* som.h (som_symbol_type): Delete unwind field.
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67
68 /* HIUX in it's infinite stupidity changed the names for several "well
69 known" constants. Work around such braindamage. Try the HPUX version
70 first, then the HIUX version, and finally provide a default. */
71 #ifdef HPUX_AUX_ID
72 #define EXEC_AUX_ID HPUX_AUX_ID
73 #endif
74
75 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
76 #define EXEC_AUX_ID HIUX_AUX_ID
77 #endif
78
79 #ifndef EXEC_AUX_ID
80 #define EXEC_AUX_ID 0
81 #endif
82
83 /* Size (in chars) of the temporary buffers used during fixup and string
84 table writes. */
85
86 #define SOM_TMP_BUFSIZE 8192
87
88 /* Size of the hash table in archives. */
89 #define SOM_LST_HASH_SIZE 31
90
91 /* Max number of SOMs to be found in an archive. */
92 #define SOM_LST_MODULE_LIMIT 1024
93
94 /* Generic alignment macro. */
95 #define SOM_ALIGN(val, alignment) \
96 (((val) + (alignment) - 1) & ~((alignment) - 1))
97
98 /* SOM allows any one of the four previous relocations to be reused
99 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
100 relocations are always a single byte, using a R_PREV_FIXUP instead
101 of some multi-byte relocation makes object files smaller.
102
103 Note one side effect of using a R_PREV_FIXUP is the relocation that
104 is being repeated moves to the front of the queue. */
105 struct reloc_queue
106 {
107 unsigned char *reloc;
108 unsigned int size;
109 } reloc_queue[4];
110
111 /* This fully describes the symbol types which may be attached to
112 an EXPORT or IMPORT directive. Only SOM uses this formation
113 (ELF has no need for it). */
114 typedef enum
115 {
116 SYMBOL_TYPE_UNKNOWN,
117 SYMBOL_TYPE_ABSOLUTE,
118 SYMBOL_TYPE_CODE,
119 SYMBOL_TYPE_DATA,
120 SYMBOL_TYPE_ENTRY,
121 SYMBOL_TYPE_MILLICODE,
122 SYMBOL_TYPE_PLABEL,
123 SYMBOL_TYPE_PRI_PROG,
124 SYMBOL_TYPE_SEC_PROG,
125 } pa_symbol_type;
126
127 struct section_to_type
128 {
129 char *section;
130 char type;
131 };
132
133 /* Assorted symbol information that needs to be derived from the BFD symbol
134 and/or the BFD backend private symbol data. */
135 struct som_misc_symbol_info
136 {
137 unsigned int symbol_type;
138 unsigned int symbol_scope;
139 unsigned int arg_reloc;
140 unsigned int symbol_info;
141 unsigned int symbol_value;
142 };
143
144 /* Forward declarations */
145
146 static boolean som_mkobject PARAMS ((bfd *));
147 static const bfd_target * som_object_setup PARAMS ((bfd *,
148 struct header *,
149 struct som_exec_auxhdr *));
150 static boolean setup_sections PARAMS ((bfd *, struct header *));
151 static const bfd_target * som_object_p PARAMS ((bfd *));
152 static boolean som_write_object_contents PARAMS ((bfd *));
153 static boolean som_slurp_string_table PARAMS ((bfd *));
154 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
155 static long som_get_symtab_upper_bound PARAMS ((bfd *));
156 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
157 arelent **, asymbol **));
158 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
159 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
160 arelent *, asection *,
161 asymbol **, boolean));
162 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
163 asymbol **, boolean));
164 static long som_get_symtab PARAMS ((bfd *, asymbol **));
165 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
166 static void som_print_symbol PARAMS ((bfd *, PTR,
167 asymbol *, bfd_print_symbol_type));
168 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
169 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
170 bfd *, asection *));
171 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
172 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
173 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
174 file_ptr, bfd_size_type));
175 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
176 file_ptr, bfd_size_type));
177 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
178 unsigned long));
179 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
180 asymbol **, bfd_vma,
181 CONST char **,
182 CONST char **,
183 unsigned int *));
184 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
185 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
186 struct symbol_dictionary_record *));
187 static int log2 PARAMS ((unsigned int));
188 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
189 asymbol *, PTR,
190 asection *, bfd *,
191 char **));
192 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
193 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
194 struct reloc_queue *));
195 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
196 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
197 struct reloc_queue *));
198 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
199 unsigned int,
200 struct reloc_queue *));
201
202 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
203 unsigned char *, unsigned int *,
204 struct reloc_queue *));
205 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
206 unsigned int *,
207 struct reloc_queue *));
208 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
209 unsigned int *,
210 arelent *, int,
211 struct reloc_queue *));
212 static unsigned long som_count_spaces PARAMS ((bfd *));
213 static unsigned long som_count_subspaces PARAMS ((bfd *));
214 static int compare_syms PARAMS ((const void *, const void *));
215 static unsigned long som_compute_checksum PARAMS ((bfd *));
216 static boolean som_prep_headers PARAMS ((bfd *));
217 static int som_sizeof_headers PARAMS ((bfd *, boolean));
218 static boolean som_write_headers PARAMS ((bfd *));
219 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
220 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
221 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
222 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
223 unsigned int *));
224 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
225 asymbol **, unsigned int,
226 unsigned *));
227 static boolean som_begin_writing PARAMS ((bfd *));
228 static const reloc_howto_type * som_bfd_reloc_type_lookup
229 PARAMS ((bfd *, bfd_reloc_code_real_type));
230 static char som_section_type PARAMS ((const char *));
231 static int som_decode_symclass PARAMS ((asymbol *));
232 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
233 symindex *));
234
235 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
236 carsym **syms));
237 static boolean som_slurp_armap PARAMS ((bfd *));
238 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
239 unsigned int, int));
240 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
241 struct som_misc_symbol_info *));
242 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
243 unsigned int *));
244 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
245 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
246 unsigned int,
247 struct lst_header));
248 static CONST char *normalize PARAMS ((CONST char *file));
249 static boolean som_is_space PARAMS ((asection *));
250 static boolean som_is_subspace PARAMS ((asection *));
251 static boolean som_is_container PARAMS ((asection *, asection *));
252 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
253
254 /* Map SOM section names to POSIX/BSD single-character symbol types.
255
256 This table includes all the standard subspaces as defined in the
257 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
258 some reason was left out, and sections specific to embedded stabs. */
259
260 static const struct section_to_type stt[] = {
261 {"$TEXT$", 't'},
262 {"$SHLIB_INFO$", 't'},
263 {"$MILLICODE$", 't'},
264 {"$LIT$", 't'},
265 {"$CODE$", 't'},
266 {"$UNWIND_START$", 't'},
267 {"$UNWIND$", 't'},
268 {"$PRIVATE$", 'd'},
269 {"$PLT$", 'd'},
270 {"$SHLIB_DATA$", 'd'},
271 {"$DATA$", 'd'},
272 {"$SHORTDATA$", 'g'},
273 {"$DLT$", 'd'},
274 {"$GLOBAL$", 'g'},
275 {"$SHORTBSS$", 's'},
276 {"$BSS$", 'b'},
277 {"$GDB_STRINGS$", 'N'},
278 {"$GDB_SYMBOLS$", 'N'},
279 {0, 0}
280 };
281
282 /* About the relocation formatting table...
283
284 There are 256 entries in the table, one for each possible
285 relocation opcode available in SOM. We index the table by
286 the relocation opcode. The names and operations are those
287 defined by a.out_800 (4).
288
289 Right now this table is only used to count and perform minimal
290 processing on relocation streams so that they can be internalized
291 into BFD and symbolically printed by utilities. To make actual use
292 of them would be much more difficult, BFD's concept of relocations
293 is far too simple to handle SOM relocations. The basic assumption
294 that a relocation can be completely processed independent of other
295 relocations before an object file is written is invalid for SOM.
296
297 The SOM relocations are meant to be processed as a stream, they
298 specify copying of data from the input section to the output section
299 while possibly modifying the data in some manner. They also can
300 specify that a variable number of zeros or uninitialized data be
301 inserted on in the output segment at the current offset. Some
302 relocations specify that some previous relocation be re-applied at
303 the current location in the input/output sections. And finally a number
304 of relocations have effects on other sections (R_ENTRY, R_EXIT,
305 R_UNWIND_AUX and a variety of others). There isn't even enough room
306 in the BFD relocation data structure to store enough information to
307 perform all the relocations.
308
309 Each entry in the table has three fields.
310
311 The first entry is an index into this "class" of relocations. This
312 index can then be used as a variable within the relocation itself.
313
314 The second field is a format string which actually controls processing
315 of the relocation. It uses a simple postfix machine to do calculations
316 based on variables/constants found in the string and the relocation
317 stream.
318
319 The third field specifys whether or not this relocation may use
320 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
321 stored in the instruction.
322
323 Variables:
324
325 L = input space byte count
326 D = index into class of relocations
327 M = output space byte count
328 N = statement number (unused?)
329 O = stack operation
330 R = parameter relocation bits
331 S = symbol index
332 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
333 V = a literal constant (usually used in the next relocation)
334 P = a previous relocation
335
336 Lower case letters (starting with 'b') refer to following
337 bytes in the relocation stream. 'b' is the next 1 byte,
338 c is the next 2 bytes, d is the next 3 bytes, etc...
339 This is the variable part of the relocation entries that
340 makes our life a living hell.
341
342 numerical constants are also used in the format string. Note
343 the constants are represented in decimal.
344
345 '+', "*" and "=" represents the obvious postfix operators.
346 '<' represents a left shift.
347
348 Stack Operations:
349
350 Parameter Relocation Bits:
351
352 Unwind Entries:
353
354 Previous Relocations: The index field represents which in the queue
355 of 4 previous fixups should be re-applied.
356
357 Literal Constants: These are generally used to represent addend
358 parts of relocations when these constants are not stored in the
359 fields of the instructions themselves. For example the instruction
360 addil foo-$global$-0x1234 would use an override for "0x1234" rather
361 than storing it into the addil itself. */
362
363 struct fixup_format
364 {
365 int D;
366 char *format;
367 };
368
369 static const struct fixup_format som_fixup_formats[256] =
370 {
371 /* R_NO_RELOCATION */
372 0, "LD1+4*=", /* 0x00 */
373 1, "LD1+4*=", /* 0x01 */
374 2, "LD1+4*=", /* 0x02 */
375 3, "LD1+4*=", /* 0x03 */
376 4, "LD1+4*=", /* 0x04 */
377 5, "LD1+4*=", /* 0x05 */
378 6, "LD1+4*=", /* 0x06 */
379 7, "LD1+4*=", /* 0x07 */
380 8, "LD1+4*=", /* 0x08 */
381 9, "LD1+4*=", /* 0x09 */
382 10, "LD1+4*=", /* 0x0a */
383 11, "LD1+4*=", /* 0x0b */
384 12, "LD1+4*=", /* 0x0c */
385 13, "LD1+4*=", /* 0x0d */
386 14, "LD1+4*=", /* 0x0e */
387 15, "LD1+4*=", /* 0x0f */
388 16, "LD1+4*=", /* 0x10 */
389 17, "LD1+4*=", /* 0x11 */
390 18, "LD1+4*=", /* 0x12 */
391 19, "LD1+4*=", /* 0x13 */
392 20, "LD1+4*=", /* 0x14 */
393 21, "LD1+4*=", /* 0x15 */
394 22, "LD1+4*=", /* 0x16 */
395 23, "LD1+4*=", /* 0x17 */
396 0, "LD8<b+1+4*=", /* 0x18 */
397 1, "LD8<b+1+4*=", /* 0x19 */
398 2, "LD8<b+1+4*=", /* 0x1a */
399 3, "LD8<b+1+4*=", /* 0x1b */
400 0, "LD16<c+1+4*=", /* 0x1c */
401 1, "LD16<c+1+4*=", /* 0x1d */
402 2, "LD16<c+1+4*=", /* 0x1e */
403 0, "Ld1+=", /* 0x1f */
404 /* R_ZEROES */
405 0, "Lb1+4*=", /* 0x20 */
406 1, "Ld1+=", /* 0x21 */
407 /* R_UNINIT */
408 0, "Lb1+4*=", /* 0x22 */
409 1, "Ld1+=", /* 0x23 */
410 /* R_RELOCATION */
411 0, "L4=", /* 0x24 */
412 /* R_DATA_ONE_SYMBOL */
413 0, "L4=Sb=", /* 0x25 */
414 1, "L4=Sd=", /* 0x26 */
415 /* R_DATA_PLEBEL */
416 0, "L4=Sb=", /* 0x27 */
417 1, "L4=Sd=", /* 0x28 */
418 /* R_SPACE_REF */
419 0, "L4=", /* 0x29 */
420 /* R_REPEATED_INIT */
421 0, "L4=Mb1+4*=", /* 0x2a */
422 1, "Lb4*=Mb1+L*=", /* 0x2b */
423 2, "Lb4*=Md1+4*=", /* 0x2c */
424 3, "Ld1+=Me1+=", /* 0x2d */
425 /* R_RESERVED */
426 0, "", /* 0x2e */
427 0, "", /* 0x2f */
428 /* R_PCREL_CALL */
429 0, "L4=RD=Sb=", /* 0x30 */
430 1, "L4=RD=Sb=", /* 0x31 */
431 2, "L4=RD=Sb=", /* 0x32 */
432 3, "L4=RD=Sb=", /* 0x33 */
433 4, "L4=RD=Sb=", /* 0x34 */
434 5, "L4=RD=Sb=", /* 0x35 */
435 6, "L4=RD=Sb=", /* 0x36 */
436 7, "L4=RD=Sb=", /* 0x37 */
437 8, "L4=RD=Sb=", /* 0x38 */
438 9, "L4=RD=Sb=", /* 0x39 */
439 0, "L4=RD8<b+=Sb=",/* 0x3a */
440 1, "L4=RD8<b+=Sb=",/* 0x3b */
441 0, "L4=RD8<b+=Sd=",/* 0x3c */
442 1, "L4=RD8<b+=Sd=",/* 0x3d */
443 /* R_RESERVED */
444 0, "", /* 0x3e */
445 0, "", /* 0x3f */
446 /* R_ABS_CALL */
447 0, "L4=RD=Sb=", /* 0x40 */
448 1, "L4=RD=Sb=", /* 0x41 */
449 2, "L4=RD=Sb=", /* 0x42 */
450 3, "L4=RD=Sb=", /* 0x43 */
451 4, "L4=RD=Sb=", /* 0x44 */
452 5, "L4=RD=Sb=", /* 0x45 */
453 6, "L4=RD=Sb=", /* 0x46 */
454 7, "L4=RD=Sb=", /* 0x47 */
455 8, "L4=RD=Sb=", /* 0x48 */
456 9, "L4=RD=Sb=", /* 0x49 */
457 0, "L4=RD8<b+=Sb=",/* 0x4a */
458 1, "L4=RD8<b+=Sb=",/* 0x4b */
459 0, "L4=RD8<b+=Sd=",/* 0x4c */
460 1, "L4=RD8<b+=Sd=",/* 0x4d */
461 /* R_RESERVED */
462 0, "", /* 0x4e */
463 0, "", /* 0x4f */
464 /* R_DP_RELATIVE */
465 0, "L4=SD=", /* 0x50 */
466 1, "L4=SD=", /* 0x51 */
467 2, "L4=SD=", /* 0x52 */
468 3, "L4=SD=", /* 0x53 */
469 4, "L4=SD=", /* 0x54 */
470 5, "L4=SD=", /* 0x55 */
471 6, "L4=SD=", /* 0x56 */
472 7, "L4=SD=", /* 0x57 */
473 8, "L4=SD=", /* 0x58 */
474 9, "L4=SD=", /* 0x59 */
475 10, "L4=SD=", /* 0x5a */
476 11, "L4=SD=", /* 0x5b */
477 12, "L4=SD=", /* 0x5c */
478 13, "L4=SD=", /* 0x5d */
479 14, "L4=SD=", /* 0x5e */
480 15, "L4=SD=", /* 0x5f */
481 16, "L4=SD=", /* 0x60 */
482 17, "L4=SD=", /* 0x61 */
483 18, "L4=SD=", /* 0x62 */
484 19, "L4=SD=", /* 0x63 */
485 20, "L4=SD=", /* 0x64 */
486 21, "L4=SD=", /* 0x65 */
487 22, "L4=SD=", /* 0x66 */
488 23, "L4=SD=", /* 0x67 */
489 24, "L4=SD=", /* 0x68 */
490 25, "L4=SD=", /* 0x69 */
491 26, "L4=SD=", /* 0x6a */
492 27, "L4=SD=", /* 0x6b */
493 28, "L4=SD=", /* 0x6c */
494 29, "L4=SD=", /* 0x6d */
495 30, "L4=SD=", /* 0x6e */
496 31, "L4=SD=", /* 0x6f */
497 32, "L4=Sb=", /* 0x70 */
498 33, "L4=Sd=", /* 0x71 */
499 /* R_RESERVED */
500 0, "", /* 0x72 */
501 0, "", /* 0x73 */
502 0, "", /* 0x74 */
503 0, "", /* 0x75 */
504 0, "", /* 0x76 */
505 0, "", /* 0x77 */
506 /* R_DLT_REL */
507 0, "L4=Sb=", /* 0x78 */
508 1, "L4=Sd=", /* 0x79 */
509 /* R_RESERVED */
510 0, "", /* 0x7a */
511 0, "", /* 0x7b */
512 0, "", /* 0x7c */
513 0, "", /* 0x7d */
514 0, "", /* 0x7e */
515 0, "", /* 0x7f */
516 /* R_CODE_ONE_SYMBOL */
517 0, "L4=SD=", /* 0x80 */
518 1, "L4=SD=", /* 0x81 */
519 2, "L4=SD=", /* 0x82 */
520 3, "L4=SD=", /* 0x83 */
521 4, "L4=SD=", /* 0x84 */
522 5, "L4=SD=", /* 0x85 */
523 6, "L4=SD=", /* 0x86 */
524 7, "L4=SD=", /* 0x87 */
525 8, "L4=SD=", /* 0x88 */
526 9, "L4=SD=", /* 0x89 */
527 10, "L4=SD=", /* 0x8q */
528 11, "L4=SD=", /* 0x8b */
529 12, "L4=SD=", /* 0x8c */
530 13, "L4=SD=", /* 0x8d */
531 14, "L4=SD=", /* 0x8e */
532 15, "L4=SD=", /* 0x8f */
533 16, "L4=SD=", /* 0x90 */
534 17, "L4=SD=", /* 0x91 */
535 18, "L4=SD=", /* 0x92 */
536 19, "L4=SD=", /* 0x93 */
537 20, "L4=SD=", /* 0x94 */
538 21, "L4=SD=", /* 0x95 */
539 22, "L4=SD=", /* 0x96 */
540 23, "L4=SD=", /* 0x97 */
541 24, "L4=SD=", /* 0x98 */
542 25, "L4=SD=", /* 0x99 */
543 26, "L4=SD=", /* 0x9a */
544 27, "L4=SD=", /* 0x9b */
545 28, "L4=SD=", /* 0x9c */
546 29, "L4=SD=", /* 0x9d */
547 30, "L4=SD=", /* 0x9e */
548 31, "L4=SD=", /* 0x9f */
549 32, "L4=Sb=", /* 0xa0 */
550 33, "L4=Sd=", /* 0xa1 */
551 /* R_RESERVED */
552 0, "", /* 0xa2 */
553 0, "", /* 0xa3 */
554 0, "", /* 0xa4 */
555 0, "", /* 0xa5 */
556 0, "", /* 0xa6 */
557 0, "", /* 0xa7 */
558 0, "", /* 0xa8 */
559 0, "", /* 0xa9 */
560 0, "", /* 0xaa */
561 0, "", /* 0xab */
562 0, "", /* 0xac */
563 0, "", /* 0xad */
564 /* R_MILLI_REL */
565 0, "L4=Sb=", /* 0xae */
566 1, "L4=Sd=", /* 0xaf */
567 /* R_CODE_PLABEL */
568 0, "L4=Sb=", /* 0xb0 */
569 1, "L4=Sd=", /* 0xb1 */
570 /* R_BREAKPOINT */
571 0, "L4=", /* 0xb2 */
572 /* R_ENTRY */
573 0, "Ui=", /* 0xb3 */
574 1, "Uf=", /* 0xb4 */
575 /* R_ALT_ENTRY */
576 0, "", /* 0xb5 */
577 /* R_EXIT */
578 0, "", /* 0xb6 */
579 /* R_BEGIN_TRY */
580 0, "", /* 0xb7 */
581 /* R_END_TRY */
582 0, "R0=", /* 0xb8 */
583 1, "Rb4*=", /* 0xb9 */
584 2, "Rd4*=", /* 0xba */
585 /* R_BEGIN_BRTAB */
586 0, "", /* 0xbb */
587 /* R_END_BRTAB */
588 0, "", /* 0xbc */
589 /* R_STATEMENT */
590 0, "Nb=", /* 0xbd */
591 1, "Nc=", /* 0xbe */
592 2, "Nd=", /* 0xbf */
593 /* R_DATA_EXPR */
594 0, "L4=", /* 0xc0 */
595 /* R_CODE_EXPR */
596 0, "L4=", /* 0xc1 */
597 /* R_FSEL */
598 0, "", /* 0xc2 */
599 /* R_LSEL */
600 0, "", /* 0xc3 */
601 /* R_RSEL */
602 0, "", /* 0xc4 */
603 /* R_N_MODE */
604 0, "", /* 0xc5 */
605 /* R_S_MODE */
606 0, "", /* 0xc6 */
607 /* R_D_MODE */
608 0, "", /* 0xc7 */
609 /* R_R_MODE */
610 0, "", /* 0xc8 */
611 /* R_DATA_OVERRIDE */
612 0, "V0=", /* 0xc9 */
613 1, "Vb=", /* 0xca */
614 2, "Vc=", /* 0xcb */
615 3, "Vd=", /* 0xcc */
616 4, "Ve=", /* 0xcd */
617 /* R_TRANSLATED */
618 0, "", /* 0xce */
619 /* R_RESERVED */
620 0, "", /* 0xcf */
621 /* R_COMP1 */
622 0, "Ob=", /* 0xd0 */
623 /* R_COMP2 */
624 0, "Ob=Sd=", /* 0xd1 */
625 /* R_COMP3 */
626 0, "Ob=Ve=", /* 0xd2 */
627 /* R_PREV_FIXUP */
628 0, "P", /* 0xd3 */
629 1, "P", /* 0xd4 */
630 2, "P", /* 0xd5 */
631 3, "P", /* 0xd6 */
632 /* R_RESERVED */
633 0, "", /* 0xd7 */
634 0, "", /* 0xd8 */
635 0, "", /* 0xd9 */
636 0, "", /* 0xda */
637 0, "", /* 0xdb */
638 0, "", /* 0xdc */
639 0, "", /* 0xdd */
640 0, "", /* 0xde */
641 0, "", /* 0xdf */
642 0, "", /* 0xe0 */
643 0, "", /* 0xe1 */
644 0, "", /* 0xe2 */
645 0, "", /* 0xe3 */
646 0, "", /* 0xe4 */
647 0, "", /* 0xe5 */
648 0, "", /* 0xe6 */
649 0, "", /* 0xe7 */
650 0, "", /* 0xe8 */
651 0, "", /* 0xe9 */
652 0, "", /* 0xea */
653 0, "", /* 0xeb */
654 0, "", /* 0xec */
655 0, "", /* 0xed */
656 0, "", /* 0xee */
657 0, "", /* 0xef */
658 0, "", /* 0xf0 */
659 0, "", /* 0xf1 */
660 0, "", /* 0xf2 */
661 0, "", /* 0xf3 */
662 0, "", /* 0xf4 */
663 0, "", /* 0xf5 */
664 0, "", /* 0xf6 */
665 0, "", /* 0xf7 */
666 0, "", /* 0xf8 */
667 0, "", /* 0xf9 */
668 0, "", /* 0xfa */
669 0, "", /* 0xfb */
670 0, "", /* 0xfc */
671 0, "", /* 0xfd */
672 0, "", /* 0xfe */
673 0, "", /* 0xff */
674 };
675
676 static const int comp1_opcodes[] =
677 {
678 0x00,
679 0x40,
680 0x41,
681 0x42,
682 0x43,
683 0x44,
684 0x45,
685 0x46,
686 0x47,
687 0x48,
688 0x49,
689 0x4a,
690 0x4b,
691 0x60,
692 0x80,
693 0xa0,
694 0xc0,
695 -1
696 };
697
698 static const int comp2_opcodes[] =
699 {
700 0x00,
701 0x80,
702 0x82,
703 0xc0,
704 -1
705 };
706
707 static const int comp3_opcodes[] =
708 {
709 0x00,
710 0x02,
711 -1
712 };
713
714 /* These apparently are not in older versions of hpux reloc.h. */
715 #ifndef R_DLT_REL
716 #define R_DLT_REL 0x78
717 #endif
718
719 #ifndef R_AUX_UNWIND
720 #define R_AUX_UNWIND 0xcf
721 #endif
722
723 #ifndef R_SEC_STMT
724 #define R_SEC_STMT 0xd7
725 #endif
726
727 static reloc_howto_type som_hppa_howto_table[] =
728 {
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
762 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
763 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
764 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
765 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
766 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
767 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
768 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
769 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
770 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
771 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
772 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
773 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
778 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
779 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
794 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
795 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
808 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
845 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
846 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
850 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
851 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
904 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
905 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
906 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
907 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
908 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
909 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
910 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
911 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
912 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
913 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
914 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
915 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
916 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
917 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
918 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
919 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
920 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
921 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
922 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
923 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
924 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
925 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
926 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
927 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
928 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
929 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
930 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
931 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
932 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
936 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
937 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
938 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
939 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
940 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
941 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
942 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
985
986 /* Initialize the SOM relocation queue. By definition the queue holds
987 the last four multibyte fixups. */
988
989 static void
990 som_initialize_reloc_queue (queue)
991 struct reloc_queue *queue;
992 {
993 queue[0].reloc = NULL;
994 queue[0].size = 0;
995 queue[1].reloc = NULL;
996 queue[1].size = 0;
997 queue[2].reloc = NULL;
998 queue[2].size = 0;
999 queue[3].reloc = NULL;
1000 queue[3].size = 0;
1001 }
1002
1003 /* Insert a new relocation into the relocation queue. */
1004
1005 static void
1006 som_reloc_queue_insert (p, size, queue)
1007 unsigned char *p;
1008 unsigned int size;
1009 struct reloc_queue *queue;
1010 {
1011 queue[3].reloc = queue[2].reloc;
1012 queue[3].size = queue[2].size;
1013 queue[2].reloc = queue[1].reloc;
1014 queue[2].size = queue[1].size;
1015 queue[1].reloc = queue[0].reloc;
1016 queue[1].size = queue[0].size;
1017 queue[0].reloc = p;
1018 queue[0].size = size;
1019 }
1020
1021 /* When an entry in the relocation queue is reused, the entry moves
1022 to the front of the queue. */
1023
1024 static void
1025 som_reloc_queue_fix (queue, index)
1026 struct reloc_queue *queue;
1027 unsigned int index;
1028 {
1029 if (index == 0)
1030 return;
1031
1032 if (index == 1)
1033 {
1034 unsigned char *tmp1 = queue[0].reloc;
1035 unsigned int tmp2 = queue[0].size;
1036 queue[0].reloc = queue[1].reloc;
1037 queue[0].size = queue[1].size;
1038 queue[1].reloc = tmp1;
1039 queue[1].size = tmp2;
1040 return;
1041 }
1042
1043 if (index == 2)
1044 {
1045 unsigned char *tmp1 = queue[0].reloc;
1046 unsigned int tmp2 = queue[0].size;
1047 queue[0].reloc = queue[2].reloc;
1048 queue[0].size = queue[2].size;
1049 queue[2].reloc = queue[1].reloc;
1050 queue[2].size = queue[1].size;
1051 queue[1].reloc = tmp1;
1052 queue[1].size = tmp2;
1053 return;
1054 }
1055
1056 if (index == 3)
1057 {
1058 unsigned char *tmp1 = queue[0].reloc;
1059 unsigned int tmp2 = queue[0].size;
1060 queue[0].reloc = queue[3].reloc;
1061 queue[0].size = queue[3].size;
1062 queue[3].reloc = queue[2].reloc;
1063 queue[3].size = queue[2].size;
1064 queue[2].reloc = queue[1].reloc;
1065 queue[2].size = queue[1].size;
1066 queue[1].reloc = tmp1;
1067 queue[1].size = tmp2;
1068 return;
1069 }
1070 abort();
1071 }
1072
1073 /* Search for a particular relocation in the relocation queue. */
1074
1075 static int
1076 som_reloc_queue_find (p, size, queue)
1077 unsigned char *p;
1078 unsigned int size;
1079 struct reloc_queue *queue;
1080 {
1081 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1082 && size == queue[0].size)
1083 return 0;
1084 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1085 && size == queue[1].size)
1086 return 1;
1087 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1088 && size == queue[2].size)
1089 return 2;
1090 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1091 && size == queue[3].size)
1092 return 3;
1093 return -1;
1094 }
1095
1096 static unsigned char *
1097 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1098 bfd *abfd;
1099 int *subspace_reloc_sizep;
1100 unsigned char *p;
1101 unsigned int size;
1102 struct reloc_queue *queue;
1103 {
1104 int queue_index = som_reloc_queue_find (p, size, queue);
1105
1106 if (queue_index != -1)
1107 {
1108 /* Found this in a previous fixup. Undo the fixup we
1109 just built and use R_PREV_FIXUP instead. We saved
1110 a total of size - 1 bytes in the fixup stream. */
1111 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1112 p += 1;
1113 *subspace_reloc_sizep += 1;
1114 som_reloc_queue_fix (queue, queue_index);
1115 }
1116 else
1117 {
1118 som_reloc_queue_insert (p, size, queue);
1119 *subspace_reloc_sizep += size;
1120 p += size;
1121 }
1122 return p;
1123 }
1124
1125 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1126 bytes without any relocation. Update the size of the subspace
1127 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1128 current pointer into the relocation stream. */
1129
1130 static unsigned char *
1131 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1132 bfd *abfd;
1133 unsigned int skip;
1134 unsigned char *p;
1135 unsigned int *subspace_reloc_sizep;
1136 struct reloc_queue *queue;
1137 {
1138 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1139 then R_PREV_FIXUPs to get the difference down to a
1140 reasonable size. */
1141 if (skip >= 0x1000000)
1142 {
1143 skip -= 0x1000000;
1144 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1145 bfd_put_8 (abfd, 0xff, p + 1);
1146 bfd_put_16 (abfd, 0xffff, p + 2);
1147 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1148 while (skip >= 0x1000000)
1149 {
1150 skip -= 0x1000000;
1151 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1152 p++;
1153 *subspace_reloc_sizep += 1;
1154 /* No need to adjust queue here since we are repeating the
1155 most recent fixup. */
1156 }
1157 }
1158
1159 /* The difference must be less than 0x1000000. Use one
1160 more R_NO_RELOCATION entry to get to the right difference. */
1161 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1162 {
1163 /* Difference can be handled in a simple single-byte
1164 R_NO_RELOCATION entry. */
1165 if (skip <= 0x60)
1166 {
1167 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1168 *subspace_reloc_sizep += 1;
1169 p++;
1170 }
1171 /* Handle it with a two byte R_NO_RELOCATION entry. */
1172 else if (skip <= 0x1000)
1173 {
1174 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1175 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1177 }
1178 /* Handle it with a three byte R_NO_RELOCATION entry. */
1179 else
1180 {
1181 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1182 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1183 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1184 }
1185 }
1186 /* Ugh. Punt and use a 4 byte entry. */
1187 else if (skip > 0)
1188 {
1189 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1190 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1191 bfd_put_16 (abfd, skip - 1, p + 2);
1192 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1193 }
1194 return p;
1195 }
1196
1197 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1198 from a BFD relocation. Update the size of the subspace relocation
1199 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1200 into the relocation stream. */
1201
1202 static unsigned char *
1203 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1204 bfd *abfd;
1205 int addend;
1206 unsigned char *p;
1207 unsigned int *subspace_reloc_sizep;
1208 struct reloc_queue *queue;
1209 {
1210 if ((unsigned)(addend) + 0x80 < 0x100)
1211 {
1212 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1213 bfd_put_8 (abfd, addend, p + 1);
1214 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1215 }
1216 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1217 {
1218 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1219 bfd_put_16 (abfd, addend, p + 1);
1220 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1221 }
1222 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1223 {
1224 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1225 bfd_put_8 (abfd, addend >> 16, p + 1);
1226 bfd_put_16 (abfd, addend, p + 2);
1227 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1228 }
1229 else
1230 {
1231 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1232 bfd_put_32 (abfd, addend, p + 1);
1233 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1234 }
1235 return p;
1236 }
1237
1238 /* Handle a single function call relocation. */
1239
1240 static unsigned char *
1241 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1242 bfd *abfd;
1243 unsigned char *p;
1244 unsigned int *subspace_reloc_sizep;
1245 arelent *bfd_reloc;
1246 int sym_num;
1247 struct reloc_queue *queue;
1248 {
1249 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1250 int rtn_bits = arg_bits & 0x3;
1251 int type, done = 0;
1252
1253 /* You'll never believe all this is necessary to handle relocations
1254 for function calls. Having to compute and pack the argument
1255 relocation bits is the real nightmare.
1256
1257 If you're interested in how this works, just forget it. You really
1258 do not want to know about this braindamage. */
1259
1260 /* First see if this can be done with a "simple" relocation. Simple
1261 relocations have a symbol number < 0x100 and have simple encodings
1262 of argument relocations. */
1263
1264 if (sym_num < 0x100)
1265 {
1266 switch (arg_bits)
1267 {
1268 case 0:
1269 case 1:
1270 type = 0;
1271 break;
1272 case 1 << 8:
1273 case 1 << 8 | 1:
1274 type = 1;
1275 break;
1276 case 1 << 8 | 1 << 6:
1277 case 1 << 8 | 1 << 6 | 1:
1278 type = 2;
1279 break;
1280 case 1 << 8 | 1 << 6 | 1 << 4:
1281 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1282 type = 3;
1283 break;
1284 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1285 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1286 type = 4;
1287 break;
1288 default:
1289 /* Not one of the easy encodings. This will have to be
1290 handled by the more complex code below. */
1291 type = -1;
1292 break;
1293 }
1294 if (type != -1)
1295 {
1296 /* Account for the return value too. */
1297 if (rtn_bits)
1298 type += 5;
1299
1300 /* Emit a 2 byte relocation. Then see if it can be handled
1301 with a relocation which is already in the relocation queue. */
1302 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1303 bfd_put_8 (abfd, sym_num, p + 1);
1304 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1305 done = 1;
1306 }
1307 }
1308
1309 /* If this could not be handled with a simple relocation, then do a hard
1310 one. Hard relocations occur if the symbol number was too high or if
1311 the encoding of argument relocation bits is too complex. */
1312 if (! done)
1313 {
1314 /* Don't ask about these magic sequences. I took them straight
1315 from gas-1.36 which took them from the a.out man page. */
1316 type = rtn_bits;
1317 if ((arg_bits >> 6 & 0xf) == 0xe)
1318 type += 9 * 40;
1319 else
1320 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1321 if ((arg_bits >> 2 & 0xf) == 0xe)
1322 type += 9 * 4;
1323 else
1324 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1325
1326 /* Output the first two bytes of the relocation. These describe
1327 the length of the relocation and encoding style. */
1328 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1329 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1330 p);
1331 bfd_put_8 (abfd, type, p + 1);
1332
1333 /* Now output the symbol index and see if this bizarre relocation
1334 just happened to be in the relocation queue. */
1335 if (sym_num < 0x100)
1336 {
1337 bfd_put_8 (abfd, sym_num, p + 2);
1338 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1339 }
1340 else
1341 {
1342 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1343 bfd_put_16 (abfd, sym_num, p + 3);
1344 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1345 }
1346 }
1347 return p;
1348 }
1349
1350
1351 /* Return the logarithm of X, base 2, considering X unsigned.
1352 Abort -1 if X is not a power or two or is zero. */
1353
1354 static int
1355 log2 (x)
1356 unsigned int x;
1357 {
1358 int log = 0;
1359
1360 /* Test for 0 or a power of 2. */
1361 if (x == 0 || x != (x & -x))
1362 return -1;
1363
1364 while ((x >>= 1) != 0)
1365 log++;
1366 return log;
1367 }
1368
1369 static bfd_reloc_status_type
1370 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1371 input_section, output_bfd, error_message)
1372 bfd *abfd;
1373 arelent *reloc_entry;
1374 asymbol *symbol_in;
1375 PTR data;
1376 asection *input_section;
1377 bfd *output_bfd;
1378 char **error_message;
1379 {
1380 if (output_bfd)
1381 {
1382 reloc_entry->address += input_section->output_offset;
1383 return bfd_reloc_ok;
1384 }
1385 return bfd_reloc_ok;
1386 }
1387
1388 /* Given a generic HPPA relocation type, the instruction format,
1389 and a field selector, return one or more appropriate SOM relocations. */
1390
1391 int **
1392 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1393 bfd *abfd;
1394 int base_type;
1395 int format;
1396 enum hppa_reloc_field_selector_type_alt field;
1397 {
1398 int *final_type, **final_types;
1399
1400 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1401 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1402 if (!final_types || !final_type)
1403 {
1404 bfd_set_error (bfd_error_no_memory);
1405 return NULL;
1406 }
1407
1408 /* The field selector may require additional relocations to be
1409 generated. It's impossible to know at this moment if additional
1410 relocations will be needed, so we make them. The code to actually
1411 write the relocation/fixup stream is responsible for removing
1412 any redundant relocations. */
1413 switch (field)
1414 {
1415 case e_fsel:
1416 case e_psel:
1417 case e_lpsel:
1418 case e_rpsel:
1419 final_types[0] = final_type;
1420 final_types[1] = NULL;
1421 final_types[2] = NULL;
1422 *final_type = base_type;
1423 break;
1424
1425 case e_tsel:
1426 case e_ltsel:
1427 case e_rtsel:
1428 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1429 if (!final_types[0])
1430 {
1431 bfd_set_error (bfd_error_no_memory);
1432 return NULL;
1433 }
1434 if (field == e_tsel)
1435 *final_types[0] = R_FSEL;
1436 else if (field == e_ltsel)
1437 *final_types[0] = R_LSEL;
1438 else
1439 *final_types[0] = R_RSEL;
1440 final_types[1] = final_type;
1441 final_types[2] = NULL;
1442 *final_type = base_type;
1443 break;
1444
1445 case e_lssel:
1446 case e_rssel:
1447 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1448 if (!final_types[0])
1449 {
1450 bfd_set_error (bfd_error_no_memory);
1451 return NULL;
1452 }
1453 *final_types[0] = R_S_MODE;
1454 final_types[1] = final_type;
1455 final_types[2] = NULL;
1456 *final_type = base_type;
1457 break;
1458
1459 case e_lsel:
1460 case e_rsel:
1461 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1462 if (!final_types[0])
1463 {
1464 bfd_set_error (bfd_error_no_memory);
1465 return NULL;
1466 }
1467 *final_types[0] = R_N_MODE;
1468 final_types[1] = final_type;
1469 final_types[2] = NULL;
1470 *final_type = base_type;
1471 break;
1472
1473 case e_ldsel:
1474 case e_rdsel:
1475 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1476 if (!final_types[0])
1477 {
1478 bfd_set_error (bfd_error_no_memory);
1479 return NULL;
1480 }
1481 *final_types[0] = R_D_MODE;
1482 final_types[1] = final_type;
1483 final_types[2] = NULL;
1484 *final_type = base_type;
1485 break;
1486
1487 case e_lrsel:
1488 case e_rrsel:
1489 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1490 if (!final_types[0])
1491 {
1492 bfd_set_error (bfd_error_no_memory);
1493 return NULL;
1494 }
1495 *final_types[0] = R_R_MODE;
1496 final_types[1] = final_type;
1497 final_types[2] = NULL;
1498 *final_type = base_type;
1499 break;
1500 }
1501
1502 switch (base_type)
1503 {
1504 case R_HPPA:
1505 /* PLABELs get their own relocation type. */
1506 if (field == e_psel
1507 || field == e_lpsel
1508 || field == e_rpsel)
1509 {
1510 /* A PLABEL relocation that has a size of 32 bits must
1511 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1512 if (format == 32)
1513 *final_type = R_DATA_PLABEL;
1514 else
1515 *final_type = R_CODE_PLABEL;
1516 }
1517 /* PIC stuff. */
1518 else if (field == e_tsel
1519 || field == e_ltsel
1520 || field == e_rtsel)
1521 *final_type = R_DLT_REL;
1522 /* A relocation in the data space is always a full 32bits. */
1523 else if (format == 32)
1524 *final_type = R_DATA_ONE_SYMBOL;
1525
1526 break;
1527
1528 case R_HPPA_GOTOFF:
1529 /* More PLABEL special cases. */
1530 if (field == e_psel
1531 || field == e_lpsel
1532 || field == e_rpsel)
1533 *final_type = R_DATA_PLABEL;
1534 break;
1535
1536 case R_HPPA_NONE:
1537 case R_HPPA_ABS_CALL:
1538 case R_HPPA_PCREL_CALL:
1539 /* Right now we can default all these. */
1540 break;
1541 }
1542 return final_types;
1543 }
1544
1545 /* Return the address of the correct entry in the PA SOM relocation
1546 howto table. */
1547
1548 /*ARGSUSED*/
1549 static const reloc_howto_type *
1550 som_bfd_reloc_type_lookup (abfd, code)
1551 bfd *abfd;
1552 bfd_reloc_code_real_type code;
1553 {
1554 if ((int) code < (int) R_NO_RELOCATION + 255)
1555 {
1556 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1557 return &som_hppa_howto_table[(int) code];
1558 }
1559
1560 return (reloc_howto_type *) 0;
1561 }
1562
1563 /* Perform some initialization for an object. Save results of this
1564 initialization in the BFD. */
1565
1566 static const bfd_target *
1567 som_object_setup (abfd, file_hdrp, aux_hdrp)
1568 bfd *abfd;
1569 struct header *file_hdrp;
1570 struct som_exec_auxhdr *aux_hdrp;
1571 {
1572 /* som_mkobject will set bfd_error if som_mkobject fails. */
1573 if (som_mkobject (abfd) != true)
1574 return 0;
1575
1576 /* Set BFD flags based on what information is available in the SOM. */
1577 abfd->flags = NO_FLAGS;
1578 if (file_hdrp->symbol_total)
1579 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1580
1581 switch (file_hdrp->a_magic)
1582 {
1583 case DEMAND_MAGIC:
1584 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1585 break;
1586 case SHARE_MAGIC:
1587 abfd->flags |= (WP_TEXT | EXEC_P);
1588 break;
1589 case EXEC_MAGIC:
1590 abfd->flags |= (EXEC_P);
1591 break;
1592 case RELOC_MAGIC:
1593 abfd->flags |= HAS_RELOC;
1594 break;
1595 #ifdef SHL_MAGIC
1596 case SHL_MAGIC:
1597 #endif
1598 #ifdef DL_MAGIC
1599 case DL_MAGIC:
1600 #endif
1601 abfd->flags |= DYNAMIC;
1602 break;
1603
1604 default:
1605 break;
1606 }
1607
1608 /* Allocate space to hold the saved exec header information. */
1609 obj_som_exec_data (abfd) = (struct som_exec_data *)
1610 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1611 if (obj_som_exec_data (abfd) == NULL)
1612 {
1613 bfd_set_error (bfd_error_no_memory);
1614 return NULL;
1615 }
1616
1617 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1618
1619 It seems rather backward that the OSF1 linker which is much
1620 older than any HPUX linker I've got uses a newer SOM version
1621 id... But that's what I've found by experimentation. */
1622 if (file_hdrp->version_id == NEW_VERSION_ID)
1623 {
1624 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1625 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1626 }
1627 else
1628 {
1629 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1630 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1631 }
1632
1633 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1634 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1635
1636 /* Initialize the saved symbol table and string table to NULL.
1637 Save important offsets and sizes from the SOM header into
1638 the BFD. */
1639 obj_som_stringtab (abfd) = (char *) NULL;
1640 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1641 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1642 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1643 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1644 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1645 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1646
1647 return abfd->xvec;
1648 }
1649
1650 /* Convert all of the space and subspace info into BFD sections. Each space
1651 contains a number of subspaces, which in turn describe the mapping between
1652 regions of the exec file, and the address space that the program runs in.
1653 BFD sections which correspond to spaces will overlap the sections for the
1654 associated subspaces. */
1655
1656 static boolean
1657 setup_sections (abfd, file_hdr)
1658 bfd *abfd;
1659 struct header *file_hdr;
1660 {
1661 char *space_strings;
1662 int space_index;
1663 unsigned int total_subspaces = 0;
1664
1665 /* First, read in space names */
1666
1667 space_strings = malloc (file_hdr->space_strings_size);
1668 if (!space_strings && file_hdr->space_strings_size != 0)
1669 {
1670 bfd_set_error (bfd_error_no_memory);
1671 goto error_return;
1672 }
1673
1674 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1675 goto error_return;
1676 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1677 != file_hdr->space_strings_size)
1678 goto error_return;
1679
1680 /* Loop over all of the space dictionaries, building up sections */
1681 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1682 {
1683 struct space_dictionary_record space;
1684 struct subspace_dictionary_record subspace, save_subspace;
1685 int subspace_index;
1686 asection *space_asect;
1687 char *newname;
1688
1689 /* Read the space dictionary element */
1690 if (bfd_seek (abfd, file_hdr->space_location
1691 + space_index * sizeof space, SEEK_SET) < 0)
1692 goto error_return;
1693 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1694 goto error_return;
1695
1696 /* Setup the space name string */
1697 space.name.n_name = space.name.n_strx + space_strings;
1698
1699 /* Make a section out of it */
1700 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1701 if (!newname)
1702 goto error_return;
1703 strcpy (newname, space.name.n_name);
1704
1705 space_asect = bfd_make_section_anyway (abfd, newname);
1706 if (!space_asect)
1707 goto error_return;
1708
1709 if (space.is_loadable == 0)
1710 space_asect->flags |= SEC_DEBUGGING;
1711
1712 /* Set up all the attributes for the space. */
1713 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1714 space.is_private, space.sort_key,
1715 space.space_number) == false)
1716 goto error_return;
1717
1718 /* Now, read in the first subspace for this space */
1719 if (bfd_seek (abfd, file_hdr->subspace_location
1720 + space.subspace_index * sizeof subspace,
1721 SEEK_SET) < 0)
1722 goto error_return;
1723 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1724 goto error_return;
1725 /* Seek back to the start of the subspaces for loop below */
1726 if (bfd_seek (abfd, file_hdr->subspace_location
1727 + space.subspace_index * sizeof subspace,
1728 SEEK_SET) < 0)
1729 goto error_return;
1730
1731 /* Setup the start address and file loc from the first subspace record */
1732 space_asect->vma = subspace.subspace_start;
1733 space_asect->filepos = subspace.file_loc_init_value;
1734 space_asect->alignment_power = log2 (subspace.alignment);
1735 if (space_asect->alignment_power == -1)
1736 goto error_return;
1737
1738 /* Initialize save_subspace so we can reliably determine if this
1739 loop placed any useful values into it. */
1740 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1741
1742 /* Loop over the rest of the subspaces, building up more sections */
1743 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1744 subspace_index++)
1745 {
1746 asection *subspace_asect;
1747
1748 /* Read in the next subspace */
1749 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1750 != sizeof subspace)
1751 goto error_return;
1752
1753 /* Setup the subspace name string */
1754 subspace.name.n_name = subspace.name.n_strx + space_strings;
1755
1756 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1757 if (!newname)
1758 goto error_return;
1759 strcpy (newname, subspace.name.n_name);
1760
1761 /* Make a section out of this subspace */
1762 subspace_asect = bfd_make_section_anyway (abfd, newname);
1763 if (!subspace_asect)
1764 goto error_return;
1765
1766 /* Store private information about the section. */
1767 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1768 subspace.access_control_bits,
1769 subspace.sort_key,
1770 subspace.quadrant) == false)
1771 goto error_return;
1772
1773 /* Keep an easy mapping between subspaces and sections. */
1774 subspace_asect->target_index = total_subspaces++;
1775
1776 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1777 by the access_control_bits in the subspace header. */
1778 switch (subspace.access_control_bits >> 4)
1779 {
1780 /* Readonly data. */
1781 case 0x0:
1782 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1783 break;
1784
1785 /* Normal data. */
1786 case 0x1:
1787 subspace_asect->flags |= SEC_DATA;
1788 break;
1789
1790 /* Readonly code and the gateways.
1791 Gateways have other attributes which do not map
1792 into anything BFD knows about. */
1793 case 0x2:
1794 case 0x4:
1795 case 0x5:
1796 case 0x6:
1797 case 0x7:
1798 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1799 break;
1800
1801 /* dynamic (writable) code. */
1802 case 0x3:
1803 subspace_asect->flags |= SEC_CODE;
1804 break;
1805 }
1806
1807 if (subspace.dup_common || subspace.is_common)
1808 subspace_asect->flags |= SEC_IS_COMMON;
1809 else if (subspace.subspace_length > 0)
1810 subspace_asect->flags |= SEC_HAS_CONTENTS;
1811
1812 if (subspace.is_loadable)
1813 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1814 else
1815 subspace_asect->flags |= SEC_DEBUGGING;
1816
1817 if (subspace.code_only)
1818 subspace_asect->flags |= SEC_CODE;
1819
1820 /* Both file_loc_init_value and initialization_length will
1821 be zero for a BSS like subspace. */
1822 if (subspace.file_loc_init_value == 0
1823 && subspace.initialization_length == 0)
1824 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1825
1826 /* This subspace has relocations.
1827 The fixup_request_quantity is a byte count for the number of
1828 entries in the relocation stream; it is not the actual number
1829 of relocations in the subspace. */
1830 if (subspace.fixup_request_quantity != 0)
1831 {
1832 subspace_asect->flags |= SEC_RELOC;
1833 subspace_asect->rel_filepos = subspace.fixup_request_index;
1834 som_section_data (subspace_asect)->reloc_size
1835 = subspace.fixup_request_quantity;
1836 /* We can not determine this yet. When we read in the
1837 relocation table the correct value will be filled in. */
1838 subspace_asect->reloc_count = -1;
1839 }
1840
1841 /* Update save_subspace if appropriate. */
1842 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1843 save_subspace = subspace;
1844
1845 subspace_asect->vma = subspace.subspace_start;
1846 subspace_asect->_cooked_size = subspace.subspace_length;
1847 subspace_asect->_raw_size = subspace.subspace_length;
1848 subspace_asect->filepos = subspace.file_loc_init_value;
1849 subspace_asect->alignment_power = log2 (subspace.alignment);
1850 if (subspace_asect->alignment_power == -1)
1851 goto error_return;
1852 }
1853
1854 /* Yow! there is no subspace within the space which actually
1855 has initialized information in it; this should never happen
1856 as far as I know. */
1857 if (!save_subspace.file_loc_init_value)
1858 goto error_return;
1859
1860 /* Setup the sizes for the space section based upon the info in the
1861 last subspace of the space. */
1862 space_asect->_cooked_size = save_subspace.subspace_start
1863 - space_asect->vma + save_subspace.subspace_length;
1864 space_asect->_raw_size = save_subspace.file_loc_init_value
1865 - space_asect->filepos + save_subspace.initialization_length;
1866 }
1867 if (space_strings != NULL)
1868 free (space_strings);
1869 return true;
1870
1871 error_return:
1872 if (space_strings != NULL)
1873 free (space_strings);
1874 return false;
1875 }
1876
1877 /* Read in a SOM object and make it into a BFD. */
1878
1879 static const bfd_target *
1880 som_object_p (abfd)
1881 bfd *abfd;
1882 {
1883 struct header file_hdr;
1884 struct som_exec_auxhdr aux_hdr;
1885
1886 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1887 {
1888 if (bfd_get_error () != bfd_error_system_call)
1889 bfd_set_error (bfd_error_wrong_format);
1890 return 0;
1891 }
1892
1893 if (!_PA_RISC_ID (file_hdr.system_id))
1894 {
1895 bfd_set_error (bfd_error_wrong_format);
1896 return 0;
1897 }
1898
1899 switch (file_hdr.a_magic)
1900 {
1901 case RELOC_MAGIC:
1902 case EXEC_MAGIC:
1903 case SHARE_MAGIC:
1904 case DEMAND_MAGIC:
1905 #ifdef DL_MAGIC
1906 case DL_MAGIC:
1907 #endif
1908 #ifdef SHL_MAGIC
1909 case SHL_MAGIC:
1910 #endif
1911 #ifdef EXECLIBMAGIC
1912 case EXECLIBMAGIC:
1913 #endif
1914 #ifdef SHARED_MAGIC_CNX
1915 case SHARED_MAGIC_CNX:
1916 #endif
1917 break;
1918 default:
1919 bfd_set_error (bfd_error_wrong_format);
1920 return 0;
1921 }
1922
1923 if (file_hdr.version_id != VERSION_ID
1924 && file_hdr.version_id != NEW_VERSION_ID)
1925 {
1926 bfd_set_error (bfd_error_wrong_format);
1927 return 0;
1928 }
1929
1930 /* If the aux_header_size field in the file header is zero, then this
1931 object is an incomplete executable (a .o file). Do not try to read
1932 a non-existant auxiliary header. */
1933 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1934 if (file_hdr.aux_header_size != 0)
1935 {
1936 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1937 {
1938 if (bfd_get_error () != bfd_error_system_call)
1939 bfd_set_error (bfd_error_wrong_format);
1940 return 0;
1941 }
1942 }
1943
1944 if (!setup_sections (abfd, &file_hdr))
1945 {
1946 /* setup_sections does not bubble up a bfd error code. */
1947 bfd_set_error (bfd_error_bad_value);
1948 return 0;
1949 }
1950
1951 /* This appears to be a valid SOM object. Do some initialization. */
1952 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1953 }
1954
1955 /* Create a SOM object. */
1956
1957 static boolean
1958 som_mkobject (abfd)
1959 bfd *abfd;
1960 {
1961 /* Allocate memory to hold backend information. */
1962 abfd->tdata.som_data = (struct som_data_struct *)
1963 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1964 if (abfd->tdata.som_data == NULL)
1965 {
1966 bfd_set_error (bfd_error_no_memory);
1967 return false;
1968 }
1969 return true;
1970 }
1971
1972 /* Initialize some information in the file header. This routine makes
1973 not attempt at doing the right thing for a full executable; it
1974 is only meant to handle relocatable objects. */
1975
1976 static boolean
1977 som_prep_headers (abfd)
1978 bfd *abfd;
1979 {
1980 struct header *file_hdr;
1981 asection *section;
1982
1983 /* Make and attach a file header to the BFD. */
1984 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1985 if (file_hdr == NULL)
1986
1987 {
1988 bfd_set_error (bfd_error_no_memory);
1989 return false;
1990 }
1991 obj_som_file_hdr (abfd) = file_hdr;
1992
1993 if (abfd->flags & (EXEC_P | DYNAMIC))
1994 {
1995
1996 /* Make and attach an exec header to the BFD. */
1997 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
1998 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
1999 if (obj_som_exec_hdr (abfd) == NULL)
2000 {
2001 bfd_set_error (bfd_error_no_memory);
2002 return false;
2003 }
2004
2005 if (abfd->flags & D_PAGED)
2006 file_hdr->a_magic = DEMAND_MAGIC;
2007 else if (abfd->flags & WP_TEXT)
2008 file_hdr->a_magic = SHARE_MAGIC;
2009 #ifdef SHL_MAGIC
2010 else if (abfd->flags & DYNAMIC)
2011 file_hdr->a_magic = SHL_MAGIC;
2012 #endif
2013 else
2014 file_hdr->a_magic = EXEC_MAGIC;
2015 }
2016 else
2017 file_hdr->a_magic = RELOC_MAGIC;
2018
2019 /* Only new format SOM is supported. */
2020 file_hdr->version_id = NEW_VERSION_ID;
2021
2022 /* These fields are optional, and embedding timestamps is not always
2023 a wise thing to do, it makes comparing objects during a multi-stage
2024 bootstrap difficult. */
2025 file_hdr->file_time.secs = 0;
2026 file_hdr->file_time.nanosecs = 0;
2027
2028 file_hdr->entry_space = 0;
2029 file_hdr->entry_subspace = 0;
2030 file_hdr->entry_offset = 0;
2031 file_hdr->presumed_dp = 0;
2032
2033 /* Now iterate over the sections translating information from
2034 BFD sections to SOM spaces/subspaces. */
2035
2036 for (section = abfd->sections; section != NULL; section = section->next)
2037 {
2038 /* Ignore anything which has not been marked as a space or
2039 subspace. */
2040 if (!som_is_space (section) && !som_is_subspace (section))
2041 continue;
2042
2043 if (som_is_space (section))
2044 {
2045 /* Allocate space for the space dictionary. */
2046 som_section_data (section)->space_dict
2047 = (struct space_dictionary_record *)
2048 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2049 if (som_section_data (section)->space_dict == NULL)
2050 {
2051 bfd_set_error (bfd_error_no_memory);
2052 return false;
2053 }
2054 /* Set space attributes. Note most attributes of SOM spaces
2055 are set based on the subspaces it contains. */
2056 som_section_data (section)->space_dict->loader_fix_index = -1;
2057 som_section_data (section)->space_dict->init_pointer_index = -1;
2058
2059 /* Set more attributes that were stuffed away in private data. */
2060 som_section_data (section)->space_dict->sort_key =
2061 som_section_data (section)->copy_data->sort_key;
2062 som_section_data (section)->space_dict->is_defined =
2063 som_section_data (section)->copy_data->is_defined;
2064 som_section_data (section)->space_dict->is_private =
2065 som_section_data (section)->copy_data->is_private;
2066 som_section_data (section)->space_dict->space_number =
2067 som_section_data (section)->copy_data->space_number;
2068 }
2069 else
2070 {
2071 /* Allocate space for the subspace dictionary. */
2072 som_section_data (section)->subspace_dict
2073 = (struct subspace_dictionary_record *)
2074 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2075 if (som_section_data (section)->subspace_dict == NULL)
2076 {
2077 bfd_set_error (bfd_error_no_memory);
2078 return false;
2079 }
2080
2081 /* Set subspace attributes. Basic stuff is done here, additional
2082 attributes are filled in later as more information becomes
2083 available. */
2084 if (section->flags & SEC_IS_COMMON)
2085 {
2086 som_section_data (section)->subspace_dict->dup_common = 1;
2087 som_section_data (section)->subspace_dict->is_common = 1;
2088 }
2089
2090 if (section->flags & SEC_ALLOC)
2091 som_section_data (section)->subspace_dict->is_loadable = 1;
2092
2093 if (section->flags & SEC_CODE)
2094 som_section_data (section)->subspace_dict->code_only = 1;
2095
2096 som_section_data (section)->subspace_dict->subspace_start =
2097 section->vma;
2098 som_section_data (section)->subspace_dict->subspace_length =
2099 bfd_section_size (abfd, section);
2100 som_section_data (section)->subspace_dict->initialization_length =
2101 bfd_section_size (abfd, section);
2102 som_section_data (section)->subspace_dict->alignment =
2103 1 << section->alignment_power;
2104
2105 /* Set more attributes that were stuffed away in private data. */
2106 som_section_data (section)->subspace_dict->sort_key =
2107 som_section_data (section)->copy_data->sort_key;
2108 som_section_data (section)->subspace_dict->access_control_bits =
2109 som_section_data (section)->copy_data->access_control_bits;
2110 som_section_data (section)->subspace_dict->quadrant =
2111 som_section_data (section)->copy_data->quadrant;
2112 }
2113 }
2114 return true;
2115 }
2116
2117 /* Return true if the given section is a SOM space, false otherwise. */
2118
2119 static boolean
2120 som_is_space (section)
2121 asection *section;
2122 {
2123 /* If no copy data is available, then it's neither a space nor a
2124 subspace. */
2125 if (som_section_data (section)->copy_data == NULL)
2126 return false;
2127
2128 /* If the containing space isn't the same as the given section,
2129 then this isn't a space. */
2130 if (som_section_data (section)->copy_data->container != section)
2131 return false;
2132
2133 /* OK. Must be a space. */
2134 return true;
2135 }
2136
2137 /* Return true if the given section is a SOM subspace, false otherwise. */
2138
2139 static boolean
2140 som_is_subspace (section)
2141 asection *section;
2142 {
2143 /* If no copy data is available, then it's neither a space nor a
2144 subspace. */
2145 if (som_section_data (section)->copy_data == NULL)
2146 return false;
2147
2148 /* If the containing space is the same as the given section,
2149 then this isn't a subspace. */
2150 if (som_section_data (section)->copy_data->container == section)
2151 return false;
2152
2153 /* OK. Must be a subspace. */
2154 return true;
2155 }
2156
2157 /* Return true if the given space containins the given subspace. It
2158 is safe to assume space really is a space, and subspace really
2159 is a subspace. */
2160
2161 static boolean
2162 som_is_container (space, subspace)
2163 asection *space, *subspace;
2164 {
2165 return som_section_data (subspace)->copy_data->container == space;
2166 }
2167
2168 /* Count and return the number of spaces attached to the given BFD. */
2169
2170 static unsigned long
2171 som_count_spaces (abfd)
2172 bfd *abfd;
2173 {
2174 int count = 0;
2175 asection *section;
2176
2177 for (section = abfd->sections; section != NULL; section = section->next)
2178 count += som_is_space (section);
2179
2180 return count;
2181 }
2182
2183 /* Count the number of subspaces attached to the given BFD. */
2184
2185 static unsigned long
2186 som_count_subspaces (abfd)
2187 bfd *abfd;
2188 {
2189 int count = 0;
2190 asection *section;
2191
2192 for (section = abfd->sections; section != NULL; section = section->next)
2193 count += som_is_subspace (section);
2194
2195 return count;
2196 }
2197
2198 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2199
2200 We desire symbols to be ordered starting with the symbol with the
2201 highest relocation count down to the symbol with the lowest relocation
2202 count. Doing so compacts the relocation stream. */
2203
2204 static int
2205 compare_syms (arg1, arg2)
2206 const PTR arg1;
2207 const PTR arg2;
2208
2209 {
2210 asymbol **sym1 = (asymbol **) arg1;
2211 asymbol **sym2 = (asymbol **) arg2;
2212 unsigned int count1, count2;
2213
2214 /* Get relocation count for each symbol. Note that the count
2215 is stored in the udata pointer for section symbols! */
2216 if ((*sym1)->flags & BSF_SECTION_SYM)
2217 count1 = (int)(*sym1)->udata;
2218 else
2219 count1 = som_symbol_data (*sym1)->reloc_count;
2220
2221 if ((*sym2)->flags & BSF_SECTION_SYM)
2222 count2 = (int)(*sym2)->udata;
2223 else
2224 count2 = som_symbol_data (*sym2)->reloc_count;
2225
2226 /* Return the appropriate value. */
2227 if (count1 < count2)
2228 return 1;
2229 else if (count1 > count2)
2230 return -1;
2231 return 0;
2232 }
2233
2234 /* Perform various work in preparation for emitting the fixup stream. */
2235
2236 static void
2237 som_prep_for_fixups (abfd, syms, num_syms)
2238 bfd *abfd;
2239 asymbol **syms;
2240 unsigned long num_syms;
2241 {
2242 int i;
2243 asection *section;
2244
2245 /* Most SOM relocations involving a symbol have a length which is
2246 dependent on the index of the symbol. So symbols which are
2247 used often in relocations should have a small index. */
2248
2249 /* First initialize the counters for each symbol. */
2250 for (i = 0; i < num_syms; i++)
2251 {
2252 /* Handle a section symbol; these have no pointers back to the
2253 SOM symbol info. So we just use the pointer field (udata)
2254 to hold the relocation count. */
2255 if (som_symbol_data (syms[i]) == NULL
2256 || syms[i]->flags & BSF_SECTION_SYM)
2257 {
2258 syms[i]->flags |= BSF_SECTION_SYM;
2259 syms[i]->udata = (PTR) 0;
2260 }
2261 else
2262 som_symbol_data (syms[i])->reloc_count = 0;
2263 }
2264
2265 /* Now that the counters are initialized, make a weighted count
2266 of how often a given symbol is used in a relocation. */
2267 for (section = abfd->sections; section != NULL; section = section->next)
2268 {
2269 int i;
2270
2271 /* Does this section have any relocations? */
2272 if (section->reloc_count <= 0)
2273 continue;
2274
2275 /* Walk through each relocation for this section. */
2276 for (i = 1; i < section->reloc_count; i++)
2277 {
2278 arelent *reloc = section->orelocation[i];
2279 int scale;
2280
2281 /* A relocation against a symbol in the *ABS* section really
2282 does not have a symbol. Likewise if the symbol isn't associated
2283 with any section. */
2284 if (reloc->sym_ptr_ptr == NULL
2285 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2286 continue;
2287
2288 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2289 and R_CODE_ONE_SYMBOL relocations to come first. These
2290 two relocations have single byte versions if the symbol
2291 index is very small. */
2292 if (reloc->howto->type == R_DP_RELATIVE
2293 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2294 scale = 2;
2295 else
2296 scale = 1;
2297
2298 /* Handle section symbols by ramming the count in the udata
2299 field. It will not be used and the count is very important
2300 for these symbols. */
2301 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2302 {
2303 (*reloc->sym_ptr_ptr)->udata =
2304 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2305 continue;
2306 }
2307
2308 /* A normal symbol. Increment the count. */
2309 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2310 }
2311 }
2312
2313 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2314
2315 /* Compute the symbol indexes, they will be needed by the relocation
2316 code. */
2317 for (i = 0; i < num_syms; i++)
2318 {
2319 /* A section symbol. Again, there is no pointer to backend symbol
2320 information, so we reuse (abuse) the udata field again. */
2321 if (syms[i]->flags & BSF_SECTION_SYM)
2322 syms[i]->udata = (PTR) i;
2323 else
2324 som_symbol_data (syms[i])->index = i;
2325 }
2326 }
2327
2328 static boolean
2329 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2330 bfd *abfd;
2331 unsigned long current_offset;
2332 unsigned int *total_reloc_sizep;
2333 {
2334 unsigned int i, j;
2335 /* Chunk of memory that we can use as buffer space, then throw
2336 away. */
2337 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2338 unsigned char *p;
2339 unsigned int total_reloc_size = 0;
2340 unsigned int subspace_reloc_size = 0;
2341 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2342 asection *section = abfd->sections;
2343
2344 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2345 p = tmp_space;
2346
2347 /* All the fixups for a particular subspace are emitted in a single
2348 stream. All the subspaces for a particular space are emitted
2349 as a single stream.
2350
2351 So, to get all the locations correct one must iterate through all the
2352 spaces, for each space iterate through its subspaces and output a
2353 fixups stream. */
2354 for (i = 0; i < num_spaces; i++)
2355 {
2356 asection *subsection;
2357
2358 /* Find a space. */
2359 while (!som_is_space (section))
2360 section = section->next;
2361
2362 /* Now iterate through each of its subspaces. */
2363 for (subsection = abfd->sections;
2364 subsection != NULL;
2365 subsection = subsection->next)
2366 {
2367 int reloc_offset, current_rounding_mode;
2368
2369 /* Find a subspace of this space. */
2370 if (!som_is_subspace (subsection)
2371 || !som_is_container (section, subsection))
2372 continue;
2373
2374 /* If this subspace does not have real data, then we are
2375 finised with it. */
2376 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2377 {
2378 som_section_data (subsection)->subspace_dict->fixup_request_index
2379 = -1;
2380 continue;
2381 }
2382
2383 /* This subspace has some relocations. Put the relocation stream
2384 index into the subspace record. */
2385 som_section_data (subsection)->subspace_dict->fixup_request_index
2386 = total_reloc_size;
2387
2388 /* To make life easier start over with a clean slate for
2389 each subspace. Seek to the start of the relocation stream
2390 for this subspace in preparation for writing out its fixup
2391 stream. */
2392 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2393 return false;
2394
2395 /* Buffer space has already been allocated. Just perform some
2396 initialization here. */
2397 p = tmp_space;
2398 subspace_reloc_size = 0;
2399 reloc_offset = 0;
2400 som_initialize_reloc_queue (reloc_queue);
2401 current_rounding_mode = R_N_MODE;
2402
2403 /* Translate each BFD relocation into one or more SOM
2404 relocations. */
2405 for (j = 0; j < subsection->reloc_count; j++)
2406 {
2407 arelent *bfd_reloc = subsection->orelocation[j];
2408 unsigned int skip;
2409 int sym_num;
2410
2411 /* Get the symbol number. Remember it's stored in a
2412 special place for section symbols. */
2413 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2414 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2415 else
2416 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2417
2418 /* If there is not enough room for the next couple relocations,
2419 then dump the current buffer contents now. Also reinitialize
2420 the relocation queue.
2421
2422 No single BFD relocation could ever translate into more
2423 than 100 bytes of SOM relocations (20bytes is probably the
2424 upper limit, but leave lots of space for growth). */
2425 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2426 {
2427 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2428 != p - tmp_space)
2429 return false;
2430
2431 p = tmp_space;
2432 som_initialize_reloc_queue (reloc_queue);
2433 }
2434
2435 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2436 skipped. */
2437 skip = bfd_reloc->address - reloc_offset;
2438 p = som_reloc_skip (abfd, skip, p,
2439 &subspace_reloc_size, reloc_queue);
2440
2441 /* Update reloc_offset for the next iteration.
2442
2443 Many relocations do not consume input bytes. They
2444 are markers, or set state necessary to perform some
2445 later relocation. */
2446 switch (bfd_reloc->howto->type)
2447 {
2448 /* This only needs to handle relocations that may be
2449 made by hppa_som_gen_reloc. */
2450 case R_ENTRY:
2451 case R_ALT_ENTRY:
2452 case R_EXIT:
2453 case R_N_MODE:
2454 case R_S_MODE:
2455 case R_D_MODE:
2456 case R_R_MODE:
2457 case R_FSEL:
2458 case R_LSEL:
2459 case R_RSEL:
2460 reloc_offset = bfd_reloc->address;
2461 break;
2462
2463 default:
2464 reloc_offset = bfd_reloc->address + 4;
2465 break;
2466 }
2467
2468 /* Now the actual relocation we care about. */
2469 switch (bfd_reloc->howto->type)
2470 {
2471 case R_PCREL_CALL:
2472 case R_ABS_CALL:
2473 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2474 bfd_reloc, sym_num, reloc_queue);
2475 break;
2476
2477 case R_CODE_ONE_SYMBOL:
2478 case R_DP_RELATIVE:
2479 /* Account for any addend. */
2480 if (bfd_reloc->addend)
2481 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2482 &subspace_reloc_size, reloc_queue);
2483
2484 if (sym_num < 0x20)
2485 {
2486 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2487 subspace_reloc_size += 1;
2488 p += 1;
2489 }
2490 else if (sym_num < 0x100)
2491 {
2492 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2493 bfd_put_8 (abfd, sym_num, p + 1);
2494 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2495 2, reloc_queue);
2496 }
2497 else if (sym_num < 0x10000000)
2498 {
2499 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2500 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2501 bfd_put_16 (abfd, sym_num, p + 2);
2502 p = try_prev_fixup (abfd, &subspace_reloc_size,
2503 p, 4, reloc_queue);
2504 }
2505 else
2506 abort ();
2507 break;
2508
2509 case R_DATA_ONE_SYMBOL:
2510 case R_DATA_PLABEL:
2511 case R_CODE_PLABEL:
2512 case R_DLT_REL:
2513 /* Account for any addend. */
2514 if (bfd_reloc->addend)
2515 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2516 &subspace_reloc_size, reloc_queue);
2517
2518 if (sym_num < 0x100)
2519 {
2520 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2521 bfd_put_8 (abfd, sym_num, p + 1);
2522 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2523 2, reloc_queue);
2524 }
2525 else if (sym_num < 0x10000000)
2526 {
2527 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2528 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2529 bfd_put_16 (abfd, sym_num, p + 2);
2530 p = try_prev_fixup (abfd, &subspace_reloc_size,
2531 p, 4, reloc_queue);
2532 }
2533 else
2534 abort ();
2535 break;
2536
2537 case R_ENTRY:
2538 {
2539 int tmp;
2540 arelent *tmp_reloc;
2541 bfd_put_8 (abfd, R_ENTRY, p);
2542
2543 /* R_ENTRY relocations have 64 bits of associated
2544 data. Unfortunately the addend field of a bfd
2545 relocation is only 32 bits. So, we split up
2546 the 64bit unwind information and store part in
2547 the R_ENTRY relocation, and the rest in the R_EXIT
2548 relocation. */
2549 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2550
2551 /* Find the next R_EXIT relocation. */
2552 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2553 {
2554 tmp_reloc = subsection->orelocation[tmp];
2555 if (tmp_reloc->howto->type == R_EXIT)
2556 break;
2557 }
2558
2559 if (tmp == subsection->reloc_count)
2560 abort ();
2561
2562 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2563 p = try_prev_fixup (abfd, &subspace_reloc_size,
2564 p, 9, reloc_queue);
2565 break;
2566 }
2567
2568 case R_N_MODE:
2569 case R_S_MODE:
2570 case R_D_MODE:
2571 case R_R_MODE:
2572 /* If this relocation requests the current rounding
2573 mode, then it is redundant. */
2574 if (bfd_reloc->howto->type != current_rounding_mode)
2575 {
2576 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2577 subspace_reloc_size += 1;
2578 p += 1;
2579 current_rounding_mode = bfd_reloc->howto->type;
2580 }
2581 break;
2582
2583 case R_EXIT:
2584 case R_ALT_ENTRY:
2585 case R_FSEL:
2586 case R_LSEL:
2587 case R_RSEL:
2588 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2589 subspace_reloc_size += 1;
2590 p += 1;
2591 break;
2592
2593 /* Put a "R_RESERVED" relocation in the stream if
2594 we hit something we do not understand. The linker
2595 will complain loudly if this ever happens. */
2596 default:
2597 bfd_put_8 (abfd, 0xff, p);
2598 subspace_reloc_size += 1;
2599 p += 1;
2600 break;
2601 }
2602 }
2603
2604 /* Last BFD relocation for a subspace has been processed.
2605 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2606 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2607 - reloc_offset,
2608 p, &subspace_reloc_size, reloc_queue);
2609
2610 /* Scribble out the relocations. */
2611 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2612 != p - tmp_space)
2613 return false;
2614 p = tmp_space;
2615
2616 total_reloc_size += subspace_reloc_size;
2617 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2618 = subspace_reloc_size;
2619 }
2620 section = section->next;
2621 }
2622 *total_reloc_sizep = total_reloc_size;
2623 return true;
2624 }
2625
2626 /* Write out the space/subspace string table. */
2627
2628 static boolean
2629 som_write_space_strings (abfd, current_offset, string_sizep)
2630 bfd *abfd;
2631 unsigned long current_offset;
2632 unsigned int *string_sizep;
2633 {
2634 /* Chunk of memory that we can use as buffer space, then throw
2635 away. */
2636 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2637 unsigned char *p;
2638 unsigned int strings_size = 0;
2639 asection *section;
2640
2641 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2642 p = tmp_space;
2643
2644 /* Seek to the start of the space strings in preparation for writing
2645 them out. */
2646 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2647 return false;
2648
2649 /* Walk through all the spaces and subspaces (order is not important)
2650 building up and writing string table entries for their names. */
2651 for (section = abfd->sections; section != NULL; section = section->next)
2652 {
2653 int length;
2654
2655 /* Only work with space/subspaces; avoid any other sections
2656 which might have been made (.text for example). */
2657 if (!som_is_space (section) && !som_is_subspace (section))
2658 continue;
2659
2660 /* Get the length of the space/subspace name. */
2661 length = strlen (section->name);
2662
2663 /* If there is not enough room for the next entry, then dump the
2664 current buffer contents now. Each entry will take 4 bytes to
2665 hold the string length + the string itself + null terminator. */
2666 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2667 {
2668 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2669 != p - tmp_space)
2670 return false;
2671 /* Reset to beginning of the buffer space. */
2672 p = tmp_space;
2673 }
2674
2675 /* First element in a string table entry is the length of the
2676 string. Alignment issues are already handled. */
2677 bfd_put_32 (abfd, length, p);
2678 p += 4;
2679 strings_size += 4;
2680
2681 /* Record the index in the space/subspace records. */
2682 if (som_is_space (section))
2683 som_section_data (section)->space_dict->name.n_strx = strings_size;
2684 else
2685 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2686
2687 /* Next comes the string itself + a null terminator. */
2688 strcpy (p, section->name);
2689 p += length + 1;
2690 strings_size += length + 1;
2691
2692 /* Always align up to the next word boundary. */
2693 while (strings_size % 4)
2694 {
2695 bfd_put_8 (abfd, 0, p);
2696 p++;
2697 strings_size++;
2698 }
2699 }
2700
2701 /* Done with the space/subspace strings. Write out any information
2702 contained in a partial block. */
2703 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2704 return false;
2705 *string_sizep = strings_size;
2706 return true;
2707 }
2708
2709 /* Write out the symbol string table. */
2710
2711 static boolean
2712 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2713 bfd *abfd;
2714 unsigned long current_offset;
2715 asymbol **syms;
2716 unsigned int num_syms;
2717 unsigned int *string_sizep;
2718 {
2719 unsigned int i;
2720
2721 /* Chunk of memory that we can use as buffer space, then throw
2722 away. */
2723 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2724 unsigned char *p;
2725 unsigned int strings_size = 0;
2726
2727 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2728 p = tmp_space;
2729
2730 /* Seek to the start of the space strings in preparation for writing
2731 them out. */
2732 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2733 return false;
2734
2735 for (i = 0; i < num_syms; i++)
2736 {
2737 int length = strlen (syms[i]->name);
2738
2739 /* If there is not enough room for the next entry, then dump the
2740 current buffer contents now. */
2741 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2742 {
2743 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2744 != p - tmp_space)
2745 return false;
2746 /* Reset to beginning of the buffer space. */
2747 p = tmp_space;
2748 }
2749
2750 /* First element in a string table entry is the length of the
2751 string. This must always be 4 byte aligned. This is also
2752 an appropriate time to fill in the string index field in the
2753 symbol table entry. */
2754 bfd_put_32 (abfd, length, p);
2755 strings_size += 4;
2756 p += 4;
2757
2758 /* Next comes the string itself + a null terminator. */
2759 strcpy (p, syms[i]->name);
2760
2761 /* ACK. FIXME. */
2762 syms[i]->name = (char *)strings_size;
2763 p += length + 1;
2764 strings_size += length + 1;
2765
2766 /* Always align up to the next word boundary. */
2767 while (strings_size % 4)
2768 {
2769 bfd_put_8 (abfd, 0, p);
2770 strings_size++;
2771 p++;
2772 }
2773 }
2774
2775 /* Scribble out any partial block. */
2776 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2777 return false;
2778
2779 *string_sizep = strings_size;
2780 return true;
2781 }
2782
2783 /* Compute variable information to be placed in the SOM headers,
2784 space/subspace dictionaries, relocation streams, etc. Begin
2785 writing parts of the object file. */
2786
2787 static boolean
2788 som_begin_writing (abfd)
2789 bfd *abfd;
2790 {
2791 unsigned long current_offset = 0;
2792 int strings_size = 0;
2793 unsigned int total_reloc_size = 0;
2794 unsigned long num_spaces, num_subspaces, num_syms, i;
2795 asection *section;
2796 asymbol **syms = bfd_get_outsymbols (abfd);
2797 unsigned int total_subspaces = 0;
2798 struct som_exec_auxhdr *exec_header;
2799
2800 /* The file header will always be first in an object file,
2801 everything else can be in random locations. To keep things
2802 "simple" BFD will lay out the object file in the manner suggested
2803 by the PRO ABI for PA-RISC Systems. */
2804
2805 /* Before any output can really begin offsets for all the major
2806 portions of the object file must be computed. So, starting
2807 with the initial file header compute (and sometimes write)
2808 each portion of the object file. */
2809
2810 /* Make room for the file header, it's contents are not complete
2811 yet, so it can not be written at this time. */
2812 current_offset += sizeof (struct header);
2813
2814 /* Any auxiliary headers will follow the file header. Right now
2815 we support only the copyright and version headers. */
2816 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2817 obj_som_file_hdr (abfd)->aux_header_size = 0;
2818 if (abfd->flags & (EXEC_P | DYNAMIC))
2819 {
2820 /* Parts of the exec header will be filled in later, so
2821 delay writing the header itself. Fill in the defaults,
2822 and write it later. */
2823 current_offset += sizeof (struct som_exec_auxhdr);
2824 obj_som_file_hdr (abfd)->aux_header_size
2825 += sizeof (struct som_exec_auxhdr);
2826 exec_header = obj_som_exec_hdr (abfd);
2827 exec_header->som_auxhdr.type = EXEC_AUX_ID;
2828 exec_header->som_auxhdr.length = 40;
2829 }
2830 if (obj_som_version_hdr (abfd) != NULL)
2831 {
2832 unsigned int len;
2833
2834 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2835 return false;
2836
2837 /* Write the aux_id structure and the string length. */
2838 len = sizeof (struct aux_id) + sizeof (unsigned int);
2839 obj_som_file_hdr (abfd)->aux_header_size += len;
2840 current_offset += len;
2841 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2842 return false;
2843
2844 /* Write the version string. */
2845 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2846 obj_som_file_hdr (abfd)->aux_header_size += len;
2847 current_offset += len;
2848 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2849 len, 1, abfd) != len)
2850 return false;
2851 }
2852
2853 if (obj_som_copyright_hdr (abfd) != NULL)
2854 {
2855 unsigned int len;
2856
2857 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2858 return false;
2859
2860 /* Write the aux_id structure and the string length. */
2861 len = sizeof (struct aux_id) + sizeof (unsigned int);
2862 obj_som_file_hdr (abfd)->aux_header_size += len;
2863 current_offset += len;
2864 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2865 return false;
2866
2867 /* Write the copyright string. */
2868 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2869 obj_som_file_hdr (abfd)->aux_header_size += len;
2870 current_offset += len;
2871 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2872 len, 1, abfd) != len)
2873 return false;
2874 }
2875
2876 /* Next comes the initialization pointers; we have no initialization
2877 pointers, so current offset does not change. */
2878 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2879 obj_som_file_hdr (abfd)->init_array_total = 0;
2880
2881 /* Next are the space records. These are fixed length records.
2882
2883 Count the number of spaces to determine how much room is needed
2884 in the object file for the space records.
2885
2886 The names of the spaces are stored in a separate string table,
2887 and the index for each space into the string table is computed
2888 below. Therefore, it is not possible to write the space headers
2889 at this time. */
2890 num_spaces = som_count_spaces (abfd);
2891 obj_som_file_hdr (abfd)->space_location = current_offset;
2892 obj_som_file_hdr (abfd)->space_total = num_spaces;
2893 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2894
2895 /* Next are the subspace records. These are fixed length records.
2896
2897 Count the number of subspaes to determine how much room is needed
2898 in the object file for the subspace records.
2899
2900 A variety if fields in the subspace record are still unknown at
2901 this time (index into string table, fixup stream location/size, etc). */
2902 num_subspaces = som_count_subspaces (abfd);
2903 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2904 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2905 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2906
2907 /* Next is the string table for the space/subspace names. We will
2908 build and write the string table on the fly. At the same time
2909 we will fill in the space/subspace name index fields. */
2910
2911 /* The string table needs to be aligned on a word boundary. */
2912 if (current_offset % 4)
2913 current_offset += (4 - (current_offset % 4));
2914
2915 /* Mark the offset of the space/subspace string table in the
2916 file header. */
2917 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2918
2919 /* Scribble out the space strings. */
2920 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2921 return false;
2922
2923 /* Record total string table size in the header and update the
2924 current offset. */
2925 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2926 current_offset += strings_size;
2927
2928 /* Next is the symbol table. These are fixed length records.
2929
2930 Count the number of symbols to determine how much room is needed
2931 in the object file for the symbol table.
2932
2933 The names of the symbols are stored in a separate string table,
2934 and the index for each symbol name into the string table is computed
2935 below. Therefore, it is not possible to write the symobl table
2936 at this time. */
2937 num_syms = bfd_get_symcount (abfd);
2938 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2939 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2940 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2941
2942 /* Do prep work before handling fixups. */
2943 som_prep_for_fixups (abfd, syms, num_syms);
2944
2945 /* Next comes the fixup stream which starts on a word boundary. */
2946 if (current_offset % 4)
2947 current_offset += (4 - (current_offset % 4));
2948 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2949
2950 /* Write the fixups and update fields in subspace headers which
2951 relate to the fixup stream. */
2952 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2953 return false;
2954
2955 /* Record the total size of the fixup stream in the file header. */
2956 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2957 current_offset += total_reloc_size;
2958
2959 /* Next are the symbol strings.
2960 Align them to a word boundary. */
2961 if (current_offset % 4)
2962 current_offset += (4 - (current_offset % 4));
2963 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2964
2965 /* Scribble out the symbol strings. */
2966 if (som_write_symbol_strings (abfd, current_offset, syms,
2967 num_syms, &strings_size)
2968 == false)
2969 return false;
2970
2971 /* Record total string table size in header and update the
2972 current offset. */
2973 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2974 current_offset += strings_size;
2975
2976 /* Next is the compiler records. We do not use these. */
2977 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2978 obj_som_file_hdr (abfd)->compiler_total = 0;
2979
2980 /* Now compute the file positions for the loadable subspaces, taking
2981 care to make sure everything stays properly aligned. */
2982
2983 section = abfd->sections;
2984 for (i = 0; i < num_spaces; i++)
2985 {
2986 asection *subsection;
2987 int first_subspace;
2988 unsigned int subspace_offset = 0;
2989
2990 /* Find a space. */
2991 while (!som_is_space (section))
2992 section = section->next;
2993
2994 first_subspace = 1;
2995 /* Now look for all its subspaces. */
2996 for (subsection = abfd->sections;
2997 subsection != NULL;
2998 subsection = subsection->next)
2999 {
3000
3001 if (!som_is_subspace (subsection)
3002 || !som_is_container (section, subsection)
3003 || (subsection->flags & SEC_ALLOC) == 0)
3004 continue;
3005
3006 /* If this is the first subspace in the space, and we are
3007 building an executable, then take care to make sure all
3008 the alignments are correct and update the exec header. */
3009 if (first_subspace
3010 && (abfd->flags & (EXEC_P | DYNAMIC)))
3011 {
3012 /* Demand paged executables have each space aligned to a
3013 page boundary. Sharable executables (write-protected
3014 text) have just the private (aka data & bss) space aligned
3015 to a page boundary. Ugh. Not true for HPUX.
3016
3017 The HPUX kernel requires the text to always be page aligned
3018 within the file regardless of the executable's type. */
3019 if (abfd->flags & (D_PAGED | DYNAMIC)
3020 || (subsection->flags & SEC_CODE)
3021 || ((abfd->flags & WP_TEXT)
3022 && (subsection->flags & SEC_DATA)))
3023 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3024
3025 /* Update the exec header. */
3026 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3027 {
3028 exec_header->exec_tmem = section->vma;
3029 exec_header->exec_tfile = current_offset;
3030 }
3031 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3032 {
3033 exec_header->exec_dmem = section->vma;
3034 exec_header->exec_dfile = current_offset;
3035 }
3036
3037 /* Keep track of exactly where we are within a particular
3038 space. This is necessary as the braindamaged HPUX
3039 loader will create holes between subspaces *and*
3040 subspace alignments are *NOT* preserved. What a crock. */
3041 subspace_offset = subsection->vma;
3042
3043 /* Only do this for the first subspace within each space. */
3044 first_subspace = 0;
3045 }
3046 else if (abfd->flags & (EXEC_P | DYNAMIC))
3047 {
3048 /* The braindamaged HPUX loader may have created a hole
3049 between two subspaces. It is *not* sufficient to use
3050 the alignment specifications within the subspaces to
3051 account for these holes -- I've run into at least one
3052 case where the loader left one code subspace unaligned
3053 in a final executable.
3054
3055 To combat this we keep a current offset within each space,
3056 and use the subspace vma fields to detect and preserve
3057 holes. What a crock!
3058
3059 ps. This is not necessary for unloadable space/subspaces. */
3060 current_offset += subsection->vma - subspace_offset;
3061 if (subsection->flags & SEC_CODE)
3062 exec_header->exec_tsize += subsection->vma - subspace_offset;
3063 else
3064 exec_header->exec_dsize += subsection->vma - subspace_offset;
3065 subspace_offset += subsection->vma - subspace_offset;
3066 }
3067
3068
3069 subsection->target_index = total_subspaces++;
3070 /* This is real data to be loaded from the file. */
3071 if (subsection->flags & SEC_LOAD)
3072 {
3073 /* Update the size of the code & data. */
3074 if (abfd->flags & (EXEC_P | DYNAMIC)
3075 && subsection->flags & SEC_CODE)
3076 exec_header->exec_tsize += subsection->_cooked_size;
3077 else if (abfd->flags & (EXEC_P | DYNAMIC)
3078 && subsection->flags & SEC_DATA)
3079 exec_header->exec_dsize += subsection->_cooked_size;
3080 som_section_data (subsection)->subspace_dict->file_loc_init_value
3081 = current_offset;
3082 subsection->filepos = current_offset;
3083 current_offset += bfd_section_size (abfd, subsection);
3084 subspace_offset += bfd_section_size (abfd, subsection);
3085 }
3086 /* Looks like uninitialized data. */
3087 else
3088 {
3089 /* Update the size of the bss section. */
3090 if (abfd->flags & (EXEC_P | DYNAMIC))
3091 exec_header->exec_bsize += subsection->_cooked_size;
3092
3093 som_section_data (subsection)->subspace_dict->file_loc_init_value
3094 = 0;
3095 som_section_data (subsection)->subspace_dict->
3096 initialization_length = 0;
3097 }
3098 }
3099 /* Goto the next section. */
3100 section = section->next;
3101 }
3102
3103 /* Finally compute the file positions for unloadable subspaces.
3104 If building an executable, start the unloadable stuff on its
3105 own page. */
3106
3107 if (abfd->flags & (EXEC_P | DYNAMIC))
3108 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3109
3110 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3111 section = abfd->sections;
3112 for (i = 0; i < num_spaces; i++)
3113 {
3114 asection *subsection;
3115
3116 /* Find a space. */
3117 while (!som_is_space (section))
3118 section = section->next;
3119
3120 if (abfd->flags & (EXEC_P | DYNAMIC))
3121 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3122
3123 /* Now look for all its subspaces. */
3124 for (subsection = abfd->sections;
3125 subsection != NULL;
3126 subsection = subsection->next)
3127 {
3128
3129 if (!som_is_subspace (subsection)
3130 || !som_is_container (section, subsection)
3131 || (subsection->flags & SEC_ALLOC) != 0)
3132 continue;
3133
3134 subsection->target_index = total_subspaces;
3135 /* This is real data to be loaded from the file. */
3136 if ((subsection->flags & SEC_LOAD) == 0)
3137 {
3138 som_section_data (subsection)->subspace_dict->file_loc_init_value
3139 = current_offset;
3140 subsection->filepos = current_offset;
3141 current_offset += bfd_section_size (abfd, subsection);
3142 }
3143 /* Looks like uninitialized data. */
3144 else
3145 {
3146 som_section_data (subsection)->subspace_dict->file_loc_init_value
3147 = 0;
3148 som_section_data (subsection)->subspace_dict->
3149 initialization_length = bfd_section_size (abfd, subsection);
3150 }
3151 }
3152 /* Goto the next section. */
3153 section = section->next;
3154 }
3155
3156 /* If building an executable, then make sure to seek to and write
3157 one byte at the end of the file to make sure any necessary
3158 zeros are filled in. Ugh. */
3159 if (abfd->flags & (EXEC_P | DYNAMIC))
3160 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3161 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3162 return false;
3163 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3164 return false;
3165
3166 obj_som_file_hdr (abfd)->unloadable_sp_size
3167 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3168
3169 /* Loader fixups are not supported in any way shape or form. */
3170 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3171 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3172
3173 /* Done. Store the total size of the SOM. */
3174 obj_som_file_hdr (abfd)->som_length = current_offset;
3175
3176 return true;
3177 }
3178
3179 /* Finally, scribble out the various headers to the disk. */
3180
3181 static boolean
3182 som_write_headers (abfd)
3183 bfd *abfd;
3184 {
3185 int num_spaces = som_count_spaces (abfd);
3186 int i;
3187 int subspace_index = 0;
3188 file_ptr location;
3189 asection *section;
3190
3191 /* Subspaces are written first so that we can set up information
3192 about them in their containing spaces as the subspace is written. */
3193
3194 /* Seek to the start of the subspace dictionary records. */
3195 location = obj_som_file_hdr (abfd)->subspace_location;
3196 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3197 return false;
3198
3199 section = abfd->sections;
3200 /* Now for each loadable space write out records for its subspaces. */
3201 for (i = 0; i < num_spaces; i++)
3202 {
3203 asection *subsection;
3204
3205 /* Find a space. */
3206 while (!som_is_space (section))
3207 section = section->next;
3208
3209 /* Now look for all its subspaces. */
3210 for (subsection = abfd->sections;
3211 subsection != NULL;
3212 subsection = subsection->next)
3213 {
3214
3215 /* Skip any section which does not correspond to a space
3216 or subspace. Or does not have SEC_ALLOC set (and therefore
3217 has no real bits on the disk). */
3218 if (!som_is_subspace (subsection)
3219 || !som_is_container (section, subsection)
3220 || (subsection->flags & SEC_ALLOC) == 0)
3221 continue;
3222
3223 /* If this is the first subspace for this space, then save
3224 the index of the subspace in its containing space. Also
3225 set "is_loadable" in the containing space. */
3226
3227 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3228 {
3229 som_section_data (section)->space_dict->is_loadable = 1;
3230 som_section_data (section)->space_dict->subspace_index
3231 = subspace_index;
3232 }
3233
3234 /* Increment the number of subspaces seen and the number of
3235 subspaces contained within the current space. */
3236 subspace_index++;
3237 som_section_data (section)->space_dict->subspace_quantity++;
3238
3239 /* Mark the index of the current space within the subspace's
3240 dictionary record. */
3241 som_section_data (subsection)->subspace_dict->space_index = i;
3242
3243 /* Dump the current subspace header. */
3244 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3245 sizeof (struct subspace_dictionary_record), 1, abfd)
3246 != sizeof (struct subspace_dictionary_record))
3247 return false;
3248 }
3249 /* Goto the next section. */
3250 section = section->next;
3251 }
3252
3253 /* Now repeat the process for unloadable subspaces. */
3254 section = abfd->sections;
3255 /* Now for each space write out records for its subspaces. */
3256 for (i = 0; i < num_spaces; i++)
3257 {
3258 asection *subsection;
3259
3260 /* Find a space. */
3261 while (!som_is_space (section))
3262 section = section->next;
3263
3264 /* Now look for all its subspaces. */
3265 for (subsection = abfd->sections;
3266 subsection != NULL;
3267 subsection = subsection->next)
3268 {
3269
3270 /* Skip any section which does not correspond to a space or
3271 subspace, or which SEC_ALLOC set (and therefore handled
3272 in the loadable spaces/subspaces code above). */
3273
3274 if (!som_is_subspace (subsection)
3275 || !som_is_container (section, subsection)
3276 || (subsection->flags & SEC_ALLOC) != 0)
3277 continue;
3278
3279 /* If this is the first subspace for this space, then save
3280 the index of the subspace in its containing space. Clear
3281 "is_loadable". */
3282
3283 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3284 {
3285 som_section_data (section)->space_dict->is_loadable = 0;
3286 som_section_data (section)->space_dict->subspace_index
3287 = subspace_index;
3288 }
3289
3290 /* Increment the number of subspaces seen and the number of
3291 subspaces contained within the current space. */
3292 som_section_data (section)->space_dict->subspace_quantity++;
3293 subspace_index++;
3294
3295 /* Mark the index of the current space within the subspace's
3296 dictionary record. */
3297 som_section_data (subsection)->subspace_dict->space_index = i;
3298
3299 /* Dump this subspace header. */
3300 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3301 sizeof (struct subspace_dictionary_record), 1, abfd)
3302 != sizeof (struct subspace_dictionary_record))
3303 return false;
3304 }
3305 /* Goto the next section. */
3306 section = section->next;
3307 }
3308
3309 /* All the subspace dictiondary records are written, and all the
3310 fields are set up in the space dictionary records.
3311
3312 Seek to the right location and start writing the space
3313 dictionary records. */
3314 location = obj_som_file_hdr (abfd)->space_location;
3315 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3316 return false;
3317
3318 section = abfd->sections;
3319 for (i = 0; i < num_spaces; i++)
3320 {
3321
3322 /* Find a space. */
3323 while (!som_is_space (section))
3324 section = section->next;
3325
3326 /* Dump its header */
3327 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3328 sizeof (struct space_dictionary_record), 1, abfd)
3329 != sizeof (struct space_dictionary_record))
3330 return false;
3331
3332 /* Goto the next section. */
3333 section = section->next;
3334 }
3335
3336 /* FIXME. This should really be conditional based on whether or not
3337 PA1.1 instructions/registers have been used.
3338
3339 Setting of the system_id has to happen very late now that copying of
3340 BFD private data happens *after* section contents are set. */
3341 if (abfd->flags & (EXEC_P | DYNAMIC))
3342 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3343 else
3344 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3345
3346 /* Compute the checksum for the file header just before writing
3347 the header to disk. */
3348 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3349
3350 /* Only thing left to do is write out the file header. It is always
3351 at location zero. Seek there and write it. */
3352 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3353 return false;
3354 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3355 sizeof (struct header), 1, abfd)
3356 != sizeof (struct header))
3357 return false;
3358
3359 /* Now write the exec header. */
3360 if (abfd->flags & (EXEC_P | DYNAMIC))
3361 {
3362 long tmp;
3363 struct som_exec_auxhdr *exec_header;
3364
3365 exec_header = obj_som_exec_hdr (abfd);
3366 exec_header->exec_entry = bfd_get_start_address (abfd);
3367 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3368
3369 /* Oh joys. Ram some of the BSS data into the DATA section
3370 to be compatable with how the hp linker makes objects
3371 (saves memory space). */
3372 tmp = exec_header->exec_dsize;
3373 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3374 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3375 if (exec_header->exec_bsize < 0)
3376 exec_header->exec_bsize = 0;
3377 exec_header->exec_dsize = tmp;
3378
3379 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3380 SEEK_SET) < 0)
3381 return false;
3382
3383 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3384 != AUX_HDR_SIZE)
3385 return false;
3386 }
3387 return true;
3388 }
3389
3390 /* Compute and return the checksum for a SOM file header. */
3391
3392 static unsigned long
3393 som_compute_checksum (abfd)
3394 bfd *abfd;
3395 {
3396 unsigned long checksum, count, i;
3397 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3398
3399 checksum = 0;
3400 count = sizeof (struct header) / sizeof (unsigned long);
3401 for (i = 0; i < count; i++)
3402 checksum ^= *(buffer + i);
3403
3404 return checksum;
3405 }
3406
3407 static void
3408 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3409 bfd *abfd;
3410 asymbol *sym;
3411 struct som_misc_symbol_info *info;
3412 {
3413 /* Initialize. */
3414 memset (info, 0, sizeof (struct som_misc_symbol_info));
3415
3416 /* The HP SOM linker requires detailed type information about
3417 all symbols (including undefined symbols!). Unfortunately,
3418 the type specified in an import/export statement does not
3419 always match what the linker wants. Severe braindamage. */
3420
3421 /* Section symbols will not have a SOM symbol type assigned to
3422 them yet. Assign all section symbols type ST_DATA. */
3423 if (sym->flags & BSF_SECTION_SYM)
3424 info->symbol_type = ST_DATA;
3425 else
3426 {
3427 /* Common symbols must have scope SS_UNSAT and type
3428 ST_STORAGE or the linker will choke. */
3429 if (bfd_is_com_section (sym->section))
3430 {
3431 info->symbol_scope = SS_UNSAT;
3432 info->symbol_type = ST_STORAGE;
3433 }
3434
3435 /* It is possible to have a symbol without an associated
3436 type. This happens if the user imported the symbol
3437 without a type and the symbol was never defined
3438 locally. If BSF_FUNCTION is set for this symbol, then
3439 assign it type ST_CODE (the HP linker requires undefined
3440 external functions to have type ST_CODE rather than ST_ENTRY). */
3441 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3442 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3443 && bfd_is_und_section (sym->section)
3444 && sym->flags & BSF_FUNCTION)
3445 info->symbol_type = ST_CODE;
3446
3447 /* Handle function symbols which were defined in this file.
3448 They should have type ST_ENTRY. Also retrieve the argument
3449 relocation bits from the SOM backend information. */
3450 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3451 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3452 && (sym->flags & BSF_FUNCTION))
3453 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3454 && (sym->flags & BSF_FUNCTION)))
3455 {
3456 info->symbol_type = ST_ENTRY;
3457 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3458 }
3459
3460 /* If the type is unknown at this point, it should be ST_DATA or
3461 ST_CODE (function/ST_ENTRY symbols were handled as special
3462 cases above). */
3463 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3464 {
3465 if (sym->section->flags & SEC_CODE)
3466 info->symbol_type = ST_CODE;
3467 else
3468 info->symbol_type = ST_DATA;
3469 }
3470
3471 /* From now on it's a very simple mapping. */
3472 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3473 info->symbol_type = ST_ABSOLUTE;
3474 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3475 info->symbol_type = ST_CODE;
3476 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3477 info->symbol_type = ST_DATA;
3478 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3479 info->symbol_type = ST_MILLICODE;
3480 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3481 info->symbol_type = ST_PLABEL;
3482 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3483 info->symbol_type = ST_PRI_PROG;
3484 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3485 info->symbol_type = ST_SEC_PROG;
3486 }
3487
3488 /* Now handle the symbol's scope. Exported data which is not
3489 in the common section has scope SS_UNIVERSAL. Note scope
3490 of common symbols was handled earlier! */
3491 if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3492 info->symbol_scope = SS_UNIVERSAL;
3493 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3494 else if (bfd_is_und_section (sym->section))
3495 info->symbol_scope = SS_UNSAT;
3496 /* Anything else which is not in the common section has scope
3497 SS_LOCAL. */
3498 else if (! bfd_is_com_section (sym->section))
3499 info->symbol_scope = SS_LOCAL;
3500
3501 /* Now set the symbol_info field. It has no real meaning
3502 for undefined or common symbols, but the HP linker will
3503 choke if it's not set to some "reasonable" value. We
3504 use zero as a reasonable value. */
3505 if (bfd_is_com_section (sym->section)
3506 || bfd_is_und_section (sym->section)
3507 || bfd_is_abs_section (sym->section))
3508 info->symbol_info = 0;
3509 /* For all other symbols, the symbol_info field contains the
3510 subspace index of the space this symbol is contained in. */
3511 else
3512 info->symbol_info = sym->section->target_index;
3513
3514 /* Set the symbol's value. */
3515 info->symbol_value = sym->value + sym->section->vma;
3516 }
3517
3518 /* Build and write, in one big chunk, the entire symbol table for
3519 this BFD. */
3520
3521 static boolean
3522 som_build_and_write_symbol_table (abfd)
3523 bfd *abfd;
3524 {
3525 unsigned int num_syms = bfd_get_symcount (abfd);
3526 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3527 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3528 struct symbol_dictionary_record *som_symtab = NULL;
3529 int i, symtab_size;
3530
3531 /* Compute total symbol table size and allocate a chunk of memory
3532 to hold the symbol table as we build it. */
3533 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3534 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3535 if (som_symtab == NULL && symtab_size != 0)
3536 {
3537 bfd_set_error (bfd_error_no_memory);
3538 goto error_return;
3539 }
3540 memset (som_symtab, 0, symtab_size);
3541
3542 /* Walk over each symbol. */
3543 for (i = 0; i < num_syms; i++)
3544 {
3545 struct som_misc_symbol_info info;
3546
3547 /* This is really an index into the symbol strings table.
3548 By the time we get here, the index has already been
3549 computed and stored into the name field in the BFD symbol. */
3550 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3551
3552 /* Derive SOM information from the BFD symbol. */
3553 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3554
3555 /* Now use it. */
3556 som_symtab[i].symbol_type = info.symbol_type;
3557 som_symtab[i].symbol_scope = info.symbol_scope;
3558 som_symtab[i].arg_reloc = info.arg_reloc;
3559 som_symtab[i].symbol_info = info.symbol_info;
3560 som_symtab[i].symbol_value = info.symbol_value;
3561 }
3562
3563 /* Everything is ready, seek to the right location and
3564 scribble out the symbol table. */
3565 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3566 return false;
3567
3568 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3569 goto error_return;
3570
3571 if (som_symtab != NULL)
3572 free (som_symtab);
3573 return true;
3574 error_return:
3575 if (som_symtab != NULL)
3576 free (som_symtab);
3577 return false;
3578 }
3579
3580 /* Write an object in SOM format. */
3581
3582 static boolean
3583 som_write_object_contents (abfd)
3584 bfd *abfd;
3585 {
3586 if (abfd->output_has_begun == false)
3587 {
3588 /* Set up fixed parts of the file, space, and subspace headers.
3589 Notify the world that output has begun. */
3590 som_prep_headers (abfd);
3591 abfd->output_has_begun = true;
3592 /* Start writing the object file. This include all the string
3593 tables, fixup streams, and other portions of the object file. */
3594 som_begin_writing (abfd);
3595 }
3596
3597 /* Now that the symbol table information is complete, build and
3598 write the symbol table. */
3599 if (som_build_and_write_symbol_table (abfd) == false)
3600 return false;
3601
3602 return (som_write_headers (abfd));
3603 }
3604
3605 \f
3606 /* Read and save the string table associated with the given BFD. */
3607
3608 static boolean
3609 som_slurp_string_table (abfd)
3610 bfd *abfd;
3611 {
3612 char *stringtab;
3613
3614 /* Use the saved version if its available. */
3615 if (obj_som_stringtab (abfd) != NULL)
3616 return true;
3617
3618 /* I don't think this can currently happen, and I'm not sure it should
3619 really be an error, but it's better than getting unpredictable results
3620 from the host's malloc when passed a size of zero. */
3621 if (obj_som_stringtab_size (abfd) == 0)
3622 {
3623 bfd_set_error (bfd_error_no_symbols);
3624 return false;
3625 }
3626
3627 /* Allocate and read in the string table. */
3628 stringtab = malloc (obj_som_stringtab_size (abfd));
3629 if (stringtab == NULL)
3630 {
3631 bfd_set_error (bfd_error_no_memory);
3632 return false;
3633 }
3634
3635 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3636 return false;
3637
3638 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3639 != obj_som_stringtab_size (abfd))
3640 return false;
3641
3642 /* Save our results and return success. */
3643 obj_som_stringtab (abfd) = stringtab;
3644 return true;
3645 }
3646
3647 /* Return the amount of data (in bytes) required to hold the symbol
3648 table for this object. */
3649
3650 static long
3651 som_get_symtab_upper_bound (abfd)
3652 bfd *abfd;
3653 {
3654 if (!som_slurp_symbol_table (abfd))
3655 return -1;
3656
3657 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3658 }
3659
3660 /* Convert from a SOM subspace index to a BFD section. */
3661
3662 static asection *
3663 bfd_section_from_som_symbol (abfd, symbol)
3664 bfd *abfd;
3665 struct symbol_dictionary_record *symbol;
3666 {
3667 asection *section;
3668
3669 /* The meaning of the symbol_info field changes for functions
3670 within executables. So only use the quick symbol_info mapping for
3671 incomplete objects and non-function symbols in executables. */
3672 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3673 || (symbol->symbol_type != ST_ENTRY
3674 && symbol->symbol_type != ST_PRI_PROG
3675 && symbol->symbol_type != ST_SEC_PROG
3676 && symbol->symbol_type != ST_MILLICODE))
3677 {
3678 unsigned int index = symbol->symbol_info;
3679 for (section = abfd->sections; section != NULL; section = section->next)
3680 if (section->target_index == index)
3681 return section;
3682
3683 /* Could be a symbol from an external library (such as an OMOS
3684 shared library). Don't abort. */
3685 return bfd_abs_section_ptr;
3686
3687 }
3688 else
3689 {
3690 unsigned int value = symbol->symbol_value;
3691
3692 /* For executables we will have to use the symbol's address and
3693 find out what section would contain that address. Yuk. */
3694 for (section = abfd->sections; section; section = section->next)
3695 {
3696 if (value >= section->vma
3697 && value <= section->vma + section->_cooked_size)
3698 return section;
3699 }
3700
3701 /* Could be a symbol from an external library (such as an OMOS
3702 shared library). Don't abort. */
3703 return bfd_abs_section_ptr;
3704
3705 }
3706 }
3707
3708 /* Read and save the symbol table associated with the given BFD. */
3709
3710 static unsigned int
3711 som_slurp_symbol_table (abfd)
3712 bfd *abfd;
3713 {
3714 int symbol_count = bfd_get_symcount (abfd);
3715 int symsize = sizeof (struct symbol_dictionary_record);
3716 char *stringtab;
3717 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3718 som_symbol_type *sym, *symbase;
3719
3720 /* Return saved value if it exists. */
3721 if (obj_som_symtab (abfd) != NULL)
3722 goto successful_return;
3723
3724 /* Special case. This is *not* an error. */
3725 if (symbol_count == 0)
3726 goto successful_return;
3727
3728 if (!som_slurp_string_table (abfd))
3729 goto error_return;
3730
3731 stringtab = obj_som_stringtab (abfd);
3732
3733 symbase = (som_symbol_type *)
3734 malloc (symbol_count * sizeof (som_symbol_type));
3735 if (symbase == NULL)
3736 {
3737 bfd_set_error (bfd_error_no_memory);
3738 goto error_return;
3739 }
3740
3741 /* Read in the external SOM representation. */
3742 buf = malloc (symbol_count * symsize);
3743 if (buf == NULL && symbol_count * symsize != 0)
3744 {
3745 bfd_set_error (bfd_error_no_memory);
3746 goto error_return;
3747 }
3748 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3749 goto error_return;
3750 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3751 != symbol_count * symsize)
3752 goto error_return;
3753
3754 /* Iterate over all the symbols and internalize them. */
3755 endbufp = buf + symbol_count;
3756 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3757 {
3758
3759 /* I don't think we care about these. */
3760 if (bufp->symbol_type == ST_SYM_EXT
3761 || bufp->symbol_type == ST_ARG_EXT)
3762 continue;
3763
3764 /* Set some private data we care about. */
3765 if (bufp->symbol_type == ST_NULL)
3766 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3767 else if (bufp->symbol_type == ST_ABSOLUTE)
3768 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3769 else if (bufp->symbol_type == ST_DATA)
3770 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3771 else if (bufp->symbol_type == ST_CODE)
3772 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3773 else if (bufp->symbol_type == ST_PRI_PROG)
3774 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3775 else if (bufp->symbol_type == ST_SEC_PROG)
3776 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3777 else if (bufp->symbol_type == ST_ENTRY)
3778 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3779 else if (bufp->symbol_type == ST_MILLICODE)
3780 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3781 else if (bufp->symbol_type == ST_PLABEL)
3782 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3783 else
3784 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3785 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3786
3787 /* Some reasonable defaults. */
3788 sym->symbol.the_bfd = abfd;
3789 sym->symbol.name = bufp->name.n_strx + stringtab;
3790 sym->symbol.value = bufp->symbol_value;
3791 sym->symbol.section = 0;
3792 sym->symbol.flags = 0;
3793
3794 switch (bufp->symbol_type)
3795 {
3796 case ST_ENTRY:
3797 case ST_MILLICODE:
3798 sym->symbol.flags |= BSF_FUNCTION;
3799 sym->symbol.value &= ~0x3;
3800 break;
3801
3802 case ST_STUB:
3803 case ST_CODE:
3804 case ST_PRI_PROG:
3805 case ST_SEC_PROG:
3806 sym->symbol.value &= ~0x3;
3807 /* If the symbol's scope is ST_UNSAT, then these are
3808 undefined function symbols. */
3809 if (bufp->symbol_scope == SS_UNSAT)
3810 sym->symbol.flags |= BSF_FUNCTION;
3811
3812
3813 default:
3814 break;
3815 }
3816
3817 /* Handle scoping and section information. */
3818 switch (bufp->symbol_scope)
3819 {
3820 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3821 so the section associated with this symbol can't be known. */
3822 case SS_EXTERNAL:
3823 if (bufp->symbol_type != ST_STORAGE)
3824 sym->symbol.section = bfd_und_section_ptr;
3825 else
3826 sym->symbol.section = bfd_com_section_ptr;
3827 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3828 break;
3829
3830 case SS_UNSAT:
3831 if (bufp->symbol_type != ST_STORAGE)
3832 sym->symbol.section = bfd_und_section_ptr;
3833 else
3834 sym->symbol.section = bfd_com_section_ptr;
3835 break;
3836
3837 case SS_UNIVERSAL:
3838 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3839 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3840 sym->symbol.value -= sym->symbol.section->vma;
3841 break;
3842
3843 #if 0
3844 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3845 Sound dumb? It is. */
3846 case SS_GLOBAL:
3847 #endif
3848 case SS_LOCAL:
3849 sym->symbol.flags |= BSF_LOCAL;
3850 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3851 sym->symbol.value -= sym->symbol.section->vma;
3852 break;
3853 }
3854
3855 /* Mark section symbols and symbols used by the debugger.
3856 Note $START$ is a magic code symbol, NOT a section symbol. */
3857 if (sym->symbol.name[0] == '$'
3858 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
3859 && strcmp (sym->symbol.name, "$START$"))
3860 sym->symbol.flags |= BSF_SECTION_SYM;
3861 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3862 {
3863 sym->symbol.flags |= BSF_SECTION_SYM;
3864 sym->symbol.name = sym->symbol.section->name;
3865 }
3866 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3867 sym->symbol.flags |= BSF_DEBUGGING;
3868
3869 /* Note increment at bottom of loop, since we skip some symbols
3870 we can not include it as part of the for statement. */
3871 sym++;
3872 }
3873
3874 /* Save our results and return success. */
3875 obj_som_symtab (abfd) = symbase;
3876 successful_return:
3877 if (buf != NULL)
3878 free (buf);
3879 return (true);
3880
3881 error_return:
3882 if (buf != NULL)
3883 free (buf);
3884 return false;
3885 }
3886
3887 /* Canonicalize a SOM symbol table. Return the number of entries
3888 in the symbol table. */
3889
3890 static long
3891 som_get_symtab (abfd, location)
3892 bfd *abfd;
3893 asymbol **location;
3894 {
3895 int i;
3896 som_symbol_type *symbase;
3897
3898 if (!som_slurp_symbol_table (abfd))
3899 return -1;
3900
3901 i = bfd_get_symcount (abfd);
3902 symbase = obj_som_symtab (abfd);
3903
3904 for (; i > 0; i--, location++, symbase++)
3905 *location = &symbase->symbol;
3906
3907 /* Final null pointer. */
3908 *location = 0;
3909 return (bfd_get_symcount (abfd));
3910 }
3911
3912 /* Make a SOM symbol. There is nothing special to do here. */
3913
3914 static asymbol *
3915 som_make_empty_symbol (abfd)
3916 bfd *abfd;
3917 {
3918 som_symbol_type *new =
3919 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3920 if (new == NULL)
3921 {
3922 bfd_set_error (bfd_error_no_memory);
3923 return 0;
3924 }
3925 new->symbol.the_bfd = abfd;
3926
3927 return &new->symbol;
3928 }
3929
3930 /* Print symbol information. */
3931
3932 static void
3933 som_print_symbol (ignore_abfd, afile, symbol, how)
3934 bfd *ignore_abfd;
3935 PTR afile;
3936 asymbol *symbol;
3937 bfd_print_symbol_type how;
3938 {
3939 FILE *file = (FILE *) afile;
3940 switch (how)
3941 {
3942 case bfd_print_symbol_name:
3943 fprintf (file, "%s", symbol->name);
3944 break;
3945 case bfd_print_symbol_more:
3946 fprintf (file, "som ");
3947 fprintf_vma (file, symbol->value);
3948 fprintf (file, " %lx", (long) symbol->flags);
3949 break;
3950 case bfd_print_symbol_all:
3951 {
3952 CONST char *section_name;
3953 section_name = symbol->section ? symbol->section->name : "(*none*)";
3954 bfd_print_symbol_vandf ((PTR) file, symbol);
3955 fprintf (file, " %s\t%s", section_name, symbol->name);
3956 break;
3957 }
3958 }
3959 }
3960
3961 static boolean
3962 som_bfd_is_local_label (abfd, sym)
3963 bfd *abfd;
3964 asymbol *sym;
3965 {
3966 return (sym->name[0] == 'L' && sym->name[1] == '$');
3967 }
3968
3969 /* Count or process variable-length SOM fixup records.
3970
3971 To avoid code duplication we use this code both to compute the number
3972 of relocations requested by a stream, and to internalize the stream.
3973
3974 When computing the number of relocations requested by a stream the
3975 variables rptr, section, and symbols have no meaning.
3976
3977 Return the number of relocations requested by the fixup stream. When
3978 not just counting
3979
3980 This needs at least two or three more passes to get it cleaned up. */
3981
3982 static unsigned int
3983 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3984 unsigned char *fixup;
3985 unsigned int end;
3986 arelent *internal_relocs;
3987 asection *section;
3988 asymbol **symbols;
3989 boolean just_count;
3990 {
3991 unsigned int op, varname;
3992 unsigned char *end_fixups = &fixup[end];
3993 const struct fixup_format *fp;
3994 char *cp;
3995 unsigned char *save_fixup;
3996 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3997 const int *subop;
3998 arelent *rptr= internal_relocs;
3999 unsigned int offset = 0;
4000
4001 #define var(c) variables[(c) - 'A']
4002 #define push(v) (*sp++ = (v))
4003 #define pop() (*--sp)
4004 #define emptystack() (sp == stack)
4005
4006 som_initialize_reloc_queue (reloc_queue);
4007 memset (variables, 0, sizeof (variables));
4008 memset (stack, 0, sizeof (stack));
4009 count = 0;
4010 prev_fixup = 0;
4011 sp = stack;
4012
4013 while (fixup < end_fixups)
4014 {
4015
4016 /* Save pointer to the start of this fixup. We'll use
4017 it later to determine if it is necessary to put this fixup
4018 on the queue. */
4019 save_fixup = fixup;
4020
4021 /* Get the fixup code and its associated format. */
4022 op = *fixup++;
4023 fp = &som_fixup_formats[op];
4024
4025 /* Handle a request for a previous fixup. */
4026 if (*fp->format == 'P')
4027 {
4028 /* Get pointer to the beginning of the prev fixup, move
4029 the repeated fixup to the head of the queue. */
4030 fixup = reloc_queue[fp->D].reloc;
4031 som_reloc_queue_fix (reloc_queue, fp->D);
4032 prev_fixup = 1;
4033
4034 /* Get the fixup code and its associated format. */
4035 op = *fixup++;
4036 fp = &som_fixup_formats[op];
4037 }
4038
4039 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4040 if (! just_count
4041 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4042 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4043 {
4044 rptr->address = offset;
4045 rptr->howto = &som_hppa_howto_table[op];
4046 rptr->addend = 0;
4047 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4048 }
4049
4050 /* Set default input length to 0. Get the opcode class index
4051 into D. */
4052 var ('L') = 0;
4053 var ('D') = fp->D;
4054
4055 /* Get the opcode format. */
4056 cp = fp->format;
4057
4058 /* Process the format string. Parsing happens in two phases,
4059 parse RHS, then assign to LHS. Repeat until no more
4060 characters in the format string. */
4061 while (*cp)
4062 {
4063 /* The variable this pass is going to compute a value for. */
4064 varname = *cp++;
4065
4066 /* Start processing RHS. Continue until a NULL or '=' is found. */
4067 do
4068 {
4069 c = *cp++;
4070
4071 /* If this is a variable, push it on the stack. */
4072 if (isupper (c))
4073 push (var (c));
4074
4075 /* If this is a lower case letter, then it represents
4076 additional data from the fixup stream to be pushed onto
4077 the stack. */
4078 else if (islower (c))
4079 {
4080 for (v = 0; c > 'a'; --c)
4081 v = (v << 8) | *fixup++;
4082 push (v);
4083 }
4084
4085 /* A decimal constant. Push it on the stack. */
4086 else if (isdigit (c))
4087 {
4088 v = c - '0';
4089 while (isdigit (*cp))
4090 v = (v * 10) + (*cp++ - '0');
4091 push (v);
4092 }
4093 else
4094
4095 /* An operator. Pop two two values from the stack and
4096 use them as operands to the given operation. Push
4097 the result of the operation back on the stack. */
4098 switch (c)
4099 {
4100 case '+':
4101 v = pop ();
4102 v += pop ();
4103 push (v);
4104 break;
4105 case '*':
4106 v = pop ();
4107 v *= pop ();
4108 push (v);
4109 break;
4110 case '<':
4111 v = pop ();
4112 v = pop () << v;
4113 push (v);
4114 break;
4115 default:
4116 abort ();
4117 }
4118 }
4119 while (*cp && *cp != '=');
4120
4121 /* Move over the equal operator. */
4122 cp++;
4123
4124 /* Pop the RHS off the stack. */
4125 c = pop ();
4126
4127 /* Perform the assignment. */
4128 var (varname) = c;
4129
4130 /* Handle side effects. and special 'O' stack cases. */
4131 switch (varname)
4132 {
4133 /* Consume some bytes from the input space. */
4134 case 'L':
4135 offset += c;
4136 break;
4137 /* A symbol to use in the relocation. Make a note
4138 of this if we are not just counting. */
4139 case 'S':
4140 if (! just_count)
4141 rptr->sym_ptr_ptr = &symbols[c];
4142 break;
4143 /* Handle the linker expression stack. */
4144 case 'O':
4145 switch (op)
4146 {
4147 case R_COMP1:
4148 subop = comp1_opcodes;
4149 break;
4150 case R_COMP2:
4151 subop = comp2_opcodes;
4152 break;
4153 case R_COMP3:
4154 subop = comp3_opcodes;
4155 break;
4156 default:
4157 abort ();
4158 }
4159 while (*subop <= (unsigned char) c)
4160 ++subop;
4161 --subop;
4162 break;
4163 default:
4164 break;
4165 }
4166 }
4167
4168 /* If we used a previous fixup, clean up after it. */
4169 if (prev_fixup)
4170 {
4171 fixup = save_fixup + 1;
4172 prev_fixup = 0;
4173 }
4174 /* Queue it. */
4175 else if (fixup > save_fixup + 1)
4176 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4177
4178 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4179 fixups to BFD. */
4180 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4181 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4182 {
4183 /* Done with a single reloction. Loop back to the top. */
4184 if (! just_count)
4185 {
4186 rptr->addend = var ('V');
4187 rptr++;
4188 }
4189 count++;
4190 /* Now that we've handled a "full" relocation, reset
4191 some state. */
4192 memset (variables, 0, sizeof (variables));
4193 memset (stack, 0, sizeof (stack));
4194 }
4195 }
4196 return count;
4197
4198 #undef var
4199 #undef push
4200 #undef pop
4201 #undef emptystack
4202 }
4203
4204 /* Read in the relocs (aka fixups in SOM terms) for a section.
4205
4206 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4207 set to true to indicate it only needs a count of the number
4208 of actual relocations. */
4209
4210 static boolean
4211 som_slurp_reloc_table (abfd, section, symbols, just_count)
4212 bfd *abfd;
4213 asection *section;
4214 asymbol **symbols;
4215 boolean just_count;
4216 {
4217 char *external_relocs;
4218 unsigned int fixup_stream_size;
4219 arelent *internal_relocs;
4220 unsigned int num_relocs;
4221
4222 fixup_stream_size = som_section_data (section)->reloc_size;
4223 /* If there were no relocations, then there is nothing to do. */
4224 if (section->reloc_count == 0)
4225 return true;
4226
4227 /* If reloc_count is -1, then the relocation stream has not been
4228 parsed. We must do so now to know how many relocations exist. */
4229 if (section->reloc_count == -1)
4230 {
4231 external_relocs = (char *) malloc (fixup_stream_size);
4232 if (external_relocs == (char *) NULL)
4233 {
4234 bfd_set_error (bfd_error_no_memory);
4235 return false;
4236 }
4237 /* Read in the external forms. */
4238 if (bfd_seek (abfd,
4239 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4240 SEEK_SET)
4241 != 0)
4242 return false;
4243 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4244 != fixup_stream_size)
4245 return false;
4246
4247 /* Let callers know how many relocations found.
4248 also save the relocation stream as we will
4249 need it again. */
4250 section->reloc_count = som_set_reloc_info (external_relocs,
4251 fixup_stream_size,
4252 NULL, NULL, NULL, true);
4253
4254 som_section_data (section)->reloc_stream = external_relocs;
4255 }
4256
4257 /* If the caller only wanted a count, then return now. */
4258 if (just_count)
4259 return true;
4260
4261 num_relocs = section->reloc_count;
4262 external_relocs = som_section_data (section)->reloc_stream;
4263 /* Return saved information about the relocations if it is available. */
4264 if (section->relocation != (arelent *) NULL)
4265 return true;
4266
4267 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4268 if (internal_relocs == (arelent *) NULL)
4269 {
4270 bfd_set_error (bfd_error_no_memory);
4271 return false;
4272 }
4273
4274 /* Process and internalize the relocations. */
4275 som_set_reloc_info (external_relocs, fixup_stream_size,
4276 internal_relocs, section, symbols, false);
4277
4278 /* Save our results and return success. */
4279 section->relocation = internal_relocs;
4280 return (true);
4281 }
4282
4283 /* Return the number of bytes required to store the relocation
4284 information associated with the given section. */
4285
4286 static long
4287 som_get_reloc_upper_bound (abfd, asect)
4288 bfd *abfd;
4289 sec_ptr asect;
4290 {
4291 /* If section has relocations, then read in the relocation stream
4292 and parse it to determine how many relocations exist. */
4293 if (asect->flags & SEC_RELOC)
4294 {
4295 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4296 return false;
4297 return (asect->reloc_count + 1) * sizeof (arelent);
4298 }
4299 /* There are no relocations. */
4300 return 0;
4301 }
4302
4303 /* Convert relocations from SOM (external) form into BFD internal
4304 form. Return the number of relocations. */
4305
4306 static long
4307 som_canonicalize_reloc (abfd, section, relptr, symbols)
4308 bfd *abfd;
4309 sec_ptr section;
4310 arelent **relptr;
4311 asymbol **symbols;
4312 {
4313 arelent *tblptr;
4314 int count;
4315
4316 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4317 return -1;
4318
4319 count = section->reloc_count;
4320 tblptr = section->relocation;
4321
4322 while (count--)
4323 *relptr++ = tblptr++;
4324
4325 *relptr = (arelent *) NULL;
4326 return section->reloc_count;
4327 }
4328
4329 extern const bfd_target som_vec;
4330
4331 /* A hook to set up object file dependent section information. */
4332
4333 static boolean
4334 som_new_section_hook (abfd, newsect)
4335 bfd *abfd;
4336 asection *newsect;
4337 {
4338 newsect->used_by_bfd =
4339 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4340 if (!newsect->used_by_bfd)
4341 {
4342 bfd_set_error (bfd_error_no_memory);
4343 return false;
4344 }
4345 newsect->alignment_power = 3;
4346
4347 /* We allow more than three sections internally */
4348 return true;
4349 }
4350
4351 /* Copy any private info we understand from the input section
4352 to the output section. */
4353 static boolean
4354 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4355 bfd *ibfd;
4356 asection *isection;
4357 bfd *obfd;
4358 asection *osection;
4359 {
4360 /* One day we may try to grok other private data. */
4361 if (ibfd->xvec->flavour != bfd_target_som_flavour
4362 || obfd->xvec->flavour != bfd_target_som_flavour
4363 || (!som_is_space (isection) && !som_is_subspace (isection)))
4364 return false;
4365
4366 som_section_data (osection)->copy_data
4367 = (struct som_copyable_section_data_struct *)
4368 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4369 if (som_section_data (osection)->copy_data == NULL)
4370 {
4371 bfd_set_error (bfd_error_no_memory);
4372 return false;
4373 }
4374
4375 memcpy (som_section_data (osection)->copy_data,
4376 som_section_data (isection)->copy_data,
4377 sizeof (struct som_copyable_section_data_struct));
4378
4379 /* Reparent if necessary. */
4380 if (som_section_data (osection)->copy_data->container)
4381 som_section_data (osection)->copy_data->container =
4382 som_section_data (osection)->copy_data->container->output_section;
4383
4384 return true;
4385 }
4386
4387 /* Copy any private info we understand from the input bfd
4388 to the output bfd. */
4389
4390 static boolean
4391 som_bfd_copy_private_bfd_data (ibfd, obfd)
4392 bfd *ibfd, *obfd;
4393 {
4394 /* One day we may try to grok other private data. */
4395 if (ibfd->xvec->flavour != bfd_target_som_flavour
4396 || obfd->xvec->flavour != bfd_target_som_flavour)
4397 return false;
4398
4399 /* Allocate some memory to hold the data we need. */
4400 obj_som_exec_data (obfd) = (struct som_exec_data *)
4401 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4402 if (obj_som_exec_data (obfd) == NULL)
4403 {
4404 bfd_set_error (bfd_error_no_memory);
4405 return false;
4406 }
4407
4408 /* Now copy the data. */
4409 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4410 sizeof (struct som_exec_data));
4411
4412 return true;
4413 }
4414
4415 /* Set backend info for sections which can not be described
4416 in the BFD data structures. */
4417
4418 boolean
4419 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4420 asection *section;
4421 int defined;
4422 int private;
4423 unsigned int sort_key;
4424 int spnum;
4425 {
4426 /* Allocate memory to hold the magic information. */
4427 if (som_section_data (section)->copy_data == NULL)
4428 {
4429 som_section_data (section)->copy_data
4430 = (struct som_copyable_section_data_struct *)
4431 bfd_zalloc (section->owner,
4432 sizeof (struct som_copyable_section_data_struct));
4433 if (som_section_data (section)->copy_data == NULL)
4434 {
4435 bfd_set_error (bfd_error_no_memory);
4436 return false;
4437 }
4438 }
4439 som_section_data (section)->copy_data->sort_key = sort_key;
4440 som_section_data (section)->copy_data->is_defined = defined;
4441 som_section_data (section)->copy_data->is_private = private;
4442 som_section_data (section)->copy_data->container = section;
4443 som_section_data (section)->copy_data->space_number = spnum;
4444 return true;
4445 }
4446
4447 /* Set backend info for subsections which can not be described
4448 in the BFD data structures. */
4449
4450 boolean
4451 bfd_som_set_subsection_attributes (section, container, access,
4452 sort_key, quadrant)
4453 asection *section;
4454 asection *container;
4455 int access;
4456 unsigned int sort_key;
4457 int quadrant;
4458 {
4459 /* Allocate memory to hold the magic information. */
4460 if (som_section_data (section)->copy_data == NULL)
4461 {
4462 som_section_data (section)->copy_data
4463 = (struct som_copyable_section_data_struct *)
4464 bfd_zalloc (section->owner,
4465 sizeof (struct som_copyable_section_data_struct));
4466 if (som_section_data (section)->copy_data == NULL)
4467 {
4468 bfd_set_error (bfd_error_no_memory);
4469 return false;
4470 }
4471 }
4472 som_section_data (section)->copy_data->sort_key = sort_key;
4473 som_section_data (section)->copy_data->access_control_bits = access;
4474 som_section_data (section)->copy_data->quadrant = quadrant;
4475 som_section_data (section)->copy_data->container = container;
4476 return true;
4477 }
4478
4479 /* Set the full SOM symbol type. SOM needs far more symbol information
4480 than any other object file format I'm aware of. It is mandatory
4481 to be able to know if a symbol is an entry point, millicode, data,
4482 code, absolute, storage request, or procedure label. If you get
4483 the symbol type wrong your program will not link. */
4484
4485 void
4486 bfd_som_set_symbol_type (symbol, type)
4487 asymbol *symbol;
4488 unsigned int type;
4489 {
4490 som_symbol_data (symbol)->som_type = type;
4491 }
4492
4493 /* Attach an auxiliary header to the BFD backend so that it may be
4494 written into the object file. */
4495 boolean
4496 bfd_som_attach_aux_hdr (abfd, type, string)
4497 bfd *abfd;
4498 int type;
4499 char *string;
4500 {
4501 if (type == VERSION_AUX_ID)
4502 {
4503 int len = strlen (string);
4504 int pad = 0;
4505
4506 if (len % 4)
4507 pad = (4 - (len % 4));
4508 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4509 bfd_zalloc (abfd, sizeof (struct aux_id)
4510 + sizeof (unsigned int) + len + pad);
4511 if (!obj_som_version_hdr (abfd))
4512 {
4513 bfd_set_error (bfd_error_no_memory);
4514 return false;
4515 }
4516 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4517 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4518 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4519 obj_som_version_hdr (abfd)->string_length = len;
4520 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4521 }
4522 else if (type == COPYRIGHT_AUX_ID)
4523 {
4524 int len = strlen (string);
4525 int pad = 0;
4526
4527 if (len % 4)
4528 pad = (4 - (len % 4));
4529 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4530 bfd_zalloc (abfd, sizeof (struct aux_id)
4531 + sizeof (unsigned int) + len + pad);
4532 if (!obj_som_copyright_hdr (abfd))
4533 {
4534 bfd_set_error (bfd_error_no_memory);
4535 return false;
4536 }
4537 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4538 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4539 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4540 obj_som_copyright_hdr (abfd)->string_length = len;
4541 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4542 }
4543 return true;
4544 }
4545
4546 static boolean
4547 som_get_section_contents (abfd, section, location, offset, count)
4548 bfd *abfd;
4549 sec_ptr section;
4550 PTR location;
4551 file_ptr offset;
4552 bfd_size_type count;
4553 {
4554 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4555 return true;
4556 if ((bfd_size_type)(offset+count) > section->_raw_size
4557 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4558 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4559 return (false); /* on error */
4560 return (true);
4561 }
4562
4563 static boolean
4564 som_set_section_contents (abfd, section, location, offset, count)
4565 bfd *abfd;
4566 sec_ptr section;
4567 PTR location;
4568 file_ptr offset;
4569 bfd_size_type count;
4570 {
4571 if (abfd->output_has_begun == false)
4572 {
4573 /* Set up fixed parts of the file, space, and subspace headers.
4574 Notify the world that output has begun. */
4575 som_prep_headers (abfd);
4576 abfd->output_has_begun = true;
4577 /* Start writing the object file. This include all the string
4578 tables, fixup streams, and other portions of the object file. */
4579 som_begin_writing (abfd);
4580 }
4581
4582 /* Only write subspaces which have "real" contents (eg. the contents
4583 are not generated at run time by the OS). */
4584 if (!som_is_subspace (section)
4585 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4586 return true;
4587
4588 /* Seek to the proper offset within the object file and write the
4589 data. */
4590 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4591 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4592 return false;
4593
4594 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4595 return false;
4596 return true;
4597 }
4598
4599 static boolean
4600 som_set_arch_mach (abfd, arch, machine)
4601 bfd *abfd;
4602 enum bfd_architecture arch;
4603 unsigned long machine;
4604 {
4605 /* Allow any architecture to be supported by the SOM backend */
4606 return bfd_default_set_arch_mach (abfd, arch, machine);
4607 }
4608
4609 static boolean
4610 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4611 functionname_ptr, line_ptr)
4612 bfd *abfd;
4613 asection *section;
4614 asymbol **symbols;
4615 bfd_vma offset;
4616 CONST char **filename_ptr;
4617 CONST char **functionname_ptr;
4618 unsigned int *line_ptr;
4619 {
4620 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4621 fflush (stderr);
4622 abort ();
4623 return (false);
4624 }
4625
4626 static int
4627 som_sizeof_headers (abfd, reloc)
4628 bfd *abfd;
4629 boolean reloc;
4630 {
4631 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4632 fflush (stderr);
4633 abort ();
4634 return (0);
4635 }
4636
4637 /* Return the single-character symbol type corresponding to
4638 SOM section S, or '?' for an unknown SOM section. */
4639
4640 static char
4641 som_section_type (s)
4642 const char *s;
4643 {
4644 const struct section_to_type *t;
4645
4646 for (t = &stt[0]; t->section; t++)
4647 if (!strcmp (s, t->section))
4648 return t->type;
4649 return '?';
4650 }
4651
4652 static int
4653 som_decode_symclass (symbol)
4654 asymbol *symbol;
4655 {
4656 char c;
4657
4658 if (bfd_is_com_section (symbol->section))
4659 return 'C';
4660 if (bfd_is_und_section (symbol->section))
4661 return 'U';
4662 if (bfd_is_ind_section (symbol->section))
4663 return 'I';
4664 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4665 return '?';
4666
4667 if (bfd_is_abs_section (symbol->section))
4668 c = 'a';
4669 else if (symbol->section)
4670 c = som_section_type (symbol->section->name);
4671 else
4672 return '?';
4673 if (symbol->flags & BSF_GLOBAL)
4674 c = toupper (c);
4675 return c;
4676 }
4677
4678 /* Return information about SOM symbol SYMBOL in RET. */
4679
4680 static void
4681 som_get_symbol_info (ignore_abfd, symbol, ret)
4682 bfd *ignore_abfd;
4683 asymbol *symbol;
4684 symbol_info *ret;
4685 {
4686 ret->type = som_decode_symclass (symbol);
4687 if (ret->type != 'U')
4688 ret->value = symbol->value+symbol->section->vma;
4689 else
4690 ret->value = 0;
4691 ret->name = symbol->name;
4692 }
4693
4694 /* Count the number of symbols in the archive symbol table. Necessary
4695 so that we can allocate space for all the carsyms at once. */
4696
4697 static boolean
4698 som_bfd_count_ar_symbols (abfd, lst_header, count)
4699 bfd *abfd;
4700 struct lst_header *lst_header;
4701 symindex *count;
4702 {
4703 unsigned int i;
4704 unsigned int *hash_table = NULL;
4705 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4706
4707 hash_table =
4708 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4709 if (hash_table == NULL && lst_header->hash_size != 0)
4710 {
4711 bfd_set_error (bfd_error_no_memory);
4712 goto error_return;
4713 }
4714
4715 /* Don't forget to initialize the counter! */
4716 *count = 0;
4717
4718 /* Read in the hash table. The has table is an array of 32bit file offsets
4719 which point to the hash chains. */
4720 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4721 != lst_header->hash_size * 4)
4722 goto error_return;
4723
4724 /* Walk each chain counting the number of symbols found on that particular
4725 chain. */
4726 for (i = 0; i < lst_header->hash_size; i++)
4727 {
4728 struct lst_symbol_record lst_symbol;
4729
4730 /* An empty chain has zero as it's file offset. */
4731 if (hash_table[i] == 0)
4732 continue;
4733
4734 /* Seek to the first symbol in this hash chain. */
4735 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4736 goto error_return;
4737
4738 /* Read in this symbol and update the counter. */
4739 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4740 != sizeof (lst_symbol))
4741 goto error_return;
4742
4743 (*count)++;
4744
4745 /* Now iterate through the rest of the symbols on this chain. */
4746 while (lst_symbol.next_entry)
4747 {
4748
4749 /* Seek to the next symbol. */
4750 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4751 < 0)
4752 goto error_return;
4753
4754 /* Read the symbol in and update the counter. */
4755 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4756 != sizeof (lst_symbol))
4757 goto error_return;
4758
4759 (*count)++;
4760 }
4761 }
4762 if (hash_table != NULL)
4763 free (hash_table);
4764 return true;
4765
4766 error_return:
4767 if (hash_table != NULL)
4768 free (hash_table);
4769 return false;
4770 }
4771
4772 /* Fill in the canonical archive symbols (SYMS) from the archive described
4773 by ABFD and LST_HEADER. */
4774
4775 static boolean
4776 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4777 bfd *abfd;
4778 struct lst_header *lst_header;
4779 carsym **syms;
4780 {
4781 unsigned int i, len;
4782 carsym *set = syms[0];
4783 unsigned int *hash_table = NULL;
4784 struct som_entry *som_dict = NULL;
4785 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4786
4787 hash_table =
4788 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4789 if (hash_table == NULL && lst_header->hash_size != 0)
4790 {
4791 bfd_set_error (bfd_error_no_memory);
4792 goto error_return;
4793 }
4794
4795 som_dict =
4796 (struct som_entry *) malloc (lst_header->module_count
4797 * sizeof (struct som_entry));
4798 if (som_dict == NULL && lst_header->module_count != 0)
4799 {
4800 bfd_set_error (bfd_error_no_memory);
4801 goto error_return;
4802 }
4803
4804 /* Read in the hash table. The has table is an array of 32bit file offsets
4805 which point to the hash chains. */
4806 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4807 != lst_header->hash_size * 4)
4808 goto error_return;
4809
4810 /* Seek to and read in the SOM dictionary. We will need this to fill
4811 in the carsym's filepos field. */
4812 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4813 goto error_return;
4814
4815 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4816 sizeof (struct som_entry), abfd)
4817 != lst_header->module_count * sizeof (struct som_entry))
4818 goto error_return;
4819
4820 /* Walk each chain filling in the carsyms as we go along. */
4821 for (i = 0; i < lst_header->hash_size; i++)
4822 {
4823 struct lst_symbol_record lst_symbol;
4824
4825 /* An empty chain has zero as it's file offset. */
4826 if (hash_table[i] == 0)
4827 continue;
4828
4829 /* Seek to and read the first symbol on the chain. */
4830 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4831 goto error_return;
4832
4833 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4834 != sizeof (lst_symbol))
4835 goto error_return;
4836
4837 /* Get the name of the symbol, first get the length which is stored
4838 as a 32bit integer just before the symbol.
4839
4840 One might ask why we don't just read in the entire string table
4841 and index into it. Well, according to the SOM ABI the string
4842 index can point *anywhere* in the archive to save space, so just
4843 using the string table would not be safe. */
4844 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4845 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4846 goto error_return;
4847
4848 if (bfd_read (&len, 1, 4, abfd) != 4)
4849 goto error_return;
4850
4851 /* Allocate space for the name and null terminate it too. */
4852 set->name = bfd_zalloc (abfd, len + 1);
4853 if (!set->name)
4854 {
4855 bfd_set_error (bfd_error_no_memory);
4856 goto error_return;
4857 }
4858 if (bfd_read (set->name, 1, len, abfd) != len)
4859 goto error_return;
4860
4861 set->name[len] = 0;
4862
4863 /* Fill in the file offset. Note that the "location" field points
4864 to the SOM itself, not the ar_hdr in front of it. */
4865 set->file_offset = som_dict[lst_symbol.som_index].location
4866 - sizeof (struct ar_hdr);
4867
4868 /* Go to the next symbol. */
4869 set++;
4870
4871 /* Iterate through the rest of the chain. */
4872 while (lst_symbol.next_entry)
4873 {
4874 /* Seek to the next symbol and read it in. */
4875 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4876 goto error_return;
4877
4878 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4879 != sizeof (lst_symbol))
4880 goto error_return;
4881
4882 /* Seek to the name length & string and read them in. */
4883 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4884 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4885 goto error_return;
4886
4887 if (bfd_read (&len, 1, 4, abfd) != 4)
4888 goto error_return;
4889
4890 /* Allocate space for the name and null terminate it too. */
4891 set->name = bfd_zalloc (abfd, len + 1);
4892 if (!set->name)
4893 {
4894 bfd_set_error (bfd_error_no_memory);
4895 goto error_return;
4896 }
4897
4898 if (bfd_read (set->name, 1, len, abfd) != len)
4899 goto error_return;
4900 set->name[len] = 0;
4901
4902 /* Fill in the file offset. Note that the "location" field points
4903 to the SOM itself, not the ar_hdr in front of it. */
4904 set->file_offset = som_dict[lst_symbol.som_index].location
4905 - sizeof (struct ar_hdr);
4906
4907 /* Go on to the next symbol. */
4908 set++;
4909 }
4910 }
4911 /* If we haven't died by now, then we successfully read the entire
4912 archive symbol table. */
4913 if (hash_table != NULL)
4914 free (hash_table);
4915 if (som_dict != NULL)
4916 free (som_dict);
4917 return true;
4918
4919 error_return:
4920 if (hash_table != NULL)
4921 free (hash_table);
4922 if (som_dict != NULL)
4923 free (som_dict);
4924 return false;
4925 }
4926
4927 /* Read in the LST from the archive. */
4928 static boolean
4929 som_slurp_armap (abfd)
4930 bfd *abfd;
4931 {
4932 struct lst_header lst_header;
4933 struct ar_hdr ar_header;
4934 unsigned int parsed_size;
4935 struct artdata *ardata = bfd_ardata (abfd);
4936 char nextname[17];
4937 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4938
4939 /* Special cases. */
4940 if (i == 0)
4941 return true;
4942 if (i != 16)
4943 return false;
4944
4945 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4946 return false;
4947
4948 /* For archives without .o files there is no symbol table. */
4949 if (strncmp (nextname, "/ ", 16))
4950 {
4951 bfd_has_map (abfd) = false;
4952 return true;
4953 }
4954
4955 /* Read in and sanity check the archive header. */
4956 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4957 != sizeof (struct ar_hdr))
4958 return false;
4959
4960 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4961 {
4962 bfd_set_error (bfd_error_malformed_archive);
4963 return false;
4964 }
4965
4966 /* How big is the archive symbol table entry? */
4967 errno = 0;
4968 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4969 if (errno != 0)
4970 {
4971 bfd_set_error (bfd_error_malformed_archive);
4972 return false;
4973 }
4974
4975 /* Save off the file offset of the first real user data. */
4976 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4977
4978 /* Read in the library symbol table. We'll make heavy use of this
4979 in just a minute. */
4980 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4981 != sizeof (struct lst_header))
4982 return false;
4983
4984 /* Sanity check. */
4985 if (lst_header.a_magic != LIBMAGIC)
4986 {
4987 bfd_set_error (bfd_error_malformed_archive);
4988 return false;
4989 }
4990
4991 /* Count the number of symbols in the library symbol table. */
4992 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4993 == false)
4994 return false;
4995
4996 /* Get back to the start of the library symbol table. */
4997 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4998 + sizeof (struct lst_header), SEEK_SET) < 0)
4999 return false;
5000
5001 /* Initializae the cache and allocate space for the library symbols. */
5002 ardata->cache = 0;
5003 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5004 (ardata->symdef_count
5005 * sizeof (carsym)));
5006 if (!ardata->symdefs)
5007 {
5008 bfd_set_error (bfd_error_no_memory);
5009 return false;
5010 }
5011
5012 /* Now fill in the canonical archive symbols. */
5013 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5014 == false)
5015 return false;
5016
5017 /* Seek back to the "first" file in the archive. Note the "first"
5018 file may be the extended name table. */
5019 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5020 return false;
5021
5022 /* Notify the generic archive code that we have a symbol map. */
5023 bfd_has_map (abfd) = true;
5024 return true;
5025 }
5026
5027 /* Begin preparing to write a SOM library symbol table.
5028
5029 As part of the prep work we need to determine the number of symbols
5030 and the size of the associated string section. */
5031
5032 static boolean
5033 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5034 bfd *abfd;
5035 unsigned int *num_syms, *stringsize;
5036 {
5037 bfd *curr_bfd = abfd->archive_head;
5038
5039 /* Some initialization. */
5040 *num_syms = 0;
5041 *stringsize = 0;
5042
5043 /* Iterate over each BFD within this archive. */
5044 while (curr_bfd != NULL)
5045 {
5046 unsigned int curr_count, i;
5047 som_symbol_type *sym;
5048
5049 /* Don't bother for non-SOM objects. */
5050 if (curr_bfd->format != bfd_object
5051 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5052 {
5053 curr_bfd = curr_bfd->next;
5054 continue;
5055 }
5056
5057 /* Make sure the symbol table has been read, then snag a pointer
5058 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5059 but doing so avoids allocating lots of extra memory. */
5060 if (som_slurp_symbol_table (curr_bfd) == false)
5061 return false;
5062
5063 sym = obj_som_symtab (curr_bfd);
5064 curr_count = bfd_get_symcount (curr_bfd);
5065
5066 /* Examine each symbol to determine if it belongs in the
5067 library symbol table. */
5068 for (i = 0; i < curr_count; i++, sym++)
5069 {
5070 struct som_misc_symbol_info info;
5071
5072 /* Derive SOM information from the BFD symbol. */
5073 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5074
5075 /* Should we include this symbol? */
5076 if (info.symbol_type == ST_NULL
5077 || info.symbol_type == ST_SYM_EXT
5078 || info.symbol_type == ST_ARG_EXT)
5079 continue;
5080
5081 /* Only global symbols and unsatisfied commons. */
5082 if (info.symbol_scope != SS_UNIVERSAL
5083 && info.symbol_type != ST_STORAGE)
5084 continue;
5085
5086 /* Do no include undefined symbols. */
5087 if (bfd_is_und_section (sym->symbol.section))
5088 continue;
5089
5090 /* Bump the various counters, being careful to honor
5091 alignment considerations in the string table. */
5092 (*num_syms)++;
5093 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5094 while (*stringsize % 4)
5095 (*stringsize)++;
5096 }
5097
5098 curr_bfd = curr_bfd->next;
5099 }
5100 return true;
5101 }
5102
5103 /* Hash a symbol name based on the hashing algorithm presented in the
5104 SOM ABI. */
5105 static unsigned int
5106 som_bfd_ar_symbol_hash (symbol)
5107 asymbol *symbol;
5108 {
5109 unsigned int len = strlen (symbol->name);
5110
5111 /* Names with length 1 are special. */
5112 if (len == 1)
5113 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5114
5115 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5116 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5117 }
5118
5119 static CONST char *
5120 normalize (file)
5121 CONST char *file;
5122 {
5123 CONST char *filename = strrchr (file, '/');
5124
5125 if (filename != NULL)
5126 filename++;
5127 else
5128 filename = file;
5129 return filename;
5130 }
5131
5132 /* Do the bulk of the work required to write the SOM library
5133 symbol table. */
5134
5135 static boolean
5136 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5137 bfd *abfd;
5138 unsigned int nsyms, string_size;
5139 struct lst_header lst;
5140 {
5141 file_ptr lst_filepos;
5142 char *strings = NULL, *p;
5143 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5144 bfd *curr_bfd;
5145 unsigned int *hash_table = NULL;
5146 struct som_entry *som_dict = NULL;
5147 struct lst_symbol_record **last_hash_entry = NULL;
5148 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5149 unsigned int maxname = abfd->xvec->ar_max_namelen;
5150
5151 hash_table =
5152 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5153 if (hash_table == NULL && lst.hash_size != 0)
5154 {
5155 bfd_set_error (bfd_error_no_memory);
5156 goto error_return;
5157 }
5158 som_dict =
5159 (struct som_entry *) malloc (lst.module_count
5160 * sizeof (struct som_entry));
5161 if (som_dict == NULL && lst.module_count != 0)
5162 {
5163 bfd_set_error (bfd_error_no_memory);
5164 goto error_return;
5165 }
5166
5167 last_hash_entry =
5168 ((struct lst_symbol_record **)
5169 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5170 if (last_hash_entry == NULL && lst.hash_size != 0)
5171 {
5172 bfd_set_error (bfd_error_no_memory);
5173 goto error_return;
5174 }
5175
5176 /* Lots of fields are file positions relative to the start
5177 of the lst record. So save its location. */
5178 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5179
5180 /* Some initialization. */
5181 memset (hash_table, 0, 4 * lst.hash_size);
5182 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5183 memset (last_hash_entry, 0,
5184 lst.hash_size * sizeof (struct lst_symbol_record *));
5185
5186 /* Symbols have som_index fields, so we have to keep track of the
5187 index of each SOM in the archive.
5188
5189 The SOM dictionary has (among other things) the absolute file
5190 position for the SOM which a particular dictionary entry
5191 describes. We have to compute that information as we iterate
5192 through the SOMs/symbols. */
5193 som_index = 0;
5194 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5195
5196 /* Yow! We have to know the size of the extended name table
5197 too. */
5198 for (curr_bfd = abfd->archive_head;
5199 curr_bfd != NULL;
5200 curr_bfd = curr_bfd->next)
5201 {
5202 CONST char *normal = normalize (curr_bfd->filename);
5203 unsigned int thislen;
5204
5205 if (!normal)
5206 {
5207 bfd_set_error (bfd_error_no_memory);
5208 return false;
5209 }
5210 thislen = strlen (normal);
5211 if (thislen > maxname)
5212 extended_name_length += thislen + 1;
5213 }
5214
5215 /* Make room for the archive header and the contents of the
5216 extended string table. */
5217 if (extended_name_length)
5218 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5219
5220 /* Make sure we're properly aligned. */
5221 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5222
5223 /* FIXME should be done with buffers just like everything else... */
5224 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5225 if (lst_syms == NULL && nsyms != 0)
5226 {
5227 bfd_set_error (bfd_error_no_memory);
5228 goto error_return;
5229 }
5230 strings = malloc (string_size);
5231 if (strings == NULL && string_size != 0)
5232 {
5233 bfd_set_error (bfd_error_no_memory);
5234 goto error_return;
5235 }
5236
5237 p = strings;
5238 curr_lst_sym = lst_syms;
5239
5240 curr_bfd = abfd->archive_head;
5241 while (curr_bfd != NULL)
5242 {
5243 unsigned int curr_count, i;
5244 som_symbol_type *sym;
5245
5246 /* Don't bother for non-SOM objects. */
5247 if (curr_bfd->format != bfd_object
5248 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5249 {
5250 curr_bfd = curr_bfd->next;
5251 continue;
5252 }
5253
5254 /* Make sure the symbol table has been read, then snag a pointer
5255 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5256 but doing so avoids allocating lots of extra memory. */
5257 if (som_slurp_symbol_table (curr_bfd) == false)
5258 goto error_return;
5259
5260 sym = obj_som_symtab (curr_bfd);
5261 curr_count = bfd_get_symcount (curr_bfd);
5262
5263 for (i = 0; i < curr_count; i++, sym++)
5264 {
5265 struct som_misc_symbol_info info;
5266
5267 /* Derive SOM information from the BFD symbol. */
5268 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5269
5270 /* Should we include this symbol? */
5271 if (info.symbol_type == ST_NULL
5272 || info.symbol_type == ST_SYM_EXT
5273 || info.symbol_type == ST_ARG_EXT)
5274 continue;
5275
5276 /* Only global symbols and unsatisfied commons. */
5277 if (info.symbol_scope != SS_UNIVERSAL
5278 && info.symbol_type != ST_STORAGE)
5279 continue;
5280
5281 /* Do no include undefined symbols. */
5282 if (bfd_is_und_section (sym->symbol.section))
5283 continue;
5284
5285 /* If this is the first symbol from this SOM, then update
5286 the SOM dictionary too. */
5287 if (som_dict[som_index].location == 0)
5288 {
5289 som_dict[som_index].location = curr_som_offset;
5290 som_dict[som_index].length = arelt_size (curr_bfd);
5291 }
5292
5293 /* Fill in the lst symbol record. */
5294 curr_lst_sym->hidden = 0;
5295 curr_lst_sym->secondary_def = 0;
5296 curr_lst_sym->symbol_type = info.symbol_type;
5297 curr_lst_sym->symbol_scope = info.symbol_scope;
5298 curr_lst_sym->check_level = 0;
5299 curr_lst_sym->must_qualify = 0;
5300 curr_lst_sym->initially_frozen = 0;
5301 curr_lst_sym->memory_resident = 0;
5302 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5303 curr_lst_sym->dup_common = 0;
5304 curr_lst_sym->xleast = 0;
5305 curr_lst_sym->arg_reloc = info.arg_reloc;
5306 curr_lst_sym->name.n_strx = p - strings + 4;
5307 curr_lst_sym->qualifier_name.n_strx = 0;
5308 curr_lst_sym->symbol_info = info.symbol_info;
5309 curr_lst_sym->symbol_value = info.symbol_value;
5310 curr_lst_sym->symbol_descriptor = 0;
5311 curr_lst_sym->reserved = 0;
5312 curr_lst_sym->som_index = som_index;
5313 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5314 curr_lst_sym->next_entry = 0;
5315
5316 /* Insert into the hash table. */
5317 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5318 {
5319 struct lst_symbol_record *tmp;
5320
5321 /* There is already something at the head of this hash chain,
5322 so tack this symbol onto the end of the chain. */
5323 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5324 tmp->next_entry
5325 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5326 + lst.hash_size * 4
5327 + lst.module_count * sizeof (struct som_entry)
5328 + sizeof (struct lst_header);
5329 }
5330 else
5331 {
5332 /* First entry in this hash chain. */
5333 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5334 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5335 + lst.hash_size * 4
5336 + lst.module_count * sizeof (struct som_entry)
5337 + sizeof (struct lst_header);
5338 }
5339
5340 /* Keep track of the last symbol we added to this chain so we can
5341 easily update its next_entry pointer. */
5342 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5343 = curr_lst_sym;
5344
5345
5346 /* Update the string table. */
5347 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5348 p += 4;
5349 strcpy (p, sym->symbol.name);
5350 p += strlen (sym->symbol.name) + 1;
5351 while ((int)p % 4)
5352 {
5353 bfd_put_8 (abfd, 0, p);
5354 p++;
5355 }
5356
5357 /* Head to the next symbol. */
5358 curr_lst_sym++;
5359 }
5360
5361 /* Keep track of where each SOM will finally reside; then look
5362 at the next BFD. */
5363 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5364 curr_bfd = curr_bfd->next;
5365 som_index++;
5366 }
5367
5368 /* Now scribble out the hash table. */
5369 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5370 != lst.hash_size * 4)
5371 goto error_return;
5372
5373 /* Then the SOM dictionary. */
5374 if (bfd_write ((PTR) som_dict, lst.module_count,
5375 sizeof (struct som_entry), abfd)
5376 != lst.module_count * sizeof (struct som_entry))
5377 goto error_return;
5378
5379 /* The library symbols. */
5380 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5381 != nsyms * sizeof (struct lst_symbol_record))
5382 goto error_return;
5383
5384 /* And finally the strings. */
5385 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5386 goto error_return;
5387
5388 if (hash_table != NULL)
5389 free (hash_table);
5390 if (som_dict != NULL)
5391 free (som_dict);
5392 if (last_hash_entry != NULL)
5393 free (last_hash_entry);
5394 if (lst_syms != NULL)
5395 free (lst_syms);
5396 if (strings != NULL)
5397 free (strings);
5398 return true;
5399
5400 error_return:
5401 if (hash_table != NULL)
5402 free (hash_table);
5403 if (som_dict != NULL)
5404 free (som_dict);
5405 if (last_hash_entry != NULL)
5406 free (last_hash_entry);
5407 if (lst_syms != NULL)
5408 free (lst_syms);
5409 if (strings != NULL)
5410 free (strings);
5411
5412 return false;
5413 }
5414
5415 /* Write out the LST for the archive.
5416
5417 You'll never believe this is really how armaps are handled in SOM... */
5418
5419 /*ARGSUSED*/
5420 static boolean
5421 som_write_armap (abfd, elength, map, orl_count, stridx)
5422 bfd *abfd;
5423 unsigned int elength;
5424 struct orl *map;
5425 unsigned int orl_count;
5426 int stridx;
5427 {
5428 bfd *curr_bfd;
5429 struct stat statbuf;
5430 unsigned int i, lst_size, nsyms, stringsize;
5431 struct ar_hdr hdr;
5432 struct lst_header lst;
5433 int *p;
5434
5435 /* We'll use this for the archive's date and mode later. */
5436 if (stat (abfd->filename, &statbuf) != 0)
5437 {
5438 bfd_set_error (bfd_error_system_call);
5439 return false;
5440 }
5441 /* Fudge factor. */
5442 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5443
5444 /* Account for the lst header first. */
5445 lst_size = sizeof (struct lst_header);
5446
5447 /* Start building the LST header. */
5448 lst.system_id = CPU_PA_RISC1_0;
5449 lst.a_magic = LIBMAGIC;
5450 lst.version_id = VERSION_ID;
5451 lst.file_time.secs = 0;
5452 lst.file_time.nanosecs = 0;
5453
5454 lst.hash_loc = lst_size;
5455 lst.hash_size = SOM_LST_HASH_SIZE;
5456
5457 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5458 lst_size += 4 * SOM_LST_HASH_SIZE;
5459
5460 /* We need to count the number of SOMs in this archive. */
5461 curr_bfd = abfd->archive_head;
5462 lst.module_count = 0;
5463 while (curr_bfd != NULL)
5464 {
5465 /* Only true SOM objects count. */
5466 if (curr_bfd->format == bfd_object
5467 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5468 lst.module_count++;
5469 curr_bfd = curr_bfd->next;
5470 }
5471 lst.module_limit = lst.module_count;
5472 lst.dir_loc = lst_size;
5473 lst_size += sizeof (struct som_entry) * lst.module_count;
5474
5475 /* We don't support import/export tables, auxiliary headers,
5476 or free lists yet. Make the linker work a little harder
5477 to make our life easier. */
5478
5479 lst.export_loc = 0;
5480 lst.export_count = 0;
5481 lst.import_loc = 0;
5482 lst.aux_loc = 0;
5483 lst.aux_size = 0;
5484
5485 /* Count how many symbols we will have on the hash chains and the
5486 size of the associated string table. */
5487 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5488 return false;
5489
5490 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5491
5492 /* For the string table. One day we might actually use this info
5493 to avoid small seeks/reads when reading archives. */
5494 lst.string_loc = lst_size;
5495 lst.string_size = stringsize;
5496 lst_size += stringsize;
5497
5498 /* SOM ABI says this must be zero. */
5499 lst.free_list = 0;
5500 lst.file_end = lst_size;
5501
5502 /* Compute the checksum. Must happen after the entire lst header
5503 has filled in. */
5504 p = (int *)&lst;
5505 lst.checksum = 0;
5506 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5507 lst.checksum ^= *p++;
5508
5509 sprintf (hdr.ar_name, "/ ");
5510 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5511 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5512 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5513 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5514 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5515 hdr.ar_fmag[0] = '`';
5516 hdr.ar_fmag[1] = '\012';
5517
5518 /* Turn any nulls into spaces. */
5519 for (i = 0; i < sizeof (struct ar_hdr); i++)
5520 if (((char *) (&hdr))[i] == '\0')
5521 (((char *) (&hdr))[i]) = ' ';
5522
5523 /* Scribble out the ar header. */
5524 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5525 != sizeof (struct ar_hdr))
5526 return false;
5527
5528 /* Now scribble out the lst header. */
5529 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5530 != sizeof (struct lst_header))
5531 return false;
5532
5533 /* Build and write the armap. */
5534 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5535 return false;
5536
5537 /* Done. */
5538 return true;
5539 }
5540
5541 /* Free all information we have cached for this BFD. We can always
5542 read it again later if we need it. */
5543
5544 static boolean
5545 som_bfd_free_cached_info (abfd)
5546 bfd *abfd;
5547 {
5548 asection *o;
5549
5550 if (bfd_get_format (abfd) != bfd_object)
5551 return true;
5552
5553 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5554 /* Free the native string and symbol tables. */
5555 FREE (obj_som_symtab (abfd));
5556 FREE (obj_som_stringtab (abfd));
5557 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5558 {
5559 /* Free the native relocations. */
5560 o->reloc_count = -1;
5561 FREE (som_section_data (o)->reloc_stream);
5562 /* Free the generic relocations. */
5563 FREE (o->relocation);
5564 }
5565 #undef FREE
5566
5567 return true;
5568 }
5569
5570 /* End of miscellaneous support functions. */
5571
5572 #define som_close_and_cleanup som_bfd_free_cached_info
5573
5574 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5575 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5576 #define som_truncate_arname bfd_bsd_truncate_arname
5577 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5578 #define som_update_armap_timestamp bfd_true
5579
5580 #define som_get_lineno _bfd_nosymbols_get_lineno
5581 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5582
5583 #define som_bfd_get_relocated_section_contents \
5584 bfd_generic_get_relocated_section_contents
5585 #define som_bfd_relax_section bfd_generic_relax_section
5586 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5587 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5588 #define som_bfd_final_link _bfd_generic_final_link
5589
5590 const bfd_target som_vec =
5591 {
5592 "som", /* name */
5593 bfd_target_som_flavour,
5594 true, /* target byte order */
5595 true, /* target headers byte order */
5596 (HAS_RELOC | EXEC_P | /* object flags */
5597 HAS_LINENO | HAS_DEBUG |
5598 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5599 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5600 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5601
5602 /* leading_symbol_char: is the first char of a user symbol
5603 predictable, and if so what is it */
5604 0,
5605 '/', /* ar_pad_char */
5606 14, /* ar_max_namelen */
5607 3, /* minimum alignment */
5608 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5609 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5610 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5611 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5612 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5613 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5614 {_bfd_dummy_target,
5615 som_object_p, /* bfd_check_format */
5616 bfd_generic_archive_p,
5617 _bfd_dummy_target
5618 },
5619 {
5620 bfd_false,
5621 som_mkobject,
5622 _bfd_generic_mkarchive,
5623 bfd_false
5624 },
5625 {
5626 bfd_false,
5627 som_write_object_contents,
5628 _bfd_write_archive_contents,
5629 bfd_false,
5630 },
5631 #undef som
5632
5633 BFD_JUMP_TABLE_GENERIC (som),
5634 BFD_JUMP_TABLE_COPY (som),
5635 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5636 BFD_JUMP_TABLE_ARCHIVE (som),
5637 BFD_JUMP_TABLE_SYMBOLS (som),
5638 BFD_JUMP_TABLE_RELOCS (som),
5639 BFD_JUMP_TABLE_WRITE (som),
5640 BFD_JUMP_TABLE_LINK (som),
5641 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5642
5643 (PTR) 0
5644 };
5645
5646 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.151958 seconds and 4 git commands to generate.