xaf */
540 /* R_CODE_PLABEL */
541 0, "L4=Sb=", /* 0xb0 */
542 1, "L4=Sd=", /* 0xb1 */
543 /* R_BREAKPOINT */
544 0, "L4=", /* 0xb2 */
545 /* R_ENTRY */
546 0, "Ui=", /* 0xb3 */
547 1, "Uf=", /* 0xb4 */
548 /* R_ALT_ENTRY */
549 0, "", /* 0xb5 */
550 /* R_EXIT */
551 0, "", /* 0xb6 */
552 /* R_BEGIN_TRY */
553 0, "", /* 0xb7 */
554 /* R_END_TRY */
555 0, "R0=", /* 0xb8 */
556 1, "Rb4*=", /* 0xb9 */
557 2, "Rd4*=", /* 0xba */
558 /* R_BEGIN_BRTAB */
559 0, "", /* 0xbb */
560 /* R_END_BRTAB */
561 0, "", /* 0xbc */
562 /* R_STATEMENT */
563 0, "Nb=", /* 0xbd */
564 1, "Nc=", /* 0xbe */
565 2, "Nd=", /* 0xbf */
566 /* R_DATA_EXPR */
567 0, "L4=", /* 0xc0 */
568 /* R_CODE_EXPR */
569 0, "L4=", /* 0xc1 */
570 /* R_FSEL */
571 0, "", /* 0xc2 */
572 /* R_LSEL */
573 0, "", /* 0xc3 */
574 /* R_RSEL */
575 0, "", /* 0xc4 */
576 /* R_N_MODE */
577 0, "", /* 0xc5 */
578 /* R_S_MODE */
579 0, "", /* 0xc6 */
580 /* R_D_MODE */
581 0, "", /* 0xc7 */
582 /* R_R_MODE */
583 0, "", /* 0xc8 */
584 /* R_DATA_OVERRIDE */
585 0, "V0=", /* 0xc9 */
586 1, "Vb=", /* 0xca */
587 2, "Vc=", /* 0xcb */
588 3, "Vd=", /* 0xcc */
589 4, "Ve=", /* 0xcd */
590 /* R_TRANSLATED */
591 0, "", /* 0xce */
592 /* R_RESERVED */
593 0, "", /* 0xcf */
594 /* R_COMP1 */
595 0, "Ob=", /* 0xd0 */
596 /* R_COMP2 */
597 0, "Ob=Sd=", /* 0xd1 */
598 /* R_COMP3 */
599 0, "Ob=Ve=", /* 0xd2 */
600 /* R_PREV_FIXUP */
601 0, "P", /* 0xd3 */
602 1, "P", /* 0xd4 */
603 2, "P", /* 0xd5 */
604 3, "P", /* 0xd6 */
605 /* R_RESERVED */
606 0, "", /* 0xd7 */
607 0, "", /* 0xd8 */
608 0, "", /* 0xd9 */
609 0, "", /* 0xda */
610 0, "", /* 0xdb */
611 0, "", /* 0xdc */
612 0, "", /* 0xdd */
613 0, "", /* 0xde */
614 0, "", /* 0xdf */
615 0, "", /* 0xe0 */
616 0, "", /* 0xe1 */
617 0, "", /* 0xe2 */
618 0, "", /* 0xe3 */
619 0, "", /* 0xe4 */
620 0, "", /* 0xe5 */
621 0, "", /* 0xe6 */
622 0, "", /* 0xe7 */
623 0, "", /* 0xe8 */
624 0, "", /* 0xe9 */
625 0, "", /* 0xea */
626 0, "", /* 0xeb */
627 0, "", /* 0xec */
628 0, "", /* 0xed */
629 0, "", /* 0xee */
630 0, "", /* 0xef */
631 0, "", /* 0xf0 */
632 0, "", /* 0xf1 */
633 0, "", /* 0xf2 */
634 0, "", /* 0xf3 */
635 0, "", /* 0xf4 */
636 0, "", /* 0xf5 */
637 0, "", /* 0xf6 */
638 0, "", /* 0xf7 */
639 0, "", /* 0xf8 */
640 0, "", /* 0xf9 */
641 0, "", /* 0xfa */
642 0, "", /* 0xfb */
643 0, "", /* 0xfc */
644 0, "", /* 0xfd */
645 0, "", /* 0xfe */
646 0, "", /* 0xff */
647 };
648
649 static const int comp1_opcodes[] =
650 {
651 0x00,
652 0x40,
653 0x41,
654 0x42,
655 0x43,
656 0x44,
657 0x45,
658 0x46,
659 0x47,
660 0x48,
661 0x49,
662 0x4a,
663 0x4b,
664 0x60,
665 0x80,
666 0xa0,
667 0xc0,
668 -1
669 };
670
671 static const int comp2_opcodes[] =
672 {
673 0x00,
674 0x80,
675 0x82,
676 0xc0,
677 -1
678 };
679
680 static const int comp3_opcodes[] =
681 {
682 0x00,
683 0x02,
684 -1
685 };
686
687 /* These apparently are not in older versions of hpux reloc.h. */
688 #ifndef R_DLT_REL
689 #define R_DLT_REL 0x78
690 #endif
691
692 #ifndef R_AUX_UNWIND
693 #define R_AUX_UNWIND 0xcf
694 #endif
695
696 #ifndef R_SEC_STMT
697 #define R_SEC_STMT 0xd7
698 #endif
699
700 static reloc_howto_type som_hppa_howto_table[] =
701 {
702 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
703 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
704 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
705 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
706 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
707 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
708 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
709 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
710 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
711 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
712 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
735 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
736 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
737 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
738 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
739 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
740 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
741 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
742 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
743 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
744 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
745 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
746 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
747 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
748 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
749 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
750 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
751 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
752 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
753 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
754 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
755 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
756 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
757 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
758 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
759 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
760 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
765 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
766 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
767 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
768 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
769 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
770 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
771 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
772 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
773 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
774 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
775 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
776 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
781 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
782 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
783 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
784 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
785 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
786 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
787 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
788 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
789 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
790 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
791 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
792 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
818 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
819 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
820 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
821 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
822 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
823 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
824 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
825 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
826 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
827 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
831 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
832 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
833 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
834 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
835 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
836 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
837 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
838 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
839 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
840 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
866 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
867 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
868 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
869 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
870 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
871 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
872 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
873 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
874 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
875 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
876 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
877 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
878 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
879 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
880 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
881 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
882 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
883 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
884 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
885 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
886 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
887 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
888 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
889 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
890 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
891 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
892 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
893 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
894 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
895 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
896 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
897 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
898 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
899 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
900 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
901 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
902 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
903 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
904 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
905 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
906 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
907 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
908 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
909 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
910 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
911 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
912 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
913 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
914 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
915 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
916 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
917 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
918 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
919 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
920 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
921 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
922 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
923 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
924 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
925 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
926 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
927 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
928 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
958
959
960 /* Initialize the SOM relocation queue. By definition the queue holds
961 the last four multibyte fixups. */
962
963 static void
964 som_initialize_reloc_queue (queue)
965 struct reloc_queue *queue;
966 {
967 queue[0].reloc = NULL;
968 queue[0].size = 0;
969 queue[1].reloc = NULL;
970 queue[1].size = 0;
971 queue[2].reloc = NULL;
972 queue[2].size = 0;
973 queue[3].reloc = NULL;
974 queue[3].size = 0;
975 }
976
977 /* Insert a new relocation into the relocation queue. */
978
979 static void
980 som_reloc_queue_insert (p, size, queue)
981 unsigned char *p;
982 unsigned int size;
983 struct reloc_queue *queue;
984 {
985 queue[3].reloc = queue[2].reloc;
986 queue[3].size = queue[2].size;
987 queue[2].reloc = queue[1].reloc;
988 queue[2].size = queue[1].size;
989 queue[1].reloc = queue[0].reloc;
990 queue[1].size = queue[0].size;
991 queue[0].reloc = p;
992 queue[0].size = size;
993 }
994
995 /* When an entry in the relocation queue is reused, the entry moves
996 to the front of the queue. */
997
998 static void
999 som_reloc_queue_fix (queue, index)
1000 struct reloc_queue *queue;
1001 unsigned int index;
1002 {
1003 if (index == 0)
1004 return;
1005
1006 if (index == 1)
1007 {
1008 unsigned char *tmp1 = queue[0].reloc;
1009 unsigned int tmp2 = queue[0].size;
1010 queue[0].reloc = queue[1].reloc;
1011 queue[0].size = queue[1].size;
1012 queue[1].reloc = tmp1;
1013 queue[1].size = tmp2;
1014 return;
1015 }
1016
1017 if (index == 2)
1018 {
1019 unsigned char *tmp1 = queue[0].reloc;
1020 unsigned int tmp2 = queue[0].size;
1021 queue[0].reloc = queue[2].reloc;
1022 queue[0].size = queue[2].size;
1023 queue[2].reloc = queue[1].reloc;
1024 queue[2].size = queue[1].size;
1025 queue[1].reloc = tmp1;
1026 queue[1].size = tmp2;
1027 return;
1028 }
1029
1030 if (index == 3)
1031 {
1032 unsigned char *tmp1 = queue[0].reloc;
1033 unsigned int tmp2 = queue[0].size;
1034 queue[0].reloc = queue[3].reloc;
1035 queue[0].size = queue[3].size;
1036 queue[3].reloc = queue[2].reloc;
1037 queue[3].size = queue[2].size;
1038 queue[2].reloc = queue[1].reloc;
1039 queue[2].size = queue[1].size;
1040 queue[1].reloc = tmp1;
1041 queue[1].size = tmp2;
1042 return;
1043 }
1044 abort();
1045 }
1046
1047 /* Search for a particular relocation in the relocation queue. */
1048
1049 static int
1050 som_reloc_queue_find (p, size, queue)
1051 unsigned char *p;
1052 unsigned int size;
1053 struct reloc_queue *queue;
1054 {
1055 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1056 && size == queue[0].size)
1057 return 0;
1058 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1059 && size == queue[1].size)
1060 return 1;
1061 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1062 && size == queue[2].size)
1063 return 2;
1064 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1065 && size == queue[3].size)
1066 return 3;
1067 return -1;
1068 }
1069
1070 static unsigned char *
1071 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1072 bfd *abfd;
1073 int *subspace_reloc_sizep;
1074 unsigned char *p;
1075 unsigned int size;
1076 struct reloc_queue *queue;
1077 {
1078 int queue_index = som_reloc_queue_find (p, size, queue);
1079
1080 if (queue_index != -1)
1081 {
1082 /* Found this in a previous fixup. Undo the fixup we
1083 just built and use R_PREV_FIXUP instead. We saved
1084 a total of size - 1 bytes in the fixup stream. */
1085 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1086 p += 1;
1087 *subspace_reloc_sizep += 1;
1088 som_reloc_queue_fix (queue, queue_index);
1089 }
1090 else
1091 {
1092 som_reloc_queue_insert (p, size, queue);
1093 *subspace_reloc_sizep += size;
1094 p += size;
1095 }
1096 return p;
1097 }
1098
1099 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1100 bytes without any relocation. Update the size of the subspace
1101 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1102 current pointer into the relocation stream. */
1103
1104 static unsigned char *
1105 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1106 bfd *abfd;
1107 unsigned int skip;
1108 unsigned char *p;
1109 unsigned int *subspace_reloc_sizep;
1110 struct reloc_queue *queue;
1111 {
1112 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1113 then R_PREV_FIXUPs to get the difference down to a
1114 reasonable size. */
1115 if (skip >= 0x1000000)
1116 {
1117 skip -= 0x1000000;
1118 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1119 bfd_put_8 (abfd, 0xff, p + 1);
1120 bfd_put_16 (abfd, 0xffff, p + 2);
1121 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1122 while (skip >= 0x1000000)
1123 {
1124 skip -= 0x1000000;
1125 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1126 p++;
1127 *subspace_reloc_sizep += 1;
1128 /* No need to adjust queue here since we are repeating the
1129 most recent fixup. */
1130 }
1131 }
1132
1133 /* The difference must be less than 0x1000000. Use one
1134 more R_NO_RELOCATION entry to get to the right difference. */
1135 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1136 {
1137 /* Difference can be handled in a simple single-byte
1138 R_NO_RELOCATION entry. */
1139 if (skip <= 0x60)
1140 {
1141 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1142 *subspace_reloc_sizep += 1;
1143 p++;
1144 }
1145 /* Handle it with a two byte R_NO_RELOCATION entry. */
1146 else if (skip <= 0x1000)
1147 {
1148 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1149 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1150 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1151 }
1152 /* Handle it with a three byte R_NO_RELOCATION entry. */
1153 else
1154 {
1155 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1156 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1157 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1158 }
1159 }
1160 /* Ugh. Punt and use a 4 byte entry. */
1161 else if (skip > 0)
1162 {
1163 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1164 bfd_put_8 (abfd, skip >> 16, p + 1);
1165 bfd_put_16 (abfd, skip, p + 2);
1166 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1167 }
1168 return p;
1169 }
1170
1171 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1172 from a BFD relocation. Update the size of the subspace relocation
1173 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1174 into the relocation stream. */
1175
1176 static unsigned char *
1177 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1178 bfd *abfd;
1179 int addend;
1180 unsigned char *p;
1181 unsigned int *subspace_reloc_sizep;
1182 struct reloc_queue *queue;
1183 {
1184 if ((unsigned)(addend) + 0x80 < 0x100)
1185 {
1186 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1187 bfd_put_8 (abfd, addend, p + 1);
1188 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1189 }
1190 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1191 {
1192 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1193 bfd_put_16 (abfd, addend, p + 1);
1194 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1195 }
1196 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1197 {
1198 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1199 bfd_put_8 (abfd, addend >> 16, p + 1);
1200 bfd_put_16 (abfd, addend, p + 2);
1201 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1202 }
1203 else
1204 {
1205 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1206 bfd_put_32 (abfd, addend, p + 1);
1207 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1208 }
1209 return p;
1210 }
1211
1212 /* Handle a single function call relocation. */
1213
1214 static unsigned char *
1215 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1216 bfd *abfd;
1217 unsigned char *p;
1218 unsigned int *subspace_reloc_sizep;
1219 arelent *bfd_reloc;
1220 int sym_num;
1221 struct reloc_queue *queue;
1222 {
1223 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1224 int rtn_bits = arg_bits & 0x3;
1225 int type, done = 0;
1226
1227 /* You'll never believe all this is necessary to handle relocations
1228 for function calls. Having to compute and pack the argument
1229 relocation bits is the real nightmare.
1230
1231 If you're interested in how this works, just forget it. You really
1232 do not want to know about this braindamage. */
1233
1234 /* First see if this can be done with a "simple" relocation. Simple
1235 relocations have a symbol number < 0x100 and have simple encodings
1236 of argument relocations. */
1237
1238 if (sym_num < 0x100)
1239 {
1240 switch (arg_bits)
1241 {
1242 case 0:
1243 case 1:
1244 type = 0;
1245 break;
1246 case 1 << 8:
1247 case 1 << 8 | 1:
1248 type = 1;
1249 break;
1250 case 1 << 8 | 1 << 6:
1251 case 1 << 8 | 1 << 6 | 1:
1252 type = 2;
1253 break;
1254 case 1 << 8 | 1 << 6 | 1 << 4:
1255 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1256 type = 3;
1257 break;
1258 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1259 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1260 type = 4;
1261 break;
1262 default:
1263 /* Not one of the easy encodings. This will have to be
1264 handled by the more complex code below. */
1265 type = -1;
1266 break;
1267 }
1268 if (type != -1)
1269 {
1270 /* Account for the return value too. */
1271 if (rtn_bits)
1272 type += 5;
1273
1274 /* Emit a 2 byte relocation. Then see if it can be handled
1275 with a relocation which is already in the relocation queue. */
1276 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1277 bfd_put_8 (abfd, sym_num, p + 1);
1278 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1279 done = 1;
1280 }
1281 }
1282
1283 /* If this could not be handled with a simple relocation, then do a hard
1284 one. Hard relocations occur if the symbol number was too high or if
1285 the encoding of argument relocation bits is too complex. */
1286 if (! done)
1287 {
1288 /* Don't ask about these magic sequences. I took them straight
1289 from gas-1.36 which took them from the a.out man page. */
1290 type = rtn_bits;
1291 if ((arg_bits >> 6 & 0xf) == 0xe)
1292 type += 9 * 40;
1293 else
1294 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1295 if ((arg_bits >> 2 & 0xf) == 0xe)
1296 type += 9 * 4;
1297 else
1298 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1299
1300 /* Output the first two bytes of the relocation. These describe
1301 the length of the relocation and encoding style. */
1302 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1303 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1304 p);
1305 bfd_put_8 (abfd, type, p + 1);
1306
1307 /* Now output the symbol index and see if this bizarre relocation
1308 just happened to be in the relocation queue. */
1309 if (sym_num < 0x100)
1310 {
1311 bfd_put_8 (abfd, sym_num, p + 2);
1312 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1313 }
1314 else
1315 {
1316 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1317 bfd_put_16 (abfd, sym_num, p + 3);
1318 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1319 }
1320 }
1321 return p;
1322 }
1323
1324
1325 /* Return the logarithm of X, base 2, considering X unsigned.
1326 Abort if X is not a power of two -- this should never happen (FIXME:
1327 It will happen on corrupt executables. GDB should give an error, not
1328 a coredump, in that case). */
1329
1330 static int
1331 log2 (x)
1332 unsigned int x;
1333 {
1334 int log = 0;
1335
1336 /* Test for 0 or a power of 2. */
1337 if (x == 0 || x != (x & -x))
1338 abort();
1339
1340 while ((x >>= 1) != 0)
1341 log++;
1342 return log;
1343 }
1344
1345 static bfd_reloc_status_type
1346 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1347 input_section, output_bfd, error_message)
1348 bfd *abfd;
1349 arelent *reloc_entry;
1350 asymbol *symbol_in;
1351 PTR data;
1352 asection *input_section;
1353 bfd *output_bfd;
1354 char **error_message;
1355 {
1356 if (output_bfd)
1357 {
1358 reloc_entry->address += input_section->output_offset;
1359 return bfd_reloc_ok;
1360 }
1361 return bfd_reloc_ok;
1362 }
1363
1364 /* Given a generic HPPA relocation type, the instruction format,
1365 and a field selector, return an appropriate SOM reloation.
1366
1367 FIXME. Need to handle %RR, %LR and the like as field selectors.
1368 These will need to generate multiple SOM relocations. */
1369
1370 int **
1371 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1372 bfd *abfd;
1373 int base_type;
1374 int format;
1375 enum hppa_reloc_field_selector_type field;
1376 {
1377 int *final_type, **final_types;
1378
1379 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1380 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1381 if (!final_types || !final_type)
1382 {
1383 bfd_error = no_memory;
1384 return NULL;
1385 }
1386
1387 /* The field selector may require additional relocations to be
1388 generated. It's impossible to know at this moment if additional
1389 relocations will be needed, so we make them. The code to actually
1390 write the relocation/fixup stream is responsible for removing
1391 any redundant relocations. */
1392 switch (field)
1393 {
1394 case e_fsel:
1395 case e_psel:
1396 case e_lpsel:
1397 case e_rpsel:
1398 final_types[0] = final_type;
1399 final_types[1] = NULL;
1400 final_types[2] = NULL;
1401 *final_type = base_type;
1402 break;
1403
1404 case e_tsel:
1405 case e_ltsel:
1406 case e_rtsel:
1407 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1408 if (!final_types[0])
1409 {
1410 bfd_error = no_memory;
1411 return NULL;
1412 }
1413 if (field == e_tsel)
1414 *final_types[0] = R_FSEL;
1415 else if (field == e_ltsel)
1416 *final_types[0] = R_LSEL;
1417 else
1418 *final_types[0] = R_RSEL;
1419 final_types[1] = final_type;
1420 final_types[2] = NULL;
1421 *final_type = base_type;
1422 break;
1423
1424 case e_lssel:
1425 case e_rssel:
1426 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1427 if (!final_types[0])
1428 {
1429 bfd_error = no_memory;
1430 return NULL;
1431 }
1432 *final_types[0] = R_S_MODE;
1433 final_types[1] = final_type;
1434 final_types[2] = NULL;
1435 *final_type = base_type;
1436 break;
1437
1438 case e_lsel:
1439 case e_rsel:
1440 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1441 if (!final_types[0])
1442 {
1443 bfd_error = no_memory;
1444 return NULL;
1445 }
1446 *final_types[0] = R_N_MODE;
1447 final_types[1] = final_type;
1448 final_types[2] = NULL;
1449 *final_type = base_type;
1450 break;
1451
1452 case e_ldsel:
1453 case e_rdsel:
1454 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1455 if (!final_types[0])
1456 {
1457 bfd_error = no_memory;
1458 return NULL;
1459 }
1460 *final_types[0] = R_D_MODE;
1461 final_types[1] = final_type;
1462 final_types[2] = NULL;
1463 *final_type = base_type;
1464 break;
1465
1466 case e_lrsel:
1467 case e_rrsel:
1468 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1469 if (!final_types[0])
1470 {
1471 bfd_error = no_memory;
1472 return NULL;
1473 }
1474 *final_types[0] = R_R_MODE;
1475 final_types[1] = final_type;
1476 final_types[2] = NULL;
1477 *final_type = base_type;
1478 break;
1479 }
1480
1481 switch (base_type)
1482 {
1483 case R_HPPA:
1484 /* PLABELs get their own relocation type. */
1485 if (field == e_psel
1486 || field == e_lpsel
1487 || field == e_rpsel)
1488 {
1489 /* A PLABEL relocation that has a size of 32 bits must
1490 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1491 if (format == 32)
1492 *final_type = R_DATA_PLABEL;
1493 else
1494 *final_type = R_CODE_PLABEL;
1495 }
1496 /* PIC stuff. */
1497 else if (field == e_tsel
1498 || field == e_ltsel
1499 || field == e_rtsel)
1500 *final_type = R_DLT_REL;
1501 /* A relocation in the data space is always a full 32bits. */
1502 else if (format == 32)
1503 *final_type = R_DATA_ONE_SYMBOL;
1504
1505 break;
1506
1507 case R_HPPA_GOTOFF:
1508 /* More PLABEL special cases. */
1509 if (field == e_psel
1510 || field == e_lpsel
1511 || field == e_rpsel)
1512 *final_type = R_DATA_PLABEL;
1513 break;
1514
1515 case R_HPPA_NONE:
1516 case R_HPPA_ABS_CALL:
1517 case R_HPPA_PCREL_CALL:
1518 case R_HPPA_COMPLEX:
1519 case R_HPPA_COMPLEX_PCREL_CALL:
1520 case R_HPPA_COMPLEX_ABS_CALL:
1521 /* Right now we can default all these. */
1522 break;
1523 }
1524 return final_types;
1525 }
1526
1527 /* Return the address of the correct entry in the PA SOM relocation
1528 howto table. */
1529
1530 static const reloc_howto_type *
1531 som_bfd_reloc_type_lookup (arch, code)
1532 bfd_arch_info_type *arch;
1533 bfd_reloc_code_real_type code;
1534 {
1535 if ((int) code < (int) R_NO_RELOCATION + 255)
1536 {
1537 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1538 return &som_hppa_howto_table[(int) code];
1539 }
1540
1541 return (reloc_howto_type *) 0;
1542 }
1543
1544 /* Perform some initialization for an object. Save results of this
1545 initialization in the BFD. */
1546
1547 static bfd_target *
1548 som_object_setup (abfd, file_hdrp, aux_hdrp)
1549 bfd *abfd;
1550 struct header *file_hdrp;
1551 struct som_exec_auxhdr *aux_hdrp;
1552 {
1553 /* som_mkobject will set bfd_error if som_mkobject fails. */
1554 if (som_mkobject (abfd) != true)
1555 return 0;
1556
1557 /* Set BFD flags based on what information is available in the SOM. */
1558 abfd->flags = NO_FLAGS;
1559 if (! file_hdrp->entry_offset)
1560 abfd->flags |= HAS_RELOC;
1561 else
1562 abfd->flags |= EXEC_P;
1563 if (file_hdrp->symbol_total)
1564 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1565
1566 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1567 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1568 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1569
1570 /* Initialize the saved symbol table and string table to NULL.
1571 Save important offsets and sizes from the SOM header into
1572 the BFD. */
1573 obj_som_stringtab (abfd) = (char *) NULL;
1574 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1575 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1576 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1577 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1578 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1579
1580 return abfd->xvec;
1581 }
1582
1583 /* Create a new BFD section for NAME. If NAME already exists, then create a
1584 new unique name, with NAME as the prefix. This exists because SOM .o files
1585 may have more than one $CODE$ subspace. */
1586
1587 static asection *
1588 make_unique_section (abfd, name, num)
1589 bfd *abfd;
1590 CONST char *name;
1591 int num;
1592 {
1593 asection *sect;
1594 char *newname;
1595 char altname[100];
1596
1597 sect = bfd_make_section (abfd, name);
1598 while (!sect)
1599 {
1600 sprintf (altname, "%s-%d", name, num++);
1601 sect = bfd_make_section (abfd, altname);
1602 }
1603
1604 newname = bfd_alloc (abfd, strlen (sect->name) + 1);
1605 if (!newname)
1606 {
1607 bfd_error = no_memory;
1608 return NULL;
1609 }
1610 strcpy (newname, sect->name);
1611
1612 sect->name = newname;
1613 return sect;
1614 }
1615
1616 /* Convert all of the space and subspace info into BFD sections. Each space
1617 contains a number of subspaces, which in turn describe the mapping between
1618 regions of the exec file, and the address space that the program runs in.
1619 BFD sections which correspond to spaces will overlap the sections for the
1620 associated subspaces. */
1621
1622 static boolean
1623 setup_sections (abfd, file_hdr)
1624 bfd *abfd;
1625 struct header *file_hdr;
1626 {
1627 char *space_strings;
1628 int space_index;
1629 unsigned int total_subspaces = 0;
1630
1631 /* First, read in space names */
1632
1633 space_strings = alloca (file_hdr->space_strings_size);
1634 if (!space_strings)
1635 return false;
1636
1637 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1638 return false;
1639 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1640 != file_hdr->space_strings_size)
1641 return false;
1642
1643 /* Loop over all of the space dictionaries, building up sections */
1644 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1645 {
1646 struct space_dictionary_record space;
1647 struct subspace_dictionary_record subspace, save_subspace;
1648 int subspace_index;
1649 asection *space_asect;
1650
1651 /* Read the space dictionary element */
1652 if (bfd_seek (abfd, file_hdr->space_location
1653 + space_index * sizeof space, SEEK_SET) < 0)
1654 return false;
1655 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1656 return false;
1657
1658 /* Setup the space name string */
1659 space.name.n_name = space.name.n_strx + space_strings;
1660
1661 /* Make a section out of it */
1662 space_asect = make_unique_section (abfd, space.name.n_name, space_index);
1663 if (!space_asect)
1664 return false;
1665
1666 /* Now, read in the first subspace for this space */
1667 if (bfd_seek (abfd, file_hdr->subspace_location
1668 + space.subspace_index * sizeof subspace,
1669 SEEK_SET) < 0)
1670 return false;
1671 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1672 return false;
1673 /* Seek back to the start of the subspaces for loop below */
1674 if (bfd_seek (abfd, file_hdr->subspace_location
1675 + space.subspace_index * sizeof subspace,
1676 SEEK_SET) < 0)
1677 return false;
1678
1679 /* Setup the start address and file loc from the first subspace record */
1680 space_asect->vma = subspace.subspace_start;
1681 space_asect->filepos = subspace.file_loc_init_value;
1682 space_asect->alignment_power = log2 (subspace.alignment);
1683
1684 /* Initialize save_subspace so we can reliably determine if this
1685 loop placed any useful values into it. */
1686 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1687
1688 /* Loop over the rest of the subspaces, building up more sections */
1689 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1690 subspace_index++)
1691 {
1692 asection *subspace_asect;
1693
1694 /* Read in the next subspace */
1695 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1696 != sizeof subspace)
1697 return false;
1698
1699 /* Setup the subspace name string */
1700 subspace.name.n_name = subspace.name.n_strx + space_strings;
1701
1702 /* Make a section out of this subspace */
1703 subspace_asect = make_unique_section (abfd, subspace.name.n_name,
1704 space.subspace_index + subspace_index);
1705
1706 if (!subspace_asect)
1707 return false;
1708
1709 /* Keep an easy mapping between subspaces and sections. */
1710 som_section_data (subspace_asect)->subspace_index
1711 = total_subspaces++;
1712
1713 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1714 by the access_control_bits in the subspace header. */
1715 switch (subspace.access_control_bits >> 4)
1716 {
1717 /* Readonly data. */
1718 case 0x0:
1719 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1720 break;
1721
1722 /* Normal data. */
1723 case 0x1:
1724 subspace_asect->flags |= SEC_DATA;
1725 break;
1726
1727 /* Readonly code and the gateways.
1728 Gateways have other attributes which do not map
1729 into anything BFD knows about. */
1730 case 0x2:
1731 case 0x4:
1732 case 0x5:
1733 case 0x6:
1734 case 0x7:
1735 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1736 break;
1737
1738 /* dynamic (writable) code. */
1739 case 0x3:
1740 subspace_asect->flags |= SEC_CODE;
1741 break;
1742 }
1743
1744 if (subspace.dup_common || subspace.is_common)
1745 subspace_asect->flags |= SEC_IS_COMMON;
1746 else if (subspace.subspace_length > 0)
1747 subspace_asect->flags |= SEC_HAS_CONTENTS;
1748 if (subspace.is_loadable)
1749 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1750 if (subspace.code_only)
1751 subspace_asect->flags |= SEC_CODE;
1752
1753 /* Both file_loc_init_value and initialization_length will
1754 be zero for a BSS like subspace. */
1755 if (subspace.file_loc_init_value == 0
1756 && subspace.initialization_length == 0)
1757 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1758
1759 /* This subspace has relocations.
1760 The fixup_request_quantity is a byte count for the number of
1761 entries in the relocation stream; it is not the actual number
1762 of relocations in the subspace. */
1763 if (subspace.fixup_request_quantity != 0)
1764 {
1765 subspace_asect->flags |= SEC_RELOC;
1766 subspace_asect->rel_filepos = subspace.fixup_request_index;
1767 som_section_data (subspace_asect)->reloc_size
1768 = subspace.fixup_request_quantity;
1769 /* We can not determine this yet. When we read in the
1770 relocation table the correct value will be filled in. */
1771 subspace_asect->reloc_count = -1;
1772 }
1773
1774 /* Update save_subspace if appropriate. */
1775 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1776 save_subspace = subspace;
1777
1778 subspace_asect->vma = subspace.subspace_start;
1779 subspace_asect->_cooked_size = subspace.subspace_length;
1780 subspace_asect->_raw_size = subspace.subspace_length;
1781 subspace_asect->alignment_power = log2 (subspace.alignment);
1782 subspace_asect->filepos = subspace.file_loc_init_value;
1783 }
1784
1785 /* Yow! there is no subspace within the space which actually
1786 has initialized information in it; this should never happen
1787 as far as I know. */
1788 if (!save_subspace.file_loc_init_value)
1789 abort ();
1790
1791 /* Setup the sizes for the space section based upon the info in the
1792 last subspace of the space. */
1793 space_asect->_cooked_size = save_subspace.subspace_start
1794 - space_asect->vma + save_subspace.subspace_length;
1795 space_asect->_raw_size = save_subspace.file_loc_init_value
1796 - space_asect->filepos + save_subspace.initialization_length;
1797 }
1798 return true;
1799 }
1800
1801 /* Read in a SOM object and make it into a BFD. */
1802
1803 static bfd_target *
1804 som_object_p (abfd)
1805 bfd *abfd;
1806 {
1807 struct header file_hdr;
1808 struct som_exec_auxhdr aux_hdr;
1809
1810 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1811 {
1812 bfd_error = system_call_error;
1813 return 0;
1814 }
1815
1816 if (!_PA_RISC_ID (file_hdr.system_id))
1817 {
1818 bfd_error = wrong_format;
1819 return 0;
1820 }
1821
1822 switch (file_hdr.a_magic)
1823 {
1824 case RELOC_MAGIC:
1825 case EXEC_MAGIC:
1826 case SHARE_MAGIC:
1827 case DEMAND_MAGIC:
1828 #ifdef DL_MAGIC
1829 case DL_MAGIC:
1830 #endif
1831 #ifdef SHL_MAGIC
1832 case SHL_MAGIC:
1833 #endif
1834 #ifdef EXECLIBMAGIC
1835 case EXECLIBMAGIC:
1836 #endif
1837 #ifdef SHARED_MAGIC_CNX
1838 case SHARED_MAGIC_CNX:
1839 #endif
1840 break;
1841 default:
1842 bfd_error = wrong_format;
1843 return 0;
1844 }
1845
1846 if (file_hdr.version_id != VERSION_ID
1847 && file_hdr.version_id != NEW_VERSION_ID)
1848 {
1849 bfd_error = wrong_format;
1850 return 0;
1851 }
1852
1853 /* If the aux_header_size field in the file header is zero, then this
1854 object is an incomplete executable (a .o file). Do not try to read
1855 a non-existant auxiliary header. */
1856 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1857 if (file_hdr.aux_header_size != 0)
1858 {
1859 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1860 {
1861 bfd_error = wrong_format;
1862 return 0;
1863 }
1864 }
1865
1866 if (!setup_sections (abfd, &file_hdr))
1867 {
1868 /* setup_sections does not bubble up a bfd error code. */
1869 bfd_error = bad_value;
1870 return 0;
1871 }
1872
1873 /* This appears to be a valid SOM object. Do some initialization. */
1874 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1875 }
1876
1877 /* Create a SOM object. */
1878
1879 static boolean
1880 som_mkobject (abfd)
1881 bfd *abfd;
1882 {
1883 /* Allocate memory to hold backend information. */
1884 abfd->tdata.som_data = (struct som_data_struct *)
1885 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1886 if (abfd->tdata.som_data == NULL)
1887 {
1888 bfd_error = no_memory;
1889 return false;
1890 }
1891 obj_som_file_hdr (abfd)
1892 = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1893 if (obj_som_file_hdr (abfd) == NULL)
1894
1895 {
1896 bfd_error = no_memory;
1897 return false;
1898 }
1899 return true;
1900 }
1901
1902 /* Initialize some information in the file header. This routine makes
1903 not attempt at doing the right thing for a full executable; it
1904 is only meant to handle relocatable objects. */
1905
1906 static boolean
1907 som_prep_headers (abfd)
1908 bfd *abfd;
1909 {
1910 struct header *file_hdr = obj_som_file_hdr (abfd);
1911 asection *section;
1912
1913 /* FIXME. This should really be conditional based on whether or not
1914 PA1.1 instructions/registers have been used. */
1915 file_hdr->system_id = HP9000S800_ID;
1916
1917 /* FIXME. Only correct for building relocatable objects. */
1918 if (abfd->flags & EXEC_P)
1919 abort ();
1920 else
1921 file_hdr->a_magic = RELOC_MAGIC;
1922
1923 /* Only new format SOM is supported. */
1924 file_hdr->version_id = NEW_VERSION_ID;
1925
1926 /* These fields are optional, and embedding timestamps is not always
1927 a wise thing to do, it makes comparing objects during a multi-stage
1928 bootstrap difficult. */
1929 file_hdr->file_time.secs = 0;
1930 file_hdr->file_time.nanosecs = 0;
1931
1932 if (abfd->flags & EXEC_P)
1933 abort ();
1934 else
1935 {
1936 file_hdr->entry_space = 0;
1937 file_hdr->entry_subspace = 0;
1938 file_hdr->entry_offset = 0;
1939 }
1940
1941 /* FIXME. I do not know if we ever need to put anything other
1942 than zero in this field. */
1943 file_hdr->presumed_dp = 0;
1944
1945 /* Now iterate over the sections translating information from
1946 BFD sections to SOM spaces/subspaces. */
1947
1948 for (section = abfd->sections; section != NULL; section = section->next)
1949 {
1950 /* Ignore anything which has not been marked as a space or
1951 subspace. */
1952 if (som_section_data (section)->is_space == 0
1953
1954 && som_section_data (section)->is_subspace == 0)
1955 continue;
1956
1957 if (som_section_data (section)->is_space)
1958 {
1959 /* Set space attributes. Note most attributes of SOM spaces
1960 are set based on the subspaces it contains. */
1961 som_section_data (section)->space_dict.loader_fix_index = -1;
1962 som_section_data (section)->space_dict.init_pointer_index = -1;
1963 }
1964 else
1965 {
1966 /* Set subspace attributes. Basic stuff is done here, additional
1967 attributes are filled in later as more information becomes
1968 available. */
1969 if (section->flags & SEC_IS_COMMON)
1970 {
1971 som_section_data (section)->subspace_dict.dup_common = 1;
1972 som_section_data (section)->subspace_dict.is_common = 1;
1973 }
1974
1975 if (section->flags & SEC_ALLOC)
1976 som_section_data (section)->subspace_dict.is_loadable = 1;
1977
1978 if (section->flags & SEC_CODE)
1979 som_section_data (section)->subspace_dict.code_only = 1;
1980
1981 som_section_data (section)->subspace_dict.subspace_start =
1982 section->vma;
1983 som_section_data (section)->subspace_dict.subspace_length =
1984 bfd_section_size (abfd, section);
1985 som_section_data (section)->subspace_dict.initialization_length =
1986 bfd_section_size (abfd, section);
1987 som_section_data (section)->subspace_dict.alignment =
1988 1 << section->alignment_power;
1989 }
1990 }
1991 return true;
1992 }
1993
1994 /* Count and return the number of spaces attached to the given BFD. */
1995
1996 static unsigned long
1997 som_count_spaces (abfd)
1998 bfd *abfd;
1999 {
2000 int count = 0;
2001 asection *section;
2002
2003 for (section = abfd->sections; section != NULL; section = section->next)
2004 count += som_section_data (section)->is_space;
2005
2006 return count;
2007 }
2008
2009 /* Count the number of subspaces attached to the given BFD. */
2010
2011 static unsigned long
2012 som_count_subspaces (abfd)
2013 bfd *abfd;
2014 {
2015 int count = 0;
2016 asection *section;
2017
2018 for (section = abfd->sections; section != NULL; section = section->next)
2019 count += som_section_data (section)->is_subspace;
2020
2021 return count;
2022 }
2023
2024 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2025
2026 We desire symbols to be ordered starting with the symbol with the
2027 highest relocation count down to the symbol with the lowest relocation
2028 count. Doing so compacts the relocation stream. */
2029
2030 static int
2031 compare_syms (sym1, sym2)
2032 asymbol **sym1;
2033 asymbol **sym2;
2034
2035 {
2036 unsigned int count1, count2;
2037
2038 /* Get relocation count for each symbol. Note that the count
2039 is stored in the udata pointer for section symbols! */
2040 if ((*sym1)->flags & BSF_SECTION_SYM)
2041 count1 = (int)(*sym1)->udata;
2042 else
2043 count1 = som_symbol_data (*sym1)->reloc_count;
2044
2045 if ((*sym2)->flags & BSF_SECTION_SYM)
2046 count2 = (int)(*sym2)->udata;
2047 else
2048 count2 = som_symbol_data (*sym2)->reloc_count;
2049
2050 /* Return the appropriate value. */
2051 if (count1 < count2)
2052 return 1;
2053 else if (count1 > count2)
2054 return -1;
2055 return 0;
2056 }
2057
2058 /* Perform various work in preparation for emitting the fixup stream. */
2059
2060 static void
2061 som_prep_for_fixups (abfd, syms, num_syms)
2062 bfd *abfd;
2063 asymbol **syms;
2064 unsigned long num_syms;
2065 {
2066 int i;
2067 asection *section;
2068
2069 /* Most SOM relocations involving a symbol have a length which is
2070 dependent on the index of the symbol. So symbols which are
2071 used often in relocations should have a small index. */
2072
2073 /* First initialize the counters for each symbol. */
2074 for (i = 0; i < num_syms; i++)
2075 {
2076 /* Handle a section symbol; these have no pointers back to the
2077 SOM symbol info. So we just use the pointer field (udata)
2078 to hold the relocation count.
2079
2080 FIXME. While we're here set the name of any section symbol
2081 to something which will not screw GDB. How do other formats
2082 deal with this?!? */
2083 if (som_symbol_data (syms[i]) == NULL)
2084 {
2085 syms[i]->flags |= BSF_SECTION_SYM;
2086 syms[i]->name = "L$0\002";
2087 syms[i]->udata = (PTR) 0;
2088 }
2089 else
2090 som_symbol_data (syms[i])->reloc_count = 0;
2091 }
2092
2093 /* Now that the counters are initialized, make a weighted count
2094 of how often a given symbol is used in a relocation. */
2095 for (section = abfd->sections; section != NULL; section = section->next)
2096 {
2097 int i;
2098
2099 /* Does this section have any relocations? */
2100 if (section->reloc_count <= 0)
2101 continue;
2102
2103 /* Walk through each relocation for this section. */
2104 for (i = 1; i < section->reloc_count; i++)
2105 {
2106 arelent *reloc = section->orelocation[i];
2107 int scale;
2108
2109 /* If no symbol, then there is no counter to increase. */
2110 if (reloc->sym_ptr_ptr == NULL)
2111 continue;
2112
2113 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2114 and R_CODE_ONE_SYMBOL relocations to come first. These
2115 two relocations have single byte versions if the symbol
2116 index is very small. */
2117 if (reloc->howto->type == R_DP_RELATIVE
2118 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2119 scale = 2;
2120 else
2121 scale = 1;
2122
2123 /* Handle section symbols by ramming the count in the udata
2124 field. It will not be used and the count is very important
2125 for these symbols. */
2126 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2127 {
2128 (*reloc->sym_ptr_ptr)->udata =
2129 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2130 continue;
2131 }
2132
2133 /* A normal symbol. Increment the count. */
2134 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2135 }
2136 }
2137
2138 /* Now sort the symbols. */
2139 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2140
2141 /* Compute the symbol indexes, they will be needed by the relocation
2142 code. */
2143 for (i = 0; i < num_syms; i++)
2144 {
2145 /* A section symbol. Again, there is no pointer to backend symbol
2146 information, so we reuse (abuse) the udata field again. */
2147 if (syms[i]->flags & BSF_SECTION_SYM)
2148 syms[i]->udata = (PTR) i;
2149 else
2150 som_symbol_data (syms[i])->index = i;
2151 }
2152 }
2153
2154 static boolean
2155 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2156 bfd *abfd;
2157 unsigned long current_offset;
2158 unsigned int *total_reloc_sizep;
2159 {
2160 unsigned int i, j;
2161 unsigned char *tmp_space, *p;
2162 unsigned int total_reloc_size = 0;
2163 unsigned int subspace_reloc_size = 0;
2164 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2165 asection *section = abfd->sections;
2166
2167 /* Get a chunk of memory that we can use as buffer space, then throw
2168 away. */
2169 tmp_space = alloca (SOM_TMP_BUFSIZE);
2170 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2171 p = tmp_space;
2172
2173 /* All the fixups for a particular subspace are emitted in a single
2174 stream. All the subspaces for a particular space are emitted
2175 as a single stream.
2176
2177 So, to get all the locations correct one must iterate through all the
2178 spaces, for each space iterate through its subspaces and output a
2179 fixups stream. */
2180 for (i = 0; i < num_spaces; i++)
2181 {
2182 asection *subsection;
2183
2184 /* Find a space. */
2185 while (som_section_data (section)->is_space == 0)
2186 section = section->next;
2187
2188 /* Now iterate through each of its subspaces. */
2189 for (subsection = abfd->sections;
2190 subsection != NULL;
2191 subsection = subsection->next)
2192 {
2193 int reloc_offset, current_rounding_mode;
2194
2195 /* Find a subspace of this space. */
2196 if (som_section_data (subsection)->is_subspace == 0
2197 || som_section_data (subsection)->containing_space != section)
2198 continue;
2199
2200 /* If this subspace had no relocations, then we're finished
2201 with it. */
2202 if (subsection->reloc_count <= 0)
2203 {
2204 som_section_data (subsection)->subspace_dict.fixup_request_index
2205 = -1;
2206 continue;
2207 }
2208
2209 /* This subspace has some relocations. Put the relocation stream
2210 index into the subspace record. */
2211 som_section_data (subsection)->subspace_dict.fixup_request_index
2212 = total_reloc_size;
2213
2214 /* To make life easier start over with a clean slate for
2215 each subspace. Seek to the start of the relocation stream
2216 for this subspace in preparation for writing out its fixup
2217 stream. */
2218 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2219 {
2220 bfd_error = system_call_error;
2221 return false;
2222 }
2223
2224 /* Buffer space has already been allocated. Just perform some
2225 initialization here. */
2226 p = tmp_space;
2227 subspace_reloc_size = 0;
2228 reloc_offset = 0;
2229 som_initialize_reloc_queue (reloc_queue);
2230 current_rounding_mode = R_N_MODE;
2231
2232 /* Translate each BFD relocation into one or more SOM
2233 relocations. */
2234 for (j = 0; j < subsection->reloc_count; j++)
2235 {
2236 arelent *bfd_reloc = subsection->orelocation[j];
2237 unsigned int skip;
2238 int sym_num;
2239
2240 /* Get the symbol number. Remember it's stored in a
2241 special place for section symbols. */
2242 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2243 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2244 else
2245 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2246
2247 /* If there is not enough room for the next couple relocations,
2248 then dump the current buffer contents now. Also reinitialize
2249 the relocation queue.
2250
2251 FIXME. We assume here that no BFD relocation will expand
2252 to more than 100 bytes of SOM relocations. This should (?!?)
2253 be quite safe. */
2254 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2255 {
2256 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2257 != p - tmp_space)
2258 {
2259 bfd_error = system_call_error;
2260 return false;
2261 }
2262 p = tmp_space;
2263 som_initialize_reloc_queue (reloc_queue);
2264 }
2265
2266 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2267 skipped. */
2268 skip = bfd_reloc->address - reloc_offset;
2269 p = som_reloc_skip (abfd, skip, p,
2270 &subspace_reloc_size, reloc_queue);
2271
2272 /* Update reloc_offset for the next iteration.
2273
2274 Many relocations do not consume input bytes. They
2275 are markers, or set state necessary to perform some
2276 later relocation. */
2277 switch (bfd_reloc->howto->type)
2278 {
2279 /* This only needs to handle relocations that may be
2280 made by hppa_som_gen_reloc. */
2281 case R_ENTRY:
2282 case R_EXIT:
2283 case R_N_MODE:
2284 case R_S_MODE:
2285 case R_D_MODE:
2286 case R_R_MODE:
2287 case R_FSEL:
2288 case R_LSEL:
2289 case R_RSEL:
2290 reloc_offset = bfd_reloc->address;
2291 break;
2292
2293 default:
2294 reloc_offset = bfd_reloc->address + 4;
2295 break;
2296 }
2297
2298 /* Now the actual relocation we care about. */
2299 switch (bfd_reloc->howto->type)
2300 {
2301 case R_PCREL_CALL:
2302 case R_ABS_CALL:
2303 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2304 bfd_reloc, sym_num, reloc_queue);
2305 break;
2306
2307 case R_CODE_ONE_SYMBOL:
2308 case R_DP_RELATIVE:
2309 /* Account for any addend. */
2310 if (bfd_reloc->addend)
2311 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2312 &subspace_reloc_size, reloc_queue);
2313
2314 if (sym_num < 0x20)
2315 {
2316 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2317 subspace_reloc_size += 1;
2318 p += 1;
2319 }
2320 else if (sym_num < 0x100)
2321 {
2322 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2323 bfd_put_8 (abfd, sym_num, p + 1);
2324 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2325 2, reloc_queue);
2326 }
2327 else if (sym_num < 0x10000000)
2328 {
2329 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2330 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2331 bfd_put_16 (abfd, sym_num, p + 2);
2332 p = try_prev_fixup (abfd, &subspace_reloc_size,
2333 p, 4, reloc_queue);
2334 }
2335 else
2336 abort ();
2337 break;
2338
2339 case R_DATA_ONE_SYMBOL:
2340 case R_DATA_PLABEL:
2341 case R_CODE_PLABEL:
2342 case R_DLT_REL:
2343 /* Account for any addend. */
2344 if (bfd_reloc->addend)
2345 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2346 &subspace_reloc_size, reloc_queue);
2347
2348 if (sym_num < 0x100)
2349 {
2350 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2351 bfd_put_8 (abfd, sym_num, p + 1);
2352 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2353 2, reloc_queue);
2354 }
2355 else if (sym_num < 0x10000000)
2356 {
2357 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2358 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2359 bfd_put_16 (abfd, sym_num, p + 2);
2360 p = try_prev_fixup (abfd, &subspace_reloc_size,
2361 p, 4, reloc_queue);
2362 }
2363 else
2364 abort ();
2365 break;
2366
2367 case R_ENTRY:
2368 {
2369 int *descp
2370 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2371 bfd_put_8 (abfd, R_ENTRY, p);
2372 bfd_put_32 (abfd, descp[0], p + 1);
2373 bfd_put_32 (abfd, descp[1], p + 5);
2374 p = try_prev_fixup (abfd, &subspace_reloc_size,
2375 p, 9, reloc_queue);
2376 break;
2377 }
2378
2379 case R_EXIT:
2380 bfd_put_8 (abfd, R_EXIT, p);
2381 subspace_reloc_size += 1;
2382 p += 1;
2383 break;
2384
2385 case R_N_MODE:
2386 case R_S_MODE:
2387 case R_D_MODE:
2388 case R_R_MODE:
2389 /* If this relocation requests the current rounding
2390 mode, then it is redundant. */
2391 if (bfd_reloc->howto->type != current_rounding_mode)
2392 {
2393 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2394 subspace_reloc_size += 1;
2395 p += 1;
2396 current_rounding_mode = bfd_reloc->howto->type;
2397 }
2398 break;
2399
2400 case R_FSEL:
2401 case R_LSEL:
2402 case R_RSEL:
2403 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2404 subspace_reloc_size += 1;
2405 p += 1;
2406 break;
2407
2408 /* Put a "R_RESERVED" relocation in the stream if
2409 we hit something we do not understand. The linker
2410 will complain loudly if this ever happens. */
2411 default:
2412 bfd_put_8 (abfd, 0xff, p);
2413 subspace_reloc_size += 1;
2414 p += 1;
2415 break;
2416 }
2417 }
2418
2419 /* Last BFD relocation for a subspace has been processed.
2420 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2421 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2422 - reloc_offset,
2423 p, &subspace_reloc_size, reloc_queue);
2424
2425 /* Scribble out the relocations. */
2426 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2427 != p - tmp_space)
2428 {
2429 bfd_error = system_call_error;
2430 return false;
2431 }
2432 p = tmp_space;
2433
2434 total_reloc_size += subspace_reloc_size;
2435 som_section_data (subsection)->subspace_dict.fixup_request_quantity
2436 = subspace_reloc_size;
2437 }
2438 section = section->next;
2439 }
2440 *total_reloc_sizep = total_reloc_size;
2441 return true;
2442 }
2443
2444 /* Write out the space/subspace string table. */
2445
2446 static boolean
2447 som_write_space_strings (abfd, current_offset, string_sizep)
2448 bfd *abfd;
2449 unsigned long current_offset;
2450 unsigned int *string_sizep;
2451 {
2452 unsigned char *tmp_space, *p;
2453 unsigned int strings_size = 0;
2454 asection *section;
2455
2456 /* Get a chunk of memory that we can use as buffer space, then throw
2457 away. */
2458 tmp_space = alloca (SOM_TMP_BUFSIZE);
2459 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2460 p = tmp_space;
2461
2462 /* Seek to the start of the space strings in preparation for writing
2463 them out. */
2464 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2465 {
2466 bfd_error = system_call_error;
2467 return false;
2468 }
2469
2470 /* Walk through all the spaces and subspaces (order is not important)
2471 building up and writing string table entries for their names. */
2472 for (section = abfd->sections; section != NULL; section = section->next)
2473 {
2474 int length;
2475
2476 /* Only work with space/subspaces; avoid any other sections
2477 which might have been made (.text for example). */
2478 if (som_section_data (section)->is_space == 0
2479 && som_section_data (section)->is_subspace == 0)
2480 continue;
2481
2482 /* Get the length of the space/subspace name. */
2483 length = strlen (section->name);
2484
2485 /* If there is not enough room for the next entry, then dump the
2486 current buffer contents now. Each entry will take 4 bytes to
2487 hold the string length + the string itself + null terminator. */
2488 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2489 {
2490 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2491 != p - tmp_space)
2492 {
2493 bfd_error = system_call_error;
2494 return false;
2495 }
2496 /* Reset to beginning of the buffer space. */
2497 p = tmp_space;
2498 }
2499
2500 /* First element in a string table entry is the length of the
2501 string. Alignment issues are already handled. */
2502 bfd_put_32 (abfd, length, p);
2503 p += 4;
2504 strings_size += 4;
2505
2506 /* Record the index in the space/subspace records. */
2507 if (som_section_data (section)->is_space)
2508 som_section_data (section)->space_dict.name.n_strx = strings_size;
2509 else
2510 som_section_data (section)->subspace_dict.name.n_strx = strings_size;
2511
2512 /* Next comes the string itself + a null terminator. */
2513 strcpy (p, section->name);
2514 p += length + 1;
2515 strings_size += length + 1;
2516
2517 /* Always align up to the next word boundary. */
2518 while (strings_size % 4)
2519 {
2520 bfd_put_8 (abfd, 0, p);
2521 p++;
2522 strings_size++;
2523 }
2524 }
2525
2526 /* Done with the space/subspace strings. Write out any information
2527 contained in a partial block. */
2528 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
2529 {
2530 bfd_error = system_call_error;
2531 return false;
2532 }
2533 *string_sizep = strings_size;
2534 return true;
2535 }
2536
2537 /* Write out the symbol string table. */
2538
2539 static boolean
2540 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2541 bfd *abfd;
2542 unsigned long current_offset;
2543 asymbol **syms;
2544 unsigned int num_syms;
2545 unsigned int *string_sizep;
2546 {
2547 unsigned int i;
2548 unsigned char *tmp_space, *p;
2549 unsigned int strings_size = 0;
2550
2551 /* Get a chunk of memory that we can use as buffer space, then throw
2552 away. */
2553 tmp_space = alloca (SOM_TMP_BUFSIZE);
2554 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2555 p = tmp_space;
2556
2557 /* Seek to the start of the space strings in preparation for writing
2558 them out. */
2559 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2560 {
2561 bfd_error = system_call_error;
2562 return false;
2563 }
2564
2565 for (i = 0; i < num_syms; i++)
2566 {
2567 int length = strlen (syms[i]->name);
2568
2569 /* If there is not enough room for the next entry, then dump the
2570 current buffer contents now. */
2571 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2572 {
2573 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2574 != p - tmp_space)
2575 {
2576 bfd_error = system_call_error;
2577 return false;
2578 }
2579 /* Reset to beginning of the buffer space. */
2580 p = tmp_space;
2581 }
2582
2583 /* First element in a string table entry is the length of the
2584 string. This must always be 4 byte aligned. This is also
2585 an appropriate time to fill in the string index field in the
2586 symbol table entry. */
2587 bfd_put_32 (abfd, length, p);
2588 strings_size += 4;
2589 p += 4;
2590
2591 /* Next comes the string itself + a null terminator. */
2592 strcpy (p, syms[i]->name);
2593
2594 /* ACK. FIXME. */
2595 syms[i]->name = (char *)strings_size;
2596 p += length + 1;
2597 strings_size += length + 1;
2598
2599 /* Always align up to the next word boundary. */
2600 while (strings_size % 4)
2601 {
2602 bfd_put_8 (abfd, 0, p);
2603 strings_size++;
2604 p++;
2605 }
2606 }
2607
2608 /* Scribble out any partial block. */
2609 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
2610 {
2611 bfd_error = system_call_error;
2612 return false;
2613 }
2614
2615 *string_sizep = strings_size;
2616 return true;
2617 }
2618
2619 /* Compute variable information to be placed in the SOM headers,
2620 space/subspace dictionaries, relocation streams, etc. Begin
2621 writing parts of the object file. */
2622
2623 static boolean
2624 som_begin_writing (abfd)
2625 bfd *abfd;
2626 {
2627 unsigned long current_offset = 0;
2628 int strings_size = 0;
2629 unsigned int total_reloc_size = 0;
2630 unsigned long num_spaces, num_subspaces, num_syms, i;
2631 asection *section;
2632 asymbol **syms = bfd_get_outsymbols (abfd);
2633 unsigned int total_subspaces = 0;
2634
2635 /* The file header will always be first in an object file,
2636 everything else can be in random locations. To keep things
2637 "simple" BFD will lay out the object file in the manner suggested
2638 by the PRO ABI for PA-RISC Systems. */
2639
2640 /* Before any output can really begin offsets for all the major
2641 portions of the object file must be computed. So, starting
2642 with the initial file header compute (and sometimes write)
2643 each portion of the object file. */
2644
2645 /* Make room for the file header, it's contents are not complete
2646 yet, so it can not be written at this time. */
2647 current_offset += sizeof (struct header);
2648
2649 /* Any auxiliary headers will follow the file header. Right now
2650 we support only the copyright and version headers. */
2651 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2652 obj_som_file_hdr (abfd)->aux_header_size = 0;
2653 if (obj_som_version_hdr (abfd) != NULL)
2654 {
2655 unsigned int len;
2656
2657 bfd_seek (abfd, current_offset, SEEK_SET);
2658
2659 /* Write the aux_id structure and the string length. */
2660 len = sizeof (struct aux_id) + sizeof (unsigned int);
2661 obj_som_file_hdr (abfd)->aux_header_size += len;
2662 current_offset += len;
2663 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2664 {
2665 bfd_error = system_call_error;
2666 return false;
2667 }
2668
2669 /* Write the version string. */
2670 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2671 obj_som_file_hdr (abfd)->aux_header_size += len;
2672 current_offset += len;
2673 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2674 len, 1, abfd) != len)
2675 {
2676 bfd_error = system_call_error;
2677 return false;
2678 }
2679 }
2680
2681 if (obj_som_copyright_hdr (abfd) != NULL)
2682 {
2683 unsigned int len;
2684
2685 bfd_seek (abfd, current_offset, SEEK_SET);
2686
2687 /* Write the aux_id structure and the string length. */
2688 len = sizeof (struct aux_id) + sizeof (unsigned int);
2689 obj_som_file_hdr (abfd)->aux_header_size += len;
2690 current_offset += len;
2691 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2692 {
2693 bfd_error = system_call_error;
2694 return false;
2695 }
2696
2697 /* Write the copyright string. */
2698 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2699 obj_som_file_hdr (abfd)->aux_header_size += len;
2700 current_offset += len;
2701 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2702 len, 1, abfd) != len)
2703 {
2704 bfd_error = system_call_error;
2705 return false;
2706 }
2707 }
2708
2709 /* Next comes the initialization pointers; we have no initialization
2710 pointers, so current offset does not change. */
2711 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2712 obj_som_file_hdr (abfd)->init_array_total = 0;
2713
2714 /* Next are the space records. These are fixed length records.
2715
2716 Count the number of spaces to determine how much room is needed
2717 in the object file for the space records.
2718
2719 The names of the spaces are stored in a separate string table,
2720 and the index for each space into the string table is computed
2721 below. Therefore, it is not possible to write the space headers
2722 at this time. */
2723 num_spaces = som_count_spaces (abfd);
2724 obj_som_file_hdr (abfd)->space_location = current_offset;
2725 obj_som_file_hdr (abfd)->space_total = num_spaces;
2726 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2727
2728 /* Next are the subspace records. These are fixed length records.
2729
2730 Count the number of subspaes to determine how much room is needed
2731 in the object file for the subspace records.
2732
2733 A variety if fields in the subspace record are still unknown at
2734 this time (index into string table, fixup stream location/size, etc). */
2735 num_subspaces = som_count_subspaces (abfd);
2736 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2737 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2738 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2739
2740 /* Next is the string table for the space/subspace names. We will
2741 build and write the string table on the fly. At the same time
2742 we will fill in the space/subspace name index fields. */
2743
2744 /* The string table needs to be aligned on a word boundary. */
2745 if (current_offset % 4)
2746 current_offset += (4 - (current_offset % 4));
2747
2748 /* Mark the offset of the space/subspace string table in the
2749 file header. */
2750 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2751
2752 /* Scribble out the space strings. */
2753 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2754 return false;
2755
2756 /* Record total string table size in the header and update the
2757 current offset. */
2758 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2759 current_offset += strings_size;
2760
2761 /* Next is the symbol table. These are fixed length records.
2762
2763 Count the number of symbols to determine how much room is needed
2764 in the object file for the symbol table.
2765
2766 The names of the symbols are stored in a separate string table,
2767 and the index for each symbol name into the string table is computed
2768 below. Therefore, it is not possible to write the symobl table
2769 at this time. */
2770 num_syms = bfd_get_symcount (abfd);
2771 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2772 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2773 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2774
2775 /* Do prep work before handling fixups. */
2776 som_prep_for_fixups (abfd, syms, num_syms);
2777
2778 /* Next comes the fixup stream which starts on a word boundary. */
2779 if (current_offset % 4)
2780 current_offset += (4 - (current_offset % 4));
2781 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2782
2783 /* Write the fixups and update fields in subspace headers which
2784 relate to the fixup stream. */
2785 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2786 return false;
2787
2788 /* Record the total size of the fixup stream in the file header. */
2789 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2790 current_offset += total_reloc_size;
2791
2792 /* Next are the symbol strings.
2793 Align them to a word boundary. */
2794 if (current_offset % 4)
2795 current_offset += (4 - (current_offset % 4));
2796 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2797
2798 /* Scribble out the symbol strings. */
2799 if (som_write_symbol_strings (abfd, current_offset, syms,
2800 num_syms, &strings_size)
2801 == false)
2802 return false;
2803
2804 /* Record total string table size in header and update the
2805 current offset. */
2806 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2807 current_offset += strings_size;
2808
2809 /* Next is the compiler records. We do not use these. */
2810 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2811 obj_som_file_hdr (abfd)->compiler_total = 0;
2812
2813 /* Now compute the file positions for the loadable subspaces. */
2814
2815 section = abfd->sections;
2816 for (i = 0; i < num_spaces; i++)
2817 {
2818 asection *subsection;
2819
2820 /* Find a space. */
2821 while (som_section_data (section)->is_space == 0)
2822 section = section->next;
2823
2824 /* Now look for all its subspaces. */
2825 for (subsection = abfd->sections;
2826 subsection != NULL;
2827 subsection = subsection->next)
2828 {
2829
2830 if (som_section_data (subsection)->is_subspace == 0
2831 || som_section_data (subsection)->containing_space != section
2832 || (subsection->flags & SEC_ALLOC) == 0)
2833 continue;
2834
2835 som_section_data (subsection)->subspace_index = total_subspaces++;
2836 /* This is real data to be loaded from the file. */
2837 if (subsection->flags & SEC_LOAD)
2838 {
2839 som_section_data (subsection)->subspace_dict.file_loc_init_value
2840 = current_offset;
2841 section->filepos = current_offset;
2842 current_offset += bfd_section_size (abfd, subsection);
2843 }
2844 /* Looks like uninitialized data. */
2845 else
2846 {
2847 som_section_data (subsection)->subspace_dict.file_loc_init_value
2848 = 0;
2849 som_section_data (subsection)->subspace_dict.
2850 initialization_length = 0;
2851 }
2852 }
2853 /* Goto the next section. */
2854 section = section->next;
2855 }
2856
2857 /* Finally compute the file positions for unloadable subspaces. */
2858
2859 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
2860 section = abfd->sections;
2861 for (i = 0; i < num_spaces; i++)
2862 {
2863 asection *subsection;
2864
2865 /* Find a space. */
2866 while (som_section_data (section)->is_space == 0)
2867 section = section->next;
2868
2869 /* Now look for all its subspaces. */
2870 for (subsection = abfd->sections;
2871 subsection != NULL;
2872 subsection = subsection->next)
2873 {
2874
2875 if (som_section_data (subsection)->is_subspace == 0
2876 || som_section_data (subsection)->containing_space != section
2877 || (subsection->flags & SEC_ALLOC) != 0)
2878 continue;
2879
2880 som_section_data (subsection)->subspace_index = total_subspaces++;
2881 /* This is real data to be loaded from the file. */
2882 if ((subsection->flags & SEC_LOAD) == 0)
2883 {
2884 som_section_data (subsection)->subspace_dict.file_loc_init_value
2885 = current_offset;
2886 section->filepos = current_offset;
2887 current_offset += bfd_section_size (abfd, subsection);
2888 }
2889 /* Looks like uninitialized data. */
2890 else
2891 {
2892 som_section_data (subsection)->subspace_dict.file_loc_init_value
2893 = 0;
2894 som_section_data (subsection)->subspace_dict.
2895 initialization_length = bfd_section_size (abfd, subsection);
2896 }
2897 }
2898 /* Goto the next section. */
2899 section = section->next;
2900 }
2901
2902 obj_som_file_hdr (abfd)->unloadable_sp_size
2903 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
2904
2905 /* Loader fixups are not supported in any way shape or form. */
2906 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
2907 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
2908
2909 /* Done. Store the total size of the SOM. */
2910 obj_som_file_hdr (abfd)->som_length = current_offset;
2911 return true;
2912 }
2913
2914 /* Finally, scribble out the various headers to the disk. */
2915
2916 static boolean
2917 som_write_headers (abfd)
2918 bfd *abfd;
2919 {
2920 int num_spaces = som_count_spaces (abfd);
2921 int i;
2922 int subspace_index = 0;
2923 file_ptr location;
2924 asection *section;
2925
2926 /* Subspaces are written first so that we can set up information
2927 about them in their containing spaces as the subspace is written. */
2928
2929 /* Seek to the start of the subspace dictionary records. */
2930 location = obj_som_file_hdr (abfd)->subspace_location;
2931 bfd_seek (abfd, location, SEEK_SET);
2932 section = abfd->sections;
2933 /* Now for each loadable space write out records for its subspaces. */
2934 for (i = 0; i < num_spaces; i++)
2935 {
2936 asection *subsection;
2937
2938 /* Find a space. */
2939 while (som_section_data (section)->is_space == 0)
2940 section = section->next;
2941
2942 /* Now look for all its subspaces. */
2943 for (subsection = abfd->sections;
2944 subsection != NULL;
2945 subsection = subsection->next)
2946 {
2947
2948 /* Skip any section which does not correspond to a space
2949 or subspace. Or does not have SEC_ALLOC set (and therefore
2950 has no real bits on the disk). */
2951 if (som_section_data (subsection)->is_subspace == 0
2952 || som_section_data (subsection)->containing_space != section
2953 || (subsection->flags & SEC_ALLOC) == 0)
2954 continue;
2955
2956 /* If this is the first subspace for this space, then save
2957 the index of the subspace in its containing space. Also
2958 set "is_loadable" in the containing space. */
2959
2960 if (som_section_data (section)->space_dict.subspace_quantity == 0)
2961 {
2962 som_section_data (section)->space_dict.is_loadable = 1;
2963 som_section_data (section)->space_dict.subspace_index
2964 = subspace_index;
2965 }
2966
2967 /* Increment the number of subspaces seen and the number of
2968 subspaces contained within the current space. */
2969 subspace_index++;
2970 som_section_data (section)->space_dict.subspace_quantity++;
2971
2972 /* Mark the index of the current space within the subspace's
2973 dictionary record. */
2974 som_section_data (subsection)->subspace_dict.space_index = i;
2975
2976 /* Dump the current subspace header. */
2977 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
2978 sizeof (struct subspace_dictionary_record), 1, abfd)
2979 != sizeof (struct subspace_dictionary_record))
2980 {
2981 bfd_error = system_call_error;
2982 return false;
2983 }
2984 }
2985 /* Goto the next section. */
2986 section = section->next;
2987 }
2988
2989 /* Now repeat the process for unloadable subspaces. */
2990 section = abfd->sections;
2991 /* Now for each space write out records for its subspaces. */
2992 for (i = 0; i < num_spaces; i++)
2993 {
2994 asection *subsection;
2995
2996 /* Find a space. */
2997 while (som_section_data (section)->is_space == 0)
2998 section = section->next;
2999
3000 /* Now look for all its subspaces. */
3001 for (subsection = abfd->sections;
3002 subsection != NULL;
3003 subsection = subsection->next)
3004 {
3005
3006 /* Skip any section which does not correspond to a space or
3007 subspace, or which SEC_ALLOC set (and therefore handled
3008 in the loadable spaces/subspaces code above. */
3009
3010 if (som_section_data (subsection)->is_subspace == 0
3011 || som_section_data (subsection)->containing_space != section
3012 || (subsection->flags & SEC_ALLOC) != 0)
3013 continue;
3014
3015 /* If this is the first subspace for this space, then save
3016 the index of the subspace in its containing space. Clear
3017 "is_loadable". */
3018
3019 if (som_section_data (section)->space_dict.subspace_quantity == 0)
3020 {
3021 som_section_data (section)->space_dict.is_loadable = 0;
3022 som_section_data (section)->space_dict.subspace_index
3023 = subspace_index;
3024 }
3025
3026 /* Increment the number of subspaces seen and the number of
3027 subspaces contained within the current space. */
3028 som_section_data (section)->space_dict.subspace_quantity++;
3029 subspace_index++;
3030
3031 /* Mark the index of the current space within the subspace's
3032 dictionary record. */
3033 som_section_data (subsection)->subspace_dict.space_index = i;
3034
3035 /* Dump this subspace header. */
3036 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
3037 sizeof (struct subspace_dictionary_record), 1, abfd)
3038 != sizeof (struct subspace_dictionary_record))
3039 {
3040 bfd_error = system_call_error;
3041 return false;
3042 }
3043 }
3044 /* Goto the next section. */
3045 section = section->next;
3046 }
3047
3048 /* All the subspace dictiondary records are written, and all the
3049 fields are set up in the space dictionary records.
3050
3051 Seek to the right location and start writing the space
3052 dictionary records. */
3053 location = obj_som_file_hdr (abfd)->space_location;
3054 bfd_seek (abfd, location, SEEK_SET);
3055
3056 section = abfd->sections;
3057 for (i = 0; i < num_spaces; i++)
3058 {
3059
3060 /* Find a space. */
3061 while (som_section_data (section)->is_space == 0)
3062 section = section->next;
3063
3064 /* Dump its header */
3065 if (bfd_write ((PTR) &som_section_data (section)->space_dict,
3066 sizeof (struct space_dictionary_record), 1, abfd)
3067 != sizeof (struct space_dictionary_record))
3068 {
3069 bfd_error = system_call_error;
3070 return false;
3071 }
3072
3073 /* Goto the next section. */
3074 section = section->next;
3075 }
3076
3077 /* Only thing left to do is write out the file header. It is always
3078 at location zero. Seek there and write it. */
3079 bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
3080 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3081 sizeof (struct header), 1, abfd)
3082 != sizeof (struct header))
3083 {
3084 bfd_error = system_call_error;
3085 return false;
3086 }
3087 return true;
3088 }
3089
3090 /* Compute and return the checksum for a SOM file header. */
3091
3092 static unsigned long
3093 som_compute_checksum (abfd)
3094 bfd *abfd;
3095 {
3096 unsigned long checksum, count, i;
3097 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3098
3099 checksum = 0;
3100 count = sizeof (struct header) / sizeof (unsigned long);
3101 for (i = 0; i < count; i++)
3102 checksum ^= *(buffer + i);
3103
3104 return checksum;
3105 }
3106
3107 static void
3108 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3109 bfd *abfd;
3110 asymbol *sym;
3111 struct som_misc_symbol_info *info;
3112 {
3113 /* Initialize. */
3114 memset (info, 0, sizeof (struct som_misc_symbol_info));
3115
3116 /* The HP SOM linker requires detailed type information about
3117 all symbols (including undefined symbols!). Unfortunately,
3118 the type specified in an import/export statement does not
3119 always match what the linker wants. Severe braindamage. */
3120
3121 /* Section symbols will not have a SOM symbol type assigned to
3122 them yet. Assign all section symbols type ST_DATA. */
3123 if (sym->flags & BSF_SECTION_SYM)
3124 info->symbol_type = ST_DATA;
3125 else
3126 {
3127 /* Common symbols must have scope SS_UNSAT and type
3128 ST_STORAGE or the linker will choke. */
3129 if (sym->section == &bfd_com_section)
3130 {
3131 info->symbol_scope = SS_UNSAT;
3132 info->symbol_type = ST_STORAGE;
3133 }
3134
3135 /* It is possible to have a symbol without an associated
3136 type. This happens if the user imported the symbol
3137 without a type and the symbol was never defined
3138 locally. If BSF_FUNCTION is set for this symbol, then
3139 assign it type ST_CODE (the HP linker requires undefined
3140 external functions to have type ST_CODE rather than ST_ENTRY). */
3141 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3142 && sym->section == &bfd_und_section
3143 && sym->flags & BSF_FUNCTION)
3144 info->symbol_type = ST_CODE;
3145
3146 /* Handle function symbols which were defined in this file.
3147 They should have type ST_ENTRY. Also retrieve the argument
3148 relocation bits from the SOM backend information. */
3149 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3150 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3151 && (sym->flags & BSF_FUNCTION))
3152 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3153 && (sym->flags & BSF_FUNCTION)))
3154 {
3155 info->symbol_type = ST_ENTRY;
3156 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3157 }
3158
3159 /* If the type is unknown at this point, it should be
3160 ST_DATA (functions were handled as special cases above). */
3161 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3162 info->symbol_type = ST_DATA;
3163
3164 /* From now on it's a very simple mapping. */
3165 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3166 info->symbol_type = ST_ABSOLUTE;
3167 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3168 info->symbol_type = ST_CODE;
3169 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3170 info->symbol_type = ST_DATA;
3171 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3172 info->symbol_type = ST_MILLICODE;
3173 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3174 info->symbol_type = ST_PLABEL;
3175 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3176 info->symbol_type = ST_PRI_PROG;
3177 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3178 info->symbol_type = ST_SEC_PROG;
3179 }
3180
3181 /* Now handle the symbol's scope. Exported data which is not
3182 in the common section has scope SS_UNIVERSAL. Note scope
3183 of common symbols was handled earlier! */
3184 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3185 info->symbol_scope = SS_UNIVERSAL;
3186 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3187 else if (sym->section == &bfd_und_section)
3188 info->symbol_scope = SS_UNSAT;
3189 /* Anything else which is not in the common section has scope
3190 SS_LOCAL. */
3191 else if (sym->section != &bfd_com_section)
3192 info->symbol_scope = SS_LOCAL;
3193
3194 /* Now set the symbol_info field. It has no real meaning
3195 for undefined or common symbols, but the HP linker will
3196 choke if it's not set to some "reasonable" value. We
3197 use zero as a reasonable value. */
3198 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section)
3199 info->symbol_info = 0;
3200 /* For all other symbols, the symbol_info field contains the
3201 subspace index of the space this symbol is contained in. */
3202 else
3203 info->symbol_info = som_section_data (sym->section)->subspace_index;
3204
3205 /* Set the symbol's value. */
3206 info->symbol_value = sym->value + sym->section->vma;
3207 }
3208
3209 /* Build and write, in one big chunk, the entire symbol table for
3210 this BFD. */
3211
3212 static boolean
3213 som_build_and_write_symbol_table (abfd)
3214 bfd *abfd;
3215 {
3216 unsigned int num_syms = bfd_get_symcount (abfd);
3217 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3218 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3219 struct symbol_dictionary_record *som_symtab;
3220 int i, symtab_size;
3221
3222 /* Compute total symbol table size and allocate a chunk of memory
3223 to hold the symbol table as we build it. */
3224 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3225 som_symtab = (struct symbol_dictionary_record *) alloca (symtab_size);
3226 memset (som_symtab, 0, symtab_size);
3227
3228 /* Walk over each symbol. */
3229 for (i = 0; i < num_syms; i++)
3230 {
3231 struct som_misc_symbol_info info;
3232
3233 /* This is really an index into the symbol strings table.
3234 By the time we get here, the index has already been
3235 computed and stored into the name field in the BFD symbol. */
3236 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3237
3238 /* Derive SOM information from the BFD symbol. */
3239 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3240
3241 /* Now use it. */
3242 som_symtab[i].symbol_type = info.symbol_type;
3243 som_symtab[i].symbol_scope = info.symbol_scope;
3244 som_symtab[i].arg_reloc = info.arg_reloc;
3245 som_symtab[i].symbol_info = info.symbol_info;
3246 som_symtab[i].symbol_value = info.symbol_value;
3247 }
3248
3249 /* Everything is ready, seek to the right location and
3250 scribble out the symbol table. */
3251 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3252 {
3253 bfd_error = system_call_error;
3254 return false;
3255 }
3256
3257 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3258 {
3259 bfd_error = system_call_error;
3260 return false;
3261 }
3262 return true;
3263 }
3264
3265 /* Write an object in SOM format. */
3266
3267 static boolean
3268 som_write_object_contents (abfd)
3269 bfd *abfd;
3270 {
3271 if (abfd->output_has_begun == false)
3272 {
3273 /* Set up fixed parts of the file, space, and subspace headers.
3274 Notify the world that output has begun. */
3275 som_prep_headers (abfd);
3276 abfd->output_has_begun = true;
3277 /* Start writing the object file. This include all the string
3278 tables, fixup streams, and other portions of the object file. */
3279 som_begin_writing (abfd);
3280 }
3281
3282 /* Now that the symbol table information is complete, build and
3283 write the symbol table. */
3284 if (som_build_and_write_symbol_table (abfd) == false)
3285 return false;
3286
3287 /* Compute the checksum for the file header just before writing
3288 the header to disk. */
3289 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3290 return (som_write_headers (abfd));
3291 }
3292
3293 \f
3294 /* Read and save the string table associated with the given BFD. */
3295
3296 static boolean
3297 som_slurp_string_table (abfd)
3298 bfd *abfd;
3299 {
3300 char *stringtab;
3301
3302 /* Use the saved version if its available. */
3303 if (obj_som_stringtab (abfd) != NULL)
3304 return true;
3305
3306 /* Allocate and read in the string table. */
3307 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3308 if (stringtab == NULL)
3309 {
3310 bfd_error = no_memory;
3311 return false;
3312 }
3313
3314 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3315 {
3316 bfd_error = system_call_error;
3317 return false;
3318 }
3319
3320 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3321 != obj_som_stringtab_size (abfd))
3322 {
3323 bfd_error = system_call_error;
3324 return false;
3325 }
3326
3327 /* Save our results and return success. */
3328 obj_som_stringtab (abfd) = stringtab;
3329 return true;
3330 }
3331
3332 /* Return the amount of data (in bytes) required to hold the symbol
3333 table for this object. */
3334
3335 static unsigned int
3336 som_get_symtab_upper_bound (abfd)
3337 bfd *abfd;
3338 {
3339 if (!som_slurp_symbol_table (abfd))
3340 return 0;
3341
3342 return (bfd_get_symcount (abfd) + 1) * (sizeof (som_symbol_type *));
3343 }
3344
3345 /* Convert from a SOM subspace index to a BFD section. */
3346
3347 static asection *
3348 som_section_from_subspace_index (abfd, index)
3349 bfd *abfd;
3350 unsigned int index;
3351 {
3352 asection *section;
3353
3354 for (section = abfd->sections; section != NULL; section = section->next)
3355 if (som_section_data (section)->subspace_index == index)
3356 return section;
3357
3358 /* Should never happen. */
3359 abort();
3360 }
3361
3362 /* Read and save the symbol table associated with the given BFD. */
3363
3364 static unsigned int
3365 som_slurp_symbol_table (abfd)
3366 bfd *abfd;
3367 {
3368 int symbol_count = bfd_get_symcount (abfd);
3369 int symsize = sizeof (struct symbol_dictionary_record);
3370 char *stringtab;
3371 struct symbol_dictionary_record *buf, *bufp, *endbufp;
3372 som_symbol_type *sym, *symbase;
3373
3374 /* Return saved value if it exists. */
3375 if (obj_som_symtab (abfd) != NULL)
3376 return true;
3377
3378 /* Sanity checking. Make sure there are some symbols and that
3379 we can read the string table too. */
3380 if (symbol_count == 0)
3381 {
3382 bfd_error = no_symbols;
3383 return false;
3384 }
3385
3386 if (!som_slurp_string_table (abfd))
3387 return false;
3388
3389 stringtab = obj_som_stringtab (abfd);
3390
3391 symbase = (som_symbol_type *)
3392 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3393 if (symbase == NULL)
3394 {
3395 bfd_error = no_memory;
3396 return false;
3397 }
3398
3399 /* Read in the external SOM representation. */
3400 buf = alloca (symbol_count * symsize);
3401 if (buf == NULL)
3402 {
3403 bfd_error = no_memory;
3404 return false;
3405 }
3406 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3407 {
3408 bfd_error = system_call_error;
3409 return false;
3410 }
3411 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3412 != symbol_count * symsize)
3413 {
3414 bfd_error = no_symbols;
3415 return (false);
3416 }
3417
3418 /* Iterate over all the symbols and internalize them. */
3419 endbufp = buf + symbol_count;
3420 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3421 {
3422
3423 /* I don't think we care about these. */
3424 if (bufp->symbol_type == ST_SYM_EXT
3425 || bufp->symbol_type == ST_ARG_EXT)
3426 continue;
3427
3428 /* Set some private data we care about. */
3429 if (bufp->symbol_type == ST_NULL)
3430 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3431 else if (bufp->symbol_type == ST_ABSOLUTE)
3432 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3433 else if (bufp->symbol_type == ST_DATA)
3434 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3435 else if (bufp->symbol_type == ST_CODE)
3436 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3437 else if (bufp->symbol_type == ST_PRI_PROG)
3438 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3439 else if (bufp->symbol_type == ST_SEC_PROG)
3440 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3441 else if (bufp->symbol_type == ST_ENTRY)
3442 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3443 else if (bufp->symbol_type == ST_MILLICODE)
3444 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3445 else if (bufp->symbol_type == ST_PLABEL)
3446 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3447 else
3448 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3449 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3450
3451 /* Some reasonable defaults. */
3452 sym->symbol.the_bfd = abfd;
3453 sym->symbol.name = bufp->name.n_strx + stringtab;
3454 sym->symbol.value = bufp->symbol_value;
3455 sym->symbol.section = 0;
3456 sym->symbol.flags = 0;
3457
3458 switch (bufp->symbol_type)
3459 {
3460 case ST_ENTRY:
3461 case ST_PRI_PROG:
3462 case ST_SEC_PROG:
3463 case ST_MILLICODE:
3464 sym->symbol.flags |= BSF_FUNCTION;
3465 sym->symbol.value &= ~0x3;
3466 break;
3467
3468 case ST_STUB:
3469 case ST_CODE:
3470 sym->symbol.value &= ~0x3;
3471
3472 default:
3473 break;
3474 }
3475
3476 /* Handle scoping and section information. */
3477 switch (bufp->symbol_scope)
3478 {
3479 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3480 so the section associated with this symbol can't be known. */
3481 case SS_EXTERNAL:
3482 case SS_UNSAT:
3483 if (bufp->symbol_type != ST_STORAGE)
3484 sym->symbol.section = &bfd_und_section;
3485 else
3486 sym->symbol.section = &bfd_com_section;
3487 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3488 break;
3489
3490 case SS_UNIVERSAL:
3491 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3492 sym->symbol.section
3493 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3494 sym->symbol.value -= sym->symbol.section->vma;
3495 break;
3496
3497 #if 0
3498 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3499 Sound dumb? It is. */
3500 case SS_GLOBAL:
3501 #endif
3502 case SS_LOCAL:
3503 sym->symbol.flags |= BSF_LOCAL;
3504 sym->symbol.section
3505 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3506 sym->symbol.value -= sym->symbol.section->vma;
3507 break;
3508 }
3509
3510 /* Mark symbols left around by the debugger. */
3511 if (strlen (sym->symbol.name) >= 2
3512 && sym->symbol.name[0] == 'L'
3513 && (sym->symbol.name[1] == '$' || sym->symbol.name[2] == '$'
3514 || sym->symbol.name[3] == '$'))
3515 sym->symbol.flags |= BSF_DEBUGGING;
3516
3517 /* Note increment at bottom of loop, since we skip some symbols
3518 we can not include it as part of the for statement. */
3519 sym++;
3520 }
3521
3522 /* Save our results and return success. */
3523 obj_som_symtab (abfd) = symbase;
3524 return (true);
3525 }
3526
3527 /* Canonicalize a SOM symbol table. Return the number of entries
3528 in the symbol table. */
3529
3530 static unsigned int
3531 som_get_symtab (abfd, location)
3532 bfd *abfd;
3533 asymbol **location;
3534 {
3535 int i;
3536 som_symbol_type *symbase;
3537
3538 if (!som_slurp_symbol_table (abfd))
3539 return 0;
3540
3541 i = bfd_get_symcount (abfd);
3542 symbase = obj_som_symtab (abfd);
3543
3544 for (; i > 0; i--, location++, symbase++)
3545 *location = &symbase->symbol;
3546
3547 /* Final null pointer. */
3548 *location = 0;
3549 return (bfd_get_symcount (abfd));
3550 }
3551
3552 /* Make a SOM symbol. There is nothing special to do here. */
3553
3554 static asymbol *
3555 som_make_empty_symbol (abfd)
3556 bfd *abfd;
3557 {
3558 som_symbol_type *new =
3559 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3560 if (new == NULL)
3561 {
3562 bfd_error = no_memory;
3563 return 0;
3564 }
3565 new->symbol.the_bfd = abfd;
3566
3567 return &new->symbol;
3568 }
3569
3570 /* Print symbol information. */
3571
3572 static void
3573 som_print_symbol (ignore_abfd, afile, symbol, how)
3574 bfd *ignore_abfd;
3575 PTR afile;
3576 asymbol *symbol;
3577 bfd_print_symbol_type how;
3578 {
3579 FILE *file = (FILE *) afile;
3580 switch (how)
3581 {
3582 case bfd_print_symbol_name:
3583 fprintf (file, "%s", symbol->name);
3584 break;
3585 case bfd_print_symbol_more:
3586 fprintf (file, "som ");
3587 fprintf_vma (file, symbol->value);
3588 fprintf (file, " %lx", (long) symbol->flags);
3589 break;
3590 case bfd_print_symbol_all:
3591 {
3592 CONST char *section_name;
3593 section_name = symbol->section ? symbol->section->name : "(*none*)";
3594 bfd_print_symbol_vandf ((PTR) file, symbol);
3595 fprintf (file, " %s\t%s", section_name, symbol->name);
3596 break;
3597 }
3598 }
3599 }
3600
3601 /* Count or process variable-length SOM fixup records.
3602
3603 To avoid code duplication we use this code both to compute the number
3604 of relocations requested by a stream, and to internalize the stream.
3605
3606 When computing the number of relocations requested by a stream the
3607 variables rptr, section, and symbols have no meaning.
3608
3609 Return the number of relocations requested by the fixup stream. When
3610 not just counting
3611
3612 This needs at least two or three more passes to get it cleaned up. */
3613
3614 static unsigned int
3615 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3616 unsigned char *fixup;
3617 unsigned int end;
3618 arelent *internal_relocs;
3619 asection *section;
3620 asymbol **symbols;
3621 boolean just_count;
3622 {
3623 unsigned int op, varname;
3624 unsigned char *end_fixups = &fixup[end];
3625 const struct fixup_format *fp;
3626 char *cp;
3627 unsigned char *save_fixup;
3628 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3629 const int *subop;
3630 arelent *rptr= internal_relocs;
3631 unsigned int offset = just_count ? 0 : section->vma;
3632
3633 #define var(c) variables[(c) - 'A']
3634 #define push(v) (*sp++ = (v))
3635 #define pop() (*--sp)
3636 #define emptystack() (sp == stack)
3637
3638 som_initialize_reloc_queue (reloc_queue);
3639 memset (variables, 0, sizeof (variables));
3640 memset (stack, 0, sizeof (stack));
3641 count = 0;
3642 prev_fixup = 0;
3643 sp = stack;
3644
3645 while (fixup < end_fixups)
3646 {
3647
3648 /* Save pointer to the start of this fixup. We'll use
3649 it later to determine if it is necessary to put this fixup
3650 on the queue. */
3651 save_fixup = fixup;
3652
3653 /* Get the fixup code and its associated format. */
3654 op = *fixup++;
3655 fp = &som_fixup_formats[op];
3656
3657 /* Handle a request for a previous fixup. */
3658 if (*fp->format == 'P')
3659 {
3660 /* Get pointer to the beginning of the prev fixup, move
3661 the repeated fixup to the head of the queue. */
3662 fixup = reloc_queue[fp->D].reloc;
3663 som_reloc_queue_fix (reloc_queue, fp->D);
3664 prev_fixup = 1;
3665
3666 /* Get the fixup code and its associated format. */
3667 op = *fixup++;
3668 fp = &som_fixup_formats[op];
3669 }
3670
3671 /* If we are not just counting, set some reasonable defaults. */
3672 if (! just_count)
3673 {
3674 rptr->address = offset;
3675 rptr->howto = &som_hppa_howto_table[op];
3676 rptr->addend = 0;
3677 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3678 }
3679
3680 /* Set default input length to 0. Get the opcode class index
3681 into D. */
3682 var ('L') = 0;
3683 var ('D') = fp->D;
3684
3685 /* Get the opcode format. */
3686 cp = fp->format;
3687
3688 /* Process the format string. Parsing happens in two phases,
3689 parse RHS, then assign to LHS. Repeat until no more
3690 characters in the format string. */
3691 while (*cp)
3692 {
3693 /* The variable this pass is going to compute a value for. */
3694 varname = *cp++;
3695
3696 /* Start processing RHS. Continue until a NULL or '=' is found. */
3697 do
3698 {
3699 c = *cp++;
3700
3701 /* If this is a variable, push it on the stack. */
3702 if (isupper (c))
3703 push (var (c));
3704
3705 /* If this is a lower case letter, then it represents
3706 additional data from the fixup stream to be pushed onto
3707 the stack. */
3708 else if (islower (c))
3709 {
3710 for (v = 0; c > 'a'; --c)
3711 v = (v << 8) | *fixup++;
3712 push (v);
3713 }
3714
3715 /* A decimal constant. Push it on the stack. */
3716 else if (isdigit (c))
3717 {
3718 v = c - '0';
3719 while (isdigit (*cp))
3720 v = (v * 10) + (*cp++ - '0');
3721 push (v);
3722 }
3723 else
3724
3725 /* An operator. Pop two two values from the stack and
3726 use them as operands to the given operation. Push
3727 the result of the operation back on the stack. */
3728 switch (c)
3729 {
3730 case '+':
3731 v = pop ();
3732 v += pop ();
3733 push (v);
3734 break;
3735 case '*':
3736 v = pop ();
3737 v *= pop ();
3738 push (v);
3739 break;
3740 case '<':
3741 v = pop ();
3742 v = pop () << v;
3743 push (v);
3744 break;
3745 default:
3746 abort ();
3747 }
3748 }
3749 while (*cp && *cp != '=');
3750
3751 /* Move over the equal operator. */
3752 cp++;
3753
3754 /* Pop the RHS off the stack. */
3755 c = pop ();
3756
3757 /* Perform the assignment. */
3758 var (varname) = c;
3759
3760 /* Handle side effects. and special 'O' stack cases. */
3761 switch (varname)
3762 {
3763 /* Consume some bytes from the input space. */
3764 case 'L':
3765 offset += c;
3766 break;
3767 /* A symbol to use in the relocation. Make a note
3768 of this if we are not just counting. */
3769 case 'S':
3770 if (! just_count)
3771 rptr->sym_ptr_ptr = &symbols[c];
3772 break;
3773 /* Handle the linker expression stack. */
3774 case 'O':
3775 switch (op)
3776 {
3777 case R_COMP1:
3778 subop = comp1_opcodes;
3779 break;
3780 case R_COMP2:
3781 subop = comp2_opcodes;
3782 break;
3783 case R_COMP3:
3784 subop = comp3_opcodes;
3785 break;
3786 default:
3787 abort ();
3788 }
3789 while (*subop <= (unsigned char) c)
3790 ++subop;
3791 --subop;
3792 break;
3793 default:
3794 break;
3795 }
3796 }
3797
3798 /* If we used a previous fixup, clean up after it. */
3799 if (prev_fixup)
3800 {
3801 fixup = save_fixup + 1;
3802 prev_fixup = 0;
3803 }
3804 /* Queue it. */
3805 else if (fixup > save_fixup + 1)
3806 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
3807
3808 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
3809 fixups to BFD. */
3810 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
3811 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
3812 {
3813 /* Done with a single reloction. Loop back to the top. */
3814 if (! just_count)
3815 {
3816 rptr->addend = var ('V');
3817 rptr++;
3818 }
3819 count++;
3820 /* Now that we've handled a "full" relocation, reset
3821 some state. */
3822 memset (variables, 0, sizeof (variables));
3823 memset (stack, 0, sizeof (stack));
3824 }
3825 }
3826 return count;
3827
3828 #undef var
3829 #undef push
3830 #undef pop
3831 #undef emptystack
3832 }
3833
3834 /* Read in the relocs (aka fixups in SOM terms) for a section.
3835
3836 som_get_reloc_upper_bound calls this routine with JUST_COUNT
3837 set to true to indicate it only needs a count of the number
3838 of actual relocations. */
3839
3840 static boolean
3841 som_slurp_reloc_table (abfd, section, symbols, just_count)
3842 bfd *abfd;
3843 asection *section;
3844 asymbol **symbols;
3845 boolean just_count;
3846 {
3847 char *external_relocs;
3848 unsigned int fixup_stream_size;
3849 arelent *internal_relocs;
3850 unsigned int num_relocs;
3851
3852 fixup_stream_size = som_section_data (section)->reloc_size;
3853 /* If there were no relocations, then there is nothing to do. */
3854 if (section->reloc_count == 0)
3855 return true;
3856
3857 /* If reloc_count is -1, then the relocation stream has not been
3858 parsed. We must do so now to know how many relocations exist. */
3859 if (section->reloc_count == -1)
3860 {
3861 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
3862 if (external_relocs == (char *) NULL)
3863 {
3864 bfd_error = no_memory;
3865 return false;
3866 }
3867 /* Read in the external forms. */
3868 if (bfd_seek (abfd,
3869 obj_som_reloc_filepos (abfd) + section->rel_filepos,
3870 SEEK_SET)
3871 != 0)
3872 {
3873 bfd_error = system_call_error;
3874 return false;
3875 }
3876 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
3877 != fixup_stream_size)
3878 {
3879 bfd_error = system_call_error;
3880 return false;
3881 }
3882 /* Let callers know how many relocations found.
3883 also save the relocation stream as we will
3884 need it again. */
3885 section->reloc_count = som_set_reloc_info (external_relocs,
3886 fixup_stream_size,
3887 NULL, NULL, NULL, true);
3888
3889 som_section_data (section)->reloc_stream = external_relocs;
3890 }
3891
3892 /* If the caller only wanted a count, then return now. */
3893 if (just_count)
3894 return true;
3895
3896 num_relocs = section->reloc_count;
3897 external_relocs = som_section_data (section)->reloc_stream;
3898 /* Return saved information about the relocations if it is available. */
3899 if (section->relocation != (arelent *) NULL)
3900 return true;
3901
3902 internal_relocs = (arelent *) bfd_zalloc (abfd,
3903 num_relocs * sizeof (arelent));
3904 if (internal_relocs == (arelent *) NULL)
3905 {
3906 bfd_error = no_memory;
3907 return false;
3908 }
3909
3910 /* Process and internalize the relocations. */
3911 som_set_reloc_info (external_relocs, fixup_stream_size,
3912 internal_relocs, section, symbols, false);
3913
3914 /* Save our results and return success. */
3915 section->relocation = internal_relocs;
3916 return (true);
3917 }
3918
3919 /* Return the number of bytes required to store the relocation
3920 information associated with the given section. */
3921
3922 static unsigned int
3923 som_get_reloc_upper_bound (abfd, asect)
3924 bfd *abfd;
3925 sec_ptr asect;
3926 {
3927 /* If section has relocations, then read in the relocation stream
3928 and parse it to determine how many relocations exist. */
3929 if (asect->flags & SEC_RELOC)
3930 {
3931 if (som_slurp_reloc_table (abfd, asect, NULL, true))
3932 return (asect->reloc_count + 1) * sizeof (arelent);
3933 }
3934 /* Either there are no relocations or an error occurred while
3935 reading and parsing the relocation stream. */
3936 return 0;
3937 }
3938
3939 /* Convert relocations from SOM (external) form into BFD internal
3940 form. Return the number of relocations. */
3941
3942 static unsigned int
3943 som_canonicalize_reloc (abfd, section, relptr, symbols)
3944 bfd *abfd;
3945 sec_ptr section;
3946 arelent **relptr;
3947 asymbol **symbols;
3948 {
3949 arelent *tblptr;
3950 int count;
3951
3952 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
3953 return 0;
3954
3955 count = section->reloc_count;
3956 tblptr = section->relocation;
3957 if (tblptr == (arelent *) NULL)
3958 return 0;
3959
3960 while (count--)
3961 *relptr++ = tblptr++;
3962
3963 *relptr = (arelent *) NULL;
3964 return section->reloc_count;
3965 }
3966
3967 extern bfd_target som_vec;
3968
3969 /* A hook to set up object file dependent section information. */
3970
3971 static boolean
3972 som_new_section_hook (abfd, newsect)
3973 bfd *abfd;
3974 asection *newsect;
3975 {
3976 newsect->used_by_bfd =
3977 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
3978 if (!newsect->used_by_bfd)
3979 {
3980 bfd_error = no_memory;
3981 return false;
3982 }
3983 newsect->alignment_power = 3;
3984
3985 /* Initialize the subspace_index field to -1 so that it does
3986 not match a subspace with an index of 0. */
3987 som_section_data (newsect)->subspace_index = -1;
3988
3989 /* We allow more than three sections internally */
3990 return true;
3991 }
3992
3993 /* Set backend info for sections which can not be described
3994 in the BFD data structures. */
3995
3996 void
3997 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
3998 asection *section;
3999 int defined;
4000 int private;
4001 unsigned char sort_key;
4002 int spnum;
4003 {
4004 struct space_dictionary_record *space_dict;
4005
4006 som_section_data (section)->is_space = 1;
4007 space_dict = &som_section_data (section)->space_dict;
4008 space_dict->is_defined = defined;
4009 space_dict->is_private = private;
4010 space_dict->sort_key = sort_key;
4011 space_dict->space_number = spnum;
4012 }
4013
4014 /* Set backend info for subsections which can not be described
4015 in the BFD data structures. */
4016
4017 void
4018 bfd_som_set_subsection_attributes (section, container, access,
4019 sort_key, quadrant)
4020 asection *section;
4021 asection *container;
4022 int access;
4023 unsigned int sort_key;
4024 int quadrant;
4025 {
4026 struct subspace_dictionary_record *subspace_dict;
4027 som_section_data (section)->is_subspace = 1;
4028 subspace_dict = &som_section_data (section)->subspace_dict;
4029 subspace_dict->access_control_bits = access;
4030 subspace_dict->sort_key = sort_key;
4031 subspace_dict->quadrant = quadrant;
4032 som_section_data (section)->containing_space = container;
4033 }
4034
4035 /* Set the full SOM symbol type. SOM needs far more symbol information
4036 than any other object file format I'm aware of. It is mandatory
4037 to be able to know if a symbol is an entry point, millicode, data,
4038 code, absolute, storage request, or procedure label. If you get
4039 the symbol type wrong your program will not link. */
4040
4041 void
4042 bfd_som_set_symbol_type (symbol, type)
4043 asymbol *symbol;
4044 unsigned int type;
4045 {
4046 som_symbol_data (symbol)->som_type = type;
4047 }
4048
4049 /* Attach 64bits of unwind information to a symbol (which hopefully
4050 is a function of some kind!). It would be better to keep this
4051 in the R_ENTRY relocation, but there is not enough space. */
4052
4053 void
4054 bfd_som_attach_unwind_info (symbol, unwind_desc)
4055 asymbol *symbol;
4056 char *unwind_desc;
4057 {
4058 som_symbol_data (symbol)->unwind = unwind_desc;
4059 }
4060
4061 /* Attach an auxiliary header to the BFD backend so that it may be
4062 written into the object file. */
4063 void
4064 bfd_som_attach_aux_hdr (abfd, type, string)
4065 bfd *abfd;
4066 int type;
4067 char *string;
4068 {
4069 if (type == VERSION_AUX_ID)
4070 {
4071 int len = strlen (string);
4072 int pad = 0;
4073
4074 if (len % 4)
4075 pad = (4 - (len % 4));
4076 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4077 bfd_zalloc (abfd, sizeof (struct aux_id)
4078 + sizeof (unsigned int) + len + pad);
4079 if (!obj_som_version_hdr (abfd))
4080 {
4081 bfd_error = no_memory;
4082 abort(); /* FIXME */
4083 }
4084 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4085 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4086 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4087 obj_som_version_hdr (abfd)->string_length = len;
4088 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4089 }
4090 else if (type == COPYRIGHT_AUX_ID)
4091 {
4092 int len = strlen (string);
4093 int pad = 0;
4094
4095 if (len % 4)
4096 pad = (4 - (len % 4));
4097 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4098 bfd_zalloc (abfd, sizeof (struct aux_id)
4099 + sizeof (unsigned int) + len + pad);
4100 if (!obj_som_copyright_hdr (abfd))
4101 {
4102 bfd_error = no_error;
4103 abort(); /* FIXME */
4104 }
4105 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4106 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4107 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4108 obj_som_copyright_hdr (abfd)->string_length = len;
4109 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4110 }
4111 else
4112 abort ();
4113 }
4114
4115 static boolean
4116 som_set_section_contents (abfd, section, location, offset, count)
4117 bfd *abfd;
4118 sec_ptr section;
4119 PTR location;
4120 file_ptr offset;
4121 bfd_size_type count;
4122 {
4123 if (abfd->output_has_begun == false)
4124 {
4125 /* Set up fixed parts of the file, space, and subspace headers.
4126 Notify the world that output has begun. */
4127 som_prep_headers (abfd);
4128 abfd->output_has_begun = true;
4129 /* Start writing the object file. This include all the string
4130 tables, fixup streams, and other portions of the object file. */
4131 som_begin_writing (abfd);
4132 }
4133
4134 /* Only write subspaces which have "real" contents (eg. the contents
4135 are not generated at run time by the OS). */
4136 if (som_section_data (section)->is_subspace != 1
4137 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4138 return true;
4139
4140 /* Seek to the proper offset within the object file and write the
4141 data. */
4142 offset += som_section_data (section)->subspace_dict.file_loc_init_value;
4143 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4144 {
4145 bfd_error = system_call_error;
4146 return false;
4147 }
4148
4149 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4150 {
4151 bfd_error = system_call_error;
4152 return false;
4153 }
4154 return true;
4155 }
4156
4157 static boolean
4158 som_set_arch_mach (abfd, arch, machine)
4159 bfd *abfd;
4160 enum bfd_architecture arch;
4161 unsigned long machine;
4162 {
4163 /* Allow any architecture to be supported by the SOM backend */
4164 return bfd_default_set_arch_mach (abfd, arch, machine);
4165 }
4166
4167 static boolean
4168 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4169 functionname_ptr, line_ptr)
4170 bfd *abfd;
4171 asection *section;
4172 asymbol **symbols;
4173 bfd_vma offset;
4174 CONST char **filename_ptr;
4175 CONST char **functionname_ptr;
4176 unsigned int *line_ptr;
4177 {
4178 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4179 fflush (stderr);
4180 abort ();
4181 return (false);
4182 }
4183
4184 static int
4185 som_sizeof_headers (abfd, reloc)
4186 bfd *abfd;
4187 boolean reloc;
4188 {
4189 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4190 fflush (stderr);
4191 abort ();
4192 return (0);
4193 }
4194
4195 /* Return the single-character symbol type corresponding to
4196 SOM section S, or '?' for an unknown SOM section. */
4197
4198 static char
4199 som_section_type (s)
4200 const char *s;
4201 {
4202 const struct section_to_type *t;
4203
4204 for (t = &stt[0]; t->section; t++)
4205 if (!strcmp (s, t->section))
4206 return t->type;
4207 return '?';
4208 }
4209
4210 static int
4211 som_decode_symclass (symbol)
4212 asymbol *symbol;
4213 {
4214 char c;
4215
4216 if (bfd_is_com_section (symbol->section))
4217 return 'C';
4218 if (symbol->section == &bfd_und_section)
4219 return 'U';
4220 if (symbol->section == &bfd_ind_section)
4221 return 'I';
4222 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4223 return '?';
4224
4225 if (symbol->section == &bfd_abs_section)
4226 c = 'a';
4227 else if (symbol->section)
4228 c = som_section_type (symbol->section->name);
4229 else
4230 return '?';
4231 if (symbol->flags & BSF_GLOBAL)
4232 c = toupper (c);
4233 return c;
4234 }
4235
4236 /* Return information about SOM symbol SYMBOL in RET. */
4237
4238 static void
4239 som_get_symbol_info (ignore_abfd, symbol, ret)
4240 bfd *ignore_abfd;
4241 asymbol *symbol;
4242 symbol_info *ret;
4243 {
4244 ret->type = som_decode_symclass (symbol);
4245 if (ret->type != 'U')
4246 ret->value = symbol->value+symbol->section->vma;
4247 else
4248 ret->value = 0;
4249 ret->name = symbol->name;
4250 }
4251
4252 /* Count the number of symbols in the archive symbol table. Necessary
4253 so that we can allocate space for all the carsyms at once. */
4254
4255 static boolean
4256 som_bfd_count_ar_symbols (abfd, lst_header, count)
4257 bfd *abfd;
4258 struct lst_header *lst_header;
4259 symindex *count;
4260 {
4261 unsigned int i;
4262 unsigned int hash_table[lst_header->hash_size];
4263 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4264
4265 /* Don't forget to initialize the counter! */
4266 *count = 0;
4267
4268 /* Read in the hash table. The has table is an array of 32bit file offsets
4269 which point to the hash chains. */
4270 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4271 != lst_header->hash_size * 4)
4272 {
4273 bfd_error = system_call_error;
4274 return false;
4275 }
4276
4277 /* Walk each chain counting the number of symbols found on that particular
4278 chain. */
4279 for (i = 0; i < lst_header->hash_size; i++)
4280 {
4281 struct lst_symbol_record lst_symbol;
4282
4283 /* An empty chain has zero as it's file offset. */
4284 if (hash_table[i] == 0)
4285 continue;
4286
4287 /* Seek to the first symbol in this hash chain. */
4288 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4289 {
4290 bfd_error = system_call_error;
4291 return false;
4292 }
4293
4294 /* Read in this symbol and update the counter. */
4295 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4296 != sizeof (lst_symbol))
4297 {
4298 bfd_error = system_call_error;
4299 return false;
4300 }
4301 (*count)++;
4302
4303 /* Now iterate through the rest of the symbols on this chain. */
4304 while (lst_symbol.next_entry)
4305 {
4306
4307 /* Seek to the next symbol. */
4308 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4309 < 0)
4310 {
4311 bfd_error = system_call_error;
4312 return false;
4313 }
4314
4315 /* Read the symbol in and update the counter. */
4316 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4317 != sizeof (lst_symbol))
4318 {
4319 bfd_error = system_call_error;
4320 return false;
4321 }
4322 (*count)++;
4323 }
4324 }
4325 return true;
4326 }
4327
4328 /* Fill in the canonical archive symbols (SYMS) from the archive described
4329 by ABFD and LST_HEADER. */
4330
4331 static boolean
4332 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4333 bfd *abfd;
4334 struct lst_header *lst_header;
4335 carsym **syms;
4336 {
4337 unsigned int i, len;
4338 carsym *set = syms[0];
4339 unsigned int hash_table[lst_header->hash_size];
4340 struct som_entry som_dict[lst_header->module_count];
4341 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4342
4343 /* Read in the hash table. The has table is an array of 32bit file offsets
4344 which point to the hash chains. */
4345 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4346 != lst_header->hash_size * 4)
4347 {
4348 bfd_error = system_call_error;
4349 return false;
4350 }
4351
4352 /* Seek to and read in the SOM dictionary. We will need this to fill
4353 in the carsym's filepos field. */
4354 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4355 {
4356 bfd_error = system_call_error;
4357 return false;
4358 }
4359
4360 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4361 sizeof (struct som_entry), abfd)
4362 != lst_header->module_count * sizeof (struct som_entry))
4363 {
4364 bfd_error = system_call_error;
4365 return false;
4366 }
4367
4368 /* Walk each chain filling in the carsyms as we go along. */
4369 for (i = 0; i < lst_header->hash_size; i++)
4370 {
4371 struct lst_symbol_record lst_symbol;
4372
4373 /* An empty chain has zero as it's file offset. */
4374 if (hash_table[i] == 0)
4375 continue;
4376
4377 /* Seek to and read the first symbol on the chain. */
4378 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4379 {
4380 bfd_error = system_call_error;
4381 return false;
4382 }
4383
4384 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4385 != sizeof (lst_symbol))
4386 {
4387 bfd_error = system_call_error;
4388 return false;
4389 }
4390
4391 /* Get the name of the symbol, first get the length which is stored
4392 as a 32bit integer just before the symbol.
4393
4394 One might ask why we don't just read in the entire string table
4395 and index into it. Well, according to the SOM ABI the string
4396 index can point *anywhere* in the archive to save space, so just
4397 using the string table would not be safe. */
4398 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4399 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4400 {
4401 bfd_error = system_call_error;
4402 return false;
4403 }
4404
4405 if (bfd_read (&len, 1, 4, abfd) != 4)
4406 {
4407 bfd_error = system_call_error;
4408 return false;
4409 }
4410
4411 /* Allocate space for the name and null terminate it too. */
4412 set->name = bfd_zalloc (abfd, len + 1);
4413 if (!set->name)
4414 {
4415 bfd_error = no_memory;
4416 return false;
4417 }
4418 if (bfd_read (set->name, 1, len, abfd) != len)
4419 {
4420 bfd_error = system_call_error;
4421 return false;
4422 }
4423 set->name[len] = 0;
4424
4425 /* Fill in the file offset. Note that the "location" field points
4426 to the SOM itself, not the ar_hdr in front of it. */
4427 set->file_offset = som_dict[lst_symbol.som_index].location
4428 - sizeof (struct ar_hdr);
4429
4430 /* Go to the next symbol. */
4431 set++;
4432
4433 /* Iterate through the rest of the chain. */
4434 while (lst_symbol.next_entry)
4435 {
4436 /* Seek to the next symbol and read it in. */
4437 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4438 < 0)
4439 {
4440 bfd_error = system_call_error;
4441 return false;
4442 }
4443
4444 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4445 != sizeof (lst_symbol))
4446 {
4447 bfd_error = system_call_error;
4448 return false;
4449 }
4450
4451 /* Seek to the name length & string and read them in. */
4452 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4453 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4454 {
4455 bfd_error = system_call_error;
4456 return false;
4457 }
4458
4459 if (bfd_read (&len, 1, 4, abfd) != 4)
4460 {
4461 bfd_error = system_call_error;
4462 return false;
4463 }
4464
4465 /* Allocate space for the name and null terminate it too. */
4466 set->name = bfd_zalloc (abfd, len + 1);
4467 if (!set->name)
4468 {
4469 bfd_error = no_memory;
4470 return false;
4471 }
4472 if (bfd_read (set->name, 1, len, abfd) != len)
4473 {
4474 bfd_error = system_call_error;
4475 return false;
4476 }
4477 set->name[len] = 0;
4478
4479 /* Fill in the file offset. Note that the "location" field points
4480 to the SOM itself, not the ar_hdr in front of it. */
4481 set->file_offset = som_dict[lst_symbol.som_index].location
4482 - sizeof (struct ar_hdr);
4483
4484 /* Go on to the next symbol. */
4485 set++;
4486 }
4487 }
4488 /* If we haven't died by now, then we successfully read the entire
4489 archive symbol table. */
4490 return true;
4491 }
4492
4493 /* Read in the LST from the archive. */
4494 static boolean
4495 som_slurp_armap (abfd)
4496 bfd *abfd;
4497 {
4498 struct lst_header lst_header;
4499 struct ar_hdr ar_header;
4500 unsigned int parsed_size;
4501 struct artdata *ardata = bfd_ardata (abfd);
4502 char nextname[17];
4503 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4504
4505 /* Special cases. */
4506 if (i == 0)
4507 return true;
4508 if (i != 16)
4509 return false;
4510
4511 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4512 {
4513 bfd_error = system_call_error;
4514 return false;
4515 }
4516
4517 /* For archives without .o files there is no symbol table. */
4518 if (strncmp (nextname, "/ ", 16))
4519 {
4520 bfd_has_map (abfd) = false;
4521 return true;
4522 }
4523
4524 /* Read in and sanity check the archive header. */
4525 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4526 != sizeof (struct ar_hdr))
4527 {
4528 bfd_error = system_call_error;
4529 return false;
4530 }
4531
4532 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4533 {
4534 bfd_error = malformed_archive;
4535 return NULL;
4536 }
4537
4538 /* How big is the archive symbol table entry? */
4539 errno = 0;
4540 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4541 if (errno != 0)
4542 {
4543 bfd_error = malformed_archive;
4544 return NULL;
4545 }
4546
4547 /* Save off the file offset of the first real user data. */
4548 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4549
4550 /* Read in the library symbol table. We'll make heavy use of this
4551 in just a minute. */
4552 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4553 != sizeof (struct lst_header))
4554 {
4555 bfd_error = system_call_error;
4556 return false;
4557 }
4558
4559 /* Sanity check. */
4560 if (lst_header.a_magic != LIBMAGIC)
4561 {
4562 bfd_error = malformed_archive;
4563 return NULL;
4564 }
4565
4566 /* Count the number of symbols in the library symbol table. */
4567 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4568 == false)
4569 return false;
4570
4571 /* Get back to the start of the library symbol table. */
4572 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4573 + sizeof (struct lst_header), SEEK_SET) < 0)
4574 {
4575 bfd_error = system_call_error;
4576 return false;
4577 }
4578
4579 /* Initializae the cache and allocate space for the library symbols. */
4580 ardata->cache = 0;
4581 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4582 (ardata->symdef_count
4583 * sizeof (carsym)));
4584 if (!ardata->symdefs)
4585 {
4586 bfd_error = no_memory;
4587 return false;
4588 }
4589
4590 /* Now fill in the canonical archive symbols. */
4591 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4592 == false)
4593 return false;
4594
4595 /* Notify the generic archive code that we have a symbol map. */
4596 bfd_has_map (abfd) = true;
4597 return true;
4598 }
4599
4600 /* Begin preparing to write a SOM library symbol table.
4601
4602 As part of the prep work we need to determine the number of symbols
4603 and the size of the associated string section. */
4604
4605 static boolean
4606 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4607 bfd *abfd;
4608 unsigned int *num_syms, *stringsize;
4609 {
4610 bfd *curr_bfd = abfd->archive_head;
4611
4612 /* Some initialization. */
4613 *num_syms = 0;
4614 *stringsize = 0;
4615
4616 /* Iterate over each BFD within this archive. */
4617 while (curr_bfd != NULL)
4618 {
4619 unsigned int curr_count, i;
4620 asymbol *sym;
4621
4622 /* Make sure the symbol table has been read, then snag a pointer
4623 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4624 but doing so avoids allocating lots of extra memory. */
4625 if (som_slurp_symbol_table (curr_bfd) == false)
4626 return false;
4627
4628 sym = (asymbol *)obj_som_symtab (curr_bfd);
4629 curr_count = bfd_get_symcount (curr_bfd);
4630
4631 /* Examine each symbol to determine if it belongs in the
4632 library symbol table. */
4633 for (i = 0; i < curr_count; i++, sym++)
4634 {
4635 struct som_misc_symbol_info info;
4636
4637 /* Derive SOM information from the BFD symbol. */
4638 som_bfd_derive_misc_symbol_info (curr_bfd, sym, &info);
4639
4640 /* Should we include this symbol? */
4641 if (info.symbol_type == ST_NULL
4642 || info.symbol_type == ST_SYM_EXT
4643 || info.symbol_type == ST_ARG_EXT)
4644 continue;
4645
4646 /* Only global symbols and unsatisfied commons. */
4647 if (info.symbol_scope != SS_UNIVERSAL
4648 && info.symbol_type != ST_STORAGE)
4649 continue;
4650
4651 /* Do no include undefined symbols. */
4652 if (sym->section == &bfd_und_section)
4653 continue;
4654
4655 /* Bump the various counters, being careful to honor
4656 alignment considerations in the string table. */
4657 (*num_syms)++;
4658 *stringsize = *stringsize + strlen (sym->name) + 5;
4659 while (*stringsize % 4)
4660 (*stringsize)++;
4661 }
4662
4663 curr_bfd = curr_bfd->next;
4664 }
4665 return true;
4666 }
4667
4668 /* Hash a symbol name based on the hashing algorithm presented in the
4669 SOM ABI. */
4670 static unsigned int
4671 som_bfd_ar_symbol_hash (symbol)
4672 asymbol *symbol;
4673 {
4674 unsigned int len = strlen (symbol->name);
4675
4676 /* Names with length 1 are special. */
4677 if (len == 1)
4678 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
4679
4680 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
4681 | (symbol->name[len-2] << 8) | symbol->name[len-1];
4682 }
4683
4684 /* Do the bulk of the work required to write the SOM library
4685 symbol table. */
4686
4687 static boolean
4688 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
4689 bfd *abfd;
4690 unsigned int nsyms, string_size;
4691 struct lst_header lst;
4692 {
4693 file_ptr lst_filepos;
4694 char *strings, *p;
4695 struct lst_symbol_record *lst_syms, *curr_lst_sym;
4696 bfd *curr_bfd = abfd->archive_head;
4697 unsigned int hash_table[lst.hash_size];
4698 struct som_entry som_dict[lst.module_count];
4699 struct lst_symbol_record *last_hash_entry[lst.hash_size];
4700 unsigned int curr_som_offset, som_index;
4701
4702 /* Lots of fields are file positions relative to the start
4703 of the lst record. So save its location. */
4704 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4705
4706 /* Some initialization. */
4707 memset (hash_table, 0, 4 * lst.hash_size);
4708 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
4709 memset (last_hash_entry, 0,
4710 lst.hash_size * sizeof (struct lst_symbol_record *));
4711
4712 /* Symbols have som_index fields, so we have to keep track of the
4713 index of each SOM in the archive.
4714
4715 The SOM dictionary has (among other things) the absolute file
4716 position for the SOM which a particular dictionary entry
4717 describes. We have to compute that information as we iterate
4718 through the SOMs/symbols. */
4719 som_index = 0;
4720 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
4721
4722 /* FIXME should be done with buffers just like everything else... */
4723 lst_syms = alloca (nsyms * sizeof (struct lst_symbol_record));
4724 strings = alloca (string_size);
4725 p = strings;
4726 curr_lst_sym = lst_syms;
4727
4728
4729 while (curr_bfd != NULL)
4730 {
4731 unsigned int curr_count, i;
4732 asymbol *sym;
4733
4734 /* Make sure the symbol table has been read, then snag a pointer
4735 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4736 but doing so avoids allocating lots of extra memory. */
4737 if (som_slurp_symbol_table (curr_bfd) == false)
4738 return false;
4739
4740 sym = (asymbol *)obj_som_symtab (curr_bfd);
4741 curr_count = bfd_get_symcount (curr_bfd);
4742
4743 for (i = 0; i < curr_count; i++, sym++)
4744 {
4745 struct som_misc_symbol_info info;
4746
4747 /* Derive SOM information from the BFD symbol. */
4748 som_bfd_derive_misc_symbol_info (curr_bfd, sym, &info);
4749
4750 /* Should we include this symbol? */
4751 if (info.symbol_type == ST_NULL
4752 || info.symbol_type == ST_SYM_EXT
4753 || info.symbol_type == ST_ARG_EXT)
4754 continue;
4755
4756 /* Only global symbols and unsatisfied commons. */
4757 if (info.symbol_scope != SS_UNIVERSAL
4758 && info.symbol_type != ST_STORAGE)
4759 continue;
4760
4761 /* Do no include undefined symbols. */
4762 if (sym->section == &bfd_und_section)
4763 continue;
4764
4765 /* If this is the first symbol from this SOM, then update
4766 the SOM dictionary too. */
4767 if (som_dict[som_index].location == 0)
4768 {
4769 som_dict[som_index].location = curr_som_offset;
4770 som_dict[som_index].length = arelt_size (curr_bfd);
4771 }
4772
4773 /* Fill in the lst symbol record. */
4774 curr_lst_sym->hidden = 0;
4775 curr_lst_sym->secondary_def = 0;
4776 curr_lst_sym->symbol_type = info.symbol_type;
4777 curr_lst_sym->symbol_scope = info.symbol_scope;
4778 curr_lst_sym->check_level = 0;
4779 curr_lst_sym->must_qualify = 0;
4780 curr_lst_sym->initially_frozen = 0;
4781 curr_lst_sym->memory_resident = 0;
4782 curr_lst_sym->is_common = (sym->section == &bfd_com_section);
4783 curr_lst_sym->dup_common = 0;
4784 curr_lst_sym->xleast = 0;
4785 curr_lst_sym->arg_reloc = info.arg_reloc;
4786 curr_lst_sym->name.n_strx = p - strings + 4;
4787 curr_lst_sym->qualifier_name.n_strx = 0;
4788 curr_lst_sym->symbol_info = info.symbol_info;
4789 curr_lst_sym->symbol_value = info.symbol_value;
4790 curr_lst_sym->symbol_descriptor = 0;
4791 curr_lst_sym->reserved = 0;
4792 curr_lst_sym->som_index = som_index;
4793 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (sym);
4794 curr_lst_sym->next_entry = 0;
4795
4796 /* Insert into the hash table. */
4797 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
4798 {
4799 struct lst_symbol_record *tmp;
4800
4801 /* There is already something at the head of this hash chain,
4802 so tack this symbol onto the end of the chain. */
4803 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
4804 tmp->next_entry
4805 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
4806 + lst.hash_size * 4
4807 + lst.module_count * sizeof (struct som_entry)
4808 + sizeof (struct lst_header);
4809 }
4810 else
4811 {
4812 /* First entry in this hash chain. */
4813 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
4814 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
4815 + lst.hash_size * 4
4816 + lst.module_count * sizeof (struct som_entry)
4817 + sizeof (struct lst_header);
4818 }
4819
4820 /* Keep track of the last symbol we added to this chain so we can
4821 easily update its next_entry pointer. */
4822 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
4823 = curr_lst_sym;
4824
4825
4826 /* Update the string table. */
4827 bfd_put_32 (abfd, strlen (sym->name), p);
4828 p += 4;
4829 strcpy (p, sym->name);
4830 p += strlen (sym->name) + 1;
4831 while ((int)p % 4)
4832 {
4833 bfd_put_8 (abfd, 0, p);
4834 p++;
4835 }
4836
4837 /* Head to the next symbol. */
4838 curr_lst_sym++;
4839 }
4840
4841 /* Keep track of where each SOM will finally reside; then look
4842 at the next BFD. */
4843 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
4844 curr_bfd = curr_bfd->next;
4845 som_index++;
4846 }
4847
4848 /* Now scribble out the hash table. */
4849 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
4850 != lst.hash_size * 4)
4851 {
4852 bfd_error = system_call_error;
4853 return false;
4854 }
4855
4856 /* Then the SOM dictionary. */
4857 if (bfd_write ((PTR) som_dict, lst.module_count,
4858 sizeof (struct som_entry), abfd)
4859 != lst.module_count * sizeof (struct som_entry))
4860 {
4861 bfd_error = system_call_error;
4862 return false;
4863 }
4864
4865 /* The library symbols. */
4866 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
4867 != nsyms * sizeof (struct lst_symbol_record))
4868 {
4869 bfd_error = system_call_error;
4870 return false;
4871 }
4872
4873 /* And finally the strings. */
4874 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
4875 {
4876 bfd_error = system_call_error;
4877 return false;
4878 }
4879
4880 return true;
4881 }
4882
4883 /* Write out the LST for the archive.
4884
4885 You'll never believe this is really how armaps are handled in SOM... */
4886
4887 static boolean
4888 som_write_armap (abfd)
4889 bfd *abfd;
4890 {
4891 bfd *curr_bfd;
4892 struct stat statbuf;
4893 unsigned int i, lst_size, nsyms, stringsize;
4894 struct ar_hdr hdr;
4895 struct lst_header lst;
4896 int *p;
4897
4898 /* We'll use this for the archive's date and mode later. */
4899 if (stat (abfd->filename, &statbuf) != 0)
4900 {
4901 bfd_error = system_call_error;
4902 return false;
4903 }
4904 /* Fudge factor. */
4905 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
4906
4907 /* Account for the lst header first. */
4908 lst_size = sizeof (struct lst_header);
4909
4910 /* Start building the LST header. */
4911 lst.system_id = HP9000S800_ID;
4912 lst.a_magic = LIBMAGIC;
4913 lst.version_id = VERSION_ID;
4914 lst.file_time.secs = 0;
4915 lst.file_time.nanosecs = 0;
4916
4917 lst.hash_loc = lst_size;
4918 lst.hash_size = SOM_LST_HASH_SIZE;
4919
4920 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
4921 lst_size += 4 * SOM_LST_HASH_SIZE;
4922
4923 /* We need to count the number of SOMs in this archive. */
4924 curr_bfd = abfd->archive_head;
4925 lst.module_count = 0;
4926 while (curr_bfd != NULL)
4927 {
4928 lst.module_count++;
4929 curr_bfd = curr_bfd->next;
4930 }
4931 lst.module_limit = lst.module_count;
4932 lst.dir_loc = lst_size;
4933 lst_size += sizeof (struct som_entry) * lst.module_count;
4934
4935 /* We don't support import/export tables, auxiliary headers,
4936 or free lists yet. Make the linker work a little harder
4937 to make our life easier. */
4938
4939 lst.export_loc = 0;
4940 lst.export_count = 0;
4941 lst.import_loc = 0;
4942 lst.aux_loc = 0;
4943 lst.aux_size = 0;
4944
4945 /* Count how many symbols we will have on the hash chains and the
4946 size of the associated string table. */
4947 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
4948 return false;
4949
4950 lst_size += sizeof (struct lst_symbol_record) * nsyms;
4951
4952 /* For the string table. One day we might actually use this info
4953 to avoid small seeks/reads when reading archives. */
4954 lst.string_loc = lst_size;
4955 lst.string_size = stringsize;
4956 lst_size += stringsize;
4957
4958 /* SOM ABI says this must be zero. */
4959 lst.free_list = 0;
4960
4961 lst.file_end = lst_size;
4962
4963 /* Compute the checksum. Must happen after the entire lst header
4964 has filled in. */
4965 p = (int *)&lst;
4966 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
4967 lst.checksum ^= *p++;
4968
4969 sprintf (hdr.ar_name, "/ ");
4970 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
4971 sprintf (hdr.ar_uid, "%d", getuid ());
4972 sprintf (hdr.ar_gid, "%d", getgid ());
4973 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
4974 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
4975 hdr.ar_fmag[0] = '`';
4976 hdr.ar_fmag[1] = '\012';
4977
4978 /* Turn any nulls into spaces. */
4979 for (i = 0; i < sizeof (struct ar_hdr); i++)
4980 if (((char *) (&hdr))[i] == '\0')
4981 (((char *) (&hdr))[i]) = ' ';
4982
4983 /* Scribble out the ar header. */
4984 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
4985 != sizeof (struct ar_hdr))
4986 {
4987 bfd_error = system_call_error;
4988 return false;
4989 }
4990
4991 /* Now scribble out the lst header. */
4992 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
4993 != sizeof (struct lst_header))
4994 {
4995 bfd_error = system_call_error;
4996 return false;
4997 }
4998
4999 /* Build and write the armap. */
5000 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5001 return false;
5002
5003 /* Done. */
5004 return true;
5005 }
5006
5007 /* Apparently the extened names are never used, even though they appear
5008 in the SOM ABI. Hmmm. */
5009 static boolean
5010 som_slurp_extended_name_table (abfd)
5011 bfd *abfd;
5012 {
5013 bfd_ardata (abfd)->extended_names = NULL;
5014 return true;
5015 }
5016
5017 /* End of miscellaneous support functions. */
5018
5019 #define som_bfd_debug_info_start bfd_void
5020 #define som_bfd_debug_info_end bfd_void
5021 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
5022
5023 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5024 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5025 #define som_truncate_arname bfd_bsd_truncate_arname
5026
5027 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5028 #define som_close_and_cleanup bfd_generic_close_and_cleanup
5029 #define som_get_section_contents bfd_generic_get_section_contents
5030
5031 #define som_bfd_get_relocated_section_contents \
5032 bfd_generic_get_relocated_section_contents
5033 #define som_bfd_relax_section bfd_generic_relax_section
5034 #define som_bfd_make_debug_symbol \
5035 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
5036 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5037 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5038 #define som_bfd_final_link _bfd_generic_final_link
5039
5040 /* Core file support is in the hpux-core backend. */
5041 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5042 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5043 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
5044
5045 bfd_target som_vec =
5046 {
5047 "som", /* name */
5048 bfd_target_som_flavour,
5049 true, /* target byte order */
5050 true, /* target headers byte order */
5051 (HAS_RELOC | EXEC_P | /* object flags */
5052 HAS_LINENO | HAS_DEBUG |
5053 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
5054 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5055 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5056
5057 /* leading_symbol_char: is the first char of a user symbol
5058 predictable, and if so what is it */
5059 0,
5060 '/', /* ar_pad_char */
5061 16, /* ar_max_namelen */
5062 3, /* minimum alignment */
5063 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5064 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5065 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5066 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5067 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5068 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5069 {_bfd_dummy_target,
5070 som_object_p, /* bfd_check_format */
5071 bfd_generic_archive_p,
5072 _bfd_dummy_target
5073 },
5074 {
5075 bfd_false,
5076 som_mkobject,
5077 _bfd_generic_mkarchive,
5078 bfd_false
5079 },
5080 {
5081 bfd_false,
5082 som_write_object_contents,
5083 _bfd_write_archive_contents,
5084 bfd_false,
5085 },
5086 #undef som
5087 JUMP_TABLE (som),
5088 (PTR) 0
5089 };
5090
5091 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.143978 seconds and 4 git commands to generate.